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Abstract

The SuperCDMS SNOLAB experiment will be a 20-kg scale Si and Ge direct dark matter detection

experiment designed to probe down to 300 MeV in dark matter (DM) mass through DM-nucleus

scattering and 500 keV in DM electron scattering. In order to reach these low masses with appreciable

sensitivity to dark matter, it needs to achieve very low energy resolution ( 10 ev) for nuclear recoils

in both detector materials, which will be achieved using a new detector design and operating mode,

CDMS HV. This detector is designed to operate at a bias of 100V to convert charges liberated in

our detector targets to into phonon energy in order to resolve individual electron-hole pairs. This

has never before been achieved in a kg-scale detector.

In this thesis, I cover three elements of the design of the CDMS HV detectors. I discuss the

detector physics controlling how charges and phonons are generated in our detector crystals, com-

paring theory to results of recent experiments carried out at Stanford. I move on to describe the

operating principles of our phonon-mediated charge readout, as well as the design of the CDMS HV

detector. I then describe the performance tests of early CDMS HV prototypes in conjunction with

the SuperCDMS SNOLAB electronics, and discuss the path towards achieving single electron-hole

pair resolving detectors at the kg-scale given the performance obtained thus far. As a result of these

tests, we were able to refine our noise and sensor dynamics models, and develop new metrics for

diagnosing non-ideal sources of noise to aid in reducing coupling of the external environment to our

detectors.

In order to study the microphysics of phonon and charge production in our target crystals, we

fabricated a number of gram-scale devices with various sensor designs in order to separate sensor and

environmental e↵ects from intrinsic crystal properties. These devices provided the first successful

demonstrating of using voltage to amplify charge energy by production of phonons (the Neganov-

Trofimov-Luke e↵ect) in order to resolve electron-hole pairs, and opened up a new regime of dark

matter and photon science at the gram-scale that we are just beginning to explore. A first dark

matter search was carried out with one of these gram-scale devices, producing world-leading limits

on electron-recoiling dark matter between 0.5 and 5 MeV in dark matter mass for multiple form

factors. This device achieved a phonon resolution of 10 eV, allowing a single gram-day of exposure

to rival kg-days of exposure in the competing liquid-noble based electron-recoil search.
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Preface

This thesis explores the physics of low-temperature crystals, and lays out design and testing principles

for cryogenic calorimetry based on CDMS technology. Much of the text was written as the work

was done, and many of the small asides or conclusions were reached as a result of discussions with

collaborators. The concluding chapter represents my own opinions and conclusions about the next

steps for our technology, but reflects, at the time of this writing, a general consensus in the field.

Continued development of these precise sensors has reached the point that we can make quick gains

in dark matter science, and use these developments to advance other fields of physics such as the

study of coherent interactions and applied photonics.

The work presented in this thesis was performed with help from and in collaboration with a large

fraction of the SuperCDMS collaboration, and none of the results would have been possible without

the fabrication, cryogenics, and physics expertise of my collaborators. In particular, none of these

detectors could have been run without the fabrication work done by Matt Cherry, Astrid Tomada,

Paul Brink, Mark Platt, and Roger Romani at Texas A&M and Stanford. Testing of devices was

done at many test facilities in collaboration with many people:

• University of Minnesota - Matt Fritts, Anthony Villano, Nick Mast, and Allison Kennedy,

under the direction of Vuk Mandic and Prisca Cushman), with help from Bill Page from UBC

• UC Berkeley - Suhas Ganjam, Caleb Fink, Sam Watkins, Bruno Serfass, Bernard Sadoulet,

and Matt Pyle. This group was also instrumental to taking much of the SLAC data, and there

would be no data in this thesis if it weren’t for Bruno’s help with software tools and DCRC

operation.

• Stanford - Je↵ Yen, Robert Mo↵att, Betty Young, Jon Leyva, Trevor Howarth, James Allen,

Steve Yellin, Francisco Ponce, Chris Stanford, and Francesco Insulla, under the direction and

with significant help from Blas Cabrera.

• SLAC - Paul Brink, Mike Racine, Tsuguo Aramaki, Mike Kelsey, Gary Godfrey, Pelle Hanssen,

Dave Nelson, and Leo Munger, as well as our many SULI and INFN students who helped in the

lab or with data taking (Andrea Caputo, Angela Bai, Carlo Gilardi, and Chiara Magliocca),

under the direction of Richard Partridge.
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• Texas A&M - Jorge Morales and Jon Wilson, who tested and diagnosed DCRC issues and

implemented firmware, and Xuji Zhao, who worked on SQUID and Tc testing at SLAC as a

visitor.

• University of British Columbia (UBC) - Bill Page, Danika MacDonell, Belina von Krosigk,

who helped get the DAQ working at SLAC

• USD - Joel Sander and Amy Roberts, who helped with DAQ setup and software tools

These are only the people actually involved in setting up and running the facilities for the detectors

described in this thesis, and does not include those who came previously to help get the facilities

running or provided input on the analysis.

Each chapter also includes significant work and insight from many collaborators that I worked

with during my years as a graduate student:

• Chapter 1 - I owe a great debt to Dylan Rueter for his patience teaching this experimentalist

how to appreciate the finer points of particle physics phenomenology, to Joe DeRose and Sean

McLaughlin for references and explanations of the phenomena discussed in the cosmological

sections, and to Warren Morningstar for his obsession with gravitational lensing.

• Chapter 2 relied heavily on measurements taken by Robert Mo↵att using the device he built for

his dissertation[75], and the theoretical treatment of scattering depends largely on work done

by Kyle Sundqvist for his dissertation[99]. Robert, Kyle, Betty Young, and Blas all contributed

to the analysis. In addition, the intervalley scattering model benefited greatly from discussions

with Alexandre Broniatowski during his visit to Stanford. Mike Kelsey and Rob Agnese wrote

the code that the simulations were done with and I worked closely with them to do consistency

checks and add features in order to enable the code to simulate Si as well as arbitrary crystal

orientations. The initial implementation of some the scattering formulae was done by Ramiro

Garcio, with follow-up work by Francesco Insulla. The initial investigation of hole anisotropies

was done with James Allen, and was the subject of his senior thesis. The final results and data

were taken in part by Chris Stanford, who helped me complete this study and is continuing to

push the technique to learn much more about charge transport.

• Chapters 3 and 4 were written during the year I was working on the detector design, and

I’m entirely indebted to Matt Pyle for his constant guidance and inspiration, as well as Paul

Brink and Blas for their insight, feedback, and suggestions for various optimizations to try.

The noise analysis in particular relies heavily on some notes Paul put together to help us more

easily understand the various features of noise spectra, and we relied on Matt’s thesis as well

as Kent Irwin and Gene Hilton’s seminal paper[50] to put those together. The design process

was led by myself but many people in the tower technical meetings provided vital insight and

answers to questions about various experimental constraints. Bruce Hines and Martin Huber
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helped me appreciate the subtleties of the SQUID readout, and Tsuguo provided key initial

measurements of the cold electronics to give us an idea of what was actually feasible in terms

of our parasitics. Sunil Golwala, Rich Partridge, and Bernard Sadoulet provided very useful

comments and feedback during meetings and individually, and each helped me appreciate the

various parts of the phonon and charge readout electronics as I tried to figure out which parts

of the design needed to be optimized and how to do so. Betty was always a resource for helping

me understand non-idealities of fabricating superconducting thin films.

Many of my students during the first two years worked on various parts of detector design and

simulation, including Andrea Caputo, who helped with initial studies of channel layout, and

Eduardo Montano who worked on TES simulations. I’m also indebted to Peter Redl and Kristi

Schneck who helped me run the detector Monte Carlo for the initial CDMS HV studies that the

optimization was based on. Peter also helped me get started with COMSOL simulations, and

Angela Bai did some great work on axisymmetric electric field modeling that helped inform

the final design; this work was most recently picked up again by Madison Matsen. Je↵ Yen’s

quasi-particle transport data[111] with Robert’s analysis also informed the QET e�ciency

model used for the first time in device design for this thesis. Finally, Paul and Matt Cherry

helped coach me through the layout process, suggesting design decisions that improved the

fabrication yield of the sensors and made actual operation of the mask easier and less error

prone.

• Chapter 5 is a summary of the work of many people I listed in the test facility section of this

thesis. Much of the DCRC investigation was led by Tsuguo, with help from myself, Matt Pyle,

Caleb Fink, Bruno, Paul, and Rich. Rich helped all of us understand how to track down places

where components may not be behaving ideally, and helped solve some of the most egregious

noise issues. The resistivity and Tc investigations were done with Matt Cherry, Je↵ Yen, and

Paul. Leakage investigations were undertaken with Matt Fritts, Nick Mast, Francisco Ponce,

Roger Romani, Matt Pyle, Blas, Paul, and with initial work done at Berkeley by Bill Page.

Modeling of the leakage was a collaboration between Steve Yellin, Matt Pyle, Bernard, and

myself. A lot of work subsequent to my initial complex impedance studies was done by Sam

Watkins which added confidence to some of my conclusions, and will be vital to understanding

the performance of future detectors. The small detector discussed at the end of the chapter

was fabricated and run by Roger Romani for his senior thesis, and the testing setup was largely

designed by him, with subsequent improvements by Francisco. Many of later noise studies,

and a lot of help processing the data, came from To Chin Yu, who in my last year picked up

the BlueFors testing torch and has continually put out very interesting testing results that are

shown here and go beyond the testing I describe.

• Chapter 6 presents the results of a collaboration paper, and as a result includes input from
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a large section of the collaboration. The core analysis team consisted of myself, Francisco

Ponce, Belina von Krosigk, Andrew Scar↵, Matt Wilson, and Chris Stanford, with help and

input from Rob Calkins, Richard Germond, Blas, Matt Pyle, Rich, Paul, Betty, and Steve

Yellin. I appreciate the competition we got from the SENSEI collaboration, which helped us

push out a high quality result in a relatively short amount of time; by my count, it was about

2 months from end of data taking to submitting the paper.

The scale of this sort of work is such that I was a cog in a very e�ciency machine, as it is

not possible for complex devices such as our detectors to be made and run without contributions

from many people. It is my hope that this preface conveys the magnitude of contributions to the

work presented here from the members of my collaboration, and the degree to which the SLAC,

Stanford, and UCB groups collaborate on most studies happening in the bay area. The interaction

between the di↵erent research groups created an environment where new ideas could be explored

constructively, and facilitated much better results than we would have been able to achieve without

so much external support. As the saying goes, two heads are usually better than one. I posit that

the more heads you have, the better.
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Chapter 1

The Need for New Physics

“...It seems probable that most of the grand underlying principles have been firmly

established and that further advances are to be sought chiefly in the rigorous

application of these principles to all the phenomena which come under our

notice...An eminent physicist remarked that the future truths of physical science are

to be looked for in the sixth place of decimals.”

- Albert Michelson, 1894, dedication of Ryerson Physical Laboratory

The story of modern physics written in textbooks begins with Newton, including prefaces on

ancient astronomy, natural philosophy and metaphysics, and continues in an unbroken line to the

present day. It is a story of discovery, of trial and error, but ultimately of steady progress towards

the modern understanding of how the physical world behaves and the laws it obeys. Those who

practice physics as a profession know that it is never quite so clear cut, and every era has its many

schools of thought that through time are filtered and combined to produce standard canon. The

key insight one can derive from a careful reading of the history of physics, and science in general, is

how to seek out phenomena that deviate sharply from expectation as a framing device for looking

for new models.

The search for dark matter is just the latest exercise in this practice, which highlights a problem

in our understanding of the universe, and proposes a certain class of solutions for it, namely the

existence of a new type of matter. My hope is that, even if as you read this chapter the theories

discussed have been ruled out, it will still provide a roadmap for discovery that transcends the partic-

ular problems it describes. The search for dark matter in particular is driven by a very fundamental

mismatch between the nature of gravity and the distribution of matter, and the resolution of this

problem will necessarily result in new physics, whether or not new mass is a part of it. At this

1
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moment in time, the dark matter field is an exciting one, with many synergies in technology devel-

opment and low-background photon detection, and serves as excellent motivation to work on many

cross-disciplinary problems for which dark matter is the first stringent and interesting sni↵-test.

In this chapter, I will present first a brief chronology of astrophysical observation centered on

the study of celestial movements, the discovery of extragalactic objects, and measurements of stellar

kinematics in our galaxy as well as those nearby. I will then discuss the key observations that

indicated the presence of missing mass, and present the argument for why a dark matter explanation

to this problem is particularly attractive. This will be followed by an exploration of the varied dark

matter phenomenology, starting with the standard (and now somewhat disfavored) WIMP paradigm

and moving into lighter and ultra-light dark matter theories. I will finish by motivating new detectors

that can operate at ultra-low energy thresholds in order to study some of these new light dark matter

models as a way of contextualizing the work in this thesis.

1.1 The Cosmos in Motion

The earliest surviving ancient work that laid out a systematic explanation for the motions of the

planets was Ptolemy’s “Almagest”1, a second century Greek treatise describing the motions of stars

in a mathematical framework. This represented the first attempt to apply mathematical reasoning

to the observed movement of various heavenly bodies, most importantly the sun, moon, and the

known planets2. The vision of cosmic structure in this treatise followed the geocentric3 model first

proposed by Aristotle, which would remain the prevailing model for 2 millennia after his death,

but introduced a mathematical model for explaining the elliptic orbits of the known planets. In

this work, he also presented the earliest surviving star catalog, containing the positions of the 1025

known stars visible from Europe.

Ptolemy’s work illustrates the limits of what can be studied without telescopes or precision

measuring instruments, given the slow progress made over the subsequent 1500 years before the

invention of the telescope. Progress in astronomy was slow, requiring dedicated work over a lifetime

to make small advances in the understanding of what, to almost all of the astronomers, were points

on a fixed sphere that surrounded the earth. Between 100 and 1600 AD, continued observations

pushed astronomers away from the simple, fixed-point model of the universe[19, 8, 40, 28]:

• 6th Century AD: Olympiodorus the Younger argues that the Milky Way, which Aristotle held

was an atmospheric e↵ect, must be stellar in nature due to its lack of parallax4

1
The English name for this work tells us a lot about its historical importance. ‘Almagest’ is the westernized version

of the Arabic for ‘The Greatest’, itself translated from the shortened Greek title ‘The Great Treatise’. The original

name for the work was ‘Syntaxis Mathematica’, roughly meaning simply a Mathematical Treatise.
2
The word planet comes from the ancient Greek for ‘wandering stars’, or simply ‘wanderers’ (plantai)

3
earth centered

4
Parallax - change in apparent position on the sky of an object due to the movement of the observer and the finite

distance to the object. The e↵ect of parallax can be demonstrated by holding a finger up at arm’s length and moving
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• 964 AD: Al-Sufi is the first to observe the Large Magellanic Cloud (LMC) and the Andromeda

galaxy, the Milky Way’s largest satellite and the next nearest galaxy respectfully. He describes

them not as new celestial objects, but as ’cloud-like’ in appearance. Neither object is visible

from Europe, and thus the LMC is not observed by Europeans until Magellan’s voyage.

• 1000 AD: Al-Buruni and Ibn Sina (Avicenna) debate whether there is any evidence to support

the Aristotelian model of the universe, most importantly the assumption that all natural

motion is circular, the basis for modeling the dynamics of the planets.

• 1010’s AD: Ibn Al-Haytham (Alhazen) writes the ’Book of Optics’, the basis for later European

development of the telescope, which replaced Ptolemy’s optics as the premier treatise on the

subject. Al-Haytham also publicly critiques Ptolemy’s mathematical models, objecting to the

planets spontaneously changing velocity in order to maintain circular orbits. Al-Haytham also

measures the lack of parallax of the Milky Way for the first time, proving Olypiodorus’ earlier

conjecture in a more precise manner.

• 1272 AD: Al-Tusi explains why the galaxy appears to be continuous despite being made of

many stars, writing: “The Milky Way is made up of a very large number of small, tightly-

clustered stars, which, on account of their concentration and smallness, seem to be cloudy

patches. Because of this, it was likened to milk in color.” He also invents the Tusi-couple,

which demonstrates how circular motion can give rise to linear oscillation, and is described in

Copernicus’ work centuries later.

• 1284: Witelo writes the treatise ‘Perspectives’, partially on optics, building on the work of

Al-Haythem and further laying the groundwork for the development of telescopes.

• 1420’s AD: Ulegh Beg constructs the observatory at Samarkand (modern day Uzbekistan),

similar to the one produced a century later by Tycho Brahe, and produces the largest star

catalog since Ptolemy (994 stars) correcting earlier errors and combining knowledge of the

northern and middle-latitude stars. He increases his accuracy by making a much larger sextant

than those previously used by Arabic astronomers.

• 1543: Copernicus posthumously publishes “On the Revolution of the Celestial Sphere”, solving

the mathematical problems pointed out by earlier astronomers and making a much simpler

cosmological model.

• 1577: Tycho Brahe shows that comets are in fact moving about the sun, and not atmospheric

events, by measuring the (non-existent) parallax of a comet. This is considered the first

observational challenge to the geocentric model of the solar system.

your head side to side; you observe your finger to move relative to distance objects, telling you it must be closer to

you than those objects.
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• 1609: Kepler uses Brahe’s observations to construct his mathematically complete model of the

heliocentric solar system, measuring distances between the sun and the planets and setting a

scale for the solar system. Kepler’s laws lay the groundwork for Newton’s law of gravitation.

In 1608, Galileo Galilei made the first astronomical observations with a rudimentary telescope,

proving for the first time that the Milky way was in fact a collection of stars and discovering four of

Jupiter’s moons. This began a new era of observations, in which the number of mapped, observable

objects in the night sky increased exponentially with each new technological advance. It’s also at

this point in history that Kepler’s observations demonstrate the relationship between orbital period

and orbital radius from the sun (commonly referred to as Kepler’s 3rd law):

T 2

a3
=

1year2

1AU3
(1.1)

This simple proportionality only works in the heliocentric system, and once demonstrated in this

new paradigm, allowed Newton to use this relationship to construct his law of universal gravitation.

One can get from Kepler’s third law to a law of universal gravitation by employing Newton’s new

laws of motion, published in 1687, obtaining the more general form of Kepler’s third law:

T 2

a3
=

4⇡2

G(M1 +M2)
(1.2)

This new equation can be used to measure the mass of any planet using the measured orbital period

of its moons, and was the main tool used in the following centuries to relate stars and planets to

one another. In the span of less than a century, we see a scientific advance more important than

any in the two millennia before it, which can be attributed to both the new technology of the

telescope, but also the legacy of dedicated measurement of stars visible to the naked eye. These

two developments are most often the reason that we di↵erentiate between Aristotelian (ancient) and

Newtonian (classical) physics. What followed was a period of academic exploration enabled by this

new understanding of nature and the technology that allowed humans to study the cosmos in finer

detail than every before.

Looking Beyond the Solar System

Following the example of the ancients, astronomers during the enlightenment turned their telescopes

to the sky in an attempt to find moving objects, hoping to determine the distance to a star and

thus set a scale for the universe. While comet hunting, Charles Messier constructed a catalog of

103 (later expanded to 110) bright nebulae, publishing his catalog in 1781[28]; many of these were

in fact nebulae, some stellar associations, and some actually distant galaxies. William Herschel, a

musician and astronomer who built more than 400 telescopes during his career, discovered Uranus

while conducting surveys of stellar motion. In these surveys, he was also the first to discover the



CHAPTER 1. THE NEED FOR NEW PHYSICS 5

abundance of stellar binary systems, and was the first to observe that the motion of these systems

implied that the stars were orbiting each other. Herschel published his star and nebulae surveys over

the span of time starting in 1773 and concluding with catalogs of 800 multiple star systems and 2500

’deep sky objects’, mainly Nebulae and galaxies, which greatly expanded on Messier’s work. His

son would continue his work after his death, and their combined e↵orts produced the New General

Catalog (NGC) containing 8000 of the brightest non-stellar objects in the night sky[28].

Herschel was also the first person to attempt a three-dimensional map of the galaxy. In the

mid 18th century, astronomer Thomas Wright and philosopher Immanuel Kant posited that, as the

solar system is a rotationally supported disk, it makes sense that the stars we see may also be a

rotationally supported disk, which we would thus see as a band across the sky. Herschel took this

idea, and by counting the number of stars in each portion of the band visible from his observatory,

constructed the first star map of our galaxy in 1785[103], shown in figure 1.1. The limited depth of

his telescope and his simplifying assumptions resulted in a very poor map with the sun at the center

of the galaxy, but represented the first attempt to map star positions as more than fixed points on

a sphere. Herschel’s main limitation was his inability to establish distances to stars, and he had to

assume they were equally spaced, thus precluding him from finding any evidence of spiral structure

or measuring relative stellar densities.

The 1800s saw improvements in technology that led to the first discoveries using gravitational

anomalies to find new objects. In 1844, Friedrich Bessel noted that the stars Sirius and Procyon

both exhibited odd proper motions, and inferred the existence of as-yet unobserved companion stars,

which would later be confirmed by more powerful telescopes[19]. In 1846, Le Verrier and Adams

noted the anomalous orbit of Uranus (just discovered by Herschel 60 years earlier) and computed

the expected position of a new planet needed to create that orbit. Neptune was thus found the

same evening the observatory received their communication suggesting its probable location[19]. Le

Verrier also proposed the new planet ‘Vulcan’ to explain Mercury’s anomalous orbit, which was never

observed but would later be one of the key predictions that would ensure the success of Einstein’s

theory of general relativity. Separately, the study of objects beyond the solar system continued,

and in 1845 William Parsons observed, through the largest telescope at that time, that some of

Herschel’s objects had a spiral structure, and seemed to be rotating. Without any means to measure

this rotation, however, this was at the time mere conjecture[28].

By the end of the 19th century, photographic plates came into common use, allowing for more

detailed and wider ranging study of the night sky. Dark regions were noticed throughout the plane

of the milky way (as can be seen in Figure 1.1), and debates began about whether these were empty

voids or dark regions obscuring stars behind them. In order to estimate the true number of stars in

the Milky way, Lord Kelvin made the first estimate of the mass enclosed in the observed universe

(at that time the local stellar neighborhood) by treating it as a gas, and using the measurements of

stellar velocities available at the time (by watching the slow movement of stars across the sky) to
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Figure 1.1: Top: Image of the milky way and surrounding space compiled by the ESO7. This is
how we observe the Milky way from earth, although with much higher resolution than can be seen
by eye or on Earth’s surface. Upper Middle: Herschel’s reconstruction of the Milky Way based
on assumptions of star brightness and placement. Lower Middle: Kapteyn’s model of the universe,
where the Sun is no longer at the center but the scale and shape are still not quite right. He does not
recognize that objects can be outside of this relatively small distribution. Bottom: Modern diagram
of the Milky Way8.
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estimate the upper limit of mass in a gravitationally bound system given these measurements and

the accepted size of the galaxy[19]. He estimated that there may be “as many as 109 stars [within a

sphere or radius 3.09 ·1016 km]” based on these proper motions. Henri Poincaré (in 1906) and Ernst

Öpik (in 1915) compared this estimate to the number of observed stars, and concluded that since

the expected number of stars and observed number are comparable, there is no appreciable “dark

matter” in the galaxy. The term dark matter at the time generally referred to unseen gas or dead

stars, but was very much a part of the scientific lexicon by the 1920’s.

Meanwhile, Jacobus Kapteyn was busy updating the work of Herschel, and in 1922 published

a much more rigorously computed model of the galaxy that puts the Sun o↵-center (though much

closer to the center than it should be), and estimates the size and shape of the galaxy, at that time

believed to be an ellipsoid. Kapteyn’s model as originally shown can be seen in Figure 1.1. As

part of this work, Kapteyn (and his student Jan Oort) rigorously calculated an upper limit for the

local mass density of dark matter in the solar neighborhood, finding the lowest limits then predicted

of around 1% of the mass of the sun per cubic parsec9. There is roughly one star per 7 cubic

parsec, meaning that the dark matter density is at most less than 10% of the mass in the stellar

neighborhood; given that stars are not the only known mass in the galaxy, this is therefore not a

surprising number.[19]

A Larger Picture

This well-behaved system would have worked had it not been for major observations made by

Harlow Shapley, Vesto Slipher, and Edwin Hubble. In 1915, Vesto Slipher used spectra produced on

photographic plates to demonstrate the doppler shifting of these spectra across the spiral nebulae

first observed by Parsons, demonstrating observationally that the nebulae did appear to rotate.

Meanwhile, between 1915 and 1919, Shapley estimated the distances to 93 globular clusters10 by

observing variable stars, which have a known absolute luminosity for a given variation period and

thus allow a straightforward distance measure. Shapley realized these clusters were not located

isotropically, but instead were centered on a point towards a spot in the galactic plane roughly 15

kpc from the Sun, and that the furthest globular cluster should be 70 kpc from the Sun[28].

Shapley’s measurements were obviously in tension with Kapteyn’s model, putting the center 5

times father away and implying that the galaxy should be a factor of 10 larger than what Kapteyn

observed. On the other hand, Shapley argued that all of the observed objects seen thus far must

be contained in the Milky Way, while those who had been studying the spiral Nebulae (led by

Heber Curtis) maintained that what they were observing were actually distinct galaxies, given the

distances implied by stellar novae11 seen in these objects compare to those observed locally. This

9
1 parsec is equal to 2.36 light-years, or 3 · 1013km (30 trillion km).

10
A globular cluster is a tight grouping of stars that formed at the same time and have a much higher stellar density

than the surrounding space
11
A nova is a bright flare-up of a star caused by ignition of fusion on its surface.
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was the subject of the 1920 “Great Debate” on the nature of the galaxy and universe, both the scale

of each and whether Milky Way was the universe or whether the universe contained many ‘island

universes’, to use Kant’s original term. This argument was obviously complicated by the fact that

many of the measurements being used had large errors due to extinction by interstellar gas and

dust and the limited precision of observing tools available at the time. A sketch of the discrepancy

between models of the galaxy can be seen in Figure 1.2.

Enter Edwin Hubble12. In 1923, Hubble used the new 100-inch Mount Wilson telescope to observe

variable stars in Andromeda, the next closest galaxy13, finding a distance of 285 kpc, definitively

proving that the spiral nebulae were in fact new galaxies[28]. This is actually smaller than the

modern value of 770 kpc, but is still large enough to prove the point. In 1925, Slipher observed

that out of a sample of 40 spiral nebulae, now thought to be distinct galaxies, almost all of the

galaxies exhibited a distinct redshift in their spectrum, implying they were moving away from the

Milky Way. In 1929, Hubble followed this up with more variable star measurements from a handful

of nearby galaxies, establishing for the first time that the universe is expanding, and showing that

the receding velocity of galaxies is proportional to their distance:

v = H0d (1.3)

The figure from his seminal 1929 paper is reproduced in Figure 1.2. This relationship is now called

Hubble’s law, and H0 is Hubble’s constant, which he estimated to be about 100 km/s/Mpc based

on his observations[49]. The modern value, though still in flux, is close to 72 km/s/Mpc, although

its measurement as of this writing is still hotly debated[21].

Hubble’s 1929 paper marks the beginning of the field of observational cosmology, that is, the

study of the universe, as it showed for the first time that our universe consisted of more than just

the Milky Way. It is also where the study of dark matter begins to become a distinct pursuit, and

will be described in the next section. Many important scientific advances were made as a result of

Hubble’s initial work, most notably the study of this expansion that led to the even more surprising

discover of dark energy, which causes this expansion rate to increase as a function of time. The

technology that enabled us to probe the universe beyond our stellar neighborhood was driven by

advances in imaging, telescopes, and signal processing, and we will come back to some of the lessons

from this story at the end of the chapter when we discuss the way forward in sensitive astro-particle

detectors.
12
This story illustrates Hubble’s foundational role in both astrophysics and cosmology, and why the Hubble space

telescope, which imaged further than humans had ever seen before, was named after him.
13
Andromeda is commonly referred to as M31, from its designation in Messier’s catalog, and is one of the brightest

non-stellar objects visible through any telescope. The Hubble Space Telescope image of Andromeda was also (until

recently) the default background on all Apple
TM

computers.
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Figure 1.2: Left: Illustration of the Kapteyn v Shapley galaxy model problem, showing Kapteyn’s
model of the Milky way as a collection of ellipses, and Shapley’s measured distributions of globular
clusters[104]. Right: Figure 1 from Hubble’s 1929 Paper[49] showing the distance-velocity relation.
You can see that some of the closest galaxies, including M31, are actually moving towards us. You
can also compare the distance scales between objects in our galaxy in the left image and extragalactic
nebulae, now know to be other galaxies, in the right image.

1.2 Missing Mass: The Case for Dark Matter

Over the past few decades, the historical case for dark matter has achieved a sort of orthodoxy, from

which I don’t deviate much here except to insert derivations where I feel they add strength to the

arguments, and editorialize a bit when it comes to the comparison between modified dynamics and

particle dark matter. Much of the historical content in this section comes without explicit citation

because it is now common knowledge in the field, however I refer the reader to some excellent review

articles, in particular Refs [20, 18, 19], which take slightly di↵ering takes on the history of the field

but do an excellent job documenting their sources.

What di↵erentiates the study of dark matter from its ‘sister’ field of dark energy, described at the

end of the last section, is what makes this chapter so important, namely that the first conversation

we have to have about dark matter is to justify that we’re not just fooling ourselves with shoddy

observation. The New York Times “Book of Physics and Astronomy” has a time-line of physics

that has 3 dark-energy related entries but none referring to dark matter, precisely because the

existence of dark matter came to be known gradually as we eliminated possible systematics and

narrowed down the explanation for an odd observational truth: there doesn’t seem to be enough

matter anywhere we look outside of the solar system. This is an issue that crept up on us as we

continued to log entries in our big book of mass discrepancies, and is marked, for the most part, not

by groundbreaking observations, like those of Reiss, Schmidt & Perlmutter[80, 86] for dark energy,

but by the lack thereof.
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It is my goal in this section that by the end, the reader will appreciate that the simplest explana-

tion for all of these phenomena is not a new theory of gravity, but a fundamental misunderstanding

of the nature of matter. That we tend to prefer one theory of what that matter is will be left to later

sections, but at this moment in time, there is no doubt that simple fixes to our theory of gravity

can not properly explain all of the phenomena discussed here.

1.2.1 Rotation Curves and the Virial Theorem

The initial indication that galaxies were more complicated than expected came through studies of the

rotational velocities of stars in a galaxy measured as a function of distance from the galactic center.

A galaxy is a complex system of millions to billions of stars, but to a very good approximation we

can employ the virial theorem to model the relationship between kinetic and gravitational potential

energy. The virial theorem states that the time-averaged kinetic energy of a bound system obeys

the relation

hKEi = �1

2

X
hF · ri (1.4)

and for a potential that only depends on the distance r between particles, giving the form V (r) / rn,

we find the much simpler (and more often seen) statement

2hKEi = nhV i. (1.5)

For a gravitational potential with n = �1, we thus have

2hKEi = �hV i (1.6)

where V is the average gravitational potential of a particle in the system, and KE is the average

kinetic energy of the particle. This theorem allows us to use a general framework to relate mass

and energy in a gravitationally bound system where calculation of net force on a given particle is

more cumbersome than calculating its gravitational potential. In very regular systems, such as the

solar system, we can show that the results of this calculation are the same as using the equations of

centripetal acceleration, but an equivalent calculation for dispersion supported systems is not quite

so simple, thus allowing us to more confidently use this equation to model dynamics of less ordered

gravitationally bound systems.

Gravitational Potentials

There are two general cases we’ll consider here, a sphere and disk each of constant mass density. In

the case of the sphere, we know that the total mass within a given radius is given by the formula

M(R) =
4

3
⇡R3⇢ (1.7)
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which gives us the di↵erential equation

dM(R)

dR
= 4⇡R2⇢ (1.8)

We also know that the gravitational potential energy from a shell of mass Mshell(R) = dM(R)
dR

dR is

Vshell = �GMshellM(R)

R
(1.9)

so to bring an additional shell onto a sphere with radius R, the change in potential energy is

dVsphere(R) = �16⇡2G⇢2

3
R4dR (1.10)

giving a binding energy of

Vsphere(R) = �16⇡2G⇢2

15
R5 = �3

5

GM(R)2

R
(1.11)

Note that this is not the simple case of V = GM2/R, as the system is di↵use and gravitationally

bound, and the particle in question also forms part of the gravitational mass. We can do the same

calculation for a disk of uniform mass density:

M(R) = 4⇡R2� ! dM(R)

dR
= 8⇡R� (1.12)

which gives the di↵erential equation

dVdisc(R) = �G32⇡2�2R2dR (1.13)

giving a binding potential of

V (R) = �32⇡2G�2

3
R3 = �2

3

GM(R)2

R
(1.14)

The key finding is that for a shape of constant density, the potential at some point inside the shape

has the form

V (R) = �↵GM(R)2

R
(1.15)

with the general condition that ↵  1. The shape and density profile of the system can only produce

smaller potentials, given that the constant density case gives ↵ < 1 and the case of a shell, ring, or

point all have ↵ = 1.
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Velocity Profiles

In our case, where particles are stars with mass mp orbiting an enclosed mass Mtot, we know that

for a spiral galaxy with essentially circular motion in a 2D plane, we have

hV i ⇡ �↵GMtotmp

R
(1.16)

and

hKEi = 1

2
mpv

2
p

(1.17)

which gives the simplified form of the Virial theorem

v2 = ↵
GMtot

R
(1.18)

For a dispersion supported galaxy, like an elliptical galaxy, this needs to be modified slightly. In the

case of highly elliptical motion, where there is a constant trade-o↵ between kinetic and potential

energy, we know that statistically, a star observed at radius R will have mean kinetic energy

KE =
3

2
mp�

2
v

(1.19)

giving the Virial relation

�2
v
=
↵

3

GMtot

R
(1.20)

In both cases, then, we find that measurements of a given velocity distribution as a function of

distance from the orbital center gives a measure of the mass enclosed at that distance. By comparing

these mass measurements at various distances, we can build up an understanding of the radial

mass distribution, and compare to that we measure for various components through complementary

methods.

To demonstrate the implications of this formula, let’s apply it to the solar system to verify that

it does indeed predict the correct motion for a very well studied system. We use the case of circular

motion here, and given that the vast majority of the mass in the solar system is concentrated in

the sun, we predict that the velocity of a planet orbiting at radius R should be (using ↵ = 1 for a

compact system)

v =

s
GMsun

Rplanet

(1.21)

We don’t typically measure planetary velocity, but more commonly talk about orbital semi-major
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axis a and orbital period t. Using the relation v = 2⇡R
T

, we find that

4⇡2R2
planet

T 2
planet

=
GMsun

Rplanet

(1.22)

R3
planet

=
GMsun

4⇡2
T 2
planet

(1.23)

This relation is just Kepler’s third law of planetary motion expressed in Newtonian gravity; taking

the ratio of di↵erent periods and orbital radii gives the proportionality explicitly stated in this law.

Early applications of this argument in its Newtonian form resulted in the discovery of Neptune,

due the anomalous motion of Saturn relative to the motion it should have exhibited had it been the

last massive planet in the solar system[20]. Application of this same logic to the orbit of mercury

predicted yet another planet, however the true explanation for the precession of mercury turned out

to be explained by corrections from General Relativity, and thus deviations from the Newtonian

prediction produced new discoveries in the theoretical, rather than experimental, domains. The

utility of comparing observed celestial motion to these scaling relations has proven a useful tool for

discovering gravitational anomalies, and it was natural to apply this technique not only to our own

solar system, but also to galaxies as we began to observe them.

In the 1930’s, Fritz Zwicky used measurements from Edwin Hubble’s seminal paper on the first

measurement of universal expansion to attempt to measure the mass of the Coma cluster, a cluster of

galaxies close to our own[115]. In this and a later work that refined the calculation, Zwicky observed

that the Virial mass and luminous mass (calculated using the number of galaxies and a mass-to-light

ratio conversion) di↵ered by a factor of 500, implying that the vast majority of mass in the cluster

was some sort of “dark matter”[19]. In 1936, Sinclair Smith performed a similar measurement for

the Virgo cluster and obtained a mass-to light ratio of 200, smaller than Zwicky’s but still way

more massive than the expectation of a ratio of 1-3[19]. These results were recognized as important

at the time, but due to observational limitations as well as some obvious geopolitical distractions

in the 40’s and 50’s, the observational investigations stagnated, with researchers assuming either

the assumption of stability in the clusters was misfounded, or normal matter was missed in the

observations.

The Mass to Light Ratio

A key weakness in these early arguments, which might explain their relatively low importance at

the time, lies in the number of assumptions necessary to calculate the luminous mass of a galaxy.

Suppose we observe a new galaxy, and measure its total luminosity in the optical regime. We can get

a preliminary estimate of its mass by making a simple assumption that all of the mass comes from

sun-like stars, and we know the mass and luminosity of a sun-like star. In units of solar luminosity

and solar mass, then, the mass to light ratio is just 1. This sets a baseline from that we can say
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naively that the mass to light ratios are too large in clusters, and is approximately what was assumed

in these early papers.

We can now make a more sophisticated model. Our knowledge of modern astrophysics allows

us to break down stellar mass by type, and use the HertzsprungRussell (HR) diagram for a typical

galaxy to get a more refined estimate of stellar mass. For a main-sequence star, which are the vast

majority of stars in a galaxy, we have the mass-luminosity relation[28]

L / M3.5 ! M3.5
star

= M3.5
sun

⇤ Lstar

Lsun

. (1.24)

This means that for a star of mass Mstar and luminosity Lstar, the mass to light ratio is

Mstar

Lstar

=
Msun

Lsun

✓
Msun

Mstar

◆2.5

=
Msun

Lsun

✓
Lsun

Lstar

◆5/7

. (1.25)

We can make the simple assumption that all stellar mass is in main-sequence stars, and we can use

the form of the typical galaxy luminosity function to compute the weighted mean mass to light ratio:

⌧
M

L

�
=

R ⇣
Lsun
Lstar

⌘5/7
�(L)dL

R
�(L)dL

(1.26)

where �(L) is the luminosity function, usually calculated as the number density of stars with a given

luminosity (or mass) per cubic parsec. This function is normally a double exponential with a shallow

slope below 1 solar mass, and a steeper slope out to high mass. We can thus bracket the range of

M/L ratios by using either a flat distribution or a step function above 1 solar mass. Integrating with

respect to L in either case gives

⌧
M

L

�
⇡
Z ✓

Lsun

Lstar

◆5/7

dL =
7Lsun

2

⇣
Lmax
Lsun

⌘2/7
�
⇣

Lmin
Lsun

⌘2/7�

Lmax � Lmin

(1.27)

Including larger mass stars, hM/Li decreases, while for majority light stars, hM/Li increases; it is
also essentially around 1 regardless of the relative composition for this model of stellar abundance,

and has a very weak dependence on the range of masses allowed in the galaxy. This model matches

well with the observed mass to light ratio in the Milky Way’s disk of around 3[28], based on a stellar

mass of 6 ⇤ 1010 solar masses, a gas mass of 0.5 ⇤ 1010 solar masses, and an observed B-band14

luminosity of 1.8 ⇤ 1010 solar luminosities.

Barring a significant period of star formation (as is found in high-redshift galaxies), most galaxies

will have a very small range of mass to light ratios, and given modeling of their star-formation history,

we can very accurately estimate their stellar mass. What’s more, because the majority of all stellar

14
B band refers to a blue filter centered around 430–450 nm depending on the particular instrument used.
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mass in a galaxy is concentrated in low-mass stars, and they nominally have lifetimes much longer

than the age of the universe, which means very little error in the measured mass can be attributed

to high-mass stars; if anything we will over-estimate stellar mass, not underestimate it, if there are

more high-mass stars than expected.

We can be confident that the above reasoning will hold for converting light to stellar mass, but

a reasonable question to ask as an immediate follow-up is how well we can constrain the non-stellar

mass of a galaxy, and how much higher the mass to light ratio can get before gas and dust cannot

be invoked in order to bring measurements into a reasonable range. Studying the mass distribution

in our own galaxy, as well as in nearby clusters, allows us to put upper limits on the fraction of the

missing mass implied by these high mass to light ratios than can be explained by normal matter.

One of the first examples of such studies was the estimate of intra-cluster gas mass (that is, gas

between galaxies in a cluster) due to measured X-ray emissions. Let’s imagine that the majority of

the unseen mass in galaxy clusters is gas, predominantly hydrogen. It is being bound by gravity,

but it is being prevented from gravitational collapse by radiation pressure. The stable solution to

this hydrodynamical system gives an expected gas temperature as a function of mass and radius of

a spherically symmetrical gas cloud, roughly following the relation[20]

kbT ⇡ 1.5 keV

✓
M(R)

1014Msun

◆✓
1 Mpc

R

◆
(1.28)

The measured gas temperature for the Coma cluster is around 10 keV, implying a gas mass of 7⇤1015

solar masses (assuming R ⇡ 10 Mpc). This is in extreme tension with Zwicky’s measurement, and

implies that intra-cluster gas cannot account for the missing mass inferred from Zwicky’s virial mass

estimate.

Galaxy Rotation Curves

A general confusion about discrepancies in mass to light ratios was the approximate state of the

field of dark matter through the 1960s. During the 1970s, Vera Rubin and Kent Ford [94] began to

catalog observations of the observed radial velocity of side-on spiral galaxies as a function of distance

from their galactic centers, and showed that across galaxy size and morphology, all galaxies showed

a flat rotation curve out to high radii (see Figure 1.3). We can use the earlier virial relations to

make sense of the implications of their observations.

We expect, from equation 1.18, the orbital velocity to go as 1/r for stars at the edge of the galaxy,

where the enclosed mass has reach an asymptotic value. The observations by Rubin and Ford were

done using molecular hydrogen, with velocities obtained by the Doppler shift in the H↵ emission

lines[94, and references therein]. This allows observations to extend as far from the galactic center

as hydrogen can be found, to regions where the hydrogen is di↵use enough to inhibit star formation.
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Figure 1.3: Composite plot of the rotation curves measured from Rubin et. al.[94], showing that all
curves quickly reach their asymptotic flat value.

A flat rotation curve thus implies that the mass within the observed radius R follows the scaling law

M(R) =
v2
flat

↵G
R ⇡

3v2
flat

2G
R (1.29)

where ↵ ⇡ 2/3 assuming axial symmetry for spiral galaxies. The implies that, for example, if the

mass is spherically distributed, then the density goes as

M(R) =

Z
4⇡R2⇢(R)dR ⇡

3v2
flat

2G
R (1.30)

⇢(R) ⇡
3v2

flat

8⇡GR2
(1.31)

In other words, the majority of the mass in the galaxy seems to be a distribution with more total

mass further from the galactic center, with a mass density that falls as 1/R2 far beyond the last

observable stars and vastly outweighs the observable gas beyond the end of the stellar disk. This

was the first evidence that the dark matter problem was more than just a problem of accounting

for missing mass; in order to explain these observations, we have to rethink our models of galactic

structure, where the majority of mass seems to be spatially separated from the luminous matter.

This measurement of mass density within a given radius at multiple distances from a galaxy’s

center was an important part of establishing that the gravitational and stellar masses had to be

di↵erent, and that the discrepancy couldn’t just be due to intergalactic extinction or Baryonic

matter. To see why, let’s consider a model where extinction is the primary cause of this discrepancy.

In this model, we consider each line of sight to have roughly equivalent amounts of extinction. If we

have a density that follows the given scaling law, we find that we have a line of sight mass density
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⌃(r) of

⌃(r) =

Z 1

�1
⇢(
p

r2 + z2)dz =
3v2

flat

8⇡Gr
(1.32)

where r is the distance from the center of the galaxy perpendicular to the line of sight. This is to

say that even if there is some extinction, we should see the surface brightness follow roughly the

same trend as the rotation curve, peaking at the center but falling o↵ much slower than 1/r2 and

extending far beyond the outer edges of the visible galaxy; we see instead that the star light has a

much smaller length scale than the rotation curve.

The obvious next step in this line of reasoning is to suggest that maybe the main mass density is

not stellar in origin or is primarily composed of stars that have a much lower luminosity than those

on the main sequence. The latter is easier discussed conceptually; the likelihood of many low-mass

stars being undetected in this abundance is essentially 0 given their long main-sequence lifetimes.

This does not preclude more exotic astrophysical objects (e.g. black holes or neutron stars), which

we’ll discuss more in the section on gravitational lensing. Su�ce it to say that due to these optical

measurements, we can limit the candidates to non-stellar origins.

The solution to the problem of di↵ering mass and rotation curve measurements came before

Rubin & Ford’s work with the detection of the 21-cm hyperfine hydrogen transition by Purcell &

Ewan[36, 19]. This transition is the result of a slight increase in stored energy when the proton and

electron in the hydrogen atom are misaligned, such that for very di↵use cold hydrogen with randomly

populated spins, half of the atoms are initially capable of emitting a photon with wavelength � =

21.106 cm. We can calculate both the energy and the probability of this transition to very high

precision from first principles; this calculation can be shown to exactly match the observed energy[36].

The probability of an isolated atom undergoing this transition is found by application of Fermi’s

golden rule and results in a transition probability of[37]

⌧�1
HI

=
64⇡4µ2

B

3h�3
⇡ 2.85 · 10�15 Hz (1.33)

where µB is the Bohr Magneton:

µB =
e~
2me

(1.34)

and � is the wavelength defined above. This is obviously a very small probability, but for a hydrogen

gas mass of millions of solar masses, the emission of this line is a fairly common occurrence, and it

has been used for over 60 years to simultaneously map gas mass and its rotational velocity both in

the Milky way and in remote galaxies.

Given a known line energy, we can compute the mass of hydrogen emitting that line as

MHI ⇡ PHI⌧HI

E21cm
mH (1.35)
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and the maximum velocity of that cloud of hydrogen relative to the observer as

�max

�emit

= �
⇣
1 +

vk
c

⌘
! vk = c


1� ��1 �max

�emit

�
. (1.36)

We can thus simultaneously determine, for an edge-on galaxy, rotational velocity and mass density

as a function of radius as far out as the neutral hydrogen is detectable. The only systematic on this

measurement is the relative probability of the 21cm light reaching the observer, explored in detail

by Field[37]. In studying the systematics of this measurement, it becomes abundantly clear that

any local conditions can only increase the emission strength for a given mass of atomic hydrogen.

Without being exhaustive:

• Temperature increases emission rate by increasing the population of higher energy states and

the likelihood that adjacent atoms stimulate emission

• Magnetic field causes line splitting, but on average leaves the rate unchanged as it increases

the rate for half of the orientations and decreases it for the other half.

• Incident radiation will either not a↵ect the hydrogen atoms or further stimulate emission.

• The interstellar medium (ISM) is largely transparent to this line, and emission and absorption

will always happen at equal rates in hydrogen, thus intergalactic extinction is fairly negligible

for nearby galaxies.

Playing devil’s advocate, the only way to increase mass estimates of gas given known 21-cm line

emissions is to adjust the relative abundance of elements and molecular hydrogen in the ISM. These

abundances are highly constrained by stellar physics and early universe cosmology, thus getting more

than a factor of 2-3 for a given galaxy is highly disfavored, and the same factor systematically across

all observed galaxies would result in a much di↵erent star formation history than what we observe.

To summarize the argument in this section, I refer you to Figure 1 of [16], reproduced here

as Figure 1.4. This figure shows the rotation curves inferred from the measured luminosity of the

galaxy, as well as those for the measured gas content, compared to the rotation curve measured from

the 21cm line Doppler shifts. In each case, one can see that for the gas to account for the entirely

of the rotation curve, the abundance would need to be scaled up by between 3 and 10 depending

on the galaxy, and that the inferred rotation curve from dark matter is dominant across the board

and has a fairly consistent shape across the galaxies, with the exception possible of NGC 7331 (this

could just be a di↵erence in scale factor). If we accept the gas measurements, then we’re left with

two dark matter hypotheses: exotic stellar material, or new matter entirely. First, however, we need

to discuss the third distinct possibility that gained some traction from the 1970s to the mid-late

90’s: modified gravity and its first iteration, Modified Newtonian Dynamics (MOND).
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Figure 1.4: Figure 1 of [16], reproduced here for illustration of rotation curve modeling.
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1.2.2 Modified Gravity

We can see from Figure 1.4 that an immediate solution to the rotation curve problem is one we’ve

encountered in the past: that our theory of gravity is wrong. It’s fairly apparent that if the gravi-

tational force fell o↵ as 1/r instead of 1/r2, then we could easily accommodate flat rotation curves

without invoking ‘spooky’ dark matter. Assuming we’re further away from the galaxy than any of

its mass constituents, then we can modify equation 1.20 by multiplying by R giving the equation

v2 = ↵GMtot (1.37)

which is clearly consistent with a flat rotation curve. In a phenomenological modified gravity sce-

nario, one only needs to fit the mass to light ratio and scale length over which the gravitational

force goes from 1/R2 to 1/R to fit the rotation curves given the same measurements. This is exactly

what is done in [16] for the exact same rotation curves from the previous section, and the results

are reproduced in Figure 1.5.

This seems like a much simpler explanation than invoking an entirely new type of matter that

has to weigh at least 10x (sometimes 100x) the known mass of a galaxy. As a result, the authors

conclude[16]:

The overall conclusion is that MOND is currently the best phenomenological description

of the systematics of the [rotation curve] discrepancy in galaxies.

In the interest of completeness, I want to summarize the basic argument made by proponents of

modified gravity before discussing some of the more recent theoretical and experimental advances

that have led to it falling out of favor.

Theories of modified gravity in their original form were referred to as MOdified Newtonian

Dynamics (MOND), first put forward by Mordehai Milgrom in 1982[19] as an intellectual exercise

following the logic in the previous paragraph. The argument went that in the limit of very weak

acceleration, if F = ma
2

a0
, then the natural prediction in this limit is that of a flat rotation curve[72]:

F =
ma2

a0
=

GMm

r2
(1.38)

(v2/r)2

a0
=

v4

a0r2
=

GM

r2
(1.39)

v4 = a0GM (1.40)

In Milgrom’s original formulation, Newton’s second law was written as

F = mµ

✓
a

a0

◆
a (1.41)

where µ(x) was said to be some function, coming from a complete theory, with the limiting cases
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Figure 1.5: Figure 2 of [16], reproduced here for illustration of rotation curve modeling.
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µ ! 1 for x >> 1 and µ ! x for << 1, with a0 ⇠ 1.2 · 10�10m/s2.

The immediate problem with this initial proposal as a theory is that it violates essentially all

physical conservation laws, and in a few years Milgrom and Bekenstein produced a theory starting

from the Lagrangian of Newtonian mechanics (to ensure conversation of energy and momentum),

which allowed them to reproduce in a more rigorous way the scaling law shown above for spherical

symmetry within some limits[17]. The modern theory, Tensor-Vector-Scalar gravity (TeVeS), now

incorporates relativity and can account for much more complex systems than the original version

of modified gravity, but at the expense of a handful of new parameters. In addition, despite this

additional freedom, TeVeS has thus far failed to match modern cosmological measurements, described

in the next few sections, which has led to the particle theory of dark matter steadily gaining traction

over the past 20 years[19].

A recent development worth mentioning at this point, despite being chronologically out of order,

is the work of Eric Verlinde on emergent gravity[106]. If the main criticism of past theories of

modified gravity were that they had become too convoluted and were not rooted in any deep laws

of physics, then Verlinde’s elegant use of thermodynamics to allow gravity to become an emergent

phenomenon is just the opposite. As it is a new and as-yet still developing theory, I will not comment

further, other than to note that as of this writing it has successfully accounted for some rotation

curves, but has yet to be accurately applied to the evidence we will discuss in the next sections, and

therefore nothing more precise can be said than it is perhaps a more elegant and natural form of the

Bekenstein-Milgrom theories that came before it. In addition, despite the initial success, there has

already been pushback by groups claiming that in highly gas-rich galaxies, emergent gravity cannot

match observed rotation curves[62].

1.2.3 Gravitational Lensing

In response to the debate pitting modified gravity against particle dark matter, an additional means

of measuring gravitational potential becomes a powerful tool to add to optical and radio rotation

curves that is independent of the light emitted by the galaxy. General Relativity (GR) predicts that

a gravitational potential well should cause light to bend around a large mass, creating a gravitational

lens.

Consider the most basic example of gravitational lensing in GR, the Schwarzchild lens[96]. Using

the simple metric around an isolated mass distribution, the angular deflection due to the point mass

is

⇥ =
4GM

rc2
=

2Rs

r
(1.42)

where M is the mass of the lens and r is the impact parameter of the lens, or distance to the lens

in the plane perpendicular to the observer, and Rs is the Schwarzchild radius

Rs =
2GM

c2
(1.43)
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This formula is a good approximation for small angles in the limit that r >> Rs, which for very

large masses is an excellent approximation on cosmological scales. In the simplest lensing case, we

can consider a source directly behind the lensing object; at some critical radius rc we will observe

the light from this object for all angles about the lensing object, forming a classic ’Einstein ring’.

In this case, we can use the geometry of the problem to determine a desired unknown as follows.

We know that by symmetry, for us to actually observe the object, it must be as far behind the lens

as the lens is from us. Thus the triangle of the lens distance d, impact parameter r, and observed

angle ✓obs give

✓obs = arctan
r

d
(1.44)

and thus the deflection angle is

↵ = 2(
⇡

2
� ✓obs) (1.45)

giving the relations

⇡ � 2✓obs =
4GM

rc2
=

4GM

d tan(✓obs)c2
(1.46)

and

Mlens =
c2d tan(✓obs) (⇡ � 2✓obs)

4G
(1.47)

Thus if we know the distance to either the lens or the distance object, we can determine the mass

enclosed within a sphere with the radius of the impact parameter. In many cases for these lenses

it is possible to determine the distance to either the lens or lensed object through the cosmological

distance ladder, allowing us to map the gravity well of a given lens.

This simple treatment breaks down when we depart from simple lens models or attempt lensing

measurements within a continuous mass distribution, but is a good illustration of the principle

and can be used without modification in a small number of cases where the assumptions are met.

Most famously, one of the first confirmations of general relativity came from the measurement of

gravitational lensing around the sun, which of course is highly symmetric and contained[96].

The key example of lensing measurements employed to address the dark matter problem comes

in the form of the bullet cluster[30], shown in Figure 1.6. Measurements of this galaxy cluster with

Hubble Space Telescope (optical) and Chandra (X-ray) observations allow us to trace the mass

distribution through the lensing profile, shown in the left panel of the figure, and the gas mass of

the cluster, which is the majority of the system’s baryonic mass, is shown in the right panel Due to

the recent collision of the two clusters, much of the interstellar gas has been heated and stripped by

tidal forces, but the majority of the mass has proceeded through the collision seemingly una↵ected.

Thus we find that the majority of the gas is spatially separated from the majority of the mass, which

does not seem to interact.

The bullet cluster observations show both that dark matter has a much weaker self-interaction,

if a particle, than hydrogen, and that simple modifications to gravity, which nonetheless preserve
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Figure 1.6: Figure reproduced from [30].

the central potential, cannot explain this phenomenon while dark matter can. This and subsequent

cluster lensing studies have shown the same pattern repeats in a handful of other clusters that

have recently undergone collisions, and together with constraints from the CMB is the main line

of evidence used to argue against modified gravity. MOND in its simpler form can do better than

Newtonian gravity, but still di↵ers by a factor of 2[19], while very exotic gravity can get closer to a

full explanation, but invokes new fields that need to act much like new particles to be compatible

with early universe cosmology.

This is an ongoing field, and since the first publication in 2006[30] many papers with new lens

measurements have been published[96]. Over the intervening decade, consensus has built that the

most natural explanation for these phenomena are non-Baryonic particle dark matter. Most recently,

work has gone into using mass contours from gravitational lensing to try to put lower limits on the

dark matter self-interaction cross-section[53]. Due to the rarity of cluster collisions, it is unlikely

that we will ever have a sample of more than a few dozen recently collided clusters, but it is possible

that as more work is done on the upcoming series of dark energy campaigns (DES, DESI, LSST and

others) more lensing candidates will be identified and a more statistically representative sample will

arise that will begin to settle questions of cosmic variance versus naturalness.

1.2.4 Cosmic Microwave Background Radiation

The most compelling evidence for particle dark matter, and the reasoning that guides us towards

the best candidates, are tied to the standard cosmological model as measured through e↵ects only

tractable through the application of general relativity15. The best tools we currently have to under-

stand the constituents of the universe are general relativity, as a mathematical framework, coupled

15
This section largely follows that found in the particle dark matter review by Bertone, Hooper, and Silk[20]

FIG. 1.- Shown above in the top panel is a color image from the Magellan images of the merging cluster 1E0657-558, with the white 
bar indicating 200 kpc at the distance of the cluster. In the bottom panel is a 500 ks Chandra image of the cluster. Shown in green contours 
in both panels are the weak lensing 1< reconstruction with the outer contour level at 1< = 0.16 and increasing in steps of 0.07. The white 
contours show the errors on the positions of the 1< peaks and correspond to 68 .3%, 95 .5%, and 99.7% confidence levels. The blue +s show 
the location of the centers used to measure the masses of the plasma clouds in Table 2. 
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to ⇤CDM, our current model for how the universe evolved. The ⇤ in this acronym stands for dark

energy, which at present we believe to constitute about 75% of the energy density of the universe in

the present epoch, and CDM is for cold dark matter, which controlled the evolution of the universe

for the majority of its history until relatively recently.

We start with the Einstein field equation:

Rµ⌫ � 1

2
gµ⌫R = �8⇡GN

c4
Tµ⌫ + ⇤gµ⌫ (1.48)

where Rµ⌫ and R are the Ricci tensor and scalar, gµ⌫ is the metric, GN is the Newtonian gravity

constant, Tµ⌫ is the stress-energy tensor, and ⇤ is the cosmological constant. As pointed out in

[20], this equation relates the geometry of the universe (on the left side) to the energy content of

the universe (on the right). If we assume an iostropic and homogeneous universe, we get the line

element

ds2 = �c2dt2 + a(t)2
✓

dr2

1� kr2
+ r2d⌦2

◆
(1.49)

which defines the metric in the previous equation given ds2 = gµ⌫xµx⌫ . Here, a(t) is the scale factor

(the relative size of the spatial and time dimensions) and k is the curvature of space-time, where

k = 0 is flat space. We can solve the Einstein equation for this metric to get the Friedmann equation

H(t)2 +
k

a2
=

8⇡GN

3
⇢tot (1.50)

where we have introduced the time-dependent Hubble parameter

H(t) =
ȧ

a
(1.51)

and ⇢tot is the total average energy density of the universe. The gives us a way to relate the relative

expansion of the universe parameterized by H(t) to the energy density of its constituents. We

typically re-write this in terms of the dimensionless parameters

⌦i =
⇢i
⇢crit

(1.52)

where

⇢crit =
3H(t)2

8⇡GN

(1.53)

and the Friedmann equation becomes simply

⌦� 1 =
k

H(t)2a2
(1.54)
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In a flat universe, where k = 0, this means that

⌦ =
X

i

⌦i = 1 (1.55)

and for a universe with curvature ⌦ will then either be greater than or less than 1 depending on the

sign of k.

These relations are useful for relating the energy density at earlier times in the universe to the

current epoch; for ⇤CDM with k = 0, we find that

H(t)2

H2
0

=
h
⌦⇤(1 + z)3(1+w) + ⌦M (1 + z)3 + ⌦R(1 + z)4

i
(1.56)

where ⌦M = ⌦b + ⌦c is the mass density (in Baryons and cold dark matter respectively), ⌦⇤ is

the dark energy density, and ⌦R is the radiation energy density, all in the current epoch. z is the

redshift, defined as

z =
�obs
�emit

� 1 =
athen
anow

� 1. (1.57)

Thus we can use measurements of H(t) in di↵erent epochs to constrain the relative energy density

of di↵erent components of the universe as a function of time.

Measurements of the cosmic microwave background (CMB) capture the energy densities as they

were at recombination (z ⇡ 1100) and allow us to use ⇤CDM cosmology to project primordial

densities forward in time, in essence measuring the current mass density in the universe as compared

to dark energy and radiation. The CMB is essentially an initially constant temperature surface

that, as it evolved forward in time, carried with it the local structure of the gravity well in which

it last froze out. If we model the early universe as a baryon-radiation fluid and include additional

damping dynamics from non-baryonic dark matter, we can determine the power spectrum of local

over-densities and under-densities due to the relative strength of gravity and radiation pressure. The

relative coupling of the radiation to the matter thus allows us to use these dynamics to determine the

fraction of the matter that is baryonic. The relationship between the location of matter anisotropies

and energy densities is non-analytic but can be modeled numerically, and by fitting simulations with

given cosmologies to the observed CMB power spectrum we can constrain the relative densities of

the constituent parts of the universe at recombination. For a more detailed discussion, I refer the

reader to [20, and references therein].

The most stringent current constraints from large-scale CMB measurements come from the

Planck satellite[82], which measured the CMB temperature anisotropy shown in Figure 1.7. The

best-fit parameters for the nominal 6-parameter model (assuming equations of state for the dark

matter and dark energy) give the matter density

⌦M = 0.313± 0.013 (1.58)
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Figure 1.7: CMB temperature anisotropy measured by the Planck experiment[82]. The relative
height of the first few peaks and their locations help to determine the relative fraction and importance
of dark matter, Baryons, and radiation in the early universe.

and the relative baryon and cold dark matter fractions

⌦bh
2 = 0.02222± 0.00023, ⌦ch

2 = 0.1197± 0.0022 (1.59)

where h = H0/100, giving the co-moving cold dark matter to baryon density ratio

⌦c

⌦b

=
0.1197

0.02222
⇡ 5.4

This roughly matches the ratio found from modern analysis of galaxy clusters discussed earlier in

the chapter; the dark matter outweighs hot intra-cluster gas by a factor of 5-6.

Due to the fact that the oscillations seen in the CMB are frozen at the time of recombination,

observations made for z < 1100 can also implicitly measure aspects of these same oscillations seen

in the CMB anisotropy. One particularly powerful method is to measure 3-d clustering of galaxies

as a function of redshift; given that the mean correlation lengths should be the same throughout the

universe at a given redshift, the evolution of this parameter traces the expansion of the universe and

helps constrain the cosmological parameters. These Baryon Acoustic Oscillation (BAO) constraints

are typically used as a complementary dataset to increase the precision of CMB measurements,

along with ground-based observations of the higher-order modes of the CMB[82]. The addition
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of this complementary data highlights non-trivial covariances in the cosmological parameters that

a↵ect the constraint of the matter fraction in the early universe.

Despite the success of using the CMB and BAO to match local observations historically, the

complexity of fitting a very high-dimensional and highly covariant set of cosmological parameters

has led to some tension between high redshift and local measurements[100, 21, 87]. Fortunately,

the dark matter/baryon ratio is largely invariant to these uncertainties given that h cancels in this

ratio, as shown above, and thus this is one of the results most robust to discrepancies between

local and high-redshift measurements[82]. Nevertheless, these high precision cosmological studies

are an incredibly powerful tool for understanding the role of dark matter in our universe, and it

behooves the dark matter physicist to stay apprised of recent developments in these fields. The most

recent paper discussing local/high-z discrepancies comes by way of the Dark Energy Survey, which

demonstrates that by relaxing some of the less constrained priors on the fits, discrepancies in H0

discussed by e.g. the SH0ES and H0liCOW projects [87, 100, 21] can be resolved[31]. Relaxing these

constraints represent interesting statements about physics either locally or in the early universe, and

time will tell whether these discussions fulfill their promise of using cosmology to make fundamental

physics measurements comparable to those possible in particle physics experiments.

1.2.5 Measurements of Local Mass Density

While the best evidence for the existence of dark matter comes from measurements on the galactic

and cosmological scales, the local dark matter density is most relevant to our ability to study dark

matter in earth-bound laboratories. As mentioned earlier in this chapter, the first estimates of

the local dark matter mass density were done by Kapteyn and Oort in the 1920’s using local stellar

kinematics. A great review of the history of these measurements can be found in [84], and Figure 1.8

shows a summary of these measurements reproduced from that work.

The simplest way to measure the local dark matter density is through kinematics of the local

stellar population. For gravity in the weak-field limit, we can relate the gravitational potential and

mass distribution using Poisson’s equation:

4⇡G⇢ = r2� =
@2�

@z2
+

1

R

@

@R

✓
R
@�

@R

◆
(1.60)

Suppose we have a disk that has a scale height z0 much smaller than its radius scale R0, such that,

in the local stellar vicinity,

⇢(R, z) ⇡ ⇢(Rsun) exp(�z/z0), (1.61)

which also implies that the radial term in equation 1.60 is necessarily small. This gives us a one-

dimensional equation in z:

4⇡G⇢ ⇡ @2�

@z2
. (1.62)
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Figure 1.8: History of measurements of local density from taken from [84]. We can see that few mea-
surements were possible until the advent of modern surveys in the 90’s but the initial measurements
were fairly close to the modern expected value of ⇠ 0.3 GeV/c2.
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Integrating once in z gives us an equation that will begin to look familiar:

4⇡G⌃(zmax) ⇡
d�

dz
= �Fz(zmax) (1.63)

where ⌃(zmax) is the surface mass density of the disk integrated out to the disk height in question.

For stars far from the disk, this is just the equation of simple harmonic motion! This implies that

for this geometry, we should observe stars of a given mass far from the disk to oscillate through the

disc with angular frequency

! =

r
4⇡G⌃

mstar

(1.64)

and thus by measuring the distribution of stellar velocities of tracer stars, we should be able to infer

the e↵ective surface density of the disk for small enough volumes. This method is similar to those

used originally by Kapteyn and Oort, where the inferred local dark matter density is thus

⇢dm(zmax) =
⌃(zmax)� ⌃b(zmax)

2zmax

. (1.65)

The density is highly degenerate with the baryonic mass density ⌃b(z), which is generally one of the

larger systematics in these analyses.

As pointed out by [84], this method su↵ers from the many assumptions we needed to make along

the way, and more sophisticated methods (including those used by Jeans) make fewer assumptions

at the expense of mathematical complexity, and the constraint of the local density is in itself a very

involved field of astrophysics. As shown in Figure 1.8, the modern accepted value for the local dark

matter density is ⇠0.3 GeV/c2, with a significant error bar extending from 0.2 to 0.6 depending on

the methods involved and the data used. Data being taken currently by the Gaia satellite promises

to greatly improve the precision of this measurement in the coming years[84, 19, 20].

1.3 Dark Matter Phenomenology

In the previous sections, I reviewed the astrophysical motivation for the existence of a new type of

matter that behaves di↵erently than baryonic matter. In this section I will review the remaining

candidates for this dark matter framed in the context of directly detecting interactions of dark

matter particles � with standard model particles in an earth-bound experiment, and then touch

upon other candidates that have been ruled out by indirect means or by searches at colliders.

In the context of a direct detection experiment, the approach to studying dark matter can be

reduced to the measurement of a di↵erential event rate as a function of time in the presence of

known backgrounds. For an isolated nucleus, we know that the event rate will be

�n = n��hvi =
⇢�
m�

�

Z
vf(v)dv (1.66)
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and so for a detector of mass Mdet and nuclear mass mn we have the total detector rate

�det =
Mdet

mn

⇢�
m�

�

Z
vf(v)dv. (1.67)

Taking the derivative of this with respect to energy transferred E = q2/2mn and velocity v gives

the di↵erential rate

d�det =
Mdet

mn

⇢�
m�

(d�/dE)vf(v)dEdv (1.68)

This equation allows us to input the physics for our particular model. For the case of spin-

independent scattering, we calculate the di↵erential cross-section:

d�

dE
= 2mn

d�

dq2
=

mn

2µ2

�0
v2

F 2(|q|) (1.69)

where

µ =
mnm�

mn +m�

(1.70)

and F 2(|q|) encodes the momentum-dependence in the coupling of the dark matter to the standard

matter particle it scatters o↵ of. This gives the final di↵erential rate equation

d�det =
Mdet

mn

⇢�
m�

mn

2µ2
�0F

2(|q|)f(v)
v

dEdv (1.71)

= Mdet

⇢�
2µ2m�

�0F
2(|q|)f(v)

v
dEdv (1.72)

d�det

dE
= Mdet

⇢�
2µ2m�

�0F
2(|q|)

Z 1

vmin

f(v)

v
dv (1.73)

where to conserve energy, we find for a given energy transfer there is a minimum allowed velocity

vmin =

s
mNE

2µ2
, (1.74)

and the velocity distribution has an implicit cuto↵ at vesc, the escape velocity of the galaxy. This

is the rate equation for direct detection of dark-matter nucleon scattering given in the often cited

dark matter reviews[64, 54].

I have provided the derivation again here to allow us to see how this is modified when we change

from a single nucleon to a coherent atomic scattering model later in this section, and to illustrate how

the di↵erent aspects of the calculation (velocity distribution, target mass, di↵erential cross-section)

can be changed to compute rates for di↵erent models. We can generalize a bit more by explicitly

splitting these components. First, we have the inverse velocity expectation value (following the
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notation of [33])

⌘(vmin) =

Z 1

vmin

f(v)

v
dv =

Z 1

vmin

g�(v)

v
d3v (1.75)

where we’ve explicitly used the 3-dimensional velocity distribution rather than an isotropic 1-

dimensional velocity distribution to make the formula more general (here using the convention

that
R
f(v)dv =

R
f(v)d3v = 1). We can make this a dimensionless quantity of order unity by

multiplying by v0 = 220km s�1, giving the rate equation[54]

d�det

dE
=

✓
Mdet

�0
2µ2v0

⇢�
m�

◆
F 2(|q|) (v0⌘(vmin)) (1.76)

The first term in parentheses sets the baseline rate, and the second two dimensionless terms will

often be of order unity, so the leading term can be used to estimate the di↵erential rate below

the velocity cut-o↵ and set the rate scale for a given detector mass, dark matter mass, and target

composition.

In the following sections, I will present di↵erent theories for the composition of particle dark

matter, and conclude with a section discussing the non-particle (astrophysical) candidates that have

not been ruled out. I will use this section as a reference when discussing science results later in this

thesis, but also to illustrate how di↵ering kinematics between these classes of theories allow us to

explain dark matter relic abundance, and how we can modify our scattering formalism to predict

energy spectra given new DM-SM couplings.

1.3.1 WIMP Dark Matter

For the first two decades of direct detection experiments, the focus of these searches was on ‘Weakly

Interacting Massive Particles’ (WIMPS), motivated by the growing prominence of Supersymmet-

ric models with a stable lightest Supersymmetric particle (LSP), which is a natural dark matter

candidate[54, 64, 18, 20]. In this section I will review the arguments for WIMP dark matter, and

summarize the studies that have now largely ruled out the best-motivated class of WIMPs. These

models are still viable but the parameter space has shrunk as new searches have excluded larger

areas of parameter space, and as the LHC has failed to turn up any evidence of Supersymmetry

(SUSY).

The first place to start when considering particle dark matter is to determine which candidates

can reproduce the cosmological abundance measurement discussed in the previous section. Here I

follow the derivation of Ref [54]. Suppose we have a new unknown particle � that was in equilibrium

with standard model particles in the early universe, such that ��̄ ! ll̄ and ll̄ ! ��̄ occur at equal

rates, where l are some other lighter standard model particles. The equilibrium number density at

some temperature T is given by

n� =
g

2⇡3

Z
f(p, T )d3p (1.77)

-----
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where f(p, T ) is the density of states (either Fermi-Dirac or Bose-Einstein) and g is the number of

internal degrees of freedom of the particle. For T >> m� (in units of energy) we find that

n� / T 3 (1.78)

while for T << m� we find the Boltzmann limit

n� ⇡ g

✓
m�T

2⇡

◆3/2

exp(�m�/T ) (1.79)

This second equation will thus predict that the density always goes to 0 as the universe cools,

but when the expansion rate exceeds this annihilation rate, the particles are no longer in thermal

equilibrium with the universe and their annihilation will stop, leaving a relic density defined by the

given mass and freeze-out temperature Tf at which this occurs.

The annihilation rate of the dark matter into standard model particles is given by the equation

�(T ) = n�(T )h�Avi (1.80)

and the relic density at freeze-out is given by setting �(Tf ) = H(Tf ). We thus find that

n�(Tf ) =
H(Tf )

h�Avi
(1.81)

and substituting the radiation dominated form H(T ) = 1.66g1/2⇤ T 2/mpl[54] we find

n�(Tf ) =
1.66g1/2⇤ T 2

f

mplh�Avi
(1.82)

where mpl is the Planck mass, and g⇤ is the e↵ective number of degrees of freedom. Dividing through

by the entropy density (s ⇡ 0.4g⇤T 3) gives

n�

s
(Tf ) =

4.15

g1/2⇤ Tfmplh�Avi
(1.83)

For weak-scale processes we find that solving the boltzmann equation at this point yields Tf ⇡
m�/20, which gives the equation

n�

s
(Tf ) ⇡

100

g1/2⇤ m�mplh�Avi
(1.84)

putting this in terms of measured quantities, and recognizing that the ratio on the left-hand side is
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constant in time, we have

h�Avi =
100

g1/2⇤ mpl

s0
⇢�

=
100

g1/2⇤ mpl

s0
⇢c⌦�h2

(1.85)

where s0 is the current entropy density, ⇢c is the critical density, ⌦� is the fraction of energy

composed of dark matter in the universe, and h is the reduced Hubble constant. This is typically

written (with standard assumptions) as

h�Avi ⇡
3 ⇤ 10�27cm3s�1

⌦ch2
(1.86)

Given that the denominator is of order unity, we thus have an estimate to an order of magnitude

of the cross-section, assuming thermal velocity, which is conveniently the same scale as the weak

force[54]. Note the assumptions that went into this calculation; we’ll re-visit some of them in the

next section.

For a numerically complete solution, the equilibrium density is found by solving the Boltzmann

equation[54, 95]
dn�

dt
+ 3Hn� = �h�Avi

⇥
n2
�
� (neq

�
)2
⇤

(1.87)

the results of which can be seen in Figure 1.9. This figure is an excellent illustration of the robustness

of the approximate result shown above; for the standard inflationary model, the relic density is

entirely determined by the velocity averaged annihilation cross-section h�Avi. This provides an

important input to selecting theories with stable dark-matter like particles based on expectations

for this cross-section, but (aside from logarithmic corrections) does not specify the dark matter mass.

When this result came out, two facts were apparent: that the predicted cross-sections are what

would be expected for a weak-scale interaction, and that SUSY, which was expected to be seen

at the LHC, easily accommodated dark matter candidates of the right mass and interaction scale.

Any complete description of SUSY is beyond the scope of this thesis, and I refer the reader to

Ref [54, 18, 20] and references therein as a starting point for a more in-depth discussion. What is

necessary for this thesis is to recognize that SUSY is a framework that describes an entire class of

models, and was not proposed to explain dark matter. Given that SUSY predicts an entirely new

spectrum of uncharged neutralino particles, SUSY theories provide natural and well-motivated dark

matter candidates. Figure 1.10 shows a range of WIMP candidates that arise naturally in SUSY

and are consistent with the measured relic density.

For direct detection, the fact that we have a predicted present-day annihilation rate and a

predictive means to relate this to the nucleon-scattering cross-section means that we can predict,

for a given neutralino, what the observed di↵erential scattering rate should be in an earth-bound
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Figure 1.9: The canonical figure showing how relic density for the full numerically solved Boltzmann
equation is entirely determined by the velocity-averaged annihilation cross-section at freeze-out,
taken from Ref [57].

detector. Refs [20, 54, 64] give the WIMP-nucleus scattering coe�cients �0

�0spin =
32

⇡
G2

F
µ2⇤2J(J + 1) =

32

⇡
G2

F
µ2(J + 1) [aphSpi+ anhSni] (1.88)

�0scalar =
4µ2

⇡
[Zfp + (A� Z)fn]

2 (1.89)

whereGF is Fermi’s constant, J is the nuclear angular momentum, hSpi (hSni) is the proton (neutron)

spin expectation value, ⇤ encodes the expected spin, Z is the number of protons, and A is the number

of nucleons in the target detector. The constants a and f encode the coupling of the WIMP to the

nucleons, thus allowing the rates to be tied to the model being tested. It is in general much harder

to probe spin-dependence, given the limited number of targets with appreciable nuclear spin, and
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Figure 1.10: Scatter plot of relic neutralino density versus neutralino mass for a set of SUSY models
from Ref [54]. The highest density of models consistent with astrophysical observations is found in
the 20-100 GeV range, but masses up to 300 GeV are viable candidates.

the standard has become to quote the nucleon cross section assuming spin-independent (or scalar)

scattering for better comparison between experiments with di↵erent target nuclei. We can see from

�0,scalar that the overall event rate scales as A2 in the case that fp ⇠ fn, so limits are put on �0

and converted to �n as

�n ⇡ �0,meas

A2
(1.90)

For these measurements, the form factor is taken from experimentally measured nuclear form factors

for given materials, and event rates are thus numerically computed, though they can be well fit with

approximate forms; see Refs [54, 64] for more details. In most cases, F (Q) ⇠ 1 is a good order of

magnitude approximation. Most of the shape of the di↵erential event rate comes from momentum

and energy conservation of elastic scattering and the shape of the WIMP velocity distribution, rather

than significant changes in cross-section with momentum.
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Figure 1.11: Current spin-independent dark matter-nucleon cross-section limits from Ref [91]. Over-
laid are contours for dark matter candidates in SUSY models not excluded by LHC run 1.

The current state of direct-detection constraints for nuclear-recoil dark matter can be seen in

Figure 1.11, compared to the current SUSY candidates not excluded by recent results from the

LHC. The limits (and the few claimed discovery contours) in this plot show the progress made in

direct-detection over the past decade, and show that the ’natural’ weak-scale WIMP (� ⇠ 10�43cm2,

m� ⇠ 20�400GeV/c2) has been almost entirely ruled out. The success of Xenon-based experiments

show the sensitivity gained from the coherent enhancement of event rates in massive nuclei, and

the future of high-mass dark matter searches will be driven by a new generation of ton-scale Xenon

detectors in low-background environments. When the mass of the dark matter particle drops below

the Nucleon mass, these technologies rapidly lose dark matter sensitivity, and the lower masses

are dominated by low-threshold Si/Ge experiments, which also benefit from a higher dark matter

number density and thus do not need to have such a large fiducial mass. These considerations will

be discussed in much more detail later in this thesis.

The limits in Figure 1.11 also show results from the DAMA/LIBRA collaborations, which have

shown an annual modulation in event rate at increasingly higher significance for two decades [14].

Since the velocity of the earth relative to the galactic center changes as the earth revolves about

the sun, there will be an annual modulation in the velocity distribution of WIMPs encountered by

earth-bound detectors. While this is true, it has proven di�cult to show that any observed annual

modulations were due to dark matter and not other seasonal backgrounds, and experiments that

1040 

1042 

-N 

E 1044 

u -

10-50 
1 

89 

Neutrinos 

10 

ODAMA/1 

CRESST-11 (2012) 

MSSMp19 ,..j -

CMSSM j ___ , 

-.c 
a. -

1 o-12 

I 



CHAPTER 1. THE NEED FOR NEW PHYSICS 38

are much more sensitive than the initial DAMA experiments have failed to see either an annual

modulation or an unknown background consistent with dark matter. As a result the community has

moved away from looking for annual modulations as a discovery approach, and the DAMA result

stands as a curiosity that is inconsistent with other results. As of this writing, there are a series of

planned follow-up experiments that aim to try to reproduce the DAMA experiment and understand

this yearly modulation. For more details see Ref [14] and references therein.

In summary, while WIMP dark matter was very promising, the lack of evidence for SUSY and

the null results coming out of the large liquid Noble detectors has made supersymmetric WIMP

dark matter no more attractive than the other proposed models, and the community has begun

to branch out into other mass ranges motivated by non-supersymmetric theories, including WIMP

masses down to and below that of a proton motivated by asymmetric dark matter and other theoretic

models. In the rest of this section I will consider the other non-WIMP candidates for dark matter

in the context of their relation to the established field of WIMP dark matter searches.

1.3.2 Sub-GeV Dark Matter

In the previous section I showed that the relic density calculation was mass-independent, and the

WIMP miracle suggested a mass range to start the search motivated by naturalness and SUSY. Now

that the most obvious place to look has been ruled out, the field is starting to spread out to cover

a larger mass and cross section range, and considering a wider range of theories (which solve other

problems in particle physics) that could accommodate dark matter candidates. A subset of these

models is summarized in Figure 1.12.

One particularly interesting class of models are those in the keV-GeV range, which are most

generally described by the simplified model of a hidden sector, where dark matter (DM) interacts

with the standard model (SM) via a new force mediator. The simplicity of this picture allows us to

relate the dark matter and mediator masses to the annihilation cross section and determine where

the interesting mass/cross section range would lie for a given model. There are 3 cases generally

considered in the literature[2, 51]:

• ’Secluded’ Freeze-out (m� > mmed) - The DM is not the lightest particle in the dark sector,

and is frozen out to the mediator, which subsequently continues to interact with SM particles.

In this case the annihilation cross-section has the form

h�Avi /
g4
D

m2
�

(1.91)

• ’Direct’ Freeze-out (m� < mmed) - The DM is the lightest dark sector particle and freezes out

--
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Figure 1.12: Summary of dark matter candidates from Ref [2].

from SM particles through a heavy mediator

h�Avi /
g2
D
g2
SM

m2
�

m4
med

(1.92)

• Freeze-in - If the dark sector is initially empty and does not thermalize, then the thermal relic

paradigm is not applicable; instead the relic can be produced by SM particles freezing out into

light dark-sector mediators, some of which decay into the DM.

These mechanisms allow us to determine regions of parameter space in which to look for these

simplest models, and motivate tailored searches for lower mass particles. Lower-mass DM candidates

also imply higher number densities, given that we know the mass density, and can be probed by

smaller experiments.

The challenging aspect of searching for these lighter DM particles, however, is that the scattering

kinematics result in a very small momentum transfer, and thus require much more sensitive detectors.
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To see why this is the case, consider the maximum energy transfer in an elastic two-body collision:

�Emax =
2µ2v2

�

mT

(1.93)

⇡
2m2

�
v2
�

mT

(m� << mT ) (1.94)

⇡ 2mT v
2
�
(m� >> mT ) (1.95)

where mT is the target mass and v� is the velocity of the incoming WIMP. Considering a DM

particle moving near the galactic escape velocity v� ⇠ 600 km/s gives the numerical bounds

�E . 70 eV
⇣ m�

500 MeV

⌘2 ⇣ mT

28 GeV

⌘�1
(m� << mT ) (1.96)

. 4 eV
⇣ mT

511 keV

⌘
(m� >> mT ) (1.97)

where I’ve used numbers for Si and a free electron in order to give the most favorable estimates.

These energy scales (both below 100 eV) are well below the current energy threshold of the most

sensitive liquid noble dark matter experiments, and are only starting to become accessible with

lighter target materials.

One fortunate caveat is that these equations hold for elastic collisions, but not for inelastic

collisions between bound electrons and dark matter. Because the electron is in a bound state, its

momentum is not definite, and in principle its momentum can be arbitrarily high with non-zero

probability. Ref [33] shows that the momentum transfer bound is

�E  1

2
µv2

�
⇡ 1 keV

⇣ m�

500 MeV

⌘
(m� << mT ) (1.98)

This is a much larger energy scale, and should dominate any experimental spectra produced by

DM in detectors if the electron and nuclear interaction cross sections are within a few orders of

magnitude of each other. For this reason, limits on DM-SM cross sections are given in terms of the

electron-scattering interaction cross section instead of the nucleon cross section, as is done for DM

in the WIMP regime.

The mathematical framework for light dark matter scattering on electrons, especially in semi-

conductors, is not quite as standardized as it is for WIMP-nucleon scattering, so here I will defer to

the formalism of Ref [33] when there is a question of which definition to use. We start with a de-

composition similar to earlier, where we separate a normalized form factor F (q) from a cross-section

scale �̄e (similar to �0) to get the bound-state cross-section scale [33]

�e =
|Mfree(↵me)|2
16⇡(m� +me)2

(1.99)
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where Mfree is the matrix element for free DM-electron scattering averaged over all initial and final

spin states. The di↵erential event rate can be written in a similar but slightly di↵erent form than

for the WIMP [33]:

d�det

dE
=

✓
Mtarget

⇢�
m�

�̄e↵

2µ2
�e
v0

me

mT

◆Z
dq

✓
me

q2
v0⌘(vmin(q, E))

◆
FDM (q)2|fcrystal(q, E)|2 (1.100)

where fcrystal is the crystal form factor determined from transition rates between electron eigenstates

in the crystal lattice. This rate is obviously more complicated to compute (owing to the lattice

dynamics), and electron scattering is much simpler in detector materials where electron states are

more continuous. This means the electrons are closer to being free-electrons, and hence get less of

a kinematic boost from their binding nucleus.

This equation is re-factored so that the integral is a dimensionless function of the variables and

the leading term contains the rate normalization. Comparing this to equation 1.76 we find that the

leading term is very similar, except for the replacement of �0 with �e↵ and the addition of a scale

factor me
mT

. The major di↵erence is that, since we’re in a crystal lattice, we need to integrate over q

and E separately rather than separating the mean inverse speed from the form factor. It is simple

to show that in the limit of continuous states, the form factor reduces to delta functions in energy

and momentum, and this equation becomes much closer to that in equation 1.76.

The current limits as well as future prospects for select semiconductor targets can be seen in

Figure 1.13. Unlike the WIMP limits shown in Figure 1.11, the majority of the simplest relic density

parameter space has not yet been probed, and light dark matter is in a sense low-lying fruit for the

upcoming series of small low-threshold experiments.

Light dark matter (defined as dark matter in the keV-GeV range) is thus a viable candidate to

explain the current dark matter density, and requires the development of a class of detectors distinct

from those design to search for WIMP dark matter. Light dark matter is well motivated and can be

probed by experiments much smaller and less complex than those needed for the remaining WIMP

parameter space. This is an ever-growing field, and I refer the reader to Refs [51, 2, 1] for more

in-depth discussion and the references therein.

1.3.3 Bosonic Dark Matter

Figure 1.12 clearly shows a lower limit for hidden-sector DM in the keV range, but allows for other

models below that range under the heading ‘Ultralight Dark Matter’. The lower limit for fermionic

dark matter is around a few keV and is set by constraints from Lyman-alpha forest measurements

on substructure formation[15]; below this mass the dark matter is numerous enough to allow its

degeneracy pressure at early times to have a measurable e↵ect on substructure formation in the

early universe[2]. This does not preclude ultra light bosonic dark matter, however, which does not

produce such degeneracy pressure, and thus the lower-limit for ultra-light dark matter has a much

--------
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Figure 1.13: Figure 2 from Ref [33] showing current limits and reach of upcoming experiments
compared to the thermal relic targets for some simple models of hidden sector light DM. Note that
the freeze-in scenario can only be probed by direct detection experiments, and is otherwise only
limited by astrophysical constraints.
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Figure 1.14: (Reproduced from Figure 7 of Ref [34]). Parameter space for hidden-photons with
mass mA < 1 MeV. Colored regions are: experimentally excluded regions (dark green), constraints
from astronomical observations (gray) or from astrophysical, or cosmological arguments (blue), and
sensitivity of planned and suggested experiments (light green) (see Ref [34] for more details)

lower bound in mass.

Consider, for example, a freeze-out scenario where the lightest dark sector particle is the bosonic

force mediator and the thermal relic is a sea of dark photons. The simplest detection scenario

is through kinetic mixing with the SM photon and results in a complete absorption in the target

medium. For these events, the rate in a perfect detector would look like a delta-function in energy,

and would present the event rate[47]

� =
Mdet

⇢det

⇢�
mA

2
eff

�1(mA) (1.101)

where mA is the dark photon mass, �1 is the real part of the conductivity in the given target for a

photon with an energy equal to the dark photon mass, and keff /  is the e↵ective kinetic mixing

parameter  including in-medium e↵ects that alter the kinetic mixing properties from their vacuum

expectations[47].

The majority of bosonic dark matter models, which cover a very broad mass range and include the

well-motivated QCD axion, are beyond the scope of this thesis, and I refer the reader to Refs [34, 1, 2]

for a thorough review. A summary of the current constraints on bosonic dark matter can be seen

in figure 1.14.
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1.3.4 Other Dark Matter Candidates

Coming back to Figure 1.12, I have discussed dark matter candidates in the range from well below an

eV and up to a few hundred TeV. There is a large break above the WIMP mass range to macroscopic-

sized objects. The few natural candidates above this bound have been largely ruled out over the

past two decades; most of the baryonic candidates are heavily disfavored by the excellent fit to the

CMB power spectrum, which clearly implies that dark matter is non-baryonic. Nevertheless, there

remain a few possibilities for very heavy dark matter:

• MAssive Compact Halo Objects (MACHOs) - Shortly after the WIMP paradigm was suggested,

the possibility that there were a multitude of compact objects that constituted the dark matter

was proposed. The MACHO collaboration searched for MACHOs in the Milky Way halo by

looking for micro-lensing events, and put an upper limit on the DM fraction of 8%. The

CMB measurement of Baryon fraction makes it highly likely that this is an over-estimate and

precludes MACHOS from being a dominant fraction of the dark matter (see Ref [19] and refs.

therein).

• WIMPZillas - There is a strong upper limit on the WIMP mass that comes from the unitary

bound; depending on the assumptions made this limit is ⇠30–300 TeV[20]. This limit only

applies for thermal relic DM, so it is possible that much heavier particle DM exists, but it

would need to be produced in a freeze-in scenario. The motivation for WIMPZillas comes

from unexplained high-energy cosmic rays that would be naturally produced by a WIMPZilla

decay[20].

• Primoridal Black Holes - One of the few still viable non-particle dark matter candidates is

primordial black holes, created in various modified inflation scenarios. Many of the potential

mass-ranges have been ruled out, and current constraints are discussed in detail in Ref [27].

The modifications needed to early universe cosmology to accomodate these primordial black

holes are significant, but given current inflationary constraints they cannot be ruled out[19].

This section is much shorter than it would have been even 10 years ago, as increasingly precise

cosmological measurements constrain the baryonic content of the universe, and local observations

continue to rule out compact objects. The particle candidates represent the most compelling ex-

planation for the host of observations we attribute to dark matter, and modified gravity cannot

yet explain the CMB and lensing phenomena. Thus where once the ‘dark matter’ was thought to

just be undiscovered objects, the field has converged on the idea that new particles and potentially

new forces are increasingly needed to explain both dark matter and a number of standard model

anomalies. As cosmology continues to increase in precision, and gravitational wave observatories

operate for longer and at better sensitivities, we will continue to constrain early-universe cosmology

and further narrow the field of candidates, potentially ruling out all non-particle dark matter or
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discovering that primordial black holes should indeed be expected in a certain mass-range. The

upcoming CMB-S4, LSST, and SKA experiments will make complementary measurements that will

vastly expand our understanding of the high-redshift universe and promise to shed more light on

the nature of dark matter.

1.4 Physics Reach of Low-Threshold Detectors

In this chapter I’ve laid out the case that 1) dark matter exists and 2) particle dark matter in the

eV-TeV range is well motivated from an early-universe cosmological perspective. In this section

I will briefly motivate the work presented in this thesis in terms of the discovery potential of new

detectors for dark matter across this mass range. I will focus primarily on the reach of semiconductor

and superconductor technologies, and summarize the full discovery potential of all current methods

under development to achieve sensitivity to lower-mass dark matter.

Figure 1.15: Left: Maximum energy transfer to a target through nuclear (solid) or inelastic electron
(dashed) scattering for a variety of target and dark matter masses, assuming the dark matter is
moving at v� ⇠ 600 km/s, roughly the galactic escape velocity. Higher energies are possible if the
earth’s velocity increases the center of mass velocity of the DM-Detector system, but the energy limit
is captured by the figure to better than an order of magnitude. Right: Di↵erential recoil spectra for
nuclear recoils at various WIMP masses in Ge, showing that as we go to lower mass, the maximum
energy drops but the overall rate increases due to the increased number density. The bandgap of Ge
is shown to indicate the minimum energy at which electron-hole pairs can be produced, important
for voltage-mediated semiconductor detectors.

The challenge of detecting dark matter masses below that of the target nucleus is summarized

by equations 1.96– 1.98, where it was shown that energy transfer is ine�cient for elastic scattering

but can be boosted by inelastic electron-mediated atomic scattering. Figure 1.15 shows the recoil

energy transfer at v ⇠ 600km/s for a variety of WIMP masses and targets for both elastic nuclear

and inelastic electronic scattering, as well as a series of nuclear recoil spectra for WIMPs at masses
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in the MeV-TeV range. The crosshairs in the left-hand panel show that the mass range is cleanly

bifurcated into masses above 10 GeV, which are accessible by experiments with keV thresholds, and

masses below 10 GeV, which need eV-scale thresholds for nuclear and electronic recoils. There is

also a tradeo↵ where the high-mass is dominated by nuclear recoil while the low mass is dominated

by inelastic scattering.

The majority of detectors overcome low energy backgrounds (IR and cosmogenic radioactivity)

by employing charge production either as the primary means of measuring energy deposition or as

a means of discriminating between event types, and thus detectors designed with eV-scale energy

thresholds also require eV-scale work-functions, such as those found in semiconductors. As can

be seen from Figure 1.15, liquid nobles (with the exception of Helium) pay the largest nuclear-

recoil penalty at low DM mass; coupled with their relatively high ionization energies (⇠12 eV in

Xe, ⇠16 eV in Ar) and propensity for non-gaussian charge leakage, these detectors face significant

challenges achieving sub-keV energy thresholds. Semiconductors on the other hand have eV-scale

gaps, and are crystalline, so they have much more predictable behavior. Superconductors can achieve

even lower bandgaps in the meV range. A range of these materials is shown in Figure 1.16.

Figure 1.16: Semiconductor (left) and superconductor (right) bandgaps for a variety of materials
in the meV-eV range. It is clear that for semidoncutors, the bandgap (depending on the nature of
the transition) is dependent primarily on the lattice spacing, while the superconducting bandgap is
determined very well by the critical temperature.

In this thesis I focus on the development of high-sensitivity readout for Si/Ge detectors, which

employ superconducting sensors to achieve sensitivity to excitations at the energy-scale of their

bandgaps. In particular, the detectors discussed in this thesis are designed to achieve sensitivity

to single electron-hole pairs in Si and Ge, and thus should be sensitive to energy deposits above

the bandgap in each material. The sensitivity of these detectors to DM through nuclear recoils and
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inelastic scattering (for the exposure and background expected for SuperCDMS SNOLAB[4]) are

shown in Figure 1.17.

Figure 1.17: Top: Projected sensitivity curves for SuperCDMS SNOLAB detectors through the
nuclear recoil channel[4]. Bottom: Projected sensitivity of single-charge sensitive Si/Ge detectors
for two di↵erent form factors for an exposure without background similar to what is expected for
SuperCDMS SNOLAB[33]. Similar limits are also shown in Figure 1.13.

The structure of the following chapters is as follows. In chapter 2 I will discuss charge and

phonon dynamics in the crystal relevant to the phonon-mediated gain operating of these detectors.

In chapters 3 I will present the response and noise model for transition edge sensors in the context

of our prototype devices, and in chapter 4 I will discuss the design of the SuperCDMS SNOLAB

HV detector readout, including the optimization of the phonon sensors and other design constraints

related to readout electronics. In chapter 5 I will present results from various prototype detectors,

both full-size SNOLAB designs and scaled down designs meant to probe various potential failure

modes. I will then present in chapter 6 the first electron-scattering results produced by SuperCDMS
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with a gram-scale prototype detector constructed according to the design principles described in

chapter 3. I will conclude with a chapter discussing future prospects and R&D for pushing beyond

the limitations of the generation of detectors discussed in this thesis, as well as potential imaging

applications for the current and near-future versions of this technology.



Chapter 2

High Voltage Charge & Phonon

Dynamics

“Quantum mechanics is certainly imposing. But an inner voice tells me that it is

not yet the real thing. The theory says a lot, but does not really bring us any closer

to the secret of the ”old one.” I, at any rate, am convinced that He does not throw

dice.”

- Albert Einstein, Letter to Max Born (4 December 1926)

My foray into charge transport simulations stemmed from the joint need to improve the detector

Monte Carlo being developed for SuperCDMS SNOLAB and to analyze the data from the first silicon

charge transport experiment conducted at Stanford. The results described here were published in

Ref [74]. This section summarizes the aspects of charge transport relevant to those e↵orts, and is by

no means a complete description or derivation of the laws contained here. An excellent introduction

to these topics in a CDMS context can be found in Kyle Sundqvist’s thesis [99], and a description

of the experiment from which the data in this section are taken can be found in Robert Mo↵att’s

thesis [75]. For further discussions of impact ionization, see Arran Phipps’ thesis [81]. An excellent

review of Monte Carlo methods which derives and discusses many of the formulae presented here

can be found in Ref [52]. For specifics on the CDMS detector Monte Carlo, I refer the reader

to Rob Agnese’s thesis [3] and references therein. For complete pedagogical reviews I refer the

reader to Ashcroft and Mermin[10] for an introduction and Ridley[85] for an advanced treatment of

semiconductor physics.

49
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2.1 Introduction to Band Structure

Band structure is a phenomenon that arises naturally from periodic potentials in quantum mechanics.

In its full glory, the 3D band structure of a material can be computed from overlap integrals of the

bound electronic orbitals of the free atomics which comprise the material, but in many cases the

form is remarkably similar to a 1D approximation of periodic potentials. An even simpler example

comes to us by way of just applying periodic boundary conditions to an otherwise unbound state.

In this section I will review this basic example, and then present the results of periodic finite square

well potentials in an attempt to give the reader some context for why we can treat a complex lattice

structure as modified free-space. The rest of this section will be much less pedagogical but I feel

this is an important example which makes the remaining infrastructure of solid state physics much

less mysterious.

Let’s consider the Dirac comb, a series of delta function potentials of height ↵ spaced a distance

a apart. Starting with the 1D time-independent Schrodinger equation

E =
~2
2me

d2 (x)

dx2
+ V (x) (2.1)

we solve for the case of a periodic potential

V (x) = ↵
1X

n=�1
�(x� na) (2.2)

For periodic potentials, we know from Bloch’s theorem that the solutions will be of the form

 (x+ a) = eiKa (x) (2.3)

where a is the spacing between sites and K is the crystal momentum, distinct from k, the wave

vector. In later sections k will be the crystal momentum, the lattice wave-vector, but we make this

distinction here to be clearer. First, we know the solution to the Schrodinger equation in free-space:

 (x) = A cos(kx) +B sin(kx) (2.4)

where k =
p
2mE/~. We now apply our boundary conditions that 1) Bloch’s theorem holds and 2)

the wave-function is continuous across lattice sites.

The first condition gives

 (a) = eiKa (0) (2.5)

A cos(ka) +B sin(ka) = eiKaA (2.6)

e�iKa [A cos(ka) +B sin(ka)] = A (2.7)

------
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The second condition we find by integrating the Schrodinger equation around a lattice site. We find

~2
2me

Z
a+✏

a�✏

d2 (x)

dx2
dx =

Z
a+✏

a�✏

(E (x)� V  (x)) dx (2.8)

~2
2me

"
d (x)

dx

����
a+✏

� d (x)

dx

����
a�✏

#
= E

Z
a+✏

a�✏

 (x)dx� ↵ (a) (2.9)

for ✏ << a. Taking ✏ to zero gives the boundary condition

d (x)

dx

����
a+

� d (x)

dx

����
a�

= �2m↵

~2  (a) (2.10)

For our wave equation, this evaluates to the condition

kB � e�iKa [B cos(ka)�A sin(ka)] = �2m↵

~2 A (2.11)

so that equations 2.7 and 2.11 allow us to solve for the unknown coe�cients A and B.

Solving these equations yields the transcendental equation

cos(Ka) = cos(ka)� ↵m

~2k sin(ka) (2.12)

which is our primary result. We find that the crystal momentum K is not a monotonic function of

k unless ↵! 0. In this case, in the small k and K limit we have

1� (Ka)2 ⇡ 1� (ka)2 � ↵m

~2
�
1� (ka)2/6

�
(2.13)

(Ka)2 ⇡
⇣
1� ↵m

6~2
⌘
(ka)2 +

↵m

~2 (2.14)

~2K2 ⇡
⇣
1� ↵m

6~2
⌘
(2mE) +

↵m

a2
(2.15)

E ⇡ ~2K2

2m⇤ � ↵

2a2
m

m⇤ =
~2K2

2m⇤ + E0 (2.16)

where m⇤ is the e↵ective mass of the particle

m⇤ =
⇣
1� ↵m

6~2
⌘
m (2.17)

and E0 is the zero crystal momentum energy (the work function). This is our secondary result; the

periodic potential scales the free-space momentum to the crystal momentum, which can be thought

of as changing the particle’s mass! This is a nice illustration of where the concepts of e↵ective mass

and crystal momentum come from. It’s also a very clean illustration of how dispersion relations in

crystals can be assumed quadratic in the small K limit. Notice that e↵ective mass can be negative

for potential barriers (↵ > 0), but not for potential wells (↵ < 0) and reduced to the free-space
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dispersion relation in the limit ↵! 0.

We finish this derivation by applying periodic boundary conditions to the whole system, assuming

it is a unit of N cells which wrap around on each other such that

 (x+Na) =  (x) (2.18)

which by Bloch’s theorem means that

 (x+Na) = eiKNa (x) =  (x) ! K =
2⇡n

Na
(2.19)

giving us the final equation

cos

✓
2⇡n

N

◆
= cos(ka)� ↵m

~2k sin(ka) (2.20)

In the limit of infinite lattice sites (infinite free-space) we thus have continuous ranges of allowed

values for ka =
p
2mEa/~2, or energy bands. Our third result is thus that periodic potentials give

rise to band structure!

Consider now a slightly more complicated model, where instead of delta functions we have finite

square wells of depth ↵ and width b spaced distance a apart. This commonly referred to as the

Kronig Penney model, and is used as a toy model for one-dimensional lattices. When we follow this

same procedure, we have free-electron wavefunctions with wave-vectors k1 and k2 and we arrive at

the transcendental equation[58]

cos(ka) = cos

✓
2⇡n

N

◆
= cos(k2b) cos(k1(a� b))� k21 + k22

2k1k2
sin(k2b) sin(k1(a� b)) (2.21)

This equation makes it much clearer that we’re producing a new momentum state k which is some

combination of k1 and k2, and numerically solving this transcendental equation gives us the disper-

sion relation E(k) given that k1 and k2 are both a function of energy, and the rest of the values

depend on constants of the problem. One can imagine the 3-dimensional problem contains of these

equations, approximately orthogonal, allowing for asymmetric dispersion relations, and therefore

asymmetric e↵ective mass. This is a very important aspect of charge propagation in semiconduc-

tors, and while we cannot analytically express the full band structure, it provides nice intuition for

the concepts of dispersion relations and e↵ective mass.

2.2 Electrons: Conduction Band Structure

The full band-structure of semiconductor lattices is obtained by numerical integration of the interfer-

ence of free-atom electronic orbitals, and has a complex dispersion relation, as shown in Figure 2.1.
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Figure 2.1: Band structure computed numerically as shown in Ref [33] for Si and Ge.

The k-vector axis rotates through the set of valleys in the Brillouin zone where minima can exist

(by symmetry arguments, minima can only exist along a handful of unit vectors in k-space)[85].

In diamond cubic lattices (where each lattice site has four covalent bonds to adjacent sites), the

nomenclature for face-cenetered cubic bravais lattices is used. The k-space minima are found along

the following directions:

• � - k = 0, the center of the Brillouin zone. All valence bands are centered at �, and direct-gap

semiconductors are as well, such as GaAs.

• X - k̂ is along the coordinate axes, meaning there are 6 valleys per lattice site. This is the

lowest valley in Si.

• L - k̂ is equally shared along the coordinate axes; in the first Brillouin zone, k̂ = 1p
3
h1, 1, 1i,

meaning there are 8 valleys per lattice site. This is the lowest valley in Ge.

• K - k̂ is equally shared between two coordinate axes, for example k̂ = 1p
2
h1, 1, 0i, meaning

there are 12 valleys per lattice site.

• W - k̂ is at 30� from each of the coordinate axes in each coordinate plane, for example k̂ =
1
2 h1,

p
3, 0i, meaning there are 20 valleys per lattice site.

A schematic of these valleys, along with the full k-space unit cell, can be seen in Figure 2.1.

The energy scale of the full-band structure shown in Figure 2.1 is much larger than the typical

charge carrier energies even at room temperature, so an e↵ective band structure is an excellent

approximation to this full numerical model in most cases. For Si and Ge, the dispersion relations
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Figure 2.2: Brillouin zone of face centered cubic lattice, showing the path through the Brillouin zone
taken to produce the band structure figures shown in this section.

Substrate ✏gap (eV) m? (me) mk (me) ↵ eV�1

Ge 0.67 0.08 1.59 0.7
Si 1.107 0.19 0.98 0.5
Diamond 5.49 0.36 1.4

Table 2.1: Dispersion relation parameters reproduced from Ref [52] for Si, Ge and diamond. At the
time of the cited review, the band structure of diamond was much less well measured than for the
other two substrates, hence the absence of a good measure of non-parabolicity.

are very well approximated by the form

E � ✏gap =
k2
x
+ k2

y

m?
+

k2
Z

mk
(2.22)

where m? is the mass transverse to the k-vector minimum, mk is the mass along the k-vector

minimum, and ki is with respect to the k-vector minima for a given crystal. The simplified band

structure shown in Figure 2.3 shows that Si has a minimum along the X-valleys and Ge has a

minimum along the L-valleys. We can also see from Figure 2.3 that the electron bands are well

approximated by a quadratic form for E << 100 meV[52]. The parameters for Si, Ge, and diamond

are shown in Table 2.1.

One modification to this simple form to maintain accuracy to higher energy ranges is to introduce

z 

I I I I I I 
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Figure 2.3: Simplified models of the band structure in Si (left) and Ge (right) with indirect and
direct transitions labeled.

a non-parabolicity parameter ↵[52], such that

E ! E(1 + ↵E) (2.23)

where the product ↵E is dimensionless. Values for ↵ for Si and Ge are also found in Table 2.1.

The practical implications of this valley structure in semiconductors is that when charges have a

large mean-free path, there are highly preferred regions of momentum space, and thus propagation is

largely anisotropic. Measuring this anisotropy as a function of applied voltage in various substrates

was the primary goal of the studies shown later in this chapter. The degree of anisotropy is thus

a good measure of the mean-free path in a high-purity crystal, and therefore a sensitive probe of

electron-phonon interactions.

2.2.1 E↵ective Mass

One odd side-e↵ect of the anisotropic propagation of electrons in a crystal is that charge carriers no

longer have a well-defined mass, and our definition of mass will depend on the context in which it’s

used. A very thorough discussion of this is found in Kyle Sundqvist’s thesis [99], and I summarize

the conclusions here and refer the reader there for the more thorough treatment.

There are many ways of pedagogically deriving the e↵ective mass formula, but the simplest

approach is just to try to write the dispersion relation as a tensor product, recognizing that in

free-space the dispersion relation is just

E(k) =
~2k2

2m
=

~2
2
k†m�1k (2.24)

where m = mI and I is just the identity matrix. To get the e↵ective mass tensor, then, we can take

Energy 300 K E, = 1 12 eV Energy 300 K E, = 0 .66 eV 
E, = 2.0 eV E,=1 .2eV 
E,=1 .2eV En= 0.8 eV 
E~=0044 eV E,.,= 3.22 eV 
En= 3 .4 eV LiE= 0.85 eV 
E,.,=4 .2 ev E~= 0.29 eV 

E, 

<100> <111> <111> 

Wave vector 'Wave vector 
Heavy holes 

Split-off band 
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derivatives of the dispersion relation with respect to ki, giving the form[99]

⇥
m�1

⇤
ij
=

1

~2
d2E(k)

dkidkj
(2.25)

If we apply this to equation 2.22, we get the e↵ective mass tensor

m�1 =

2

664

m�1
? 0 0

0 m�1
? 0

0 0 m�1
k

3

775 (2.26)

for a valley along the z-axis.

A practical upshot of the e↵ective mass tensor not being a simple multiple of the identity matrix

is that the kinematics in a crystal are not the same as in free-space. For example, the velocity of an

electron is given by the equation[99]

v = ~m�1k (2.27)

and thus the velocity is not parallel to the crystal momentum. That is not necessarily surprising,

but consider acceleration by a force:

a = m�1F (2.28)

due to this mass asymmetry, the acceleration vector is not strictly parallel to the force vector! We

should note that the momentum change is still proportional to the electric field:

�p = m
dv

dt
= qE (2.29)

This is primarily what produces asymmetric charge propagation. Thus to model charge dynamics

in a crystal, we can find the derivatives of the band structure about the minimum with respect to

kikj , and use these to determine the e↵ective mass, which in turn determines the charge dynamics

in the crystal.

This e↵ective mass is obviously useful for equations which can be written as vector products or

vector sums, but how do we compute a particle’s scalar e↵ective mass? The two most commonly

used scalar e↵ective masses are the conductivity e↵ective mass

1

mc

=
1

3


2

m?
+

1

mk

�
(2.30)

and the density of states e↵ective mass

md =
⇥
mkm

2
?
⇤1/3

(2.31)

These e↵ective masses have di↵erent use cases; the conductivity e↵ective mass is useful for mean-free
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path calculations, as it is a harmonic average, while the density of states e↵ective mass is useful

for calculations involving volumes of phase space. In this thesis I will only use the tensor e↵ective

mass or the density of states e↵ective mass, as the conductivity e↵ective mass is used primarily in

mobility calculations, which I do not cover here.

2.2.2 Herring-Vogt Transform

A final result from the formulation of the e↵ective mass tensor in the previous section has to do with

a trick used to greatly simplify scattering Monte Carlo simulations, the Herring-Vogt transform,

which is employed in the CDMS detector Monte Carlo. It is described in full detail in Ref [52] and

references therein, and I summarize it here because of its central nature in our simulations as well

as the impact it has on using our simulations to understand our data.

The non-spherical nature of the dispersion relations in Si and Ge makes integrals over k-space

much more complicated, as the energy for a given k-vector magnitude is angle-dependent. In order

to use isotropic scattering approximations, we’d like to use an isotropic e↵ective mass, which means

we’d like to solve for the transformation

mem
�1 = T†T (2.32)

where me is the mass of the free electron. Solving this equation for T gives the Herring-Vogt

transform[52]

T =

2

6664

q
me
m?

0 0

0
q

me
m?

0

0 0
q

me
mk

3

7775
(2.33)

This allows us to rewrite the dispersion relation:

E(k) =
~2
2
k†m�1k (2.34)

=
~2
2me

k†T†Tk (2.35)

=
~2
2me

(k0)2 (2.36)

where we have the transformed k-vector k0 = Tk. This allows us to re-write integrals over k-space

by substituting k ! k0 and dk !
⇣

md
me

⌘
dk0, where md is the density of states e↵ective mass defined

in the previous section.

The downside of employing this transform is that it is not unitary, and therefore it does not

obey simultaneous energy and momentum conservation. This is not a deal-breaker for us, as there

is always some numerical error in Monte Carlo simulations, but it does require periodic corrections
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to maintain these conservations separately. The net result of this transform is to sacrifice some

simulation accuracy for speed. In the case of CDMS simulations, this transformation has been

shown to produce broadening of electron valleys compared to the full vector-based treatment of

charge transport[73].

2.3 Holes: Valence Band Structure

Kane[55] derives the perturbed theory of valence band structure in p-type semiconductors (note that

the doping does not seem to a↵ect the band structure calculations). In the small k limit, it will turn

out to have the parabolic, warped form

✏(k) = Ak2 ±
⇥
B2k4 + C2

�
k2
x
k2
y
+ k2

x
k2
z
+ k2

y
k2
z

�⇤1/2
(2.37)

which can also be converted to a polar form using the relations

kx
k

= cos(✓) sin(�) (2.38)

ky
k

= sin(✓) sin(�) (2.39)

kz
k

= cos(�) (2.40)

giving

✏(k)

k2
= A±

⇥
B2 + C2 sin2(�)

�
cos2(✓) sin2(✓) sin2(�) + cos2(�)

�⇤1/2
(2.41)

where the e↵ective masses of some key directions are

m100 = m010 = m001 =
A±B

~2 , m111 =
A±

⇥
B2 + 4

9C
2
⇤1/2

~2 (2.42)

which gives the mass anisotropy

⌘ =
m111

m100
� 1 =

A±
⇥
B2 + 4

9C
2
⇤1/2

A±B
� 1 (2.43)

= ±
 ⇥

B2 + 4
9C

2
⇤1/2 �B

A+B

!
(2.44)

= ±
 ⇥

b2 + 4
9c

2
⇤1/2 � b

1 + b

!
(2.45)
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where b = B

A
and c = C

A
. As we could have deduced from the earlier form, the parameter that

controls the degree of anisotropy is the c parameter, however the sensitivity of the anisotropy to c

is set by b. This is the anisotropy measure is explored in Ref [78].

Kane’s more complete solution is to solve for the band structure by perturbation of the k · p
Hamiltonian about k = 0. We know that solutions to the Hamiltonian

✓
p2

2m
+ V (r)

◆
 (k, r) = Ek (k, r) (2.46)

have the form

 (k, t) = eik·ruk(r) (2.47)

where uk(r) is cell periodic in the same manner as V (r). We can re-write the Hamiltonian equation

without the Bloch exponential as

✓
p2

2m
+ V (r) +

~k · p
m

+
~2k2
2m

◆
uk(r) = Ekuk(r) (2.48)

The insight of the k · p perturbation theory[26] is that we can find the k = 0 exact solutions easily,

and then find solutions for arbitrary k by finding the perturbations in k · p to high enough order.

We thus re-write this equation as

✓
H0 +

✓
~
m

◆
k · p

◆
uk(r) = E0

k
uk(r) (2.49)

where E0
k
= Ek � ~2

k
2

2m and H0 = p
2

2m + V (r). Kane[55] reduces the perturbation Hamiltonian

equation to the form

Hkpc = E0
k
c (2.50)

where

Hkp =

2

664

Lk2
x
+M(k2

y
+ k2

z
) Nkxky Nkxkz

Nkxky Lk2
y
+M(k2

x
+ k2

z
) Nkykz

Nkxkz Nkykz Lk2
z
+M(k2

x
+ k2

y
)

3

775 (2.51)

Including the spin-orbit coupling, the second order energy of these states has the eigenvalue equation

H 0
11H

0
22H

0
33 + 2H12H23H13 �H 0

11H
2
23 �H 0

22H
2
13 �H 0

33H
2
12

� (�/3)
�
H 0

11H
0
22 +H 0

11H
0
33 +H 0

22H
0
33 �H2

12 �H2
13 �H2

23

�
= 0

where

H 0
ii
= Hii + (~2/2m)k2 � Ek (2.52)
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This equation is just the eigenvalue equation of the perturbed Hamiltonian with a spin-orbit correc-

tion. If we set k = 0, this reduces the the equation

E3
k
+�E2

k
= (Ek +�)E2

k
= 0 (2.53)

which has two degenerate solutions at Ek = 0 and one split by E = ��, as expected.

The original matrix had L, M, and N as coe�cients of overlap integrals, and Kane cites the DKK

paper[32] for this parameterization, as they attempt to measure these parameters. We can see that

the energy eigenstates are functions of these parameters, but a re-factoring can be done to simplify

the equations. We can re-write Hkp to get

Hkp =

2

664

L0k2
x
+M 0(k2

y
+ k2

z
) Nkxky Nkxkz

Nkxky L0k2
y
+M 0(k2

x
+ k2

z
) Nkykz

Nkxkz Nkykz L0k2
z
+M 0(k2

x
+ k2

y
)

3

775 (2.54)

where L0 = L+ ~2

2m and M 0 = M + ~2

2m .

The general form for nonzero k is somewhat more complicated than the k = 0 solution, but

setting two of the k components to 0 gives the energies

E100(k) = M 0k2 (2.55)

=
1

2

 
(L0 +M 0)k2 ��+

r
k4(L0 �M 0)2 +

2

3
k2(L0 �M 0)�+�2

!
(2.56)

=
1

2

 
(L0 +M 0)k2 ���

r
k4(L0 �M 0)2 +

2

3
k2(L0 �M 0)�+�2

!
(2.57)

while for k vectors along the [111] directions gives the energies

E111(k) =
(L0 + 2M 0 �N)

3
k2 (2.58)

=
1

2

 
(2L0 + 4M 0 +N)

3
k2 ��+

r
k4N2 +

2

3
k2N�+�2

!
(2.59)

=
1

2

 
(2L0 + 4M 0 +N)

3
k2 ���

r
k4N2 +

2

3
k2N�+�2

!
(2.60)

Comparing these solutions tells us that, in general, none of the bands are spherical, but that one of

the bands is parabolic. The other two bands are split from a central parabolic band at k = 0 by �

and at higher k by all four parameters. The [110] energies do not have simple closed forms, so it’s

possible that all three bands are somewhat non-parabolic even in the small k limit.
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2.3.1 Equal Energy Surfaces

In order to plot the equal energy contours for this band structure, we need to first rotate the 001

k basis that the structure is specified in into the desired crystal orientation. We use the rotation

matrix

R =

2

664

� 1p
2

1p
6

1p
3

1p
2

1p
6

1p
3

0
q

2
3

1p
3

3

775 (2.61)

to rotate vectors in the 111 basis to the 001 basis, such that we can insert them into the energy

surface equation in manner which is meaningful for our 111 crystal orientation. We will use this

implicitly in the following logic.

We want to relate the theoretical band structure in some analytic way to the patterns we measure

on the surface of our crystals. The key issue is that we cannot necessarily just relate k vectors to

this pattern, as the whole idea of a crystal momentum is that it does not correlate necessarily to

spatial dimensions; this is the idea behind the e↵ective mass. We can relate the spatial and crystal

spaces through the equation

v(k) = ~�1rkE(k) (2.62)

where we assume we can reconstruct the angular dependence of v(k) by assuming v(k) is the average

carrier velocity (carriers propagate at constant energy in a constant electric field), and thus

xi ⇡ vi(k)�t (2.63)

If we had timing information this might be the extent of our logic, however we do not measure the

arrival time of the charges, so we need to eliminate �t from this relation. Suppose instead of the

position we fit the fractional components of the position (the position unit vector):

xi

|x| ⇡
vi(k)�t

|v(k)�t| =
vi(k)

|v(k)| (2.64)

So we have a way to roughly relate position and velocity, which also allows us to relate position

and the energy surface equation, as long as we forfeit knowledge of the k-vector magnitude. So

be it. There are obviously some assumptions in here about the degree to which scattering a↵ects

spatial distribution of charge carriers, and for a single charge we shouldn’t expect it to following in a

straight line. A better way to visualize this argument is to realize that the e↵ective mass tensor just

means that, in some other space, the charges propagate isotropically, and we then rescale the spatial

dimensions according the mass tensor to get the true spatial distribution; the degree of warping

between the dimensions is independent of scattering and energy aside from the energy scale helping

to determine the available scattering phase space.
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So lets normalize this equation by the vector magnitudes:

x

|x| ⇡
v(k)

|v(k)| =
rkE(k)

|rkE(k)| (2.65)

we see that constants will start going away, reflecting the fact that we can’t constrain overall mag-

nitudes in the band structure without velocity information, at least not with our position fits. Lets

now calculate the gradient of the energy surface in 001 to see how that turns out before launching

down the road for the 111 case. We have

d

dki
E(k) =

d

dki

h
Ak2 +

�
B2k4 + C2(k2

x
k2
y
+ k2
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z
)
�1/2i

(2.66)

= 2Aki +
1
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= 2Aki +
(2B2 + C2)kik2 � C2k3

i�
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y
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k2
z
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y
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z
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�1/2 (2.68)
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(2B2 + C2)ki � C2k3

i
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= 2ki
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(B2 + 1
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2)� 1
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2k2
i
/k2

D1/2

�
(2.71)

so the vector has the magnitude

|rkE(k)| = 2
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k2
i


A+

B2 + 1
2C

2 � 1
2C

2k2
i
/k2

D1/2

�2!1/2

(2.72)
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where

D = B2 + C2

 
k2
x
k2
y
+ k2

x
k2
z
+ ky2kz2

k4

!
(2.77)

E = AD1/2 +B2 +
1

2
C2 (2.78)

So we have (in terms of all of the replacement constants)

(rkE(k))i
|rkE(k)| =

ki
k

AD1/2 + (B2 + 1
2C

2)� 1
2C

2k2
i
/k2

�
E2 � (k4
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+ k4

y
+ k4

z
)EC2

k4 + (k6
x
+ k6

y
+ k6

z
) C4

4k6

�1/2 (2.79)

This is no simple expression, and it’s still a function of the k-vectors, but now the k-vectors are

normalized in all expressions. As a sanity check that we’re really just probing anisotropy, let’s set

C to 0. We find that D = B2, E = AB +B2, and we get

(rkE(k))i
|rkE(k)| =

ki
k

AB +B2

p
(AB +B2)2

=
ki
k

(2.80)

and we just find that the k-vectors should map proportionally to the velocity vectors. These expres-

sions don’t naturally simplify beyond this form, but we can see that the anisotropy does not strictly

depend on k-vector magnitude, but the degree to which one direction in k-space is preferred. The

observed anisotropy is dependent not only on the over-all energy, but also the distribution of energy

in the steady state. That being said, we can use the expected mean carrier energy and k-vector to

predict the degree of anisotropy seen in the charge collection pattern using this relation.

2.3.2 Hole E↵ective Mass

For valence bands, e↵ective mass is a confusing concept. Whereas for the electrons our roughly

elliptical valleys gave a k-independent e↵ective mass, making it a tensor with a physically intuitive

interpretation, for the holes the e↵ective mass tensor is dependent on the direction in which the

hole propagates. There are a few ways to define e↵ective mass which each give us a di↵erent way of

reformulating the problem, each of which aims to make an aspect of the problem more independent

of the exact state of the hole.

The traditional definition defines mass as a tensor to convert force applied to acceleration ob-

served. Using the relation

a =
d

dt
vg = ~�1 d

dt
(rk"(k)) = ~�1rk

d"(k)

dt
= ~�1r� k

✓
dk

dt
·rk"(k)

◆
(2.81)
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and conservation of crystal momentum

F =
dpcrystal

dt
= ~dk

dt
(2.82)

gives

a = ~�1rk

✓
F

~ ·rk"(k)

◆
= [m⇤]�1 F (2.83)

where the mass tensor is traditionally written as

[m⇤]�1
ij

= ~�2 @
2✏(k)

dkidkj
(2.84)

We can also use vector identities to distribute the gradient:

rk (F ·rk"(k)) = (rk"(k) ·rk)F + (F ·rk)rk"(k) +rk"(k)⇥ (rk ⇥ F ) + F ⇥ (rk ⇥rk"(k))

(2.85)

= (F ·rk)rk"(k) (2.86)

which makes more explicit the assumption we’re making above, namely that

dF

dki
= 0 (2.87)

in addition to the fact that F is conservative (rk ⇥ F = 0). These are obviously equivalent, but

distributing the vector products makes it easier to see how F comes out of the integral, and what we

assume in order to do that. So the e↵ective mass is determined by the outer product of a gradient

and a divergence of the dispersion relation.

We could also formulate the e↵ective mass using the energy relation, given that we’re inter-

ested primarily in the anisotropy in the e↵ective mass and care less about acceleration than about

deformation of the equal energy surface. Suppose that we try to re-write the dispersion relation as

"(k) =
~2
2
kT
h
m⇤0

i�1
k (2.88)
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do we retain the e↵ective mass if we try to apply the previous definition? Let’s try:

[m⇤]�1
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dkidkj
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h
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[m⇤]�1 =
h
m⇤0

i�1
+ kT


@2

dkidkj

h
m⇤0

i�1
�
k (2.92)

This tells us that the two masses are equivalent if they’re k-independent, which for the holes is not

the case, so the expression of the hole energy in terms of the e↵ective mass is an approximation

good in the limit that this derivative term is small. If we consider that the quadratic order is also

the limit to which the band-structure is accurate, it’s possible to see how this isn’t a huge problem;

if we’re limited to low energies, the approximate form of the e↵ective mass dependent on k will be

a close match to the true energy e↵ective mass.

This form as a tensor product in energy is useful because it allows us to reformulate our Monte-

Carlo rules in a much simpler way. If the energy surface is spherical, this means both that we

are equally probable to emit a phonon in all directions, as a unit-vector in k-space with a given

magnitude has the same energy regardless of its orientation. This allows us to run an isotropic

monte-carlo with an additional step to transform into this isotropic space when the propagator is

applied, and to transform back to the original space to compute momentum and direction.

We can break the e↵ective mass tensor down into the linear combination of two tensors, one

isotropic, and one anisotropic. We have thus that

[m⇤]�1 =
1

me

⇣
AI ± f(B,C, k̂)

⌘
(2.93)

where the ± changes sign depending on the band, the minus sign corresponding to the heavy band,

and I being the N = 3 identity matrix. The anisotropic term is only dependent on the direction of

k, and has both a scalar and tensor anisotropy. We break down this function into the scalar � and

tensor ⇤, such that

� =
1

2

✓
B2 +

C2

k4
�
kx2ky2 + kx2kz2 + ky2kz2

�◆�3/2

(2.94)

which is just the anisotropic term from the energy surface cubed; note that it can be written in
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polar form as described earlier. The diagonal elements of the tensor ⇤ are
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and the o↵-diagonal elements are
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We can further separate this into three main components, an isotropic scalar, and anisotropic scalar,

and an anisotropic tensor, by redefining ⇤ii as
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and writing the e↵ective mass as

[m⇤]�1 =
1

me

�
AI ± �

⇥
B2(2 + C2)I + C2⇤0⇤� (2.99)

shows us that there are various approximations we can make, but that this is essentially a tensor

expansion.

In summary, the hole e↵ective mass is a much more complicated structure than the electron

e↵ective mass, and a proper simulation treatment of the holes is beyond the scope of this thesis.

The intent of this section was to build intuition for the concept of warped bands, and how their

behavior is a much more complicated function of hole momentum and k � vector. Later in this

chapter, we will show that in certain limits, the anisotropic hole propagation appears to manifest

itself but recede as a function of temperature, which can be understood in the context of a momentum

and energy dependent e↵ective mass.

2.4 Electron Scattering Processes

In this section I will present the theoretical scattering rates and cross-sections for the various electron

scattering processes as found in the literature, and show some order of magnitude estimates for our

chosen operating regime (T ⇠ 50 mK, E ⇠ 0.01-100 V/cm).
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2.4.1 Impurity Scattering

Impurity scattering can be broken up into charged and neutral impurity scattering, due to the

di↵erent ranges of interactions between these mechanisms as well as the spectral dependence. In

addition, despite having some knowledge of the main impurity type, the contributions from charged

and neutral impurities may not be proportional to their relative abundance due to the di↵erent nature

of impurities that are in either state at cryogenic temperatures. Here I describe the scattering rates

as a function of energy, integrating over angle for simplicity.

Neutral Impurities

Scattering of hot electrons from neutral impurities is a complicated quantum process which many

have attempted to approximate through various simplifying assumptions, though a consensus has

been reached that this neutral scattering is the dominant determinant of mobility in very low-

temperature crystals at low to moderate field strengths. The most recent theoretical e↵orts have

used a full quantum mechanical treatment, calculating transition probabilities between initial and

final free-electron states given their interaction with bound electron orbitals in a neutral impurities

to determine the band-warping e↵ect this impurity will have. I will summarize first the simple model

of a spherical square well, from which the simplest scattering cross-section is derived, and contrast

this with the results of the full quantum model to justify the use of the approximate form for our

implementation.

The most successful analytic solution for the energy dependence of the neutral scattering cross-

section comes by way of Sclar and Anselm[98, 85], though the formula is attributed to Sclar due

to his complete theoretical framework. These authors treat a neutral hydrogen atom as a spherical

square well potential, due to the propensity for neutral impurities to create weakly-bound states with

electrons at low temperatures and field strengths. The full derivation of the scattering probability

is beyond the scope of this work, but can be found in Ref [97], and references therein.

The basic derivation follows the method of calculating the net phase shifts in the initial and final

wavefunctions, typically given as

 in = Aj0(↵r),  out = B [j0(kr) cos(�) + n0(kr) sin(�)] (2.100)

where

j0(x) =
sin(x)

x
, n0 = �cos(x)

x
, ↵ =


2m⇤(E + V0)

~2

�1/2
(2.101)

V0 is the depth of the well, and � is the resulting phase shift from some simple potential. For this

form, the cross-section is given by the expression

�(✓) =
sin2(�)

k2
(2.102)
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We can thus solve for sin(�) by application of the corresponding boundary conditions, which yields

the condition at the edge of the square well r = a

sin(�) =
k cot(ka)� ↵ cot(↵a)

(k2 + ↵2 cot2(↵a))1/2(1 + cot2(ka))1/2
(2.103)

If we restrict ka << 1 (low energies) we obtain the approximate form

sin(�) ⇡ k(1� ↵a cot(↵a))

(k2 + ↵2 cot2(↵a))1/2
(2.104)

If we have, additionally, that ↵a cot(↵a) << 1 (the bound state is fairly shallow), we get

sin2(�) ⇡ k2

k2 + ↵2 cot2(↵a)
(2.105)

giving the cross-section

�(✓) =⇡ 1

k2 + ↵2 cot2(↵a)
(2.106)

If the well is much deeper than the bound state we’re interested in, we can make the replacement[85]

↵2 cot2(↵a) ⇡ �
✓
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◆1/2

(2.107)

such that

�(✓) ⇡ ~2
2mD(E + ET )

(2.108)

and thus we have the di↵erential scattering rate
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E + ET

(2.109)

Here and below, mD is the “density-of-states” e↵ective mass of the electron, (mL ⇥m2
T
)1/3.

The total scattering rate is thus obtained by multiplying this rate by 4⇡ steradians, however

we want the intervalley (IV) and intravalley (V) rates separately. We can make the simplifying

assumption that the scattered electron will settle into the nearest valley after scattering, such that

we can divide the final scattering scale by the number of valleys, and we have
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(2.111)
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such that, as expected, this e↵ect is stronger when there are more valleys in which to scatter.

The last detail of the modeling is how to determine the threshold energy (in eV). This is assumed

to be due to hydrogenic centers, and is given by

ET = 0.75
mD

m

✏0
✏

(2.112)

which is ⇠ 5 ⇤ 10�4 for Ge and ⇠ 2 ⇤ 10�3 for Si[85]. In principle, this energy threshold is a free

parameter, and will depend on the type of impurity. This is an important point which will help

explain why scattering rates are not just proportional to impurity concentration. In general, the

way to account for some number of bound state energies ET,i, and bound state centers nI,i, is to

sum over these scattering rates, accounting for each, giving the total rate

�(E)IV =


NV � 1

NV

�
2
p
2⇡~2

m3/2
D

X

i

nI,i

E1/2

E + ET,i

(2.113)

In this way, di↵erent impurities with di↵erent bound state energies can produce arbitrarily complex

scattering rate trends, and result in di↵erent overall rates of inter-valley scattering. The weaker

the bound state, however, the weaker the low-energy scattering will be; so measurements of the IV

scattering rate, both in terms of energy dependence and overall rate, place both lower and upper

bounds on the relevant bound-state energies given the expected impurity concentration.

This is the simplest treatment which produces the correct energy dependence. It is possible to

extend this approach in the future by extending scattering to l > 0 harmonics, which would predict

some angular dependence in the scattering rate, or through a full anisotropic treatment using the

non-spherical valleys as is done in Ref [60]. In the cross-sections calculated with the full phase-shift

treatment in this reference, we can see that above a threshold value the cross-section resembles that

of the Sclar formula, and could easily be produced using a normal Sclar prescription with very low

and intermediate energy bound states. There is, however, an anistropy in incoming and outgoing

angle, however the fist we could integrate over, and the second represents most likely a 10-20%

correction to our predicted rates, less than the typical uncertainty in our impurity concentrations.

For these reasons, the simple treatment, tuned using one low-voltage point, should be su�cient for

this simulation.

Charged Impurities

We assume that charged impurities contribute negligibly to transport at very low temperatures,

given that they have a much larger binding energy than the neutral impurities and thus, by analogy,

will be much less likely to become ionized in the thermal limit.
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2.4.2 Phonon Scattering

There are two distinct categories of phonons in a crystal, optical and acoustic, where acoustic have a

linear and increasing dispersion relationship with wave-vector near k = 0, and optical phonons have

a finite and often large energy and velocity at k = 0. In the ohmic regime, acoustic phonons are the

dominant scattering mechanism, which means that this scattering rate should be dominant in the

intermediate energies where ohm’s law is applicable at our low temperatures, while optical phonons

will mediate higher energy transitions (e.g. between valleys). Here I summarize the scattering

rates, so that they can be related to intervalley scattering in the next section, and used in mobility

calculations.

Acoustic Phonon Scattering

The ’room-temperature’ acoustic phonon scattering rate as a function of energy is normally given

as[12]

�ac(E) =

p
2

⇡

kbTm
3/2
D

D2
ac

~4⇢u2

p
E(1 + ↵E)(1 + 2↵E) (2.114)

where these are all strictly intravalley scatters. The average sound speed, u = (uL + 2uT )/3. This

scattering rate will not contribute to intervalley scattering due to the low energy of the phonons

emitted, it will however limit the mobility of electrons in intermediate field regimes. This assumes

equipartition of energy into emission and absorption and fully elastic acoustic scattering, and thus

does not account for the inelastic cooling e↵ect we see from acoustic scattering at low temperature.

We need to derive the true low-temperature form, which will also guide the derivation of the optical

rate as well.

The di↵erential scattering probability in wave-vector k has the form

�(k, k0) =
⇡qE2

ac

V ⇢ul

"
Nq

Nq + 1

#
�(✏(k)� ✏(k0)⌥ ~qul) (2.115)

where the top is absorption and the bottom is emission. In our limit, we’re going to be only concerned

with emission, so we’ll limit ourselves to considering the bottom part of the expression and ignore

Nq. This gives

�(k, q) =
⇡qE2

ac

V ⇢ul

�(✏(k)� ✏(k0)� ~qul) (2.116)
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and we get the rate as a function of k-vector by integrating over q and k0 (expressing k0 as k � q):

�(k) =
V

(2⇡)3

Z
�(k, q)q2d(cos(✓))d�dq (2.117)

=
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(2⇡)3
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Z
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To satisfy the delta function and get rid of the integral over d(cos(✓)), we get
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where the extra terms in the delta function are related to energy conservation. For emission in a

parabolic band we have

qmin = 0, qmax = 2k
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(2.123)

giving
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where � = ul
3l0

is the rate when the remainder of the equation is 1, M = k

kl
is the mach number, and

l0 =
⇡~4⇢

2m3"2
ac

, k2
l
=

m2v2
l

~2 (2.128)

This is the same as the rate shown in Ref [25], and is the rate law we use for low-energy NTL phonon

production. We expect to find that under this rate law, drift velocity is a very weak power law as a

function of electric field.
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Optical Phonon Scattering

The optical phonon scattering rate to zeroth order (in which a phonon is emitted) as a function of

energy[52, 12] is

�op,0(E) =
Zfm

3/2
D

D2
op,0p

2⇡~2⇢~!op

p
E0(1 + ↵E0)(1 + 2↵E0) (2.129)

where E0 = E � ~!op and ~!op is the energy of the optical phonon which is emitted by the carrier.

Here we restrict to emission due to low temperature being considered, meaning very few phonons

will be available for the absorption process, and the Nq that appears in the formula is set to 0. This

formula only applies to scattering between equivalent valleys, as we only consider propagation in

the lowest valleys, and does not consider the contribution of valleys with higher bandgaps. In Si,

we also have to consider the first-order transition rate equation due to selection rules which forbid

intervalley transitions for the low-energy phonons. This process takes on the scattering rate

�op,1(E) =

p
2Zfm

5/2
D

D2
op,1

⇡~4⇢~!op

p
E0(1 + ↵E0)(1 + 2↵E0)(E0(1 + ↵E0) + E(1 + ↵E)) (2.130)

where a new deformation potential has been defined for the first order process. We can see that the

equations are related by the expression

�1 = �0
2mD

~2
D2

1

D2
0

(E0(1 + ↵E0) + E(1 + ↵E)) (2.131)

which tells us that the deformation potentials here do not have the same units; D0 will have units

(typically) of eV/cm, while D1 has units of eV; they di↵er by a multiplicative factor with units of

inverse length, the wave-vector. So what we’re really saying here is that D1 is the quartic term in

our deformation potential expansion in k-space, while D0 is the quadratic term. Near the threshold

for a given transition, we have

�1 ⇡ �0
2mD

~2
D2

1

D2
0

~!op (2.132)

Plugging in some values to convert the D1 values given in Ref [12], we find comparable D0 values

as those found in Ref [52]. As these processes are first-order, they are subdominant far above

threshold, so their energy dependence is of less consequence. For simplicity, without changing the

total scattering rate, we will stick with the 0th order form for all transitions and use the constants

from Ref [52] for Si. There no such discrepancy for germanium. These constants can be seen in

table 2.2.

We would also like this scattering rate in terms of k-vector for compatibility with the equation
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Substrate Energy (meV) D0 (108 eV/cm) Transition

12.0 0.5 TA (g1)
18.4 0.8 LA (g2)

Si 61.8 11.0 LO (g3)
18.9 0.3 TA (f1)
47.2 2.0 LA (f2)
58.8 2.0 TO (f3)

Ge
27.6 3.0 LA, LO (LL1)
10.3 0.2 TA (LL2)

Table 2.2: Phonon intervalley scattering parameters, reproduced from table VI of Ref [52].

from the previous section. We can write the scattering matrix element as

�(k, k0) =
⇡D2

op

⇢V !op
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#
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and if we use the zero-point approximation, then we have simply

�(k, k0) =
⇡D2
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⇢V !op

�(✏(k0)� ✏(k) + ~!op) (2.134)
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To get the integrated scattering rate as a function of k, we have
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and

kop =

r
2m!op

~ (2.146)

Here we see that this rate law turns on at a higher energy than the acoustic rate (and hence

is not important at low field strength) but has a weaker momentum dependence, so there is an

intermediate field strength region where this becomes more important before being overtaken again

by the acoustic phonon scattering rate. This rate law is also responsible for intervalley scattering at

high field strengths where there is a strong energy dependence. This is not yet implemented in the

DMC, but will be important for accurately simulating high field behavior.

2.4.3 Total Scattering Rate

The neutral impurity, phonon, and total scattering rates are shown in figure 2.4. We can see that

these rates break transport into acoustic and optical dominated regimes, with large changes in
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Figure 2.4: Impurity and phonon scattering rates (both intravalley and intervalley) as a function
of carrier energy for Si and Ge. A large energy range is shown in the top panels, while the energy
range of interest at our electric fields and operating temperature is shown as a zoomed-in region
in the bottom panels. Note that the point where intervalley optical phonons become important
is where the acoustic rate becomes sub-dominant to the optical rate, and neutral scattering is
never important from a mobility standpoint. The acoustic scattering is entirely intra-valley, so the
dominant intervalley scattering at low energy is the neutral impurity scattering.
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scattering rate, but also changes to the steady-state charge energy distributions. As optical phonons

turn on, they provide a significant kinematic cooling e↵ect which should alter the steady-state energy

distribution of the charges. In addition, the acoustic phonon rate will not contribute to intervalley

scattering, meaning at low energy we expect that to be dominated by neutral impurities, which

in turn are always a negligible e↵ect on the mobility. This assumes typical impurity densities of

1011cm�3 for Ge and 1013cm�3 for Si with typical binding energies of hydrogenic (shallow single-

binding) impurity sites.

While these plots show the scattering rates as a function of energy, and can be thought of as

roughly the model we’re looking for, we need to estimate the rate as a function of electric field,

which is discussed in the next section. We do this to get a feel for how the rate laws change as a

function of electric field, and how the energy dependence factors into their average scattering rates.

2.5 Electron Intervalley Scattering Rate

In this section I derive approximate curves for intervalley scattering rate as a function of e↵ective

carrier temperature as a proxy for electric field strength. I will later relate e↵ective carrier tempera-

ture and electric field strength to plot intervalley scattering rate versus field strength, but it will be

a much more approximate curve; the goal here is to show that through some relation between carrier

temperature and field strength, the observed scattering rate can be reproduced with the appropriate

trends. If this model were incorrect, we would see peaked behavior or the need to scale the scattering

rate vertically, rather than just reforming the x-axis.

To make this conversion, I will employ the displaced Maxwellian distribution as the approxi-

mate distribution function in energy space. This distribution is essentially a Maxwell-Boltzmann

distribution with nonzero mean velocity. This takes the form

f(✏, T, vd) =
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p
2⇡kbTmD


exp

✓
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p
2mD✏�mDvd)2

2mDkbT
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✓
� (

p
2mD✏+mDvd)2

2mDkbT

◆�

(2.147)

where drift velocity can be approximated by the power law

vd = v(E = 1V/cm)E↵ (2.148)

For Silicon, we find from DMC drift curves that v(E=1V/cm)⇡ 1.95 ⇤ 104 m/s, and ↵ ⇡ 0.205.

Note that this is a steep departure from the ohmic limit where velocity is linearly dependent on field

strength, but is consistent with previous findings. This still leaves electron temperature, which is

also a power-law function of electric field, and needs to be measured, or extracted from the DMC.
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We thus calculate the scattering rate as a function of electric field as

�ivi(E) =

Z 1

~!iv

f(✏, T (E))�ivi(✏)d✏ (2.149)

and rely on the Monte Carlo to prescribe the relations between velocity and e↵ective carrier tem-

perature for the electrons.

2.5.1 IV Scattering from Phonons

The most thorough reference on scattering processes of electrons in Si/Ge and alloys is Ref [52],

which thoroughly derives, in a systematic manner, the transition probably for an electron to scatter

o↵ of both acoustic and optical phonons. A percentage of these transitions can lead to intervalley

scattering, with the largest component of the scattering rate derived from the optical phonon scat-

tering rate. As the change in k vector and energy are nearly exact, emission of either acoustic or

optical phonons is treated using the optical phonon emission rate equation given in the previous

section.

Let’s ignore the non-parabolicity parameter for now, for the sake of simplicity. We can write

each intervalley scattering process (per transition) as
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So for high temperature we expect the rate to go as
p
T , and be heavily suppressed for low temper-

ature around temperatures of the energy scale of the intervalley phonon. What’s interesting is that

the magnitude of the rate ends up being independent of the phonon energy. Here then, the total

intervalley scattering rate from all intervalley phonons is

�iv,p(T ) =
X

i

�ivi(T ) (2.154)

The overall coe�cient comes outside the sum, and we sum over squared deformation potentials times

phonon-energy dependent suppression factors.
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2.5.2 IV Scattering from Impurities

Here we will again ignore band non-parabolicity and consider the case of of a simple power-law

for the charged impurity scattering which can approximate the regime we are concerned with in

the charged impurity case, and the full formula for the neutral impurity case. Considering charged

impurities first, we find
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while for the neutral impurities, we find
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where � here is not a rate but the incomplete Gamma function. The portion of this function in

brackets is ⇡ kbT

ET
for kbT << ET and 1 for the opposite limit. We can simplify this to a good

degree of accuracy (better than 15% across all regimes, better than 1% everywhere but close to the

turn-over point) using the function
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which looks very similar to the original scattering rate function. These trends both allow us to

determine e↵ective temperature for a given electric field strength and rule out certain processes. For

example, if scattering rate increases monotonically with electric field strength, and we can assume

e↵ective temperature can only increase with field strength, then for that range of fields we can rule

out charged impurity scattering as the main driver of this scattering. That being said, given just

these trends, it will be hard to make a predictive model of intervalley scattering because they are
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Figure 2.5: Top: Scattering rates relevant to calculating the intervalley scattering rate as described
in this section, with the charged impurity scattering rate from [52] shown for comparison with the
other two rates described in this chapter. Bottom: Predicted intervalley scattering rates, using the
electric field to carrier velocity conversions found in Ref [99].

not the limiting processes for mobility, and there is not a simple power-law or scaling relationship

between e↵ective carrier temperature and electric field strength. That being said, we can model

it by calculating the mobility including all sources of intravalley scattering, which will give us an

approximate conversion.

2.5.3 Total IV Rate Predictions

Application of these equations gives us a mapping of scattering rate as a function of carrier e↵ective

temperature, which we can convert to electric field using the Monte Carlo calculations from Ref [99].

Plots of the relevant scattering rates, as well as the final calculation for Si and Ge as a function

of electric field, can be seen in Figure 2.5. These plots do not show uncertainties due to impurity

density and depth as well as carrier e↵ective temperature, but show that the convolved distribution
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results in the prediction of a flat scatter rate at low field strength and a strongly exponential rate

at high field strength. The relative number density of impurities (weighted by their depth) is given

by the cross-over point between a flat and exponential rate.

This figure shows that charged impurities would produce a rate higher than that of the phonons,

inconsistent with our data, and decrease rapidly with energy, also inconsistent with our measure-

ments and those of e.g. Ref [24]. For this reason, we have not included charged scattering in this

model. What we are left with is a gentle, roughly constant scattering near the mean carrier energy

of 1-10 meV, and a much higher scattering rate which turns on above a moderate threshold. This

threshold is larger for Si than Ge, and we note the larger overall impurity scattering rate in Si due

to the larger number of scattering centers.

2.6 Results from Stanford Charge Transport Measurements

The previous sections laid down the theoretical framework for understanding some of the results

from the charge transport imaging experiments which I will describe in this section. The first

iteration of this experiment probed electron and hole transport in Ge as a function of bias voltage

for a crystal oriented along the h001i crystal axis, measuring the intervalley scattering rate and

comparing various simulation methodologies to data to determine their accuracy. The full details

can be found in Refs [75, 73]. In this section I describe the same study applied to a Si crystal oriented

along the h111i axis, presenting the measurement of intervalley scattering rate versus electric field

and discussing some surprising hole transport phenomena.

2.6.1 Experimental Setup

The design of the experiment used to measure transport properties in cryogenic semiconductor

crystals was first described in Ref [73], and a schematic of the measurement technique can be seen

in Figure 2.6. The basic technique is to raster scan a laser across the back of the test sample, and

use the two charge electrodes to determine the amount of charge reaching the small central charge

electrode relative the the total charge as a function of initial position, building up an image of the

spatial charge distribution as a function of voltage.

In addition, data were taken at a range of base temperatures in order to probe temperature e↵ects

between 500 mK and 5K, which in principle should both be closer to the zero-point (non-thermal)

approximation than the adiabatic approximation, but do show some interesting di↵erences. A range

of data at these base temperatures can be seen in Figures 2.7 and 2.8. Note that as expected,

the electron patterns are similar, di↵ering only in over-all charge collection e�ciency and slightly

in intervalley scattering rate. The holes, however, exhibited an asymmetry not seen in the Ge

experiment, which required us to dig into the modeling of the valence bands shown earlier in this

chapter.
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Figure 2.6: Schematic of the experimental setup, with a laser reflected o↵ of a mirror at the base
temperature stage which can be used to raster scan the crystal face to produce charges at di↵erent
initial positions on the backside of the crystal. These charges are drifted through a variable electric
field to the electrodes on the front side, and the fraction of charge collected by the front electrode is
used to produce a map of the spatial charge distribution arriving at the front face as a function of
initial position. See Refs [75, 73] for more details.

2.6.2 Intervalley Scattering Rate

The intervalley scattering rate as a function of voltage was measured by employing our detector

Monte Carlo to simulate acoustic phonon scattering, allowing for determination of the e↵ective

carrier temperature, and by simulating a large range of e↵ective intervalley scattering rates in order

to match observed and simulated charge collection patterns. The acoustic scattering parameters

were taken from Ref [52], and the resulting drift velocity curve can be seen in Figure 2.11.

For comparison to Refs [12, 11, 24], we would like to measure the intervalley scattering rate, but

our experimental setup is much more conducive to measuring the intervalley scattering length, and

using the Monte Carlo to convert the inferred scattering length into a scattering rate. The procedure

for determining the intervalley scattering mean free path is best illustrated by the example analysis

plots in Figure 2.9. We employed two methods to estimate mean-free path from both the data

and Monte Carlo simulations, one using only the zero-scatter peaks (localized in position space and

roughly Gaussian) and one using only the central Gaussian blob.

The first method uses the fact that the ratio of zero scatters to multiple scatters can be used as

a measurement of the intervalley scattering mean-free path. The fraction of charges which undergo
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Figure 2.7: Electron charge collection patterns as a function of voltage for 500mK (top) and 5K
(bottom) in a ⇠4 mm thick crystal.

Figure 2.8: Hole charge collection patterns as a function of voltage for 500mK (top) and 5K (bottom)
in a ⇠4 mm thick crystal.

no scatterings is given by the equation

T =
N0

Ntotal

= exp(�⌘/�) (2.164)

where ⌘ is the crystal thickness and � is the scattering mean-free path. If we can get a robust

estimate of T , then we determine the mean-free path using the equation

� = ⌘


ln

✓
Ntotal

N0

◆��1

(2.165)

We determine ⌘ by calibrating the Monte Carlo pattern to the crystal pattern; the relative spread

of the valleys is geometrically related to the crystal thickness at low voltage, and we find based on

simulations that the crystal is ⌘ ⇡ 3.4 mm thick. We determine the number of zero-scatters N0 in
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Figure 2.9: This figure shows an example of how information was extracted from both data and
Monte Carlo in order to estimate the intervalley scattering mean-free path. The top left panel shows
the measured charge distribution, overlaid with lines circling the location of the zero-scatter peaks
and following the single-scatter lines connecting the peaks. The top-right panel shows how the zero,
single, and multiple scatter peaks are determined, and also the green regions used to estimate the
noise floor. These regions are plotted in the lower two panels, and a guassian fit to the zero-scatter
peaks is shown as a cyan line.
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two ways:

• Integrate the charge within the identified zero-charge region.

• Fit the outer half of the zero-charge region to a Gaussian (distorting the ellipse into a circle)

and using the measured amplitude and variance to estimate the charge in the zero-scatter

peak.

The second method is more robust, as charges which undergo scatters close to the electrode may

still be included in the nominal zero-scatter region, but they have a low probability of making it to

the far half of the zero-scatter ellipse. The impact of this single-scatter distribution can be seen in

Figure 2.9 as blue points which do not align with the Gaussian fit. The results of these two methods

are both plotted in Figure 2.10 in both upper panels. We can see that the integration method is

biased relative to the fitting method, as in the high mean-free path case, it includes extra charges,

and in the low mean-free path case, it has worse signal to noise. Thus for voltages with significant

zero-scatter peaks, we use the fitted method, and the integration method gives us a measure of the

maximum systematic error on the measurement.

The second technique, which we use for short mean free paths (high voltage) is the variance

technique. For many intervalley scatters, the observed charge distribution is roughly Gaussian, and

we know that for a random walk with mean step size �, the variance of the resulting probability

distribution is proportional to that mean-free path:

�2 =
t

�t
�2 =

⌘/v

�/v
�2 = ⌘� (2.166)

The mean-free path using this exact expression was attempted, and the resulting measurement

di↵ered from the zero-scatter measurements by a factor of order unity, related to the fact that this is

not a true free-space random walk and the mean free path is directionally dependent. We thus used

some points with good zero-scattering measurement to calibrate the relative scale factor for this

technique, and then used the technique to extend the mean-free path measurement out to higher

voltage, where the zero-scatter technique was statistics limited.

The mean-free path measurements can be seen in the top-left panel of Figure 2.10, and the

agreement between variance and zero-scatter techniques is seen to be very good. Also shown in

the bottom-left panel of Figure 2.10 is the model prediction for mean-free path given di↵erent

e↵ective neutral impurity densities using the scattering rates derived earlier in this chapter, and

using tabulated values for the carrier temperature and drift velocity as a function of voltage from

Ref [99]. This is a much better prediction than those shown in [11], where intervalley transitions

below the optical mode energy was modeled as charged impurity scattering. This result thus lends

support to an intervalley scattering model dominated by high-energy phonons at high voltage and

neutral impurities at low voltage.
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Figure 2.10: Top left: Intervalley scattering length as a function of applied electric field based
on three di↵erent estimation techniques described in the text. Bottom left: predicted intervalley
scattering length as a function of electric field based on the scattering theory presented earlier in
the chapter for di↵erent neutral impurity densities. Top right: IV scattering length inferred from
Monte Carlo simulations given mean free path estimates in the top left panel. Bottom right: final
intervalley scattering rate points fit to di↵erent functional forms as described in the text.
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Figure 2.11: Left: Electron drift velocity as a function of applied electric field using the acoustic
scattering parameters from the literature (see the text for more details). This drift curve is used to
convert the measured mean-free path into a scattering rate for comparison with literature predictions
and other measurements. Right: Rate determination using matching DMC mean free path versus
rate to data-measured mean free path at each measurement voltage. Both methods were used to
determine the rate independently as an estimate of systematic error where possible.

The second half of this analysis entailed converting these mean free paths into voltage-averaged

scattering rates, which was done by running a grid of Monte Carlo simulations at di↵erent volt-

ages and IV scattering rates, applying the same measurement techniques to estimate the e↵ective

mean-free path, and matching the scattering rate figure at a given voltage to the corresponding mea-

surement at that voltage. The detector Monte Carlo employed is the G4CMP package, a GEANT

extension for cryogenic semiconductor charge and phonon transport simulations being developed

by our collaboration to simulate SuperCDMS detectors (see Ref [3] and references therein). An

example of this correspondence procedure can be seen in Figure 2.11 along with the drift curves

for all simulations as a function of voltage. This figure also demonstrates the independence of the

drift velocity and IV scattering rate, given that it is a minor process in determining overall electron

mobility relative to acoustic scattering. The resulting measured IV scattering rates can be seen in

Figure 2.10 in the right-hand panels.

The trend of IV scattering rate versus voltage was fit to two function forms. The first is from

[24]:

�IV = �0

⇥
E2

0 + E2
⇤a/2

(2.167)

The second is based on the addition of the phonon and impurity scattering mean free paths based

on Matthiessen’s rule:

�total =
X

i

�i (2.168)

which for a two-component model, where the low-field scattering is impurity dominated and the
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Functional Form �0 E0 �1 ↵
Non-Linear (Eq 2.167) 3.5*10�20 Hz*(m/V )↵ 3395 [V/m] - 7.47
Linear (Eq 2.169) 9.8*106 Hz - 3.11 ⇤ 10�7 Hz*(m/V )↵ 4.02

Table 2.3: Intervalley scattering rate parameters for Si fit to the data presented in this section.

Figure 2.12: Intervalley scattering rate fit to the equations presented in this section, including
residuals for the rate fits. The linear equation is shown as a solid line, and can be seen to have
consistently small residuals, while the non-linear form cannot simultaneously fit all regimes.

high-field scattering is dominated by a phonon mean free path, we have

�IV = �I + �Ph ⇡ �0 + �1E
↵ (2.169)

In the low and high-field limit, these equations have the same field dependence, but in the interme-

diate limit where E ⇠ E0, they behave di↵erently. Our data were a much better fit to the second

form, as shown in Figure 2.10, where the earlier form which is added in quadrature is not capable

of fitting the data across all measured electric fields. The fit parameters for Si for both functional

forms can be seen in Table 2.3.

We can compare these functional form using the residuals, as shown in figure 2.12 reproduced

from Ref [74]. We find that the uncorrelated model based on adding mean free paths is a consistently

better fit than the non-linear form across the range of electric fields based on the consistently lower

and unbiased residuals of the solid line (the linear model) as compared to the dashed and dotted

lines (the non-linear model fit to either the high or low energy points). We also notice, in comparison

to the Ge measurements and the predictions shown in figure 2.5, that intervalley scattering turns

on at a higher than expected field strength, but the power laws are similar between Si and Ge as
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Figure 2.13: Hole collection pattern as a function of temperature for 500mK, 1.4K, 3K, and 5K from
left to right for fixed laser intensity. The top panel shows the two-dimensional collection pattern,
and the bottom shows the charge density as a function of distance from the center of the pattern.
See text for discussion.

predicted. We can attribute this to a di↵erence in e↵ective carrier temperature as a function of

electric field due to di↵erent acoustic coupling and optical phonon energies.

2.6.3 Hole Anisotropies

Subsequent to the intervalley scattering measurements, we began to analyze the hole data and quickly

realized that there was temperature dependence in the hole patterns, and at low temperature the

hole collection was highly anisotropic. I explored these anisotropies with James Allen, and the

detailed study of the character of the anisotropies is discussed in his undergraduate thesis (Ref [9]).

The initial observations are summarized in Figure 2.13, where you can see the tri-lobe shape become

less prominent as a function of temperature and the hole pattern become more Gaussian.

As discussed in section 2.3, in the small k limit, the hole bands are highly warped, with light and

heavy hole bands exhibiting asymmetric and complementary equal energy surfaces. This warping

is most pronounced for E ⇠ ✏so, the spin-orbit coupling energy. This is plotted in figure 2.14 for a

relatively stationary hole as well as a hole with significant crystal momentum along the electric field.

We can see that for the second case, an anisotropy very similar to that seen in our hole transport

data arises in the equal energy surfaces. We saw in the previous section that the symmetry of

these surfaces is the same as the spatial anisotropy, though the shape can be significantly di↵erent

depending on the energy distribution, and is based on the gradient of these surfaces.
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Figure 2.14: Brillouin zone for the holes rotated so that kz is along the h111i direction. Top:
Dispersion relation at ky = 0 for E(kx = 0, kz) = 1 meV and kz = 0 at the band minimum. The
equal energy surfaces for both the light and heavy holes as a function of crystal momentum become
anisotropic for charges at non-zero drift velocity. For drifting charges, the heavy hole band will be
preferentially filled by inter-band phonon emission. Bottom: Contours of constant kinetic energy
for heavy (light) holes are shown on the left (right) where the center of the pattern shows contours
for carrier energy of ⇠ 3 meV for the heavy holes and the mean energy of the contours is ⇠10 meV,
comparable to the mean hole energy for low electric field strength. The upper plot is a cutline
through the lower plots for ky = 0. Reproduced from Ref [74].
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Our initial hypothesis to explain the e↵ect seen in figure 2.13 was that as we lower the temper-

ature, hole acoustic scattering is suppressed, and holes achieve higher kinetic energies. Given that

the spin-orbit coupling energy is 44 meV in Si[52], and that is also characteristic of typical carrier

energies at low temperature, we should expect to see a lot of warping as the mean free path of the

carriers increases. In contrast, we do not see this e↵ect in Ge, which has a spin orbit coupling energy

of ⇠ 200 meV, much larger than the mean carrier energy at any temperature studies in our previous

paper (see Ref [73]).

Later data taken for a few targeted experimental conditions showed that, while the anisotropy

does seem to be present, the temperature dependence we’re seeing has less to do with intrinsic

charge propagation than the spatial distribution of initial charge produced. This data, shown in

figure 2.15, shows that the shape of the charge distribution is preserved but the overall size and

flatness depends more on the initial charge produced in the crystal than the temperature or field

strength. This data, along with higher voltage electron data at various temperatures, indicates that

small-scale transport is a↵ected by charge repulsion, which needs to be modeled using various initial

laser intensities to isolate its e↵ects away from anisotropies due to transport. Our current detector

Monte Carlo implements the holes as a spherical, parabolic band, and we are in the process of

implementing anisotropic hole transport and charge respulsion in order to test this hypothesis.

2.7 Future Charge Transport Studies

The charge transport work presented in this chapter was a driving force for improvements to G4CMP,

which was based on an earlier MATLAB Monte Carlo built assuming any crystal under study was Ge

aligned along the X-valley, and was meant to simulate cryogenic Ge at low electric fields. As of this

thesis, we have now run Ge h001i[73, 75] and Si h111i (this thesis and publication in preparation),

which motivated the development of miller index rotation and generalization of the code to an

arbitrary substrate. We still need to run the complementary crystals (Ge h111i and Si h001i) to

verify that the acoustic and intervalley scattering rates are correctly implemented as a function of

rotation angle and voltage.

We are also in the process of operating Si at higher electric fields (up to 500 V/cm) and we have

observed tentatively that some of the anisotropy in the electron pattern re-emerges at field strengths

above those included in this chapter. The detector Monte Carlo does not predict this, so we need to

determine whether this is the result of some detector e↵ect, or whether this is due to higher order

phonon processes not implemented in the current Monte Carlo. Many of the e↵ects we observe in our

charge transport studies are outside of the realm of the existing literature, which does not focus on

spatial charge propagation at low temperature, and thus we need to carefully implement additional

physical processes to determine the origin of the signal.

There are many improvements which need to be made to the Monte Carlo in order to produce



CHAPTER 2. HIGH VOLTAGE CHARGE & PHONON DYNAMICS 91

5K
 (D

at
a)

1K
 (D

at
a)

50 ns 200 ns

 3.3 mm

Figure 2.15: Two-dimensional charge density patterns for electrons in h1, 1, 1i Si as a function of
bias voltage. First and second row: Data recorded at 5K and 500mK. Third row: A simulation
of the patterns in the zero-temperature limit. For the rows of data, each pixel is assigned a color
according to the measured pulse height, with red indicating larger pulses (and thus more charge
collection). The white numbering shows the maximum pulse height (in meV) and the normalized
integrated intensity (relative to �12V 500mK) for that panel. For the MC, a conversion was used
such that peak intensity for the �12V simulation agrees with the �12V 500mK data. Reproduced
from Ref [74].
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something useful for detailed charge transport studies:

• Merge the ’Luke Emission’ process with charge transport code to tie acoustic and intervalley

scattering to electron-phonon amplification. There is no need to separately calculate the

phonon emission rates and intervalley scattering rates given that they are known processes,

and tying intervalley scattering to optical/acoustic phonon scattering will make the code more

accurate and predictive.

• Finish the implementation of impurity scattering, including a more physical calculation of

impurity scattering rates. The scattering rate in this thesis assumes purely elastic scattering,

but does not do the proper solid angle calculations, and a full theory of neutral impurity

scattering at low temperature should be properly quantum mechanical.

• Allow for valley minima along vectors with non-unit length, to allow for exploration of crystal

deformation on charge transport properties.

• Implement anisotropic hole propagation in order to simulate the hole collection patterns seen

in the data.

These studies are not necessary for using G4CMP in SuperCDMS SNOLAB detectors, as we will

always be able to tune relative scattering rates to match data, but will be important if G4CMP is to

be used to predict behavior in new materials which have not been as thoroughly tested in cryogenic

settings, such as diamond.



Chapter 3

Detector Concepts

“If you take a bale of hay and tie it to the tail of a mule and then strike a match

and set the bale of hay on fire, and if you then compare the energy expended shortly

thereafter by the mule with the energy expended by yourself in the striking of the

match, you will understand the concept of amplification.”

- William Shockley, as quoted by Fred Warshofsky, 1989

This chapter documents the work that went into designing the HV detectors for SuperCDMS

SNOLAB (summarized in Ref [59]), and comments on various design choices in light of the testing

results shown in the following chapter. It should be seen as a snapshot of SuperCDMS detector

technology at this time of writing, in the same way that Matt Pyle’s thesis [83] was a snapshot of

detector design for the last generation of SuperCDMS Soudan detectors. At the beginning of the

work shown here, it seemed clear to us that bigger was better, but our recent work has resulted

in a bifurcation of detectors into smaller, ultra-high sensitivity detectors for calibration and surface

testing and kg-scale detectors for higher thresholds and lower backgrounds. This is driven by some of

the non-ideal background processes that were encountered during testing, but also by the recognition

that for sub-GeV dark matter and photon detection, running kg-scale detectors amounts to trying

to tie a shoe with a steam shovel...things move too quickly to get the job done right.

This chapter is organized as follows. Section 3.1 describes the basic flow of energy through

the detector and contextualizes the following sections. Section 3.2 derives transfer and Green’s

functions for the transition edge sensor arrays we use for our detectors in terms of the free design

parameters of the QET. Section 3.4 describes the e�ciency model for a single QET, and section 4.2

then describes the bandwidth matching and e�ciency optimization of the QETs with the detector

given their segmentation into channels and the wiring needed to read them out. Section 4.3 describes

the electric field and detector response modeling used to simulate the operation of the detector and

93
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Figure 3.1: Schematic overview of the separate prompt and NTL phonon emission for high voltage
detector operation.

optimize the detector-housing separation, and section 4.4 describes the use of the Monte Carlo to

optimize the mask layout for the best position resolution in the detector. I conclude with some

summarizing thoughts and suggestions for future work based on work since this design process and

test results shown later in this thesis.

3.1 Detector Overview

SuperCDMS detectors are phonon and charge calorimeters; that is, they measure total energy col-

lected by summing measured power over time, calculating this total energy using various measures

of deposited energy in the charge and phonon energy systems. When any interaction occurs in the

detector crystal, it produces a large population of phonons, which we call ’prompt’ phonons, as well

as a number of charge carriers. Immediately after the event, the energy is divided according to the

energy conservation formula

E = Eph + ✏gapneh (3.1)

where Eph is the energy of the prompt phonons, ✏gap is the bandgap energy (discussed in chapter 2),

and neh is the number of electron-hole pairs produced by the event.

The detectors are operated with a voltage between the two faces in order to drift the charge

carriers generated by events to the instrumented detector faces. As the charges are drifted, they

generate an additional phonon energy due to production of additional athermal phonons we refer to

as Neganov-Trofimov-Luke[69, 77] (NTL) phonons. Due to energy conservation, the total amount

of phonon energy produced is just e · V , so that the total phonon energy produced during the event

is just

Eph = Er + nehV (3.2)
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We can parameterize the charge production as

neh = y(Er)
Er

✏eh
(3.3)

where y(Er) is the charge yield (normalized to 1 for electron-recoils, and taking on a value between

0 and 30% for nuclear recoils) so that the total phonon energy is

Eph = Er

✓
1 + V

y(Er)

✏eh

◆
(3.4)

Here ✏eh is the energy needed to produce on electron-hole pair on average, which di↵ers from the

energy gap for indirect band-gap semiconductors. This shows that we have two nominal detector

modes, a low-voltage mode (where there is minimal degeneracy between phonon and charge energy)

and a high-voltage mode, where the phonon energy is proportional to the charge energy. These

two extremes are approximately the case for the iZIP (low-voltage) and HV (high-voltage) detector

designs. This detector model is shown schematically in Figure 3.1.

As an aside, we should note that it is guaranteed that all of the energy that enters the detector

will end up as phonon energy eventually. If we generate an electron-hole pair with a large photon

(100 eV for example) it will very quickly emit high-energy athermal phonons which will produce

additional charge carriers. It is an empirical fact that for electron-recoils above ⇠ 10eV , the mean

charges produce is linear in initial energy, taking the form

neh =
Er

✏eh
(3.5)

where ✏eh is roughly the energy of the direct bandgap. Each of these charges can then continue to

emit athermal phonons to reach the bandgap energy ✏gap, immediately re-emitting phonons with

total energy ✏eh � ✏gap for every charge carrier. For these electron-hole pairs to reach the detector

surfaces, they need to retain this bandgap energy, but once at the surface there is some probability

they can re-emit that energy as a phonon and recombine. If that happens during the normal time-

scale of the event, the total energy is given by equation 3.4, but if that happens at some time later,

we measure an event with total energy

Eph = Er

✓
1 + (V � ✏eh)

y(Er)

✏eh

◆
(3.6)

and a handful of secondary events with energy equal to the indirect bandgap. This secondary

population would grow as a function of time, and would be removed by neutralization and/or pre-

biasing of the detector. This doesn’t necessarily change our understanding of the detector signals

but does represent both a systematic on the determination of total energy e�ciency (we don’t know

what the true input energy was) and a potential background we need be aware of when employing
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Figure 3.2: Schematic of energy transport in a QET. The phonons break cooper pairs in the super-
conducting aluminum fin, which di↵use to the trap region. The trap region has a lower bandgap due
to the proximity e↵ect with the tungsten, and the quasiparticles are trapped there and drop their
energy as heat into the TES. The TES then amplifies this input power as a change in current, read
out by upstream amplifiers.

crystals with moderate carrier lifetimes (high enough to be metastable but not stable).

Figure 3.2 shows an overview of the phonon sensors, called Quasiparticle-assisted Electrothermal-

feedback Transition Edge Sensors (QETs). The operating principle of the QET is to use a material

with a small bandgap to collect phonon energy, and di↵use this energy towards a smaller volume with

a lower bandgap which then traps and absorbs this energy (see Figure 1.16 for the energy scale of

superconductor and semiconductor bandgaps). Each conversion step in this process has an associated

e�ciency which has either been measured or estimated, and the design of the QET-crystal system

has become a mostly solved optimization problem, as will be described in the next few sections. The

fundamental limitation comes from the process of converting phonons to quasiparticles, which can

be shown to be at most ⇠60% e�cient[23].

To give the reader some pedagogical context for why we’re using cryogenic technology to achieve

such low energy resolution, let’s consider the model of the ideal calorimeter, which is a block of

material with specific heat c and volume V such that C = cV . The block is attached to some heat

bath of infinite heat capacity by a thermal conductance G. This system is thus governed by the

equations
dT

dt
= �G

C
(T � Tb) ! T (t) = (T0 � Tb)e

�t/(C/G) + Tb (3.7)

which responds to power fluctuations slower than the time constant ⌧ = C

G
. In fourier space this

transfer function is

S(f) =
✏

1� i!⌧
! |S(f)|2 =

✏2

1 + !2⌧2
(3.8)

where ✏ is the energy transfer e�ciency. We find the energy resolution of a device with noise power
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|N(f)|2 and signal power |S(f)|2 as (see section E.6)

�2
E
=


4

Z 1

0

|S(f)|2

|N(f)|2

��1

(3.9)

and for the signal found above, and a noise power |N(f)|2 = 4kbT 2G, we find

�2
E
=

kbT 2G

✏2
⌧ = ckb

V T 2

✏2
(3.10)

This is a fundamental limitation of calorimeters that are thermal noise limited. If, for example, you

want to design a calorimeter using a known material at a known e�ciency, the design trade-o↵ is

thus between volume and temperature; so large calorimeters with very low energy resolution need to

be operated at low temperature. The caveat to this argument is of course that athermal signals can

overcome the thermal noise, but there will almost always be a critical thermal-noise limited stage

that obeys this scaling relation.

Unlike past CDMS detectors, the CDMS-HV detectors do not read out the ionization signal,

and thus instead of balancing charge and phonon resolution, we can attempt to maximize phonon

resolution in our mask designs. We also need to balance resolution with phonon fiducialization,

however, which adds additional degrees of freedom to the design of our QET, as the size of the unit

cell will depend on the number of unit cells per unit area, set by the phonon channel size. In this

chapter I will describe the elements of detector modeling incorporated into the optimization for the

CDMS HV detector, the results of which are the subject of chapter 4.

3.2 TES Dynamics

The QET unit cell consists of a tungsten TES connected to aluminum fins via small tungsten

connectors, and a phonon channel consists of N TESs voltage biased in parallel. The e↵ective

resistance of a given TES is

RT = ⇢W
lT

wThT

(3.11)

and the normal state parallel resistance of N TES is

Rn =
RT

NT

(3.12)

so we can relate the dimensionality of the TES to number per phonon channel:

NT =
RT

Rn

=
⇢w
Rn

lT
wThT

(3.13)
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Quantity Symbol Adopted Value
Normal State Phonon Channel Resistance Rn ⇠150 m⌦

Operating Point Phonon Channel Resistance Ro Rn/3
TES Circuit Inductance (e↵ective) Leff ⇠ 145 nH

TES Critical Temperature Tc 45-60 mK
TES Thickness hT 40 nm
TES Width wT 2.4µm
TES Length lT 100� 300 µm

TES Fractional Volume Coe�cient ⇣T ⇠ 0.7
Tungsten Square Resistance Rsq 3.3 ⌦

Tungsten Resistivity ⇢W 1.32 · 10�7⌦m
Wiedermann-Franz Coe�cient �wf 2.44 · 10�8W⌦

K2

Electron-Phonon Coupling Constant [45] ⌃ 0.4 · 109 W

K5m3

Thermal Conduction Power-Law Exponent n 5
Tungsten Specific Heat cW 108 J

K2m3

Superconducting Heat Capacity Increase fsc 1.0 - 3.0
Crystal Temperature Tbath < 30 mK

Logarithmic Temperature Sensitivity ↵I 100-150
Logarithmic Current Sensitivity �I < 0.3

Table 3.1: TES design parameters adopted for geometry determination, with lower limits on dimen-
sions set by photolithograpy and continuity considerations. ⇢w, ⌃, and n from Table 3.1 in Ref [83]
(page 24). Crystal temperature taken from chapter 5 of the CDR. See text for more details.

where these quantities are as defined in Table 3.1. Here we see that we can maximize the number

of TESs per channel by minimizing TES width and thickness and maximizing TES length. The

minimum TES width and thickness are process dependent, with values shown in Table 3.1, and so

the only parameters we are able to optimize further are the normal state resistance of the phonon

channel and the length of the TES. The resistance of a given phonon channel is set by constraints

of our readout system as well as electrothermal oscillation, which is described in section 3.2.3. The

maximum length of TES is limited by the need to keep the TES in thermal equilibrium, and the

phase separation length, described in section 3.2.5, sets the upper limit of TES length for which

thermal equilibrium can be maintained.

The resistance of a given TES channel is bounded on either side by signal-to-noise considerations

of our readout electronics. We expect the non-TES resistance of the resistive load on the input-

coil circuit to be on the order of 5m⌦ for SNOLAB cold electronics, and thus we desire that the

operating point resistance of the TES circuit be much larger than this value. We would also like

to maximize the current range of our voltage biased TES circuit to maximize signal-to-noise in the

SQUID readout and thus want to use as low a resistance as possible for the TES operating point. In

addition, the time constant of the LRC circuit constructed by the inductor, TES, and thermal heat

capacitance sets the bandwidth of our TES readout, and given some inductance we can increase the

bandwidth by increasing resistance and/or capacitance of the TES. These considerations are covered

in section 3.2.2. In the following section, I discuss the assumptions which go into QET optimization,
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and where some of the parameters taken as constants come from.

3.2.1 TES Characteristics and Parameters

The parameters and parameter ranges chosen for the design of the TES in our QETs can be seen in

Table 3.1, along with some physical constants which allow us to relate heat capacities and conduc-

tances to physical dimensions and critical temperature. Many of these are quantities derived from

more fundamental physical principles, summarized here for completeness, while others are measured

properties of our devices which are process specific; still others are values chosen to ensure safety

margins away from critical failure regimes.

Tunable Parameters

For our purposes, we have chosen the normal-state resistance of the entire phonon channel to be

⇠150 m⌦, corresponding to an operating point resistance of ⇠ 50 m⌦. This operating point is

roughly twice as high as for past devices, driven in part by the fact that our inductance is higher,

and to first order we want to maintain an inductance to resistance ratio which we’ve known to be

stable in the past. This is an assumption which we’ll re-visit at the end of this section once we

have established stability and oscillation criteria, but it is within a factor of two of our final value.

Note that decreasing this value, we’ll see, increases TES number, but will also increase Johnson

noise. This will be explored later in the section; I use it as a reference point to explore the response

equations derived in this section.

Many of the parameters in Table 3.1 are set to the smallest values achievable with current

fabrication abilities:

• The width of our TESs are limited mainly by their photolithography and are currently assumed

to be 2.4 µm; in reality this number drifts between 2 and 3 microns, and is thus a geometric

average. It is limited by the di↵raction limit of the alignment stage of photolithography and

the shear resistance of the photoresist used.

• The height of the TESs is similarly limited by fabrication, as we can’t consistently make

thinner films without risking breaks in continuity. In addition, tungsten has a non-trivial

phase boundary between the bottom and the top of the film, thus a change in thickness usually

produces a change in transition temperature and thermal conductivity (results relevant to this

point will be explored in the next chapter).

• The inductance listed in the table is an estimate based on the initially measured inductance of

our tower wiring, the input coil, and assumes the mask will not have an inductance exceeding

⇠ 20nH.
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• The Tc is primarily set by that which we can consistently fabricate without a significant critical

temperature gradient across the TESs in a given channel, as well as the requirement that Tc

be more than 10% higher than bath temperature for optimal temperature flow and predictable

gain. It is nominally limited by the magnetic impurity content of the tungsten target used

during fabrication[113].

To expand on this last point, tungsten has three crystal phases. ↵ phase tungsten, which has a

Tc of 15mK, and � phase, which has a Tc of 1-4K[92]. By mixing these phases or perturbing them,

one can tune the Tc to have an intermediate value. In thin films, the crystal phase grown at the

bottom of the film will depend on the substrate, and as the film grows the ambient environment

will determine whether this phase is maintained or a di↵erent phase develops. Thus the Tc of a film

is the average Tc of the layers due to the proximity e↵ect[23], and if there is a gradient of crystal

morphology, we will expect geometric e↵ects to alter the Tc of the film, not to mention the physical

properties (e.g. thermal conductance, heat capacity, and resistance, which are all linked at low

temperature by electron-phonon dynamics).

In addition, the following sections show some dependence on intrinsic parameters as well as VTES ,

the TES conduction volume:

VTES = lTEShTESwTES (3.14)

This volume is obviously important for an individual TES; more relevant to our design goals is the

total TES channel volume

Vchannel = VTESNTES =
⇢W
Rn

lTES

wTEShTES

lTEShTESwTES =
⇢W
Rn

l2
TES

(3.15)

So the heat capacity of the channel increases as l2
TES

. This is one justification for opting for longer

TESs all else being equal, as you’ll have a larger TES dynamic range, but of course in principle a

worse resolution by a similar amount.

As a note of caution, I would like to stress to the reader that superconductivity is a bulk phe-

nomenon, and the dimensions of the TES (as well as the morphology of the film) will a↵ect all of

the parameters described in this section, including heat capacity, resistance, critical temperature,

and thermal conductivity. Many of our designs which did not perform as expected resulted from

the assumption that ⇢ and C are independent of the critical temperature of the material, and that

Tc is independent of film dimensions. In practice both have been shown to be poor assumptions.

This will be discussed further in the next chapter, but I urge the reader to keep it in mind when

considering any specific numbers considered in this section.

Intrinsic Resistance Parameters

Other parameters are measured from our devices, and we have less control over them. Most notably,

when we talk about dynamics in the next section, we’ll need to linearize resistance in temperature
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and current changes as

R(I, T ) ⇡ R0 +
@R

@T

����
I0

�T +
@R

@I

����
T0

�I (3.16)

As in Ref [50], which references papers by both McCammon and Mather for this substitution, we

use the dimensionless logarithmic temperature sinsitivities ↵ and � into the equation to finalize the

linearization, where

↵ =
@ logR

@ log T

����
I0

=
T0

R0

@R

@T

����
I0

(3.17)

and

� =
@ logR

@ log I

����
T0

=
I0
R0

@R

@I

����
T0

(3.18)

to give

R(I, T ) ⇡ R0

✓
1 + ↵

�T

T0
+ �

�I

I0

◆
(3.19)

As we want changes in resistance to be sensitive to temperature variations, and minimally sensitive

to current variation, we see that our ideal device would have very high ↵ and � ⇠ 0. ↵ is in this case

the slope of the super-conducting transition, which is very large and thus explains why TESs are

such sensitive thermal energy sensors, however it is very hard to control ↵ and � through fabrication,

and � tends to be non-zero in any real device.

These are two parameters which I quote ranges for because we have an idea of values measured in

past devices, but we won’t know the true values until the first mask is fabricated and characterized.

We expect ↵ to be in the 100-150 range, which tells us that a 1% change in temperature leads to

a doubling of resistance in the case that � ⇠ 0, but for a large �, current would decrease, reducing

the overall increase in TES resistance. The connection of these parameters to a phenomenological

resistance curve is shown in section B. The ideal critical temperature is a first-order phase transition,

so the closer a film is to its bulk transition temperature, the sharper we can expect the transition to

be[92]. The less bulk-like a film is, the more one should expect deviations from ideal and shallower

transitions[65].

Intrinsic Heat Transfer Parameters

Finally, there are some constants which have to do with thermal storage and transfer. The heat

capacity for the TES at critical temperature is given by

CTc = fsccWVTES,effTc (3.20)

where cW is the specific heat capacity of tungsten, and fsc is the correction to the normal curve due

to added heat capacity of cooper pair breaking in the super-conducting transition, which can vary

from 1 to ⇠ 2.4 (also given in Table 3.1)[13, 66, 67]. This will be discussed further in a moment.
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The e↵ective TES volume is given by

VTES,eff = VTES + ✏Vtrap (3.21)

where VTES = lTEShTESwTES is the volume of the conductive length of the TES. The epsilon

factor here represents the fact that the trap only contributes a fraction of its volume to the heat

capacity, as a portion which is in close contact with the aluminum has its e↵ective heat capacity

greatly reduced. This can also be written as

VTES,eff = VTES(1 + ✏
Vtrap

VTES

) =
VTES

⇣
(3.22)

where

⇣ =
VTES

✏Vtrap + VTES

(3.23)

is the TES fractional volume coe�cient. ⇣ = 1 implies that only the conductive length of the TES

contributes to the heat capacity, while low ⇣ implies that the trap volume is more important to the

heat capacity.

We also recognize that heat capacity is a function of temperature, and parameterize it similarly

to how the resistance change was parameterized:

C(T ) = CTc +
@C(T, I)

@T

����
I0,T0

�T = CTc + CTc�C
�T

Tc

(3.24)

where �C is the logarithmic derivative quantity

�C =
Tc

CTc

@C(T, I)

@T

����
I0,T0

(3.25)

which describes the relative change in heat capacity with change in temperature. Ref [66] suggests

that for super-conductors, this has a value around 3. We are prevented from simply expanding about

T in the equation for the steady-state capacitance because fsc is also a function of temperature, so

� mainly captures this dependence rather than scaling with the original constants.

As an aside, the fact that heat capacity changes dramatically is actually a primary prediction of

BCS superconductivity, and the BCS prediction is that the heat capacity will jump discontinuously

between the normal metal value Cn and an increased heat capacity Cs = 2.43Cn, after which is is

expected to fall rapidly to 0 as an exponential (Cs ⇠)[13, 10]. The form for the superconducting heat

capacity for temperatures lower than Tc follows Cs(T ) ⇠ 8.5 exp(�1.44Tc/T )[13], and is linear close

to the transition (as shown in Figure 3.3). BCS specifies, however, that this transition is infinitely

sharp, but we know that proximity e↵ects will produce a smooth transition between normal and

superconducting states, so we rely on empirical means to determine the rate of change of heat
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Figure 3.3: Left: Measurement of heat capacity above/below the transition temperature in a sample
of bulk Al, reproduced from Ref [10]. The data points are an excellent fit to an exponential in the
superconducting state and a line in the normal state, as discussed in the text. Right: Measurement
of heat capacity as a function of resistance in the transition for a TES with normal resistance of
Rn ⇠, reproduced from Ref [67]. This shows that for a TES-sized structure, these is a non-trivial
change in heat capacity between the expected normal and superconducting values, and the slope of
that change is dependent on the operating point in the transition.

capacity through the transition. An example measurement of heat capacity versus resistance is also

shown in Figure 3.3, reproduced from Ref [67]. This demonstrates the non-linear transition from

the normal to superconducting heat capacity. The first measure of heat capacity in a SuperCDMS

TES will be discussed in Chapter 5.

Getting back to the response model, we write the power transferred between the TES and the

bath as

Pbath = K(Tn � Tn

bath
) ⇡ KTn (3.26)

where K is decomposed into the TES volume and the Electron-Phonon coupling constants ⌃:

K = VTES,eff⌃ ! Pbath ⇡ ⌃VTES,effT
n (3.27)

Here ⌃ is used as measured by Ref [45], however this is one of our most uncertain parameters, and

will need to be re-measured for new devices to decrease the uncertainty.

4 ,-----------T
1
------ 7 

, 
c,~ .. 

, 

I 

/l . 

. . . 
• L·· •• 

• •••• I 
: ... : 

• •• I ;.--·~ ! 
tlif r,, I 

•,,;'# I 
•• • I J.. .. : 

_,;. . ' 0 
0L--1.i.0---2::'::o:---3::':o::---:.40::---;50~ 

resistance (n) 



CHAPTER 3. DETECTOR CONCEPTS 104

3.2.2 TES Response Model

We can derive the green’s function impulse response of a TES to determine how TES parameters,

and the components of the bias circuit, a↵ect the TES bandwidth, and determine the stability

conditions for TES parameters in terms of fixed circuit constraints. Many circuit parameters are

fixed, and we need to design the TES to optimize dynamics in light of their values. We can simplify

the circuit part of the problem significantly by reducing the number of circuit elements, and the

circuit complexity. In the process we’ll end up with a model defined only in terms of realistic inputs

and measurable outputs.

We voltage bias the TES circuit indirectly by supplying a stable current source across two parallel

branches. Each branch can be considered to have a complex impedance consisting of a resistor and

inductor (they should have negligible capacitance), with the TES branch also routed through the

TES itself. The ideal circuit has only the shunt resistor in the left branch, which we could refer to

as the bias branch, and only the TES and SQUID input coil in the right branch, the signal branch.

In reality, there is parasitic resistance and inductance in both branches. As we can simply add

inductances and resistances in series, we can start from the model shown in the center of figure 3.4,

with our only assumption being that Rbias >> Zloop. Given that the inductances are on the order

of nH, and resistances on the order of m⌦, this is a valid assumption over all frequencies of interest

(< 10 MHz, at which point a 1 µH inductor as a reactance of 100 ⌦), and we won’t consider it

further.

To get from the central to the right diagrom in figure 3.4, we just need to do some algebraic

manipulation of the loop equation for the central circuit. The current around the loop follows the

equation

✓
Rsb + Lbias

d

dt

◆
Ish =

✓
Rp + LTES

d

dt

◆
Is +RTES(I, T )Is (3.28)

where Ish + Is = Ib, and Ib is the current from the current source. This equation also allows us to

use the relation Ish = Ib � Is to get

✓
Rsb + Lbias

d

dt

◆
(Ib � Is) =

✓
Rp + LTES

d

dt

◆
Is +RTES(I, T )Is (3.29)

✓
Rsb + Lbias

d

dt

◆
Ib =

✓
Rp + LTES

d

dt

◆
Is +

✓
Rsb + Lbias

d

dt

◆
Is +RTES(I, T )Is (3.30)

✓
Rsb + Lbias

d

dt

◆
Ib =

✓
Rloop + Lloop

d

dt

◆
Is +RTES(I, T )Is (3.31)

At this point we can just read o↵ the DC relationship between the bias and TES currents, and

we can see why this is not equivalent to the dIb/dIs relationship we’ll discuss later; the TES has

a complex impedance which is not captured here and that will be derived shortly. But without

knowing anything about the TES, we can use this relationship, with very slowly changing Ib and Is,
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Figure 3.4: TES circuit analogs. Left is the actual circuit, arranged top to bottom by temperature.
Middle is a very close approximation, assuming Rbias >> Zloop, which is true for 1 M⌦ bias
resistor in the SNOLAB electronics. Right is exactly equivalent to the middle circuit; resistance and
inductance are moved to the right-hand side, and an e↵ective impedance is used to calculate the
voltage supplied by the voltage source.
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to show that
Ib

Is
=

Rloop +RTES(I, T )DC

Rsb

= 1 +
Rp +RTES(I, T )DC

Rsb

(3.32)

which will allow us to measured the TES transition curve without knowing anything about its

frequency response.

This also tells us that to an excellent approximation, we can write

V =

✓
Rsb + Lbias

d

dt

◆
Ib = ZsbIb ⇡ RsbIb (3.33)

which will be valid as long as Ib is well controlled, or we meet the condition

����
Zsb

Rsb

����� 1 < ✏ (3.34)

����
(Rsb + i!Lbias)

Rsb

����� 1 < ✏ (3.35)

|1 + i!Lbias/Rsb| < 1 + ✏ (3.36)

1 +
1

2
(!Lbias/Rsb)

2 < 1 + ✏ (3.37)

!Lbias/Rsb <
p
2✏ (3.38)

f <

p
2✏

2⇡

Rsb

Lbias

(3.39)

For SNOLAB electronics, to 10% precision, this is a good approximation below frequencies of 100

kHz. If we weren’t using a stable power source, this would be a problem, but given that the high

frequency components should be much smaller than the DC value, we can ignore inductor e↵ects in

the bias voltage until we discuss measurements of complex impedance.

With our simplified circuit, we can now begin the modeling including thermal TES response. We

begin by recognizing that, for a TES cooled by a bath with power Pbath, heated by Joule heating

PJ , and subject to some signal power P , we have the di↵erential equation

C
dT

dt
= �Pbath + PJ + P (3.40)

and electrically, our circuit obeys the di↵erential equation

L
dI

dt
= V � IRL � IR(T, I) (3.41)

where L is the self-inductance of our squid input coil, RL is the resistance of the input coil, and

R(T, I) is the TES resistance as a function of I and T . Before going futher, we see that we’ll have

some highly non-linear terms here, so to obtain any solution we’ll have to approximately linearize a

few of these terms.
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The bath power is typically written [50]

Pbath = K(Tn � Tn

bath
) ⇡ KTn = ⌃VTES,effT

n (3.42)

for the normal case that Tbath is even 5 mK colder than the TES. We can thus linearize power about

some nominal temperature T0 (which will also be roughly Tc) to be

Pbath ⇡ Pbath,0 + n⌃VTES,effT
n�1�T = Pbath,0 +G�T (3.43)

so we have

G = nKTn�1 = n⌃VTES,effT
n�1 (3.44)

where G is the di↵erential thermal conductance of the TES/QET system.

Linearizing the resistance about nominal values of I0 and T0 as in the previous section gives

R(I, T ) ⇡ R0 + ↵
R0

T0
�T + �

R0

I0
�I (3.45)

which allows us to fully linearize our di↵erential equations. The joule heating of the TES at a steady

state current I0 and operating resistance R0 is then given by

PJ = PJ0 = I20R0 (3.46)

and the full linearization in R and I is thus

PJ ⇡ PJ0 + 2I0R0�I + I20

✓
↵
R0

T0
�T + �

R0

I0
�I

◆
(3.47)

= PJ0 + I0R0(2 + �)�I + ↵
PJ0

T0
�T (3.48)

We thus have the power di↵erential equation

C(T )
d�T

dt
= I0R0(2 + �)�I �

✓
G� ↵

I20R0

T0

◆
�T + �P (3.49)

where �T has come in as we assume equilibrium at some T0, giving I20R0 = Pbath0+P0 and allowing

them to cancel. If we also consider the linearization in heat capacity, we find for constant R (before
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substitution of specific forms):

dT

dt
=

1

C(T )
(PJ0 � Pbath0) (3.50)

⇡ 1

CTc

(PJ0 � Pbath0)(1� �
�T

Tc

) (3.51)

CTc

d�T

dt
= �� �T

Tc

(PJ0 � Pbath0) (3.52)

= �� �T
Tc

(I20R0 �
GTc

n
) (3.53)

= �
G

n
�T � �I20R0

�T

Tc

(3.54)

which tells us that the change in heat capacity counter-acts the normal ETF e↵ects from the previous

equation. We can include this capacitance change by the substitutions of e↵ective values for G and

↵I :

Geff = G
⇣
1� �

n

⌘
(3.55)

and

↵eff = ↵I � � (3.56)

which agrees with the results found in Ref [66], but has not been included in past attempts to

model TES dynamics by CDMS. We note that this does not greatly a↵ect the ↵ parameter, but will

significantly change the e↵ective conductance, and create a longer time constant in our TES, which

is something we’d like to be as short as possible.

Often, the dimensionless parameter L is introduced to simplify these equations:

L =
↵I20R0

GT0
=
↵

n

✓
1� Tn

bath

Tn
c

◆
(3.57)

This allows us also to introduce the natural TES time constant

⌧ =
C

G
(3.58)

and we can then simplify to find

d�T

dt
=

I0R0(2 + �)

C
�I � 1

⌧
(1� L) �T +

�P

C
(3.59)

This tells us that, with the C and G derived earlier,

⌧ =
fsccW
n⌃

T 2�n

c
(3.60)

and the TES cooling timescale is thus independent of geometry, and just dependent on intrinsic
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parameters. Including the capacitance e↵ects just mentioned, we find

⌧eff =
C

G
�
1� �

n

� =
fsccW

(n� �)⌃
T 2�n

c
(3.61)

and we leave L una↵ected as we assume ↵ >> �. In a perfect superconductor we would expect

� ⇠ �3, but for our devices, which have non-negligible currents running through them, we expect

this slope to be less dramatic. Setting � to zero allows us to put an upper limit on the TES response

time, and a non-zero value will thus increase the bandwidth of a TES.

Moving now to the current equation, we find for steady state I0 at V0, R0, T0, we have

d�I

dt
=
�V

L
� (RL + (1 + �)R0)

L
�I � ↵R0I0

T0L
�T (3.62)

which, again substituting L, gives the final coupled di↵erential equations

d�T

dt
=

I0R0(2 + �)

C
�I � 1

⌧
(1� L) �T +

�P

C
(3.63)

d�I

dt
=
�V

L
� RL + (1 + �)R0

L
�I � GL

I0L
�T (3.64)

Here we find, in the decoupled limit, the natural decay times

⌧LR =
L

RL + (1 + �)R0
(3.65)

⌧TES =
⌧

1� L (3.66)

which tell us that there are timescales determined by the normal LR circuit behavior, where the

TES appears to have a resistance Reff = (1 + �)R0.

This also determines for us how we need to bias our TES to optimize performance. For semicon-

ductor thermistors, ↵ was negative, and thus current bias was chosen to decrease decay time and

increase bandwidth. For our positive ↵ devices, we thus need voltage bias for the sign of the decay

constant to not create a positive feedback e↵ect.

These parameters allow us to write these coupled equations in a tidy matrix form:

d

dt

"
�T

�I

#
=

"
�⌧�1

TES

I0R0(2+�)
C

�GL
I0L

�⌧�1
LR

#"
�T

�I

#
+

"
�P

C

�V

L

#
(3.67)

This suggests solutions in either the fourier or time basis, both of which can be found in Ref [50].

Here I will discuss the time basis solution, as it is relevant to the later TES simulation and helps

determine our stability criterion.
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Fourier Basis Solution: Frequency Response

We can easily solve this in the fourier basis, for �V = 0. We obtain the solution

i!

"
�T

�I

#
=

"
�⌧�1

TES

I0R0(2+�)
C

�GL
I0L

�⌧�1
LR

#"
�T

�I

#
+

"
�P

C

0

#
(3.68)

"
�P

C

0

#
=

"
⌧�1
TES

+ i! � I0R0(2+�)
C

GL
I0L

⌧�1
LR

+ i!

#"
�T

�I

#
(3.69)

(3.70)

which gives

�P =


C(!TES + i!)

�T

�I
� I0R0(2 + �)

�
�I (3.71)

and
�T

�I
= � (!LR + i!)I0L

GL (3.72)

so substitution gives

�I

�P
= � 1

I0

✓
(!TES + i!)(!LR + i!)CL

GL +R0(2 + �)

◆�1

(3.73)

We can substitute back in for the ⌧ terms to find

�I

�P
= � L

I0

1

(1� L+ i!⌧)(RL + (1 + �)R0 + i!L) + LR0(2 + �)
(3.74)

To get some intuition, in the limit that L >> 1, � = 0, and R0 >> RL, we find the simpler function

�I

�P
= � L

I0

1

(i!⌧ � L)(R0 + i!L) + 2LR0
(3.75)

and we have the DC gain
�I

�P
(! ! 0) =

1

I0R0
= V �1

0 (3.76)

which we could have guessed, given that an resistor with instantaneous response has

P = IV ! �P

�I
= V0 (3.77)

and thus lowering the bias current or the operating resistance will raise the DC gain. Unfortunately,

we’ll see later that these will also increase the current noise, so we’ll need a full analysis including

dominant noise to determine how best to set these values.

We can by a similar method obtain the transfer function for voltage to current fluctuations. We
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obtain the solution

"
0
�V

L

#
=

"
⌧�1
TES

+ i! � I0R0(2+�)
C

GL
I0L

⌧�1
LR

+ i!

#"
�T

�I

#
(3.78)

(3.79)

which gives

�T =
I0R0(2 + �)

C(!TES + i!)
�I (3.80)

and thus

�V =

✓
L(!LR + i!) +

GLR0(2 + �)

C(!TES + i!)

◆
�I (3.81)

and inversion gives
�I

�V
=

(!TES + i!)

L(!LR + i!)(!TES + i!) + ⌧�1LR0(2 + �)
(3.82)

which simplifies further to

�I

�V
=

1� L+ i!⌧

(RL +R0(1 + �) + i!L)(1� L+ i!⌧) + LR0(2 + �)
(3.83)

which in the DC limit, taking the same limiting cases again, we find to be the expected value of

R�1
0 . We can complete the triangle of power, voltage, and current linearization:

@P

@V
=
@P

@I

@I

@V
= I0(1� L�1)(1 + i!⌧TES)

and we see the inductor pole go away. This makes some intuitive sense, as the inductor does not store

voltage or contribute voltage power, and thus would not factor into the voltage to power conversion.

What is also interesting to note is that high frequency voltage fluctuations actually couple into the

TES power more, which is due to the electrothermal feedback pole.

We further note, however, that due to the electrothermal feedback, we need to modify this

derivation to have �P = �I0�V for fluctuations in the TES voltage, which tells us that for the TES,

we have

�I

�VTES

=
1� L+ L+ i!⌧

(RL +R0(1 + �) + i!L)(1� L+ i!⌧) + LR0(2 + �)
(3.84)

=
1 + i!⌧

(RL +R0(1 + �) + i!L)(1� L+ i!⌧) + LR0(2 + �)
(3.85)

thus the feedback allows the zero to be much more powerful in the total transfer function, damping

low-frequency voltage signals.

Finally, if we defined the complex impedance of the TES in terms of the complex impedance of
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the circuit:

Zloop(!) =
�V

�I
= i!L+RL + ZTES(!) (3.86)

In the absence of other circuit elements, we find the complex impedance of the TES to be

ZTES(!) =
(RL +R0(1 + �) + i!L)(1� L+ i!⌧) + LR0(2 + �)

1� L+ i!⌧
� i!L�RL (3.87)

=
R0(1 + �)(1� L+ i!⌧) + LR0(2 + �)

1� L+ i!⌧
(3.88)

=
R0(1 + �)(1 + i!⌧) + LR0

1� L+ i!⌧
(3.89)

= R0
(1 + �)(1 + i!⌧) + L

1� L+ i!⌧
(3.90)

This suggests that we should be able to measure both L and � by applying voltage bias excitations

much higher than and much lower than the Pole, where the high frequency measurement gives �,

and the combination gives L.

Time Basis Solution: Green’s Function Response

We can solve the homogeneous equation (�P = �V = 0) by finding the eigenvalues and eigenvectors

of the matrix; for eigenvalues �± and eigenvectors ⇤±, we find the general solution

"
�T

�I

#
= A+ exp(�t�+)⇤+ +A� exp(�t��)⇤� (3.91)

and we can thus recognize that ⌧± = ��1
± . Using any method, one finds the eigenvalues

1

⌧±
=

1

2⌧LR

+
1

2⌧TES

(3.92)

± 1

2

s✓
1

⌧LR

� 1

⌧TES

◆2

� 4
R0

L

L(2 + �)

⌧
(3.93)

=
1

2

✓
1± �

⌧LR

+
1⌥ �

⌧TES

◆
(3.94)

where

� =

 
1� 4

R0

L

L(2 + �)

⌧

✓
1

⌧LR

� 1

⌧TES

◆�2
!1/2

(3.95)

For this to be non-oscillating, then, we need � to be real, and it is thus in the range (0,1), making

it a correction factor. This will be expanded upon in the next subsection.

If we assume ideal operation, where, �V=0, and phonons with energy E couple into the system
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as a delta function:

�P (t) = Ephonon�(t), �I(0) = 0, , �T (0) = 0 (3.96)

we can solve for the unknown parameters A± to obtain the green’s function response to a single

phonon of energy E. Ref [50] obtains the result (� < 1)

�I(t) = CN (⌧i)
Eph

(2 + �)I0R0

⇣
e�t/⌧+ � e�t/⌧�

⌘
(3.97)

where

CN (⌧i) =
(⌧TES/⌧+ � 1) (⌧TES/⌧� � 1)

⌧2
TES

(1/⌧+ � 1/⌧�)
(3.98)

is the normalization constant, with units of s�1. Note also than we can calculate the desired

operating current as

I0 =

r
⌃VTES,effTn

c

R0
(3.99)

from the equilibrium condition between the bath and joule heating.

With this green’s function in hand, we can recognize that for the limiting cases where � ⇠ 0 and

� = 1, we have varying levels of over-damping, with � = 0 being the critically damped solution, with

a slightly di↵ering green’s function (the limit must be evaluated, as the numerator and denominator

are nominally zero). For � = 1, we find that the rise time becomes the LR transient time-scale, and

the fall time becomes the TES cooling time, as one might expect.

Poles and Time Constants

We should take a second to stop and summarize the various poles and time constants a↵ecting

each of the quantities derived above, and quote values corresponding to the constants given for our

proposed TES geometry and known device constants.

The time domain time constants (which one can check match the equivalent Fourier domain poles

in both Matt Pyle’s and Paul Brink’s derivations) are given in equation 3.94. The constants therein,

and in particular those within �, given in equation 3.95, were defined in the previous sections, but

I will summarize them again here.

⌧ , the intrinsic response time of the TES without electro-thermal feedback, is given by equation

3.60:

⌧ =
C

G
=

fsccW
n⌃

T 2�n

c
=

fsccW
5⌃T 3

c

⇡ 592 ⇤ fsc µs (3.100)

using the quantities shown in Table 3.1. Here, fsc is left explicit to show that this is a minimum

fall time, and stress the high variability of this quantity within the transition between 1.0 and ⇠ 2.5

when the TES is nearly superconducting. It is more straightforward from this point to quote rise/fall

times at the start of the transition, as this is better defined, but it is important to keep in mind that

this is shorter than the true fall time. Setting fsc = 1.0 thus gives ⌧ ⇡ 592µs, while fsc ⇠ 2.5 gives
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⌧ ⇡ 1.48ms.

The rest of the time constants are derived from ⌧ , aside from the LR time constant

⌧LR =
L

RL + (1 + �)R0
⇡ 2 µs (3.101)

We have the electro-thermal feedback time constant

⌧TES =
⌧

1� L ⇡ �24.0fsc µs (3.102)

which again scales with the position in the super-conducting transition. The rise and fall times

have a much more complicated scaling given �, which we can also express in terms of this scaling

constant:

�2 = 1� 4
R0

L

L(2 + �)

⌧

✓
1

⌧LR

� 1

⌧TES

◆�2

(3.103)

= 1� 4
R0

L

L(2 + �)⌧2
LR

⌧

✓
1� ⌧LR

⌧TES

◆�2

(3.104)

⇡ 1� 4
R0

L

L(2 + �)⌧2
LR

⌧

✓
1 + 2

⌧LR

⌧TES

◆
(3.105)

⇡ 1� 0.578

fsc

✓
1� 0.169

fsc

◆
(3.106)

This shows us that increasing the heat capacity through the transition causes an increase in �, which

drives rise time to be smaller and fall time to be longer. The limit of much larger heat capacity

corresponds to the diagonal basis, where rise time is the LR time constant and fall time is the TES

time constant. Figure 3.5 shows the rise and fall time as a function of fsc, compared to the TES

and LR time constants.

We’ll see in the noise section that these time constants are relevant as poles for the TES and

electronic (non-squid) noise terms, so we should also find the frequencies associated with these time

constants. Simply inverting the time constants should give a measure of the angular frequency, so

the frequencies of interest are

f =
!

2⇡
=

1

2⇡⌧
(3.107)

The time constants and poles for fsc = 1.0 and fsc = 2.5 are summarized in table 3.2.

3.2.3 Electrothermal Oscillation Criteria

From the above, we see that for critically or under-damped behavior, we have the condition

1 � 4
R0

L

L(2 + �)

⌧

✓
1

⌧LR

� 1

⌧TES

◆�2

(3.108)
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Figure 3.5: Rise and Fall time as a function of the ratio of superconducting to normal heat capacity,
as described in the section. Note that both rise and fall time are larger than their asymptotic values,
and that fall time gets larger linearly with fsc while rise time gets smaller with the inverse of fsc,
to first order.

Quantity ⌧1.0 (µs) !1.0 ⌧2.5 (µs) !2.5

⌧ 593 268 Hz 1481 107 Hz
LR 2.0 79.6 kHz 2.0 79.6 kHz
TES (abs) 23.7 6.7 kHz 59.1 2.7 kHz
Rise 2.4 67.2 kHz 2.1 74.9 kHz
Fall 28.2 5.6 kHz 78.5 2.0 kHz

Table 3.2: TES Rise and Fall time constants

which expands, without taking any explicit limits, to become

✓
1

⌧LR

� 1

⌧TES

◆2

� 4L(2 + �)

⌧

R0

L
� 0 (3.109)

✓
R0(1 + �) +RL

L
+

L� 1

⌧

◆2

� 4L(2 + �)

⌧

R0

L
� 0 (3.110)

This is a quadratic equation, which when solved for the loop gain yields a range of values where

oscillation will occur. The region of oscillation is bound by the loop-gain values

(L± � 1) =
⌧R0

L

"
3 + � � RL

R0
± 2

s

(2 + �)

✓
1 +

L

R0⌧
� RL

R0

◆#
(3.111)

=
R0

R⌧

"
3 + � � RL

R0
± 2

s

(2 + �)

✓
1 +

R⌧ �RL

R0

◆#
(3.112)

where I’ve introduced the derived parameter

R⌧ =
L

⌧
(3.113)
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to put all of the units into easily comparable units. For the SNOLAB design, we have R⌧ ⇡
250nH/600µs ⇡ 4 m⌦, and for a design operating point around 50 m⌦ this is obviously sub-

dominant. If we create a device with a much higher Tc, as was done for the first UMN test devices

in older electronics, however, R⌧ ⇡ 400nH/80µs ⇡ 25 m⌦, and we have a much lower oscillation

threshold. In addition, older electronics have higher values of RL, further reducing the location of

the oscillation region.

One quantity of interest might be the minimum resistance where oscillation will be observed.

We see that we can find this without much work, as it will occur when the last factor in the earlier

equations is 0:

0  2

s

(2 + �)

✓
1 +

R⌧ �RL

R0

◆
(3.114)

R0 � RL �R⌧ (3.115)

Given that all of these numbers are positive, this tells us something important; that it is not possible

to eliminate the possibility of oscillation in any design where the TES is voltage biased if inductance

and loop gain cannot be controlled. It will never be possible to have a stable voltage biased region

free of oscillation for any set of temperature response and inductance.

In the past, we’ve been used to considering the lower bound an upper limit and using the loop

gain to put restrictions on inductance, but given measured properties of an electronics setup, we can

determine the range of transition slopes which will produce oscillation. In the limiting case normally

applicable to our detectors (L >> 1, R⌧ , RL << R0), this tells us that we avoid oscillation for

L  R0⌧

L

⇣
3 + � � 2

p
2 + �

⌘
=

R0

R⌧

⇣
3 + � � 2

p
2 + �

⌘
(3.116)

assuming � � 0. We benefit from increasing � because it decreases the L/R time constant, thus

allowing more bandwidth for a given inductor-TES combination, and increases the allowance of

inductance before the TES begins to oscillate. This is the bound derived in Matt Pyle’s thesis. It’s

clear that for older devices this is a good limit, but as we move to lower resistance and Tc, we need

to be careful not to take this limit without explicit evidence that this is the case.

We’ll see later on that we’d like the TES fall time to be much shorter than the timescale of a

phonon pulse. Since these dynamics can shorten the overall fall-time, let’s say that we set a minimum

fall time ⌧min of

⌧min =
⌧

L
c

= �⌧TES

c
(3.117)

This gives the condition

1

⌧LR

+
1 + 2c

⌧TES

�

s✓
1

⌧LR

� 1

⌧TES

◆2

� 4
R0

L

L(2 + �)

⌧
(3.118)
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which, solved, gives

�4
1 + c

⌧LR⌧TES

 4
R0

L

L(2 + �)

⌧
+

4c(1 + c)

⌧2
TES

(3.119)

(1 + c)
L(R0(1 + �) +RL)

L⌧
 R0

L

L(2 + �)

⌧
+

L2c(1 + c)

⌧2
(3.120)

(1 + c)(R0(1 + �) +RL)  R0(2 + �) +
LLc(1 + c)

⌧
(3.121)

(1 + c)RL

✓
1� LLc

RL⌧

◆
 R0 (1� c(1 + �)) (3.122)

and thus

R0 � RL

1 + c

1� c(1 + �)

✓
1� LLc

RL⌧

◆
(3.123)

In the limit that the second term on top is negligible (which we can certainly design by making L

small enough), we find

R0 � RL

1 + c

1� c(1 + �)
(3.124)

This tells us two things; firstly that the minimum fall time is the natural fall time of the TES

under ETF, and secondly that non-zero beta increases the minimum fall-time above the natural

TES falltime. These both come from the constraint that R0 can’t be infinite. We thus see that for

us to achieve 1.2 times the natural TES fall-time, we need to have ;

R0 � RL

1.83

0.17� 0.83�
(3.125)

which for � = 0 is about a factor of 10, and for any value of R0 to achieve this, we need � < 0.2.

This shows that having a � as close to zero as possible is hugely advantageous. Even for a value of

� ⇠ 0.1, we need R0 ⇡ 20RL to achieve this bandwidth.

3.2.4 TES Stability

We also need to ensure that the TES is stable. The impulse response equation suggests that this

will be the case as long as both ⌧± are positive, which we can write as the inequality

0  Re


2

⌧±

�
= Re

⇥�
⌧�1
LR

+ ⌧�1
TES

�
± �

�
⌧�1
LR

� ⌧�1
TES

�⇤
(3.126)

Here we recognize that � is very limited in real space, and only takes values between 0 and 1. We

can also see that for L > 1, which is a very conservative criterion (a device which does not satisfy

this condition would be useless for us), we see that the prefactor of � in this expression is always
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positive. The di↵erence between falltimes is

1

⌧+
� 1

⌧�
= 2�

✓
1

⌧LR

� 1

⌧TES

◆
� 0 (L � 1) (3.127)

! ⌧�1
+ � ⌧�1

� (L � 1) (3.128)

This tells us that for a given ⌧LR and ⌧TES , under the condition that L > 1, the fall-time will go

negative first, and solving for this point will tell us the stability criteria for the TES.

We thus see that the TES is stable if the fall-time is positive; a negative fall-time is indicative of

thermal runaway. This gives the condition (in the overdamped case)

1

⌧LR

+
1

⌧TES

�

s✓
1

⌧LR

� 1

⌧TES

◆2

� 4
R0

L

L(2 + �)

⌧
(3.129)

squaring both sides and simplifying gives

� 4

⌧LR⌧TES

 4
R0

L

L(2 + �)

⌧
(3.130)

(L� 1)(R0(1 + �) +RL)

L⌧
 R0

L

L(2 + �)

⌧
(3.131)

(L� 1)(R0(1 + �) +RL)  LR0(2 + �) (3.132)

(L� 1)RL  (L+ 1 + �)R0 (3.133)

R0 � L� 1

L+ � + 1
RL (3.134)

and thus we have a properly decaying TES as long as the operating resistance is greater than the

Thevenin equivalent resistance of the bias circuit. If L is much larger than 1, we have the simpler

condition that R0 � RL, and if L is less than 1, the TES will always be stable.

For the underdamped case, we set the square root term to 0, and we find the bound:

1

⌧LR

+
1

⌧TES

� 0 (3.135)

R0(1 + �) +Rl

L
� L� 1

⌧
(3.136)

R0(1 + �) � L(L� 1)

⌧
�Rl (3.137)

R0 � R⌧ (L� 1)�Rl

1 + �
(3.138)

The good news about both of these stability criteria is that they can be remedied beyond initial

design to a certain point by increasing the bias current (and thus the bias voltage), giving R0 a

higher value, but to maximize resistance of the TES to either thermal runaway or oscillation, we
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should design the TES with a large margin in mind for both of these conditions. We would also like

to see that the fall time is not infinite, so a stricter condition might be to determine a minimum

fall-time (given bandwidth considerations) and determine the resulting resistance and L

R0
ratios.

3.2.5 Thermal Phase Separation

The maximum length of a TES is set by the critical temperature Tc of the device, which determines

the phase separation length, or the length scale below which the TES remains in thermal equilibrium

(and can thus be treated as a homogeneous device). We need to construct our TES as long as possible

without causing them to phase separate. The maximum length before appreciable phase separation

is given by the formula ([83], page 102):

lmax =

vuut
⇡2�wf⇣T

n⌃Tn�2
c ⇢w

⇣
↵

n

⇣
1� T

n
bath
Tn
c

⌘
� 1
⌘ (3.139)

where most constants have been defined above. We gain one new constant, �wf (Weidemann-Franz

coe�cient), which relates temperature, electrical conductivity � and thermal conductivity  as



�
= �wfT (3.140)

This is also referred to as L, the Lorenz number. The exact constant of proportionality at 0 tem-

perature is known to be L0, the Lorenz number.

Figure 3.6: TES phase separation length as a function of critical temperature (left), where the
dashed lines illustrate the e↵ect of increasing the bath temperature, and as a function of transition
sharpness and volume fraction (right), with width and thickness as set in Table 3.1.

For n = 5, the ratio
⇣

Tbath
Tc

⌘5
is small (less than 10%) for deviations of 5% of Tbath below Tc, so

if we assume Tbath < 0.95Tc (which is in line with design of the SNOLab fridge below 30 mK) we
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Figure 3.7: Number of QET unit cells as a function of alpha and TES width (left), and as a function
of transition sharpness and volume fraction (right), with width and thickness as set in Table 3.1.
The third plot shows area per unit cell (assuming 1/6 or 1/12 the area of the crystal surface per
channel) as a function of transition sharpness and TES width, using zeta=0.25. The horizontal lines
denote the number of unit cells assuming a nominal area of one square millimeter for a 6 and 12
channel face.

have

lmax ⇡

s
⇡2�wf⇣T

⌃T 3
c
⇢w(↵� 5)

(3.141)

and given that �wf , ⌃, and ⇢W are constants, we can write them as an overall constant to show that

lmax ⇡ CW

s
⇣T
T 3
c
↵

(3.142)

(here we absorb n into our margins given that ↵ � 80) where

CW = ⇡

s
�wf

⌃⇢w
(3.143)

This shows the freedom of design we have when designing our TES length; we want to maximize ⇣T

and minimize Tc, while choosing the smallest value of ↵ which gives us good energy resolution.

3.2.6 Additional Internal Degrees of Freedom

In this section we have assumed that the TES can be described by a simple block in internal

thermodynamic equilibrium at all frequencies of interest, which in general is not truly the case. I

have provided an exploration of two-block TES models with both elements of the TES participating

in electrothermal feedback in Appendix C. I refer the reader to Ref [70] for a detailed exploration

of 2 and 3 block TES models where only a single block participates in electro-thermal oscillation,
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and to Ref [83] for a continuous treatment of phase separated TES dynamics. In all cases the reader

will find that any additional internal degrees of freedom degrade expected TES performance, so in

the spirit of optimal detector design I have given the general criteria for avoiding phase separation

and allowed us to assume the 1-block model is approximately correct. It should be noted that even

for a temperature uniform TES, additional performance degradation can occur for the cases of a

hanging heat capacity or intermediate thermal conductance which are explored in Ref [70], and will

be discussed in Chapter 5.

3.3 TES Noise Modeling

Given the readout scheme for the TES, the noise sources we care about are those which add current

noise to the TES circuit. In principle, we also care about noise in the readout circuit, but as that

noise is expected to be sub-dominant to noise in the TES circuit, and is more readily fixed, we will

assume here that it is negligible.

The three main sources of current noise in the TES circuit are the Johnson noise in the passive

components, Johnson noise in the TES, and thermal fluctuation noise across the thermal link between

the TES and the bath. We separate the noise terms this way because we have more ability to tweak

various aspects of our passive components to reduce their noise if necessary, but the characteristics

of the Johnson noise in the TES are much more constrained by the other aspects of our optimization,

and by chosen operating points.

3.3.1 Johnson Noise

The voltage noise for a resistor at temperature T due to statistical charge fluctuations is white, and

is given as

V̄ 2
j
(f) = SV = 4kbTR (3.144)

For the passive components, we find that these simply add, so we have

V̄ 2
j,passive

(f) =
X

passive

SV = 4kb
X

passive

TiRi (3.145)

and we can convert to a current noise by dividing by the squared impedance of the current loop

containing the TES, Zloop:

Ī2
j,passive

(f) =
4kb

|Zloop|2
X

passive

TiRi (3.146)

We can simplify this by defining an e↵ective passive temperature T ⇤ (following Ref [83]) as

T ⇤ =
1

R0

X

passive

TiRi (3.147)
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such that

Ī2
j,passive

(f) =
4kbR0T ⇤

|Zloop|2
(3.148)

In the DC case where Zloop ⇡ R0, the TES operating resistance, we find that

Ī2
j,passive

(f) ⇡ 4kbT ⇤

R0
(3.149)

and we can reduce passive noise if necessary by changing the resistance of the shunt resistor and

modifying the bias current to maintain the same voltage but decrease the passive Johnson noise by

modifying the e↵ective temperature. This assumes the parasitic resistance is not a factor we can

control, and is comparable in magnitude to the shunt resistance.

The TES Johnson noise is slightly more complicated, as we cannot simply divide by the loop

impedance to convert voltage noise to current noise. We find first that

V̄ 2
j,TES

(f) = 4kbTR(T ) ⇡ 4kbT0


R0 + ↵

R0

T0
�T + �

R0

I0
�I

�
(3.150)

so building intuition, we notice that for a constant current, voltage noise will increase with small

temperature changes proportional to the nominal gain, and current noise translates to voltage noise

directly with strength proportional to the � term.

What we inevitably want to probe however is the current noise for a Fourier voltage fluctuation

of a given strength. The current noise in this case has been shown to be (by Irwin)

I2
j,TES

(f) ⇡ 4kbT0R0(1 + 2� + ...)

✓
@I

@VTES

◆2

(3.151)

where the di↵erential voltage to noise expression comes from the dynamics as derived earlier. While

this noise term is correct under the assumption that �P = 0, to be able to simulate noise on pulses

accurately, we need to account for the fact that the TES resistance is changing in this noise term as

suggested in the previous expression.

We can factor operating resistance out of the voltage to current response function to give

�I

�VTES

=
1

R0

1 + i!⌧

(RL
R0

+ (1 + �) + i! L

R0
)(1� L+ i!⌧) + L(2 + �)

(3.152)

which gives

I2
TJN

(f) ⇡ 4kbT0(1 + 2�)

R0

 
1 + i!⌧

(RL
R0

+ (1 + �) + i! L

R0
)(1� L+ i!⌧) + L(2 + �)

!2

(3.153)
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For completeness, the full form of the passive Johnson noise is

I2
PJN

(f) ⇡ 4kbT ⇤

R0

 
1� L+ i!⌧

(RL
R0

+ (1 + �) + i! L

R0
)(1� L+ i!⌧) + L(2 + �)

!2

(3.154)

For our full energy resolution estimate, we’ll also need the power noise, found by multiplying the

current noise by

����
�P

�I

���� =
����
I0
L [(1� L+ i!⌧)(RL + (1 + �)R0 + i!L) + LR0(2 + �)]

���� (3.155)

which gives

N2
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(f) ⇡ 4kbT0(1 + 2�)R0I
2
0

✓
1 + i!⌧
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◆2

(3.156)

and

N2
PJN

(f) ⇡ 4kbT
⇤R0I

2
0

✓
1� L+ i!⌧

L

◆2

(3.157)

This is useful in that our input power is much simpler in the Fourier domain than the TES current

response, and thus the noise model encodes all of the TES physics while the signal model only

incorporate phonon physics. We will revisit the current and power noise relationship at the end of

this section when discussing TES channel operating resistance.

3.3.2 Thermal Fluctuation Noise

Thermal fluctuation noise is a power noise across the TES-bath interface, constituting a white power

noise of the form[83, 50]

N2
TFN

= 4kbT
2
0G0Ftfn (3.158)

where

Ftfn =
1

2

 
1 +

✓
Tbath

T0

◆6
!

⇡ 1

2
(Tbath < 0.6 ⇤ T0) (3.159)

This can also be re-written using the power balance equation, which tells us that

P0 = I20R0 =
G0T0

5
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✓
Tbath
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(3.160)

so we can write

N2
TFN

= 20kbT0I
2
0R0Ftfn

 
1�

✓
Tbath

T0

◆5
!

⇡ 10kbT0I
2
0R0 (3.161)

The current noise can be found by simply multiplying this by the power to current transfer
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function:

I2
TFN

= 10kbT0I
2
0R0

����
@I

@P

����
2

(3.162)

=
10kbT0

R0
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R0

+ (1 + �) + i! L

R0
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(3.163)

3.3.3 SQUID Noise

The squid readout noise consists of a white high-frequency noise with a rising tail at low frequencies.

The high frequency component is essentially determined by johnson noise across the bias junction of

the SQUID, while the low frequency behavior is determined by the temperature of the squid; at high

temperature (above the energy of the macroscopic quantum state), the noise flattens out, and in the

low-temperature limit, the noise becomes pure 1/f, characteristic of quantum fluctuations between

two closely spaced states.

We can generalize the squid noise with the function

ISQ(!) = ISQ,1

⇣
1 +

⇣!sq

!

⌘nsq
⌘

(3.164)

where 1/f noise is the case of nsq = 1, and white noise the case of !sq = 0. For lower operating

temperature, the white noise level decreases (the bias johnson noise decreases), but nsq and !sq both

increase. We can also define a SQUID temperature noise TSQUID such that

I2
SQ,1 =

4kbTSQ

R0
! TSQ =

R0I2SQ,1
4kb

(3.165)

which allows us to write

I2
SQ

(!) =
4kbTSQ

R0

⇣
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⇣!sq

!

⌘nsq
⌘2

(3.166)

and as before, we can convert this to a power noise by using the current to power transfer function
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SQ

= I2
SQ
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(3.169)

This has the additional behavior of rising with decreasing frequency, to become the dominant low-

frequency noise, compared to Johnson noise which is flat at DC.
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Figure 3.8: Left: Noise model for UMN cold electronics with significant shunt and parasitic resis-
tances at 1K which are the dominant noise contribution. Right: Noise model for SNOLAB cold
electronics with minimal parasitic resistance and 5 m⌦ shunt resistor for the same device, showing
the improvement in noise performance for electronics designed around a low Rn TES. SQUID noise
is not included in these models due to the fact that di↵erent SQUIDs were used and the resulting
total noise comparison would not be very informative, but in principle the SQUIDs will dominate
at high and low frequency.

3.3.4 Joint Noise Sources

As a short note before continuing to the next section, it should be pointed out that both current

and power noise models are very easy to combine, but that one needs to be careful that the noise

power, not amplitude, is what is added. The noise power N2 adds linearly, but noise amplitude N

adds in quadrature; yet it is usually amplitude spectral density (not really power spectral density)

that we plot. In other words, what in CDMS is referred to as the noise PSD is really the amplitude

spectral density, and when making the noise model one should plot

Itot =
q
I2
sq

+ I2
PJN

+ I2
TJN

+ I2
TFN

(3.170)

which has the normal units A/
p
Hz. I make this note to clear up confusion people normally have

when encountering noise analysis for the first time. A good way to remember this is that, in time

domain, people like to think about the standard deviation, which adds in quadrature, rather than

the variance, which adds linearly, even though the variance is really the parameter they’re talking

about. This is actually a direct analog, as you can see in Appendix F.

Two examples of noise models for warm and cold passive components (based on the SuperCDMS

SNOLAB cold electronics as well as the legacy electronics at UMN) can be seen in Figure 3.8. For

more discussion of subtleties of noise modeling in non-ideal TES arrays, see Matt Pyle’s thesis[83].
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3.3.5 Energy Resolution

The amplitude resolution for a signal with normalized template s(f) and noise PSD N2(f) is given

in Appendix E.6 to be

�2
E
=


4

Z 1

0

|s(f)|2

N2(f)

��1

(3.171)

Using the TFN noise, we find that the optimum filter resolution is (see also Ref [83])

�2
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=
2kbT 2

c
G
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⌧pulse +

2⌧TES

n

◆
(3.174)

as Ftfn ⇡ 1
2 in the low bath temperature limit, in all cases.

Using equation 3.44, we find for the !pulse case that

�2
E
⇡ 2kbn⌃VTES,effTn+1

c

✏2!pulse

(3.175)

and thus the largest overall impact on the energy resolution comes from Tc, which can dramatically

decrease resolution for small Tc decreases. This is the main design driver for SuperCDMS detectors

which are mostly phonon fall-time dominated. For the TES fall-time limited case, we get to the

ideal calorimeter resolution equation at the beginning of the chapter.

3.4 QET Modeling

With a complete model of TES dynamics, we can tackle modeling the performance of individual

QETs, and full channels of QETs, which are the primary phonon collection systems which channel

energy to the TES at their center. We need to develop a qualitative model of energy transport in a

QET to quantify the energy e�ciency of a certain geometry, and phonon channel, to determine how

much energy makes it into the TES to be measured, which factors into the energy resolution.

3.4.1 Energy Conversion E�ciencies

There are two critical interfaces where phonons are absorbed which a↵ect the energy transport

e�ciency in the QET. The first is the crystal/aluminum interface, when phonons are converted into

quasiparticles through the Kaplan downconversion process. This has a calculated (and monte carlo

validated) e�ciency of ✏PQP ⇠ 52%[23].
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The second is the aluminum/tungsten interface, which was uncertain even in the iZIP (it was

back-calculated, given other e�ciencies, from the measured phonon e�ciency) and is even more-so

in our current devices given the change of device geometry to the inverted interface. It is also

unclear how much of this conversion e�ciency has been factored into the measured e�ciency of

energy transport in the fins in the form of the overlap e�ciency. The back-converted, and adopted,

e�ciency for this interface from the iZIP4 (see Matt’s thesis) is ✏W�Al ⇠ 62%. These, combined with

the QP transport e�ciency (next subsection) and energy colletion e�ciency (from finite aluminum

coverage, described in the next section) comprise the total e�ciency of the QET.

3.4.2 Aluminum Fin Length

The second aspect of the QET design to consider would be the aluminum fin length. The aluminum

fins collect Phonons from the substrate and transport them to the TES, and so we would naively

expect that longer fins would be more ideal, as a larger fraction of the energy would be collected

in the fins, and the ratio of live to dead aluminum would be higher; aluminum is also used to bias

the TES. A QET with ideally e�cient fins (which transport 100% of the energy to the TES) would

have tiny TES and cover the rest of a phonon channel with Aluminum.

In reality, there are many non-idealities which make long fins undesirable, most important of

which is that there is a finite di↵usion length of quasi-particles in aluminum. The fraction of

quasiparticles collected in the TES is thus a function of fin length, and it turns out also to be a

function of fin thickness. The derivation that follows was done by Robert Mo↵att, reproduced here

for completeness.

1-D QP Di↵usion

We can model the 1-D di↵usion of QPs in aluminum fins with di↵usion equation

@n(x, t)

@t
= Dal

@2n(x, t)

@x2
� n(x, t)

⌧al
+ s(x, t) (3.176)

where n(x, t) describes the number and density of QPs as a function of position and time, Dal

is the di↵usivity of QPs, and ⌧al is the QP trapping time; s is assumed to be some delta source

s(x, t) = �(x� x0)�(t� t0).

We model the absorption rate Iabs as

Iabs = n(0, t)⌫abs (3.177)

where ⌫ is defined as the per-qp absorption probability with units length/time. For our 1-d model,

the probability of being at an absorption interface at any given time, in a tungsten overlap of length
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loverlap, for a fin of thickness hfin, for a qp traveling at speed vqp, is

⌫perfect = vqp
loverlap
hfin

(3.178)

and for imperfect absorption with probability p, we have

⌫abs = pabs⌫perfect = pabsvqp
loverlap
hfin

(3.179)

We’d like also to write our di↵usion variables in terms of the physical dimensions of our system,

including lengths and velocities. We can write Dal in terms of fin thickness and velocity in thickness

limited scattering as

Dal = hfinvqp (3.180)

and we make the assumption that W dominates absorption time, and thus ⌧ = ⌫�1
w

hfin, where ⌫w

is the empirically measured tungsten absorption rate with units meters/second.

We can further simplify the problem by constructing the dimensionless parameters ⇤d, �d, and

�d, where

⇤d =

p
Dal⌧al
L

=

p
hfin⌫qp⌧al

L
=

r
⌫qp
⌫w

hfin

L
(3.181)

�d =
Dal

⌫absL
=

hfin

vqploverlappabs

hfin⌫qp
L

=
1

pabs

h2
fin

loverlapL
(3.182)

�d =
�d
⇤d
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p
Dal

⌫abs
p
⌧al

=

s
hfin⌫w⌫qp

hfin

hfin

vqploverlappabs
=

1

pabs

r
⌫w
⌫qp

hfin

loverlap
(3.183)

giving a solution with two geometric parameters, set by the aspect ratio of thickness to length and

thickness to overlap.

Robert’s solution (with this re-parameterization) gives the relative collection fraction fc as

fc =
⇤d

coth (⇤�1
d

) + �d

(3.184)

and we find, from real TES data, that

r
⌫qp
⌫w

⇡ 600

0.9
⇡ 660 (3.185)

and
1

p
⇡ 1600 ⇤ 5

0.92
⇡ 104 (3.186)

and thus the relative fraction of Phonons collected in our aluminum fins as a function of fin length,
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Figure 3.9: Phonon collection fraction as a function of 1-d fin-length, where hfin is fin thickness
and � is W-Al overlap length. According to this model, we should maximize our film thickness and
overlap as much as possible, with the caveat that we should do so only as long as the heat capacity
of the device does not dramatically increase when doing so.

thickness, and tungsten overlap can be calculated. The trends for various values within our design

range can be seen in figure 3.9.

2-D QP Di↵usion

It should be noted that the above di↵usion relations are for 1-D di↵usion, which is the valid case

for iZIP geometries, but not so for ”stadium” geometries, which are oblong and have more surface

area further from the TES. True 2D di↵usion should behave somewhat di↵erently from 1D due to

two non-orthogonal degrees of freedom for QP propagation, and the larger fraction of QPs collected

further from the QET.

A similar calculation can to the previous section can be performed for 2-D di↵usion, with a more

complicated result1:

F =
2⇢i

⇢2
o
� ⇢2

i

I1(⇢o)K1(⇢i)� I1(⇢i)K1(⇢o)

I1(⇢o)(K0(⇢i) + �aK1(⇢i)) + (I0(⇢i)� �aI1(⇢i))K1(⇢o)
(3.187)

1
As derived by Robert, will document full derivation at a later time
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Figure 3.10: Left: Phonon e�ciency, moving from 2-D to 1-D geometries, illustrating the fact that
in the infinite TES limit, the 2D and 1D collection fractions agree. Right: Phonon collection fraction
as a function of 2-d fin-length, where hfin is fin thickness and � is W-Al overlap length. Notice that
the overall e�ciency for a given fin length is much worse than expected from the 1-D case.

where

⇢i =
ltes
⇡ld

=
lTES

⇡lfin
⇤�1
d

(3.188)

⇢o = ⇢i +
lfin
ld

=

✓
lTES

⇡lfin
+ 1

◆
⇤�1
d

(3.189)

�a =
la
ld

=

p
Dal⌧al

Dal/⌫abs
(3.190)

and �d is as defined in the 1-D case. We can further parameterize this by setting rd = ltes/⇡lfin,

giving

⇢i =
rd
⇤d

(3.191)

⇢o =
rd + 1

⇤d

(3.192)

and the collection fraction is thus described in terms of the dimensionless parameters ⇤d, �d, and

rd, adding an additional degree of freedom to the 1-D case.

The comparison of this solution with the solution for 1-D collection e�ciency can be seen in

figure 3.10, as well as the various e�ciency curves for a 300 micron TES, which is the nominal

design length, as discussed in the next section. Note that the overlap and thickness have a less

dramatic e↵ect on the collection e�ciency.
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We can re-write the pre-factor in terms of just ⇤d and rd:
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and so in the 1-D limit (lfin << lTES) this reduces to the same large lfin scaling as the previous

1-D solution:
2⇢i
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o
� ⇢2
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(3.197)

In the 2-D limit (lfin >> lTES), we find that
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fin
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ldlTES

AQET

(3.198)

and so regardless of geometry, both find that collection e�ciency scales inversely as fin area and

proportional to di↵usion length and TES length. The fact that the e�ciency depends on TES length

will be immensely important in scaling energy resolution with TES dimensions.

QP E�ciency and Flux Trapping

A final consideration in QP fin design is the mitigation of trapped flux vortices, which trap quasipar-

ticles in the fin and lower the e�cieny of the QPs. Aluminum is nominally a type 1 superconductor,

meaning it does not permit bulk magnetic flux lines, however thin films (on the order of hundreds

of nanometers) have been shown to develop stable or metastable flux vortices which become very

persistent[23]. The transition from type 1 to intermediate type for this film thickness occurs for

square films on the order of 40 microns square, and it is likely that increasing the film thickness in

aluminum increases the size of the contiguous superconductor which is able to fully repel flux lines.

This is one area of R&D that should be explored further by our collaboration as we move to thicker

Aluminum films due to their increased QP collection e�ciency.

Figure 3.11 shows the impact of these flux vortices on the QP collection e�ciency in our QETs. A

prototype iZIPv6 was operated at UMN, and was subjected to di↵erent magnetic fields by positioning

the mu-metal magnetic shield at various heights relative to the detector to create di↵erent ambient

magnetic fields. The detector phonon collection e�ciency was measured for each cool-down, and the

resulting e�ciency is seen to be a strong function of ambient magnetic field, implying that even for

this detector (for 300nm film thickness) there is a significant likelihood of forming flux vortices for
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Figure 3.11: Left: Phonon collection e�ciency for a prototype iZIP detector measured at UMN by
Matt Fritts, showing that as the magnetic flux around the detector is increased during cooldown the
e�ciency decreases. This indicates that flux traps do persist in that design despite the films being
⇠300 nm thick. Right: QET unit cell showing fin slits separating each major fin (defined by each fin
connector) as well as thinner slits meant to reduce the area of contiguous superconducting regions,
and allow magnetic flux to pass through the fin without producing vortices. This design ensures
that a circle of radius ⇠50 microns cannot be found anywhere in the design. For 600nm films this
should be enough to ensure that any vortices in the fins are more easily expelled.

the iZIP detector design.

For the CDMS HV design, in order to be conservative, we decided on a maximum fin width of

50 microns, decreasing larger widths by adding small slits to larger fin areas to disrupt large areas

of potential vortex formation. This can be seen on the right in Figure 3.11, and we can di↵erentiate

between vortex (minor) slits and major slits needed to prevent shorting the TES by the presence

of the green layer in the figure, which is the insulating amorphous layer in the detector mask. We

don’t particularly care about continuity issues in those slits, so they have been made narrower than

the major slits. Though these were initially included to prevent flux vortices, the slits also serve to

make di↵usion in the fins more quasi-1D, and should in principle slightly improve the QP collection

e�ciency for phonons absorbed on the edge of the fins. This is not taken into account in the

optimization discussed in the next section but was a secondary design philosophy for this QET.

3.4.3 Tungsten-Aluminum Overlap Dimensions

Figure 3.12 shows the tungsten-aluminum overlap interface dimensions used for the HV design. As

described in the previous section, our QP di↵usion model suggests that an increased overlap should

improve QP collection e�ciency out beyond 40-50 microns. At the time this device was designed,

only data for 5 and 10 micron overlaps had been acquired, and the design value chosen was 20 microns
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Figure 3.12: Tungsten (black) and aluminum (grey/blue) overlap region for v0 (top) and v1(bottom
left) compared to a microscope image of the fabricated overlap region for the inverted geometry for
v2 (bottom right). You can see that the overlap geometry isn’t changing but the design of the TES
connector includes features to avoid connectivity issues near corners in the design.

assuming the gains would continue to be seen for larger overlap values. The design philosophy was

minimize the mean free path of a given carrier through the overlap to the TES, which is how the

rivet-like geometry seen in Figure 3.12 was decided on.

The additional dimensions and features of the overlap region were designed to minimize the

fraction of tungsten not covered by aluminum. This was driven by the assumption (based in part on

the measurements from Ref [45]) that all tungsten in contact with aluminum is highly proximitized,

and thus does not contribute to either the heat capacity or thermal conductance of the TES, while

the part of the fin connector not covered by aluminum will a↵ect both quantities. This is captured

by the ⇣ parameter introduced earlier in this chapter; a ⇣ of ⇠0.7 corresponds to including all

8 fin connectors in the total tungsten volume, which a↵ects both the heat capacity and thermal

conductance of the device (in principle leaving ⌧ invariant).
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Figure 3.13: Energy collection in two TES attached to the same aluminum fin for (left) a 30 micron
overlap and (right) a 40 micron overlap. This data suggests that continuing to increase W/Al overlap
length does increase collection e�ciency, at the banana reaches higher energies in these plots on both
axes and there is a smaller conversion penalty as seen by the spacing of the shared energy band from
the axes in the two plots.

Stanford QP Collection Measurements

One piece of information that has become clearer since the design of the HV mask as finalized is

that the projected gains with overlap do seem to be realized, at least in our test devices. Figure 3.13

shows data taken with the same test device geometry described in Ref [111].

These data qualitatively confirm that QP collection e�ciency increases with overlap length for

small geometries, leading us to believe that we could in principle increase overlap length for future

designs. There are a few potential problems which arise from much larger overlap regions which are

not accounted for in our models however:

• We have not quantified what fraction of the tungsten under the aluminum fin contributes to

the heat capacity and thermal conductance of the TES (as we’ll see in the next chapter, it’s

very possible that it’s a non-negligible amount).

• The test devices utilized thus far are one-dimensional; it is unclear whether these same gains

should necessarily be realized in two-dimensional traps.

• At some point we expect that the finite di↵usion length of phonons through the overlap region

should cause e�ciency to drop again, as was seen in previous designs with meandering fin

connectors (this is summarized nicely in Matt’s thesis [83]).
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Some of these questions will be addressed in the testing section, but some are (as of this writing)

under studying in small test devices, and another set have yet to be tested. The energy conversion

at the overlap is by far the least mature aspect of the QET design process, and a future design that

fully matches the overlap to the fin and the fin to the substrate should achieve the optimal energy

resolution for a QET with a given geometry.

3.4.4 Energy Collection E�ciency Summary

In this section, we’ve seen that most steps of the phonon measurement process have known e�ciencies

which we can, in principle, use to optimize the QET design. To assist the reader in compiling this

model, I will summarize the various components:

• Phonon to QP Conversion E�ciency - Kaplan downconversion limits to 52% [23]

• QP Collection E�ciency - fc(⌘, �) is a function of the aspect ratio of the fin and its thickness

and is related to measured film properties as shown in this section. It also depends on the

amount of flux trapping in the fins, which can in principle be made negligible.

• Trapped QP to TES E�ciency - Not yet modeled, but measured in IZIP4 to be ⇠62%

If we can perfectly collect all phonons in our fins and transport them perfectly to the TES, then,

we predict an energy e�ciency of ⇠32%; if we measure an e�ciency which exceeds this, then we

have either messed up the measurement or made a significantly observation about fundamental QET

e�ciencies. As the fin connector interface is further refined, it may be that e�ciencies in the low-mid

40% range are possible, but even the perfect design cannot exceed the ⇠50% down-conversion limit

according to the design principles presented here. This is a good metric to compare measurements

to as a very first sni↵ test.

3.5 Future Modeling Inputs

In this chapter, we have seen a very mature model of SuperCDMS QETs, and I have tried to highlight

areas of the modeling which have progressed recently as well as areas which are in need of further

study. Many of the results shown in the next few chapters bring alot of the assumptions made in

our detector designs into question. Most notably, we implicitly assume that changing the Tc of our

detectors changes the resistance, heat capacity, and thermal conductivity of our films according the

the prescribed power laws.

One crucial assumption that we have not explicitly verified (but is one part of the model which

can be addressed through an ongoing TES test program) is the accuracy of the Wiedemann-Franz

law at low temperature:

 = �wf�T = �wf

T

⇢
(3.199)-
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While in general this result does hold, it has not been explicitly verified at low temperature, and

deviations from this law abound in the literature for di↵erent experimental conditions[10]. It is more

likely than not that thermal conductance is higher than predicted by this scaling relation due to

phonon dynamics, but smaller values in highly-correlated systems (e.g. superconductors) have also

been observed. This adds a large degree of uncertainty to our phase separation boundary, and given

that resistivity can in general be a complex function of Tc, it’s unclear whether our estimates of 

based on other measurements will be systematically low or high. As we’ll see in the next chapter,

a longer TES allows for much more aggressive mask designs for large detectors, so if the phase

separation boundary is much further out this would change our detector optimizations.

In general, a better understanding of the resistance, thermal conductance, electron-phonon cou-

pling, and proximity e↵ects in our QETs will improve our ability to predict the noise performance

of a given design. In this chapter we explicitly assume that all tungsten underneath the Al is prox-

imitized, and does not contribute to the heat capacity of the TES, but we have begun to believe

this is not the case, as will be discussed in Chapter 5. Other e↵ects we have observed but do not

understand include

• Dependence of heat capacity on transition point (as well as slope of this change)

• Dependence of thermal conductance (to the bath) and heat capacity as a function of Tc and

film morphology, as well as the aforementioned e↵ect of proximitizing the overlap regions

• Dependence of resistivity on film morphology and Tc

• Resilience of various QET designs to flux trapping as a function of fin feature size, and further

studies of QP di↵usion as a function of fin shape

• Better modeling of QP trapping and di↵usion of energy through the overlap interface; current

modeling assumes no dependence on trap shape and size

• Improved understanding of phonon losses at uninstrumented surfaces (currently our model

assumes perfect reflection at all non-aluminum interfaces)

Many of these questions will be answered in the near future by small device and test pattern tests

at SLAC and UCB, but others will require more dedicated fabrication and testing programs, and it

is likely that trends can be understood on a more fundamental level once measured.



Chapter 4

CDMS HV Detector Design

“If you find that you’re spending almost all your time on theory, start turning some

attention to practical things; it will improve your theories. If you find that you’re

spending almost all your time on practice, start turning some attention to

theoretical things; it will improve your practice.”

- Donald Knuth, quoted in: Arturo Gonzalez-Gutierrez (2007) Minimum-length

Corridors: Complexity and Approximations

In this chapter I apply the concepts described in the previous chapter to the optimization of the

first 100 mm CDMS HV detector. The general optimization procedure is the following:

1. Select a detector size and form factor

2. Construct a readout noise model to determine the right operating conditions for the TES

channel

3. Given fixed TES channel properties, optimize the QET design

4. Given a fixed QET design, determine an optimal channel layout

5. Figure out how to make the optimized design work in practice

The first 4 steps will be described in detail and related to the models described in the previous

chapter, and I will provide some commentary on the last step given the experience with this detector

design to help inform future SuperCDMS mask and housing designs. While most of the cerebral part

of mask design lies in the optimization, mistakes made during the last step can render a detector

susceptible to critical failures, and a non-functional detector, regardless of the degree of optimization,

is useless. This chapter provides a framework for making optimized CDMS detectors which are robust

137
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Figure 4.1: Left: Z partition (energy fraction absorbed on first pass) as a function of the aspect
ratio of the phonon signal. If the signal were entirely ballistic, then R is the detector radius, but
if it is di↵usive, then R is the di↵usion radius. Right: Di↵erence in z-partition for di↵usion limited
phonons for di↵erences int the di↵usive radius on either side of the detector (e.g. for NTL emission
by holes v. electrons)

to the realities of fabrication constraints, human error, and non-idealities in detector operation and

installation. It is not exhaustive but should provide a useful guide of things to consider during the

design process.

4.1 Detector Dimensions

An often overlooked design choice when we make CDMS detectors is the form factor of the detector

crystal. The normal considerations generally involve the detector mass and the dimensions of the

available stock material, as well as fabrication limitations. CDMS has historically chosen detector

substrates which are nominally cylindrical, and have aspect ratios of 3:1 as seen for the Soudan (3

inch diameter, 1 inch thick) and SNOLAB (100 mm diameter, 33.3 mm thick) detector crystals.

There are di↵erent philosophies for determining the correct form factor of the detector, which

depend on the detector properties you expect to limit its performance most critically. If you have

bad surface treatment on the side-walls, for example, you might want to opt for a thin detector, but

if you believe your surfaces are all equally lossy (or non-lossy as may be the case), then you might

opt to maximize the fiducial volume of your detector. In this case, the degree of fiducialization

depends on your surface to volume ratio as well as the accuracy of your reconstruction methods.

For a phonon-only detector the position resolution achievable depends on the phonon dynamics; the

optimization scheme will depend on whether the phonons are ballistic (traveling directly from the

point of origin) or di↵usive.

The characteristic length scale of phonon propagation is energy dependent, but in general we

find that mean free paths on the order of a few mm are about right for Ge[99, 83], and we can
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Figure 4.2: Left: Fraction of the volume able to be fiducialized at the optimal aspect ratio for a
range of r and z resolutions as a function of the ratio of �r and �z. Right: Optimal aspect ratio for
a given resolution ratio, demonstrating the independence of the optimum on other detector factors.
This is an idealized model, as we should expect that su�ciently large detectors will lose all position
resolution in certain limits.

expect they’re comparable in Si. The fundamental limitations of ballistic phonon propagation are

anharmonic decay and impurity scattering, meaning the purity of the crystal is often important, but

even a perfect crystal will not permit purely ballistic phonon propagation. A rough measurement of

the e↵ective phonon di↵usion radius will be discussed later in this chapter, but for now we’ll work

in orders of magnitude.

Figure 4.1 shows the z partition quantity derived in Appendix A for di↵erent e↵ective phonon

di↵usion radii. For a detector that is much wider than it is thick, the partition of energy is linear in

z, and the position resolution is only limited by the energy resolution. For a di↵usion limited ball

of phonons, or equivalently, a detector that is much thicker than it is wide, there is only appreciable

z-dependence near the detector surfaces. If linear performance is desired, then a detector with

dimensions on the order of mm which will collect all phonons during their initial propagation and

has a very flat aspect ratio will be ideal. For larger detectors, the phonon di↵usion is the limiting

radial scale, so we do not necessarily benefit from the aspect ratio in this partition quantity.

The radial partition is also limited by phonon di↵usion, and will only improve in terms of absolute

fiducialization with increased detector radius. In the di↵usive limit, channel sizes on the order of

5–10 mm in radial rings, with multiple radial channels, will generally give good radial reconstruction

performance, with the caveat that the radial partition is complicated by events which occur near

channel splits.

Given reconstructed position resolutions �r and �z, assuming these are independent of the detec-

tor form factor (as they are in the purely ballistic limit), we can actually find the optimum detector

form factor independent of total detector volume. If we assume the detector is cylindrical, and that

the fiducial volume consists of all points more than 3� from a surface, then we have the fiducial
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fraction
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If we fix the total detector mass, then we fix the relation between r and z to be

z =
Vtot

⇡r2
(4.2)

which gives
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This equation has the analytic solution
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(4.4)

as shown in Figure 4.2. If we can be reasonably confident that position resolution is insensitive to

changes in aspect ratio then we can use measured resolutions to determine the optimal detector form

factor.

More likely, however, is that both are also a function of the aspect ratio, and what we have is

actually a transcendental equation; for any given measurement we can only say how far from the

optimal configuration we are. For the SuperCDMS SNOLAB detectors, the same aspect ratio as the

Soudan detectors was chosen based on source material and fabrication constraints. If we find that

the demonstrated position resolution of these detectors is very far from a 3:1 ratio, then we need

to re-evaluate how to either improve position resolution with the same form factor, or change the

form factor of the detector crystals. This was not done for these detectors due to the complexity of

position resolution calculations but is worth considering for a future upgrade phase of detectors.

4.2 CDMS HV QET Design

The previous chapter described the response model of each of the individual parts of the QET. In

this section I will use the results of the previous chapter to describe the design and optimization

of the QETs independent of the rest of the detector design for SuperCDMS SNOLAB CDMS HV.

Table 3.1 contains input parameter values assumed for this optimization; some of these assumptions

turned out either to be overly confident or overly optimistic as will be discussed later in this chapter.

4.2.1 TES Channel Optimization

Much of the TES dynamics can be removed from the QET optimization based on the characteristics

of the readout circuit; we can assume an infinitely fast phonon response, which will only be more

sensitive to noise than our phonon signal with a finite fall-time which in general is slower than the
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Figure 4.3: Left: Current noise amplitude power spectra for the original normal state resistance
target (300 m⌦) and the final normal state resistance target (150 m⌦). We can see that in both
cases, passive noise is sub-dominant, but the SQUID noise is a larger contribution at the higher
normal state resistance. Right: Energy resolution (assuming nominal e�ciency and phonon fall-time
of the CDMS-HV design described later in the chapter) as a function of normal state resistance,
showing the SQUID only case versus the TES only case. We can see that the SQUID has a large
impact on resolution for higher normal state resistances, and lowering the normal state resistance
both lowers the overall resolution as well as the impact of the SQUID relative to the TES.

TES response.

Figure 4.3 shows the noise model for our TES readout circuit, using the functional forms from

the previous chapter. The passive noise is seen here to be completely subdominant to the TES noise,

by design. This is achieved by assuming both Rsh and Rp are 5 m⌦, and are operated at 1K (where

the HEMT card is in the fridge)1. The SQUID noise shown in Figure 4.3 is based on the measured

noise from SNOLAB SQUIDs tested at both UC Denver and SLAC, which show a baseline noise

floor around 4.5 pA/
p
Hz. The exponent in equation 3.166, nsq, is assumed to be nominally 1, which

is in a sense the worst case scenario. Later in this chapter I will explore the impact of varying the

SQUID noise exponent and low-frequency baseline on the expected energy resolution.

We can see from Figure 4.3 that the initial choice for TES normal state resistance would have

put the TES noise floor near the SQUID noise floor, leading to sub-optimal energy resolution and

a high dependence on individual squid performance. Given that the iZIP design already assumed a

normal state resistance of 150 m⌦, we decided to also lower the HV normal state resistance to this

point. We can see for this normal state resistance, the TES noise is further above the SQUID noise

floor, and the resolution is much less dominated by SQUID performance, though we will still be

dependent on the SQUID noise to the 10% level or so. This drives home the importance of doing full

channel characterization at SNOLAB to determine the optimal bias point for the TES channel as a

1
Table 4.2 contains all of the assumptions for variables not optimized as well as the results of the optimization

described in this section.
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fraction of normal state resistance. Too high in the transition and we run the risk of either being

SQUID dominated or in a part of the transition which is not sharp enough for ideal electrothermal

feedback. Too low in the transition we risk either oscillation or large nonlinearity due to being too

close in resistance to Rl = Rp + Rsh. It’s likely that the optimal bias point will be in the range

of 30-60 m⌦ for each channel, but will depend on the individual electrical characteristics of each

channel.

4.2.2 QET E�ciency

Quantity Symbol Adopted Value
Crystal Radius Rxtal 50 mm
Sensor Radius Rph 48 mm
Sensor Area Aph 7238 mm2

Phase Separation Length lps 348 µm
TES Design Length lTES 200 µm

TES Connector Length lc 2.5 µm
QET Fin length lfin 240 µm

Fin Channel Width wchan 10 µm

Table 4.1: QET parameters used to determine e�ciency, aluminum coverage, and limits on opti-
mization domain. Input TES parameters are also shown in Table 3.1 and optimized QET parameters
are given in Table 4.2.

The layout of the QET comes from the considerations in the last chapter, where we noted that

the 2D geometry was more ideal than 1D from an e�ciency perspective for the right optimization.

We also want as much instrumented (’live’) aluminum coverage as possible, as phonons absorbed in

non-instrumented (’dead’) aluminum (bias lines) will not be detected, and the ratio of live to dead

aluminum sets the base-line e�ciency. In addition, the QET is segmented into 8 fins, such that

the TES may be properly biased, mitigate magnetic flux traps[23], and to channel QPs into the

tungsten traps rather than letting the travel parallel to the TES. The final QET design can be seen

in figure 4.4. In this section I’ll describe the optimization process that lead us to this design.

For this geometry, we eventually want to calculate the aluminum coverage, both live and dead,

and so we need to first calculate the unit cell area, as this sets the bias line dimensions and scales

to the final percentage. We use 50 mm radius Germanium and Silicon crystals, but leave the outer

2mm uncovered to protect against accidental shorts from touching the detector casing, so only 48mm

of radius are instrumented. Those outer 2 mm will contain small guard rings attached to ground to

allow for more uniform electric field at high radius. The area per QET is thus

Acell =
Aph

NTES

=

✓
AphRn

⇢w

◆
wThT

lTES

(4.5)
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Figure 4.4: Optimized QET design, where blue is aluminum, green is amorphous germanium, and
black is tungsten. See text for more details. Note that this shows an earlier version of the QET with
more amorphous Ge etched in the fin connector region than in the final design.

and the area of the QET is roughly

AQET ⇡ ⇡

2
(lTES + 2lfin)lfin (4.6)

We recognize here that, due to removal of some material, the true area is slightly smaller:

AQET =
⇡

2
(lTES + 2lfin)lfin � ⇡

4
lTES(wTES + 2

p
3lc) (4.7)

� 6lfinwchan � nsquares ⇤Asquare (4.8)

where the quantities are as defined in table 4.1. The channels and holes remove some live aluminum

area, as does the TES. These are second order corrections I will ignored in the scaling relations

below, but they are included in the numerical optimization.

The dead aluminum area is just as dependent on TES length as the live aluminum area. The

top and bottom connectors depend on the side length of the unit cell, as does the length of bias line

per cell. Here I’m going to assume that each TES shares each of its bias lines with its upper and

lower neighbors, so that for a given unit cell we need only include the area from the top bias line.

For the limit of large NTES , this will be accurate. The dead aluminum is then

Adead ⇡(
p

Acell � lTES � 2lfin � whbias) ⇤ wvbias (4.9)

+
p

Acellwhbias (4.10)

where whbias and wvbias are the widths of the horizontal and vertical bias lines respectively. If we
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want to probe the amount of dead aluminum at fixed TES length as a function of lfin, we can write

this as

Adead ⇡
p
Acell(wvbias + whbias)� lTES ⇤ wvbias � 2lfin ⇤ wvbias (4.11)

⇡ wbias(2
p
Acell � lTES � 2lfin) (4.12)

⇡ 2wbias(L0 � lfin) (4.13)

where L0 =
q

Acell � 1
2 lTES is the half-aluminum length for 0 fin length, and we’ve assumed the

wire lengths are equal and minimal due to photolithography constraints.

Using these areas, we can begin to calculate phonon collection e�ciencies. It is important to

note that for each phonon interaction with aluminum instrumented surface, there is a non-trivial

probability of reflection rather than absorption. On a given bounce, then, the fraction of phonons

absorbed by a given QET can be written

fabs = pabs
AQET

Acell

(4.14)

⇡ pabs
⇡

2
(lTES + 2lfin)lfin

✓
⇢w

AphRn

◆
lTES

wThT

(4.15)

=

✓
⇡pabs⇢w

2AphRnwThT

◆
(l2
TES

lfin + l2
fin

lTES) (4.16)

= CTES(l
2
TES

lfin + l2
fin

lTES) (4.17)

where it is clear we have a TES growth regime and a fin length growth regime. It will turn out that,

given that fin trapping length is on the order of our TES length, that we’re not in a limiting case,

so I won’t bother with any expansion here. Similarly, the phonons lost in the dead aluminum can

be calculated as

flost = pabs
Adead

Acell

(4.18)

which will decrease with increasing TES length.

Finally, to calculate the phonon collection fraction in the TES as a function of fin length, we

need to include the collection e�ciency described in the previous section. This gives

fabs = fc(lfin)pabs
AQET

Acell

(4.19)

and if we recall the large-fin limits from the previous section, we find that

fabs ⇡ pabs
ldlTES

Acell

(4.20)

in the large fin limit. Thus beyond the point where the bessel pre-factor goes to 1, around 1 di↵usion
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Figure 4.5: Left: 2D Phonon collection e�ciency plane as a function of TES and fin length. Note
that the small fin limit is dead-aluminum limited, and the large-fin limit is limited by collection
e�ciency. Right: 2D energy e�ciency plane as a function of fin length and TES length. Both plots
show the phase separation boundary for a TES at 45 mK.

length, we find that the energy collected on a given bounce stops increasing. The lower collection

fraction means energy was lost, so this is not beneficial.

We need also to include the dead aluminum in our consideration, to compute the total phonon

collection e�ciency integrated out to infinite time after the initial pulse. On each pass, fabs phonons

are absorbed, however those which are absorbed are not collected with 100% e�ciency, and some

of the phonons will be absorbed in dead aluminum. Thus the maximum energy resolution is the

fraction of collected phonons to total absorbed phonons on a given pass:

✏ =
fcAQET

AQET +Adead

(4.21)

=
fc

1 + Adead
AQET

(4.22)

We see then that at short fin length, the e�ciency scales approximately as the live to dead aluminum

ratio, and at large fin length (when dead aluminum is negligible), the e�ciency scales as the collection

e�ciency. This can be seen in figure 4.5, where the e�ciency for a range of TES sizes is plotted as

a function of fin length.

4.2.3 Energy Resolution

Given the model of e�ciency as a function of our design parameters, we can now do the full energy

resolution optimization. Remembering that e�ciency depends on signal bandwidth and e�ciency,

from equation 3.175, we first need to determine signal bandwidths before calculating energy resolu-

tions as a function of QET dimensions.
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Signal Bandwidths

The two quantities which are important in determining this resolution are the TES bandwidth and

the pulse bandwidth. The TES bandwidth we define as

!TES =
1

⌧TES

=
G(1 + L)

C
=

n⌃
�
1 + ↵

n

�

fsccWT 2�n
c

(4.23)

We can estimate the pulse bandwidth !pulse given the aluminum coverage fal, absorption probability

pabs, and thickness transit time ttransit as

!pulse =
1

⌧pulse
=

falfabs
ttransit

=
fabs

ttransit

AAl

Apuck

(4.24)

=
fabs

ttransitApuck

NTES(AQET +Adead) (4.25)

=
fabsvphonon

Vpuck

NTES(AQET +Adead) (4.26)

and so we see that the TES bandwidth is set by device parameters, while the pulse bandwidth is

mainly geometric.

Given this relation, and the pulses seen for the iZIP v5, we can parameterize !pulse in terms

of the known value for the iZIP. We saw from Soudan data a pulse decay time of ⇠ 750µs, for an

aluminum coverage of 4.8%, giving us the relation

fabs
ttransit

=
fabsvphonon

hpuck

⇡ 1

0.048 ⇤ 750 ⇤ 10�6
⇡ 2.7 ⇤ 104 (4.27)

and in terms of intrinsic constants, we have, for hpuck ⇡ 25 mm,

fabsvphonon ⇡ 705m/s (4.28)

and if the DMC measured value of fabs ⇠ 0.4 is to be believed, then we find vphonon ⇡ 1760 m/s.

This bandwidth helps us determine a signal template to use in our optimal filter calculations. We

can imagine that the phonon pulse has a similar shape to the TES impulse response, i.e. a double

exponential function, which has the normalize fourier transform

Npulse,ideal(!) =
1

⌧pulse � ⌧phonon

✓
⌧pulse

1 + i!⌧pulse
� ⌧phonon

1 + i!⌧phonon

◆

where the falltime is ⌧pulse, calculated above, and the rise time is

⌧phonon ⇠ ttransit
2

(4.29)
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Figure 4.6: Phonon collection time as a function of TES and and fin length for Ge (Si) on the left
(right). The iZIP, which only has an aluminum coverage of ⇠4%, is much slower. Si is faster than
Ge due both to the faster sound speed and the better impedance match between Si and Al. The Si
HV detector is expected to be fully bandwidth matched, i.e. the phonon and TES falltimes should
be about the same.

The phonons arrive at the surface on the timescale of a single crystal transit (half the time from

the center) with dispersion of the same timescale as the phonon transit time. This is at first glance

conservative estimate, as if the phonons were concentrated in a delta in time, isotropic, and traveled

at the same velocity equal to the group velocity, we would see e↵ectively 0 rise time. What we see,

however, is that phonon channels away from the initial vertex see a much longer e↵ective rise time,

can in principle only improve the energy resolution of the measurement by restricting the signal to a

smaller volume of frequency space. As we don’t expect the rise time to be longer than the fall time,

we thus see that estimating our pulse with just the fall-time will be a conservative energy resolution

estimate.

If we add in the fact that only a certain fraction of the signal gets through, according to the

e�ciency, ✏, then we can represent our full signal template as

Npulse(!) =
✏

⌧pulse � ⌧phonon

✓
⌧pulse

1 + i!⌧pulse
� ⌧phonon

1 + i!⌧phonon

◆

This function can now be used to create an optimum filter for the data, and thus allow us to compute

the energy resolution of our optimally filtered signal using the power noise estimated earlier.

In summary, figure 4.6 shows the expected phonon and TES falltimes as a function of TES and

fin length. An immediate di↵erence between the Si and Ge plots is that Si is faster by a factor ⇠ 4.5;

this is an experimentally determined fact, determined by comparing the phonon collection time in

a Si iZIP5 to that in the Ge iZIP5. This is due to a better impedance match between Si and Al[56]

and a faster phonon sound speed[52], which are both corrections of ⇠2 as compared to Ge. Work is

in progress to try to use the DMC to predict fall-times and transmission/reflection coe�cients from
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first principles as a function of phonon frequency and incidence angle based on Ref [56].

Optimum Filter Energy Resolution - TFN Dominated

We can now optimize the QET and TES dimensions assuming the TFN dominated TES resolution

given in equation 3.175. Plugging in the pulse bandwidth gives the single channel resolution

�2
E
⇡
✓
2kbn⌃Tn+1

c
Vpuck

fabsvphonon

◆
VT ES

✏2NTES(AQET +Adead)
(4.30)

It should be noted that this TES volume is the volume of the TES in a channel, which is actually

ntesVTES where VTES = ⇣�1lTESwTEShTES . This gives

�2
E
⇡
✓
2kbn⌃Tn+1

c
Vpuck

fabsvphonon

◆
VTES

✏2nchan(AQET +Adead)
(4.31)

Note that ⇣ is a properly function of the TES parameters as well, but has a fairly weak dependence

on lTES compared the QET area and e�ciency. In addition, we’re trying to optimize fin length for

a given TES length, so we’re not very concerned about this dependence. Plugging in the volume

gives the final relation

�2
E
⇡
✓
2kbn⌃Tn+1

c
VpuckwTEShTES

fabsvphononnchan

◆
lTES✏�2⇣�1

AQET +Adead

(4.32)

Here we have terms which are close to independent of each other; the amount of dead aluminum in a

QET will always depends on TES number, unfortunately, because it depends on the size of the unit

cell, and thus there is still some dependence of Adead on TES length. We do have terms separating

the e↵ect of fin length from the other e↵ects, and we can call �0 the energy resolution of entire QET

detector array in the case where we have perfect fins and maximal QET areal coverage, covering the

puck surface:

�2
0,single =

✓
2kbn⌃Tn+1

c
VpuckwTEShTES

fabsvphononnchan

◆
(4.33)

This is for a single channel; for the entire detector, the total resolution will add in quadrature, giving

�2
0 =

✓
2kbn⌃Tn+1

c
VpuckwTEShTES

fabsvphonon

◆
(4.34)

where we see that the overall energy resolution is independent of channel number for a perfect QET.

This is not in fact true for a real QET, as more channels will allow more e�cient energy collection.

We thus have a quantity independent of fin length which we can optimize first, and optimize fin

length given the TES length which comes from minimizing this quantity in light of other experimental

constraints. In addition, if we can place some sort of acceptable figure on this number, we can even

determine how much TES length we’re willing to give up to increase robustness of phase separation,
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Figure 4.7: Left: Energy resolution in the TFN dominated limit as a function of TES length and fin
length, showing the phase separation boundary shaded in grey. Right: Optimized fin length from
energy resolution as a function of TES length.

which hurts our overall gain.

Retaining the fin-related quantities, we thus have

�2
E
=

lTES�2
0

⇣✏2(AQET +Adead)
(4.35)

= �2
0
lTES

⇣

AQET +Adead

f2
c
A2

QET

(4.36)

or, written as signal to noise,

S

N
/

p
��2 /

r
⇣

lTES

fcAQETp
AQET +Adead

(4.37)

We can expect this to rise in the small fin limit where fc ⇠ 1, and in the large fin limit, we substitute

the earlier forms to find
S

N
/

s
ld⇣lTES

AQET

(4.38)

From this we expect that maximizing signal to noise entails maximizing TES length, and choosing

an optimal fin length between extremes where over-all signal to noise is maximal.

The relative signal to noise of QETs with di↵erent TES lengths can be seen in figure 4.7. The

optimal fin length for signal to noise can also be seen, and what is remarkable is that over the range

of TES lengths considered, the optimal fin length is roughly constant. This means we can, to first

order, consider the two dimensions separately. Figure 4.7 also shows that the chosen optimum is

not strictly the energy resolution optimum, which can be understood by referring back to figure 4.5.

The chosen QET dimensions have a much larger overall aluminum coverage (35%) than the strict
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Figure 4.8: Left: First-pass phonon collection e�ciency in Ge as a function of fin length for di↵erent
TES lengths. In the limit of very long fins, the collection is di↵usion limited, while in the short-fin
limit it is linear, reflecting an approximately perfect fin collection. Right: Signal to noise versus
first-pass collection e�ciency showing that large gains in position sensitivity can be achieved by
choosing slightly higher energy resolution.

optimum, and as a result have a much larger total phonon collection fraction as a result of the higher

live/dead ratio. This will lead to a much larger first-pass collection e�ciency, as shown in figure 4.8.

4.2.4 Expected QET Performance

The optimized QET dimensions arrived at by the process just described can be found in table 4.2.

Also shown are the parameters for the iZIP7 for comparison. The final design is expected to have

an energy resolution of about 15% and an aluminum coverage of 35%, meaning it will have a much

larger degree of position dependence than the iZIP. The trade-o↵ between this optimization and the

iZIP optimization can be seen clearly in the table; one sacrifices signal bandwidth to regain the same

e�ciency for a larger energy resolution when capacitance has to be taken into account.

Given the ideal modeling of this optimized QET, we can now explore how this design can be

expected to work under various operating conditions, and as a function of the Tc we’re able to

achieve during fabrication. This will inform our intuition about likely failure modes and give us a

sense for how much fabrication flexibility we have for the CDMS HV detector.

Figure 4.9 shows the noise equivalent power for both the Ge and Si HV detectors, which are

the same due to the fact that both designs have the same Rn and readout. The di↵erent comes in

the form of the signal fall-time, with the Si detector integrating out to higher frequency due to the

faster phonon collection time. The other panel shows the expected resolution as a function of Tc

for both detectors, demonstrating that the Si detector has better resolution for all Tc values and is

impacted less by the other noise sources than is the Ge design. The result of this plot is to show

that while the Si detectors should achieve around 7 eV at our target 45 mK Tc, the Ge detectors
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Design Value
Parameter CDMS-HV iZIP

Crystal Temperature <30 mK
TES Parameters
Length 200 µm 155 µm
Normal State Resistance 150 m⌦
Operating Resistance 50 m⌦
Loop Inductance ⌧ 500 nH
Shunt Resistance 5 m⌦
Parasitic Resistance < 5 m⌦

↵

✓
R0
Tc

dR

dT

���
I0

◆
⇠ 150

|�|
✓

R0
I0

dR

dI

���
Tc

◆
< 0.3

Tc 40-45 mK 40-60 mK
Risetime (L/R) 2-3 µs 2-4 µs
Falltime (⌧TES) 30-40 µs 10-40 µs

QET Parameters
Geometry “Stadium” “Linear”
Fin Length 240 µm 80-110 µm
Trap Geometry “Semicircle” “Rectangle”
Trap Length 20 µm 5 µm

QET Number ⇠1800 ⇠1400
Energy E�ciency (✏E), Ge 15% 13%
Energy E�ciency (✏E), Si 22% 19%
Aluminum Coverage 35% 4%
Phonon Falltime (⌧phonon), Ge 200 µs 1400 µs
Phonon Falltime (⌧phonon), Si 40 µs 300 µs
Charge Input Capacitance N/A 300 pF
Charge Channel 100-180 pF
HEMT Input 100 pF
Parasitic 20 pF

Charge Collection E�ciency N/A 95%

Table 4.2: Detector design parameters table reproduced from the SuperCDMS SNOLAB Design
Report. This also includes numbers relevant to iZIP for comparison purposes to the CDMS HV
design.
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Figure 4.9: Phonon energy resolution expectations for optimized CDMS HV QETs. Left: Noise
equivalent power by source, including thermal fluctuation noise, TES Johnson noise, bias circuit
(passive) Johnson (PJN) noise sources, and SQUID noise. Given the similarity in TES parameters,
the noise sources are similar, but the iZIP phonon pulse is slower, hence the lower-frequency pole
in the (arbitrarily scaled) signal curve. Pulses are ⇡ 4.5 faster in Si due to higher transmission
probability and faster phonon velocity, which is the main driver of improved energy resolution
between the two substrates. Right: Expected energy resolution as a function of sensor Tc, including
the e↵ect of various noise sources, for both Ge (solid lines) and Si (dashed lines). “Cold Tower”
includes only TES noise, “Real Tower” includes passive Johnson noise, and “white SQUID” includes
the SQUID white noise of 4.5 pA/

p
Hz without any rising low-frequency component. The “SQUID

+ 1/f” line includes low-frequency noise rising as f�1, normalized to 10 pA/
p
Hz at 100 Hz. The

up-turn in the energy resolution plots at low Tc is the result of approaching the bath temperature,
assumed to be 30 mK. Achieving the bath temperature goal of 15 mK would ensure the T 3

c
trend

continues (in the context of the assumed model). The gray range in the figures indicates the Tc

targets for each detector type, determined by the energy resolution goals as shown in the plots.

do not quite meet the goal of 10 eV for nominal values. We’ll explore in the next chapter what the

actual performance of initial prototypes turned out to be.

In addition, figure 4.10 shows the impact of di↵erent SQUID noise parameters for the Ge CDMS

HV detector. In a sense this is actually a study of the impact of low-frequency noise of di↵erent

characteristics on the detector resolution, both in the energy and timing resolutions. We see that an

increase of 50% at 100 Hz in SQUID noise does not matter for a 1/f power law, but for a shallower

slope directly results in a 50% increase in resolution. The timing resolution is more robust to SQUID

noise changes because it is primarily sensitive to high frequency noise. The timing resolution for the

Ge detector is limited by the TES bandwidth, which decreases as temperature is lowered.

As a final note, I want to point out that these resolutions assume that all channels are added

to produce energy and timing estimates, and that the channels are fit independently. CDMS has

historically not achieved much improvement from joint channel fits, but in a detector with extreme

position dependence, it will likely benefit us to begin to implement position-dependent joint energy
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Figure 4.10: Impact of di↵erent SQUID noise parameters for energy (left) and timing (right) res-
olutions for the Ge HV detector. The impact on the Si HV design is less given the intrinsically
larger bandwidth. These plots also assume Tbath = 20 mK, and show the impact of a lower bath
temperature on both quantities as compared to Figure 4.9.

estimators. A simple illustration of the impact of this change is to imagine that all of the energy is in

a single channel. If we only use that channel, then the resolution decreases compared to the channel

sum by
p
12, resulting in a significant improvement. If we add all channels, we’re just adding 11

channels worth of noise. I’ll explore this more in the next chapter in the context of the G124 results,

but this is an important point that I felt needed to be put here as a caveat on these projections.

4.3 HV Detector Simulation

Even with an optimized QET, we have some additional design freedom in terms of how we arrange

the bias lines on the mask, how the voltage bias is applied, how the detector is housed, and how the

channels are arranged. To this point in this chapter, we were able to perform analytic calculations

for our optimization, but these remaining questions are best answered through simulation. In this

chapter I will first discuss COMSOL electric field modeling which addresses the first three points,

and then the Detector Monte Carlo (DMC) studies of detector performance to help determine the

best phonon channel segmentation2.

4.3.1 COMSOL Electric Field Modeling

For all CDMS detectors, the electric field shape and critical features are important for predicting

the behavior and failure modes of a given detector design. For the iZIP, the scalloped fields near

the surface define the charge fiducial volume, and for the high-voltage detector the uniformity of the

2
Many more plots can be found in the ebook note at http://titus.stanford.edu/cdms_restricted/kurinsky/

HVMask/index.html
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field is important to ensure that all events in the fiducial volume undergo full NTL amplification.

In general, there will always be regions of the crystal which do not behave according to our ideal-

ized model, so having an accurate electric field map is crucial to understanding non-ideal detector

performance.

COMSOL is a toolkit setup to solve finite element models for a variety of physical systems. Finite

element modeling is one numerical tool for solving a system defined by a di↵erential equation at a

given point. In our case we want to solve the electrostatic Maxwell’s equations for the electric field:

r · E(x, y, z) =
⇢(x, y, z)

✏r(x, y, z)
(4.39)

r⇥ E(x, y, z) = 0 (4.40)

where each electrode in the geometry is held at a known voltage, and the detector housing is held

at ground relative to the electrodes. We want to include the relevant real-world properties of each

material used (including conductivity and relative permittivity) where, in our case, we just case

whether a material is a conductor or an insulator, since we assume all components of the model

are in their time-dependent equilibria. For this reason, we simulate the detector mask and copper

housing as perfect electrical conductors to simplify our calculations.

The most challenging aspect of creating a finite element model with our geometry is the relative

scale of the features involved in our designs. If we were to simulate all features, we’d need a mesh

that could resolve micron-scale features while creating an electric field model for a cm-scale object,

a 4 order of magnitude scale. The meshing utilities in COMSOL only allow a mesh to vary by an

order of magnitude in scale at the most. To resolve an entire CDMS HV detector will all mask

features with a tetrahedral mesh would require at minimum a 30 Tb file for just the crystal bulk

if only the very surface layer could resolve all electrode features. This is obviously a prohibitive

calculation, but that degree of accuracy is also unnecessary. Given an energy resolution of even

10 eV, a 100 V map precise to the 1 V level will look identical to the exact voltage map for all events

up to 100 eV if systematics are completely one-sided; if we want to go to 100 keV, then we know

we need a map precise to ⇠ 10�3%, or 1 mV. This very detailed map (assuming very irregular field)

would be around 100 Gb, still prohibitively large.

We can reduce the field to a manageable size by employing a few tricks to justify using a coarser

grid. First, we know that the electric field from two wires looks like that from a single wire for

distances much further than their separation. In kind, we can also show that the electric field from

a set of infinite parallel wires looks like an infinite conducting plane for distances much further from

the wires than their separation. For the HV detector, we can thus expect that the field more than a

few times the mean QET separation is the same as that for a parallel plate capacitor, so it may be

possible to assume a large fraction of the inner portion of the detector adheres to this expectation,

and only the surfaces need to be simulated.
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Figure 4.11: Geometry use to study the axisymmetric (azimuthal symmetry) COMSOL field model,
given that an accurate 3D field which fully resolves the electrodes is not possible. The models studies
with this geometry are also simplified by assuming a uniform plane on one side of the detector to
reduce the total mesh size by a factor of two.

Azimuthally Symmetric Field

To begin to explore symmetries in the HV detector field, we constructed an approximate HV detector

model assuming an azimuthally symmetric geometry of large and small electrodes on the top and

bottom of the detector, with a copper housing separated by variable distance from the edge of the

detector, and electrodes on the detector extending to 2 mm from the crystal edge. We focused only

on Ge for these studies as it has a larger relative permittivity (✏ ⇠ 16) than Si (✏ ⇠ 11.2)[10]. To

approximate the distribution of the electrodes on the surface, the rings were alternately thin (10

microns) to simulate bias lines and thick to make the total aluminum coverage match the HV design

(35%). An detailed overview of the geometry used is shown in figure 4.113. We used this model

to study the impact of housing spacing and fractional aluminum coverage on the maximum electric

field along the surface of the crystal, in order to determine how to mitigate surface breakdown risk.

We then used these models to study the impact of di↵erent design choices on field uniformity.

The first result, shown in figure 4.12, is that the fringing field between two electrodes at the

detector surface is a function only of the total aluminum coverage. It’s straightforward to see why

this is the case; if we imagine the detector as a parallel plate capacitor, we know that the total

charge is going to be Q and for a 100% filling factor we know that � = Q/A. Gauss’s law tells us

that as long as the charge inside a Gaussian rectangular prism of dimensions d2 ⇥ l through the

plane of the plate is constant, the electric field will also be constant. So we can show that for wires

3
An extensive exploration of these models and more information can be found at https://confluence.slac.

stanford.edu/display/CDMS/COMSOL+Grid+Models
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spaced a distance d apart of width w, we have

d2E =
�dw

✏
(4.41)

� =
✏E

w
(4.42)

If we write the filling factor as

fa =
Awires

Aplane

=
wd

d2
=

w

d
(4.43)

then we can write the charge density � as

� =
✏E

fdd
=
�0
fd

(4.44)

where �0 = Q/A is the parallel plate limit. So the charge density is only dependent on the average

aluminum coverage, and thus the maximum field, which occurs near every wire, will only be depen-

dent on the fractional aluminum coverage. This is of course only valid if there exists a limit l >> d to

make this argument exact. The finite element solutions agree perfectly with this functional form as

shown in figure 4.12. The upshot is thus that if we know a given detector technology will experience

a breakdown at a certain field strength, we can determine the desired operating voltage and adjust

the aluminum coverage to ensure that maximum electric field is well under that near a wire with the

given charge density. Alternatively stated, if a given detector breaks down at voltage V , doubling

the aluminum coverage should also double the breakdown voltage to 2V to a good approximation.4

We also experimented with the e↵ects of housing spacing and geometry on the fringe fields and

fiducial radius of the detector. The latter term is defined as the detector radius within with all events

experience the full NTL gain. Figure 4.13 shows detector cross-sections where the electric field meets

the side-wall midway down the detector side, but ends up far from the edge of the detector near the

face. This e↵ect was also seen in CDMSlite data, and is a known systematic that leads to reduced

fiducial radius. The figure shows that fiducial volume is greatly increased by increasing the housing

separation even by a few hundredths of an inch, and that the maximum electric field near the crystal

edge is also decreased. The comparison of the current housing geometry and the proposed upgrade

geometry can be seen in the lower two panels of figure 4.13.

Coarse 3D Field

We were able to get a simple version of the 3D detector model to run, though not in an upgraded

SNOLAB housing. The di�culty lies in the size requirements discussed at the beginning of this

4
Blas pointed out that for an infinitely thin film of width w, the field and charge density are technically infinite at

the edges. The analytic solution assumes cylindrical wires with finite radius, and the numerical solution modeled the

actual film thickness. The match between the two thus demonstrates that the scaling relations hold even if there is a

relative geometric scale factor between the solution.
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Figure 4.12: Left: Electric field in axisymmetric simulation around a close-up image of two wires.
Right: Maximum electric along the detector surface as a function of the fraction of the surface
covered in aluminum.

section; the discrepancy between the crystal and mask scales is too large for the SNOLAB detectors

to generate anything close to a scale-accurate model. While the field near the mask may not be

entirely accurate, a very good approximation can be made by constructing the mask out of concentric

rings with the correct surface coverage fraction. Even this model could not be fully resolved near

the bias lines, which were made (as in the 2D model) to approximate the QET rings in terms of

aluminum coverage. It was also made using an outdated housing model, which does not curve

following the edges (as it does in the SNOLAB design) but has a hexagonal inner profile.

Cross-sections of the 3D models can be seen in figure 4.14 for models made of concentric rings

and grids, both set to 20% aluminum coverage to simulate the coverage of an early HV prototype.

Figure 4.14 explores the meshing limitations near the electrodes, as well as the impact of two-

sided versus one-sided bias, and the e↵ect of biasing the housing lids (or equivalently, the adjacent

detector faces) to the same bias as the sensors. From these simulations, we can conclude that two-

sided symmetric bias will produce the most regular field, with the largest fraction of events that

experience full NTL gain, and that allowing the adjacent surfaces to float separately from the housing

or biasing them to the same voltage and the detector face leads to much less extreme surface fields.

It’s likely that if we’re dominated by field-dependent surface leakage, this will be an important factor

in achieving higher voltage bias than for the case of a fully grounded housing.

Future Work

While the studies above were very informative, it still remains that a full HV detector field model

has not been constructed due to the inherent limitations of the COMSOL meshing tools. As of this

writing studies are ongoing to develop a standalone FEM code to simulate these fields with more

meshing freedom, as well as to directly build detector models from mask files and CAD housing
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Figure 4.13: Top: Radius within which all collected events will experience full NTL gain as a function
of housing separation. Center: Maximum electric field as a function of housing spacing (left) and
housing wall curvature (right). The right plot also includes the e↵ect of adding strips near the
detector faces with the same voltage bias (e.g grounded to the crystal face) to shield against high
electric fields at the crystal edge. Bottom: Comparison of the nominal housing design (left) and
the suggested improved housing design with large dielectric bu↵ers pushing the grounded housing
side-wall away from the biased edge strips.
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Figure 4.14: Top: XY slice through the top of the detector for a 1-sided ’Ring’ model (left) and
2-sided ’Grid’ model (right). Neither model can be fully meshed even in the finest mesh setting due
to the size of the model, but the ’Grid’ model has fewer mesh errors. Middle: Comparison of yz
plane slice, zoomed into the outer corner, for two-sided bias where the housing lids are either held at
the same bias as the detector face (left) or held at ground (right). Bottom: Comparison of one-sided
and two-sided bias showing the field symmetry in the two-sided case, and that a larger fraction of
the detector will have events with full NTL gain due to the e↵ect the housing has of bringing lines
to the sidewall.
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drawings. We have been exploring the https://fenicsproject.org/ python finite element package as

well as the open-source http://gmsh.info/ meshing tool in order to determine how detailed we can

make our models in a more flexible development environment. The benefit of these tools is many

more meshing options, and easier customization of boundary conditions to avoid meshing regions

outside of the crystal. Though we are attempting detailed 3D models, it is likely that we will either

generate a very simple model similar to a parallel plate capacitor to approximate the HV detector,

and study deviations from this ideal field structure using axisymmetric models similar to those shown

here. With precisely determined ring spacing and aspect ratios, we can approximate the true field

very well. For more details see Madison Matsen’s work on this topic.

4.3.2 Charge and Phonon Simulations

The DMC discussed in the introduction to chapter 2 has historically existed in two forms, one

implemented in MATLAB[63] and a second implemented as an extension to GEANT4 (G4CMP[22,

3]). In this section I present results derived from the MATLAB DMC, but in the rest of this thesis

all DMC results come G4CMP. The main di↵erence between the two and speed and flexibility; the

MATLAB DMC laid the groundwork for G4CMP but was slower and specific to Ge in a certain

crystal orientation with a fixed set of valleys. The MATLAB DMC was su�cient for simulation new

designs in a Ge detector, which is the focus of this section.

The MATLAB DMC takes as input an electric field map, and the position, recoil energy, and recoil

type of an event. It then creates an initial population of charge carriers and phonons. The phonons

are propagated until they either generate new phonons through down-conversion or are absorbed by

a sensor. The charges are propagated, and as they propagate radiate new NTL phonons, simulating

the detector voltage gain. For more information on the specific detector physics implemented in the

MATLAB DMC, see ref [63]. For this study the final charge positions were discarded, and the map

of phonon hits on the top and bottom detector faces as a function of time were recorded in order

to build phonon traces, which were then converted to TES responses, with TES noise added using

the analytic noise PSDs. In this section I will describe the simulations done and some initial results,

and then I will show the studies performed using these simulations to optimize the detector mask

in the following section.

Two sets of DMC inputs were generated, one to establish energy yield as a function of initial

event position, and one to do the fiducialization studies of the next section with a variety of energies.

10,000 events were distributed evenly through the crystal, the first sample with energy 100 eV, the

second with the energy spectrum seen in Figure 4.15. All simulations were run with the two-sided

bias, without housing top and bottom bias, corresponding to the E-field in the lower left of figure 4.14.

The full voltage drop in these simulations was 70V, as simply scaling the potential files up to 100V

caused the DMC to fail inexplicably. The aluminum coverage was set to 35% uniformly on either

side of the crystal, and the aluminum absorption probability was set to 0.33.
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Figure 4.15: Histograms of input event energies for a 1 GeV (left) and 10 GeV (right) spin-
independently coupled dark matter particle assuming standard DM kinematics and halo profile.

The MATLAB DMC has a built in limit of 400,000 individual phonons, which causes a job to

fail if the number of generated phonons exceeds this limit. The DMC does not actually simulate

each phonon, but limits the total phonon energy simulated to a preset number and scales the unit

phonon energy accordingly. Given that the high-voltage detector will produce a much larger number

of NTL phonons, we need to determine the appropriate scaling to keep the DMC phonon number

below this limit.

The nominal energy scale (the phononEnergy parameter) is 240 eV, so the range 60-480 was

chosen and simulation of 1000 events distributed over the range of energies of a 3 GeV WIMP and

throughout the crystal were run. I found that failure due to excessive phonon number begins to occur

sharply above 180 eV, and thus chose this value for my simulations. Given that the high voltage

detectors need to be sensitive to WIMPS below this mass, and lower energy NRs will produce fewer

NTL phonons, this should su�ce for all of my WIMP simulations.

The energy distribution bottoms out at the bandgap energy of Germanium, however the DMC

will not produce events below 3 eV. This is due to the fact that the high energy limit for EH pair

generation was employed, which intersects a single pair produced at 3eV incident energy. The true

curve allows a single pair to be produced for energies down to the band-gap energy threshold, so for

us to generate the lowest energy events, we simply need to boost the number of 3eV events generated.

We would additionally need to subtract o↵ the additional energy imparted to the phonon system,

however the NTL gain makes this phonon energy mostly negligible, so to first order it isn’t necessary

to generate true minimum energy events. We thus probe the lowest energy events available to us by

generating extra 3 eV events, but in reality gain little by this boosting, and we merely cap energy at

3 eV instead of the bandgap energy as the relative proportion of these events is already very high.

The first result of the simulation, using the monoenergetic sample, is to determine the energy

yield as a function of initial scatter position in the crystal. The plot of fractional energy yield as a
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Figure 4.16: Energy yield of events as a function of their initial position in the crystal. Left: Yield
versus radius colored by z-position. Right: Radius versus z position near the edge of the crystal
with yield shown in color scale. The vertical black line shows where the electrode ends. The result
is that the NTL gain is a function of radius and there is radial-z covariance at high radius, limiting
the full gain region to about 5 mm from the crystal sidewall.

function of radius, with z position colored according to the scale, can be seen in figure 4.16. Here,

the vertical line denotes the point at which the aluminum coverage ends on the surface of the crystal,

and thus where the electric field becomes non-uniform. The nice e↵ect is that yield in the middle

of the crystal is largely independent of z position. If we change the view to look at the R-Z plane,

and color energy yield, we see a non-trivial correlation in the plane which follows the non-idealities

in the electric field very closely. The zoomed in view shows us the drop in yield more finely. We can

use this plot to define a radial fiducial volume which excludes the last 5mm of the crystal, with the

remaining events ensured to have at least 95% energy yield.

It is apparent from these results that the more uniform we can make our field, the larger the

volume we can fiducialize in the crystal, but only to the limit that we remain a certain distance

from the surface. The mean free path of high energy gammas, the largest surface background, is

roughly 3mm[111], so even with the housing at ground, the two-sided bias allows the majority of the

region inside 3 mm in the crystal to be fiducialized. Any improvements that increase the uniformity

inside this radius are worthwhile, but aside from that, additional E-field shaping is not necessary

for greater fiducialization. More uniform fields would, however, increase the gain uniformity across

the crystal.

4.3.3 TES Pulse Simulation

We implemented our own TES simulations instead of using the DMC TES simulator for these studies

for a few reasons. Primarily, this allowed us the flexibility to easily and quickly modify the phonon
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Figure 4.17: Sample of random noise generated according to the expected TES noise profile in the
time domain (left) and frequency domain (right).

sensor layout. It also allowed us to ensure the proper TES response was employed, as the at this point

DMC had not been validated for the CDMS HV TES response, and this allowed for a much simpler

and streamlined simulation process. It also allowed us to easily integrate the projected SNOLAB

TES noise into the TES pulse generation before optimal filtering was applied. The expected and

simulated noise PSDs, as well as a time domain random noise sample, can be seen in figure 4.17.

Note that these are normalized to white noise with magnitude 1; the true current noise picks up a

factor of r
4kBT

R0
⇡ 5� 10pA (4.45)

depending on the operating resistance of the TES. The use of an accurate noise model is crucial

to understanding how the noise impacts the TES pulses, and to measuring the e↵ective phonon

resolution from these simulations.

The TES pulse simulation process is illustrated in figure 4.18 for a large pulse in a channel above

the event dominated by NTL phonons, and a small pulse primarily containing ballistic phonons. We

histogram the phonons into bins of width 0.5 microseconds. We then convolve this histogram with

the TES impulse response corresponding to our TES parameters, show in blue in the figure. Note

that overall normalization is removed to be able to show all of these pulses in the same scale. We

then add TES noise, and apply an the wiener filter described in section E.7 with an explicit 100 kHz

roll-o↵ to remove phonon shot noise.

The result of this filtering is that most pulses can be accurately reproduced after deconvolving

the TES response out of the optimal filtered TES pulse. This is stand-in method for the eventual

process of fitting a template library to the optimal filtered phonon pulses, but for this study give a

nice approximation to the phonon pulse we obtain after removing electronics and shot noise. It also

allows us to estimate the energy resolution using a method that approximates the best version of
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Figure 4.18: Simulated phonon signals given an input phonon energy arrival histogram showing the
convolution the the TES response, adding noise, filtering with a wiener filter, and deconvolution to
compare the estimated and input pulses.

the optimal filter, for an infinite template library with perfect noise and signal characterization.

From the two optimal filtered pulses, we generate analysis quantities to be fed into the subsequent

fiducialization processes. The four quantities measured for each pulse are time and height of the

pulse peak, as well as total pulse energy (the pulse integral) and ”Luke Phonon” (NTL phonon in

this thesis) energy, defined as the amount of energy collected during the initial 15 microseconds of

the pulse. This time is approximately the time it would take for a phonon to traverse the longest

dimension in the crystal, so in this way we approximately count only the phonons collected upon their

first reflection. To remove the energy dependence from the individual channel quantities, we sum the

quantities across all channels and divide by the sum, to give ”fractional” values (pFrac, pLukeFrac),

and include also the total as an analysis quantity. The time and peaks are not normalized at this

stage of the simulation.

The measured resolution for the total energy measurement can be seen in figure 4.19 for both

DM samples. We can see that they are consistent with one another and slightly below our 10 eV

expectation due to the fact that the wiener filter can account for position dependence, and e↵ectively

de-weight channels without much signal. This is an indication that in these detectors we’re going to

benefit from algorithms that can jointly fit all channels in a position dependent way.

4.4 Phonon Channel Layout Optimization

Using these simulations, we can test, for the optimized CDMS HV QET, a variety of choices for

how to lay out the 12 phonon channels on the detector face. In this section I describe the di↵erent

fiducialization studies done for the various geometries. The selection of geometries to test is described

in section 4.4.1. I then explore the position dependence in the detectors in sections 4.4.2 and 4.4.3,
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Figure 4.19: Left: Energy resolution for all events in the samples for the di↵erent mass dark matter
particles. Right: Energy resolution for the 1 GeV DM for the configurations described in the text
of section 4.4. X-axes and distribution moments are in eV, histograms are normalized.

and compare the total fiducialization power of the di↵erent configurations in section 4.4.4.

4.4.1 Proposed Geometries

Despite having selected a channel resistance and QET design, we have a lot of freedom in our choice

of phonon partition given that we have twelve channels to cover two detector faces. A very early

decision was made to have 6 channels on both faces so as not to introduce more position dependence

than we already expect to be present. We also imposed the requirements that all phonon channels

cover equal crystal area (so that the aluminum coverage is homogeneous) and that both radial and

azimuthal information is retained. This eliminates the configuration of six concentric rings as well as

any configuration with rings only split in half. The remaining options are summarized in figure 4.20,

and are referred to by the numbers in the figure5.

These options essentially boil down to whether there is an innermost spot, and how thick the

outer ring is. Configurations 3-6 all have the central spot, but change how the remaining channels are

arranged. Configuration 0 was the one originally proposed in the SuperCDMS SNOLAB conceptual

design, while configuration 3 is the same as the phonon channel layout in the iZIP. In all cases, the

opposite face would look similar but have the channel splits rotated by 60 degrees for a 3-channel

ring design and 45 degrees for a 4-channel ring design to ensure that if a signal lies on the channel

split for one face, it will be the center of the channel on the other face, increasing the probability

that it’s accurately reconstructed.

The first result from simulating these configurations was already shown, namely that in the

small signal limit, the resolution is una↵ected by the layout of the channels. As long as we can

5
All figures in this section for all configurations and more voltages can be found at http://titus.stanford.edu/

cdms_restricted/kurinsky/HVMask/index.html
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Figure 4.20: Proposed detector geometries explored for the HV mask using the DMC. See text for
more details.

perform a good optimal filter reconstruction of the pulses, this will be true for signals close to

the detector threshold, but the TES simulation used does not account for partial saturation of a

TES channel (where some but not all of the TES unit cells are driven normal), which decreases

the power to current conversion and drives the resolution up for higher energy events. These DM

masses are low enough that saturation is not of primary concern, and the events are high enough in

energy (1 keV or larger) that they’re very far above threshold, but the e↵ects of saturation should

not be underestimated for these detectors, which are much more position dependent than previous

SuperCDMS detectors.

We can also look at how the NTL phonons are distributed in the channels for each configuration.

Figure 4.21 shows the phonon hits colored by channel number on each side of the detector for

configuration 0 for an event of moderate energy, at high radius and midway through the crystal. We

immediately notice two things: first, the electron pattern is larger than the hole pattern (a result

of the oblique propagation of the electrons), and second, that the electron pattern is of the scale of

the outer ring, about 10 mm. This implies that narrower rings should share more of the phonon

distribution, and be more sensitive to the precise initial position of high-radius events. We’ll see if

this is the case shortly, but it’s an interesting observation that makes intuitive sense to us.
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Figure 4.21: Distribution of phonon hits on the top (left) and bottom (right) faces of the crystal in
the DMC for phonons which arrive within the first 30 µs after the event, roughly the time it takes a
phonon to traverse the crystal. These are the phonons with the most position dependence, so their
distribution gives us the most intuition about how to maximize

4.4.2 Vertical Partition Performance

We can construct the vertical partition as defined in appendix A from the di↵erent energy quantities

determined from the phonon pulses by summing all of the quantities from the top and bottom

together, with the results shown in figure 4.22. The variable plotted is the z-partition quantity

pz =
Etop � Ebottom

Etop + Ebottom

(4.46)

where Etop and Ebottom are the respective channel sums for the energy collection in the first dynamic

timescale. The models shown assume di↵erent di↵usive radii, and the data at 1V (dominated by

prompt phonon energy) are consistent with a slightly asymmetric di↵usive radius of 10 mm.

We can model the z-partition of the higher voltage data well by assuming that the NTL phonons

are emitted in a column equally spaced along the axis of propagation. This means that the z-

partition will progressively get less sensitive as we raise the voltage, as each side will receive half of

the total NTL energy concentrated in the phonon channels above and below the event. The model

used has the functional form

pz =
�⌦

⌃⌦+ 4⇡fNTL

(4.47)

where

fNTL =
y(ER)V

✏eh
(4.48)

We can thus see from this quation that in the limit that V ! 0, there is identically zero z sensitivity

in this partition quantity.

The trend seen in the one-sided partition mirrors similar trends seen in CDMSlite data6, though

a z-partition was not constructed for that data due to the minimal gain from only removing half

6http://titus.stanford.edu/cdms_restricted/Soudan/R133/ebook/151208_BP/T2Z1VScan.html

Electrons Holes 

http://titus.stanford.edu/cdms_restricted/Soudan/R133/ebook/151208_BP/T2Z1VScan.html
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Figure 4.22: Z partition quantity for the 10 GeV events as a function of voltage for a two-sided
readout (top) and a one-sided readout (bottom) for comparison to CDMSlite data. As voltage is
increased, there is less z-dependence in the signal, but there is always a surface layer which can be
removed by a z-partition either defined as the side di↵erence (top) or di↵erence between adjacent
channels (bottom).

of the detector surface. This does suggest, however, that the DMC results represent a real e↵ect,

and what we’re seeing is not a DMC artifact. The apparent z-sensitivity of the HV mask was not

expected due to the relative strength of the luke phonons, and the accuracy of the luke phonon

simulations has still yet to be fully validated. An attempt to reproduce these e↵ects with real data

will thus be a high priority for the first CDMS HV pathfinder tests being planned at the time of

this writing.

4.4.3 Radial Partition Performance

Constructing a radial partition quantity in a geometry independent way, especially accounting for

z-dependence in the radial signature of events, is not as straightforward as the z partition. In

order to construct radial quantities without considering each geometry individually, we perform a

principal component analysis on the matrix of 12 energy or time variables and true radius, and use

the principal component (assuming the highest variance will be a covariance with r) as a proxy for

the radial partition. This is obviously not the ideal quantity necessarily for any geometry, but gives

1V 100V 500V 
1.0 1.0 1.0 

Oiffusive Radius (mm) Diffusive Radius {mm) OiffusiveRadius(mm) 

1.0 (l.0) 1.0(1.0) 1.0 (l.0) 1.0 

0.8 
2.0 (4.0) 

0.8 
2.0 (4.0) 

0.8 
2.0 (4.0) 0.9 

3.0 (4.5) 3.0 (4.5) 3.0 (4.5) 
0.8 

5 .0 (6.0) 5 .0 (6.0) 5.0 (6.0) 

10.0 (10.0) 10.0 (10.0) 10.0 (10.0) 0.7 

Two 
o., o., o., o., 

o., 

Sided 0.4 0.4 04 0.4 

0.3 

0.2 

0.2 0.2 0.2 0.1 

0.0 

0.0 
-1.0 -0.S 0.0 o., 1.0 

0.0 
- 1.0 -0.S 0.0 o., 1.0 

0.0 
-1.0 -0.5 0.0 0.5 1.0 

pzPartPeak pzPartPeak pzPartPeak 

1.0 1.0 1.0 

1.0 

0.8 0.8 0.8 0.9 

] 
0.8 

I 0.6 

0.7 

One o., o., 
0.6 § 

~ 

Sided " o.sj 
& 
E 0.4 . 0.4 04 

Q.4N 

~ 0.3 

~ 0.2 

0.2 0.2 0.1 

0.0 

100 150 200 250 300 350 
0.0 

,0 100 150 200 250 300 350 
0.0 

,0 100 150 200 250 300 350 
Optimum Alter Energy Optimum Filter Energy Optimum Filter Energy 19 



CHAPTER 4. CDMS HV DETECTOR DESIGN 169

us a natural means to characterize inrinsic radial dependence in each proposed mask layout.

All partition quantities can be seen in the note linked earlier. The partition plot for configuration

0 can be seen in figure 4.23. The figure shows that all ring splits are captured in this partition

quantity, and that there is some residual z-dependence; in addition, the best partitions are found

from the quantities defined based on the initial part of the signal, which we expect to be most position

dependent. To characterize the performance of these quantities, we draw a Receiver Operating

Characteristic curve, which draws a line through the space of ’bad’ events rejected versus ’good’

events accepted parametrically as a function of the cut-value employed. If we define the outer

5 mm in radius to contain the bad events we intend to reject with this partition, we find that all

configurations can reject all high radius events to some extent in the peak-height defined quantity,

but that the configurations with two thin outer rings perform the best. This of course does not

account for z-dependence, but given that the simple z partition does not depend on configuration,

we can start to narrow our choices to, for example, configurations 1,2,4, and 6. These all achieve

100% bad event rejection at 70% fiducial event e�ciency in this quantity, and they are all patterns

with two outer rings and four inner rings. Interestingly, configuration 7 performs worse than these

despite having 3 outer rings, but at a fairly low level; it is on par with the other configurations to

the 1% leakage level.

4.4.4 Combined Fiducialization

The final study done to choose the mask layout was to train a boosted decision tree on each of the

variables to reject all events within the top or bottom 3 mm of the detector and the outer 5 mm in

radius. A summary of the input and training results of this BDT fiducialization summary are shown

in figure 4.24. This BDT used python’s sklearn package, and specifically its AdaBoost function,

and is the exact same algorithm employed by the BDT implemented in ROOT’s TMVA. A boosted

decision tree is given truth information (good event or bad event) as well as inputs, and attempts

to combine a large number of weak binary classifiers into a strong non-linear classifier to generate

a non-linear cut maximizing the ability to reconstruct truth events and exclude ”fake” (surface or

low-yield) events.

Training a BDT, like most multivariate tools, is highly non-trivial. The free parameters to set

include learning rate, number of boosted classifiers, and fraction of events used for training and

testing. This separation is necessary to ensure that the BDT is not over-trained. I observed that

only 200 boosted classifiers were necessary for a convergent test error, and that the ideal fraction of

the sample reserved for testing was about 30%; this gave the most convergent test error. The BDT

results shown were trained on 70% of the data, and all cuts and ROC curves are as computed for

the 30% test sample. Initial cross-validation results showed no dependence of performance on the

specific test sample selection, so the last 3000 events were reserved for testing.

The BDT results shown in figure 4.24 demonstrate that configurations having at least one thin
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Figure 4.23: Top: First principal component for each of the four variables extracted from DMC data
for configuration 5, showing that this principal component picks up all ring splits. The quantities
sensitive to the height of the initial peak (the most position dependent aspect) are also the most
sensitive to position; we even see some residual z-dependence, even though it is not included in
the PCA training. In general this method doesn’t produce a meaningful quantity for the timing
information. Bottom: Receiver operating characteristic (ROC) curve for rejecting ’non-fiducial’
radial events as a function of fiducial e�ciency. For this study, non-fiducial events were defined as
those events in the outer 5 mm in radius. All designs with thin outer rings have good rejection at
higher e�ciency, and those designs with two outer rings can reject all ’bad’ events at high fiducial
e�ciency.
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Figure 4.24: Top: All events with their truth labels (left) and the resulting BDT score for con-
figuration 4 for the test data, with blue representing high-confidence fiducial events and red high
confidence surface events. Bottom: ROC curves for the low-mass (left) and high-mass (right) sam-
ples showing that the leakage rate decreases for higher energies as is usually the case. Even for the
1 GeV DM particle, a 90% reduction in background can be achieved at 70% fiducial acceptance,
while full fiducialization can be achieved for the higher energy sample at 90% fiducial acceptance.
Based on the 10 GeV ROC curve, we selected the fourth proposed geometry as the final CDMS HV
channel layout.

outer ring perform better regardless of the internal structure, but suggests that by a narrow margin,

the configuration with two thin outer rings, one innermost ring, and three intermediate sections has

the best performance (configuration 4). This is likely due only to radial e↵ects. As a result of this

analysis and the studies presented in this section, configuration 4 was chosen as the most robust and

position-rich configuration with the highest likelihood of providing a good degree of fiducialization.

4.5 Mask Design Results and Future Studies

In this chapter, I described the entire optimization process for the CDMS HV detector in the order

in which all CDMS detectors need to be designed. We first discussed how to determine channel

properties for a TES channel based on readout noise, then how the QETs are optimized for energy
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resolution, and finally how to optimize QET layout on the mask. The result is a detector which

is as sensitive to phonon energy and position as we know how to design within the limitations of

our current technology. The rest of the mask development process entails fabrication and wiring

considerations, and tweaks to various design aspects to reduce initially observed failure modes.

These include the addition of repair pads, bonding pads, and readout wiring. The outer 2 mm is

left instrumented due to decreased fabrication yield and contact with the detector clamps, but an

outer aluminum and tungsten grid was included in the design with minimal aluminum coverage in

order to extend the electric field closer to the edge of the crystal. A breakdown of the optimized

mask image can be seen in figure 4.25.

In the next chapter, I will discuss the testing program undertaken with various types of CDMS

HV prototypes and the lessons learned from these initial tests. A key takeaway of this chapter,

however, is the number of new detector features that have yet to be validated. An important next

step when the first fully-functional CDMS-HV detector is run is to try to validate the DMC and

show that the position dependence and phonon distributions are correct, and to further study the

TES response in order to get the DMC to be predictive of real events. This will allow us to use the

DMC to train more advanced event reconstruction algorithms (such as convolutional neural nets)

so that we are not limited by the accuracy of our TES templates in an optimal filtering framework.

This chapter should provide some guidance on what we expect to see in these detectors, but we

should expect new subtleties to arise which will add to our understanding of the underlying physics

in the detectors. These should be taken into account in the next round of detector designs.
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Figure 4.25: Top: Top side detector mask with zoom-in regions showing a fraction of the channel
and a subset of QETs. Even in the large image the channel splits and wiring can be clearly seen.
Some dead metal is saved by having all QETs share bias lines with those adjacent. QET placement
was done to make each channel have equal area and equally space the QETs across the detector face.
Bottom: 3D rendering of CDMS HV detector showing the relative rotation of the top and bottom
masks.

t 



Chapter 5

Prototype Detector Performance

“An expert is a person who has found out by his own painful experience all the

mistakes that one can make in a very narrow field.”

- Niels Bohr, as quoted by Edward Teller (6 September 1954)

In the previous chapters, I laid out the theory of operation for SuperCDMS detectors with

historical measurements justifying some extrapolations made to design the CDMS HV detector. Once

the design was complete, work was begun to validate each aspect of the detector performance models,

both in full-scale prototypes and smaller detectors meant to test scaling relations and simplify some

aspects of prototype testing. The structure of this chapter is meant to organize detector testing

into types of study, focused either on noise, resolution, or TES characterization, as these are largely

independent studies. In each section I will compare and contrast results from the di↵erent detector

prototypes, which are summarized in section 5.1. I will end with a section summarizing lessons

learned about backgrounds and noise, and some concluding remarks about ongoing work to continue

to characterize backgrounds found and measurements made during these early tests.

5.1 Detector Prototype Program

The SuperCDMS SNOLAB project began a program of fabricating test detectors to demonstrate

the HV detector performance and test the new SNOLAB cold hardware designs in late 2016. These

devices are summarized in table 5.1. The first detector (G101c) was fabricated with a previously

used detector crystal at Texas A&M in mid 2016 and was run at UMN in October-November of that

year, and the subsequent findings are documented in this chapter. I will briefly recount the general

discoveries of this program before going into more analysis details.

174
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Detector Substrate Dim. (mm) Mass Institution Comments
G101c Ge 100x33.3 1.4 kg UMN CDMS HV v0
S101 Si 100x33.3 600 g UMN CDMS HV v1
G115 Ge 76x4 100 g UCB, SLAC CDMS HV QET on

custom 1-sided mask
G124 Ge 100x33.3 1.4 kg SLAC CDMS HV v1
G147 Ge 100x33.3 1.4 kg SLAC CDMS HV v1
HVeV Si 10x10x4 0.9 g Stanford Test Device Mask

Table 5.1: Summary of detector prototypes discussed in this chapter. This covers many of the
detectors tested at UMN, UCB, SLAC, and Stanford between 2016 and 20182. Not included are the
TES test chips and photon detectors also tested at UCB, SLAC, and Stanford during this period.

One of the main results of the testing program was that our devices have systematically lower Rn,

higher G, and highly variable Tc than we anticipated in the design detailed in chapter 4. The latter

two measurements are systematics limited, with both having a high dependence on how well the

fridge base temperature is known. Normal resistance, on the other hand, can be measured reliably

either in situ (with the normal TES bias circuit) or via dedicated four-wire measurements, as was

done for G124 at SLAC. The in situ measurements can also be made in absolute terms (what we

call IbIs measurements) or in relative terms (what we call dIdV measurements), though these are

also limited by systematics on the shunt resistance. The fact that these also varied significantly

from expected confirms to a certain extent that the change in TES properties is really a result of

fundamental physics. In the next few sections I will describe how the measurements were made, and

contrast the results from di↵erent detectors.

5.1.1 TES Resistance Measurements

The simplest way to measure the normal and parasitic resistance of the TES circuit is to capture

points very low and very high in the IbIs curve, where the TES is superconducting or normal. For

any point on the transition, the steady state bias current produces a steady state source current

according to the relation

Is,0 =


1 +

Z0

Rshunt

��1

Ib,0 (5.1)

where for Ib << Iop, Z0 = Rp, for Ib >> Iop, Z0 = Rnormal + Rp, and for Ib = Iop, Z0 = R0 + Rp.

This is only true if the excitation frequency is well below any of the impedance poles.

For testing purposes, we can re-arrange this expression to allow for calculations based on IbIs

data or complex impedance measurements. We write I{b,s} = I{b,s}0 + �I{b,s}0 and take the case
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with and without changing current to find that

Is,0 =


1 +

R0 +Rp

Rshunt

��1

Ib,0 (5.2)

�Is =


1 +

Zloop

Rshunt

��1

�Ib (5.3)

where Zloop = �Vs
�Is

. Re-arranging in terms of measured quantities gives

R0 +Rp = Rshunt


Ib,0
Is,0

� 1

�
(5.4)

Zloop = Rshunt


�Ib
�Is

� 1

�
(5.5)

The impedance in the loop is a↵ected by the dynamics of the transition, and we have

Zloop =
(Rp +R0(1 + �) + i!L)(1� L+ i!⌧) +R0L(2 + �)

1� L+ i!⌧
(5.6)

= Rp + i!L+R0


(1 + �) +

L(2 + �)

1� L+ i!⌧

�
(5.7)

= Rp + i!L+R0


(1 + �) +

L
1� L

2 + �

1 + i!⌧eff

�
(5.8)

where � and L are as defined in section 3.2. In the limit that L >> 1, we have

Zloop ⇡ Rp + i!L�R0


1� (1 + �)i!⌧eff

1 + i!⌧eff

�
(5.9)

such that crossing through the pole, to first order, just flips the sign of R0 and thus the phase of the

response. Measuring either side of the pole (once the transfer function is flat) yields a measurement

of �. Measuring the pole compared to the natural response (no electro-thermal feedback) gives a

measurement of L, which once measured can be used to find the corrected �, which should be slightly

smaller than the initial measurement.

If we make measurements far below the low-frequency pole, we can set ! = 0 to give

Zloop,DC = Rp +R0


(1 + �) +

L
1� L (2 + �)

�
(5.10)

= Rp +R0


1 + � + L
1� L

�
= Rp + R0 (5.11)

where we have defined the quantity

 =
1 + � + L
1� L (5.12)

This is great; this means that by doing low-frequency complex impedance and IbIs measurements
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(taking the peak-to-peak and DC values of the resulting source current), we can measure Rp, R0, �

and L. To summarize, then, we find

R0 = Rshunt


Ib,0
Is,0

� 1

�
�Rp (5.13)

R0 = Rshunt


�Ib
�Is

� 1

�
�Rp (5.14)

For instance, if we have a sharp transition (L >> 1 > �), we will have  ⇡ �1 in the transition,

and will expect a phase shift in the response of source current to bias current, meaning we can use

the equations

R0 = Rshunt


Ib,0
Is,0

� 1

�
�Rp (5.15)

R0 ⇡ Rshunt

����
�Ib
�Is

����+ 1

�
+Rp (5.16)

as long as we are confident in this criterion for the transition point we are biased at.

An example IbIs measurement can be seen in figure 5.1 for G115 from the second run at UCB

and the first run at SLAC. These data were both taken by varying the TES bias from normal down

to superconducting, with the SLAC measurements made in the opposite direction as well. At all

points the operating current was measured and dIdV data were collected; these will be discussed

further in the next subsection. What is interesting to note is that while the resistance curves look

very similar, the current scale is vastly changed. This is the first indication that the parasitic power

environment in each setup was very di↵erent even after some initial improvements at UCB, either

due to bath temperature di↵erences or true parasitic power sources.

Figure 5.1 also shows a comparison with the second way of estimating TES resistance. If a high

energy event saturates the TES, then we can directly measure the di↵erence in current �Is between

R0 and Rn. During the pulse, we’ve fixed Vb = IbRsh, and we know that for the normal state (where

Rl = Rsh +Rp)

Is,normal =
Vb

Rl +Rn

(5.17)

while for the operating point,

Is,0 =
Vb

Rl +R0
(5.18)

which gives the expression

�Is =
Vb

Rl +Rn

� Vb

Rl +R0
(5.19)

solving for R0, we find

R0 = Rsh


Rsh

Rl +Rn

� �Is
Ib

��1

�Rl (5.20)
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Figure 5.1: Resistance measurements for G115 made at UCB (top, 4 QET channels) and SLAC
(bottom, 2 QETs channels, A and C). The left-hand side shows IbIs measurements, and the right-
hand side shows the resistance measurements derived from the IbIs. The ‘dIdV’ label in the top
right figure refers to measurements taken with dIdV data, for comparison to resistance inferred
from saturated muon pulses, shown as dots in the figure. These data taken from http://titus.

stanford.edu/cdms_restricted/detector_physics/HV/ebook/170511c/index.html and http:

//titus.stanford.edu/cdms_restricted/detector_physics/HV/ebook/170628/index.html.

This is an alternate measurement which can help identify systematic errors, or can be used as a

substitute when full IbIs data are not available. We can see that for this measurement, the muon-

based R0 measurement disagrees with the IbIs measurement due to additional (non-TES related)

resistance which appears at 60 µA, most likely a wire-bond going normal.

The normal state resistance values for all prototype detectors were actually much lower than

anticipated. These measurements are summarized in Table 5.2 with the other results from this

section. The largest implication is obviously that we can’t operate the TES as low in the transition

as anticipated, which limits the dynamic range of the TES more. It also implies certain changes in

both the heat capacity and thermal conductance. As we saw in the previous chapter, we know that
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in general, the Wiedemann-Franz law implies that

 = �wf

T

⇢
(5.21)

so a reduction by a factor of 2-3 in the resistivity implies an increase by that same amount in

thermal conductance, which also corresponds to an increase by
p
2-
p
3 in phase separation length.

This implies that a fraction of the lost resistance can be made up for by increasing TES length in a

modified HV design, which will have a large impact on collection e�ciency as well. This of course

assumes ⌃ is invariant to Tc, which also does not seem to be the case. We’ll discuss this a bit later

in this chapter.

The observed reduction in resistivity is not unexpected. Tungsten has two superconducting

crystal phases, the ↵ phase (Tc ⇠15 mK) and � (Tc ⇠1 K) phase, which can be mixed to produce a

film with intermediate Tc. These films also have an order of magnitude di↵erence in resistivity (�

phase is about 10x higher resistivity)[44] and di↵erent lattice constants (a↵ ⇠ 3.2 Å, a� ⇠ 5.1 Å).

The first layers of a tungsten film tend to grow in the � phase, with subsequent layers in thicker films

forming ↵ phase structures as residual oxygen in the growth chamber gets depleted by gettering.

Thicker films are therefore more ↵-like, having both lower resistance and lower Tc[61]. These films

are very sensitive to material purity[112, 113], but for comparable growth conditions on similar

substrates, films of thickness 40 nm such as ours should have resistance and Tc only weakly scale

with thickness. This will ideally be the subject of future work as we continue to experiment with

fabrication of lower Tc devices.

5.1.2 Critical Temperature and Bias Power

Measurements of Tc are fairly simple but are the most dominated by systematics. The easiest way

to measure Tc is to put a small square wave (with very small bias power) on the TES line with

the TES normal, and raise and lower the temperature of the fridge with a heater to observe where

the TES goes through its transition. This is obviously a↵ected by the power systematic from the

TES bias, as well as any lag between the fridge and crystal temperature, but will generally give a

measurement good to within 10 mK of any other method.

The most precise way to measure Tc is to measure the bias power at a few di↵erent base tem-

peratures, and then extrapolate the power measurements to find the temperature bias power crosses

zero to infer Tc. Given the TES power equation

P = K(T 5 � T 5
b
) (5.22)

if we use the joule power to maintain the TES at Tc, we get the relation

P = K(T 5
c
� T 5

b
) = I20R0 (5.23)
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Figure 5.2: Drift in the bias power for a channel on G124 as a function of time since the first
observation of the channel going superconducting. We see that the crystal is cooling with a time
constant of a few days, and it’s unclear if the final bias power is actually in the Tb ⇠ 0 limit.

so a simple linear fit to P versus T 5
b
given the measurements at multiple bath temperatures will yield

T 5
c
as the y-intercept. Plenty of examples of this technique can be found in Je↵ Yen’s thesis[111]

and references therein.

The largest systematic on this technique is still the accuracy with with the crystal temperature

is known. An interesting observation made early on with low Tc HV prototypes at SLAC was that,

despite our thermometer sitting stably well below Tc, the bias power of the devices was slowly

creeping up over a matter of days (as shown in figure 5.2). Subsequent follow-up measurements

indicated that the cirlex clamps had anomalously low thermal conductance below 40 mK, resulting

in the crystal remaining much hotter than the base temperature of the fridge. In fact, any parasitic

power is completely degenerate with a higher Tc; if we add a constant power term, we find that

K(T 5
c
� T 5

b
) = I20R0 + Pparasitic ! KT 5

c
� Pparasitic = I20R0 +KT 5

b
(5.24)

So if parasitic power is 0, we will measure the true Tc, but if it’s non-zero we’ll measure an artificially

deflated Tc. This is the other major cause of time-dependent Tc changes. For these reasons, one of

the largest anticipated challenges for SuperCDMS detectors will be ensuring that the crystals are

cold enough that we can operate the QETs in the Tb ⇠ 0 limit where they will perform optimally,

and that there is no parasitic power; to do this significant modifications will have to be made to the

clamp design and careful design of all components in the bias loop.

Even if you’re sure your crystal is at the same temperature as your fridge, and you know you have

no parasitic power, if you truly want to accurately characterize your sensors, a precise temperature
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calibration is vital. Significant issues arose in the early fabrication studies for lower Tc devices due to

misunderstandings arising from thermometer mis-calibration. In addition, accurate thermometry at

very low temperature is in itself an art, and careful design of future systems with multiple redundant

thermometers well-coupled (at low frequency) to the TES under study will improve our ability to

characterize various fabrication runs and build accurate models of detector performance.

Given power measurements, the other quantity of interest which comes out of the fits (in the

form of the slope and exponent fit to the power versus bath data) is the measurement of the thermal

conductance G = nKTn�1
c

, for the parameterization

P = K(T 5 � T 5
b
) ⇡ KT 5

c
+G(T � Tc) (5.25)

If we assume our highest power measurements are consistent with the limit Pparasitic, Tb ! 0, we

find that

G ⇡ nKTn�1
c

=
nP0T

n�1
C

Tn
c

=
nP0

Tc

(5.26)

and if we know the TES volume, we can thus measure the electron-phonon coupling ⌃ as

⌃ =
K

VTES,eff

=
P0

Tn
c
VTES,eff

(5.27)

For the same TES design, then, if P0 does not scale as T 5
c
, this implies a non-constant ⌃ or VTES,eff .

The latter could be a function of the degree of proximitization of the overlap regions, but should in

principle be a small e↵ect. The results of bias power measurements, and derived parameters, can be

found in table 5.3.

5.1.3 TES Transition Parameters

If we look back at equation 5.8, we can actually derive further insight into the TES response from

looking at either the frequency or time-dependence in the complex impedance. Suppose instead of

! = 0, we take ⌧eff < !�1 < ⌧LR. In this limit, we get

Zloop,peak = Rp +R0(1 + �) (5.28)

or in terms of the measurement, we find

R0(1 + �) = Rshunt


�Ib
�Is

� 1

�
�Rp (5.29)

I call this Zloop,peak because if we put a square wave signal into our TES, we’ll have the shape shown

in figure 5.3 with an initial rise due to the � parameter. Let’s consider the case of large loop gain

(L >> 1). If we analyze the step response, we’ll find that the complex impedance and IbIs both
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tell us the same R0; this tells us implicitly that we’re in the large loop gain limit. The amount

that the pulse rises before falling to its DC value will tell us � in combination with our previous R0

measurement.

Given that we can only confirm whether the loop gain is large, how do we measure it when we

find no di↵erence between complex impedance and absolute bias measurements? The only solution

in this case is to measure the fall-times, either in the time domain or the Fourier domain. The latter

will allow us to first determine the inductance in the loop:

⌧LR =
L

Rl + (1 + �)R0
(5.30)

This is only true if we are not limited by the SQUID feedback loop bandwidth, which is a concern for

the SNOLAB electronics. Sensitivity to inductance should be better in the normal state than the

superconducting state, and plotting the reconstructed ⌧LR as a function of bias point should make

it obvious when the measurement is bandwidth limited. Determining the inductance ahead of time

gives one fewer free parameter for the remaining complex impedance fit.

The longer falltime in fourier space is given by the equation

⌧eff =
⌧

1� L (5.31)

which implies that if we have a high-confidence estimate of ⌧ = C/G, and we’re sure it doesn’t

change through the transition, we can also obtain a high-confidence estimate of L. The problem

here is getting a high confidence estimate of ⌧ , and that crucial assumption that it doesn’t change;

remember from the TES dynamics chapter that we expect a factor of two change in heat capacity

between normal and superconducting states based on BCS superconducting theory. One possibility

is to operate the detector at Tc to measure ⌧ without electro-thermal feedback. Another would be

to use the bias power to measure G, and direct hits on the TES to measure C. These approaches

also have significant systematics, but are in principle possible.

The best measurements of the transition parameters (↵,�, and ⌧) come from simultaneous fitting

of the complex impedance, shown in the time-domain in figure 5.33. For the complex impedance

shown above, we can re-parameterize this as a function of four unknown parameters (to remove the

majority of the parameter covariance) as

dV

dI
= Zloop = A(1 + i!⌧el) +B [1 + i!⌧I ]

�1 (5.32)

3
Figure 5.3 also shows a nice diagnostic to use when determining the best TES bias from complex impedance in

real time. Starting from normal data, we can determine when the TES has gone into electrothermal feedback by

observing the phase shift in the complex impedance, and by maximizing the post-phase shift DC impedance, we can

find the lowest bias point. This is generally done in small steps until the TES goes superconducting, and the stable

bias point is then chosen to be slightly above the last observed TES bias point.
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Figure 5.3: Complex impedance measurements of G115 TES channels at the TES operating point
(top), entering into the electro-thermal feedback regime (middle) and normal (bottom). The left
column is measurements done in the BlueFors at SLAC during Run 23, the right is for UCB run
482. The main di↵erence, aside from the bias circuit and readout being di↵erent, has to do with the
fridge base temperature. For the bias point far down in the transition, the lower base temperature
at SLAC allows for a much faster fall time (larger degree of electrothermal feedback) than at UCB,
where the base temperature was near Tc.
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where

A = Rl +R0(1 + �) (5.33)

B = R0(2 + �)
L

1� L (5.34)

⌧I =
⌧

1� L (5.35)

⌧el =
L

A
=

L

Rl +R0(1 + �)
(5.36)

This also allows us to easily extract all of the unknown transition parameters sequentially, solving

first for � and then for L:

L = ⌧elA (5.37)

� =
A�Rl

R0
� 1 (5.38)

L =
B

R0(2 + �) +B
(5.39)

⌧ = ⌧I(1� L) (5.40)

This is actually a fairly clean way to fit the complex impedance, and by performing the fit in the

Fourier domain we can use the real and imaginary information to get a properly weighted fit as well

as to accurately fit both magnitude and phase of the complex impedance. We performed a least

squares fit, computing the residual of the real and imaginary components as independent components

as

F (Zmeas|A,B, ⌧I , ⌧el) =
X

i


Re(Zmeas(!i)� Zloop(!i|A,B, ⌧I , ⌧el))

Re(�Zmeas(!i))

�2
(5.41)

+


Im (Zmeas(!i)� Zloop(!i|A,B, ⌧I , ⌧el))

Im(�Zmeas(!i))

�2
(5.42)

and employing the least-squares fitting routine in scipy to minimize the residual with the appropriate

loss and tolerance given the allowed range of parameters.

As can be seen in figure 5.3, we also fit 3-pole complex impedance curves to the data. The

motivation for these fit was the observed departure of the complex impedance measurements from the

simple two-pole model. As discussed in chapter 3, a two-block TES model of either an intermediate

or hanging heat capacity can both be represented by the modified complex impedance response[70]

dV

dI
= Zloop = A(1 + i!⌧el) +B


1 + i!⌧I +

C

1 + i!⌧3

��1

(5.43)
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Det. Fab Institution Tc (mK) Rn (m⌦) Rn,exp (m⌦) ⇢/⇢exp.
G101c TAMU 80 90–110 150 0.6-0.8
S101 TAMU 70–75 75–85 150 0.5-0.7
G115 TAMU 45 180 ⇠400 0.45
G124 SLAC 45–60 30–80 150 0.2–0.5
G147 SLAC 60–70 77-100 150 0.5–0.65
HVeV SLAC 52 600–700 2.4–2.75 0.2-0.25

Table 5.2: Summary of TES critical temperature (Tc), normal resistance (Rn), and bias power (P0)
measurements. The Rn can be compared to the expectation to build up a picture of resistivity
change as a function of Tc. Also included is the fabrication facility, which reflects real di↵erences in
film quality.

Det. P0 (pW) G (nW/K) K (µW/K5) ⌃ (GW/K5m3)
G101c 90–130 5.6–8.1 27–40 0.44–0.63
S101 50–70 3.6–4.7 30 0.47
G115 5 0.5–0.6 26–28 0.8-1.5
G124 10–30 1.1–2.5 40–54 0.61–0.86
G147 35–40 2.8–2.9 24–45 0.38–0.72
HVeV 0.05 4.8⇤10�3 0.13 0.31

Table 5.3: Summary of TES bias power (P0) measurements and derived quantities. The large
uncertainty in G115 stems from an uncertainty in the e↵ective tungsten volume.

where

fg = C(1� L) (5.44)

is the fraction of the total heat capacity in the hanging block, and ⌧3 is the falltime of the internal

degree of freedom between the TES and the block.

The results of these complex impedance fits for the UCB and SLAC data can be seen in figures 5.4

and 5.5. We find that for all cases where we do not have strong electro-thermal feedback, the

single-block TES model is not su�cient to characterize the observed behavior, and multiple internal

degrees of freedom are needed to accurately model the TES response. We also see large di↵erences

in performance between the two test facilities largely on the basis of bath temperature; the SLAC

data has a larger bias power, loop gain, and a more meaningful trend in the fits for ⌧ . The three-

pole fits results also indicated that regardless of how well the two-pole model fit the data, the three

pole model was always a better fit, and indicated that the additional block had a heat capacity

fraction of 20–30% that of the total system. This is likely the fin connector based on the fact that

measurements of the TES without fin connectors done at UCB indicate an excellent fit with a single

two-pole complex impedance. Future work will be directed towards characterizing the impact of the

fin connectors on TES response. This will also be discussed further in the next section.
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Figure 5.4: Fits to the complex impedance in admittance space (left) and the complex impedance
plane (right) for G115 at UCB (top) and SLAC (bottom). Note that the two-pole fit (dashed line) is
a better fit to the data for the SLAC data, where the base temperature was lower, but the three-pole
fit is needed to fit the UCB data. This is likely due to increased sensitivity to Tc variation given the
higher base temperature at UCB.
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Figure 5.5: Complex impedance parameters for G115 run at SLAC (left) and UCB (right) as a
function of bias power. The fully electro-thermal feedback regime should have constant bias power,
as seen at SLAC, and high loop gain. The solid lines are the 3 parameter fits while the dashed lines
are 2 parameter fits and the dot-dashed are time-domain 2 parameter fits. These measurements
show that, as long as we can operate low in the transition, our expectation of high loop gain and
� ⇠ 1 � 2. We also see the fits of ⌧ increase by a factor of ⇠2.5 (close to the BCS expectation) as
we bias lower in the transition.
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Sample Thickness (nm) Tc (mK) ⇢ (n⌦m)
Soudan iZIP ⇠40 80–120 130

SLAC Test Chip 40 40 48
TAMU Test Chip 30 60 72

Bulk Expectation (↵ Tungsten) [44, 61] - 15 26.5

Table 5.4: Comparison of resistivity expected for the design of CDMS HV compared to the resis-
tivities each fabrication facility is achieving based on test chips measured at SLAC. Note that the
reduced thickness at TAMU is associated with both an elevated Tc and resistivity, implying a larger
fraction of the film which is � tungsten.

5.1.4 TES Measurements Summary

Tables 5.2 and 5.3 summarize the TES characteristics measured from the range of prototypes tested

during this detector performance measurement campaign. Taken together, these measurements

suggest some non-trivial trends in both resistance and thermal conductance, but for the higher Tc

detectors we find that ⌃ is close to the nominal value used in the previous chapters to determine

the TES design. Looking at detector systematics, let’s play devil’s advocate to see how the ⌃

measurements might change if various assumptions are relaxed. If we are not in the infinite bath

limit, then Tc and bias power are artificially low. Both will result in an increase in ⌃. If we’ve

underestimated the tungsten volume in a given channel, however, we will have over-estimated ⌃.

These are the two main systematics that could be tweaked to bring measurements in line. Resistivity

would also be impacted by a comparison of true and expected TES thickness and linewidth.

So taking the measurements at face value, we find that the lower Tc detectors tend to have

upward trends in ⌃ as critical temperature falls, but this is tenuous at best. Dedicated studies

of G as a function of Tc and sensor geometry have been undertaken at SLAC and UCB by Sam

Watkins, coupled with noise and complex impedance measurements which improve on the techniques

shown here. These studies should provide a better handle on how the ⌃ parameter scales with film

properties. What does seem to be the case is that both fabrication facilities are producing higher

quality films than in the past, resulting in lower resistivity, which may partially account for the

higher values of ⌃ as Tc is reduced. This is backed up by the test samples for which ⇢ was directly

measured at SLAC, summarized in table 5.4.

In summary, in this section I reviewed measurements which put to rest one design concern (TES

transition sharpness) while highlighting many we hadn’t necessarily considered (Tc variation and

resistivity changes) as well as problems we did anticipate, that turned out to be just as challenging as

expected (parasitic power and bath temperature uncertainty). The measurements in this section help

justify further study with the small test devices being run at SLAC by the UCB group, which should

be used for a near-term CDMS-HV redesign. It is likely that the existing CDMS HV design will still

work given our good fortune with how the preproduction cables performed (in some respects), but

the fact remains that these measurements show that the optimized design is not the true optimum

I I I 
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for the films we’re producing. CDMS HV v2 will likely look substantially di↵erent than CDMS HV

v1 both due to these measurements as well as the measurements described later in this chapter.

5.2 Characterizing QET Noise

The measurements described in the previous section, coupled with the noise modeling theory pre-

sented in section 3.3, allow us to study detector noise in these prototype detectors to determine

whether we’re dominated by intrinsic TES noise (on which we based our detector optimizations) or

whether either bias circuit or environmental noise is substantially degrading performance. In this

section I summarize the initial noise studies performed at UMN, UCB, and SLAC and the lessons

learned from these initial tests. This will be presented somewhat historically, updating initial con-

clusions based on later findings but giving a sense for the thought process that went into our noise

characterizations.

5.2.1 G101c: First Studies at UMN

The first HV detector test, done with G101c, was focused on demonstrating initial performance of

the HV detectors was not limited by unforeseen complications. At the time, UMN was the only test

facility able to run 100 mm detectors, but was equipped with legacy hardware that meant we were

expected to be limited by both electrothermal oscillation and warm electronics noise. It nevertheless

provided a testbed for early characterization of HV detector QETs and warned of fabrication and

readout considerations taken into account for later detectors. The resistance measurements and

bias power for this detector was already discussed in the previous section. What was new for this

detector was the systematic study of detector noise where the detector was the dominant source of

this noise.

Fits to the noise for one channel of G101c can be seen in figure 5.6. The fitting procedure

used the previously determined parasitic resistance (and the estimated temperature of the shunt

and parasitics) to fit the inductance to the PSD, and used the low and high frequency discrepancy

between the expect and observed noise to fit the components of the SQUID noise. The SQUID noise

was then refined based on the normal noise. Note that in both cases the passive voltage noise is just

modified by the TES resistance, and both poles are well fit by this inductance.

We then move to the transition noise. We can determine an estimate of the bias resistance from

IbIs and the DC component of the complex impedance, but for this detector we didn’t do complex

impedance fitting, so we weren’t able to simply predict the noise. Based on our assumptions for the

thermal conductance, we can estimate ↵ and � in order to fit the electro-thermal oscillation peak,

as shown in the figure. The first thing we notice is that, as expected, passive noise dominated the

noise budget of this detector, but the oscillation peak is fairly well modeled by this set of parameters

with transition values fairly in line with what was shown in the previous section. We noted at the
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Figure 5.6: Fits of UMN noise in the superconducting state (top), normal state (middle), and
transition state (bottom). Each plot adds a noise source, allowing for each noise source to be fit
quasi-independently (only one or two noise parameters at each step). Note the peak characteristic
of electrothermal oscillation; the central frequency of this peak is useful to determine the inductance
in the TES bias loop.
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Figure 5.7: Left: Regions of TES stability as a function of operating resistance and loop gain for
fixed � = 0.2 and an inductance of 400 nH. Right: TES falltimes and electro-thermal oscillation
frequency as a function of R0 for the same � and inductance, and a fixed L.

time, as I will now, that the low-frequency noise seems to rise, which was not expected, and this is

a feature we’ve since observed in other test facilities. We’ll revisit it shortly but it’s worth noting

that it was also present at UMN.

The confusing behavior we saw at UMN was that electro-thermal oscillation began to appear

midway through the transition, but would disappear if the TES was biased low enough in the

transition. In order to understand why this was the case, we need to remember that the condition

for electro-thermal oscillation depends on all TES parameters including L and �, as illustrated in

figure 5.7, and that the disappearance of the oscillation could also be thought of as the oscillation

moving outside of the frequency of interest or being sub-dominant to other noise features. If we take

into account the fact that L and � are a function of R0, we can draw di↵erent lines through the

parameter space of Figure 5.7 which would see oscillation appear, grow stronger, and then recede as

the bias is lowered. It doesn’t entirely go away, but the frequency shifts enough that it’s functionally

absent, and the amplitude should correspondingly decrease.

Due to these oscillations and the large amount of passive voltage noise, there wasn’t much more

we can learn from G101c (or S101) at UMN from a noise standpoint. In addition, both detectors

had higher Tc targets, as shown in the table, due to the UMN fridge being limited to operating at

35–40 mK base temperatures, so we did not expect stellar performance from these detectors from

a resolution standpoint. What was interesting was how the noise changed with bias; this will be

discussed further in section 5.4.

5.2.2 G115 at SLAC and UCB

In parallel with the CDMS HV work at UMN, a 3 inch diameter 4 mm thick one-sided detector

was developed by Matt Pyle and Suhas Ganjam at UCB using the SNOLAB QET design but with
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Figure 5.8: Top: Full image of G115 design with the same color scheme as the HV mask (aluminum
is blue, tungsten is black, amorphous Si is green). There are four channels, with the inner 3 channels
taking up 75% of the detector area and the outer channel plus the outer 2 mm guard ring taking
up the last 25% of the area. Bottom: Zoom-in on the central region showing the parquet pattern in
more detail and that the QETs and wiring are the same as for the CDMS HV mask. Phonon losses
due to the the W-only grid are minimized by its small fill factor (6%), reduced thickness and no Al.
The other side has just the parquet pattern done with all three layers, again with a 6% fill factor,
but the grid includes aluminum and so is an appreciable phonon sink.
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Figure 5.9: Comparing G115 noise for the UCB data taken with the FEBs (left) to the SLAC data
taken with the DCRC D.0 before any on-board modifications were made. The superconducting noise
at UCB was much higher due to the larger shunts at high temperature and the larger parasitics.
The SLAC noise is about what was expected qualitatively - the TES dominates the noise - but there
are many features that are not what they should be, including forests of lines, the low-frequency
rise, and a hump in the kHz region. For the lowest bias, point, which is ⇠20 m⌦, we see noise that
is clearly TES dominated and finally flat.

channels which were ⇠ 2.3 times smaller (Rn ⇠ 0.35⌦, NTES ⇠ 700) and a parquet pattern in

between the QETs (see figure 5.8). It was a four-channel device with three central channels and an

outer ring similar to the phonon channel layout for the Soudan iZIP detectors. A smaller design was

chosen in order to focus on QET performance, and it allowed us to test theories we had developed

early on about the role of muons and high energy gamma backgrounds on high voltage noise and

e�ciency in a detector with a di↵erent form factor. This is discussed in more detail in Section 5.4.

The measured noise at UCB and the first run at SLAC is shown in figure 5.9. The good news was

that the superconducting and normal noise were both lower than that seen at UCB in the regions

consistent with voltage noise. The bad news was that obviously there is a forest of lines, a lot of

low frequency noise not seen at UCB, and a high frequency hump. In addition, we can’t fit the

UCB noise in a way that’s consistent with the G measurement derived from the bias power. That’s

alright in light of the fact that we have low loop gain, and we’re near the bath temperature, at UCB,

whereas at SLAC the sources of additional noise need to be understood and reduced.

5.2.3 Diagnosing Readout Noise

Here I take a quick diversion from discussion detector properties to diagnosing noise seen in the

PSDs at SLAC in order to explain how the DCRC readout was improved as well as how new noise

sources can be traced to di↵erent parts of the circuit. This exercise helped isolate potential areas

noise sources could originate and helped us determine where our dominant noise sources are at

SLAC.
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Figure 5.10: EMI measured in the SLAC Building 33 clean room with a 16 turn 100 ft length
coil attached to a signal analyzer with the light on (o↵) shown on the left (right). We see both a
low-frequency noise drop as well as a large 40 kHz line largely disappear.

The first noise feature we noticed at SLAC even with the DCRC powered o↵ was a very strong

time-correlated EMI noise all over the board, and very strong at the SQUID pre-amplifier input.

We decided to grab some spare wire from the electronics shop, made a 16 loop coil out of 100 feet

of wire, and plugged it into a signal analyzer to measure the EMI environment in the lab. Moving

the cart around showed that though the features were consistent, they were stronger near the lights.

Figure 5.10 shows the EMI measurement with the lights on and o↵, showing the huge EMI reduction

from having the lights o↵. The features can be attributed to the ballasts of the fluorescent bulbs,

which run nominally in the kHz region to obtain higher energy e�ciency. The low frequency was

attributed to 60Hz and harmonics from the ballast wiring.

You can see that even though all of the lights in the lab are o↵, the 40 kHz feature is still seen

due to lights elsewhere in the building, leading us to believe that the ground wiring was acting as

an antenna for this EMI. We also could never get the remaining features to disappear regardless

of what we turned on or o↵ in the lab. We tried both the floating and grounded outer connector,

with the other connector floating, and found that we did get better noise with grounding, which is

what is shown in the figure. Remaining sources of noise were either the few pieces of equipment we

couldn’t turn o↵ or sources from outside the clean room. The features we found did correlate fairly

well with PSD features, so this suggests repeating these measurements as we install new equipment

will help us diagnose EMI at SNOLAB.

After this point we always ran with as much equipment o↵ as possible, and moved on to char-

acterizing intrinsic readout noise. Here we’ll pause for some preliminaries about SQUIDs to help

di↵erentiate some terminology (see also refs [46, 50] and refs therein). Consider a SQUID as a black

box, where there are two inputs and one output. One input is the TES input coil, one is the feedback

input coil. The output is simultaneously used to determine the SQUID signal and introduce the

SQUID bias current, so it’s almost an unintentional third input. Let’s ignore that for a second.
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Considering the inputs, each has a mutual inductance with the SQUID such that the flux can be

written

�i = MiIin (5.45)

and the SQUID is a device that turns magnetic flux into voltage. Given that there is some function

for the SQUID (roughly looking like a sinusoid) that relates output voltage to flux, we can thus say

that the SQUID voltage is

Vsq = V (MiIi) (5.46)

and we can thus calculate the SQUID responsivity

Zsq =
dVsq

dIi
⇡ dVsq

d�

d�

dIi
= Mi

dVsq

d�
(5.47)

which has units of Ohms. This also tells us that the responsivity for the feedback coil is just a

constant factor of the mutual inductance times the responsivity of the input coil:

Zsq,fb =
Mfb

Min

Zsq,in (5.48)

which means as long as we measure the V (�) curve for the SQUID with one coil, and we know

the mutual inductance ratios, we can model the whole system fairly well. The first step of tuning

SQUIDs is thus to measure the V (�) curve, and find the point in the curve with the largest slope

with the correct sign (so that feedback is stable) and adjust the SQUID feedback o↵set to sit at that

voltage point. The sign of the slope is also important, but the closed-loop feedback will choose the

slope based on the polarity of the feedback circuit (it can be positive or negative).

The slope we choose does make a significant di↵erence for the noise performance; here we bring

the the third input/output line into our analysis. If I apply no current to the SQUID, there’s no

voltage for the flux to modulate, so obviously the bias I apply is important. In addition, I can

measure the SQUID V (Ibias) curve. During SQUID tuning, we normally observe the V (�) curve as

Ibias changes, and the best SQUID point is an optimization of both these parameters. This does

imply, however, that the SQUID acts both as a transimpedance amplifier and as a resistor, so we’re

sensitive to the SQUID dynamic impedance

Rsq =
dVsq

dIbias
(5.49)

at the chosen operating point. This is important because if there is some current noise on the SQUID

bias line, then we have the SQUID voltage noise

NI,sq =
NV,SQ

ZSQ

=
NV,ISQ0 +NI,biasRsq

ZSQ

(5.50)
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Here I’ve assumed that SQUID noise is intrinsically a voltage noise which could either be driven

by flux noise or Johnson noise across the Josephson junctions. For our purposes it doesn’t really

matter. We can see that our optimal noise performance will be for the largest SQUID responsivity

and the smaller SQUID dynamic impedance. This is demonstrated for G115 data taken at SLAC

along with SQUID characterization done in a following run in figure 5.11.

Assuming we have our SQUIDs optimally configured, we can start looking at the readout circuit,

which is a fairly general closed-loop SQUID readout; figure 5.12 shows the DCRC D.0 phonon

readout circuit. There are two programmable gain amplifiers in this circuit which will help us try

to diagnose the dominant sources of noise in this circuit, and a switch to allow us to look at open

loop (no feedback) noise performance to further isolate di↵erent components.

The first thing to consider is whether the closed loop is truly closed by looking at the transfer

function to see what the frequency dependence looks like. We know that the transfer function at

low enough frequency (let’s say 10 kHz) is white, with the form[46]

H = Rf

MTES

MFB


1 +

Rf

G

MTES

MFB

��1

(5.51)

where the open-loop current to voltage gain G is

G = ZsqALNAAPFA,FB (5.52)

where Zsq is the SQUID responsivity, and the A terms are the gain for the Low Noise pre-Amplifier

(LNA) and closed-loop feedback Programmable Gain Amplifier (PGA).

For the minimum gain of 100 from the LNA, with the PGA at 1 and a SQUID responsivity of

100 Ohms, we find that for us to be approximately at infinite gain, we need

Rfb <<
MFB

MTES

ZsqALNAAFB ⇠ 8 k⌦ (5.53)

Which tells us that for low PGA settings, the 5k resistor is allowing us to operate in an infinite gain

limit. When we set the FB gain to 2, we get closer though by no means are we in a strong feedback

limit. This suggested trying di↵erent feedback resistors below this limit to see how it impacted the

noise performance. The result was that we achieved the closed-loop limit with less gain but reduced

the bandwidth of the feedback circuit due to the maximum slew-rate of the PGA. This was a longer

study that I’ll leave out the details of, but su�ce it to say that varying the feedback resistor was

not helpful.

Assuming then that we’re in the infinite gain limit, we can write the TES referenced current

noise as follows:

N2
ITES,out

= N2
ITES,in

+N2
ISQ

+N2
IDCRC

= N2
ITES,in

+N2
ISQ

+
N2

V DCRC

Z2
SQ,TES

(5.54)
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Figure 5.11: Top: Noise PSDs for di↵erent SQUID slopes when we accidentally flipped the polarity
of the SQUID feedback circuit. The increased noise is due to current noise on the SQUID bias
line which is amplified by the increased dynamic resistance. The ‘NS’ in the caption refers to no
RF source present; this was supposed to be a source on/o↵ test. Middle: Modulation curve for a
SNOLAB SQUID measured for the SLAC setup including the responsivity and dynamic resistance
measurements as a function of feedback coil current (input flux). We can see that responsivity is
symmetric but dynamic resistance is not, so we want to bias on the positive responsivity slope where
dynamic resistance is low. Bottom: Two-dimensional bias versus flux measurements for a SNOLAB
SQUID showing that the low dynamic resistance region corresponds to a responsivity region that
lines along a constant input flux. This produces better noise response and less susceptibility to input
bias variation, for a stabler SQUID feedback circuit.
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Figure 5.12: DCRC Rev D.0 SQUID and TES bias circuit schematic, used to construct the noise
model discussed in this section.

where NITES,in is the intrinsic TES current noise, NISQ is the SQUID noise, and NV DRC is all of

the DCRC voltage noise referenced to the squid output. We can further decompose DCRC voltage

noise by its location in the feedback circuit:

N2
V,DCRC

= N2
LNA

+
N2

FBPGA

A2
LNA

+
N2

RFB

A2
LNA

A2
FBPGA

(5.55)

We can put this all together by referencing ADC input noise (including the PGA and ADC) to TES

current noise, for an e↵ective current noise

N2
ITES,tot

= N2
ITES,out

+
N2

V AMP

R2
f

M
2
TES

M
2
FB

(5.56)

where we separate the noise into pre and post PGA noise:

N2
V AMP

= N2
V AMPPGA

+
N2

V AMPADC

A2
AMPPGA

(5.57)
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Chaining this all together gives the following expression for the measured current noise at the DAQ:

N2
ITES,DAQ

= N2
ITES,in

+N2
ISQ

+
N2

LNA
+ N

2
FBPGA

A
2
LNA

+ N
2
RFB

A
2
LNAA

2
FBPGA

Z2
SQ,TES

(5.58)

+
N2

V AMPPGA
+ N

2
V AMPADC

A
2
AMPPGA

R2
f

M
2
TES

M
2
FB

(5.59)

= N2
ITES,in

+N2
ISQ

+
1

Z2
SQ,TES


N2

LNA
+

N2
FBPGA

A2
LNA

�
(5.60)

+
N2

RFB

Z2
SQ,TES

A2
LNA

A2
FBPGA

+
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V AMPPGA
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f
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TES
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FB

+
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f

M
2
TES

M
2
FB

(5.61)

= N2
ITES,in

+N
02
ISQ

+
N2

RFB

Z2
SQ,TES

A2
LNA

A2
FBPGA

(5.62)

+
N2

V AMPPGA

R2
f

M
2
TES

M
2
FB

+
N2

V AMPADC

A2
AMPPGA

R2
f

M
2
TES

M
2
FB

(5.63)

where I have re-arranged noise terms to suggest a way to diagnose which is the leading source of

noise. We can vary both PGA gains, the feedback and SQUID resistances, the current noise on

the TES, and toggle open and closed feedback and thus manipulate each of these noise sources

independently.

We subsequently performed the following tests, with the results summarized below:

1. Vary driver gain, fixing all other terms, for highest usable feedback PGA gain. No noise change

is observed, so NV AMP,ADC is sub-dominant

2. Reduce feedback resistor, fixing all other terms, for highest usable feedback PGA gain. Chang-

ing this also brings us closer to the infinite gain case. Only change seen is worse noise perfor-

mance at high frequency, so changing feedback resistor is not helpful as we lose high-frequency

noise performance.

3. Noise does not appreciably change as we adjust the feedback gain beyond 1, so we can as-

sume the noise there is also sub-dominant, once we’re appreciably in the infinite gain limit.

Changing the feedback resistors did increase closed-loop gain but also reduced the feedback

loop bandwidth, which reduced the overall performance of the feedback circuit.

4. Can see noise change at high frequency above some pole when bias condition is changed,

suggesting that above a cuto↵ frequency we really are dominated by TES noise, but not as

much as we should be.

5. The noise floor below 100 kHz seems to be unchanged by most of these tests; leads to open-loop

tests which suggest that SQUID noise (or noise at the input of the LNA) is dominant.
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Figure 5.13: Left: Impact of filtering SQUID lock-point amplifier power supply. Right: impact of
removing the zap switch, which coupled power line noise into the signal.

The observed SQUID noise is higher than expected, and the observed noise is dependent on the

responsivity of the SQUID. With the SQUID disabled, we still see troubling low-frequency and

mid-frequency noise trends.

We thus determined that most of the large noise features were coming in on the DCRC before

the LNA input, and Tsuguo was able to diagnose these noise sources by attaching resistors in place

of the SQUID at room temperature, with the results shown in figure 5.13. We had current noise

leaking onto the SQUID through the SQUID zap switch power supply, which was fixed by adding

power line filtering. We also had voltage noise coming in from the amplifier for the SQUID lock-point

o↵set, which was also solved with additional filtering. The resulting noise from G115 after these

modifications were made can be seen in figure 5.14.

We can draw a large number of conclusions from the plots using the modified DCRCs. We see

that the DCRCs exceed the noise measured with a custom analog amplifier, suggesting that there

may still be room for improvement in the DCRC, but we note that both D1 and D0 are capable of

meeting spec with these modifications. We can also see that D1 has fewer low-frequency noise lines

than D0 due to some shielding improvements, as well as a lower bandwidth due to the addition of

filtering in the feedback loop. This is largely above the bandwidth of our signal, though we’d like to

see as much of the TES rise as possible, so we should be careful to get the bandwidth up to around

500 kHz. More work is needed to solve some of the oscillation problems we’ve seen when trying to

improve the high bandwidth performance of the DCRC.

After these modifications, the ‘dIdV’ coupled noise (voltage noise on the TES bias line) became

the focus of our investigations, as can be seen in the top right and bottom left panels of figure 5.14.

We see that there is a voltage coupled noise which moves with the TES bias point in the normal and
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Figure 5.14: G115 Noise for various readout and TES bias conditions at SLAC from Run 26 in the
BlueFors. Top: Normal noise for DCRC compared to the analog SQUID amplifier (left) and for
the pulse tube on/o↵ (right). We see that both D0 and D1 have an acceptable noise floor after the
modifications, but that they’re still DCRC limited given that we can achieve better noise with other
electronics. They meet the spec we set for SNOLAB. See text for more details. Bottom: noise in
the superconducting, normal, and transition states for G115 (left) as well as Caleb’s noise model
fit (right) showing that we do achieve TES-limited noise above 1 kHz. This also demonstrates that
there is remaining noise both down the TES bias line as well as excess power noise on the TES.
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superconducting states largely driven by the pulse tube, suggesting either EMI from the controller or

some vibrational coupling to the wiring. We also see though that in transition, the dominant noise

we have is a low-frequency noise which is demonstrably not a result of either small pulses leaking

through our cuts (it does not have the right high frequency pole) and is not residual muon tails.

We’ll explore this more in the next section with G124, which was much more sensitive to both noise

sources.

These studies suggest some design principles for CDMS electronics going forward, and possible

improvements for the existing electronics for SNOLAB:

• Every input or output to the SQUID and TES should be as filtered as possible to reduce power

line noise coupling into the SQUID loop. In the future, moving the pre-amp inside the fridge

would mitigate a lot of the issues we’re seeing.

• Any switches which don’t need to be high speed should be made electromechanical to eliminate

the possibility of capacitive coupling.

• We should always opt for LED lights run (if possible) from a DC supply. Any high-frequency

supplies will be large EMI sources.

• A di↵erential D.0 board was tested but ultimately a single-ended design was selected. If a lower

noise di↵erential amplifier was found that would vastly reduce our susceptibility to on-board

EMI and ground loops.

These are just based on the DCRC and SQUID noise tests, and do not include lessons learned from

TES transition noise, which at this point in the chapter we haven’t dug into in detail. We’ll draw a

few more conclusions about readout noise from the next chapter.

5.2.4 G124 at SLAC: Beating Down the Noise

After these noise studies, we moved on to further characterizations of G124 at SLAC with the

goal of validating the noise model for the SNOLAB HV detectors given that G115 seemed to have

anomalously high, correlated power noise (as shown in figure 5.14, the measured noise is higher than

the model across the entire frequency range). For these data from Run 33-35, the DCRC has been

modified, so the normal and superconducting noises are about what we expect though there are lines

due to EMI pickup and a slow rise at low frequency from residual (but mostly uncorrelated) DCRC

noise. These PSDs are shown in figure 5.15.

Measurements of transition noise in G124, however, show another host of problems, some still

in the readout but most related to external noise sources coupling to the detector inside the fridge.

These noise sources are summarized in figure 5.16. The largest problem which is immediately

noticeable by eye in the traces is due to telegraph noise, which is RF EMI from the DCRC during

readout of trace data which is aliased to lower frequency due both to temporal variation and the



CHAPTER 5. PROTOTYPE DETECTOR PERFORMANCE 203

Figure 5.15: PSDs for G124 side 2 (Rn ⇠ 50 m⌦) for the normal (left) and superconducting (right)
states. We can see that most of the lines scale with resistance, meaning they’re due to EMI pickup
on the bias line and are predominantly on the TES side, although the lines seem to scale faster than
the white noise. We can note now that there’s still a small low-frequency rise below 1 kHz, but it’s
much less distinct than before the DCRC modifications.

burst-like nature of the additional RF noise it generates. This problem is in itself a significant issue

for our readout scheme and required us to artificially slow the DCRC during acquisition so that we

don’t read out traces while the DCRC is transmitting data. This was the subject of a ton of work

by the UCB group on the UCB fridge and calls for fitting all of the fridge wiring access points with

RF Pi filters, which will be done for SNOLAB. The UCB group showed that when properly RF

shielded, this noise goes away, but despite multiple attempts the Vacuum Interface Board (VIB)

which brings signals into the fridge still allows this noise in at SLAC. This was the subject of RF

surveys done by Caleb in runs 35-37, the results of which are still in process.

With the trigger rate suppressed, we can probe the telegraph-free noise as shown in the remaining

panels of figure 5.16. The remaining major noise sources are the turbo maintenance signal (which

is EMI coupled dIdV noise that also contributes bias power) and pulse tube noise which seems

primarily vibrational. The turbo noise consists of a 1.6 kHz narrow peak that turns on and o↵

periodically to control the turbo. It’s seen in the normal and superconducting state as well, and

scales with the TES resistance, so we can conclude that the noise is primarily a current noise down

the TES bias line. It can be seen in figure 5.16 for a time period where it was on for all traces rather

than being average out or removed by quality cuts during a small period of time when the pulse

tube was o↵, so we can see that whenever this noise source is present we have a large degradation

in resolution.

The pulse tube on turbo o↵ data shown in figure 5.16 is very telling, as the turbo line disappears

but not the low-frequency noise. Turning the pulse tube o↵ as well allow the noise to become largely

flat down to 100 Hz, demonstrating that the cause of this noise is very likely the pulse tube. The fact

that this feature only shows up in the transition state implies it’s a power noise, which means it’s
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Figure 5.16: Transition noise for di↵erent operating conditions. Top left: Telegraph noise on G147,
G124 not shown because the telegraph noise was bad enough to drive all of the PSDs o↵-scale. Top
Right: transition PSD with pulse tube o↵ but turbo on during a period of high turbo EMI. Bottom
Left: PSD for pulse tube on, turbo o↵, showing a reduction in kHz-frequency noise but all of the
same low-frequency noise. Bottom Right: PSDs for turbo and pulse tube o↵; PSDs are largely flat
down to 100 Hz. Two channels are disconnected, so here you can also see the e↵ective DCRC input
noise which has a low-frequency increase due to pre-amp input noise. See text for more details.
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most likely vibrationally coupled to the detector. This data motivated a larger study of vibrations

from the pulse tube into the cryostat by To Chin Yu, using various vibration damping techniques.

To understand how vibrational noise can coupling nonlinearly into the detector, consider the

vibrational velocity ansatz

v(t) ⇡
1X

i=�1
cos(!(t� T i)) exp(�(t� T i)/⌧)⇥(t� T i) (5.64)

This is a driven damped oscillation with characteristic frequency !, damping decay time constant

⌧ , and periodicity T . Two example cases of this model are shown in figure 5.17 for di↵erent decay

constants. The basic idea is that vibrational power couples into the detector either through voltage

noise, which we’ll see in all bias states, or through friction.

For the frictional case, we can use a simple kinetic friction model

F = µFn � µmdetg (5.65)

where the inequality depends on how tightly held the detector is; increasing the clamp tension will

also increase the frictional force and thus vibration coupling. The energy dissipation is thus

P =
dE

dt
=

d

dt
|F ⇤ x| = F |v| (5.66)

Here we get an absolute value because power will never be negative. This is a very non-linear transfer

function, which means we’ll alias and frequency shift much of the vibrational power. This is what

is illustrated in the bottom panels of figure 5.17. We have begun a program of vibration studies to

try to measure the vibration velocity spectrum for comparison to the detector noise and determine

whether we can use this model to help mitigate or reduce the noise. We do notice that the amount

of vibrational noise seen does depend both on detector mass and mounting scheme so we expect

there is a lot we can do to reduce vibrational coupling to the detectors.

A final note on noise studies of G124 comes from looking at the coherence, a statistic described

in the signal processing appendix which essentially measures the causal linkage between two signals

in the frequency domain. We find that for the large samples of G124 noise, the vast majority of

the noise is highly correlated below 1 kHz, around 60-80% or more for almost all channels. This

precludes most mechanisms which are unrelated to the detector crystal given that opposite sides are

separated on the readout cabling and run from two di↵erent DCRCs, and supports the conclusion

that this low-frequency noise is vibrational.

As described in the next section, we can use this coherence to perform a degree of noise correction

when the correlated and uncorrelated noises are comparable in size, as shown in figure 5.18. When

we do this correction we can see that the corrected noise resembles the noise we see with the turbo

and pulse tube o↵, suggesting that these correlations are in fact the noises we’ve identified. This
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Figure 5.17: A simple vibrational noise model based on the ansantz equation 5.64. Both columns
use an oscillation frequency of 1.6 kHz and period of 0.25 seconds, the left column uses a 10 ms
decay right and the right column a 1 second decay time. The top row shows the pure signal, the
middle shows the signal with noise and the rectified signal with noise, and the bottom shows PSDs
for these two signals. We see that both have similar low-frequency noise, but the longer decay time
allows for much stronger high-frequency noise.
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Figure 5.18: Coherence of channel PFS2 with the other 11 channels on each side of the detector,
showing that the correlation is higher on the same side than the adjacent side but is always at
least 60% correlated. This suggests a crystal-driven noise source. On the right we see two channels
corrected for correlated noise according to the methods in the next section. See text for more details.

is both a promising way of dealing with correlated noise as well as a hopeful sign that these noise

sources can be controlled to get to our ideal TES-limited noise level. It also motivated more advanced

OF techniques detailed in the appendix as well as in the next section that can use multi-channel

information to exceed the projected noise performance given a joint-channel signal model.
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The main comparisons we made were between volume, mass, and surface area dominated noise

sources. Imagine an extra power noise is found in a detector. We can think of a few possible sources

and posit tests to rule each out:

• RF in the fridge - This should scale (as a power) with absorbing area for a detector in the same

RF environment, which for Si should just depend on the overall absorption cross-section on the

detector face. One suggestion for why G115 had such worse power noise than other detectors

was because it had a parquet grid on one side and in the negative space between QETs on the

other side, meaning any incident RF on the face would be absorbed as current. Since it is very

high in frequency, it will just be aliased in the TES current noise as an additional flat power

noise. Similar trends were also seen with larger test chips that had high cross-sectional areas

for the same resistance.

• Vibrations - this should scale with mass and volume. If the clamps have the same amount of

torque, then the Si detectors should have less vibrational noise than the Ge, assuming both

surfaces have similar surface roughness (which should be roughly the case). Detectors which

are rigidly connected to the fridge (i.e. those that are attached to the MC directly via glue or

mechanical clamp) should not show this power noise, although it may be hard to di↵erentiate

between sinking the thermal signal (which would also ruin the collection e�ciency) and true

reduction in vibrational coupling

• Thermal Noise from Muons or Gammas - one theory that has yet to be fully tested was that

much of this noise may be due to residual charge generated by muons or gammas in the

detector bulk. The idea is that since we have long carrier lifetimes, then the carriers should

spontaneously re-combine or trap on impurities with some characteristic decay time for them

to re-emit that energy which is relatively independent of the energy of the initial event. This

means that detectors may have residual power noise proportional to the input power integrated

from all sources (including muons, gammas, etc). So for the same lab environment, the smaller

the cross-section of the detector, the less of an e↵ect this should have (less power in and less

power out). For sensors of the same volume and Tc, we should then see the power noise decrease

with crystal volume, and the power noise should be reduced for deeper or better shielded sites

for the same detector.

This is not a complete list of things that could be tested but it does capture the main points

we’re in the process of investigating. As the CUTE, NEXUS, and UCB test facilities come online as

well as SLAC and Stanford, the variety of test conditions and detectors should combine to allow us

to separate out these e↵ects. That will depend on having very consistent readout electronics (with

no additional parasitic power) and a consistently low base temperature to ensure that any e↵ects

we’re seeing are not due to base temperature drifts or electronics noise described previously.
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5.3 Phonon Energy Resolution

In appendix E, I show that the energy resolution depends on the detector power noise and energy

e�ciency:

�2 =


4✏2
Z 1

0

s̃2(f)

J(f)
df

��1

(5.67)

where s̃ is the signal template normalized to 1 (I’ve explicitly separated out the e�ciency ✏). Because

the HV detectors have so much position dependence, however, it’s hard to simply use a calibration

source to determine resolution, so for simplicity we separated the resolution measurement into two

components: measuring first e�ciency, and then using the templates for pulses used to measure

e�ciency to estimate baseline resolution using measured noise.

5.3.1 Measuring QET E�ciency

We determine QET e�ciency using known calibration sources, and matching the integrated pulse

spectra (or optimal filter spectra) to known energies from our sources. The equations for determining

absorbed QET energy are derived in appendix D both for the Tb = 0 limit as well as the finite bath

temperature of small L limit, and given again here for simplicity. In the Tb = 0 limit, we use the

equation

Eabs ⇡ �
Z 1

�1
�PJ(t)dt ⇡

Z 1

0

✓
2

Rp +Rsh

Rp +Rsh +RTES,0
� 1

◆
IbRsh�ITES + 2(Rp +Rsh)(�ITES)

2

�
dt

(5.68)

and for the finite bath power limit, we find the second-order expansion

Eabs ⇡
Z 1

0

✓
2

Rp +Rsh

Rp +Rsh +RTES,0
� 1� 1

L

◆
IbRsh�ITES (5.69)

+

✓
2(Rp +Rsh) +

Rsh �Rp �R0

L

◆
(�ITES)

2

�
dt (5.70)

which reduces to the first equation in the limit L ! 1. These are exact only in the small signal

limit, which is approximately the limit

����
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IbRsh�ITES
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2 (5.71)
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Figure 5.19: Attenuation length for a photon of known energy in Si (left) and Ge (right) compared
to the nominal thickness of the SNOLAB detector crystals. Also shown are lines from sources which
span the shown ranges, indicating which sources are capable of penetrating a significant distance
into the detector bulk. Figures courtesy Paul Brink.

The second term here is the minimum stable TES voltage bias operating point, so what this tells

us is that the closer the TES is to its minimum stable point, the less linear the integral response

will be. This is obviously good justification for minimizing both Rsh and Rp as we’ve done for the

SNOLAB design as well as keeping the operating resistance of the TES at a higher bias than the

minimum; it motivates a further study of optimal bias points in a detector of given Tc and bias loop

properties.

Assuming that the quadratic correction expands the dynamic range su�ciently, the other part

of the e�ciency measurement we need to consider is the source to use, which is also complicated by

our energy scale. We’re trying to measure the baseline energy resolution of a 10 eV device, but the

attenuation length of any photon less than ⇠60 keV in Si (⇠120 keV in Ge) is much shorter than the

thickness of the crystal, so these events are very localized (see figure 5.19). If we use sources with

energies far below these, nearer the expected threshold, we’re bound to see surface events which will

not be characteristic of the typical events we’d like to be sensitive to. This leaves us with a few

options, some of which have been tried, and some of which are planned:

• Laser (Photon) Calibration: We can either use LEDs or a fiber-coupled laser to pump small

energy deposits into the detector at known times and with relatively well-known total power.

These are all surface events, however, and the actual power reached in the detector is system-

atically limited unless we can directly measure the number of photons either with electron-hole

pairs or via some other method.

• Gamma Source Absorption: Am-241, which has lines at 3-60 keV, and Fe-55 with lines at

⇠6 keV, are high enough in energy to penetrate into the Ge or Si detectors but low enough
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that they’re not massively saturating the QETs. They are still very clearly in a non-linear

regime even using the quadratic corrections, which means local saturation is a problem. This

is show in section 5.3.4.

• Compton Scatters: There are many features in the Compton spectrum; for example, a 60 keV

photon can produce a continuum of energies below 11 keV, and at very low energy well-defined

steps can be seen in the spectrum and used for calibration. This requires a lot of statistics

(more than can reasonably done for a short run with a test detector) or generally a very hot

source, which will heavily saturate the detector. In addition, the relative fraction of photons

which escape the crystal after a Compton event is much smaller for large detectors, so this is

an ine�cient way to do this for our large SNOLAB crystals. If resolution is good enough to

resolve electron-hole pairs, this could be a very clean low-energy calibration.

• Activation Lines: We can activate Ge with Ge-71 which produces a series of well-defined

calibration lines in the detector with energies of 140 eV, 1 keV, 10 keV, and higher. This

is, however, not an option in Si, but should be su�cient for Ge if we can get high enough

statistics, which we were able to do for CDMSlite. It does, however, require us to radioactively

contaminate our detectors, so it’s not something we can do often, certainly not during the run.

• Neutron Calibrations: Using a monoenergetic neutron beam, or a beam of known and tunable

energy profile, should allow us to use simulations along with the measured spectrum to infer

an e�ciency. This is not as easy or necessarily as clean as using a well-defined line, but it may

be our only option for Si HV.

In the rest of this chapter we’ll focus on the first two cases, and mention the prospect of using

Am-241 Compton recoils in the small HVeV detectors. This is certainly not a solved problem and

will be one of our main challenges at SNOLAB.

5.3.2 QET Saturation

The equations above are still limited by the approximation used for bath power, as we also expect

local QET saturation to have a dominant e↵ect on our pulses. To get a sense of the energy scale of

saturation, we just need to find the heat necessary to drive the TES normal. Given the specific heat

cW of tungsten around 1K, we find that the heat capacity of a TES of volume VTES is

C = cWVTESTc (5.75)

We can define a bias to normal temperature width of �TN which drives the TES normal:

�R = Rn �R0 ⇡ ↵R0
�TN

Tc

! �TN ⇡ Tc

↵

�R

R0
=

Tc

↵


Rn

R0
� 1

�
(5.76)
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This gives us a saturation energy of

Esat = cWVTESTc�TN ⇡ cWVTES

T 2
c

↵


Rn

R0
� 1

�
(5.77)

This is an important relation to take note of as we go to lower resistance and lower Tc; we achieve

lower energy resolution but also smaller dynamic range. In addition, the sharper the transition, the

lower the saturation energy. Taking the design values for the SNOLAB detectors, we can calculate

the expected saturation energy.

Esat ⇡ 108 ⇤ (1800) ⇤ 1.92 ⇤ 10�17 ⇤ 0.0452

150
[3� 1] = 10�16J ⇡ 630 eV (5.78)

This is assuming energy is uniformly distributed across the entire TES channel. If, as in the case

of HV operation or thin detectors, energy is location in some fraction f of the channel, we find the

saturation point is much lower by simply multiplying by that fraction. As we’ll see in this chapter,

this is a much lower energy than we observe in our full-scale detectors (they’re capable of reading out

60 keV without being fully saturated) but it gives us an order of magnitude estimate of the energy

scale. We will see that these 60 keV events are well outside of the linear regime of our detectors.

5.3.3 CDMS-HV Prototypes at UMN

As mentioned earlier, two CDMS HV prototypes were tested at UMN. The first detector was G101c,

which was also the first CDMS HV prototype tested. I showed in an earlier section that the noise was

entirely limited by the readout electronics, so we’re not concerned necessarily with showing whether

the resolution is good; the electrothermal oscillations will also severely degrade resolution. Both

G101c and S101 were also higher Tc devices, so it should be easier to measure phonon collection

e�ciency due to their higher TES heat capacity even though they would have a degraded resolution.

Given that the phonon dynamics have nothing to do with the detector Tc, the e�ciency and fall

time measurements can be used to validate our resolution projections for lower Tc devices aside from

the assumptions we make about noise scaling.

A selection of results from these two detectors can be seen in figure 5.20. Both detectors show

the expected phonon collection times, and are consistent with e�ciency at or slightly above the 15%

expectation. We also see that e↵ectively e�ciency decreases as a function of total phonon energy,

as expected both from non-linearity and local saturation e↵ects. The figure also illustrates why it is

hard to use integral quantities to estimate detector resolution. The resolution of G101c is likely close

to 100–200 eV, while the 1.5 keV line indicates something closer to 0.5 keV. This is likely due to

uncorrected position dependence, and could be improved on by use of new OF techniques. This has

since been done, and shows some of the expected improvement. The upshot is that there is still a

large uncertainty on what the actual e�ciency will be for low-Tc detectors in a position independent
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Figure 5.20: Various test results for G101c (top) and S101 (bottom) at UMN. The major results
were that the phonon fall-times match those predicted for the Si and Ge CDMS HV designs, and
that the e�ciency of the prototypes meets and in some cases exceeds the projected targets. We
can also see that there is a lot of smearing on the 10 keV line in the top right figure, so that the
resolution shown has more to do with signal position dependence than intrinsic resolution. We can
also see that the observed e�ciency in the lower right panel depends on the absolute energy in the
detector, and we already lose signal for 100 keV events. These results are not as severe as expected
given that these detectors had a higher Tc and therefore larger heat capacity.

way.

This figure also illustrates some of the methods which were initially tried for detector calibration.

The 10 keV Ge activation line was used in the standard way for a uniform calibration source after

detector activation, while the Si HV detector was calibrated using the Am-241 source which largely

produced surface events. The 60 keV line is likely the best indication of the true e�ciency in the

bulk, as it penetrates further into bulk, but is also high enough in energy to cause concerns about

saturation. The di�culties encountered with these detectors thus motivates looking at G115 to see

if we can make more sense of the detector performance and reduce systematics on some of these

measurements.
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5.3.4 G115 at SLAC and UCB

After operating the first HV detector, we ran G115 at UCB along with a handful of other devices

in two runs between the end of 2016 and early 2017. The goal of these runs was to use a thinner

detector with less muon and gamma backgrounds, and fewer channels, to try to confirm some of

the detector models and study the CDMS HV QET on a simpler device. At UCB the Fe-55 source

was used to calibrate another detector, so an Am-241 source with a collimator was used to calibrate

G115.

For the initial run at UCB (R480), the collimator wasn’t properly assembled, resulting in a

much larger incidence of 60 keV events than intended and a much higher source power. The initial

e�ciency measured for the first run was less than 2%, much lower than the anticipated 10–15%,

and as a result of the excess power noise and low e�ciency, the resolution came out around 200 eV,

when we had hoped for 20 eV. When we ran the second time (R482), the collimator was fixed and

the source was much lower activity. As a result, the e�ciency rose to around 4%, and the resolution

dropped to 50 eV for our best noise data. These data are shown in figure 5.21. For both runs we can

see that e�ciency drops for higher energies, and as we don’t have any calibration lines below 3 keV,

we’re not sure whether the fitted function is correct or whether there’s some non-linear transition

from 5% or higher at low energy to under 4% by the time the 60 keV event occurs.

The data at UCB being anomalous, both in terms of noise and e�ciency, we decided to run

G115 at SLAC starting with Run 23. We’ve already discussed the initial noise issues which occurred

during this and subsequent runs in the previous section. The best data taken with G115 at SLAC

comes from Run 27 can be seen in figure 5.21, where we used an Fe-55 source. The resolution is

obviously not great; we can’t di↵erentiate between the 5.9 keV and 6.4 keV lines very cleanly, and

for this run we probably achieved a resolution of around 200 eV, similar to the original UCB run.

Given time constraints and limited manpower at the time, we didn’t explicitly measure e�ciency

aside from verifying that it was no better than at UCB, in the 2–3% range. This was obviously

disappointing but not unexpected, and by this point we had accepted a few reasons why G115 was

not going to work very well at SLAC either.

So why can we expect G115 to fare any better at another test facility? There are a few possible

explanations for why G115 has lower collection e�ciency due to environmental limitations:

• Both SLAC and UCB weren’t able to cool the detector much below 40 mK for the majority

of the runs, Run 23 being an exception due to its length.

• UCB was always bath power limited, but SLAC was not during Run 23. SLAC was always

limited by the very high background in the lab from K-40 decays and had no overburden to

shield against muons, so the majority of the events in all runs were very high energy compared

to the Fe-55. The majority of all data taken in any detector at SLAC had, for one reason or

another, remnant thermal slopes which indicate residuals from high energy events. The level
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Figure 5.21: Top: G115 spectrum for Am-241 at UCB (left) and Fe-55 at SLAC (right) in keV,
showing that both have resolutions for these data on the order of 100 eV. The Am-241 calibration has
much more non-linearity seen at higher energy, showing why Am-241 might not be a good calibration
choice for our detectors. In the SLAC data, the green points are those that pass the quality cuts.
Bottom left: E�ciency for UCB runs where the source presented a much high parasitic power in
the first run, lowering the e↵ective e�ciency of the device. We can also see the nonlinearity plotted
as a function of energy, likely showing how the local saturation loss is reduced at higher energies.
Bottom right: pulses from G115 at SLAC (x-axis is time in ms). The long fall time (compared to
a much faster estimated TES fall time) is also indicative of strong saturation lengthening the pulse
duration.
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of pileup was just too high.

• SLAC had demonstrable RF leakage issues that UCB did not; a fridge with low background,

low RF leakage, and low temperature may be able to get G115 to work as intended.

A final reason G115 did not work as well as anticipated had to do with some miscommunication

during fabrication, in which the backside Tungsten grid was also patterned with aluminum which

acts as a large signal sink. G115 also had the parquet pattern on the front-side, which may have acted

as an additional phonon sink. It’s possible that if the rear electrode were etched o↵, or a modified

version were made, a similar detector could ultimately achieve 10–15% e�ciency...but there seem to

be some generic issues with thin detectors that we’ll discuss at the end of the chapter.

5.3.5 G124 at SLAC

The Fe-55 calibrations with G124 at SLAC at the end of 2017 and into early 2018 were our last

e↵orts to get a CDMS HV detector to meet the SNOLAB project requirements. The goal was to

use the detector with the lowest Tc, and put the Fe-55 source over the best channel, to demonstrate

that < 50 eV resolution was at least possible. We allowed the detector to cool for a few weeks,

watching the bias power drift up, before taking calibration data. The resulting data (for the noise

shown earlier) can be seen in figures 5.22 and 5.23.

The first thing to note is the huge di↵erence in pulse-height between the primary channel and

the rest of the detector. This largely comes from the very localized nature of the source; the Fe-55

events should all be very close to the surface, meaning most of the phonon energy will end up in

that single channel. In addition, side 1 has much longer fall-times than side 2, due to the lower Tc

and the fact that we could not operate in the low bath limit for that side of the detector. There are

many possible explanations, but we saw the bias power for those channels increase much more slowly

than for the channels closer to the source. Also shown in the figure is the spectrum and resolution

measurement showing that the detector channel achieved 29 eV resolution. This also means that

for our nominal operating methods we would get 100 eV resolution for the full detector. This is

obviously not great news, but there is an upside to this that I’ll come back to in a minute.

Figure 5.23 shows the e�ciency measured for G124 in this run for di↵erent channel combinations.

The fact that we have a low energy line somewhat close to the baseline, and the fact that this is

not done with the optimum filter, means our estimate has pretty large error bars; something like

15–30% resolution. It’s very possible that we may have enhanced e�ciency for this surface event,

or that the position dependence somehow inflates the e�ciency, but even conservatively we can say

that this detector probably has 20% e�ciency. This is also in agreement with UMN, and gives a bit

of relief in light of the low G115 result.

So if we have good e�ciency, and the pulse falltimes (for the pulses in full ETF) are what we

expect, why are we missing our target by a factor of (at best) 10, at worst 20–30? The answer
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Figure 5.22: Top: G124 pulse template for Fe-55 events selected based on their pulse height in PFS2
(the channel directly below the source). The channel directly below the events is clearly absorbing
the majority of the energy, and the remaining pulses still show residual position dependence. Much
of the pulse shapes are however distorted by the fact that side 1 had a lower Tc and was not in
full electro-thermal feedback. Bottom: spectrum of the Fe-55 source using only PFS2 after optimal
filtering (left) and a zoom in near 0 showing the 29 eV resolution of that channel (right).
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Figure 5.23: Energy integral for only the central channels on each side, all channels except the
channel under the source, and the full detector sum. The lack of optimum filter means the full
detector resolution is around 200 eV, and some additional position-dependence brings that up to
around 500 eV. Based on these measurements, the detector is 15–30% e�cient; likely somewhere
around 20% or higher. We were not able to get a better estimate than this due to the noise and
base temperature limitations of this run.

lies in a few places, but mostly in the fact that we have elevated and correlated noise between the

channels at low frequency which is driving our resolution much higher than it would be if we were

really TES limited. These devices do also seem to have a somewhat higher power noise than we

expected, but not by more than a factor or two, definitely not a factor of 10. With the introduction

of a more robust optimum filter, described in appendix E, we can use the channel templates shown

here and the noise covariance matrix to subtract o↵ correlated noise and produce a single energy for

all detector channels which is more precise than doing the OF separately and adding the channels.

We can estimate the uncorrelated PSD from noise traces using the formalism of the joint-channel

correlated optimum filter. The �2 as shown for the single-channel OF under the assumption of

uncorrelated noise is

�2
i,0 =

Z 1

�1

|vi(f)|2

Ji(f)
(5.79)

while for the correlated noise, if we set all channels except for one to 0 (we only compute the
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amplitude using a single channel) we find the nominal chi-square

�2
i,0 =

Z 1

�1
|vi(f)|2⌃ii

�1(f) (5.80)

where ⌃(f) is the CSD matrix for all of the channels as described in the appendix. This suggests

that the best estimate of the correlation-corrected PSD J̄(f) is found by inverting the diagonal

elements of the inverse:

J̄i(f) =
⇥
⌃�1

⇤�1

ii
(5.81)

To be clear, we’re inverting the entire matrix over all sampled frequencies, and the taking the inverse

of a given diagonal matrix element as an estimate of the uncorrelated PSD.

To see whether this makes sense, let’s consider a simple model of two channels with their own

uncorrelated noises ui(f) and a correlated noise c(f), such that the noise for channel i is

ni(f) = ui(f) + aic(f) (5.82)

where ai is some complex phase representing a transfer function of the correlated noise into a given

channel. This makes the autocorrelations

Ji(f) = T�1(ui(f)
⇤ + a⇤

i
c(f)⇤)(ui(f) + aic(f)) = T�1

�
|ui(f)|2 + |aic(f)|2

�
(5.83)

and the cross-correlations (for i 6= j)

⌃ij = T�1(ui(f)
⇤ + a⇤

i
c(f)⇤)(uj(f) + ajc(f)) = T�1a⇤

i
aj |c(f)|2 (5.84)

In the two-channel case, we find that the inverted first diagonal element of ⌃�1 is

⇥
⌃11

�1⇤�1
= J1(f)�

⌃12⌃21

J2(f)
(5.85)

= T�1


|u1(f)|2 + |a1(f)|2|c(f)|2 �

|a1(f)|2|a2(f)|2|c(f)|4

|u2(f)|2 + |a2(f)|2|c(f)|2

�
(5.86)

= T�1

2

4|u1(f)|2 + |a1(f)|2|c(f)|2 �
|a1(f)|2|c(f)|2

1 + |u2(f)|2
|a2(f)|2|c(f)|2

3

5 (5.87)

we see that if channel 2 is dominated by correlated noise (|u2(f)|2 < |a2(f)|2|c(f)|2), then we have

⇥
⌃ii

�1⇤�1 ⇡ T�1|u1(f)|2 = ˜J1(f) (5.88)

which is to say, if we have a second channel which samples the correlated noise, it can be used to

remove the correlated noise from the first channel. If at a given frequency channel 2 is dominated
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by uncorrelated noise, then we have

⇥
⌃ii

�1⇤�1 ⇡ T�1|u1(f)|2 + |a1(f)|2|c(f)|2 = J1(f) (5.89)

which simply says that if there is no correlated noise in channel 2, you can’t use it to remove

correlated noise in channel 1; in that case the correlated noise is sub-dominant in channel 2, and it

will be a better way to characterize your signal.

For G124 in Run 33, I estimated a single channel resolution of 29 eV without this technique.

If we estimate the resolution of a channel using the correlation-corrected PSD (which can’t remove

all of the noise, but can remove some of it) we get 24 eV. For the full detector, we’d expect this

to be a larger reduction, as we add this in quadrature rather than partially linearly. For the full

detector, using the NxM optimal filter described in appendix E, I estimated a resolution of 17 eV.

So the lesson is that the better we know our signal and our noise, the more options we have to

achieve a better resolution, though using a joint-channel optimum filter does require us to have a

large template library and do a position-dependent OF reconstruction.

Since this analysis was done, we’ve spent a significant amount of time investigating vibrations

and RF interference, and we’ve made some headway. Caleb re-did this study with data from Run

37 and was able to collection PSDs for the pulse tube o↵. Using an estimated e�ciency of 20%,

he estimated that for the pulse-tube o↵ data, with these same templates, we should be able to

get channel resolutions of 4–6 eV and detector resolutions of around 20 eV. With the pulse tube

on, we’ve improved a bit to 22 eV per channel and 200 eV total. This validates the idea that our

remaining noise is almost entirely vibrational, or at least related to operating the pulse tube. The

hope is that the SNOLAB fridge, which has a much more robust vibration isolation scheme, will

not have these vibration problems, but in the meantime we’re investigating ways to de-couple the

system from pulse tube vibrations as a backup plan.

5.3.6 HVeV Detector at Stanford

The last detector we’ll discuss in this section is the gram-scale HVeV detectors[89] that have allowed

us to study HV behavior without all of the background issues that plagued larger detectors at the

surface. The majority of the discussions of this detector will be in the next section, and are the

subject of the next chapter, but the e�ciency measurement gives us a hint about why there’s such

a large di↵erence between G115 and the larger CDMS HV detectors.

The HVeV detectors are 1 cm2 ⇥ 4 mm Si and Ge chips fabricated (at least at the time of this

writing) on 4 mm thick 3” high-purity wafers, then sliced from the wafers into individual chips. As

a result, their surfaces are not as intrinsically smooth as the larger 100 mm detector crystal which

receive the heavy etch before fabrication. They have two channels with 29 QETs in the inner channel

and 25 in the outer channel, with a design resistance of around 2⌦. More details of the detector and
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Figure 5.24: Left: Resolution of the first testing run for 160 V data, showing a phonon resolution of
14 eV and a charge resolution of 0.09 e-h pairs. The fill-in between the peaks was attributed to IR
photons from the laser, and is described in the next section.

calibration setup are given in Refs [89, 5].

The calibration of the TES for these detectors was much easier than for any of the larger detectors.

We used a red (650nm, 1.9 eV) laser connected via a fiber (first wide-band, then single-mode) to

the back of the chip in bursts to produce calibration datasets of Poisson distributed photons. Once

we are able to resolve single electron-hole pairs, there is a very unambiguous energy calibration

we can do, shown in figure 5.24, which gives the detector resolution at 10–14 eV. We predicted a

resolution of 1 eV, so this is obviously far from expectation. Luckily it held voltage high enough for

us to begin to study our quantized backgrounds. Part of this resolution degradation is due to our

noise environment, and part was due to fridge stability, both of which were improved between the

first measurement (at 14 eV) and the second measurement (at 10 eV). The other part was that we

assumed an e�ciency of 10%, which turned out to be an over-estimate. It’s likely that, even without

improving e�ciency, we can achieve 4–6 eV with this device in the near future.

The very clean laser calibration also allowed us to measure, for the first time, a very fine-grained

saturation correction as a function of input energy, shown in both panels of figure 5.25. The panel

on the left shows the amplitude versus known energy (based on the number of electron-hole pairs)

for the same poisson distribution of electron-hole pairs at di↵erent voltages, while the right panel

shows the data points at a fixed voltage for varied input laser energies (di↵erent poisson photon

means). The two calibrations are both consistent below 2 keV, but by going to higher energy we

can see that we initially under-estimated the e↵ect of non-linearity. This is the first measurement

showing that, for a low-Tc device, we have a demonstrably non-linear result well below 1 keV. This

also means that, had we estimated the e�ciency for 6 keV Fe-55 lines, we would get an e↵ective

e�ciency closer to 1–2%. The nonlinearity is thus important to measure down as close to threshold
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Figure 5.25: HVeV detector calibration for a low-� dataset at di↵erent voltages (left) and a varying
� dataset at a fixed voltage of 140 V. Both calibrations agree up to 2 keV, and are demonstrably
non-linear. This supports a conclusion that for a 10 eV device, saturation becomes important at
1 keV, which is roughly a linear dynamic range of 100; if the detector does achieve 6 eV resolution,
we have shown we can use a quadratic correction out to 1000 in dynamic range. It is important,
however, to explicitly calibration every order of magnitude in energy scale. It’s possible that the
calibration uncertainty would be reduced by using pulse integrals rather than amplitudes, but the
net e↵ect is the same.

as possible, and means that until we achieve quantization sensitivity, we’ll have large calibration

systematics below our lowest energy data point.

The fact that these devices weren’t running in the same fridge where we were using the DCRC

for noise and complex impedance characterization means it was hard for us to do any meaningful

complex impedance studies until fairly recently, much after these results were published. I was,

however, able to estimate the e�ciency assuming some Rsh and Rp values taken from Je↵ Yen’s

early measurements of the device and with some basic IbIs studies was able to estimate also the

operating resistance of the device. For Rp = Rsh = 30 m⌦ and R0 ⇠ 0.2 ± 0.1 ⌦, I found an

e�ciency of around 5 ± 1%. It’s possible these were over-estimated, however, and it’s more likely

that the detector has an e�ciency around 3–4%. In any case, this is in agreement with G115, which

was also 4 mm thick.

Both G115 and HVeV detectors were not given the same level of surface treatment as the larger

detectors, and they were both 1-sided. One can imagine that rougher surfaces may have contributed

to phonon down-conversion and allowed phonons to thermalize faster, suppressing phonon e�ciency.

We could argue that the position dependence of the G124 data doesn’t really support that theory,

but then again that data has its own issues as well. Whatever the reason, the fact that all 100 mm

detectors achieved 20% e�ciency despite their issues, while G115 and HVeV detectors (both di↵erent

substrates) have limited e�ciency suggests a route for elucidating how to improve e�ciency going

forward.
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5.4 High Voltage Performance

Finally, we come to tests of the feasibility of the NTL gain method. I will briefly review the

results from UMN demonstrating that the detectors can hold 100 V across the bulk, and discuss the

limitations and implications of these initial measurements. We’ll discuss the impact of gamma and

muon events on the minimum attainable leakage current, and then I’ll discuss the HV test results

from the HVeV detector as published in Refs [89, 5].

5.4.1 Leakage Current

In this section, we need to define some terms and see how they’ll impact our detector performance

before jumping into the results. We’ll di↵erentiate between two types of ‘leakage’ currents, ‘surface’

and ‘bulk’ leakage. They have varied origins and di↵erent behavior depending on the source, but

they are the only two meaningful categories for these studies.

‘Surface’ leakage refers to a leakage through the bulk of the detector from one electrode to the

other, and in its simplest form should depend on the voltage across the detector as if it were an

ohmic resistor or a diode. In the first case, the leakage current will increase linearly with voltage,

and in the second it will increase exponentially with voltage above some cuto↵. We can thus define

the leakage as a function of voltage as

Isurf =
Vbias

Rdet

+ Isurf,diode exp(V/Vdiode) (5.90)

The second case clearly will quickly become breakdown, and we’d like to avoid it at all costs...if we

can measure it that’s bad news. Let’s assume that’s negligible for now. Realistically, the detector

resistance is also not really a constant, because at these temperatures our substrates are non-ohmic.

The better way to think of this is really as the resistance of the interface layer..if there’s a finite

resistance, even voltage dependent, it has to at least increase linearly if not faster.

The other leakage is a bulk leakage, i.e. it results from some event in the bulk (either a decay of

a metastable bound state or IR excitation) and it produces only one charge species, but it’s roughly

voltage independent. We know the voltage independence can be the case because the auto-ionization

probability of even a meV-scale bound state at our temperatures is essentially 0 until we get above

kV/cm field strength (see Kyle Sundqvist’s thesis[99] for more details on this). This means that the

bulk could be

Ibulk = e��bulk = e� [�IR + �Bound] (5.91)

Essentially this will be fixed by crystal properties, and will increase in both cases proportional to

volume. If introducing IR filtering or neutralizing the crystal helps, we should expect that the

leakage is bulk driven for the most part.

In our HV detectors, the additional complication is that we don’t measure charge, we measure

---
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phonon energy. For a surface event, charges drifted to the opposite surface always experience the

full NTL gain, so the leakage power is

Psurf = VbiasIsurf =
V 2
bias

R
+O(V 3

bias
) (5.92)

whereas for a bulk event, which is equally probably throughout the crystal, the average event only

sees half of the voltage, such that

Pbulk =
Vbias

2
Ibulk =

e��bulkVbias

2
(5.93)

These are both important results. This tells us that even if we aren’t able to resolve the leakage, we

can determine its cause by how the charge leakage power scales with voltage (by measuring changes

in TES bias power or power noise). If we fit the power versus voltage curve to a polynomial, then

the linear component measures the bulk rate and the quadratic and higher components measure the

surface rate.

The first measurements of CDMS HV power versus voltage are seen in Figure 5.26 made by Matt

Fritts at UMN with G101c and S101. In the Si detector, the story is very clean: there’s a 1 pA

leakage which is voltage independent to the extents tested. In Ge, the leakage is clearly interface-

limited and polarity dependent. Our insulating layers are amorphous Si on both detectors, so it’s

likely that they create a better charge leakage barrier in Si while acting like a diode in Ge. From

this point on, we can assume either that this particular Ge detector was a dud (possible but not

likely) or that the Ge HV detectors are going to be much more di�cult to operate at high voltage,

and we’re going to take a resolution hit (more likely). Given our 0V reach with Ge, and that Si

has better reach for electron-recoil dark matter, this isn’t killer, but it’s certainly an area where it’s

important for future R&D.

5.4.2 Muon and Gamma Charge Production

Let’s pause for a minute to consider all of the sources of bulk leakage to make more sense of the

leakage rate in Si. As a very rough rule of thumb, we expect one electron-hole pair per ⇠ 3.8 eV of

recoil energy for an electron recoil, less by some quenching factor for a nuclear recoil at high energy.

If we have some rate of events of energy ER, then we can find the deposited power as

P = �ERER

✓
1 +

y(ER)V

3.8

◆
(5.94)

This gives us the same power scaling as a bulk leakage, so we can always assume that any number of

unresolved events of a high enough rate, or the residual fraction of larger events, can be interpreted

as an elevated bias power or power noise. For a background of known di↵erential rate d�/dE, we
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Figure 5.26: Top: Bias power shift measurements as a function of one-sided bias voltage (one face
operated at 0V, the other biased but not readout at voltage) for Si and Ge. Bottom: Top plots
divided by bias voltage to infer the e↵ective leakage current as a function of bias voltage. We see a
constant leakage current in Si, and an asymmetric leakage in Ge, likely due to polarity-dependent
charge breakdown at the interface. We can see that the positive bias is linear (probably ohmic
leakage) but the negative bias has a diode-like increase. Figures courtesy Matt Fritts.

find

P =

Z 1

0

✓
d�

dE
(ER)

◆
ER

✓
1 +

y(ER)V

3.8

◆
dER (5.95)

This can be broken into electron and nuclear recoils to get the expected power for a total spectrum

composed of known components of both, but our backgrounds are likely to be dominated by electron

recoils, so we can just assume for simplicity that y(ER) = 1.

The background spectrum in most labs is dominated by K-40, Uranium decay products, and

muons; the shielding smears out the radioactive backgrounds so they look mostly like a decaying

exponential with a mean energy around 150 keV. Assuming this occurs at a rate of 30 Hz (as

measured in G124) we can see an order of magnitude estimate for the power would be ⇠4.5 MeV/s

or 0.7 pW at 0V, equivalent at high voltage to a leakage current of 0.35 pA. We can remove some

fraction of these events, but we can already see that a high background rate is not conducive to
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Figure 5.27: Top left: muon flux as a function of overburden from standard rock. Top right:
Bethe-Bloch equation for germanium showing energy loss as a function of muon energy. Bottom:
Muon-induced current for the Ge HV detector (left) and Ge HVeV chip detector (right). For Si,
the rates are the same but the energy deposition is reduced by a factor of about 3 (the ratio of the
densities). Figures courtesy Carlo Gilardi.

these low-power devices with pA-scale bias power.

Muons are a much worse problem, however. At the surface, the rule of thumb for muons is

that you’ll get about 1 ‘per hand’ per second, or about 4 Hz at the surface for the HV detectors.

Muons are minimizing ionizing particles and deposit tracks in the detector with about 2 MeV/g/cm

of energy, which at 0V corresponds to a power flux of 110 MeV/s (in discrete events) or a leakage

current of 6 pA. We see these events, and we can reject the initial events, but there are two problems

we’ll have regardless of what we try. At high voltage, the power is increased; at 100V, the power

is ⇠1 nW, and the decay time of a thermal pulse is around a quarter of a second. This means on

average a few percent of that power remains in the detector, looking like a parasitic power.

The second problem is that this is a lot of electron-hole pairs, and we’ll see later that there’s a

relatively high probability that some fraction trap during transit, allowing them to be spontaneously
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Figure 5.28: Left: NTL gain linearity (top) and laser linearity (bottom) tested by varying bias
voltage and laser intensity respectively. Right: Demonstration of NTL gain linear signal/noise
scaling, showing that the 150 V data has the same energy noise but a massive electron-hole pair gain
resulting in an ideal resolution that scales inversely with voltage. See text for more details, figures
from Ref [89].

released or IR ionized at a later point. Both of these factors can easily conspire to generate a pA-

scale parasitic power e↵ect at high voltage, and are the primary reason we needed to run smaller

detectors to study HV behavior at the surface. Muon currents and rates for large and small detector

form factors can be seen in figure 5.27. The figure also shows that switching to a smaller detector

form factor should make this a significantly more tractable problem.

5.4.3 First NTL Gain Demonstration: CDMS HVeV

The first NTL gain demonstrator, documented in Ref [89], was the Si HVeV detector, which was

discussed briefly in the previous section. I already showed that we were able to demonstrate 10–

14 eV phonon resolution, but that was only possible because the device was able to harness the

NTL gain without any increase in baseline resolution. The gain and linearity tests performed for

the HVeV detector are shown in figure 5.28. We show first that the photon number fit to the laser

spectra is linear in laser power, and very stable with voltage, so that we can trust the laser power

as an energy scale. We also show that for both biases the position of the first electron-hole pair

peak is linear in voltage, showing that this gain method works and there is not appreciable impact

ionization which would cause an upward trend in this plot.

The best illustration of this technique, however, is the right side of figure 5.28, where we show

four run conditions. The first condition has no laser data, and produces only a Gaussian noise

distribution about 0. The second condition is at 0V as well, but with 60 eV mean photon energy,
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resulting in a slightly larger distribution centered around 60 eV; there’s some broadening due to

Poisson statistics in the laser spectrum. We then reduce the mean photon number to around 1, and

we see that the 50 V data just overlaps the same Gaussian noise at 50, 100, and 150 eV, and the

150 V data simply moves the single e-h pair peak up by a factor of 3.

The immediate problem with this measurement, however, is that there is a non-trivial population

of events between the 0 and 1 electron-hole pair peaks, which isn’t consistent with our story of quan-

tized electron-hole pairs. As shown in figure 5.24, our calibration data is consistent with a quantized

event population either coincident with IR photons, which are able to free sub-gap bound states

and produce a fraction of an electron-hole pair, or produced by impact ionization or trapping during

propagation. These can be tested individually with varying laser inputs, and in the initial paper

we hypothesized that for the laser data, these were primarily IR events with 3% impact ionization

and trapping[89]. The additional IR filtering did reduce the fill-in to the 3% level, validating this

hypothesis, but our backgrounds are still dominated by both processes.

5.4.4 Measuring IR Leakage

One of the first studies we did to characterize the population of quantized events in our detectors was

to use the delay optimum filter (see appendix E) to search random traces of pulses. The downside

of using the delay OF is that the longer the trace is, the higher the probability of finding a random

fluctuation away from 0, which produces a binomial noise distribution. By reflecting the spectrum

around 0, we can subtract o↵ the noise to infer the distribution as close to 0 as possible, with the

results for each bias polarity shown in figure 5.29. We see that for most biases, there is a voltage-

independent flat background, which is what we’d expect for IR or spontaneous emission events which

produce a single charge instead of an electron hole pair (see appendix G for more details). Note that

for a pure IR or spontaneous background, we’d expect a tail of events, but as shown in figure 5.30,

our timing information allows us to get essentially 0 pileup.

The addition of the IR filters and single-mode fiber did reduce the IR background by a factor of

10 as measured by this method, and the modeled charge leakage from the long-exposure science run

as seen in figure 5.29 (2 Hz above 0.8 e-h pairs, assumed flat, gives us 10 Hz). Let’s compare the

leakage we obtained to that of competing experiments. We obtain, with our filtering, an IR leakage

rate of 10 Hz (assuming all non-quantized events are IR-driven). SENSEI and DANAE achieve

dark rates at the surface of 1e� per pixel per day, which for SENSEI is around 8–9 Hz/g and for

DANAE is uncertain but at least 2 orders of magnitude larger. We achieve something like 11 Hz/g

at the surface, so the di↵erence between the HVeV detector and the SENSEI detectors really does

come down to timing. That being said, DAMIC have demonstrated a dark rate of < 10�3 e� per

pixel per day, or about 103 better than any surface detector, at 120 K[6]. This was for a device

with worse charge resolution (1.8 e�) underground and with significant shielding and IR mitigation.

Whether the improved dark rate can be attributed to a lower muon background (and thus less filled
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Figure 5.29: Top: Leakage events from randoms with the 0-signal noise subtracted by reflection as a
function of voltage for the positive (left) and negative (right) voltage bias. We see the beginning of
quantized charge breakdown around -140V, which was dependent on pre-bias, but that the overall
rate and shape is largely voltage independent and continuous; a bulk leakage consistent with IR.
Bottom: Background rate above 0.8 e-h pairs, which had an identical shape but was at a 10 times
lower rate after IR filtering, suggesting that it is still IR or bulk dominated and again is independent
of voltage. Here we again see that the leakage rate for the positive data increases asymmetrically
with the negative bias, but this can be mitigated by pre-biasing the detector at 10V higher than
the intended operating bias, suggesting that it’s possible this is not a fundamental limitation but
depends on the neutralization state of the crystal.
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Figure 5.30: Left: IR Spectrum integrated over an hour without any fine-grained timing rejection
showing how coincidences over a 1 ms period create the compound shape with a high energy tail.
Right: IR spectrum assuming either no pileup rejection or that all multiple events can be separated,
showing that even with a high IR rate, good timing allows for background-free operating at 2 e-h
pairs.

IR targets) is an open question.

5.4.5 Impact Ionization and Trapping

The assumption made by most experiments when making sensitivity projections based on dark rates

is that all dark events are uncorrelated; that is, that dark rates themselves cannot produce additional

dark rates. This is not actually the case, as high energy charges can free additional sub-gap charge

states to produce more free carriers, or carriers can become bound or even re-combine with a finite

probability, and we lose a charge from an already small charge population. For a dark matter search,

impact ionization is a larger concern, as it allows us to have correlated backgrounds above a single

electron-hole pair which are inseparable from the true charge carriers. Worse yet, there carriers

can then generate additional charge carriers, giving us a completely time-coincident high-energy tail

that fills in the >1 e-h pair bins. An approximate form is discussed in appendix G, but an accurate

spectrum for probabilities larger than ⇠1% needs to be obtained through Monte Carlo.

As will be discussed in the next chapter, we were somewhat limited by impact ionization in our

first science run, and we made some attempts in pre-run calibration to quantify impact ionization

and trapping from laser data and randoms. The results of these studies can be seen in figure 5.31.

The first method involved using a period of high surface leakage, where only single leakage events

occurred, to precisely measure the impact ionization probability. This came out to around 4% as

expected from fits to laser calibration data, and the shape is an excellent match to the model; this

also allowed for some estimate of IR rate but the threshold was too close to the single e-h pair peak
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Figure 5.31: Top Left: Leakage data used to estimate impact ionization probability, consistent with
3% impact ionization (x-axis is electron-hole pairs). Top Right: Laser calibration data used to
measure impact ionization and trapping by selecting inter-peak regions (x-axis in OF amplitude).
Middle: Impact ionization (left) and trapping probability (right) inferred from inter-peak regions;
see text for more detail. Bottom: Propose laser calibration showing impact ionization and trapping
at the 1% level for laser data with a normal � (left) and a very low � at a high rate (right).

101 ~--~--OF_ Re~s_u_lt_s= __ l8_0~1_1_2-=_'-1_8_2~1.-'-p_k_l -~--~ 

10 1 

10 2 

~0.08 

ii 
"' .c 
~ 0.06 
C: 
.g 
::i 
-~ 0.04 

u 
"' 
§ 0.02 

80 
\l:>ltage 

30 

106
~ ____ A_=_l_, R_a_t_e_=_l_O_.O_H_z ____ ~ 

2 
ci, 105 

~ 
C: 

"' > 
!::!. 
2 
"' er: 
~ 
C: 

104 

102 

101 

~ 10° 
w 
"' 10-1 

:;;;; e 10- 2 

"' i!::= 10-3 

D 

,- I I 
r + 

Impact Ionization 
Trapping 
Composite 

t + 

10- 4 +--~-~~--------------------< 
- 1 0 1 2 3 4 5 6 

l(bo_OO 

0.08 

~ 
~ 0.06 
.c 
e 
a. 

°' [ 0.04 
C. 

"' F 

0.02 

0.05 0.10 0 .15 

80 
\l:>ltage 

0.20 0.25 

106
~ ___ A_=_O_.O_O_l_,_R_at_e_=_l_O_O_O_O_.O_H_z __ ~ 

2 
ci, 105 

~ 
C: 

"' > 
!::!. 
2 
"' er: 
~ 
C: 

104 

10 2 

101 

~ 10° 
w 
"' 10-1 

:;;;; e 10-2 

"' i!::= 10-3 

D 

t 

+ 

+ 

+ 

+ 

+ 

+ 

Impact Ionization 
Trapping 
Composite 

+-

,-

+-

+-

10- • ..-~~-~~-~~<-;----------------< 
- 1 0 1 2 3 4 5 6 



CHAPTER 5. PROTOTYPE DETECTOR PERFORMANCE 232

due to the high rate.

The other method involved using laser bias data at each voltage and finding the ratio of events

between the peaks to the photon peak on either side to estimate upper limits on the impact ionization

or trapping from each peak, assuming all events in that region resulted from each process. This was

done by selecting all events > 2� from a peak as fill-in events, and events within 2� of a peak as

quantized events. This is a very systematics limited way of measuring this, but we can see that

impact ionization is limited to ⇠ 3% independent of voltage bias, and trapping is limited to . 2%.

Taken together, the fact that we see so few events between the 0 and 1 electron-hole pair peaks

likely means trapping is negligible at these voltages, and we’re dealing with a voltage-independent

impact ionization mechanism, but more precise measurements are needed to eliminate statistical

systematics and the possibility of confusing IR events with the other mechanisms, assuming we can

still get IR into the fridge from the laser.

Figure 5.31 shows in the bottom panel modeled detector response for a proposed calibration to

more accurately and independently measure impact ionization and trapping by running the laser at

a high rate with very low mean photon number. This allows for the trapping and impact ionization

plateaus to come through above other backgrounds, but assumes that the laser doesn’t appreciably

emit IR. The limit of this method is set by how cleanly the laser can be operated at this high rate

and as always how well our IR filtering in the fiber operates. Ideally this will allow us to determine

whether either process is highly voltage dependent, which might suggest it’s better to run at a lower

voltage for a cleaner background.

5.5 Future Studies

This was a long chapter full of initial studies that could and should be followed up on. In particular,

there are a few questions I’ve highlighted here that are crucial to investigate further:

• The detector crystals do not cool nearly fast enough, likely due to clamp conductance near

base temperature; better clamps will drastically improve our ability to operate detectors below

50 mK. Much of the issues which arose during operation can be attributed to temperature

di↵erences between the crystal and the bath.

• We need to determine how to better mitigate low-frequency noise in dry dilution refrigerators.

Pulse tubes make for more stable operation, and really should be the way forward, but at

the time of this writing we have not operated a detector in a dry fridge and attained good

transition noise performance with the pulse tube on.

• We also need to solve our EMI problems; the telegraph noise is in particular the worst problem,

but RF should not be able to penetrate into the experimental space. If this means limiting

the bandwidth of all lines into the fridge, and putting the pre-amp and SQUID loop inside,
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the fridge, then it’s likely worth it. This is the setup in the Northwestern ADR and it seems

to be more robust to telegraph and RF noise, though any hole for RF to leak in becomes the

weak link.

• Low-energy calibrations are also a weak point for our collaboration...it’s not going to be feasible

to use a laser with a fiber long-term, nor is it reasonable to put a dark matter detector in a

beamline and use it for a low-background search. If we can think of clever ways to produce

100 eV-scale events in the bulk in Si and Ge without lots of activation that would be a big

step forward.

• Understanding power noise - we don’t have a consistent way to model our power noise which

relates to the QET design. The 3-pole complex impedance, which is also seen by other low-Tc

TES experiments such as CRESST, may represent something fundamental, but it’s likely that

our detectors have such low heat capacity that parasitics are becoming more important.

• We need to understand the character of leakage current and how neutralization and pre-biasing,

as well as backgrounds and crystal purity, impact it. We also need to determine a way to test

our IR shielding structures to see if they’re really IR tight.

A lot of these are conclusions we couldn’t begin to reach until we started testing these detectors,

and solving any of them is a big step in the right direction. It is likely that many of them will be

addressed in the coming year and hopefully inform final design elements of SNOLAB, or at least

allow for upgrades to solve these problems during the first shutdown. They will also enable huge

strides forward in the R&D programs which currently struggle with many of these problems while

trying to get prototypes to work.



Chapter 6

First Sub-GeV Dark Matter

Results: CDMS HVeV

“We shall see what we shall see. We have the start now; the developments will

follow in time.”

- Wilhelm Rontgen, 1896

This chapter describes the dark matter search presented in Ref [5], which demonstrated the use

of NTL amplification to achieve single-charge resolution and used this device to set new limits on

Sub-GeV dark matter. I will discuss the analysis done to produce the final limits, the resulting

spectrum, the signal model, and then the limits. I will contrast them to similar experiments and

discuss where we go next with these detectors in terms of dark matter discovery potential.

6.1 Experimental Setup

The HVeV detector was a 0.91 g 1 cm2⇥ 4 mm Si chip cut from a 3-inch high-purity (⇠ 20k⌦cm)

Westinghouse wafer. The detector design and holder setup can be seen in figure 6.1 and is described

in detail in Refs [89, 5, 90]. The QETs are square with 6 fins that each have about 200 micron length,

and have holes in them to confine magnetic vortices. There are 24 QETs in the outer channel and

25 QETs in the inner channel; each channel is given roughly equal area, though there is not uniform

surface coverage.

In the previous chapter we explored the performance of the HVeV detector, and for the science

run we needed to determine how to calibrate the detector, in what mode to operate, and how to bias

the crystal and TES channels. We used the measurements from figure 5.29 to choose -140 V as our

operating bias with 5 minute pre-bias periods of 10 V every 10,000 events. We set the laser to fire at

234
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Figure 6.1: Top Left: Initial setup of detector and HV holder on the dilution refrigerator probe, with
the front of the detector showing. The two halves of the holder are biased independently, and the
fiber is glued to the back of the holder. Top Right: IR filter upgrades between the fiber and detector
as well as a side-view of the detector holder. Bottom: Image of the detector before mounting with
zoomed in images of the QETs and the backside parquet bias pattern.
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a rate of 1 Hz, and recorded the laser TTL signal in a third analog input with a DC o↵set tracking

the fridge thermometer resistance to get event-level information about the fridge temperature. We

also recorded the trigger channel, which was the sum of the two channels after putting them through

a shaping amplifier, and used a level trigger on this channel as our primary trigger. Recording the

signal used for triggering allowed for a very clean estimate of trigger e�ciency during the run as a

function of pulse energy, and the level trigger was set to get 50% e�ciency at 0.5 e-h pairs (in order

to lower the overall trigger rate) and achieved > 95% e�ciency at 1 e-h pair.

We also intended to look at resolution as a function of TES bias for both channels, but without

an automated way to change bias this test fell to the wayside unfortunately. We can see that the

current noise is fairly constant but the separation between peaks does change during the transition

(there is a correlation between thermometer resistance and amplitude shown in figure 6.7). We chose

the lowest stable operating point for each TES based on early calibration runs and maintained this

same bias point throughout the science run.

6.1.1 Raw Exposure

We began acquiring science data on February 9 (2018) with the goal of getting to 48 hours of total

exposure, assuming that about half would have noise or temperature fluctuation issues. We assumed

we would run for a couple of days but ended up acquiring data on and o↵ for a week, until February

16, due to more noise and equipment issues than anticipated. The best period for data taking was

usually between midnight and 8 am, which indicated to us that activity in the building contributed

to some of the noise issues we saw during the day.

During the run, we noticed significant changes in the trigger rate and the character of the

leakage (all data was pre-processed in an automated way for data quality monitoring). The trigger

rate variations were largely correlated with temperature fluctuations (or at least with the measured

resistance of the thermometer), but there were also changes in the leakage which were very sudden

and not obviously correlated with any change in the detector’s environment. The temperature

fluctuations (and thermometer resistance) during the run are shown in figure 6.2, and the leakage

as a function of time (as well as an example of time-dependent leakage) can be seen in figure 6.3.

To try to mitigate the increased leakage seen around 50–70 hours into the data taking, we

neutralized for a few hours. This had the e↵ect that it did seem to get rid of the burst of time-

dependent leakage, but it also seemed to elevate the bulk leakage rate. This will be discussed in more

detail later in the chapter. After about a day, some of the surface leakage started to re-appear, so

we tried to flip the polarity of the voltage, which did not seem to a↵ect the character of the leakage,

but it did coincide with a large increase in temperature variability, as shown in figure 6.2. The

corresponding increase in the trigger rate is just due to the fact that the pulse amplitude correlates

with voltage, so as temperature fluctuated the fraction of the bulk background below 1 e-h pair (and

the fraction of noise triggers) increased in a correlated manner.



CHAPTER 6. FIRST SUB-GEV DARK MATTER RESULTS: CDMS HVEV 237

Figure 6.2: Top: Temperature as a function of time during the science run. Neutralization occurred
at 70 hours, and the polarity flip occurred at 90 hours. Bottom: Thermometer resistance as a func-
tion of time. The calibration from resistance to temperature is highly non-linear and includes large
systematics, so we opted to use thermometer resistance instead of temperature as the independent
variable for temperature-dependent calibrations. The thermometer resistance should also have a
similar temperature dependence to the TES bath power, so it should allow a linear correction.
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Figure 6.3: Top: All events during a series separated by whether they were coincident with the laser
(green), anti-coincident (red), or failed the chi-square cut (grey). We can see that during this run, a
quantized leakage appears towards the end of the run. After pre-biasing and starting the next series,
this leakage is gone, but seems to re-occur randomly during the subsequent series. Bottom: Event
rate as a function of time for di↵erent energy ranges. The blue points trace noise and IR leakage
triggers, which can be seen to explode when the temperature gets very low due to the increased
signal to noise from the lower crystal temperature.
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Some other issues during data taking included the channels being swapped accidentally on the

11th, which required reprocessing all of the data with a flag to swap the channels after this date, and

some gain variation during the first 20 hours in one of the SRS amplifiers that made it necessary to

re-scale one of the channels during that time even before calibration. Due to these issues, we ended

up abandoning half of the full exposure, opting to include only the negative bias data and excluding

the initial 20 hours of data due to this gain change. This left us with about 24 hours of initial raw

exposure before further cuts.

6.1.2 Pulse Processing

As discussed in the previous section, during data taking an initial processing was done on each series

by using a single trace to generate both noise and templates, and then applying a time-fixed and

time-shifting optimal filter to all events in the series. The upper plot in figure 6.3 is an example of

a data quality plot generated with this method, and example pulses and noise PSDs for two series

at di↵erent times during the run can be seen in figure 6.4.

After the initial processing during the science run, we re-processed the data a number of times

with improvements to the OF algorithms and additional quality variables. The largest di↵erences

had to do with the part of the trace used for fitting and the templates used. We constructed a

template from the automatically generated templates made during the run by averaging all of the

templates from good data series and applying an additional low-pass filter above 100 kHz as shown

in figure 6.5. In addition, the initial processing applied the OF to the second half of the trace, but

for the time-shifting OF, this cut o↵ some of the lower energy pulses, which were not triggered on

until later in the pulse, so we used the same template but used the trace o↵set by an additional 500

microseconds to give more pre-trace time for the time-shifting OF. This improved our reconstruction

e�ciency for low amplitude pulses, as will be discussed in the next section.

Finally, we computed a handful of di↵erent goodness of fit metrics for each pulse, including

both frequency and time-domain chi-squares for the fixed and time-shifting OF. We found that as a

general property, the OF de-weights high frequency information in Fourier space, so that while for a

given trace it is still able to find the optimum o↵set and amplitude, it is not sensitive to pileup. In

contrast, the time-domain fit is not filtered and is highly sensitive to pileup, and was a much better

discriminator of pileup even though it was more sensitive to low-frequency noise. The chi-square

cuts will be discussed in more detail in the next section, but for the initial analysis a very rough cut

of ⇠10 was put on the time-domain chi-square to remove the worst pulses, so we were only looking

at good pulses with some small fraction of bad events to be removed later in the analysis.

We also implemented a pileup optimum filter, described in appendix E, which was used to remove

IR pileup when that was our dominant background. After the improved IR filtering, we found little

evidence that the pileup OF was finding any real pulses, and it is much more computationally

intensive to compute than either of the single-pulse optimum filters due to the fact that you can’t
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Figure 6.4: Top: Templates automatically generated for two example series from the second half of
the traces in the series, after some automatic cuts have pre-selected events most characteristic of
the average pulse in the series. Bottom: PSDs generated from the first half of the traces for each
series after similar automated cuts are made. Note that the templates are very similar but the noise
is very di↵erent; for this reason we used the PSDs for each series but a single template for all data
with additional post-processing.
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Figure 6.5: Left: Filtered pulse template (black) compared to the unfiltered pulse template (green).
Right: Two of the individual series pulse templates (green and brown) compared to the averaged
template (black) and the averaged template after filtering (blue).

use the same Fourier-transform trick as you can for the one-pulse OF. In order to apply it to the

entire science dataset we had to down-sample in time by a factor of 10, and when the initial studies

found no significant pileup (that wasn’t also removed by a time-domain chi-square cut) we decided

to leave it out of the later rounds of processing. This is an area where this analysis can be improved

as more robust analysis tools are developed for SuperCDMS SNOLAB.

6.1.3 Calibration

Before the energy calibration, we need to find the relative calibration between two channels. The

assumption here is that there is a variation in the amount of absorbed by each channel as a function

of event position. If this is only a di↵erence in the fraction of energy absorbed, then we can solve for

the relative power to current conversions and make the total of the energy in each channel position

independent. If there are other e↵ects at play (loss of energy in the crystal as a function of position)

there will still be residual impacts on overall resolution, but this will be seen as a nonlinearity in this

correction. This could be due to reduced e�ciency at high radius due to phonon down-conversion,

or changes in dI/dP due to di↵erent passive resistance or bias point. Ideally, all channel properties

would be the same, but in practice it’s hard to achieve consistency to better than 10%.

The system of equations then for the total energy is

Itot = cAIA + cBIB = Eabs

dI

dE
(6.1)
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Figure 6.6: Relative calibration using a time series with a large population of quantized leakage with
a di↵erent position dependence than the laser data. Data along the lines, which have a slope of -1,
indicate the lines of equal reconstructed energy. This relative calibration required channel A to be
scaled by 1.31 relative to the initial value.

If we select a fixed energy, then we should have

cBIB = ✏E � cAIA = B � cAIA (6.2)

IB = B0 � cA
cB

IA (6.3)

where

B0 =
✏E

cB
(6.4)

is set by the known energy of the line. This also shows us that the value of cB is degenerate with ✏

and can just be absorbed into the measured dI/dE for the weighted channel sum. We will set this

to one, and get the modified equations

Itot = cAIA + IB = Eabs

dI

dE
(6.5)

and

IB = B0 � cAIA (6.6)

so we can determine the relative channel weighting by a linear fit to IB versus IA for a given known

input energy. This method avoids having to assume a distribution of events, just that there is some

position dependence in the signal.

The application of this method is shown in figure 6.6, where the data from the time series in
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Figure 6.7: Calibration to remove the dependence of reconstructed amplitude on temperature. The
first three peaks are fit to lines to get a correction factor as a function of temperature. See text
for more details. It’s significant that when the fridge is colder, the current separation between the
peaks increases, while the noise remains about the same. This suggests that the low e�ciency of
the detector is more a temperature e↵ect than an intrinsic limitation. We do not naively expect
such linearity in thermometer resistance versus phonon gain; it is possible that if both resistance
and thermal conductance are phonon driven, they both obey the same temperature dependence of
T 5, making them linearly proportional.

figure 6.3 has been used as a proxy for position dependence in the crystal. I found that a 33%

correction to channel A allowed for the most position-independent energy reconstruction. After de-

termining the relative weighting of the channels, the data was all re-processed to take this correction

into account so that all of the summed quantities would reflect the correct channel weighting.

Next, the temperature correction had to be applied given the high correlation between pulse

amplitude and mixing chamber thermometer resistance. The resulting correction, done by Andrew

Scar↵, can be seen in figure 6.7. This procedure fit a line to each of the laser peaks for the calibration

data across the entire science run as a function of thermometer resistance, in order to remove the

temperature correlation. The idea here is that what is changing is the dI/dP fraction as a function

of operating temperature (or equivalently as a function of thermometer resistance), so that

yamps =
dI

dP
(T )neh ⇡


dI

dP
(R0) +A(R�R0)

�
(6.7)

We should find that by measuring the slope of current versus thermometer resistance (assuming

both Rtemp and dI/dP have the same temperature dependence) for a few electron-hole pair lines,
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Figure 6.8: Left: Example calibration spectrum with lines drawn at the peak points found using
the continuous wavelet transform method. This is a fairly standard peak-finding algorithm and
requires some tuning for a given case in order to reduce sensitivity to noise. By properly tuning this
algorithm I was able to compute a relative scale factor for every series in the data. Right: Laser
calibration data with di↵erent laser points showing how calibration data points can be found up to
the limit of around 1.2 µA, when the non-linearity causes the detector to lose single electron-hole
pair resolution. The same method was applied to this data to get the points shown in figure 5.25 to
set the absolute energy scale.

we should consistently find that the slope of the line divided by the number of electron hole pairs is a

constant. The o↵set here just allows us to normalize all of the data to the same current as at 35 mK.

This can be generalized to a polynomial as well, as long as you’re su�ciently below saturation,

because dI/dP is only a function of temperature, not of pulse height, until you have local saturation

e↵ects.

Finally, after these corrections, we can perform a non-linear current to energy calibration using

this same laser calibration data. This was the calibration shown in the previous chapter, in fig-

ure 5.25. The method for this calibration can be seen in figure 6.8. A continuous wavelet transform

was used to algorithmically find the position of the first 10 e-h pair peaks in current, and these

data were then fit to a quadratic form, as shown in figure 5.25, to produce a linear energy scale.

After this calibration was done to all of the data at once, we could still see residual variation as a

function of time in the laser calibration data, so the continuous wavelet transform method was used

to calibrate up to 6 keV for all of the data, and then each series was individually corrected by a

linear scale factor to produce the final, calibrated dataset. All of the science calibration before and

after this last calibration pass can be seen in figure 6.9.
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Figure 6.9: Top: Events after temperature calibration before time-dependent calibration. Bottom:
All events after time-dependent calibration, showing much more consistent calibration across the
entire dataset.

6.2 Quality Cuts

In this section I will discuss the livetime calculations and the cuts applied to the data, and summarize

by showing the final spectrum and e�ciency model used in subsequent limit calculations. This

section is much shorter than for most analyses as we decided to be as conservative as possible for

this first data run, given that the detector and calibration schemes are new, and that there were so

many issues while running the detector, reflected by the amount of time it took to reach our target

exposure.

6.2.1 Livetime Calculation

For our analysis, we’ll need to compute livetime both for livetime cuts (which just remove blocks of

livetime) as well as quality cuts, which remove individual events. We can estimate the impact on

livetime of this second class of events, as well as the total livetime of the final dataset, using the

laser data, as described below.
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Figure 6.10: Exposure as a function of wall-time, showing the large blocks during which we were
debugging the setup or running calibrations. Both the neutralization at 70 hours and the polarity
flip can be seen to occur shortly before resuming data taking.

First we consider livetime cuts. For each series, we bin the events into time windows of �t,

and make a cut decision for each window’s average trigger rate compared to the background series.

Suppose I remove n of N time periods from my data; the resulting livetime for that series is then

Tlive = [N � n]�t

This is a very straightforward correction, but to make it we need to be able to calculate �t in an

unbiased way.

Calculating the livetime of a given selection of data is actually fairly straightforward to calculate

directly from the data, given that the laser was firing at 1 Hz for the duration of the science run.

Given a known rate �laser and mean photon number �, we have the total exposure

Texposure =
Nlaser

�laser

⇥
1� e��

⇤�1

where Nlaser is the number of laser events retained in the data, and the last term is a correction

given that we will not trigger on the 0 photon events. We estimated � in turn using the measured

mean photon number �m for each dataset, calculating � as

� = W (��me��m) + �m (6.8)

where W is the Lambert W function.

Given that we have not yet applied cuts on the pulse amplitude, this is an unbiased livetime

estimate as we’re just counting the number of laser TTL pulses which generated a threshold trigger,

and our threshold was around 0.5 e-h pairs, well below the first peak. We also spot-checked this
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Figure 6.11: Left: Series removed by initial livetime cuts based on equipment or stability issues, or
sustained periods of excessively high trigger rate. Right: Data retained after these cuts, including
the +140V data which is not included as part of the science exposure but is used to study leakage
current during the run. See text for more details.

livetime by adding up the retained time in a few series and comparing to this value to verify that

these assumptions held. The total exposure before cuts can be seen in figure 6.10 as a function of

wall-time, broken down by crystal bias and including the total exposure without crystal bias. The

expected 48 hours of data turned out to be an over-estimate due to a mis-estimation of the deadtime

associated with higher trigger rate data which occurred towards the end of the run; we estimated

about 16 hours of positive bias data, but only obtained about 9.

6.2.2 Livetime Cuts

I mentioned in the previous section that we had a lot of data taking issues during parts of the run,

and that we only include the negative bias data as part of the science exposure. Figure 6.11 shows

the data retained versus cut, which includes data taken in the first day with pre-amp gain issues,

data which included the spontaneously leakage events1, periods with sustained high trigger rates,

and series during which the temperature was changing. These were fairly severe cuts but were always

done by series number or in larger blocks of time so as to avoid biased selection of data.

We did try to retain the data during the first day, which required re-calibrating the gain of one

channel and swapping the channels relative to one another, as well as a separate energy calibration

scheme, but the calibration data was never near as well behaved as in the rest of the data, leading

us to believe that the gain variation had non-trivial time dependence. We believe something was

1
Blas referred to these as burp events, which made me laugh every single time we talked about this data.
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malfunctioning in one of the SRS amplifiers, and we decided that the data was too unstable for us

to be able to calibrate. Given that we are background limited in this analysis after only a few hours,

it does not impact the limit substantially to remove this block of time.

During data taking, we noticed that there was a significant amount of time-variation in the trigger

rate due both to changing threshold as well as true spikes in event rate associated with higher than

normal backgrounds. We developed a cut to remove time periods that deviated by more than 7

sigma from the expected trigger rate within a given run to get rid of these bad time periods, based

on both total events and only those events that pass a rough chi-square cut and are above threshold.

The framework for this cut is described below.

Suppose we have a nominal trigger rate �. In some time window t, we can expect a mean

of � = �t events, and the distribution of these events should be roughly Gaussian with standard

deviation � =
p
� =

p
�t. Suppose now that we want to reject time periods which are an m-sigma

fluctuation from our expected trigger rate, and we want this to roughly correspond to rejecting

trigger rates n times the nominal rate. This corresponds to the condition

n�t = n� = m� = m
p
�t

This gives us a condition on the amount of time we should bin events into so that we have a

high-confidence rejection at a given level, according to:

t =
m2

n2�

For example, suppose we have a nominal trigger rate of 5 Hz, and we want to reject instantaneous

rates above 10Hz at the 10-sigma. This means that n = 2, m = 10, and � = 5, such that

t =
100

4 ⇤ 5 = 5s

So if we bin events every 5 seconds and apply a cut at 10 Hz, we will have 10-sigma rejection of

time-series that do not match our expectation.

For these data we binned data into 5 minute time bins, and applied two ‘burst’ cuts independently

of one another. The first burst cut rejected time periods based on trigger rate alone, while the

‘leakage’ burst cut rejected these periods based on events above a single electron-hole pair. The

majority of time-periods removed by these cuts were redundant, and the overall loss from both of

these cuts was less than 10%.

Table 6.1 summarizes the impact of each cut on the total livetime. In addition to the cuts

discussed here, the laser events do remove a small fraction of the total livetime, less than a percent,

due to the fact that we discard the laser triggered time periods from the science exposure. The final

exposure before event cuts was about 19.5 hours or 17.5 gram-hours.
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Cut Passing Livetime Passage Fraction
No Laser 36.4 hours ⇠100%
Time Period 21.7 hours 59.6%
Trigger Rate 33.5 hours 92.2%
Leakage Rate 35.4 hours 97.4%
Livetime 19.5 hours 53.5%

Table 6.1: Livetime passage e�ciency for the selection of good time ranges, trigger rate and leakage
rate cuts as described in the text.

Figure 6.12: Comparison of reconstructed pulse height for an event without a pulse based on an
initial noise variance (the blue curve) as we increase the number of search windows. When we get to
20 search windows, we see that the probability of estimating 0 energy for our truly 0 energy event
is 0; this is therefore a biased measurement. The noise for the data in this science run is consistent
with 100 independent search windows; this is a weighting between the number of time bins in the
template and the length of the trace. X-axis is OF amplitude in µA.

6.2.3 Trigger Time Cut

The science data was all drawn from the optimal filter with fitted time o↵set, which provided a

more linear initial detector response but also allows for some additional artifacts to leak into the

spectra. For low-energy pulses, the trigger time actually occurs after the start of the pulse in a fairly

well-correlated manner, but by searching the entire trace, the probability of finding a statistically

significant noise fluctuation shaped like a pulse becomes large, such that the noise blob for the

time-delayed OF has no events with zero amplitude. Figure 6.12 illustrates this e↵ect.

Luckily, we have multiple ways to combat this. We can either estimate the new noiseblob with

the shifting window and make a threshold cut, or we can use the reconstructed time as a cut to

remove random noise events inconsistent with the trigger time. We opted for this second method in

order to maintain as low an e↵ective trigger threshold as possible. We used the laser data (which is

a population of events known to be real) as a proxy for good events, and set the cut to have high

e�ciency at 1 electron-hole pair. The power of this cut is that events should be within the time

resolution of their true location, but traces without real pulses will have uniformly distributed start
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Figure 6.13: Pulse time for the laser events as a function of reconstructed pulse energy, showing the
events which pass the pulse timing cut in green. See text for more details.

times, so the rejection factor is roughly the timing resolution divided by the length of the trace. The

size of the noise blob increases as the square root of ’sampling windows’ (the number of sampling

windows is proportional to trace length), so the timing cut fares better for longer traces while the

threshold cut fares worse.

The result of this cut can be seen in figure 6.13. Note that the pulse start time gets closer

to zero for larger pulses, and that the variance in pulse start time decreases with increased pulse

size; both of these e↵ects are to be expected. Consider, for example, a very small pulse. If it

experiences a downwards noise fluctuation, the trigger will occur later, after a subsequent upwards

noise fluctuation resulting in a net negative template o↵set relative to trigger time. In addition, we

expect timing resolution to be inversely proportional to pulse energy, so the better timing resolution

matches our expectation.

Based on these arguments, the natural question is why we didn’t choose a form for the timing

cut which more closely follows the laser data. The reason for this was because we do not have an

estimate for how position dependence factors into reconstruction time. The laser events all occur at

a very small spot on the rear face of the detector; if position dependence also manifests as a time

o↵set, being overly aggressive with this cut would reduce our DM signal e�ciency and bias our result

artificially low. In the future, a position independent calibration (such as low energy Compton recoil

deposits) should allow a more stringent time cut where we can be sure that we’re not reducing our

sensitivity to di↵erent parts of the fiducial volume.

6.2.4 Chi-Square Cut

The time-domain �2 for the optimum filter with time o↵set had a very rich structure as a function of

energy, and we initially intended to do a very complex cut involving both time and Fourier domain

chi-square for both channels as well as the sum. This was greatly hampered by noise variation within
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Figure 6.14: Top: �2 versus energy plane with the cut-line drawn for the laser data. Bottom: Same
plane but for the events without a laser coincidence. The �2 is below one due to an error in the
scale factor by a power of 2, as we only sum over half of the trace but use the variance for the full
trace. See text for more details.

a series. To understand why this would impact the �2, consider the formula

�2 =
⌃t(v(t)� as(t� t0))2

�2
(6.9)

where �2 is the variance of a trace when there is no residual; for a trace without a pulse, the mean

�2 for non-stationary noise which is uncorrelated with the signal is 1. If the noise changes during

the run (as a result of new lines showing up or temperature changing), then what we see is that

the expected value of �2 changes, causing a time-dependence in the mean �2 and an increased �2

variance.

For stable series, the �2 distributions were well behaved, but over the course of the run there

was enough temperature and noise variation that the chi-square variance increased and washed out

some of the structure. As a result, a pulse that would be a bad chi-square in one series is within
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the good range in another, and we lose some discrimination power. We decided to simply set the

low-energy chi-square cut at the point where the laser and background distributions diverged, and

fit a quadratic cut-shape to maintain the same e�ciency above threshold as a function of pulse

energy. We toyed with the idea of doing a time-dependent chi-square cut, but initial studies didn’t

indicate that it a↵ected the spectrum appreciably, and again we were cautious not to bias the result

or over-complicate the first analysis with a new detector.

The resulting chi-square cut is shown in figure 6.14 for both the laser and physics search events

with livetime and timing cuts included. The smearing of the laser data in chi-square is apparent

from the laser data, and there is an upward trend as a function of energy indicative of the fact that

the pulse shape is changing slightly due to local saturation as energy increases. In contrast, we don’t

see any meaningful structure in the background data aside from a population of events which is a

good fit out to high energy, and another population with small amplitude and rapidly increasing

chi-square. The majority of these events seem to be RF-induced trains of pulses as well as tails of

high energy events. We’ll discuss this a bit more in the next section.

6.2.5 Good Noise Cut

The final cut applied was the good noise cut, based on the mean and variance of the pre-trigger

portion of the trace. Given that this data was AC-coupled, a non-zero mean is indicative of an

event on a high energy event tail, which would be mis-reconstructed. A large increase in variance

is indicative of a bad noise environment, allowing for the possibility that a larger than normal

fluctuation may produce a false event. This cut was set to include 98% of the laser events regardless

of their energy, and in the end had a negligible impact on the final spectra. It was included in the

final dataset for robustness but was almost entirely redundant with the chi-square and pulse time

cuts.

6.2.6 Final Spectrum and E�ciency

The laser and background data after livetime cuts, applying event cuts sequentially, can be seen in

figure 6.15. The laser data does not change appreciably aside from the threshold being increased by

the pulse time cut, but otherwise all cuts are flat as a function of energy by design. The background

spectrum initially contained a large population of events above 1 e-h pair that were dominated by

bad events, and after cuts has a shape which is less smooth, and has a much lower rate above 3 e-h

pairs.

There were some significant surprises when we first obtained this spectrum, but all follow-up

investigations did not have any significant impact on the shape, only reducing the overall rate. We

explored all possible variables to see if the events above a single electron-hole pair were inconsistent

with laser data. We did not find any significant di↵erences in pulse shape, arrival, time, goodness

of fit, time-correlations, or any other potential factors we could think of. In the next section we
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Figure 6.15: Top: Laser spectrum after cuts are applied cumulatively, only noticable shape change
in spectrum is the noise below 1 e-h pair being rejected by the �2 and arrival time cuts. Middle:
Science spectrum after cuts applied cumulatively. The �2 cut is responsible for the majority of
the reduction in di↵erential event rate, with threshold di↵erences seen below 1 e-h pair. Bottom:
E�ciency estimated by dividing the number of observed events in each electron-hole pair half bin
by the initial amount. We see that the �2 cut brings the overall e�ciency down to about 85%, but
it is tuned to have a flat e�ciency across our energy range. The arrival time cut sets the e↵ective
analysis threshold. The good noise cut removes a relatively flat 2–3% of events above threshold.
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Figure 6.16: Data from the science exposure compared to the best-fit impact ionization and IR
background model in units of electron-hole pairs. This shows that we can not model the background
above 2 e-h pairs as impact ionization related unless we use a non-physical correlation model.

will explore the origin of the events in three distinct regions of the spectrum, which provide future

avenues for improving the sensitivity of our next science run.

6.3 Background Model

We expected that our dataset would look like the IR background estimated from randoms plus some

Compton background, but we ended up with something much more continuous and were background

limited earlier than expected. We can still explain most of this background, but the regions from

2 to 5 electron-hole pairs, which was the biggest surprise, is still somewhat uncertain. In order to

add confidence to our data, we constructed a basic background model to show that we understand

the detector response near threshold and well above threshold. In this section I’ll discuss the known

backgrounds and also present our theory for the residual unknown backgrounds.

6.3.1 Impact Ionization and IR

In section 5.4.5 I showed that for data taken before this science run, we estimated that we had

2–4% impact ionization probability for events originating in the bulk. We know that the randoms

below 1 e-h pair are due to a flat bulk background (which we assume is due to IR, but that’s not

guaranteed, so we’ll just call it a volume leakage) at 10 Hz. If we model the background as a 10 Hz

volume leakage with 3% impact ionization, we find we can match the background almost exactly up

to 2 e-h pairs, as shown in figure 6.16.

This model shows that we can’t explain the background above ⇠2.1 e-h pairs with a simple impact

ionization model, and given that it’s not quantized, it’s unlikely to be a known background. If it’s
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Figure 6.17: Time dependence of the event rate in the bulk leakage region (0.8–2.5 e-h pairs) as
well as events above this energy after quality and livetime cuts. The bulk leakage rate spiked after
neutralization and seems to decay with a time constant of about a day. It doesn’t seem to be a↵ected
by reversing the crystal bias.

above the Si bandgap, it should largely be quantized, and if it’s below the bandgap it should already

contribute to the bulk rate measurement, and coincidences are already included in our model. The

model also includes a surface leakage component which is below the IR background at 1 e-h pair

but peaks up above the impact ionization background at 2 e-h pairs. This contributes slightly more

impact ionization but is an order of magnitude shy in explaining the origin of this continuous higher

energy background.

Finally, we did see significant time-dependence in the leakage rate, as shown in figure 6.17, but

only in the data consistent with the bulk leakage. We expected that neutralization would improve

our leakage, but it made it demonstrably worse. We surmised that the leakage may have been due to

charge buildup at the detector surface, so we flipped the polarity, but that didn’t appreciably a↵ect

the leakage rate. It’s likely that allowing the detector to run allows the shallow traps to slowly decay,

and as long as we’re at high voltage the crystal remains neutralized. By re-neutralizing we re-filled

those traps, resetting the leakage clock. My current theory is that the steady-state leakage is set

by the equilibrium sub-gap state population freed by IR and re-filled by a small fraction of charges

which become trapped in the bulk. This will be tested in upcoming calibrations by attempting to

raise the crystal temperature to empty sub-gap states while maintaining overall neutralization. It’s

likely though that the leakage rate, if initially low, will rise with time if I’m correct.

6.3.2 Compton Recoils

Let’s consider the other end of the energy spectrum, Compton scattering events. For a very high

energy gamma, given that the crystal is very small, there’s a good probability of the gamma Compton
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Figure 6.18: Long exposures taken at the end of Run 159. Left: background only, showing that
our background is consistent with IR, impact ionization, and Comptons. Right: Adding an Am-241
source leaves the lowest energies unchanged but elevates the flat Compton spectrum. This data had
much lower statistics due to the high trigger rate and lower livetime which was obtained as a result
of running for a fixed number of events, rather than a fixed amount of time.

scattering from an electron in the detector and depositing a small fraction of its energy before

escaping from the detector. Because we are well below any escape peak energy, we can model the

Compton background as flat in energy, and assuming a simple model, we can compute some rough

Compton rates to see if they agree with our data.

Let’s scale from another known test facility. At UCB, without a lead shield, they measure an

event rate of ⇠0.06 Hz/gram over all energies. If we assume that’s spread evenly between 0-100 keV,

then we have

6 ⇤ 10�7 Hz/g/eV = 2 µHz/g/neh = 0.2events/g/day (6.10)

So if for 0.5 gram-days, we only expect one Compton event during the exposure. Looking at the

spectrum, we have around 5 events/eh, or about 50 events in our energy range, which is almost 2

orders of magnitude higher than expected. We do have significantly less fridge mass surrounding

the detector, and likely a much more radioactive internal environment, so this is not entirely out of

the question. SLAC has a larger background rate, and we could argue that since the rate outside

fridge is 180 Hz/kg, without any shielding we could have 3 events, so we’re only about a factor of 20

higher than expected. The fact that the spectrum flat in energy suggests these events are consistent

with a flat Compton background.

The one measurement we have to test this hypothesis was from a previous run, where we tried

to use Am-241 as a calibration source to measure the detector response to events isotropically

distributed in the crystal. The spectrum with and without the Am-241 source, located outside

the cryostat, can be seen in figure 6.18. Both exposures have the same low-energy background,

with noticeably smaller leakage in the 2-eh pair bin relative to the lower energy bin due to stabler

operating conditions but also due to the higher overall IR rate. They also have the same population
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of events which generate a continuous tail out to the edge of the energy window. The di↵erence is

that with the Am-241, the flat background above 3 e-h pairs is much larger, as is the population of

high energy events (mostly 60 keV from the source).

This calibration su↵ered from a high multiple trigger rate, resulting in lost livetime, but when it

is repeated in the near future it should be a very rich dataset for understanding gamma backgrounds

in this detector. One large uncertainty in our background modeling that we will have until we can get

this Am-241 calibration working is the relative importance of coherent nuclear scattering of gammas,

given that the energy scale is somewhat uncertain but the ionization yield is entirely unknown[88].

The next run should take advantage of this calibration to study position dependence in the detector,

which was a large uncertainty for the present analysis and prevented us from doing any fiducial cuts

that would have reduced residual high-radius surface leakage.

6.3.3 Environmental Backgrounds

I’ve just shown that we can understand our background below 2 e-h pairs and above 5 e-h pairs; what

about the intermediate region? We are able to make a contrived charge leakage model to explain the

background, but past experience and early data runs give us another possible explanation for these

events, which is reinforced by analyzing the goodness of fit distributions near our �2 cut. Figure 6.19

shows events taken from di↵erent regions of the energy versus �2 plane after calibration. We see

that the region trending towards low energy and good fit has a large population of both high-energy

event tails and trains of pulses, which are not physics and are likely the result of RF power down

the TES bias line.

The second class of events is more of a concern to us, as they will not be rejected easily by

the �2 cut in the frequency domain. We can reject all of these events with 2 or more pulses with

a time-domain �2 cut, which made our pileup OF not necessary as discussed earlier, but if these

events occur as a single pulse with some probability we will have no way to reject them. To see

whether some background could be leaking through our �2 cut, we looked at the �2 distributions as

a function of energy, shown in figure 6.20.

This figure seems to suggest that while the backgrounds below 2.1 e-h pairs have a similar

distribution to the laser events, the majority of events above 2.5 e-h pairs seem to be drawn from

a distribution with �2 that has a di↵erent shape than the laser events, which we know are good.

There are few enough of these events which pass all of our cuts (a few hundred) that we were able

to look at them individually; the events that pass our cuts look the same as laser events by eye, and

thus we could not reject them. It seems likely however that the majority come from the same source

that produces this population of events. If this is RF driven, then either better RF shielding or the

addition of a second detector will allow us to remove or veto these events respectively in a future

run.

We do have precedent for these events from Soudan, but the change in detector optimization has
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Figure 6.19: Bad events as determined by �2 as a function of energy with examples from a few
sections of parameter space. Top left: trains of pulses, each of which are consistent with our pulse
template, occurring at regular intervals. Bottom left: high-energy pulse tails, and additional pulse
trains. Top right: saturated high-energy pulses. Bottom right: good events with varying degrees of
local saturation.

changed how they appear in our data. The ‘glitch’ events seen in the Soudan data looked like TES

green’s functions, but we were able to reject them based on pulse shape due to the fact that our

physics pulses had falltimes driven by phonon physics rather than TES physics. In these very thin

detectors, the pulse looks identical to a TES green’s function, meaning any external power, if short,

will look identical to a good event. This is perhaps a good reason to allow the pulse to be longer

than the TES fall-time, to have additional rejection power for these events. This wouldn’t be a

problem, at least in theory, if we had multiple detectors or an additional power-sensitive channel in

the cryostat, as we’d have another way to the veto the events as long as they had the same coupling

to this power noise.

6.4 New Physics Constraints

Given the uncertainty in our background models discussed in the previous section, and the fact

that the background is non-quantized (meaning we have little discovery potential for this run) we

set limits on electron-recoil dark matter and dark photons using an optimal interval limit setting

technique[109, 110] with a slight modification. Both of our signal models are quantized, so we only

consider background events within 2� of a quantization peak, as shown in figure 6.21. Otherwise

the limit setting is the standard for a basic dark matter exclusion curve, though in this case we are

background limited and thus our limits would improve with a likelihood analysis. In this section I’ll
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Figure 6.20: �2 distributions for events with di↵erent energy cuts separated into foreground and
background distributions. The top-right distribution shows that the majority of low-energy events
are consistent with laser events, but the top left and bottom panels show that above the known
leakage-driven background there is a significant population of events likely leaking into the signal
region. See text for more details.
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Figure 6.21: Regions of the background considered by the optimal interval are within 2� of the
quantized signal peaks in order to reject parts of the background inconsistent with signal.

briefly review the signal models before presenting and discussing the limits set with this data.

6.4.1 Ionization Model

In order to project an event of known energy into our measured signal space, we adopted an ionization

production model that is consistent with experimental measurements [108, 29, 107] and has the

following mean neh:

hneh(E�)i =

8
>>><

>>>:

0 E� < Egap

1 Egap < E� < ✏eh

E�/✏eh ✏eh < E�

(6.11)

where Egap = 1.12 eV and ✏eh = 3.8 eV [105]. This is a non-trivial uncertainty in our analysis,

as there are no recent measurements of the ionization yield in Si for crystals in our operating

conditions. This is the model which is being used by all similar analyses, so we should have a

consistent systematic as a result, and we plan to measure this in the near future with these devices

by using light sources of variable energy.

The probability distributions in the first two cases are delta functions, necessary in order to

conserve energy. In the third case, we generated discrete distributions with an arbitrary Fano

factor, F , by interpolating between binomial distributions with the same hnehi, but di↵erent integer
number of trials, allowing all energetically accessible numbers of e-h pairs. The Fano factor is defined

as

F =
�2

µ
(6.12)
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where µ = hnehi is the mean of the distribution, and �2 is the variance. A completely uncorrelated

(poisson) process has a Fano factor of 1, but in most radiation detectors we find Fano factors on the

order of 0.1-0.2 due to the fact that large deviations from the mean are kinematically suppressed.

We generated probability distributions for a given mean and Fano factor using the binominal

distribution with n trials of probability p. The binomial distribution has the its variance �2 and

mean µ obey the relations

µ = np (6.13)

�2 = np(1� p) = µ(1� p) (6.14)

which allows us to calculate the n and p values from the Fano factor and mean number of electron-

hole pairs as

F =
�2

µ
= (1� p) ! p = 1� F (6.15)

n =
µ

p
=

µ

1� F
(6.16)

The caveat to these equations is that the binomial distribution is quantized, and thus n is an integer;

this means that we have to interpolate between the distributions for the integers directly above and

below the fractional mean value given by our mean and Fano factor combination. This is done

according to the following procedure:

nl(µ, F ) = floor

✓
µ

1� F

◆
(6.17)

nh(µ, F ) = ceil

✓
µ

1� F

◆
(6.18)

Fl(µ, F ) = µ/nl(µ, F ) (6.19)

Fh(µ, F ) = µ/nh(µ, F ) (6.20)

�F (µ, F ) =
F � Fl(µ, F )

Fh(µ, F )� Fl(µ, F )
(6.21)

Pl(x|µ, F ) = Binomial(x|nl(µ, F ), 1� Fl(µ, F )) (6.22)

Ph(x|µ, F ) = Binomial(x|nh(µ, F ), 1� Fh(µ, F )) (6.23)

P (x|µ, F ) = Pl(x|µ, F )(1��F (µ, F )) + Ph(x|µ, F )�F (µ, F ) (6.24)

where P (x|µ, F ) is the final probability distribution. This is essentially the weighted mean of two

binominal distributions given a non-integer mean with weights defined by how close the Fano factor

is to the intended Fano factor. You can verify that this weighting gives the correct mean and Fano

factor.
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Figure 6.22: An excluded dark photon signal for the di↵erent Fano factors considered as part of
our ionization model, described in the text. The science spectrum is shown in the background for
comparison.

For the sensitivities shown in the next sections we use the measured high energy F of 0.155 [79].

We also vary the F used in the ionization model from its lowest mathematically possible value to

1 to estimate our sensitivity to the unmeasured ionization distribution width at low energies. This

is another parameter that has not actually been measured, and that we can measure, using this

detector in the near future.

Finally, we convolved the predicted e-h pair spectrum with the experimental resolution of 0.1

e-h pairs to produce a simulated spectrum for each model. An example dark photon model that

is excluded by our analysis can be seen in figure 6.22 with the di↵erent Fano factors mentioned

above, showing how the signal is redistributed based on the Fano factor with mean determined

by our ionization model. For all limits in this analysis the Fano factor uncertainty as shown as a

solid band, and it contributes a very small di↵erence due to the threshold-driven nature of these

experiments; if anything, larger Fano factors produce more competitive limits.

6.4.2 Dark Photons

Limits for dark photon absorption as a function of mass for the energy range considered here can

be seen in figure 6.23 compared to the solar limits, DAMIC (CCD) limits[7], and Xenon10/100[35]

limits. Our analysis is competitive with DAMIC down to 5 eV, and achieves a lower threshold due to

the fact that DAMIC had a charge resolution of � ⇠ 1.8 e�. This limit is based on a high-precision

measurement of their 0-charge resolution where they infer that their dark rate is < 10�3 electrons

per pixel per day, as mentioned in the previous chapter. They use a likelihood analysis of their data,

which is just a 0-signal Gaussian without a statistically significant tail, and use that to set limits

based on this dark rate.
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Figure 6.23: Top: Limits on dark photon kinetic mixing compared to the results from DAMIC,
XENON10 and XENON100 [7, and references therein]. Bottom Left (Bottom Right): Limit on DM
interacting with electrons via a heavy dark photon (FDM = 1) (ultra-light dark photon (FDM /
1/q2)) compared to the XENON10 results [35]. The red line is the limit curve with a Fano factor
of 0.155. The salmon colored region indicates the systematic uncertainties due to varying the Fano
factor in the ionization model between the lowest mathematically possible value and 1, as well as
from uncertainties in the photoelectric cross section for dark photon absorption. For signal models
as well as additional astrophysical constraints, see Ref. [2]

.

The criticism of that analysis is that it has no discovery potential. If they had measured a dark

rate, it would also be consistent with a handful of di↵erent noise sources; they also do not have

any calibration to show that they would have been sensitive to a dark rate. In contrast, all dark

photon masses considered in our limit are well above our detection threshold, and we are background

limited. As a result, our limit su↵ers at low dark photon mass. One could argue that if there really

was a dark photon at this mass and cross-section, DAMIC would likely be insensitive to it. We

are also unsure of their ionization model, and despite some communications with the corresponding

authors of Ref [7] we still do not know whether, if we were to use their ionization model, we would

get a similar limit.

Also shown is the solar limit, which is set by the solar cooling bound given that the core tem-

perature of the sun is around 5 keV in energy. This sets a limit at that mass and also on all lower
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masses, with the proportionality

✏2 / m�2
V

(6.25)

given that lower mass dark photons obey the same limit, but are emitted relativistically, and their

mass only enters the rate equation in the coupling term. This is still the strongest limit on dark

photons in this mass range. It’s possible that our limits in their current form could be used to set

an indirect limit on dark photons due to earth cooling, which is an analysis in progress at the time

of this writing in collaboration with Peter Graham’s group at Stanford.

6.4.3 Sub-GeV Dark Matter

Figure 6.23 also shows our limits for electron-recoiling dark matter compared to the Xenon10[35]

limits. These results exclude orders of magnitude of previously unrestricted parameter space over

an order of magnitude in dark matter mass between 500 keV/c2 and 5 MeV/c2. Our results are also

more competitive with the Xenon10 limits for the momentum-dependent form factor due to the fact

that the signal is suppressed at high momentum; our low threshold makes us much more sensitive to

these models even with a much smaller exposure. XENON10 had a 15 kg day exposure compared to

our 0.5g day exposure, a di↵erence of 30,000 in total exposure but less than 2 orders of magnitude

in reach at higher masses.

Coincident with our results, SENSEI[102, 101] published limits with 0.019 gram-days of exposure,

but had to run at a higher resolution than anticipated due to high backgrounds encountered in their

surface run; their operating resolution was about 0.2 e-h pairs. As a result of their higher resolution,

and their inability to reject dark rate pileup, their limit is the same shape as our limit but about

two orders of magnitude higher in cross-section. Their paper lays the groundwork for using surface

limits to set upper bounds on dark matter cross-section, which should be considered for a future

analysis. At the time of this writing, SENSEI is beginning commissioning of their full CCD array

and installation underground at Fermilab, and they are expected to achieve much more competitive

limits within the next couple of years.

6.5 Future Directions

Focusing just on this dark matter search (and ignoring detector physics), we find a large number of

areas for potential improvement based on the lack of understanding of our backgrounds just with

this detector. Some follow-up studies would greatly improve the reach of our search and accuracy

of our background models:

• Temperature stability improvements to obtain a consistently better resolution at 25 mK rather

than operating at 35 mK. This could possibly reduce the resolution from 10 eV to 6 eV for a

good noise environment.
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• Further IR shielding improvements, assuming IR is the primary cause of the primary back-

ground as shown in our background simulations.

• Better understanding of how neutralization and pre-biasing impact the volume leakage rate

and high-voltage surface leakage. Even with the same IR background, it’s possible that we

can reduce the leakage rate by de-populating these targeted states.

• Further study of impact ionization and trapping as a function of bias and polarity to determine

whether there is an optimal bias from a background perspective, and to make the background

model more robust. This was discussed in the previous chapter but deserves to be reiterated

given the context of this chapter.

• Better RF shielding to eliminate non-physical events introduced by the environment, or envi-

ronmental monitoring to allow these events to be vetoed. The jagged pulses seen in figure 6.19

may be trains of RF pulses, for example.

• Completion of Am-241 or other Compton calibration to study position dependence in the

crystal. Some position dependence may also be probed by increasing the laser spot-size,

although this also allows for multiple photons to hit di↵erent parts of the detector.

• Direct measurements of the quantum yield, and Fano factor, as a function of energy and recoil

type, to improve our confidence in the yield model employed for limit setting. This also includes

better measurements of the photoelectric cross-section in Si and Ge which can be done with

this or similar setups.

• Studies of muon events and their impact on the steady-state leakage rate. This will require

very high statistics data and may take advantage of changing the crystal orientation to impact

the muon energy deposition rate.

• Further studies of the impact of additional shielding (both from radiactivity and muons) on

the background across the energy window.

These are only some of the ideas which might allow us to achieve better performance with this

device, but it should be clear from this list and the chapter that there is much work to be done to

understand how to fully take advantage of the science potential of this device.



Chapter 7

Future Directions in

Low-Threshold Detectors

“The chance is high that the truth lies in the fashionable direction. But, on the

o↵-chance that it is in another direction – a direction obvious from an unfashionable

view of field theory – who will find it? Only someone who has sacrificed himself by

teaching himself quantum electrodynamics from a peculiar and unfashionable point

of view; one that he may have to invent for himself.”

- Richard Feynman, 1965 Nobel Lecture

In this thesis I’ve explored the process of designing and operating low-threshold cryogenic

calorimeters which use Si and Ge as their substrates, QETs as the power to current amplifiers,

and low-temperature SuperCDMS electronics to readout signals. I’ve also shown that the most

fruitful path forward for these detectors in the dark matter space relies on lowering thresholds,

and then lowering backgrounds. The regime we’ve entered with these detectors also lends itself to

generic photon detection, and starts to probe the energy scale of coherent interactions, making these

detectors more generally interesting for low-background, precision particle physics. In this chap-

ter I’ll explore some ideas for paths forward to lower thresholds further in SuperCDMS detectors

and reduce low-energy backgrounds. I’ll conclude by discussing the challenges associated with new

detector designs and targets which represent a further iteration on the SuperCDMS approach.

7.1 Lowering Detector Thresholds

In this section, I take a stab at answering the question ’how do we make better SuperCDMS detectors’

focusing on how we might make short term improvements to our existing detector technologies,

266
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imagining that we’re still focused on Si and Ge substrates. This is by no means complete, but is

some of the takeaways from the work in the previous chapters that I believe would be useful R&D.

I have broken it down by the di↵erent parts of the detector, starting from the TES and moving up

through the readout chain to explore some of the issues seen in the recent generation of test devices.

7.1.1 Alternative Detector Materials

The current generation of detectors was designed around a philosophy of reducing Tc given our

Tungsten TES sensors. This is based on the resolution scaling law

�2 =
2kbGT 2

c

✏2


2⌧TES

5
+ ⌧pulse

�
(7.1)

which we’ve seen a few times. In most of this thesis we’ve assumed we’re going to be phonon

bandwidth limited, but let’s imagine we’re TES bandwidth limited, as is the case for many of the

smaller devices; this was the pedagogical example from a few chapters back. This gives us the

resolution

�2 =
4kbT 2

c

5(L� 1)✏2
C =

4kbfsc
5✏2

T 3
c
cTESVTES

(L� 1)
(7.2)

where cTES is the specific heat capacity of the TES material, and the rest of the parameters were

defined in Chapter 3.

At first glance, it looks like we still have a very strong power of Tc to overcome should we move

to a higher Tc material, but there’s actually more going on. Firstly, L is actually a fairly strong

function of Tc. A very sharp transition occurs for films with the Tc close to the bulk value, but for

tuned Tc we’ll get a higher responsivity (larger L) when we’re using a film which acts like a bulk

superconductor, which improves our sensitivity. In addition, part of the Tc scaling is actually the

scaling of the heat capacity. The heat capacity sets our saturation scale, so (all else being equal)

increasing the Tc raises the energy range over which the TES is linear, something we saw was a

concern and limits the upper range of the readout energy. We can calculate a rough dynamic range

as
✏C�T

�
/
r

cTESVTES

LTc

(7.3)

So strictly speaking, increasing Tc can be expected to weakly lower the dynamic range, but if the

sharpness also increases then the dynamic range will decrease even more. Using a TES with a higher

specific heat capacity is an easy way to increase dynamic range, although it also leads to increased

resolution.

The take-away here is that for Tungten, going back to a higher Tc isn’t going to allow us to

improve our resolution; lowering Tc gets us closer to the bulk properties and thus makes a sharper

transition. If we can live with a smaller dynamic range, however, we could opt to reduce the volume

of the Tungsten. Or we could opt for a di↵erent material with a higher Tc as long as it also had a very



CHAPTER 7. FUTURE DIRECTIONS IN LOW-THRESHOLD DETECTORS 268

sharp transition and we could lower the volume of the TES relative to a tungsten design. This is the

di�culty with optimizing a detector based on TES properties rather than phonon properties; many

changes counteract, and there is not a clear optimization strategy that is independent of material.

An infinitely sharp transition has excellent resolution but zero dynamic range...it’s just a threshold

detector, like a bubble chamber.

An interesting prospect would be to use Al/Ti bi-layers for our TES. They have a Tc which can be

tuned between 0.1-1.2K [68] and for the higher Tc designs have very sharp transitions. In addition,

they’re very fast (microsecond fall-times) and have seemingly comparable thermal conductance to

tungsten, implying a Tungsten-like G but with a much lower C. Given that we’re targeting lower

volume, the lower resistivity wouldn’t be an issue, and they have now been demonstrated to achieve

good performance as a TES. It’s unclear from existing data whether phase separation would be an

issue, but initial results indicate they would be an interesting material to try for SuperCDMS.

I’m trying here to motivate raising Tc...but isn’t that what we don’t want to do? The reason

I’m even bringing this up is that the 40 mK target Tc of SuperCDMS, and lower Tc of detectors like

CRESST, put an incredibly tight constraint on all of our experimental infrastructure. Only very

new dilution refrigerators can achieve the necessary base temperatures, and we’ve clearly seen that

our existing thermalization strategies do not work very well below 50 mK. The best refrigerators

are dry dilution refrigerators, meaning they have all of the vibration and RF issues we’ve seen so

far. It may be worth aiming for a higher Tc device if we can make our readout faster to trade Tc for

device response time. This won’t help our larger detectors, but will be interesting for devices with

sub-µs phonon collection times. Al/Ti would also allow us to fabricate the TES directly into the

aluminum fins and play with the relative trapping depth at the TES, which would add an additional

optimization handle and possibly improve QET e�ciency.

As a final note, it’s imperative that we improve our clamp design for all of the detectors, especially

larger detectors, so that we can be sure that our crystals are actually at the base temperature

indicated by the fridge thermometry. It’s clear now that Cirlex stops being a good thermal conductor

at 50 mK, and causes a spike in cooling time which keeps the crystal at a higher temperature than

the fridge. Sapphire or diamond clamps (which don’t need to be single crystals) should not have

these spin-glass issues, and should be good thermal conductors down to 0 K...but to my knowledge

there aren’t measurements which prove this yet. Significant R&D is starting to explore additional

clamp mitigations, but this is certainly an important area of research for SuperCDMS.

The main concern about clamp changes is that they maintain electrical isolation, so that we don’t

induce a surface leakage current by placing a clamp (implicitly grounded) on the crystal, biased to

some large voltage. One solution to this problem has historically been the contact-less housing, where

a floating electrode is used to generate an electric field that penetrates the crystal; this approach

su↵ers from time-dependent droop as charge builds up, as well as uncertain total voltage drop across

the crystal. New housing designs utilizing engineered clamps made of high thermal conductivity, low



CHAPTER 7. FUTURE DIRECTIONS IN LOW-THRESHOLD DETECTORS 269

electrical conductivity materials need to be developed, and in the process we should be sure to design

them to produce as uniform an electric field in the crystal as possible, to reduce position-dependent

NTL gain droop. As shown in the detector design chapter, clamp and detector design are closely

tied to concerns about surface leakage, so this is a complex design issue that we have never really

addressed in detail.

7.1.2 Improving QET Resolution

On the flip side, imagine we’re trying to really push to lower resolution; this is still the post by

which to guide ourselves. We should collect phonons quickly, reduce the size of our TESs, and go to

the lowest achieveable Tc, ⇠15 mK in Tungsten. There are a number of improvements we need to

make to maximize the e�ciency of our designs, and allow for the possibility of reducing Tc further.

The easiest way to lower the resolution of an existing design is to improve our fabrication process.

We’re currently limited to Tungsten line-widths on the order of 2–3 µm, but thicknesses of 40 nm

are su�cient to achieve the right Tc. This means the correlation lengths are much shorter than

2 microns. If we could achieve 0.5 micron line-widths, we could make significant design changes

(higher resistances, lower volumes, shorter TESs) which would immediately improve the robustness

of our designs. If we were to drop all of the line widths on the HV TES to 0.5 microns without other

changes, it would work much better (it would solve the resistivity issues) and reduce the resolution

by a factor of 2, all other things being equal. We’d likely also want to reduce the length to move

away from potential phase separation issues, but this would be a no brainer.

From here we have a few ways to go. We can try to improve e�ciency, but there’s not a ton of

margin there; we’ve achieved about half of our theoretical maximum for phonon down-conversion in

the Al fins. We could cut resolution in half by improving the CDMS HV e�ciency to its theoretical

maximum; the limitation is then trying to determine how to improve the energy transport from

the crystal to the Al fins, which is beyond the scope of this thesis but is worth considering. If we

can understand how to better connect the fins to the TES (reduce the amount of tungsten needed

between the TES and the fins, and how to optimize the overlap) we should be able to reduce the

e↵ective TES volume for the same QET and QET channel design. For example, we have some

evidence that increasing Al film thickness also increases quasiparticle collection e�ciency. If we can

double the length of the Al fins on the HV mask, then we have an incredibly fast phonon absorption

time with the same TES volume or we can match the phonon absorption time with less than half of

the volume, doubling the resolution. The path forward, then, is it continue to work on improving

the model of the QET interface for phonons into the fins, and quasiparticles to the traps, to allow

these regions to grow and thus allow the TES volume to shrink.

Within our existing framework, there is a credible path forward by exploiting improved fabrica-

tion processes, largely achievable through changes to the alignment and photoresist processing and

etching. Figure 7.1 shows the optimization space for the smaller line widths and updated device
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Figure 7.1: 2D optimization plots for updated CDMS HV fab specs, including reduced wire widths
(10!2 µm) and reduced TES width (2.4!0.5 µm) as well as higher Rn (150!300 µm) and thicker
fins at 1.2 microns. I also updated this code to take into account a modified resistivity expectation of
around ⇢ ⇠ 5 ⇤ 10�8⌦m found from our test devices. Top Left: Energy E�ciency. Top Right: First-
pass phonon collection e�ciency. Bottom Left: Energy resolution. Bottom Right: Phonon collection
time. Notice that we now have a broader space in which we can achieve the same resolution, and
we could even change the existing design according to these parameters without any significant
modifications aside from changing the QET number. This demonstrates that without improvements
in quasiparticle collection, our only other handle is fabrication. We improve e�ciency somewhat by
reducing line widths, but that only allows us to make smaller QETs, not significantly improve our
resolution.
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information from the testing program, and shows that we can achieve ⇠4 eV resolution for a wide

range of QET aspect ratios. What we notice though is that these improvements seem just to flatten

out the optimization space. It’s possible that as the fins get large enough, we can change the wiring

to look like the iZIP wiring scheme which minimizes dead aluminum (the rails are just part of the

QETs); it’s unclear whether that would be a significant improvement. If we’re unable to improve the

QP collection e�ciency with film thickness and quality improvements, or other mechanisms, we’re

still just essentially TES volume limited, and the only way we can appreciably reduce our volume is

by making thinner structures or using smaller substrates.

To follow this to its logical conclusion, let’s consider how we’d take the HVeV design and lower

the resolution below 1 eV, to take advantage of a smaller detector. It’s a 3% e�ciency device, so

that’s the largest problem, but even without changing the QETs we can improve the e�ciency by

moving to double-sided readout. If we clean up the surface roughness and move to a double-sided

design, we should conservatively be able to achieve 10% e�ciency. We think that, in a clean noise

environment and with a low bath temperature, that device is intrinsically a 3–5 eV device. So

tripling the e�ciency gets us close to 1 eV. Now consider the phonon fall time argument. We expect

a TES response on the order of 100–200µs, and equation 4.24 gives us the phonon collection time

⌧pulse =
ttransit
falfabs

=
hchip

vphononfalfabs
⇡ 4mm

(2500m/s)fabs
= 1.6 µsf�1

abs
(7.4)

where I’ve scaled the values by 3.5 for the better impedance match and high sound speed in Si

compared to the Ge numbers. For the current device, this gives a fall time of 6.5µs for the phonons,

but we’d like to have that fall time be equal to the TES fall time. Even for a very quick TES

response, we can go to 4% coverage and still have a phonon fall time of around 30–40 microseconds.

This doesn’t change the resolution for the same QETs with shorter fins, but will improve e�ciency;

more importantly though, it allows us to use smaller TES units for lower tungsten volume. We can

go from 25 QETs to 12 QETs per channel, with smaller fins, and shorten the TESs as well to get a

reduction in volume by a factor of 4, or double in resolution. This would allow a device with ¡0.5 eV

resolution not taking into account optimizations for e�ciency discussed earlier.

7.1.3 Improving Readout Electronics

A significant hurdle faced by the SNOLAB warm electronics is the impact of EMI and RF noise on

the energy resolution of our QETs. The first of these contributes noise peaks that can couple both

into the TES bias line, contributing voltage and power noise, as well as onto the board, creating

noise at the pre-amplifier input which is independent of TES bias state. The second, however, is

more insidious, as we discussed in chapter 5, because it constitutes a power noise. Low-frequency

power noise like vibrations can be mitigated with the correlation techniques discussed earlier, but

high-frequency power noise down a bias line is a problem we cannot remove in analysis.
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To see why, let’s consider an RF signal modulated by a periodic function u(t) with a carrier

frequency fc. We have the time-domain amplitude signal

y(t) = u(t) cos(2⇡fct) (7.5)

and if this is a current noise down the TES bias line, then we find the power as a function of time is

P (t) / u2(t) cos2(2⇡fct) =
u2(t)

2
[1 + cos(2⇡fct)] (7.6)

We will never see the high-frequency component if it is above our dI/dP pole, but we do see low-

frequency artifacts because of the rectification of current into power noise, just like we saw for

vibrational power noise. We can explore various ways RF can couple to the detector which have

di↵erent scalings as a function of TES bias point, but the point stands that this RF power will

contribute to low-frequency noise.

The most problematic case is when there is a simple power coupling directly into the TES, and

the RF is constant in amplitude as a function of time. Then what we would expect to see is a

white noise with a DC power component that causes our noise model based on the bias power to

under-predict our observed noise. This is in fact exactly what we see on all of our detectors except

on some of the small TES test devices, and is heavily suggestive of a direct RF coupling onto the

detector. Early results from TES test devices as well as detectors of di↵erent kinds indicate that

RF power noises likely couple both as joule and absorption power noise, meaning that both small

TES and large detectors are a↵ected, while a middle size TES test device may be less prone to RF

induced noise.

The solution to all of these problems is to move the pre-amplifier stage inside of the fridge, and

use the fridge as a Faraday cage to block EMI and RF. We’ve had some success using Pi filters

between the DCRC and readout electronics, but what we’ve discovered is that we have to make

some hard decisions about whether we filter the TES bias line. We should always use Pi filters

on all lines into and out of the fridge, and make the fridge as RF tight as possible, but allowing

signals below 1 MHz to pass down the bias line introduces both EMI and power noise into all lines

in the system. The trouble here is that we’d like to have a high bandwidth on the TES bias line,

and we need a high bandwidth in the SQUID feedback loop, in order to do complex impedance

measurements and to operate the TES in closed loop.

The second concern can be mitigated by putting the entire SQUID feedback loop inside the fridge

Faraday cage, and using highly filtered analog signals to set any gains and biases from outside the

fridge. This will reduce possible coupling of EMI into the SQUID and from the feedback line into

the TES. This is similar to what is implemented in the Northwestern ADR, and has resulted in

significant power-coupled noise reduction. Putting the pre-amplifier inside the fridge, and placing it

before the pi-filter, also allows us to decouple the SQUID and SQUID bias line from RF signals. We

---
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can’t, however, put a DC filter on the output of the pre-amplifier for obvious reasons, but if the gain

is high enough by the time the line exits the fridge, it should make EMI relatively less important.

The last concern about complex impedance is the most important however. Any filtering we

don’t do on the TES bias line allows outside EMI and RF to get to the TES, which directly impacts

our resolution. The simplest solution would be to severely low-pass filter and PI filter the TES bias,

but that would prevent us from using square and sine waves to measure complex impedance. The

potential solution to this is either to put the bias circuity inside the fridge Faraday cage as well,

or try a new technique to measure complex impedance. We could, for example, heat up the shunt

resistor so that its voltage noise exceeds the other noise in the system, and use that as an in-situ

measurement of complex impedance. In any case, we need to re-design how the analog and digital

sections of the DCRC connect, and which components are placed inside the fridge, to mitigate these

fairly major issues.

7.1.4 Phonon Imaging and Noise Correlation

One of the main lessons I took from the early CDMS HV tests is that our method of optimal

filtering breaks down severely for highly position dependent signals, and we do much better with

sophisticated signal templates. When we have any correlated noise or a joint-channel template,

we can always improve on the naive optimal filter result. In our earlier detectors, where we had

8 channels and used low voltage bias, or in CDMSlite with 4 channels, we didn’t have enough

information to reconstruct position and utilize joint-channel methods beyond our two-template fits,

which still required summing channels and did not account for inter-channel correlations. We can

take lessons from imaging and signal processing to see that we can improve on the naive optimal

filter summing resolution if we can increase the number of readout channels on a single detector.

At the end of the day, the energy resolution of a QET channel is the quadrature sum of the

resolution in each TES. This means that, fundamentally, the resolution of each TES is given by the

equation

�TES =
�detp
2NTES

(7.7)

where NTES is the number of TES per channel on a given side. For the large detectors, consider

the fact that the NTL phonons are highly collimated, and may be focused withing a beam of size r

where r decreases as a function of voltage. This means that, if we only use pixels with NTL phonons

collected early in the event, we can obtain a resolution

�local = fNTL

r
ANTL

ADet

�det (7.8)

where fNTL is the fraction of the phonon energy inside our cone. So if we can isolate half of the

total energy in this area, we find that we can improve the resolution by a factor of 5 compared to
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the naive summing method. If we have each TES read out on a single detector, we can do PSF

fitting. In this case we can obtain an energy resolution fitting in one dimension of[43]

�det,psf =

r
6
p
⇡

r

wcell

�TES =

r
3
p
⇡

r

wcellNTES

�det (7.9)

where wcell is the side width of a QET unit cell in SI units and r is the standard deviation of the PSF

in meters. In the limit that all of the energy is concentrated in a single QET, this is a potentially

much larger improvement in energy resolution, but in the limit of very large variance reduces to the

same sum of QETs that forms our naive estimate. This of course needs to be done in two-dimensions

(according to the formalism derived in Ref [42]) but this is a nice demonstration of why doing local

fitting helps reduce parameter uncertainties, and why having a position independent signal is not

necessarily a bad thing if it can be properly imaged.

To do this would necessitate some sort of on-detector multiplexing, either by using many RF

squids on a single line, each connected to an individual TES, or comping up with some means to

fabricate naturally multiplexed structures on the detector surface. For this reason, the Caltech group

has been working on using Microwave Kinetic Inductance Detectors (MKIDS)[114] to read out CDMS

detectors for about a decade[76]. These are superconducting sensors that change their resonant

frequency depending on number of broken cooper pairs along their conduction path, allowing them

to be naturally multiplexed along a single RF bias line fabricated on the detector. Other groups

have already shown that these devices have a lot of promise for imaging[71], but as of this writing a

working MKID readout for a CDMS detector is yet to be realized. It’s possible that within the years

after this writing, a currently fabricated Al-based MKID detector may show sub-keV resolution, and

start to compete with our TES readout in terms of resolution, at which point PSF fitting may allow

MKIDs to leapfrog TES readout. It’s also possible we can come up with an RF multiplexing scheme

for TES arrays using some sort of tank circuit fabricated on the detector, but it’s less clear how to

procede in that direction technically.

Finally, we can improve our ability to reject environment noise by including the PSD of a second

detector or independent TES channel which should have no correlation to our channel in an ideal

noise environment. This is easy to do with the correlated optimum filter techniques discussed in

this thesis; the idea would be to use a pulse template based on the given detector channel, and for

the environmental channel use a null template. The formalism will then allow us to subtract o↵ the

correlated noise between the two channels and fit the pulse only limited by the component of the

noise uncorrelated between the detector and environmental channel. This is a very powerful way for

us to remove vibrational noise, for example. It will not help us to remove DC power noise caused

by RF, which can only be solved with the techniques outlined in the previous section.
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7.2 Studying Low-Energy Backgrounds

There are a multitude of new detector background features at low energy that become very important

to model if we really want to understand our detector response. Starting from extrinsic backgrounds

and moving to intrinsic backgrounds, the first concern is that we accurately model gamma and

neutron interactions in our detectors. We can break these down into di↵erential rate measurements

and ionization measurements, both of which are very uncertain at the time of this writing.

7.2.1 High Energy Gammas Producing Low Energy Events

Below about 1 keV, the nature of our backgrounds change drastically. Above this point, and around

60–200 keV where our normal gamma and neutron sources tend to be, we can generally assume

that any background is fairly isotropic in the crystal, and that it produces a well-defined number of

electron-hole pairs. Compton scattering spectra for most sources have been measured at comparable

resolutions so we’re mainly using past measurements to predict signals give our detector response.

For a detector with sub 10 eV resolution or sensitivity to single charges, there are a few processes

which come into play that complicate these calibrations. One in particular is the trade o↵ between

elastic Compton scattering, for interactions of a high energy � with an electron, Rayleigh scattering

of these photons o↵ of the entire atom, and coherent � interactions with an atomic nucleus[88].

The first and last of these mechanisms should resemble electron and nuclear recoils, but the

middle term is less clear. Sensitivity to MeV-scale DM also relies on electron-mediated coherent

atomic collisions which produce non-trivial charge production and energy transfer, so more work

needs to be done to determine the charge yield of coherent photon scattering events as a function

of energy deposition. It’s possible with the charge-resolving detectors to make these measurements

given a high-energy gamma source and a small-angle coincidence detector at a test facility, and in

the process we would gain more confidence in the charge generation models shown in Ref [33] on

which our DM search spectra are based. The study for Ref [88] focused on searches for nuclear

recoils, assuming this is just a small nuclear-recoil energy deposit, but it becomes important to

recognize that it may have a larger charge yield, and therefore be a more important background in

our electron-mediated HV searches.

The nature of our backgrounds is also entirely di↵erent now, especially given that we’re sensitive

to not only electron-hole pairs but also fractional charges from bound impurity states. This means

it’s a dangerous prospect to assume any energy transfer below the bandgap is sub-threshold in HV

mode, given that any energy deposit can still free enough fractional charges to generate an event

with significant NTL gain. If an event can scatter o↵ multiple crystal impurity states in a single

event, it’s possible it could even produce a high energy tail. For this reason it will be important for

us to continue our program of high-energy gamma calibrations even though the primaries are now

far outside the energy regime of interest.
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Figure 7.2: Top: IR spectral irradiance as a function of blackbody temperature. Bottom: Relative
IR rate per impurity as a function of IR temperature for fixed impurity depth (left) and as a function
of impurity depth for fixed temperature (right).

7.2.2 Sources of Dark Events

The topic I spend most of my time thinking about these days is dark rates; how they’re produced, how

to reduce them, how we might alter our detector designs to lower the rates given the handles we have.

Remember from chapter 5 that these events are consistent with only one charge carrier (either an

electron or hole) drifting across the crystal from its initial location to a detector surface, undergoing a

fraction NTL gain and producing (if uniformly distributed in the crystal) a flat distribution between

0 and 1 full electron-hole pair. This can be either an electron or a hole, and if it’s produced uniformly

in the bulk, we won’t see an di↵erence in polarity. The non-quantized nature of the dark rate, at

least at lower voltages, tells us that it must be bulk driven, and cannot be surface driven, otherwise

it would be quantized and polarity dependent, and it cannot be localized to a defect for the same

reason.

Let’s consider a simple model then for this leakage. Suppose we have a bound state of known

energy ET on an impurity (or a site of known density which can form a stable bound state). It can
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be freed by any process which exceeds this energy threshold. We can then calculate the expected

rate as the integral

�(nI , ET ) = nI

Z
infty

ET

d�

dE
(E) (7.10)

which we can see scales proportionally to density, but its scaling with respect to the bound state

energy depends on the nature of the exciting event and its energy dependence. For infrared radiation,

if we assume the cross-section is independent of energy, we obtain a rate scaling law of the form

�IR(nI , ET ) / nIE
3
T
e

ET
kbTIR (7.11)

where TIR is the IR blackbody temperature. Figure 7.2 shows the IR leakage rate per impurity

for di↵erence blackbody temperatures and impurity binding energies. We see that for the same IR

environment, we get an exponential reduction in leakage rate for a doubling of binding energy at low

IR temperature, but 300K IR is insensitive to binding energies below 100 meV. We also see that if

we only have 4K or lower blackbodies, impurities above 20 meV will not contribute to this leakage

rate. These plots should allow us to determine whether IR is the cause of our charge leakage.

If the rate is due to Compton scattering, we can assume it’s flat in energy and reduced in rate

by the ratio of atomic to impurity density:

�Compton ⇡ nI

nA

d�

dE

����
E>Egap

(Egap � ET ) (7.12)

where

nA =
⇢NA

mT

(7.13)

is the number density of atoms in the lattice with ⇢ the density in g/m3, mT the atomic weight, and

NA Avogadro’s number. The ratio nI
nA

is useful for comparing detectors of di↵erent impurity densities

and target materials in the same environment and is a clean indicator, for two typical crystals, of

whether Compton scatters are the primary culprit. More importantly however is that for any

reasonable crystal we should expect Compton scattering o↵ of impurities to be highly suppressed

compared to electron-hole pair production due to this ratio. The highest purity Si typically has

1013 cm�3 impurities (Ge has 1011 cm�3) meaning that the Compton-induced dark rate due to this

mechanism is suppressed already by 109 in Si and 1012 in Ge. This can’t be our leading term.

The coherent scattering comes back in here, however; we know that we can enhance the rate

below the gap energy by 6 orders of magnitude compared to the Compton rate for potassium 40[88],

which brings these numbers to within a few orders of magnitude. Depending on how this rate scales

based on primary photon energy, and how the cross-section may be enhanced for di↵erent impurity

species (we may get a much higher rate for over-charged states) we could start to find a situation

where the rate is much higher than the Compton rate. That may still be a stretch given that the

-- --



CHAPTER 7. FUTURE DIRECTIONS IN LOW-THRESHOLD DETECTORS 278

Figure 7.3: Left: Schematic of the di↵erent autoionization processes described in Ref [39]. Right:
Autoionization rate for overcharged states as a function of electric field strength, taken from Ref [99],
for donors (blue) and acceptors (red).

science data shows this dark rate to be many orders of magnitude higher than the Compton rate.

Studying these backgrounds with di↵erent incident photon energy will very quickly tell us whether

this might be a viable mechanism for at least some of the leakage events.

Finally, let’s consider auto-ionization; the probability that some sub-gap state can tunnel free

under an electric field or due to phonon interactions. I won’t go into depth on the rate calculation,

which is derived in detail in Ref [99]. The process is schematically shown in figure 7.3, where

the de-trapping gets more probable as field strength is increased (the trap tips over more) or the

temperature is raised (phonon assisted tunneling increases in probability). On the right we can see

for the most weakly bound states, the autoionization rate is predicted to be around 1 Hz around

20 V/cm, much lower than the field strengths we ran in the HVeV detector, and is exponentially

increasing; the fact that our leakage is independent of voltage suggests these states may not be the

dominant leakage yet if this calculation is correct. Impurity states, on the other hand, reach 1 Hz

rates around 1000 V/cm, and also increase exponentially. We observe rate increases at high voltage

around 400 V/cm, but the leakage is quantized, so it can’t be the autoionization. The voltage

dependence of the leakage as we continue to reduce our IR backgrounds should help us determine

whether autoionization is a prominent factor in our leakage.

The true impurity state picture is more complicated when we start to consider the di↵erent
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Figure 7.4: Impurity binding energies for a variety of impurity species in Ge (top) and Si (bottom)
in eV. Si doesn’t have impurity levels below about 33 meV, while Ge has many impurities around
10 meV. This could explain in part the huge di↵erence in leakage behavior between the two substrates
for the same environment. These figures do not include overcharged states (which have energies on
the order of 1 meV[99] or the possibility of carriers bound in crystal defects. See [85] for an in depth
discussion.

allowed impurity binding energies we can produce in Si and Ge. Figure 7.4 shows impurity binding

energies for a number of di↵erent impurities as measured in both Si and Ge; we see that both have

numerous impurities around the same energies and a continuum of possible states above their lowest

energy traps. Si has fairly deep traps compared to Ge, and it’s likely Si leakage can be largely solved

if it’s backgrounds related. Ge will be much more susceptible to all of the mechanisms discussed

in this section, as well as surface e↵ects we haven’t discussed. In addition, both crystals permit

over-charged states on impurities at our temperatures with energies on the order of 2 meV in S (0.5

meV in Ge)[41], which clearly will dominate the leakage rate for all of these mechanisms if they

exist in significant concentrations. Further study of the impurity species and density in our crystals

should allow us to use these known energies to try to further understand the variation in leakage

rates we see.

7.3 Exploring New Detector Targets

Having considered our readout, electronics, and backgrounds in the existing CDMS substrates, we

should take some time to consider whether there are other target materials we should pursue if Si

and Ge turn out to be dark rate dominated, or if we want to achieve even lower detector thresholds.

The dark matter potential of all sorts of types of materials has been fleshed out in detail in the

literature over the last few years and a schematic showing some of the possibilities is shown in

figure 7.5 reproduced from Ref [2]. I direct the reader there for references and in depth discussion
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Figure 7.5: Range of dark matter search potential reach for a variety of techniques and detectors,
taken from Ref [2].

on all of the possibilities currently being discussed.

From a SuperCDMS perspective, we can continue to use Si and Ge in HV mode down to the

Si/Ge bandgap energy, which sets the minimum electron-recoil dark matter mass we’re sensitive to.

In terms of NR, there is no real detectability floor, but as discussed earlier in this chapter, it’s going

to be challenging to go below about 0.1 eV in the foreseeable future. If we can continue to refine

our QETs to achieve smaller tungsten volume, we can also make our detectors somewhat smaller,

and produce more of them, to build up to the kg-year sensitivity that will be required to make

significant dents in the sub-GeV/c2 mass range. At the time of this writing, work is underway on

preliminary limits down to around 300 MeV/c2 using a 6 eV resolution device. The challenge lies

in background rejection, but any device which can achieve lower resolution will immediately be able

to set world-leading limits with a few days of exposure.

What substrate might do better for nuclear recoils that could utilize SuperCDMS technology?

The answer is the only other indirect bandgap semiconductor: diamond! Diamond benefits from

better momentum transfer for Sub-GeV dark matter (being lighter than Si, it is only beaten out

by He in terms of momentum transfer) and it has a faster phonon velocity (2.5 times faster than

Si), and higher energy, more stable phonon modes than either Si or Ge. It can hold electric field

strengths up to MV/cm and has no shallow impurity binding sites. The downside is that it has a

larger bandgap than Si and Ge (5.5 eV), so it can’t reach the very low Sub-GeV masses that Ge and

Si can, but it promises to be a very background-free, excellent single UV photon counting device
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which is capable of extremely low energy resolutions if we can overcome the technical challenges of

making working QETs on diamond. This is a very exciting prospect that we’re beginning work on

at Stanford.

Further in the future, CDMS technology can be extended to superconductors using the same

quasiparticle trapping approaches we employ in our QETs. These ideas have already been explore

some in Ref [48] both using phonons and quasiparticles in superconductors. We could imagine using

a niobium target with aluminum fins and a tungsten TES, or using aluminum MKIDs on a niobium

crystal. The challenge with superconductors, however, is that quasiparticles and phonons decay

much quicker than charge carriers and phonons in semiconductors[56], and we can’t apply a bias

voltage to redirect charge, so these are strictly di↵usive devices. Superconductors are the best vehicle

for detecting ultra-light DM (down to the fermionic limit) if many of the technical challenges can

be overcome; this is likely further into the future but no less exciting.

7.4 Experimental Outlook

Given the possible new directions summarized above, it’s clear to me that there are many paths

forward for SuperCDMS technology to continue to push to lower mass and cross-section in dark

matter searches. The nice synergy we get as we start to achieve eV-scale and sub-eV resolutions

is that these devices also become interesting for more general imaging science, and may be useful

as more sensitive readout stages for other dark matter experiments. It’s likely, for example, that a

device similar to the prototype discussed in this thesis will be used as the primary readout stage for

a superfluid helium experiment, indirectly using SuperCDMS technology to achieve lower nuclear

recoil thresholds.

In addition, as we solve our dark rate problems, and as we move into using di↵erent materials, it’s

likely that our devices will become simple enough to operate that they can begin to be used for single-

electron resolution imaging. For Si, we could already use these detectors with the fiber coupling to

do single-pixel imaging, and as we solve the outstanding problems with Ge leakage currents, this

will extended our sensitivity in to the near-infrared. The understanding of dark current may also

allow us to purposely dope crystals to extend sensitivity to photons in the 10 meV energy range,

which would also prove to be a very sensitive probe for dark photons.

In all areas of dark matter and photon science, however, we face sti↵ competition. There are

now three experiments working with single-electron resolution CCDs (SENSEI, DAMIC-M, and

DANAE), the last of which claims comparable timing resolution to our detectors. CRESST has

had success with a 3 eV detector lowering experimental thresholds to 100 MeV/c2, but has a strong

low-energy background that limits their sensitivity, and EDELWEISS is not very far behind. If

we contrast our position today compared to when I started as a graduate student, we have clearly

pivoted (successfully) to a low-mass experiment, and through dedicated R&D have come out on top,
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for now, in the electron-recoil space for very low masses. It’s clear that we need to maintain this pace

of development to sustain our experimental edge before SuperCDMS SNOLAB begins operations.

If any of these potential improvements bear fruit in the next year or two, we can certainly maintain

this edge in the years to come.



Appendix A

Analytic Detector Partition

Functions

In this appendix I develop analytic expressions for the radial and z-partitions in a detector with

two composite channels to define each partition, comparing either the total energy on each face for

the z-partition or the total energy on a face between an inner and outer separation for the radial

partition as a function of z-position. In this way we can develop expectations for e↵ective e�ciency

of surface events measured by sensors on the far face and attempt to correct for missing channels or

one-sided readout.

A.1 Z-Partition

Starting with the z-partition, suppose that an event produces an isotropic phonon signal from its

initial point. If the event occurs along a line in z at the center of an azimuthally symmetric detector,

we can more easily develop an analytic form for the energy distribution and then hope to generalize

to arbitrary radius. We find that the energy di↵erence between each side is proportional to the

di↵erence in solid angle subtended by the side from the viewpoint of the initial event:

�⌦ = ⌦up � ⌦down

For a crystal of radius R and thickness h, we find that the angle to the edge of the top surface (if

we defined z = 0 as the bottom surface) is

cos(✓up) =
h� zp

(h� z)2 +R2

283
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and the angle to the bottom is

cos(✓down) =
zp

z2 +R2

The solid angle subtended for some angle ✓ from the normal to the surface is found as

⌦ =
A

r2
=

1

r2

Z
✓

0

Z 2⇡

0
r2 sin(✓)d✓d� = 2⇡

Z
✓

0
sin(✓)d✓ = 2⇡(1� cos(✓))

this gives us

�⌦ = 2⇡ [1� cos(✓up)� 1 + cos(✓down)] (A.1)

= 2⇡ [cos(✓down)� cos(✓up)] (A.2)

= 2⇡

"
zp

z2 +R2
� h� zp

(h� z)2 +R2

#
(A.3)

In the limit of very large radius (R >> z, h), we thus have

�⌦ ⇡ 2⇡

R
(2z � h)

and for the opposite limit (equivalent to very collimated phonons) we find

�⌦ ⇡ 2⇡


z

z
� h� z

h� z

�
= 0

and in this limit we have no z-dependence. We can also take this further to actually calculate the

true partitions based on an incident energy. For an event of energy E isotropically radiated from a

given point, we have the angular partition

E

⌦
=

E

4⇡

such that

�E = fprompt

E

⌦
�⌦ = fprompt

E

2

"
zp

z2 +R2
� h� zp

(h� z)2 +R2

#
(A.4)

�E

E
=

fprompt

2

"
zp

z2 +R2
� h� zp

(h� z)2 +R2

#
(A.5)

Here fprompt is the fraction of phonon energy which carries the initial position dependence. For our

detectors this will be approximately falfabs where fal is the fraction of surface metal coverage and

fabs is about 40% in Ge and ⇠ 70% in Si.

This equation allows for a nice measurement of that prompt fraction and a validation of the
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assumption of prompt initial distributions, but will not normally be very useful unless we incorporate

the true radial position of an event. Here I generalize the z-partition to arbitrary radius. We first

have to generalize that cos(✓) function to incorporate � asymmetry. We will assume that the radial

shift occurs along � = 0, but this is general as the partition won’t actually care about the azimuthal

angle of the displacement from r = 0 given that we integrate over �. We can do this � generalization

as

cos(✓down(�)) =
zp

z2 +R2(�)

where R(�) is not the crystal radius but the distance to the edge of the crystal as a function of �.

We have

R(�) =
p
(R cos(�)� r)2 +R(sin(�))2

such that

R(�)2 = R2 � 2Rr cos(�) + r2

The integral we want to evaluate is thus

⌦ =

Z 2⇡

0

Z
✓(�)

0
sin(✓)d✓d�

where the integration range is now a function of �, and we have to do the integral over ✓ first. This

is the trivial part of the integral, and we thus get

⌦ =

Z 2⇡

0
(1� cos(✓(�)))d� = 2⇡ �

Z 2⇡

0
cos(✓(�))d�

Doing the integral for the bottom surface first for simplicity, we have

Z 2⇡

0
cos(✓(�))d� =

Z 2⇡

0

zp
z2 +R2 � 2Rr cos(�) + r2

d� (A.6)

= z

Z 2⇡

0

⇥
z2 +R2 + r2 � 2Rr cos(�)

⇤�1/2
d� (A.7)

I’ve put the integral in this form to abstract it a bit; if we substitute a = z2 +R2 + r2 and b = 2Rr,

we see first that b < a and we evaluate an integral of the from

Z 2⇡

0
[a+ b cos(�)]�1/2 d� = a�1/2

Z 2⇡

0


1 +

b

a
cos(�)

��1/2

d� = a�1/2

Z 2⇡

0
[1 + c cos(�)]�1/2 d�

where c = b

a
 1. This is a well defined integral and can be expressed in terms of elliptic integrals:

Z 2⇡

0
[1� c cos(�)]�1/2 d� =

2p
1� c
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This gives us Z 2⇡

0
cos(✓(�))d� =

zp
z2 +R2 + r2 � 2Rr

4K

✓
2c

c� 1

◆
(A.8)

and so

⌦ = 2⇡


1� zp

z2 +R2 + r2 � 2Rr

2

⇡
K

✓
2c

c� 1

◆�

We lastly simplify

2c

c� 1
=

2b

b� a
=

4Rr

2Rr �R2 � r2 � z2
=

�4Rr

(R� r)2 + z2

to get the final equation

⌦ = 2⇡


1� zp

z2 +R2 + r2 � 2Rr

2

⇡
K

✓
�4Rr

(R� r)2 + z2

◆�

This reduces to the r = 0 form given that K(0) = ⇡/2. We then have the z-partition

�E

E
=

fprompt

2

"
zp

z2 + (R� r)2
2

⇡
K

✓
�4Rr

(R� r)2 + z2

◆

� h� zp
(h� z)2 + (R� r)2

2

⇡
K

✓
�4Rr

(R� r)2 + (h� z)2

◆#

This is actually a very powerful equation; we can use this equation to predict the z-partition quantity

for any event in the crystal, and the individual equations which went into calculating the z-partition

can be used to calculate radial quantities as well.

This is a very useful equation, and is simpler than others you’ll find in the literature. For a

di↵erent and more rigorous investigation of solid angle subtended by a circle at an arbitrary point,

see [93].

A.2 R-Partition

To compute the radial position as a function of r and z is more complicated, and does not necessarily

lend itself well to any simple scaling laws. In the previous section, we assumed the z-partition was

proportional to the di↵erence in solid angle between the two sides. The radial partition, on the other

hand, should be proportional to the di↵erence between the outer and inner rings, summed over both

sides. Writted explicitly, we have

�⌦top = ⌦outer,top � ⌦inner,top

= (⌦top(Router, r, z)� ⌦top(Rinner, r, z))� ⌦top(Rinner, r, z)

= ⌦top(Router, r, z)� 2⌦top(Rinner, r, z)

(A.9)
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which gives the total solid angle di↵erence

�⌦ = �⌦top +�⌦bottom (A.10)

Let’s consider the r = 0 r partition as a function of z to see how well this actually tracks r. We find

�⌦bottom = 2⇡ [(1� cos(✓down,outer))� 2(1� cos(✓down,inner))] (A.11)

= 2⇡ [2cos(✓di)� cos(✓do)� 1] (A.12)

= 2⇡

"
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z2 +R2

i

� zp
z2 +R2

o

� 1

#
(A.13)

and so
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o
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#
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giving the di↵erence in solid angle

�⌦ = 2⇡
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z2 +R2

i

+
2(h� z)p

(h� z)2 +R2
i
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� 2
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Let’s look at two limiting cases. For z, h >> R, we get that this is trivially 0; in the case that

z-partition is not meaningful, r-partition is also not meaningful (assuming we’re just summing over

detector surfaces). In the case that R >> z, h we find

�⌦ ⇡ 4⇡


h

✓
1

Ri

� 1

2R0

◆
� 1

�
(A.16)

so the r partition is independent of z, and large as long as a large fraction of the total energy is

collected and the solid angle varies based on position. I leave the application of this to the full

partition as a function of r and z as future work.
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TES Linear Parameterization

In describing the small-signal response of the TES, we normally linearize the resistance dependence

on temperature and current as

R(I, T ) ⇡ R0


1 + ↵

(T � Tc)

Tc

+ �
(I � Iq)

Iq

�

where

↵ =
T0

R0

@R

@T

����
I0

, � =
I0
R0

@R

@I

����
T0

For our TES simulations however, we take critical current e↵ects into account, and model the

transition in a highly non-linear way away from the the bias point using the function

R(I, T ) =
Rmax �Rmin

2

✓
1 + tanh


T � Tc (1� I/Ic)

nsc

Tw

�◆

By evaluating the derivatives of this function, we can therefore relate the phenomenological param-

eters ↵ and � with the physical parameters Tw and Ic, given the bias condition I0 and transition

temperature Tc.

We evaluate the temperature derivative first:

2

Rmax �Rmin
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(B.1)

=

✓
1� tanh2


T � Tc (1� I/Ic)

nsc

Tw

�◆
1

Tw

(B.2)

@R

@T

����
I0,T0

=

✓
1� tanh2


T0 � Tc (1� I0/Ic)

nsc

Tw

�◆
Rmax �Rmin

2Tw

(B.3)
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We can use the fact that

R0 =
Rmax �Rmin

2
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1 + tanh
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�◆

(B.4)
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to simplify this expression:
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2T0

Tw

✓
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This is very close to the naive estimate one might make, namely that if Tw is half the transition

width, then the slope of this line is
T0

R0

Rmax �Rmin

2Tw

(B.11)

where there are correction factors due to the nature of the tanh function, where the slope is actually

larger in the middle and smaller on the ends rather than constant through the transition. If we set

Rmin = 0, Rmax = Rn, R0 = aRn and T0 = Tc, then we find

↵ =
Tc(1� a)

Tw/2
(B.12)

Thus for the bias condition where a = 1/3, Tc = 45mK, and ↵ = 100, we find

Tw =
Tc(1� a)

↵/2
=

0.045 ⇤ (2/3)
50

= 6 ⇤ 10�4 (B.13)

When we plug this transition width into our naive estimate, it gives ↵ ⇠ 112, which is a nice sanity

check.
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Repeating this procedure for current, we can find an equivalent expression for � as well:
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and we find that � is actually dependent on ↵ for finite values of the critical current. Making the

same simplifying assumptions as for our simplification of ↵ and using I0 = bIc, nsc ⇠ 2/3, we find

� =
2b

3(1� b)1/3
↵ (B.21)

And for ↵ = 100 and b ⇠ 0.01, we find � ⇠ 0.6. Conversely, for ↵ = 100, which corresponds to

the Tc and other conditions as described above, we can calculate the predicted snapping point for a

given � as a function of bias current, assuming small b:

b ⇡ 3�

2↵
! Ic ⇡

2↵

3�
I0 ⇠ 60

�
I0 =

60Vbias

R0
(B.22)

This gives us a way to constrain the linear behavior of the TES to small signals at the operating

point as a function of global measurements, without having to do any curve fitting, and also shows

us why the bias condition is so hard to solve for.



Appendix C

Phase Separated TES Dynamics

In this appendix I explore a discrete two-block model of TES dynamics valid for the weakly phase-

separated limit. This should be seen as complementary to the Fourier version done in Matt Pyle’s

thesis [83], and can be compared to the two and three-block TES models discussed at length in

Ref [70] for the case that both blocks are under the influence of electro-thermal feedback. The

stability conditions and time constants found here are also comparable to some of those discussed

in [50], though my solutions may di↵er in terminology, and I believe that some of these results are

unique. I provide this as an exercise in TES dynamics and a starting point for those looking to dig

further into TES dynamics in the weakly coupled limit.

C.1 Setup of Di↵erential Equations

In the very weakly phase-separated limit, we can consider the TES broken up into finite sub-sections,

with a toy model consisting of only two TES sections operated in the small-signal limit. Generi-

cally speaking, we can consider the TES a series of individual, thermally-homogeneous TES units

connected both conductively and thermally through a known thermal conductance. The power flow

di↵erential equation will have the generic form

dEi

dt
= C(Ti)

dTi

dt
= I2Ri(Ti, I)�Kl(2T

n

i
� Tn

i+1 � Tn

i�1)�Kb(T
n

i
� Tn

b
) + �Pi (C.1)

where Kl is the thermal link between TES segments, and Kb is the thermal link to the bath. We

couple these equations through the current di↵erential equation

L
dI

dt
= Vb � IRL � I

NX

i=1

Ri(Ti, I) (C.2)

where RL and L are the parasitic inductances and resistances in the bias loop.

291
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This is an exact set of equations, and in the past we usually solve these numerically; indeed all

of our phase separation studies have taken these as non-analytic and stuck to numerical simulations.

This is most likely the right approach in the highly phase-separated regime, however in the very

weakly phase separated regime, and the small signal limit, we can make two assumptions:

• Any thermal gradient is eliminated through the internal conductance of the TES

• All thermal conductances to the bath are equal for the TES segments, and the same is true for

the conductance between segments, though these respectively need not and will in principle

not be equal.

• The power-law thermal conductance has the same exponential dependence both between TES

and to the bath, so that we do not also have to introduce the terms ni in the above equations.

The practical result of these assumptions is that we can write the following:

Ri,0 = Rs =
R0

N
= R0

ls
lTES

=
⇢ls

wTEShTES

= �TESls (C.3)

Ci = Cs =
C0

N
= C0

ls
lTES

= cTESlswTEShTES = ⇠TESls (C.4)

Ki = Kl = NK0 =
k0
ls

(C.5)

Kb,i = Kb =
Kb,0

N
= kb,0ls (C.6)

(C.7)

which also tells us that

�Ri = Ri �Ri,0 = (�i(I, T )� �0)ls (C.8)

These substitutions allow us both to relate the properties of the small segments to the larger seg-

ments, as well as ensure that the limit N ! 1 is convergent. It will also simplify and increase the

utility of the solutions later on, as the operational regime can just be specified by the TES and bath

thermal conductivity. The previous solutions implicity used KTES ! 1, so all we’re doing here is

relaxing that assumption.

Before writing out the full matrix form, and doing all our substitutions, let’s linearize these terms

in the small signal limit. We obtain the following conductance forms:

Kl(2T
n

i
� Tn

i�1 � Tn

i+1) = Kl(2T
n

i,0 � Tn

i�1,0 � Tn

i+1,0) + nKl(2Ti,0�Ti � Ti�1,0�Ti�1 � Ti+1,0�Ti+1)

(C.9)

Kb(T
n

i
� Tn

b
) = Kb(T

n

i,0 � Tn

b
) + nKbTi,0�Ti (C.10)
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and we use the McCammon logarithmic slopes ↵ and � to linearize resistance as

Ri(I, Ti) = Rs + ↵i

Rs

T0
�Ti + �i

Rs

I0
�I (C.11)

In principle, the film properties could vary, and ↵ and � would vary as well, but here I will assume

that all ↵ and � are the same. We also need to linearize the joule heating term:

I2Ri ⇡ I20Rs + 2I0Rs�I + I20�R = I20Rs + (2 + �)I0Rs�I + ↵
I20Rs

T0
�Ti

We also make the replacements Ti ! Ti,0 +�Ti and I ! I0 + �I. We can separate the steady

state equations (for I0 and T0) by setting all time derivatives, and � terms, to 0; then the I0 and

R0 terms cancel from the rest of the di↵erential equation. We get the di↵erential equations

Cs

d(�Ti)

dt
= (2 + �)I0Rs�I + ↵

I20Rs

T0
�Ti � nKl(2Ti,0�Ti � Ti�1,0�Ti�1 � Ti+1,0�Ti+1)� nKbTi,0�Ti + �Pi

(C.12)

= (2 + �)I0Rs�I +

✓
↵
I20Rs

T0
� 2nKlTi,0 � nKbTi,0

◆
�Ti + nKl(Ti�1,0�Ti�1 + Ti+1,0�Ti+1) + �Pi

(C.13)

= (2 + �)I0Rs�I +

✓
↵
I20Rs

T0
� 2gl,i � gb,i

◆
�Ti + gl,i�1�Ti�1 + gl,i+1�Ti+1 + �Pi

(C.14)

= (2 + �)I0Rs�I + (2gl,i + gb,i) (Li � 1)�Ti + gl,i�1�Ti�1 + gl,i+1�Ti+1 + �Pi

(C.15)

where

gl,i = nKlT0,i = nKl,0T0,iN (C.16)

gb,i = nKbT0,i = nKb,0T0,iN (C.17)

Li = ↵
I20Rs

T0(2gl,i + gb,i)
=

gb,i
2gl,i + gb,i

Lb (C.18)

This gets further simplified when we apply the assumption of thermal equilibrium initially, such that

T0,i = T0 ! gb,i = gb, gl,i = gl ! Li = L2lb

and we obtain the final di↵erential equation

Cs

d(�Ti)

dt
= (2 + �)I0Rs�I + (2gl + gb) (L2lb � 1)�Ti + gl(�Ti�1 +�Ti+1) + �Pi (C.19)
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note that the end cases have 2gl ! gl in the diagonal terms, and L2lb ! Llb.

The current di↵erential equation becomes

L
d�I

dt
= ��I(RL + (1 + �)NRs)�

↵I0Rs

T0

NX

i=1

�Ti + �V (C.20)

= ��I(RL + (1 + �)NRs)�
gbLb

I0

NX

i=1

�Ti + �V (C.21)

and our system of equations can be formulated as a square N+1 dimension matrix, with eigenvectors

composed of the TES block temperatures plus the series TES current. In the next section, we will

first solve some special cases to explore the behavior of this system.

C.2 Two-Block Symmetric Solution

The simplest system we can solve is the two-block system run without electrothermal feedback. This

allows us to set �I to 0, and our system is just the two-dimensional matrix

Cs

d

dt

"
�T1

�T2

#
=

"
�gl � gb gl

gl �gl � gb

#"
�T1

�T2

#
+

"
�P1

�P2

#
(C.22)

=

 
gl

"
�1 1

1 �1

#
� gbI

!"
�T1

�T2

#
+

"
�P1

�P2

#
(C.23)

d

dt

"
�T1

�T2

#
= �

 
gl
Cs

"
1 �1

�1 1

#
+

gb
Cs

I
!"

�T1

�T2

#
+ C�1

s

"
�P1

�P2

#
(C.24)

= �
 

4

⌧l

"
1 �1

�1 1

#
+ ⌧�1I

!"
�T1

�T2

#
+ C�1

s

"
�P1

�P2

#
(C.25)

Here, we start to see how the parameterization, and splitting of the TES into parts, will a↵ect the

final solution. On the right we obtain the thermal time constant of the TES, ⌧ , given that

Cs

gb
=

C/N

Gb/N
=

C

G
= ⌧

On the other hand, we end up with a time constant which does depend on the number of TES

segments:
Cs

gl
=

C/N

GlN
=

C

GlN2
=

⌧l
N2

Here, ⌧L is a measured property of the TES, and depends on the TES geometry. This di↵ers from

⌧b, in which geometric factors largely cancel. In addition, ⌧l alone controls the relative thermal

interaction between adjacent TESs. This tells us that ⌧l is the key to understanding whether phase
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separated dynamics di↵er significantly from the 0th order solution, and how many TES segments

will be necessary to simulate a given TES in the frequency range of interest.

Solving this in the time domain, we obtain the eigenvalues

� = ⌧�1, 8⌧�1
l

+ ⌧�1

and thus the solutions

"
�T1

�T2

#
= Ae�t/⌧

"
1

1

#
+Be�t(⌧�1+8/⌧l)

"
1

�1

#
(C.26)

= Ae�t/⌧

"
1 +Be�t/⌧p

1�Be�t/⌧p

#
(C.27)

where here, ⌧p = ⌧l/8. Applying the initial conditions that �T1 = E1
Cs

and �T2 = E2
Cs

, we find that

A =
E1 + E2

2Cs

=
Etot

2Cs

(C.28)

B =
E1 � E2

E1 + E2
=

�E12

Etot

(C.29)

and we have the final solution

"
�T1

�T2

#
=

e�t/⌧

2Cs

"
Etot +�E12e�t/⌧p

Etot ��E12e�t/⌧p

#
(C.30)

This obviously re-distributed the total energy to both TESs, and allows it to slowly leak back to the

bath. We can also see that this approaches the phase-uniform regime in the limit that the second

term goes to 0 much quicker than the first term; the change of variables used to compare these will

have t0 = t/⌧ , which tells us that the relevant limit is

⌧p =
⌧l
8

>> ⌧

For practical purposes, let’s say that ⌧ is >> 1 µs, and we thus plan to digitize only about 0.5 µs.

We want this second frequency component to be irrelevant on this time-scale, and thus

1µs > 5⌧p =
5

8
⌧l ⇡

⌧l
2

We can make this argument because any reduction in the natural thermal timescale should also

reduce the thermal equilibrium timescale. This also tells us that for a larger ⌧l (less thermal con-

ductivity between TES blocks), we will need to account for more phase separation, given that to get

back under this limit, we can just increase N , as ⌧p / N�2. Taken another way, we find that ⌧l is
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inversely proportional to the total length of the TES squared:

tdig >
10

N2
⌧l

Solving this in the frequency domain is unnecessary; we already know relevant time constants. What

is more useful is to undo our assumption of no voltage bias, and compute the complex impedance

of the two-element model. We now have the system

d

dt

2

664

�I

�T1

�T2

3

775 =

2

664

�RL+2(1+�)Rs

L
� gbLb

I0L
� gbLb

I0L

(2+�)I0Rs

Cs

(gl+gb)
Cs

(Llb � 1) gl

Cs
(2+�)I0Rs

Cs

gl

Cs

(gl+gb)
Cs

(Llb � 1)

3

775

2

664

�I

�T1

�T2

3

775+

2

664

�V

L

�P1
Cs

�P2
Cs

3

775 (C.31)

=

2

664

�!LR � gbLb

I0L
� gbLb

I0L

(2+�)I0Rs

Cs
�!lb !l

(2+�)I0Rs

Cs
!l �!lb

3

775

2

664

�I

�T1

�T2

3

775+

2

664

�V

L

�P1
Cs

�P2
Cs

3

775 (C.32)

We can rotate to a diagonalized temperature basis to simplify the solution, using the unitary trans-

formation

T =

2

664

1 0 0

0 1p
2

1p
2

0 1p
2

� 1p
2

3

775

which for the input variables X gives

X 0 = TX !

2

664

1 0 0

0 1p
2

1p
2

0 1p
2

� 1p
2

3

775

2

664

�I

�T1

�T2

3

775 =

2

664

�I
�T1+�T2p

2
�T1��T2p

2

3

775 = X 0
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and for the coupling matrix S, we find

S0 = TSTT (C.33)

=

2

664

1 0 0

0 1p
2

1p
2

0 1p
2

� 1p
2

3

775

2

664

�!LR � gbLb

I0L
� gbLb

I0L

(2+�)I0Rs

Cs
�!lb !l

(2+�)I0Rs

Cs
!l �!lb

3

775

2

664

1 0 0

0 1p
2

1p
2

0 1p
2

� 1p
2

3

775 (C.34)

=

2

664

1 0 0

0 1p
2

1p
2

0 1p
2

� 1p
2

3

775

2

664

�!LR �
p
2gbLb

I0L
0

(2+�)I0Rs

Cs

!l�!lbp
2

�!l+!lbp
2

(2+�)I0Rs

Cs

!l�!lbp
2

!l+!lbp
2

3

775 (C.35)

=

2

664

�!LR �
p
2gbLb

I0L
0

p
2(2+�)I0Rs

Cs
!l � !lb 0

0 0 �(!l + !lb)

3

775 (C.36)

Sorting out spurious factors of
p
2 gives the system

d

dt

2

664

�I
1
2 (�T1 +�T2)
1
2 (�T1 ��T2)

3

775 =

2

664

�!LR �GLb
I0L

0
(2+�)I0R0

C
!l � !lb 0

0 0 �!l � !lb

3

775

2

664

�I
1
2 (�T1 +�T2)
1
2 (�T1 ��T2)

3

775+

2

664

�V

L

�P1+�P2
C

�P1��P2
C

3

775 (C.37)

Recognizing that

!l � !lb =
1

Cs

(gl � (gl + gb)(1� Llb)) (C.38)

=
1

Cs

(gl � gl � gb + gbL)) (C.39)

=
gb
Cs

(L� 1) (C.40)

=
L� 1

⌧
= !eff (C.41)

�!l � !lb = !eff � 2!l (C.42)

We can write the final system as

d

dt

2

664

�I
T1+T2

2 � T0

1
2 (T1 � T2)

3

775 =

2

664

�!LR �GLb
I0L

0
(2+�)I0R0

C
!eff 0

0 0 !eff � 2!l

3

775

2

664

�I
T1+T2

2 � T0

1
2 (T1 � T2)

3

775+

2

664

�V

L

�P1+�P2
C

�P1��P2
C

3

775 (C.43)

The upper left-hand part of the matrix is the non-phase separated equation, exact in the limit that
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T1 = T2, which we can see will occur when

2!lb >> !eff (C.44)

2gl
Cs

>>
L� 1

⌧
(C.45)

8Gl

C
>>

L� 1

⌧
(C.46)

Gl >>
Gb(L� 1)

8
(C.47)

These equations are totally decoupled, so in the two-block system, we see no e↵ect from phase

separation if we assume that the TES oscillates about fixed points of the same temperature. Next

we will explore what happens when we relax this constraint as well.

C.3 Two Block Stable Asymmetric Solution

The previous solution assumed that the two blocks will reach thermal equilibrium, so that fluctua-

tions are about the case that the blocks are initially the same temperature. We should explore how

realistic this assumption is

Let’s introduce a small perturbation about equilibrium to see whether there are any stable points

away from the nominal assumption of initial equal temperature in the TES. When we do see phase

separation in the TES, we have some fluctuation away from equal temperature. This leads to

a slightly higher resistance in one segment than the other, and for small changes resistance and

power changes are linear, so we can approximate them as a symmetric deviation from the initial

temperature. We can thus write

T1 = T0 +
�T0

2
= T0

⇣
1 +

✏

2

⌘
(C.48)

T2 = T0 �
�T0

2
= T0

⇣
1� ✏

2

⌘
(C.49)

where

✏ =
�T0

T0

and we’ll assume ✏ << 1.

We’re only concerned with finding stable values for T0 and �T0, so we’ll only linearize in these

terms and absorb any changes in current into the definition of I0. If when the blocks are both at T0
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they have resistance R0, then we find that

R(I0, T ) = R0
0 +

@R

@T
(T � T0) +O

⇥
(T � T0)

2
⇤

(C.50)

= R0
0 ± ↵

R0
0

T0
�T0 +O

⇥
(T � T0)

2
⇤

(C.51)

= R0
0 ± ↵✏R0

0 +O
⇥
✏2
⇤

(C.52)

= R0
0(1± ↵✏) +O

⇥
✏2
⇤

(C.53)

where the upper sign refers to R1 and the lower to R2, and R0
0 = R0/2, where R0 is the series

resistance of the entire TES when not phase separated at I0, T0. There is good justification to

ignore the second term from our model of the transition curve, which at its midpoint has a second

order derivative of 0. In any case, we’ll work in the small signal limit, but it’s an interesting note

that this does not necessarily require ✏ to be small to be a good approximation.

Let’s see how this a↵ects the current equation first:

L
dI

dt
= V � I0(RL +R1 +R2) (C.54)

= V � I0(RL +
R0

2
(1 + ↵✏) +

R0

2
(1� ↵✏) (C.55)

= V � I0(RL +R0) (C.56)

so the current equation is identical to the non-phase separated case while ✏ remains small, as we

should have expected. Now we can find the forms for T0 and �T0 to determine whether ✏ can remain

small in steady state.

For the derivative sides, we get

dTi

dt
=

dT0

dt
± d�T0

dt
(C.57)

and for the power balance side, we can expand each term.

K 0
l
(T 2

1 � T 2
2 ) = K 0

l
(T1 + T2)(T1 � T2) = 2K 0

l
T0(�T0) = 2K 0

l
T 2
0 ✏ (C.58)

K 0
b
(Tn

i
� Tn

b
) = K 0

b

✓
1�

✓
Tb

Ti

◆n◆
Tn

i
= K 0

b

✓
(1± ✏)n �

✓
Tb

T0

◆n◆
Tn

0 (C.59)

which gives the equations

C 0 dT0

dt
± C 0 d�T0

dt
= I20R

0
0(1± ✏↵)�K 0

b

✓
(1± ✏)n �

✓
Tb

T0

◆n◆
Tn

0 ⌥ 2K 0
l
T 2
0 ✏ (C.60)

If we take the sum and di↵erence of these equations, we have the more straightforward (and familiar)
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equations

2C 0 dT0

dt
= 2I20R

0
0 �K 0

b

✓
(1 + ✏)n + (1� ✏)n � 2

✓
Tb

T0

◆n◆
Tn

0 (C.61)

2C 0 d�T0

dt
= 2I20R

0
0✏↵�K 0

b
((1 + ✏)n � (1� ✏)n)Tn

0 � 4K 0
l
T 2
0 ✏ (C.62)

We can find exact expressions for the sum and di↵erence of the (1 +±✏) terms; hereafter I will use

n = 5 for simplicity:

(1 + ✏)5 + (1� ✏)5 = 2 + 5✏2 +
5

8
✏4 =

1

8

⇥
16 + 40✏2 + 5✏4

⇤
(C.63)

(1 + ✏)5 � (1� ✏)5 = 5✏+
5

2
✏3 +

1

16
✏5 =

✏

16

⇥
80 + 40✏2 + ✏4

⇤
(C.64)

substitution of these forms into the original equations gives

2C 0 dT0

dt
= 2I20R

0
0 � 2K 0

b

 
1 +

5

2
✏2 +

5

16
✏4 �

✓
Tb

T0

◆5
!
T 5
0 (C.65)

2C 0 d�T0

dt
= 2I20R

0
0✏↵� 5✏K 0

b

✓
1 +

1

2
✏2 +

1

80
✏4
◆
T 5
0 � 4K 0

l
T 2
0 ✏ (C.66)

Recognizing that K 0
b
= Kb/2, K 0

l
= 2Kl, C 0 = C/2, and R0

0 = R0/2, we have

C
dT0

dt
= I20R0 �Kb

 
1 +

5

2
✏2 +

5

16
✏4 �

✓
Tb

T0

◆5
!
T 5
0 (C.67)

C
d�T0

dt
= I20R0✏↵� 5

2
✏Kb

✓
1 +

1

2
✏2 +

1

80
✏4
◆
T 5
0 � 8KlT

2
0 ✏ (C.68)

We can re-write the second equation in a more illuminating form to show how we can determine

stable points for ✏:

C
d�T0

dt
=


I20R0↵� 5

2
Kb

✓
1 +

1

2
✏2 +

1

80
✏4
◆
T 5
0 � 8KlT

2
0

�
✏ (C.69)

We recognize that because of our re-parameterization, we have

d�T0

dt
= ✏

dT0

dt
+ T0

d✏

dt

so we have

CT0
d✏

dt
=


I20R0↵� 5

2
Kb

✓
1 +

1

2
✏2 +

1

80
✏4
◆
T 5
0 � 8KlT

2
0 � C

dT0

dt

�
✏ (C.70)
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which gives us

CT0
d✏

dt
=

"
I20R0(↵� 1)�Kb

 
3

2
� 5

4
✏2 � 9

32
✏4 +

✓
Tb

T0

◆5
!
T 5
0 � 8KlT

2
0

#
✏ (C.71)

=
⇥
I20R0(↵� 1)� ⇠KbT

5
0 � 8KlT

2
0

⇤
✏ (C.72)

where

⇠ =

 
3

2
� 5

4
✏2 � 9

32
✏4 +

✓
Tb

T0

◆5
!

can only take positive values ⇠ 1 � 5/2 depending on ✏, ↵, T0 and Tb. This gives us the stability

criterion for any dynamic solution for T0

I20R0(↵� 1) < ⇠KbT
5
0 + 8KlT

2
0

Stable points will occur where the term in side the brackets is less than 0, but unlike the equation for

T0, it does not permit stable points aside from ✏ = 0. So we’ve found two things, a stability criterion

based on the thermal conductances and operating temperatures, and the fact that this two-block

model does not permit long-lived temperature di↵erences between the blocks for any values of these

conductances.

If we now solve for the stable points by setting dT0
dt

= 0, we find

I20R0 ⇡ ⇠0KbT
5
0

which modifies the stability condition to be

↵ <
⇠KbT 5

0 + 8KlT 2
0

⇠0KbT 5
0

+ 1 =
8Kl

⇠0KbT 3
0

+
⇠

⇠0
+ 1

which is similar to that derived in Matt Pyle’s thesis, though we arrived at the limit through a

discretized model, rather than through a continuous position-dependent model. This essentially

tells us that the higher our ↵, the larger our internal TES conductance needs to be in order to keep

the TES in thermal equilibrium.

In addition, we’ve discovered that the time constant for recovery from thermal fluctuations obeys

the bound

⌧✏ 
✓
KbT 3

0

2CW

+
8Kl

CW

◆�1

=
8Kl

CW


KbT 3

0

16Kl

+ 1

��1

so for signals below the frequency corresponding to this time constant, we can assume a phase-

uniform TES even if at high frequency the TES acts as a two-block system and admits a small

temperature di↵erence.
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Dynamics Let’s start with our finite-current model in the original form, and remove the assump-

tion of equal initial temperature.

d

dt

2

664

�I

�T1

�T2

3

775 =

2

664

�RL+(1+�)(R0,2+R0,2)
L

� gb1Lb1

I0L
� gb2Lb2

I0L

(2+�)I0R0,1

Cs

gb1(L1�1)�gl1

Cs

gl2

Cs
(2+�)I0R0,2

Cs

gl1

Cs

gb2(L2�1)�gl2

Cs

3

775

2

664

�I

�T1

�T2

3

775+

2

664

�V

L

�P1
Cs

�P2
Cs

3

775 (C.73)

=

2

664

�!LR � gb1Lb1

I0L
� gb2Lb2

I0L

(2+�)I0R0,1

Cs
�!b1 � !l1 !l2

(2+�)I0R0,2

Cs
!l1 �!b2 � !l2

3

775

2

664

�I

�T1

�T2

3

775+

2

664

�V

L

�P1
Cs

�P2
Cs

3

775 (C.74)

Let’s apply the same transformation as before, which previously diagonalized this matrix:

S0 = TSTT (C.75)

=

2

664

1 0 0

0 1p
2

1p
2

0 1p
2

� 1p
2

3

775

2

664

�!LR � gb1Lb1

I0L
� gb2Lb2

I0L

(2+�)I0R0,1

Cs
�!b1 � !l1 !l2

(2+�)I0R0,2

Cs
!l1 �!b2 � !l2

3

775

2

664

1 0 0

0 1p
2

1p
2

0 1p
2

� 1p
2

3

775 (C.76)

=

2

664

1 0 0

0 1p
2

1p
2

0 1p
2

� 1p
2

3

775

2

664

�!LR � (gb1Lb1+gb2Lb2)p
2I0L

� (gb1Lb1�gb2Lb2)p
2I0L

(2+�)I0Rs

Cs

�!b1�!l1+!l2p
2

�!b1�!l1�!l2p
2

(2+�)I0Rs

Cs

�!b2�!l2+!l1p
2

!b2+!l2+!l1p
2

3

775 (C.77)

=

2

664

�!LR � (gb1Lb1+gb2Lb2)p
2I0L

� (gb1Lb1�gb2Lb2)p
2I0Lp

2(2+�)I0(R0,1+R0,2)
C

�!b1�!b2
2

!b2�!b1
2p

2(2+�)I0(R0,1�R0,2)
C

!b2�!b1+2(!l2�!l1)
2

�!b2�!b1�2(!l2+!l1)
2

3

775 (C.78)

and again re-factoring to remove spurious square roots, we find that the coupling matrix has the

form

S =

2

664

�!LR � (gb1Lb1+gb2Lb2)
2I0L

� (gb1Lb1�gb2Lb2)
2I0L

(2+�)I0(R0,1+R0,2)
C

�!b1�!b2
2

!b2�!b1
2

(2+�)I0(R0,1�R0,2)
C

!b2�!b1+2(!l2�!l1)
2

�!b2�!b1�2(!l2+!l1)
2

3

775 (C.79)

Now these are definitively coupled equations, and while they will drive the changes to 0, they do not

drive the blocks to the same temperature; that is determined by the equilibrium expressions. This

allows us to adopt some form for the transition curve and input forms for a given initial temperature

di↵erence, after which we should be able to compute transfer functions and the green’s function

response as a function of the degree of phase separation between these two blocks.

Let’s simplify a bit further; the idea here is to try to narrow this down to one variable in addition

to the non phase-separated case. We can easily argue for the two-block system that gl1 = gl2(1 + ✏)
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by expanding the link cooling power. This gives us the simplified system

S =

2

664

�!LR � (gb1Lb1+gb2Lb2)
2I0L

� (gb1Lb1�gb2Lb2)
2I0L

(2+�)I0(R0,1+R0,2)
C

�!b1�!b2
2

!b2�!b1
2

(2+�)I0(R0,1�R0,2)
C

!b2�!b1
2 � 2G✏

C

�!b2�!b1�2!l(2+✏)
2

3

775 (C.80)

where the lower right is starting to look more symmetric. We can use the di↵erence in steady-state

temperatures to replace the resistance and conductance terms. Linearizing the conductance terms

in initial temperature di↵erence, we find that

gb1 + gb2
2

= G

✓
1 +

2�T12,0

T0

◆
= G(1 + 2✏) (C.81)

gb1 � gb2
2

= G
2�T12,0

T0
= 2G✏ (C.82)

In addition, the addition of our resistance terms cancels, giving just R0, and subtraction gives twice

the resistance di↵erence:

R10 �R20 = 2R0↵✏

giving the system

S =

2

664

�!LR �GL
I0L

(1 + 2✏) � 2✏GL
I0L

(2+�)I0R0

C
!eff (1 + 2✏) 2G✏

C

2↵✏(2+�)I0R0

C
0 !eff (1 + 2✏)� !l(2 + ✏)

3

775 (C.83)

C.4 N-Block Solutions

What we saw above was that the linearized model does not predict behavior any di↵erent than the

phase-uniform TES in a two-block system. We could check that this is the case by looking at higher

dimensional systems, where we would find that the mean of all temperature changes is always an

eigenvector of the matrix, meaning that this problem will always generate a block-diagonal matrix

where we can separate the microscopic and macroscopic dynamics.

d

dt

2

66664

�I
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�T2

�T3

3

77775
=

2

66664
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�!lb !l 0
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(2+�)I0Rs

Cs
0 !l �!lb

3
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2
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�I
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�T2

�T3

3

77775
+

2

66664

�V

L

�P1
Cs

�P2
Cs

�P3
Cs

3

77775
(C.84)

Looking at the 3-block system, we start to recognize this lower right matrix; it’s nearly identical to

that for the normal modes of a couple 1-d harmonic oscillator. This means we can use the tools
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from a well-studied problem to determine the phase-separation time-scales, which will allow us to

use our measurements and models to predict roughly what frequency range could be a↵ected by

phase-separation. This matrix can be scaled further to produce a normal mode analysis of phase

separation, which I leave as future work.



Appendix D

QET E�ciency

Using the measurements of Rp, knowledge of Rsh, and a known energy spectrum, we can obtain

energy e�ciency as a function input energy by measurement of dI/dP and use of this to convert

measured current into measured power, and thus measured energy in the sensor. We start with the

power balance equation

C
dT

dt
=

dE

dt
= Ptot = Pjoule � Pbath + �P (D.1)

where �P is some energy impulse, assumed 0 in the equilibrium limit. In reality phonons are flowing

into the system for a large amount of time, but this will look like a reduced bath power and cancel

out, resulting in the same energy measurement; we ignore it for the time being.

Integrating both sides, we know that the long term energy change is 0 (as the sensor returns to

equilibrium), giving the expression

Eabs =

Z 1

0
(Pbath(t)� �P (t))dt =

Z 1

0
Pjouledt (D.2)

and as we only want the change from energy that would have been absorbed in equilbrium heating,

we subtract the equilibrium bath power, giving

��Eabs =

Z 1

0
(�Pbath(t)� �P (t))dt =

Z 1

0
�Pjouledt (D.3)

Finally, we assume that bath power is roughly constant in the transition (valid for small signals and

sharp transitions), giving the expression

�Eabs ⇡
Z 1

0
�P (t)dt = �

Z 1

0
�Pjouledt (D.4)

So as long as bath power change is much less than joule power change, we can assume that the joule

power directly tracks the change in phonon energy into the TES. We’ll explore this assumption a

305
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bit later, but this is the traditional method by which absolute calibration is attempted.

From earlier derivations, we also find that

PJ = VTESITES = ITES(ITESRTES) (D.5)

where

ITESRTES = VTES = Vs � ITES(Rp +Rs)� L
dITES

dt
(D.6)

This gives the equation

�VTES = ��ITES(Rp +Rs)� L
d�ITES

dt
(D.7)

Substituting into the equation for change in Joule power gives

�PJ = �VTESITES + VTES�ITES (D.8)

=

✓
��ITES(Rp +Rsh)� L

dITES

dt

◆
ITES (D.9)

+

✓
Vs � ITES(Rp +Rs)� L

dITES

dt

◆
�ITES (D.10)

= �2�ITES(Rp +Rsh)ITES � L
d2ITES

dt2
+ Vs�ITES (D.11)

and if we use ITES = I0 +�ITES and Vs = IbRs we have

�PJ = �2(Rp +Rsh)�ITES(I0 +�ITES)� L
d2(�ITES)

dt2
+ Vs�ITES (D.12)

= (RsIb � 2(Rp +Rsh)I0)�ITES � L
d2(�ITES)

dt2
� 2(Rp +Rsh)(�ITES)

2 (D.13)

��PJ = (2(Rp +Rsh)I0 �RsIb)�ITES + 2(Rp +Rsh)(�ITES)
2 + L

d2(�ITES)

dt2
(D.14)

The measured energy is thus

�Eabs ⇡ �
Z 1

0
�Pjouledt =

Z 1

0

⇥
(2(Rp +Rsh)I0 �RshIb)�ITES + 2(Rp +Rsh)(�ITES)

2
⇤
dt

(D.15)

Finally, using (in the DC limit) the relation

I0 =
Vs

Rsh +Rp +RTES,0
= Ib

Rsh

Rsh +Rp +RTES,0
(D.16)

giving the final expression

�Eabs ⇡
Z 1

0

✓
2

Rp +Rsh

Rp +Rsh +RTES,0
� 1

◆
IbRsh�ITES + 2(Rp +Rsh)(�ITES)

2

�
dt (D.17)
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This makes sense as the change in current will be negative during the pulse, resulting in a positive

energy measurement. Thus, knowing bias current and measuring the three resistance values discussed

earlier is all that is needed to produce an energy scale and obtain a direct measure of absolute

collection e�ciency.

Let’s now evaluate the assumption that we do not have to account for changes in the bath

power. The above formula is exact, which is what makes it so elegant, however we will need to rely

on approximation to add in bath e↵ects. That’s alright; we’ll hopefully always operate in the limit

that they’re negligible, so we just want a condition for that to be the case. Bath power is modeled

by the equation

Pb = K(T 5 � T 5
b
) (D.18)

and we know that the bath power is balanced by Joule power at �I = 0, so we just care about the

change:

�Pb = K(T 5 � T 5
0 ) ⇡ 5KT 4

0�T + 10KT 3
0 (�T )2 +O((�T )3) (D.19)

I have kept second-order terms here because �T should be first-order in �R, while the integral we

have is second order in �I. We now see that we also have to express �T in terms of �I, as we do

not observe the temperature di↵erence directly.

We already introduced ↵, the dimensionless responsivity parameter defined as

↵ =
T0

R0

dR

dT
(D.20)

We can use this to convert �T into a proportionality constant and �R:

�R =
dR

dT
�T =

R0↵

T0
�T (D.21)

�T =
T0

↵R0
�R (D.22)

We can also use the TES voltage equation to find �R in terms of �I:

ITESRTES = IbRsh � ITES(Rsh +Rp) (D.23)

RTES = Rsh

Ib
ITES

� (Rsh+Rp) (D.24)

�R ⇡ RshIb


� 1

I20
�I +

1

I30
(�I)2

�
(D.25)

�R ⇡ RshIb
I20


(��I) +

(�I)2

I0

�
(D.26)

giving

�T =
T0

↵R0

RshIb
I20


(��I) +

(�I)2

I0

�
(D.27)-----
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This gives us the first-order bath change

�Pb ⇡
5KT 5

0

↵I20R0
RshIb(��I) (D.28)

This is an important result. The power balance equation at equilibrium gives the equation

K(T 5
0 � T 5

b
) = I20R0 (D.29)

which allows us to re-write this correction as

�Pb ⇡ �Pb,1


↵

5

✓
1� T 5

b

T 5
0

◆��1

RshIb(��I) =
RshIb
L (��I) (D.30)

Here the loop gain has reappeared! Inserting this into the first order term gives

�Eabs ⇡
Z 1

0

✓
2

Rp +Rsh

Rp +Rsh +RTES,0
� 1� 1

L

◆
IbRsh�ITES + 2(Rp +Rsh)(�ITES)

2

�
dt (D.31)

This matches our expectation; in the high loop gain limit, we only need to account for the joule

power changes.

We should also compute the second order correction to make sure that we don’t miss a large

additional factor. The second order power term is

�Pb,2 = 5KT 4
0

✓
T0RshIb
↵R0I20

(�I)2

I0

◆
+ 10KT 3

0

✓
T0RshIb
↵R0I20

(��I)

◆2

(D.32)

=
5KT 5

0

↵I20R0
Rsh

Ib
I0

(�I)2 +
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(��I)2 (D.33)

=


1 +

2RshIb
↵R0I0

�
Ib
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L (��I)2 (D.34)
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2Rsh
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✓
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◆�
1� R0 +Rp

Rsh

�
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L (��I)2 (D.35)

=


1� 2

↵
+

2(Rsh �Rp)

↵R0

�
[Rsh �R0 �Rp]

1

L (��I)2 (D.36)

⇡ [Rsh �R0 �Rp]
1

L (��I)2 (D.37)

where I’ve left out the additional term as it is further reduced by ↵ even in the weakest cases. This

gives the fully corrected absorbed energy

�Eabs ⇡
Z 1

0

✓
2

Rp +Rsh

Rp +Rsh +RTES,0
� 1� 1

L

◆
IbRsh�ITES (D.38)

+

✓
2(Rp +Rsh) +

Rsh �Rp �R0

L

◆
(�ITES)

2

�
dt (D.39)
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Two summarizing comments. First, we see that we have only added one more variable, the loop

gain, that we normally measure in a full characterization but not necessarily for production detectors.

This suggests a simple additional measurement will allow for accurate accounting of the bath power

in addition to joule power change, and an e�ciency that’s less susceptible to bath temperature or

transition sharpness. Second, we see that in the limit of large loop gain, this correction does in fact

disappear, which means our initial assumption that a sharp transition made bath power negligible

was correct.



Appendix E

Optimal Filtering

In this appendix I review the formalism for the Fourier domain optimum filter and present the pileup

and correlation optimum filters which will help achieve better thresholds in the HV detectors. I also

include sections on Wiener filtering, which is the optimal filter in the absence of a template, and on

the time-domain version of the optimal filter, which is usually called a matched filter, and includes

the correlation matrix in place of the PSD. In this note, the measured signal is v(f) in the frequency

domain or v(t) in the time domain, the template is s(f) or s(t), and the noise PSD is J(f).

E.1 Basic Optimal Filter

For the chi-squared function

�2 =

Z 1

�1

|v(f)�As(f)|2

J(f)
df (E.1)

we find the goodness of fit by minimizing �2 with respect to A, as

0 =
d�2

dA
=

d

dA

Z 1

�1

v⇤(f)v(f)� 2As⇤(f)v(f) +A2s⇤(f)s(f)

J(f)
df (E.2)

0 = 2

Z 1

�1

�s⇤(f)v(f) +As⇤(f)s(f)

J(f)
df (E.3)

Z 1

�1

s⇤(f)v(f)

J(f)
df = A

Z 1

�1

s⇤(f)s(f)

J(f)
df (E.4)

A =

R1
�1

s
⇤(f)v(f)
J(f) df

R1
�1

|s(f)|2
J(f) df

(E.5)

This suggests that the optimum filter for this signal has the form

�(f) =
s⇤(f)

J(f)
(E.6)
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so that we can write the optimal estimate as

A =

R1
�1 �(f)v(f)df
R1
�1 �(f)s(f)df

(E.7)

or simplifying further, we can renormalize the filter as

�0(f) =

s
⇤(f)
J(f)R1

�1 �(f)s(f)df
(E.8)

to give the resulting simple estimator

A =

Z 1

�1
�0(f)v(f)df (E.9)

This is a nice and clean derivation which only captures the simplest case, where there is a single,

well-known template, one signal per trace, and the start of the pulse is well-known. This is also a

derivation for the continuous limit, whereas real data is sampled discretely. In this note I will delve

into more complex optimal filters which each relax one of these assumptions, and provide formulae

for discrete optimum filters for the di↵erent cases along with reduced chi-square formulae to make

their implementation simple and straightforward.

E.2 Optimum Filter with Time O↵set

Here we make the extension that the signal can slide in time, i.e. that

s(f) ! s(f, t0) = e�i!t0s(f) (E.10)

which has the goodness of fit

�2 =

Z 1

�1

|v(f)�Ae�i!t0s(f)|2

J(f)
df (E.11)
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Here we can go through the same procedure to get an optimal estimate of A, now as a function of

t0:

0 =
d�2

dA
(t0) =

d

dA

Z 1

�1

|v(f)�Ae�i!t0s(f)|2

J(f)
df (E.12)

0 =
d

dA

Z 1

�1

v⇤(f)v(f)� 2Aei!t0s⇤(f)v(f) +A2s⇤(f)s(f)

J(f)
df (E.13)

Z 1

�1

ei!t0s⇤(f)v(f)

J(f)
df =

Z 1

�1

As⇤(f)s(f)

J(f)
df (E.14)

A =

R1
�1

e
i!t0s

⇤(f)v(f)
J(f)R1

�1
s⇤(f)s(f)

J(f) df
(E.15)

which looks similar to the original form except for the addition of the time o↵set. Writing this with

the normalized optimum filter makes it a bit more explicit what we’re looking at:

A(t0) =

Z 1

�1
ei!t0�0(f)v(f)df (E.16)

This is just the inverse fourier transform of the filtered trace! So adding a time o↵set will only

marginally increase the complexity of our optimal filter algorithm. We can get the amplitude as a

function of time, and then look for the best chi-square in time space. With this amplitude function,

we can re-write the chi-square as

�2(t0) =

Z 1

�1

|v(f)|2

J(f)
df � 2A(t0)

Z 1

�1
ei!t0�(f)v(f)df +A2(t0)

Z 1

�1
�(f)s(f)df

=

Z 1

�1

|v(f)|2

J(f)
df �A2(t0)

Z 1

�1
�(f)s(f)df

and we find that the optimal amplitude with optimal o↵set is the condition that maximizes the

filtered amplitude function A(t0). Practically speaking, we can compute the optimal amplitude

with delay by computing A(t0), computing the resulting �2 as shown, and finding the amplitude

corresponding to the minimum chi-square or the maximum amplitude. Re-writing this in more
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convenient form allows the process to be more explicit:

�(f) =
s⇤(f)

J(f)

N� =

Z 1

�1
�(f)s(f)df

�0(f) =
�(f)

N�

A(t0) =

Z 1

�1
ei!t0�0(f)v(f)df

�2
0 =

Z 1

�1

|v(f)|2

J(f)
df

�2(t0) = �2
0 �A2(t0)N

Using this fourier transform trick makes the implementation of the OF with delay a trivial

extension of the nominal optimum filter.

E.3 Two-Pulse Optimum Filter

Suppose now that instead of one event per trace, we have two. We are still in the small signal limit

of our device (in principle) so there should be no di↵erent between the templates for each pulse, but

now we have two amplitudes and two o↵sets. In other words,

As(f, t0) ! A1s(f, t1) +A2s(f, t2) (E.17)

which has the goodness of fit

�2 =

Z 1

�1

|v(f)�A1e�i!t1s(f)�A2e�i!t2s(f)|2

J(f)
df (E.18)

Let’s expand the numerator to see what happens:

|v(f)�A1e
�i!t1s(f)�A2e

�i!t2s(f)|2 (E.19)

= (v⇤(f)�A1e
i!t1s⇤(f)�A2e

i!t2s⇤(f))(v(f)�A1e
�i!t1s(f)�A2e

�i!t2s(f)) (E.20)

= v⇤(f)v(f)� 2v(f)(A1e
i!t1s⇤(f) +A2e

i!t2s⇤(f)) + |A1e
�i!t1s(f) +A2e

�i!t2s(f)|2 (E.21)

= |v(f)|2 � 2v(f)(A1e
i!t1 +A2e

i!t2)s⇤(f) +
⇥
A2

1 +A2
2 + 2A1A2 cos(!(t1 � t2))

⇤
|s(f)|2 (E.22)

Pushing the denominator through gives us

|v(f)|2

J(f)
� 2�(f)v(f)(A1e

i!t1 +A2e
i!t2) +

⇥
A2

1 +A2
2 + 2A1A2 cos(!(t1 � t2))

⇤
�(f)s(f) (E.23)
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and minimizing with respect to Ai gives

0 =
d�2

dAi

=
d

dAi

Z 1

�1
�2�(f)v(f)(A1e

i!t1 +A2e
i!t2)df (E.24)

+
d

dAi

Z 1

�1

⇥
A2

1 +A2
2 + 2A1A2 cos(!(t1 � t2))

⇤
�(f)s(f)df (E.25)

=

Z 1

�1
�2�(f)v(f)ei!tidf + [2Ai + 2Aj cos(!(t1 � t2))]�(f)s(f)df (E.26)

Ai

Z 1

�1
�(f)s(f)df =

Z 1

�1
�(f)v(f)ei!tidf �

Z 1

�1
Aj cos(!(t1 � t2))�(f)s(f)df (E.27)

Ai =

Z 1

�1
�0(f)v(f)ei!tidf �Aj

Z 1

�1
cos(!�t)�0(f)s(f)df (E.28)

Ai = A0,i(ti)�Aj(tj)�(�t) (E.29)

where here we’ve switched to the parameterization where t1 = t0 and t2 = t0 + �t, and introduced

the new variable

�(�t) =

Z 1

�1
cos(!�t)�0(f)s(f)df (E.30)

For the case of �t = 0, this trivially tells us that the amplitudes should add. For a given t0 and

�t, we thus have two equations with two unknowns, so we can eliminate one amplitude to find the

optimal amplitude as

Ai = Ai,0(ti)� (Aj,0(tj)�Ai(ti)�(�t))�(�t) (E.31)

Ai = Ai,0(ti)�Aj,0(tj)�(�t) +Ai(ti)�
2(�t) (E.32)

Ai(1� �2(�t)) = Ai,0(ti)�Aj,0(tj)�(�t) (E.33)

Ai(ti, tj) =
Ai,0(ti)�Aj,0(tj)�(�t)

1� �2(�t)
(E.34)

As a sanity check, this formula tells us that for �t = 0, the amplitude evaluates to 0, and the other

amplitude thus becomes the original value for 0 delay. Putting this in more concrete terms, let’s use

this formula to estimate A2. We thus get

A2(t1, �t) =
A2(t1 + �t)�A1(t1)�(�t)

1� �2(�t)
(E.35)

A1(t1, �t) = A1(t1)�A2(t1, �t)�(�t) (E.36)

=
(1� �2(�t))A1(t1)�A2(t1 + �t)�(�t) +A1(t1)�2(�t)

1� �2(�t)
(E.37)

=
A1(t1)�A2(t1 + �t)�(�t)

1� �2(�t)
(E.38)



APPENDIX E. OPTIMAL FILTERING 315

Finishing the problem, we can rearrange the terms in the chi-square to make them look similar to

the single-template with time shift:

�2 = �2
0 �

Z 1

�1

⇥
2�(f)v(f)(A1e

i!t1 +A2e
i!t2)�

⇥
A2

1 +A2
2 + 2A1A2 cos(!(t1 � t2))

⇤
�(f)s(f)

⇤
df

(E.39)

= �2
0 � 2A1

Z 1

�1

⇥
�(f)v(f)ei!t1 �A2 cos(!(t1 � t2))�(f)s(f)

⇤
df +A2

1

Z 1

�1
�(f)s(f)df (E.40)

� 2A2

Z 1

�1

⇥
�(f)v(f)ei!t2 �A1 cos(!(t1 � t2))�(f)s(f)

⇤
df +A2

2

Z 1

�1
�(f)s(f)df (E.41)

� 2A1A2

Z 1

�1
cos(!(t1 � t2))�(f)s(f)df (E.42)

= �2
0 �

⇥
A2

1 +A2
2 + 2A1A2�(�t)

⇤
N� (E.43)

We can make this algorithm more e�cient, practically speaking, by substituting the cosine transform

with an inverse fourier transform and taking the real part. This can be see here:

�(�t) =Re

Z 1

�1
e!�t�0(f)s(f)df

�
(E.44)

= Re

Z 1

�1
(cos(!�t) + i sin(!�t))�0(f)s(f)df

�
(E.45)

= Re

Z 1

�1
cos(!�t)�0(f)s(f)df + i

Z 1

�1
sin(!�t)�0(f)s(f)df

�
(E.46)

=

Z 1

�1
cos(!�t)�0(f)s(f)df (E.47)

Here we see that we could also use the direct transform, but we want the normalization to be

consistent with that of the amplitudes, so we choose to use the inverse transform for both. Note

that this works because the product �(f)0s(f) is real.

So to summarize as in the previous section, the calculation procedes as follows. We first calculate
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the one-dimensional quantities:

�(f) =
s⇤(f)

J(f)

N� =

Z 1

�1
�(f)s(f)df

�0(f) =
�(f)

N�

A0(ti) =

Z 1

�1
ei!ti�0(f)v(f)df

�(�t) = Re

Z 1

�1
ei!�t�0(f)s(f)df

�

We then project these into the full two-dimensional space and compute the chi-square as follows:

A2(t1, �t) =
A0(t1 + �t)�A0(t1)�(�t)

1� �2(�t)

A1(t1, �t) = A0(t1)�A2(t1, �t)�(�t)

�2
0 =

Z 1

�1

|v(f)|2

J(f)
df

�2(t1, �t) = �2
0 � (A2

1(t1, �t) +A2
2(t1, �t) + 2A1(t1, �t)A2(t1, �t)�(�t))N

The convenient aspect of this algorithm is that it allows us to easily restrict our search windows

in either t1 or �t without any additional tricks, we simply limit the domain of the two-dimensional

projection. A final note: we have to take care to treat the �t = 0 case independently; mathematically

this will reduce correctly, but we have to show that by evaluating a limit in which the numerator

and denominator both go to 0. Taking the derivatives, we can show that for �t = 0, this solution

reduces to the single template solution:

lim
�t!0

A2(t1, �t) = lim
�t!0

A0(t1 + �t)�A0(t1)�(�t)

1� �2(�t)
= lim

�t!0

A0
0(t1 + �t)�A0

0(t1)�(�t)�A0(t1)�0(�t)

1� 2�(�t)�0(�t)
=

0

1� 0
= 0

(E.48)

! A1(t1, 0) = A0(t1)�A2(t1, 0) = A0(t1), �2(t1, �t) = �2
0 �A2

1(t1)N (E.49)

which is just the single-template optimum filter with time-o↵set.

E.4 Joint Channel Optimum Filter

Moving back to the case of a single event in a trace, let’s consider a joint fit of all channels with any

number time-shifted templates. Let’s add a channel index i into our notation, such that the signal

from channel i is vi(f) and the template at t0 = 0 in channel i for a template � is si�(f). In this
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way, we allow for n channels and m templates, where each template can take a separate form in each

channel but has one unified amplitude across all channels, allowing for correlated signals between

channels.

We can construct the least-squares statistic as usual:

�2 =
X

i

Z 1

�1

|vi(f)�
P

�
A�e�i!t0si�(f)|2

Ji(f)
df (E.50)

Here we sum templates for a given channel, and sum over least-squares for all channels to get a joint

goodness of fit estimator. We can expand the numerator to get

|vi(f)�
X

�

A�e
�i!t0si�(f)|2 (E.51)

= (v⇤
i
(f)�

X

�

A�e
i!t0s⇤

i�
(f))(vi(f)�

X

�

A�e
�i!t0si�(f)) (E.52)

= v⇤
i
(f)vi(f)� 2

X

�

A�e
i!t0s⇤

i�
(f)vi(f) +

X

�

X

�

A�A�s
⇤
i�
si�(f) (E.53)

= |vi(f)|2 � 2
X

�

A�e
i!t0s⇤

i�
(f)vi(f) +

X

�

X

�

A�A�s
⇤
i�
si�(f) (E.54)

pushing the denominator through we get the integrand

|vi(f)|2

Ji(f)
� 2

X

�

A�e
i!t0�i�(f)vi(f) +

X

�

X

�

A�A��i�si�(f) (E.55)

where we now have the optimum filter �i� for channel i, template �

�i� =
s⇤
i�
(f)

Ji(f)
(E.56)

If we minimize the fit with respect to a given amplitude A↵, we find

d

dA↵

�2 = 0 =
d

dA↵

X

i

Z 1

�1

2

4 |vi(f)|
2

Ji(f)
� 2

X

�

A�e
i!t0�i�(f)vi(f) +

X

�

X

�

A�A��i�si�(f)

3

5 df

(E.57)

=
X

i

Z 1

�1

2

4�2ei!t0�i↵(f)vi(f) + 2
X

�

A��i↵si�(f)

3

5 df (E.58)

X

i

Z 1

�1
ei!t0�i↵(f)vi(f)df =

X

�

A�

X

i

Z 1

�1
�i↵si�(f)df (E.59)

This looks odd until we realize that it is just a system of equations with one equation for each of
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the m templates. We can thus turn it into the matrix operation

V = NA ! A = N�1V (E.60)

where

V↵ =
X

i

Z 1

�1
ei!t0�i↵(f)vi(f)df (E.61)

N↵� =
X

i

Z 1

�1
�i↵si�(f)df (E.62)

As we’ll see later, these are just the normal equations for any linear model, but we’ve left this problem

slightly nonlinear by introducing the time o↵set, so we’ll still need to evaluate the chi-square at each

allowable time o↵set. In this notation the chi-square becomes

�2 = �2
0 �ATV = �2

0 �ATNA

which again, looking forward to the next appendix, just resembles the normal equations chi-square,

but we’ve made the time-shift implicit in the amplitudes and data vector.

This is functionally a generalization of the original time-shifted optimum filter because it reduces

to that filter in the limit that S↵� = �↵�S↵↵. This is either the case for orthonormal templates,

which we don’t expect in our detectors, or for channels which are completely uncorrelated in their

signal, which is also not a correct assumption. For these reasons we should expect this OF to perform

better than fitting the channels independently. It’s also interesting to note that adding arbitrary

linear dimensionality to our model space is not nearly as involved as adding one additional non-linear

element to the model, as can be seen by comparing this and the pileup OF sections.

E.5 Joint Channel Correlated Optimum Filter

The final generalization of this technique which can accommodate any type of detector where the

channels some set of known templates is to include the e↵ect of noise covariance between channels.

As in the previous section, we have a model made of M templates for N channels. The least-squares

statistic takes on the modified form

�2 =
X

i

X

j

Z 1

�1

 
vi(f)�

X

�

A�e
�i!t0si�(f)

!⇤

⌃�1
ij

(f)

0

@vj(f)�
X

�

A�e
�i!t0sj�(f)

1

A df (E.63)

This of course reduces to the form of the previous section in the limit that ⌃�1
ij

= �ijJ
�1
i

(f), so

we can see that now we’re going to modify the chi-square for the same model if we allow for noise
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correlation between channels. Here the matrix ⌃ij(f) is the cross-power spectral density of the

channels, where the diagonals are the auto-power spectral densities (what we have been calling

simply the PSDs) of each channel.

We should note that this is a slightly di↵erent form than how the generalized linear least-squares

model is written, as to write this as a matrix product we would have to express the covariance matrix

in a block-diagonal form for each frequency which would add dimensionality to the problem which

has been removed by use of the Fourier basis. As in the previous section, the integrals will end up

in our matrix definitions, and the result will resemble the linear least-squares case.

Let’s expand out the terms as usual in our least-squares statistic. We have the model-independent

term

�2
0 =

X

i

X

j

Z 1

�1
v⇤
i
(f)⌃(f)�1

ij
vj(f)df (E.64)

and the model-dependent term

X

i

X

j

Z 1

�1

2

4�2
X

�

A�e
i!t0s⇤

i�
(f)⌃�1

ij
(f)vj(f) +

X

�

X

�

A�A�s
⇤
i�
(f)⌃�1

ij
(f)sj�(f)

3

5 df (E.65)

=
X

i

X

j

Z 1

�1

2

4�2
X

�

A�e
i!t0�ij�(f)vj(f) +

X

�

X

�

A�A��ij�sj�(f)

3

5 df (E.66)

By analogy with the previous section, we find that

V↵ =
X

i

X

j

Z 1

�1
ei!t0�ij↵(f)vj(f)df (E.67)

N↵� =
X

i

X

j

Z 1

�1
�ij↵(f)sj�(f)df (E.68)

and as usual

A↵ =
X

�

N�1
↵�

V� (E.69)

and

�2 = �2
0 �ATNA (E.70)

As a concluding remark, I’ll point out that the logical continuation of the continually more general

solutions (which are less and less like filters as we generalize) would be to revert to the time domain

and remove the assumption of stationary noise; in this case we would just be dealing with the

normal generalized least-squares, which is described in the next section, but the dimensionality

of our problem would increase by orders of magnitude. The assumption of stationary, relatively

uncorrelated noise allows us to work with PSDs, in the Fourier domain, and reduce the dimensionality

of the problem to a tolerable level. That being said, we still need to take the inverse of a potentially
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large matrix twice in the construction phase of the filter, once to determine the covariance matrix,

and once again to determine the filter normalization S�1.

E.6 Optimal Filter Resolution

I’ve written the above filter algorithms in consistent terminology in order to utilize a general result,

discussed in the next appendix, for chi-square fits. The covariance of the parameters of our model

Ai is just

⌃ij = N�1
ij

(E.71)

where for the simplest 1D optimum filter, this is just the inverse of the filter norm, but for the more

complex optimum filters it is properly the inverse matrix of the problem’s design matrix. Consider,

for example, the correlated optimum filter with a single template. This filter has only one variable

to fit, the joint channel amplitude A0, and has the expected resolution

�2
0 =

2

4
X

i

X

j

Z 1

�1
�ij(f)sj(f)df

3

5
�1

=

2

4
X

i

X

j

Z 1

�1
s⇤
i
(f)⌃�1

ij
(f)sj(f)df

3

5
�1

(E.72)

To see that this makes sense, consider the case of uncorrelated noise, with equally weighted templates

and noise. We then see that the cross-terms go to 0, and the remaining terms are the resolutions of

the 1D optimum filter, thus

�2
0 =


N

�2
1D

��1

=
�2
1D

N
(E.73)

where

�2
1D =

Z 1

�1
s⇤(f)J�1(f)s(f)df

��1

(E.74)

This is exactly what we expect for measurements of the same quantity under equal and uncorrelated

noise. If the noise is uncorrelated, but some measurements are noisier, this is just the resolution of

the weighted sum of observations.

E.7 Wiener Filtering

In this section I describe the more general Wiener filter, in which a new filter is constructed for

each trace and the shape of the filter does not depend on the templates used. A good summary and

discussion of Wiener filtering can be found in Numerical Recipes, section 13.3.

Suppose we have some Fourier signal S(f) = R(f)U(f), where U(f) is the signal we want to

infer from the noise-free measured signal S(f), and an expected noise N(f), but we don’t want to

apply a template during filtering. If we measure the signal C(f) = N(f) + S(f), then we’d like to
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construct a filter to estimate Ũ(f) as

S̃(f) = R(f)Ũ(f) = �(f)C(f) (E.75)

Here I’ve tried to explicitly keep the template and measurements separate. If we minimize the

di↵erence between U(f) and Ũ(f), we arrive at the maximum likelihood filter estimate

�(f) =
|S(f)|2

|S(f)|2 + |N(f)|2 (E.76)

Contrasting this with the single-pulse optimum filter, we see that it discards the frequency informa-

tion in the signal. So far we still have an unknown signal in this equation, but given that the signal

and noise are uncorrelated, we can re-write this as

�(f) ⇡ |C(f)|2 � J(f)

C(f)
= 1� J(f)

|C(f)|2 (E.77)

This filter has the nice property that the bandwidth of the filter increases as the signal becomes

stronger, and the filter goes to 0 for the case that there’s no signal. This of course relies heavily

on the assumption that our noise and signal estimates are fairly precise in the highest signal/noise

region.

Say you now have a signal template such that S(f) = As(f) where s(f) is normalized to 1. You

would then estimate the signal amplitude as

Ã = Re

Z 1

�1
S̃(f)df

�
= Re

Z 1

�1
�(f)C(f)df

�
(E.78)

This is obviously not as clean as the normal optimum filtering formalism, but it does allow you to go

further through the process before needing a signal template, and may be a useful trigger quantity

to determine whether a pulse exists in data.

E.8 Time-Domain OF: Matched Filtering

Rather than re-doing the full derivation of the matched filter, I want to lay down the basics here so

people can appreciate what the trade-o↵s are between time-domain and frequency-domain optimal

filtering. For a full derivation and an extension of the matched filter to include time o↵set, see

Ref [38].

We construct the matched filter to estimate the amplitude of a known signal as

Â(t) =

Z 1

�1
�(t0 � t)0v(t0)dt0 (E.79)
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We already know how this goes from the frequency domain optimal filter when we take the maximum

likelihood estimate for the filter. In this case, instead of using the noise PSD, we use the noise auto-

correlation matrix

R(⌧1, ⌧2) =
1

T

Z
T

0
(n(t+ ⌧1)� µ)(n(t+ ⌧2)� µ)dt =

"
1

T

Z
T

0
n(t+ ⌧1)n(t+ ⌧2)� µ2

#
(E.80)

which is obviously over-defined; this is a matrix with Toeplitz symmetry and is fully specified by

the first row or column (this should help to speed up computation). We then construct the filter

�(⌧2) =

Z
T

0
s(�⌧1)R�1(⌧1, ⌧2)d⌧1 (E.81)

which needs to be normalized by the template using

N� =

Z
T

0

Z
T

0
s(�⌧1)R�1(⌧1, ⌧2)s(⌧2)d⌧1d⌧2 (E.82)

which we know from all linear least-squares problems gives us the filter resolution

�2 = N�1
�

(E.83)

We then get the normalized filter

�(⌧2) =
�0(⌧2)

N
(E.84)

which allows us to calculate our expected amplitude.

Let’s see what happens for this filter for the special case that the noise is completely uncorrelated

and white. We find

R(⌧1, ⌧2) = �(⌧2 � ⌧1)�
2
white

(E.85)

which gives us the OF resolution

�2 = N�1
�

=

"
��2
white

Z
T

0

Z
T

0
s(�⌧1)�(⌧2 � ⌧1)s(⌧2)d⌧1d⌧2

#�1

(E.86)

= �2
white

"Z
T

0
s(�⌧2)s(⌧2)d⌧2

#�1

(E.87)

So the filter just has some resolution reduced relative to the variance of the trace according to the

convolution of of the templates (defined to have unit amplitude). If we have a flat template we just

get an averaging reduction

�2 =
�2
white

N
(E.88)
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If we have a normalized exponential template, we find the convolution of the exponential gives T/⌧2,

so we get the resolution

�2 = �2
white

(⌧/�t)2

N
(E.89)

where I’ve implicitly done the discrete math to get the correct dimensionality. In essence, we find

that resolution scales linearly with pulse fall-time, and as the inverse square root of the number of

samples taken. Thus longer traces and shorter pulses will give us better resolution.



Appendix F

Trace Analysis & Model Fitting

In appendix E I presented some formal derivations of optimum filters, which is pedagogical and

general but is never directly applicable given that our data is always discrete. In this appendix I

will discuss the implementation of optimal filters, including the use of both time and Fourier-domain

chi-square tests to help mitigate some of the issues encountered doing optimal filtering in the Fourier

domain. This guide should save others time when implementing these functions by boiling down the

implementation to easily coded procedures.

F.1 Fourier Methods

In this section I will review important elements in Fourier analysis that are used in analyzing and

fitting CDMS data traces and characterizing noise. I will focus on the discrete transform which is

more applicable to analyzing real data, which is always taken with a sampling frequency and trace

length, and discuss ways to draw out relationships between data with di↵erent frequency-domain

tricks.

F.1.1 Continuous Transform

The continuous Fourier transform is usually defined as

x(f) =

Z 1

�1
x(t)e�i2⇡ftdt (F.1)

where the transform is a function of !. This allows the inverse transform to be

x(t) =

Z 1

�1
ei2⇡ftx(f)df (F.2)

324
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If constructed as a function of angular frequency, we need to divide the inverse transform by 2⇡ in

order to get the same Fourier coe�cients. There are many common references for properties of the

Fourier transform, so I won’t bother reproducing all of the properties here.

One property I will cover, that we use a lot in our derivations, is the fact that we usually don’t

care about the phase of the Fourier coe�cients. Consider what happens when we flip the sign of

the frequency. Our positive frequency coe�cient is defined in the normal way, but our negative

frequency coe�cient depends on whether the function is even or odd. For an even function, we have

x(�f) =

Z 1

�1
x(t)ei2⇡ftdt (F.3)

Z 1

�1
x(�t)e�i2⇡ftdt =

Z 1

�1
x(t)e�i2⇡ftdt (F.4)

Z 1

�1
x(�t) [cos(2⇡ft)� i sin(2⇡ft)] dt =

Z 1

�1
x(t) [cos(2⇡ft)� i sin(2⇡ft)] dt (F.5)

x(�f) =

Z 1

�1
x(�t) [cos(2⇡ft)] =

Z 1

�1
x(t) [cos(2⇡ft)] = x(f) (F.6)

where I used the fact that x(�t) = x(t) for an even function. If we have an odd function, we have to

use x(�t) = �x(t), so we retain only the sin component and get x(�f) = �ix(f), a phase shift of -90

degrees. This reflects the fact that the negative frequency coe�cient is just the complex conjugate

of the positive frequency coe�cient. This also means they have the same norm, so we can write

Z 1

�1
|x(f)|df = 2

Z 1

0
|x(f)|df (F.7)

which we use in constructing our resolution calculations, which use the PSD, which contains the

norm squared of the Fourier transform. It also allows us to focus only on the positive frequencies,

even though the Fourier transform always has negative frequencies, as long as we remember to

include these factors of 2.

F.1.2 Discrete Transform

The chi-square statistics presented in appendix E ignore the fact that for discrete data, when taking

a sum, the expectation value of that sum will naturally depend on both the sampling frequency and

trace length, as well as the proper normalization of all function involved. Let’s define the discrete

quantities so we can come up with some practical formulae for implementing them. The discretized

fourier transform is

x(f) =

Z 1

�1
x(t)e�i!tdt ⇡

"
NX

n=0

x(tn)e
�i!tn

#
�t
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Suppose that t goes from 0 to T in steps of �t. This lets us write

!tn =
!T

N
n

The fact that we have N numbers spaced a distance �t apart means that we can’t arbitrarily

sample frequency space using this data set, so we can sample N frequencies that are harmonics of

the minimum sampling frequency from 0 to N 1
T

to give

!k =
2⇡k

T
! !t =

2⇡kn

N

this then gives us

xk ⇡
"

NX

n=0

xne
�i

2⇡kn
N

#
�t = xD(f)�t

where xD(f) is the form of the discrete Fourier transform computed by most FFT algorithms:

xD(f) =
NX

n=0

xne
�i

2⇡kn
N

For your DFT to have the correct units, you need to multiply by the time step or divide by the

sampling frequency. Taking the inverse transform, we can see that

xn ⇡
"

NX

k=0

xke
i
2⇡kn

N

#
�f = (xD(t)N)

1

T
= xD(t)

1

�t

We see that in one case we multiply by �t and in another we divide by �T , so that in the discrete

and continuous cases we get our original function from the inverse of the direct transform. This is

only true because the inverse discrete transform is defined as

xD(t) =
1

N

"
NX

k=0

xke
i
2⇡kn

N

#

to ensure that it is the case. We can see now why not being aware of what we’re calculating might

trip us up; we need to remember when converting to a discrete or continuous formula how to scale

the calculated transforms, when relevant.

F.1.3 Power Spectral Density

Let’s talk now about calculating the Power Spectral Density (PSD) of some signal. The total energy

in a signal is given as

E =

Z
T

0
(x(t))2dt =

Z
fmax

0
(x(f))2df
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and the power is just this energy divided by the total time:

P =
1

T

Z
T

0
(x(t))2dt =

1

T

Z
fmax

0
(x(f))2df

thus the spectral density is just

J(f) =
dP

df
=

x(f)2

T

There is thus a convenient closed-form analytic expression for the discrete power spectral density,

with correct normalization:

J(f) =
1

T
|x(f)|2 =

(�t)2

T
|xD(f)|2

where xD(f) is the discrete Fourier transform discussed earlier. This is the simplest estimate for

the PSD, but noting that this is an approximate form in the large T limit, there are better ways to

estimate it with a small number of traces through more advanced Fourier methods. In MATLAB

and python, the periodogram function is a very e�cient way to estimate PSDs without having to

worry about correct normalization and statistics, it will produce the lowest variance (though slightly

biased) PSD estimate. In the limit of many traces averaged together, both methods converge to the

same result.

The continuous definition is sometimes also given as

J(f) =

Z 1

�1
�(⌧)e�i2⇡f⌧d⌧

where �(⌧) is the autocovariance function; this means that the power spectral density is just the

Fourier transform of the autocovariance function, defined as

�(⌧) = lim
T!1

1

T

Z
T

0
(x(t+ ⌧)� µ)(x(t)� µ)dt ⇡ 1

T

Z
T

0
(x(t+ ⌧)� µ)(x(t)� µ)dt

where this is obviously an approximation for a truncated sample. We discuss this and related

time-domain statistics in the next section of this appendix.

F.1.4 Correlation, Cross-Spectral Density, and Coherence

In the above, I’m concerned primarily with the relationship of noise to itself, but equally important

statistics compare two traces to each other. Physicists refer to the amount of similarity or causation

between two traces in the Fourier domain ’correlation’, but in signal processing it is properly called

the cross-spectral density, where the power-spectral density is then referred to as the auto-spectral

density.

By the same logic as the previous section, we can define the cross-spectral density as the Fourier

transform of the cross-correlation, or the spectral density of the product of the two signal transforms
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in the infinite time limit:

⌃ij(f) = lim
T!1

xi(f)⇤xj(f)

T
(F.8)

The cross-spectral density matrix ⌃ij is therefore hermitian, given that the diagonals (the PSDs)

are real and swapping the indices of the matrix gives the complex conjugate. We’ve seen this matrix

already in Chapter 5 and Appendix E in the context of the correlated optimum filter, and we know

that it allows us to diagonalize the traces into correlated and uncorrelated components.

If we want to measure the fraction of two traces that are causally linked, the relevant statistic is

called the coherence, and is the Fourier-domain corollary of the time-domain correlation discussed

in the next section. The coherence Cij can be computed from the cross-spectral density matrix ⌃

as

Cij(f) =
|⌃ij(f)|2

⌃ii(f)⌃jj(f)
(F.9)

For two completely correlated signals, the denominator will become ⌃2
ii

and the numerator also

becomes ⌃2
ii
, giving a coherence of 1. In the infinite time limit, two completely uncorrelated signals

will have no cross-spectral density, and the coherence will be 0. This allows for a much easier way

to visualize which regions of a signal might be influenced by an environmental noise source which is

coupled either to another channel or an environmental monitor as a function of frequency.

It should be noted that these statistics really do rely on having well-sampled spectra, and will

be a↵ected by measurement error much more noticeably than time-domain statistics might. It is

always useful as a cross-check of your implementation to verify that the Fourier transform of the

cross-correlation is approximately the same as the discrete Fourier version:

Cij(f) = lim
T!1

Z 1

�1

Z
T

0
[(xi(t+ ⌧)� hxi)(xj(t)� hxji)] e�i2⇡f⌧dtd⌧ (F.10)

In general using a pre-built function to do windowed estimation will produce a lower variance result,

similar to the case with the PSD. These methods use adjacent bins to reduce the over-all variance of

the CSD by allowing the result to have a slight bias in the integral, but give a much better estimate

of a given CSD point.

F.1.5 Discrete Optimum Filter

Suppose we start with the continuous definition from the previous section:

�2 =

Z 1

�1

|v(f)�As(f)|2

J(f)
df (F.11)
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We make this discrete, and we want to express it in terms of discrete Fourier transforms of the

signal, template, and noise. We thus get

�2 ⇡
NX

n=0

|v(f)�As(f)|2

J(f)
�f (F.12)

=
NX

n=0

(�t)2|vD(f)�AsD(f)|2
(�t)2

T
|nD(f)|2

1

T
(F.13)

=
NX

n=0

|vD(f)�AsD(f)|2

|nD(f)|2 (F.14)

which should always come out to have an expectation value of ⇠ N , and thus a reduced chi-square of

1. It is usually unlikely that we have the Fourier transform of the noise, however, and it’s more likely

that we have the periodogram of the noise and the fourier transforms of the signal and template, so

we should re-write the chi-square as

�2 ⇡ (�t)2

T

NX

n=0

|vD(f)�AsD(f)|2

J(f)
(F.15)

=
�t

N

NX

n=0

|vD(f)�AsD(f)|2

J(f)
(F.16)

this odd form has to do with the di↵erent scaling of a true discrete transform and a continuous

approximation, and is important for practically implementing the optimal filter chi-square such that

the reduced chi-square is insensitive to trace length or sampling rate. This same scaling also then

applies to the more advanced filters as the overall scaling doesn’t change, just the complexity of the

template.

Finally, for a reduced chi-square, we find that the above equations become

�2
r
=

1

N �M

NX

n=0

|vD(f)�AsD(f)|2

|nD(f)|2 (F.17)

and

�2
r
=

�t

N(N �M)

NX

n=0

|vD(f)�AsD(f)|2

J(f)
(F.18)

where for the single-amplitude model M = 1.

F.2 Time-Domain Statistics

In analyzing time-domain data, there are a number of useful statistics which allow us to quickly

determine whether we have a trace with a pulse, on a large thermal tail, or only noise, and an analysis
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of inliers and outliers in these distributions help separate types of events and remove unwanted events

which are not characteristic of the signal under study. Some basic moments for any time-domain

series are given below:

1. Mean:

µ̂ =
1

N

NX

n=1

xn

2. Variance:

�̂2 =
1

N � 1

NX

n=1

(xn � µ)2

3. Skewness

�̂ =
1

N�3/2

NX

n=1

(xn � µ)3

4. Slope

m̂ =

P
N

n=1(xn � µx)(yn � µy)P
N

n=1(xn � µx)2

Here I have made sure to note that these are not the true values but estimates of the values, each

with their own uncertainty, but exact in the limit that N! 1.

F.2.1 Covariance and Correlation

The above statistics are all of one dimension and characterize global quantities of the dataset.

Another statistic which is one-dimensional (assuming stationary noise) is the autocovariance of the

time series which we have already defined previously as

�(⌧) =
1

T

Z
T

0
(x(t+ ⌧)� µ)(x(t)� µ)dt

The discrete version of this is just as simple

�i =
1

N

NX

n=1

(xn+i � µ)(xn � µ)

You should notice immediately that this looks familiar, and that i = 0 is just the variance:

�0 =
1

N

NX

n=1

(xn � µ)2 = �2

This is a statistic which is less standardized in its continuous form due to di↵erences between

statistical and signal processing applications, and here we will restrict ourselves to the statistical
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because we will be concerned with total energy, not steady-state power. Finite power processes

formally have infinite energy and thus are irrelevant to our studies, as we will always want to

subtract the DC power from our traces.

An alternate way to compute this statistic is by the inverse Fourier transform of the power

spectral density:

�(⌧) =

Z 1

�1
J(f)ei2⇡f⌧df

This is related to the definition from the previous section of the power spectral density as the Fourier

transform of the autocovariance function, and is proven by the Wiener-Kinchin theorem (which I

will not reproduce but reference for a complete discussion). For completeness, let’s also tackle the

case of a discrete power spectral density. Using our normal substitutions, we have

�(⌧) ⇡ 1

T

NX

n=0

J(fn)e
i2⇡fn⌧ =

JD(⌧)

�t

which is just our normal relation for converting the discrete inverse transform to the continuous

approximation. We can find the method of computing the autocovariance by Fourier methods by

substituting the discrete approximation for the power spectral density:

�(⌧) ⇡ (|xD(f)|2)D(⌧)

The notation here is a bit messy, but this says that the autocovariance is just the inverse transform

of the squared Fourier transform. This is exactly what we should have expected given the properties

of the Fourier transform in which a convolution in time domain is a multiplication in Fourier domain.

For completeness, let’s also summarize the covariance more generally. The covariance of two

signals is given as

cov(x, y)(⌧) =
1

T

Z
T

0
(x(t+ ⌧)� µx)(y(t)� µy)dt

and is thus formally the time-averaged cross-correlation of the two signals after removing their

means.

Why would we want to time-average this cross-correlation, and why remove the means? Consider

what would happen if the signals were noiseless, and flat-lined at their mean. In this form, the

covariance is 0, but the cross-correlation is µxµyT , and the time-averaged cross-correlation is just

µxµy. We know that there is no co-variance, because the signal does not properly vary when it

flat-lines, but only the covariance tells us this is true. This is one of the reasons why it is always

necessary to remove the baseline of two signals before comparing them; otherwise the mean will

skew your estimate of the relationship between them.

We normally work with covariance using the covariance matrix, and in this case, the covariance
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matrix is given as

⌃ij =
1

N

NX

n=1

(xn+i � µx)(yn+j � µy)

and therefore the autocovariance matrix is

⌃ij =
1

N

NX

n=1

(xn+i � µx)(xn+j � µx)

such that ⌃ii = �2. Noise that is completely uncorrelated will have a diagonal autocovariance matrix

of the form ⌃ = I�2 and a covariance matrix ⌃ = 0. Traces with correlated noise will still have a

high degree of symmetry, and the autocovariance matrix is just the Toeplitz matrix with the first

row and column equal to �i:

⌃ij = �i�j

This will be useful in a few sections when we discuss using the autocovariance matrix for optimal

linear least-squares estimates.

A related statistic is the autocorrelation function. Correlation is defined generally as

corr(x, y) = Rxy =
cov(x, y)

�x�y

so the autocorrelation of a signal reduces to

Rxx(⌧) =
�(⌧)

�2

As we saw earlier, �(0) = �2, so we find trivially that Rxx(0) = 1, or a trace is 100% correlated with

itself at no time shift.

F.2.2 Example: Correlation Triggers

We can use the correlation to define our trigger, if one time-series contains data and the other an

accurate signal template. To see why, imagine that we have some signal templates(t) and a signal

As(t) + n(t), where n(t) is drawn from a distribution with mean 0 and variance �2. The correlation
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(trigger signal T ) of the signal and template is

T (t) =
1

T
p
A2�2

s
+ �2

n
�s

Z
T

0
(As(t+ ⌧) + n(t+ ⌧))(s(t))dt (F.19)

=
1

T
p
A2�2

s
+ �2

n
�s

"Z
T

0
As(t+ ⌧)s(t)dt+

Z
T

0
n(t+ ⌧)s(t)dt

#
(F.20)

=
1

T
p
�2
s
+A�2�2

n
�s

Z
T

0
s(t+ ⌧)s(t)dt (F.21)

=
�2
sp

�2
s
+A�2�2

n
�s

f(⌧) (F.22)

=
1q

1 + �2
n

�2
sA

2

Rss(⌧) (F.23)

where we’ve substituted in the autocorrelation function, which we known must be unity at ⌧ = 0.

So the maximum of the signal T (t) will occur at the true start point of the signal template, and the

larger the template is compared to the noise, the closer this maximum will be to 1. Setting a level

threshold on this function can then be related to the variances given here, where �2
s
is the variance

of the template and �2
n
is the noise variance. We can relate the threshold ⌘ in a correlation trigger

to these quantities:
�2
n

A2�2
s

=
1

⌘2
� 1

Larger amplitudes and signal variances thus allow more stringent thresholds, which matches our

intuition. The exact triggering strategy of course depends on the details of these parameters as they

relate to the requirements of the experiment.

We can also chain the correlations to create a trigger more robust to signal-like noise fluctuations

by multiplying multiple correlation triggers; in a sense this is asking the question ”how likely is

it that the same event caused a feature in all channels considered”? Because we know that the

trigger point will occur where correlation is essentially 1, random excursions will be suppressed

given that they will not occur at the same point each trace. This will only be the case, however,

for uncorrelated noise. Noise that is correlated between channels will require additional modeling or

filtering to remove.

F.3 Least Squares Fitting

In experimental physics we do a lot of curve-fitting, and certain terms like �2 are thrown around a

lot without a ton of formal definition or explanation as to why this random calculation should give

us something meaningful. In this section I will lay a bit of the foundations for the �2 statistic for

completeness, and demonstrate the closed-form solution for a linear least-squares problem. I briefly
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mention non-linear least-square to acknowledge that most problems are non-linear, but I won’t go

into much detail in this thesis.

F.3.1 Reduced Chi-Square Statistic

The weighted, discrete least-squares statistic is normally given as

�2 =
NX

i=0

Wi(yi � f(xi))
2 =

NX

i=0

Wir
2

where r is the residual (observation minus prediction) and normally we set the weights to the inverse

of the variance of each measurement; in the case of stationary uncorrelated noise, then the time-

domain variance should be the same, and we have Wi = ��2, and we get

�2 =
1

�2

NX

i=0

r2
i

let’s ask ourselves what this means in the context of a DC signal of mean µ, where xi is just samples

drawn from the noise added to this mean. In this case, then we find the �2 statistic

h�2i =
*

1

�2

NX

i=0

(xi � µ)2
+

=
1

�2
N�2 = N

This is a nice property; we know for a sample of length N , a good fit should give a distribution of

chi-squares which has a mean equal to the length of the trace. If we want to make this statistic

more meaningfully invariant to the trace length, we can just divide by the trace length to generate

the reduced chi-square, �2
r
:

�2
r
=

1

N�2

NX

i=0

r2
i

This statistic will be near 1 for a good fit, and larger than 1 for a bad fit; it will also indicate when

we’ve over-fit the model in the case that it’s much less than 1, which shouldn’t be possible, but is

allowable for an over-fit model.

Let’s explore this in the limit of a many parameter model. In the case that we have M parameters

and N data points, we realize that we are reducing the amount of prediction we need to do to a set

of N �M observations; in the limit of M = N � 1, we can set all but one of the parameters to equal

an observation and let the last point predict the average of the remaining two points, for example,

and get a stellar reduced chi-square. This of course would be over-fit, and give a statistic much less
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than 1. This is typically mitigated by dividing not by N but by N �M , such that

�2
r
=

1

(N �M)�2

NX

i=0

r2
i

This is the definition of reduced chi-square we will use, although we will sometimes approximate

M ⇡ 0 in the case that we have many more points than model parameters for simplicity.

F.3.2 Generalized Least Squares

Let’s write the reduced least-squares statistic in matrix form. We can re-express the weights as the

diagonal matrix W = ��2I, and we get the weighted least-squares expression

�2
r
=

1

N
RTWR

where R = y � f(x). This is very suggestive; we realize what we’ve been doing is a very simplified

case of a least-squares minimization. Without any further generalization, let’s imagine that W is

any diagonal matrix. We can rotate to a basis where W is non-diagonal by a unitary transform U

as

�2
r
=

1

N
RT(UTU)W(UTU)R

=
1

N
(RTUT)(UWUT)(UR)

=
1

N
R0T⌃R0

where ⌃ = UWUT is a symmetric, positive definite, non-diagonal matrix. Why is this important?

Because it says that for any set of observations with a covariance matrix ⌃, the same justification

for the linear least-squares exists, but we’re implicitly doing it in a non-diagonal basis.

F.3.3 Linear Least-Squares: Normal Equations

Suppose that our model is linear, such that it can be expressed in the form

f(X) =
MX

j

�jSj(X) = S� (F.24)

where Sj(X) is a known model vector and a column in the matrix S. � is therefore a column vector

with length M, and S is a matrix of size NxM, such that their product is a column vector of length

N.
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We can minimize the least-squares formula with respect to each parameter by setting the respec-

tive derivative to 0:

0 =
@�2

@�j
=

@

@�j

1

N
RTWR (F.25)

0 =
2

N
RTW


@

@�j
R

�
(F.26)

0 = RTW [�Sj(X)] (F.27)

0 = Sj(X)TWR (F.28)

0 = Sj(X)TW

0

@Y �
MX

j

�jSj(X)

1

A (F.29)

Sj(X)TWY = Sj(X)TW
MX

k

�kSk(X) (F.30)

This allows us to write the normal equations

STWS� = STWY (F.31)

or in other words, estimate all of the linear parameters with one matrix calculation:

�̂ =
STWY

STWS
= FY (F.32)

where

F = (STWS)�1STW (F.33)

is the transformation matrix and

A = (STWS)�1 (F.34)

is the design matrix of our problem. This looks awfully familiar; it is in fact the time-domain version

of the no-o↵set optimum filter. Because this is equally valid for the generalized least-squares, we

can write

�T = (ST⌃�1S)�1ST⌃�1 (F.35)

and make this explicitly our optimal filter in the time-domain. This actually a really nice result,

because it will allow us to avoid doing any Fourier transforms at the expense of one single (but

larger) matrix calculation by performing the operation

�̂ = �TY (F.36)

The one down-side of this method is that it requires us to have a linear model. Our model is linear in
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the pulse amplitudes, but not in the time-o↵sets, so a full linearized analysis of an arbitrary number

of pulses is possible only if the arrival times are known. If only approximate arrival times are known,

a linearization can be done in the time o↵set by using the model and its derivative as suggested in

[38].

The nice feature of this formalism for optimal filtering is that there is a huge body of literature and

set of libraries which can manipulate linear systems and solve the normal equations e�ciently. We

also conveniently get estimates of the parameter uncertainties and covariances from this formalism

very easily, as well as an estimate of goodness of fit1:

A = (ST⌃�1S) (F.37)

�T = (ST⌃�1S)�1ST⌃�1 = A�1ST⌃�1 (F.38)

� = �Y (F.39)

⌃� =
⇥
ST⌃�1S

⇤�1
= A�1 (F.40)

�r,0 =
YT⌃�1Y

N �M
(F.41)

�2
r
=

1

N �M
(Y � S�)T⌃�1(Y � S�) (F.42)

= �r,0 �
�TA�

N �M
(F.43)

This last equation follows from

�2
r
=

1

N �M
(Y � S�)T⌃�1(Y � S�) (F.44)

=
1

N �M

�
YT⌃�1Y � 2(S�)T⌃�1Y + �TA�

�
(F.45)

=
1

N �M

�
YT⌃�1Y � 2�TA� + �TA�

�
(F.46)

=
1

N �M

�
YT⌃�1Y � �TA�

�
(F.47)

What is interesting here is that once I define my model, and I know my noise covariances, I already

can predict my model uncertainty and covariance between parameters. That is an intuitively sensible

statement but a nice demonstration of the principle we discuss in optimal filtering theory earlier.

We also see that this is a much more convenient way to write the same procedure as outlined earlier

for fixed pulse start-times.

1https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)

https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)
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F.3.4 Nonlinear Models and Maximum Likelihood

What do we do when our model is not just a linear combination of weights of our parameters?

We generally have two options. In many cases, the problem can be linearized by projecting the

parameters into a linear space. Functions of the form

f(x) = axb (F.48)

for example are not implicitly linear, but they can be linearized by instead fitting the log values of

the data:

f 0(x) = log10(f(x)) = log10(a) + b log10(x) (F.49)

This means that any power law, even with multiple parameters, can be turned into a linear least-

squares fit.

This only works for a handful of functions though, and usually we have to resort to a maximum

likelihood fit. The idea behind the maximum likelihood is that we have a model that gives the

probability of a given observation for a set of parameters, P (x;�), and we can then construct the

function

L = ⇧iP (xi;�) (F.50)

which is the likelihood of observing the set of observations xi given a set of parameters. In some cases

we can find a closed-form solution to problems of this form; for example, the time-domain statistics

in this appendix are the maximum likelihood estimates for the moments of a normal distribution.

In most cases, we end up using a gradient solver to numerically find the parameters which maximize

the likelihood. In general, we actually fit the log-likelihood

log [L] =
X

i

log(P (xi;�) (F.51)

which looks awfully similar to our linear least-squares problems! Taking the log allows us to probe a

smoother space and increases the speed of our computations; it’s faster to add a bunch of numbers

than to multiply them.

Many good references on machine learning introduce di↵erent minimization methods in a robust

way, but for a non-linear likelihood space this becomes a very nontrivial problem. That’s generally

the purview of observational cosmology, where very non-linear problems occupy highly nonlinear and

high-dimensional parameter spaces that need to be robustly constrained. Andrew Ng’s class notes

for the Stanford machine learning class (which I hope will be turned into a book at some point)

provide an excellent introduction to these types of problems. In many cases, training a machine

learning algorithm is itself a non-linear optimization problem, and many machines are attempting

to learn solutions to non-linear problems, so it’s a bit of a spiral into function optimization.



Appendix G

Single Electron Probability

Distributions

What follows are notes deriving di↵erent probability distributions for electron-hole pairs generated

by a laser of known Poisson mean � under di↵erent experimental conditions. I provide it here for

posterity, but it may not be entirely pedagogical because these are mostly the unrefined notes I was

taking when I derived di↵erent PDFs.

G.1 Abstract Form

We would like to fit the laser data by the method of maximum likelihood, where the likelihood

function g(Si; q) of a signal point Si given fit parameters q is

g(Si; q,�) =
1X

n=0

�ne��

n!
Pn(Si; q)

where Pn(Si, q) is the probability distribution for energies produced by n photons given the fit

parameters. While we have a general form for this distribution, assuming all processes produce

Gaussian distributed random variates gives the form

Pn(S) =
nX

k1,k2,k3=0

n!

k1!k2!k3!

(�↵)k1(�(1� ↵))k2(1� �)k3

p
2⇡vk

exp


� (S � µk)2

(2vk)

�

where ↵ is the probability of crossing the crystal without trapping/impact ionization, � the proba-

bility of escaping the initial charge cloud, and n = k1+k2+k3. The variance and mean in this term

339
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are also functions of ki with free parameters:

vk = vN + k1v1 + k2v2 + k3v3

µk = µN + k1µ1 + k2µ2 + k3µ3

If we were to simultaneously fit all of these parameters, it would be a 11 parameter fit with a lot of

degeneracy, and the odds of finding the correct minimum would be very small. We can reduce the

fit complexity by using leakage traces and trends across voltage to constrain our parameters. To

start, consider the leakage runs, which have � = 0. This restricts n = k1 + k2 + k3 = 0, allowing

us to fit vn and µn while ignoring the remaining parameters. We thus fix these parameters to the

mean and standard deviation of the Gaussian noise distribution from the leakage.

Now if we turn the laser on, but we assume ↵ = 1, we have three more parameters to fit, namely

�, v1, and µ1. By setting ↵ to 1 we eliminate 5 parameters (we implicity eliminate �, and all

means/variances associated with k2 and k3). We thus fit the function

Pn(S) =
nX

k1=0

1p
2⇡vk

exp


� (S � µk)2

(2vk)

�

which is the sum of Gaussians with linearly increasing mean and variance. Assuming that the

dominant part of the spectrum comes from the charges which cross the crystal, these parameters

can also be fixed after this fit.

We now relax the assumption of ↵ = 1 but impose � = 1, and we fit three more parameters,

↵ and the associated mean and variance. We can obtain a good fit here by restricting the mean

and variance to be a fraction of the previously fitted mean and variance given that this should be a

second order e↵ect.

G.2 Physical Trapping/Ionization Model

G.2.1 Single Charge

Suppose we have a process that stops or frees a charge somewhere in the bulk of the detector. If we

have perfect energy resolution, we would find the probability distribution

p(s0; d) =
⇥(s0)⇥(d� s0)

d

where ⇥(x) is the Heaviside step function and d is the full energy of an electron-hole pair crossing

the length of the detector. We also have gaussian noise producing the true measurable s, with the
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probability distribution

p(s; s0,�) =
1p
2⇡�2

exp


�(s� s0)2

2�2

�

To get the observed distribution of s then, given � and d, we perform the convolution of these two

distributions:

p1(s; d,�) =

Z 1

�1

⇥(s0)⇥(d� s0)

d

1p
2⇡�2

exp


�(s� s0)2

2�2

�
ds0 (G.1)

=
1

d

Z
d

0

1p
2⇡�2

exp


�(s� s0)2

2�2

�
ds0 (G.2)

=
1

2d


�

✓
sp
2�

◆
� �

✓
s� dp
2�

◆�
(G.3)

where �(x) is the error function. This makes intuitive sense; our distribution looks like the original

distribution but with edges rounded on the length scale of the gaussian variance.

G.2.2 Two Charges

Suppose now that we have two charges which trap or are freed. Each one has its own interaction

site, so we have true energies s1 and s2, but we measure (in the absence of noise) s0 = s1 + s2. So

we want to find the probability distribution of s0. We have

p2(s0; d) =

Z 1

�1
p(s1; d)p(s0 � s1; d)ds1 (G.4)

=
1

d2

Z 1

�1
⇥(s1)⇥(d� s1)⇥(s0 � s1)⇥(d+ s1� s0)ds1 (G.5)

If s0 < d, we have

p2(s0; d) =
1

d2

Z
s0

0
⇥(d� s1)⇥(d+ s1� s0)ds1 (G.6)

=
s0
d2

⇥(s0)⇥(d� s0) =
s0
d
p(s0; d) (G.7)

If s0 > d, we have

p2(s0; d) =
1

d2

Z
d

0
⇥(s0 � s1)⇥(d+ s1� s0)ds1 (G.8)

=
2d� s0

d2
⇥(s0 � d)⇥(2d� s0) =

⇣
2� s0

d

⌘
p(s0 � d; d) (G.9)

which gives the total probability distribution

p2(s0; d) =
s0
d
p(s0; d) +

h
2� s0

d

i
p(s0 � d; d) =

s0
d

[p(s0; d)� p(s0 � d; d)] + 2p(s0 � d; d)
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I’ve written the function this way in order to make convolution with the noise distribution easier;

we’ve already done the integral with the single-charge probability distribution. We find that we have

to do the convolution

p2(s; d) =

Z 1

�1
p2(s0; d)p(s; s0,�)ds0 (G.10)

=

Z 1

�1

hs0
d

[p(s0; d)� p(s0 � d; d)] + 2p(s0 � d; d)
i 1p

2⇡�2
exp


�(s� s0)2

2�2

�
ds0 (G.11)

=
s

d
[p1(s; d)� p1(s� d; d)] + 2p1(s� d; d)� 1

d

Z 1

�1
[p1(s0; d)� p1(s0 � d; d)] ds0 (G.12)

We’ve saved some e↵ort by re-using the earlier integral. The function in brackets can be simplified:

p1(s; d)� p1(s� d; d) =
1

2d


�

✓
sp
2�

◆
� �

✓
s� dp
2�

◆�
� 1

2d


�

✓
s� dp
2�

◆
� �

✓
s� 2dp

2�

◆�
(G.13)

=
1

2d


�

✓
sp
2�

◆
� 2�

✓
s� dp
2�

◆
+ �

✓
s� 2dp

2�

◆�
(G.14)

such that our leading term is then

s

2d2


�

✓
sp
2�

◆
� 2�

✓
s� dp
2�

◆
+ �

✓
s� 2dp

2�

◆�
+

1

d


�

✓
s� dp
2�

◆
� �

✓
s� 2dp

2�

◆�

In the limit that � ! 0, this reduces to our original triangular function. We also have the second

term, which should dominate in the large � limit. The full convolution comes out to

p2(s; d) =
1

2d2


s�

✓
sp
2�

◆
+ 2(d� s)�

✓
s� dp
2�

◆
+ (s� 2d)�

✓
s� 2dp

2�

◆�
(G.15)

+
1

d2

r
�2

2⇡


exp

✓
s2

2�2

◆
� 2 exp

✓
(s� d)2

2�2

◆
+ exp

✓
(s� 2d)2

2�2

◆�
(G.16)

This is our smoothed triangle plus Gaussians at the ends and middle of the triangle.

G.2.3 Three or more charges

We can use the previous two sections to derive the probability distribution for 3 simultaneous charge

leakage events. If we have s0 = s1 + s2 + s3, and we know that we can use p2 from the previous

section for the probability distribution of s1 + s2, then we have

p3(s0; d) =

Z 1

1
p2(s1; d)p1(s0 � s1; d)ds1
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Figure G.1: Comparison of exact 3-square convolution to Gaussian approximation.

without getting into the gory details, repeating the previous procedure (break it down into individual

convolutions of two p(x; d) functions) gives the piecewise form

p3(s0; d) =
1

2d2
⇥
s20p(s0; d) + (s20 � 3(s0 � d)2)(p(s0 � d; d) + (s0 � 3d)2p(s0 � 2d; d))

⇤

which looks remarkably similar to a Gaussian with mean µ = 3(d/2) and � = 3(d2/12), as shown

in figure G.1. These are just the variance and mean of a normalized flat distribution with bounds

of 0 and d! This suggests that for k � 2 trapping events, we can approximate the resulting energy

deposition PDF as a gaussian with µ = kd/2 and � = kd2/12. In other words, we have the piecewise

function for the PDF of deviation from expected energy for arbitrary k:

pk(s0; d) =

8
>>>><

>>>>:

�(s0) k = 0

p(s0; d) k = 1
s0
d
[p(s0; d)� p(s0 � d; d)] + 2p(s0 � d; d) k = 2

⇥
⇡kd2/6

⇤�1/2
exp

h
�(s0�kd/2)2

kd2/6

i
k � 3

(G.17)

We have the equivalent piecewise function for convolution with the noise Gaussian, which is

trivial for k = 0 and k = 3 (the latter being a simple addition of variances) and done above for

the other two cases. With these forms we have a very good approximation for trapping or impact

ionization of an arbitrary number of charges.
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G.2.4 Charge Energy Distributions

Let’s go back to what we initially proposed in the first part of this note and modify it with our more

specific trapping forms to see how the model changes. We will ignore � here (� = 1) and still posit

that ↵ measures the probability of a charge making it across the crystal. Consider first the case of

a single charge generated at the crystal surface. If we call the trapping probability distributions pi

and the no-trapping distribution p0, then we have the total probability distribution

p1(s; d,�) / ↵p0(s� d; d,�) + (1� ↵)p1(s; d,�)

We can easily extend this to have the more general case of n initial charges by analogy to the first

equation in the note, giving

pn(s; d,�) =
nX

k=0

n!

k!(n� k)!
↵n�k(1� ↵)kpk(s+ (k � n)d; d,�)

Clearly for this to be valid for any number of charges, we need the distributions pn out to n. If

we consider that the trapping probability is small, however, we can treat this as a taylor expansion

and recognize that beyond k = 2 we add sub-percent corrections; so the approximate probability

distribution is thus

pn(s; d,�) ⇡
2X

k=0

n!

k!(n� k)!
↵n�k(1� ↵)kpk(s+ (k � n)d; d,�)

in the limit (1 � ↵)2 << 1. Note that for e.g. ↵ = 0.8, the k = 3 term would have a relative

magnitude of 0.8%.

We thus string the various pn distributions together as described earlier in the note, and we

have a trapping model with many fewer free parameters, given that we’re assuming p0 is Gaussian

distributed. We add back in the increasing variance with charge number by making the substitution

� ! �n,k, where

�n,k = �N + (n� k)�c

By applying physical assumptions here, we’ve actually reduced the dimensionality and degeneracy of

our problem. We have 6 total free parameters, down from 11, for the entire model. If we add impact

ionization, we only add one more parameter, the probability � of not ionizing another charge, and

we modify the distribution to give extra events above the peak:

pn(s; d,�) =
nX

k=0

n!

k!(n� k)!
�n�k(1� �)kpk(s� (k + n)d; d,�)
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We then take this the final step. If we allow both processes, we have

pn(s; d,�) =
2X

k↵,k�=0

n!

k� !k↵!(n� k↵ � k�)!
(↵�)n�k↵�k� (�(1�↵))k↵(1��)k�p(k↵+k�)(s�(k��k↵+n)d; d,�)

G.3 IR Loading

Suppose instead of ionization or trapping, the dominant process is additional ionization by sub-

gap IR photons which free electrons or holes in sub-gap impurity states. Each of these events

is distributed similarly to charge freed by impact ionization or trapping (they arise from the same

population of trapped charges), but the probability of these events is independent of photon number.

If the probability of an no IR loading events is ⌘, then we find that n incident photons have the IR

loading probability distribution

pn(s; d,�) = ⌘
1X

k=0

(1� ⌘)kpk(s� nd; d,�)

which as expected is independent of the photon number. We weight the distributions by photon

number using poisson statistics, giving the distribution

p(s;�, d,�) =
1X

n=0

1X

k=0

e���n

n!
⌘(1� ⌘)kpk(s� nd; d,�)

If we really do have IR loading, this suggests both that there is IR coincident with the laser

pulses, but also that additional IR is a significantly background to our full charge signal. For a given

charge leakage rate �, we expect the mean number of observed events in a trace of length t0 is

�IR = �t0

and we thus observe a distribution with the form

p(s;�, d,�) =
1X

k=0

e��IR�k
IR

k!
pk(s; d,�)

This assumes that we have no timing information, i.e. that if two pileup pulses occur in the same

trace, we cannot distinguish them. If we can distinguish two events within the same trace, then

we separate the problem into the probability of having an event-free trace, and the probability of

having a one event trace with various degrees of corruption from additional pileup. For perfect

pileup rejection, we thus have

p(s;�, d,�) = e��IRp0(s; d,�) + (1� e��IR)p1(s; d,�)
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If we have a known pileup rejection window tpileup, then we expect on average of

�pu = �IRtpileup

pileup events for a detected single IR event. These pileup events themselves are Poisson distributed,

and we have the full distribution

p(s;�, d,�) = e��IRp0(s; d,�) + (1� e��IR)
1X

k=1

e��pu�(k�1)
pu

(k � 1)!
pk(s; d,�)

In the limit of perfect pileup rejection this easily simplifies as we set �pu = 0, and only the k = 1

term in the sum is retained, giving the previous formula. In the limit of no pileup rejection within

a trace, we have �pu = �IR, and we can try to simplify the expression:

p(s;�, d,�) = e��IRp0(s; d,�) + (1� e��IR)
1X

k=1

e��IR�(k�1)
IR

(k � 1)!
pk(s; d,�) (G.18)

p(s;�, d,�) = e��IRp0(s; d,�) + e��IR(1� e��IR)
1X

k=1

�(k�1)
IR

(k � 1)!
pk(s; d,�) (G.19)

p(s;�, d,�) = e��IRp0(s; d,�) + e��IR

0

@
1X

j=1

�j
IR

j!

1

A
1X

k=1

�(k�1)
IR

(k � 1)!
pk(s; d,�) (G.20)

p(s;�, d,�) = e��IRp0(s; d,�) + e��IR

1X

j=1

1X

k=1

�(j+k�1)
IR

j!(k � 1)!
pk(s; d,�) (G.21)

Running through the first set of k,j, we find this reduces to the no-pileup case from earlier.
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