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Abstract

The SuperCDMS SNOLAB experiment will be a 20-kg scale Si and Ge direct dark matter detection
experiment designed to probe down to 300 MeV in dark matter (DM) mass through DM-nucleus
scattering and 500 keV in DM electron scattering. In order to reach these low masses with appreciable
sensitivity to dark matter, it needs to achieve very low energy resolution (< 10 ev) for nuclear recoils
in both detector materials, which will be achieved using a new detector design and operating mode,
CDMS HV. This detector is designed to operate at a bias of 100V to convert charges liberated in
our detector targets to into phonon energy in order to resolve individual electron-hole pairs. This
has never before been achieved in a kg-scale detector.

In this thesis, I cover three elements of the design of the CDMS HV detectors. 1 discuss the
detector physics controlling how charges and phonons are generated in our detector crystals, com-
paring theory to results of recent experiments carried out at Stanford. I move on to describe the
operating principles of our phonon-mediated charge readout, as well as the design of the CDMS HV
detector. I then describe the performance tests of early CDMS HV prototypes in conjunction with
the SuperCDMS SNOLAB electronics, and discuss the path towards achieving single electron-hole
pair resolving detectors at the kg-scale given the performance obtained thus far. As a result of these
tests, we were able to refine our noise and sensor dynamics models, and develop new metrics for
diagnosing non-ideal sources of noise to aid in reducing coupling of the external environment to our
detectors.

In order to study the microphysics of phonon and charge production in our target crystals, we
fabricated a number of gram-scale devices with various sensor designs in order to separate sensor and
environmental effects from intrinsic crystal properties. These devices provided the first successful
demonstrating of using voltage to amplify charge energy by production of phonons (the Neganov-
Trofimov-Luke effect) in order to resolve electron-hole pairs, and opened up a new regime of dark
matter and photon science at the gram-scale that we are just beginning to explore. A first dark
matter search was carried out with one of these gram-scale devices, producing world-leading limits
on electron-recoiling dark matter between 0.5 and 5 MeV in dark matter mass for multiple form
factors. This device achieved a phonon resolution of 10 eV, allowing a single gram-day of exposure

to rival kg-days of exposure in the competing liquid-noble based electron-recoil search.
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Preface

This thesis explores the physics of low-temperature crystals, and lays out design and testing principles
for cryogenic calorimetry based on CDMS technology. Much of the text was written as the work
was done, and many of the small asides or conclusions were reached as a result of discussions with
collaborators. The concluding chapter represents my own opinions and conclusions about the next
steps for our technology, but reflects, at the time of this writing, a general consensus in the field.
Continued development of these precise sensors has reached the point that we can make quick gains
in dark matter science, and use these developments to advance other fields of physics such as the
study of coherent interactions and applied photonics.

The work presented in this thesis was performed with help from and in collaboration with a large
fraction of the SuperCDMS collaboration, and none of the results would have been possible without
the fabrication, cryogenics, and physics expertise of my collaborators. In particular, none of these
detectors could have been run without the fabrication work done by Matt Cherry, Astrid Tomada,
Paul Brink, Mark Platt, and Roger Romani at Texas A&M and Stanford. Testing of devices was

done at many test facilities in collaboration with many people:

e University of Minnesota - Matt Fritts, Anthony Villano, Nick Mast, and Allison Kennedy,
under the direction of Vuk Mandic and Prisca Cushman), with help from Bill Page from UBC

e UC Berkeley - Suhas Ganjam, Caleb Fink, Sam Watkins, Bruno Serfass, Bernard Sadoulet,
and Matt Pyle. This group was also instrumental to taking much of the SLAC data, and there
would be no data in this thesis if it weren’t for Bruno’s help with software tools and DCRC

operation.

e Stanford - Jeff Yen, Robert Moffatt, Betty Young, Jon Leyva, Trevor Howarth, James Allen,
Steve Yellin, Francisco Ponce, Chris Stanford, and Francesco Insulla, under the direction and

with significant help from Blas Cabrera.

e SLAC - Paul Brink, Mike Racine, Tsuguo Aramaki, Mike Kelsey, Gary Godfrey, Pelle Hanssen,
Dave Nelson, and Leo Munger, as well as our many SULI and INFN students who helped in the
lab or with data taking (Andrea Caputo, Angela Bai, Carlo Gilardi, and Chiara Magliocca),
under the direction of Richard Partridge.



o Texas A&M - Jorge Morales and Jon Wilson, who tested and diagnosed DCRC issues and
implemented firmware, and Xuji Zhao, who worked on SQUID and Tc testing at SLAC as a

visitor.

e University of British Columbia (UBC) - Bill Page, Danika MacDonell, Belina von Krosigk,
who helped get the DAQ working at SLAC

e USD - Joel Sander and Amy Roberts, who helped with DAQ setup and software tools

These are only the people actually involved in setting up and running the facilities for the detectors
described in this thesis, and does not include those who came previously to help get the facilities
running or provided input on the analysis.

Each chapter also includes significant work and insight from many collaborators that I worked

with during my years as a graduate student:

e Chapter 1 - I owe a great debt to Dylan Rueter for his patience teaching this experimentalist
how to appreciate the finer points of particle physics phenomenology, to Joe DeRose and Sean
McLaughlin for references and explanations of the phenomena discussed in the cosmological

sections, and to Warren Morningstar for his obsession with gravitational lensing.

e Chapter 2 relied heavily on measurements taken by Robert Moffatt using the device he built for
his dissertation[75], and the theoretical treatment of scattering depends largely on work done
by Kyle Sundqvist for his dissertation[99]. Robert, Kyle, Betty Young, and Blas all contributed
to the analysis. In addition, the intervalley scattering model benefited greatly from discussions
with Alexandre Broniatowski during his visit to Stanford. Mike Kelsey and Rob Agnese wrote
the code that the simulations were done with and I worked closely with them to do consistency
checks and add features in order to enable the code to simulate Si as well as arbitrary crystal
orientations. The initial implementation of some the scattering formulae was done by Ramiro
Garcio, with follow-up work by Francesco Insulla. The initial investigation of hole anisotropies
was done with James Allen, and was the subject of his senior thesis. The final results and data
were taken in part by Chris Stanford, who helped me complete this study and is continuing to

push the technique to learn much more about charge transport.

e Chapters 3 and 4 were written during the year I was working on the detector design, and
I'm entirely indebted to Matt Pyle for his constant guidance and inspiration, as well as Paul
Brink and Blas for their insight, feedback, and suggestions for various optimizations to try.
The noise analysis in particular relies heavily on some notes Paul put together to help us more
easily understand the various features of noise spectra, and we relied on Matt’s thesis as well
as Kent Irwin and Gene Hilton’s seminal paper[50] to put those together. The design process
was led by myself but many people in the tower technical meetings provided vital insight and

answers to questions about various experimental constraints. Bruce Hines and Martin Huber
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helped me appreciate the subtleties of the SQUID readout, and Tsuguo provided key initial
measurements of the cold electronics to give us an idea of what was actually feasible in terms
of our parasitics. Sunil Golwala, Rich Partridge, and Bernard Sadoulet provided very useful
comments and feedback during meetings and individually, and each helped me appreciate the
various parts of the phonon and charge readout electronics as I tried to figure out which parts
of the design needed to be optimized and how to do so. Betty was always a resource for helping

me understand non-idealities of fabricating superconducting thin films.

Many of my students during the first two years worked on various parts of detector design and
simulation, including Andrea Caputo, who helped with initial studies of channel layout, and
Eduardo Montano who worked on TES simulations. I'm also indebted to Peter Redl and Kristi
Schneck who helped me run the detector Monte Carlo for the initial CDMS HV studies that the
optimization was based on. Peter also helped me get started with COMSOL simulations, and
Angela Bai did some great work on axisymmetric electric field modeling that helped inform
the final design; this work was most recently picked up again by Madison Matsen. Jeff Yen’s
quasi-particle transport data[l11] with Robert’s analysis also informed the QET efficiency
model used for the first time in device design for this thesis. Finally, Paul and Matt Cherry
helped coach me through the layout process, suggesting design decisions that improved the
fabrication yield of the sensors and made actual operation of the mask easier and less error

prone.

e Chapter 5 is a summary of the work of many people I listed in the test facility section of this
thesis. Much of the DCRC investigation was led by Tsuguo, with help from myself, Matt Pyle,
Caleb Fink, Bruno, Paul, and Rich. Rich helped all of us understand how to track down places
where components may not be behaving ideally, and helped solve some of the most egregious
noise issues. The resistivity and 7T, investigations were done with Matt Cherry, Jeff Yen, and
Paul. Leakage investigations were undertaken with Matt Fritts, Nick Mast, Francisco Ponce,
Roger Romani, Matt Pyle, Blas, Paul, and with initial work done at Berkeley by Bill Page.
Modeling of the leakage was a collaboration between Steve Yellin, Matt Pyle, Bernard, and
myself. A lot of work subsequent to my initial complex impedance studies was done by Sam
Watkins which added confidence to some of my conclusions, and will be vital to understanding
the performance of future detectors. The small detector discussed at the end of the chapter
was fabricated and run by Roger Romani for his senior thesis, and the testing setup was largely
designed by him, with subsequent improvements by Francisco. Many of later noise studies,
and a lot of help processing the data, came from To Chin Yu, who in my last year picked up
the BlueFors testing torch and has continually put out very interesting testing results that are

shown here and go beyond the testing I describe.

e Chapter 6 presents the results of a collaboration paper, and as a result includes input from
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a large section of the collaboration. The core analysis team consisted of myself, Francisco
Ponce, Belina von Krosigk, Andrew Scarff, Matt Wilson, and Chris Stanford, with help and
input from Rob Calkins, Richard Germond, Blas, Matt Pyle, Rich, Paul, Betty, and Steve
Yellin. I appreciate the competition we got from the SENSEI collaboration, which helped us
push out a high quality result in a relatively short amount of time; by my count, it was about

2 months from end of data taking to submitting the paper.

The scale of this sort of work is such that I was a cog in a very efficiency machine, as it is
not possible for complex devices such as our detectors to be made and run without contributions
from many people. It is my hope that this preface conveys the magnitude of contributions to the
work presented here from the members of my collaboration, and the degree to which the SLAC,
Stanford, and UCB groups collaborate on most studies happening in the bay area. The interaction
between the different research groups created an environment where new ideas could be explored
constructively, and facilitated much better results than we would have been able to achieve without
so much external support. As the saying goes, two heads are usually better than one. I posit that

the more heads you have, the better.
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Chapter 1

The Need for New Physics

“..It seems probable that most of the grand underlying principles have been firmly
established and that further advances are to be sought chiefly in the rigorous
application of these principles to all the phenomena which come under our
notice...An eminent physicist remarked that the future truths of physical science are

to be looked for in the sixth place of decimals.”
- Albert Michelson, 1894, dedication of Ryerson Physical Laboratory

The story of modern physics written in textbooks begins with Newton, including prefaces on
ancient astronomy, natural philosophy and metaphysics, and continues in an unbroken line to the
present day. It is a story of discovery, of trial and error, but ultimately of steady progress towards
the modern understanding of how the physical world behaves and the laws it obeys. Those who
practice physics as a profession know that it is never quite so clear cut, and every era has its many
schools of thought that through time are filtered and combined to produce standard canon. The
key insight one can derive from a careful reading of the history of physics, and science in general, is
how to seek out phenomena that deviate sharply from expectation as a framing device for looking
for new models.

The search for dark matter is just the latest exercise in this practice, which highlights a problem
in our understanding of the universe, and proposes a certain class of solutions for it, namely the
existence of a new type of matter. My hope is that, even if as you read this chapter the theories
discussed have been ruled out, it will still provide a roadmap for discovery that transcends the partic-
ular problems it describes. The search for dark matter in particular is driven by a very fundamental
mismatch between the nature of gravity and the distribution of matter, and the resolution of this

problem will necessarily result in new physics, whether or not new mass is a part of it. At this
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moment in time, the dark matter field is an exciting one, with many synergies in technology devel-
opment and low-background photon detection, and serves as excellent motivation to work on many
cross-disciplinary problems for which dark matter is the first stringent and interesting sniff-test.

In this chapter, I will present first a brief chronology of astrophysical observation centered on
the study of celestial movements, the discovery of extragalactic objects, and measurements of stellar
kinematics in our galaxy as well as those nearby. I will then discuss the key observations that
indicated the presence of missing mass, and present the argument for why a dark matter explanation
to this problem is particularly attractive. This will be followed by an exploration of the varied dark
matter phenomenology, starting with the standard (and now somewhat disfavored) WIMP paradigm
and moving into lighter and ultra-light dark matter theories. I will finish by motivating new detectors
that can operate at ultra-low energy thresholds in order to study some of these new light dark matter

models as a way of contextualizing the work in this thesis.

1.1 The Cosmos in Motion

The earliest surviving ancient work that laid out a systematic explanation for the motions of the
planets was Ptolemy’s “Almagest” a second century Greek treatise describing the motions of stars
in a mathematical framework. This represented the first attempt to apply mathematical reasoning
to the observed movement of various heavenly bodies, most importantly the sun, moon, and the
known planet The vision of cosmic structure in this treatise followed the geocentri model first
proposed by Aristotle, which would remain the prevailing model for 2 millennia after his death,
but introduced a mathematical model for explaining the elliptic orbits of the known planets. In
this work, he also presented the earliest surviving star catalog, containing the positions of the 1025
known stars visible from Europe.

Ptolemy’s work illustrates the limits of what can be studied without telescopes or precision
measuring instruments, given the slow progress made over the subsequent 1500 years before the
invention of the telescope. Progress in astronomy was slow, requiring dedicated work over a lifetime
to make small advances in the understanding of what, to almost all of the astronomers, were points
on a fixed sphere that surrounded the earth. Between 100 and 1600 AD, continued observations

pushed astronomers away from the simple, fixed-point model of the universe[19] [8] [40, 28]:

e Gth Century AD: Olympiodorus the Younger argues that the Milky Way, which Aristotle held

was an atmospheric effect, must be stellar in nature due to its lack of paralla

IThe English name for this work tells us a lot about its historical importance. ‘Almagest’ is the westernized version
of the Arabic for ‘The Greatest’, itself translated from the shortened Greek title ‘The Great Treatise’. The original
name for the work was ‘Syntaxis Mathematica’, roughly meaning simply a Mathematical Treatise.

2The word planet comes from the ancient Greek for ‘wandering stars’, or simply ‘wanderers’ (plantai)

Searth centered

4Parallax - change in apparent position on the sky of an object due to the movement of the observer and the finite
distance to the object. The effect of parallax can be demonstrated by holding a finger up at arm’s length and moving
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e 964 AD: Al-Sufi is the first to observe the Large Magellanic Cloud (LMC) and the Andromeda
galaxy, the Milky Way’s largest satellite and the next nearest galaxy respectfully. He describes
them not as new celestial objects, but as ’cloud-like’ in appearance. Neither object is visible

from Europe, and thus the LMC is not observed by Europeans until Magellan’s voyage.

e 1000 AD: Al-Buruni and Ibn Sina (Avicenna) debate whether there is any evidence to support
the Aristotelian model of the universe, most importantly the assumption that all natural

motion is circular, the basis for modeling the dynamics of the planets.

e 1010’s AD: Ibn Al-Haytham (Alhazen) writes the "Book of Optics’, the basis for later European
development of the telescope, which replaced Ptolemy’s optics as the premier treatise on the
subject. Al-Haytham also publicly critiques Ptolemy’s mathematical models, objecting to the
planets spontaneously changing velocity in order to maintain circular orbits. Al-Haytham also
measures the lack of parallax of the Milky Way for the first time, proving Olypiodorus’ earlier

conjecture in a more precise manner.

e 1272 AD: Al-Tusi explains why the galaxy appears to be continuous despite being made of
many stars, writing: “The Milky Way is made up of a very large number of small, tightly-
clustered stars, which, on account of their concentration and smallness, seem to be cloudy
patches. Because of this, it was likened to milk in color.” He also invents the Tusi-couple,
which demonstrates how circular motion can give rise to linear oscillation, and is described in

Copernicus’ work centuries later.

o 1284: Witelo writes the treatise ‘Perspectives’, partially on optics, building on the work of

Al-Haythem and further laying the groundwork for the development of telescopes.

e 1420’s AD: Ulegh Beg constructs the observatory at Samarkand (modern day Uzbekistan),
similar to the one produced a century later by Tycho Brahe, and produces the largest star
catalog since Ptolemy (994 stars) correcting earlier errors and combining knowledge of the
northern and middle-latitude stars. He increases his accuracy by making a much larger sextant

than those previously used by Arabic astronomers.

e 1543: Copernicus posthumously publishes “On the Revolution of the Celestial Sphere”, solving
the mathematical problems pointed out by earlier astronomers and making a much simpler

cosmological model.

e 1577: Tycho Brahe shows that comets are in fact moving about the sun, and not atmospheric
events, by measuring the (non-existent) parallax of a comet. This is considered the first

observational challenge to the geocentric model of the solar system.

your head side to side; you observe your finger to move relative to distance objects, telling you it must be closer to
you than those objects.
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e 1609: Kepler uses Brahe’s observations to construct his mathematically complete model of the
heliocentric solar system, measuring distances between the sun and the planets and setting a

scale for the solar system. Kepler’s laws lay the groundwork for Newton’s law of gravitation.

In 1608, Galileo Galilei made the first astronomical observations with a rudimentary telescope,
proving for the first time that the Milky way was in fact a collection of stars and discovering four of
Jupiter’s moons. This began a new era of observations, in which the number of mapped, observable
objects in the night sky increased exponentially with each new technological advance. It’s also at
this point in history that Kepler’s observations demonstrate the relationship between orbital period

and orbital radius from the sun (commonly referred to as Kepler’s 3rd law):

T2 lyear?
a3~ 1AU3 (1.1)

This simple proportionality only works in the heliocentric system, and once demonstrated in this
new paradigm, allowed Newton to use this relationship to construct his law of universal gravitation.
One can get from Kepler’s third law to a law of universal gravitation by employing Newton’s new
laws of motion, published in 1687, obtaining the more general form of Kepler’s third law:

T2 47

o = GO 1 ) 2
This new equation can be used to measure the mass of any planet using the measured orbital period
of its moons, and was the main tool used in the following centuries to relate stars and planets to
one another. In the span of less than a century, we see a scientific advance more important than
any in the two millennia before it, which can be attributed to both the new technology of the
telescope, but also the legacy of dedicated measurement of stars visible to the naked eye. These
two developments are most often the reason that we differentiate between Aristotelian (ancient) and
Newtonian (classical) physics. What followed was a period of academic exploration enabled by this
new understanding of nature and the technology that allowed humans to study the cosmos in finer

detail than every before.

Looking Beyond the Solar System

Following the example of the ancients, astronomers during the enlightenment turned their telescopes
to the sky in an attempt to find moving objects, hoping to determine the distance to a star and
thus set a scale for the universe. While comet hunting, Charles Messier constructed a catalog of
103 (later expanded to 110) bright nebulae, publishing his catalog in 1781[28]; many of these were
in fact nebulae, some stellar associations, and some actually distant galaxies. William Herschel, a
musician and astronomer who built more than 400 telescopes during his career, discovered Uranus

while conducting surveys of stellar motion. In these surveys, he was also the first to discover the
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abundance of stellar binary systems, and was the first to observe that the motion of these systems
implied that the stars were orbiting each other. Herschel published his star and nebulae surveys over
the span of time starting in 1773 and concluding with catalogs of 800 multiple star systems and 2500
"deep sky objects’, mainly Nebulae and galaxies, which greatly expanded on Messier’s work. His
son would continue his work after his death, and their combined efforts produced the New General
Catalog (NGC) containing 8000 of the brightest non-stellar objects in the night sky[28].

Herschel was also the first person to attempt a three-dimensional map of the galaxy. In the
mid 18th century, astronomer Thomas Wright and philosopher Immanuel Kant posited that, as the
solar system is a rotationally supported disk, it makes sense that the stars we see may also be a
rotationally supported disk, which we would thus see as a band across the sky. Herschel took this
idea, and by counting the number of stars in each portion of the band visible from his observatory,
constructed the first star map of our galaxy in 1785[103], shown in figure The limited depth of
his telescope and his simplifying assumptions resulted in a very poor map with the sun at the center
of the galaxy, but represented the first attempt to map star positions as more than fixed points on
a sphere. Herschel’s main limitation was his inability to establish distances to stars, and he had to
assume they were equally spaced, thus precluding him from finding any evidence of spiral structure
or measuring relative stellar densities.

The 1800s saw improvements in technology that led to the first discoveries using gravitational
anomalies to find new objects. In 1844, Friedrich Bessel noted that the stars Sirius and Procyon
both exhibited odd proper motions, and inferred the existence of as-yet unobserved companion stars,
which would later be confirmed by more powerful telescopes[19]. In 1846, Le Verrier and Adams
noted the anomalous orbit of Uranus (just discovered by Herschel 60 years earlier) and computed
the expected position of a new planet needed to create that orbit. Neptune was thus found the
same evening the observatory received their communication suggesting its probable location[19]. Le
Verrier also proposed the new planet ‘Vulcan’ to explain Mercury’s anomalous orbit, which was never
observed but would later be one of the key predictions that would ensure the success of Einstein’s
theory of general relativity. Separately, the study of objects beyond the solar system continued,
and in 1845 William Parsons observed, through the largest telescope at that time, that some of
Herschel’s objects had a spiral structure, and seemed to be rotating. Without any means to measure
this rotation, however, this was at the time mere conjecture[2§].

By the end of the 19th century, photographic plates came into common use, allowing for more
detailed and wider ranging study of the night sky. Dark regions were noticed throughout the plane
of the milky way (as can be seen in Figure 7 and debates began about whether these were empty
voids or dark regions obscuring stars behind them. In order to estimate the true number of stars in
the Milky way, Lord Kelvin made the first estimate of the mass enclosed in the observed universe
(at that time the local stellar neighborhood) by treating it as a gas, and using the measurements of

stellar velocities available at the time (by watching the slow movement of stars across the sky) to
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where the Sun is no longer at the center but the scale and shape are still not quite right. He does not

recognize that objects can be outside of this relatively small distribution. Bottom: Modern diagram
of the Milky Wayf®|
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estimate the upper limit of mass in a gravitationally bound system given these measurements and
the accepted size of the galaxy[19]. He estimated that there may be “as many as 10? stars [within a
sphere or radius 3.09-10'6 km]” based on these proper motions. Henri Poincaré (in 1906) and Ernst
Opik (in 1915) compared this estimate to the number of observed stars, and concluded that since
the expected number of stars and observed number are comparable, there is no appreciable “dark
matter” in the galaxy. The term dark matter at the time generally referred to unseen gas or dead
stars, but was very much a part of the scientific lexicon by the 1920’s.

Meanwhile, Jacobus Kapteyn was busy updating the work of Herschel, and in 1922 published
a much more rigorously computed model of the galaxy that puts the Sun off-center (though much
closer to the center than it should be), and estimates the size and shape of the galaxy, at that time
believed to be an ellipsoid. Kapteyn’s model as originally shown can be seen in Figure As
part of this work, Kapteyn (and his student Jan Oort) rigorously calculated an upper limit for the
local mass density of dark matter in the solar neighborhood, finding the lowest limits then predicted
of around 1% of the mass of the sun per cubic parse(ﬂ There is roughly one star per 7 cubic
parsec, meaning that the dark matter density is at most less than 10% of the mass in the stellar
neighborhood; given that stars are not the only known mass in the galaxy, this is therefore not a

surprising number. [19]

A Larger Picture

This well-behaved system would have worked had it not been for major observations made by
Harlow Shapley, Vesto Slipher, and Edwin Hubble. In 1915, Vesto Slipher used spectra produced on
photographic plates to demonstrate the doppler shifting of these spectra across the spiral nebulae
first observed by Parsons, demonstrating observationally that the nebulae did appear to rotate.
Meanwhile, between 1915 and 1919, Shapley estimated the distances to 93 globular cluster by
observing variable stars, which have a known absolute luminosity for a given variation period and
thus allow a straightforward distance measure. Shapley realized these clusters were not located
isotropically, but instead were centered on a point towards a spot in the galactic plane roughly 15
kpc from the Sun, and that the furthest globular cluster should be 70 kpc from the Sun|28].
Shapley’s measurements were obviously in tension with Kapteyn’s model, putting the center 5
times father away and implying that the galaxy should be a factor of 10 larger than what Kapteyn
observed. On the other hand, Shapley argued that all of the observed objects seen thus far must
be contained in the Milky Way, while those who had been studying the spiral Nebulae (led by
Heber Curtis) maintained that what they were observing were actually distinct galaxies, given the

distances implied by stellar nova seen in these objects compare to those observed locally. This

91 parsec is equal to 2.36 light-years, or 3 - 103km (30 trillion km).

10 A globular cluster is a tight grouping of stars that formed at the same time and have a much higher stellar density
than the surrounding space

1A nova is a bright flare-up of a star caused by ignition of fusion on its surface.
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was the subject of the 1920 “Great Debate” on the nature of the galaxy and universe, both the scale
of each and whether Milky Way was the universe or whether the universe contained many ‘island
universes’, to use Kant’s original term. This argument was obviously complicated by the fact that
many of the measurements being used had large errors due to extinction by interstellar gas and
dust and the limited precision of observing tools available at the time. A sketch of the discrepancy
between models of the galaxy can be seen in Figure

Enter Edwin Hubbl In 1923, Hubble used the new 100-inch Mount Wilson telescope to observe
variable stars in Andromeda, the next closest galax finding a distance of 285 kpc, definitively
proving that the spiral nebulae were in fact new galaxies|28]. This is actually smaller than the
modern value of 770 kpc, but is still large enough to prove the point. In 1925, Slipher observed
that out of a sample of 40 spiral nebulae, now thought to be distinct galaxies, almost all of the
galaxies exhibited a distinct redshift in their spectrum, implying they were moving away from the
Milky Way. In 1929, Hubble followed this up with more variable star measurements from a handful
of nearby galaxies, establishing for the first time that the universe is expanding, and showing that

the receding velocity of galaxies is proportional to their distance:

The figure from his seminal 1929 paper is reproduced in Figure This relationship is now called
Hubble’s law, and Hy is Hubble’s constant, which he estimated to be about 100 km/s/Mpc based
on his observations[49]. The modern value, though still in flux, is close to 72 km/s/Mpc, although
its measurement as of this writing is still hotly debated|21].

Hubble’s 1929 paper marks the beginning of the field of observational cosmology, that is, the
study of the universe, as it showed for the first time that our universe consisted of more than just
the Milky Way. It is also where the study of dark matter begins to become a distinct pursuit, and
will be described in the next section. Many important scientific advances were made as a result of
Hubble’s initial work, most notably the study of this expansion that led to the even more surprising
discover of dark energy, which causes this expansion rate to increase as a function of time. The
technology that enabled us to probe the universe beyond our stellar neighborhood was driven by
advances in imaging, telescopes, and signal processing, and we will come back to some of the lessons
from this story at the end of the chapter when we discuss the way forward in sensitive astro-particle

detectors.

12This story illustrates Hubble’s foundational role in both astrophysics and cosmology, and why the Hubble space
telescope, which imaged further than humans had ever seen before, was named after him.

13 Andromeda is commonly referred to as M31, from its designation in Messier’s catalog, and is one of the brightest
non-stellar objects visible through any telescope. The Hubble Space Telescope image of Andromeda was also (until
recently) the default background on all AppleT™ computers.
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Figure 1.2: Left: Illustration of the Kapteyn v Shapley galaxy model problem, showing Kapteyn’s
model of the Milky way as a collection of ellipses, and Shapley’s measured distributions of globular
clusters[104]. Right: Figure 1 from Hubble’s 1929 Paper[49] showing the distance-velocity relation.
You can see that some of the closest galaxies, including M31, are actually moving towards us. You
can also compare the distance scales between objects in our galaxy in the left image and extragalactic
nebulae, now know to be other galaxies, in the right image.

1.2 Missing Mass: The Case for Dark Matter

Over the past few decades, the historical case for dark matter has achieved a sort of orthodoxy, from
which I don’t deviate much here except to insert derivations where I feel they add strength to the
arguments, and editorialize a bit when it comes to the comparison between modified dynamics and
particle dark matter. Much of the historical content in this section comes without explicit citation
because it is now common knowledge in the field, however I refer the reader to some excellent review
articles, in particular Refs [20 [18] [19], which take slightly differing takes on the history of the field
but do an excellent job documenting their sources.

What differentiates the study of dark matter from its ‘sister’ field of dark energy, described at the
end of the last section, is what makes this chapter so important, namely that the first conversation
we have to have about dark matter is to justify that we’re not just fooling ourselves with shoddy
observation. The New York Times “Book of Physics and Astronomy” has a time-line of physics
that has 3 dark-energy related entries but none referring to dark matter, precisely because the
existence of dark matter came to be known gradually as we eliminated possible systematics and
narrowed down the explanation for an odd observational truth: there doesn’t seem to be enough
matter anywhere we look outside of the solar system. This is an issue that crept up on us as we
continued to log entries in our big book of mass discrepancies, and is marked, for the most part, not
by groundbreaking observations, like those of Reiss, Schmidt & Perlmutter[80, 86] for dark energy,
but by the lack thereof.



CHAPTER 1. THE NEED FOR NEW PHYSICS 10

It is my goal in this section that by the end, the reader will appreciate that the simplest explana-
tion for all of these phenomena is not a new theory of gravity, but a fundamental misunderstanding
of the nature of matter. That we tend to prefer one theory of what that matter is will be left to later
sections, but at this moment in time, there is no doubt that simple fixes to our theory of gravity

can not properly explain all of the phenomena discussed here.

1.2.1 Rotation Curves and the Virial Theorem

The initial indication that galaxies were more complicated than expected came through studies of the
rotational velocities of stars in a galaxy measured as a function of distance from the galactic center.
A galaxy is a complex system of millions to billions of stars, but to a very good approximation we
can employ the virial theorem to model the relationship between kinetic and gravitational potential
energy. The virial theorem states that the time-averaged kinetic energy of a bound system obeys

the relation .
(KE) = —§Z<F-r> (1.4)

and for a potential that only depends on the distance r between particles, giving the form V(r) o< 7,

we find the much simpler (and more often seen) statement

2(KE) =n(V). (1.5)
For a gravitational potential with n = —1, we thus have
UKE) = —(V) (1.6)

where V is the average gravitational potential of a particle in the system, and KF is the average
kinetic energy of the particle. This theorem allows us to use a general framework to relate mass
and energy in a gravitationally bound system where calculation of net force on a given particle is
more cumbersome than calculating its gravitational potential. In very regular systems, such as the
solar system, we can show that the results of this calculation are the same as using the equations of
centripetal acceleration, but an equivalent calculation for dispersion supported systems is not quite
so simple, thus allowing us to more confidently use this equation to model dynamics of less ordered

gravitationally bound systems.

Gravitational Potentials

There are two general cases we’ll consider here, a sphere and disk each of constant mass density. In

the case of the sphere, we know that the total mass within a given radius is given by the formula

M(R) = %WRBp (1.7)
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which gives us the differential equation

dM(R)

= 4nR? L.
IR TR p (1.8)
We also know that the gravitational potential energy from a shell of mass Mspen(R) = d]\gl(%R) dR is
GMgpeuM(R
Vsheu = _ GManeuM(R) (1.9)
R
so to bring an additional shell onto a sphere with radius R, the change in potential energy is
16m%Gp?
dvsphe?”e(R) = _WTpRéldR (110)
giving a binding energy of
16m2Gp? 3 GM(R)?
Vsphere(R) = _uR5 — _7# (1.11)

15 5 R

Note that this is not the simple case of V. = GM?/R, as the system is diffuse and gravitationally
bound, and the particle in question also forms part of the gravitational mass. We can do the same

calculation for a disk of uniform mass density:

dM(R
M(R) = 4nR%*0c — dé ) =81Ro (1.12)
which gives the differential equation
dVaise(R) = —G32n°0* R%dR (1.13)

giving a binding potential of

32m2Go? 2 GM(R)?
V(R)=—"—" R} ="+~ 1.14
(R) - = (114)
The key finding is that for a shape of constant density, the potential at some point inside the shape

has the form
N GM (R)2

R
with the general condition that o < 1. The shape and density profile of the system can only produce

V(R) = — (1.15)

smaller potentials, given that the constant density case gives @ < 1 and the case of a shell, ring, or

point all have o = 1.
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Velocity Profiles

In our case, where particles are stars with mass m, orbiting an enclosed mass M;,;, we know that

for a spiral galaxy with essentially circular motion in a 2D plane, we have

M,
(V) ~ —a% (1.16)
and )
(KE) = 5m]oug (1.17)

which gives the simplified form of the Virial theorem

2 o GMtot

o= (1.18)

For a dispersion supported galaxy, like an elliptical galaxy, this needs to be modified slightly. In the
case of highly elliptical motion, where there is a constant trade-off between kinetic and potential

energy, we know that statistically, a star observed at radius R will have mean kinetic energy

KE = gmpaz (1.19)
giving the Virial relation
2 « GMtOt 1.20

In both cases, then, we find that measurements of a given velocity distribution as a function of
distance from the orbital center gives a measure of the mass enclosed at that distance. By comparing
these mass measurements at various distances, we can build up an understanding of the radial
mass distribution, and compare to that we measure for various components through complementary
methods.

To demonstrate the implications of this formula, let’s apply it to the solar system to verify that
it does indeed predict the correct motion for a very well studied system. We use the case of circular
motion here, and given that the vast majority of the mass in the solar system is concentrated in
the sun, we predict that the velocity of a planet orbiting at radius R should be (using o = 1 for a
compact system)

GMsun

1.21
Rplanet ( )

v =

We don’t typically measure planetary velocity, but more commonly talk about orbital semi-major
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axis a and orbital period t. Using the relation v = %, we find that

2 p2
dm Rplanet _ G Myn

1.22
szlanet Rplanet ( )
GMsun
Rf)lanet = ) 1?lanet (123)

This relation is just Kepler’s third law of planetary motion expressed in Newtonian gravity; taking
the ratio of different periods and orbital radii gives the proportionality explicitly stated in this law.

Early applications of this argument in its Newtonian form resulted in the discovery of Neptune,
due the anomalous motion of Saturn relative to the motion it should have exhibited had it been the
last massive planet in the solar system[20]. Application of this same logic to the orbit of mercury
predicted yet another planet, however the true explanation for the precession of mercury turned out
to be explained by corrections from General Relativity, and thus deviations from the Newtonian
prediction produced new discoveries in the theoretical, rather than experimental, domains. The
utility of comparing observed celestial motion to these scaling relations has proven a useful tool for
discovering gravitational anomalies, and it was natural to apply this technique not only to our own
solar system, but also to galaxies as we began to observe them.

In the 1930’s, Fritz Zwicky used measurements from Edwin Hubble’s seminal paper on the first
measurement of universal expansion to attempt to measure the mass of the Coma cluster, a cluster of
galaxies close to our own[I115]. In this and a later work that refined the calculation, Zwicky observed
that the Virial mass and luminous mass (calculated using the number of galaxies and a mass-to-light
ratio conversion) differed by a factor of 500, implying that the vast majority of mass in the cluster
was some sort of “dark matter”[19]. In 1936, Sinclair Smith performed a similar measurement for
the Virgo cluster and obtained a mass-to light ratio of 200, smaller than Zwicky’s but still way
more massive than the expectation of a ratio of 1-3[19]. These results were recognized as important
at the time, but due to observational limitations as well as some obvious geopolitical distractions
in the 40’s and 50’s, the observational investigations stagnated, with researchers assuming either
the assumption of stability in the clusters was misfounded, or normal matter was missed in the

observations.

The Mass to Light Ratio

A key weakness in these early arguments, which might explain their relatively low importance at
the time, lies in the number of assumptions necessary to calculate the luminous mass of a galaxy.
Suppose we observe a new galaxy, and measure its total luminosity in the optical regime. We can get
a preliminary estimate of its mass by making a simple assumption that all of the mass comes from
sun-like stars, and we know the mass and luminosity of a sun-like star. In units of solar luminosity

and solar mass, then, the mass to light ratio is just 1. This sets a baseline from that we can say
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naively that the mass to light ratios are too large in clusters, and is approximately what was assumed
in these early papers.

We can now make a more sophisticated model. Our knowledge of modern astrophysics allows
us to break down stellar mass by type, and use the HertzsprungRussell (HR) diagram for a typical
galaxy to get a more refined estimate of stellar mass. For a main-sequence star, which are the vast

majority of stars in a galaxy, we have the mass-luminosity relation|2§]

L9 .
Loc M3° — M35 = M35 « T tar., (1.24)
This means that for a star of mass Mg, and luminosity L., the mass to light ratio is
MStG.T _ Msun MS’U/’Z 25 _ Msun LSUTL 5/7 (1 25)
Lstar B Lsun Msta7' B Lsun Lstar ’ ’

We can make the simple assumption that all stellar mass is in main-sequence stars, and we can use

the form of the typical galaxy luminosity function to compute the weighted mean mass to light ratio:

J(£e)" a(ryar
<]\L/[>_ <Lf<1>)(L)dL (1.26)

where ®(L) is the luminosity function, usually calculated as the number density of stars with a given
luminosity (or mass) per cubic parsec. This function is normally a double exponential with a shallow
slope below 1 solar mass, and a steeper slope out to high mass. We can thus bracket the range of
M/L ratios by using either a flat distribution or a step function above 1 solar mass. Integrating with

respect to L in either case gives

Lo 2/7 Loin 2/7
M Loun 7 7Lgun (L) - (T)
<> ~ / () dL = (1.27)

L Lstar

2 Lmam — Lman

Including larger mass stars, (M /L) decreases, while for majority light stars, (M/L) increases; it is
also essentially around 1 regardless of the relative composition for this model of stellar abundance,
and has a very weak dependence on the range of masses allowed in the galaxy. This model matches
well with the observed mass to light ratio in the Milky Way’s disk of around 3]28], based on a stellar
mass of 6 * 1010 solar masses, a gas mass of 0.5 * 101 solar masses, and an observed B-band|

019 solar luminosities.

luminosity of 1.8 % 1
Barring a significant period of star formation (as is found in high-redshift galaxies), most galaxies
will have a very small range of mass to light ratios, and given modeling of their star-formation history,

we can very accurately estimate their stellar mass. What’s more, because the majority of all stellar

14B band refers to a blue filter centered around 430-450 nm depending on the particular instrument used.
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mass in a galaxy is concentrated in low-mass stars, and they nominally have lifetimes much longer
than the age of the universe, which means very little error in the measured mass can be attributed
to high-mass stars; if anything we will over-estimate stellar mass, not underestimate it, if there are
more high-mass stars than expected.

We can be confident that the above reasoning will hold for converting light to stellar mass, but
a reasonable question to ask as an immediate follow-up is how well we can constrain the non-stellar
mass of a galaxy, and how much higher the mass to light ratio can get before gas and dust cannot
be invoked in order to bring measurements into a reasonable range. Studying the mass distribution
in our own galaxy, as well as in nearby clusters, allows us to put upper limits on the fraction of the
missing mass implied by these high mass to light ratios than can be explained by normal matter.

One of the first examples of such studies was the estimate of intra-cluster gas mass (that is, gas
between galaxies in a cluster) due to measured X-ray emissions. Let’s imagine that the majority of
the unseen mass in galaxy clusters is gas, predominantly hydrogen. It is being bound by gravity,
but it is being prevented from gravitational collapse by radiation pressure. The stable solution to
this hydrodynamical system gives an expected gas temperature as a function of mass and radius of

a spherically symmetrical gas cloud, roughly following the relation[20]

M(R) 1 Mpc
T~ 1.5k 1.2
w155V (e ) (F) (1.29)

The measured gas temperature for the Coma cluster is around 10 keV, implying a gas mass of 7+10'®
solar masses (assuming R ~ 10 Mpc). This is in extreme tension with Zwicky’s measurement, and
implies that intra-cluster gas cannot account for the missing mass inferred from Zwicky’s virial mass

estimate.

Galaxy Rotation Curves

A general confusion about discrepancies in mass to light ratios was the approximate state of the
field of dark matter through the 1960s. During the 1970s, Vera Rubin and Kent Ford [94] began to
catalog observations of the observed radial velocity of side-on spiral galaxies as a function of distance
from their galactic centers, and showed that across galaxy size and morphology, all galaxies showed
a flat rotation curve out to high radii (see Figure . We can use the earlier virial relations to
make sense of the implications of their observations.

We expect, from equation the orbital velocity to go as 1/r for stars at the edge of the galaxy,
where the enclosed mass has reach an asymptotic value. The observations by Rubin and Ford were
done using molecular hydrogen, with velocities obtained by the Doppler shift in the Ha emission
lines[94] and references therein]. This allows observations to extend as far from the galactic center

as hydrogen can be found, to regions where the hydrogen is diffuse enough to inhibit star formation.
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Figure 1.3: Composite plot of the rotation curves measured from Rubin et. al.[94], showing that all
curves quickly reach their asymptotic flat value.

A flat rotation curve thus implies that the mass within the observed radius R follows the scaling law

v? 302
flat flat
M(R)=—R=~——R 1.29
() aG 2G ( )
where o &= 2/3 assuming axial symmetry for spiral galaxies. The implies that, for example, if the

mass is spherically distributed, then the density goes as

3v?lat
2G
32
flat
R) ~
P(R) 8STGR?

M(R) = / 47 R?*p(R)dR ~ R (1.30)

(1.31)

In other words, the majority of the mass in the galaxy seems to be a distribution with more total
mass further from the galactic center, with a mass density that falls as 1/R? far beyond the last
observable stars and vastly outweighs the observable gas beyond the end of the stellar disk. This
was the first evidence that the dark matter problem was more than just a problem of accounting
for missing mass; in order to explain these observations, we have to rethink our models of galactic
structure, where the majority of mass seems to be spatially separated from the luminous matter.
This measurement of mass density within a given radius at multiple distances from a galaxy’s
center was an important part of establishing that the gravitational and stellar masses had to be
different, and that the discrepancy couldn’t just be due to intergalactic extinction or Baryonic
matter. To see why, let’s consider a model where extinction is the primary cause of this discrepancy.
In this model, we consider each line of sight to have roughly equivalent amounts of extinction. If we

have a density that follows the given scaling law, we find that we have a line of sight mass density
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%(r) of

o 3v]2‘lat
X(r) = / (V124 22)dz = (1.32)

o 8wGr

where r is the distance from the center of the galaxy perpendicular to the line of sight. This is to
say that even if there is some extinction, we should see the surface brightness follow roughly the
same trend as the rotation curve, peaking at the center but falling off much slower than 1/r% and
extending far beyond the outer edges of the visible galaxy; we see instead that the star light has a
much smaller length scale than the rotation curve.

The obvious next step in this line of reasoning is to suggest that maybe the main mass density is
not stellar in origin or is primarily composed of stars that have a much lower luminosity than those
on the main sequence. The latter is easier discussed conceptually; the likelihood of many low-mass
stars being undetected in this abundance is essentially 0 given their long main-sequence lifetimes.
This does not preclude more exotic astrophysical objects (e.g. black holes or neutron stars), which
we’ll discuss more in the section on gravitational lensing. Suffice it to say that due to these optical
measurements, we can limit the candidates to non-stellar origins.

The solution to the problem of differing mass and rotation curve measurements came before
Rubin & Ford’s work with the detection of the 21-cm hyperfine hydrogen transition by Purcell &
Ewan[36] [19]. This transition is the result of a slight increase in stored energy when the proton and
electron in the hydrogen atom are misaligned, such that for very diffuse cold hydrogen with randomly
populated spins, half of the atoms are initially capable of emitting a photon with wavelength A\ =
21.106 cm. We can calculate both the energy and the probability of this transition to very high
precision from first principles; this calculation can be shown to exactly match the observed energy[36].
The probability of an isolated atom undergoing this transition is found by application of Fermi’s

golden rule and results in a transition probability of[37]

647 12
—1 - _
TH = 3733 ~2.85-107 " Hz (1.33)
where pp is the Bohr Magneton: 5
e
= 1.34
ra 2me ( )

and A is the wavelength defined above. This is obviously a very small probability, but for a hydrogen
gas mass of millions of solar masses, the emission of this line is a fairly common occurrence, and it
has been used for over 60 years to simultaneously map gas mass and its rotational velocity both in
the Milky way and in remote galaxies.

Given a known line energy, we can compute the mass of hydrogen emitting that line as

My ~ “2THL (1.35)
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and the maximum velocity of that cloud of hydrogen relative to the observer as

;”:i =7 (14 L) 5o =c [1—71;’6:ﬂ. (1.36)
We can thus simultaneously determine, for an edge-on galaxy, rotational velocity and mass density
as a function of radius as far out as the neutral hydrogen is detectable. The only systematic on this
measurement is the relative probability of the 21cm light reaching the observer, explored in detail
by Field[37]. In studying the systematics of this measurement, it becomes abundantly clear that
any local conditions can only increase the emission strength for a given mass of atomic hydrogen.

Without being exhaustive:

e Temperature increases emission rate by increasing the population of higher energy states and

the likelihood that adjacent atoms stimulate emission

e Magnetic field causes line splitting, but on average leaves the rate unchanged as it increases

the rate for half of the orientations and decreases it for the other half.
e Incident radiation will either not affect the hydrogen atoms or further stimulate emission.

e The interstellar medium (ISM) is largely transparent to this line, and emission and absorption
will always happen at equal rates in hydrogen, thus intergalactic extinction is fairly negligible

for nearby galaxies.

Playing devil’s advocate, the only way to increase mass estimates of gas given known 21-cm line
emissions is to adjust the relative abundance of elements and molecular hydrogen in the ISM. These
abundances are highly constrained by stellar physics and early universe cosmology, thus getting more
than a factor of 2-3 for a given galaxy is highly disfavored, and the same factor systematically across
all observed galaxies would result in a much different star formation history than what we observe.

To summarize the argument in this section, I refer you to Figure 1 of [16], reproduced here
as Figure [1.4] This figure shows the rotation curves inferred from the measured luminosity of the
galaxy, as well as those for the measured gas content, compared to the rotation curve measured from
the 21cm line Doppler shifts. In each case, one can see that for the gas to account for the entirely
of the rotation curve, the abundance would need to be scaled up by between 3 and 10 depending
on the galaxy, and that the inferred rotation curve from dark matter is dominant across the board
and has a fairly consistent shape across the galaxies, with the exception possible of NGC 7331 (this
could just be a difference in scale factor). If we accept the gas measurements, then we'’re left with
two dark matter hypotheses: exotic stellar material, or new matter entirely. First, however, we need
to discuss the third distinct possibility that gained some traction from the 1970s to the mid-late
90’s: modified gravity and its first iteration, Modified Newtonian Dynamics (MOND).
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Figure 1. Three-parameter dark-halo fits (solid curves) to the rotation curves of sample galaxies. The rotation curves of the individual
components are also shown: the dashed curves are for the visible components, the dotted curves for the gas, and the dash-dot curves for the
dark halo. The fitting parameters are the mass-to-light ratio of the disc (M/L ), the halo core radius (r), and the halo asymptotic circular velocity
{V,). The galaxies from the sample of Begeman are shown in (a) and the lower luminosity galaxies in (b). Best-fit values for the free parameters
are given in columns 2, 3 and 4 of Table 2.

Figure 1.4: Figure 1 of [16], reproduced here for illustration of rotation curve modeling.
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1.2.2 Modified Gravity

We can see from Figure that an immediate solution to the rotation curve problem is one we’ve
encountered in the past: that our theory of gravity is wrong. It’s fairly apparent that if the gravi-
tational force fell off as 1/r instead of 1/r2, then we could easily accommodate flat rotation curves
without invoking ‘spooky’ dark matter. Assuming we’re further away from the galaxy than any of

its mass constituents, then we can modify equation by multiplying by R giving the equation
v? = aG My (1.37)

which is clearly consistent with a flat rotation curve. In a phenomenological modified gravity sce-
nario, one only needs to fit the mass to light ratio and scale length over which the gravitational
force goes from 1/R? to 1/R to fit the rotation curves given the same measurements. This is exactly
what is done in [16] for the exact same rotation curves from the previous section, and the results
are reproduced in Figure [1.5

This seems like a much simpler explanation than invoking an entirely new type of matter that
has to weigh at least 10x (sometimes 100x) the known mass of a galaxy. As a result, the authors
conclude[16]:

The overall conclusion is that MOND is currently the best phenomenological description

of the systematics of the [rotation curve] discrepancy in galaxies.

In the interest of completeness, I want to summarize the basic argument made by proponents of
modified gravity before discussing some of the more recent theoretical and experimental advances
that have led to it falling out of favor.

Theories of modified gravity in their original form were referred to as MOdified Newtonian
Dynamics (MOND), first put forward by Mordehai Milgrom in 1982[19] as an intellectual exercise
following the logic in the previous paragraph. The argument went that in the limit of very weak

acceleration, if F' = m%, then the natural prediction in this limit is that of a flat rotation curve[72):

ma? GMm
F = ar =— (1.38)
2 2 4
M
W/ _ v G (1.39)
ao aor? r2
vt = agGM (1.40)

In Milgrom’s original formulation, Newton’s second law was written as

ao

F = my (a> o (1.41)

where pu(x) was said to be some function, coming from a complete theory, with the limiting cases
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Figure 2. MOND fits to the rotation curves of the sample galaxies. The value of a, is fixed at 1.21 X 10~* cm s~ 2. The dotted curves show the
one-parameter fits (M/L ) and the solid curves are the two-parameter fits (M/L and distance). In the gas-rich galaxies, NGC 1560, DDO 154,
and DDO 170, M/L effectively disappears as a fitting parameter because of the dominant contribution of the gas to the total mass. Best-fit
values of M/L are given in columns 2 and 5 and the best-fit distance in column 6 of Table 3.

Figure 1.5: Figure 2 of [16], reproduced here for illustration of rotation curve modeling.
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pw—1for z>>1and p — x for << 1, with ag ~ 1.2 - 107%m/s2.

The immediate problem with this initial proposal as a theory is that it violates essentially all
physical conservation laws, and in a few years Milgrom and Bekenstein produced a theory starting
from the Lagrangian of Newtonian mechanics (to ensure conversation of energy and momentum),
which allowed them to reproduce in a more rigorous way the scaling law shown above for spherical
symmetry within some limits|I7]. The modern theory, Tensor-Vector-Scalar gravity (TeVeS), now
incorporates relativity and can account for much more complex systems than the original version
of modified gravity, but at the expense of a handful of new parameters. In addition, despite this
additional freedom, TeVeS has thus far failed to match modern cosmological measurements, described
in the next few sections, which has led to the particle theory of dark matter steadily gaining traction
over the past 20 years[19].

A recent development worth mentioning at this point, despite being chronologically out of order,
is the work of Eric Verlinde on emergent gravity[106]. If the main criticism of past theories of
modified gravity were that they had become too convoluted and were not rooted in any deep laws
of physics, then Verlinde’s elegant use of thermodynamics to allow gravity to become an emergent
phenomenon is just the opposite. As it is a new and as-yet still developing theory, I will not comment
further, other than to note that as of this writing it has successfully accounted for some rotation
curves, but has yet to be accurately applied to the evidence we will discuss in the next sections, and
therefore nothing more precise can be said than it is perhaps a more elegant and natural form of the
Bekenstein-Milgrom theories that came before it. In addition, despite the initial success, there has
already been pushback by groups claiming that in highly gas-rich galaxies, emergent gravity cannot

match observed rotation curves[62].

1.2.3 Gravitational Lensing

In response to the debate pitting modified gravity against particle dark matter, an additional means
of measuring gravitational potential becomes a powerful tool to add to optical and radio rotation
curves that is independent of the light emitted by the galaxy. General Relativity (GR) predicts that
a gravitational potential well should cause light to bend around a large mass, creating a gravitational
lens.

Consider the most basic example of gravitational lensing in GR, the Schwarzchild lens[96]. Using
the simple metric around an isolated mass distribution, the angular deflection due to the point mass
is
_4GM 2R,
2

o (1.42)

rc r
where M is the mass of the lens and r is the impact parameter of the lens, or distance to the lens

in the plane perpendicular to the observer, and R; is the Schwarzchild radius

_2GM

R,
S 62

(1.43)
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This formula is a good approximation for small angles in the limit that » >> R, which for very
large masses is an excellent approximation on cosmological scales. In the simplest lensing case, we
can consider a source directly behind the lensing object; at some critical radius r. we will observe
the light from this object for all angles about the lensing object, forming a classic 'Einstein ring’.
In this case, we can use the geometry of the problem to determine a desired unknown as follows.
We know that by symmetry, for us to actually observe the object, it must be as far behind the lens
as the lens is from us. Thus the triangle of the lens distance d, impact parameter r, and observed

angle 0,5 give

0,ps = arctan 2 (1.44)
and thus the deflection angle is
a= 2(% — Oops) (1.45)
giving the relations
90, — 4GM 4GM (1.46)
T obs = TL2 T d tan(fops ) ’

and
c2dtan(Oops) (7 — 200p5)

4G

Thus if we know the distance to either the lens or the distance object, we can determine the mass

Mlens = (147)

enclosed within a sphere with the radius of the impact parameter. In many cases for these lenses
it is possible to determine the distance to either the lens or lensed object through the cosmological
distance ladder, allowing us to map the gravity well of a given lens.

This simple treatment breaks down when we depart from simple lens models or attempt lensing
measurements within a continuous mass distribution, but is a good illustration of the principle
and can be used without modification in a small number of cases where the assumptions are met.
Most famously, one of the first confirmations of general relativity came from the measurement of
gravitational lensing around the sun, which of course is highly symmetric and contained[96].

The key example of lensing measurements employed to address the dark matter problem comes
in the form of the bullet cluster[30], shown in Figure Measurements of this galaxy cluster with
Hubble Space Telescope (optical) and Chandra (X-ray) observations allow us to trace the mass
distribution through the lensing profile, shown in the left panel of the figure, and the gas mass of
the cluster, which is the majority of the system’s baryonic mass, is shown in the right panel Due to
the recent collision of the two clusters, much of the interstellar gas has been heated and stripped by
tidal forces, but the majority of the mass has proceeded through the collision seemingly unaffected.
Thus we find that the majority of the gas is spatially separated from the majority of the mass, which
does not seem to interact.

The bullet cluster observations show both that dark matter has a much weaker self-interaction,

if a particle, than hydrogen, and that simple modifications to gravity, which nonetheless preserve
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Figure 1.6: Figure reproduced from [30].

the central potential, cannot explain this phenomenon while dark matter can. This and subsequent
cluster lensing studies have shown the same pattern repeats in a handful of other clusters that
have recently undergone collisions, and together with constraints from the CMB is the main line
of evidence used to argue against modified gravity. MOND in its simpler form can do better than
Newtonian gravity, but still differs by a factor of 2[19], while very exotic gravity can get closer to a
full explanation, but invokes new fields that need to act much like new particles to be compatible
with early universe cosmology.

This is an ongoing field, and since the first publication in 2006[30] many papers with new lens
measurements have been published[96]. Over the intervening decade, consensus has built that the
most natural explanation for these phenomena are non-Baryonic particle dark matter. Most recently,
work has gone into using mass contours from gravitational lensing to try to put lower limits on the
dark matter self-interaction cross-section[53]. Due to the rarity of cluster collisions, it is unlikely
that we will ever have a sample of more than a few dozen recently collided clusters, but it is possible
that as more work is done on the upcoming series of dark energy campaigns (DES, DESI, LSST and
others) more lensing candidates will be identified and a more statistically representative sample will

arise that will begin to settle questions of cosmic variance versus naturalness.

1.2.4 Cosmic Microwave Background Radiation

The most compelling evidence for particle dark matter, and the reasoning that guides us towards
the best candidates, are tied to the standard cosmological model as measured through effects only
tractable through the application of general relativity|'’l The best tools we currently have to under-

stand the constituents of the universe are general relativity, as a mathematical framework, coupled

15This section largely follows that found in the particle dark matter review by Bertone, Hooper, and Silk[20]
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to ACDM, our current model for how the universe evolved. The A in this acronym stands for dark
energy, which at present we believe to constitute about 75% of the energy density of the universe in
the present epoch, and CDM is for cold dark matter, which controlled the evolution of the universe
for the majority of its history until relatively recently.

We start with the Einstein field equation:

1 87TGN
RHV — §gHVR = _CTT'U'V + AgHV (1.48)

where R, and R are the Ricci tensor and scalar, g, is the metric, Gy is the Newtonian gravity
constant, 7}, is the stress-energy tensor, and A is the cosmological constant. As pointed out in
[20], this equation relates the geometry of the universe (on the left side) to the energy content of
the universe (on the right). If we assume an iostropic and homogeneous universe, we get the line

element

2 _ 23,2 2
ds® = —c*dt* + a(t) <l—kr2

+ r2d92> (1.49)

which defines the metric in the previous equation given ds* = g, z"z". Here, a(t) is the scale factor
(the relative size of the spatial and time dimensions) and k is the curvature of space-time, where
k = 0 is flat space. We can solve the Einstein equation for this metric to get the Friedmann equation

k - 871’GN

= Ptot (1.50)

H(t)? + = 3

where we have introduced the time-dependent Hubble parameter
Hit)="2 (1.51)
a

and pyo is the total average energy density of the universe. The gives us a way to relate the relative
expansion of the universe parameterized by H(t) to the energy density of its constituents. We

typically re-write this in terms of the dimensionless parameters

Pi
Q= 1.52
pcrit ( )
where 3H( )2
t
crit — 1.53
Perit 87GN ( )

and the Friedmann equation becomes simply

k
Q-1= e (1.54)
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In a flat universe, where k = 0, this means that
0=>) ;=1 (1.55)

and for a universe with curvature ) will then either be greater than or less than 1 depending on the
sign of k.

These relations are useful for relating the energy density at earlier times in the universe to the
current epoch; for ACDM with & = 0, we find that

H(t)?

2
0

- [QA(1+z)3<1+w) F (14 2)% 4+ Qp(l+2) (1.56)

where Qpr = Qp + Q¢ is the mass density (in Baryons and cold dark matter respectively), Q5 is
the dark energy density, and Qp is the radiation energy density, all in the current epoch. z is the

redshift, defined as
>\O S en
o= Jobs o Qthen (1.57)

)\emit Apow

Thus we can use measurements of H(t) in different epochs to constrain the relative energy density
of different components of the universe as a function of time.

Measurements of the cosmic microwave background (CMB) capture the energy densities as they
were at recombination (z ~ 1100) and allow us to use ACDM cosmology to project primordial
densities forward in time, in essence measuring the current mass density in the universe as compared
to dark energy and radiation. The CMB is essentially an initially constant temperature surface
that, as it evolved forward in time, carried with it the local structure of the gravity well in which
it last froze out. If we model the early universe as a baryon-radiation fluid and include additional
damping dynamics from non-baryonic dark matter, we can determine the power spectrum of local
over-densities and under-densities due to the relative strength of gravity and radiation pressure. The
relative coupling of the radiation to the matter thus allows us to use these dynamics to determine the
fraction of the matter that is baryonic. The relationship between the location of matter anisotropies
and energy densities is non-analytic but can be modeled numerically, and by fitting simulations with
given cosmologies to the observed CMB power spectrum we can constrain the relative densities of
the constituent parts of the universe at recombination. For a more detailed discussion, I refer the
reader to [20, and references therein].

The most stringent current constraints from large-scale CMB measurements come from the
Planck satellite[82], which measured the CMB temperature anisotropy shown in Figure The
best-fit parameters for the nominal 6-parameter model (assuming equations of state for the dark

matter and dark energy) give the matter density

Qu =0.313+£0.013 (1.58)
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Figure 1.7: CMB temperature anisotropy measured by the Planck experiment|82]. The relative
height of the first few peaks and their locations help to determine the relative fraction and importance
of dark matter, Baryons, and radiation in the early universe.

and the relative baryon and cold dark matter fractions
Qph? = 0.02222 £ 0.00023, Q.h? = 0.1197 4 0.0022 (1.59)

where h = H/100, giving the co-moving cold dark matter to baryon density ratio

Q. 0.1197
— = ~ 54
Q, 0.02222

This roughly matches the ratio found from modern analysis of galaxy clusters discussed earlier in
the chapter; the dark matter outweighs hot intra-cluster gas by a factor of 5-6.

Due to the fact that the oscillations seen in the CMB are frozen at the time of recombination,
observations made for z < 1100 can also implicitly measure aspects of these same oscillations seen
in the CMB anisotropy. One particularly powerful method is to measure 3-d clustering of galaxies
as a function of redshift; given that the mean correlation lengths should be the same throughout the
universe at a given redshift, the evolution of this parameter traces the expansion of the universe and
helps constrain the cosmological parameters. These Baryon Acoustic Oscillation (BAO) constraints
are typically used as a complementary dataset to increase the precision of CMB measurements,
along with ground-based observations of the higher-order modes of the CMBJ[82]. The addition
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of this complementary data highlights non-trivial covariances in the cosmological parameters that
affect the constraint of the matter fraction in the early universe.

Despite the success of using the CMB and BAO to match local observations historically, the
complexity of fitting a very high-dimensional and highly covariant set of cosmological parameters
has led to some tension between high redshift and local measurements[100, 21, [87]. Fortunately,
the dark matter/baryon ratio is largely invariant to these uncertainties given that h cancels in this
ratio, as shown above, and thus this is one of the results most robust to discrepancies between
local and high-redshift measurements|82]. Nevertheless, these high precision cosmological studies
are an incredibly powerful tool for understanding the role of dark matter in our universe, and it
behooves the dark matter physicist to stay apprised of recent developments in these fields. The most
recent paper discussing local/high-z discrepancies comes by way of the Dark Energy Survey, which
demonstrates that by relaxing some of the less constrained priors on the fits, discrepancies in Hy
discussed by e.g. the SHOES and HOliCOW projects [87) 100, 2I] can be resolved|31]. Relaxing these
constraints represent interesting statements about physics either locally or in the early universe, and
time will tell whether these discussions fulfill their promise of using cosmology to make fundamental

physics measurements comparable to those possible in particle physics experiments.

1.2.5 Measurements of Local Mass Density

While the best evidence for the existence of dark matter comes from measurements on the galactic
and cosmological scales, the local dark matter density is most relevant to our ability to study dark
matter in earth-bound laboratories. As mentioned earlier in this chapter, the first estimates of
the local dark matter mass density were done by Kapteyn and Oort in the 1920’s using local stellar
kinematics. A great review of the history of these measurements can be found in [84], and Figure
shows a summary of these measurements reproduced from that work.

The simplest way to measure the local dark matter density is through kinematics of the local
stellar population. For gravity in the weak-field limit, we can relate the gravitational potential and

mass distribution using Poisson’s equation:

?® 1 0 o
dnGp=V?®=— + == R— 1.60

TGP 8z2+R8R< 6R> (1.60)
Suppose we have a disk that has a scale height zy much smaller than its radius scale Ry, such that,

in the local stellar vicinity,
p(R,z) = p(Rsun) exp(—2z/20), (1.61)

which also implies that the radial term in equation is necessarily small. This gives us a one-

dimensional equation in z:
0%®

AnGp =~ 5.2

(1.62)
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Integrating once in z gives us an equation that will begin to look familiar:

0]
47TGE(zmaw) ~ % = _Fz(zmaa:) (163)
4

where X(2m42) 18 the surface mass density of the disk integrated out to the disk height in question.
For stars far from the disk, this is just the equation of simple harmonic motion! This implies that

for this geometry, we should observe stars of a given mass far from the disk to oscillate through the

Mstar

and thus by measuring the distribution of stellar velocities of tracer stars, we should be able to infer

disc with angular frequency

the effective surface density of the disk for small enough volumes. This method is similar to those
used originally by Kapteyn and Oort, where the inferred local dark matter density is thus
E Zmax) — 2 Zmazx
pdm(zmam) = ( ) b( ) . (165)

QZmaa:

The density is highly degenerate with the baryonic mass density ¥(z), which is generally one of the
larger systematics in these analyses.

As pointed out by [84], this method suffers from the many assumptions we needed to make along
the way, and more sophisticated methods (including those used by Jeans) make fewer assumptions
at the expense of mathematical complexity, and the constraint of the local density is in itself a very
involved field of astrophysics. As shown in Figure the modern accepted value for the local dark
matter density is ~0.3 GeV/c?, with a significant error bar extending from 0.2 to 0.6 depending on
the methods involved and the data used. Data being taken currently by the Gaia satellite promises

to greatly improve the precision of this measurement in the coming years[84] [19] [20].

1.3 Dark Matter Phenomenology

In the previous sections, I reviewed the astrophysical motivation for the existence of a new type of
matter that behaves differently than baryonic matter. In this section I will review the remaining
candidates for this dark matter framed in the context of directly detecting interactions of dark
matter particles y with standard model particles in an earth-bound experiment, and then touch
upon other candidates that have been ruled out by indirect means or by searches at colliders.

In the context of a direct detection experiment, the approach to studying dark matter can be
reduced to the measurement of a differential event rate as a function of time in the presence of

known backgrounds. For an isolated nucleus, we know that the event rate will be

Iy, =nyo(v) = p—XU/vf(v)dv (1.66)

my
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and so for a detector of mass My.; and nuclear mass m,, we have the total detector rate

Tger = - - —a/vf(v)dv. (1.67)

Taking the derivative of this with respect to energy transferred E = ¢?/2m,, and velocity v gives

the differential rate
Mdet pix(

dl ger = do/dE)vf(v)dEdv (1.68)

This equation allows us to input the physics for our particular model. For the case of spin-

independent scattering, we calculate the differential cross-section:

do do Mp 00 9
— =2my,—s = ——F 1.69
05 = 2 oz = 5,3 g3 ) (1.69)
where
My My
=TT X 1.70
K My 4 My ( )

and F%(|q|) encodes the momentum-dependence in the coupling of the dark matter to the standard

matter particle it scatters off of. This gives the final differential rate equation

f)

Mdet Px Mn

dlger = F*(|q)——~dEd 1.71
det = S i g2 00F (a) = —dBdv (1.71)
= Mo =X U()F2(|q|)—f(v)dEdv (1.72)
2p2m, v
dl get Px 2 /Oo f()
= Maet 57— —00F d L.
ag Mgz oot d) | 179)

where to conserve energy, we find for a given energy transfer there is a minimum allowed velocity

Umiin = (1.74)
and the velocity distribution has an implicit cutoff at ves., the escape velocity of the galaxy. This
is the rate equation for direct detection of dark-matter nucleon scattering given in the often cited
dark matter reviews[64] [54].

I have provided the derivation again here to allow us to see how this is modified when we change
from a single nucleon to a coherent atomic scattering model later in this section, and to illustrate how
the different aspects of the calculation (velocity distribution, target mass, differential cross-section)
can be changed to compute rates for different models. We can generalize a bit more by explicitly

splitting these components. First, we have the inverse velocity expectation value (following the



CHAPTER 1. THE NEED FOR NEW PHYSICS 32

notation of [33])

v v

N(Vmin) = /oo Mdv = /00 Mdgv (1.75)

Vmin Umin
where we’ve explicitly used the 3-dimensional velocity distribution rather than an isotropic 1-
dimensional velocity distribution to make the formula more general (here using the convention
that [ f(v)dv = [ f(v)d®v = 1). We can make this a dimensionless quantity of order unity by

multiplying by vy = 220km s~ !, giving the rate equation[54]

Tt = (Mg 2 ) 2o (o) (1.76)
The first term in parentheses sets the baseline rate, and the second two dimensionless terms will
often be of order unity, so the leading term can be used to estimate the differential rate below
the velocity cut-off and set the rate scale for a given detector mass, dark matter mass, and target
composition.

In the following sections, I will present different theories for the composition of particle dark
matter, and conclude with a section discussing the non-particle (astrophysical) candidates that have
not been ruled out. I will use this section as a reference when discussing science results later in this
thesis, but also to illustrate how differing kinematics between these classes of theories allow us to
explain dark matter relic abundance, and how we can modify our scattering formalism to predict

energy spectra given new DM-SM couplings.

1.3.1 WIMP Dark Matter

For the first two decades of direct detection experiments, the focus of these searches was on ‘Weakly
Interacting Massive Particles’ (WIMPS), motivated by the growing prominence of Supersymmet-
ric models with a stable lightest Supersymmetric particle (LSP), which is a natural dark matter
candidate[54] 64, [18 [20]. In this section I will review the arguments for WIMP dark matter, and
summarize the studies that have now largely ruled out the best-motivated class of WIMPs. These
models are still viable but the parameter space has shrunk as new searches have excluded larger
areas of parameter space, and as the LHC has failed to turn up any evidence of Supersymmetry
(SUSY).

The first place to start when considering particle dark matter is to determine which candidates
can reproduce the cosmological abundance measurement discussed in the previous section. Here I
follow the derivation of Ref [54]. Suppose we have a new unknown particle x that was in equilibrium
with standard model particles in the early universe, such that yy — Il and Il — yx occur at equal
rates, where [ are some other lighter standard model particles. The equilibrium number density at

some temperature 7' is given by
x 27 /J (pvj )dgp ( : )
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where f(p,T) is the density of states (either Fermi-Dirac or Bose-Einstein) and g is the number of

internal degrees of freedom of the particle. For T' >> m,, (in units of energy) we find that
ny o< T3 (1.78)

while for T' << m, we find the Boltzmann limit

m T\
ny X g ( o ) exp(—m, /T) (1.79)
This second equation will thus predict that the density always goes to 0 as the universe cools,
but when the expansion rate exceeds this annihilation rate, the particles are no longer in thermal
equilibrium with the universe and their annihilation will stop, leaving a relic density defined by the
given mass and freeze-out temperature Ty at which this occurs.

The annihilation rate of the dark matter into standard model particles is given by the equation
I(T) = ny(T)(oav) (1.80)

and the relic density at freeze-out is given by setting I'(Ty) = H(Ty). We thus find that

H(Ty)
ny(Ty) = <UA5> (1.81)
and substituting the radiation dominated form H(T') = 1.66gi/2T2/mpl [54] we find
1.66g.°T7?
n(Ty) = ——0 1 (1.82)

My (T 4V)

where my,; is the Planck mass, and g, is the effective number of degrees of freedom. Dividing through
by the entropy density (s &~ 0.4¢,T?) gives
n 4.15
—=(Ty) =

(1.83)
s gi/szmpl<JAv>

For weak-scale processes we find that solving the boltzmann equation at this point yields Ty =~

m, /20, which gives the equation

n. 100
(T =~ (1.84)

gx' “mymp (0 4v)

putting this in terms of measured quantities, and recognizing that the ratio on the left-hand side is
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constant in time, we have

100 s 100 S0
(Oav) = 47— — =073 (1.85)
gi/zmpl px gi/2mpl pcﬂxh2

where sq is the current entropy density, p. is the critical density, €, is the fraction of energy
composed of dark matter in the universe, and h is the reduced Hubble constant. This is typically

written (with standard assumptions) as

3%x10~2"em3s~1
Oh2

(oav) =~ (1.86)
Given that the denominator is of order unity, we thus have an estimate to an order of magnitude
of the cross-section, assuming thermal velocity, which is conveniently the same scale as the weak
force[54]. Note the assumptions that went into this calculation; we’ll re-visit some of them in the
next section.

For a numerically complete solution, the equilibrium density is found by solving the Boltzmann

equation[54] [95]
dny

2
o +3Hny = —(oav) [n

2 —(n$?] (1.87)

the results of which can be seen in Figure[I1.9] This figure is an excellent illustration of the robustness
of the approximate result shown above; for the standard inflationary model, the relic density is
entirely determined by the velocity averaged annihilation cross-section (o 4v). This provides an
important input to selecting theories with stable dark-matter like particles based on expectations
for this cross-section, but (aside from logarithmic corrections) does not specify the dark matter mass.

When this result came out, two facts were apparent: that the predicted cross-sections are what
would be expected for a weak-scale interaction, and that SUSY, which was expected to be seen
at the LHC, easily accommodated dark matter candidates of the right mass and interaction scale.
Any complete description of SUSY is beyond the scope of this thesis, and I refer the reader to
Ref [54] 18] [20] and references therein as a starting point for a more in-depth discussion. What is
necessary for this thesis is to recognize that SUSY is a framework that describes an entire class of
models, and was not proposed to explain dark matter. Given that SUSY predicts an entirely new
spectrum of uncharged neutralino particles, SUSY theories provide natural and well-motivated dark
matter candidates. Figure shows a range of WIMP candidates that arise naturally in SUSY
and are consistent with the measured relic density.

For direct detection, the fact that we have a predicted present-day annihilation rate and a
predictive means to relate this to the nucleon-scattering cross-section means that we can predict,

for a given neutralino, what the observed differential scattering rate should be in an earth-bound



CHAPTER 1. THE NEED FOR NEW PHYSICS 35

0.01

T T T T LI B B M |

0.001

0.0001
10-¢

—
Q
L

10-7
10-8

o corusd youed voud soonad syud 3 vied

10~
10-10
10-"

-~

-~

10-12
1i0-18
10—14

v 3 ooned gl s ennd g oiued g

~——

10-16

Comoving Number Density

10-1e
10-17
10718
10—19
10-

RRLLL BLALLL BRI BRRLLL BRRLL. BRRLLL BLRLLL BURLLG BRALLC WULLLL BLALLL LRI BLALLL BRELL LRI BRALLL AL |

aoed ropnd ¢ eoned o o 3 rumd

p 1 aaal 1 j I T T T |

100 1000
x=m/T (time -)

-

Figure 1.9: The canonical figure showing how relic density for the full numerically solved Boltzmann
equation is entirely determined by the velocity-averaged annihilation cross-section at freeze-out,
taken from Ref [57].

detector. Refs |20, 54} 64] give the WIMP-nucleus scattering coefficients o

32 32
Cospin = ?GQFMQAQJ(J +1) = ?G%M(J + 1) [ap(Sp) + an(Sn)] (1.88)

2
Ouscator = " (2f, + (A~ Z) ol (1.89)

where G is Fermi’s constant, J is the nuclear angular momentum, (S,) ({Sy,)) is the proton (neutron)
spin expectation value, A encodes the expected spin, Z is the number of protons, and A is the number
of nucleons in the target detector. The constants a and f encode the coupling of the WIMP to the
nucleons, thus allowing the rates to be tied to the model being tested. It is in general much harder

to probe spin-dependence, given the limited number of targets with appreciable nuclear spin, and
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Figure 1.10: Scatter plot of relic neutralino density versus neutralino mass for a set of SUSY models
from Ref [54]. The highest density of models consistent with astrophysical observations is found in
the 20-100 GeV range, but masses up to 300 GeV are viable candidates.

the standard has become to quote the nucleon cross section assuming spin-independent (or scalar)
scattering for better comparison between experiments with different target nuclei. We can see from
00,scalar that the overall event rate scales as A? in the case that fp ~ fn, so limits are put on oy
and converted to o, as

00,meas

For these measurements, the form factor is taken from experimentally measured nuclear form factors
for given materials, and event rates are thus numerically computed, though they can be well fit with
approximate forms; see Refs [64] for more details. In most cases, F(Q) ~ 1 is a good order of
magnitude approximation. Most of the shape of the differential event rate comes from momentum
and energy conservation of elastic scattering and the shape of the WIMP velocity distribution, rather

than significant changes in cross-section with momentum.
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Figure 1.11: Current spin-independent dark matter-nucleon cross-section limits from Ref [91]. Over-
laid are contours for dark matter candidates in SUSY models not excluded by LHC run 1.

The current state of direct-detection constraints for nuclear-recoil dark matter can be seen in
Figure compared to the current SUSY candidates not excluded by recent results from the

LHC. The limits (and the few claimed discovery contours) in this plot show the progress made in
2

7

direct-detection over the past decade, and show that the 'natural’ weak-scale WIMP (o ~ 10~*3cm
my ~ 20—400GeV/c?) has been almost entirely ruled out. The success of Xenon-based experiments
show the sensitivity gained from the coherent enhancement of event rates in massive nuclei, and
the future of high-mass dark matter searches will be driven by a new generation of ton-scale Xenon
detectors in low-background environments. When the mass of the dark matter particle drops below
the Nucleon mass, these technologies rapidly lose dark matter sensitivity, and the lower masses
are dominated by low-threshold Si/Ge experiments, which also benefit from a higher dark matter
number density and thus do not need to have such a large fiducial mass. These considerations will
be discussed in much more detail later in this thesis.

The limits in Figure also show results from the DAMA/LIBRA collaborations, which have
shown an annual modulation in event rate at increasingly higher significance for two decades [14].
Since the velocity of the earth relative to the galactic center changes as the earth revolves about
the sun, there will be an annual modulation in the velocity distribution of WIMPs encountered by
earth-bound detectors. While this is true, it has proven difficult to show that any observed annual

modulations were due to dark matter and not other seasonal backgrounds, and experiments that
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are much more sensitive than the initial DAMA experiments have failed to see either an annual
modulation or an unknown background consistent with dark matter. As a result the community has
moved away from looking for annual modulations as a discovery approach, and the DAMA result
stands as a curiosity that is inconsistent with other results. As of this writing, there are a series of
planned follow-up experiments that aim to try to reproduce the DAMA experiment and understand
this yearly modulation. For more details see Ref [14] and references therein.

In summary, while WIMP dark matter was very promising, the lack of evidence for SUSY and
the null results coming out of the large liquid Noble detectors has made supersymmetric WIMP
dark matter no more attractive than the other proposed models, and the community has begun
to branch out into other mass ranges motivated by non-supersymmetric theories, including WIMP
masses down to and below that of a proton motivated by asymmetric dark matter and other theoretic
models. In the rest of this section I will consider the other non-WIMP candidates for dark matter

in the context of their relation to the established field of WIMP dark matter searches.

1.3.2 Sub-GeV Dark Matter

In the previous section I showed that the relic density calculation was mass-independent, and the
WIMP miracle suggested a mass range to start the search motivated by naturalness and SUSY. Now
that the most obvious place to look has been ruled out, the field is starting to spread out to cover
a larger mass and cross section range, and considering a wider range of theories (which solve other
problems in particle physics) that could accommodate dark matter candidates. A subset of these
models is summarized in Figure [1.12

One particularly interesting class of models are those in the keV-GeV range, which are most
generally described by the simplified model of a hidden sector, where dark matter (DM) interacts
with the standard model (SM) via a new force mediator. The simplicity of this picture allows us to
relate the dark matter and mediator masses to the annihilation cross section and determine where
the interesting mass/cross section range would lie for a given model. There are 3 cases generally

considered in the literature[2] [51]:

o ’'Secluded’ Freeze-out (m, > Mmeq) - The DM is not the lightest particle in the dark sector,
and is frozen out to the mediator, which subsequently continues to interact with SM particles.
In this case the annihilation cross-section has the form

(oAv) x @ (1.91)
m

2
X

e 'Direct’ Freeze-out (my < Mmeq) - The DM is the lightest dark sector particle and freezes out
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Figure 1.12: Summary of dark matter candidates from Ref [2].

from SM particles through a heavy mediator

2 2 2
9pYGsnp™m
(0av) oc =25 X (1.92)

med
e Freeze-in - If the dark sector is initially empty and does not thermalize, then the thermal relic
paradigm is not applicable; instead the relic can be produced by SM particles freezing out into

light dark-sector mediators, some of which decay into the DM.

These mechanisms allow us to determine regions of parameter space in which to look for these
simplest models, and motivate tailored searches for lower mass particles. Lower-mass DM candidates
also imply higher number densities, given that we know the mass density, and can be probed by
smaller experiments.

The challenging aspect of searching for these lighter DM particles, however, is that the scattering

kinematics result in a very small momentum transfer, and thus require much more sensitive detectors.
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To see why this is the case, consider the maximum energy transfer in an elastic two-body collision:

24202
AEa = X (1.93)
mr
2mivi
R —== (my, << mr) (1.94)
mr
~ 2mpvl (my >> mr) (1.95)

where mqp is the target mass and v, is the velocity of the incoming WIMP. Considering a DM

particle moving near the galactic escape velocity v, ~ 600 km/s gives the numerical bounds

m 2/ mp N1
< X
AEST0eV (500 Mev> (28 GeV) (my << mr) (1.96)
mr
< _
N4eV(511 keV) (my >> mr) (1.97)

where I’ve used numbers for Si and a free electron in order to give the most favorable estimates.
These energy scales (both below 100 eV) are well below the current energy threshold of the most
sensitive liquid noble dark matter experiments, and are only starting to become accessible with
lighter target materials.

One fortunate caveat is that these equations hold for elastic collisions, but not for inelastic
collisions between bound electrons and dark matter. Because the electron is in a bound state, its
momentum is not definite, and in principle its momentum can be arbitrarily high with non-zero
probability. Ref [33] shows that the momentum transfer bound is

1
AE < 5"“})2( ~ 1keV ( ) (my, << mrp) (1.98)

mx
500 MeV
This is a much larger energy scale, and should dominate any experimental spectra produced by
DM in detectors if the electron and nuclear interaction cross sections are within a few orders of
magnitude of each other. For this reason, limits on DM-SM cross sections are given in terms of the
electron-scattering interaction cross section instead of the nucleon cross section, as is done for DM
in the WIMP regime.

The mathematical framework for light dark matter scattering on electrons, especially in semi-
conductors, is not quite as standardized as it is for WIMP-nucleon scattering, so here I will defer to
the formalism of Ref [33] when there is a question of which definition to use. We start with a de-
composition similar to earlier, where we separate a normalized form factor F'(q) from a cross-section

scale g, (similar to o) to get the bound-state cross-section scale [33]

— |Mfree(ame)|2

e = 1.
167 (my, + me)? (1.99)



CHAPTER 1. THE NEED FOR NEW PHYSICS 41

where M¢,.c. is the matrix element for free DM-electron scattering averaged over all initial and final
spin states. The differential event rate can be written in a similar but slightly different form than
for the WIMP [33]:

dFdet
dE

= (MW’;QZ‘“ ﬂ”;‘;) [ da (’Z;vonwmm(q,E))) Fpar (@) ferystar(a, E)? - (1.100)
where ferystal is the crystal form factor determined from transition rates between electron eigenstates
in the crystal lattice. This rate is obviously more complicated to compute (owing to the lattice
dynamics), and electron scattering is much simpler in detector materials where electron states are
more continuous. This means the electrons are closer to being free-electrons, and hence get less of
a kinematic boost from their binding nucleus.

This equation is re-factored so that the integral is a dimensionless function of the variables and
the leading term contains the rate normalization. Comparing this to equation we find that the
leading term is very similar, except for the replacement of o¢ with o.a and the addition of a scale
m

_— The major difference is that, since we'’re in a crystal lattice, we need to integrate over ¢

and F separately rather than separating the mean inverse speed from the form factor. It is simple

factor

to show that in the limit of continuous states, the form factor reduces to delta functions in energy
and momentum, and this equation becomes much closer to that in equation [1.76]

The current limits as well as future prospects for select semiconductor targets can be seen in
Figure Unlike the WIMP limits shown in Figure the majority of the simplest relic density
parameter space has not yet been probed, and light dark matter is in a sense low-lying fruit for the
upcoming series of small low-threshold experiments.

Light dark matter (defined as dark matter in the keV-GeV range) is thus a viable candidate to
explain the current dark matter density, and requires the development of a class of detectors distinct
from those design to search for WIMP dark matter. Light dark matter is well motivated and can be
probed by experiments much smaller and less complex than those needed for the remaining WIMP
parameter space. This is an ever-growing field, and I refer the reader to Refs [51] 2] [I] for more

in-depth discussion and the references therein.

1.3.3 Bosonic Dark Matter

Figure clearly shows a lower limit for hidden-sector DM in the keV range, but allows for other
models below that range under the heading ‘Ultralight Dark Matter’. The lower limit for fermionic
dark matter is around a few keV and is set by constraints from Lyman-alpha forest measurements
on substructure formation|[L5]; below this mass the dark matter is numerous enough to allow its
degeneracy pressure at early times to have a measurable effect on substructure formation in the
early universe[2]. This does not preclude ultra light bosonic dark matter, however, which does not

produce such degeneracy pressure, and thus the lower-limit for ultra-light dark matter has a much
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Figure 1.13: Figure 2 from Ref [33] showing current limits and reach of upcoming experiments
compared to the thermal relic targets for some simple models of hidden sector light DM. Note that
the freeze-in scenario can only be probed by direct detection experiments, and is otherwise only
limited by astrophysical constraints.
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lower bound in mass.

Consider, for example, a freeze-out scenario where the lightest dark sector particle is the bosonic
force mediator and the thermal relic is a sea of dark photons. The simplest detection scenario
is through kinetic mixing with the SM photon and results in a complete absorption in the target
medium. For these events, the rate in a perfect detector would look like a delta-function in energy,

and would present the event rate[47]

Maet px o
= ——Korp01(MAa 1.101
paer ma 4T 1(ma) ( )

T

where m 4 is the dark photon mass, o7 is the real part of the conductivity in the given target for a
photon with an energy equal to the dark photon mass, and k.sy o & is the effective kinetic mixing
parameter k including in-medium effects that alter the kinetic mixing properties from their vacuum
expectations[47].

The majority of bosonic dark matter models, which cover a very broad mass range and include the
well-motivated QCD axion, are beyond the scope of this thesis, and I refer the reader to Refs [34] [1] 2]
for a thorough review. A summary of the current constraints on bosonic dark matter can be seen
in figure
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1.3.4 Other Dark Matter Candidates

Coming back to Figure[1.12] I have discussed dark matter candidates in the range from well below an
eV and up to a few hundred TeV. There is a large break above the WIMP mass range to macroscopic-
sized objects. The few natural candidates above this bound have been largely ruled out over the
past two decades; most of the baryonic candidates are heavily disfavored by the excellent fit to the
CMB power spectrum, which clearly implies that dark matter is non-baryonic. Nevertheless, there

remain a few possibilities for very heavy dark matter:

o MAssive Compact Halo Objects (MACHOs) - Shortly after the WIMP paradigm was suggested,
the possibility that there were a multitude of compact objects that constituted the dark matter
was proposed. The MACHO collaboration searched for MACHOs in the Milky Way halo by
looking for micro-lensing events, and put an upper limit on the DM fraction of 8%. The
CMB measurement of Baryon fraction makes it highly likely that this is an over-estimate and
precludes MACHOS from being a dominant fraction of the dark matter (see Ref [19] and refs.

therein).

e WIMPZillas - There is a strong upper limit on the WIMP mass that comes from the unitary
bound; depending on the assumptions made this limit is ~30-300 TeV[20]. This limit only
applies for thermal relic DM, so it is possible that much heavier particle DM exists, but it
would need to be produced in a freeze-in scenario. The motivation for WIMPZillas comes
from unexplained high-energy cosmic rays that would be naturally produced by a WIMPZilla
decay|20].

e Primoridal Black Holes - One of the few still viable non-particle dark matter candidates is
primordial black holes, created in various modified inflation scenarios. Many of the potential
mass-ranges have been ruled out, and current constraints are discussed in detail in Ref [27].
The modifications needed to early universe cosmology to accomodate these primordial black

holes are significant, but given current inflationary constraints they cannot be ruled out[19].

This section is much shorter than it would have been even 10 years ago, as increasingly precise
cosmological measurements constrain the baryonic content of the universe, and local observations
continue to rule out compact objects. The particle candidates represent the most compelling ex-
planation for the host of observations we attribute to dark matter, and modified gravity cannot
yet explain the CMB and lensing phenomena. Thus where once the ‘dark matter’ was thought to
just be undiscovered objects, the field has converged on the idea that new particles and potentially
new forces are increasingly needed to explain both dark matter and a number of standard model
anomalies. As cosmology continues to increase in precision, and gravitational wave observatories
operate for longer and at better sensitivities, we will continue to constrain early-universe cosmology

and further narrow the field of candidates, potentially ruling out all non-particle dark matter or
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discovering that primordial black holes should indeed be expected in a certain mass-range. The
upcoming CMB-S4, LSST, and SKA experiments will make complementary measurements that will
vastly expand our understanding of the high-redshift universe and promise to shed more light on

the nature of dark matter.

1.4 Physics Reach of Low-Threshold Detectors

In this chapter I've laid out the case that 1) dark matter exists and 2) particle dark matter in the
eV-TeV range is well motivated from an early-universe cosmological perspective. In this section
I will briefly motivate the work presented in this thesis in terms of the discovery potential of new
detectors for dark matter across this mass range. I will focus primarily on the reach of semiconductor
and superconductor technologies, and summarize the full discovery potential of all current methods

under development to achieve sensitivity to lower-mass dark matter.
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Figure 1.15: Left: Maximum energy transfer to a target through nuclear (solid) or inelastic electron
(dashed) scattering for a variety of target and dark matter masses, assuming the dark matter is
moving at v, ~ 600 km/s, roughly the galactic escape velocity. Higher energies are possible if the
earth’s velocity increases the center of mass velocity of the DM-Detector system, but the energy limit
is captured by the figure to better than an order of magnitude. Right: Differential recoil spectra for
nuclear recoils at various WIMP masses in Ge, showing that as we go to lower mass, the maximum
energy drops but the overall rate increases due to the increased number density. The bandgap of Ge
is shown to indicate the minimum energy at which electron-hole pairs can be produced, important
for voltage-mediated semiconductor detectors.

The challenge of detecting dark matter masses below that of the target nucleus is summarized
by equations where it was shown that energy transfer is inefficient for elastic scattering
but can be boosted by inelastic electron-mediated atomic scattering. Figure shows the recoil
energy transfer at v ~ 600km/s for a variety of WIMP masses and targets for both elastic nuclear

and inelastic electronic scattering, as well as a series of nuclear recoil spectra for WIMPs at masses
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in the MeV-TeV range. The crosshairs in the left-hand panel show that the mass range is cleanly
bifurcated into masses above 10 GeV, which are accessible by experiments with keV thresholds, and
masses below 10 GeV, which need eV-scale thresholds for nuclear and electronic recoils. There is
also a tradeoff where the high-mass is dominated by nuclear recoil while the low mass is dominated
by inelastic scattering.

The majority of detectors overcome low energy backgrounds (IR and cosmogenic radioactivity)
by employing charge production either as the primary means of measuring energy deposition or as
a means of discriminating between event types, and thus detectors designed with eV-scale energy
thresholds also require eV-scale work-functions, such as those found in semiconductors. As can
be seen from Figure liquid nobles (with the exception of Helium) pay the largest nuclear-
recoil penalty at low DM mass; coupled with their relatively high ionization energies (~12 €V in
Xe, ~16 eV in Ar) and propensity for non-gaussian charge leakage, these detectors face significant
challenges achieving sub-keV energy thresholds. Semiconductors on the other hand have eV-scale
gaps, and are crystalline, so they have much more predictable behavior. Superconductors can achieve

even lower bandgaps in the meV range. A range of these materials is shown in Figure [I.16]
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Figure 1.16: Semiconductor (left) and superconductor (right) bandgaps for a variety of materials
in the meV-eV range. It is clear that for semidoncutors, the bandgap (depending on the nature of
the transition) is dependent primarily on the lattice spacing, while the superconducting bandgap is
determined very well by the critical temperature.

In this thesis I focus on the development of high-sensitivity readout for Si/Ge detectors, which
employ superconducting sensors to achieve sensitivity to excitations at the energy-scale of their
bandgaps. In particular, the detectors discussed in this thesis are designed to achieve sensitivity
to single electron-hole pairs in Si and Ge, and thus should be sensitive to energy deposits above

the bandgap in each material. The sensitivity of these detectors to DM through nuclear recoils and
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inelastic scattering (for the exposure and background expected for SuperCDMS SNOLABM]) are
shown in Figure [L.17
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Figure 1.17: Top: Projected sensitivity curves for SuperCDMS SNOLAB detectors through the
nuclear recoil channelld]. Bottom: Projected sensitivity of single-charge sensitive Si/Ge detectors

for two different form factors for an exposure without background similar to what is expected for
SuperCDMS SNOLAB|33]. Similar limits are also shown in Figure [1.13]

The structure of the following chapters is as follows. In chapter [2] I will discuss charge and
phonon dynamics in the crystal relevant to the phonon-mediated gain operating of these detectors.
In chapters [3] I will present the response and noise model for transition edge sensors in the context
of our prototype devices, and in chapter [ I will discuss the design of the SuperCDMS SNOLAB
HV detector readout, including the optimization of the phonon sensors and other design constraints
related to readout electronics. In chapter [5] I will present results from various prototype detectors,
both full-size SNOLAB designs and scaled down designs meant to probe various potential failure

modes. I will then present in chapter [6] the first electron-scattering results produced by SuperCDMS
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with a gram-scale prototype detector constructed according to the design principles described in
chapter [3] T will conclude with a chapter discussing future prospects and R&D for pushing beyond
the limitations of the generation of detectors discussed in this thesis, as well as potential imaging

applications for the current and near-future versions of this technology.



Chapter 2

High Voltage Charge & Phonon

Dynamics

“Quantum mechanics is certainly imposing. But an inner voice tells me that it is
not yet the real thing. The theory says a lot, but does not really bring us any closer
to the secret of the ”old one.” I, at any rate, am convinced that He does not throw

dice.”
- Albert Einstein, Letter to Max Born (4 December 1926)

My foray into charge transport simulations stemmed from the joint need to improve the detector
Monte Carlo being developed for SuperCDMS SNOLAB and to analyze the data from the first silicon
charge transport experiment conducted at Stanford. The results described here were published in
Ref [74]. This section summarizes the aspects of charge transport relevant to those efforts, and is by
no means a complete description or derivation of the laws contained here. An excellent introduction
to these topics in a CDMS context can be found in Kyle Sundqvist’s thesis [99], and a description
of the experiment from which the data in this section are taken can be found in Robert Moffatt’s
thesis [75]. For further discussions of impact ionization, see Arran Phipps’ thesis [81]. An excellent
review of Monte Carlo methods which derives and discusses many of the formulae presented here
can be found in Ref [52]. For specifics on the CDMS detector Monte Carlo, I refer the reader
to Rob Agnese’s thesis [3] and references therein. For complete pedagogical reviews I refer the
reader to Ashcroft and Mermin[10] for an introduction and Ridley[85] for an advanced treatment of

semiconductor physics.

49
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2.1 Introduction to Band Structure

Band structure is a phenomenon that arises naturally from periodic potentials in quantum mechanics.
In its full glory, the 3D band structure of a material can be computed from overlap integrals of the
bound electronic orbitals of the free atomics which comprise the material, but in many cases the
form is remarkably similar to a 1D approximation of periodic potentials. An even simpler example
comes to us by way of just applying periodic boundary conditions to an otherwise unbound state.
In this section I will review this basic example, and then present the results of periodic finite square
well potentials in an attempt to give the reader some context for why we can treat a complex lattice
structure as modified free-space. The rest of this section will be much less pedagogical but I feel
this is an important example which makes the remaining infrastructure of solid state physics much
less mysterious.

Let’s consider the Dirac comb, a series of delta function potentials of height « spaced a distance

a apart. Starting with the 1D time-independent Schrodinger equation

R Py()
By = 2m. dx?

+ V() (2.1)

we solve for the case of a periodic potential
Viz)=«a Z 0(x — na) (2.2)

For periodic potentials, we know from Bloch’s theorem that the solutions will be of the form

Y(z + a) = %Y (x) (2.3)

where a is the spacing between sites and K is the crystal momentum, distinct from k, the wave
vector. In later sections k will be the crystal momentum, the lattice wave-vector, but we make this

distinction here to be clearer. First, we know the solution to the Schrodinger equation in free-space:
Y(x) = Acos(kx) + Bsin(kx) (2.4)

where k = vV2mE /h. We now apply our boundary conditions that 1) Bloch’s theorem holds and 2)
the wave-function is continuous across lattice sites.

The first condition gives

W(a) = e 9(0) (2.5)
Acos(ka) + Bsin(ka) = e'f°A (2.6)
e~ [Acos(ka) + Bsin(ka)] = A (2.7)
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The second condition we find by integrating the Schrodinger equation around a lattice site. We find

2 ate 32 T ate
o | e [T vt - vt as 29

n? | dy(x) dp()| | e
2m, [dx e T dr o = E/a_e Y(x)de — ay(a) (2.9)

for € << a. Taking € to zero gives the boundary condition

dy(x)
dx

_dy()
dx

2ma
= -—-(a) (2.10)

a+ a—

For our wave equation, this evaluates to the condition

2ma
B2

kB — e "% [Bcos(ka) — Asin(ka)] = — A (2.11)

so that equations and allow us to solve for the unknown coefficients A and B.

Solving these equations yields the transcendental equation

cos(Ka) = cos(ka) — % sin(ka) (2.12)
which is our primary result. We find that the crystal momentum K is not a monotonic function of

k unless a — 0. In this case, in the small £ and K limit we have

1- (Ka)? ~1— (ka)? — 0;1—72” (1 - (ka)?/6) (2.13)
(Ka)? ~ (1 - 2%) (ka)? + O‘h—T (2.14)
HK? ~ (1 - 2‘7’2) (2mE) + O;—T (2.15)
E%%—%%z%%-ﬂ) (2.16)

where m* is the effective mass of the particle
m* = (1 - %) m (2.17)

and Ej is the zero crystal momentum energy (the work function). This is our secondary result; the
periodic potential scales the free-space momentum to the crystal momentum, which can be thought
of as changing the particle’s mass! This is a nice illustration of where the concepts of effective mass
and crystal momentum come from. It’s also a very clean illustration of how dispersion relations in
crystals can be assumed quadratic in the small K limit. Notice that effective mass can be negative

for potential barriers (a > 0), but not for potential wells (o < 0) and reduced to the free-space
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dispersion relation in the limit o — 0.
We finish this derivation by applying periodic boundary conditions to the whole system, assuming

it is a unit of N cells which wrap around on each other such that

Y(xz+ Na) = ¢(x) (2.18)
which by Bloch’s theorem means that
Y(z + Na) = BN (2) = p(z) = K = % (2.19)
giving us the final equation
2mn am .
cos (N) = cos(ka) — =7 sin(ka) (2.20)

In the limit of infinite lattice sites (infinite free-space) we thus have continuous ranges of allowed
values for ka = ma/ h2, or energy bands. Our third result is thus that periodic potentials give
rise to band structure!

Consider now a slightly more complicated model, where instead of delta functions we have finite
square wells of depth a and width b spaced distance a apart. This commonly referred to as the
Kronig Penney model, and is used as a toy model for one-dimensional lattices. When we follow this
same procedure, we have free-electron wavefunctions with wave-vectors k1 and ko and we arrive at

the transcendental equation|58]

k3 + k3
2k1 ko

cos(ka) = cos (2]7:;1) = cos(kz2b) cos(k1(a — b)) — sin(kob) sin(k1(a — b)) (2.21)
This equation makes it much clearer that we're producing a new momentum state k£ which is some
combination of k; and ko, and numerically solving this transcendental equation gives us the disper-
sion relation F(k) given that k1 and ks are both a function of energy, and the rest of the values
depend on constants of the problem. One can imagine the 3-dimensional problem contains of these
equations, approximately orthogonal, allowing for asymmetric dispersion relations, and therefore
asymmetric effective mass. This is a very important aspect of charge propagation in semiconduc-
tors, and while we cannot analytically express the full band structure, it provides nice intuition for

the concepts of dispersion relations and effective mass.

2.2 Electrons: Conduction Band Structure

The full band-structure of semiconductor lattices is obtained by numerical integration of the interfer-

ence of free-atom electronic orbitals, and has a complex dispersion relation, as shown in Figure [2.1
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Figure 2.1: Band structure computed numerically as shown in Ref [33] for Si and Ge.

The k-vector axis rotates through the set of valleys in the Brillouin zone where minima can exist
(by symmetry arguments, minima can only exist along a handful of unit vectors in k-space)[85].
In diamond cubic lattices (where each lattice site has four covalent bonds to adjacent sites), the
nomenclature for face-cenetered cubic bravais lattices is used. The k-space minima are found along

the following directions:

e I' - k =0, the center of the Brillouin zone. All valence bands are centered at I', and direct-gap

semiconductors are as well, such as GaAs.

o X - kis along the coordinate axes, meaning there are 6 valleys per lattice site. This is the

lowest valley in Si.

L-kis equally shared along the coordinate axes; in the first Brillouin zone, k= \/%5)(1, 1,1y,

meaning there are 8 valleys per lattice site. This is the lowest valley in Ge.

o K- kis equally shared between two coordinate axes, for example k= \%(1, 1,0), meaning

there are 12 valleys per lattice site.

e W - k is at 30° from each of the coordinate axes in each coordinate plane, for example k =

%(1, v/3,0), meaning there are 20 valleys per lattice site.

A schematic of these valleys, along with the full k-space unit cell, can be seen in Figure
The energy scale of the full-band structure shown in Figure [2.1]is much larger than the typical
charge carrier energies even at room temperature, so an effective band structure is an excellent

approximation to this full numerical model in most cases. For Si and Ge, the dispersion relations
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Figure 2.2: Brillouin zone of face centered cubic lattice, showing the path through the Brillouin zone
taken to produce the band structure figures shown in this section.

Substrate | egap (€V) | m1 (me) | my (me) | aeV™!
Ge 0.67 0.08 1.59 0.7
Si 1.107 0.19 0.98 0.5
Diamond 5.49 0.36 1.4

Table 2.1: Dispersion relation parameters reproduced from Ref [52] for Si, Ge and diamond. At the
time of the cited review, the band structure of diamond was much less well measured than for the
other two substrates, hence the absence of a good measure of non-parabolicity.

are very well approximated by the form

k§+k§+ﬁ

m m||

E —€gap = (2.22)
where m is the mass transverse to the k-vector minimum, m is the mass along the k-vector
minimum, and k; is with respect to the k-vector minima for a given crystal. The simplified band
structure shown in Figure [2.3] shows that Si has a minimum along the X-valleys and Ge has a
minimum along the L-valleys. We can also see from Figure that the electron bands are well
approximated by a quadratic form for £ << 100 meV[52]. The parameters for Si, Ge, and diamond
are shown in Table .11

One modification to this simple form to maintain accuracy to higher energy ranges is to introduce
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Figure 2.3: Simplified models of the band structure in Si (left) and Ge (right) with indirect and
direct transitions labeled.
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a non-parabolicity parameter a[52], such that
E— E(l1+4+aFE) (2.23)

where the product aF is dimensionless. Values for a for Si and Ge are also found in Table
The practical implications of this valley structure in semiconductors is that when charges have a
large mean-free path, there are highly preferred regions of momentum space, and thus propagation is
largely anisotropic. Measuring this anisotropy as a function of applied voltage in various substrates
was the primary goal of the studies shown later in this chapter. The degree of anisotropy is thus
a good measure of the mean-free path in a high-purity crystal, and therefore a sensitive probe of

electron-phonon interactions.

2.2.1 Effective Mass

One odd side-effect of the anisotropic propagation of electrons in a crystal is that charge carriers no
longer have a well-defined mass, and our definition of mass will depend on the context in which it’s
used. A very thorough discussion of this is found in Kyle Sundqvist’s thesis [99], and I summarize
the conclusions here and refer the reader there for the more thorough treatment.

There are many ways of pedagogically deriving the effective mass formula, but the simplest
approach is just to try to write the dispersion relation as a tensor product, recognizing that in

free-space the dispersion relation is just

n’k? B2

E(k) om 2

k'm~ 'k (2.24)

where m = mI and I is just the identity matrix. To get the effective mass tensor, then, we can take
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derivatives of the dispersion relation with respect to k;, giving the form[99]

1 d*E(k)
1
== 2.25
= dk;dk; (2:25)
If we apply this to equation [2.22] we get the effective mass tensor
m' 0 0
m'=|0 m' 0 (2.26)

0 0 mr

for a valley along the z-axis.

A practical upshot of the effective mass tensor not being a simple multiple of the identity matrix
is that the kinematics in a crystal are not the same as in free-space. For example, the velocity of an
electron is given by the equation[99]

v = hm 'k (2.27)

and thus the velocity is not parallel to the crystal momentum. That is not necessarily surprising,
but consider acceleration by a force:
a=m'F (2.28)

due to this mass asymmetry, the acceleration vector is not strictly parallel to the force vector! We

should note that the momentum change is still proportional to the electric field:

op = m-, = qE (2.29)

This is primarily what produces asymmetric charge propagation. Thus to model charge dynamics

in a crystal, we can find the derivatives of the band structure about the minimum with respect to

kik;, and use these to determine the effective mass, which in turn determines the charge dynamics
in the crystal.

This effective mass is obviously useful for equations which can be written as vector products or

vector sums, but how do we compute a particle’s scalar effective mass? The two most commonly

used scalar effective masses are the conductivity effective mass

1 1] 2 1
= - | = 4 2.30
me 3 [ml + m|] ( )

and the density of states effective mass
1/3
mq = [mym? | 4 (2.31)

These effective masses have different use cases; the conductivity effective mass is useful for mean-free
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path calculations, as it is a harmonic average, while the density of states effective mass is useful
for calculations involving volumes of phase space. In this thesis I will only use the tensor effective
mass or the density of states effective mass, as the conductivity effective mass is used primarily in

mobility calculations, which I do not cover here.

2.2.2 Herring-Vogt Transform

A final result from the formulation of the effective mass tensor in the previous section has to do with
a trick used to greatly simplify scattering Monte Carlo simulations, the Herring-Vogt transform,
which is employed in the CDMS detector Monte Carlo. It is described in full detail in Ref [52] and
references therein, and I summarize it here because of its central nature in our simulations as well
as the impact it has on using our simulations to understand our data.

The non-spherical nature of the dispersion relations in Si and Ge makes integrals over k-space
much more complicated, as the energy for a given k-vector magnitude is angle-dependent. In order
to use isotropic scattering approximations, we’d like to use an isotropic effective mass, which means

we’d like to solve for the transformation
mem~! =TT (2.32)

where m, is the mass of the free electron. Solving this equation for T gives the Herring-Vogt

N 0
T=| 0 \/% 0 (2.33)

0 0 Me

m

transform[52]

This allows us to rewrite the dispersion relation:

2
E(k) = %kTm_lk (2.34)
2
= P et (2.35)
2Me
2
= ;n (k')? (2.36)

where we have the transformed k-vector k' = Tk. This allows us to re-write integrals over k-space
by substituting k — k’ and dk — (%‘j) dk’, where my is the density of states effective mass defined
in the previous section.

The downside of employing this transform is that it is not unitary, and therefore it does not
obey simultaneous energy and momentum conservation. This is not a deal-breaker for us, as there

is always some numerical error in Monte Carlo simulations, but it does require periodic corrections
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to maintain these conservations separately. The net result of this transform is to sacrifice some
simulation accuracy for speed. In the case of CDMS simulations, this transformation has been
shown to produce broadening of electron valleys compared to the full vector-based treatment of

charge transport[73].

2.3 Holes: Valence Band Structure

Kane[55] derives the perturbed theory of valence band structure in p-type semiconductors (note that
the doping does not seem to affect the band structure calculations). In the small k limit, it will turn

out to have the parabolic, warped form
e(k) = AR + [B2K* + C° (k2K + K2K2 + k2k2)] /2 (2.37)

which can also be converted to a polar form using the relations

% = cos(0) sin(¢) (2.38)
% = sin(#) sin(¢) (2.39)
% = cos(¢) (2.40)
giving
k) 4y [B2 + C2sin®(¢) (cos? () sin®(0) sin2(¢) + cos(¢))] "/ (2.41)
kK2 '
where the effective masses of some key directions are
A+B A+ [B2 4 4c?)Y?
M100 = Mo10 = Moot = —5—, M1 = [ 52 1) (2.42)
which gives the mass anisotropy
A+ B2+ tc?)'?
p=—t_ - Lkl (S N (2.43)
mi00 A+ B
[B2 T éc2]1/2 — B
=+ : 2.44
(T o

1/2
B [b2 + 302] —b
=4+ < T (2.45)
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where b = % and ¢ = %. As we could have deduced from the earlier form, the parameter that

controls the degree of anisotropy is the ¢ parameter, however the sensitivity of the anisotropy to ¢
is set by b. This is the anisotropy measure is explored in Ref [78].
Kane’s more complete solution is to solve for the band structure by perturbation of the k - p

Hamiltonian about & = 0. We know that solutions to the Hamiltonian

(£ +v)) wthar) = B (2.46)

2m

have the form
Dk, 1) = " uy(r) (2.47)

where u(r) is cell periodic in the same manner as V(r). We can re-write the Hamiltonian equation
without the Bloch exponential as
p? hk-p  Rh%k?

(v "o+ g

)wmszm (2.48)

The insight of the k - p perturbation theory|26] is that we can find the k¥ = 0 exact solutions easily,
and then find solutions for arbitrary k by finding the perturbations in k - p to high enough order.

We thus re-write this equation as
h /!
Hy + o k-p|ug(r) = Epug(r) (2.49)

where E| = Ej — % and Hy = % + V(r). Kane[55] reduces the perturbation Hamiltonian

equation to the form

Hypc = Ejc (2.50)
where
LE? + M(kg +k2) Nk k, Nkyk,
Hyp = Nkk, Lk 4+ M (k2 + k2) Nkyk. (2.51)
Nkzk, Nkyk, Lk? + M (k2 + kg)

Including the spin-orbit coupling, the second order energy of these states has the eigenvalue equation

H{ HjyHjs + 2H 9 HosHis — Hi  H3g — HboHis — HygHY,
— (A/3) (H{Hjy + Hi  Hys + Hyy Hyy — H}y — His — H223) =0

where
Hj; = Hyi + (h?/2m)k? — B (2.52)



CHAPTER 2. HIGH VOLTAGE CHARGE & PHONON DYNAMICS 60

This equation is just the eigenvalue equation of the perturbed Hamiltonian with a spin-orbit correc-

tion. If we set k = 0, this reduces the the equation
E} + AE} = (Ex + A)E; =0 (2.53)

which has two degenerate solutions at Ej = 0 and one split by £ = —A, as expected.

The original matrix had L, M, and N as coefficients of overlap integrals, and Kane cites the DKK
paper[32] for this parameterization, as they attempt to measure these parameters. We can see that
the energy eigenstates are functions of these parameters, but a re-factoring can be done to simplify

the equations. We can re-write Hy), to get

L'K2+ M/ (K2 + k2) Nkyk, Nkyk.
Hyp = Nk,k, LE2 + M (K2 + k) Nkyk, (2.54)
Nkyk, Nkyk. L'k2 + M'(k2 + k2)

where L’:L—l—% andM’:M—i—%.
The general form for nonzero k is somewhat more complicated than the & = 0 solution, but

setting two of the k components to 0 gives the energies

Eroo(k) = M'k? (2.55)

% ((L’ + MHE* — A+ \/k4(L/ - M)+ §k2(L/ — M)A + A2> (2.56)

1 ((L’ + MHE* — A — \/k4(L’ — M2+ %sz(L’ - M)A + A2> (2.57)

2

while for k vectors along the [111] directions gives the energies

(L' +2M' — N)
3

1 ((2L/+4M/+N)

T2

Ein(k) = k? (2.58)

3 k> — A+ \/k4N2 + %WNA + A2> (2.59)

) 3

1 ((2L’ +4M' + N)
2

k2 —A— \/k:4N2 + %kQNA + N) (2.60)

Comparing these solutions tells us that, in general, none of the bands are spherical, but that one of
the bands is parabolic. The other two bands are split from a central parabolic band at k = 0 by A
and at higher k by all four parameters. The [110] energies do not have simple closed forms, so it’s

possible that all three bands are somewhat non-parabolic even in the small k limit.
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2.3.1 Equal Energy Surfaces

In order to plot the equal energy contours for this band structure, we need to first rotate the 001
k basis that the structure is specified in into the desired crystal orientation. We use the rotation

matrix

1

.

R=| % (2.61)
0

<dk 8-
S g

to rotate vectors in the 111 basis to the 001 basis, such that we can insert them into the energy
surface equation in manner which is meaningful for our 111 crystal orientation. We will use this
implicitly in the following logic.

We want to relate the theoretical band structure in some analytic way to the patterns we measure
on the surface of our crystals. The key issue is that we cannot necessarily just relate k vectors to
this pattern, as the whole idea of a crystal momentum is that it does not correlate necessarily to
spatial dimensions; this is the idea behind the effective mass. We can relate the spatial and crystal
spaces through the equation

v(k) = K Vi E(k) (2.62)

where we assume we can reconstruct the angular dependence of v(k) by assuming v(k) is the average

carrier velocity (carriers propagate at constant energy in a constant electric field), and thus

If we had timing information this might be the extent of our logic, however we do not measure the
arrival time of the charges, so we need to eliminate At from this relation. Suppose instead of the
position we fit the fractional components of the position (the position unit vector):

~

[o] = Jo(k)AH ~ Ju(k)]

(2.64)

So we have a way to roughly relate position and velocity, which also allows us to relate position
and the energy surface equation, as long as we forfeit knowledge of the k-vector magnitude. So
be it. There are obviously some assumptions in here about the degree to which scattering affects
spatial distribution of charge carriers, and for a single charge we shouldn’t expect it to following in a
straight line. A better way to visualize this argument is to realize that the effective mass tensor just
means that, in some other space, the charges propagate isotropically, and we then rescale the spatial
dimensions according the mass tensor to get the true spatial distribution; the degree of warping
between the dimensions is independent of scattering and energy aside from the energy scale helping

to determine the available scattering phase space.
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So lets normalize this equation by the vector magnitudes:

r v(k)  ViE(k)
T~ o]~ VhER)] (2.65)

we see that constants will start going away, reflecting the fact that we can’t constrain overall mag-
nitudes in the band structure without velocity information, at least not with our position fits. Lets
now calculate the gradient of the energy surface in 001 to see how that turns out before launching
down the road for the 111 case. We have

d 2 B2kt 2/1.21.2 2,2 27.2\\1/2
E® = g [Ak (B2k* + C? (k2K + k2k2 + K2k2)) ] (2.66)
— 2Ak; + = (B2k4 + CP (k2K + k2K + k2k2)) 7 d‘li (B2k* + C?(k2K2 + K2K2 + k2k2))
(2.67)
(2B2 + C?)kik? — C?k3
= 2Ak; + 73 (2.68)
(B2k* + C2(k2k2 + k2k2 + k2k2))
(2B% 4+ C?)k; — C2k3 [ k>
= 2Ak; + 73 (2.69)
(B2 + C2(k2k2 + k2k2 4 k2k2) /k*)
=2k A+ (B” + 5C7) — 3C7KE /2 ] (2.70)
(B2 + C2(k2K2 + k2k2 + k2k2) k4) '/
(B2 +30°) - §C*2 /a2
= 2k; [A + D72 (2.71)
so the vector has the magnitude
1/2
B2+ 1c? - 122 /K2
_ 2 2 2 4
\ViE(k)| =2 (Z k: {A + D1 ] (2.72)

27

(3
_ ( k? 0%2/1:2} 2) v (2.74)

-2 (e

2%k

b\%
—

o\ 1/2
AD'Y? 4 B% ¢ 02 c%?ﬂ#]) (2.73)

, B2 BC? ot \ 2
- — (ks + Ky + k3) %) + (kS + kg +k§)4k4D> (2.75)
EC? ct
= 51 ( — (ks + Ky + k3) xi + (kS + kS + k6)4k6> (2.76)
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where
k2k2 + k2k2 + ky*kz?
D=B?+C? ( zy xkz Y 27
1
So we have (in terms of all of the replacement constants)
(VB ki ADY?+ (B + 5C%) = C°h/K° (2.79)

VREMIL B (B2 = (kb + kD ES + (R + kG + k) )

This is no simple expression, and it’s still a function of the k-vectors, but now the k-vectors are
normalized in all expressions. As a sanity check that we’re really just probing anisotropy, let’s set
C to 0. We find that D = B2, E = AB + B2, and we get

(ViE(K)): k. AB+B® K
VoEE b * (2.80)

JAB 1322k

and we just find that the k-vectors should map proportionally to the velocity vectors. These expres-
sions don’t naturally simplify beyond this form, but we can see that the anisotropy does not strictly
depend on k-vector magnitude, but the degree to which one direction in k-space is preferred. The
observed anisotropy is dependent not only on the over-all energy, but also the distribution of energy
in the steady state. That being said, we can use the expected mean carrier energy and k-vector to

predict the degree of anisotropy seen in the charge collection pattern using this relation.

2.3.2 Hole Effective Mass

For valence bands, effective mass is a confusing concept. Whereas for the electrons our roughly
elliptical valleys gave a k-independent effective mass, making it a tensor with a physically intuitive
interpretation, for the holes the effective mass tensor is dependent on the direction in which the
hole propagates. There are a few ways to define effective mass which each give us a different way of
reformulating the problem, each of which aims to make an aspect of the problem more independent
of the exact state of the hole.

The traditional definition defines mass as a tensor to convert force applied to acceleration ob-
served. Using the relation
de(k)

(Vie(k)) = h*lva =h'V -k @ZZ . vk&:(k)) (2.81)

d _,ad

T w T w
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and conservation of crystal momentum

= dpcrystal _ hdk

il 2.82
dt dt ( )
gives
F _
a=h"1Vy <h : Vks(k)> =m]'F (2.83)
where the mass tensor is traditionally written as
]t = a2 O E) (2.84)
A dk;dk; '

We can also use vector identities to distribute the gradient:

Vk (F . Vk&‘(k?)) = (ng(k) . Vk) F+ (F . Vk) Vka(k) + Vk&‘(k’) X (Vk X F) + F x (Vk X Vka(k:))

(2.85)
= (F- V) Vie(k) (2.86)
which makes more explicit the assumption we’re making above, namely that
dF
=0 2.87
ik, (2.87)

in addition to the fact that F is conservative (Vi x F = 0). These are obviously equivalent, but
distributing the vector products makes it easier to see how F comes out of the integral, and what we
assume in order to do that. So the effective mass is determined by the outer product of a gradient
and a divergence of the dispersion relation.

We could also formulate the effective mass using the energy relation, given that we’re inter-
ested primarily in the anisotropy in the effective mass and care less about acceleration than about

deformation of the equal energy surface. Suppose that we try to re-write the dispersion relation as

(k) = kT [m*'}_l k (2.88)
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do we retain the effective mass if we try to apply the previous definition? Let’s try:

bl = h_ng:c(zg - ;dk?;kj [mll Fik; (2 = 0i) (2.89)
=(2-6i;) [m*/}; ;dljjlkjkikj +(2- 5ij)kikjd]j;kj [m*,]; (2.90)

_ [mll +(2- 5ij)kikjd]j;€j [m}j (2.91)

m)™" = {m} kT [dk?czlkj [m} _1] K (2:92)

This tells us that the two masses are equivalent if they’'re k-independent, which for the holes is not
the case, so the expression of the hole energy in terms of the effective mass is an approximation
good in the limit that this derivative term is small. If we consider that the quadratic order is also
the limit to which the band-structure is accurate, it’s possible to see how this isn’t a huge problem,;
if we're limited to low energies, the approximate form of the effective mass dependent on k will be
a close match to the true energy effective mass.

This form as a tensor product in energy is useful because it allows us to reformulate our Monte-
Carlo rules in a much simpler way. If the energy surface is spherical, this means both that we
are equally probable to emit a phonon in all directions, as a unit-vector in k-space with a given
magnitude has the same energy regardless of its orientation. This allows us to run an isotropic
monte-carlo with an additional step to transform into this isotropic space when the propagator is
applied, and to transform back to the original space to compute momentum and direction.

We can break the effective mass tensor down into the linear combination of two tensors, one

isotropic, and one anisotropic. We have thus that

o b

')t = —

(AI + f(B,C, /;)) (2.93)
where the + changes sign depending on the band, the minus sign corresponding to the heavy band,
and Z being the N = 3 identity matrix. The anisotropic term is only dependent on the direction of
k, and has both a scalar and tensor anisotropy. We break down this function into the scalar A\ and
tensor A, such that

1
)

2 —3/2
A <32 + % (k‘.’L‘QkaQ + ka?k2? + kyzkz2)> (2.94)

which is just the anisotropic term from the energy surface cubed; note that it can be written in
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polar form as described earlier. The diagonal elements of the tensor A are

K2k}
Ay = B2(24C?) +ZZ (1—6;;0:0%) |C*(1 + 2B%) -2 (1— ’“) 3202’“2 (ki* + 3(k} + ki)

k4 k2
J
(2.95)
and the off-diagonal elements are
2k? kPk?
Ay = 02 Z — 80 | (2B% + 02)k2 <k2 - 1> (4B* 4+ C*)— o (2.96)

We can further separate this into three main components, an isotropic scalar, and anisotropic scalar,

and an anisotropic tensor, by redefining A;; as

2 kakl% ki k 4 4
— zj:;u —6;j0051) | (14 2B7) x: 1— =) kG (ki* +3(k] + kp)) (2.97)
2 2k2 k,Qk.Q
i = — 0ij0ik) | (2B* + C%,;‘“ (,{z - 1) (4B +C*) (2.98)
and writing the effective mass as
1
m*]™' = — (AZ £ X [B*(2+ C*)T + C*N']) (2.99)

Me

shows us that there are various approximations we can make, but that this is essentially a tensor
expansion.

In summary, the hole effective mass is a much more complicated structure than the electron
effective mass, and a proper simulation treatment of the holes is beyond the scope of this thesis.
The intent of this section was to build intuition for the concept of warped bands, and how their
behavior is a much more complicated function of hole momentum and k& — wvector. Later in this
chapter, we will show that in certain limits, the anisotropic hole propagation appears to manifest
itself but recede as a function of temperature, which can be understood in the context of a momentum

and energy dependent effective mass.

2.4 Electron Scattering Processes

In this section I will present the theoretical scattering rates and cross-sections for the various electron
scattering processes as found in the literature, and show some order of magnitude estimates for our
chosen operating regime (7 ~ 50 mK, E ~ 0.01-100 V/cm).
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2.4.1 Impurity Scattering

Impurity scattering can be broken up into charged and neutral impurity scattering, due to the
different ranges of interactions between these mechanisms as well as the spectral dependence. In
addition, despite having some knowledge of the main impurity type, the contributions from charged
and neutral impurities may not be proportional to their relative abundance due to the different nature
of impurities that are in either state at cryogenic temperatures. Here I describe the scattering rates

as a function of energy, integrating over angle for simplicity.

Neutral Impurities

Scattering of hot electrons from neutral impurities is a complicated quantum process which many
have attempted to approximate through various simplifying assumptions, though a consensus has
been reached that this neutral scattering is the dominant determinant of mobility in very low-
temperature crystals at low to moderate field strengths. The most recent theoretical efforts have
used a full quantum mechanical treatment, calculating transition probabilities between initial and
final free-electron states given their interaction with bound electron orbitals in a neutral impurities
to determine the band-warping effect this impurity will have. I will summarize first the simple model
of a spherical square well, from which the simplest scattering cross-section is derived, and contrast
this with the results of the full quantum model to justify the use of the approximate form for our
implementation.

The most successful analytic solution for the energy dependence of the neutral scattering cross-
section comes by way of Sclar and Anselm[98] [85], though the formula is attributed to Sclar due
to his complete theoretical framework. These authors treat a neutral hydrogen atom as a spherical
square well potential, due to the propensity for neutral impurities to create weakly-bound states with
electrons at low temperatures and field strengths. The full derivation of the scattering probability
is beyond the scope of this work, but can be found in Ref [97], and references therein.

The basic derivation follows the method of calculating the net phase shifts in the initial and final

wavefunctions, typically given as

Yin = Ajo(ar), Your = B [jo(kr) cos(d) + ng(kr) sin(6)] (2.100)
where "
jo(I) _ blnx(l')’ no = _Colﬂ’ a = [W} (2.101)

Vi is the depth of the well, and § is the resulting phase shift from some simple potential. For this

form, the cross-section is given by the expression

o(f) = (2.102)




CHAPTER 2. HIGH VOLTAGE CHARGE & PHONON DYNAMICS 68

We can thus solve for sin(d) by application of the corresponding boundary conditions, which yields
the condition at the edge of the square well r = a
k cot(ka) — acot(aa)

sin(d) = (k2 + o2 Cotz(aa))l/z(l +C0t2(ka))1/2 (2.103)

If we restrict ka << 1 (low energies) we obtain the approximate form

k(1 — aacot(aa))

in(d) ~ 2.104
sin(9) (k2 + a2 cot?(aa))1/? ( )
If we have, additionally, that aa cot(aa) << 1 (the bound state is fairly shallow), we get
sin?(0) = K (2.105)
k2 + a2 cot?(aa) ’
giving the cross-section )
o(0) =~ (2.106)

k2 + a2 cot?(aa)

If the well is much deeper than the bound state we’re interested in, we can make the replacement|85]

o Eor\ /2
o? cot?(aa) ~ — ( m;; T) (2.107)
such that
e 2.108
)~ ————— .
and thus we have the differential scattering rate
dT(E) [2F h? nrh?  EY?
aq — o(B)(E) =nr mp 2mp(E+Er) — \/am¥? E+ Er ( )

Here and below, mp is the “density-of-states” effective mass of the electron, (mz, x m2)'/3.

The total scattering rate is thus obtained by multiplying this rate by 4m steradians, however
we want the intervalley (IV) and intravalley (V) rates separately. We can make the simplifying
assumption that the scattered electron will settle into the nearest valley after scattering, such that

we can divide the final scattering scale by the number of valleys, and we have

LB o — g | YV 1] ik EY2 [Ny —1] 2y2mnh? E'Y? 5110
(E)rv =dm | = Va2 E+Er | N 32 E+FE (2.110)
mp T v mp T
1]2v2 2 pl/2
D(E)y = [} \[727215 (2.111)
NV my) E+ET
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such that, as expected, this effect is stronger when there are more valleys in which to scatter.
The last detail of the modeling is how to determine the threshold energy (in eV). This is assumed

to be due to hydrogenic centers, and is given by

Br =07522% (2.112)

m e
which is ~ 5% 107* for Ge and ~ 2 % 10~3 for Si|85]. In principle, this energy threshold is a free
parameter, and will depend on the type of impurity. This is an important point which will help
explain why scattering rates are not just proportional to impurity concentration. In general, the
way to account for some number of bound state energies Er;, and bound state centers ny,, is to

sum over these scattering rates, accounting for each, giving the total rate

(2.113)

Ny — 17 2v2rh? E/?
D(E) v = [ = } 3/2 Zn“
mp i

Ny E+Ep;

In this way, different impurities with different bound state energies can produce arbitrarily complex
scattering rate trends, and result in different overall rates of inter-valley scattering. The weaker
the bound state, however, the weaker the low-energy scattering will be; so measurements of the IV
scattering rate, both in terms of energy dependence and overall rate, place both lower and upper
bounds on the relevant bound-state energies given the expected impurity concentration.

This is the simplest treatment which produces the correct energy dependence. It is possible to
extend this approach in the future by extending scattering to [ > 0 harmonics, which would predict
some angular dependence in the scattering rate, or through a full anisotropic treatment using the
non-spherical valleys as is done in Ref [60]. In the cross-sections calculated with the full phase-shift
treatment in this reference, we can see that above a threshold value the cross-section resembles that
of the Sclar formula, and could easily be produced using a normal Sclar prescription with very low
and intermediate energy bound states. There is, however, an anistropy in incoming and outgoing
angle, however the fist we could integrate over, and the second represents most likely a 10-20%
correction to our predicted rates, less than the typical uncertainty in our impurity concentrations.
For these reasons, the simple treatment, tuned using one low-voltage point, should be sufficient for

this simulation.

Charged Impurities

We assume that charged impurities contribute negligibly to transport at very low temperatures,
given that they have a much larger binding energy than the neutral impurities and thus, by analogy,

will be much less likely to become ionized in the thermal limit.
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2.4.2 Phonon Scattering

There are two distinct categories of phonons in a crystal, optical and acoustic, where acoustic have a
linear and increasing dispersion relationship with wave-vector near & = 0, and optical phonons have
a finite and often large energy and velocity at £ = 0. In the ohmic regime, acoustic phonons are the
dominant scattering mechanism, which means that this scattering rate should be dominant in the
intermediate energies where ohm’s law is applicable at our low temperatures, while optical phonons
will mediate higher energy transitions (e.g. between valleys). Here I summarize the scattering
rates, so that they can be related to intervalley scattering in the next section, and used in mobility

calculations.

Acoustic Phonon Scattering

The room-temperature’ acoustic phonon scattering rate as a function of energy is normally given
as[12]

_ V2RTmy*D2,

Doe(E) = E(1+ aE)(1+ 2aFE) (2.114)

0 h*pu?
where these are all strictly intravalley scatters. The average sound speed, u = (uy, + 2ur)/3. This
scattering rate will not contribute to intervalley scattering due to the low energy of the phonons
emitted, it will however limit the mobility of electrons in intermediate field regimes. This assumes
equipartition of energy into emission and absorption and fully elastic acoustic scattering, and thus
does not account for the inelastic cooling effect we see from acoustic scattering at low temperature.
We need to derive the true low-temperature form, which will also guide the derivation of the optical
rate as well.

The differential scattering probability in wave-vector k£ has the form

mq€2, | Ny

Pk, k) = N, +1
q

5(e(k) — e(k') F hquy) (2.115)

Vpu,

where the top is absorption and the bottom is emission. In our limit, we’re going to be only concerned
with emission, so we’ll limit ourselves to considering the bottom part of the expression and ignore

N,. This gives
mq€2, ,
T _ _ _ 2.11
(k1) = 7 a20(e(k) — (k') — ha) (2.116)
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and we get the rate as a function of k-vector by integrating over ¢ and k' (expressing k&’ as k — ¢):

I'(k) = (2‘;)3 /F(k,q)qu(cos(Q))d¢dq (2.117)
T 2
= % Vq;j; 25(e(k) — e(K') — hquy)d(cos(8))dpdg (2.118)
2
= %;”/q%(e(k) — e(k") — hquy)d(cos(6))dq (2.119)

To satisfy the delta function and get rid of the integral over d(cos(6)), we get

£2 m
[(k) = —2¢ 3 5(0) — ... 5 2.12
(1) = 2 [ 4 gileos(0) = . )d(cos(0))da (2120)
82 m gmax )
= _—a9c 2.121
e puk J dq (2.121)
E2m 3 3
_ b R 2.122
127rh2pulk (qm(ll qnnn) ( )

where the extra terms in the delta function are related to energy conservation. For emission in a

parabolic band we have

k
Gmin = 07 Qmaz = 2k (1 - kl> (2123)
giving
£2.m AN
'k)=—2—(2k(1—-— 2.124
(k) 127h2puk ( ( k)) ( )
282.m AN
=—%—k*(1-— 2.125
3rh2puy ( k ) ( )
up k2 kl 3
=5 (1-= 2.126
3lo k} ( k ) ( )
—ToM2(1— MY’ (2.127)
where I' = ;Ti] is the rate when the remainder of the equation is 1, M = kﬁl is the mach number, and
wh'p 9 m2vl2
lo = m7 = 72 (2.128)

This is the same as the rate shown in Ref [25], and is the rate law we use for low-energy NTL phonon
production. We expect to find that under this rate law, drift velocity is a very weak power law as a

function of electric field.
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Optical Phonon Scattering

The optical phonon scattering rate to zeroth order (in which a phonon is emitted) as a function of

energy[52] [12] is

3/2 2
T, o(E) = 227D Pono /5 o m (1 + 20) (2.129)
or-0 ﬁthphwop '

where E' = E — hw,, and fiw,, is the energy of the optical phonon which is emitted by the carrier.
Here we restrict to emission due to low temperature being considered, meaning very few phonons
will be available for the absorption process, and the N, that appears in the formula is set to 0. This
formula only applies to scattering between equivalent valleys, as we only consider propagation in
the lowest valleys, and does not consider the contribution of valleys with higher bandgaps. In Si,
we also have to consider the first-order transition rate equation due to selection rules which forbid

intervalley transitions for the low-energy phonons. This process takes on the scattering rate

V2Zm?? D2
Topi(E) = W#E’(l ¥ aE)(1420E)(E' (1 +aE) + E(1+aE))  (2.130)

where a new deformation potential has been defined for the first order process. We can see that the

equations are related by the expression

2
I = I‘O?ﬁ(E/(l—i-aE/) + E(1+ aF)) (2.131)
0
which tells us that the deformation potentials here do not have the same units; Dy will have units
(typically) of eV/cm, while Dy has units of eV; they differ by a multiplicative factor with units of
inverse length, the wave-vector. So what we’re really saying here is that D; is the quartic term in
our deformation potential expansion in k-space, while Dy is the quadratic term. Near the threshold
for a given transition, we have
2mD D%
Plugging in some values to convert the D; values given in Ref [12], we find comparable Dy values
as those found in Ref [52]. As these processes are first-order, they are subdominant far above
threshold, so their energy dependence is of less consequence. For simplicity, without changing the
total scattering rate, we will stick with the Oth order form for all transitions and use the constants
from Ref [52] for Si. There no such discrepancy for germanium. These constants can be seen in

table 2.21

We would also like this scattering rate in terms of k-vector for compatibility with the equation
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Substrate | Energy (meV) [ Dy (10° ¢V/cm) | Transition

12.0 05 TA (g1)
18.4 0.8 LA (g2)

Si 61.8 11.0 LO (g3)
18.9 0.3 TA (f1)
47.2 2.0 LA (f2)
58.8 2.0 TO (£3)

o 27.6 3.0 LA, LO (LLI)
10.3 0.2 TA (LL2)

Table 2.2: Phonon intervalley scattering parameters, reproduced from table VI of Ref [52].

from the previous section. We can write the scattering matrix element as

2
Tl'Dop

PV Wop

Ny

T(k, k) = N
q

3(e(k') — e(k) F hwop) (2.133)

and if we use the zero-point approximation, then we have simply

2
nD3,

T(k, k') =

S(e(k') — e(k) + hwop) (2.134)
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To get the integrated scattering rate as a function of k, we have

1%
L(k) = / U(k, k") g*d(cos(0))dpdg (2.135)
(2m)?
D3
= Sy / O(e(K') = e(k) + hewoy)q® d(cos(9))dgdg (2.136)
D? m
op 2
= Bpwg,n? ¢ d¢dq 2.137
8pWopT? / h2kq ( )
Dim  fame
= Inph?kiy, d 2.138
drph?kwop Jg00 909 ( )
D2 m
- m (@haz = Gmin) (2.139)
D:m 3m
= — P Y (B(k) — fwey) 2.140
dnphlw,y h (E(k) v) ( )
D2, (2m)3/2 [ h2k> 1/2
= ‘ = Two 9.141
pwop 4m2h3 <2m p) ( )
mDZ2, m? 2mw 1/2
= R 9.142
PWop m2h? < h ) ( )
D} 1/2
= Trpesd on (K — kS 2.14
4mpw3, on ( o) (2.143)
1/2
k 2 e
- Foki < N ka> - FOM"P (1 - Mopz) (2144)
op
where
D? D? 9 rm15/2
To= s ko= "\ o T 2.145
0 drpwd, P mp \/:p{h} ( )
and
2mw
Fop = - (2.146)

h
Here we see that this rate law turns on at a higher energy than the acoustic rate (and hence
is not important at low field strength) but has a weaker momentum dependence, so there is an
intermediate field strength region where this becomes more important before being overtaken again
by the acoustic phonon scattering rate. This rate law is also responsible for intervalley scattering at
high field strengths where there is a strong energy dependence. This is not yet implemented in the

DMC, but will be important for accurately simulating high field behavior.

2.4.3 Total Scattering Rate

The neutral impurity, phonon, and total scattering rates are shown in figure We can see that

these rates break transport into acoustic and optical dominated regimes, with large changes in



CHAPTER 2. HIGH VOLTAGE CHARGE & PHONON DYNAMICS

IVS Rate Ge Full

101

.|| — Acoustic Phonons  — IV Phonons
10 — Neutral Imp — Total IV
10
102
» 10%?
E
< 101!
g
& 10°
o
£
g 10°
£
©
A 100
107
10°
10°
10*
107 10° 10° 104 10° 107 107 10° 10" 10° 10°
Energy (meV)
100 IVS Rate Ge
Ll Acoustic Phonons — IV Phonons
10 — Neutral Imp — Total IV
10
10
» 107
E
R 10"
2’: J—
& 10
o
£
5 10°
-4
®
A 100
107
10°
10°
10*
10° 10 10* 10°
Energy (meV)

Scattering Rate, 20 mK

Scattering Rate, 20 mK

(0]

10 IVS Rate Si Full
.|| — Acoustic Phonons  — IV Phonons

10 — Neutral Imp — Total IV

10

10%*

102

10"

10%°

10°

10°

107

10°

10°

10*
107 10° 10° 10 107 107 107 10° 10" 10° 10°

Energy (meV)

10 IVS Rate Si
Sl Acoustic Phonons — IV Phonons

10 — Neutral Imp — Total IV

Energy (meV)

Figure 2.4: Impurity and phonon scattering rates (both intravalley and intervalley) as a function
of carrier energy for Si and Ge. A large energy range is shown in the top panels, while the energy
range of interest at our electric fields and operating temperature is shown as a zoomed-in region
in the bottom panels. Note that the point where intervalley optical phonons become important
is where the acoustic rate becomes sub-dominant to the optical rate, and neutral scattering is
never important from a mobility standpoint. The acoustic scattering is entirely intra-valley, so the
dominant intervalley scattering at low energy is the neutral impurity scattering.
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scattering rate, but also changes to the steady-state charge energy distributions. As optical phonons
turn on, they provide a significant kinematic cooling effect which should alter the steady-state energy
distribution of the charges. In addition, the acoustic phonon rate will not contribute to intervalley
scattering, meaning at low energy we expect that to be dominated by neutral impurities, which
in turn are always a negligible effect on the mobility. This assumes typical impurity densities of
10*tem =3 for Ge and 103em ™3 for Si with typical binding energies of hydrogenic (shallow single-
binding) impurity sites.

While these plots show the scattering rates as a function of energy, and can be thought of as
roughly the model we're looking for, we need to estimate the rate as a function of electric field,
which is discussed in the next section. We do this to get a feel for how the rate laws change as a

function of electric field, and how the energy dependence factors into their average scattering rates.

2.5 Electron Intervalley Scattering Rate

In this section I derive approximate curves for intervalley scattering rate as a function of effective
carrier temperature as a proxy for electric field strength. I will later relate effective carrier tempera-
ture and electric field strength to plot intervalley scattering rate versus field strength, but it will be
a much more approximate curve; the goal here is to show that through some relation between carrier
temperature and field strength, the observed scattering rate can be reproduced with the appropriate
trends. If this model were incorrect, we would see peaked behavior or the need to scale the scattering
rate vertically, rather than just reforming the x-axis.

To make this conversion, I will employ the displaced Maxwellian distribution as the approxi-
mate distribution function in energy space. This distribution is essentially a Maxwell-Boltzmann

distribution with nonzero mean velocity. This takes the form

1 (v2mpe — mpug)? (v2mpe +mpug)?
f(e,T,va) = — === |exp | — —exp | —
VaVv 27kaTmD 2kabT 2ka‘bT
(2.147)
where drift velocity can be approximated by the power law
vg =v(E =1V/em)E® (2.148)

For Silicon, we find from DMC drift curves that v(E=1V/cm)~ 1.95 x 10* m/s, and a ~ 0.205.
Note that this is a steep departure from the ohmic limit where velocity is linearly dependent on field
strength, but is consistent with previous findings. This still leaves electron temperature, which is

also a power-law function of electric field, and needs to be measured, or extracted from the DMC.
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We thus calculate the scattering rate as a function of electric field as

T, (E) = : F(e,T(E))Ts, (€)de (2.149)

and rely on the Monte Carlo to prescribe the relations between velocity and effective carrier tem-

perature for the electrons.

2.5.1 IV Scattering from Phonons

The most thorough reference on scattering processes of electrons in Si/Ge and alloys is Ref [52],
which thoroughly derives, in a systematic manner, the transition probably for an electron to scatter
off of both acoustic and optical phonons. A percentage of these transitions can lead to intervalley
scattering, with the largest component of the scattering rate derived from the optical phonon scat-
tering rate. As the change in k vector and energy are nearly exact, emission of either acoustic or
optical phonons is treated using the optical phonon emission rate equation given in the previous
section.

Let’s ignore the non-parabolicity parameter for now, for the sake of simplicity. We can write

each intervalley scattering process (per transition) as

o0

L, (T) = f(E, Ty, (E)dE (2.150)
hwiy
2m3, D2, o E
— | 2D i —— ) VE(E = hwy,)dE 2.151
i [ e (i ) VEE = ) (2151)

om3 D2, heoi, \ [ B\ EETR)
_ D _ Wi, — =) VE(E + hwny )dE 2.152
\ PET Bphwr, P\ HT /O exp |\ —p7 ) VEE+ wi) (2.152)
3 2
kabT Div- ﬁwiv, hww
_ i _ i\ K i 2.1
V ors 12 eXp( 2T ) 1\ 2k, (2.153)

So for high temperature we expect the rate to go as v/T', and be heavily suppressed for low temper-

ature around temperatures of the energy scale of the intervalley phonon. What’s interesting is that
the magnitude of the rate ends up being independent of the phonon energy. Here then, the total

intervalley scattering rate from all intervalley phonons is
Tivp(T) = T, (T) (2.154)

The overall coefficient comes outside the sum, and we sum over squared deformation potentials times

phonon-energy dependent suppression factors.
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2.5.2 IV Scattering from Impurities

Here we will again ignore band non-parabolicity and consider the case of of a simple power-law
for the charged impurity scattering which can approximate the regime we are concerned with in
the charged impurity case, and the full formula for the neutral impurity case. Considering charged

impurities first, we find

Lue= [ HEDIBNE (2.155)

0
2nTy * E _1/9

= = —— | E"'%dE 2.156
TS Jy eXp( ka> (2.156)
QTL]FO 1/2 271[P0

= e T)'/? = === 2.157
s ) =T (2.157)

while for the neutral impurities, we find

Civn / W(E)dE (2.158)

/ 4\f7m1h2 EY/? iE (2.159)
\/ 7rk3T3 ka w2 E+ By

m mfi ( ka> %ETdE (2.160)
\/Emjz [ka Erexp (f;) r (07 li;ﬂ (2.161)
\/]%TrTmsfi {1 _ % exp (Z;) r (0, If})] (2.162)

where I' here is not a rate but the incomplete Gamma function. The portion of this function in

brackets is ~ ’“’T for kT << E7 and 1 for the opposite limit. We can simplify this to a good

degree of accuracy (better than 15% across all regimes, better than 1% everywhere but close to the

turn-over point) using the function

2w n1h2 k‘bT nIFOn k‘bT
Tivn ~ 8/ — = . 2.163
: V kT 132 [ka +Er|  VkT |kT+EBr (2.163)

which looks very similar to the original scattering rate function. These trends both allow us to

determine effective temperature for a given electric field strength and rule out certain processes. For
example, if scattering rate increases monotonically with electric field strength, and we can assume
effective temperature can only increase with field strength, then for that range of fields we can rule
out charged impurity scattering as the main driver of this scattering. That being said, given just

these trends, it will be hard to make a predictive model of intervalley scattering because they are
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Figure 2.5: Top: Scattering rates relevant to calculating the intervalley scattering rate as described
in this section, with the charged impurity scattering rate from [52] shown for comparison with the
other two rates described in this chapter. Bottom: Predicted intervalley scattering rates, using the
electric field to carrier velocity conversions found in Ref [99].

not the limiting processes for mobility, and there is not a simple power-law or scaling relationship
between effective carrier temperature and electric field strength. That being said, we can model

it by calculating the mobility including all sources of intravalley scattering, which will give us an

approximate conversion.

2.5.3 Total IV Rate Predictions

Application of these equations gives us a mapping of scattering rate as a function of carrier effective
temperature, which we can convert to electric field using the Monte Carlo calculations from Ref [99).
Plots of the relevant scattering rates, as well as the final calculation for Si and Ge as a function
of electric field, can be seen in Figure |2.5] These plots do not show uncertainties due to impurity

density and depth as well as carrier effective temperature, but show that the convolved distribution
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results in the prediction of a flat scatter rate at low field strength and a strongly exponential rate
at high field strength. The relative number density of impurities (weighted by their depth) is given
by the cross-over point between a flat and exponential rate.

This figure shows that charged impurities would produce a rate higher than that of the phonons,
inconsistent with our data, and decrease rapidly with energy, also inconsistent with our measure-
ments and those of e.g. Ref [24]. For this reason, we have not included charged scattering in this
model. What we are left with is a gentle, roughly constant scattering near the mean carrier energy
of 1-10 meV, and a much higher scattering rate which turns on above a moderate threshold. This
threshold is larger for Si than Ge, and we note the larger overall impurity scattering rate in Si due

to the larger number of scattering centers.

2.6 Results from Stanford Charge Transport Measurements

The previous sections laid down the theoretical framework for understanding some of the results
from the charge transport imaging experiments which I will describe in this section. The first
iteration of this experiment probed electron and hole transport in Ge as a function of bias voltage
for a crystal oriented along the (001) crystal axis, measuring the intervalley scattering rate and
comparing various simulation methodologies to data to determine their accuracy. The full details
can be found in Refs [75] [73]. In this section I describe the same study applied to a Si crystal oriented
along the (111) axis, presenting the measurement of intervalley scattering rate versus electric field

and discussing some surprising hole transport phenomena.

2.6.1 Experimental Setup

The design of the experiment used to measure transport properties in cryogenic semiconductor
crystals was first described in Ref [73], and a schematic of the measurement technique can be seen
in Figure [2.6] The basic technique is to raster scan a laser across the back of the test sample, and
use the two charge electrodes to determine the amount of charge reaching the small central charge
electrode relative the the total charge as a function of initial position, building up an image of the
spatial charge distribution as a function of voltage.

In addition, data were taken at a range of base temperatures in order to probe temperature effects
between 500 mK and 5K, which in principle should both be closer to the zero-point (non-thermal)
approximation than the adiabatic approximation, but do show some interesting differences. A range
of data at these base temperatures can be seen in Figures and Note that as expected,
the electron patterns are similar, differing only in over-all charge collection efficiency and slightly
in intervalley scattering rate. The holes, however, exhibited an asymmetry not seen in the Ge
experiment, which required us to dig into the modeling of the valence bands shown earlier in this

chapter.
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Figure 2.6: Schematic of the experimental setup, with a laser reflected off of a mirror at the base
temperature stage which can be used to raster scan the crystal face to produce charges at different
initial positions on the backside of the crystal. These charges are drifted through a variable electric
field to the electrodes on the front side, and the fraction of charge collected by the front electrode is
used to produce a map of the spatial charge distribution arriving at the front face as a function of
initial position. See Refs [75] [73] for more details.

2.6.2 Intervalley Scattering Rate

The intervalley scattering rate as a function of voltage was measured by employing our detector
Monte Carlo to simulate acoustic phonon scattering, allowing for determination of the effective
carrier temperature, and by simulating a large range of effective intervalley scattering rates in order
to match observed and simulated charge collection patterns. The acoustic scattering parameters
were taken from Ref [52], and the resulting drift velocity curve can be seen in Figure

For comparison to Refs [12, [11] 24], we would like to measure the intervalley scattering rate, but
our experimental setup is much more conducive to measuring the intervalley scattering length, and
using the Monte Carlo to convert the inferred scattering length into a scattering rate. The procedure
for determining the intervalley scattering mean free path is best illustrated by the example analysis
plots in Figure We employed two methods to estimate mean-free path from both the data
and Monte Carlo simulations, one using only the zero-scatter peaks (localized in position space and
roughly Gaussian) and one using only the central Gaussian blob.

The first method uses the fact that the ratio of zero scatters to multiple scatters can be used as

a measurement of the intervalley scattering mean-free path. The fraction of charges which undergo



CHAPTER 2. HIGH VOLTAGE CHARGE & PHONON DYNAMICS 82

Figure 2.7: Electron charge collection patterns as a function of voltage for 500mK (top) and 5K
(bottom) in a ~4 mm thick crystal.

Figure 2.8: Hole charge collection patterns as a function of voltage for 500mK (top) and 5K (bottom)
in a ~4 mm thick crystal.

no scatterings is given by the equation

No
Ntotal

T = exp(—n/A) (2.164)

where 7 is the crystal thickness and A is the scattering mean-free path. If we can get a robust

estimate of T, then we determine the mean-free path using the equation

A=1 [m (N;;;‘” >] - (2.165)

We determine 7 by calibrating the Monte Carlo pattern to the crystal pattern; the relative spread

of the valleys is geometrically related to the crystal thickness at low voltage, and we find based on

simulations that the crystal is n ~ 3.4 mm thick. We determine the number of zero-scatters Ny in
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Figure 2.9: This figure shows an example of how information was extracted from both data and
Monte Carlo in order to estimate the intervalley scattering mean-free path. The top left panel shows
the measured charge distribution, overlaid with lines circling the location of the zero-scatter peaks
and following the single-scatter lines connecting the peaks. The top-right panel shows how the zero,
single, and multiple scatter peaks are determined, and also the green regions used to estimate the

noise floor. These regions are plotted in the lower two panels, and a guassian fit to the zero-scatter
peaks is shown as a cyan line.
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two ways:
e Integrate the charge within the identified zero-charge region.

e Fit the outer half of the zero-charge region to a Gaussian (distorting the ellipse into a circle)
and using the measured amplitude and variance to estimate the charge in the zero-scatter

peak.

The second method is more robust, as charges which undergo scatters close to the electrode may
still be included in the nominal zero-scatter region, but they have a low probability of making it to
the far half of the zero-scatter ellipse. The impact of this single-scatter distribution can be seen in
Figure [2.9] as blue points which do not align with the Gaussian fit. The results of these two methods
are both plotted in Figure in both upper panels. We can see that the integration method is
biased relative to the fitting method, as in the high mean-free path case, it includes extra charges,
and in the low mean-free path case, it has worse signal to noise. Thus for voltages with significant
zero-scatter peaks, we use the fitted method, and the integration method gives us a measure of the
maximum systematic error on the measurement.

The second technique, which we use for short mean free paths (high voltage) is the variance
technique. For many intervalley scatters, the observed charge distribution is roughly Gaussian, and
we know that for a random walk with mean step size A, the variance of the resulting probability

distribution is proportional to that mean-free path:

o? — %)\2 _ ;ZZAQ =7\ (2.166)
The mean-free path using this exact expression was attempted, and the resulting measurement
differed from the zero-scatter measurements by a factor of order unity, related to the fact that this is
not a true free-space random walk and the mean free path is directionally dependent. We thus used
some points with good zero-scattering measurement to calibrate the relative scale factor for this
technique, and then used the technique to extend the mean-free path measurement out to higher
voltage, where the zero-scatter technique was statistics limited.

The mean-free path measurements can be seen in the top-left panel of Figure 2.10] and the
agreement between variance and zero-scatter techniques is seen to be very good. Also shown in
the bottom-left panel of Figure is the model prediction for mean-free path given different
effective neutral impurity densities using the scattering rates derived earlier in this chapter, and
using tabulated values for the carrier temperature and drift velocity as a function of voltage from
Ref [99]. This is a much better prediction than those shown in [11], where intervalley transitions
below the optical mode energy was modeled as charged impurity scattering. This result thus lends
support to an intervalley scattering model dominated by high-energy phonons at high voltage and

neutral impurities at low voltage.
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Figure 2.10: Top left: Intervalley scattering length as a function of applied electric field based
on three different estimation techniques described in the text. Bottom left: predicted intervalley
scattering length as a function of electric field based on the scattering theory presented earlier in
the chapter for different neutral impurity densities. Top right: IV scattering length inferred from
Monte Carlo simulations given mean free path estimates in the top left panel. Bottom right: final
intervalley scattering rate points fit to different functional forms as described in the text.
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Figure 2.11: Left: Electron drift velocity as a function of applied electric field using the acoustic
scattering parameters from the literature (see the text for more details). This drift curve is used to
convert the measured mean-free path into a scattering rate for comparison with literature predictions
and other measurements. Right: Rate determination using matching DMC mean free path versus
rate to data-measured mean free path at each measurement voltage. Both methods were used to
determine the rate independently as an estimate of systematic error where possible.

The second half of this analysis entailed converting these mean free paths into voltage-averaged
scattering rates, which was done by running a grid of Monte Carlo simulations at different volt-
ages and IV scattering rates, applying the same measurement techniques to estimate the effective
mean-free path, and matching the scattering rate figure at a given voltage to the corresponding mea-
surement at that voltage. The detector Monte Carlo employed is the G4ACMP package, a GEANT
extension for cryogenic semiconductor charge and phonon transport simulations being developed
by our collaboration to simulate SuperCDMS detectors (see Ref [3] and references therein). An
example of this correspondence procedure can be seen in Figure along with the drift curves
for all simulations as a function of voltage. This figure also demonstrates the independence of the
drift velocity and IV scattering rate, given that it is a minor process in determining overall electron
mobility relative to acoustic scattering. The resulting measured IV scattering rates can be seen in
Figure in the right-hand panels.

The trend of IV scattering rate versus voltage was fit to two function forms. The first is from

[24):
a/2

Ty =T [Ef + E?] (2.167)

The second is based on the addition of the phonon and impurity scattering mean free paths based

on Matthiessen’s rule:
Tiotar = Y T (2.168)
i

which for a two-component model, where the low-field scattering is impurity dominated and the
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Functional Form T FEy Iy a
Non-Linear (Eq[2.167) | 3.5¥1072° Hz*(m/V)® | 3395 [V/m] - 7.47
Linear (Eq|2.169 9.8*10° Hz - 3.11% 1077 Hz*(m/V)® | 4.02

Table 2.3: Intervalley scattering rate parameters for Si fit to the data presented in this section.
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Figure 2.12: Intervalley scattering rate fit to the equations presented in this section, including
residuals for the rate fits. The linear equation is shown as a solid line, and can be seen to have
consistently small residuals, while the non-linear form cannot simultaneously fit all regimes.

high-field scattering is dominated by a phonon mean free path, we have

Iy =T7+Tpp,~To+T1E” (2.169)
In the low and high-field limit, these equations have the same field dependence, but in the interme-
diate limit where E ~ FEj, they behave differently. Our data were a much better fit to the second
form, as shown in Figure [2.10] where the earlier form which is added in quadrature is not capable
of fitting the data across all measured electric fields. The fit parameters for Si for both functional
forms can be seen in Table 2.3

We can compare these functional form using the residuals, as shown in figure [2.12| reproduced
from Ref [74]. We find that the uncorrelated model based on adding mean free paths is a consistently
better fit than the non-linear form across the range of electric fields based on the consistently lower
and unbiased residuals of the solid line (the linear model) as compared to the dashed and dotted
lines (the non-linear model fit to either the high or low energy points). We also notice, in comparison
to the Ge measurements and the predictions shown in figure that intervalley scattering turns

on at a higher than expected field strength, but the power laws are similar between Si and Ge as
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Figure 2.13: Hole collection pattern as a function of temperature for 500mK, 1.4K, 3K, and 5K from
left to right for fixed laser intensity. The top panel shows the two-dimensional collection pattern,
and the bottom shows the charge density as a function of distance from the center of the pattern.
See text for discussion.

predicted. We can attribute this to a difference in effective carrier temperature as a function of

electric field due to different acoustic coupling and optical phonon energies.

2.6.3 Hole Anisotropies

Subsequent to the intervalley scattering measurements, we began to analyze the hole data and quickly
realized that there was temperature dependence in the hole patterns, and at low temperature the
hole collection was highly anisotropic. I explored these anisotropies with James Allen, and the
detailed study of the character of the anisotropies is discussed in his undergraduate thesis (Ref [9]).
The initial observations are summarized in Figure where you can see the tri-lobe shape become
less prominent as a function of temperature and the hole pattern become more Gaussian.

As discussed in section [2.3] in the small k limit, the hole bands are highly warped, with light and
heavy hole bands exhibiting asymmetric and complementary equal energy surfaces. This warping
is most pronounced for E ~ ¢€g,, the spin-orbit coupling energy. This is plotted in figure for a
relatively stationary hole as well as a hole with significant crystal momentum along the electric field.
We can see that for the second case, an anisotropy very similar to that seen in our hole transport
data arises in the equal energy surfaces. We saw in the previous section that the symmetry of
these surfaces is the same as the spatial anisotropy, though the shape can be significantly different

depending on the energy distribution, and is based on the gradient of these surfaces.
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Figure 2.14: Brillouin zone for the holes rotated so that k, is along the (111) direction. Top:
Dispersion relation at k, = 0 for E(k, = 0,k,) =1 meV and k, = 0 at the band minimum. The
equal energy surfaces for both the light and heavy holes as a function of crystal momentum become
anisotropic for charges at non-zero drift velocity. For drifting charges, the heavy hole band will be
preferentially filled by inter-band phonon emission. Bottom: Contours of constant kinetic energy
for heavy (light) holes are shown on the left (right) where the center of the pattern shows contours
for carrier energy of ~ 3 meV for the heavy holes and the mean energy of the contours is ~10 meV,
comparable to the mean hole energy for low electric field strength. The upper plot is a cutline
through the lower plots for k, = 0. Reproduced from Ref [74].
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Our initial hypothesis to explain the effect seen in figure was that as we lower the temper-
ature, hole acoustic scattering is suppressed, and holes achieve higher kinetic energies. Given that
the spin-orbit coupling energy is 44 meV in Si[52], and that is also characteristic of typical carrier
energies at low temperature, we should expect to see a lot of warping as the mean free path of the
carriers increases. In contrast, we do not see this effect in Ge, which has a spin orbit coupling energy
of ~ 200 meV, much larger than the mean carrier energy at any temperature studies in our previous
paper (see Ref [73]).

Later data taken for a few targeted experimental conditions showed that, while the anisotropy
does seem to be present, the temperature dependence we're seeing has less to do with intrinsic
charge propagation than the spatial distribution of initial charge produced. This data, shown in
figure shows that the shape of the charge distribution is preserved but the overall size and
flatness depends more on the initial charge produced in the crystal than the temperature or field
strength. This data, along with higher voltage electron data at various temperatures, indicates that
small-scale transport is affected by charge repulsion, which needs to be modeled using various initial
laser intensities to isolate its effects away from anisotropies due to transport. Our current detector
Monte Carlo implements the holes as a spherical, parabolic band, and we are in the process of

implementing anisotropic hole transport and charge respulsion in order to test this hypothesis.

2.7 Future Charge Transport Studies

The charge transport work presented in this chapter was a driving force for improvements to G4CMP,
which was based on an earlier MATLAB Monte Carlo built assuming any crystal under study was Ge
aligned along the X-valley, and was meant to simulate cryogenic Ge at low electric fields. As of this
thesis, we have now run Ge (001)[73], [75] and Si (111) (this thesis and publication in preparation),
which motivated the development of miller index rotation and generalization of the code to an
arbitrary substrate. We still need to run the complementary crystals (Ge (111) and Si (001)) to
verify that the acoustic and intervalley scattering rates are correctly implemented as a function of
rotation angle and voltage.

We are also in the process of operating Si at higher electric fields (up to 500 V/cm) and we have
observed tentatively that some of the anisotropy in the electron pattern re-emerges at field strengths
above those included in this chapter. The detector Monte Carlo does not predict this, so we need to
determine whether this is the result of some detector effect, or whether this is due to higher order
phonon processes not implemented in the current Monte Carlo. Many of the effects we observe in our
charge transport studies are outside of the realm of the existing literature, which does not focus on
spatial charge propagation at low temperature, and thus we need to carefully implement additional
physical processes to determine the origin of the signal.

There are many improvements which need to be made to the Monte Carlo in order to produce
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Figure 2.15: Two-dimensional charge density patterns for electrons in (1,1,1) Si as a function of
bias voltage. First and second row: Data recorded at 5 K and 500 mK. Third row: A simulation
of the patterns in the zero-temperature limit. For the rows of data, each pixel is assigned a color
according to the measured pulse height, with red indicating larger pulses (and thus more charge
collection). The white numbering shows the maximum pulse height (in meV) and the normalized
integrated intensity (relative to —12V 500 mK) for that panel. For the MC, a conversion was used
such that peak intensity for the —12'V simulation agrees with the —12V 500 mK data. Reproduced
from Ref [74].
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something useful for detailed charge transport studies:

e Merge the 'Luke Emission’ process with charge transport code to tie acoustic and intervalley
scattering to electron-phonon amplification. There is no need to separately calculate the
phonon emission rates and intervalley scattering rates given that they are known processes,
and tying intervalley scattering to optical/acoustic phonon scattering will make the code more

accurate and predictive.

e Finish the implementation of impurity scattering, including a more physical calculation of
impurity scattering rates. The scattering rate in this thesis assumes purely elastic scattering,
but does not do the proper solid angle calculations, and a full theory of neutral impurity

scattering at low temperature should be properly quantum mechanical.

e Allow for valley minima along vectors with non-unit length, to allow for exploration of crystal

deformation on charge transport properties.

e Implement anisotropic hole propagation in order to simulate the hole collection patterns seen
in the data.

These studies are not necessary for using G4CMP in SuperCDMS SNOLAB detectors, as we will
always be able to tune relative scattering rates to match data, but will be important if G4CMP is to
be used to predict behavior in new materials which have not been as thoroughly tested in cryogenic

settings, such as diamond.



Chapter 3

Detector Concepts

“If you take a bale of hay and tie it to the tail of a mule and then strike a match
and set the bale of hay on fire, and if you then compare the energy expended shortly
thereafter by the mule with the energy expended by yourself in the striking of the

match, you will understand the concept of amplification.”
- William Shockley, as quoted by Fred Warshofsky, 1989

This chapter documents the work that went into designing the HV detectors for SuperCDMS
SNOLAB (summarized in Ref [59]), and comments on various design choices in light of the testing
results shown in the following chapter. It should be seen as a snapshot of SuperCDMS detector
technology at this time of writing, in the same way that Matt Pyle’s thesis [83] was a snapshot of
detector design for the last generation of SuperCDMS Soudan detectors. At the beginning of the
work shown here, it seemed clear to us that bigger was better, but our recent work has resulted
in a bifurcation of detectors into smaller, ultra-high sensitivity detectors for calibration and surface
testing and kg-scale detectors for higher thresholds and lower backgrounds. This is driven by some of
the non-ideal background processes that were encountered during testing, but also by the recognition
that for sub-GeV dark matter and photon detection, running kg-scale detectors amounts to trying
to tie a shoe with a steam shovel...things move too quickly to get the job done right.

This chapter is organized as follows. Section describes the basic flow of energy through
the detector and contextualizes the following sections. Section derives transfer and Green’s
functions for the transition edge sensor arrays we use for our detectors in terms of the free design
parameters of the QET. Section describes the efficiency model for a single QET, and section
then describes the bandwidth matching and efficiency optimization of the QETs with the detector
given their segmentation into channels and the wiring needed to read them out. Section[4.3]describes

the electric field and detector response modeling used to simulate the operation of the detector and
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Figure 3.1: Schematic overview of the separate prompt and NTL phonon emission for high voltage
detector operation.

optimize the detector-housing separation, and section describes the use of the Monte Carlo to
optimize the mask layout for the best position resolution in the detector. I conclude with some
summarizing thoughts and suggestions for future work based on work since this design process and

test results shown later in this thesis.

3.1 Detector Overview

SuperCDMS detectors are phonon and charge calorimeters; that is, they measure total energy col-
lected by summing measured power over time, calculating this total energy using various measures
of deposited energy in the charge and phonon energy systems. When any interaction occurs in the
detector crystal, it produces a large population of phonons, which we call 'prompt’ phonons, as well
as a number of charge carriers. Immediately after the event, the energy is divided according to the
energy conservation formula

E = Eph + €gapnen (3.1)

where E,, is the energy of the prompt phonons, egap is the bandgap energy (discussed in chaupter7
and nep, is the number of electron-hole pairs produced by the event.

The detectors are operated with a voltage between the two faces in order to drift the charge
carriers generated by events to the instrumented detector faces. As the charges are drifted, they
generate an additional phonon energy due to production of additional athermal phonons we refer to
as Neganov-Trofimov-Luke[69] [77] (NTL) phonons. Due to energy conservation, the total amount
of phonon energy produced is just e- V', so that the total phonon energy produced during the event
is just

Epp = Er +nepV (3.2)
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We can parameterize the charge production as

E,
Nen, = y(E,)— (3.3)
€eh
where y(FE,.) is the charge yield (normalized to 1 for electron-recoils, and taking on a value between

0 and 30% for nuclear recoils) so that the total phonon energy is

By = B, (1 + Vy(ET)> (3.4)
€ch
Here €.p is the energy needed to produce on electron-hole pair on average, which differs from the
energy gap for indirect band-gap semiconductors. This shows that we have two nominal detector
modes, a low-voltage mode (where there is minimal degeneracy between phonon and charge energy)
and a high-voltage mode, where the phonon energy is proportional to the charge energy. These
two extremes are approximately the case for the iZIP (low-voltage) and HV (high-voltage) detector
designs. This detector model is shown schematically in Figure [3.1
As an aside, we should note that it is guaranteed that all of the energy that enters the detector
will end up as phonon energy eventually. If we generate an electron-hole pair with a large photon
(100 eV for example) it will very quickly emit high-energy athermal phonons which will produce
additional charge carriers. It is an empirical fact that for electron-recoils above ~ 10eV, the mean
charges produce is linear in initial energy, taking the form
nen = = (35)

€ech

where €., is roughly the energy of the direct bandgap. Each of these charges can then continue to
emit athermal phonons to reach the bandgap energy €gqp, immediately re-emitting phonons with
total energy €., — €4ap for every charge carrier. For these electron-hole pairs to reach the detector
surfaces, they need to retain this bandgap energy, but once at the surface there is some probability
they can re-emit that energy as a phonon and recombine. If that happens during the normal time-
scale of the event, the total energy is given by equation but if that happens at some time later,

we measure an event with total energy

B = By (14 (V= ea) 20 (3.0)
€eh

and a handful of secondary events with energy equal to the indirect bandgap. This secondary

population would grow as a function of time, and would be removed by neutralization and/or pre-

biasing of the detector. This doesn’t necessarily change our understanding of the detector signals

but does represent both a systematic on the determination of total energy efficiency (we don’t know

what the true input energy was) and a potential background we need be aware of when employing
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Figure 3.2: Schematic of energy transport in a QET. The phonons break cooper pairs in the super-
conducting aluminum fin, which diffuse to the trap region. The trap region has a lower bandgap due
to the proximity effect with the tungsten, and the quasiparticles are trapped there and drop their
energy as heat into the TES. The TES then amplifies this input power as a change in current, read
out by upstream amplifiers.

crystals with moderate carrier lifetimes (high enough to be metastable but not stable).

Figure[3.2]shows an overview of the phonon sensors, called Quasiparticle-assisted Electrothermal-
feedback Transition Edge Sensors (QETs). The operating principle of the QET is to use a material
with a small bandgap to collect phonon energy, and diffuse this energy towards a smaller volume with
a lower bandgap which then traps and absorbs this energy (see Figure for the energy scale of
superconductor and semiconductor bandgaps). Each conversion step in this process has an associated
efficiency which has either been measured or estimated, and the design of the QET-crystal system
has become a mostly solved optimization problem, as will be described in the next few sections. The
fundamental limitation comes from the process of converting phonons to quasiparticles, which can
be shown to be at most ~60% efficient[23)].

To give the reader some pedagogical context for why we’re using cryogenic technology to achieve
such low energy resolution, let’s consider the model of the ideal calorimeter, which is a block of
material with specific heat ¢ and volume V such that C' = ¢V. The block is attached to some heat
bath of infinite heat capacity by a thermal conductance G. This system is thus governed by the
equations

% - —g(T —Ty) — T(t) = (To — Ty)e /9 41 (3.7)
which responds to power fluctuations slower than the time constant 7 = % In fourier space this

transfer function is
€ €2

S(f) = = S =3 (3.8)

1 —dwT 14 w?r?

where € is the energy transfer efficiency. We find the energy resolution of a device with noise power
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|N(f)|? and signal power |S(f)|? as (see section [E.6)

o 9q-1
A= [ Ne (39)

and for the signal found above, and a noise power |N(f)|? = 4k, T*G, we find

kyT2G VT2

7T = chy— (3.10)

oy ="
This is a fundamental limitation of calorimeters that are thermal noise limited. If, for example, you
want to design a calorimeter using a known material at a known efficiency, the design trade-off is
thus between volume and temperature; so large calorimeters with very low energy resolution need to
be operated at low temperature. The caveat to this argument is of course that athermal signals can
overcome the thermal noise, but there will almost always be a critical thermal-noise limited stage
that obeys this scaling relation.

Unlike past CDMS detectors, the CDMS-HV detectors do not read out the ionization signal,
and thus instead of balancing charge and phonon resolution, we can attempt to maximize phonon
resolution in our mask designs. We also need to balance resolution with phonon fiducialization,
however, which adds additional degrees of freedom to the design of our QET, as the size of the unit
cell will depend on the number of unit cells per unit area, set by the phonon channel size. In this
chapter I will describe the elements of detector modeling incorporated into the optimization for the
CDMS HYV detector, the results of which are the subject of chapter

3.2 TES Dynamics

The QET unit cell consists of a tungsten TES connected to aluminum fins via small tungsten
connectors, and a phonon channel consists of N TESs voltage biased in parallel. The effective
resistance of a given TES is

It
Rr = 3.11
T = PW wrhy ( )

and the normal state parallel resistance of N TES is

Ry
R, =— 3.12
e (312
so we can relate the dimensionality of the TES to number per phonon channel:
R w
Np=2T _Pw T (3.13)

Rn n R7n ’LUThT
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Quantity Symbol  Adopted Value
Normal State Phonon Channel Resistance R, ~150 m$2
Operating Point Phonon Channel Resistance R, R,/3
TES Circuit Inductance (effective) Leyy ~ 145 nH
TES Critical Temperature T, 45-60 mK
TES Thickness hr 40 nm
TES Width wp 2.4pm
TES Length It 100 — 300 pum
TES Fractional Volume Coefficient (r ~ 0.7
Tungsten Square Resistance Ry 3.3Q
Tungsten Resistivity ow 1.32-107"Om
Wiedermann-Franz Coefficient Buwy 2.44-1078 V}g?
Electron-Phonon Coupling Constant [45] b)) 0.4-10°
Thermal Conduction Power-Law Exponent n 5
Tungsten Specific Heat cw 108#
Superconducting Heat Capacity Increase fse 1.0- 3.0
Crystal Temperature Toath < 30 mK
Logarithmic Temperature Sensitivity ar 100-150
Logarithmic Current Sensitivity Br < 0.3

Table 3.1: TES design parameters adopted for geometry determination, with lower limits on dimen-
sions set by photolithograpy and continuity considerations. p,,, ¥, and n from Table 3.1 in Ref [83]
(page 24). Crystal temperature taken from chapter 5 of the CDR. See text for more details.

where these quantities are as defined in Table Here we see that we can maximize the number
of TESs per channel by minimizing TES width and thickness and maximizing TES length. The
minimum TES width and thickness are process dependent, with values shown in Table and so
the only parameters we are able to optimize further are the normal state resistance of the phonon
channel and the length of the TES. The resistance of a given phonon channel is set by constraints
of our readout system as well as electrothermal oscillation, which is described in section The
maximum length of TES is limited by the need to keep the TES in thermal equilibrium, and the
phase separation length, described in section sets the upper limit of TES length for which
thermal equilibrium can be maintained.

The resistance of a given TES channel is bounded on either side by signal-to-noise considerations
of our readout electronics. We expect the non-TES resistance of the resistive load on the input-
coil circuit to be on the order of 5mf{2 for SNOLAB cold electronics, and thus we desire that the
operating point resistance of the TES circuit be much larger than this value. We would also like
to maximize the current range of our voltage biased TES circuit to maximize signal-to-noise in the
SQUID readout and thus want to use as low a resistance as possible for the TES operating point. In
addition, the time constant of the LRC circuit constructed by the inductor, TES, and thermal heat
capacitance sets the bandwidth of our TES readout, and given some inductance we can increase the
bandwidth by increasing resistance and/or capacitance of the TES. These considerations are covered

in section In the following section, I discuss the assumptions which go into QET optimization,
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and where some of the parameters taken as constants come from.

3.2.1 TES Characteristics and Parameters

The parameters and parameter ranges chosen for the design of the TES in our QETs can be seen in
Table along with some physical constants which allow us to relate heat capacities and conduc-
tances to physical dimensions and critical temperature. Many of these are quantities derived from
more fundamental physical principles, summarized here for completeness, while others are measured
properties of our devices which are process specific; still others are values chosen to ensure safety

margins away from critical failure regimes.

Tunable Parameters

For our purposes, we have chosen the normal-state resistance of the entire phonon channel to be
~150 mf2, corresponding to an operating point resistance of ~ 50 mf). This operating point is
roughly twice as high as for past devices, driven in part by the fact that our inductance is higher,
and to first order we want to maintain an inductance to resistance ratio which we’ve known to be
stable in the past. This is an assumption which we’ll re-visit at the end of this section once we
have established stability and oscillation criteria, but it is within a factor of two of our final value.
Note that decreasing this value, we’ll see, increases TES number, but will also increase Johnson
noise. This will be explored later in the section; I use it as a reference point to explore the response
equations derived in this section.

Many of the parameters in Table are set to the smallest values achievable with current

fabrication abilities:

e The width of our TESs are limited mainly by their photolithography and are currently assumed
to be 2.4 pm; in reality this number drifts between 2 and 3 microns, and is thus a geometric
average. It is limited by the diffraction limit of the alignment stage of photolithography and

the shear resistance of the photoresist used.

e The height of the TESs is similarly limited by fabrication, as we can’t consistently make
thinner films without risking breaks in continuity. In addition, tungsten has a non-trivial
phase boundary between the bottom and the top of the film, thus a change in thickness usually
produces a change in transition temperature and thermal conductivity (results relevant to this

point will be explored in the next chapter).

e The inductance listed in the table is an estimate based on the initially measured inductance of
our tower wiring, the input coil, and assumes the mask will not have an inductance exceeding
~ 20nH.
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e The T, is primarily set by that which we can consistently fabricate without a significant critical
temperature gradient across the TESs in a given channel, as well as the requirement that T
be more than 10% higher than bath temperature for optimal temperature flow and predictable
gain. It is nominally limited by the magnetic impurity content of the tungsten target used

during fabrication|113].

To expand on this last point, tungsten has three crystal phases. a phase tungsten, which has a
T, of 15mK, and 8 phase, which has a T, of 1-4K[92]. By mixing these phases or perturbing them,
one can tune the T, to have an intermediate value. In thin films, the crystal phase grown at the
bottom of the film will depend on the substrate, and as the film grows the ambient environment
will determine whether this phase is maintained or a different phase develops. Thus the T, of a film
is the average T, of the layers due to the proximity effect[23], and if there is a gradient of crystal
morphology, we will expect geometric effects to alter the T, of the film, not to mention the physical
properties (e.g. thermal conductance, heat capacity, and resistance, which are all linked at low
temperature by electron-phonon dynamics).

In addition, the following sections show some dependence on intrinsic parameters as well as Vrgg,
the TES conduction volume:

Vres = lreshreswres (3.14)

This volume is obviously important for an individual TES; more relevant to our design goals is the
total TES channel volume
pw  lres pw

Venhannet = VresNrEs = — ————Irpshreswres =

12 3.15
R, wreshrEs R, TES (8.15)

So the heat capacity of the channel increases as [%.;¢. This is one justification for opting for longer
TESs all else being equal, as you'll have a larger TES dynamic range, but of course in principle a
worse resolution by a similar amount.

As a note of caution, I would like to stress to the reader that superconductivity is a bulk phe-
nomenon, and the dimensions of the TES (as well as the morphology of the film) will affect all of
the parameters described in this section, including heat capacity, resistance, critical temperature,
and thermal conductivity. Many of our designs which did not perform as expected resulted from
the assumption that p and C' are independent of the critical temperature of the material, and that
T, is independent of film dimensions. In practice both have been shown to be poor assumptions.
This will be discussed further in the next chapter, but I urge the reader to keep it in mind when

considering any specific numbers considered in this section.

Intrinsic Resistance Parameters

Other parameters are measured from our devices, and we have less control over them. Most notably,

when we talk about dynamics in the next section, we’ll need to linearize resistance in temperature



CHAPTER 3. DETECTOR CONCEPTS 101

and current changes as

OR
R(I,T)~ Ro + T

o7+

§ 57| o1 (3.16)

To

As in Ref [50], which references papers by both McCammon and Mather for this substitution, we
use the dimensionless logarithmic temperature sinsitivities o and § into the equation to finalize the

linearization, where

and Odlog R Iy OR
/3:%%:%5% (3.18)
to give
R(I,T) =~ Ry <1 + a% + ﬁij) (3.19)

As we want changes in resistance to be sensitive to temperature variations, and minimally sensitive
to current variation, we see that our ideal device would have very high o and 5 ~ 0. « is in this case
the slope of the super-conducting transition, which is very large and thus explains why TESs are
such sensitive thermal energy sensors, however it is very hard to control « and 8 through fabrication,
and f tends to be non-zero in any real device.

These are two parameters which I quote ranges for because we have an idea of values measured in
past devices, but we won’t know the true values until the first mask is fabricated and characterized.
We expect a to be in the 100-150 range, which tells us that a 1% change in temperature leads to
a doubling of resistance in the case that 8 ~ 0, but for a large 3, current would decrease, reducing
the overall increase in TES resistance. The connection of these parameters to a phenomenological
resistance curve is shown in section [B. The ideal critical temperature is a first-order phase transition,
so the closer a film is to its bulk transition temperature, the sharper we can expect the transition to
be[92]. The less bulk-like a film is, the more one should expect deviations from ideal and shallower

transitions[65).

Intrinsic Heat Transfer Parameters

Finally, there are some constants which have to do with thermal storage and transfer. The heat

capacity for the TES at critical temperature is given by

Cr, = fseewVrEs.erfTe (3.20)

where cyy is the specific heat capacity of tungsten, and f,. is the correction to the normal curve due
to added heat capacity of cooper pair breaking in the super-conducting transition, which can vary
from 1 to ~ 2.4 (also given in Table |3.1))[13} [66, [67]. This will be discussed further in a moment.
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The effective TES volume is given by

Vres.err = Vres + eVirap (3.21)

where Vrgps = lrpshrgswres is the volume of the conductive length of the TES. The epsilon
factor here represents the fact that the trap only contributes a fraction of its volume to the heat
capacity, as a portion which is in close contact with the aluminum has its effective heat capacity

greatly reduced. This can also be written as

Vira Vi
Vigsers = Vrps(l 4+ ey = ZTES (3.22)
Vres ¢
where v
TEs (3.23)

~ Viap + VrEs

is the TES fractional volume coefficient. ¢ = 1 implies that only the conductive length of the TES

contributes to the heat capacity, while low ¢ implies that the trap volume is more important to the
heat capacity.

We also recognize that heat capacity is a function of temperature, and parameterize it similarly

to how the resistance change was parameterized:

oCc(T, 1 oT
C(T)=Cr, + g 0T = Cr, + Cr.ve— (3.24)
or \pm T.
where ¢ is the logarithmic derivative quantity
T. 0C(T,I)
= B St B2 3.25
=G T |y (3.25)

which describes the relative change in heat capacity with change in temperature. Ref [66] suggests
that for super-conductors, this has a value around 3. We are prevented from simply expanding about
T in the equation for the steady-state capacitance because fs. is also a function of temperature, so
~ mainly captures this dependence rather than scaling with the original constants.

As an aside, the fact that heat capacity changes dramatically is actually a primary prediction of
BCS superconductivity, and the BCS prediction is that the heat capacity will jump discontinuously
between the normal metal value C,, and an increased heat capacity Cs = 2.43C),, after which is is
expected to fall rapidly to 0 as an exponential (Cs ~)[13,[10]. The form for the superconducting heat
capacity for temperatures lower than T, follows C,(T") ~ 8.5 exp(—1.44T,/T)[13], and is linear close
to the transition (as shown in Figure . BCS specifies, however, that this transition is infinitely
sharp, but we know that proximity effects will produce a smooth transition between normal and

superconducting states, so we rely on empirical means to determine the rate of change of heat
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Figure 3.3: Left: Measurement of heat capacity above/below the transition temperature in a sample
of bulk Al, reproduced from Ref [10]. The data points are an excellent fit to an exponential in the
superconducting state and a line in the normal state, as discussed in the text. Right: Measurement
of heat capacity as a function of resistance in the transition for a TES with normal resistance of
R,, ~, reproduced from Ref [67]. This shows that for a TES-sized structure, these is a non-trivial
change in heat capacity between the expected normal and superconducting values, and the slope of
that change is dependent on the operating point in the transition.

capacity through the transition. An example measurement of heat capacity versus resistance is also
shown in Figure reproduced from Ref [67]. This demonstrates the non-linear transition from
the normal to superconducting heat capacity. The first measure of heat capacity in a SuperCDMS
TES will be discussed in Chapter
Getting back to the response model, we write the power transferred between the TES and the
bath as
Poorp, = K(T™ — Tyopp) = KT (3.26)

where K is decomposed into the TES volume and the Electron-Phonon coupling constants X:
K =VrgscrtX = Poath = EVres,.crsT" (3.27)

Here ¥ is used as measured by Ref [45], however this is one of our most uncertain parameters, and

will need to be re-measured for new devices to decrease the uncertainty.
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3.2.2 TES Response Model

We can derive the green’s function impulse response of a TES to determine how TES parameters,
and the components of the bias circuit, affect the TES bandwidth, and determine the stability
conditions for TES parameters in terms of fixed circuit constraints. Many circuit parameters are
fixed, and we need to design the TES to optimize dynamics in light of their values. We can simplify
the circuit part of the problem significantly by reducing the number of circuit elements, and the
circuit complexity. In the process we’ll end up with a model defined only in terms of realistic inputs
and measurable outputs.

We voltage bias the TES circuit indirectly by supplying a stable current source across two parallel
branches. Each branch can be considered to have a complex impedance consisting of a resistor and
inductor (they should have negligible capacitance), with the TES branch also routed through the
TES itself. The ideal circuit has only the shunt resistor in the left branch, which we could refer to
as the bias branch, and only the TES and SQUID input coil in the right branch, the signal branch.

In reality, there is parasitic resistance and inductance in both branches. As we can simply add
inductances and resistances in series, we can start from the model shown in the center of figure [3.4]
with our only assumption being that Rpiqs >> Zjoop. Given that the inductances are on the order
of nH, and resistances on the order of m{2, this is a valid assumption over all frequencies of interest
(< 10 MHz, at which point a 1 pH inductor as a reactance of 100 ), and we won’t consider it
further.

To get from the central to the right diagrom in figure we just need to do some algebraic
manipulation of the loop equation for the central circuit. The current around the loop follows the

equation

d d
<Rsb + Lbiasdt> I, = (Rp + LTESdt> Is+ Rres(1,T)1; (3.28)

where Ig;, + Is = I, and I is the current from the current source. This equation also allows us to

use the relation I, = I, — I to get

d d
(Rsb + Lbias dt) (Ib - Ie) = (Rp + LTESCHJ) Is + RTES(I; T)I€ (329)
d d d
Rsb + Lbiasi Ib = Rp + LTEsi Is + Rsb + Lbiasi Is + RTES(I7 T)Ib (330)
dt dt dt
d d
Rsb + Lbias% Ib = Rloop + Lloop% Is + RTES(I; T)Is (331)

At this point we can just read off the DC relationship between the bias and TES currents, and
we can see why this is not equivalent to the dI,/dI; relationship we’ll discuss later; the TES has
a complex impedance which is not captured here and that will be derived shortly. But without

knowing anything about the TES, we can use this relationship, with very slowly changing Ib and Is,
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True Current Source Exact Current
Circuit Approximation Source Analog
DCRC Voltage

Rbias

Lp,bias

Lbias LTES g
% Lloop

+
Rsb § Re § Vbias “— = Ricop
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Rp,bias
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Figure 3.4: TES circuit analogs. Left is the actual circuit, arranged top to bottom by temperature.
Middle is a very close approximation, assuming Rpiqs >> Zjoop, Which is true for 1 MS) bias
resistor in the SNOLAB electronics. Right is exactly equivalent to the middle circuit; resistance and
inductance are moved to the right-hand side, and an effective impedance is used to calculate the
voltage supplied by the voltage source.
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to show that b R R I R R IT
1Y _ Rioop + Bros(LT)pe _y | By + Rres(LT)pe (3.32)
Is Rsb RSb

which will allow us to measured the TES transition curve without knowing anything about its

frequency response.

This also tells us that to an excellent approximation, we can write

d
V= <Rsb + mesdt) Iy = Zgly = Rap1y (3.33)

which will be valid as long as I is well controlled, or we meet the condition

Zsb
-1 3.34
R <e (3.34)

Ry + iwLy;
‘( oo+ bwlbias) |y (3.35)
Rsb
‘1 + iWLbias/Rsb| <l+4e (3.36)
1
L+ 5 (@Lbias JRw)? <1+¢ (3.37)
Whiias/Rep < V2€ (3.38)
\/i Rsb

< == 3.39
f 21 Lipjas ( )

For SNOLAB electronics, to 10% precision, this is a good approximation below frequencies of 100
kHz. If we weren’t using a stable power source, this would be a problem, but given that the high
frequency components should be much smaller than the DC value, we can ignore inductor effects in
the bias voltage until we discuss measurements of complex impedance.

With our simplified circuit, we can now begin the modeling including thermal TES response. We
begin by recognizing that, for a TES cooled by a bath with power Py,:n, heated by Joule heating

Py, and subject to some signal power P, we have the differential equation

dT
OE = —Pytn + P+ P (3.40)

and electrically, our circuit obeys the differential equation

dI

LE =V —1IR;, — IR(T,I) (3.41)
where L is the self-inductance of our squid input coil, Ry, is the resistance of the input coil, and
R(T,I) is the TES resistance as a function of I and T. Before going futher, we see that we’ll have
some highly non-linear terms here, so to obtain any solution we’ll have to approximately linearize a

few of these terms.
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The bath power is typically written [50]
Pygin = K(IT" — Tyy) = KT" = XVrgg eI (3.42)

for the normal case that Tp.¢p is even 5 mK colder than the TES. We can thus linearize power about

some nominal temperature Ty (which will also be roughly T,) to be
Pyath = Pyatno + n5Vrgs,erf T 6T = Pyatn,o + GOT (3.43)

so we have

G=nKT" ' =nSVrggcrfT" " (3.44)

where G is the differential thermal conductance of the TES/QET system.

Linearizing the resistance about nominal values of Iy and Tj as in the previous section gives
R R
R(I,T) ~ Ry + a=26T + =261 (3.45)
T Io

which allows us to fully linearize our differential equations. The joule heating of the TES at a steady

state current Iy and operating resistance Ry is then given by
Py = Pjy= IR (3.46)

and the full linearization in R and I is thus

Py = Py + 2I4RoS1 + I3 a@(ST + 5@51 (3.47)
Ty Iy
_ P
= Pjo+ I()R()(2 + ﬂ)&[ + aTéT (3.48)
0

We thus have the power differential equation

T 12
C(T)% = IoRo(2+ B)51 — (G —a °le0> 6T + 0P (3.49)

where 67" has come in as we assume equilibrium at some Tj, giving Ig Ry = Pyatno + Po and allowing

them to cancel. If we also consider the linearization in heat capacity, we find for constant R (before
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substitution of specific forms):

dr 1

@~ o(T) (Pyo — Pratno) (3.50)
1 oT
~ ——(Pyo — Poasno)(1 — 7 2= 51
CTC( 70 — Poatno)( VTC) (3.51)
doT oT
.~ = V(P10 = Phatho) (3.52)
oT GT.
= _VT(IgRO -=) (3.53)
G oT
=0T = yIg Ry (3.54)

which tells us that the change in heat capacity counter-acts the normal ETF effects from the previous

equation. We can include this capacitance change by the substitutions of effective values for G and

Qg:
Y
Gopp =G (1~ ﬁ) (3.55)
and
Qeff =0 —7Y (356)

which agrees with the results found in Ref [66], but has not been included in past attempts to
model TES dynamics by CDMS. We note that this does not greatly affect the a parameter, but will
significantly change the effective conductance, and create a longer time constant in our TES, which
is something we’d like to be as short as possible.

Often, the dimensionless parameter £ is introduced to simplify these equations:

I3R T
L= O‘GOTOO == (1 - 53;’1> (3.57)

This allows us also to introduce the natural TES time constant

C
= — 3.58
TG ( )
and we can then simplify to find
doT  IgRo(2+ B) 1 0P
— =6 —— (1 — T+ — .
7 C ) = (1-L)oT+ C (3.59)

This tells us that, with the C' and G derived earlier,

_ fscCW T2-n

ST (3.60)

and the TES cooling timescale is thus independent of geometry, and just dependent on intrinsic
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parameters. Including the capacitance effects just mentioned, we find

c fsch o
L ep = — T?=n 3.61
T GA-1) -y © (3.61)

and we leave £ unaffected as we assume a >> 7. In a perfect superconductor we would expect
v ~ =3, but for our devices, which have non-negligible currents running through them, we expect
this slope to be less dramatic. Setting v to zero allows us to put an upper limit on the TES response
time, and a non-zero value will thus increase the bandwidth of a TES.

Moving now to the current equation, we find for steady state Iy at Vi, Ry, Tp, we have

ol _ oV (RL+(1+5)R0)51_ aRoly
dt L L T,L

5T (3.62)

which, again substituting £, gives the final coupled differential equations

doT  IogRo(2+ B) 1 oP
— =6 ——(1— T+ — .
7 C 1) = (1-L)6T + c (3.63)
déI 8V Rp+ (1+PB)Ry GL
—_— = ] — ——4T .64
dt L L IOL(S (3:64)
Here we find, in the decoupled limit, the natural decay times

L

" Ry + (1+B)Ro
TrEs = ﬁ (3.66)

TLR (3.65)

which tell us that there are timescales determined by the normal LR circuit behavior, where the
TES appears to have a resistance Re¢y = (1 + 3)Ro.

This also determines for us how we need to bias our TES to optimize performance. For semicon-
ductor thermistors, a was negative, and thus current bias was chosen to decrease decay time and
increase bandwidth. For our positive a devices, we thus need voltage bias for the sign of the decay
constant to not create a positive feedback effect.

These parameters allow us to write these coupled equations in a tidy matrix form:

i ST _ _qués IoRoé2+ﬂ) 5T % (3 67)
dt _GL _-1 (1% '
or L TrR 61 s

This suggests solutions in either the fourier or time basis, both of which can be found in Ref [50].
Here I will discuss the time basis solution, as it is relevant to the later TES simulation and helps

determine our stability criterion.
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Fourier Basis Solution: Frequency Response
We can easily solve this in the fourier basis, for §V = 0. We obtain the solution
ST | LoRo(2+8) ] [ 57 sP
iw = | TTEs c C (3.68)
ol -TI —TLR 61 0
E| _ |rrms tiw 0= [oT
= or L (3.69)
0 I Top T 1w ol
(3.70)
which gives
oT
0P = |:C(wTE5 + Zw)ﬁ — I0R0(2 + ﬂ):| ol (3.71)
and oT ( jw) oL
wrr +w)lg
= ELRT )0 3.72
o1 GL ( )
so substitution gives
o 1 ((wres+iw)(wrr +iw)CL  Ro248) 1 51
P Iy GL 0 '
We can substitute back in for the 7 terms to find
ol L 1
_ (3.74)

5P = T (- Lt iwn) (R + (Lt 5By 1 wh) + LRo(2 4 5)

To get some intuition, in the limit that £ >> 1, 8 =0, and Ry >> Ry, we find the simpler function

ol L 1
— == . (3.75)
oP Iy (iwt — L)(Ro + iwL) + 2LRy
and we have the DC gain
61 1
il = =y! 3.76
5P (w — IO RO 0 ( )
which we could have guessed, given that an resistor with instantaneous response has
oP
P:IV%ﬁ:VO (3.77)

and thus lowering the bias current or the operating resistance will raise the DC gain. Unfortunately,
we’ll see later that these will also increase the current noise, so we’ll need a full analysis including
dominant noise to determine how best to set these values.

We can by a similar method obtain the transfer function for voltage to current fluctuations. We
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obtain the solution

0 Trpg +iw  — LR o
v |~ GL -1, (3.78)
T I()T TLR =+ ww 6]
(3.79)
which gives
1 2
5T = M& (3.80)
C(wrps + iw)
and thus GLRo(2 4 5)
+
= (L w) + 2T G 81
% < (wLR+w)+C(wTES+iw)>6 (3.81)
and inversion gives
or _ (Wrps + i) (3.82)
0V L(wrg + iw)(wres +iw) + 77 LRy (2 + ) )
which simplifies further to
or 1—-L+dwr (3.83)

0V~ (Ry+ Ro(1+ B) +iwL)(1 — £ + iwT) + LRy(2 + )

which in the DC limit, taking the same limiting cases again, we find to be the expected value of
Ry 1. We can complete the triangle of power, voltage, and current linearization:
oP 0P 0l

- = = — -1 ,
5V = 31 BV In(1 = L7(1 +iwTrEs)

and we see the inductor pole go away. This makes some intuitive sense, as the inductor does not store
voltage or contribute voltage power, and thus would not factor into the voltage to power conversion.
What is also interesting to note is that high frequency voltage fluctuations actually couple into the
TES power more, which is due to the electrothermal feedback pole.

We further note, however, that due to the electrothermal feedback, we need to modify this
derivation to have 6 P = —IydV for fluctuations in the TES voltage, which tells us that for the TES,

we have

ol _ 1-L+ L+ iwT (3.84)
OVrEes (RL+R0(1+,3)+'LUJL)(]._£+'LUJT)+LRO(2+ﬁ)
_ 14wt (3.85)
(R, + Ro(1+ B8) +iwL)(1 — L +iwT) + LRo(2 + )

thus the feedback allows the zero to be much more powerful in the total transfer function, damping
low-frequency voltage signals.

Finally, if we defined the complex impedance of the TES in terms of the complex impedance of
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the circuit:

oV
Zioop(w) = ST iwL + Rp, + Zrps(w) (3.86)

In the absence of other circuit elements, we find the complex impedance of the TES to be

(RL + Ro(l + B) + ZOJL)(I - L+ iWT) + £R0(2 + 5)

Zrps(w) = =L ior —iwL — Ry, (3.87)
_ Ro(1+B)(1 — £ +iw) + LRy(2 + B) (3.88)
1— L +idwr ’
_ Ro(1+ B)(1+iwr) + LRy
B 1—L+iwr (3.89)
_ o, (1B +iwr)+ L
= o 1-L+idwr (3.90)

This suggests that we should be able to measure both £ and S by applying voltage bias excitations
much higher than and much lower than the Pole, where the high frequency measurement gives [,

and the combination gives L.

Time Basis Solution: Green’s Function Response

We can solve the homogeneous equation (6P = §V = 0) by finding the eigenvalues and eigenvectors

of the matrix; for eigenvalues A+ and eigenvectors A, we find the general solution

or

1l = Ay exp(—tA;)Ay + A_exp(—tA_)A_ (3.91)

and we can thus recognize that 7. = /\;1. Using any method, one finds the eigenvalues

1 1 1

— = 3.92
T+ 2TLr  2TrES (8.92)
1 1 1 \° RoL(2
+ \/< - ) _ B0 LC2+B) (3.93)
2 TLR TTES L T
1 /1% 1
= ( T4 qm) (3.94)
2\ TR TTES

where

T TLR TTES

-2 1/2
= (1-eREA (L7 (399

For this to be non-oscillating, then, we need v to be real, and it is thus in the range (0,1), making
it a correction factor. This will be expanded upon in the next subsection.

If we assume ideal operation, where, V=0, and phonons with energy E couple into the system
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as a delta function:
dP(t) = Ephonond(t), 6I(0)=0, ,6T(0)=0 (3.96)

we can solve for the unknown parameters A4 to obtain the green’s function response to a single

phonon of energy E. Ref [50] obtains the result (y < 1)

SI(t) = CN(Ti)@i% (e*t/f+ - e*t/ﬂ) (3.97)
where
C(ry) = (Trs/me — 1) (rres/7- 1) (3.98)

T%ES (/7 —=1/7-)

is the normalization constant, with units of s~1.

YXVrgserrI?
Iy = 4 /% (3.99)

from the equilibrium condition between the bath and joule heating.

Note also than we can calculate the desired

operating current as

With this green’s function in hand, we can recognize that for the limiting cases where v ~ 0 and
v = 1, we have varying levels of over-damping, with v = 0 being the critically damped solution, with
a slightly differing green’s function (the limit must be evaluated, as the numerator and denominator
are nominally zero). For v = 1, we find that the rise time becomes the LR transient time-scale, and

the fall time becomes the TES cooling time, as one might expect.

Poles and Time Constants

We should take a second to stop and summarize the various poles and time constants affecting
each of the quantities derived above, and quote values corresponding to the constants given for our
proposed TES geometry and known device constants.

The time domain time constants (which one can check match the equivalent Fourier domain poles
in both Matt Pyle’s and Paul Brink’s derivations) are given in equation The constants therein,
and in particular those within v, given in equation were defined in the previous sections, but
I will summarize them again here.

7, the intrinsic response time of the TES without electro-thermal feedback, is given by equation

[3.60¢
_ g _ fscCW 2—n _ fscCW
G ny ¢ 5XT3

T

/2 592 * fsc s (3.100)

using the quantities shown in Table Here, fs. is left explicit to show that this is a minimum
fall time, and stress the high variability of this quantity within the transition between 1.0 and ~ 2.5
when the TES is nearly superconducting. It is more straightforward from this point to quote rise/fall
times at the start of the transition, as this is better defined, but it is important to keep in mind that

this is shorter than the true fall time. Setting fs. = 1.0 thus gives 7 ~ 592us, while fs. ~ 2.5 gives
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T~ 1.48ms.

The rest of the time constants are derived from 7, aside from the LR time constant

L
TTR= —————————— 2 s 3.101
LR R YA+ PR, M (3.101)
We have the electro-thermal feedback time constant
T
TrEs = 7 ~ —24.0fsc ps (3.102)

1-L

which again scales with the position in the super-conducting transition. The rise and fall times

have a much more complicated scaling given -, which we can also express in terms of this scaling

constant:
2
2 1 1
P=1- 4&@ ( _ ) (3.103)
L T TLR TTES
2 —2
_q 4R L2+ B)rin (1 _ LR > (3.104)
L T TTES
2 2
1 g R0 L2 HB)Tin (1+2 TLR) (3.105)
L T TTES
0.578 0.169
~1— 1-— 3.106
fsc ( fsc ) ( )

This shows us that increasing the heat capacity through the transition causes an increase in «, which
drives rise time to be smaller and fall time to be longer. The limit of much larger heat capacity
corresponds to the diagonal basis, where rise time is the LR time constant and fall time is the TES
time constant. Figure [3.5| shows the rise and fall time as a function of f,., compared to the TES
and LR time constants.

WEe'll see in the noise section that these time constants are relevant as poles for the TES and
electronic (non-squid) noise terms, so we should also find the frequencies associated with these time
constants. Simply inverting the time constants should give a measure of the angular frequency, so
the frequencies of interest are

o1 (3.107)

or 27T

The time constants and poles for fs. = 1.0 and fs;. = 2.5 are summarized in table

3.2.3 Electrothermal Oscillation Criteria

From the above, we see that for critically or under-damped behavior, we have the condition

1 1\ 2
1> 4&@ ( — ) (3.108)
L T TLR TTES
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Figure 3.5: Rise and Fall time as a function of the ratio of superconducting to normal heat capacity,
as described in the section. Note that both rise and fall time are larger than their asymptotic values,
and that fall time gets larger linearly with fs. while rise time gets smaller with the inverse of f,.,
to first order.

Quantity | 1.0 (us) | wio | 25 (#s) | was
T 593 268 Hz 1481 107 Hz
LR 2.0 79.6 kHz 2.0 79.6 kHz
TES (abs) | 237 | 67kHz | 591 | 2.7 kiz
Rise 2.4 67.2 kHz 2.1 74.9 kHz
Fall 28.2 5.6 kHz 78.5 2.0 kHz

Table 3.2: TES Rise and Fall time constants

which expands, without taking any explicit limits, to become

2
(1_ 1 ) _ALEEA R (3.109)

TLR TTES T f
(R0(1+B)+RL £—1>2 4L(2 + B) Ro
+ i -

L T L

>0 (3.110)

T

This is a quadratic equation, which when solved for the loop gain yields a range of values where

oscillation will occur. The region of oscillation is bound by the loop-gain values

TRO RL L RL
-1)=— ——+2,/(2 14— —-—= 11
R \/< +0) (14 5 - 1) (3.11)

Ry Ry, R, - Ry,
= — ——+24/(2 14— 112
Bolavp- R \/< +) (14 ) (3112
where I've introduced the derived parameter
L

R, == (3.113)
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to put all of the units into easily comparable units. For the SNOLAB design, we have R, =
250nH/600pus ~ 4 mf), and for a design operating point around 50 m{2 this is obviously sub-
dominant. If we create a device with a much higher 7., as was done for the first UMN test devices
in older electronics, however, R, ~ 400nH/80us ~ 25 mf), and we have a much lower oscillation
threshold. In addition, older electronics have higher values of Ry, further reducing the location of
the oscillation region.

One quantity of interest might be the minimum resistance where oscillation will be observed.
We see that we can find this without much work, as it will occur when the last factor in the earlier

equations is 0:

0< 2\/(2+5) (1+RT§O&> (3.114)

Ry > R, — R (3.115)

Given that all of these numbers are positive, this tells us something important; that it is not possible
to eliminate the possibility of oscillation in any design where the TES is voltage biased if inductance
and loop gain cannot be controlled. It will never be possible to have a stable voltage biased region
free of oscillation for any set of temperature response and inductance.

In the past, we’ve been used to considering the lower bound an upper limit and using the loop
gain to put restrictions on inductance, but given measured properties of an electronics setup, we can
determine the range of transition slopes which will produce oscillation. In the limiting case normally

applicable to our detectors (£ >> 1, R;, R;, << Ryp), this tells us that we avoid oscillation for

£§%<3+ﬁ—2m):%(3+5—2 2+5) (3.116)

assuming § > 0. We benefit from increasing 8 because it decreases the L/R time constant, thus
allowing more bandwidth for a given inductor-TES combination, and increases the allowance of
inductance before the TES begins to oscillate. This is the bound derived in Matt Pyle’s thesis. It’s
clear that for older devices this is a good limit, but as we move to lower resistance and Tc, we need
to be careful not to take this limit without explicit evidence that this is the case.

We'll see later on that we’d like the TES fall time to be much shorter than the timescale of a
phonon pulse. Since these dynamics can shorten the overall fall-time, let’s say that we set a minimum
fall time 7,,,;,, of .

Z _ TrES

: : (3117)

o

This gives the condition

2
1+1+202\/(1_ 1 ) _yfoL2+5) (3.118)




CHAPTER 3. DETECTOR CONCEPTS 117

which, solved, gives

1+c¢ <4&£(2+5) +4c(1—|—c)

4-TC < (3.119)
TLRTTES L T T2 e
(142D R) S LCED) | Lellid (3.120)
(L+¢)(Ro(1+B) + Rr) < Ro(2+ B) + LLcl+c) (3.121)
(1 + C)RL <1 — éf:) < Ry (1 — C(l + 6)) (3122)
and thus . i
+c c
Foz Rip— 15 (1 - RN) (3.123)

In the limit that the second term on top is negligible (which we can certainly design by making L
small enough), we find

1+c
Ry>R;,—m——
0=""T 1+ )

This tells us two things; firstly that the minimum fall time is the natural fall time of the TES

(3.124)

under ETF, and secondly that non-zero beta increases the minimum fall-time above the natural
TES falltime. These both come from the constraint that Ry can’t be infinite. We thus see that for

us to achieve 1.2 times the natural TES fall-time, we need to have ;

1.83
> _— 12
Roz Roga— 0.838 (3.125)
which for 8 = 0 is about a factor of 10, and for any value of Ry to achieve this, we need 5 < 0.2.

This shows that having a 3 as close to zero as possible is hugely advantageous. Even for a value of
B ~ 0.1, we need Ry ~ 20R}, to achieve this bandwidth.

3.2.4 TES Stability

We also need to ensure that the TES is stable. The impulse response equation suggests that this

will be the case as long as both 7. are positive, which we can write as the inequality

2
0< Re [H] =Re (72 +7rps) £7 (Lg — Tris)] (8.126)
Here we recognize that « is very limited in real space, and only takes values between 0 and 1. We
can also see that for £ > 1, which is a very conservative criterion (a device which does not satisfy

this condition would be useless for us), we see that the prefactor of v in this expression is always
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positive. The difference between falltimes is

11 1 1
—:27<— )>0(£>1) (3.127)
T+ T— TLR TTES

=7t >t (e >1) (3.128)

This tells us that for a given 7, r and 7rgg, under the condition that £ > 1, the fall-time will go
negative first, and solving for this point will tell us the stability criteria for the TES.
We thus see that the TES is stable if the fall-time is positive; a negative fall-time is indicative of

thermal runaway. This gives the condition (in the overdamped case)

TLR  TTES TLR  TTES L T

squaring both sides and simplifying gives

4 <4@£(2+B)

< (3.130)
TLRTTES L T

(L—-1)(Ro(1+p8)+Rr)  RoL(2+7)
- < PETE (3.131)
(L-=1)(Ro(14+8)+ Rr) < LRy(2+ B) (3.132)
(L~ 1Ry < (L+1+B)Ro (3.133)

L—1

Ro> ;g (3.134)

and thus we have a properly decaying TES as long as the operating resistance is greater than the
Thevenin equivalent resistance of the bias circuit. If £ is much larger than 1, we have the simpler
condition that Ry > Ry, and if £ is less than 1, the TES will always be stable.

For the underdamped case, we set the square root term to 0, and we find the bound:

1 1
_|_

TLR TTES
Ry(1+8)+ R S L£-1

>0 (3.135)

7 > = (3.136)

Ro(1+p) = @ - R (3.137)
R.(L—1) - R,

Ro> == (3.138)

The good news about both of these stability criteria is that they can be remedied beyond initial
design to a certain point by increasing the bias current (and thus the bias voltage), giving Ry a

higher value, but to maximize resistance of the TES to either thermal runaway or oscillation, we
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should design the TES with a large margin in mind for both of these conditions. We would also like
to see that the fall time is not infinite, so a stricter condition might be to determine a minimum

fall-time (given bandwidth considerations) and determine the resulting resistance and RLO ratios.

3.2.5 Thermal Phase Separation

The maximum length of a TES is set by the critical temperature T, of the device, which determines
the phase separation length, or the length scale below which the TES remains in thermal equilibrium
(and can thus be treated as a homogeneous device). We need to construct our TES as long as possible
without causing them to phase separate. The maximum length before appreciable phase separation

is given by the formula ([83], page 102):

7T'QBwaT
nZTc"*2pw (% (1 — —Tan“,,jh> — 1)

c

(3.139)

lmaz =

where most constants have been defined above. We gain one new constant, 3,5 (Weidemann-Franz

coefficient), which relates temperature, electrical conductivity ¢ and thermal conductivity k as
K
— = BusT (3.140)
o

This is also referred to as £, the Lorenz number. The exact constant of proportionality at 0 tem-
perature is known to be Lg, the Lorenz number.
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Figure 3.6: TES phase separation length as a function of critical temperature (left), where the
dashed lines illustrate the effect of increasing the bath temperature, and as a function of transition
sharpness and volume fraction (right), with width and thickness as set in Table

5
For n = 5, the ratio (%f’) is small (less than 10%) for deviations of 5% of Tyen below T., so
if we assume Tpap, < 0.957, (which is in line with design of the SNOLab fridge below 30 mK) we
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Figure 3.7: Number of QET unit cells as a function of alpha and TES width (left), and as a function
of transition sharpness and volume fraction (right), with width and thickness as set in Table
The third plot shows area per unit cell (assuming 1/6 or 1/12 the area of the crystal surface per
channel) as a function of transition sharpness and TES width, using zeta=0.25. The horizontal lines
denote the number of unit cells assuming a nominal area of one square millimeter for a 6 and 12
channel face.

have

71'2BwaT

- 141
ETCBPUJ (a - 5) (3 )

lmaz ~

and given that £, ¢, ¥, and py are constants, we can write them as an overall constant to show that

¢r
Imaz =~ C — 3.142
w7 (3.142)
(here we absorb n into our margins given that o > 80) where
5wf
Cur — 3.143
w=m 5 (3.143)

This shows the freedom of design we have when designing our TES length; we want to maximize (7

and minimize T,, while choosing the smallest value of « which gives us good energy resolution.

3.2.6 Additional Internal Degrees of Freedom

In this section we have assumed that the TES can be described by a simple block in internal
thermodynamic equilibrium at all frequencies of interest, which in general is not truly the case. I
have provided an exploration of two-block TES models with both elements of the TES participating
in electrothermal feedback in Appendix [C. I refer the reader to Ref [70] for a detailed exploration

of 2 and 3 block TES models where only a single block participates in electro-thermal oscillation,
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and to Ref [83] for a continuous treatment of phase separated TES dynamics. In all cases the reader
will find that any additional internal degrees of freedom degrade expected TES performance, so in
the spirit of optimal detector design I have given the general criteria for avoiding phase separation
and allowed us to assume the 1-block model is approximately correct. It should be noted that even
for a temperature uniform TES, additional performance degradation can occur for the cases of a
hanging heat capacity or intermediate thermal conductance which are explored in Ref [70], and will
be discussed in Chapter

3.3 TES Noise Modeling

Given the readout scheme for the TES, the noise sources we care about are those which add current
noise to the TES circuit. In principle, we also care about noise in the readout circuit, but as that
noise is expected to be sub-dominant to noise in the TES circuit, and is more readily fixed, we will
assume here that it is negligible.

The three main sources of current noise in the TES circuit are the Johnson noise in the passive
components, Johnson noise in the TES, and thermal fluctuation noise across the thermal link between
the TES and the bath. We separate the noise terms this way because we have more ability to tweak
various aspects of our passive components to reduce their noise if necessary, but the characteristics
of the Johnson noise in the TES are much more constrained by the other aspects of our optimization,

and by chosen operating points.

3.3.1 Johnson Noise

The voltage noise for a resistor at temperature 7' due to statistical charge fluctuations is white, and
is given as

VA(f) =Sy =4kTR (3.144)

For the passive components, we find that these simply add, so we have

‘7j2,passive(f) = Z SV :4kb Z CE,R1 (3145)

passive passive

and we can convert to a current noise by dividing by the squared impedance of the current loop

containing the TES, Zj40p:
4k

I_jz,passive(f) = ﬁ Z TZRz (3146)
| l00p| passive

We can simplify this by defining an effective passive temperature T* (following Ref [83]) as

.1
T - % > TiR; (3.147)

passive



CHAPTER 3. DETECTOR CONCEPTS 122

such that .
7 blig
I passive(f) = 1ZiooZ (3.148)
In the DC case where Zj,0p = Ry, the TES operating resistance, we find that
- 4k, T
2 4R
Ij,passive(f) ~ (3149)

Ry

and we can reduce passive noise if necessary by changing the resistance of the shunt resistor and
modifying the bias current to maintain the same voltage but decrease the passive Johnson noise by
modifying the effective temperature. This assumes the parasitic resistance is not a factor we can
control, and is comparable in magnitude to the shunt resistance.

The TES Johnson noise is slightly more complicated, as we cannot simply divide by the loop

impedance to convert voltage noise to current noise. We find first that

= Ry Ry
Virps(f) = 4k TR(T) ~ 4k, Ty | Ro + aToéT + 51—051 (3.150)

so building intuition, we notice that for a constant current, voltage noise will increase with small
temperature changes proportional to the nominal gain, and current noise translates to voltage noise
directly with strength proportional to the 5 term.

What we inevitably want to probe however is the current noise for a Fourier voltage fluctuation

of a given strength. The current noise in this case has been shown to be (by Irwin)

or \?
I rps(f) = 4k ToRo(1+ 28+ ...) (3.151)
» Vres

where the differential voltage to noise expression comes from the dynamics as derived earlier. While
this noise term is correct under the assumption that §P = 0, to be able to simulate noise on pulses
accurately, we need to account for the fact that the TES resistance is changing in this noise term as
suggested in the previous expression.

We can factor operating resistance out of the voltage to current response function to give

ol 1 1+ awr
0Vres  Ro (B + (14 B) + iwg) (1 = L +iwr) + L(2 + B) (3.152)
which gives
. 2
135 (f) = 4kao§%lo+ 23) <(g5 Ee e iw}é;fwjﬁ — ﬁ)) (5,153
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For completeness, the full form of the passive Johnson noise is

2
, Ak, T 1— L+ iwr
()~ =5, ((ﬁﬁ +(1+8) +iwk)(1 L+im)+£(2+ﬂ)> (3-154)

For our full energy resolution estimate, we’ll also need the power noise, found by multiplying the

current noise by

0P 1
‘51 = ZO [(1—L+iwr)(Rp + (14 B8)Ro + iwL) + LRy(2 + B)]‘ (3.155)
which gives
2 2 14wt 2
Nz (f) = ko To(1 + 26) Rolg | —5— (3.156)
and ,
1 .
Npgn(f) = 4k T* Rol§ (W) (3.157)

This is useful in that our input power is much simpler in the Fourier domain than the TES current
response, and thus the noise model encodes all of the TES physics while the signal model only
incorporate phonon physics. We will revisit the current and power noise relationship at the end of

this section when discussing TES channel operating resistance.

3.3.2 Thermal Fluctuation Noise

Thermal fluctuation noise is a power noise across the TES-bath interface, constituting a white power
noise of the form[83] 50|

Nipn = 4k TEGoFfn (3.158)
where .
1 T, 1
Fipp== |14 22k ~ = (Tyatn < 0.6 % Tp) (3.159)
2 T, 2

This can also be re-written using the power balance equation, which tells us that

GoT Touin \°
Py = IRy = % 0 (1 - (””) ) (3.160)

To

SO we can write

Toatn \°
Nipn = 20k, To I3 RoFypn, (1 - ( ”Toth> ) ~ 10k, ToI2 Ry (3.161)

The current noise can be found by simply multiplying this by the power to current transfer
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function:

oI |2

IZ ey = 10k, ToIZ Ry 3P (3.162)
2
_ 10k Ty L 3 163)
Ry \ (1= L+iwr)(F + (1+8) +iwgs) + L2+ ) '

3.3.3 SQUID Noise

The squid readout noise consists of a white high-frequency noise with a rising tail at low frequencies.
The high frequency component is essentially determined by johnson noise across the bias junction of
the SQUID, while the low frequency behavior is determined by the temperature of the squid; at high
temperature (above the energy of the macroscopic quantum state), the noise flattens out, and in the
low-temperature limit, the noise becomes pure 1/f, characteristic of quantum fluctuations between
two closely spaced states.

We can generalize the squid noise with the function

Is@(w) = I5Q.c0 (1 + (wwq)n) (3.164)

where 1/f noise is the case of nsg = 1, and white noise the case of wsg = 0. For lower operating
temperature, the white noise level decreases (the bias johnson noise decreases), but ngq and ws, both
increase. We can also define a SQUID temperature noise Tsqurp such that

o 4kaSQ ROI,%QVOO

Ig’Q,oo =R —Tsq = BT (3.165)

which allows us to write

I3ow) = 4k;TSQ (1+ (ﬂ>n)2 (3.166)

0 w

and as before, we can convert this to a power noise by using the current to power transfer function

or |2

Nio =I%q ‘ap (3.167)
4kyT, oo\ a0 2 | I ) _ 2
= % (1+ (%) ) (L= L+ iwr)(Ry + (1+ B)Ro +iwL) + LRo(2+ )
(3.168)
wo\me\ [(1—L+i R L :
Sawtsote| (1 (5)7) [(ZF) (e e iag) )
(3.169)

This has the additional behavior of rising with decreasing frequency, to become the dominant low-

frequency noise, compared to Johnson noise which is flat at DC.
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Figure 3.8: Left: Noise model for UMN cold electronics with significant shunt and parasitic resis-
tances at 1K which are the dominant noise contribution. Right: Noise model for SNOLAB cold
electronics with minimal parasitic resistance and 5 m{) shunt resistor for the same device, showing
the improvement in noise performance for electronics designed around a low Rn TES. SQUID noise
is not included in these models due to the fact that different SQUIDs were used and the resulting
total noise comparison would not be very informative, but in principle the SQUIDs will dominate
at high and low frequency.

3.3.4 Joint Noise Sources

As a short note before continuing to the next section, it should be pointed out that both current
and power noise models are very easy to combine, but that one needs to be careful that the noise
power, not amplitude, is what is added. The noise power N? adds linearly, but noise amplitude N
adds in quadrature; yet it is usually amplitude spectral density (not really power spectral density)
that we plot. In other words, what in CDMS is referred to as the noise PSD is really the amplitude

spectral density, and when making the noise model one should plot

Lot =\ 12, + By + By + By (3.170)

which has the normal units A/ V/Hz. 1 make this note to clear up confusion people normally have
when encountering noise analysis for the first time. A good way to remember this is that, in time
domain, people like to think about the standard deviation, which adds in quadrature, rather than
the variance, which adds linearly, even though the variance is really the parameter they’re talking
about. This is actually a direct analog, as you can see in Appendix

Two examples of noise models for warm and cold passive components (based on the SuperCDMS
SNOLAB cold electronics as well as the legacy electronics at UMN) can be seen in Figure For

more discussion of subtleties of noise modeling in non-ideal TES arrays, sec Matt Pyle’s thesis|83].
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3.3.5 Energy Resolution

The amplitude resolution for a signal with normalized template s(f) and noise PSD N2(f) is given

in Appendix [E.6] to be
o -1
s [, [ P
o2 = (3.171)
0

N2(f)
Using the TFN noise, we find that the optimum filter resolution is (see also Ref [83])
4k T2GFyp 1 1
0%~ e Y ( + ) (3.172)
€ Wpulse nthanES
2k, T2G (1 1
i’ ( + - ) (3.173)
€ Wpulse QWTES
2% T2G 27
- 1’672 (Mlse + ZES > (3.174)

as Fypp = % in the low bath temperature limit, in all cases.
Using equation [3.44} we find for the wpys. case that

kanEVTES7effTCn+1

62Wpulse

o~ (3.175)
and thus the largest overall impact on the energy resolution comes from T, which can dramatically
decrease resolution for small T, decreases. This is the main design driver for SuperCDMS detectors
which are mostly phonon fall-time dominated. For the TES fall-time limited case, we get to the

ideal calorimeter resolution equation at the beginning of the chapter.

3.4 QET Modeling

With a complete model of TES dynamics, we can tackle modeling the performance of individual
QETs, and full channels of QETSs, which are the primary phonon collection systems which channel
energy to the TES at their center. We need to develop a qualitative model of energy transport in a
QET to quantify the energy efficiency of a certain geometry, and phonon channel, to determine how

much energy makes it into the TES to be measured, which factors into the energy resolution.

3.4.1 Energy Conversion Efficiencies

There are two critical interfaces where phonons are absorbed which affect the energy transport
efficiency in the QET. The first is the crystal/aluminum interface, when phonons are converted into
quasiparticles through the Kaplan downconversion process. This has a calculated (and monte carlo
validated) efficiency of epgp ~ 52%][23).
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The second is the aluminum/tungsten interface, which was uncertain even in the iZIP (it was
back-calculated, given other efficiencies, from the measured phonon efficiency) and is even more-so
in our current devices given the change of device geometry to the inverted interface. It is also
unclear how much of this conversion efficiency has been factored into the measured efficiency of
energy transport in the fins in the form of the overlap efficiency. The back-converted, and adopted,
efficiency for this interface from the iZIP4 (see Matt’s thesis) is ey — 4; ~ 62%. These, combined with
the QP transport efficiency (next subsection) and energy colletion efficiency (from finite aluminum

coverage, described in the next section) comprise the total efficiency of the QET.

3.4.2 Aluminum Fin Length

The second aspect of the QET design to consider would be the aluminum fin length. The aluminum
fins collect Phonons from the substrate and transport them to the TES, and so we would naively
expect that longer fins would be more ideal, as a larger fraction of the energy would be collected
in the fins, and the ratio of live to dead aluminum would be higher; aluminum is also used to bias
the TES. A QET with ideally efficient fins (which transport 100% of the energy to the TES) would
have tiny TES and cover the rest of a phonon channel with Aluminum.

In reality, there are many non-idealities which make long fins undesirable, most important of
which is that there is a finite diffusion length of quasi-particles in aluminum. The fraction of
quasiparticles collected in the TES is thus a function of fin length, and it turns out also to be a
function of fin thickness. The derivation that follows was done by Robert Moffatt, reproduced here

for completeness.

1-D QP Diffusion
We can model the 1-D diffusion of QPs in aluminum fins with diffusion equation

on(z,t) ?n(z,t)  n(x,t)
5 =Du 02 g + s(z,t) (3.176)

where n(z,t) describes the number and density of QPs as a function of position and time, D,
is the diffusivity of QPs, and 7,; is the QP trapping time; s is assumed to be some delta source
s(x,t) = 6(x — xg)d(t — to).

We model the absorption rate I,;s as
Iabs = TL(O, t)l/abs (3177)

where v is defined as the per-qp absorption probability with units length/time. For our 1-d model,

the probability of being at an absorption interface at any given time, in a tungsten overlap of length
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loverlap, for a fin of thickness hy;y, for a qp traveling at speed vy, is

Lover
Vper fect = Ugp 0}“;’_“”’ (3.178)
m

and for imperfect absorption with probability p, we have

lovert
Vabs = PabsVperfect = PabsVUqp 0;;67’ P (3179)
fin

We’d like also to write our diffusion variables in terms of the physical dimensions of our system,
including lengths and velocities. We can write Dg; in terms of fin thickness and velocity in thickness

limited scattering as
Dal = hfinvqp (3180)

and we make the assumption that W dominates absorption time, and thus 7 = v 'h fin, Where vy,
is the empirically measured tungsten absorption rate with units meters/second.

We can further simplify the problem by constructing the dimensionless parameters Ay, Ay, and

'y, where
o DalTal o hfianpTal _ Vap hf“’L
Ag= =Y = /-l (3.181)
L L Vw L
‘Da h’ m h in ]. h2in
Ay = b f fintgp _ 2 _ Tfin (3.182)
VabsL quloverlappabs L DPabs loverlapL
A Da h inPw h mn 1 w h mn
Py= 24 — Lo | inVelap i = Pw 2 (3.183)
Ad Vabsy/Tal hfin vqploverlappabs DPabs Vgp loverlap

giving a solution with two geometric parameters, set by the aspect ratio of thickness to length and
thickness to overlap.

Robert’s solution (with this re-parameterization) gives the relative collection fraction f,. as

Ag
= _ 3.184
f coth (A1) + Ty ( )
and we find, from real TES data, that
Vgp _ 600
—  — = 1
D 9 660 (3.185)
and 1 16005
*
"~ 10 3.186
P 0.92 ( )

and thus the relative fraction of Phonons collected in our aluminum fins as a function of fin length,
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Figure 3.9: Phonon collection fraction as a function of 1-d fin-length, where hy;, is fin thickness
and ~ is W-Al overlap length. According to this model, we should maximize our film thickness and
overlap as much as possible, with the caveat that we should do so only as long as the heat capacity
of the device does not dramatically increase when doing so.

thickness, and tungsten overlap can be calculated. The trends for various values within our design

range can be seen in figure [3.9

2-D QP Diffusion

It should be noted that the above diffusion relations are for 1-D diffusion, which is the valid case
for iZIP geometries, but not so for "stadium” geometries, which are oblong and have more surface
area further from the TES. True 2D diffusion should behave somewhat differently from 1D due to
two non-orthogonal degrees of freedom for QP propagation, and the larger fraction of QPs collected
further from the QET.

A similar calculation can to the previous section can be performed for 2-D diffusion, with a more

complicated resul

2pi 11 (po)K1(pi) — I1(pi) K1 (po) (3.187)
P2 — p3 Ii(po) (Ko(pi) + XaE1(pi)) + (To(pi) — Aali(pi)) K1(po) ’

L As derived by Robert, will document full derivation at a later time

F =
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Figure 3.10: Left: Phonon efficiency, moving from 2-D to 1-D geometries, illustrating the fact that
in the infinite TES limit, the 2D and 1D collection fractions agree. Right: Phonon collection fraction
as a function of 2-d fin-length, where hy;, is fin thickness and v is W-Al overlap length. Notice that
the overall efficiency for a given fin length is much worse than expected from the 1-D case.

where
p. — ltCS _ lTES A71 (3 188)
! ’/Tld ’/Tlfin ’

l m l —

po=pi+ L2 = [ ZEE L 1) At (3.189)
ld Wlfin

l(l Da a
Aa — VZalTal (3.190)

N E N Dal/”abs

and Aq is as defined in the 1-D case. We can further parameterize this by setting rq = lies /7l fin,

giving
Td
;= 3.191
=13, (3.191)
rqg+1
o = 3.192
p A, (3.192)

and the collection fraction is thus described in terms of the dimensionless parameters Ag, A\g, and
rq, adding an additional degree of freedom to the 1-D case.

The comparison of this solution with the solution for 1-D collection efficiency can be seen in
figure as well as the various efficiency curves for a 300 micron TES, which is the nominal
design length, as discussed in the next section. Note that the overlap and thickness have a less

dramatic effect on the collection efficiency.
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We can re-write the pre-factor in terms of just Ay and ry:

= i (3.193)
p2—p?  (pi+A;N2 - p2
2p;
Aqg
2 T 1
A
- ¢ (3.196)
ry +1

and so in the 1-D limit (If4, << lpgs) this reduces to the same large {t;, scaling as the previous

1-D solution: l .
~ Ay = L ATES (3.197)
' lyin  AQET

In the 2-D limit (I7;, >> lrps), we find that

2pi _lalres  lalres (3.198)

Pz — P} B Wl,%m ~ Ager

and so regardless of geometry, both find that collection efficiency scales inversely as fin area and
proportional to diffusion length and TES length. The fact that the efficiency depends on TES length

will be immensely important in scaling energy resolution with TES dimensions.

QP Efficiency and Flux Trapping

A final consideration in QP fin design is the mitigation of trapped flux vortices, which trap quasipar-
ticles in the fin and lower the efficieny of the QPs. Aluminum is nominally a type 1 superconductor,
meaning it does not permit bulk magnetic flux lines, however thin films (on the order of hundreds
of nanometers) have been shown to develop stable or metastable flux vortices which become very
persistent[23]. The transition from type 1 to intermediate type for this film thickness occurs for
square films on the order of 40 microns square, and it is likely that increasing the film thickness in
aluminum increases the size of the contiguous superconductor which is able to fully repel flux lines.
This is one area of R&D that should be explored further by our collaboration as we move to thicker
Aluminum films due to their increased QP collection efficiency.

Figure[3.11]shows the impact of these flux vortices on the QP collection efficiency in our QETs. A
prototype iZIPv6 was operated at UMN, and was subjected to different magnetic fields by positioning
the mu-metal magnetic shield at various heights relative to the detector to create different ambient
magnetic fields. The detector phonon collection efficiency was measured for each cool-down, and the
resulting efficiency is seen to be a strong function of ambient magnetic field, implying that even for

this detector (for 300nm film thickness) there is a significant likelihood of forming flux vortices for
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Phonon collection efficiency versus magnetic field

>
g C
s 0.09
s -T}
c
s L
g [ ¢ }
2
3 L
Q
5 0.08 t
[
s L
4
oI ¢

0.07

B L4
0.06
el I I B § 111l 11 1 11 1 1 1 11 1 11| 11| 1 1
10 20 30 40 50 60 70

Background magnetic field during cooldown (uT)

Figure 3.11: Left: Phonon collection efficiency for a prototype iZIP detector measured at UMN by
Matt Fritts, showing that as the magnetic flux around the detector is increased during cooldown the
efficiency decreases. This indicates that flux traps do persist in that design despite the films being
~300 nm thick. Right: QET unit cell showing fin slits separating each major fin (defined by each fin
connector) as well as thinner slits meant to reduce the area of contiguous superconducting regions,
and allow magnetic flux to pass through the fin without producing vortices. This design ensures
that a circle of radius ~50 microns cannot be found anywhere in the design. For 600nm films this
should be enough to ensure that any vortices in the fins are more easily expelled.

the iZIP detector design.

For the CDMS HYV design, in order to be conservative, we decided on a maximum fin width of
50 microns, decreasing larger widths by adding small slits to larger fin areas to disrupt large areas
of potential vortex formation. This can be seen on the right in Figure [3.11] and we can differentiate
between vortex (minor) slits and major slits needed to prevent shorting the TES by the presence
of the green layer in the figure, which is the insulating amorphous layer in the detector mask. We
don’t particularly care about continuity issues in those slits, so they have been made narrower than
the major slits. Though these were initially included to prevent flux vortices, the slits also serve to
make diffusion in the fins more quasi-1D, and should in principle slightly improve the QP collection
efficiency for phonons absorbed on the edge of the fins. This is not taken into account in the

optimization discussed in the next section but was a secondary design philosophy for this QET.

3.4.3 Tungsten-Aluminum Overlap Dimensions

Figure shows the tungsten-aluminum overlap interface dimensions used for the HV design. As
described in the previous section, our QP diffusion model suggests that an increased overlap should
improve QP collection efficiency out beyond 40-50 microns. At the time this device was designed,

only data for 5 and 10 micron overlaps had been acquired, and the design value chosen was 20 microns
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Figure 3.12: Tungsten (black) and aluminum (grey/blue) overlap region for vO (top) and v1(bottom
left) compared to a microscope image of the fabricated overlap region for the inverted geometry for
v2 (bottom right). You can see that the overlap geometry isn’t changing but the design of the TES
connector includes features to avoid connectivity issues near corners in the design.

assuming the gains would continue to be seen for larger overlap values. The design philosophy was
minimize the mean free path of a given carrier through the overlap to the TES, which is how the
rivet-like geometry seen in Figure was decided on.

The additional dimensions and features of the overlap region were designed to minimize the
fraction of tungsten not covered by aluminum. This was driven by the assumption (based in part on
the measurements from Ref [45]) that all tungsten in contact with aluminum is highly proximitized,
and thus does not contribute to either the heat capacity or thermal conductance of the TES, while
the part of the fin connector not covered by aluminum will affect both quantities. This is captured
by the ¢ parameter introduced earlier in this chapter; a ¢ of ~0.7 corresponds to including all
8 fin connectors in the total tungsten volume, which affects both the heat capacity and thermal

conductance of the device (in principle leaving 7 invariant).
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Figure 3.13: Energy collection in two TES attached to the same aluminum fin for (left) a 30 micron
overlap and (right) a 40 micron overlap. This data suggests that continuing to increase W /Al overlap
length does increase collection efficiency, at the banana reaches higher energies in these plots on both
axes and there is a smaller conversion penalty as seen by the spacing of the shared energy band from
the axes in the two plots.

Stanford QP Collection Measurements

One piece of information that has become clearer since the design of the HV mask as finalized is
that the projected gains with overlap do seem to be realized, at least in our test devices. Figure|3.13
shows data taken with the same test device geometry described in Ref [111].

These data qualitatively confirm that QP collection efficiency increases with overlap length for
small geometries, leading us to believe that we could in principle increase overlap length for future
designs. There are a few potential problems which arise from much larger overlap regions which are

not accounted for in our models however:

e We have not quantified what fraction of the tungsten under the aluminum fin contributes to
the heat capacity and thermal conductance of the TES (as we’ll see in the next chapter, it’s

very possible that it’s a non-negligible amount).

e The test devices utilized thus far are one-dimensional; it is unclear whether these same gains

should necessarily be realized in two-dimensional traps.

e At some point we expect that the finite diffusion length of phonons through the overlap region
should cause efficiency to drop again, as was seen in previous designs with meandering fin

connectors (this is summarized nicely in Matt’s thesis [83]).
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Some of these questions will be addressed in the testing section, but some are (as of this writing)
under studying in small test devices, and another set have yet to be tested. The energy conversion
at the overlap is by far the least mature aspect of the QET design process, and a future design that
fully matches the overlap to the fin and the fin to the substrate should achieve the optimal energy

resolution for a QET with a given geometry.

3.4.4 Energy Collection Efficiency Summary

In this section, we’ve seen that most steps of the phonon measurement process have known efficiencies
which we can, in principle, use to optimize the QET design. To assist the reader in compiling this

model, I will summarize the various components:
e Phonon to QP Conversion Efficiency - Kaplan downconversion limits to 52% [23]

e QP Collection Efficiency - f.(n,7) is a function of the aspect ratio of the fin and its thickness
and is related to measured film properties as shown in this section. It also depends on the

amount of flux trapping in the fins, which can in principle be made negligible.
e Trapped QP to TES Efficiency - Not yet modeled, but measured in IZIP4 to be ~62%

If we can perfectly collect all phonons in our fins and transport them perfectly to the TES, then,
we predict an energy efficiency of ~32%; if we measure an efficiency which exceeds this, then we
have either messed up the measurement or made a significantly observation about fundamental QET
efficiencies. As the fin connector interface is further refined, it may be that efficiencies in the low-mid
40% range are possible, but even the perfect design cannot exceed the ~50% down-conversion limit
according to the design principles presented here. This is a good metric to compare measurements

to as a very first sniff test.

3.5 Future Modeling Inputs

In this chapter, we have seen a very mature model of SuperCDMS QETs, and I have tried to highlight
areas of the modeling which have progressed recently as well as areas which are in need of further
study. Many of the results shown in the next few chapters bring alot of the assumptions made in
our detector designs into question. Most notably, we implicitly assume that changing the T, of our
detectors changes the resistance, heat capacity, and thermal conductivity of our films according the
the prescribed power laws.

One crucial assumption that we have not explicitly verified (but is one part of the model which
can be addressed through an ongoing TES test program) is the accuracy of the Wiedemann-Franz
law at low temperature:

k= Buwrol = ﬁwf% (3.199)



CHAPTER 3. DETECTOR CONCEPTS 136

While in general this result does hold, it has not been explicitly verified at low temperature, and
deviations from this law abound in the literature for different experimental conditions[10]. It is more
likely than not that thermal conductance is higher than predicted by this scaling relation due to
phonon dynamics, but smaller values in highly-correlated systems (e.g. superconductors) have also
been observed. This adds a large degree of uncertainty to our phase separation boundary, and given
that resistivity can in general be a complex function of T, it’s unclear whether our estimates of x
based on other measurements will be systematically low or high. As we’ll see in the next chapter,
a longer TES allows for much more aggressive mask designs for large detectors, so if the phase
separation boundary is much further out this would change our detector optimizations.

In general, a better understanding of the resistance, thermal conductance, electron-phonon cou-
pling, and proximity effects in our QETs will improve our ability to predict the noise performance
of a given design. In this chapter we explicitly assume that all tungsten underneath the Al is prox-
imitized, and does not contribute to the heat capacity of the TES, but we have begun to believe
this is not the case, as will be discussed in Chapter [} Other effects we have observed but do not

understand include
e Dependence of heat capacity on transition point (as well as slope of this change)

e Dependence of thermal conductance (to the bath) and heat capacity as a function of T, and

film morphology, as well as the aforementioned effect of proximitizing the overlap regions
e Dependence of resistivity on film morphology and 7,

e Resilience of various QET designs to flux trapping as a function of fin feature size, and further

studies of QP diffusion as a function of fin shape

e Better modeling of QP trapping and diffusion of energy through the overlap interface; current

modeling assumes no dependence on trap shape and size

e Improved understanding of phonon losses at uninstrumented surfaces (currently our model

assumes perfect reflection at all non-aluminum interfaces)

Many of these questions will be answered in the near future by small device and test pattern tests
at SLAC and UCB, but others will require more dedicated fabrication and testing programs, and it

is likely that trends can be understood on a more fundamental level once measured.



Chapter 4

CDMS HYV Detector Design

“If you find that you’re spending almost all your time on theory, start turning some
attention to practical things; it will improve your theories. If you find that you’re
spending almost all your time on practice, start turning some attention to
theoretical things; it will improve your practice.”

- Donald Knuth, quoted in: Arturo Gonzalez-Gutierrez (2007) Minimum-length

Corridors: Complexity and Approximations

In this chapter I apply the concepts described in the previous chapter to the optimization of the
first 100 mm CDMS HV detector. The general optimization procedure is the following:

1. Select a detector size and form factor

2. Construct a readout noise model to determine the right operating conditions for the TES

channel
3. Given fixed TES channel properties, optimize the QET design
4. Given a fixed QET design, determine an optimal channel layout
5. Figure out how to make the optimized design work in practice

The first 4 steps will be described in detail and related to the models described in the previous
chapter, and I will provide some commentary on the last step given the experience with this detector
design to help inform future SuperCDMS mask and housing designs. While most of the cerebral part
of mask design lies in the optimization, mistakes made during the last step can render a detector
susceptible to critical failures, and a non-functional detector, regardless of the degree of optimization,

is useless. This chapter provides a framework for making optimized CDMS detectors which are robust

137
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Figure 4.1: Left: Z partition (energy fraction absorbed on first pass) as a function of the aspect
ratio of the phonon signal. If the signal were entirely ballistic, then R is the detector radius, but
if it is diffusive, then R is the diffusion radius. Right: Difference in z-partition for diffusion limited
phonons for differences int the diffusive radius on either side of the detector (e.g. for NTL emission
by holes v. electrons)

to the realities of fabrication constraints, human error, and non-idealities in detector operation and
installation. It is not exhaustive but should provide a useful guide of things to consider during the

design process.

4.1 Detector Dimensions

An often overlooked design choice when we make CDMS detectors is the form factor of the detector
crystal. The normal considerations generally involve the detector mass and the dimensions of the
available stock material, as well as fabrication limitations. CDMS has historically chosen detector
substrates which are nominally cylindrical, and have aspect ratios of 3:1 as seen for the Soudan (3
inch diameter, 1 inch thick) and SNOLAB (100 mm diameter, 33.3 mm thick) detector crystals.

There are different philosophies for determining the correct form factor of the detector, which
depend on the detector properties you expect to limit its performance most critically. If you have
bad surface treatment on the side-walls, for example, you might want to opt for a thin detector, but
if you believe your surfaces are all equally lossy (or non-lossy as may be the case), then you might
opt to maximize the fiducial volume of your detector. In this case, the degree of fiducialization
depends on your surface to volume ratio as well as the accuracy of your reconstruction methods.
For a phonon-only detector the position resolution achievable depends on the phonon dynamics; the
optimization scheme will depend on whether the phonons are ballistic (traveling directly from the
point of origin) or diffusive.

The characteristic length scale of phonon propagation is energy dependent, but in general we

find that mean free paths on the order of a few mm are about right for Ge[99l 183], and we can
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Figure 4.2: Left: Fraction of the volume able to be fiducialized at the optimal aspect ratio for a
range of r and z resolutions as a function of the ratio of o, and o,. Right: Optimal aspect ratio for
a given resolution ratio, demonstrating the independence of the optimum on other detector factors.
This is an idealized model, as we should expect that sufficiently large detectors will lose all position
resolution in certain limits.

expect they’re comparable in Si. The fundamental limitations of ballistic phonon propagation are
anharmonic decay and impurity scattering, meaning the purity of the crystal is often important, but
even a perfect crystal will not permit purely ballistic phonon propagation. A rough measurement of
the effective phonon diffusion radius will be discussed later in this chapter, but for now we’ll work
in orders of magnitude.

Figure shows the z partition quantity derived in Appendix [A] for different effective phonon
diffusion radii. For a detector that is much wider than it is thick, the partition of energy is linear in
z, and the position resolution is only limited by the energy resolution. For a diffusion limited ball
of phonons, or equivalently, a detector that is much thicker than it is wide, there is only appreciable
z-dependence near the detector surfaces. If linear performance is desired, then a detector with
dimensions on the order of mm which will collect all phonons during their initial propagation and
has a very flat aspect ratio will be ideal. For larger detectors, the phonon diffusion is the limiting
radial scale, so we do not necessarily benefit from the aspect ratio in this partition quantity.

The radial partition is also limited by phonon diffusion, and will only improve in terms of absolute
fiducialization with increased detector radius. In the diffusive limit, channel sizes on the order of
5-10 mm in radial rings, with multiple radial channels, will generally give good radial reconstruction
performance, with the caveat that the radial partition is complicated by events which occur near
channel splits.

Given reconstructed position resolutions o, and o, assuming these are independent of the detec-
tor form factor (as they are in the purely ballistic limit), we can actually find the optimum detector
form factor independent of total detector volume. If we assume the detector is cylindrical, and that

the fiducial volume consists of all points more than 30 from a surface, then we have the fiducial
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fraction v ( 3 )2( 60.) )
o fid o r— o0, z — 0o, - _ 2 o 2
fria = 14 = -(1-3 - ) (1-6 - ) (4.1)

Viot r2z

If we fix the total detector mass, then we fix the relation between r and z to be

o ‘/;fot

= 4.2
2= (4.2)
which gives
o\ 2 o
a=(1-32) (1-6m2 13
fra=(1-3%)" (1= o= (1.3
This equation has the analytic solution
1o, d -
2% ,¢_0r (4.4)

z 20, z o,

as shown in Figure If we can be reasonably confident that position resolution is insensitive to
changes in aspect ratio then we can use measured resolutions to determine the optimal detector form
factor.

More likely, however, is that both are also a function of the aspect ratio, and what we have is
actually a transcendental equation; for any given measurement we can only say how far from the
optimal configuration we are. For the SuperCDMS SNOLAB detectors, the same aspect ratio as the
Soudan detectors was chosen based on source material and fabrication constraints. If we find that
the demonstrated position resolution of these detectors is very far from a 3:1 ratio, then we need
to re-evaluate how to either improve position resolution with the same form factor, or change the
form factor of the detector crystals. This was not done for these detectors due to the complexity of

position resolution calculations but is worth considering for a future upgrade phase of detectors.

4.2 CDMS HV QET Design

The previous chapter described the response model of each of the individual parts of the QET. In
this section I will use the results of the previous chapter to describe the design and optimization
of the QETSs independent of the rest of the detector design for SuperCDMS SNOLAB CDMS HV.
Table contains input parameter values assumed for this optimization; some of these assumptions

turned out either to be overly confident or overly optimistic as will be discussed later in this chapter.

4.2.1 TES Channel Optimization

Much of the TES dynamics can be removed from the QET optimization based on the characteristics
of the readout circuit; we can assume an infinitely fast phonon response, which will only be more

sensitive to noise than our phonon signal with a finite fall-time which in general is slower than the
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Figure 4.3: Left: Current noise amplitude power spectra for the original normal state resistance
target (300 m€?) and the final normal state resistance target (150 mf2). We can see that in both
cases, passive noise is sub-dominant, but the SQUID noise is a larger contribution at the higher
normal state resistance. Right: Energy resolution (assuming nominal efficiency and phonon fall-time
of the CDMS-HV design described later in the chapter) as a function of normal state resistance,
showing the SQUID only case versus the TES only case. We can see that the SQUID has a large
impact on resolution for higher normal state resistances, and lowering the normal state resistance
both lowers the overall resolution as well as the impact of the SQUID relative to the TES.

TES response.

Figure [£.3] shows the noise model for our TES readout circuit, using the functional forms from
the previous chapter. The passive noise is seen here to be completely subdominant to the TES noise,
by design. This is achieved by assuming both Ry, and R, are 5 m2, and are operated at 1K (where
the HEMT card is in the fridge The SQUID noise shown in Figure is based on the measured
noise from SNOLAB SQUIDs tested at both UC Denver and SLAC, which show a baseline noise
floor around 4.5 pA/ vHz. The exponent in equation Ngq, 1S assumed to be nominally 1, which
is in a sense the worst case scenario. Later in this chapter I will explore the impact of varying the
SQUID noise exponent and low-frequency baseline on the expected energy resolution.

We can see from Figure that the initial choice for TES normal state resistance would have
put the TES noise floor near the SQUID noise floor, leading to sub-optimal energy resolution and
a high dependence on individual squid performance. Given that the iZIP design already assumed a
normal state resistance of 150 m(2, we decided to also lower the HV normal state resistance to this
point. We can see for this normal state resistance, the TES noise is further above the SQUID noise
floor, and the resolution is much less dominated by SQUID performance, though we will still be
dependent on the SQUID noise to the 10% level or so. This drives home the importance of doing full

channel characterization at SNOLAB to determine the optimal bias point for the TES channel as a

1Table contains all of the assumptions for variables not optimized as well as the results of the optimization
described in this section.
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fraction of normal state resistance. Too high in the transition and we run the risk of either being
SQUID dominated or in a part of the transition which is not sharp enough for ideal electrothermal
feedback. Too low in the transition we risk either oscillation or large nonlinearity due to being too
close in resistance to R; = R, + R;h. It’s likely that the optimal bias point will be in the range
of 30-60 mf) for each channel, but will depend on the individual electrical characteristics of each

channel.

4.2.2 QET Efficiency

Quantity Symbol | Adopted Value
Crystal Radius Rt 50 mm
Sensor Radius Ryn 48 mm

Sensor Area App 7238 mm?
Phase Separation Length lps 348 um
TES Design Length lres 200 pum
TES Connector Length le 2.5 ym
QET Fin length Ltin 240 pm
Fin Channel Width Wehan 10 pum

Table 4.1: QET parameters used to determine efficiency, aluminum coverage, and limits on opti-
mization domain. Input TES parameters are also shown in Table[3.1]and optimized QET parameters
are given in Table

The layout of the QET comes from the considerations in the last chapter, where we noted that
the 2D geometry was more ideal than 1D from an efficiency perspective for the right optimization.
We also want as much instrumented (’live’) aluminum coverage as possible, as phonons absorbed in
non-instrumented (’dead’) aluminum (bias lines) will not be detected, and the ratio of live to dead
aluminum sets the base-line efficiency. In addition, the QET is segmented into 8 fins, such that
the TES may be properly biased, mitigate magnetic flux traps[23], and to channel QPs into the
tungsten traps rather than letting the travel parallel to the TES. The final QET design can be seen
in figure In this section I'll describe the optimization process that lead us to this design.

For this geometry, we eventually want to calculate the aluminum coverage, both live and dead,
and so we need to first calculate the unit cell area, as this sets the bias line dimensions and scales
to the final percentage. We use 50 mm radius Germanium and Silicon crystals, but leave the outer
2mm uncovered to protect against accidental shorts from touching the detector casing, so only 48mm
of radius are instrumented. Those outer 2 mm will contain small guard rings attached to ground to

allow for more uniform electric field at high radius. The area per QET is thus

Acell = (4.5)

Aph _ (Athn) wThT
NrEgs

Puw lres
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Figure 4.4: Optimized QET design, where blue is aluminum, green is amorphous germanium, and
black is tungsten. See text for more details. Note that this shows an earlier version of the QET with
more amorphous Ge etched in the fin connector region than in the final design.

and the area of the QET is roughly

e

Ager = < (lres + 2ltin)lfin (4.6)

We recognize here that, due to removal of some material, the true area is slightly smaller:

T T
AgeT =§(ZTES + 2l pin ) pin — ZITES('U}TES’ +2v/3l,) (4.7)

- 61finwchan — Nsquares * Asquare (48)

where the quantities are as defined in table[4.I] The channels and holes remove some live aluminum
area, as does the TES. These are second order corrections I will ignored in the scaling relations
below, but they are included in the numerical optimization.

The dead aluminum area is just as dependent on TES length as the live aluminum area. The
top and bottom connectors depend on the side length of the unit cell, as does the length of bias line
per cell. Here I'm going to assume that each TES shares each of its bias lines with its upper and
lower neighbors, so that for a given unit cell we need only include the area from the top bias line.

For the limit of large Nrgg, this will be accurate. The dead aluminum is then

Adead z( V Acell - ZTE'S - 2lfzn - whbias) * Wybias (49)
+ Acellwhbias (410)

where Wppias and wypias are the widths of the horizontal and vertical bias lines respectively. If we



CHAPTER 4. CDMS HV DETECTOR DESIGN 144

want to probe the amount of dead aluminum at fixed TES length as a function of y;,, we can write

this as
Adead ~ \/m(wvbias + whbias) - lTES * Wybias — 2lf1n * Woybias (411)
~ Whias(2V Acelt — lres — 2l yin) (4.12)
~ 2'wbias (LO - lfzn) (413)

where Lo = \/Acet — %ZTES is the half-aluminum length for 0 fin length, and we’ve assumed the
wire lengths are equal and minimal due to photolithography constraints.

Using these areas, we can begin to calculate phonon collection efficiencies. It is important to
note that for each phonon interaction with aluminum instrumented surface, there is a non-trivial
probability of reflection rather than absorption. On a given bounce, then, the fraction of phonons

absorbed by a given QET can be written

A
Javs =P ‘“’SAQ*E”T (4.14)
ce
m Pw lres
N pavsy (1 Apin)lin \ 7 7~ 4.15
Pabs 2( TES + fm) fin (Athn> wrhy ( )
TPabsPw
- <2AthThT> (Grpslyin + linlres) (4.16)
P n
= Cres(Fpslfin + inlres) (4.17)

where it is clear we have a TES growth regime and a fin length growth regime. It will turn out that,
given that fin trapping length is on the order of our TES length, that we’re not in a limiting case,
so I won’t bother with any expansion here. Similarly, the phonons lost in the dead aluminum can

be calculated as

Adead
ost = Pabs ——— 4.18
Jrost = Pab A ( )

cell
which will decrease with increasing TES length.
Finally, to calculate the phonon collection fraction in the TES as a function of fin length, we

need to include the collection efficiency described in the previous section. This gives

AQET
fabs = fc(lfin)pabs AQ (419)
cell
and if we recall the large-fin limits from the previous section, we find that
N lalres
fabs ~ Pabs (420)

Acell

in the large fin limit. Thus beyond the point where the bessel pre-factor goes to 1, around 1 diffusion
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Figure 4.5: Left: 2D Phonon collection efficiency plane as a function of TES and fin length. Note
that the small fin limit is dead-aluminum limited, and the large-fin limit is limited by collection
efficiency. Right: 2D energy efficiency plane as a function of fin length and TES length. Both plots
show the phase separation boundary for a TES at 45 mK.

length, we find that the energy collected on a given bounce stops increasing. The lower collection
fraction means energy was lost, so this is not beneficial.

We need also to include the dead aluminum in our consideration, to compute the total phonon
collection efficiency integrated out to infinite time after the initial pulse. On each pass, fups phonons
are absorbed, however those which are absorbed are not collected with 100% efficiency, and some
of the phonons will be absorbed in dead aluminum. Thus the maximum energy resolution is the

fraction of collected phonons to total absorbed phonons on a given pass:

__ JeAgpr (4.21)
Aoer + Adead
= :['fﬁ (422)
+ AQEeT

We see then that at short fin length, the efficiency scales approximately as the live to dead aluminum
ratio, and at large fin length (when dead aluminum is negligible), the efficiency scales as the collection
efficiency. This can be seen in figure where the efficiency for a range of TES sizes is plotted as

a function of fin length.

4.2.3 Energy Resolution

Given the model of efficiency as a function of our design parameters, we can now do the full energy
resolution optimization. Remembering that efficiency depends on signal bandwidth and efficiency,
from equation |3.175] we first need to determine signal bandwidths before calculating energy resolu-

tions as a function of QET dimensions.
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Signal Bandwidths

The two quantities which are important in determining this resolution are the TES bandwidth and
the pulse bandwidth. The TES bandwidth we define as
1 G(14+L) nX (1+%)

R — — 4.23
TS rEs c fscewTE™™ (4.23)

We can estimate the pulse bandwidth wpyise given the aluminum coverage fq;, absorption probability

Pabs, and thickness transit time t4qnsit as

1 _ falfabs o fabs AAl

Woslee = — 4.24
b Tpulse tt'r'ansit tt?“ansit Apuck ( )
abs
= fiNTES’(AQET + Adead) (4.25)
ttransitApuck
absUphonon
= %NTES(AQET + Adead) (4.26)
puc

and so we see that the TES bandwidth is set by device parameters, while the pulse bandwidth is
mainly geometric.

Given this relation, and the pulses seen for the iZIP v5, we can parameterize wpyse in terms
of the known value for the iZIP. We saw from Soudan data a pulse decay time of ~ 750us, for an

aluminum coverage of 4.8%, giving us the relation

fabs fabsvphonon 1 4
= ~ ~2.7%10 4.27
toramsit Ropach 0.048 % 750 % 10— * (4.27)

and in terms of intrinsic constants, we have, for hp,cr =~ 25 mm,
fabsvphonon ~ 705m/5 (428)

and if the DMC measured value of fus ~ 0.4 is to be believed, then we find vpponon = 1760 m/s.
This bandwidth helps us determine a signal template to use in our optimal filter calculations. We
can imagine that the phonon pulse has a similar shape to the TES impulse response, i.e. a double

exponential function, which has the normalize fourier transform

1 T, T,
pulse phonon
Npulse,ideal (LU) - A - N
Tpulse — Tphonon 1+ W Tpulse 1+ W Tphonon

where the falltime is 7,,5¢, calculated above, and the rise time is

t ransi
Tphonon ™~ ! a2n( i (429)
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Figure 4.6: Phonon collection time as a function of TES and and fin length for Ge (Si) on the left
(right). The iZIP, which only has an aluminum coverage of ~4%, is much slower. Si is faster than
Ge due both to the faster sound speed and the better impedance match between Si and Al. The Si
HYV detector is expected to be fully bandwidth matched, i.e. the phonon and TES falltimes should
be about the same.

The phonons arrive at the surface on the timescale of a single crystal transit (half the time from
the center) with dispersion of the same timescale as the phonon transit time. This is at first glance
conservative estimate, as if the phonons were concentrated in a delta in time, isotropic, and traveled
at the same velocity equal to the group velocity, we would see effectively 0 rise time. What we see,
however, is that phonon channels away from the initial vertex see a much longer effective rise time,
can in principle only improve the energy resolution of the measurement by restricting the signal to a
smaller volume of frequency space. As we don’t expect the rise time to be longer than the fall time,
we thus see that estimating our pulse with just the fall-time will be a conservative energy resolution
estimate.

If we add in the fact that only a certain fraction of the signal gets through, according to the

efficiency, €, then we can represent our full signal template as

N, . (w) o € ( Tpulse B Tphonon )
pulse = - -
Tpulse — Tphonon 14 WTpulse 1+ 1WTphonon

This function can now be used to create an optimum filter for the data, and thus allow us to compute
the energy resolution of our optimally filtered signal using the power noise estimated earlier.

In summary, figure shows the expected phonon and TES falltimes as a function of TES and
fin length. An immediate difference between the Si and Ge plots is that Si is faster by a factor ~ 4.5;
this is an experimentally determined fact, determined by comparing the phonon collection time in
a Si iZIP5 to that in the Ge iZIP5. This is due to a better impedance match between Si and Al[50]
and a faster phonon sound speed[52], which are both corrections of ~2 as compared to Ge. Work is

in progress to try to use the DMC to predict fall-times and transmission/reflection coefficients from
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first principles as a function of phonon frequency and incidence angle based on Ref [56].

Optimum Filter Energy Resolution - TFN Dominated

We can now optimize the QET and TES dimensions assuming the TFN dominated TES resolution
given in equation [3.175] Plugging in the pulse bandwidth gives the single channel resolution

2kpn STy
QN( 2TV, k) Vres (4.30)

JE ~
fabs Uphonon 62JVTES (AQET + Adead)

It should be noted that this TES volume is the volume of the TES in a channel, which is actually

_ =1 P
NiesVrEs Where Vrps = (T lrpswreshres. This gives

) Vres
fabs Uphonon 62 nchan(AQET + Adead)

(4.31)

) (2kbnzTg+1VWk
UE ~

Note that ¢ is a properly function of the TES parameters as well, but has a fairly weak dependence
on lrps compared the QET area and efficiency. In addition, we’re trying to optimize fin length for
a given TES length, so we're not very concerned about this dependence. Plugging in the volume

gives the final relation

(4.32)

o2~ (kanETZLHVpuckwTEshTEs) lrpse *C!
2~

fabsvphononnchan AQET + Adead

Here we have terms which are close to independent of each other; the amount of dead aluminum in a
QET will always depends on TES number, unfortunately, because it depends on the size of the unit
cell, and thus there is still some dependence of Ageqq on TES length. We do have terms separating
the effect of fin length from the other effects, and we can call g the energy resolution of entire QET
detector array in the case where we have perfect fins and maximal QET areal coverage, covering the

puck surface:

(4.33)

JO,single -

) B (zkbnzTngvpucwmshms>

fabs UphononTchan

This is for a single channel; for the entire detector, the total resolution will add in quadrature, giving

2 (kanETgl—i_leuckwTEShTES)

o5 = (4.34)

JabsUphonon
where we see that the overall energy resolution is independent of channel number for a perfect QET.
This is not in fact true for a real QET, as more channels will allow more efficient energy collection.

We thus have a quantity independent of fin length which we can optimize first, and optimize fin
length given the TES length which comes from minimizing this quantity in light of other experimental
constraints. In addition, if we can place some sort of acceptable figure on this number, we can even

determine how much TES length we’re willing to give up to increase robustness of phase separation,
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Figure 4.7: Left: Energy resolution in the TFN dominated limit as a function of TES length and fin
length, showing the phase separation boundary shaded in grey. Right: Optimized fin length from
energy resolution as a function of TES length.

which hurts our overall gain.

Retaining the fin-related quantities, we thus have

l o2

2 TESO(

o = 4.35

E <€2 (AQET + Adead) ( )
_ olres AQeT + Adead (4.36)

2 A2
< fc AQET
or, written as signal to noise,

s ¢ feAger (457

— x Vo2«
N lres \/Aqger + Adead

We can expect this to rise in the small fin limit where f. ~ 1, and in the large fin limit, we substitute

S laClres
S [lallres 4.38
N AQET ( )

From this we expect that maximizing signal to noise entails maximizing TES length, and choosing

the earlier forms to find

an optimal fin length between extremes where over-all signal to noise is maximal.

The relative signal to noise of QETs with different TES lengths can be seen in figure The
optimal fin length for signal to noise can also be seen, and what is remarkable is that over the range
of TES lengths considered, the optimal fin length is roughly constant. This means we can, to first
order, consider the two dimensions separately. Figure [1.7] also shows that the chosen optimum is
not strictly the energy resolution optimum, which can be understood by referring back to figure

The chosen QET dimensions have a much larger overall aluminum coverage (35%) than the strict
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Figure 4.8: Left: First-pass phonon collection efficiency in Ge as a function of fin length for different
TES lengths. In the limit of very long fins, the collection is diffusion limited, while in the short-fin
limit it is linear, reflecting an approximately perfect fin collection. Right: Signal to noise versus
first-pass collection efficiency showing that large gains in position sensitivity can be achieved by
choosing slightly higher energy resolution.

optimum, and as a result have a much larger total phonon collection fraction as a result of the higher

live/dead ratio. This will lead to a much larger first-pass collection efficiency, as shown in figure

4.2.4 Expected QET Performance

The optimized QET dimensions arrived at by the process just described can be found in table
Also shown are the parameters for the iZIP7 for comparison. The final design is expected to have
an energy resolution of about 15% and an aluminum coverage of 35%, meaning it will have a much
larger degree of position dependence than the iZIP. The trade-off between this optimization and the
iZIP optimization can be seen clearly in the table; one sacrifices signal bandwidth to regain the same
efficiency for a larger energy resolution when capacitance has to be taken into account.

Given the ideal modeling of this optimized QET, we can now explore how this design can be
expected to work under various operating conditions, and as a function of the T, we’re able to
achieve during fabrication. This will inform our intuition about likely failure modes and give us a
sense for how much fabrication flexibility we have for the CDMS HV detector.

Figure [4.9] shows the noise equivalent power for both the Ge and Si HV detectors, which are
the same due to the fact that both designs have the same R,, and readout. The different comes in
the form of the signal fall-time, with the Si detector integrating out to higher frequency due to the
faster phonon collection time. The other panel shows the expected resolution as a function of T,
for both detectors, demonstrating that the Si detector has better resolution for all 7, values and is
impacted less by the other noise sources than is the Ge design. The result of this plot is to show

that while the Si detectors should achieve around 7 eV at our target 45 mK T, the Ge detectors
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Design Value

Parameter CDMS-HV iZIP
Crystal Temperature <30 mK
TES Parameters

Length 200 pm 155 pm

Normal State Resistance 150 m$2

Operating Resistance 50 m?

Loop Inductance < 500 nH

Shunt Resistance 5 mf

Parasitic Resistance < 5 mf2

o (1;031; IO) ~ 150

18] { fedk - <0.3

T, 40-45 mK 40-60 mK

Risetime (L/R) 2-3 ps 2-4 ps

Falltime (rrgs) 30-40 ps 10-40 ps
QET Parameters

Geometry “Stadium” “Linear”

Fin Length 240 pm 80-110 pum

Trap Geometry “Semicircle”  “Rectangle”

Trap Length 20 pm 5 pm
QET Number ~1800 ~1400
Energy Efficiency (eg), Ge 15% 13%
Energy Efficiency (eg), Si 22% 19%
Aluminum Coverage 35% 4%
Phonon Falltime (Tphonon), Ge 200 us 1400 us
Phonon Falltime (Tpnonon)s Si 40 ps 300 us
Charge Input Capacitance N/A <300 pF

Charge Channel 100-180 pF

HEMT Input 100 pF

Parasitic 20 pF
Charge Collection Efficiency N/A 95%

Table 4.2: Detector design parameters table reproduced from the SuperCDMS SNOLAB Design
Report. This also includes numbers relevant to iZIP for comparison purposes to the CDMS HV
design.
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Figure 4.9: Phonon energy resolution expectations for optimized CDMS HV QETSs. Left: Noise

equivalent power by source, including thermal fluctuation noise, TES Johnson noise, bias circuit
(passive) Johnson (PJN) noise sources, and SQUID noise. Given the similarity in TES parameters,
the noise sources are similar, but the iZIP phonon pulse is slower, hence the lower-frequency pole
in the (arbitrarily scaled) signal curve. Pulses are ~ 4.5 faster in Si due to higher transmission
probability and faster phonon velocity, which is the main driver of improved energy resolution
between the two substrates. Right: Expected energy resolution as a function of sensor 7., including
the effect of various noise sources, for both Ge (solid lines) and Si (dashed lines). “Cold Tower”
includes only TES noise, “Real Tower” includes passive Johnson noise, and “white SQUID” includes
the SQUID white noise of 4.5 pA/v/Hz without any rising low-frequency component. The “SQUID
+ 1/f” line includes low-frequency noise rising as f~!, normalized to 10 pA/v/Hz at 100 Hz. The
up-turn in the energy resolution plots at low T is the result of approaching the bath temperature,
assumed to be 30 mK. Achieving the bath temperature goal of 15 mK would ensure the T trend
continues (in the context of the assumed model). The gray range in the figures indicates the T,
targets for each detector type, determined by the energy resolution goals as shown in the plots.

do not quite meet the goal of 10 eV for nominal values. We’ll explore in the next chapter what the
actual performance of initial prototypes turned out to be.

In addition, figure shows the impact of different SQUID noise parameters for the Ge CDMS
HV detector. In a sense this is actually a study of the impact of low-frequency noise of different
characteristics on the detector resolution, both in the energy and timing resolutions. We see that an
increase of 50% at 100 Hz in SQUID noise does not matter for a 1/f power law, but for a shallower
slope directly results in a 50% increase in resolution. The timing resolution is more robust to SQUID
noise changes because it is primarily sensitive to high frequency noise. The timing resolution for the
Ge detector is limited by the TES bandwidth, which decreases as temperature is lowered.

As a final note, I want to point out that these resolutions assume that all channels are added
to produce energy and timing estimates, and that the channels are fit independently. CDMS has
historically not achieved much improvement from joint channel fits, but in a detector with extreme

position dependence, it will likely benefit us to begin to implement position-dependent joint energy
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Figure 4.10: Impact of different SQUID noise parameters for energy (left) and timing (right) res-
olutions for the Ge HV detector. The impact on the Si HV design is less given the intrinsically
larger bandwidth. These plots also assume Tpqs;, = 20 mK, and show the impact of a lower bath
temperature on both quantities as compared to Figure 4.9

estimators. A simple illustration of the impact of this change is to imagine that all of the energy is in
a single channel. If we only use that channel, then the resolution decreases compared to the channel
sum by /12, resulting in a significant improvement. If we add all channels, we're just adding 11
channels worth of noise. I'll explore this more in the next chapter in the context of the G124 results,

but this is an important point that I felt needed to be put here as a caveat on these projections.

4.3 HYV Detector Simulation

Even with an optimized QET, we have some additional design freedom in terms of how we arrange
the bias lines on the mask, how the voltage bias is applied, how the detector is housed, and how the
channels are arranged. To this point in this chapter, we were able to perform analytic calculations
for our optimization, but these remaining questions are best answered through simulation. In this
chapter I will first discuss COMSOL electric field modeling which addresses the first three points,
and then the Detector Monte Carlo (DMC) studies of detector performance to help determine the

best phonon channel segmentatioﬂﬂ

4.3.1 COMSOL Electric Field Modeling

For all CDMS detectors, the electric field shape and critical features are important for predicting
the behavior and failure modes of a given detector design. For the iZIP, the scalloped fields near

the surface define the charge fiducial volume, and for the high-voltage detector the uniformity of the

2Many more plots can be found in the ebook note at http://titus.stanford.edu/cdms_restricted/kurinsky/
HVMask/index.html
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field is important to ensure that all events in the fiducial volume undergo full NTL amplification.
In general, there will always be regions of the crystal which do not behave according to our ideal-
ized model, so having an accurate electric field map is crucial to understanding non-ideal detector
performance.

COMSOL is a toolkit setup to solve finite element models for a variety of physical systems. Finite
element modeling is one numerical tool for solving a system defined by a differential equation at a

given point. In our case we want to solve the electrostatic Maxwell’s equations for the electric field:

V. E(z,y,2) = % (4.39)
V x E(x,y,2) =0 (4.40)

where each electrode in the geometry is held at a known voltage, and the detector housing is held
at ground relative to the electrodes. We want to include the relevant real-world properties of each
material used (including conductivity and relative permittivity) where, in our case, we just case
whether a material is a conductor or an insulator, since we assume all components of the model
are in their time-dependent equilibria. For this reason, we simulate the detector mask and copper
housing as perfect electrical conductors to simplify our calculations.

The most challenging aspect of creating a finite element model with our geometry is the relative
scale of the features involved in our designs. If we were to simulate all features, we’d need a mesh
that could resolve micron-scale features while creating an electric field model for a cm-scale object,
a 4 order of magnitude scale. The meshing utilities in COMSOL only allow a mesh to vary by an
order of magnitude in scale at the most. To resolve an entire CDMS HV detector will all mask
features with a tetrahedral mesh would require at minimum a 30 Tb file for just the crystal bulk
if only the very surface layer could resolve all electrode features. This is obviously a prohibitive
calculation, but that degree of accuracy is also unnecessary. Given an energy resolution of even
10 eV, a 100 V map precise to the 1 V level will look identical to the exact voltage map for all events
up to 100 eV if systematics are completely one-sided; if we want to go to 100 keV, then we know
we need a map precise to ~ 1073%, or 1 mV. This very detailed map (assuming very irregular field)
would be around 100 Gb, still prohibitively large.

We can reduce the field to a manageable size by employing a few tricks to justify using a coarser
grid. First, we know that the electric field from two wires looks like that from a single wire for
distances much further than their separation. In kind, we can also show that the electric field from
a set of infinite parallel wires looks like an infinite conducting plane for distances much further from
the wires than their separation. For the HV detector, we can thus expect that the field more than a
few times the mean QET separation is the same as that for a parallel plate capacitor, so it may be
possible to assume a large fraction of the inner portion of the detector adheres to this expectation,

and only the surfaces need to be simulated.
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Figure 4.11: Geometry use to study the axisymmetric (azimuthal symmetry) COMSOL field model,
given that an accurate 3D field which fully resolves the electrodes is not possible. The models studies
with this geometry are also simplified by assuming a uniform plane on one side of the detector to
reduce the total mesh size by a factor of two.

Azimuthally Symmetric Field

To begin to explore symmetries in the HV detector field, we constructed an approximate HV detector
model assuming an azimuthally symmetric geometry of large and small electrodes on the top and
bottom of the detector, with a copper housing separated by variable distance from the edge of the
detector, and electrodes on the detector extending to 2 mm from the crystal edge. We focused only
on Ge for these studies as it has a larger relative permittivity (e ~ 16) than Si (e ~ 11.2)[10]. To
approximate the distribution of the electrodes on the surface, the rings were alternately thin (10
microns) to simulate bias lines and thick to make the total aluminum coverage match the HV design
(35%). An detailed overview of the geometry used is shown in figure We used this model
to study the impact of housing spacing and fractional aluminum coverage on the maximum electric
field along the surface of the crystal, in order to determine how to mitigate surface breakdown risk.
We then used these models to study the impact of different design choices on field uniformity.

The first result, shown in figure [4.12] is that the fringing field between two electrodes at the

detector surface is a function only of the total aluminum coverage. It’s straightforward to see why
this is the case; if we imagine the detector as a parallel plate capacitor, we know that the total
charge is going to be @ and for a 100% filling factor we know that o = Q/A. Gauss’s law tells us
that as long as the charge inside a Gaussian rectangular prism of dimensions d? x [ through the

plane of the plate is constant, the electric field will also be constant. So we can show that for wires

3An extensive exploration of these models and more information can be found at https://confluence.slac.
stanford.edu/display/CDMS/COMSOL+Grid+Models
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spaced a distance d apart of width w, we have

25 =% (4.41)
€
E
o== (4.42)
w
If we write the filling factor as
Awires wd w
W= =— == 4.43
f Aplane d? d ( )
then we can write the charge density o as
eF 0o
o=—=— 4.44
Jad  fa (4.44)

where g = @Q/A is the parallel plate limit. So the charge density is only dependent on the average
aluminum coverage, and thus the maximum field, which occurs near every wire, will only be depen-
dent on the fractional aluminum coverage. This is of course only valid if there exists a limit [ >> d to
make this argument exact. The finite element solutions agree perfectly with this functional form as
shown in figure [£.12] The upshot is thus that if we know a given detector technology will experience
a breakdown at a certain field strength, we can determine the desired operating voltage and adjust
the aluminum coverage to ensure that maximum electric field is well under that near a wire with the
given charge density. Alternatively stated, if a given detector breaks down at voltage V', doubling
the aluminum coverage should also double the breakdown voltage to 2V to a good approximation

We also experimented with the effects of housing spacing and geometry on the fringe fields and
fiducial radius of the detector. The latter term is defined as the detector radius within with all events
experience the full NTL gain. Figure[4.13[shows detector cross-sections where the electric field meets
the side-wall midway down the detector side, but ends up far from the edge of the detector near the
face. This effect was also seen in CDMSlite data, and is a known systematic that leads to reduced
fiducial radius. The figure shows that fiducial volume is greatly increased by increasing the housing
separation even by a few hundredths of an inch, and that the maximum electric field near the crystal
edge is also decreased. The comparison of the current housing geometry and the proposed upgrade

geometry can be seen in the lower two panels of figure |4.13

Coarse 3D Field

We were able to get a simple version of the 3D detector model to run, though not in an upgraded

SNOLAB housing. The difficulty lies in the size requirements discussed at the beginning of this

4Blas pointed out that for an infinitely thin film of width w, the field and charge density are technically infinite at
the edges. The analytic solution assumes cylindrical wires with finite radius, and the numerical solution modeled the
actual film thickness. The match between the two thus demonstrates that the scaling relations hold even if there is a
relative geometric scale factor between the solution.
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Figure 4.12: Left: Electric field in axisymmetric simulation around a close-up image of two wires.
Right: Maximum electric along the detector surface as a function of the fraction of the surface
covered in aluminum.

section; the discrepancy between the crystal and mask scales is too large for the SNOLAB detectors
to generate anything close to a scale-accurate model. While the field near the mask may not be
entirely accurate, a very good approximation can be made by constructing the mask out of concentric
rings with the correct surface coverage fraction. Even this model could not be fully resolved near
the bias lines, which were made (as in the 2D model) to approximate the QET rings in terms of
aluminum coverage. It was also made using an outdated housing model, which does not curve
following the edges (as it does in the SNOLAB design) but has a hexagonal inner profile.
Cross-sections of the 3D models can be seen in figure for models made of concentric rings
and grids, both set to 20% aluminum coverage to simulate the coverage of an early HV prototype.
Figure |4.14] explores the meshing limitations near the electrodes, as well as the impact of two-
sided versus one-sided bias, and the effect of biasing the housing lids (or equivalently, the adjacent
detector faces) to the same bias as the sensors. From these simulations, we can conclude that two-
sided symmetric bias will produce the most regular field, with the largest fraction of events that
experience full NTL gain, and that allowing the adjacent surfaces to float separately from the housing
or biasing them to the same voltage and the detector face leads to much less extreme surface fields.
It’s likely that if we’re dominated by field-dependent surface leakage, this will be an important factor

in achieving higher voltage bias than for the case of a fully grounded housing.

Future Work

While the studies above were very informative, it still remains that a full HV detector field model
has not been constructed due to the inherent limitations of the COMSOL meshing tools. As of this
writing studies are ongoing to develop a standalone FEM code to simulate these fields with more

meshing freedom, as well as to directly build detector models from mask files and CAD housing
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electric fields at the crystal edge. Bottom: Comparison of the nominal housing design (left) and
the suggested improved housing design with large dielectric buffers pushing the grounded housing
side-wall away from the biased edge strips.
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Figure 4.14: Top: XY slice through the top of the detector for a 1-sided 'Ring’ model (left) and
2-sided 'Grid’ model (right). Neither model can be fully meshed even in the finest mesh setting due
to the size of the model, but the ’Grid’ model has fewer mesh errors. Middle: Comparison of yz
plane slice, zoomed into the outer corner, for two-sided bias where the housing lids are either held at
the same bias as the detector face (left) or held at ground (right). Bottom: Comparison of one-sided
and two-sided bias showing the field symmetry in the two-sided case, and that a larger fraction of
the detector will have events with full NTL gain due to the effect the housing has of bringing lines
to the sidewall.
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drawings. We have been exploring the [https://fenicsproject.org/| python finite element package as

well as the open-source [http: //gmsh.info/ meshing tool in order to determine how detailed we can

make our models in a more flexible development environment. The benefit of these tools is many
more meshing options, and easier customization of boundary conditions to avoid meshing regions
outside of the crystal. Though we are attempting detailed 3D models, it is likely that we will either
generate a very simple model similar to a parallel plate capacitor to approximate the HV detector,
and study deviations from this ideal field structure using axisymmetric models similar to those shown
here. With precisely determined ring spacing and aspect ratios, we can approximate the true field

very well. For more details see Madison Matsen’s work on this topic.

4.3.2 Charge and Phonon Simulations

The DMC discussed in the introduction to chapter [2] has historically existed in two forms, one
implemented in MATLAB[63] and a second implemented as an extension to GEANT4 (G4CMP |22
3]). In this section I present results derived from the MATLAB DMC, but in the rest of this thesis
all DMC results come G4CMP. The main difference between the two and speed and flexibility; the
MATLAB DMC laid the groundwork for G4ACMP but was slower and specific to Ge in a certain
crystal orientation with a fixed set of valleys. The MATLAB DMC was sufficient for simulation new
designs in a Ge detector, which is the focus of this section.

The MATLAB DMC takes as input an electric field map, and the position, recoil energy, and recoil
type of an event. It then creates an initial population of charge carriers and phonons. The phonons
are propagated until they either generate new phonons through down-conversion or are absorbed by
a sensor. The charges are propagated, and as they propagate radiate new NTL phonons, simulating
the detector voltage gain. For more information on the specific detector physics implemented in the
MATLAB DMC, see ref [63]. For this study the final charge positions were discarded, and the map
of phonon hits on the top and bottom detector faces as a function of time were recorded in order
to build phonon traces, which were then converted to TES responses, with TES noise added using
the analytic noise PSDs. In this section I will describe the simulations done and some initial results,
and then I will show the studies performed using these simulations to optimize the detector mask
in the following section.

Two sets of DMC inputs were generated, one to establish energy yield as a function of initial
event position, and one to do the fiducialization studies of the next section with a variety of energies.
10,000 events were distributed evenly through the crystal, the first sample with energy 100 eV, the
second with the energy spectrum seen in Figure All simulations were run with the two-sided
bias, without housing top and bottom bias, corresponding to the E-field in the lower left of figure[d.14]
The full voltage drop in these simulations was 70V, as simply scaling the potential files up to 100V
caused the DMC to fail inexplicably. The aluminum coverage was set to 35% uniformly on either

side of the crystal, and the aluminum absorption probability was set to 0.33.
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Figure 4.15: Histograms of input event energies for a 1 GeV (left) and 10 GeV (right) spin-
independently coupled dark matter particle assuming standard DM kinematics and halo profile.

The MATLAB DMC has a built in limit of 400,000 individual phonons, which causes a job to
fail if the number of generated phonons exceeds this limit. The DMC does not actually simulate
each phonon, but limits the total phonon energy simulated to a preset number and scales the unit
phonon energy accordingly. Given that the high-voltage detector will produce a much larger number
of NTL phonons, we need to determine the appropriate scaling to keep the DMC phonon number
below this limit.

The nominal energy scale (the phononEnergy parameter) is 240 eV, so the range 60-480 was
chosen and simulation of 1000 events distributed over the range of energies of a 3 GeV WIMP and
throughout the crystal were run. I found that failure due to excessive phonon number begins to occur
sharply above 180 eV, and thus chose this value for my simulations. Given that the high voltage
detectors need to be sensitive to WIMPS below this mass, and lower energy NRs will produce fewer
NTL phonons, this should suffice for all of my WIMP simulations.

The energy distribution bottoms out at the bandgap energy of Germanium, however the DMC
will not produce events below 3 eV. This is due to the fact that the high energy limit for EH pair
generation was employed, which intersects a single pair produced at 3eV incident energy. The true
curve allows a single pair to be produced for energies down to the band-gap energy threshold, so for
us to generate the lowest energy events, we simply need to boost the number of 3eV events generated.
We would additionally need to subtract off the additional energy imparted to the phonon system,
however the NTL gain makes this phonon energy mostly negligible, so to first order it isn’t necessary
to generate true minimum energy events. We thus probe the lowest energy events available to us by
generating extra 3 eV events, but in reality gain little by this boosting, and we merely cap energy at
3 eV instead of the bandgap energy as the relative proportion of these events is already very high.

The first result of the simulation, using the monoenergetic sample, is to determine the energy

yield as a function of initial scatter position in the crystal. The plot of fractional energy yield as a
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Figure 4.16: Energy yield of events as a function of their initial position in the crystal. Left: Yield
versus radius colored by z-position. Right: Radius versus z position near the edge of the crystal
with yield shown in color scale. The vertical black line shows where the electrode ends. The result
is that the NTL gain is a function of radius and there is radial-z covariance at high radius, limiting
the full gain region to about 5 mm from the crystal sidewall.

function of radius, with z position colored according to the scale, can be seen in figure Here,
the vertical line denotes the point at which the aluminum coverage ends on the surface of the crystal,
and thus where the electric field becomes non-uniform. The nice effect is that yield in the middle
of the crystal is largely independent of z position. If we change the view to look at the R-Z plane,
and color energy yield, we see a non-trivial correlation in the plane which follows the non-idealities
in the electric field very closely. The zoomed in view shows us the drop in yield more finely. We can
use this plot to define a radial fiducial volume which excludes the last 5mm of the crystal, with the
remaining events ensured to have at least 95% energy yield.

It is apparent from these results that the more uniform we can make our field, the larger the
volume we can fiducialize in the crystal, but only to the limit that we remain a certain distance
from the surface. The mean free path of high energy gammas, the largest surface background, is
roughly 3mm|[I11], so even with the housing at ground, the two-sided bias allows the majority of the
region inside 3 mm in the crystal to be fiducialized. Any improvements that increase the uniformity
inside this radius are worthwhile, but aside from that, additional E-field shaping is not necessary
for greater fiducialization. More uniform fields would, however, increase the gain uniformity across

the crystal.

4.3.3 TES Pulse Simulation

We implemented our own TES simulations instead of using the DMC TES simulator for these studies

for a few reasons. Primarily, this allowed us the flexibility to easily and quickly modify the phonon



CHAPTER 4. CDMS HV DETECTOR DESIGN 163

— white — TN — PN — TFN -~ TIN(TF) TN

-~ PJN(TF) TIN
= 10! -~ TFN (TF) TFN
@

o N S~ P ey -~ Total (TF) Total
E M. White
a "N
8 10° S~ o N};w <
S — AWV U
[ W
2
o
o 4
54
g 107 /
[} ;
- S A SRV P Ry P PR XTI IV
<
2
102
-3 - - 102 .
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 10* 10°

Frequency (Hz)

Figure 4.17: Sample of random noise generated according to the expected TES noise profile in the
time domain (left) and frequency domain (right).

sensor layout. It also allowed us to ensure the proper TES response was employed, as the at this point
DMC had not been validated for the CDMS HV TES response, and this allowed for a much simpler
and streamlined simulation process. It also allowed us to easily integrate the projected SNOLAB
TES noise into the TES pulse generation before optimal filtering was applied. The expected and
simulated noise PSDs, as well as a time domain random noise sample, can be seen in figure |4.17

Note that these are normalized to white noise with magnitude 1; the true current noise picks up a

AkpT
A/ Pl 5 10pA (4.45)
Ry

depending on the operating resistance of the TES. The use of an accurate noise model is crucial

factor of

to understanding how the noise impacts the TES pulses, and to measuring the effective phonon
resolution from these simulations.

The TES pulse simulation process is illustrated in figure [£.18|for a large pulse in a channel above
the event dominated by NTL phonons, and a small pulse primarily containing ballistic phonons. We
histogram the phonons into bins of width 0.5 microseconds. We then convolve this histogram with
the TES impulse response corresponding to our TES parameters, show in blue in the figure. Note
that overall normalization is removed to be able to show all of these pulses in the same scale. We
then add TES noise, and apply an the wiener filter described in section with an explicit 100 kHz
roll-off to remove phonon shot noise.

The result of this filtering is that most pulses can be accurately reproduced after deconvolving
the TES response out of the optimal filtered TES pulse. This is stand-in method for the eventual
process of fitting a template library to the optimal filtered phonon pulses, but for this study give a
nice approximation to the phonon pulse we obtain after removing electronics and shot noise. It also

allows us to estimate the energy resolution using a method that approximates the best version of
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Figure 4.18: Simulated phonon signals given an input phonon energy arrival histogram showing the
convolution the the TES response, adding noise, filtering with a wiener filter, and deconvolution to
compare the estimated and input pulses.

the optimal filter, for an infinite template library with perfect noise and signal characterization.

From the two optimal filtered pulses, we generate analysis quantities to be fed into the subsequent
fiducialization processes. The four quantities measured for each pulse are time and height of the
pulse peak, as well as total pulse energy (the pulse integral) and ”Luke Phonon” (NTL phonon in
this thesis) energy, defined as the amount of energy collected during the initial 15 microseconds of
the pulse. This time is approximately the time it would take for a phonon to traverse the longest
dimension in the crystal, so in this way we approximately count only the phonons collected upon their
first reflection. To remove the energy dependence from the individual channel quantities, we sum the
quantities across all channels and divide by the sum, to give ”fractional” values (pFrac, pLukeFrac),
and include also the total as an analysis quantity. The time and peaks are not normalized at this
stage of the simulation.

The measured resolution for the total energy measurement can be seen in figure for both
DM samples. We can see that they are consistent with one another and slightly below our 10 eV
expectation due to the fact that the wiener filter can account for position dependence, and effectively
de-weight channels without much signal. This is an indication that in these detectors we're going to

benefit from algorithms that can jointly fit all channels in a position dependent way.

4.4 Phonon Channel Layout Optimization

Using these simulations, we can test, for the optimized CDMS HV QET, a variety of choices for
how to lay out the 12 phonon channels on the detector face. In this section I describe the different
fiducialization studies done for the various geometries. The selection of geometries to test is described
in section I then explore the position dependence in the detectors in sections 4.4.2| and
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Figure 4.19: Left: Energy resolution for all events in the samples for the different mass dark matter
particles. Right: Energy resolution for the 1 GeV DM for the configurations described in the text
of section X-axes and distribution moments are in eV, histograms are normalized.

and compare the total fiducialization power of the different configurations in section |4.4.4

4.4.1 Proposed Geometries

Despite having selected a channel resistance and QET design, we have a lot of freedom in our choice
of phonon partition given that we have twelve channels to cover two detector faces. A very early
decision was made to have 6 channels on both faces so as not to introduce more position dependence
than we already expect to be present. We also imposed the requirements that all phonon channels
cover equal crystal area (so that the aluminum coverage is homogeneous) and that both radial and
azimuthal information is retained. This eliminates the configuration of six concentric rings as well as
any configuration with rings only split in half. The remaining options are summarized in figure [4.20
and are referred to by the numbers in the ﬁgur

These options essentially boil down to whether there is an innermost spot, and how thick the
outer ring is. Configurations 3-6 all have the central spot, but change how the remaining channels are
arranged. Configuration 0 was the one originally proposed in the SuperCDMS SNOLAB conceptual
design, while configuration 3 is the same as the phonon channel layout in the iZIP. In all cases, the
opposite face would look similar but have the channel splits rotated by 60 degrees for a 3-channel
ring design and 45 degrees for a 4-channel ring design to ensure that if a signal lies on the channel
split for one face, it will be the center of the channel on the other face, increasing the probability
that it’s accurately reconstructed.

The first result from simulating these configurations was already shown, namely that in the

small signal limit, the resolution is unaffected by the layout of the channels. As long as we can

5All figures in this section for all configurations and more voltages can be found at http://titus.stanford.edu/
cdms_restricted/kurinsky/HVMask/index.html
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9

Figure 4.20: Proposed detector geometries explored for the HV mask using the DMC. See text for
more details.

perform a good optimal filter reconstruction of the pulses, this will be true for signals close to
the detector threshold, but the TES simulation used does not account for partial saturation of a
TES channel (where some but not all of the TES unit cells are driven normal), which decreases
the power to current conversion and drives the resolution up for higher energy events. These DM
masses are low enough that saturation is not of primary concern, and the events are high enough in
energy (1 keV or larger) that they’re very far above threshold, but the effects of saturation should
not be underestimated for these detectors, which are much more position dependent than previous
SuperCDMS detectors.

We can also look at how the NTL phonons are distributed in the channels for each configuration.
Figure shows the phonon hits colored by channel number on each side of the detector for
configuration 0 for an event of moderate energy, at high radius and midway through the crystal. We
immediately notice two things: first, the electron pattern is larger than the hole pattern (a result
of the oblique propagation of the electrons), and second, that the electron pattern is of the scale of
the outer ring, about 10 mm. This implies that narrower rings should share more of the phonon
distribution, and be more sensitive to the precise initial position of high-radius events. We’ll see if

this is the case shortly, but it’s an interesting observation that makes intuitive sense to us.
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Electrons

Figure 4.21: Distribution of phonon hits on the top (left) and bottom (right) faces of the crystal in
the DMC for phonons which arrive within the first 30 us after the event, roughly the time it takes a
phonon to traverse the crystal. These are the phonons with the most position dependence, so their
distribution gives us the most intuition about how to maximize

4.4.2 Vertical Partition Performance

We can construct the vertical partition as defined in appendix [A]from the different energy quantities
determined from the phonon pulses by summing all of the quantities from the top and bottom

together, with the results shown in figure [4.22| The variable plotted is the z-partition quantity

o Etop - Ebottom

= 4.46
Etop + Ebottom ( )

2
where Ey, and Epotrom are the respective channel sums for the energy collection in the first dynamic
timescale. The models shown assume different diffusive radii, and the data at 1V (dominated by
prompt phonon energy) are consistent with a slightly asymmetric diffusive radius of 10 mm.

We can model the z-partition of the higher voltage data well by assuming that the NTL phonons
are emitted in a column equally spaced along the axis of propagation. This means that the z-
partition will progressively get less sensitive as we raise the voltage, as each side will receive half of
the total NTL energy concentrated in the phonon channels above and below the event. The model

used has the functional form

AQ
= —————— 4.47
# ¥Q + 47TfNTL ( )
where BV
fars = YERV 6’2) (4.48)

We can thus see from this quation that in the limit that V' — 0, there is identically zero z sensitivity
in this partition quantity.
The trend seen in the one-sided partition mirrors similar trends seen in CDMSlite dataﬁ, though

a z-partition was not constructed for that data due to the minimal gain from only removing half

Shttp://titus.stanford.edu/cdms_restricted/Soudan/R133/ebook/151208_BP/T2Z1VScan.html
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Figure 4.22: 7 partition quantity for the 10 GeV events as a function of voltage for a two-sided
readout (top) and a one-sided readout (bottom) for comparison to CDMSlite data. As voltage is
increased, there is less z-dependence in the signal, but there is always a surface layer which can be
removed by a z-partition either defined as the side difference (top) or difference between adjacent
channels (bottom).

of the detector surface. This does suggest, however, that the DMC results represent a real effect,
and what we’re seeing is not a DMC artifact. The apparent z-sensitivity of the HV mask was not
expected due to the relative strength of the luke phonons, and the accuracy of the luke phonon
simulations has still yet to be fully validated. An attempt to reproduce these effects with real data
will thus be a high priority for the first CDMS HV pathfinder tests being planned at the time of

this writing.

4.4.3 Radial Partition Performance

Constructing a radial partition quantity in a geometry independent way, especially accounting for
z-dependence in the radial signature of events, is not as straightforward as the z partition. In
order to construct radial quantities without considering each geometry individually, we perform a
principal component analysis on the matrix of 12 energy or time variables and true radius, and use
the principal component (assuming the highest variance will be a covariance with r) as a proxy for

the radial partition. This is obviously not the ideal quantity necessarily for any geometry, but gives
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us a natural means to characterize inrinsic radial dependence in each proposed mask layout.

All partition quantities can be seen in the note linked earlier. The partition plot for configuration
0 can be seen in figure [4.23] The figure shows that all ring splits are captured in this partition
quantity, and that there is some residual z-dependence; in addition, the best partitions are found
from the quantities defined based on the initial part of the signal, which we expect to be most position
dependent. To characterize the performance of these quantities, we draw a Receiver Operating
Characteristic curve, which draws a line through the space of 'bad’ events rejected versus ’good’
events accepted parametrically as a function of the cut-value employed. If we define the outer
5 mm in radius to contain the bad events we intend to reject with this partition, we find that all
configurations can reject all high radius events to some extent in the peak-height defined quantity,
but that the configurations with two thin outer rings perform the best. This of course does not
account for z-dependence, but given that the simple z partition does not depend on configuration,
we can start to narrow our choices to, for example, configurations 1,2,4, and 6. These all achieve
100% bad event rejection at 70% fiducial event efficiency in this quantity, and they are all patterns
with two outer rings and four inner rings. Interestingly, configuration 7 performs worse than these
despite having 3 outer rings, but at a fairly low level; it is on par with the other configurations to
the 1% leakage level.

4.4.4 Combined Fiducialization

The final study done to choose the mask layout was to train a boosted decision tree on each of the
variables to reject all events within the top or bottom 3 mm of the detector and the outer 5 mm in
radius. A summary of the input and training results of this BDT fiducialization summary are shown
in figure [4.24] This BDT used python’s sklearn package, and specifically its AdaBoost function,
and is the exact same algorithm employed by the BDT implemented in ROOT’s TMVA. A boosted
decision tree is given truth information (good event or bad event) as well as inputs, and attempts
to combine a large number of weak binary classifiers into a strong non-linear classifier to generate
a non-linear cut maximizing the ability to reconstruct truth events and exclude ”fake” (surface or
low-yield) events.

Training a BDT, like most multivariate tools, is highly non-trivial. The free parameters to set
include learning rate, number of boosted classifiers, and fraction of events used for training and
testing. This separation is necessary to ensure that the BDT is not over-trained. I observed that
only 200 boosted classifiers were necessary for a convergent test error, and that the ideal fraction of
the sample reserved for testing was about 30%; this gave the most convergent test error. The BDT
results shown were trained on 70% of the data, and all cuts and ROC curves are as computed for
the 30% test sample. Initial cross-validation results showed no dependence of performance on the
specific test sample selection, so the last 3000 events were reserved for testing.

The BDT results shown in figure demonstrate that configurations having at least one thin
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Figure 4.23: Top: First principal component for each of the four variables extracted from DMC data
for configuration 5, showing that this principal component picks up all ring splits. The quantities
sensitive to the height of the initial peak (the most position dependent aspect) are also the most
sensitive to position; we even see some residual z-dependence, even though it is not included in
the PCA training. In general this method doesn’t produce a meaningful quantity for the timing
information. Bottom: Receiver operating characteristic (ROC) curve for rejecting 'non-fiducial’
radial events as a function of fiducial efficiency. For this study, non-fiducial events were defined as
those events in the outer 5 mm in radius. All designs with thin outer rings have good rejection at
higher efficiency, and those designs with two outer rings can reject all 'bad’ events at high fiducial

efficiency.
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Figure 4.24: Top: All events with their truth labels (left) and the resulting BDT score for con-
figuration 4 for the test data, with blue representing high-confidence fiducial events and red high
confidence surface events. Bottom: ROC curves for the low-mass (left) and high-mass (right) sam-
ples showing that the leakage rate decreases for higher energies as is usually the case. Even for the
1 GeV DM particle, a 90% reduction in background can be achieved at 70% fiducial acceptance,
while full fiducialization can be achieved for the higher energy sample at 90% fiducial acceptance.
Based on the 10 GeV ROC curve, we selected the fourth proposed geometry as the final CDMS HV
channel layout.

outer ring perform better regardless of the internal structure, but suggests that by a narrow margin,
the configuration with two thin outer rings, one innermost ring, and three intermediate sections has
the best performance (configuration 4). This is likely due only to radial effects. As a result of this
analysis and the studies presented in this section, configuration 4 was chosen as the most robust and

position-rich configuration with the highest likelihood of providing a good degree of fiducialization.

4.5 Mask Design Results and Future Studies

In this chapter, I described the entire optimization process for the CDMS HV detector in the order
in which all CDMS detectors need to be designed. We first discussed how to determine channel

properties for a TES channel based on readout noise, then how the QETs are optimized for energy
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resolution, and finally how to optimize QET layout on the mask. The result is a detector which
is as sensitive to phonon energy and position as we know how to design within the limitations of
our current technology. The rest of the mask development process entails fabrication and wiring
considerations, and tweaks to various design aspects to reduce initially observed failure modes.
These include the addition of repair pads, bonding pads, and readout wiring. The outer 2 mm is
left instrumented due to decreased fabrication yield and contact with the detector clamps, but an
outer aluminum and tungsten grid was included in the design with minimal aluminum coverage in
order to extend the electric field closer to the edge of the crystal. A breakdown of the optimized
mask image can be seen in figure |4.25)

In the next chapter, I will discuss the testing program undertaken with various types of CDMS
HV prototypes and the lessons learned from these initial tests. A key takeaway of this chapter,
however, is the number of new detector features that have yet to be validated. An important next
step when the first fully-functional CDMS-HV detector is run is to try to validate the DMC and
show that the position dependence and phonon distributions are correct, and to further study the
TES response in order to get the DMC to be predictive of real events. This will allow us to use the
DMC to train more advanced event reconstruction algorithms (such as convolutional neural nets)
so that we are not limited by the accuracy of our TES templates in an optimal filtering framework.
This chapter should provide some guidance on what we expect to see in these detectors, but we
should expect new subtleties to arise which will add to our understanding of the underlying physics

in the detectors. These should be taken into account in the next round of detector designs.
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Figure 4.25: Top: Top side detector mask with zoom-in regions showing a fraction of the channel
and a subset of QETs. Even in the large image the channel splits and wiring can be clearly seen.
Some dead metal is saved by having all QETs share bias lines with those adjacent. QET placement
was done to make each channel have equal area and equally space the QETSs across the detector face.
Bottom: 3D rendering of CDMS HV detector showing the relative rotation of the top and bottom
masks.



Chapter 5

Prototype Detector Performance

“An expert is a person who has found out by his own painful experience all the

mistakes that one can make in a very narrow field.”
- Niels Bohr, as quoted by Edward Teller (6 September 1954)

In the previous chapters, I laid out the theory of operation for SuperCDMS detectors with
historical measurements justifying some extrapolations made to design the CDMS HV detector. Once
the design was complete, work was begun to validate each aspect of the detector performance models,
both in full-scale prototypes and smaller detectors meant to test scaling relations and simplify some
aspects of prototype testing. The structure of this chapter is meant to organize detector testing
into types of study, focused either on noise, resolution, or TES characterization, as these are largely
independent studies. In each section I will compare and contrast results from the different detector
prototypes, which are summarized in section I will end with a section summarizing lessons
learned about backgrounds and noise, and some concluding remarks about ongoing work to continue

to characterize backgrounds found and measurements made during these early tests.

5.1 Detector Prototype Program

The SuperCDMS SNOLAB project began a program of fabricating test detectors to demonstrate
the HV detector performance and test the new SNOLAB cold hardware designs in late 2016. These
devices are summarized in table The first detector (G101c) was fabricated with a previously
used detector crystal at Texas A&M in mid 2016 and was run at UMN in October-November of that
year, and the subsequent findings are documented in this chapter. I will briefly recount the general

discoveries of this program before going into more analysis details.

174
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Detector | Substrate | Dim. (mm) | Mass | Institution Comments
G101c Ge 100x33.3 1.4 kg UMN CDMS HV v0
5101 Si 100x33.3 600 g UMN CDMS HV vl
G115 Ge T6x4 100 g | UCB, SLAC | CDMS HV QET on
custom 1-sided mask

G124 Ge 100x33.3 1.4 kg SLAC CDMS HV v1
G147 Ge 100x33.3 1.4 kg SLAC CDMS HV vl
HVeV Si 10x10x4 09¢g Stanford Test Device Mask

Table 5.1: Summary of detector prototypes discussed in this chapter. This covers many of the
detectors tested at UMN, UCB, SLAC, and Stanford between 2016 and 201 Not included are the
TES test chips and photon detectors also tested at UCB, SLAC, and Stanford during this period.

One of the main results of the testing program was that our devices have systematically lower R,,,
higher GG, and highly variable T, than we anticipated in the design detailed in chapter |4l The latter
two measurements are systematics limited, with both having a high dependence on how well the
fridge base temperature is known. Normal resistance, on the other hand, can be measured reliably
either in situ (with the normal TES bias circuit) or via dedicated four-wire measurements, as was
done for G124 at SLAC. The in situ measurements can also be made in absolute terms (what we
call Tbls measurements) or in relative terms (what we call dIdV measurements), though these are
also limited by systematics on the shunt resistance. The fact that these also varied significantly
from expected confirms to a certain extent that the change in TES properties is really a result of
fundamental physics. In the next few sections I will describe how the measurements were made, and

contrast the results from different detectors.

5.1.1 TES Resistance Measurements

The simplest way to measure the normal and parasitic resistance of the TES circuit is to capture
points very low and very high in the Ibls curve, where the TES is superconducting or normal. For
any point on the transition, the steady state bias current produces a steady state source current

according to the relation

Zy 171
Iso= [1+ I } Ino (5.1)
shunt
where for I, << I,p, Zo = Ry, for Iy >> 1,,, Zo = Rnormal + Rp, and for I = I,,, Zy = Ry + R,,.
This is only true if the excitation frequency is well below any of the impedance poles.
For testing purposes, we can re-arrange this expression to allow for calculations based on Ibls

data or complex impedance measurements. We write Iy, o3 = Iy 530 + 01 530 and take the case
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with and without changing current to find that

Ro+ R, "

gﬂz[y+‘H_P} I (5.2)
Rshunt
Zioop 17"

515[1+”’} s, (5.3)
Rshunt

where Zjoop = %. Re-arranging in terms of measured quantities gives

I
Ry + Rp = Rspunt |:Ib72 - 1:| (5.4)
o1
Zloop = Rshunt |:5[b - 1:| (55)
s

The impedance in the loop is affected by the dynamics of the transition, and we have

(Rp + Ro(1+ B) +iwL)(1 — L + iwr) + RoL(2 + B)

Zrooy = ‘ 5.6
foop 1—L+iwt (56)
. L(2+5)

R, + iw +Ro[( —|—[3)—|—1_£+in (5.7)
) L 2+
=R L+ Ry |(1 5.8
pHiwh 0|:( +ﬁ)+1—£1+iw7'eff] (58)
where 3 and L are as defined in section[3.2] In the limit that £ >> 1, we have
. 17(1+ﬂ)iw76ff

Lioon = L — .

loop = Rp + 1wl — Ry [ LT iwross (5.9)

such that crossing through the pole, to first order, just flips the sign of Ry and thus the phase of the
response. Measuring either side of the pole (once the transfer function is flat) yields a measurement
of 5. Measuring the pole compared to the natural response (no electro-thermal feedback) gives a
measurement of £, which once measured can be used to find the corrected §, which should be slightly
smaller than the initial measurement.

If we make measurements far below the low-frequency pole, we can set w = 0 to give

L

Zioop.0c = Ry + Ro {(1 +B) + T2+ ,6’)] (5.10)

1 L
= R, + Ry {J{fz} — R, + kRo (5.11)

where we have defined the quantity
1+8+L

= = .12
=7 (5.12)

This is great; this means that by doing low-frequency complex impedance and Ibls measurements
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(taking the peak-to-peak and DC values of the resulting source current), we can measure Rp, Ry,

and L. To summarize, then, we find

I
Ro = Rahunt [ 50 _ 1} ~R, (5.13)
Is,O
ol
/fR() = Rshunt |:5]s — ].:| — Rp (514)

For instance, if we have a sharp transition (£ >> 1 > ), we will have k &~ —1 in the transition,
and will expect a phase shift in the response of source current to bias current, meaning we can use

the equations

I

Ro = Rahunt { 50 _ 1] - R, (5.15)
IS,O
o1

RO ~ Rshunt H(;Ib + 1:| + Rp (516)

as long as we are confident in this criterion for the transition point we are biased at.

An example Ibls measurement can be seen in figure for G115 from the second run at UCB
and the first run at SLAC. These data were both taken by varying the TES bias from normal down
to superconducting, with the SLAC measurements made in the opposite direction as well. At all
points the operating current was measured and dIdV data were collected; these will be discussed
further in the next subsection. What is interesting to note is that while the resistance curves look
very similar, the current scale is vastly changed. This is the first indication that the parasitic power
environment in each setup was very different even after some initial improvements at UCB, either
due to bath temperature differences or true parasitic power sources.

Figure also shows a comparison with the second way of estimating TES resistance. If a high
energy event saturates the TES, then we can directly measure the difference in current Al between
Ry and R,,. During the pulse, we've fixed Vj, = I Ry, and we know that for the normal state (where
Ry =R+ Ry)

W
Is normal = 5 | 5.17
mormal = - (5.17)
while for the operating point, v
b
Io= —"— 5.18
0= BT Ry (5.18)
which gives the expression - -
Al = —2— - 0 5.19
8 R +R, R+ Ry ( )
solving for Ry, we find
Ry, AL
Ry=Rsp | =—= — -R 5.20
o= R |t - 3| - (5:20)
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Figure 5.1: Resistance measurements for G115 made at UCB (top, 4 QET channels) and SLAC
(bottom, 2 QETSs channels, A and C). The left-hand side shows Ibls measurements, and the right-
hand side shows the resistance measurements derived from the Ibls. The ‘dIdV’ label in the top
right figure refers to measurements taken with dIdV data, for comparison to resistance inferred
from saturated muon pulses, shown as dots in the figure. These data taken from http://titus.
stanford.edu/cdms_restricted/detector_physics/HV/ebook/170511c/index.html and http:
//titus.stanford.edu/cdms_restricted/detector_physics/HV/ebook/170628/index.html.

This is an alternate measurement which can help identify systematic errors, or can be used as a
substitute when full Ibls data are not available. We can see that for this measurement, the muon-
based Ry measurement disagrees with the Ibls measurement due to additional (non-TES related)
resistance which appears at 60 pA, most likely a wire-bond going normal.

The normal state resistance values for all prototype detectors were actually much lower than
anticipated. These measurements are summarized in Table with the other results from this
section. The largest implication is obviously that we can’t operate the TES as low in the transition
as anticipated, which limits the dynamic range of the TES more. It also implies certain changes in

both the heat capacity and thermal conductance. As we saw in the previous chapter, we know that


http://titus.stanford.edu/cdms_restricted/detector_physics/HV/ebook/170511c/index.html
http://titus.stanford.edu/cdms_restricted/detector_physics/HV/ebook/170511c/index.html
http://titus.stanford.edu/cdms_restricted/detector_physics/HV/ebook/170628/index.html
http://titus.stanford.edu/cdms_restricted/detector_physics/HV/ebook/170628/index.html
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in general, the Wiedemann-Franz law implies that

T
= Bur— 5.21
K 5fp (5.21)

so a reduction by a factor of 2-3 in the resistivity implies an increase by that same amount in
thermal conductance, which also corresponds to an increase by v/2-v/3 in phase separation length.
This implies that a fraction of the lost resistance can be made up for by increasing TES length in a
modified HV design, which will have a large impact on collection efficiency as well. This of course
assumes Y is invariant to T, which also does not seem to be the case. We’ll discuss this a bit later
in this chapter.

The observed reduction in resistivity is not unexpected. Tungsten has two superconducting
crystal phases, the « phase (7. ~15 mK) and 8 (T. ~1 K) phase, which can be mixed to produce a
film with intermediate T.. These films also have an order of magnitude difference in resistivity (3
phase is about 10x higher resistivity)[44] and different lattice constants (a, ~ 3.2 A, ag ~ 5.1 A).
The first layers of a tungsten film tend to grow in the 8 phase, with subsequent layers in thicker films
forming « phase structures as residual oxygen in the growth chamber gets depleted by gettering.
Thicker films are therefore more «-like, having both lower resistance and lower T,[61]. These films
are very sensitive to material purity[112] [113], but for comparable growth conditions on similar
substrates, films of thickness 40 nm such as ours should have resistance and 7, only weakly scale
with thickness. This will ideally be the subject of future work as we continue to experiment with

fabrication of lower T, devices.

5.1.2 Critical Temperature and Bias Power

Measurements of T, are fairly simple but are the most dominated by systematics. The easiest way
to measure T, is to put a small square wave (with very small bias power) on the TES line with
the TES normal, and raise and lower the temperature of the fridge with a heater to observe where
the TES goes through its transition. This is obviously affected by the power systematic from the
TES bias, as well as any lag between the fridge and crystal temperature, but will generally give a
measurement good to within 10 mK of any other method.

The most precise way to measure T, is to measure the bias power at a few different base tem-
peratures, and then extrapolate the power measurements to find the temperature bias power crosses

zero to infer T,. Given the TES power equation
P=K(T°-Ty) (5.22)
if we use the joule power to maintain the TES at T,, we get the relation

P=K(T?-1T7)=I3R (5.23)
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Figure 5.2: Drift in the bias power for a channel on G124 as a function of time since the first
observation of the channel going superconducting. We see that the crystal is cooling with a time
constant of a few days, and it’s unclear if the final bias power is actually in the T} ~ 0 limit.

so a simple linear fit to P versus Tgr’ given the measurements at multiple bath temperatures will yield
T? as the y-intercept. Plenty of examples of this technique can be found in Jeff Yen’s thesis[111]
and references therein.

The largest systematic on this technique is still the accuracy with with the crystal temperature
is known. An interesting observation made early on with low T, HV prototypes at SLAC was that,
despite our thermometer sitting stably well below T, the bias power of the devices was slowly
creeping up over a matter of days (as shown in figure . Subsequent follow-up measurements
indicated that the cirlex clamps had anomalously low thermal conductance below 40 mK, resulting
in the crystal remaining much hotter than the base temperature of the fridge. In fact, any parasitic

power is completely degenerate with a higher T; if we add a constant power term, we find that
K(T? —Tp) = I§ Ro + Pparasitic = KT — Pparasitic = 15 Ro + KT} (5.24)

So if parasitic power is 0, we will measure the true T, but if it’s non-zero we’ll measure an artificially
deflated T,.. This is the other major cause of time-dependent T, changes. For these reasons, one of
the largest anticipated challenges for SuperCDMS detectors will be ensuring that the crystals are
cold enough that we can operate the QETSs in the T ~ 0 limit where they will perform optimally,
and that there is no parasitic power; to do this significant modifications will have to be made to the
clamp design and careful design of all components in the bias loop.

Even if you're sure your crystal is at the same temperature as your fridge, and you know you have

no parasitic power, if you truly want to accurately characterize your sensors, a precise temperature
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calibration is vital. Significant issues arose in the early fabrication studies for lower T, devices due to
misunderstandings arising from thermometer mis-calibration. In addition, accurate thermometry at
very low temperature is in itself an art, and careful design of future systems with multiple redundant
thermometers well-coupled (at low frequency) to the TES under study will improve our ability to
characterize various fabrication runs and build accurate models of detector performance.

Given power measurements, the other quantity of interest which comes out of the fits (in the
form of the slope and exponent fit to the power versus bath data) is the measurement of the thermal

conductance G = nKT"~!, for the parameterization
P=K(T°-T)~ KT? + G(T — T,) (5.25)

If we assume our highest power measurements are consistent with the limit P,qrqsitic, Ty — 0, we

find that )
RIEY nP
G~nKT"" ! = ”% = ”TO (5.26)

and if we know the TES volume, we can thus measure the electron-phonon coupling ¥ as

K Py

E = =
Vreserr TRVresers

(5.27)

For the same TES design, then, if Py does not scale as 7.2, this implies a non-constant ¥ or Vrgg e
The latter could be a function of the degree of proximitization of the overlap regions, but should in

principle be a small effect. The results of bias power measurements, and derived parameters, can be
found in table 5.3

5.1.3 TES Transition Parameters

If we look back at equation we can actually derive further insight into the TES response from
looking at either the frequency or time-dependence in the complex impedance. Suppose instead of

w =0, we take 7.5y < w™! < 1. In this limit, we get
Zloop,peak = Rp + R()(]- + 5) (528)

or in terms of the measurement, we find

4
RO(l + ﬂ) = Rshunt |:6]b - ]-:| - Rp (529)
I call this Zjoop,peak because if we put a square wave signal into our TES, we’ll have the shape shown
in figure with an initial rise due to the 8 parameter. Let’s consider the case of large loop gain

(L >> 1). If we analyze the step response, we’ll find that the complex impedance and Ibls both
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tell us the same Ry; this tells us implicitly that we're in the large loop gain limit. The amount
that the pulse rises before falling to its DC value will tell us £ in combination with our previous Ry
measurement.

Given that we can only confirm whether the loop gain is large, how do we measure it when we
find no difference between complex impedance and absolute bias measurements? The only solution
in this case is to measure the fall-times, either in the time domain or the Fourier domain. The latter

will allow us to first determine the inductance in the loop:

L

T R+ (1+ PRy (5:30)

TLR
This is only true if we are not limited by the SQUID feedback loop bandwidth, which is a concern for
the SNOLAB electronics. Sensitivity to inductance should be better in the normal state than the
superconducting state, and plotting the reconstructed 7 r as a function of bias point should make
it obvious when the measurement is bandwidth limited. Determining the inductance ahead of time
gives one fewer free parameter for the remaining complex impedance fit.
The longer falltime in fourier space is given by the equation

T

Teff = ﬁ (531)

which implies that if we have a high-confidence estimate of 7 = C/G, and we're sure it doesn’t
change through the transition, we can also obtain a high-confidence estimate of £. The problem
here is getting a high confidence estimate of 7, and that crucial assumption that it doesn’t change;
remember from the TES dynamics chapter that we expect a factor of two change in heat capacity
between normal and superconducting states based on BCS superconducting theory. One possibility
is to operate the detector at T, to measure 7 without electro-thermal feedback. Another would be
to use the bias power to measure (G, and direct hits on the TES to measure C. These approaches
also have significant systematics, but are in principle possible.

The best measurements of the transition parameters («,, and 7) come from simultaneous fitting
of the complex impedance, shown in the time-domain in figure For the complex impedance
shown above, we can re-parameterize this as a function of four unknown parameters (to remove the

majority of the parameter covariance) as

av
dl

3Figure also shows a nice diagnostic to use when determining the best TES bias from complex impedance in
real time. Starting from normal data, we can determine when the TES has gone into electrothermal feedback by
observing the phase shift in the complex impedance, and by maximizing the post-phase shift DC impedance, we can
find the lowest bias point. This is generally done in small steps until the TES goes superconducting, and the stable
bias point is then chosen to be slightly above the last observed TES bias point.

= Zioop = A(1 + iwt)) + B[1 + iwr] ™! (5.32)
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Figure 5.3: Complex impedance measurements of G115 TES channels at the TES operating point
(top), entering into the electro-thermal feedback regime (middle) and normal (bottom). The left
column is measurements done in the BlueFors at SLAC during Run 23, the right is for UCB run
482. The main difference, aside from the bias circuit and readout being different, has to do with the
fridge base temperature. For the bias point far down in the transition, the lower base temperature
at SLAC allows for a much faster fall time (larger degree of electrothermal feedback) than at UCB,
where the base temperature was near T,.
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where

A= R+ Ro(1+5) (5.33)
<B:Rd2+mféz (5.34)
nzliﬁ (5.35)
=L L (5.36)

T A R +R(1+8)

This also allows us to easily extract all of the unknown transition parameters sequentially, solving
first for 8 and then for L:

L=r144 (5.37)

p=A"f IQORZ 4 (5.38)
B

S EESE: (5.39)

T=7(1-L) (5.40)

This is actually a fairly clean way to fit the complex impedance, and by performing the fit in the
Fourier domain we can use the real and imaginary information to get a properly weighted fit as well
as to accurately fit both magnitude and phase of the complex impedance. We performed a least

squares fit, computing the residual of the real and imaginary components as independent components

as
Re Zmeas ws) — Zoo Wi Ava s le 2
F(Zmeas|A;B;7_Ia7_el) — Z |: ( ( R?e(o-zl P((w)) TI, T l)):| (541)
Im (Z’meas (wz) - Zloop(wi|Aa B, Ty, Tel)):l 2
+ 5.42
| n(o7,... (@) (>4

and employing the least-squares fitting routine in scipy to minimize the residual with the appropriate
loss and tolerance given the allowed range of parameters.

As can be seen in figure we also fit 3-pole complex impedance curves to the data. The
motivation for these fit was the observed departure of the complex impedance measurements from the
simple two-pole model. As discussed in chapter [3] a two-block TES model of either an intermediate

or hanging heat capacity can both be represented by the modified complex impedance response[70]

dv c 1!
7= Zioop = A(1 4+ iwtey) + B |1 4 iwTs + (5.43)

1+ iwTty
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Det. | Fab Institution | 7. (mK) | R, (mQ) | Ry cap (MQ) | p/peap.
G101c TAMU 80 90-110 150 0.6-0.8
S101 TAMU 70-75 75-85 150 0.5-0.7
G115 TAMU 45 180 ~400 0.45
G124 SLAC 45-60 30-80 150 0.2-0.5
G147 SLAC 60-70 77-100 150 0.5-0.65
HVeV SLAC 52 600-700 2.4-2.75 0.2-0.25

Table 5.2: Summary of TES critical temperature (7), normal resistance (R,,), and bias power (Fp)
measurements. The R, can be compared to the expectation to build up a picture of resistivity
change as a function of T,.. Also included is the fabrication facility, which reflects real differences in
film quality.

Det. | P, (pW) | G (aW/K) | K (uW/K?) | £ (GW/K5m?)
G10lc | 90-130 | 5.6 8.1 27-40 0.44-0.63
S101 50-70 3.6-4.7 30 0.47
G115 5 0.5-0.6 2628 0.8-1.5
G124 10-30 1.1-2.5 40-54 0.61-0.86
G147 | 3540 2.8-2.9 24-45 0.38-0.72
HVeV | 005 | 4.8+1073 0.13 0.31

Table 5.3: Summary of TES bias power (P)) measurements and derived quantities. The large
uncertainty in G115 stems from an uncertainty in the effective tungsten volume.

where

f,=C(1—-2) (5.44)

is the fraction of the total heat capacity in the hanging block, and 73 is the falltime of the internal
degree of freedom between the TES and the block.

The results of these complex impedance fits for the UCB and SLAC data can be seen in figures|5.4]
and We find that for all cases where we do not have strong electro-thermal feedback, the
single-block TES model is not sufficient to characterize the observed behavior, and multiple internal
degrees of freedom are needed to accurately model the TES response. We also see large differences
in performance between the two test facilities largely on the basis of bath temperature; the SLAC
data has a larger bias power, loop gain, and a more meaningful trend in the fits for 7. The three-
pole fits results also indicated that regardless of how well the two-pole model fit the data, the three
pole model was always a better fit, and indicated that the additional block had a heat capacity
fraction of 20-30% that of the total system. This is likely the fin connector based on the fact that
measurements of the TES without fin connectors done at UCB indicate an excellent fit with a single
two-pole complex impedance. Future work will be directed towards characterizing the impact of the

fin connectors on TES response. This will also be discussed further in the next section.
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Figure 5.4: Fits to the complex impedance in admittance space (left) and the complex impedance
plane (right) for G115 at UCB (top) and SLAC (bottom). Note that the two-pole fit (dashed line) is
a better fit to the data for the SLAC data, where the base temperature was lower, but the three-pole
fit is needed to fit the UCB data. This is likely due to increased sensitivity to T, variation given the
higher base temperature at UCB.
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Figure 5.5: Complex impedance parameters for G115 run at SLAC (left) and UCB (right) as a
function of bias power. The fully electro-thermal feedback regime should have constant bias power,
as seen at SLAC, and high loop gain. The solid lines are the 3 parameter fits while the dashed lines
are 2 parameter fits and the dot-dashed are time-domain 2 parameter fits. These measurements
show that, as long as we can operate low in the transition, our expectation of high loop gain and
B ~1—2. We also see the fits of 7 increase by a factor of ~2.5 (close to the BCS expectation) as
we bias lower in the transition.
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Sample | Thickness (nm) | 7. (mK) | p (nQm)

Soudan iZIP ~40 80-120 130

SLAC Test Chip 40 40 48

TAMU Test Chip 30 60 72

Bulk Expectation (o Tungsten) [44] 61] - 15 26.5

Table 5.4: Comparison of resistivity expected for the design of CDMS HV compared to the resis-
tivities each fabrication facility is achieving based on test chips measured at SLAC. Note that the
reduced thickness at TAMU is associated with both an elevated T, and resistivity, implying a larger
fraction of the film which is 8 tungsten.

5.1.4 TES Measurements Summary

Tables [5.2] and summarize the TES characteristics measured from the range of prototypes tested
during this detector performance measurement campaign. Taken together, these measurements
suggest some non-trivial trends in both resistance and thermal conductance, but for the higher T,
detectors we find that X is close to the nominal value used in the previous chapters to determine
the TES design. Looking at detector systematics, let’s play devil’s advocate to see how the X
measurements might change if various assumptions are relaxed. If we are not in the infinite bath
limit, then T, and bias power are artificially low. Both will result in an increase in 3. If we've
underestimated the tungsten volume in a given channel, however, we will have over-estimated 3.
These are the two main systematics that could be tweaked to bring measurements in line. Resistivity
would also be impacted by a comparison of true and expected TES thickness and linewidth.

So taking the measurements at face value, we find that the lower T, detectors tend to have
upward trends in ¥ as critical temperature falls, but this is tenuous at best. Dedicated studies
of G as a function of T, and sensor geometry have been undertaken at SLAC and UCB by Sam
Watkins, coupled with noise and complex impedance measurements which improve on the techniques
shown here. These studies should provide a better handle on how the ¥ parameter scales with film
properties. What does seem to be the case is that both fabrication facilities are producing higher
quality films than in the past, resulting in lower resistivity, which may partially account for the
higher values of ¥ as T, is reduced. This is backed up by the test samples for which p was directly
measured at SLAC, summarized in table

In summary, in this section I reviewed measurements which put to rest one design concern (TES
transition sharpness) while highlighting many we hadn’t necessarily considered (7. variation and
resistivity changes) as well as problems we did anticipate, that turned out to be just as challenging as
expected (parasitic power and bath temperature uncertainty). The measurements in this section help
justify further study with the small test devices being run at SLAC by the UCB group, which should
be used for a near-term CDMS-HV redesign. It is likely that the existing CDMS HV design will still
work given our good fortune with how the preproduction cables performed (in some respects), but

the fact remains that these measurements show that the optimized design is not the true optimum
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for the films we're producing. CDMS HV v2 will likely look substantially different than CDMS HV

v1 both due to these measurements as well as the measurements described later in this chapter.

5.2 Characterizing QET Noise

The measurements described in the previous section, coupled with the noise modeling theory pre-
sented in section allow us to study detector noise in these prototype detectors to determine
whether we’re dominated by intrinsic TES noise (on which we based our detector optimizations) or
whether either bias circuit or environmental noise is substantially degrading performance. In this
section I summarize the initial noise studies performed at UMN, UCB, and SLAC and the lessons
learned from these initial tests. This will be presented somewhat historically, updating initial con-
clusions based on later findings but giving a sense for the thought process that went into our noise

characterizations.

5.2.1 G101c: First Studies at UMN

The first HV detector test, done with G101c, was focused on demonstrating initial performance of
the HV detectors was not limited by unforeseen complications. At the time, UMN was the only test
facility able to run 100 mm detectors, but was equipped with legacy hardware that meant we were
expected to be limited by both electrothermal oscillation and warm electronics noise. It nevertheless
provided a testbed for early characterization of HV detector QETs and warned of fabrication and
readout considerations taken into account for later detectors. The resistance measurements and
bias power for this detector was already discussed in the previous section. What was new for this
detector was the systematic study of detector noise where the detector was the dominant source of
this noise.

Fits to the noise for one channel of G10lc can be seen in figure [5.6 The fitting procedure
used the previously determined parasitic resistance (and the estimated temperature of the shunt
and parasitics) to fit the inductance to the PSD, and used the low and high frequency discrepancy
between the expect and observed noise to fit the components of the SQUID noise. The SQUID noise
was then refined based on the normal noise. Note that in both cases the passive voltage noise is just
modified by the TES resistance, and both poles are well fit by this inductance.

We then move to the transition noise. We can determine an estimate of the bias resistance from
Ibls and the DC component of the complex impedance, but for this detector we didn’t do complex
impedance fitting, so we weren’t able to simply predict the noise. Based on our assumptions for the
thermal conductance, we can estimate « and £ in order to fit the electro-thermal oscillation peak,
as shown in the figure. The first thing we notice is that, as expected, passive noise dominated the
noise budget of this detector, but the oscillation peak is fairly well modeled by this set of parameters

with transition values fairly in line with what was shown in the previous section. We noted at the
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Figure 5.6: Fits of UMN noise in the superconducting state (top), normal state (middle), and
transition state (bottom). Each plot adds a noise source, allowing for each noise source to be fit
quasi-independently (only one or two noise parameters at each step). Note the peak characteristic

of electrothermal oscillation; the central frequency of this peak is useful to determine the inductance
in the TES bias loop.
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Figure 5.7: Left: Regions of TES stability as a function of operating resistance and loop gain for
fixed § = 0.2 and an inductance of 400 nH. Right: TES falltimes and electro-thermal oscillation
frequency as a function of Ry for the same 8 and inductance, and a fixed L.

time, as I will now, that the low-frequency noise seems to rise, which was not expected, and this is
a feature we’ve since observed in other test facilities. We'll revisit it shortly but it’s worth noting
that it was also present at UMN.

The confusing behavior we saw at UMN was that electro-thermal oscillation began to appear
midway through the transition, but would disappear if the TES was biased low enough in the
transition. In order to understand why this was the case, we need to remember that the condition
for electro-thermal oscillation depends on all TES parameters including £ and (3, as illustrated in
figure and that the disappearance of the oscillation could also be thought of as the oscillation
moving outside of the frequency of interest or being sub-dominant to other noise features. If we take
into account the fact that £ and g are a function of Ry, we can draw different lines through the
parameter space of Figure [5.7| which would see oscillation appear, grow stronger, and then recede as
the bias is lowered. It doesn’t entirely go away, but the frequency shifts enough that it’s functionally
absent, and the amplitude should correspondingly decrease.

Due to these oscillations and the large amount of passive voltage noise, there wasn’t much more
we can learn from G101c¢ (or S101) at UMN from a noise standpoint. In addition, both detectors
had higher T, targets, as shown in the table, due to the UMN fridge being limited to operating at
35—40 mK base temperatures, so we did not expect stellar performance from these detectors from
a resolution standpoint. What was interesting was how the noise changed with bias; this will be

discussed further in section [5.4]

5.2.2 G115 at SLAC and UCB

In parallel with the CDMS HV work at UMN, a 3 inch diameter 4 mm thick one-sided detector
was developed by Matt Pyle and Suhas Ganjam at UCB using the SNOLAB QET design but with
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Figure 5.8: Top: Full image of G115 design with the same color scheme as the HV mask (aluminum
is blue, tungsten is black, amorphous Si is green). There are four channels, with the inner 3 channels
taking up 75% of the detector area and the outer channel plus the outer 2 mm guard ring taking
up the last 25% of the area. Bottom: Zoom-in on the central region showing the parquet pattern in
more detail and that the QETs and wiring are the same as for the CDMS HV mask. Phonon losses
due to the the W-only grid are minimized by its small fill factor (6%), reduced thickness and no Al
The other side has just the parquet pattern done with all three layers, again with a 6% fill factor,
but the grid includes aluminum and so is an appreciable phonon sink.
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Figure 5.9: Comparing G115 noise for the UCB data taken with the FEBs (left) to the SLAC data
taken with the DCRC D.0 before any on-board modifications were made. The superconducting noise
at UCB was much higher due to the larger shunts at high temperature and the larger parasitics.
The SLAC noise is about what was expected qualitatively - the TES dominates the noise - but there
are many features that are not what they should be, including forests of lines, the low-frequency
rise, and a hump in the kHz region. For the lowest bias, point, which is ~20 mf2, we see noise that
is clearly TES dominated and finally flat.

channels which were ~ 2.3 times smaller (R,, ~ 0.35Q, Nrgs ~ 700) and a parquet pattern in
between the QETSs (see figure . It was a four-channel device with three central channels and an
outer ring similar to the phonon channel layout for the Soudan iZIP detectors. A smaller design was
chosen in order to focus on QET performance, and it allowed us to test theories we had developed
early on about the role of muons and high energy gamma backgrounds on high voltage noise and
efficiency in a detector with a different form factor. This is discussed in more detail in Section

The measured noise at UCB and the first run at SLAC is shown in figure[5.9] The good news was
that the superconducting and normal noise were both lower than that seen at UCB in the regions
consistent with voltage noise. The bad news was that obviously there is a forest of lines, a lot of
low frequency noise not seen at UCB, and a high frequency hump. In addition, we can’t fit the
UCB noise in a way that’s consistent with the G measurement derived from the bias power. That’s
alright in light of the fact that we have low loop gain, and we’re near the bath temperature, at UCB,

whereas at SLAC the sources of additional noise need to be understood and reduced.

5.2.3 Diagnosing Readout Noise

Here I take a quick diversion from discussion detector properties to diagnosing noise seen in the
PSDs at SLAC in order to explain how the DCRC readout was improved as well as how new noise
sources can be traced to different parts of the circuit. This exercise helped isolate potential areas

noise sources could originate and helped us determine where our dominant noise sources are at

SLAC.
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Figure 5.10: EMI measured in the SLAC Building 33 clean room with a 16 turn 100 ft length
coil attached to a signal analyzer with the light on (off) shown on the left (right). We see both a
low-frequency noise drop as well as a large 40 kHz line largely disappear.

The first noise feature we noticed at SLAC even with the DCRC powered off was a very strong
time-correlated EMI noise all over the board, and very strong at the SQUID pre-amplifier input.
We decided to grab some spare wire from the electronics shop, made a 16 loop coil out of 100 feet
of wire, and plugged it into a signal analyzer to measure the EMI environment in the lab. Moving
the cart around showed that though the features were consistent, they were stronger near the lights.
Figure [5.10]shows the EMI measurement with the lights on and off, showing the huge EMI reduction
from having the lights off. The features can be attributed to the ballasts of the fluorescent bulbs,
which run nominally in the kHz region to obtain higher energy efficiency. The low frequency was
attributed to 60Hz and harmonics from the ballast wiring.

You can see that even though all of the lights in the lab are off, the 40 kHz feature is still seen
due to lights elsewhere in the building, leading us to believe that the ground wiring was acting as
an antenna for this EMI. We also could never get the remaining features to disappear regardless
of what we turned on or off in the lab. We tried both the floating and grounded outer connector,
with the other connector floating, and found that we did get better noise with grounding, which is
what is shown in the figure. Remaining sources of noise were either the few pieces of equipment we
couldn’t turn off or sources from outside the clean room. The features we found did correlate fairly
well with PSD features, so this suggests repeating these measurements as we install new equipment
will help us diagnose EMI at SNOLAB.

After this point we always ran with as much equipment off as possible, and moved on to char-
acterizing intrinsic readout noise. Here we’ll pause for some preliminaries about SQUIDs to help
differentiate some terminology (see also refs [46] 50] and refs therein). Consider a SQUID as a black
box, where there are two inputs and one output. One input is the TES input coil, one is the feedback
input coil. The output is simultaneously used to determine the SQUID signal and introduce the

SQUID bias current, so it’s almost an unintentional third input. Let’s ignore that for a second.
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Considering the inputs, each has a mutual inductance with the SQUID such that the flux can be
written

&; = M; I, (5.45)

and the SQUID is a device that turns magnetic flux into voltage. Given that there is some function
for the SQUID (roughly looking like a sinusoid) that relates output voltage to flux, we can thus say
that the SQUID voltage is

Vg = V(M;l;) (5.46)

and we can thus calculate the SQUID responsivity

LAV Vi d®dV,

Zsq = dl; ~ d® dI; ' d®

(5.47)

which has units of Ohms. This also tells us that the responsivity for the feedback coil is just a
constant factor of the mutual inductance times the responsivity of the input coil:

My,

T Dain (5.48)

Zsq,fb =
which means as long as we measure the V(®) curve for the SQUID with one coil, and we know
the mutual inductance ratios, we can model the whole system fairly well. The first step of tuning
SQUIDs is thus to measure the V(®) curve, and find the point in the curve with the largest slope
with the correct sign (so that feedback is stable) and adjust the SQUID feedback offset to sit at that
voltage point. The sign of the slope is also important, but the closed-loop feedback will choose the
slope based on the polarity of the feedback circuit (it can be positive or negative).

The slope we choose does make a significant difference for the noise performance; here we bring
the the third input/output line into our analysis. If I apply no current to the SQUID, there’s no
voltage for the flux to modulate, so obviously the bias I apply is important. In addition, I can
measure the SQUID V(Iy;4s) curve. During SQUID tuning, we normally observe the V(®) curve as
Ipiqs changes, and the best SQUID point is an optimization of both these parameters. This does
imply, however, that the SQUID acts both as a transimpedance amplifier and as a resistor, so we're

sensitive to the SQUID dynamic impedance

dVsq

qu - dIbias

(5.49)

at the chosen operating point. This is important because if there is some current noise on the SQUID

bias line, then we have the SQUID voltage noise

Nv.sq _ Nv.15Q0 + N1 piasRsq
750 750

(5.50)
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Here I've assumed that SQUID noise is intrinsically a voltage noise which could either be driven
by flux noise or Johnson noise across the Josephson junctions. For our purposes it doesn’t really
matter. We can see that our optimal noise performance will be for the largest SQUID responsivity
and the smaller SQUID dynamic impedance. This is demonstrated for G115 data taken at SLAC
along with SQUID characterization done in a following run in figure [5.11

Assuming we have our SQUIDs optimally configured, we can start looking at the readout circuit,
which is a fairly general closed-loop SQUID readout; figure shows the DCRC D.0 phonon
readout circuit. There are two programmable gain amplifiers in this circuit which will help us try
to diagnose the dominant sources of noise in this circuit, and a switch to allow us to look at open
loop (no feedback) noise performance to further isolate different components.

The first thing to consider is whether the closed loop is truly closed by looking at the transfer
function to see what the frequency dependence looks like. We know that the transfer function at

low enough frequency (let’s say 10 kHz) is white, with the form[46]

MrEgs [ Ry MTESj| -
H=R 1+ —=— 5.51
I Mpp G Mrp (5.51)
where the open-loop current to voltage gain G is
G =ZALNaAAPFA,FB (5.52)

where Z, is the SQUID responsivity, and the A terms are the gain for the Low Noise pre-Amplifier
(LNA) and closed-loop feedback Programmable Gain Amplifier (PGA).
For the minimum gain of 100 from the LNA, with the PGA at 1 and a SQUID responsivity of

100 Ohms, we find that for us to be approximately at infinite gain, we need

M
Rpp << 2 7 ApnaApp ~ 8 kQ (5.53)
Mrgs

Which tells us that for low PGA settings, the 5k resistor is allowing us to operate in an infinite gain
limit. When we set the FB gain to 2, we get closer though by no means are we in a strong feedback
limit. This suggested trying different feedback resistors below this limit to see how it impacted the
noise performance. The result was that we achieved the closed-loop limit with less gain but reduced
the bandwidth of the feedback circuit due to the maximum slew-rate of the PGA. This was a longer
study that I'll leave out the details of, but suffice it to say that varying the feedback resistor was
not helpful.

Assuming then that we’re in the infinite gain limit, we can write the TES referenced current

noise as follows:

N‘Q/DCRC (554)

2
250, TES

2 a2 2 2 a2 2
Nires,out = Nites,in + Nisq + Nipcre = Nirgs,in + Nisq +
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Figure 5.11: Top: Noise PSDs for different SQUID slopes when we accidentally flipped the polarity
of the SQUID feedback circuit. The increased noise is due to current noise on the SQUID bias
line which is amplified by the increased dynamic resistance. The ‘NS’ in the caption refers to no
RF source present; this was supposed to be a source on/off test. Middle: Modulation curve for a
SNOLAB SQUID measured for the SLAC setup including the responsivity and dynamic resistance
measurements as a function of feedback coil current (input flux). We can see that responsivity is
symmetric but dynamic resistance is not, so we want to bias on the positive responsivity slope where
dynamic resistance is low. Bottom: Two-dimensional bias versus flux measurements for a SNOLAB
SQUID showing that the low dynamic resistance region corresponds to a responsivity region that
lines along a constant input flux. This produces better noise response and less susceptibility to input
bias variation, for a stabler SQUID feedback circuit.
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Figure 5.12: DCRC Rev D.0 SQUID and TES bias circuit schematic, used to construct the noise
model discussed in this section.

where Nirgg,in is the intrinsic TES current noise, Nrgq is the SQUID noise, and Ny prc is all of
the DCRC voltage noise referenced to the squid output. We can further decompose DCRC voltage

noise by its location in the feedback circuit:

2 A2
Ny pere = Nina + A2 A2 A2
INA LNAAEBPGA

We can put this all together by referencing ADC input noise (including the PGA and ADC) to TES

current noise, for an effective current noise

N2

2 2 VAMP
Niresiot = NiTtesout + S M2 (5.56)

TES

f MEpg

where we separate the noise into pre and post PGA noise:
2 2 NY ampanc

Ny amp = Nvamppaa + (5.57)

2
AAMPPGA
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Chaining this all together gives the following expression for the measured current noise at the DAQ:

NPya+ Yepeaa o o, Nags
2 2 2
Nirgs,pag = Nirgs,im + Nisq + LZNQA LNA"_FBPGA (5.58)
5Q,TES
2
N2 Nyampabpc
R2 M’12"ES '
B
2 2 1 2 NZppca
= Nirgsin + Niso + 7z Nina+ Az (5.60)
5Q,TES INA
2 2 2
I Nirs i Ny amppca I Ny ampapc (5.61)
Z2 A2 A2 RZ M%ES A2 R2 M’IQ“ES '
50, 7ESALNAAFBPGA e dnppaa R TS
2 2 NJZ%FB
= Nirgs,m + Niso + 72 2. A2 (5.62)
50, TESINAAFBPGA
2 2
I Ny amppca I Ny ampanc (5.63)
R2 M%Es A2 R2 M’IZ"ES ’
FME, AmprcalVy

where I have re-arranged noise terms to suggest a way to diagnose which is the leading source of

noise. We can vary both PGA gains, the feedback and SQUID resistances, the current noise on

the TES, and toggle open and closed feedback and thus manipulate each of these noise sources

independently.

We subsequently performed the following tests, with the results summarized below:

1.

Vary driver gain, fixing all other terms, for highest usable feedback PGA gain. No noise change

is observed, so Ny anmp apc is sub-dominant

. Reduce feedback resistor, fixing all other terms, for highest usable feedback PGA gain. Chang-

ing this also brings us closer to the infinite gain case. Only change seen is worse noise perfor-
mance at high frequency, so changing feedback resistor is not helpful as we lose high-frequency

noise performance.

Noise does not appreciably change as we adjust the feedback gain beyond 1, so we can as-
sume the noise there is also sub-dominant, once we’re appreciably in the infinite gain limit.
Changing the feedback resistors did increase closed-loop gain but also reduced the feedback

loop bandwidth, which reduced the overall performance of the feedback circuit.

. Can see noise change at high frequency above some pole when bias condition is changed,

suggesting that above a cutoff frequency we really are dominated by TES noise, but not as

much as we should be.

The noise floor below 100 kHz seems to be unchanged by most of these tests; leads to open-loop
tests which suggest that SQUID noise (or noise at the input of the LNA) is dominant.
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Figure 5.13: Left: Impact of filtering SQUID lock-point amplifier power supply. Right: impact of
removing the zap switch, which coupled power line noise into the signal.

The observed SQUID noise is higher than expected, and the observed noise is dependent on the
responsivity of the SQUID. With the SQUID disabled, we still see troubling low-frequency and
mid-frequency noise trends.

We thus determined that most of the large noise features were coming in on the DCRC before
the LNA input, and Tsuguo was able to diagnose these noise sources by attaching resistors in place
of the SQUID at room temperature, with the results shown in figure [5.13] We had current noise
leaking onto the SQUID through the SQUID zap switch power supply, which was fixed by adding
power line filtering. We also had voltage noise coming in from the amplifier for the SQUID lock-point
offset, which was also solved with additional filtering. The resulting noise from G115 after these
modifications were made can be seen in figure

We can draw a large number of conclusions from the plots using the modified DCRCs. We see
that the DCRCs exceed the noise measured with a custom analog amplifier, suggesting that there
may still be room for improvement in the DCRC, but we note that both D1 and DO are capable of
meeting spec with these modifications. We can also see that D1 has fewer low-frequency noise lines
than DO due to some shielding improvements, as well as a lower bandwidth due to the addition of
filtering in the feedback loop. This is largely above the bandwidth of our signal, though we’d like to
see as much of the TES rise as possible, so we should be careful to get the bandwidth up to around
500 kHz. More work is needed to solve some of the oscillation problems we’ve seen when trying to
improve the high bandwidth performance of the DCRC.

After these modifications, the ‘dIdV’ coupled noise (voltage noise on the TES bias line) became
the focus of our investigations, as can be seen in the top right and bottom left panels of figure

We see that there is a voltage coupled noise which moves with the TES bias point in the normal and
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Figure 5.14: G115 Noise for various readout and TES bias conditions at SLAC from Run 26 in the
BlueFors. Top: Normal noise for DCRC compared to the analog SQUID amplifier (left) and for
the pulse tube on/off (right). We see that both DO and D1 have an acceptable noise floor after the
modifications, but that they’re still DCRC limited given that we can achieve better noise with other
electronics. They meet the spec we set for SNOLAB. See text for more details. Bottom: noise in
the superconducting, normal, and transition states for G115 (left) as well as Caleb’s noise model
fit (right) showing that we do achieve TES-limited noise above 1 kHz. This also demonstrates that
there is remaining noise both down the TES bias line as well as excess power noise on the TES.
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superconducting states largely driven by the pulse tube, suggesting either EMI from the controller or
some vibrational coupling to the wiring. We also see though that in transition, the dominant noise
we have is a low-frequency noise which is demonstrably not a result of either small pulses leaking
through our cuts (it does not have the right high frequency pole) and is not residual muon tails.
We’ll explore this more in the next section with (G124, which was much more sensitive to both noise
sources.

These studies suggest some design principles for CDMS electronics going forward, and possible

improvements for the existing electronics for SNOLAB:

e Every input or output to the SQUID and TES should be as filtered as possible to reduce power
line noise coupling into the SQUID loop. In the future, moving the pre-amp inside the fridge

would mitigate a lot of the issues we’re seeing.

e Any switches which don’t need to be high speed should be made electromechanical to eliminate

the possibility of capacitive coupling.

e We should always opt for LED lights run (if possible) from a DC supply. Any high-frequency

supplies will be large EMI sources.

o A differential D.0 board was tested but ultimately a single-ended design was selected. If a lower
noise differential amplifier was found that would vastly reduce our susceptibility to on-board

EMI and ground loops.

These are just based on the DCRC and SQUID noise tests, and do not include lessons learned from
TES transition noise, which at this point in the chapter we haven’t dug into in detail. We’ll draw a

few more conclusions about readout noise from the next chapter.

5.2.4 G124 at SLAC: Beating Down the Noise

After these noise studies, we moved on to further characterizations of G124 at SLAC with the
goal of validating the noise model for the SNOLAB HV detectors given that G115 seemed to have
anomalously high, correlated power noise (as shown in figure the measured noise is higher than
the model across the entire frequency range). For these data from Run 33-35, the DCRC has been
modified, so the normal and superconducting noises are about what we expect though there are lines
due to EMI pickup and a slow rise at low frequency from residual (but mostly uncorrelated) DCRC
noise. These PSDs are shown in figure [5.15

Measurements of transition noise in G124, however, show another host of problems, some still
in the readout but most related to external noise sources coupling to the detector inside the fridge.
These noise sources are summarized in figure [5.16f The largest problem which is immediately
noticeable by eye in the traces is due to telegraph noise, which is RF EMI from the DCRC during

readout of trace data which is aliased to lower frequency due both to temporal variation and the
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Figure 5.15: PSDs for G124 side 2 (R,, ~ 50 m€) for the normal (left) and superconducting (right)
states. We can see that most of the lines scale with resistance, meaning they’re due to EMI pickup
on the bias line and are predominantly on the TES side, although the lines seem to scale faster than
the white noise. We can note now that there’s still a small low-frequency rise below 1 kHz, but it’s
much less distinct than before the DCRC modifications.

burst-like nature of the additional RF noise it generates. This problem is in itself a significant issue
for our readout scheme and required us to artificially slow the DCRC during acquisition so that we
don’t read out traces while the DCRC is transmitting data. This was the subject of a ton of work
by the UCB group on the UCB fridge and calls for fitting all of the fridge wiring access points with
RF Pi filters, which will be done for SNOLAB. The UCB group showed that when properly RF
shielded, this noise goes away, but despite multiple attempts the Vacuum Interface Board (VIB)
which brings signals into the fridge still allows this noise in at SLAC. This was the subject of RF
surveys done by Caleb in runs 35-37, the results of which are still in process.

With the trigger rate suppressed, we can probe the telegraph-free noise as shown in the remaining
panels of figure The remaining major noise sources are the turbo maintenance signal (which
is EMI coupled dIdV noise that also contributes bias power) and pulse tube noise which seems
primarily vibrational. The turbo noise consists of a 1.6 kHz narrow peak that turns on and off
periodically to control the turbo. It’s seen in the normal and superconducting state as well, and
scales with the TES resistance, so we can conclude that the noise is primarily a current noise down
the TES bias line. It can be seen in figure [5.16]for a time period where it was on for all traces rather
than being average out or removed by quality cuts during a small period of time when the pulse
tube was off, so we can see that whenever this noise source is present we have a large degradation
in resolution.

The pulse tube on turbo off data shown in figure[5.16]is very telling, as the turbo line disappears
but not the low-frequency noise. Turning the pulse tube off as well allow the noise to become largely
flat down to 100 Hz, demonstrating that the cause of this noise is very likely the pulse tube. The fact

that this feature only shows up in the transition state implies it’s a power noise, which means it’s
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Figure 5.16: Transition noise for different operating conditions. Top left: Telegraph noise on G147,
G124 not shown because the telegraph noise was bad enough to drive all of the PSDs off-scale. Top
Right: transition PSD with pulse tube off but turbo on during a period of high turbo EMI. Bottom
Left: PSD for pulse tube on, turbo off, showing a reduction in kHz-frequency noise but all of the
same low-frequency noise. Bottom Right: PSDs for turbo and pulse tube off; PSDs are largely flat
down to 100 Hz. Two channels are disconnected, so here you can also see the effective DCRC input
noise which has a low-frequency increase due to pre-amp input noise. See text for more details.
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most likely vibrationally coupled to the detector. This data motivated a larger study of vibrations
from the pulse tube into the cryostat by To Chin Yu, using various vibration damping techniques.
To understand how vibrational noise can coupling nonlinearly into the detector, consider the
vibrational velocity ansatz
o0

v(t) = Z cos(w(t — Ti)) exp(—(t — T1i)/T)O(t — T%) (5.64)

i=—00

This is a driven damped oscillation with characteristic frequency w, damping decay time constant
7, and periodicity T. Two example cases of this model are shown in figure for different decay
constants. The basic idea is that vibrational power couples into the detector either through voltage
noise, which we’ll see in all bias states, or through friction.

For the frictional case, we can use a simple kinetic friction model
F = puF, > pmgetg (5.65)

where the inequality depends on how tightly held the detector is; increasing the clamp tension will
also increase the frictional force and thus vibration coupling. The energy dissipation is thus

dE  d
= — = 2 |Fxa| = Flo| (5.66)

Here we get an absolute value because power will never be negative. This is a very non-linear transfer
function, which means we’ll alias and frequency shift much of the vibrational power. This is what
is illustrated in the bottom panels of figure [5.17, We have begun a program of vibration studies to
try to measure the vibration velocity spectrum for comparison to the detector noise and determine
whether we can use this model to help mitigate or reduce the noise. We do notice that the amount
of vibrational noise seen does depend both on detector mass and mounting scheme so we expect
there is a lot we can do to reduce vibrational coupling to the detectors.

A final note on noise studies of G124 comes from looking at the coherence, a statistic described
in the signal processing appendix which essentially measures the causal linkage between two signals
in the frequency domain. We find that for the large samples of G124 noise, the vast majority of
the noise is highly correlated below 1 kHz, around 60-80% or more for almost all channels. This
precludes most mechanisms which are unrelated to the detector crystal given that opposite sides are
separated on the readout cabling and run from two different DCRCs, and supports the conclusion
that this low-frequency noise is vibrational.

As described in the next section, we can use this coherence to perform a degree of noise correction
when the correlated and uncorrelated noises are comparable in size, as shown in figure When
we do this correction we can see that the corrected noise resembles the noise we see with the turbo

and pulse tube off, suggesting that these correlations are in fact the noises we’'ve identified. This
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Figure 5.17: A simple vibrational noise model based on the ansantz equation [5.64] Both columns
use an oscillation frequency of 1.6 kHz and period of 0.25 seconds, the left column uses a 10 ms
decay right and the right column a 1 second decay time. The top row shows the pure signal, the
middle shows the signal with noise and the rectified signal with noise, and the bottom shows PSDs
for these two signals. We see that both have similar low-frequency noise, but the longer decay time
allows for much stronger high-frequency noise.
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Figure 5.18: Coherence of channel PFS2 with the other 11 channels on each side of the detector,
showing that the correlation is higher on the same side than the adjacent side but is always at
least 60% correlated. This suggests a crystal-driven noise source. On the right we see two channels
corrected for correlated noise according to the methods in the next section. See text for more details.

is both a promising way of dealing with correlated noise as well as a hopeful sign that these noise
sources can be controlled to get to our ideal TES-limited noise level. It also motivated more advanced
OF techniques detailed in the appendix as well as in the next section that can use multi-channel

information to exceed the projected noise performance given a joint-channel signal model.

5.2.5 Scaling Noise with Detector Volume

Some useful techniques to identify sources of crystal noise were identified during our noise measur-
ing/mitigation campaign that deserve a mention at this point, though the work to investigate this
is still ongoing. The fact that G115 and G124 had such different volumes and surface areas, and
were different from the smaller detector chips and test devices, allowed us to rule out some sources
of noise and suggested additional things to study. Here I will briefly lay out these cases without

providing any of the ongoing analysis as a suggestion for future work.
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The main comparisons we made were between volume, mass, and surface area dominated noise
sources. Imagine an extra power noise is found in a detector. We can think of a few possible sources

and posit tests to rule each out:

e RF in the fridge - This should scale (as a power) with absorbing area for a detector in the same
RF environment, which for Si should just depend on the overall absorption cross-section on the
detector face. One suggestion for why G115 had such worse power noise than other detectors
was because it had a parquet grid on one side and in the negative space between QETSs on the
other side, meaning any incident RF on the face would be absorbed as current. Since it is very
high in frequency, it will just be aliased in the TES current noise as an additional flat power
noise. Similar trends were also seen with larger test chips that had high cross-sectional areas

for the same resistance.

e Vibrations - this should scale with mass and volume. If the clamps have the same amount of
torque, then the Si detectors should have less vibrational noise than the Ge, assuming both
surfaces have similar surface roughness (which should be roughly the case). Detectors which
are rigidly connected to the fridge (i.e. those that are attached to the MC directly via glue or
mechanical clamp) should not show this power noise, although it may be hard to differentiate
between sinking the thermal signal (which would also ruin the collection efficiency) and true

reduction in vibrational coupling

e Thermal Noise from Muons or Gammas - one theory that has yet to be fully tested was that
much of this noise may be due to residual charge generated by muons or gammas in the
detector bulk. The idea is that since we have long carrier lifetimes, then the carriers should
spontaneously re-combine or trap on impurities with some characteristic decay time for them
to re-emit that energy which is relatively independent of the energy of the initial event. This
means that detectors may have residual power noise proportional to the input power integrated
from all sources (including muons, gammas, etc). So for the same lab environment, the smaller
the cross-section of the detector, the less of an effect this should have (less power in and less
power out). For sensors of the same volume and T, we should then see the power noise decrease
with crystal