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ABSTRACT

One of the few indications for new physics is the discrepancy between the theoret-

ical and experimental values for the anomalous magnetic moment of the muon. There

is a discrepancy of 3 to 4 standard deviations between theory and the last experimen-

tal measurement made at Brookhaven National Laboratory in 2001, which measured

the muon magnetic anomaly aµ to 540 parts per billion (ppb). This discrepancy has

been consistent for many years with ever improving theoretical calculations. In order

to resolve or confirm this discrepancy experiment E989, Muon g − 2, is underway

to measure aµ to 4 times higher precision at 140 ppb. In Run 1 E989 gathered its

first production data, consisting of approximately 8× 109 decay positrons above an

energy threshold of 1.7 GeV.

This dissertation describes the experimental measurement, the detectors, the pre-

cession frequency extraction, and the track fitting of decay positrons in Run 1. The

track fitting is done using a χ2 minimization algorithm to fit tracks propagated within

a Geant4 reconstruction simulation including error propagation. The precession fre-

quency is extracted using an analysis technique called the Ratio Method. The Ratio
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Method takes the ratio of time-shifted decay positron spectra in order to remove the

decay exponential along with slowly varying effects in the data. Precession frequency

extraction analyses for four near-final Run 1 datasets are presented with full system-

atic error evaluations. The total Run 1 precession frequency error determined in this

analysis is 469.4 ppb, where the error is statistics dominated. Combined with the

expected error in the magnetic field measurement of 140 ppb, the expected final error

on aµ for Run 1 of E989 is O(500 ppb), comparable to the previous measurement.
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Chapter 1

Introduction

The prevailing theory of particle physics, the Standard Model (SM), has had tremen-

dous success in describing our universe. It has been used to predict and explain a

wide variety of phenomena, particle properties, and interactions to great precision.

However, in spite of its success in explaining nearly all experimental results, there

remain unanswered questions about our universe. Some of these include the matter-

antimatter asymmetry, the source of mass for the neutrinos, the existence of dark

matter, and reconciling general relativity and quantum mechanics. Many particle

physics experiments around the world are being devised and conducted in order to

shed light on these questions and improve our understanding of reality. In general,

particle physics experiments search for new physics by looking directly for new par-

ticles or processes, forbidden or otherwise, or by precisely measuring quantities that

are predicted by the SM in order to search for deviations between theory and experi-

ment. One such experiment in the latter case is the Fermilab Muon g−2 Experiment

(E989), underway at the Fermi National Accelerator Laboratory located in Batavia,

Illinois.

This dissertation will describe the E989 experiment and the author’s contributions

in detail. Chapter 1 will provide experimental and theoretical background to the

experiment, as well its motivation. Chapter 2 will describe the experimental principle

and specifics of muon production and storage. Chapter 3 will describe the various

detector systems. Chapter 4 will describe the straw tracking reconstruction including

1
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the track fitting algorithm, as well as some analysis results. Chapter 5 will describe

the precession frequency measurement portion of the experiment, and detail analysis

results from data taken in the first run of the experiment in 2018. Chapter 6 will

conclude the dissertation and the results contained within.

1.1 Magnetic moments of particles

All particles have intrinsic properties. One property of charged particles is the mag-

netic dipole moment.1 This property of a particle is related to its spin through the

equation

~µ = g
q

2m
~s, (1.1)

where ~µ is the magnetic dipole moment of a particle, ~s is its spin vector, m is its mass,

q = ±e where e is the elementary charge, and g is the so called “Landé g-factor”. g is

a measurable and predictable observable. Since the torque on a particle in a magnetic

field ~B is

~N = ~µ× ~B, (1.2)

the rate at which a particle’s spin precesses in a magnetic field will depend on g. This

is one of the key physics principles in the E989 experiment as will be discussed later.

In a Dirac theory, g is equal to 2 for spin-½ particles with no internal structure [1].

A simple derivation of this result is given in Reference [2]. However, even for these

types of particles, g is not quite equal to 2. Motivated by early experimental mea-

surement discrepancies such as the measurements of the hyperfine structure in hydro-

gen [3], in 1948 Schwinger calculated the first “radiative correction” to the electron

magnetic moment [4]. In the same year Kusch and Foley measured the g factor of the

1Magnetic dipole moment and magnetic moment are equivalent when talking about particles.
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electron to be ge = 2.00238 ± 0.00010 [5, 6], proving that such radiative corrections

were needed in a properly descriptive theory. In a quantum field theory, interactions

of the particle with virtual particles in loops will contribute to the value of g. In this

context, for charged leptons, it is convenient to recast the magnetic dipole moment

formula as

~µ = 2(1 + a)
q

2m
~s,

a =
g − 2

2
,

(1.3)

where a is called the “magnetic anomaly,” and contains all higher order corrections to

g. The first correction to a, calculated by Schwinger, was a = α/2π ≈ 0.00116, where

α is the fine structure constant, consistent with the measured value. By measuring a,

the SM theory can be tested and extensions to it constrained. A precise measurement

of the muon magnetic anomaly, or the anomalous magnetic moment of the muon, is

the main goal of the Fermilab Muon g − 2 Experiment.

1.2 Standard Model contributions to aµ

The latest theoretical predictions for the muon magnetic moment will be presented

here. The contributions to aµ can be divided into three sectors of the SM. These

include the quantum-electrodynamics (QED) contributions purely from leptons and

photons, the electroweak (EW) contributions from interactions involving the weak

force bosons {W±, Z0, H}, and the hadronic (Had) contributions from interactions

with strongly-interacting hadrons:

aSM
µ = aQED

µ + aEW
µ + aHad

µ . (1.4)
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l l

γ

(a) Dirac result, g = 2.

l l

γ

γ

(b) The first loop diagram,
calculated by Schwinger.

l l

γ

γ

l

l

(c) A two-loop diagram.

Figure 1·1: The first of many QED diagrams contributing to a. Feyn-
man diagrams made using TikZ-FeynHand [7, 8].

1.2.1 QED

The QED contributions to aµ stem solely from loops with virtual leptons and photons.

They are well understood and have been calculated to sufficient order, having been

calculated up to five-loop level from over 13,000 Feynman diagrams [9, 10]. This has

been achieved through both analytical and numerical methods. The first couple of

diagrams, including the Dirac g = 2 and Schwinger diagrams, are shown in Figure 1·1.

The sum of QED contributions to five-loop level calculated by Aoyama et al. is [9,

10]

aQED
µ =

∞∑
n=1

Cn

(α
π

)n
,

= (11658471.8971± 0.0007)× 10−10,

(1.5)

where in the first line aQED
µ is expressed as a perturbative expansion in the fine

structure constant, Cn is the coefficient to be determined, and n is the loop level.

C1 = 1/2 is the Schwinger result mentioned previously, stemming from the diagram

shown in Figure 1·1b. While over 99% of the value of aµ comes from the QED sector,

the error is much smaller than in the EW and hadronic contributions.
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l l

γ

Z0

(a) Exchange of a virtual
Z0 boson.

l l

γ

ν l

W− W+

(b) Electroweak loop with
W bosons.

l l

γ

H

(c) Exchange of a Higgs bo-
son.

Figure 1·2: First order weak diagrams contributing to a. Feynman
diagrams made using TikZ-FeynHand [7, 8].

1.2.2 Electroweak

The electroweak contributions to aµ are known to two-loop level [11]. Estimations of

three-loop level contributions and above are small [12]. The different one-loop dia-

grams are shown in Figure 1·2. In the EW diagrams the heavy masses of the gauge

bosons will produce contributions with characteristic scales of of ∼ (ml/mZ0,H,W±)2.

Because the masses of the gauge bosons are much larger than the muon, these pro-

cesses are suppressed and the electroweak contributions to aµ are small relative to the

QED contributions. The value of the electroweak contributions as given by Ishikawa

et al. is [11]

aEW
µ = (15.29± 0.10)× 10−10. (1.6)

This value is consistent with the oft-quoted PDG value of 15.36± 0.10× 10−10 [12].

It should be noted that the error on these contributions is small compared to those

of the hadronic contributions discussed next.
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1.2.3 Hadronic

The hadronic contributions to aµ arise from loop diagrams with virtual hadrons.

Because the strong coupling is large at low energies, the amplitudes for these processes

cannot be calculated perturbatively. As the low-energy non-perturbative processes

dominate the hadronic contributions, they by extension have errors that dominate

the theoretical uncertainty in the SM calculation. Most active work on aµ in the

theoretical community is in this sector. The Muon g−2 Theory Initiative is comprised

of many working groups from various institutions which seeks to make improvements

in the hadronic calculations, and produce consensus values going forward in 2020 and

beyond [13]. The hadronic contributions can be separated into two parts:

aHad
µ = aHVP

µ + aHLbL
µ . (1.7)

Hadronic Vacuum Polarization

The first term in Equation 1.7 refers to contributions from hadronic vacuum polariza-

tion (HVP), the first order diagram of which is shown in Figure 1·3a. There are two

main prescriptions for calculating these contributions. The first is to use a disper-

sive approach to introduce a virtual hadron bubble into the integral calculation for

the photon propagator2, and then utilize the optical theorem to relate the imaginary

part of that propagator to the total cross-section of electron-positron annihilation

to hadrons [15]. While this could be solved perturbatively for a lepton bubble in

place of the hadron bubble, this is instead a data driven approach when considering

non-perturbative QCD. The leading order (LO) contribution can be written as

aHVP;LO
µ =

(αmµ

3π

)2
∞∫

m2
π

ds

s2
K(s)R(s), (1.8)

2The details of dispersion theory will not be described here but a pedagogical introduction is
given in Reference [14].
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l l

H

γ

(a) The first order HVP Feynman di-
agram.

e−

e+

H
γ

real hadrons

(b) The Feynman diagram for
electron positron annihilation to
hadrons.

Figure 1·3: The first order HVP diagram on the left, which can be
related to the diagram on the right via the optical theorem. The H
bubble in both diagrams indicates all hadrons. Feynman diagrams
made using TikZ-FeynHand [7, 8].

where K(s) is some calculable kinematic factor, and R(s) is a ratio of cross-sections,

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
. (1.9)

The cross-section data for Equation 1.9 has been measured in different energy

ranges by various experiments; a brief overview is given by A. Keshavarzi [16]. There

are two approaches to measuring this cross-section data. The first operates at fixed

center of mass energies in the standard collider theme, and the second tags initial

state radiation in order to evaluate the differential cross-section over a wider energy

range. As further data are acquired and compared between the different experiments,

the error in the HVP contributions to aµ will decrease. The analysis by Keshavarzi

et al. with cross-section data as of November 1st, 2019 gives results as [17, 18]

aHVP;LO
µ = (692.78± 2.42)× 10−10,

aHVP;NLO
µ = (−9.83± 0.04)× 10−10,

(1.10)

where aHVP;NLO
µ is the next-to-leading (NLO) order calculation. This evaluation is
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consistent with another more conservative analysis by Davier et al. [19, 20]. A cal-

culation for the next-to-next-to-leading order HVP contribution is given by Kurz et

al. [21]

aHVP;NNLO
µ = (1.24± 0.01)× 10−10. (1.11)

The second prescription for estimating the HVP contributions is a first principles

approach, using lattice QCD. Lattice QFT is a gauge theory defined on a finite

ensemble of discretized points in time and space. In the limit that the ensemble

is taken infinitely large with the spacing between the points infinitesimally small,

the behavior from a continuous theory is recovered. The lattice-based estimates of

aHVP;LO
µ are consistent with those provided above, though the error is larger [22].

Hadronic Light-by-Light

The second of these hadronic contribution parts is a higher-order, four-photon in-

teraction, termed hadronic light-by-light (HLbL). Diagrams are shown in Figure 1·4.

The calculation of these diagrams has historically been model dependent, and has

therefore been the most contentious part of the SM calculation. The value of the

HLbL contributions to aµ from model estimates by the so-called ‘Glasgow consensus’

is aHLbL
µ = (10.5± 2.6)× 10−10 [23].

In more recent years, there have been efforts to produce results using dispersive [24,

25, 26, 27, 28, 29, 30, 31] and lattice approaches [32, 33]. A calculation of the HLbL

contribution using the sum of the dispersive results with linearly added errors given

by Keshavarzi et al. from the references listed above is [18]3

aHLbL
µ = (9.34± 2.92)× 10−10. (1.12)

This calculation, while consistent with the Glasgow consensus estimate provided

3Some pieces are still from the Glasgow consensus which are a work in progress. These dominate
the error in the HLbL contribution.
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H

l l

γ

H

l l

H

γ

π0, η

Figure 1·4: HLbL diagrams contributing to aµ, where three photons are
exchanged with a virtual hadrons bubble. The diagram on the right
is technically contained within the diagram on the left, however it is
displayed separately here in order to help illustrate the complexity of
this contribution. Feynman diagrams made using TikZ-FeynHand [7,
8].

above, has the advantage that it is in part model-independent. The error on this

contribution is relatively large in each of these various approaches, comparable to

that of the aHVP;LO
µ term, even though the size of this contribution is small. A calcu-

lation of the higher order HLbL contributions by Colangelo et al. gives [34]

aHLbL;NLO
µ = (0.30± 0.20)× 10−10, (1.13)

showing that higher order HLbL contributions are practically negligible.

1.2.4 Combined Standard Model value

The sum of the aµ contributions listed here is [9, 10, 11, 18, 21, 23, 34]

aSM
µ = aQED

µ + aEW
µ + aHad

µ ,

= (11659181.02± 3.80)× 10−10.
(1.14)

The relative uncertainty of this result is 326 parts per billion (ppb). Other analyses

with different values for the various contributions typically agree well, as shown on

the left side of Figure 1·5. In general, the consistency of the theory has been stable
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Figure 1·5: Various theoretical values for aµ on the left, as compared
to the most recent and future extrapolated experimental results on the
right. From Reference [18].

for almost ten years now. Depending on which calculations are used, the discrepancy

between theory and experiment ranges between 3 to 4 standard deviations.

1.3 Experimental value of aµ and discrepancy with aSM
µ

The theoretical contributions to aµ listed in the previous sections have improved over

time as methods have matured and more experimental data have been gathered.

Similarly, work on the direct experimental measurement of aµ has been going on for

decades, with more precise results being determined over time [35]. The most recent

experiment to measure g − 2 was the Brookhaven Muon g − 2 Experiment (E821)

held at Brookhaven National Laboratory (BNL), which collected data from 1997 to

2001. That experiment measured a value for aµ of [36, 37]

aExp
µ = (11659208.9± 6.3)× 10−10, (1.15)
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which corresponds to a 540 ppb relative uncertainty. Note that the uncertainty of

the experimental measurement is comparable to that of the theory. The difference

between the experimental and theoretical values presented here is

aExp
µ − aSM

µ = (27.88± 7.36)× 10−10, (1.16)

corresponding to a discrepancy of 3.79 standard deviations.

1.4 Beyond the Standard Model and the purpose of E989

While the discrepancy between experiment and theory might be attributed to mis-

calculations in the theory or systematic errors in the E821 experiment, or a very rare

statistical fluctuation, no such errors have been found despite repeated attempts to

resolve it. Indeed the discrepancy has only grown over time as the theoretical cal-

culations have matured. The most intriguing and exciting source of the discrepancy

would be physics beyond the standard model (BSM).

The value of aµ receives contributions from all particles that couple to the muon

through virtual loops, so it is possible that as yet undiscovered particles are the

source of this discrepancy. The contribution to the magnetic moment from heavy

virtual particles goes as

a ∼ C
m2

Λ2
, (1.17)

where C is a constant of O(1), Λ is the mass scale of the new physics, and m the mass

of the lepton in question. The postulation of such new heavy particles has long been

explored in supersymmetry models [38]. With the lack of new physics results from

the LHC experiments however, such models have increasingly been excluded. In spite

of this, there are still regions of the parameter space that could account for the g− 2

discrepancy [39]. Radiative mass mechanisms in the range of 1 – 2 TeV can also be
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the source of the discrepancy while also accounting for the small muon mass relative

to the electroweak gauge bosons [38]. Heavy scalar leptoquarks, two-Higgs-doublet,

or more general scalar doublet models can also be constructed which account for the

discrepancy [40, 41, 42].

The sensitivity of the muon as compared to the electron to large mass scales is

m2
µ/m

2
e ≈ 43, 000 times greater. For this reason, it is possible that even though the

magnetic anomaly of the electron ae has been measured extraordinarily precisely, to

0.23 ppb corresponding to a 0.26 parts per trillion (ppt) relative uncertainty in the

electron g-factor [37, 43], it has not yielded a definitive difference between theory

and experiment, whereas the magnetic moment of the muon might do so. With

that being said a recent measurement of the fine structure constant α to the highest

precision yet [44] has yielded a new value of ae for which the difference between theory

and experiment is 2.5 standard deviations, but with the opposite sign as compared

to aµ. To explain both discrepancies simultaneously implies that the electron and

muon sectors need to be decoupled from one another in light of the constraints from

µ → eγ. Models with vector-like fermions which can account for both discrepancies

can be formulated whereas other models have trouble [45].

BSM models at the low energy regime can also explain the discrepancy. These

include a light scalar ‘dark’ Higgs which may be capable of producing the discrep-

ancy [46], (regardless of the fact that the dark photon model has been ruled out at

the 99% confidence level [47]), and low mass pseudo-scalar axion-like particles [48],

among others.

Future data taken from the LHC and other experiments will further constrain

the possible models based on other experimental observables. The Fermilab E989

experiment was undertaken in order to improve the experimental precision of the aµ

measurement, while verifying the previous result. Although, in general, there has
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Figure 1·6: The number of citations for the BNL experiment E821
publications as a function of year, as of 10/30/2019 [49].

been a lack of new physics results from other experiments, E989 has the potential to

provide an indirect confirmation of new physics. Accordingly, interest in the E821

experiment and it’s successor E989 has grown over time. The number of citations for

the E821 results has been consistently high for 20 years as shown in Figure 1·6.

The E989 experiment has the goal of measuring aµ to 140 ppb by 2021. This

would be a factor of four improvement over the E821 result stemming from a twenty

times increase in statistics, which was the dominant error in the previous experiment.

Assuming the same central value for aµ is obtained, this new measurement would

push the statistical significance of the discrepancy to approximately seven standard

deviations, as shown in Figure 1·5. The data comprising Run 1, gathered between

April and July of 2018, is the subject of this thesis, and corresponds to a statistical

uncertainty comparable to the E821 result. The Run 1 result by itself may provide

strong evidence for new physics, depending on the new measured value for aµ.



Chapter 2

Principal Techniques of E989

A particle with non-zero spin in a magnetic field will experience a torque which

attempts to line up the magnetic dipole moment of the particle with the external

field. As a result a particle’s spin in a dipole field will turn at the spin precession

frequency [50]

~ωs = −g q

2m
~B − (1− γ)

q

γm
~B, (2.1)

where m is the particle’s mass, q = ±e where e is the positive elementary charge, g is

the g-factor, γ is the Lorentz relativistic factor, and B is an external magnetic field.

The first term is the usual Larmor frequency and the second term is a relativistic

correction to the precession frequency in an accelerating frame called Thomas preces-

sion. Similarly, a particle with some momentum perpendicular to the magnetic field

will orbit at the cyclotron frequency

~ωc = − q

γm
~B. (2.2)

By taking the difference between these two frequencies we arrive at the “spin difference

frequency,”

~ωa = ~ωs − ~ωc = −g − 2

2

q

m
~B = −a q

m
~B, (2.3)

14
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a frequency that is directly proportional to the anomaly a. If g = 2, as in a Dirac

theory, then the particle’s spin would turn at the same rate as the momentum vector,

and ωa would be identically zero. If ωa for a muon and the external magnetic dipole

field can be measured, then the anomalous magnetic moment of the muon aµ can be

determined.

As will be detailed in Section 2.2, the measurement of the magnetic field is related

to the Larmor precession frequency of free protons in water

ωp = −gp
e

2mp

B, (2.4)

where gp and mp are the g-factor and mass of the proton respectively. Replacing B

and solving for aµ, we arrive at

aµ =
gp
2

ωa
ωp

mµ

mp

. (2.5)

Using the magnetic moment formulae for the proton, electron, and muon as shown in

Equation 1.1, Equation 2.5 can be transformed into

aµ =
ge
2

ωa
ωp

mµ

me

µp
µe
, (2.6)

where the p, e, and µ subscripts stand for the relevant quantities for the proton,

electron, and muon respectively. The experimental error on aµ then becomes the

quadrature sum of each individual quantity error. As mentioned in Section 1.4 the

electron g-factor ge has been measured to extremely high precision, 0.26 ppt [37, 43].

The muon-electron mass ratio, mµ/me, has been measured to 22 ppb [37, 51]. Finally

the proton-electron magnetic moment ratio, µp/µe, has been measured to 3 ppb [37].

These are small compared to the target statistical error on ωa of 100 ppb, and target

systematic errors on ωa and ωp, both at 70 ppb1. These errors added in quadrature

1The measurement of ωp has negligible statistical error.
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is approximately 140 ppb, which is the target of the E989 experiment.

2.1 Measuring ωa

How can ωa for muons be measured? The answer lies with two key points in the

dynamics of muon decay. Positive muons decay to a positron and two neutrinos, as

shown in Figure 2·1. The first point is that because of the parity violating nature of the

weak interaction, the decay positron will preferentially be emitted right-handed, with

its spin directed in the same direction as its momentum [52]. The second key point is

that angular momentum must be conserved. Consider the most extreme examples of

maximum and minimum energy decay positrons as shown in Figure 2·2. In the muon

rest frame, decay positrons with maximum energy will be emitted opposite to the two

neutrinos, both emitted in the same direction. Since neutrinos and anti-neutrinos

must be left and right-handed respectively, with their spins directed anti-parallel and

parallel to their momentum, by the law of conservation of angular momentum the

positron spin must be parallel to the spin of the muon at the time of the decay. By

the opposite argument, decay positrons emitted with minimum energy such that the

neutrinos are ejected opposite to one another must have their spins be anti-parallel to

that of the muon at the time of decay. Together, these two points mean that higher

energy decay positrons will preferentially be emitted in directions parallel to the muon

spin at the time of decay, while lower energy decay positrons will preferentially be

emitted in directions anti-parallel to the muon spin at the time of the decay.

This correlation between the direction of an emitted high energy decay positron

and the spin of the muon is the signature needed to measure ωa. Muons placed

within a magnetic storage ring will orbit at the cyclotron frequency and their spins

will precess at the spin precession frequency. As they go around the ring they will

decay to positrons whose energy and decay directions contain information about the
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µ+

νµ

νe

e+

W+

Figure 2·1: Diagram for muon decay. µ+ decay through a W+ boson to
a positron, muon anti-neutrino, and an electron neutrino. This process
consists of nearly 100% of the muon decay branching ratio, with other
decay states including radiative processes.

spin
momentum

Muon decay in the rest frame

Figure 2·2: Muon decay in the rest frame for maximum (top) and
minimum (bottom) energy decay positrons. Due to the conservation of
angular momentum and the single possible helicity states of the decay
neutrinos, the spin of the decay positron is exactly parallel to the spin of
the muon at the time of the decay for maximum energy decay positrons,
or anti-parallel for minimum energy decay positrons.
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spin of the muons. If the muon ensemble is un-polarized, then the decay distribution

for all positrons will be isotropic and in general un-useful. If the muon ensemble is

polarized, then the decay distribution for each muon will be the same, and allow for

a measurement of ωa, as described in the following text.

The differential decay distribution for positive muons in the muon rest frame is

described by [52]

dP (y, θ) ∝ N(y)[1 + A(y) cos(θ)]dydΩ, (2.7)

where y = E/Emax is the energy fraction of the positron and θ is the angle between

the spin of the muon and the momentum of the positron at the time of decay. N(y)

is the number distribution of decay positrons and A(y) is the so called ‘asymmetry,’

encoding the energy-dependent correlation between the muon spin and the decay

positron direction. Here the energy of the positron is assumed to be much greater

than its mass. The number distribution and asymmetry are given by

N(y) = 2y2(3− 2y), (2.8)

A(y) =
2y − 1

3− 2y
, (2.9)

and are shown in Figure 2·3a.

In the lab frame, nearly all high energy positrons are emitted parallel to the muon

momentum, making it challenging to select purely on the decay angle of the positron.

That is not a problem however, as we already know that decay positrons with the

highest rest-frame energies will be emitted parallel to the muon spin at the time

of decay. Essentially, the energy distribution of detected high energy positrons is

modulated by ωa, or θ = ωat+φ. The number of detected positrons at some time and

energy in the lab frame for some initial number N0 of muons can then be described
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Figure 2·3: Decay number distribution N and asymmetry A in the
muon rest frame (left) and in the lab frame (right) as a function of
positron energy with a maximum positron energy of 3.1 GeV. N is
multiplied by arbitrary factors in both pictures.

by

Nd(t, E) = N0(E) · e−t/γτµ · [1 + A(E) cos(ωat+ φ(E))], (2.10)

where the d subscript stands for ‘detected,’ the muons are decaying with a lifetime

of γτµ, and all the relevant parameters are energy dependent. Here N0(E) and A(E)

have been transformed from Equations 2.8 and 2.9 to the lab frame:

N0(E) ∝ (y − 1)(4y2 − 5y − 5) (2.11)

A(E) =
−8y2 + y + 1

4y2 − 5y − 5
(2.12)

Here the polarization of the muons is assumed to be unity. These relations are shown

in Figure 2·3b. All positrons above some energy threshold cut Eth can be taken as

the observable,

Nd(t, Eth) = N0(Eth) · e−t/γτµ · [1 + A(Eth) cos(ωat+ φ(Eth))], (2.13)

where the number and asymmetry of the detected positrons is now calculated by
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Figure 2·4: The number of detected positrons above some energy
threshold (y ∼ 0.55) as a function of time, where the data plotted
come from Run 1 and correspond to nearly 1× 109 counts. The time
axis is wrapped around every 100 µs.

simply integrating Equations 2.11 and 2.12 from yth to 1,

N0(Eth) ∝ (yth − 1)2(−y2
th + yth + 3), (2.14)

A(Eth) =
yth(2yth + 1)

−y2
th + yth + 3

, (2.15)

where yth = Eth/Emax. By counting decay positrons above some energy threshold

and fitting the resulting time spectrum with Equation 2.13, ωa can be extracted. A

sample of data adhering to such a time spectrum is shown in Figure 2·4.

The statistical error on the ωa measurement, assuming bin errors are Gaussian

and a χ2 minimization is used with the fit function described in Equation 2.13, is [53]

σωa
ωa

=

√
2√

NtotalAγτµωa
, (2.16)
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where Ntotal is the total number of counts included in the above-threshold time spec-

trum. This equation assumes a weighting of one for every count included in the

fitted time spectrum. Other weighting schemes exist which slightly improve the sta-

tistical precision of the ωa measurement [53], but they were not used in the analysis

presented in this dissertation. What Equation 2.16 reveals is that the statistical pre-

cision of ωa is maximized when the quantity NA2 is at a maximum. It was found

for E989 that the optimal energy threshold was about 1.7 GeV as shown in Fig-

ure 5·5, which includes detector acceptance effects and corresponds to an asymmetry

of about A = 0.37. Equation 2.16 can be rearranged in order to solve for the number

of positrons needed to be collected above threshold for a specific precision goal. For a

statistical error of 100 ppb on ωa, the required number of positrons above threshold is

approximately 170× 109, determined from the values A = 0.37, γ = 29.3 (described

later), τµ = 2.2 µs, and ωa = 1.44 rad/µs. This statistical error of ωa combined with

the systematic uncertainties given in Table 5.9, provide the total error on ωa.

2.2 Measuring the magnetic field

In order to measure the magnetic moment of the muon to 140 ppb, the field needs

to be both highly uniform, and measured to extreme precision. The E989 goal for

the field measurement is 70 ppb. As shown in Equation 2.6, the measurement of

the magnetic field has equal weight to that of the precession frequency. A cross-

section of the magnetic storage ring used in E989 is shown in Figure 2·5. It is

an approximately 14 m diameter C magnet, where the muons are stored within a

4.5 cm radius cylindrical storage region at the center of a 1.451 T magnetic field. This

corresponds to an approximately 0.28 m3 or 10 ft3 total volume around the inside

of the ring. The magnetic field is made uniform by manipulating many magnetic

‘knobs’ built into the g − 2 storage ring, including the main magnet current, pole
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Figure 2·5: Cross-section of the g − 2 magnet. The muons live in the
4.5 cm radius circular storage region shown in red. The main magnetic
field is excited by superconducting coils shown in yellow. Pole pieces,
wedges, edge shims, top hats, and other magnetic knobs allow for sub-
ppm level tuning of the magnetic field.

pieces, wedges, top hats, and thousands of small magnetic shims placed around the

storage region. There is also an active feedback system which stabilizes the average

magnetic field over time using current carrying coils near the storage region. After a

several month shimming campaign by many members of the field team, a precision on

the magnetic field of approximately 25 ppm RMS (root mean square) was achieved.

The magnetic field is measured using a nuclear magnetic resonance (NMR) tech-

nique, hence the measurement on ωp as shown in Equation 2.4. NMR was chosen

as it provides a field measurement precision on the order of 10 ppb with negligible

statistical uncertainty [54]. NMR probes consist of pickup coils located around a

sample of protons in some fluid, typically water or petroleum jelly. The pickup coils

deliver a “π/2 pulse” which rotates the proton sample magnetization 90° out of phase
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Figure 2·6: An example FID signal. The current picked up in the coils
around the proton sample will oscillate as the spins precess around the
main magnetic field vector, and decay as the spins return to alignment
with the external field.

from equilibrium. The proton spins will begin precessing at the Larmor frequency

(≈ 61.79 MHz). As the spins interact with local magnetic field gradients and inho-

mogeneities, the magnetization of the proton sample will relax back to equilibrium

with the external field, typically on the order of several milliseconds. This so-called

free-induction decay signal (FID), an example of which is shown in Figure 2·6, is

measured using the same pickup coils that delivered the initial π/2 pulse

Technically, it is not solely ωp that needs to be measured. What really matters is

the average magnetic field that the muons see, namely the time-averaged spatially-

weighted magnetic field. The scheme devised to measure this is two-fold. First, the

magnetic field in the muon storage region is measured by a trolley which travels

around the inside of the ring. This trolley holds 17 NMR probes which measure the

field at approximately 6000 locations around the inside of the ring. However, because

the trolley cannot be in the storage region when the muons are present in the ring,

during data taking it is retracted and the field is instead monitored by 378 fixed NMR
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Figure 2·7: A sample of the azimuthally-averaged magnetic field within
the storage region, taken at the start of the 60h dataset, courtesy of
R. Osofsky [55]. The main dipole field measured at the center of the
storage region has been subtracted from the plot. The scale of the field
differences is approximately ±1.5 ppm. The black dots in the picture
correspond to the location of the 17 trolley probes.

probes located in the high magnetic field region, just outside the storage region on

the outside of the vacuum chambers. The prescription is that the storage ring field

is measured every few days by the trolley probes, and the field between trolley runs

is interpolated using measurements from the continually-sampling fixed probes. In

this way the magnetic field can be mapped over time and over the space in which

the muons are stored. A sample of the azimuthally-averaged magnetic field measured

with trolley and fixed probes is shown in Figure 2·7.

Lastly, it is the free proton precession frequency in the field that is of interest, but

the frequency that the trolley probes measure will be different due to the molecular

properties of the proton sample as well as the material properties of the probe itself.
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The frequency of the induction signal that the probes measure can be re-cast as

ωp,probe = ωp,free(1− σ(H2O, T) + δb + δp + δs), (2.17)

where σ(H2O, T) is the temperature-dependent diamagnetic shielding of protons in a

water molecule, and the δ’s come from corrections due to the bulk susceptibility of the

water sample, paramagnetic impurities in the water sample, and the magnetic effects

of the probe itself, respectively [54]. In order to correct for these effects an additional

special probe is used, the ‘plunging probe’, which operates in a single azimuthal sec-

tion of the ring which has been shimmed to extra uniformity. This probe is made of

materials which are designed to reduce the effects listed in Equation 2.17, and has

been characterized in a dedicated highly uniform solenoidal magnetic field [56]. It

is located inside the vacuum chamber and moves into the storage region to measure

the field at each of the 17 trolley probe locations, using a three dimensional motion

system. By using this probe, the calibration to the free proton precession frequency

can be transmitted to each of the trolley probes, providing an absolute scale for the

measurements inside the muon storage region. The uncertainty on the calibration pro-

cedure is estimated to be 35 ppb, about half the total permitted by the experimental

error budget of 70 ppb.

Other pieces of the systematic uncertainty include the calibrations of the probes,

errors in the trolley measurements, the interpolation with the fixed probes, the un-

certainty of the magnetic field relative to the muon distribution, etc. See Table 2.1.

2.3 Production of polarized muons

The muons injected into the storage ring must be polarized in order to measure

ωa. The BNL E821 experiment observed on the order of 10 billion decay positrons

above threshold, and its final result was statistics limited. In order to reach the goal
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Magnetic Field Measurement Uncertainties

Source of uncertainty E989 Goal (ppb)

Absolute calibration of standard probe 35

Calibration of trolley probes 30

Trolley measurements 30

Fixed probe interpolation 30

Muon distribution weighted average 10

Time dependent external fields 5

Others 30

Quadrature sum ∼ 70

Table 2.1: Systematic errors in the magnetic field measurement. Un-
listed sources of error include the measurement of higher field multi-
poles, trolley temperature and power supply voltage response effects,
and eddy currents from the kicker, among others.

of 140 ppb, approximately 20 times that number of positrons needs to be gathered.

Fermilab has the facilities to produce the required number of polarized muons.

Polarized muon beams are constructed using the physics of pion decay. Using

the same parity-violation and spin momentum conservation logic as explained in the

discussion of muon decay, it is determined that pion decay produces muons that are

100% polarized in the pion rest frame, due to the pion having zero spin. It is also

important to note that pions decay to muons with a ∼ 99.98% branching ratio due

to the parity violating nature of the weak interaction [57]. Thus by producing a large

number of polarized pions a large number of polarized muons can be acquired.

The production of polarized muons for E989 at the Fermilab accelerator complex

involves a number of stages. A map of the various relevant accelerator beam-line

components is shown in Figure 2·8. Details of the full accelerator production of po-

larized muons can be found in Reference [58], and here a summary of the process

will be given. First, H- ions are produced and accelerated in a linear accelerator.

They are stripped down to protons and then transported to a 75 m radius circular
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storage ring called the “booster,” which accelerates them up to 8 GeV/c and batches

them together. A single booster batch contains on the order of 4× 1012 protons. The

protons are then injected into a ring called the “recycler,” which separates them into

four separate bunches of 1× 1012 protons, each with a time width of approximately

120 ns. (This is less than the cyclotron period of the storage ring of 149 ns.) This

re-bunching process is done in order to reduce the instantaneous rates observed by the

detectors, and thus reduce the level of pileup in the E989 detectors; see Section 3.2.1.

For a single accelerator supercycle of 1.4 s, E989 receives four booster batches cor-

responding to sixteen recycler bunches at an average rate of 11.4 Hz, with the time

separation between bunches greater than 10 ms. The timing structure is shown in

Figure 2·9, where trains of eight bunches are sent to E989 with some time separation

between them2. Although it remains relatively constant, this timing structure may

be modified in response to the requirements of other experiments.

Each bunch is sent to a target hall, where it is directed on to an Inconel target.

This Inconel target is made of a nickel-iron alloy, and is optimized for the production

of large numbers of pions with a small momentum spread, approximately 1× 10−5 π+

per proton on target (POT) with |dp/p| < 2% [58]. The pions are focused by the

magnetic field of a lithium lens, located just downstream of the production target.

The lens, a cylinder of lithium 1 cm in radius and 15 cm long, carries a large current

down its length which provides a radial focusing effect for particles passing down the

cylinder [59]. A pulsed magnet just after the lithium lens is then used to select pions

centered at 3.115 GeV. By extension, residual particles with the same momentum,

mainly protons, are also selected.

The resultant pion beam and these residual particles are then injected into another

2These eight bunches are sometimes referred to as pulses, and the gathered data are tagged by
which bunch or pulse they originated from.
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Figure 2·8: The layout of accelerator beam-line components Fermilab
uses to provide polarized muons to E989. Protons start in the Linac,
traverse around the Booster and then Recycler, and are converted to
pions at AP0. The pions are gathered and then decay to muons in the
Delivery Ring before being sent to the g − 2 storage ring. [54].

Figure 2·9: General timing structure of beam pulses sent to E989.
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ring called the “delivery ring,” which holds the pions while they decay to muons3.

Here it should be noted that in a pion beam the highest and lowest energy decay

muons are forwards and backwards polarized, respectively. The delivery ring is used

to momentum select polarized decay muons and separate out the non-desired particles

which will have differing velocities compared to the muons, reducing the contamina-

tion in the final polarized muon beam [58]. Forward emitted polarized muons are

momentum selected at their decay energies of 3.094 GeV with ∆p/p = 2%. Parti-

cles that fall outside the momentum acceptance are lost, and the residual protons

are kicked into a beam dump. The polarized muon beam is then sent to the E989

building where it passes through four magnetic quadrupole focusing magnets before

being injected into the E989 storage ring.

2.4 Injection of muons

The injection of the muon beam into the E989 storage ring is a specialized process. In

order to produce the main magnetic field and measure it to the precision required, the

storage ring must be a single monolithic magnet with no end effects. This prohibits

the usual design of separated magnetic elements through which the muons might be

injected. Therefore the beam must be injected through the storage ring magnet yoke.

This introduces the design constraint where the main magnet field must be eliminated

within the injection tunnel, such that muons are not lost due to deflection into the

magnet itself. Any solution to this problem must have it’s cancellation field localized

to the injection tunnel, such that there is no residual fringe field that contaminates

the main storage ring dipole field.

A specialized magnet called the “Superconducting Inflector” magnet, or just in-

flector, is used to solve these design constraints. This inflector is placed just after a

3By the time the pions have gotten to the delivery ring, most of them have already decayed to
muons.
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Figure 2·10: A plan view of the inflector and injection point into the
storage ring [60].

bored out tunnel in the storage ring magnet yoke, on the inside of the C shape. See

Figure 2·10 for a view of the injection point. The inflector has an 18 mm wide by

56 mm high aperture through which the muons must pass down its 1.7 m length. The

inflector is made up of superconducting coils wrapped in a truncated double cosine

theta design around an aluminum mandrel [60]. See Figure 2·11. This design serves

to contain the majority of the inflector magnet field, while eliminating the the storage

ring field for the muons passing down its length. The inflector is contained within

a superconducting shield which traps the fringe field of the inflector such that the

storage ring magnet field is unaffected. As shown in Figure 2·11, windings cover both

ends of the inflector such that an appreciable fraction of muons are lost due before

being injected into the ring. In order to increase the muon flux for future runs of

E989, a new inflector magnet is being designed with open ends [54].
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(a) End view of the inflector. (b) Cross section view of the inflector.

Figure 2·11: The inflector magnet (left) and a cross section view of the
inflector windings and associated shield (right) [60].

2.5 Storage of muons

Once the muons have been injected into the ring, they will begin orbiting clockwise

around the ring, decaying with a lifetime of approximately 64.44 µs. The E989 exper-

iment and storage ring are shown in Figure 2·12. By necessity, the inflector must be

out of the stored muon beam path, otherwise a large fraction of the muons would be

lost upon the return to the injection point as the muons would strike the inflector.

Therefore the muon beam must be kicked to move the beam path from the injection

orbit onto the central orbit of the storage ring. The muon beam must also be contained

vertically. To perform the former, a magnetic “kicker” is used to shift the orbits of

the muons. To perform the latter, a series of electrostatic quadrupoles focus the beam

vertically. Approximately 2% of the injected muons are stored with ∆p/p = 0.1%

centered around 3.094 GeV/c, corresponding to a design goal of O(10, 000) stored

muons per fill.
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Figure 2·12: The E989 experiment. The blue storage ring can be seen
to surround a variety of detectors and electronics. Muons from the
accelerator enter at the top of the picture, and are transported to the
storage ring through a series of magnetic quadrupoles. Muons are in-
jected through the inflector into the ring, where they orbit in a clockwise
direction. The ring is approximately 16 m in diameter to the outside
edge of the ring, and about 3 m high. People in the center of the ring
give a sense of scale to the picture.
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2.5.1 Kicker

The kicker is made up of three separate pulsed magnets located 90° from the exit of

the inflector, where the injection orbit crosses the central orbit. The placement of

the kickers is shown in Figure 2·13. The kicker must be located within the precision

magnetic field of the ring, and must therefore contain no magnetic elements in the

hardware itself. For this reason each kicker magnet is made up of two thin 1.27 m

long aluminum plates, separated by 10 cm, which carry the current used to create

the kicking magnetic field. Due to the bunched nature of the muon beam and the

short cyclotron period of 149 ns, ideally the kicker moves all injected muons onto

the central orbit and then turns off quickly such that by the time the muons orbit

back around to the kicker there is no residual kick to the beam. Any residual eddy

currents must die away quickly enough such that the magnetic field seen by the

stored muons is unperturbed. The design deflection of the beam is approximately

10 mrad using a vertical pulsed field of around 300 Gauss (corresponding to kicker

plate voltages of O(155 kV)) with a pulse length of about 120 ns [54]. The operational

kicker performance in Run 1 was less, and is described in Section 2.8.

2.5.2 Electrostatic quadrupoles

There are four electrostatic quadrupoles located around the ring as shown in Fig-

ure 2·13, which provide vertical focusing for the beam. Although the quadrupoles

are defocussing in the horizontal plane, the main dipole magnetic field provides net

horizontal focusing. Just as with the kickers, the quadrupoles must be operated in

vacuum. E989 uses electrostatic focusing elements instead of magnetic ones in order

to avoid magnetic field gradients which would limit the precision of the magnetic

field measurement. The quadrupoles occupy 43% of the ring circumference, with four

quads having been chosen in order to maximize the symmetry of the beam motion,
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Figure 2·14: Electrostatic quadrupoles installed into a vacuum cham-
ber [61]. There are four plates mounted to the chamber through insu-
lator standoffs, with the distance between opposing quadrupole plates
equal to 10 cm. Also shown are the rails on which the magnetic field
trolley rides. Note that as the trolley makes its way through the storage
volume, it must pass between both the various sets of quadrupole and
kicker electrodes.

reduce its amplitude, and leave space for other experimental elements around the

ring [54]. Each quadrupole is made up of two segments, a short segment of 13° and

a long segment of 26° corresponding to 1.61 m and 2.62 m respectively, with each

segment consisting of four plates. To minimize multiple scattering of incident decay

positrons, the quadrupoles are made as thin as possible. A picture of the quadrupoles

installed into one of the vacuum chambers is shown in Figure 2·14. A calculation of

the equipotential lines of the quadrupoles is shown in Figure 2·15. The original design

of the quadrupoles is detailed in Reference [61].

Some of the stored muons will be lost during data taking that can adversely affect

the measurement of the spin difference frequency ωa. See Section 5.3.3. In order to

reduce the number of lost muons, a procedure called “scraping” is used to remove

those muons sitting at the edge of the storage region that are more likely to be lost
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Figure 2·15: An OPERA model of the quadrupoles and their equipo-
tential contours [54]. The top and bottom plates sit at positive voltage
while the left and right plates are at negative voltage. The muon stor-
age region is shown by the blue circle.

at later times. This scraping procedure involves powering the quadrupole voltages in

an asymmetric way such that the beam is pushed to the outside of the storage region,

where the edges of the beam will intersect copper collimators. These collimators

have a radius of 45 mm and define the storage region aperture. Muons which hit the

collimators will lose energy and be lost as they spiral out of the ring. The scraping

procedure is performed early in the fill and ends at 8 µs, such that by 30 µs the beam

is stable and centered due to the characteristic RC time constant of the system. The

operational performance of the quadrupoles in Run 1 is described in Section 2.8,

where it was found that some of the quadrupoles had longer RC time constants than

the design.
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2.6 Muon beam dynamics

Muons injected into the storage ring will occupy a region in phase space of momenta

and positions defined by the injection and collimator apertures. Individual muons will

undergo betatron motion within the storage ring in both the vertical and horizontal

directions. The horizontal (x) and vertical (y) equations of motion, including the

effects of the discrete quadrupoles, are given by

x = xe + Ax(s) cos(νx
s

R0

+ φx), (2.18)

y = Ay(s) cos(νy
s

R0

+ φy), (2.19)

where xe is the radial equilibrium orbit of the beam relative to R0, Ax(s) and Ay(s)

are the amplitudes of the motions containing the effects of the discreteness of the

quadrupoles, and s is the arc length of the trajectory. Here νx and νy are the so-

called horizontal and vertical “tunes” of the beam motion, which are ratios of the

betatron frequencies to the cyclotron frequency fc:

νx = fxBO/fc =
√

1− n

νy = fyBO/fc =
√
n

(2.20)

These are related to the field index n, where the field index characterizes the strength

of the electrostatic focusing in relation to the magnetic field strength:

n =
κR0

βB0

, (2.21)

where κ is the electric quadrupole gradient, B0 is the magnetic field strength, R0 is the

central storage ring radius, and β ·c is the velocity of the muon beam. Technically n is

the the average field index around the ring, where this approximation is justified due

to the four-fold symmetry of the discrete quadrupoles and the fact that the betatron
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Muon Beam Frequencies

Name Symbol Expression Frequency (MHz) Period

g − 2 fa aµBe/2πmc 0.23 4.365 µs

cyclotron fc v/πR0 6.71 149.2 ns

horizontal betatron fxBO
√

1− nfc 6.34 158 ns

vertical betatron fyBO
√
nfc 2.21 452 ns

coherent betatron fCBO fc − fxBO 0.37 2.703 µs

vertical waist fVW fc − 2fyBO 2.31 433 ns

Table 2.2: Frequencies seen in the g−2 experiment due to beam motion.
Parameter values are from a subset of Run 1 corresponding to an n value
of 0.108 or a quadrupole voltage of 18.3 kV.

oscillations have wavelengths much greater than the length of the quads. A table

of the important frequencies in E989 is shown in Table 2.2. Lastly, the maximum

angular acceptance of the ring can be determined from the betatron oscillations and

the field index as

ψxmax =
xmax
√

1− n
R0

,

ψymax =
ymax
√
n

R0

,

(2.22)

where xmax and ymax are both equal to the radius of the storage region aperture at

45 mm.

As the muon beam goes around the ring, the muons will experience local field

gradients and inhomogeneities. The muons will inevitably pass through the present

perturbations many times. As long as the muons do not pass through the perturba-

tions at the same phases of their respective betatron motions, the amplitudes of any

would-be resonant oscillations will not grow. The tunes are chosen to avoid these

resonances by having the muons sample the entire azimuth of the ring equally, thus

keeping the beam stored. The general resonance condition is [62]

aνx + bνy = c, (2.23)
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Figure 2·16: The tune plane, with the ν2
x + ν2

y = 1 constraint in red.
The value of n lies on this circle. Intersections with the black lines
correspond to potential resonances. The original design points for the
E989 n values are shown by the red points, but due to hardware issues
smaller n values of 0.108 and 0.120 were used.

where a, b, and c are integers. We know from Equation 2.20 that

ν2
x + ν2

y = 1, (2.24)

which constrains the available n values that can be chosen. Figure 2·16 shows the

intersections of the resonant lines of Equation 2.23 along with the circular arc of

Equation 2.24 in the tune plane, for which a chosen value of n will lie on a reso-

nance. The operational n values and corresponding quadrupole voltages in Run 1 are

described in Section 2.8.

2.6.1 Coherent betatron oscillation

The muon beam consists of many muons, each individually undergoing betatron os-

cillations. If the phase of the oscillations of the individual muons are incoherent,
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then the beam can be thought of as a static entity, constant in time around the ring.

However, due to injection and kicker effects which induce a particular phase space

distribution on the injected beam, the beam itself can be said to oscillate. The beam

is then described by a width and mean dependent on the injection process, and the

strength and phase of the kicker pulse, such that the phase distribution of the beam

oscillates coherently every betatron wavelength4. Due to the mismatching of betatron

wavelengths to the ring circumference in order to avoid resonances, a singular time

slice of the distribution can be said to move around the ring over time. Individual de-

tectors around the ring measure the beam in discrete pieces based on their individual

azimuthal acceptances, where these acceptances depend on the radial and vertical

characteristics of the beam. Because the radial betatron frequency is larger than

half the cyclotron frequency, there is an aliasing effect such that the radial betatron

motion of the beam is instead observed as an apparent slow-moving oscillation. We

call the measurable signal of this coherent radial motion coherent betatron oscillation

(CBO). See Figure 2·17 for a pictorial view of this phenomenon. Since the acceptance

of the calorimeters depend on the beam properties, the CBO will modulate the ωa

signal.

The frequency of the CBO is just the beat frequency between the cyclotron fre-

quency and the horizontal betatron frequency

fCBO = fc − fxBO . (2.25)

There is also a vertical CBO effect, but the non-aliased rate of oscillation is fast

enough such that the effect tends to average out. However, the detectors are sensitive

to oscillations of the vertical width of the beam, which is aliased in a similar way

to the radial oscillation. Though the principles are the same, we call this effect the

4The four-fold quadrupole symmetry was chosen in order to minimize this beam ‘breathing.’
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Figure 2·17: Diagram describing the coherent betatron motion of the
beam. Marked by the black vertical lines are integer steps in the cir-
cumference of the ring, corresponding to the cyclotron wavelength λc.
The blue line shows the motion of the beam due to the betatron oscil-
lations with wavelength λx. Since λx > λc/2, there is an aliasing effect
in the observed signal, which is identified by the red line. To a single
detector the beam appears to move slowly back and forth with fCBO.

vertical waist (VW),

fVW = fc − 2fyBO , (2.26)

where the term waist refers to the minimum vertical width. Both of these frequencies

are included in Table 2.2. The phase of the CBO signal varies systematically by

detector, from 0–2π around the ring. When adding all of the detector signals together,

the CBO oscillations tend to cancel out. However, due to acceptance differences

between the different detectors, the CBO oscillations are still observable in the data.

When fitting the data to extract ωa, these effects must be accounted for in the fit

function, as will be discussed in Section 5.3.1.

2.6.2 Beam debunching

The muon beam is injected into the ring with a time spread of 120 ns and a range of

momenta. At early times the beam will occupy a portion of the ring less than the

whole since the cyclotron period is ∼149 ns. At initial injection, detectors located at
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discrete points around the ring see a high intensity as the beam passes by and low

intensity when it is on the other side of the ring. The cyclotron period of each muon

is determined by its particular momentum which gives its radius of orbit. Higher

momentum muons have a larger radius and therefore larger distance to travel, thus

taking longer to circulate the ring than lower momentum muons. This leads to the

low momentum muons in the head of the bunch catching up with the high momentum

muons in the tail, such that the gaps in between each passing of the beam bunch are

reduced. By 30 µs the muon beam has gone around the ring two hundred times and

the gaps with no beam have reduced so much that the intensity is near-uniform. The

varying intensity from the beam bunching is referred to as the “fast rotation” signal.

This debunching signal is seen in the data as shown in Figure 2·18. When dealing

with the data and attempting to extract ωa, the typical procedure is to both bin out

the fast rotation in periods of the cyclotron frequency, and to randomize each hit time

by ±Tc/2 where Tc is the cyclotron period. In this way the fast rotation is removed

entirely and the effect can be ignored in the fitting procedure for ωa.

2.7 Corrections to ωa

Equation 2.3 is an idealized version of the spin difference frequency which ignores two

important beam dynamics effects: torques exerted by the electric field and changes in

the rest frame magnetic field resulting from the vertical pitching motion of the muons.

Including practical experimental concerns, these two corrections must be applied to

ωa.
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Figure 2·18: In the data, the fast rotation signal is a fast (149.2 ns)
modulation on top of the slower (4.365 µs) ωa frequency. The plots
here are from a subset of data from Run 1. In individual calorimeters
at early times the fast rotation signal is seen to be very large, as shown
on the top left. As time passes and the beam debunches, the amplitude
of the fast rotation signal diminishes as shown on the top right. When
adding all calorimeters together, the signal is reduced as shown in the
bottom two plots, due to the fast rotation signal being unaligned in
phase for the different detectors.
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2.7.1 Electric field correction

In the presence of an electric field, the spin difference frequency is altered to

~ωa = − q

m
[a ~B −

(
a− 1

γ2 − 1

)
(~β × ~E)], (2.27)

where now there is an extra term dependent on the electric field strength and the

momentum of the particles. This extra term originates from the motional magnetic

field ~β × ~E that relativistic particles experience in an electric field. This is necessary

to include since we use electrostatic quadrupoles for vertical focusing as described

above. The second term cancels to first order for a specific momentum. This “magic

momentum” can be understood as the momentum at which a relativistic particle

moving through an electric field has its spin exactly follow its momentum. This

magic momentum is 3.094 GeV for muon, with γ ≈ 29.3. This value sets the energy

and time scales of the experiment and has driven many of the design constraints,

including the size of the storage ring, choice of the magnetic field magnitude, etc.

Not all muons will have the magic momentum however as described in the Sec-

tion 2.6.2, and therefore a correction to the measured ωa frequency needs to be ap-

plied. Approximating the storage ring as having an electric field applied over the

whole azimuth of the ring, the spin difference frequency for muons with momentum

p 6= pm, where pm is the magic momentum, becomes

ω′a = ωa

[
1− β Er

cBy

(
1− 1

aβ2γ2

)]
. (2.28)

Here the motion of the beam is assumed purely azimuthal. This additional term is the

electric field correction that then serves to lower the measured ωa frequency. Using

the relation p = βγm = (pm + ∆p), after a little bit of simplification the electric field
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correction can be written as

CE =
∆ωa
ωa

= −2
βEr
cBy

∆p

pm
. (2.29)

The last fraction can be related to the field index described in Equation 2.21 by

∆p

pm
= (1− n)

∆R

R0

= (1− n)
xe
R0

, (2.30)

since we know that the magic momentum muons orbit at the central radius R0 of the

storage ring. In this equation xe = ∆R is the equilibrium radius of the muon beam

relative to the central storage radius. Noting that the radial electric field strength for

a quadrupole is

E = κx =
nβcBy

R0

x, (2.31)

and assuming that it is perfectly radial, the electric field correction reduces to

CE = −2n(1− n)β2xxe
R2

0

. (2.32)

Taking the time average of the beam motion, where x is simply equal to xe, the

correction becomes

CE = −2n(1− n)β2 〈x2
e〉

R2
0

. (2.33)

Since the equilibrium radius of the beam is set by the momentum distribution of

the muons, this electric field correction can be determined by a measurement of the

momentum spread of the beam which comes from an analysis of the fast rotation [63,

64]. For the precision goal of E989, the assumptions made in this derivation are

acceptable [54] and results will be cross-checked with spin-tracking simulations as was

done in E821 [36]. In E821 the electric field correction was approximately 500 ppb on
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ωa [36]. In E989 the scale of the correction is the same considering the experimental

principles are identical, Section 5.5.8.

2.7.2 Pitch correction

Particles injected into the g − 2 storage ring will have a vertical component of mo-

mentum which is parallel to the magnetic field vector (hence the need for vertically

focusing electrostatic quadrupoles). This will slightly reduce the magnetic field seen

by the muons in their rest frames. Including this motion into the spin difference

frequency, ωa becomes

~ωa = − q

m
[a ~B − a

( γ

γ + 1

)
(~β · ~B)~β], (2.34)

where now there is an extra term dependent on the vertical betatron motion of the

beam. Similar to the electric field case, this term can be neglected to first order as

the muon momentum is nearly all perpendicular to the field, but a correction again

needs to be applied to ωa to account for this effect.

Since the muons in the storage ring will be oscillating vertically as they are focused

by the quadrupoles, their momentum vectors will be pitching up and down relative

to the azimuthal motion. This pitch angle will oscillate as

ψ = ψ0 cos(ωyt), (2.35)

where ψ0 is the amplitude of the oscillation and ωy is the vertical betatron frequency.

Shown in Figure 2·19 is an exaggerated example of the beam motion relative to the

vertical and azimuthal axes. Assuming that the field is purely vertical, ~B = Byŷ and

that the beam motion is in the vertical-azimuthal plane,

~β = βyŷ + βz ẑ = β sin(ψ)ŷ + β cos(ψ)ẑ, (2.36)
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Figure 2·19: Beam motion β relative to the vertical and azimuthal axes
Y and Z respectively. ψ is the pitch angle of the beam, and the dashed
lines represent the parallel and perpendicular motions of the beam.

then ωa becomes

~ωa = − q

m
[aByŷ − a

( γ

γ + 1

)
βyBy(β sin(ψ)ŷ + β cos(ψ)ẑ)]. (2.37)

Using the small angle approximation such that cos(ψ) ≈ 1 and sin(ψ) ≈ ψ, ~ωa can

be separated into its vertical and azimuthal components

ωay = ωa

[
1−

(γ − 1

γ

)
ψ2
]
, (2.38)

ωaz = −ωa
(γ − 1

γ

)
ψ. (2.39)

Looking at Figure 2·19 again, it can be seen that the spin difference frequency can

be resolved into its parallel and perpendicular components ω‖ and ω⊥ respectively. As

the pitch angle of the beam motion oscillates about the azimuthal axis at a frequency

much greater than the g−2 frequency, it can be assumed that the parallel component

averages to 0 over time. The perpendicular oscillation of the beam then becomes the

important quantity, which can be determined with a simple rotation matrix such that

ωa ≈ ω⊥ = ωay cos(ψ)− ωaz sin(ψ) ≈ ωa

[
1− ψ2

2

]
, (2.40)

where in the last approximation the small angle approximation was used once again,
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but this time with cos(ψ) ≈ 1 − ψ2/2. The pitch correction then is the additional

term which serves to lower the measured spin difference frequency. Taking the time

average,

CP =
∆ωa
ωa

= −〈ψ
2〉

2
. (2.41)

The pitch angle of the beam cannot be measured directly, however the angle of the

beam can be related to the vertical distribution of the beam with Equation 2.22, such

that

CP = −n
2

〈y2〉
R2

0

, (2.42)

where once again n is the field index, R0 is the radius of the ring at the center of the

storage region, and 〈y2〉 is the vertical width of the beam. The first two are known

and the last can be measured experimentally by the straw tracking detectors. Just

as in the case of the electric field correction, the assumptions made in this derivation

are acceptable for the precision goal of E989, and results will be cross-checked with

spin-tracking simulations. In E821 the pitch correction was approximately 300 ppb

on ωa [36], and the scale for the E989 correction is about half that, Section 5.5.8.

2.8 Run 1 in E989

Run 1 for E989 was conducted in the first half of 2018. Production data were gathered

from March 22nd through June 29th. Because of accelerator, experimental, and

practical concerns common to the early stages of production running, production

data taking was interrupted at various dates. Due to hardware issues both kicker and

quadrupole voltages were originally lowered from their design values. Various voltage

set points for both systems were identified and used in separate periods of the data

taking, depending on the stabilities of the systems. The primary precession frequency
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analysis datasets gathered by E989 and their associated running parameters are shown

in Table 2.3. Other datasets were gathered but they were not used to calculate the

precession frequency in this analysis5.

Due to the lower kicker voltages, the muon beam was stored on a central radius

∼ 7 mm offset from the central orbit of the storage ring. The associated number of

stored muons per fill for Run 1 as a result of the lower kicker voltage was O(4, 000),

down from the O(10, 000) design goal. The chosen quadrupole voltages were 18.3

and 20.4 kV, corresponding to n values of 0.108 and 0.120 respectively [65]6. During

Run 1 it was discovered that some of the quadrupole resistors were damaged. They

had longer RC time constants such that the quadrupole voltages had not reached

nominal values at the beginning of the designated analysis portion of the data at

30 µs, and were still changing over the course of a fill, see Figure 2·20. The muon

beam was seen to move as a function of time in-fill as a consequence of this, beyond

the ordinary CBO motion of the beam. See Section 4.4 for a summary of the muon

beam characteristics for Run 1.

All data listed in Table 2.3 were quality checked. If run conditions were found

to be unsatisfactory, the associated data was flagged and ignored in the analysis. A

summary of the data quality control procedure is given in Reference [66], and the exact

data quality parameters for the 60h dataset are detailed in Reference [67]. The total

number of detected positrons above threshold that passed the data quality control

was approximately 1× 1010, corresponding to a statistical error on ωa of ∼ 400 ppb,

as calculated with Equation 2.16.

5Specifically it is expected to include the LowKick dataset in future analyses, which has approx-
imately 80% of the statistics of the 60h dataset.

6The associated betatron wavelengths are 1.06 and 3.04 times the circumference of the storage
ring respectively.
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Run 1 Precession Frequency Analysis Datasets

Name Date Acquired Number e+ > ETh Quad Voltage (kV) n Value Kicker Voltage (kV)

60h 4/22/18–4/25/18 9.34× 108 18.3 0.108 128–132

HighKick 4/26/18–5/02/18 8.70× 108 20.4 0.120 136–138

9d 5/04/18–5/12/18 2.13× 109 20.4 0.120 128–132

Endgame 6/06/18–6/29/18 4.10× 109 18.3 0.108 122–127

Total Positrons Above Threshold 8.03× 109

Table 2.3: The primary datasets acquired during Run 1 of E989 in 2018 and their associated param-
eters [68]. Other datasets were gathered but they were not used in the calculation of the precession
frequency in this analysis. ETh = 1.7 GeV.
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Figure 2·20: Traces for some quadrupole plate potentials as a func-
tion of time. The different plates are identified in the legend, where
for instance Q1LT stands for the top long plate of quadrupole 1. The
muon beam is injected into the ring at the black line and the scraping
procedure occurs until the quadrupole voltages reach their design val-
ues, in this case 20.4 kV. As shown some of the high voltage traces do
not behave in a smooth and fast exponential manner, due to damaged
quadrupole resistors. The traces in orange and brown are for good
quadrupole resistors, while the traces in red and blue show the results
from damaged quadrupole resistors. The kink in blue is the switch from
the scraping procedure to storage.



Chapter 3

Detector Systems

There is a variety of different detector systems used in E989. The primary detectors

are the calorimeters which measure the ωa signal. In support of that measurement

there are several auxiliary systems used for monitoring injection and beam dynamics.

These include the T0, IBMS, and fiber harps. There is also a straw tracking detec-

tor which measures decay positron trajectories which can be related to muon beam

dynamics and calorimeter measurements. Each of these systems will be described in

the following sections.

3.1 Auxiliary detectors

3.1.1 T0

A reference time must be chosen so as to align all different detector systems in time.

Without this functionality, analyzing the data from different systems and comparing

them would be impossible. Similarly, decay positron spectra must be aligned in phase

from fill to fill, otherwise the ωa signal would wash out. To do this a “T0” counter

is placed on the outside of the ring just before the inflector. It is made up of a

scintillating paddle connected to two photo-multiplier tubes (PMTs) [69, 70]. See

Figure 3·1a. PMT A has a 1% neutral density filter which results in a low photo-

electron statistics measurement, and acts primarily as a timing measurement. PMT

B has a 10% neutral density filter which results in a higher statistics measurement,

and acts as a shape counter and proxy for fill intensity. (In general the signals are

52
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(a) The T0 counter is made up of a scintil-
lator in the middle shown in green, which
connects with light guides to PMTs on
the left and right.

(b) Time profiles for the two PMTs in the
T0 counter for one of the eight bunches.
Each profile is an average of 100 such pro-
files. The x axis is in clock ticks, where
1 ct = 1.25 ns.

Figure 3·1: A model of the T0 detector (left) and a sample of the signal
it measures every fill (right).

very similar.) Together they provide a measure of the injected beam profile in time,

from which the timing alignments can be made. Some measured T0 pulses are shown

in Figure 3·1b. The shape of the incoming pulses has a somewhat trident-like shape,

with a very large spike in the middle of the time profile and two spikes on the outside

edges. This shape owes itself to the accelerator complex, and varies somewhat from

bunch to bunch.

3.1.2 Inflector Beam Monitoring System

While the T0 provides timing and intensity measurements, the inflector beam mon-

itoring system (IBMS) provides measurements of the beam position properties as it

passes through the inflector. This is useful because the injection aperture is so tight,

and incoming beam parameters are tightly constrained. The IBMS system serves to

provide a direct diagnostic handle on the phase space matching between the last ac-

celerator components and the storage ring, helping to optimize the number of stored
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Figure 3·2: Models of the IBMS 1 and 2 detectors. Scintillating fibers
form an array which detect particles as they pass through them.

Figure 3·3: The positions of IBMS 1, 2, and the planned 3rd device are
shown with respect to the vacuum chamber and inflector.

muons per fill [71]. The IBMS is made up of two scintillating fiber detectors, shown

in Figure 3·2. These devices are placed at the outside of the magnet yoke before

injection into the back hole of the magnet, and at the entrance to the inflector [72].

A third device is planned to be at or near the downstream end of the inflector. See

Figure 3·3.

3.1.3 Fiber harps

The last auxiliary detector is the “fiber harp” system. It is made up of four scintil-

lating fiber detectors that serve to measure the beam intensity as a function of time
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(a) Picture of one of the fiber harps.
A row of seven scintillating fibers mea-
sures the beam intensity as a function
of time at vertical or horizontal positions
depending on which fiber harp is inserted.

(b) Shown are fiber harp beam intensity
measurements for a horizontal fiber harp.
Each spectra is from a single fiber, with
the spectra at the top being at the great-
est radial position. The fast oscillations
of the cyclotron frequency can be seen
along with the slower oscillations of the
CBO.

Figure 3·4: Fiber harp detector (left) and a sample of fiber harp mea-
surements (right).

and position within the storage ring [73]. Two of the detectors measure the radial

components of the beam, and two measure the vertical components. Each pair of fiber

harps are located 180° and 270° in azimuth clockwise from the inflector. One of these

devices is shown in Figure 3·4a. The fiber can measure beam properties throughout

the fill, providing a diagnostic tool which is sensitive to the scraping procedure and

the CBO properties of the beam. An example of fiber harp measurements is shown

in Figure 3·4b. However, because the fiber harps are a destructive measurement of

the beam due to multiple scattering in the fibers, the system was designed to be

retractable. They are inserted during special diagnostic or systematic runs, and are

pulled out of the beam path during production data taking.
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3.2 Calorimeters

Electromagnetic calorimeters are the primary detector in the E989 experiment, re-

sponsible for the ωa measurement. They measure arrival times and energies of the

decay positrons as they curl inward from the storage region.

3.2.1 Requirements and systematic effects

In order to determine ωa to the precision goal, there are specific requirements on the

performance of the calorimeters. First, they must have a relative energy resolution

of better than 5% at 2 GeV, in order for proper event selection above threshold [54].

The energy resolution requirement is modest but not strict because the important

observable is the number of detected positrons above some energy threshold, where

the optimal energy threshold can be determined empirically.

Second, they must have a timing resolution of better than 100 ps for positrons with

energy greater than 100 MeV [54]. The calorimeters must be able to resolve multiple

incoming hits through temporal or spatial separation at 100% efficiency for time

separations of greater than 5 ns, or 66% of hits for time separations less than 5 ns, in

order to reduce the pileup systematic effect. Pileup is the term used for when multiple

particles impact the detector within the dead time of the detector such that they are

registered as a single hit. Unresolved pileup means that the number of detected

positrons above threshold is mis-measured. Since pileup is a time-dependent effect,

where pileup decays with a lifetime approximately equal to half the muon lifetime,

this leads to a mis-measurement of ωa, see Section 5.2.1. The requirements stated

here assist in reducing the pileup systematic error below a target goal of 40 ppb.

Third, the energy response of calorimeters for measured hits must be stable to

< 0.1% over a fill (700 µs) [54]. The long term energy response stability over a time

period of order seconds must be < 1%. The energy response of a detector as a function
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of time is typically referred to as the gain of the detector, where technically the gain

refers to the amount of current output per detected hit. The gain depends on the

temperature stability and hit rate. After a hit, the measured energy fraction of a

following hit drops sharply and then rises exponentially back to one. This occurs as

a result of pixels in the detector being unable to fire consecutively within short time

frames, O(ns), and because of charge depletion in the calorimeter system’s electronics

capacitive components, O(µs). The former is referred to as the short-term double

pulse (STDP) effect [74]. The latter is referred to as the in-fill gain (IFG) effect [75],

where the effect is due to the high rate of incident particles at injection combined with

secondaries which overcomes the recovery response of the electronics at early times

in the fill1. Hits with mis-measured energies due to these effects can thus be excluded

from the fitted histogram if their energies drop below threshold, leading to another

systematic effect and subsequent error in the ωa measurement. (Temperature changes

vary over time scales greater than a fill, so they don’t contribute to the systematic

error.) The requirements stated here, along with the use of a laser calibration system

(Section 3.2.3), assist in reducing the gain systematic error below a target goal of

20 ppb.

3.2.2 Hardware

There are 24 calorimeters located symmetrically around the inside of the ring placed

flush to the vacuum chamber wall, as shown in Figure 3·5a. Indeed the shape of

the vacuum chambers were designed so as to reduce multiple scattering of the decay

positrons before entering the calorimeters. Each calorimeter sits on a board extending

out from a cart which contains the electronics that power the calorimeters and read

out the data. The carts help to relocate magnetic materials away from the field region

1The large of amount of particles and secondaries at the beginning of a fill is referred to as the
‘flash’.
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(a) Close up view of a model of the
storage ring and calorimeter detector
systems. In black are carts which
house the electronics for the calorime-
ters. They hold up a board upon
which the calorimeter rests, identified
by the long gray box. The calorimeter
is pushed flush to the vacuum chamber
on the left.

(b) Shown is the backside of a calorimeter.
The clear blocks are PbF2 crystals, each of
which has a SiPM mounted onto the end
in order to collect emitted Cerenkov light
from incident particles.

Figure 3·5: Calorimeter detector systems relative to the vacuum cham-
ber (left) and an individual calorimeter (right).

to avoid perturbing the magnetic field, and provide easy access to the electronics while

removing them from the positron decay path region.

Each calorimeter consists of 54 channels of PbF2 crystals in a 6 high by 9 wide

array, for a total of 1296 channels. Each crystal is 2.5× 2.5× 14 cm3 and is wrapped

in black Tedlar® foil. The PbF2 material has an index of refraction of 1.8, and emits

Cerenkov light as incident positrons with energy greater than 100 keV pass through

the crystals [76]. Cerenkov light is naturally fast which improves the timing resolution

of the incoming hits. The high density of the PbF2 (7.77 g/cm3) gives it a short

radiation length (9.3 mm), such that the energy deposition from the incident positrons

is nearly 100% over the length of the crystal. The black foil is used to eliminate light

transmission between crystals to improve position reconstruction, as well as reduce

internal reflection to reduce pulse width and improve timing resolution [77]. The



59

energy deposition from the incident positrons is typically restricted to only one or

two crystals. The segmentation of the calorimeter combined with the black wrapping

helps the spatial and temporal resolution of the detected pulses. See Figure 3·5b for

a picture of the calorimeter crystals.

Each crystal is paired with a large area silicon photo-multiplier (SiPM) sensor

which detects the emitted Cerenkov light. SiPMs are compact, operable in high

magnetic field regions, have very linear responses for operation at MHz rates, are

suited to measuring Cerenkov light due to their high photo-detection efficiency in the

wavelengths of interest, and have a high degree of gain stability [77]. The SiPMs

used are designed by Hamamatsu and detailed in Reference [77]. They sit on printed

circuitry boards (PCBs) devoid of magnetic materials, which are designed to preserve

the fast SiPM pulse shape. The combined properties of the chosen SiPMs, their

electronic boards, and the PbF2 crystals results in an energy resolution of (4.6 ±

0.3)%/
√
E/GeV, a timing resolution of 20 ps, and a pulse width of 5 ns, satisfying the

stated requirements earlier [76, 77]. Details of the pulse fitting algorithms are shared

in Section 5.1. The SiPMs can be seen in Figure 3·5b. Finally, 12-bit waveform

digitizers (WFDs) sample each SiPM channel at a rate of 800 mega-samples per

second with a 1 Gb memory buffer and the data are transferred to a bank of GPU

processors for on-line data processing [78]. The timing resolution of these WFDs is

< 50 ps for most pulse amplitudes.

3.2.3 Laser calibration system

In order to satisfy the gain requirements of the calorimeter detectors, a laser calibra-

tion system is used. This system monitors the SiPM responses over short and long

time scales to < 0.04% [79]. The system consists of six different lasers and a suite

of optical devices. The light from the six lasers is piped through optical fibers to a

board mounted on the front face of each calorimeter. This board contains right-angle
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prisms which deflect the laser pulses directly into each calorimeter crystal, for all 1296

channels. The lasers can be pulsed at various intensities, both in-fill to monitor the

STDP or IFG effects, and out-of-fill to monitor for long term drifts due to changing

temperatures. The SiPM measured response is compared to local known source mon-

itors in order to calibrate the SiPM energy response. Corrections to the gain of the

calorimeters can thus be determined and applied to the hit energies. Simultaneously

the laser system allows for measuring the timing resolution of the SiPMs, and in

general performing diagnostic tests with the calorimeter. Lastly, the laser system is

used to time align the different calorimeter channels by outputting a sync pulse to

each channel at the beginning of every fill.

3.3 Straw trackers

As described in Section 2.6, the muon beam moves as a whole within the storage ring.

As explained in Section 2.2, the muon beam distribution ties into the measurement

of the average magnetic field. The primary detector system used to measure this be-

havior and determine the muon beam distribution is the “straw tracker” system. The

straw trackers characterize the beam in a non-destructive fashion by measuring decay

positron trajectories and extrapolating them back into the storage ring. They serve to

provide the direct measurement of the pitch correction as described in Section 2.7.2,

determine the momentum distribution of the beam, and characterize parameters of

the CBO which tie into the calorimeter ωa analysis. Decay positron trajectories can

also be extrapolated forwards into the calorimeter, in order to cross-check calorimeter

measurements to help resolve pileup. Finally, the trackers also serve as a measuring

device to search for a possible muon electric dipole moment. The existence of such a

thing would tilt the precession plane of the muons and subsequent decay positron tra-

jectories which the trackers are sensitive to. Details of the beginnings of such a search
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are given in Reference [80]. The details of the track reconstruction and analysis will

be given in Chapter 4. Here will be given a description of the detectors themselves.

In general, straw tracking detectors work by measuring hits in gas filled straws [81].

Each straw is made up of a cylindrical piece of thin material, typically Mylar with a

conductive aluminum coating, and contains a wire at the center of the straw held at

high voltage, O(1000 V). The minimal amount of material in straw trackers serves to

reduce multiple scattering of incident particles, and was the reason a straw tracker

system was chosen over other types of trackers. Fast moving charged particles ionize

the gas as they pass through it, and the resulting ions are drawn to the wire and

straw surface (positive and negative charges respectively). As the ions move to the

wire, they enter a high electric field region that causes them to speed up, hit other

gas molecules, and create more ions. This produces an avalanche gain effect which

amplifies the original signal. Once the ions reach the wire and straw surface, an

electrical signal is read out telling what the drift time of the ions was, which can

be related to the radius or distance of closest approach (DCA) at which the particle

passed relative to the wire. The straws therefore measure drift circles in a plane

perpendicular to their physical orientation. The calculations of these DCA’s and their

errors is done using a simulation program for gaseous detectors called Garfield [82,

83]. By combining several such measurements in time and space, tracks of incident

particles can be reconstructed. See Figure 3·6.

The straws used in E989 are 5 mm in diameter and contain a 50:50 mixture of

argon-ethane gas [84]. The argon component serves as the gas to be ionized. The fast

moving ions near the wire in addition to producing more ions, will incite excited states

of the gas, which emit photons when de-excited. These photons can restart the whole

ionization and avalanche process over again as they can escape the avalanche region,

leading to a break-down of the system. The ethane therefore serves to absorb the
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Figure 3·6: Diagrams showing the determination of a drift time td and
hit time th from an incident ionizing particle (left) and the combination
of several such hits to produce a track (right). Diagram on the left
courtesy of S. Charity.

photons with its large number of molecular degrees of freedom and photo-absorption

characteristics [84]. The wire has a radius of 25 µm and is made up of gold-plated

tungsten. The Mylar walls have a width of 15 µm and are wound in a double spiral

shape in order to improve the electrostatic shielding of the wire and reduce the gas leak

rate of the straws [84]. The DCA resolution of hits within the straws is approximately

120 – 150 µm.

A tracker module is shown in Figure 3·7. Each tracker module consists of 4 layers

of 32 straws each with stereo angles of ±7.5°, for a total of 128 straws per module.

The first two straw layers are designated as “U” layers, and are oriented with the tops

of the straws at greater radial positions than the bottoms. The second two layers are

designated as “V” layers, and are oriented with the bottoms of the straws at greater

radial positions than the tops. Both U or V layers are collectively referred to as

the U and V views of the module respectively. See Figure 3·8. The two layers in
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Figure 3·7: A straw tracker module. The first layer of silver Mylar
straws with a stereo angle of 7.5° can be seen, with the other three
straw layers hiding behind it. In black on the left is the carbon fiber
post which holds the end of the module in a fixed position. Electron-
ics live in the top and bottom manifolds above and below the straws,
and cables connect from those electronics through small apertures to
external electronics which plug in on the right.

each view are shifted half a straw diameter horizontally from one another in order to

help resolve which side of the wire any incident particles passed, Section 4.2.6. The

two types of layers are non-parallel to each other in order to resolve incident tracks

in 2D space. The small stereo angle both improves the straw measurement area as

electronics can be kept out of the positron decay path region, and improves the radial

momentum resolution of the fitted tracks, since both views measure mostly in the

horizontal plane. The active straw measurement area is approximately 10 cm high

by 20 cm wide. A carbon fiber post sits at the outside end of the module to provide

structural rigidity to the module, and keep the straw wires under tension.

There are two tracker stations, each consisting of eight tracker modules. The two

stations are located at positions in front of calorimeters 13 and 19, or at approxi-

mately 180° and 270° clockwise from the inflector. These are designated as Tracker
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Figure 3·8: Orientation of U and V straws in the tracker module.

Station 12 and Tracker Station 18 respectively, where the numbers come from which

vacuum chamber the trackers reside in. There is also a third station just after the

inflector, which currently sits empty of any tracker modules. The straw tracker mod-

ules sit inside the vacuum chamber in specially modified vacuum chamber sections in

a staircase-like pattern that follows the curvature of the ring. See Figure 3·9 and Fig-

ure 3·10. The number of modules and their orientation in each station was chosen to

provide a long measurement arm for precise momentum measurement of the incident

tracks. The modules sit inside the vacuum in order to eliminate multiple scattering

in air and produce better reconstructed tracks. Due to their proximity to the stor-

age region, the tracker modules are located in a region of high field non-uniformity.

Though the acceptances between the trackers and calorimeters are not identical, their

close proximity facilitates comparison between the two measurement devices.

3.3.1 Tracker readout electronics

The readout electronics for the system are split into two groups, the front-end and

back-end. The front-end electronics were built and tested in the Boston University

Electronic Design Facility. They start with ASDQ (Amplifier Shaper Discriminator

with charge (Q)) chips on boards that plug down directly onto the straws and pro-
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Figure 3·9: Birds eye view of a model of a vacuum chamber containing
a tracker station, and the associated calorimeter. Each tracking station
consists of eight tracker modules.

Figure 3·10: View of the tracker modules from within the storage ring.
Muons move forward into the page, some of which decay to positrons
which then pass through the trackers arrayed on the right. The carbon
fiber post for each module can also be seen.
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vide the main signal, Figure 3·11a. Each ASDQ plugs onto sixteen straws. These

ASDQ boards are application specific integrated circuits (ASICs) which read out the

signal from one end of the straws and shape and discriminate that signal, as well as

provide some baseline restoration and tail cancellation. The ASDQs and their asso-

ciated components are contained within thin aluminum manifolds above and below

the straws. The physical footprint of these boards and components was minimized

in order to increase the straw measurement area. The signals from the ASDQs are

passed through Flexi Cables to Time to Digital Converter (TDC) boards which time

stamp the signals with 625 ps precision [84], Figure 3·11c. The Flexi Cables are flex-

ible and thin such that the cables can be passed through the thin aperture shown

on the right of Figure 3·7. High voltage is provided to the sense wires with high

voltage boards, which pass the voltage through the ASDQs. A feedthrough board

provides the interface between the TDCs and Flexi Cables, as well as the high volt-

age signal, Figure 3·12. They serve a dual purpose of providing the gas seal. Finally,

there are logic boards that serve as the interface between the TDCs and the back-end

electronics. They manage the clock and controls for the TDCs and store data onto

FPGAs, which are piped out through a high throughput optical fiber connection. The

logic boards, high voltage boards, and TDCs are all housed within an aluminum box

which provides RF shielding, Figure 3·13. In each module there are eight ASDQs,

four TDCs, two feedthrough boards, two high voltage boards, and two logic boards.

An overview diagram of the front-end readout chain is shown in Figure 3·14. The

back-end electronics consist of FC7s, one per tracker station, and a single AMC13

for all tracker stations. These modules provide clock and DAQ services to the whole

tracker system, and ultimately pipe out the data to where it can be saved on disk.
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(a) ASDQs contained within the aluminum manifold (left) that plug down onto the straws
(right).

(b) Copper cooling bars (left) keep the ASDQs cool, and a high voltage spacer (right in
white) keep the high voltage components isolated.

(c) Orange Flexi Cables plug down onto the ASDQ boards and run left through a small
aperture in the tracking detector to the TDCs.

Figure 3·11: ASDQs and associated components which read out the
signals from the straws.
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Figure 3·12: Tracker feedthrough board. The feedthrough board plugs
onto the end of the tracker snout to form a gas seal (left). Outside of
the gas seal, a logic board, two TDCs, and a high voltage board all
plug into the feedthrough board. Flexi Cables plug into the back side
of the feedthrough board (right).

(a) A logic board (top), TDC (middle),
and high voltage board (bottom).

(b) The aluminum housing which houses
the front-end readout boards.

Figure 3·13: The front-end readout boards (left) and their housing
(right). The logic and high voltage board connectors can be seen peek-
ing out of their respective slots in the housing.
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Figure 3·14: Front-end tracker electronics readout chain. Courtesy of
James Mott.



Chapter 4

Track Reconstruction and Analysis

The straw trackers are used to provide information about the muon beam, which is

important for the calorimeter ωa analysis, calculating the ωa pitch correction, and

determining the spatially weighted magnetic field seen by the muons. Section 3.3

described the physical characteristics of the straw trackers; this chapter focuses on

the reconstruction of incident tracks. The track reconstruction is performed in three

stages. First, individual hits in the tracker are grouped into tracks in the finding

stage. Second, a best estimate trajectory is fit to grouped hits in the fitting stage.

Third, the best fit trajectory is extrapolated back to the storage region or forwards

to the calorimeter in the extrapolation stage. A fourth refinement stage is planned

but not yet implemented, which would add or remove hits in the finding stage based

on the results of the fitting and extrapolation stages. This refinement is expected to

improve statistics but not considerably improve performance.

As a brief aside, every stage of the track reconstruction is performed in the event-

processing framework known as art [85]. The art framework is a collection of mod-

ularized stages in a C++ framework useful for reading, reconstructing, filtering, an-

alyzing, and writing data, among other things. Most Fermilab experiments now use

art, including E989.

70
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4.1 Track-finding

The track-finding stage consists of pattern recognition routines which group individual

hits into separate sets corresponding to individual tracks. The general implementation

of these pattern recognition routines is relatively straightforward [86, 87]. Hits across

all modules are grouped in time windows called time islands, with an average width

of 40 ns and a max width of 100 ns1. Within those time islands hits are then grouped

into clusters. Clusters consist of one or two hits for each U or V view per module. As

a reminder, the U and V views of a module consist of the two U or V layers in that

module. Hits are only clustered if they lie close in time and space to one another. The

spatial constraint is defined as the difference in hit straw numbers, from 0 to 31 for

the 32 straws per layer, which by default is limited to ≤ 4. Neighboring hit clusters

in the same module are then grouped to form seeds, one per module. Finally, seeds

which are close in time and space are grouped together module by module from one

end of the tracker to the other. The final data products are called track candidates.

The entire track candidate formation process occurs for all hits in a time island to

find as many real tracks as possible. See Figure 4·1.

After a track candidate has been formed, a number of checks are made before

passing it on to the fitting stage. If hits, clusters, or seeds are shared among multiple

track candidates, the candidates are dropped. Likewise, a track candidate is dropped

if it is made from seeds taken from only one type of view, or if the track candidate

has fewer than six hits. There are also various small geometry and timing algorithms

to improve the track candidates, such as removing hits from secondaries [88]. The t0

time for the track candidate is calculated as the mean time of all hits, with some fixed

offset. The track candidate is supplied with an original momentum and position at

the start of the track by fitting a circle to the hits in the horizontal plane. The final

1This time scale is set by the characteristic drift time.
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Figure 4·1: Hits in a tracker station in a single time island. The black
dots indicate the position of the straw wires, while the blue and red
points indicate hits. In blue is the first formed track candidate in the
island, formed from separate seeds in different modules. The track-
finding algorithms will move onto the remaining hits in the time island
to attempt to form other track candidates, one of which is easily ob-
servable by eye.

track candidates are then passed on to the fitting stage.

4.2 Track-fitting

The fitting stage takes the track candidates from the finding stage, and outputs a

best fit trajectory to those candidates. This includes optimal state vectors and error

matrices for the track at each measurement plane and at a fictitious starting plane at

the entrance to the straw tracking detector. The track-fitting routines can roughly

be split into two parts, error propagation and the actual fitting and improvement of

the track. The implementation of these parts go hand in hand, and will be described

in turn. Details of the track-fitting code itself is described in Reference [89].
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4.2.1 Error propagation and coordinate systems

The process of error propagation involves taking track parameters and error matrices

(which describe the uncertainties in those track parameters) and transporting them

along discrete steps from one point to another, accounting for changes due to any

magnetic fields or material along the step paths. There is a set of error propagation

routines originally written in Fortran by the EMC collaboration, called “Geometry

and Error Propagation” or Geane [90]. Geane calculates the evolution of the error

matrix by propagating particles along their average trajectories neglecting the effects

of discrete processes, using a helix equation along small enough steps where the change

in the magnetic field is small. These routines were used in the E821 experiment as

well as the PANDA and FINUDA experiments with some success [91]. The Geane

routines were at one point converted to C++ and added to Geant. The strength of

using Geane within a Geant simulation lies in its direct access to the Geant geometry

and field. This is crucially important for the E989 track-fitting because the trackers

live in a region of high field non-uniformity. Figure 4·2 shows the uniformity of

the radial and vertical fields in the vicinity of the tracker as calculated in Opera2D

and included in the E989 Geant4 simulation. The radial field in the tracker region

rises from 0 T at the outer end to roughly 0.3 T at the inner top and bottom ends;

the vertical field drops from the storage dipole field of 1.451 T at the outer end by

approximately 50% at the inner end. These large field gradients over the tracking

measurement space must be handled appropriately, which Geane does effectively.

Predicted average track parameters in Geane are a function of path length,

p̃l = Fl,l0(p0), (4.1)

where p0 are track parameters a distance l0 along some path, and p̃l are the updated

average ones at a distance l. The path length from l0 to l can be defined or limited
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(a) Vertical magnetic field

(b) Radial magnetic field

Figure 4·2: Shown are the vertical (top) and radial (bottom) magnetic
fields of the storage ring magnet in and around the storage region as
calculated in Opera 2D. The horizontal and vertical axes are the radial
and vertical coordinates of the ring respectively. The center of the
storage region lies at 7.112 m along the horizontal axis. The contours
represent the strengths of the vertical and radial magnetic fields. The
black box shows the rough location of the tracker with respect to the
ring. It can be seen that there is a large field non-uniformity within
the tracker space.
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how one wishes, and typically corresponds to a single step in the Geant4 simulation.

In the Geane routines the track parameters p are 5 × 1 vectors defined in either the

“free” (curvilinear) coordinate system

1

p
, λ, φ, y⊥, z⊥, (4.2)

or the “surface” (detector) coordinate system

1

p
,
pv
pu
,
pw
pu
, v, w. (4.3)

In the free system, the λ and φ parameters are the dip (π/2 − θ) and azimuthal

angles respectively, while the y⊥ and z⊥ displacement parameters lie in the XY or

XZ global Geant4 planes and orthogonal to x⊥, where the x⊥ coordinate lies along

the momentum vector of the particle. See Figure 4·3. In the surface system, the

UVW coordinates are defined with any two orthogonal vectors V and W, where V

and W typically lie in the surface of a detector2. The surface system is most usefully

defined in the tracker reference frame, where the modules are staggered in a local

Z(U) coordinate, the local X(V) coordinate increases with straw number, and the

local Y(W) coordinate is vertical. See Figure 4·4. The surface system is then defined

as

1

p
,
px
pz
,
py
pz
, x, y. (4.4)

In both free and surface systems, the track is represented by one momentum

parameter, two directional parameters, and two position parameters. Needing six

independent parameters to describe a particle in space and momentum (three mo-

mentum and three position parameters), one parameter is selected as an independent

2For clarification, the UVW surface system has nothing to do with the UV orientations of the
straws at this time.
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Figure 4·3: Free (left) and surface (right) tracking coordinate sys-
tems [91].

Figure 4·4: Model view of a tracker station in relation to the stor-
age ring. Tracker modules are outlined in white. Around the tracker
measurement area is defined a coordinate system called the tracker ref-
erence frame. In this frame, the X coordinate is directed nearly radially
outward along the straws, the Y coordinate is directed vertically up,
and the Z coordinate is directed along the direction that the tracker
modules are staggered.
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variable. For Geane, this is taken either as a known path length in the free system,

or a known U coordinate in the surface system (or known Z coordinate in our tracker

reference frame). In our tracker reference frame, the 32 straw layers corresponding

to a tracking station are defined at known local Z coordinates. The path lengths for

steps in Geane can be set equal to the distance for a track to travel between between

detector planes. Therefore the track parameters’ dependence on the path length can

instead by replaced by a dependence on plane number. The number of degrees of

freedom per track is the number of measurement planes it hits, N , minus 5 for the

number of track parameters.

The 5 × 5 error matrix on a plane calculated in Geane describing the expected

distribution in true parameters about the average ones is defined as

σijN = 〈piNp
j
N〉 − 〈p

i
N〉 · 〈p

j
N〉, (4.5)

where i and j are track parameter indices, and pN are ‘true’ track parameters on

plane N . This error matrix will include effects from multiple scattering, delta ray

production, ionization, and bremsstrahlung [90, 91, 92]. These matrices are evolved

from plane to plane by what are called transport matrices, where the 5× 5 transport

matrix elements between two planes are defined as

T i,jN,N−1 =
∂p̃iN
∂pjN−1

. (4.6)

The transport matrix T is a Jacobian which describes how the infinitesimal changes

in parameter i on plane N (or path length) are produced by changes in parameter j

on some previous plane N − 1:

δp̃N = TN,N−1δpN−1 (4.7)

Note that the transport matrix does not propagate the track parameters themselves
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as does an equation of motion. The error matrix is propagated forward from one

plane to another by

σN = TN,N−1σN−1T
T
N,N−1 + σmaterial, (4.8)

where σmaterial is the added error due to material effects between the planes. See

Figure 4·5. The calculation of the transport matrices themselves is done within the

Geane routines in the free system on a step by step basis, where the derivation of the

transport matrix elements is given in Reference [93]. It should be pointed out that

the transport matrix between any two planes (or number of steps) is the multiple of

all intermediate transport matrices,

TN,N−2 = TN,N−1TN−1,N−2, (4.9)

regardless of what reference system the matrices are defined in (as long as they are

all consistent). Geane can convert the transport matrices between the free system

and the surface system using further Jacobians, also derived in Reference [93]. When

converting a transport matrix from one reference system to another,

T sN,N−1 = ANT
f
N,N−1A

−1
N−1, (4.10)

where the s and f superscripts stand for the surface and free reference systems respec-

tively, and A is the Jacobian between reference frames which is defined at a specific

point or plane (AN 6= AN−1). The error matrices are converted from one reference

frame to another in the usual way,

σsN = ANσ
f
NA

T
N . (4.11)

Finally, while the tracker reference frame is nominally defined in the local XYZ
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Figure 4·5: Transport and error matrices for straw tracker planes.
Transport matrices are defined between straw planes, and error ma-
trices are defined on the planes.

coordinates as described previously, the straws themselves do not measure coordinates

in that frame directly. As described in Section 3.3, the straws measure drift circles

in planes perpendicular to the straws themselves. The measurements from U and V

straws therefore lie on the U and V measurement axes shown in Figure 4·6, where the

measurement of the drift circle radius is instead taken as a U or V coordinate to the

left or right of the straw wire. To first order, the U or V coordinate is the DCA of the

hit, which can be corrected with the angle of the track to get a better estimate, as

shown in Appendix A.1. It’s important to note that out of the five track parameters,

each straw only measures a single U or V position. The new coordinate system is

defined as

1

p
,
pu
pz
,
pv
pz
, u, v, (4.12)

where this Z variable is the tracker reference frame Z, and the U and V coordinates

here are non-orthogonal and different from those in Equation 4.3. The transformation

between the XYZ and UVZ systems is given by

pUV = J5p
XY (4.13)
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Figure 4·6: The straw tracker measurement reference system. The XYZ
system here is the straw tracker reference frame. θ is the same angle
as the stereo angle of the straws, at 7.5°. U straws measure along the
U axis and V straws measure along the V axis.

where J5 is a 5× 5 matrix defined by

J5 =

1 0 0
0 J2 0
0 0 J2

 (4.14)

and J2 is a 2× 2 matrix given by(
u
v

)
= J2

(
x
y

)
=

(
cos θ − sin θ
cos θ sin θ

)(
x
y

)
. (4.15)

J2 is readily determined by inspection of Figure 4·6. In order to transform the trans-

port or error matrices from the tracker reference frame to the tracker measurement

frame, the same relations as in Equations 4.10 and 4.11 apply,

TUVN,N−1 = J5T
XY
N,N−1J

−1
5 (4.16)

σUVN = J5σ
XY
N JT5 (4.17)

where the superscripts of XY or UV identify which coordinate system the objects

belong to.
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4.2.2 χ2 minimization

The method for fitting and improving the track is a global χ2 minimization algorithm

that uses the transport and error matrices as described previously [90, 94]. This

straightforward global fitting algorithm works because of the minimal amount of

material contained within the tracker and the resulting small correlations between

planes. For denser detectors with more scattering and therefore greater correlations,

other fitting algorithms such as a Kalman filter should be used [91]. While the

following derivations and minimization correspond to measurements on planes in the

tracker measurement frame described by Equation 4.12, it should be noted that the

results apply to any reference frame. A derivation for a χ2 including no material

correlations is presented, followed by one which includes material correlations.

The χ2 for a track is defined as the squared residuals between predicted and

measured parameters on a measurement plane, divided by their errors, summed over

all hit planes:

χ2 =
N∑
i=1

[(p̃i(ps)− xi)T (σ−1
i )(p̃i(ps)− xi)] (4.18)

xi are vectors of the measured track parameters on plane i, p̃i are vectors of the

average predicted track parameters which stem from the starting parameters ps, and

σi are the 5×5 error matrices on the planes. To first order, the error matrices consist

only of the measurement errors on the U and V parameters and exclude the effects of

random material processes. These errors are located in the U and V diagonal elements

(3, 3) and (4, 4) respectively, with corresponding resolutions of approximately 150 µm

as described in Section 3.3. At second order, the material error matrices as calculated

by Geane are added to the measurement errors. Because the measured parameters

consist of solely U or V measurements, the xi vectors are 5×1 objects where only the
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(3) or (4) elements have any meaning respectively3. The errors on the non-measured

parameters in the diagonals of the error matrix are taken as infinite. When the error

matrix is inverted all corresponding rows and columns of the final matrix calculation

on each plane reduce to zero and contribute nothing to the χ2.

By minimizing this χ2 with respect to the starting parameters ps, and evaluating

it at the target best starting guesses p′0, which are the parameters of interest, the

track can be fit:

∂χ2

∂ps

∣∣∣
ps=p′0

= 0 =
N∑
i=1

[(∂p̃i(ps)
∂ps

∣∣∣
ps=p′0

)T
(σ−1

i )(p̃i(p
′
0)− xi)

+ (p̃i(p
′
0)− xi)T

(∂(σ−1
i )

∂ps

∣∣∣
p=p′0

)
(p̃i(p

′
0)− xi)

+ (p̃i(p
′
0)− xi)T (σ−1

i )
(∂p̃i(ps)

∂ps

∣∣∣
ps=p′0

)]
(4.19)

The middle term is small and can be neglected, assuming that that the error matrix

doesn’t change much with respect to the choice of starting parameters. This is true

as the part of the error matrix that depends on the starting parameters is already

small due to the small amount of material in the tracker. In tandem, the error matrix

doesn’t change much from one fitting iteration to the next as long as the path length

through the material remains about the same. The first and third terms are identical

in value, and so must therefore both separately be equal to zero. Equation 4.19 is

therefore reduced to

0 =
N∑
i=1

T Ti0σ
−1
i (p̃i(p

′
0)− xi), (4.20)

where Ti0 is the transport matrix between the point at which the starting parameters

3A straw tracker module as a whole can be approximated as measuring in 2D space, but this
leads to correlations between measured parameters which must be taken into account, as compared
to the natural tracker measurement frame in 1D space of U or V for which there are no measurement
correlations [95].
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are defined and plane i, given by Equation 4.6:

Ti0 =
∂p̃i(ps)

∂ps

∣∣∣
ps=p′0

(4.21)

In minimizing the χ2, the desire is to update some original set of starting track

parameters p0 to the new best ones p′0. This difference, ∆p0, can be determined by

substituting the following into Equation 4.20,

p̃i(p
′
0) = p̃i(p0) + Ti0∆p0, (4.22)

which follows from Equation 4.7. After simplifying one arrives at

∆p0 = σp0

N∑
i=1

T Ti0(σ−1
i )(xi − p̃i(p0)), (4.23)

where

σp0 = [
N∑
i=1

T Ti0(σ−1
i )Ti0]−1. (4.24)

σp0 is a 5 × 5 covariance matrix of the starting fit parameters, where the diagonals

describe the fit errors in the 5 track parameters at that point.

To summarize, an initial set of starting parameters p0 are propagated forwards in

Geane to produce predicted track parameters, transport matrices, and error matrices.

These objects, along with the measured parameters, are used in the χ2 minimization

algorithm to provide a χ2 describing the track goodness-of-fit corresponding to those

original starting parameters, an improvement on the starting parameters ∆p0, and the

errors on those parameters σp0 . One iteration of the track-fitting consists of these two

steps. In order to determine the predicted parameters of the track corresponding to

the improved starting parameters, the error propagation part of the procedure needs

to be repeated. The track-fitting is iterated until the χ2 no longer improves, at which
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point the track-fitting is said to have converged. Typically three or four iterations are

enough to get a best fit track. As a reminder, the initial set of starting parameters

is given by a circle fit to the hits as described at the end of Section 4.1. The starting

parameters for a track are defined on a virtual 0 plane parallel to the measurement

planes, where the 0 plane is placed on a track by track basis at a point 1 cm in front

of the first straw tracker module that was hit. Note that the track-fitting procedure

is remarkably robust with respect to the initial starting parameters. Of course if the

initial starting parameters are too poor, then the fit will not converge.

4.2.3 Fits to idealized tracks in vacuum

The tracking algorithm was built and tested in the full E989 Geant4 simulation in art.

Hits were generated from positrons produced by muon decay in the storage region.

In the initial tests of the track-fitting, material was turned off and the measured hits

were taken as the truth hits with some known Gaussian smearing. (The truth hits are

accessible within the Geant4 simulation by “dummy plane” detectors which record

hits at the straw measurement planes.) Plots showing the goodness-of-fit for the

fitted tracks are shown in Figure 4·7. Beyond the goodness-of-fit, the other measures

of track-fitting performance are the truth pulls of the fit parameters. The truth pulls

are defined as the residual between the fitted parameter and the truth parameter,

divided by the fit error on that parameter:

∆pi0√
σiip0

=
pi0,fit − pi0,true√

σiip0
(4.25)

Since the χ2 minimization returns fit parameters and errors on the starting plane,

this is where the truth pulls are defined. Plots of the truth pulls for the five track

parameters are shown in Figure 4·8, where each pull is a unit Gaussian, as they should

be for idealized results.
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(a) p-value distribution for all tracks. (b) χ2 distribution for tracks which hit
24 planes.

Figure 4·7: Goodness-of-fit distributions for fitted tracks in vacuum,
with Gaussian measurement errors and no material effects. The p-
value distribution is flat, and the χ2 distribution matches a normalized
χ2 probability distribution function for 19 degrees of freedom which is
overlaid in red. (χ2 distributions for tracks which hit other numbers of
planes are very similar.)

4.2.4 Material correlations

While the trackers consist of relatively little material, for improved tracking results

it is desirable to include the full effects of material. As described in Section 4.2.1,

random processes such as multiple scattering and ionization contribute to the error

matrix in Equation 4.5. The random scattering of a particle trajectory at one plane

means that there is an extra correlated error in all further planes, see Figure 4·9.

Equation 4.18 does not take into account these material correlations between mea-

surement planes when fitting the track. While it provides a decent approximation of

the best fit track in the low material tracker, the χ2 distribution is noticeably wrong.

To calculate a better estimate of the trajectory, a more general version of the χ2

equation is used:

χ2 = (~p− ~x)T (σ−1)(~p− ~x) (4.26)
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(a) 1/P

(b) Pu/Pz (c) Pv/Pz

(d) U (e) V

Figure 4·8: Truth pulls for the five fitted track parameters at the start-
ing plane of the track, for tracks in vacuum with Gaussian measurement
smearing and no material effects. The plots are shown on a log scale,
and each are fit to a Gaussian in red. Each fit is consistent to a unit
Gaussian with a mean of zero and an RMS of one, showing that the
track-fitting is working properly.
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Figure 4·9: RMS error between the true track position and the average
track position as a function of distance through the tracker. This error
increases as a particle passes through more and more material. Each
black point indicates the location of a straw measurement layer. If a
track goes through the whole detector, on average the true position has
an extra uncertainty of nearly 200 µm compared to the average one.

Here ~x and ~p are a 5N × 1 vectors of the measured and predicted track parameters

respectively, where N is the number of planes hit, and these objects are the combined

vectors of the 5 × 1 counterparts. Similarly, σ is a 5N × 5N matrix, where the

5×5 diagonal block matrices are the individual plane error matrices described before,

calculated between plane 0 and N . Calculating the χ2 is now recast from a sum over

measurement planes into a single large linear algebra equation. At this point both

calculations of the χ2 are equivalent.

The new format however allows for the material correlations between planes to

be included, where these correlations are added as 5× 5 matrices in the off-diagonal

blocks of the new large error matrix. The upper diagonals are given by4

σMN = TMNσN , (4.27)

where σMN is the material correlation matrix between plane M and plane N , TMN is

4The lower diagonals are just the transpose.



88

the transport matrix between the two planes, and σN is the ordinary material error

matrix as calculated from the 0 starting plane. See Appendix A.2 for the derivation

of Equation 4.27. The χ2 is minimized in the same as in the previous section such

that the improvement to the starting track parameters ∆p0 remains a 5 × 1 vector

and is given by

∆p0 = σp0τ
Tσ−1(~x− ~p), (4.28)

σp0 = [τTσ−1τ ]−1, (4.29)

where the joint transport matrix τ is a 5N × 5 object, consisting of N ordinary

transport matrices tacked together.

Because σ is such a large matrix, 5N × 5N where N ranges from 6 to 32, the

computational burden of inverting it for many tracks would be excessive. However,

as described before, the infinite errors in the diagonals for non-measured parameters

reduce the corresponding rows and columns to 0 after the inversion. This fact can

be taken advantage of by removing said rows and columns that would contribute

nothing to the χ2 anyway, and thus reducing the dimension from 5N ×5N to N ×N .

The corresponding rows and columns of the unmeasured parameters in the combined

transport matrix τ and residual vector are also removed, resulting in an N×5 matrix

for τ and an N × 1 vector for the residuals. The covariance matrix σp0 remains a

5 × 5 matrix. These reductions in the matrix dimensions improve the speed of the

χ2 calculation dramatically, while leaving the final calculation unaffected5. All pieces

of the χ2 calculation and minimization are done with a C++ linear algebra library

optimized for speed called Eigen3 [96]. As a result, the tracking time is dominated

by the error propagation in Geant4, and not the linear algebra.

5Note that these element removals are done just before the final calculation of the χ2 and not at
the beginning of the algebra, otherwise the plane material correlations are not properly included.
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4.2.5 Fits to simulated tracks including material effects

The inclusion of material correlations repairs the χ2 distributions as shown in Fig-

ure 4·10. The plots in this section show the results of the track-fitting in the full

g − 2 Geant4 simulation with material effects turned on. Truth measurements with

150 µm Gaussian smearing are once again used as the measured hits, and a cut of

greater than 3 MeV on the true simulated energy loss removes the occasional kinked

tracks which produce poor fits from hard energy loss physics processes. The compar-

ison between the simulated and reconstructed energy loss for fitted tracks is shown in

Figure 4·11. Truth pulls for the tracks are shown in Figure 4·12. It can be seen that

there is a slight spread in results due to the material effects. This is to be expected

given the non-Gaussian nature of the processes, and the vast majority of tracks still

fit well. The number of iterations required to fit a track is shown in Figure 4·13. The

number of planes a track hits and the corresponding momentum dependence is shown

in Figure 4·14. The total momentum distribution and residuals to truth are shown

in Figure 4·15. The momentum resolution of the track-fitting is approximately 2%.

After the track-fitting has determined the best fit parameters in the UV space,

the returned parameters can be transformed back into the tracker reference frame

coordinates. Plots for the fitted vertical and horizontal momenta, positions, and

corresponding residuals are shown in Figures 4·16 and 4·17. More extensive plots can

be found in Reference [89].
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(a) p-value distribution for all tracks. (b) χ2 distribution for tracks which hit
10 planes.

Figure 4·10: Goodness-of-fit distributions for fitted tracks in the full
g−2 Geant4 simulation with material effects and correlations included.
The p-value distribution is flat, and the χ2 distribution matches a nor-
malized χ2 probability distribution function for 5 degrees of freedom
which is overlaid in red.

Figure 4·11: Simulated true energy loss (black) vs Geane predicted
energy loss (red) for fitted tracks. The mismatch between the two
is acceptable as the energy loss is in general very small compared to
the total momentum of each track, 200keV � 2GeV. Sources of en-
ergy loss include ionization and bremsstrahlung processes. The original
Geane physics calculations were taking too much energy away due to
bremsstrahlung processes in our low material tracker, so the energy loss
calculations were modified slightly [89].
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(a) 1/P

(b) Pu/Pz (c) Pv/Pz

(d) U (e) V

Figure 4·12: Truth pulls for the five track parameters at the starting
plane of the track for fitted tracks in the full g − 2 Geant4 simulation
with material effects included. The plots are shown on a log scale, and
each is fit to a Gaussian in red. Each fit is close to a unit Gaussian with
a mean of zero and an RMS of 1, but there are tracks which lie outside
the Gaussian due to material effects and the resulting imperfect fits.
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Figure 4·13: Number of iterations for the track-fitting to converge per
track. The track-fitting does not take less than three iterations, and
the number of iterations is capped at ten.

(a) The number of planes hit peaks at 10,
and falls off to the maximum number of
planes at 32.

(b) The number of planes hit vs the mo-
mentum of the track. In general, tracks
with higher momenta hit more planes.

Figure 4·14: Number of planes hit per track (left) and the momentum
dependence (right).
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(a) The fitted momentum distribution, which has an
endpoint of approximately 3.094 GeV.

(b) The residual between the recon-
structed and true total momentum. The
RMS is approximately 40 MeV, though
there are some tails which spread out
from the distribution.

(c) The relative residual between the re-
constructed and true total momentum.
The RMS is approximately 2.4 %. This
plot includes tracks of all momenta; in
general the resolution of the total mo-
mentum is around 2% for all energies.

Figure 4·15: Fitted track momentum distribution and corresponding
residuals to truth.
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(a) Vertical momentum distribution.
This distribution is bounded by the ver-
tical angle acceptance of the tracker.

(b) Horizontal momentum distribution.
The shape of the distribution is due to the
acceptance of the tracker. It is perhaps
more informative to look at the radial
momentum distribution, which is shown
in Figure 4·20.

(c) The vertical momentum residual,
which has a width of about 4 MeV.

(d) The horizontal momentum residual,
which has a width of about 3 MeV.

Figure 4·16: Fitted vertical and horizontal momentum components
(top) for tracks at the entrance to the tracker, and their residuals to
truth (bottom).
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(a) Vertical position distribution. This
distribution is bounded by the vertical
extent of the tracker entrance.

(b) Horizontal position distribution. The
shape of the distribution is due to the
acceptance of the tracker. It is perhaps
more informative to look at the radial po-
sition distribution, which is shown later
in Figure 4·20.

(c) The vertical position residual, which
has a width of 736 µm at the entrance of
the tracker. This is larger than the hor-
izontal position residual since the straws
measure mostly in the horizontal plane.

(d) The horizontal position residual,
which has a width of 135 µm at the en-
trance of the tracker. This is comparable
to the input straw resolution of 150 µm.

Figure 4·17: Shown are the fitted vertical and horizontal position com-
ponents (top) for tracks at the entrance to the tracker, and their resid-
uals to truth (bottom).
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4.2.6 Left-right ambiguity and fit modes

Before actual data can be fit, the left-right ambiguity problem needs to be dealt with.

Since straws only measure drift circles and not actual U or V positions, and since

tracks are in general passing forwards through the detector, there is an ambiguity

as to which side of the wire a particle passed for each hit. If even a single left-right

choice for a hit is wrong then a track will most likely fit poorly. There are a couple

of different track-fitting modes used to deal with this problem, which are detailed in

Reference [89] and summarized here and in Reference [97].

wireFit

The hits of a track from data are first fit to the wire centers which requires no left-

right or drift-time information, simply called a wireFit. The errors on the measured

hits are set as the RMS of a uniform distribution with a width of a straw diameter.

The wire fit produces an approximation of the best fit track as well as some left-right

information. The number of fitting iterations is capped at three for the wire fit.

mainFit

The primary fit mode for analyzing data is called mainFit. After the wire fit is

completed, the predicted track parameters at each measurement plane are compared

to the locations of the wires for the straws that were hit. The left-right choices for

each hit are set depending on which side of the wire the predicted track passed. The

measured hit positions and errors are updated from the wire values to the angular-

corrected DCA values, based on the the left-right choices of each hit, and the fitting is

repeated. At each iteration of the fitting, the left-right choices for each hit are updated

based on where the previous predicted track parameters ended up. mainFit is the

fastest fit mode and with this method about 66% of tracks fit well. The advantages

in processing speed outweigh the lost track fraction as the tracking analyses are not
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statistics limited, and the lost tracks do not create a bias.

fullSeqFit

The secondary fit mode is called fullSeqFit. This fit mode does a better job of

determining the left-right choices for the hits in a track, but is much slower than

mainFit. Here is given a short summary; see Reference [89] for more technical details.

After a wireFit, the geometry of the straw layers is used to resolve some of the

left-right choices for hits on a track. The left-right ambiguity is partially resolved

through the shift in layers for each view as detailed in Section 3.3, where if a particle

passes straight through both layers in a view it can be seen to go to the left of one

wire and the right of the other. This implies that for curved tracks with certain angles

through tracker modules, the left-right choices for some hits are known precisely [98].

For these hit planes the left-right choices are fixed for the rest of the fitting.

For the remaining hits, where the left-right choices are unknown, an approximate

χ2 is calculated for each combination of left-right choices, 2Nunknown . This χ2 is calcu-

lated using the same formula as in the full fitting with the measured parameters set to

the different left-right combinations, Equation 4.26. However, in this calculation the

Geane transport and error matrices calculated by the wireFit are used instead of from

a fit to the measured parameters with left-right choices. Since the calculation of these

χ2’s for every combination is slow, this process is sped up by limiting the left-right

combinations to only U or V hit layers at a time, 2NU,unknown + 2NV,unknown � 2Nunknown .

This χ2 calculation produces a measure of how good a left-right combination is with-

out having to propagate every track in Geane for the full fitting. The tracks with

the best combinations and smallest approximate χ2’s are then fit with the full Geane

propagation and χ2 minimization algorithm. Typically the best 10 to 15 combina-

tions are fit, and the final track with the best χ2 is taken as the best fit track. This

approach determines the left-right choices for the fitted tracks correctly about 99% of
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the time with simulated data, but is very slow due to the number of combinations to

check and the Geane propagation for each of the best track left-right combinations.

If the track-fitting can be sped up significantly or a majority of the left-right choices

constrained upstream somehow, then this fit mode would become the default.

4.2.7 Fits to tracks from data and comparison with Monte-Carlo

Fits to data are done with mainFit. Due to imperfect left-right assignments and the

use of real DCA and DCA error measurements, the tracks from data are naturally

more messy. See Figure 4·18 for a sample fitted track and a plot of the goodness-of-fit

for the tracks. While not all tracks are fit perfectly, enough of them fit sufficiently well

that the results can be passed to the extrapolation stage. Fitted tracks to Run 1 data

are compared to results from Monte-Carlo. Track times and fitted total momenta

are shown in Figure 4·19. Fitted track radial and vertical momentum and position

distributions are shown in Figure 4·20. In general the two results are very similar.

There are mismatches in the distributions because the idealized simulation did not

reflect the real run conditions at the time of this track-fitting analysis. As described in

Section 2.8 and explored later in Section 4.4, the muon beam was imperfectly stored

in the ring, leading to the measured distributions here.
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Figure 4·18: Sample fitted track (left) and p-value distribution (right)
in data. The peak in the distribution at 0 arises from imperfectly fit
tracks. A cut has been made in the p-value distribution at 1% to remove
tracks which have entirely failed the fitting.

(a) Track times for tracks with energy
greater than 1.8 GeV. The ωa frequency
can be seen in both the data and simula-
tion.

(b) Fitted track total momentum; there is
a very slight mismatch between data and
Monte-Carlo.

Figure 4·19: Fitted track results in data (black) vs Monte-Carlo (red).
The number of entries in each are normalized so that they can be
compared. Shape differences between the two are due to a mismatch
between simulation conditions and the real experiment, and not any
problem with the track-fitting.
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(a) Fitted track radial momenta. The ra-
dial momenta of the tracks are negative as
particles are curving inwards through the
tracker. There is a very noticeable dif-
ference between data and Monte-Carlo re-
sults.

(b) Fitted track radial positions. The
shape depends on the acceptance of the
tracker and in general lies below the magic
radius of 7.112 m. Data and Monte-Carlo
results match well.

(c) Fitted track vertical momenta. The mo-
mentum is bounded by the storage region,
and distribution from data is slightly wider
than that from Monte-Carlo.

(d) Fitted track vertical positions. The po-
sitions are bounded by the tracker vertical
acceptance. There is a noticeable differ-
ence between data and Monte-Carlo, with
the data higher due to residual radial mag-
netic field in the experiment.

Figure 4·20: Fitted track results in data (black) vs Monte-Carlo (red).
The amount of entries in each are normalized to each other so that
they can be compared. Shape differences between the two are due to a
mismatch between simulation conditions and the real experiment, and
not any problem with the track-fitting.
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4.3 Track extrapolation

The last stage of the track reconstruction is the track extrapolation. The extrapola-

tion takes the fitted track results and either extrapolates them back to the storage

region, to the approximate position of the muon decay point, or forwards to the face of

the calorimeter which sits right behind the tracker. The extrapolation stage utilizes a

fourth order Runge-Kutta Nyström algorithm [80] which discretely steps a trajectory

through the magnetic field in the full g − 2 Geant4 simulation, similar in some re-

spects to the error propagation. At each step of the extrapolation, the updated track

position and its error are compared to physical volumes in the simulation to flag

tracks which have been reconstructed as likely originating from outside the storage

region [80, 99]. Because there is no fixed interaction point in the storage region, tracks

are extrapolated backwards to the point of tangency where the radial momentum is

equal to zero. Monte Carlo studies verified that with a simple 1.1 mm correction at

all momenta, the radial decay position could be adequately reconstructed using this

approximation [80]. A schematic diagram explaining this behavior is shown in Fig-

ure 4·21. The vertical extrapolated distribution was found to have no biases. A bird’s

eye view for tracks extrapolated back into the storage ring is shown in Figure 4·22.

4.4 Muon beam measurements

All stages of the track reconstruction have ultimately facilitated the goal of deter-

mining the characteristics of the muon beam. As described in Section 2.6, the muon

beam is not a fixed entity. Where the muons live and how they move in the stor-

age region ultimately affect the calculation of the E-field and pitch corrections, the

weighting of the muon distribution with respect to the measured field, and the preces-

sion frequency analysis based on data from the calorimeters. Presented here are plots

for the 60h dataset which describe the muon beam in the storage region. Analysis
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Figure 4·21: Tracks are extrapolated backwards into the storage region
to the point of radial tangency. While for a single decay positron the
extrapolated muon decay point will be different than the truth, the
degeneracy of inwards and outwards decays leads to a correct average
extrapolated position, with an applied radial offset of 1.1 mm as shown.
High and low momentum tracks are emitted at smaller and larger an-
gles respectively. Because high momentum tracks travel farther than
low momentum tracks before reaching radial tangency, the offset is
momentum-independent on average. Plot courtesy of S. Charity [80].

Figure 4·22: A bird’s eye view of the extrapolation results in the storage
ring. The two distributions of extrapolated tracks can be seen at the
left and bottom of the figure, where the trackers sit at the head of each
distribution. It can be seen that some tracks are extrapolated several
meters back through the storage region.
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of the muon beam dynamics comes from the entire tracker group, with many plots

having been provided by J. Mott. The analysis of acceptance differences between the

tracker and calorimeter, which is critical for describing the correct muon distribution

and dynamics in regards to those decay positrons which hit the calorimeters and

are responsible for the measurement of ωa, is ongoing. Tracker-calorimeter matching

studies will not be detailed here. A preliminary analysis is given in Reference [84].

Before characterizing the muon distribution, a set of quality cuts are applied to

each track in order to remove failed or poorly fitted tracks. By applying these cuts, a

clean sample of the extrapolated muon decay positions is extracted without biasing

the results. The following conservative cuts are applied [100, 101]:

• Successful track reconstruction and extrapolation

• No material hit during extrapolation back to vertex

• Number of tracking planes hit ≥ 12

• p-value > 5%

• Vertical extrapolation uncertainty: 0.5 < σy < 3.5 mm

• Radial extrapolation uncertainty: 0.5 < σr < 5 mm

• Horizontal entrance into tracker: 60 < X < 150 mm

• Vertical entrance into tracker: −40 < Y < 40 mm

• Drift time: 0 < td < 70 ns

• Track UV residuals < 500 µm

• Fraction of missed planes < 30%

• |Number of U hits - number of V hits| ≤ 4
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Run 1 Dataset Muon Beam Parameters

Radial Vertical

Dataset Mean Peak Width Mean Width

60h 7.61 18.41 18.43 0.15 12.88

HighKick 6.89 15.95 17.74 0.11 12.92

9d 8.03 19.31 18.37 0.40 12.71

Endgame 7.40 18.11 18.01 0.95 12.68

Table 4.1: Muon beam widths and means for the Run 1 precession
frequency analysis datasets, where data has been combined from both
tracker stations. Both radial and vertical values are defined with re-
spect to the center of the storage region. The radial peak values were
determined by fitting Gaussians around the peaks of the respective ra-
dial distributions. All values are in units of mm.

First, a radial slice, or cross-section at a specific azimuth, of the extrapolated

beam distribution is shown in Figure 4·23. The beam is off-center due to the lower

than nominal kicker voltage used in Run 1 as described in Section 2.8. The radial

and vertical projections of this cross-section are shown in Figure 4·24. The vertical

distribution is very similar to that from the track-fitting results, while the radial dis-

tribution of the stored muons has a non-Gaussian shape due to the storage procedure

of the muons. Because the beam is moving in time and these distributions include

tracks of all times, these two distributions are generally wider than they are at a

single point in time. Table 4.1 gives the measured values of the beam parameters

corresponding to the various datasets for all times. Figure 4·25 shows the radial

and vertical distributions of the muon beam as a function of time in-fill, with the

means plotted in Figure 4·26. Because of the bad quadrupole resistors described in

Section 2.8, the vertical center of the stored beam was higher than the center of the

storage ring, and slowly moved downwards over the course of a fill; Figure 4·27. At

the same time, the vertical width of the beam decreased slowly over the course of a

fill.
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Figure 4·23: A radial slice of the extrapolated muon distribution or
beam spot. The beam’s radial center is greater than the magic radius
because the integrated injection kick was less than optimal; Section 2.8.

(a) The radial position of 0 mm corresponds
to the magic radius of 7.112 m. The radial
distribution is peaked radial outward from
the center.

(b) The vertical distribution looks closely
centered in the storage region, which has a
width of 90 mm.

Figure 4·24: Shown are the muon beam radial (left) and vertical (right)
distributions for all track times.
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(a) The radial distribution of the muons os-
cillates radially inward and outward, and
bunches and spreads out as a function of
time. This behavior is the CBO of the
beam.

(b) The vertical distribution of the muons
is relatively stable as a function of time,
but there are oscillations in both the mean
and width.

Figure 4·25: Shown are the muon beam radial (left) and vertical (right)
distributions as a function of time in-fill for tracks in station 12. In
general the distributions for station 18 are very similar.

(a) The radial distribution mean oscillates
at the CBO frequency. In station 12 the
beam swings outward at early times due
to the scraping procedure, and then slowly
relaxes inwards.

(b) The vertical distribution mean oscil-
lates at the vertical betatron frequency, as
described in Table 2.2. For these early
track times the beam is actually stored
slightly higher than the center of the stor-
age region.

Figure 4·26: Shown are the muon beam radial (left) and vertical (right)
distribution means as a function of time in-fill for tracks in station 12.
In general the distributions for station 18 are very similar.
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(a) Average vertical position. (b) Average vertical width.

Figure 4·27: Average vertical position (left) and width (right) as a
function of time in-fill. The data points are binned such that the higher
frequency betatron motion is binned out. Stations 12 and 18 are shown
in the blue and red respectively. The sets of points correspond to
the means and widths directly from histograms at specific time points.
Gradients are calculated by fitting the points to a straight line from
50 to 350 µs. The vertical position of the beam drops over the course
of the fill on the order of 1 mm/ms, depending on dataset, while the
vertical width decreases on the order of 0.5 mm/ms. The differences
between the two stations are due to the closed orbit. Plots courtesy of
Joe Price. Fits were also done to means and widths calculated from
Gaussian fits to the individual histograms with similar results [102].
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(a) The CBO frequency change is due to
the slowly changing quad voltages over
each fill. Plotted is the difference between
the cosine argument for the changing fre-
quency and the value it asymptotes to at
late times. The frequency fit model in-
cludes two exponentials, one with a longer
time constant and one with a shorter time
constant.

(b) The CBO effect decays away exponen-
tially with a lifetime on the order of 200 –
300 µs. Reasonable CBO envelopes include
a pure exponential or an exponential plus
a constant.

Figure 4·28: CBO frequency (left) and amplitude (right) as a function
of time in-fill.

The oscillation observed in the radial mean is the CBO described in Section 2.6.1.

Using the tracking results shown here, the CBO frequency and amplitude can be

characterized [103]. Because of the bad quadrupole resistors, not only does the av-

erage beam vertical position change over the course of a fill, but the CBO frequency

changes as well. The CBO frequency and amplitude as a function of time in-fill are

shown in Figure 4·28. It can be seen that over a course of a fill, the CBO ampli-

tude and frequency decay away exponentially (where the frequency tends to its static

value). Both of these characteristics of the beam motion are folded into the precession

frequency analysis, as will be described in Chapter 5.



Chapter 5

ωa Measurement

The g− 2 frequency ωa is measured by counting the number of detected positrons in

the calorimeters above some energy threshold versus time, as described in Section 2.1.

Doing so results in a histogram that is modulated by ωa, Figure 2·4. The ωa analysis

consists of the steps needed to construct and fit the decay positron time spectrum

and the necessary related systematic error studies.

5.1 Reconstruction of decay positron hits

The calorimeters measure hit times and energies of incident particles, where these

hit times and energies are determined by a reconstruction of the raw SiPM signals.

In E989 there are two overall separate reconstruction algorithms, ReconWest and

ReconEast, both written in the art framework just as the tracking reconstruction

is. Each of these reconstruction algorithms is modularized such that the steps of the

reconstruction process can be switched in and out at will. Using separate reconstruc-

tion methods instills confidence in results by removing single points of failure. The

reconstruction method used in this analysis is ReconWest. A summary of its details

will be presented here. A more thorough description is detailed by A. Fienberg in

Reference [104].

The raw data are digitized waveforms of voltage traces from each SiPM for each

calorimeter crystal. Due to the large amount of data coming in at the high sampling

rate, only those pulses which exceed some threshold are saved to disk. Traces are

109
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checked against this pre-configured threshold by passing all of the data through a

GPU farm in real time [105]. If any trace is found above threshold, then the data

are saved from every SiPM in the hit calorimeter, for a time range around the over-

threshold trace. This time range is called a time island, similar to that in the tracking

reconstruction, and typically has a width of 40 ns.

The traces are fit with templates in order to extract the area and peak times

of any present pulses. Each SiPM has a set of templates for positrons and a set of

templates for laser pulses, unique to that SiPM. These templates are extracted from

data, where each template is determined by collecting many single pulse traces from

a SiPM, normalizing by pulse area, aligning in time, and averaging them. These

templates were checked against various systematic effects in order to verify that the

constructed templates did not bias the time or energy measurements. These effects

included hit angle, energy (pulse size), position, rate, and aging effects [77, 104]. To

determine the time and energy of a hit, the SiPM trace is fit to it’s corresponding

templates using a χ2 minimization algorithm. In order to fit for multiple pulses

in a single time island, the fitting procedure first fits with a single template, and

then checks the residuals for any remaining peaks. If peaks above a threshold are

found, then the fitting is repeated until all pulses have been fit. The algorithm’s time

measurements are unaffected by the number of pulses in a time island, and there is

100% pileup separation at 5 ns. See Figure 5·1 for a typical single template fit to a

SiPM trace.

Once a pulse has been fit with a template, the pulse area needs to be converted

to energy units using an energy calibration procedure. Several different techniques

can be used, including a method that counts photo-statistics seen in the SiPMs. The

default method is a comparison of lost muon energy signatures in the calorimeters.

As described in Reference [106], muons lost from the storage ring can spiral inward
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Figure 5·1: A template fit in purple to a SiPM trace delineated by the
black points which are in units of ADC counts [104].

and hit consecutive calorimeters with a specific time separation between calorimeter

hits. These lost muons are minimum-ionizing particles (MIPs), and thus leave a low

energy signature in the crystals; see Section 5.3.3. Selecting on the time separation

signature allows hits corresponding to lost muons to be isolated, and the peak of the

energy signature can be used to determine the appropriate conversions from area to

energy1.

The energy calibration for positron hits as compared to lost muon hits then needs

to be determined. Again there are several different techniques, including a comparison

of endpoint energies for high energy positrons which tail off at the magic momentum

of 3.094 GeV, and comparison with simulation. The default technique is to calibrate

the energies such that the optimal energy threshold for the ωa analysis is near 1.7 GeV.

This is justified from the fact that the lost muon energy signatures in different crystals

should be the same regardless of SiPM gains and crystal properties after the correct

gain constants have been applied. Ultimately the accuracy of the energy calibration is

relatively unimportant because it is not the energy units that really matter. Rather,

the quantity of interest is the number of positrons above some energy threshold, where

that threshold can be optimized empirically. Indeed the entire ωa analysis could be

1Different channels can also be equalized based on the energy signatures.
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done only considering the area of the SiPM pulses as a proxy for the energy of the

incident positrons.

Each pulse now has an associated energy and time. The measurement of ωa de-

pends heavily on the time reconstruction since the analysis is a frequency extraction,

thus the pulse times must be corrected for various effects in order to reach the pre-

cision goal. The fitted times for each pulse need to be aligned on a fill-by-fill basis

relative to the injection time of the beam, corrected for any channel differences due

to differing pulse shapes or optical fiber lengths, and corrected for any calorimeter

time misalignments due to the use of different laser system components. The fill-by-

fill alignment is corrected using the T0 detector as described in Section 3.1.1. The

calorimeter channels are aligned in time using signals from islands with large simulta-

neous pulses in neighboring crystals. Calorimeters are time aligned using lost muon

coincident events as described before. Once the times of the pulse fits or crystal hits

have been determined, the energies can be corrected for gain effects measured by the

laser system. As described in Section 3.2.3, the laser calibration system corrects for

out-of fill, STDP, and in-fill gain effects, in that order. Figure 5·2 shows an in-fill gain

function fit to data for a single calorimeter crystal. Systematic effects from corrected

gain variations are studied in Section 5.5.2.

The last part of the calorimeter reconstruction is the clustering stage, which as-

sembles individual crystal times and energies into the times, energies, and positions of

decay positron hits. For a time island with a single hit, the procedure is straightfor-

ward. The energy for the hit cluster is the sum of the individual hit crystal energies.

The time for the cluster is taken as the time of the maximum energy hit in the is-

land. This works because most of the deposited energy from a hit is localized to a

single crystal. The position of the cluster is determined with a logarithmic weighting

function between crystal hits, which for a 2 GeV positron results in a resolution of
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Figure 5·2: In-fill gain function fit for a single calorimeter crystal (top)
and fit residuals (bottom). Each crystal has its own in-fill and STDP
gain function parameters. Plot courtesy of Matthias Smith.

2 mm [104]. Figure 5·3 shows a single cluster from a positron hit in a calorimeter.

For a time island with multiple hits, the individual crystal hits are separated in time,

where the time partitioning separates hits that are 2.5 ns apart, and the clustering

proceeds as before. For hits which are within this time window, a pileup event has

occurred which is considered as a single hit. If the pileup event happens within the

same crystal, then the multiple hits are measured as a single hit, and this needs to

be corrected for using a pileup subtraction technique, as described in Section 5.2.1.

For hits that occur in separate crystals, the pileup can be resolved using the spatial

separation of the calorimeters. This is an ongoing area of work, and one technique

is described in Reference [104]. For this analysis the spatial separation was disabled.

This increases the amount of pileup seen in the data which for the precision of the

Run 1 analysis result was found to be acceptable.



114

Figure 5·3: A single positron hit in a calorimeter, which resulted in
a reconstructed calorimeter cluster [104]. Each box is a crystal in the
calorimeter, where the contained trace is the SiPM output, fit with a
template trace. The positron hit the crystal three crystals from the
left and three crystals from the bottom, where it deposited most of its
energy. Some of the energy was deposited in the neighboring crystals.

5.2 Construction of positron hit energy and time spectra

Once the reconstruction has processed all calorimeter hits into clusters, the energy

and time spectra histograms are made. This procedure is typically analyzer depen-

dent; here is given the procedure used in this analysis. At the very last stage of

the reconstruction procedure, an art module takes the produced clusters and puts

them into ROOT TTree formats, where individual data members include the energies,

times, calorimeter numbers, etc. of the individual clusters. There are of order 20,000–

140,000 cluster data files per dataset, which are combined into order 200–1,400 ROOT

TTree files. These ROOT TTrees are then passed through a ROOT macro to produce

ROOT files with the histograms defined by the TH1F class, one ROOT histogram file per

tree file.

It should be noted that some of the parameter choices for the constructed his-

tograms were informed by analysis results. All analysis parameters were identical
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Time Spectra Parameters

Parameter Value

Energy threshold (Eth) 1700 MeV

Bin width (Tc) 149.2 ns

Artificial dead time (ADT) 5 ns

Shadow dead time (SDT) 5 ns

Shadow gap time (SGT) 10 ns

Pileup energy scaling (C) 1

g − 2 period (Ta) in Ratio Method 4.365 411 µs

Muon lifetime (τµ) in Ratio Method 64.44 µs

Table 5.1: Parameter values used in the construction of ωa time spectra.

between the distinct analyzed datasets, in order to simplify both the comparison and

combination of different dataset results. This section describes the justification for

the choice of histogram parameters. A table of the histogram parameters is given in

Table 5.1.

Energy and time histograms are made for each individual calorimeter. These are

summed together to form histograms of all hit times and energies. Figure 5·4 shows a

sample energy spectrum for the Endgame dataset. An energy threshold is applied to

the clusters before filling the time histograms. As described at the end of Section 2.1,

the optimal energy threshold is where the quantity NA2 reaches the maximum, at

least in the case of a five parameter fit2. By scanning over energy threshold and fitting

the resulting time spectra with Equation 2.13, the optimal energy threshold can be

determined. The optimal choice of energy threshold was determined to be 1700 MeV,

in accordance with the cluster reconstruction energy calibration; see Figure 5·5.

The optimal bin width for the time histograms was determined to be 149.2 ns, the

peak of the cyclotron period distribution determined from the fast rotation analysis

2Using the final fit function and looking at the error directly on the fitted ωa frequency, a slightly
better estimate can be found.
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Figure 5·4: Energy spectrum for hits with cluster times greater than
25 µs in all calorimeters on a linear scale. The peak at about 170 MeV
corresponds to lost muons laid on top of the low energy decay positron
part of the spectrum. Data are from the Endgame dataset.

of the data. As described in Section 2.6.2, this bin width combined with a time ran-

domization on each cluster over a range of ±Tc/2 = 149.2 ns/2 serves to eliminate the

fast rotation signal in the data3. This randomization is done using ROOT’s TRandom3

class. As will be described in Section 5.3.2, the cluster times are also randomized by

half the vertical waist period, ±TVW/2, from Equation 2.26. Putting the frequency

in terms of the field index n and the cyclotron frequency fc, the VW period is given

by

TVW =
1

fVW
=

1

(1− 2
√
n) · fc

. (5.1)

This randomization is done in order to remove the effects of the VW in the data4.

The default random seed for each histogram ROOT file is the hash of the unique input

3An alternative approach is to randomize all times in a single fill by half the cyclotron period as
opposed to each individual pulse.

4Even though the VW frequency was found to be changing over the course of the fill, the change
is small and the VW decays fast enough such that this constant time randomization was found to
remove all residual traces of the VW in the data.
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Figure 5·5: The optimal energy threshold can be determined from the
NA2 quantity as described in Section 2.1 from five parameter fits to
the data (bottom-left) or from the calculated error with the final fit
function (bottom-right). Fitted N and A parameters are also shown
(top) which satisfy Equations 2.14 and 2.15. The maximum NA2 and
minimum σR are determined using seven parameter polynomial fits to
the respective quantities. The optimal threshold varies slightly per
calorimeter and per dataset. Since the region of the minimum is rela-
tively flat, a single energy threshold of 1700 MeV was chosen. Data are
from the 9d dataset.
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file name using C++’s standard hash class. Other random seeds can be chosen in

order to verify the consistency of fit results. Lastly, histograms are defined with a

time range of 0–699.8972 µs (the integer multiple of the bin width closest to 700 µs),

corresponding to 4691 bins.

5.2.1 Pileup subtraction

As described in Section 3.2, there will be a certain amount of pileup in the detectors.

Pileup distorts the measured energy and time spectra in a time-dependent way which

is dangerous for the ωa measurement. For the time histogram of clusters above energy

threshold, the number of counts will be wrong for cases where two below-threshold

positrons are registered as a single cluster above threshold, and where two above-

threshold positrons are registered as a single cluster. In the former, an extra count

is added into the histogram, and in the latter a count is missed. The case where two

lower energy positrons are registered as a single, higher energy cluster will have a

different g − 2 phase than an actual real single positron cluster at the same energy.

This is because the lower energy positrons on average originate from muons which

have traveled further around the ring, due to acceptance effects. These muons which

have traveled further around the ring have spent more time in the magnetic field, and

thus their spins have precessed more; see Figure 5·6. Clusters which originate from

pileup events therefore have a different g − 2 phase than non-pileup events.

If pileup was a constant effect in time, then the phase of the time histogram

would be shifted by some constant amount, and the ωa frequency extracted would be

unaffected. However, the rate of pileup in the detectors changes over the time of a fill,

as muons decay. The rate of pileup varies with the square of the instantaneous rate

of positrons striking the calorimeters; double pileup events, which consist of events

where two hits are registered as a single cluster, have a lifetime approximately half



119

Figure 5·6: Pileup example, where two low energy positrons are regis-
tered as a single high energy positron. The black arrows indicate the
(exaggerated) direction of the muon spins at the time of decay. Because
of acceptance effects the lower energy decay positrons typically come
from muons which have traveled further around the ring, and thus the
muon spins have precessed more in the magnetic field, leading to a
different measured g − 2 phase for pileup events.

that of single hit events, and similarly for higher orders of the pileup effect5. Because

the rate of hits in the detectors oscillates at the g − 2 frequency, pileup will increase

and decrease accordingly leading to oscillations in the pileup time spectra at ωa and

2ωa. This time-dependent distortion means that the pileup effect needs to be included

in the fit function or subtracted out of the data in order to extract the correct ωa

frequency. The former is challenging due to the non-linear nature of the dead time of

the detectors, and would include another phase in the argument of the cosine term in

the fit function, thus worsening the statistical precision of the extracted ωa frequency.

All analyzers thus construct an approximate pileup spectrum and subtract it from

the data before fitting.

There are various methods to construct the pileup spectra. The method used in

this analysis is called the ‘asymmetric shadow method’, used successfully in E821 [107].

This method statistically constructs an approximation of the pileup spectrum from

the data by assuming that the probability of observing a pileup pulse, or doublet,

is the same as the probability that two individual pulses (singlets) will be offset by

some small amount of time, O(10 ns). The method looks in time windows after trig-

5The true pileup spectrum is technically the convolution of the single hit time spectrum with
itself, including effects from the non-linear dead time of the detectors.
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Figure 5·7: The shadow pileup method looks for shadow clusters within
a time window SDT, a small gap time away (SGT) from trigger clusters.
If a shadow cluster is found, an artificial doublet is formed and included
in the pileup spectra if it exceeds the chosen energy threshold.

ger pulses to see if a ‘shadow’ pulse exists, and creates a ‘shadow doublet’ if so; see

Figure 5·7.

The pileup spectrum P is then the sum of all shadow doublets minus the singlets

used in their construction, P = D − S. The width of the time window, and the time

offset from the trigger pulse to the window, are called the shadow dead time (SDT)

and shadow gap time (SGT) respectively. The times and energies of the constructed

pileup doublets are taken as

Edoublet = C · (E1 + E2), (5.2)

tdoublet =
t1 · E1 + (t2 − SGT ) · E2

E1 + E2

, (5.3)

where the energy of the doublet is the sum of the two singlet pulses E1,2 times some

calibration constant C, with a default value of 1, and the time of the doublet is the

energy-weighted time of the two singlets t1,2. The procedure for constructing the

pileup spectra is as follows:
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• Put each hit into a vector corresponding to a specific fill and a specific calorime-

ter

• Time order the hits

• Loop through the hits; for each hit look within a window of width SDT a time

SGT later to see if a shadow pulse exists

• If a shadow pulse exists, construct a shadow doublet with an energy and time

as defined in Equations 5.2 and 5.3

• Randomize tdoublet over the range ±Tc/2 (to remove fast rotation as before,

Section 2.6.2)

• Per calorimeter, fill pileup energy and time spectra as P = D − S, where D is

the sum of doublets with positive weight in the histograms, and S is the sum

of all singlets used in the construction of the doublets, with negative weight.

When filling the time spectra, set the times of the singlets to tdoublet, and only

include those doublets and singlets above the energy threshold

In this way pileup energy and time spectra are constructed for each calorimeter, which

can then be subtracted from the calorimeter cluster energy and time histograms.

When combining the calorimeter data, the individual pileup histograms are added

together before subtracting them from the calorimeter sum histograms.

The true dead time of the detectors depends on the energies and spatial separation

of the incoming hits. In order to produce estimates of the pileup spectra which best

match the data, an artificial dead time (ADT) is applied to the data before time

randomization. While this slightly increases pileup, by applying an artificial dead

time and matching the shadow window time such that SDT = ADT, the pileup

estimation is improved and the overall systematic error is reduced. The construction
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Figure 5·8: Plotted is the constructed pileup time spectrum on a log
scale. Oscillations at ωa can be seen by eye. The histogram is fit to a
simple two parameter exponential to get an idea of the lifetime of the
pileup, calculated here as 31.95 µs, which as expected is close to half of
the muon lifetime at about 64.44 µs. Data are from the 60h dataset.

of the artificial pileup is handled in the same way as the construction of the shadow

pileup, with SGT set to 0 ns. The constructed artificial doublets replace the singlets

in the data. The value for the ADT and SDT is set at 5 ns, the time threshold at

which pileup is 100% resolved.

The value of the SGT is simply set to twice the SDT, in order to push the shadow

window out to times well beyond the dead time of any pileup events, but not so

far that the probability of measuring a hit has appreciably changed. The value of

the doublet energy scaling factor C is set to 1, which is a fine approximation as the

spatial separation in the reconstruction was turned off6. The values for each pileup

parameter were shown previously in Table 5.1.

The pileup time spectrum for those pileup pulses above the 1700 MeV energy

threshold is shown in Figure 5·8. The pileup energy spectrum and the cluster energy

6With the spatial separation turned off, ‘pileup’ events can occur in crystals that are easily
separated by eye. While this increases the level of pileup seen in the data, the pileup approximation
method also does not consider the spatial separation, and thus handles the level of pileup accordingly.
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Figure 5·9: Cluster energies in black are plotted vs pileup energies in
red, for all calorimeters added together, on a log scale. At energies
below about 2.4 GeV the pileup energy spectrum goes negative. In this
plot the absolute value of the pileup energies is plotted, and a spike at
about 2.4 GeV can be seen as a consequence of this. The shapes do not
match perfectly for the constructed pileup spectra, which can be seen
at high energies. Data are from the 60h dataset.

spectrum are shown in Figure 5·9. In general, the two lobes starting at approximately

3 GeV and 6 GeV consist of double and triple pileup events respectively7. It can be

seen that the shadow method of pileup construction produces a pileup energy spectra

which is a good approximation of the cluster energies above the end point of a single

decay positron, for cases of double and even triple pileup. The shape difference arises

from two factors. First, the shadow method used in this analysis only constructs

doublets, and does not consider cases of triple or higher orders of pileup. Second, the

real pileup in the data contaminates the construction of the shadow pileup spectra,

such that a shadow doublet can be constructed from real pileup pulses. While this

alleviates the triplet problem slightly, it means that the doublet pileup spectrum is

slightly wrong.

7All orders of pileup fill out the whole energy range, but certain regions consist of mostly one
order of pileup or another.
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Figure 5·10: Cluster energies divided by pileup energies. A region from
3500–4500 MeV is fit to a straight line, where the doublets dominate
the energy distribution. Data are from the 9d dataset.

In order to produce a slightly better estimate of the pileup, a multiplier can be

applied to the pileup energy and time spectra. By taking the ratio of cluster energies

over pileup energies and fitting the region where the energies are dominated by real

pileup doublets, a correction factor of approximately 3-4% is found, as shown in

Figure 5·10. The default multipliers for the Run 1 datasets are 1.03210, 1.03413,

1.03387, and 1.03819 for the 60h, HighKick, 9d, and Endgame datasets respectively.

Similarly, the cluster time spectra can be examined for cluster energies over 3500 MeV,

where the clusters consist purely of pileup pulses. By taking the ratio of the pileup

corrected times over all times, the level of residual pileup can be determined. Just as

in the ratio of the energies, an approximate 3-4% factor is found. When applying this

multiplier, the cluster times above 3.5 GeV are eliminated as shown in Figure 5·11.

As will be shown in Section 5.5.1, the scale of this multiplier is well within 1σ of the

pileup multiplier error. The corrected energy spectra (cluster energies minus pileup

energies) after the application of this multiplier for the 60h dataset can be seen in

Figure 5·12. There is a small residual shape mismatch in the energy spectrum as the

corrected energy spectrum does not lie exactly along 0 for energies greater than the

endpoint energy of 3.094 GeV plus the energy response of the detectors.
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Figure 5·11: Cluster times and pileup corrected times for counts above 3.5 GeV (left) and their ratio (right).
The top two plots are used to determine the approximate level of residual pileup in the data, which is
approximately 3%. The bottom two plots show the application of that factor and the resulting removal of
the remaining pileup. Data are from the 9d dataset.
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(a) Log scale. (b) Linear scale.

Figure 5·12: Plots for the pre-corrected and corrected energy spectra
are shown, all calorimeters added together. Because the triplets and
contamination are not accounted for, the corrected energy spectrum
does not lie exactly along zero above the energy response of the detec-
tors. Data are from the 60h dataset.

It has been determined that regardless of any residual shape mismatch in the

cluster times below 3.5 GeV (implied to be small due to the lack of such a shape

mismatch above 3.5 GeV), the systematic error on the extracted ωa frequency due

to the pileup correction procedure is within the target uncertainty for the level of

statistics in the Run 1 dataset; see Section 5.5.1. For analyses after Run 1 where

the error budget is reduced, it may be necessary to improve the shadow method to

account for triplets and the contamination. Finally, since the pileup is statistically

constructed and then subtracted from the data, the errors on the final time histogram

are no longer pure Poissonian. The proper calculation of the errors is detailed in

Appendix C.

5.2.2 Ratio Method

In this analysis, ωa is extracted with the “Ratio Method,” or sometimes “R-Method.”

It is a technique that modifies the data in such a way that the exponential decay in

the time histogram is removed, and slowly varying and smooth effects are reduced.

It was used successfully in the E821 experiment [108, 109, 110]. A full derivation of
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the equations in the method is given in Appendix B; here is given a short summary.

Figure 5·13 provides a pictorial representation of how the method works.

The first step of the method is to randomly divide the data into four separate

datasets, one with the times of all clusters shifted up by half a g − 2 period, +Ta/2,

one with cluster times shifted down by half a g − 2 period, −Ta/2, and two un-

changed. Assuming the data are described by the five parameter function described

in Section 2.1 and shown in Figure 5·13a,

Nd(t, Eth) = N0(Eth) · e−t/γτµ · [1 + A(Eth) cos(ωat+ φ(Eth))], (5.4)

and that the data are equally split into four subsets, then the four new datasets are

taken to be8:

u+(t) =
1

4
N5(t+ T/2)

u−(t) =
1

4
N5(t− T/2)

v1(t) =
1

4
N5(t)

v2(t) =
1

4
N5(t)

(5.5)

In order to time shift the data as such, Ta needs to be known a priori to reasonable

precision. The value used is

Ta ≈ 4.365 411 µs, (5.6)

where it has been calculated from the E821 results as Ta = 1/fa, where fa is

0.229 073 5 MHz. This value for fa was determined by averaging column two of Table

XV of the E821 Final Report [36], which consists of the fa results for the different

run periods in that experiment. A systematic error on the choice of this parameter

8When handling the pileup in the ratio method, the pileup time spectra are split into four datasets
and time-shifted in the same way as the cluster hit times. Associated doublets and singlets are kept
together in the same individual dataset, and the four pileup datasets are subtracted from their
respective ratio datasets before forming the ratio.
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is calculated in Section 5.5.5 and is negligible for the precision known.

The datasets are then combined as

U(t) = u+(t) + u−(t),

V (t) = v1(t) + v2(t),
(5.7)

both of which are shown in Figure 5·13b. It is immediately apparent that the U(t)

data are shifted 180° out of phase from the V (t) data. The ratio is then defined as9

R(t) =
V (t)− U(t)

V (t) + U(t)
, (5.8)

where the numerator and denominator are plotted in Figures 5·13c and 5·13d respec-

tively. The numerator is an exponentially decaying cosine, while the denominator is

a simple exponential. Plugging the time-shifted five parameter function into the U(t)

and V (t) variables, the ratio spectrum can be derived as

R(t) ≈ A cos(ωat)− C, (5.9)

where

C =
1

16

(T
τ

)2

≈ 2.87 ∗ 10−4. (5.10)

As shown in Equation 5.9 and in Figure 5·13e, the exponential has been eliminated

and the number of parameters in the fit function is reduced from five to three.

In addition to the exponential being eliminated, any slow or smooth terms in the

data get time-shifted and divided as well, such that the amplitude of said effects are

reduced. For faster effects, the degree of cancellation of the effect is dependent on the

frequency. Effects at frequencies which are an odd multiple of ωa are preserved while

9The ratio can also be defined with U(t) − V (t) in the numerator. However, in that case the
phase of the ratio spectrum is shifted 180° from the original N5(t) spectrum.
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(a) The five parameter function, defined
in Equation 5.4, describes the incoming
data to first order.

(b) U(t) and V (t) functions describe
the time-shifted and un-shifted ratio
datasets.

(c) The numerator function in the formed
ratio, V (t)−U(t), is an exponentially de-
caying cosine.

(d) The denominator function in the
formed ratio, V (t) + U(t), is a decaying
exponential.

(e) The ratio function describes the data
after it has been transformed according
to the text. To first order it is a simple
cosine.

Figure 5·13: Functions describing the formation of the ratio data.
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effects at an even multiple of ωa are completely canceled out. An example is shown

in Figure 5·14. While this amplitude reduction makes fitting the data easier in some

cases, it can also be a downside when certain effects still need to be included in the

fit function but are harder to do so due to their smaller signals.

Figure 5·14: Fitted amplitude for a VW effect as a function of frequency
in units of ωa in a Toy MC simulation. Fit results with a five parameter
function are shown in red and a three parameter ratio function are
shown in black. The input amplitude is 0.05. The fall off of red points
is due to the high frequencies relative to the bin widths leading to an
underestimate of the amplitude; this is unimportant and performing an
integral fit removes this trend. As shown, the amplitude of the effect
in the ratio fit goes to zero for frequencies which are an even multiple
of ωa.

In order to eliminate the constant C at the end of Equation 5.9, a different weight-

ing scheme is used in this analysis as described in Reference [53]:

u+(t) =
eT/2τ

2 + eT/2τ + e−T/2τ
N5(t+ T/2)

u−(t) =
e−T/2τ

2 + eT/2τ + e−T/2τ
N5(t− T/2)

v1(t) =
1

2 + eT/2τ + e−T/2τ
N5(t)

v2(t) =
1

2 + eT/2τ + e−T/2τ
N5(t)

(5.11)



131

Here τ = τµ, where τµ is the time-dilated muon lifetime. The factors out front are

each approximately 1/4 and account for the effect of muon decay over a time period

of Ta/2. Similar to Ta, the muon lifetime must be known a priori. Its value is taken

as 64.44 µs, determined from fits to the data. A systematic study regarding this

parameter is described in Section 5.5.5. The ratio spectrum is then almost exactly

described by just the cosine term,

R(t) ≈ A cos(ωat), (5.12)

in the absence of other effects in the data.

5.3 Fitting the data

The basic five parameter function used to the fit is10

f(t) = N0 · e−t/τ · (1 +A · cos(ωat+ φ)), (5.13)

where the fit parameter for ωa is recast in terms of a ppm level shift R on a reference

frequency,

ωa = 2π · 0.2291 MHz · (1 +R× 10−6). (5.14)

This reference frequency of 0.2291 MHz is the same reference frequency that was used

in E821, and R is blinded at the hardware and software levels [111, 112]. Fitting the

data with Equation 5.13, however, is insufficient to properly describe the data. An

FFT of the residuals between fit and data is shown in Figure 5·15. There are peaks

in the FFT at beam dynamics frequencies corresponding to the CBO, VW, and some

beat frequencies with ωa. In order to properly account for these effects, additional

terms need to be added to the fit function.

10In the current section the actual fit parameters are in bold.
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Figure 5·15: FFT of five parameter fit residuals from the 60h dataset
with no time randomization applied. Peaks corresponding to beam dy-
namics frequencies of the CBO and VW as well as some beat frequencies
with ωa are readily apparent. A rise at low frequencies corresponds to
the effects of the lost muons in the data. The VW peak diminishes with
application of the cyclotron period time randomization and disappears
entirely with the VW period time randomization.

Equation 5.13 can be expanded to

f(t) = Λ(t) · V (t) ·Ncbo(t) ·N2cbo(t) ·N0 · e−t/τ

· (1 + Acbo(t) · cos(ωat+ φcbo(t))),
(5.15)

where various additional terms have been added in order to account for effects in the

data. These terms are described in the following sections. Fitting the data with this

function, referred to as the “Threshold Method” or just “T-Method,” while not the

subject of this dissertation, was done in this analysis as a diagnostic and informative

tool for the Ratio Method analysis.

The ratio time spectrum is fit with a function constructed from its definition in
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Equations 5.7 and 5.8, as opposed to an expansion of the three parameter function in

Equation 5.12. Including the additional effects previously mentioned, the fit function

becomes

R(t) =
2f(t)− f+(t)− f−(t)

2f(t) + f+(t) + f−(t)
, (5.16)

f±(t) = f(t± Ta/2), (5.17)

f(t) = Λ(t) · V (t) ·Ncbo(t) ·N2cbo(t) · (1 + Acbo(t) · cos(ωat+ φcbo(t))). (5.18)

The f(t) given here differs from that in Equation 5.15 in that theN0 ·e−t/τ terms have

divided out. Using this function, as opposed to an expansion of the three parameter

ratio function, eliminates any approximations made in that three parameter function

derivation. Any fit parameters should be consistent in value between the T-Method

and Ratio Method results, barring adjustments due to the application of the Ratio

Method.

Because the Ratio Method reduces the sensitivity of the ωa determination to

various effects in the data, peaks that appear in the FFT of the five parameter

fit residuals do not necessarily appear in the FFT of the three parameter ratio fit

residuals; see Figure 5·16. Indeed unless one looks at the FFT over the early part of

the fit (eg. first 30 µs) or at the shape of the Ratio Method denominator, one might

not know the effects even exist in the data at all, barring occasionally poor χ2’s.

Nevertheless, those effects typically still need to be included in the fit function for a

proper evaluation of ωa. Because of the reduction in sensitivity in the ratio fits, there

are some parameters which the Ratio Method has trouble fitting by itself. Using the

results from a T-Method fit to the data can then be a useful tool for constraining

those specific parameters.
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(a) FFT of fit residuals over all times within the fit range.
There is no evidence of residual oscillations.

(b) FFT of fit residuals over the first 30 µs. The CBO peak
can be seen above the noise, though the corresponding beat
frequencies do not appear.

Figure 5·16: FFT of three parameter ratio fit residuals for the 60h
dataset. Dashed blue lines indicate various beam dynamics frequencies
and their beat frequencies with ωa.
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5.3.1 CBO terms

As described in Section 2.6.1, the CBO effect modulates the ωa oscillation. This

shows up as a modification on the five parameter function parameters {N0, A, φ} →

{N0 ·Ncbo(t), Acbo(t), φcbo(t)} where these terms are given to first order as

Ncbo(t) = (1 +Acbo−N · e−t/τcbo · cos(ωcbo(t) · t+ φcbo−N )), (5.19)

Acbo(t) = A · (1 +Acbo−A · e−t/τcbo · cos(ωcbo(t) · t+ φcbo−A)), (5.20)

φcbo(t) = φ0 +Acbo−φ · e−t/τcbo · cos(ωcbo(t) · t+ φcbo−φ). (5.21)

In Equation 5.19 theN0 term is left out since the ratio fit includes theNcbo(t) term but

notN0, and in Equation 5.21, φcbo(t) has an additive phase instead of a multiplicative

one since φ0 is not an amplitude and can be equal to zero. Each of the terms then

includes additional fit parameters in an extra amplitude and phase, as well as one

shared CBO lifetime and frequency. As described in Section 4.4, the default model

for the CBO modulation is assumed to be an exponentially decaying envelope, and

the CBO frequency, ωcbo(t), was time-dependent for Run 1. The function for the CBO

frequency shown in Figure 4·28 is taken in the fit function as

ωcbo(t) = ωcbo ·
(

1 +
Ae(−t/τA)

ω0t
+
Be(−t/τB)

ω0t

)
, (5.22)

where ωcbo is the free fit parameter, and the model parameters {ω0, A, τA, B, τB} are

fixed from the tracking analysis. These parameters for the various datasets and two

tracker stations are given in Table 5.2.

It should be noted that Equations 5.20 and 5.21 are not necessarily needed in

order to get good fits to the data, whereas Equation 5.19 always is. This is typically

dataset or random seed dependent. While some datasets had certain parameters with

large errors relative to their amplitudes, for this analysis all terms were included in
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CBO Frequency Model Parameters

Dataset Tracker Station ω0 (rad/µs) A (rad) τA (µs) B (rad) τB (µs)

60h
12 2.3389 2.9 81.8 5.12 7.7

18 2.3387 2.82 81.1 5.08 8.2

HighKick
12 2.6145 3.27 52.8 6.96 6.6

18 2.6137 3.23 46.2 6.61 6.8

9d
12 2.6106 2.86 72.8 5.50 8.5

18 2.6110 2.89 79.2 5.44 9.2

Endgame
12 2.3377 7.43 95.1 4.71 9.0

18 2.3379 7.44 95.2 4.90 9.2

Table 5.2: Fixed parameters in the CBO frequency model [113, 114].
The larger values of the A and τA parameters for the Endgame dataset
are a consequence of the degradation of the quadrupole resistors over
the course of Run 1.

all fits. Fits converged properly with appropriate tuning of the starting parameters,

justifying their inclusion. When considering higher order CBO modifications to the

fit function, the only term that was found to be necessary was the second order 2ωcbo

modulation on the N0 term, N0 ·Ncbo(t)→ N0 ·Ncbo(t) ·N2cbo(t), where

N2cbo(t) = (1 +A2cbo−N · e−2t/τcbo · cos(2ωcbo(t) · t+ φ2cbo−N )). (5.23)

The form is assumed to be the same as the first order CBO terms, except the lifetime

of the effect is half the CBO lifetime, τcbo/2. This is due to the fact that N2cbo(t)

comes from the width of the oscillating beam, as opposed to the oscillating mean.

Indeed as will be shown in Section 5.4.1, the inclusion of this term is necessary to get

good fits to the per calorimeter data, where the CBO effect is stronger than in the

sum of the data from all calorimeters.

Systematic studies relating to the choice of CBO envelope and choice of fixed

parameters in the CBO frequency model are explored in Section 5.5.3. For runs after

Run 1, it may be necessary to include the higher order modifications to the Acbo(t)
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Figure 5·17: Fitted VW amplitude as a function of the choice of offset
from Ta in units of thousands of ppm for the 60h dataset. The default
time-shift lies at 0 on this plot, right on the resonance where the VW
amplitude blows up. Only by time-shifting by a drastically different
amount (which negatively affects R), can the resonance be avoided.

and φcbo(t) terms.

5.3.2 VW term

As mentioned in Section 5.2, the VW effect is time-randomized out of the data, such

that

V (t) = 1. (5.24)

This is done due to complications observed in the application of the Ratio Method. In

the 60h and Endgame datasets, the VW frequency was found to be nearly 10 ·ωa, on a

potential resonance. To first order this even multiple frequency implies the VW effect

should completely cancel out in the Ratio Method, as shown in Figure 5·14. However,

in combination with the fast rotation effect, this leads to a modified envelope for the

VW signal in the Ratio Method data and inflated VW amplitudes in the fits [115].

See Figures 5·17 and 5·18.

For the 9d dataset, which has a VW frequency that’s nearly 9 ·ωa and avoids said

resonance (and by extension the HighKick), the Ratio Method flattened out the VW
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(a) Without the FR effect included.

(b) With the FR effect included.

Figure 5·18: Ratio data with (top) and without (bottom) the FR effect
from a Toy MC simulation, with a VW effect with a frequency ωVW =
10 · ωa. The ωa wiggle itself has been removed, and the lifetime of the
VW was set to a large number. The top plot shows ratio data which
is consistent with 0 after all effects have been removed and the VW
has divided out. The bottom plot shows ratio data inconsistent with
0, with oscillations at the VW frequency, and an interesting beating
structure. Note the different scales.
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Change in Asymmetry due to VW Randomization

Dataset A no randomization A with randomization ∆A ∆σR (ppb)

60h 0.3697 0.3637 −0.0060 22.7

HighKick 0.3707 0.3632 −0.0075 29.3

9d 0.3714 0.3639 −0.0075 18.1

Endgame 0.3747 0.3686 −0.0061 10.7

Table 5.3: Asymmetry values in the the Run 1 datasets with and with-
out the VW randomization, and the corresponding change in the sta-
tistical error on R. An energy cut of 1700 MeV was applied to the
data.

amplitudes as a function of calorimeter number. This lead to a systematically smaller

VW amplitude in the calorimeter sum fit compared to that in a T-Method fit. The

simplest means to remove both of these problems was to randomize out the VW effect

entirely. Table 5.3 gives the change in asymmetry and corresponding change in the

statistical error on R due to this additional time randomization for the Run 1 datasets.

The additional randomization increased the statistical error on R by a small amount,

and changed the mean value of R for many random seed fits to the data slightly11. In

the analysis of future runs, it may be necessary to include the proper VW envelope

in the fits using a functional form of the FR instead of randomizing out the effect.

The function form for the VW as it is used in the T-Method fits is taken identically

to the CBO terms,

V (t) = 1 +AVW · e−t/τV W cos(ωVW (t) · t+ φVW ), (5.25)

with an exponentially decaying envelope, and additional amplitude and phase pa-

rameters. The VW frequency, given in Equation 2.26, is dependent on the cyclotron

frequency and vertical betatron frequency. Using Equations 2.20 and 2.25, the VW

11This new mean value is statistically consistent with the results without the additional random-
ization [115].
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dependence on the CBO frequency is determined as

ωVW (t) = 2π(fc − 2fyBO),

= 2π
(
fc − 2fcbo(t)

√
2fc/fcbo(t)− 1

)
,

(5.26)

where fcbo(t) = ωcbo(t)/2π is determined in the tracking analysis as given by Equa-

tion 5.22. While Equation 5.26 is the theoretical frequency for the VW effect in the

continuous quadrupole approximation, it was found in the tracking analysis that in-

cluding an adjustment factor on the CBO frequency fcbo → κfcbo resulted in better

agreement with the directly measured VW frequency [103, 116]. In the fit function,

the VW frequency is then taken as

ωVW (t) = 2π
(
fc − 2 · κVW · fcbo(t)

√
2fc/(κVW · fcbo(t))− 1

)
, (5.27)

where now the VW frequency fit parameter is κVW . In fits to the data, this adjust-

ment factor ends up being on the order of about a percent.

5.3.3 Lost muons

Muons lost from the storage ring during the frequency analysis portion of each fill

will distort the observed decay positron spectrum. These hits show up as a rise at

low frequencies in the FFT of the fit residuals due to the slow nature of the effect;

see Figure 5·15. These muon losses typically originate from those muons with large

betatron amplitudes which hit material near the edge of the storage ring, or those

muons which experience local field perturbations one too many times. In both cases

the muons will lose energy and spiral inward out of the ring, some of which will then

pass through multiple calorimeters. Because lost muons are MIPs, they are relatively

easily identified by their small energy deposition in hit calorimeters, approximately

170 MeV. These lost muons typically have a flight time between adjacent calorimeters
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Figure 5·19: Time-of-flight ∆t (left) and energy deposition (right) dis-
tributions for lost muons passing through adjacent calorimeters, where
counts have been included from hits in both calorimeters. Typical
flight times and energy depositions are 6.25 ns and 170 MeV respec-
tively. Data are from the Endgame dataset.

of ∆t12 = 6.25 ns [106, 117]. The ∆t and energy deposition distributions are shown

in Figure 5·19. By looking for coincidences between three adjacent calorimeters, or

triples, and then applying cuts and subtracting backgrounds, a pure spectrum of lost

muons can be constructed12. This lost muon spectrum L(t) can then be implemented

into the fit function in order to account for the positrons that would have been

observed later in the fill in the absence of losses.

The cuts used for the lost muon selection are given in Table 5.4. Triple coincidences

are only included where every cluster consists of three or fewer crystals hit, with 80%

of the energy deposited in one crystal, indicative of MIP events. ∆t and energy

deposition ranges are taken as 5 ns ≤ ∆t12,23 ≤ 7.5 ns and 100 MeV ≤ E1,2,3 ≤

250 MeV respectively, where the ranges come from inspection of Figure 5·19. The

∆t12 distribution as a function of time in-fill is shown in Figure 5·20. By examining

this distribution in the range 2 ns ≤ ∆t12 ≤ 4 ns, and averaging the contained counts,

an approximation for the accidental background can be determined and subtracted

from the triples spectrum. The accidental background typically comes from either

12Using triples rather than doubles helps reduce the accidental background while keeping enough
statistics.
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double coincidences and a real positron hit, or a particle shower induced by an incident

positron which hits an adjacent calorimeter.

Lost Muon Cuts

Parameter Cut

Cluster size ≤ 3 crystals

Cluster energy fraction ≥ 0.8 in main crystal

Time of flight between adjacent calorimeters 5 ns ≤ ∆t12,23 ≤ 7.5 ns

Energy deposition 100 MeV ≤ E1,2,3 ≤ 250 MeV

Time of flight between separated calorimeters ∆t13 ≤ 14.4 ns

Table 5.4: Lost muon selection cuts. In a triple coincidence the sub-
scripts 1, 2, and 3 correspond to the three calorimeters hit clockwise
around the ring.

Also shown in Figure 5·20 are two bands of stable beam contaminants correspond-

ing to stored deuterons and protons. These particles have different time-of-flights

between calorimeters due to their larger masses. By looking at the ∆t13 distribution

for times greater than 300 µs, so that most muons have already decayed, the deuteron

population is easily isolated; see Figure 5·21. While the deuteron population is mostly

removed by the ∆t12 cut, an additional cut of ∆t13 ≤ 14.4 ns helps remove any re-

maining deuteron contamination. The proton population, due to its similarity to the

real lost muon population, is harder to remove. The simplest solution is to simply

cut on the negative side of the ∆t12 or ∆t13 distributions. See Section 5.5.4 for the

results using this additional cut. It was found that the proton contamination makes

almost no difference to the fitted value of R. The default choice then is to use the pre-

viously specified cut ranges which increase the amount of statistics in the lost muons

distribution, which in some cases improves fit convergence. A study of the exact rate

of these beam contaminants is included in Reference [118].

The last significant background is the quadruples spectrum. Due to how the triple

coincidences are constructed, real quadruples will be counted as two separate triples.
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Figure 5·20: ∆t12 distribution as a function of time in-fill before any
cuts. Note the log color scale. Lost muons have a ∆t12 distribution
centered at 6.25 ns. The accidental background can be seen as counts
out at ∆t’s far from the center of the distribution. Color striations
in the core of the distribution correspond to CBO periods. There are
two bands of hits that do not fall off as severely with time as the lost
muons do. The band contained mostly between 7 and 8 ns corresponds
to deuterons, while the band contained mostly between 6 and 7 ns cor-
responds to protons. Data are from the Endgame dataset.
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Figure 5·21: ∆t13 distribution as a function of energy for times greater
than 300 µs. The lost muons are centered at 170 MeV and ∆t13 ≈
12.5 ns, while the deuterons are at ∆t13 ≥ 14.4 ns. While the deuterons
have a preferentially larger energy deposition, they can be seen to ex-
tend to low energies, making cutting on energy unrealistic. Though
not easily separated by eye, the stored protons are contained within
the upper right portion of the lost muons. Data are from the Endgame
dataset.

While the quadruples spectrum produces a purer sample of lost muons, the statistics

are much reduced, and similarly for higher order coincidences. The quadruples spec-

trum is constructed in the same was as the triples with the same cut ranges. The

quadruple background is removed by subtracting off both triples which originated

from quadruple coincidences.

Figure 5·22 shows the final ∆t12 distribution as a function of time in-fill for selected

lost muons with cuts. The final triple losses spectrum L(t) is shown in Figure 5·23,

in comparison to both the quadruples and accidentals spectra. Once the lost muon

spectrum has been constructed, it needs to be included in the fit function to account

for the changing number of hits over the course of the fill. The true lost muon rate
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Figure 5·22: Final ∆t12 distribution for selected lost muons as a func-
tion of time in-fill. Data are from the Endgame dataset.

Figure 5·23: Lost muon triples spectrum L(t) as a function of time
in-fill, after all cuts and background subtractions. Also shown are the
quadruples and accidental background spectra. The shape of the triples
and quadruples spectra are nearly the same. The shape of the triples
spectrum comes from beam dynamics (CBO) and lost muon acceptance
effects. Data are from the Endgame dataset.
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will be given by L(t)/ε, where ε is the loss detection efficiency. The change in the

number of muons within the storage ring can be written as

dN = −N
τ
dt− L(t)

ε
dt, (5.28)

with the solution

N(t) = N0 · e−t/τ · (1−
1

εN0

t∫
t0

L(t′)e(t′/τ)dt′). (5.29)

The parameter τ is the same muon lifetime as in the T-Method fit function, except

here it is set at the default value of 64.44 µs13. The value for t0 can be taken as any

time at or before the start of the fitting range, as it simply changes the scale of N0.

The modification Λ(t) as listed in Equation 5.15 is then

Λ(t) = 1− κloss

t∫
t0

L(t′)e(t′/τ)dt′ (5.30)

where κloss = 1/εN0 is the fit parameter14.

It should be noted that the Ratio Method is largely insensitive to the slow lost

muons effect, which divides out. No rise at low frequencies appears in the FFT of the

ratio fit residuals, Figure 5·16, and when letting κloss float, the fit does not converge.

However, R changes on the order of tens of ppb when the lost muon term is included

with κloss fixed to the value determined from a T-Method fit, so by default it is

included. See Section 5.5.4 for more discussion on this.

13The fitted ωa frequency is largely insensitive to this parameter, and especially so in the Ratio
Method fits, so this is acceptable. If necessary, the fitting procedure can be iterated.

14By construction κloss is a very small parameter, O(10−10). This factor is absorbed into the
parameter such that the fit parameter is O(1).
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5.3.4 Fit procedures and parameters

χ2 fits are performed on the pileup corrected positron time spectra and ratio data in

ROOT using the standard TH1F and TGraph fit methods with a strategy level of two.

Fits are performed in stages where groups of associated parameters are freed, fit, and

then fixed before fitting the next set of parameters. In the final fit all parameters

are free. Each of the four Run 1 precession frequency analysis datasets are fit with

14 parameters. 13 parameters are free in fits to the 60h, 9d, and Endgame datasets,

with the κloss parameter determined and fixed from a T-Method fit. In the HighKick

dataset, τcbo is also fixed from a T-Method fit, as the lifetime is relatively short and

the Ratio Method can’t successfully fit it, resulting in 12 free fit parameters. In the

T-Method fits there are two extra free fit parameters, those being the N0 and τ terms

which are divided out of the Ratio Method fits.

Fits to calorimeter sum spectra are done over the range 30.2–650 µs, corresponding

to 4155 bins15. The choice of fit start time was made to allow for the muon beam

to stabilize in the storage region after the scraping procedure. In addition, the start

time was chosen to lie directly on a g − 2 zero crossing, which from E821 experience

was shown to reduce some systematic errors.

The fit end time was set so that the random variations in bin contents were

comfortably Gaussian. For the same reason, individual calorimeter fits with less data

were performed out to 400 µs. Table 5.5 gives the various fit procedure parameters.

As a reminder, R is blinded at the hardware and software levels [111, 112]. The

software blinding string used for the 60h dataset was different than that used when

fitting the HighKick, 9d, and Endgame datasets, each of which used the same blinding

string. This was done in order to perform a software-level relative un-blinding exercise

between different analyzers with the 60h dataset in order to determine if there were

15The fit range is not defined on exact bin edges, and those bins where the fit begins and ends are
included in the fit.
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Fit Procedure Parameters

Parameter Value

Fit strategy level 2

Fit start time 30.2 µs

Fit end time (calorimeter sum) 650 µs

Fit end time (single calorimeters) 400 µs

Bins in fit (calorimeter sum) 4155

Number of free fit parameters (60h, 9d, Endgame) 13

Number of free fit parameters (HighKick) 12

Table 5.5: Various parameters used in the fit procedure.

SAM Dataset Names

Dataset Name

60h gm2pro daq full run1 60h 5039A goldList

HighKick gm2pro daq full run1 HighKick 5040A goldList

9d gm2pro daq full run1 9d 5039A goldList

Endgame gm2pro daq full run1 EndGame 5040A goldList

Table 5.6: The SAM dataset names of the Run 1 precession frequency
analysis datasets.

any obvious problems in the various analyses [119, 120]. Therefore in the following

results, R values between different datasets are comparable between the datasets

except for the 60h, barring any differences due to field conditions, which are not

discussed in this dissertation.

The names of the specific SAM (Sequential Access via Metadata) datasets that

were analyzed for this dissertation are given in Table 5.6. SAM is a data handling

system used at Fermilab to store and retrieve files along with associated metadata.

The specific DQC cuts, gain corrections, processed runs, production software versions,

etc. can all be recovered by examining the associated SAM metadata.
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5.4 Fit results

Figure 5·24 shows fits to the four Run 1 precession frequency analysis datasets for

single random seeds. Table 5.7 gives all fit parameters and their errors. In each

dataset case the χ2/NDF is acceptable as evidenced by the p-value included in the

table results. Fit pulls and the FFT of the fit residuals for the 60h dataset are

provided in Figure 5·25. As shown all structure has been eliminated within the fit

residuals implying that all effects in the data have properly been accounted for in

the fit function. The same checks were made for the HighKick, 9d, and Endgame

datasets and in each case no residual structure remained. Appendix D provides

the correlation matrices for the various datasets. The only fit parameter that is

significantly correlated with R is the g − 2 phase in all datasets. This increases the

confidence in the ωa extraction, as effects in the data which might potentially be mis-

modeled will only weakly correlate with the final fitted R value. The various different

CBO parameters are self-correlated to different degrees depending on the parameter

and the dataset that is being fit. Typically either the phases and frequencies are

correlated, or the lifetimes and amplitudes.

The g − 2 phases for the different datasets showed small differences, due primar-

ily to upstream beam adjustments before injection into the storage ring. Similarly,

slightly different asymmetries can be attributed to very small acceptance differences

in the stored beams. As described in Section 5.3.3, the value for κloss was determined

and fixed from a T-Method fit to the data. The values themselves don’t directly

correspond to the level of losses, as each dataset has it’s own loss function L(t).
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Figure 5·24: Single random seed fits to calorimeter summed data of
Run 1 precession frequency analysis datasets. Data are in black and
the fits are in red. The X-axis is in units of µs modulo 100 µs, with
successive portions of the data points and fit shifted downwards on the
plot. The fit range extends from 30.2–650 µs. Dataset names are given
in the upper left corners of the figures, alongside the χ2 per degree of
freedom and relative error on ωa.
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Ratio Method Fit Results

60h HighKick 9d Endgame

χ2/NDF 4242/4142 4190/4143 4162/4142 4116/4142

p-value 0.1356 0.3018 0.4104 0.6079

Parameter Value Error Value Error Value Error Value Error

A 0.3637 4.4× 10−5 0.3632 4.6× 10−5 0.3639 2.9× 10−5 0.3686 2.1× 10−5

R (ppm, blinded) −20.8479 1.3581 −17.5433 1.4112 −17.8214 0.9033 −17.5674 0.6393

φ 2.091 2.2× 10−4 2.081 2.3× 10−4 2.080 1.5× 10−4 2.076 1.1× 10−4

ωcbo (rad/µs) 2.338 1.4× 10−3 2.599 6.6× 10−3 2.615 5.6× 10−3 2.339 0.8× 10−3

τcbo (µs) 175.2 46.8 99.4 0 137.4 62.0 200.3 33.5

Acbo−N (×10−4) 43.1 5.0 42.8 9.9 39.3 9.7 32.3 2.0

φcbo−N −2.343 0.107 3.817 0.446 3.302 0.374 −0.710 0.062

A2cbo−N (×10−4) 1.9 1.3 4.9 4.5 2.2 2.7 1.2 0.5

φ2cbo−N 3.331 0.638 5.665 1.274 −4.936 1.127 0.322 0.448

Acbo−A (×10−4) 5.5 3.9 9.5 4.1 6.4 2.5 2.7 1.9

φcbo−A −0.271 0.737 −2.073 0.600 1.750 0.561 −2.825 0.686

Acbo−φ (×10−4) 8.0 4.2 5.7 4.4 8.8 3.1 1.9 1.9

φcbo−φ −1.183 0.533 1.227 0.920 4.313 0.415 −1.576 0.995

κloss 8.974 0 5.651 0 2.510 0 2.345 0

Table 5.7: Fit parameters for the four Run 1 precession frequency analysis datasets for a single random
seed. The bold row highlights the fitted R values and their respective errors. The 60h dataset has a
different blinding to the rest. The κloss parameter is fixed in each fit, with a corresponding error of 0, and
similarly for τcbo in the fit to the HighKick dataset.
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Figure 5·25: Ratio fit pulls (top-left), their projection onto the Y-axis (bottom-left), and the FFTs of
fit residuals (right) for a ratio fit (red) and five parameter fit (black) to the 60h dataset. Note the pull
projection has a Gaussian shape centered around zero with unit width. In the FFT blue dashed lines
are overlaid which correspond to the main beam dynamics peaks which appear in the data. There is no
obvious structure in the pulls and no remaining peaks above the noise in the ratio fit FFT.
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The CBO frequencies for the 60h and Endgame datasets with n values of 0.108

were found to be 2.338 and 2.339 rad/µs respectively, corresponding to approximately

0.37 MHz. For the HighKick and 9d datasets with n values of 0.120, the CBO fre-

quencies were found to be 2.559 and 2.615 rad/µs respectively, corresponding to ap-

proximately 0.415 MHz. These frequencies correspond to the expected frequencies as

described in Section 2.6, with some slight deviations due to statistics, bad resistors,

and the reduced sensitivity in the Ratio Method16. The CBO lifetimes between the

different datasets are relatively consistent, barring the HighKick dataset for which a

smaller CBO lifetime was measured, attributed to the changing behavior of the bad

resistors in that dataset. CBO lifetimes in the Ratio Method fits typically converge

to values with large errors, compared to in T-Method fits, due to the reduction in

sensitivity in the Ratio Method. In the HighKick dataset, the CBO lifetime did not

converge properly in the ratio fits, and was therefore fixed to that from a T-Method

fit. The main CBO amplitudes, Acbo−N , for the various datasets were on the order

of 0.3–0.4%, while the higher order CBO amplitudes were in general an order of

magnitude less. The strength of the various higher order CBO amplitudes fluctuated

among the different datasets. In some cases, the errors on the higher order CBO term

amplitudes were comparable to the amplitude itself. While this implies these terms

can be dropped from the fit function, all terms were included for analysis uniformity

among the different datasets.

The final statistical errors on R for the 60h, HighKick, 9d, and Endgame datasets

are 1.358, 1.411, 0.903, and 0.639 ppm respectively. The single seed R results for the

HighKick, 9d, and Endgame datasets, all of which used the same blinding string, are

all well within 1σ of each other. The average R value for fits to 50 different random

seeds are provided in Section 5.4.4.

16The VW frequencies, though time-randomized out in the analysis presented here, were found to
be approximately 2.30 and 2.04 MHz for the datasets with n = 0.108 and n = 0.120 respectively.
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Beyond looking at single fit residuals to evaluate the integrity of the fits, other

checks were made to verify consistency. In general these checks consisted of slicing

up the data in different ways and fitting the subsets. These tests and scans included

fitting individual calorimeters, modifying the fit start and end times, adjusting the

applied energy thresholds, and fitting individual beam bunches.

5.4.1 Individual calorimeter fits

Fits to all 24 time spectra from the individual calorimeters for each of the datasets

were performed with the same number of free fit parameters as used in the calorimeter

sum fits. Figure 5·26 shows the χ2/NDF’s for the calorimeter fits; as shown they

are evenly spread around 1. Figure 5·27 shows the fitted R values as a function of

calorimeter number. Straight line fits were performed to the R values, where in each

dataset case the fit returned a good χ2 and a fitted constant that was consistent with

the calorimeter sum fit R values. Examining the R values as a function of calorimeter

between datasets, particular calorimeter numbers do not tend to lie above or below

the fitted average in any systematic way. The spread in R values for each calorimeter

then can be said to be driven statistically, though it should be noted that with the

larger error bars on the individual calorimeter fits it is hard to tell if there are any

systematic shifts one way or another.

Figures 5·28 and 5·29 show calorimeter fit results for the other free parameters for

the Endgame dataset. The g−2 phases are distinct among the different calorimeters,

which can be attributed to different acceptances from the different levels of material

upstream. This is particularly noticeable in calorimeters 13 and 19 which sit behind

the tracker stations, and have correspondingly smaller phases. Any correlated effects

on R are not immediately observed, and might potentially be hidden behind the large

errors of the fit. Similarly, the different calorimeters have different fit asymmetries,

once again due to their different acceptances. The CBO parameters are in general
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Figure 5·26: χ2/NDF’s versus calorimeter number for the Run 1 pre-
cession frequency analysis datasets. Red dashed lines are placed at
χ2/NDF = 1 to aid the eye. No individual calorimeter fits are prefer-
entially low or high when comparing across datasets.

Figure 5·27: R versus calorimeter number for the Run 1 precession
frequency analysis datasets. The scale is the same on each of the plots.
A straight line fit was performed on the fitted values, with the fit result
shown in the upper right box as parameter p0 in units of ppm. The
different blinding in the 60h dataset is noticeable. The higher precision
fits to the 9d and Endgame datasets have correspondingly smaller error
bars.
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Figure 5·28: Endgame fit parameters versus calorimeter number. In
the g−2 phase φ (top-left) two points lie below the others, correspond-
ing to those calorimeters which sit behind tracker stations. The CBO
phase φcbo−N (bottom-right) runs from 0–2π around the ring. These
plots are typical of all datasets, with small variations in the final fitted
parameters.

consistent with some spread due to acceptance, with the phases running from 0–2π

around the ring as expected. The amplitudes of the CBO parameters are an order of

magnitude larger than in the calorimeter sum fits. Because the phases vary around the

ring, the CBO effect becomes reduced when adding up all the individual spectra from

the calorimeters. In fact, while it is not always necessary to include the higher order

CBO terms for good fits to the calorimeter sum data, there are many calorimeters

which need the higher order terms for good fits.
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Figure 5·29: Additional Endgame fit parameters versus calorimeter
number. The CBO phases φcbo−A and φcbo−φ run from 0–2π around
the ring, while φ2cbo−N runs around twice. These plots are typical of all
datasets, with small variations in the final fitted parameters.

5.4.2 Scans over fit start time, fit end time, and energy threshold

In order to determine if there are any deficiencies in the fit as a function of time, for

instance if the CBO was modeled incorrectly, fits are performed with varying fit start

and end times. If an effect is incorrectly modeled, the corresponding fit parameter

will wander away from the statistically allowed deviation, as the effect grows stronger

or weaker. Two examples of this are given in Figure 5·30. In the first case the CBO

frequency was mis-measured when using a fixed CBO frequency model as opposed

to a changing one, and in the second case the asymmetry was mis-measured when

pileup was not subtracted from the data. In general, doing a fit start scan is a very

useful tool in the precession frequency analysis beyond just verifying consistency of
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a fit parameter as a function of time, as it also provides hints as to what might be

wrong with how the data are being handled.

(a) The fit start scan for the fitted CBO
frequency when a constant frequency
model is included. The p-value of the
first ratio fit in this case is 0.191, indicat-
ing an acceptable fit. Only by perform-
ing a fit start scan or examining the fit
residuals closely is the deficiency in the
fit observed.

(b) The fit start scan for the fitted asym-
metry when the pileup is not subtracted
out. If the pileup is not properly ac-
counted for, then decay positrons with
lower asymmetries contaminate the ob-
served decay time spectrum leading to
a lower fitted asymmetry value. As the
pileup diminishes the fitted asymmetry
tends to its true value.

Figure 5·30: Examples of fit start scans when effects are improperly
accounted for before or during fitting. The parabolic bands indicate
the 1σ allowed deviation in the fit parameters due to the changing
statistics between the fits. Data are from the Endgame dataset.

The statistically allowed deviation between two sets of g − 2 data, where one is a

subset of the other, is given by [36]

σdiff =

√
σ2

2 − σ2
1(2

A1

A2

cos(φ1 − φ2)− 1), (5.31)

where the subscript 2 stands for the larger dataset while the subscript 1 stands for

the smaller sub-dataset. This statistically allowed deviation depends both on the size

of the datasets as well as their “analyzing powers,” which come from the asymmetries

and phases of the datasets. For fit start scans the analyzing powers are in general the
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same, such that the approximation

σdiff ≈
√
σ2

2 − σ2
1 (5.32)

can be made.

It should be noted that for fits with late fit start times, certain CBO parameters

start to become unstable as the CBO effect becomes diminished in the data17. For

instance, fits with start times at 100 µs are half a lifetime or more along the CBO

effect and convergence is difficult to achieve. The values of unstable parameters were

thus fixed to their starting fit values. These parameters typically included the CBO

lifetime and most of the higher order CBO amplitudes and phases, though in some

cases they could still be included out to late fit start times depending on the dataset.

Fit start time scans were performed from the default value of 30.2 µs up to 100.2 µs

in steps of 1 µs for a total of 71 separate fits. In order to assist fit convergence, the

final fit parameters from one fit were passed on as the starting parameters of the next.

The χ2/NDF’s and fitted R values as a function of fit start time for the four Run 1

precession frequency analysis datasets are shown in Figure 5·31. The errors on the

individual points in the χ2 plots are given as

σχ2/NDF =
√

2/NDF, (5.33)

where NDF changes as the fit start time is pushed later in time and bins are left out of

the fit. The black parabolic bands indicate the 1σ statistically allowed deviation given

by Equation 5.32. As shown the goodness of fit for the four datasets are all consistent

with fit start time, only wandering in and near the bands without diverging.

17The same applies to the VW effect when it is not time-randomized out of the data.
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Figure 5·31: χ2/NDF (top) and R (bottom) versus fit start time for the Run 1 precession frequency analysis
datasets. Plots in the top and bottom rows are on the same scale respectively. The black parabolic bands
represent the 1σ statistically allowed deviation. The χ2 values are all consistent with 1, for which a dashed
red line has been overlaid. In all cases the fit points lie in and around the 1σ statistical bands.
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R is similarly consistent as a function of fit start time. The only dataset for which

R goes noticeably outside the bands is the HighKick. Since the deviation is less than

2σ and it trends back towards the bands however, it does not appear particularly

indicative of unaccounted effects in the data. In general, R is very insensitive to

changing fit start time, most likely due to the small correlations with other fit pa-

rameters. Figure 5·32 shows the fit start scan results for the other free parameters

for the Endgame dataset. In all cases the fit parameters only wander in and near the

bands, showing that all effects in the ratio data are properly accounted for.

Figure 5·32: Fit start scans for free parameters in the Endgame dataset.
Those parameters not shown here are fixed to their starting values over
the course of the scan, as at late times they can be unstable as the
CBO effects die away.

For fit end scans, all of the same methods and conclusions apply. In general fit

end scans are both less dangerous and more stable than fit start scans, as the amount

of data being removed from the fit is relatively small and effects like the CBO are
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(a) 60h dataset. (b) HighKick dataset.

(c) 9d dataset. (d) Endgame dataset.

Figure 5·33: R versus fit end time for the Run 1 precession frequency
analysis datasets. The fit points lie in and around the 1σ statistical
bands.

largest at the beginning of the fill. While these fit end scans in a T-Method fit can

probably be ignored in favor of the fit start scans, it’s important to check that they

satisfy the statistical deviations in the Ratio Method as the ratio data errors grow

larger with less data [119]. Fit end time scans were performed from 650 µs to 400 µs

in steps of 10 µs, corresponding to 26 separate fits. As in the fit start time scans, fit

results from the end of one fit were passed on as the starting parameters to the next.

R values for fit end scans for the Run 1 precession frequency analysis datasets are

shown in Figure 5·33. As shown the R values are within and near the bands.

Similarly to fit start and end time scans, it is worthwhile to verify that R is consis-

tent regardless of the energy threshold applied to the decay positron time spectrum.

The energy threshold was varied from 1.2 GeV to 2.2 GeV in steps of 50 MeV cor-

responding to 21 separate fits. The fitted R values for the four Run 1 precession
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(a) 60h dataset. (b) HighKick dataset.

(c) 9d dataset. (d) Endgame dataset.

Figure 5·34: R versus energy threshold for the Run 1 precession fre-
quency analysis datasets. The fit points lie in and around the 1σ sta-
tistical bands.

frequency analysis datasets are shown in Figure 5·34. The statistical bands are the

same as those defined in Equation 5.31, where now the analyzing power part of the

equation plays a larger role as the asymmetries and phases of the different fit points

are significantly different. As shown there are no major deviations in the fitted R

values.

5.4.3 Fits to bunch number

Eight distinct and separate bunches of muons are sent to the E989 experiment within

the accelerator timing structure as described in Section 2.3. Differences upstream and

at injection mean that the phase space of the stored beam varies slightly with bunch
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(a) 60h dataset. (b) HighKick dataset.

(c) 9d dataset. (d) Endgame dataset.

Figure 5·35: R versus bunch number for the Run 1 precession frequency
analysis datasets. Bunch number 0 corresponds to the data from all
bunches added together. The blue dashed line intersects the bunch
number 0 point, and it’s value is displayed in the top left of each plot.
The red line corresponds to a fit to bunches 1–8, with p0 being the
fit parameter. In all cases the fitted R value to bunches 1–8 is nearly
identical to the all-bunches result.

number. In order to verify that the treatment of fit parameters was correct regardless

of the bunch number and thereby improve confidence in the results, the bunches were

fit individually. Figure 5·35 shows the fitted R values for the eight individual bunches

alongside the bunch-sum result, for the Run 1 precession frequency analysis datasets.

No systematic variation in R as a function of bunch number was observed. When the

eight individual bunches were fit to a straight line, they were found to be consistent

with the bunch-sum result.
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Random Seed Fit Results

Dataset χ2 Mean R Mean R RMS R Error on Mean

60h 0.999 −20.5562 0.3443 0.0487

HighKick 1.001 −17.4755 0.4226 0.0598

9d 0.999 −17.7182 0.2118 0.0300

Endgame 1.002 −17.3406 0.1249 0.0177

Table 5.8: Random seed fit results to the four Run 1 precession fre-
quency analysis datasets. The χ2 means are consistent with 1. As a
reminder the 60h dataset used a different blinding than the other three,
hence the significantly different R mean. Units are in ppm.

5.4.4 Fits to many random seeds

While the single seed fit results presented earlier indicate good fits and well understood

parameters, it is always a good idea to fit other random seeds in case the single seed

results ended up on an outlier. Doing so not only improves the confidence of the result,

but also gives a more central R value to quote as being closer to the ‘true’ R value

of the dataset. Figure 5·36 gives the χ2 and R distributions for fits to 50 different

random seeds for the four datasets. As shown the χ2 distributions are centered around

1 as expected. Table 5.8 compares the random seed fit results between the different

datasets. The means for the R distributions of the datasets which shared the same

blinding string (HighKick, 9d, Endgame) are statistically consistent with one another,

with differences on the order of several hundreds of ppb, well within the statistical

errors of 600 ppb or greater18.

18The errors on the mean are calculated as σµ = RMS/
√
N, where N is the number of random

seeds. These errors come from the randomization of cluster times before fitting, and have no bearing
on statistical consistency when comparing different datasets.
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Figure 5·36: χ2 and R values for fits to 50 different random seeds for the
Run 1 precession frequency analysis datasets. Plots for the 60h, High-
Kick, 9d, and Endgame dataset are arrayed from top to bottom. The
χ2 distributions are nicely centered around 1 which is to be expected
if the randomized data are properly distributed and fit correctly. The
statistics box in the R plots have units of ppm for the means and RMS’
of the distributions.
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Target ωa Systematic Uncertainties

Source of uncertainty E989 Goal (ppb)

Pileup 40

Gain changes 20

CBO 30

Lost muons 20

E-field and pitch corrections 30

Other 30

Quadrature sum ∼ 70

Table 5.9: Target systematic errors in the precession frequency mea-
surement for the E989 experiment [54].

5.5 Systematic errors

Evaluating the systematic errors which bias the ωa frequency extraction is a ma-

jor part of the precession frequency analysis. Systematic errors typically stem from

sources which introduce time-dependent phases over the course of a fill,

cos (ωat+ φ(t))→ cos ((ωa + φ1)t+ φ0 + φ2t
2 + ...), (5.34)

where φ(t) can in general be expanded to higher orders. Such time-dependent phases

from effects which change early-to-late within the fill can thus result in mis-measured

values for ωa, with no indications that the extracted values are biased. Sources of

systematic uncertainty can be separated into several general categories. These include

systematic errors in the pileup subtraction, gain corrections, CBO fit model, muon

losses, and E-field and pitch corrections, among others. Table 5.9 gives the target

systematic uncertainties for the E989 experiment, which has the goal of a 70 ppb

systematic error on the precession frequency measurement. This represents a three

to four-fold improvement over the E821 experiment systematic errors which were of

order 210 – 310 ppb, depending on running period [36].
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Run 1 of E989 consisted of multiple separate datasets with distinct running condi-

tions, necessitating the need for independent systematic uncertainty evaluations. The

calculations of the various systematic errors typically involve varying the relevant his-

togram or analysis parameters, and observing the changes in the final fitted R values.

Preliminary estimates are given for systematic errors which are produced by other

analysis groups. These include errors from the phase of the lost muons, the E-field

and pitch corrections, and the vertical beam movement due to the bad quadrupole

resistors.

5.5.1 Pileup systematic errors

The pileup background oscillates at ωa and has a different phase than the main g− 2

signal, which by extension implies a strong effect on the extracted frequency value.

If the subtracted pileup spectrum is mis-constructed in any way, there will be a

systematic error on R, as described in Section 5.2.1. The pileup systematic error can

be separated into two parts, those being the errors on the amplitude and phase of the

correction. In order to evaluate the systematic errors due to mis-construction of the

amplitude or the phase, the uncertainties in them need to be estimated along with

the corresponding sensitivities of R. Table 5.1 gives the default values of the pileup

construction parameters {ADT, SDT, SGT, C}. How these parameters feed into the

amplitude and phase systematic errors will be discussed in turn, and the overall errors

calculated for the different Run 1 datasets.

As a reminder, the default values used for the ADT and SDT were each 5 ns. In

order to calculate the systematic dependence on the choice of ADT or SDT, the SDT

parameter was scanned from 5 ns to 10 ns in steps of 1 ns. This was done with and

without the pileup amplitude scaling procedure as described in Section 5.2.1, which

as a reminder applies a default pileup amplitude multiplier of approximately 1.03 for

each dataset. This amplitude scaling procedure was automated in the analysis such
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that the pileup spectra amplitude was adjusted to the appropriate level regardless of

the choice of pileup spectra parameters. The results of the study for the 9d dataset are

shown in Figures 5·37 and 5·38. In the case where there was no automatic amplitude

scaling applied, there is a clear minimum in the χ2 results and a steep slope in R,

corresponding to a large sensitivity of R to the choice of SDT. In the case where

the automatic amplitude scaling was applied however, the minimum in the χ2 results

has disappeared, and there is no clear effect on R. Applying the automatic pileup

amplitude scaling produces nearly identical pileup spectra with no clear trend in R

regardless of the choice of SDT (and by extension ADT). Any systematic error due

to the choice of these two parameters can then be subsumed into the direct pileup

amplitude error itself, discussed below. It should be noted that the choices of ADT

and SDT are largely irrelevant barring statistics, as the automatic amplitude scaling

procedure can always account for any differences between the two.

In order to calculate the systematic dependence on the choice of SGT (default

value of 10 ns), the SGT parameter was scanned from 10 ns to 20 ns in steps of 1 ns.

The results of the study with the automatic pileup amplitude scaling applied are

shown in Figure 5·39. Just as in the SDT scan with the automatic pileup amplitude

scaling, there is no minimum in the χ2 results, the sensitivity of R to the value of

SGT is negligible, and the pileup spectra for the various choices of SGT are nearly

identical. Therefore again, any systematic error due to the choice of SGT is subsumed

into the pileup amplitude error. This is to be expected as there are no major changes

in the hit time spectrum at short time scales, O(10 ns). If the SGT value used was

significantly larger, then a systematic effect might arise.

In order to evaluate the pileup amplitude systematic error, multipliers were applied

to the pileup spectra from 0.9 to 1.1 in steps of 0.01, bracketing the default pileup

scaling of ∼ 1.03 mentioned before. The results of the study for the 9d dataset are
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(a) χ2 versus SDT. The parabolic fit
equation used was y = p2(x− p1)2 + p0.

(b) R versus SDT. The parameter p1

characterizes the sensitivity of R to the
choice of SDT, with units in ppm/ns.

(c) The pileup time spectrum for different
choices of SDT.

(d) The corrected energy spectrum above
3 GeV for different choices of SDT.

Figure 5·37: Shadow dead time scan results without automatic pileup
amplitude scaling. A clear minimum in the χ2 plot is seen near 5 ns
corresponding to the choice of SDT = ADT, and a large sensitivity for
R is observed. A larger choice of SDT leads to a greater estimation of
the pileup, which as shown in the energy spectra plot leads to a cor-
responding over-subtraction at energies where pileup pulses dominate.
Data are from the 9d dataset.
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(a) χ2 versus SDT. The parabolic fit
equation used was y = p2(x− p1)2 + p0.

(b) R versus SDT. The parameter p1

characterizes the sensitivity of R to the
choice of SDT, with units in ppm/ns.

(c) The pileup time spectrum for different
choices of SDT.

(d) The corrected energy spectrum above
3 GeV for different choices of SDT.

Figure 5·38: Shadow dead time scan results with automatic pileup
amplitude scaling. No clear minimum is observed in the χ2 plot, and
the sensitivity for R is small. With the automatic amplitude scaling
applied, the time and energy spectra are nearly identical and lie on top
of each other. The lack of clear minimum in the χ2 plot and no clear
sensitivity in R indicate that there is no real systematic error due to
the choice of SDT. Data are from the 9d dataset.
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(a) χ2 versus SGT. The parabolic fit
equation used was y = p2(x− p1)2 + p0.

(b) R versus SGT. The parameter p1

characterizes the sensitivity of R to the
choice of SGT, with units in ppm/ns.

(c) The pileup time spectrum for different
choices of SGT.

(d) The corrected energy spectrum above
3 GeV for different choices of SGT.

Figure 5·39: Shadow gap time scan results with automatic pileup am-
plitude scaling. No clear minimum is observed in the χ2 plot, and the
trend for R isn’t clear, with points fluctuating above and below the
fit curve. With the automatic amplitude scaling applied, the time and
energy spectra lie on top of each other. The lack of clear minimum
in the χ2 plot and negligible sensitivity in R indicate that there is no
real systematic error due to the choice of SGT. Data are from the 9d
dataset.
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shown in Figure 5·40. There is a clear minimum near 1 in the χ2 results and R is

sensitive to the multiplier. The systematic error on R is calculated as

δR = σPm ×
dR

dPm
, (5.35)

where Pm is the value of the pileup multiplier. The uncertainty σPm is calculated as

the width of the fitted parabola in the χ2 plot, defined as the change in Pm which

increases the minimum χ2 by 1. This is calculated as

σPm =

√
2

f ′′(χ2)
=

1
√
p2

, (5.36)

where p2 is the fit parameter as given in the χ2 plot. The sensitivities ofR to the pileup

multiplier, uncertainties in the pileup amplitude, and final corresponding systematic

errors for the Run 1 precession frequency analysis datasets are given in Table 5.10.

As shown in the table, the uncertainties on the pileup amplitude are of order 2 to

5%, while the systematic errors on R are on the order of 10 to 20 ppb, depending on

dataset. It should be noted that the default automatic pileup multiplier of ∼ 1.03

does not necessarily correspond to the minimum in the χ2 plot, but is still within 1σ

of 1 or the minimum; except for the Endgame dataset, where it is closer to 2σ19.

The pileup phase error can result from improper reconstruction of the pileup pulse

times or energies. The error due to the former is calculated by applying time-shifts

to tdoublet as given in Equation 5.3. Doing this artificially applies a phase shift to the

pileup time spectrum. The data are then re-fit for R with the shifted pileup spectra.

Figure 5·41 shows the results for the 9d dataset with applied time-shifts between

−10 ns and 10 ns in steps of 1 ns. Although a sensitivity of R to the value of the time-

shift is observed, there is no clear minimum in the χ2 results, implying the data are fit

19Monte-Carlo tests with various random seeds showed this minimum fluctuating above and below
1. The distance from 1 therefore is not a good measure for the uncertainty in the pileup amplitude,
compared to the width of the χ2 parabola fit.
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(a) χ2 versus pileup multiplier. The
parabolic fit equation used was y =
p2(x−p1)2 +p0. While the trend may ini-
tially appear somewhat flat, there is in-
deed a very clear minimum in the results
when error bars are removed.

(b) R versus pileup multiplier. The pa-
rameter p1 gives the sensitivity of R to
the value of the pileup multiplier, with
units in ppm.

Figure 5·40: Pileup multiplier scan. Data are from the 9d dataset.

Systematic Error due to Pileup Amplitude

Dataset dR/dPm σPm Pmmin
δR

60h −419.3 0.053 0.993 22.2

HighKick −372.8 0.051 0.997 19.0

9d −245.2 0.037 1.020 9.0

Endgame −335.3 0.028 0.985 9.4

Table 5.10: Systematic error due to the pileup amplitude, in the Ratio
Method fits for the Run 1 precession frequency analysis datasets. The
bold column gives the systematic errors on R. Units for dR/dPm and
δR are in ppb.
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(a) χ2 versus pileup time-shift. There is
no clear minimum in the plot.

(b) R versus pileup time-shift. The pa-
rameter p1 gives the sensitivity of R to
the value of the pile time-shift, with units
in ppm/ns.

Figure 5·41: Scan over pileup time-shift. Data are from the 9d dataset.

equally well with all pileup phases. Because the width of the χ2 parabolic fit cannot be

taken as the uncertainty in the pileup time-shift parameter, the uncertainty is instead

taken conservatively at half the ADT at 2.5 ns. The systematic error is calculated in

the same way as for the pileup amplitude uncertainty,

δR = σPt ×
dR

dPt
, (5.37)

where Pt is the value of the pileup time-shift. The sensitivities of R to the pileup time-

shift and corresponding systematic errors for the Run 1 precession frequency analysis

datasets are given in Table 5.11. The sensitivities are on the order of 5–8 ppb/ns,

with systematic errors ranging from 14–19 ppb.

Mis-reconstruction of pileup pulse energies means that pileup shadow doublets

will be added or lost near the applied energy threshold, leading to an error in the

energy-dependent pileup phase, and by extension a systematic error on R. This would

happen if the energy sum of two clusters on top of one another is different than two

separated by a small time-gap as a result of detector performance. The energy of
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Systematic Error due to Pileup Time Shift

Dataset dR/dPt δR

60h 7.0 17.6

HighKick 7.6 19.0

9d 6.8 17.1

Endgame 5.7 14.3

Table 5.11: Systematic error due to the pileup time-shift parameter Pt,
in the Ratio Method fits for the Run 1 precession frequency analysis
datasets. The bold column gives the systematic errors on R. Units for
dR/dPt and δR are ppb/ns and ppb respectively. As described in the
text, the error on Pt is taken to be 2.5 ns.

the shadow doublets is dependent on the constant C in the calculation of Edoublet

as given in Equation 5.2. In order to calculate the systematic error from the energy

construction, the parameter C was scanned from 0.9 to 1.1, in steps of 0.01. The

results of the study for the 9d dataset are shown in Figure 5·42. The systematic error

on R is calculated as

δR = σC ×
dR

dC
. (5.38)

Similarly to the pileup amplitude error, there is a clear minimum in the χ2 results

which can be used to estimate the uncertainty in the pileup energy scale. Table 5.12

gives the sensitivities of R to the pileup energy scale, uncertainties in the pileup

energy scale, and the corresponding final systematic errors for the Run 1 precession

frequency analysis datasets. As shown the uncertainties on the pileup energy scale are

of order 1 to 2%, and the value for C which produces the minimum in the χ2 results

is consistent with 120. Interestingly, the sensitivity of R to C in the 60h dataset is

noticeably larger than in the rest of the datasets; the origin of this is currently under

investigation. Regardless, the systematic error is still small at 19.4 ppb.

20Because the spatial separation is turned off in the clustering portion of the reconstruction, a
value of C = 1 is to be expected.
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(a) χ2 versus pileup energy scale. The
parabolic fit equation used was y =
p2(x− p1)2 + p0.

(b) R versus C. The parameter p1 gives
the sensitivity of R to the value of C, with
units in ppm.

Figure 5·42: Scan over pileup energy scale. Data are from the 9d
dataset.

Systematic Error due to Pileup Energy Scale

Dataset dR/dC σC Cmin δR

60h −835.1 0.023 0.997 19.4

HighKick −167.7 0.022 0.995 3.7

9d −332.0 0.016 1.000 5.5

Endgame −431.4 0.012 0.982 5.3

Table 5.12: Systematic error due to the fixed pileup energy scale pa-
rameter C, in the Ratio Method fits for the Run 1 precession frequency
analysis. The bold column gives the systematic errors on R. Units for
dR/dC and δR are in ppb.
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Total Pileup Systematic Errors

Type of Error Parameter 60h HighKick 9d Endgame

Amplitude Pm 22.2 19.0 9.0 9.4

Phase (time) Pt 17.6 19.0 17.1 14.3

Phase (energy) C 19.4 3.7 5.5 5.3

Quadrature sum 34.3 27.1 20.1 17.9

Table 5.13: Total pileup systematic errors for the Run 1 precession
frequency analysis datasets.

Table 5.13 gives the quadrature sum for the total pileup systematic errors for the

different Run 1 datasets. As shown, for each dataset the total error is below the target

final error of 40 ppb, despite the contamination in the pileup shadow method. For

future runs of the experiment with increased muon storage and therefore increased

pileup, these errors may grow. In that case either the pileup shadow method might

need to be improved to account for the contamination and pileup triplets, or discarded

in favor of a different method.

5.5.2 Gain systematic errors

As described in Section 5.1, the energies of the positron hits in the calorimeter crystals

are gain-corrected for in-fill, short-term double pulse, and out-of-fill effects. The latter

is largely temperature dependent and occurs over time scales much longer than a fill.

This does not bias the precession frequency measurement as the phase is not time-

dependent over the course of a fill. For the cases of in-fill or STDP gain variations,

any uncorrected fluctuations in the gain causes an effective change in the energy

threshold over the course of a fill, which then modifies the average measured phase

of the detected positrons. This causes a systematic shift in the extracted R value.

The IFG function as measured by the laser calibration system, described in Sec-

tion 3.2.3, relates the measured energies of the individual crystal hits to the true
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energies as a function of time in-fill. It is given by [75]

E = E0(1− CAe−t/τg), (5.39)

where E0 is the ‘true’ energy of the crystal hit, E is the measured energy, and con-

stants CA and τg are measured with the laser calibration system. In order to determine

a systematic error from the applied IFG function, the IFG function was re-applied to

the crystal hits with modified parameters. Specifically, the amplitude of the IFG func-

tion CA and the lifetime τg were scanned over in multiplicative steps, separately, such

that all crystal energies included in a cluster hit were adjusted before re-summing.

The multipliers applied to the IFG parameters were scanned from 0 to 2 in steps of

0.25. The results of the scans for the 60h dataset are shown in Figure 5·43, with a

comparison to the results from fits with the T-Method. It is immediately apparent

that the sensitivities of the T-Method to the IFG parameters are significantly greater

than that of the Ratio Method. The Ratio Method’s insensitivity to smoothly varying

effects, which it divides out, is one of it’s primary strengths. In fact, while there is an

observable minimum in the T-Method χ2 results for the amplitude multiplier scan,

no such minimum exists for the Ratio Method results.

Tables 5.14 and 5.15 give the results for the IFG amplitude multiplier and lifetime

multiplier scans respectively for the different datasets. Sensitivities for both the T-

Method and Ratio Method fits are included. The uncertainties on the IFG parameters

from fits to the laser data were in general of order 25% [121]. This uncertainty

multiplied against the measured Ratio Method sensitivities results in systematic errors

of <6 ppb on the amplitude multiplier and <17 ppb for the lifetime multiplier for the

various datasets. The individual numbers are given in column 5 of Table 5.14 and

column 3 of Table 5.15 respectively.
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(a) Normalized χ2 vs IFG amplitude mul-
tiplier. The T-Method points fit nicely to
a parabolic curve while the Ratio Method
points do not.

(b) R values vs IFG amplitude multiplier.
Both sets of points are fit to straight lines,
and the slopes are included in the text
box in units of ppm.

(c) Normalized χ2 vs IFG lifetime mul-
tiplier. Both T-Method and R-Method
points flatten out at low multipliers, how-
ever the rise at high multipliers is larger
for the T-Method.

(d) R values vs IFG lifetime multiplier.
Both sets of points are fit to straight lines,
and the slopes are included in the text
box in units of ppm.

Figure 5·43: Fitted χ2’s andR values for the 60h dataset as a function of
IFG amplitude multiplier (top) and IFG lifetime multiplier (bottom).
Results with ratio fits (red) are compared to T-Method fits (black).
Values are normalized to their CA = 1 and Cτ = 1 results respectively
in order to put the curves on the same scale. As shown the sensitivities
in the T-Method to the IFG parameters are significantly larger than
that in the Ratio Method. This is one of the primary strengths of the
Ratio Method.
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Systematic Error due to IFG Amplitude

T-Method T-Method R-Method R-Method R-Method R-Method R-Method

Dataset dR/dCA CAmin
dR/dCA δRσ=0.25 ∆R0x ∆R2x δRmax - 0x/2x

60h 94.1 0.57 5.4 1.4 8.2 12.4 −
HighKick 69.5 0.70 −23.6 5.9 28.6 −16.0 28.6

9d 64.9 0.27 1.4 0.4 −2.5 −3.9 −
Endgame 96.2 0.19 22.7 5.7 −6.9 43.6 43.6

Table 5.14: Sensitivities and systematic errors for the IFG amplitude. T-Method sensitivities are included
for comparison, along with the χ2 minima. Also included are changes in R for fits with IFG amplitude
multipliers of 0x and 2x. Systematic error columns are in bold, where the one on the left corresponds to
the Ratio Method sensitivity multiplied by a 25% uncertainty in the amplitude, and the one on the right
corresponds to the absolute value of the maximum change in R with the 0x and 2x multipliers applied.
Only the HighKick and Endgame values are used from the column on the far right. Units for errors and
sensitivities are in ppb.
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Systematic Error due to IFG Lifetime

T-Method R-Method R-Method R-Method

Dataset dR/dCτ dR/dCτ δRσ=0.25 ∆R0x

60h 208.7 20.1 5.0 8.2

HighKick 114.7 −44.8 11.2 28.6

9d 81.7 −46.4 11.6 −2.5

Endgame 207.3 66.1 16.5 −6.9

Table 5.15: Sensitivities and systematic errors for the IFG lifetime. T-
Method sensitivities are included for comparison. The systematic error
columns is in bold, where the error corresponds to the Ratio Method
sensitivity multiplied by a 25% uncertainty in the lifetime. Units for
errors and sensitivities are in ppb.

Examining Table 5.14 in more detail however, some interesting features can be

seen. The T-Method results, while not the primary subject of this analysis, never-

theless vary between the datasets, in that the scan minima are not consistent with

one another. For the Ratio Method results, the HighKick and Endgame datasets

exhibit greater sensitivities to the IFG amplitude than the 60h and 9d datasets. The

HighKick dataset can be seen to have a negative sensitivity compared to the positive

sensitivities of the other datasets (and the T-Method sensitivities for all datasets).

The Endgame dataset has a greater sensitivity stemming from the fact that fits to the

multiplicative factors of CA = 1.75 and CA = 2 produced noticeably better χ2’s and

higher R values, O(40 ppb). These fits pulled the slope up from what is otherwise a

very flat fit to the rest of the points.

These various peculiarities imply there are imperfections in the gain corrections

which have not been fully accounted for. Indeed recent investigations into the applied

gain corrections show that for the HighKick and Endgame datasets, the out-of-fill

corrections were improperly applied during data production [122]. While this does

not introduce a systematic uncertainty as a function of time in-fill as described before,

it does shift the scale of the correction and by extension the extracted R value. In
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order to determine more conservative bounds on the systematic errors to account for

these deficiencies, the absolute changes in R for the 0x and 2x multiplier fits were

examined. These values are included in Table 5.14. The maximum of the two values

was then taken as the systematic error on R due to the IFG amplitude. In general

the systematic errors as calculated from the maximum of the 0x or 2x fits are an

order of magnitude larger than those errors calculated directly from the sensitivities.

Because the scale of these numbers is still small compared to the Run 1 statistical

errors however, they are deemed acceptable for this analysis.

As for the lifetime multiplier scan results, it was observed that the R and χ2 plots

flattened out for small lifetimes as compared to large lifetimes, with no identifiable

minima in the scan results. R was seen to change by very little when the lifetime was

small, as shown in the far right column of Table 5.15. Because of the larger changes in

R with the larger lifetimes, the sensitivities in the table were pulled to greater values

than they otherwise might be. The choice was made to keep these large sensitivities

in and use them in the calculation of the systematic error for a conservative approach,

again justified by the gain issues mentioned previously.

In the calculation of the combined systematic error due to the IFG function pa-

rameters, the amplitude and lifetime parameter errors are added in quadrature, con-

servatively ignoring correlations between the two parameters in the fits to the laser

data. Because the two parameters are correlated to a large degree, the 0x and 2x life-

time numbers were not used in the calculation of the HighKick and Endgame lifetime

systematic errors as they have already been conservatively treated in the amplitude

part of the error21. The confidence in the scale of the Ratio Method results is ulti-

mately preserved from the fact that the Ratio Method fits are not as sensitive to the

gain variations as the T-Method fits, as the gain effects divide out. Going forward

towards the end of the Run 1 analysis, once the outstanding gain issues have been

21If the amplitude is zero then the lifetime is meaningless, and vice versa.
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resolved, the systematic errors should be calculated directly from the sensitivities in

all cases.

The STDP correction is similar in many respects to the IFG correction [74]. This

correction is applied to pulses close in time, O(ns), and is applied to the energies of

the pulses before the in-fill gain correction. Because of how the time-randomization

is applied to the clusters in this analysis, a new version of the same dataset by default

uses a different default randomization with respect to the cluster times and the ratio

histogram filling. As shown in Section 5.4.4, the width in the fitted R values for many

random seeds is of order O(100 ppb), making direct ratio fit comparisons between the

two datasets un-informative. In order to avoid this difficulty and evaluate the sys-

tematic error on R due to the application of the STDP correction, a slightly different

procedure was undertaken. First, a new production of the 60h dataset was processed

without the STDP correction applied, and where cluster times were randomized per-

fill rather than per-cluster, and then fits were then done with the T-Method. Since the

per-fill randomization uses fill ID’s as the seeds for the randomization, and because

the T-Method does not split the data into sub-datasets as the Ratio Method does,

the randomization between the 60h dataset with and without the STDP correction

is identical. The change in R for T-Method fits with and without this correction is

then taken as the upper bound on the systematic error for the inclusion of the STDP

in the Ratio Method fits. This is reasonable as the previous IFG systematic studies

showed a reduction in sensitivity to gain effects which is reasonably extended to the

STDP correction error. Table 5.16 gives the T-Method fit results with and without

the STDP, along with the change in R. This difference was found to be 11.0 ppb,

which is then taken as the systematic error for all datasets.

Table 5.17 gives the quadrature sum for the total gain systematic errors for the

Run 1 precession frequency analysis datasets. As shown for the 60h and 9d datasets,
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Systematic Error due to STDP

Fit Type R with STDP (ppm) R without STDP (ppm) δR (ppb)

T-Method −20.1619 −20.1729 11.0

Table 5.16: T-Method fit results with and without the STDP gain
correction on the 60h dataset. T-Method fits were done instead of
Ratio Method fits in order to force the cluster-time randomization to
be consistent between the two dataset productions. The change in R
in the bold column is taken as the upper bound on the systematic error
in the Ratio Method due to the STDP gain correction.

Total Gain Systematic Errors

Type of Error 60h HighKick 9d Endgame

IFG amplitude 1.4 28.6 0.4 43.6

IFG lifetime 5.0 11.2 11.6 16.5

STDP 11.0 11.0 11.0 11.0

Quadrature sum 12.2 32.6 16.0 47.9

Table 5.17: Total gain-related systematic errors for the Run 1 preces-
sion frequency analysis datasets. Units are in ppb.

the total error is below the target final error of 20 ppb. For the HighKick and Endgame

datasets, the errors are slightly larger than 20 ppb, and should reduce once their

known issues have been resolved. All gain errors will be re-evaluated once the final

datasets are available. It is expected that the errors given here are reasonable ap-

proximations of the final errors, especially due to the Ratio Method’s insensitivity to

the gain relative to the T-Method. As a reminder, the errors given here, even with

the crude approximations, are small compared to the statistical errors of the various

datasets.

5.5.3 CBO systematic errors

If the CBO is mis-modeled then there will be a systematic error on R since there

is a an early-to-late change in both the frequency and the scale of the CBO. The
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Change in R with station 18 CBO parameters

Dataset δR

60h 7.5

HighKick 0.4

9d −2.0

Endgame 8.0

Table 5.18: Changes in the fitted R values with tracker station 18
CBO frequency model parameters, instead of tracker station 12. The
systematic errors are conservatively taken as the absolute values of the
changes in R. Units are in ppb.

CBO model is well constrained by tracker measurements, but systematic errors can

be evaluated by modifying the fixed frequency function given in Equation 5.22, and

the decoherence envelope of the CBO.

Table 5.2 gives the CBO frequency model parameters for both tracker stations.

The station 12 values are by default used in all fits to the data. Fits were performed

with the station 18 values for the various datasets, and the changes in R are given

in Table 5.18. While the CBO parameters in the tracking analysis fits do have errors

on the parameters, they are tiny compared to the systematic errors between the two

tracker stations [113]. Some fits were made by varying the fixed frequency parameters

by 1σ in their individual respective errors, and the changes in R were found to be

negligible. For this reason, the absolute values of the changes in R when using station

12 parameters versus station 18 parameters are conservatively taken as the systematic

errors, due to the choice of fixed CBO frequency model parameters.

The shape of the CBO, or the decoherence envelope, is also similarly constrained

by the tracking analysis. The envelope is by default taken to be an exponential as

given in Equation 5.19, and shown in Figure 4·28. The other envelope which could

reasonably exist in the data, from inspection in the tracking analysis, is an exponential
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plus a constant,

e−t/τcbo → e−t/τcbo +C, (5.40)

where C is some constant CBO amplitude which persists over the course of the fill.

In order to assess this systematic error, this new envelope was introduced into the

Ncbo(t) fit term. Fits were done with C floating, where the starting values for C in the

Ratio Method fits were taken from T-Method fits to the data22. While in T-Method

fits the C parameter converged to values with errors about half the value, in the

Ratio Method fits the C parameters had relatively large errors. In spite of the large

errors however, the fits converged properly with the floating C parameter. In general

the final fit parameters were largely the same, with the exception being the fitted

CBO lifetime and amplitude on the Ncbo(t) term, where both approximately halved.

This is unsurprising as the lifetime is highly correlated to the amplitude. Only in

the 9d dataset did some small complications arise, where the fit didn’t particularly

handle the floating C parameter well. Fixing the lifetime to a value of 99 µs, chosen

such that the lifetime reduction was somewhat comparable to that seen in the other

datasets, the C parameter converged to a value close to and consistent with zero. The

fitted values for the C constants and the changes in the final fitted R values are given

in Table 5.19. As shown the changes in R are of order 10s of ppb for some of the

datasets, with R varying both positively and negatively. The absolute value of these

changes in R are conservatively taken as the systematic errors on R for the different

datasets.

Table 5.20 gives the quadrature sum for the total CBO systematic errors for the

Run 1 precession frequency analysis datasets. As shown, for each dataset the total

error is below the target final error of 30 ppb. The changing frequency of the CBO

22T-Method starting values for C were taken to be 0 which resulted in well-converging fits.
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Systematic Error due to CBO Envelope

Dataset C × 10−4 σC × 10−4 δR

60h 10.7 8.3 17.6

HighKick 11.6 10.4 −18.0

9d −2.1 11.1 9.3

Endgame 10.7 4.0 −4.3

Table 5.19: Systematic error on R due to the choice of CBO envelope.
The fitted floating parameter C and its error are given along with the
change in R, compared to the standard exponential envelope in units
of ppb.

Total CBO Systematic Errors

Type of Error 60h HighKick 9d Endgame

CBO Frequency Model 7.5 0.4 2.0 8.0

CBO Decoherence Envelope 17.6 18.0 9.3 4.3

Quadrature sum 19.1 18.0 9.5 9.1

Table 5.20: Total CBO-related systematic errors for the Run 1 preces-
sion frequency analysis datasets.

in Run 1 was eliminated in Run 2, implying a reduction in any associated systematic

errors. The increased statistics combined with the tracking analysis should constrain

measurements of the CBO decoherence envelope even further, similarly reducing any

associated systematic errors. At the same time, increased statistics might bring out

higher order CBO effects which require improved modeling.

5.5.4 Lost muon systematic errors

There are two types of systematic errors arising from lost muons. The first is due

to mis-construction of the shape of the lost muon spectrum L(t) included in the fits,

and the second is due to any g− 2 phase difference between the stored and lost muon

populations.

As mentioned in Section 5.3.3, the triples spectrum is made with cuts as defined
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∆R with Various Lost Muon Cuts

9d Dataset Endgame Dataset

Type of fit or cut ∆R (ppb) κloss ∆R (ppb) κloss

Default cuts 0 2.510 0 2.345

No quadruple subtraction 0.2 1.811 −0.1 1.717

No accidental subtraction 0.1 2.503 < 0.1 2.339

5 ns ≤ ∆t12,23 ≤ 8.5 ns 0.1 2.507 < 0.1 1.709

100 MeV ≤ E1,2,3 ≤ 500 MeV < 0.1 2.253 < 0.1 2.090

∆t13 ≤ 12.5 ns 0.1 4.469 −0.3 4.248

Table 5.21: Effect on the fitted R value in the 9d and Endgame datasets
with various cuts used or backgrounds subtracted. Also included are
the various corresponding κloss values which compensate for the level
of statistics contained within L(t) due to the differing cuts.

in Table 5.4. Various backgrounds are subtracted off the triples spectrum in order to

generate a clean sample of lost muons. Table 5.21 gives the changes in R for various

sets of cuts and background subtractions for the 9d and Endgame datasets. As shown,

the various different backgrounds and cuts ultimately make very little difference in

the final fitted R values. Similarly, stable beam contaminants in the form of deuterons

and protons contaminate the lost muon spectrum. The former are largely removed

by straightforward ∆t12 and ∆t13 cuts. The latter can be mostly removed by cutting

on the negative side of the ∆t13 distribution, with ∆t13 ≤ 12.5 ns which separates

the populations more readily, shown in Figure 5·44. While this does largely remove

the protons at the cost of statistics, the fitted κloss parameter simply grows larger

to compensate. Ultimately the effect on R is still negligible, with ∆R = −0.3 ppb

for the Endgame dataset. The sum of these separate types of errors is conservatively

taken at 0.5 ppb for all datasets23.

Because κloss is fixed in the Ratio Method fits from corresponding T-Method fits,

23For the T-Method fits, though the changes in R are noticeably larger with the various cuts, they
are still the same order of magnitude and the error is conservatively below 1 ppb.
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Figure 5·44: Lost muon ∆t13 distribution as a function of time in-
fill. The band of hits centered just above 15 ns corresponds to the
deuteron contamination, while the band of hits centered just above
13 ns corresponds to the proton contamination.

the statistical correlation to R is neglected and a systematic error must be estimated.

The systematic error can be determined by scanning over the value of κloss as in

Figure 5·45. The uncertainty in κloss is taken as the statistical error determined in

the T-Method fit to the same data. Table 5.22 gives the systematic errors on R for

the various datasets. As shown the systematic errors are all small, δR < 5 ppb. Also

shown are the changes in R with the muon loss term in the fit versus without it

entirely. The scale of the changes is on the order of 10s of ppb, hence the decision to

include the lost muon term in the fit, though it could reasonably be excluded as long

as the larger error is applied.

The most dangerous systematic error from lost muons is due to the g − 2 phase

of the lost muon population. If muon losses originate from a population of muons

with a different average phase than the stored muons, then there will be a phase

shift over the course of a fill, and thus a systematic error. Simulation and data have

shown a correlation between g− 2 phase and muon momentum at injection, with the
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Figure 5·45: The sensitivity of R to the fixed κloss parameter. Error
bars have been removed from the plot in order to show the trend more
clearly. Units are in ppm, data are from the 9d dataset.

Systematic Error due to Fixed κloss

Dataset dR/dκloss σκloss δR ∆R(w/ - w/o)

60h −3.5 0.338 1.2 −31.4

HighKick −7.1 0.697 4.9 −40.1

9d −18.3 0.170 3.1 −45.7

Endgame −2.6 0.038 0.1 −6.1

Table 5.22: Systematic error due to the fixed κloss parameter in the
Ratio Method fits for the Run 1 precession frequency analysis datasets.
All units are in ppb except for the σκloss parameter which is unit-less.
σκloss comes from the T-Method fit results and scales with the number
of statistics. The bold column gives the systematic errors on R. The
far right column gives the change in R with the κloss parameter in the
fits versus without it entirely.
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data driven study having returned a correlation of 10.3 ± 0.1 mrad/%(∆p/p) [123].

The phase-momentum correlation originates from the experience of muons within

the accelerator beam-line before injection. One simple explanation is that higher

momentum muons take longer path lengths inside the accelerator’s steering magnetic

fields, during which their spins will precess and their g − 2 phases change. If the

losses are momentum dependent and the phase-momentum correlation is preserved

after injection, then there will be a systematic error. Losses are expected to be

momentum dependent [124]; the low kick applied in Run 1 resulted in an off-center

stored muon beam such that there were more high momentum muons at greater

radii near the outside edge of the storage aperture, than low momentum muons on

the inside of the storage region. The high momentum muons at the outside edge of

the storage region have a higher chance of impacting material and getting lost, as

they undergo their individual betatron oscillations. Further simulation efforts and

data-driven studies are underway to understand and quantify the phase-momentum

correlation and momentum-dependent loss probabilities. Here is given an estimation

of the muon loss phase bias systematic error using the measured losses for the different

Run 1 datasets.

From Equation 5.34, the systematic shift in ωa can be written as

∆ωa
ωa

=
1

ωa

d〈φ〉
dt

, (5.41)

where d〈φ〉/dt is the change in average phase over time. With some assumptions

made with regards to ‘core’ and ‘edge’ muon populations, where lost muons can only

originate from the latter, this can be written as [124]

d〈φ〉
dt

= fc · dfl ·∆φc−e, (5.42)

where fc is the fraction of muons in the core population to all muons, dfl is the
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Systematic Error due to Lost Muon Phase Bias

Dataset fl (%/70 µs) ∆ωa/ωa (ppb)

60h 0.60 −53.6

HighKick 0.20 −17.9

9d 0.25 −22.3

Endgame 0.65 −58.0

Table 5.23: Loss rates and associated shift in ωa for the Run 1 precession
frequency analysis datasets. Loss rates are determined by inspection of
the respective curves for the different datasets, and are approximate.
The systematic shifts here are negative, due to the fact that the average
phase of the stored muons is greater than that of the lost muons, as
determined in simulation.

fractional loss rate, and ∆φc−e is the average phase difference between the core and

edge muon populations. The simulation studies in the afore-referenced document

gives estimates of fc ≈ 0.9 and ∆φc−e ≈ 1 mrad. The fractional losses, the integral in

Equation 5.30 times the final fitted κloss parameter, assuming no losses are included in

L(t) before the fit start time, for the Run 1 precession frequency analysis datasets as

determined in this analysis are shown in Figure 5·46. As shown the losses rise sharply

at early times before leveling off to a constant rate around 100 µs into the fill. Taking

the first 70 µs of the fit and assuming that this loss rate is constant over the course

of the fill, the approximate loss rates for the different datasets can be determined24.

Applying the various quantities into Equation 5.42, along with ωa ≈ 1.44 rad/µs, the

systematic shifts in the precession frequency are found. The loss rates and systematic

shifts for the various datasets are given in Table 5.23.

Taking the shifts in ωa as the systematic errors, the approximations here are on

the order of 50 – 60 ppb for the 60h and Endgame datasets, and on the order of

20 ppb for the HighKick and 9d datasets. These estimates are the same order of mag-

24While the loss rate reduces after 100 µs, losses occur mostly at early times, so this is a fine
approximation.
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Figure 5·46: Fractional losses for the Run 1 precession frequency analy-
sis datasets. The curves begin at 30.2 µs and end at 650 µs, correspond-
ing to the fit range. A value of 1% at a time t indicates that there are
1% fewer stored muons at that time than there would be if there were
no losses at all. The Endgame and 60h datasets have more losses than
the 9d and HighKick datasets. This is due to the greater kicker volt-
ages used in the latter datasets which put the stored muon beam on a
more central orbit. The upward tail at the end of the Endgame dataset
corresponds to the remnant proton contamination.

nitude as determined in other evaluations with slightly different parameters [125].

As simulations improve and more studies are undertaken, the uncertainties here may

potentially be replaced in favor of actual corrections, in which case the systematic

errors would then be the uncertainties in the evaluation of those corrections. Regard-

less, while greater than the target goal of 20 ppb, at least in the cases of the 60h and

Endgame datasets, the systematic errors listed here are nevertheless small compared

to the Run 1 statistical errors. They are expected to decrease in future runs where

all datasets have greater kicker voltages as in the HighKick and 9d datasets.
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5.5.5 Ratio construction systematic errors

In the construction of the ratio data, when filling the four sub-datasets as in Equa-

tion 5.11, the parameters Ta and τµ for the g−2 period and muon lifetime need to be

known a priori. If these parameters are incorrectly chosen, then it is possible there

will be a systematic shift on R. This is especially important when considering Ta,

because the quantity which the E989 experiment is measuring must be used in the

analysis, creating a sort of self-dependence. The question then naturally arises as to

how well the Ta parameter needs to be known. As described in Section 5.2.2, the

input value for Ta is nominally taken as the result from the E821 experiment.

In order to determine systematic errors from the choices of Ta and τµ, they were

scanned over when forming the ratio data. The input value for Ta was varied from

−30 ppm to 30 ppm in steps of 3 ppm, while the input value for τµ was varied from

64.04 µs to 64.84 µs in steps of 0.04 µs. See Figure 5·47 for scan results for the

60h dataset. See Table 5.24 for the sensitivities determined from the scans for all

datasets. As shown the sensitivities vary both positively and negatively for the dif-

ferent datasets, and are extremely small. The positive and negative variations imply

there is no real systematic effect at play, and that as long as a reasonable choice for

these two parameters is made, then the ratio data are very insensitive to the exact

values chosen.

In order to be conservative however, a scale for the changes in R is given. Since

the measured g−2 period in the data is already modified by the hardware blinding, it

is technically the hardware shifted g− 2 period that should be used. The calorimeter

digitizers use a 40 + δ MHz clock which has been blinded to a value in the range of

39.997 to 39.999 MHz[111]. This corresponds to a 75 ppm range in the frequency, in a

uniform distribution. Calculating the uncertainty from the uniform distribution and

adding it in quadrature with a conservative 1 ppm uncertainty in the guess on the
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(a) R versus input value for Ta, where the
x-axis is given in units of a ppm level shift
of the default choice for Ta. Parameter p1

gives the sensitivity in ppm/ppm.

(b) R versus the input value for τµ.
Parameter p1 gives the sensitivity in
ppm/µs.

Figure 5·47: Scans over ratio construction parameters for the 60h
dataset. In general the points are randomly spread around, and sensi-
tivities are practically negligible.

Sensitivity to Ratio Construction Parameters

Dataset dR/dTa dR/dτµ
60h 0.1 6.9

HighKick −0.1 −4.1

9d < 0.1 −1.1

Endgame < 0.1 0.6

Table 5.24: Sensitivities of R to ratio construction parameters. dR/dTa
is in units of ppb/ppm, while dR/dτµ is in units of ppb/µs. In both
cases the sensitivities are both extremely small, and vary negatively
and positively for the different datasets.
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true g − 2 period from the E821 result,

δTa =
√

(75)2/12 + 12 = 21.7 ppm. (5.43)

This results in a change in R on the order of 2.2 ppb for the 60h and HighKick

datasets, and less for the 9d and Endgame datasets. 2.2 ppb is therefore taken as the

systematic error for all datasets due to the choice of Ta.

Similarly, the sensitivities of R to the chosen muon lifetime are very small, order

ppb/µs. Since the uncertainties in the muon lifetime are of order ns from fits to the

data, any systematic errors from this parameter would be completely negligible even

if the sensitivities all had the same sign. For purposes of this analysis, the systematic

errors are therefore all taken as <0.1 ppb due to the choice of τµ.

5.5.6 Binning systematic errors

When constructing the time spectra, the bin width and the starting edge of the bin are

by default chosen to be 149.2 ns and 0 ns respectively. In order to calculate systematic

errors from the choices of these parameters, the values were scanned over. The bin

width was scanned from 148.7 ns to 149.7 ns in steps of 0.1 ns, while the bin edge

was scanned from 0 ns to 149.2 ns in steps of 14.92 ns. Figure 5·48 shows scan results

for the 9d dataset. While trends appeared largely random, a straight line was fit

to the scan results in order determine the sensitivities of R to both parameters; see

Table 5.25. For the bin edge scan, it was verified that a shift of one bin width returned

the same fit results as the default shift of 0 ns. This combined with the negligible

sensitivities and varying points implies negligible systematic effects on R from the

choice of bin edge. For the systematic error due to the choice of bin width, it should

be noted that in general the choice of bin width should be optimized to be equal to

the peak of the cyclotron period distribution of the stored muons, which from the
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(a) Scan over bin width. (b) Scan over bin edge.

Figure 5·48: Scans over binning parameters for the 9d dataset. In
general the points are randomly spread around, indicating no real sys-
tematic effect.

Sensitivity to Binning Parameters

Dataset dR/dbin width dR/dbin edge

60h 24.5 −0.1

HighKick 6.0 −0.7

9d −22.8 −0.3

Endgame −41.7 −0.6

Table 5.25: Sensitivities of R to binning parameters. Units are in
ppb/ns. While some of these values may appear significant, inspection
of the actual plots reveals that the actual trends are not quite so con-
vincing, with points varying above and below the fitted line randomly.

fast rotation analysis informed the choice of 149.2 ns. This uncertainty from the fast

rotation analysis would reasonably be less than 0.1 ns. Multiplying this uncertainty

by the dataset sensitivities gives uncertainties of 2.5, 0.6, 2.3, and 4.2 ppb for the 60h,

HighKick, 9d, and Endgame datasets respectively.

5.5.7 Systematic error from differential decay

Muons are injected into the storage ring with a range of momenta. Muons with larger

momenta will in general live longer than muons with smaller momenta, due to their

time-dilated lifetimes. Muons with smaller momenta at smaller radii therefore decay
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more often, leading to an increasing beam radial position and increasing average

momentum over the course of a fill. Decay positrons from muons at greater radii in

general take longer to reach the calorimeters than those from muons at small radii.

In the precession frequency measurement, the hit times of the detected positrons

correspond to the decay times of muons plus their drift times. Because the average

drift time changes over the course of a fill due to this average momentum or radial

position distribution increase, there is thus a changing phase over the course of a fill.

This effect is called “differential decay.” Because the differential decay effect can only

increase the average stored momentum of the beam, a correction can be applied to

the final measured ωa value. A calculation for the previous E821 experiment resulted

in a shift on ωa of 〈∆ωa/ωa〉 ≈ −36.8 ppb [126], which should be comparable to

any calculation for E989. The systematic error applied to the precession frequency

measurement is then a combination of the errors in the calculation of this shift. For

the purposes of this analysis, an estimate of 25% of 40 ppb at 10 ppb is taken as the

systematic error for all datasets25.

5.5.8 Systematic errors in the E-field and pitch corrections

The electric field and pitch corrections modify the final value extracted for ωa as

described in Section 2.7. Any errors in the estimation of these corrections is by

extension an error in the precession frequency measurement. The evaluation of these

errors is performed by separate working groups. Given here are preliminary estimates

of the errors.

The pitch correction is dependent on the vertical width of the muon beam and

is evaluated by the tracking analysis. A preliminary analysis of the 60h dataset

25It should be remembered that there is a phase-momentum correlation for muons at injection as
discussed in Section 5.5.4, which affects the changing phase and corresponding error even further.
Underway beam-line simulations are needed to fully measure the phase-momentum correlation and
fully estimate this systematic shift.
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Electric Field Corrections

Dataset Correction Statistical error Systematic error

60h −519 1.0 27.0

HighKick N/A N/A N/A

9d −463 1.0 36.0

Endgame −467 1.0 20.0

Table 5.26: Electric field corrections estimated by the Cornell fast ro-
tation analysis group [129, 130, 131]. Units are in ppb.

calculated an estimated correction and systematic error of [127, 128]

CP ∼ −160± 15 ppb. (5.44)

This error is split into track reconstruction errors of which there are many, O(10 ppb),

a tracker-calorimeter acceptance correction with a small expected error, and uncer-

tainty in simulation models used to extract the pitch correction from the vertical

width measurements. The variation in the correction between datasets is expected to

be small and the error in the correction is expected to be relatively consistent. The

pitch correction error given in Equation 5.44 is taken as the systematic error for all

datasets.

The E-field correction is evaluated with the fast rotation analysis and is dependent

on the momentum distribution of the stored muon beam. Analyses of the 60h, 9d,

and Endgame datasets by an independent analysis group yielded the results shown

in Table 5.26. While not the final numbers for Run 1, the estimates and errors given

will change only slightly from further DQC cuts. For the HighKick dataset which has

not been evaluated at the time of writing, a systematic error on the E-field correction

is taken as the largest error from the other datasets, that being 36 ppb for the 9d

dataset.

The above corrections make certain assumptions with regards to the conditions
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which influence the stored beam dynamics. Further errors can be attributable to

non-linearities in the electrostatic quadrupole field, misalignment of the quadrupole

plates, the changing voltage on the quadrupole plates due to the bad resistors, and

any residual radial magnetic field. Preliminary analyses using simulation have es-

timated additional systematic errors on the pitch and E-field corrections of ∼5 ppb

and ∼20 ppb respectively [132, 133]. The error for the pitch correction has already

been included in the number given in Equation 5.44, and the error for the E-field

correction is added in quadrature with the errors given in Table 5.26. This results in

E-field errors of 33.6, 41.2, 41.2, and 28.3 ppb for the 60h, HighKick, 9d, and Endgame

datasets respectively. Simulation efforts are continuing in order to assess these errors

more accurately. While the combined E-field and pitch errors listed here are greater

than the target quadrature sum of 30 ppb, they are nonetheless small compared to

the statistical error on R and are deemed acceptable for Run 1.

5.5.9 Systematic error due to vertical beam motion

As described in Section 4.4, due to the damaged resistors present in Run 1 the vertical

distribution of the stored muon beam changed over the course of a fill. Because the

g − 2 phase is different for each vertical position due to drift length, this leads to a

changing average phase and thus a systematic error26. Preliminary studies fitting the

average g−2 phase with the tracker station 18 data have calculated systematic shifts

in ωa for the 60h and Endgame datasets of 420 ppb and 540 ppb respectively [134].

Since the tracker data samples the ring in one azimuthal section, these systematic

shifts need to be averaged around the ring, accounting for the oscillating beam width.

This averaging factor has been calculated from simulation to be near 0.43 [135]. Mul-

tiplying these numbers together results in average systematic shifts of approximately

181 and 232 ppb for the 60h and Endgame datasets respectively.

26The acceptance also changes across the storage region which ties into the error.
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Since this effect is a one-directional shift in ωa, similar to the differential decay

effect, the shifts can be applied as corrections to the final extracted precession fre-

quencies. As systematic studies mature and the shifts for the various datasets are

better quantified, this is the intended action. For now the systematic error applied

from this procedure is conservatively taken as 25% of the systematic shifts themselves

for the respective datasets, with the smaller number from the 60h dataset being ap-

plied to the HighKick and 9d datasets as well. The 60h result was chosen instead of

the Endgame result because the Endgame dataset saw noticeably larger drift due to

further degradation of the quadrupole resistors over the course of the run. This leads

to systematic errors of 45 ppb for the 60h, HighKick, and 9d datasets and 58 ppb for

the Endgame dataset.

5.5.10 Systematic error summary

Table 5.27 gives all evaluated systematic errors in this analysis as described in the

preceding sections. The final total quadrature sums of the systematic errors including

the various preliminary and conservative estimates for some errors lie within the

range 70 – 100 ppb. These are in comparison to the final target goal of 70 ppb for

the precession frequency measurement. Once the gain issues are resolved and the

other working groups improve their systematic uncertainty evaluations, the systematic

errors for Run 1 and future runs of E989 will very likely reach the target goal. As

the systematic errors stand currently in this analysis, they are all small compared to

the Run 1 statistical errors of each respective dataset, making the presented analysis

statistics-limited.
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Run 1 Precession Frequency Systematic Errors

Error 60h HighKick 9d Endgame

Pileup amplitude 22.2 19.0 9.0 9.4

Pileup phase - time-shift 17.6 19.0 17.1 14.3

Pileup phase - energy-scale 19.4 3.7 5.5 5.3

In-fill gain amplitude 1.4 28.6 0.4 43.6

In-fill gain lifetime 5.0 11.2 11.6 16.5

STDP On/Off ∼ 11.0 ∼ 11.0 ∼ 11.0 ∼ 11.0

CBO frequency model 7.5 0.4 2.0 8.0

CBO decoherence envelope 17.6 18.0 9.3 4.3

Lost muon cuts < 0.5 < 0.5 < 0.5 < 0.5

Fixed κloss 1.2 4.9 3.1 0.1

Ratio construction Ta 2.2 2.2 < 2.2 < 2.2

Ratio construction τµ < 0.1 < 0.1 < 0.1 < 0.1

Bin width 2.5 0.6 2.3 4.2

Quadrature Sum 41.3 46.4 27.8 52.2

Lost muon phase bias 53.6 17.9 22.3 58.0

Differential decay ∼ 10 ∼ 10 ∼ 10 ∼ 10

Pitch correction 15 ∼ 15 ∼ 15 ∼ 15

E-field correction 33.6 ∼ 41.2 41.2 28.3

Vertical beam motion ∼ 45 ∼ 45 ∼ 45 ∼ 58

Quadrature Sum 79.7 66.1 67.4 88.6

Total Quadrature Sum 89.8 80.8 72.9 102.8

Table 5.27: Final systematic errors evaluated in the Run 1 precession
frequency analysis to the 60h, HighKick, 9d, and Endgame datasets. All
units are in ppb. The table is split into two sections. The upper section
consists of systematic errors directly evaluated by the author while
the lower section consists of preliminary systematic estimates by other
working groups. The final errors for the Run 1 datasets will change
from these as the final DQC cuts are made and analyses improved,
however the scale of these errors is expected to remain consistent.
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5.6 Final precession frequency results

Four of five datasets from Run 1 of E989 have been analyzed for this dissertation,

those being the 60h, HighKick, 9d, and Endgame27. In each case the datasets are

the near-final datasets for Run 1. The precession frequency analysis was done using

the Ratio Method, an analysis technique for fitting the decay positron time spectra

which divides out the exponential decay along with slow and smooth terms in the

data. The final results for the blinded frequency R values for the different datasets

along with their total statistical and systematic errors are given in Table 5.28. Fig-

ure 5·49 compares the R values between datasets. The total error for the four datasets

is 469.4 ppb, conservatively assuming completely correlated systematic errors. The

analysis is statistics limited, even with the conservative preliminary estimates for cer-

tain systematic errors as given in Table 5.27. Before combining the results, the R

values given here will have their individual E-field and pitch corrections applied, and

their blindings normalized. Since the magnetic field changes between datasets, the R

values will be converted back into the precession frequency ωa using Equation 5.14,

before combination with the magnetic field measurements to give per-dataset values

of aµ. The dataset aµ values will then be combined in a weighted average.

27The fifth dataset as a reminder is the LowKick dataset, which contains less stats than the rest
of the datasets, but which will most likely be included in the final Run 1 result.
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Run 1 Precession Frequency Results

Dataset R σstat. σsys. σtot.

60h −20.5562 1.3581 0.0898 1.3611

HighKick −17.4755 1.4112 0.0808 1.4135

9d −17.7182 0.9033 0.0729 0.9062

Endgame −17.3406 0.6393 0.1028 0.6475

Total (systematics 100% correlated) 0.4605 0.4694

Table 5.28: Run 1 final results for the precession frequency analysis
datasets. The R values given here are mean values of fits to 50 differ-
ent random seeds. The 60h dataset has a different software blinding
than the rest, shown by the different mean R value. Statistical and sys-
tematic errors are included alongside the total error for each dataset. In
each dataset case the error is statistics dominated. The total combined
error for all datasets is shown for the case where the systematic errors
are assumed to be 100% correlated. Units are in ppm.

Figure 5·49: Comparison between dataset mean R values from fits to
50 different random seeds. The 60h dataset has a different software
blinding than the rest of the datasets, so it’s mean value cannot be
directly compared to the rest.



Chapter 6

Conclusion

Experiment E821 measured the anomalous magnetic moment of the muon, aµ, to a

relative uncertainty of 540 parts per billion. The measured value corresponds to a

discrepancy of three to four standard deviations from the Standard Model theoretical

value, depending on the chosen theory. In order to verify this discrepancy, a new

experiment based upon the same principles has been undertaken to measure the

same quantity with greater precision. Fermilab Muon g − 2, E989, measures aµ by

measuring the spin precession frequency of muons within a magnetic storage ring,

and the strength of the magnetic field that the muons experience. The former is done

by counting the number of decay positrons observed in electromagnetic calorimeters

above an energy threshold, while the latter is done using NMR probes in and around

the muon storage region.

Straw trackers assist both measurements by measuring muon beam dynamics

which directly impact both the precession frequency measurement and the distri-

bution of muons within the measured magnetic field. In Chapter 4 this dissertation

presented the track fitting algorithm used in the reconstruction of decay positron

tracks, necessary for reconstructing muon beam decay vertices. The track fitting

method, Geane, propagates positrons in the full E989 Geant4 simulation, with the

advantage of direct access to the geometry, material, and non-uniform magnetic field

present within the tracker region. Transport matrices, error matrices, and predicted

parameter vectors are generated which are used in a global χ2 minimization algo-

206
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rithm, to produce optimal state vectors at the entrance to the tracker. These state

vectors are extrapolated back into the storage region to approximate muon decay ver-

tices, from which the muon distribution and beam motion can be derived. The beam

motion was observed to be coherent, such that the muons as a whole oscillate within

the storage region. This coherent motion has been well characterized both radially

and vertically. These radial and vertical oscillations introduce modulations on top of

the ωa signal seen in the decay positron time spectra. Due to damaged quadrupole

resistors in Run 1, the frequency of these oscillations was found to be changing over

time. Both the modulations and the changing frequency effect were included in the

precession frequency analysis. Lastly, the equilibrium vertical distribution of the

muons ties directly into the pitch correction which shifts the measured ωa frequency

by O(100 ppb). Preliminary analysis of the 60h dataset has determined a value of

−160 ± 15 ppb. Numerous plots regarding the beam distribution and dynamics can

be found in Section 4.4.

Muon decay is a self-analyzing process, meaning that decay positrons retain muon

spin information. The correlation between the emission direction of high energy decay

positrons and the muon spin at the time of the decay provides the signal with which

to measure the muon spin precession frequency. Decay positrons above an energy

threshold are counted and put into a time histogram, from which the ωa oscillation

can be extracted. The time spectrum is corrected for gain variations and the pileup

background which distort the g − 2 signal. The precession frequency in this analysis

is extracted using a technique called the Ratio Method, detailed in Chapter 5. The

Ratio Method works by splitting the positron decay time spectrum into four subsets,

time-shifting two of them, and taking the ratio of the difference and sum of the

shifted and un-shifted datasets respectively. This procedure removes the muon decay

exponential from the data while also reducing any slowly and smoothly varying effects
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present in the data. Precession frequency extraction analyses for four near-final Run 1

datasets were presented with full systematic error evaluations. Fit functions including

terms which account for various beam dynamics effects have been applied to the data

with success. The integrity of the fits have been checked by splitting up the data in

numerous ways, and verifying that fit results remain consistent regardless of detector

number, fit start time, energy threshold, bunch number, etc. Systematic errors were

evaluated with respect to the assumptions made regarding beam dynamics terms, the

subtraction of the pileup background, treatment of the gain variations, and more. The

systematic errors are well understood, with independent groups currently working on

improving the largest outstanding systematic errors. Preliminary estimates of the

E-field corrections are −519 ± 27, −463 ± 36, and −467 ± 20 ppb, for the 60h, 9d,

and Endgame datasets respectively. Summary tables for the systematic errors and

final extracted precession frequency values can be found in Tables 5.27 and 5.28. The

total Run 1 precession frequency error determined in this analysis is 469.4 ppb, where

the error is statistics dominated.

The expected error in the magnetic field measurement for Run 1 is O(140 ppb).

Combined with the total precession frequency error determined in this analysis, the

error on aµ is expected to be O(500 ppb), comparable to the uncertainty in the E821

measurement. For the final Run 1 production datasets with the last data quality cuts

and gain improvements, the final errors are expected to improve only slightly. An

independent measurement of aµ that is statistically consistent with the E821 result

would go a long way towards increasing the confidence in the discrepancy between

theory and experiment. The Run 1 publication is expected to be complete sometime

in 2020. Data has already been gathered for Run 2, Run 3 has just begun in the

late fall of 2019, and Run 4 is planned to run from late 2020 to the middle of 2021.

With the rate improvements seen in Run 2 and the expected increases for Run 3



209

and Run 4, the target uncertainty goal of 140 ppb is a likely reality. Assuming the

same central value for aµ is measured as was done in the previous experiment, the

statistical significance of the discrepancy between the theory and experiment would

be pushed over five standard deviations, providing strong evidence for the existence

of new physics, and constraining any explanatory models.



Appendix A

Tracking Derivations

A.1 Straw measurement angular correction

The tracker straws do not measure U and V coordinates directly, but instead measure

the DCA radii derived from measured hit times. In order to utilize the minimization

procedure on measured track parameters described in Section 4.2.2, these radii must

first be converted to U and V parameters, and similarly for the U and V errors. While

to first order the measured DCAs can be used identically as the U and V positions,

it was found that there were slight biases in the truth pulls.

In order to improve the results, angular corrections were made to the DCAs to

give more accurate estimates of the “measured” positions. It was found that for the

error correction, assuming a straight particle path was sufficient for ideal results. For

the position correction, it was found that assuming a circular particle path (constant

field) correction for the curved tracks was sufficient. These corrections are dependent

on the angle of the track, so it’s important to note that during each successive iteration

of the track fitting, the “measured” parameters are adjusted by the latest “predicted”

momenta, which change the angle of the track. The correction depends on whether the

track went to the left or right side of the wire. Note that the momentum perpendicular

to the straw measurement axis can be ignored since it does not affect the U or V

value. A summary of the calculation of the right side correction follows, with the left

side correction being calculated in a similar manner. Figure A·1 provides a diagram

showing the parameters in the calculation.

210
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Figure A·1: A positron passing through a straw will produce a hit of
radius d. The desired value is the U or V position along the straw
measurement axis. The positron trajectory can be approximated as a
circle in a constant magnetic field over the length of the path across
the straw. The curvature for the high energy positrons is small such
that r � d and the angle between the trajectory and the center of the
circle can be approximated as 90°. Sizes and angles are exaggerated.
A similar diagram can be drawn for positrons passing to the left of the
wire.
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To solve for the measured U (or V) value, first use the following trigonometric

identity:

(r + d)2 = r2 + U2 − 2rU cos(90 + θ), (A.1)

where U is the parameter of interest. The angle θ can be determined from

ẑ‖ · p̂‖ = cos θ, θ = cos−1 p‖
p
, (A.2)

where p‖ is the positron momentum anti-parallel to the U measurement axis at the

wire plane, and p is the total momentum. Using other trigonometric identities and

solving for U gives

U = −r
√

1−
(p‖
p

)2

+

√
d2 + 2dr + r2

(
1−

(p‖
p

)2)
, (A.3)

for the right side correction. Similarly,

U = +r

√
1−

(p‖
p

)2

−
√
d2 + 2dr + r2

(
1−

(p‖
p

)2)
, (A.4)

for the left side correction. The radius r can be calculated from the momentum and

magnetic field at the predicted hit position, and the momentum components can be

determined within the Geant4 simulation. The straight line correction to the errors

is done in a simpler manner using the Pythagorean theorem, such that

σ′UV =
σUV√

1−
(p‖
p

)2
, (A.5)

where σ′UV is the improved error from the original error σUV on the DCA.
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A.2 Track fitting correlation matrices

Define εMN as the deviation in average predicted track parameters from the true ones

on plane M , from track parameters propagated from plane N , as

εMN = p̃M(pN)− pM , (A.6)

where N < M can be any plane numbers. From the definition of transport matrices

in Equation 4.6,

εM0 = TMNεN0 + εMN , (A.7)

where εMN is any additional deviation between planes N and M due to material

effects. By definition, the correlation between error matrices on planes M and N is

given by

σMN = 〈εM0εN0〉 = 〈εM0 · εN0〉 − 〈εM0〉 · 〈εN0〉. (A.8)

The last term in Equation A.8 is zero since 〈εM0〉 and 〈εN0〉 are both individually

zero. Therefore

σMN = 〈(TMNεN0 + εMN) · εN0〉, (A.9)

and since εMN and εN0 are independent, such that their product is zero,

σMN = TMNσN , (A.10)

since σN = 〈εN0 · εN0〉.



Appendix B

Ratio Method Derivation

B.1 Ratio form and function

Consider the 5 parameter function:

N5(t) = N0e
−t/τ (1 + A cos(ωat+ φ)), (B.1)

which describes some ideal dataset in histogram format. Here φ will be set to zero

for simplicity. Now define the variables u+(t), u−(t), v1(t), and v2(t) as

u+(t) =
1

4
N5(t+ T/2),

u−(t) =
1

4
N5(t− T/2),

v1(t) =
1

4
N5(t),

v2(t) =
1

4
N5(t),

(B.2)

where the 1/4 out front reflects randomly splitting the whole dataset into 4 equally

weighted sub-datasets, and T is the g − 2 period known a priori to high precision,

O(10−6). This corresponds to a weighting of 1:1:1:1 between the datasets. To be

explicit here regarding the signs, the counts that are filled into the histogram described

by u+ have their times shifted as t→ t−T/2, which is what the function N5(t+T/2)
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describes, and vice versa for u−. To form the ratio define the variables:

U(t) = u+(t) + u−(t),

V (t) = v1(t) + v2(t),

R(t) =
V (t)− U(t)

V (t) + U(t)
.

(B.3)

Plugging in and dividing the common terms (N0e
−t/τ/4),

R(t) =

2(1 + A cos(ωat))− e−T/2τ (1 + A cos(ωat+ ωaT/2))
− eT/2τ (1 + A cos(ωat− ωaT/2))

2(1 + A cos(ωat)) + e−T/2τ (1 + A cos(ωat+ ωaT/2))
+ eT/2τ (1 + A cos(ωat− ωaT/2))

. (B.4)

Now set ωaT/2 = δ, and note that T is really

T = Tguess =
2π

ωa
+ ∆T,

∆T = Tguess − Ttrue.
(B.5)

Being explicit,

δ =
ωa
2
Tguess =

ωa
2

(
2π

ωa
+ ∆T ) = π + π

∆T

Ttrue
= π + π(δT ), (B.6)

and δ can be redefined as

δ = π(δT ), (B.7)

by flipping the sign of any cosine terms that contain δ.

Then, using the trig identity

cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b), (B.8)
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so that

cos(ωat± δ) = cos(ωat) cos δ ∓ sin(ωat) sin δ

≈ cos(ωat)(1− δ2)∓ sin(ωat)δ

≈ cos(ωat),

(B.9)

since δ ∼ O(10−5), the ratio becomes

R(t) ≈ 2(1 + A cos(ωat))− (1− A cos(ωat))(e
−T/2τ + eT/2τ )

2(1 + A cos(ωat)) + (1− A cos(ωat))(e−T/2τ + eT/2τ )
. (B.10)

Expanding

e±T/2τ = 1± T

2τ
+

1

2

( T
2τ

)2

± . . . , (B.11)

replacing and simplifying,

R(t) ≈ A cos(ωat)− C(1− A cos(ωat))

1 + C(1− A cos(ωat))
, (B.12)

where

C =
1

16

(T
τ

)2

≈ 2.87× 10−4. (B.13)

Using the expansion

f(x) =
1

1 + x
= 1− x+ x2 − . . . , |x| < 1, (B.14)

and since C is small, the denominator can be manipulated such that

R(t) ≈ A cos(ωat)− C(1− A cos(ωat))(1− C(1− A cos(ωat)))

≈ A cos(ωat)− C + CA2 cos2(ωat),
(B.15)

after dropping terms of O(C2) and higher. In practice the last term is omitted since
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it has a minimal effect on the fitted value of ωa [109], and one arrives at

R(t) ≈ A cos(ωat)− C, (B.16)

the conventional 3 parameter ratio function.

In order to avoid approximations one can instead weight the counts in the his-

tograms as

u+(t) : u−(t) : v1(t) : v2(t) = eT/2τ : e−T/2τ : 1 : 1, (B.17)

so that

u+(t) =
eT/2τ

2 + eT/2τ + e−T/2τ
N5(t+ T/2),

u−(t) =
e−T/2τ

2 + eT/2τ + e−T/2τ
N5(t− T/2),

v1(t) =
1

2 + eT/2τ + e−T/2τ
N5(t),

v2(t) =
1

2 + eT/2τ + e−T/2τ
N5(t).

(B.18)

(These factors out front are close to 1/4 since e±T/2τ ≈ e±4.35/2∗64.4 ≈ 1.034, .967.)

Then instead R(t) becomes

R(t) =
2(1 + A cos(ωat))− (1− A cos(ωat+ δ))− (1− A cos(ωat− δ))
2(1 + A cos(ωat)) + (1− A cos(ωat+ δ)) + (1− A cos(ωat− δ))

, (B.19)

where the e±T/2τ terms out front now cancel. Using Equation B.9 again and this time

avoiding approximations in δ,

R(t) =
2A cos(ωat)(1 + cos δ)

4 + 2A cos(ωat)(1− cos δ)
, (B.20)

after simplifying. In the limit that

δ = π(δT )→ 0 (B.21)
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since δT is small,

R(t) ≈ A cos(ωat), (B.22)

with the only approximation being made at O(δ2) ∼ O(10−10).

Finally, while the 3 parameter ratio function suffices for fits to data containing

slow modulations, it does not suffice for faster oscillation features. In that case it is

more useful to fit with the non-approximated or simplified version of the ratio,

R(t) =
v1(t) + v2(t)− u+(t)− u−(t)

v1(t) + v2(t) + u+(t) + u−(t)
,

=
2f(t)− f+(t)− f−(t)

2f(t) + f+(t) + f−(t)
,

(B.23)

where

f(t) = C(t)(1 + A cos(ωat+ φ))

f±(t) = f(t± Ta/2),
(B.24)

and C(t) can encode any other effects in the data that need to be fitted for, such as

the CBO,

C(t) = 1 + Acbo · e−t/τcbo · cos(ωcbot+ φcbo). (B.25)

Additionally, any other fit parameters such as A or φ can be made a function of t.

Using the non-approximated form for the final fit function gives greater confidence

in the fit results for the high precision ωa extraction necessary for the experimental

measurement.
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B.2 Ratio errors

In order to determine the errors on the points in the formed ratio, Equation B.3,

standard error propagation is used:

σR(t)2 =
(∂R(t)

∂V (t)

)2

δV (t)2 +
(∂R(t)

∂U(t)

)2

δU(t)2 (B.26)

This works because V (t) and U(t) are statistically independent datasets. Using stan-

dard error propagation again,

δV (t)2 = δv1(t)2 + δv2(t)2 = v1(t) + v2(t) = V (t),

δU(t)2 = δu+(t)2 + δu−(t)2 = u+(t) + u−(t) = U(t).
(B.27)

Calculating out and simplifying the partial derivatives, (dropping the time-dependencies),

∂R

∂V
=

2U

(V + U)2
,

∂R

∂U
=

−2V

(V + U)2
.

(B.28)

Combining and simplifying, the error formula is given as:

σ2
R =

4UV

(V + U)3
=

1−R2

(V + U)
(B.29)



Appendix C

Pileup Modified Errors

In the pileup subtraction method detailed in Section 5.2.1, pileup events are statisti-

cally constructed and then subtracted from the data. Because of this, the errors on

the bins need to be adjusted appropriately. Reference [136] describes the modified

errors, but is not quite correct. Here is provided an improved calculation that is easier

to understand. While we are mainly interested in the errors on the histogram bins

after pileup subtraction, it first helps to examine the errors of the pileup histogram

itself. Here we only consider doublets.

In the asymmetric shadow window pileup method, shadow doublets are con-

structed from two singlets. The pileup histogram is then filled as the sum of the

doublets minus the singlets,

P = D − S, (C.1)

where D or S are only added or subtracted when they are above some energy thresh-

old. If the threshold is set to zero, then for every doublet one entry will be added and

two will be subtracted. Since these entries are exactly correlated, the error in each

time bin will be

σP =
√
ND, (C.2)

where ND is the number of doublets in that time bin. If the energy threshold is above

zero, then we can determine whether the counts in the pileup histogram increase or
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E1 < Eth E1 > Eth

E2 < Eth N1(+1) N2(0)

E2 > Eth N3(0) N4(−1)

Table C.1: Table of doublets above threshold. Here E1 and E2 are the
energies of the two singlets, Eth is the energy threshold, and Ni are the
number of doublets above threshold for the different combinations of
E1 and E2. (N1 is assumed above threshold here.) The numbers in the
parentheses indicate the number of counts gained or lost in the pileup
histogram.

decrease based on whether the singlets and doublets are above threshold or not. Table

C.1 shows the different combinations of counts put into the pileup histogram. The

counts that go into P will be

P =
∑
i

Ni − singlets above threshold

= (N1 +N2 +N3 +N4)− (N2 +N4)− (N3 +N4)

= N1 −N4

(C.3)

and the errors are

σP =
√
N1 +N4. (C.4)

Consider the individual cases: In the cases for N1, you will gain a count from the

doublet above threshold, and lose no counts since both singlets are below threshold.

In the cases for N2 and N3, you will gain a count from the doublet, and lose a count

from one of the singlets which is above threshold. In the cases for N4, you will gain

a count from the doublet and lose two counts from the singlets which are both above

threshold. Since the doublet and singlets are exactly correlated, the N1 and N4 cases

naturally result in a single weight being added into the error, while the N2 and N3

cases result in no additions to the error.
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Consider now the pileup subtracted time spectrum. The corrected spectrum can

be written as

Ncorrected = Nmeasured − P. (C.5)

The content in Nmeasured does not matter exactly. What matters is what is in Nmeasured

that is also within P , for that is where the correlations come from. Since Nmeasured is

the sum of all singlets above threshold, we can write it as

Nmeasured = Nother +N2 +N3 + 2N4 (C.6)

since we know that those cases Ni listed come from singlets above threshold, and

Nother is anything in the measured hits that was not included in the pileup shadow

construction. We can then replace P and simplify to get

Ncorrected = Nother −N1 +N2 +N3 + 3N4. (C.7)

The error on the corrected histogram is then

σNcorrected
=
√
Nother +N1 +N2 +N3 + 9N4. (C.8)

Replacing Nother as

Nother = Ncorrected +N1 −N2 −N3 − 3N4, (C.9)

we can remove the dependence of the corrected histogram errors on the unknown

quantity and arrive at

σNcorrected
=
√
Ncorrected + 2N1 + 6N4,

=
√
Ncorrected ·

√
1 + (2N1 + 6N4)/Ncorrected.

(C.10)
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(This argument might seem circular at the end, but it works because of the squaring

that occurs when calculating the error.) In the end we have a form for the bin errors

of the pileup corrected histogram which only depend on N1 and N4 in addition to

the number of counts in the corrected histogram. As shown it can be re-factored into

a form equal to the naive errors (just the bin content) times some correction factor.

Since N1 and N4 are much smaller than Ncorrected at all times, and because they decay

away at about twice the rate as the pileup diminishes, the change to the errors is

small, of the order 1 or 2% at 30 µs.

C.1 Pileup errors for the ratio function

Equation C.10 applies to the corrected errors for a pileup subtracted histogram, but

what about the modifications to the ratio errors? If we parameterize that equation

as

σNcorrected
=
√
Ncorrected ·

√
γ(t), (C.11)

where the correction factor γ(t) ≈ γe−t/τµ is small and decays at approximately the

muon lifetime, we can recast the errors on the individual ratio sub-datasets as

δV (t)2 = δv1(t)2 · γ(t) + δv2(t)2 · γ(t) = (v1(t) + v2(t)) · γ(t) = V (t) · γ(t),

δU(t)2 = δu+(t)2 · γ(t+ T/2) + δu−(t)2 · γ(t− T/2)

≈ u+(t) · γ(t)e−T/2τ + u−(t) · γ(t)e+T/2τ

≈ (u+(t) + u−(t)) · γ(t) ·
(

1 +
1

2

( T
2τ

)2)
≈ U(t) · γ(t),

(C.12)

where in the last step the 1
2

(
T
2τ

)2

term has been neglected because it’s small. With

these approximations having been made, the modified errors on the ratio points simply
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become

σ2
R → σ2

R · γ(t), (C.13)

with the correction being the same as that on the pileup subtracted histogram. Credit

to J. Paley for this derivation [110].



Appendix D

Fit Result Correlation Matrices

Correlation matrices for the 60h, HighKick, 9d, and Endgame datasets are included

here, for single seed fits to the calorimeter sum data. In the matrices the rows and

columns for the κloss parameter are blank as the parameter is fixed from T-Method

fits to the same data. The only parameter that is significantly correlated with R is

the g−2 phase. Correlations between CBO parameters can be seen, and it was found

that there were stronger correlations between higher order CBO parameters in the

HighKick and 9d datasets than in the 60h and Endgame datasets.

225



226

Figure D·1: Correlation matrix for a single seed ratio fit to the 60h
dataset. The only significant correlation with R is the g − 2 phase.
κloss is fixed, hence the corresponding empty row and column.
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Figure D·2: Correlation matrix for the single seed ratio fit to the High-
Kick dataset. The only significant correlation with R is the g − 2
phase. τcbo and κloss are fixed, hence the corresponding empty rows
and columns.
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Figure D·3: Correlation matrix for the single seed ratio fit to the 9d
dataset. The only significant correlation with R is the g−2 phase. κloss
is fixed, hence the corresponding empty row and column.
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Figure D·4: Correlation matrix for the single seed ratio fit to the
Endgame dataset. The only significant correlation with R is the g − 2
phase. κloss is fixed, hence the corresponding empty row and column.



Appendix E

Ratio Method – T-Method

Randomization Comparison

The final value of ωa and by extension aµ will be some type of combination or average

between different analyzers and their different fit types. Ratio Method fits due to

their additional level of randomization will result in fitted R values that are consistent

but different from T-Method fits to the same data. In order to assist in combining

the Ratio Method results with T-Method results, it is desirable to understand the

expected difference in the fitted ωa value between the two fit types.

In order to investigate this a toy MC study was performed with 100 pseudo-

experiments. Each pseudo-experiment consisted of a single set of “positron” data,

generated using a 1D ROOT function corresponding to an energy threshold time his-

togram, described by the general five parameter function,

N = N0 · e−t/τ · [1 + A cos(ωat+ φ)]. (E.1)

The amount of statistics in each pseudo-experiment was chosen to be comparable

to the 60h dataset. This single set of hits was then time-randomized and ratio-

randomized with 50 different random seeds, where the times of the generated hits

were randomized in the same way as was done for data. In this way each pseudo-

experiment corresponds to an idealized approximation of the 60h dataset, with 50

different random seeds applied before fitting.

Five parameter fits and three parameter ratio fits were then performed on the
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histograms for all random seeds, and for all pseudo-experiments. The distribution of

fitted R values for a single pseudo-experiment is shown in Figure E·1a. While the true

R value is 0 as chosen in the simulation, the R values for a single pseudo-experiment

will be centered around some other value that is statistically consistent with 0. (This

is satisfied since the statistical error on R is approximately 1.3 ppm.) Plots for all

pseudo-experiment R distribution means and widths are shown in Figures E·1b and

E·1c respectively. In the former, the means of the plotted histograms are consistent

with 0, with widths corresponding to the statistical error on R. In the latter the

widths of the T-Method and Ratio Method fits due to the randomization are shown.

It can be seen that the Ratio Method, while having the same statistical precision as

the T-Method, has a larger width due to the randomization of counts in the ratio

histograms.

Finally, the differences in the mean of the R distributions between the T-Method

fit and the Ratio Method fit for each pseudo-experiment is plotted in Figure E·1d. It is

the width of this histogram that is the number of interest. What this plot shows is that

for a dataset with approximately the same statistics as the 60h dataset, an average

R value for 50 different random seeds for a T-Method fit that is 70 ppb different from

that for a ratio fit, is statistically consistent to 1σ. Table E.1 includes the expected

differences for studies done with 10 times the statistics of the 60h dataset, and with

the VW randomization applied to the hit times.
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(a) Fitted R distribution for a single
pseudo-experiment for 5 parameter and 3
parameter ratio fits, for 50 different ran-
dom seeds.

(b) The distribution of means of the fitted
R distributions, for 100 separate pseudo-
experiments.

(c) The distribution of widths of the
fitted R distributions, for 100 separate
pseudo-experiments.

(d) The distribution of differences in fit-
ted R means between 5 parameter fits
and 3 parameter ratio fits per pseudo-
experiment for 100 pseudo-experiments.

Figure E·1: Toy MC study investigating differences in expected R val-
ues between Ratio Method and T-Method fits due to different random-
izations. The statistical precision on R for a single fit is approximately
1.3 ppm.
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T-R Method Randomization Comparison

Stat level and randomization Error on R Mean Difference RMS Error on RMS

∼ 60h stats 1322.3 70.1 5.0

∼ 10 × 60h stats 416.4 29.3 2.1

∼ 60h stats w/ VW randomization 1374.9 84.6 6.0

Table E.1: RMS of mean difference between T and R Method fits with
different levels of statistics. In each case times are randomized by±Tc/2
where Tc is the cyclotron period or bin width. In the third row times
are also randomized by ±TVW/2 where TVW is the VW period, here set
to 485.709 ns corresponding to an n value of 0.120. Units are in ppb.
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