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Resumen y Conclusiones

Resumen
Las medidas cosmológicas muestran que la expansión del universo se está acelerando.
Genéricamente, el agente causante de esta aceleración se llama energía oscura.
Sin embargo, la naturaleza de la energía oscura constituye uno de los grandes
misterios de la Física. Arrojar luz sobre la naturaleza de la energía oscura requiere
la construcción de experimentos que cartografíen grandes volúmenes del universo.
Uno de dichos experimentos es el Dark Energy Survey (DES) en el cual esta tesis
ha sido desarrollada.

Entre las sondas observacionales que pueden desvelar la naturaleza de la energía
oscura se encuentran las lentes gravitacionales débiles. El efecto lente gravitacional
se produce al curvarse la trayectoria de los fotones por los campos gravitatorios,
produciendo la deflexión de los rayos de luz. Entonces, la luz emitida por galaxias
fuente lejanas es desviada por la materia localizada entre ellas y el observador. En
el caso de fuentes extensas, a mayores del cambio en la posición, esto produce dos
efectos observacionales: un aumento isótropo del tamaño (magnificación) y una
elongación/contracción a lo largo de un eje (shear). Dado que el brillo superficial
se conserva, el aumento isótropo del tamaño debido a la magnificación produce un
incremento del flujo observado en las galaxias fuentes. Esto permite ver galaxias
que estarían por debajo del umbral de detección si el efecto de lente gravitacional
no existiese. Por tanto, cerca de las lentes la densidad de fuentes observada se
incrementa. Este efecto se conoce como number-count magnification y permite
medir el perfil de convergencia de la muestra seleccionada como lente, que es
directamente dependiente del perfil de materia.

Esta tesis está dedicada al análisis de la magnificación por lentes gravitacionales
débiles en el Dark Energy Survey. Se hacen dos análisis distintos en dos muestras
de datos diferentes y con diferentes objetivos: el Science Verification (DES-SV)
y el Year 1 (DES-Y1). El análisis realizado en DES-SV tiene como objetivo el
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desarrollo de técnicas para detectar la señal del efecto number-count magnification
y la corrección de sus errores sistemáticos. El análisis de DES-Y1 emplea los
métodos desarrollados en la muestra DES-SV para medir el perfil de convergencia
de las regiones más vacías del universo –voids y troughs– para usarlas como una
nueva sonda cosmológica.

Conclusiones
En esta tesis, el efecto de magnificación por lentes gravitacionales débiles ha sido
medido usando dos muestras de datos del Dark Energy Survey: el Science Verifi-
cation (DES-Y1) y el Year 1 (DES-Y1), con diferentes objetivos cada una. En el
análisis realizado con el DES-SV se han desarrollado técnicas para medir el efecto y
mitigar el impacto de posibles errores sistemáticos en la señal de number-count mag-
nification con cartografiados fotométricos de gran campo. Por otro lado, el análisis
del DES-Y1 ha hecho uso de las técnicas desarrolladas en el DES-SV para medir
el perfil de convergencia de voids y troughs para proporcional medidas cosmológicas.

La naturaleza de la energía oscura –la responsable de la expansión acelerada del
universo–, constituye uno de los grandes misterios de la cosmología moderna. Las
regiones más vacías del cosmos –voids y troughs– están dominadas por la energía
oscura, por lo que su estructura y evolución constituye un método muy potente
para estudiar su naturaleza. Uno de los observables físicos de voids y troughs que
es sensible a la energía oscura es su perfil de convergencia, que es una estimación
directa del perfil de materia. Debido a la presencia de materia oscura, el perfil de
materia es sólamente accesible a través de las lentes gravitacionales, dado que los
otros métodos requieren de la parametrización de cómo las galaxias se relacionan
con la materia oscura.

La magnificación por lentes gravitacionales proporciona una medida directa
del perfil de convergencia. Hay tres observables que permiten determinar el perfil
de convergencia: number-count magnification, la magnificación del tamaño y la
magnificación del flujo/magnitud. Estos tres métodos pueden ser combinados para
proporcionar medidas más precisas y mitigar los efectos de errores sistemáticos.
Además, la magnificación puede ser combinada con medidas de gg-lensing para
mejorar la correción de los errores sistemáticos dado que el gg-lensing es también
sensible al perfil de convergencia, pero sus errores sistemáticos son distintos.

Entre los efectos sistemáticos más importantes a tener en cuenta se encuentran
las condiciones de observación y el solapamiento por la determinación fotométrica
del corrimiento al rojo de las galaxias. Para mitigar los errores inducidos por las
condiciones de observación, se ha usado por primera vez la simulación de imágenes
Balrog. El uso de Balrog ha demostrado proporcionar correciones fidedigas
y no-sesgadas para este tipo de errores sistemáticos. Además, estas simulaciones
permiten trazar las inhomogeneidades en la profundidad, permitiendo alcanzar
la profundidad completa del experimento, aumentando así el número de galaxias
disponibles. Por otro lado, el impacto del solapamiento por la determinación
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fotométrica del corrimiento al rojo ha sido estimado con ayuda de la simulación
de N-cuerpos MICE, realizando luego cortes estrictos en el corrimiento al rojo,
requiriendo un impacto despreciable en la señal de magnificación.

Finalmente, se ha medido por primera vez el perfil de convergencia de voids y
troughs usando la magnificación. Esta medida abre una nueva ventana a una nueva
clase de sondas cosmológicas, puesto que la magnificación producida por voids y
troughs constituye una medida nueva e independiente para la energía oscura, que
en un futuro inmediato puede proporcionar medidas cosmológicas competitivas y
fidedignas.





Summary

Cosmological measurements show that the expansion of the Universe is acceler-
ating. Generically, the entity that causes this acceleration is called dark energy.
Nevertheless, the nature of the dark energy constitutes one of the biggest puzzles
in Physics. Shedding light on dark energy requires the construction of experiments
able to survey large volumes of the Universe. One of those experiments is the Dark
Energy Survey (DES) in which this thesis has been developed.

One of the observational probes that may unravel the nature of dark energy is
the weak gravitational lensing. Weak-lensing is produced by the bending of the
trajectory of photons by gravitational fields leading to the deflection of the light
rays. Thus, the light emitted by distant galaxies is deflected by the matter located
between them and the observer. For extended sources, in addition to the change
in position, this leads to two observational effects: an isotropic size enlargement
(magnification) and an elongation/shrink along one axis (shear). Since the sur-
face brightness is preserved, the isotropic size enlargement due to magnification
produces an increase on the observed flux of the background galaxies. This fact
allows to see galaxies that would be beyond the detection threshold if gravitational
lensing were not present. Thus, close to the lenses, the observed density of sources
is increased. This effect is known as number-count magnification and allows to
probe the convergence profile of the selected lens sample, that is a proxy for the
matter profile.

This Thesis is devoted to the analysis of weak-lensing magnification on the
Dark Energy Survey. Two analysis with different goals each are made on different
data-sets: the Science Verification (DES-SV) and the Year 1 (DES-Y1). The
DES-SV analysis aims the development of techniques to detect the weak-lensing
number count magnification signal and the mitigation of systematic errors. The
DES-Y1 analysis employs the methods used with the DES-SV data to measure
the convergence profile of the emptiest regions of the Universe –voids and troughs–
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to use them as a new cosmological probe.



1. Introduction

Nature’s change and evolution is a consequence of the dynamics that governs bodies
and systems contained in the Universe. All the known interactions can be described
in terms of the four Fundamental Forces: gravitation, weak, electromagnetic and
strong in ascending order of relative strength. High Energy Physics was able to
describe the weak, electromagnetic and strong forces in terms of a quantum field
theory with SU(3)×SU(2)×U(1) gauge symmetry group in what is known as the
Standard Model [1–5]. Nevertheless, attempts to include gravitation in a similar
frame have not provided satisfactory results yet.

The current consensus theory of gravitation is Einstein’s General Relativity, that
describes gravity as a deformation of space-time. It is based on two assumptions:
physical laws must be the same in every coordinate system (Principle of Covariance)
and Special Relativity must hold locally for every inertial observer (Principle of
Equivalence). The most general second-order differential equation that holds these
principles is the Einstein’s field equation [6–9]

Rµν −
1
2Rgµν + Λgµν = 8πGN

c4 Tµν , (1.1)

where Rµν , Tµν are the Ricci and energy-momentum tensor respectively, c the speed
of light and R = gµνRµν is the Ricci scalar. The free parameters of this equation
are GN –Newton’s constant– and Λ, the cosmological constant.

Previous equation can also be obtained from the variational formalism using
the Einstein-Hilbert action [10]:

S = c4

16πGN

∫
d4x
√
−g(R− 2Λ) + SM , (1.2)

with SM being the matter term of the action and g = det(gµν).
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1.1 The ΛCDM Cosmology
One of the consequences of Einstein’s equation is that the metric tensor is not
static, implying that the geometry of the Universe must evolve. Thus, space-time
becomes a dynamical entity onto itself and its past and future evolution can be
computed within the framework of General Relativity.

General Relativity is the first theory that allows to describe the Universe as a
whole and by assuming that Earth is not in a special spot of the Universe –the
Copernican Principle–, it follows that the Cosmos must be homogeneous and
isotropic allowing to reach astonishing conclusions.

Assuming that the Universe is homogeneous and isotropic [11, 12], the only
possible metric tensor is the Friedman-Lemaître-Robertson-Walker (FLRW), given
by the line element [13]

ds2 = −dt2 + a2(t)
[

dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2)
]
, (1.3)

where a(t) is a function of time know as scale factor, K = −1, 0, 1 is the curvature
of the universe (for an open, flat and closed Universe respectively) and r, θ, φ are
the spatial 3D spherical coordinates.

Solving Einstein’s equation for this metric, an expression for the evolution of
the scale factor with time can be obtained

H2(t) ≡
[
ȧ(t)
a(t)

]2

= 8πGN

3c4 ρ(t)− K

a2(t) , (1.4)

where the dot denotes time derivatives, and ρ is the matter-energy density. The
parameter H has been defined as the expansion rate and its value at present H0 is
known as Hubble’s constant.

The expansion rate can be expressed in terms of the normalized energy densities

H2(t) = H2
0

[∑
i

Ωi(t)− ΩK

]
(1.5)

with
ΩK ≡

K

[a(t)H0]2 and Ωi(t) ≡
8πGNρi(t)

3H2
0

. (1.6)

The parameter Ωi is the density of the i-th matter/energy species whose evolution
with time can be computed using Thermodynamics and assuming that each species
behaves as a fluid with different equation of state. For non-relativistic matter
–that is, matter with velocity v � c–,

ΩM(t) = Ω0
Ma
−3(t), (1.7)

because p ∼ 0, whereas for relativistic matter species –that is, v ∼ c–

Ωr(t) = Ω0
ra
−4(t), (1.8)
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because p ∼ ρ/3. Here Ω0
i denotes the value on the present day of the i-th matter

species and, by construction, the following equation holds:
∑
i

Ω0
i = 1 + Ω0

K . (1.9)

Taking into account that the matter species and the curvature evolve differently
with time (Figure 1.1), its relative abundance at present fixes the expansion rate
for the whole history of the Universe from birth to death.

General Relativity with the FLRW metric constitutes the theoretical basis for
the current standard cosmological model: ΛCDM. It states that the Universe is
flat, homogeneous and isotropic. The observational basis of ΛCDM are:
• The dark matter: The presence of a new form of matter has been proposed

to explain the measurement of the rotation curve of spiral galaxies [15–18].
Dark matter is a form of matter that is not in the Standard Model of High
Energy Physics and interacts with the ordinary –a.k.a. baryonic– matter
through gravity. Although several attempts have been made to constrain the
nature of dark matter direct and indirectly, no evidence of its existence in
laboratories has been found [19, 20]. On Figure 1.2, the determination of the
energy density of dark energy and dark matter, assuming the ΛCDM model
can be seen. Rotation curves and the large-scale-structure of the Universe
agree mutually on the existence of dark matter.
• The Cosmic Microwave Background (CMB): The Cosmic Microwave
background is the oldest light of the Universe that can be observed. It is
composed by the photons that decoupled from baryons at redshift z = 1100,
when the Universe became colder and the energy of the photons was not
enough to ionize hydrogen. The energy distribution of the CMB-photons
corresponds to a black-body spectrum with temperature TCMB = 2.72 K.
The spatial distribution of the temperature anisotropies is related to the
physics of the interaction of the photons and can be divided in two types:
primary –those produced by the interaction of the photons with the baryons
at the last scattering surface– and secondary –produced by the interaction
of photons with the intergalactic medium and the gravitational potentials–.
The power spectrum of the CMB anisotropies can be seen in Figure 1.3
with a fit to the ΛCDM cosmology. This excellent agreement on such a very
wide range of scales is a major success for ΛCDM. In addition, the energy
distribution of the CMB photons has a black-body spectrum, as predicted
by ΛCDM.
• The accelerated expansion of the Universe: The expansion of the Uni-

verse was discovered by Hubble [21]. Hubble established a linear relationship
between the recession velocity of nearby galaxies which holds for low redshifts.
Nevertheless, the improvement of the measurement with the inclusion of
the data of the luminosity-distance relationship with type-Ia supernovae
(SNIa) showed the accelerated expansion of the Universe [22] (Figure 1.4).
The accelerated expansion of the Universe is translated on Einstein’s field
equation as a non-zero cosmological constant.
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Figure 1.1: Energy density for different types of matter species as function of the
scale parameter of the Universe: relativistic (radiation) on green, non-relativistic
(matter) on blue, and cosmological constant on red. It can be seen that at present
(black-dashed line), cosmological constant has just started to be dominant over
the other species.

Figure 1.2: Determination of the non-relativistic matter and dark energy content
of the universe with the combination of SNIa, BAO, CMB. Image credit: [14].
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Figure 1.3: Power spectrum of the CMB. Red line is the best-fit to ΛCDM. Image
credit: [24]

• The baryon acoustic oscillations (BAO): The baryon acoustic oscilla-
tions are produced in the early Universe, when matter and radiation are
coupled. Anisotropies in the gravitational fields lead to the collapse of matter
on the wells of the potential. This leads to an increase of the temperature
on the regions with higher density due to the matter-radiation coupling.
The increase of the temperature produces a positive pressure that ejects
matter outside the potential wells. The matter collapse and the radiation
pressure produce acoustic waves that at matter-radiation decoupling leave
a characteristic scale –the BAO scale–. This translates on peak on the
angular distribution of matter and constitutes an standard ruler to measure
cosmological distances (Figure 1.5).
• The primordial nucleosynthesis: The primordial nucleosynthesis or Big

Bang nucleosynthesis is the production of the lightest elements of the periodic
table other than hydrogen: deuterium, tritium, 3He, 4He, 7Li and 7Be. The
production of heavier elements other than the mentioned is not possible since
there are not stable elements with mass-number five or eight. The relative
abundance of these elements is governed –in addition to the nuclear properties
of the elements– by the expansion of the Universe and the baryon-radiation
ratio [23].
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Figure 1.4: Distance modulus measured by the JLA supernovae. Results are
compared with different cosmological models based on General Relativity.

Figure 1.5: BAO distance-scale measured at different redshifts by different ex-
periments. Results are compared with cosmological models based on General
Relativity.
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1.2 The Cosmological Constant problem
The most general expression of Einstein’s field equations contains the cosmological
constant term, that can be absorbed on the right-hand-side of the Equation 1.1
and interpreted as a constant matter term known as dark energy:

Rµν −
1
2Rgµν = 8πGN

c4 Tµν − Λgµν . (1.10)

With this matter term, assuming ΩK = 0, Equation 1.5 transforms into

H2(t) = H2
0

[∑
i

Ωi(t) + ΩΛ(t)
]
, (1.11)

where ΩΛ(t) = Ω0
Λ is the dark energy density. This new term is a time-independent

constant that has the same value on every location of the Universe. Thus, while
the other matter species have a density that decreases with time, the dark energy
density is constant and becomes dominant at late cosmic times.

This new term may be regarded as a new matter species such that its energy
density is given by

ρΛ = 3H2
0

8πGN

ΩΛ ∼ 10−47 GeV4. (1.12)

If Tµν = 0 there is no matter/energy, the Λgµν term acts as an alternative
source of energy and can be identified as the vacuum energy density [25–28]. The
dominant source for the vacuum energy within the Standard Model of Particle
Physics is the Higgs field [29, 30], a complex scalar-field that fills the Universe and
gives mass to the elementary particles. The potential of the field is given by

V (φ) = µ2
Hφ
†φ+ 1

4λH(φ†φ)2, (1.13)

with µH the mass term, λH the self-interaction of the field and φ, φ† the Higgs
field and its hermitian conjugate respectively. Thus, the cosmological constant can
also be interpreted as the expected value of Higgs field [29, 30]

〈0|φ0|0〉 = |µH |√
λH

=
√

1√
2GF

= 246 GeV4, (1.14)

which shows a huge discrepancy with the cosmological constant energy density as
given by Equation 1.12. Here GF is the Fermi constant, that can be computed
from the decay of the muon.

1.3 Theories for Dark Energy
As it has been stated previously, the observed value of the cosmological constant
can not be explained with the Standard Model of High Energy Physics. Thus,
one can try to explain accelerated expansion of the Universe with other class of
theories. The simplest approach is to postulate the existence of new exotic fields
with negative pressure that drive the accelerated expansion. The other possibility
is an extension of General Relativity.
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1.3.1 Exotic matter fields
A possible explanation to the accelerated expansion of the Universe can be found
on the presence on new quantum fields. The simplest case is known as quintessence
and is defined as a scalar field (φ) that is added to the action defined at Equation 1.2
such that

S = c4

16πGN

∫
d4x
√
−gR + Sφ + SM (1.15)

with
Sφ =

∫
d4x

[1
2g

µν∂µφ∂νφ− V (φ)
]
, (1.16)

where V (φ) is the potential of the field. On the FLRW metric, this leads to a
substance with pressure and density respectively

Pφ = 1
2 φ̇

2 − V (φ) and ρφ = 1
2 φ̇

2 + V (φ). (1.17)

This can be parametrized as an ideal fluid with equation of state

wDE = Pφ
ρφ

= φ̇2 − 2V (φ)
φ̇2 + 2V (φ)

. (1.18)

Thus, it can be deduced that dark energy density evolves with the scale factor of
the universe as

ΩΛ(t) = Ω0
Λ[a(t)]−3(1+wφ), (1.19)

if wφ is constant.

This quintessence approach allows to explain any dark energy model by choosing
properly the potential of the field. A detailed description of all the models can
be found in [31]. The most widely used phenomenological description is made in
terms of the equation of state of dark energy,

PDE = wDEρDE (1.20)

expanding the parameter wDE in a power series of the scale factor

wDE(t) = w0 + wa[1− a(t)], (1.21)

where w0 denotes the value of the equation of state parameter at present and
wa its evolution –at first order– with time. The cosmological constant may be
considered as an specific solution of this equation of state where

w0 = −1 and wa = 0. (1.22)

The key difference between the cosmological constant and other exotic forms of
matter is that the latter provide a dark energy density that evolves throughout
cosmic history.
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1.3.2 Modified Gravity
The other possibility to explain the accelerated expansion of the Universe is to
assume that General Relativity is not valid at all cosmological distances and ages.
Thus, data from cosmic expansion are not interpreted properly, requiring and
extension of the theory. Extensions to General Relativity are known as modified
gravity models.

In order to preserve the symmetries of General Relativity, the new gravitational
field equations must be a function of the Ricci scalar. The most general class of
those theories is known as f(R) gravity [32, 33], and its approach is to let the
action be a general function (f) of the Ricci scalar:

S = c4

16πGN

∫
d4x
√
−gf(R) + SM , (1.23)

that leads to the field equation

Rµν −
1
2Rgµν = 8πGN

c4 (Tµν + TRµν). (1.24)

This field equation is similar to Equation 1.1 but has an additional term TRµν
that takes into account the additional curvature terms that can be modeled as
a fluid on the same way as the energy-momentum tensor. The simplest case is
f(R) = R + αRn with α, n ∈ R, which has interesting cosmological solutions [34].
This theory has very distinctive phenomenology such as double Einstein rings with
just one source galaxy on the strong lens regime [35] that –if found–, could be the
smoking gun of these kind of theories. The existence of a double Einstein ring
(SDSSJ0946+1006) has been reported [36], nevertheless it is a system with one lens
and two sources at different redshifts, producing one ring of different diameter each.

More complicated models of modified gravity that may break the equivalence
principle and the local Lorentz symmetry can be considered but are not going
to be treated here. For a review the reference [37] can be consulted. The usual
approach to explore the modifications to General Relativity [38] is to consider the
departures of the observed metric respect to General Relativity. On the Newtonian
gauge, the FLRW line element can be parametrized with the Newtonian and the
lensing potential; Φ,Ψ respectively [38]:

ds2 = a2(τ)[−(1 + 2Ψ)dτ 2 + (1− 2Φ)dxidxj], (1.25)

with

2∇2Φ(a, k) = 8πGN

c2 a2µ(a, k)ρ̄MδM(a, k) and γ(a, k) = Φ(a, k)
Ψ(a, k) , (1.26)

where ρ̄M is the average matter density, δM its fluctuations and k is the wavenumber
of the potentials. Here µ and γ parametrize the departures from General Relativity,
that is the specific case with

µ(a, k) = 1 and γ(a, k) = 1. (1.27)
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1.4 Current status of dark energy constrains
The nature of dark energy can be constrained using different cosmological probes
[39] by measuring the w0, wa parameters of its equation of state or the potentials
Σ, γ of modified gravity. There are two classes of cosmological probes: geometric
and structure formation and evolution tests.

Geometrical measurements exploit the fact that the distances measured on
cosmological scales depend on the metric tensor of the Universe, which is affected
by its energy content and the assumed gravitational theory. These measurements
include: the baryon acoustic oscillation peak-scale (BAO), the SNIa distance-
ladder, Alcock-Paczynski [40] tests and the integrated Sachs-Wolfe (ISW) effect.
On the other side, structure evolution probes are based on the measurement of the
inhomogeneities of the matter density field at different moments of cosmic history,
which depend on the matter/dark-energy ratio and gravitational theory used. They
include: the cluster-count evolution with redshift, redshift-space-distortions (RSD),
lensing and the cosmic microwave background (CMB).

The combination of different cosmological probes leads to more accurate mea-
surements and at the same time it breaks degeneracies on the determination of
the cosmological parameters [39, 41].

The latest and more precise results constraining the cosmological parameters
are provided by the Planck Collaboration 2015 results from the analysis of the
Cosmic Microwave Background (CMB) [42], the recalibrated supernovae sample
JLA [14], and the BAO scale-evolution with redshift by BOSS [43], WiggleZ [44],
SDSS [45] and 6dF [46].

Dark Enery as a new quantum field, is determined by measuring the parameters
of the equation of state (see Figure 1.6). Results are compatible with General
Relativity plus cosmological constant, but the uncertainty on the parameters of the
equation of state does not allow to exclude many models, since the current precision
on the determination of the evolution parameter wa is still limited. Constrains on
Modified Gravity models are also given in terms of the modified gravity potentials
µ, η and Σ (see Figure 1.7).

The latest results from the Sloan Digital Sky Survey (SDSS) and its upgrade
BOSS, provide several measurements that show a good agreement with the ΛCDM
paradigm. These probes include: Alcock-Paczynski tests [47], the clustering of
galaxies [48], baryon acoustic oscillations (BAO) [43, 49, 50] and redshift-space
distortions [51].

Although several probes agree among them and seem to favour the cosmological
constant as the origin of dark energy, there are some measurements that are in
tension with Planck Collaboration 2015. Riess et al. latest direct determination
of the Hubble constant using the cosmological distance ladder (parallax-cepheids-
SNIa) [52], show a discrepancy at the 3σ level with the Hubble constant measured
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Figure 1.6: One- and two- sigma contours of the dark energy equation of state
w and matter content ΩM . Dashed line is General Relativity plus cosmological
constant. Image credit: [14].

Figure 1.7: One- and two- sigma modified gravity potentials at present µ0, η0.
Dashed line is General Relativity plus cosmological constant. Image credit: [42].
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by Planck Collaboration 2015. Weak-gravitational lensing by CFHTLens and
KiDS show tension with Planck Collaboration CMB measurements if a General
Relativity plus cosmological constant scenario is considered [53–55]. This tension
may be alleviated if other models are considered, such as non-zero curvature and
dark energy models [56–58]. Nevertheless, discrepancies can also be produced by
systematic effects [59, 60]. At any case, the weak-lensing/CMB discrepancy is still
not significant enough to put the ΛCDM model in crisis.

The current cosmological model –ΛCDM–, has demonstrated to be a solid theory
that explains a wide range of physical effects and has passed the most stringent
tests (Figure 1.3, Figure 1.4 and Figure 1.5). Although recent measurements show
a small tension that may be alleviated in a non-cosmological constant scenario,
caution is needed and special attention is required to do a proper systematic error
estimation. This requires additional probes and redundant measurements of the
same physical observable but with different sources of systematic errors. We have
entered in the precision cosmology era.

1.5 Weak-lensing magnification as a probe for dark energy
Weak-lensing magnification is produced by the same physical entity as the gg-
lensing, but has lower signal-to-noise (see chapter 2 for a full explanation of
magnification and gg-lensing). Thus, the inclusion of magnification on a multi-
probe analysis does not lead, generally, to a large improvement of the measurement.
In order to achive this, we need to use magnification on environments and regimes
that other probes can not reach.

The strength of magnification is that it allows to measure directly the matter
profile of the large-scale-structures that conform the Universe. The whole matter
structures of the Universe are only accessible directly trough gravitational lensing
due to the presence of dark matter. Since dark matter is not visible and interacts
only through gravity, assumptions on how the visible- –baryonic- – and dark-
matter assemble together must be made on measurements other than gravitational
lensing, introducing nuisance parameters.

A particular interesting system for weak-lensing measurements are voids. Since
they have a lower matter content than the average Universe, their gravitational
evolution is more dominated by dark energy. Thus, void properties depend on the
nature of dark energy. If the abundance of large voids on the Universe is considered,
it has been reported that its number increases in f(R) gravity models [61, 62].
Nevertheless, if the shape of the void is measured, its ellipticity can be used as a
probe for the parameters of the equation of state of dark energy [63–66], since the
structure growth-factor on the line-of-sight has a variation due to the dark energy
content, whereas on the transverse plane, growth-factor is constant. Finally, the
radial distribution of matter around the center of a void –known as void profile–
has demonstrated to be different on f(R) theories and General Relativity [67–72].
Thus, by simply measuring the void matter profile, constrains on dark energy can
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be set. This implies that the direct determination of the matter profile of voids by
weak-lensing magnification, constitutes a promising and independent new probe
on dark energy.

This Thesis is devoted to the analysis of weak-lensing magnification using the
Dark Energy Survey data. The analysis is carried out on two different data-sets
of the mentioned experiment with two different goals each. The first analysis
is carried out on the Science Verification data-set, aiming the detection of the
magnification signal and the development of new techniques of systematic error
mitigation. Once the magnification signal has been detected, a new analysis on
the Year 1 data-release is made with the methodology that has been established
previously. Year 1 analysis is qualitatively different since its goal is to measure the
convergence profile of voids to use it as a probe for dark energy.

The next chapter (chapter 2), describes the general weak-lensing formalism and
explains the magnification theory and its observational effects. The experiment
where this Thesis has been developed –the Dark Energy Survey– is briefly described
on chapter 3. The core of this work is found on chapter 4, where the analysis of the
Science Verification data and the Year 1 data are described extensively, concluding
on chapter 5.





2. Gravitational Lensing Theory

As it has been stated on chapter 1, the gravitational field acts on the energy-
momentum tensor. Thus, massless particles that are carriers of energy –such as
photons– are also affected by gravity, leading to a bending of light rays. The first
experimental determination of the gravitational light bending was performed by
Dyson et al. in 1919 [73], four years after the publication of General Relativity.
On this work, the observed apparent position of stars close to the Sun during a
solar eclipse were measured and compared with their positions when the Sun is not
in front of them. The positions of the stars were shifted as predicted by General
Relativity.

Dyson et al. measurement of the gravitational deflection of the light emitted
by a background object –a.k.a. source–, relied on the fact that the object that
causes of the light deflection –a.k.a. the lens–, can be removed by its own seasonal
motion. Nevertheless, this limits the measurement of gravitational light deflection
to objects within the Milky Way. The study of the large-scale-structure of the
Universe requires the use of extragalactic objects, implying that the object that
acts as lens can not be removed, complicating the measurement.

One specific case of the gravitational light deflection happens when the observer,
lens and source are aligned. This problem has cylindrical symmetry and leads to a
very specific solution: the Einstein ring (Figure 2.1) [74]. On this configuration,
the image of the background galaxy is distorted forming a ring around the lens
galaxy, that its located at its center. The size of the ring is determined only by
the mass of the lens and the distances of the lens and the source:

θE =
√

4GNM

c2
dLS
dLdS

, (2.1)

where GN is Newton’s gravitational constant, M the mass of the lens, dLS the
lens-source angular diameter distance and dL, dS are the angular diameter distance
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Figure 2.1: Image form the Hubble’s Wide Field Camera 3 showing an Einstein
ring. Central galaxy is the luminous red galaxy LRG-3-757. The blue annulus is a
distant galaxy located behind the LRG. Image credit: NASA.
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to the lens and the source respectively.

Finding Einstein rings may be a product of serendipity or digging hard on
wide-field images [75]. Nevertheless, the probability of finding a system where
observer-lens-source are aligned is very small and only a modest number of Einstein
rings are known (∼ 20 on the Dark Energy Survey Science Verification data). A
more general solution, where the system is not aligned can be found with the
gravitational lens equation and is more useful for cosmology since the statistics
grows enormously.

2.1 Lens Equation on Gravitational Fields
Since all the photons emitted by the source are bent coherently by the lens, the
axis observer-lens constitute an optical convergent system. Thus a lens equation
can be deduced using Geometrical Optics with the deflection angle (α̂) of a light
ray –photon trajectory– given by General Relativity [39, 76–81]:

α̂ = 4GNM

ξc2 . (2.2)

Here M is the mass of the point-particle (lens hereafter), GN is Newton’s constant,
c the speed of light and ξ the closest encounter distance (a.k.a. impact parameter).
Using Figure 2.2 as reference and defining θ as the observed and β the real
lens-source angle, it can be deduced that

β = θ − Dds

Ds

α̂(Ddθ) = θ − α(θ), (2.3)

where Dds, Ds and Dd are the source-lens, observer-source and observer-lens co-
moving distances.

Considering now an extended matter distribution, with density ρ(~r), where the
observer is located at the origin. The position vector can be split such that

~r = r‖r̂‖ + ~r⊥, (2.4)

where r‖r̂‖ denotes the position on the direction defined by the axis observer-lens
(line-of-sight or LoS hereafter) and ~r⊥ denotes a 2D vector on the plane transverse
to the line-of-sight. Thus, the total matter distribution that the photon goes
through from the source to the observer is given by

Σ(~r⊥, rS‖ ) =
rS‖∫
0

dr‖ρ(r‖, ~r⊥), (2.5)

where ~rS is the position of the source and the quantity Σ is called the surface density.
Taking into account the flat-sky approximation1 –that is, all the transverse planes

1This approximation is responsible of part of the Planck-CFHTLens/KiDS tension.
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Figure 2.2: Optical system of the gravitational lensing caused by a point mass.
Solid line is the actual photon trajectory. Dashed lines are the apparent trajectories
with and without lensing. The distances Ds, Dd, Dds are expressed in comoving
coordinates.

Figure 2.3: Weak-lensing distortion of an extended spherical object. Convergence
leads to an isotropic enlargement, whereas shear produces an elongation/shrink
along one axis.
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to LoS are parallel– and summing through all possible lens positions, Equation 2.2
becomes

~̂α(~r⊥, rS‖ ) = 4GN

c2

∫
d2~r⊥Σ(~r⊥, rS‖ ) ~rS⊥ − ~r⊥

|~rS⊥ − ~r⊥|2
. (2.6)

This leads to a deflection angle

~̂α(~r⊥, rS‖ ) = 1
π

∫
d2~r⊥κ(~r⊥, rS‖ ) ~rS⊥ − ~r⊥

|~rS⊥ − ~r⊥|2
, (2.7)

where the convergence (κ) and critical density (Σc) have been defined such that

κ(~r⊥, rS‖ ) =
Σ(~r⊥, rS‖ )

Σc

with Σc = c2

4πGN

Ds

DdDds

. (2.8)

Defining the lensing potential as

ψ(~r⊥, rS‖ ) = 1
π

∫
d2~r⊥κ(~r⊥, rS‖ ) ln |~rS⊥ − ~r⊥|, (2.9)

the deflection angle can be written as the gradient of the lensing potential on the
transverse plane

~̂α(~r⊥, rS‖ ) = ∇⊥ψ(~r⊥, rS‖ ) (2.10)
and the convergence as its laplacian,

κ(~r⊥, rS‖ ) = 1
2∇

2
⊥ψ(~r⊥, rS‖ ). (2.11)

Thus, the lens equation from Equation 2.3 results

~β = ~θ −∇⊥ψ(~r⊥, rS‖ ). (2.12)

Taking into account the definition of the lensing potential, it can also be written
in terms of the Newtonian gravitational potential (Φ):

ψ(~r⊥, rS‖ ) = Dds

DsDd

2
c2

∫
drS‖Φ(Dd~r⊥, r

S
‖ ). (2.13)

Thus, gravitational lensing is a direct probe for the underlying gravitational field

As weak-lensing wide-field surveys become larger and more precise, the limit
of validity of the flat-sky approximation is being reached [82, 83]. A solution
without the flat-sky approximation can be found at Kitching et al. [84], and adds
an additional prefactor that is function of the wavenumber on the power spectrum.

2.2 Weak Gravitational Lensing
In addition to the change in the observed position of the source, considering no
absorption nor emission of photons between the source and the observer, Liouville’s
theorem implies that the surface brightness of the source (IS)is conserved,

IS(~r⊥) = IS[~β(~r⊥)]. (2.14)
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Considering the weak-field regime, the lensing map can be linearized such that

IS(~r⊥) = IS[~β0 + J (~r⊥0)(~r⊥ − ~r⊥0)], (2.15)

where J (~r⊥) is the jacobian matrix. By the integration-by-substitution theorem
of calculus, the integral of the surface brightness at the lensed and un-lensed
coordinate systems are related by∫

IS(~β)d~β = det(J )
∫
IS[~β(~r⊥)]d~r⊥, (2.16)

where det(J ) denotes the determinant of the jacobian matrix. Thus, defining
the luminosity of an extended object as the integral of its surface brightness, the
luminosity for the cases with and without gravitational lensing (Lµ, L0 respectively)
are related by

Lµ = 1
det(J )L0 = µL0, (2.17)

where µ is called the magnification factor and is defined as the inverse of the
determinant of the jacobian matrix of the lensing map.

Taking into account that the jacobian matrix is given by J = (n̂⊥ · ∇⊥)~β with
n̂⊥ a unit vector on the plane transverse to LoS, by Equation 2.12 the jacobian
can be expressed as

J = (n̂⊥ · ∇⊥)~r⊥ − J = (n̂⊥ · ∇⊥)∇ψ, (2.18)

resulting finally

J (~r⊥) =
(
δij −

∂2ψ

∂ri∂rj

)
=
(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)
. (2.19)

Here κ is the convergence, an isotropic shape distortion and γ1, γ2 is the shear, an
elongation/shrink on the shape along one of the axes (Figure 2.3).

Taking into account the Born approximation –that is, the light rays of a source
galaxy are deflected by only one lens–, the derivatives of the previous equation
can be evaluated on the unlensed coordinates.

2.2.1 Magnification
As it has been demonstrated in the previous section, gravitational lensing increases
the observed luminosity on an extended object [85–89] such that Lµ = µL0 with

µ = 1
(1− κ)2 + γ2

1 + γ2
2
' 1 + 2κ, (2.20)

where on the last step it has been used that 1� κ� γ. Taking into account the
definition given in Equation 2.8, the convergence suffered by the photons emitted
by a source located in sky direction n̂ and redshift z is given by

κ(n̂, z) = 1
2

Σ(n̂, z)
Σc

. (2.21)------
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Using the definition given in Equation 2.5 and the Poisson equation for the
gravitational field this leads to

κ(n̂, z) =
z∫

0

dz′
r(z′)[r(z)− r(z′)]

r(z) ∇⊥Φ(n̂, z′), (2.22)

where r(z) is the comoving distance at redshift z and Φ the gravitational poten-
tial. Expressing now the gravitational potential as an homogeneus term plus a
perturbation (Φ = Φ̄ + δΦ), the previous equation can be expressed as a funcion of
the matter density contrast (δM)

∇2Φ(n̂, z) = ∇2δΦ(n̂, z) = 4πGa2ρ̄δM(n̂, z), (2.23)

where a = 1/(1 + z) is the scale factor and ρ̄ is the average density. This leads
finally to [90, 91]

κ(n̂, z) = 3H0ΩM(z)
2c2

z∫
0

dz′
r(z′)[r(z)− r(z′)]

(1 + z′)r(z) δM(n̂, z). (2.24)

The convergence is the physical observable of magnification and it traces the
matter density on the direction of line of sight whereas shear probes the matter
on the transverse direction. This makes magnification and shear complementary
measurements of the same phenomena. The dependence of magnification is usually
split into two pieces: the lensing kernel,

K(z) = r(z′)[r(z)− r(z′)]
(1 + z′)r(z) . (2.25)

and the matter density contrast (δM ). The lensing kernel contains only geometrical
information and, for a given set of cosmological parameters, it is fixed. On the
other side, the matter density contrast is sensitive to the growth of structure in the
Universe. We see that weak lensing is both a geometrical and growth of structure
probe of cosmology.

The convergence of the foreground sample can be probed tracing the three
effects that it produces on the background sample:
• Change of the observed density: The increase of the observed luminosity
of the galaxies allows to see sources that if there were no lensing, would
be below our observational threshold nearby the location of the lenses. At
the same time, an stretching of the solid angle behind the lenses causes a
drop in the number density. This two effects compete between them and
which one is over the other depends on the slope of the number counts of the
sources. Thus, at the neighbourhood of the lenses, a change of the number
density respect to the average is produced. This is known as number-count
magnification.
• Shift on the observed magnitude: Since the increase of luminosity due to

gravitational lensing is a short range effect, a shift on the observed magnitudes
may be detected nearby the positions of the lenses. This requires, in principle,
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the knowledge of the unlensed magnitude of the sources. Nevertheless,
although galaxies have a large variety of magnitudes, it can be assumed that,
they are randomly distributed. Thus shifts on the magnitudes respect to the
average can be detected.
• Size enlargement: All the effects above are a consequence of the conser-
vation of surface brightness and the size enlargement of the sources. This
enlargement can be statistically measured despite the fact that the unlensed
size is not known. Nevertheless, since galaxies have a large variety of shapes
and sizes that is strongly related to their evolution and age, no homogeneity
assumption can be made and requires the use of empirical relations like the
fundamental plane [92, 93].

Traditionally all these probes have been used independently, but the ideal
scenario would be a three-way combination that may lead to a cancellation or
better estimation of systematic errors.

As it has been mentioned before, the knowledge of the unlensed properties of
the sources is physically impossible. Thus, all the observable quantities must be
formulated in terms of changes of its variation respect the ensemble average with
the distance to the lenses. The statistical way to do this is through the two-point
angular correlation-function. This method provides a measurement of the average
convergence profile of the lenses (κ(θ)) as a function of its angular distance θ of a
point to the lens.

Estimation of κ(θ) with the number counts technique
The two-point angular cross-correlation between positions of galaxies in the sample
lens (L) and in the source sample (S) is defined as [94]

ωLS(θ) = 〈δO(n̂, zL, fµ)δO(n̂′, zS, fµ)〉θ. (2.26)

Where δO(n̂, zL, fµ) is the observed galaxy density-contrast in the sky direction
n̂ and redshift zL with flux limit fµ. ωLS is not zero, since due to magnification
galaxies beyond the observable threshold will appear near the lenses introducing a
non-uniform distribution of galaxies. Thus the observed galaxy density contrast
can be expressed as

δO(n̂, z, fµ) = δg(n̂, z) + δµ(n̂, z, fµ), (2.27)

where δg is the intrinsic galaxy-density contrast (that is, without magnification)
and δµ is the density contrast due to magnification. Thus Equation 2.26 becomes

ωLS(θ) = 〈δg(zL)δg(zS)〉+〈δg(zL)δµ(zS)〉+〈δµ(zL)δg(zS)〉+〈δµ(zL)δµ(zS)〉. (2.28)

Taking into account that 0 < zL < zS, and assuming that the lens and the source
sample are well separated in redshift, the only non vanishing term is

ωLS(θ) = 〈δg(n̂, zL)δµ(n̂, zL, fµ)〉θ. (2.29)

Let’s define the magnification density contrast on the sky direction n̂ as

δµ(n̂, z, fµ) = Nµ(n̂, z, fµ)
N0(n̂, z, f0) − 1, (2.30)
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where N0(n̂, z, f0) is the un-lensed cumulative number counts of sources located
at redshift z, that is, the number of sources with observed flux greater than the
threshold f0. Conversely, Nµ(n̂, z, fµ) is the lensed cumulative number counts
affected by magnification.

Magnification by gravitational lenses increases the observed flux of background
objects allowing to see fainter sources by an amount fµ = f0/µ. At the same
time, it stretches the solid angle behind the lenses, reducing the surface density of
sources an amount Nµ = N0/µ, which translates into the density contrast as:

δµ(n̂, z, fµ) = Nµ(n̂, z, fµ)
µNµ(n̂, z, µfµ) − 1. (2.31)

The cumulative number counts can be locally parametrized as a power law

Nµ(n̂, z, fµ) = A

(
fµ
f∗

)α(fµ)

, (2.32)

where A, f∗ are constant parameters and α(fµ) a function of the flux limit. Substi-
tuting this into Equation 2.31

δµ(n̂, z, fµ) = µα(fµ)−1 − 1. (2.33)

Taking into account the weak-lensing approximation µ ' 1 + 2κ along with
Equation 2.20 and translating from fluxes to magnitudes this results

δµ(n̂, z,m) = 2κ(n̂, z)[α(m)− 1] (2.34)

with
α(m) = 2.5 d

dm
[logNµ(m)] . (2.35)

Thus Equation 2.26 becomes

ωLS(θ) = 2[α(m)− 1]〈δg(n̂, zL)κ(n̂′, zS)〉θ = [α(m)− 1]2κ(θ), (2.36)

where κ(θ) is the convergence profile of the selected lenses.

Estimation of κ(θ) with magnitude-shift magnification technique
The magnitude-position-angular correlation function between the lens sample (L)
and the source sample (S) is defined as

ϕLS(θ) = 〈δg(zL, n̂)δm(zS, n̂′)〉θ. (2.37)

Where, as on the last section δg(z, n̂) is the galaxy density contrast at redshift z
on the sky direction n̂ and δm is the magnitude shift2, defined as

δm(z, n̂) = mµ(n̂, z)−m0(n̂, z), (2.38)
2Do not confuse with δM , the matter density contrast.
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where mµ is the lensed magnitude and m0 the unlensed magnitude. Taking into
account that, as it has been demonstrated previously,

fµ(n̂, z) = µ(n̂, z)f0(n̂, z)⇔ mµ(n̂, z)−m0(n̂, z) = −2.5 log µ(n̂, z), (2.39)

where on the last step it has been converted from fluxes to magnitudes. Thus,
taking into account that

log(µ) ' log(1 + 2κ) ' 2κ, (2.40)

the Equation 2.37 results finally

ϕLS(θ) = −5〈δg(n̂, zL)κ(n̂′, zS)〉 = −5κ(θ), (2.41)

where κ(θ) is the convergence profile of the lenses.

Nevertheless, reddening by the inter-galactic medium can also produce –unlike
gravitational lensing– wavelength-dependent magnitude-shifts. Thus, the lensed-
plus-reddened fluxes are given by

fµ(n̂, z, λη) = µ(n̂, z)f0(n̂, z)e−τ(λη), (2.42)

that converted to magnitudes results in

mµ(n̂′, z, λη)−m0(n̂′, z, λη) = −2.5 log µ+ 2.5
ln 10τ(λη), (2.43)

where τ(λη) is the optical depth at the wavelength λη. The dust and the lensing
components can be disentangled by defining the color-excess angular correlation
function (Eην) between two-wavelengths λη, λν ,

Eην
LS(θ) = 〈δg(n̂, zL)[mµ(n̂′, zS, λη)−mµ(n̂′, zS, λν)]〉θ. (2.44)

Since gravitational lensing is achromatic, the only dependence with the wavelength
comes from the extinction law

Eην
LS(θ) = 2.5

ln 10〈δg(n̂, zL)[τ(n̂′, zS, λη)− τ(n̂′, zS, λnu)]〉. (2.45)

Modeling the wavelength dependence of the optical depth as [95]

τη = τ(λη) = τV

(
λV
λη

)γ
, (2.46)

where τV is the optical depth at the V -band filter, λV is the wavelength of the
V -band filter and γ ∼ 1 is a constant parameter. Thus, the color-excess cross-
correlation results finally

Eην
LS(θ) = λV (λ−1

η − λ−1
ν ) 2.5

ln 10〈δg(n̂, zL)τV (n̂′, zS)〉. (2.47)

At a wide field survey with several broad-band band-pass filters the scale depen-
dence of the optical depth, τV (n̂, zS) can be constrained.
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2.2.2 Shear
From the Jacobian of the lensing map, it can be deduced that the transformation
is not isotropic producing an elongation along one of the axis (r1, r2) = ~r⊥.
Thus, an intrinsically round galaxy is seen as elliptical. On the case of elliptical
galaxies, statistically they present a null global ellipticity3. From the definition of
Equation 2.19, the shear components are given by:

γ1(~r⊥) = −1
2

(
∂2ψ

∂r2
1
− ∂2ψ

∂r2
2

)
and γ1(~r⊥) = − ∂2ψ

∂r1∂r2
. (2.48)

The shear fields γ1, γ2 can be expressed as Fourier series such that:

γ̃1,2(~k⊥) =
∫
γ1,2(~r⊥)e−i~k⊥·~r⊥d2~r⊥ (2.49)

and
γ1,2(~r⊥) = 1

(2π)2

∫
γ̃1,2(~k⊥)ei~k⊥·~r⊥d2~k⊥. (2.50)

Expressing the differential equation at the Fourier space with the usual approach
∂/∂r1 → ir1 it leads to

γ1(~k⊥) = 1
2(r2

1 − r2
2)ψ̃(~k⊥) and γ2(~k⊥) = 1

2r1r2 ~ψ(~r⊥) (2.51)

Considering a plane-wave perturbation of the lensing potential, it is useful to
align the axis of the perturbation with those of the shear field such that

γ̃E(~k⊥) = cos(2φ~k⊥)γ̃1(~k⊥) + sin(2φ~k⊥)γ̃2(~k⊥) (2.52)

and
γ̃B(~k⊥) = cos(2φ~k⊥)γ̃1(~k⊥)− sin(2φ~k⊥)γ̃2(~k⊥). (2.53)

Resulting finally that

γ̃E(~k⊥) = ~k2
⊥ψ̃(~k⊥) and γ̃B(k̃⊥) = 0 (2.54)

The fact that γB is zero, constitutes a necessary (but not sufficient) proof for the
lack of systematic effects on any shear measurement.

Reaching this point, two kinds of two-point statistics can be build: the point-
shear4 and the shear-shear two-point angular-correlation functions. From this two,
we will only focus to gg-lensing due to its direct connection to magnification.

The gg-lensing.
Defining ε̃ as the observed ellipticity, taking into account shear distortions it can
be expressed as:

ε̃ = ε̃i + γ̃, (2.55)
3If they do not present null ellipticity it is a systematic effect known as intrinsic alignment.
4This is usually called galaxy-galaxy- (or gg-) lensing.
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where ε̃i is the intrinsic ellipticity of the galaxy. As stated previously, without loss
of generality, shear coordinates can be rotated. Thus, let define the tangential
shear γt as

γt = −[cos(2φ~k⊥)γ̃1(~k⊥) + sin(2φ~k⊥)]γ̃2(~k⊥) = −γE. (2.56)

On the new coordinates, this leads to

ε = εi + γE, (2.57)

where ε̃, ε̃i are the ellipticity on the new coordinates. Let p(ε) the distribution of
ellipticity of the sources. At the small distortion regime, assuming that ellipticity
is isotropic, it follows that

p(ε) = p(εi) + γt cos 2φ∂p(ε)
∂ε

. (2.58)

Here φ~k⊥ is the angle of orientation of the principal axis of the galaxy. Integrating
over all the ellipticity, they can be translated to orientation angle,

p(φ) = 2
π

[
1− 〈γt〉 cos 2φ

〈1
ε

〉]
. (2.59)

Thus, measuring the ellipticity –or orientation angles–, shear E-modes can be
measured, probing directly the underlying lensing potential.

Tangential shear can be estimated to be

〈γt〉 = −∆Σ
Σc

, (2.60)

with
∆Σ = Σ̄(θ)− Σ(θ), (2.61)

where Σ̄(θ) denotes the average surface density on an disk of angular size θ. Thus
the tangential shear can be related to the convergence profile as

〈γt〉 = −[κ̄(θ)− κ(θ)]. (2.62)

The last equation demonstrates that gg-lensing and magnification are produced
by the same physical effect. Nevertheless, they have different systematic effects.
This can be exploited in order to produce accurate and reliable cosmological
measurements.

2.3 Theoretical expressions for κ(θ)
As it has been stated on the previous section, the convergence profile is one of
the physical observables for both magnification and gg-lensing. Thus, in order
to connect the measurements with a cosmological model, its dependence on the
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cosmological parameters must be provided. Depending on the nature of the lenses
considered –that is, whether the lenses are galaxies, voids, clusters or troughs–,
the approach may differ.

On this section, the solutions for galaxies and voids is calculated. A simple
solution for troughs can be found on Gruen et al. [96].

The simplest solution for the convergence profile is for a sample of galaxies.
Taking into account the definition of κ

κ(θ) = 〈δg(n̂, zL)κ(n̂′, zS)〉θ, (2.63)

if a linear, constant and redshift-independent galaxy-bias (bL) is considered, a
relation between the galaxy density contrast δg and matter density contrast δM
can be established:

δg(n̂, zL) = bLδM(n̂, zL). (2.64)

Thus, the convergence profile is given by

κ(θ) = bL〈δM(n̂, zL)κ(n̂′, zS)〉θ. (2.65)

If it is considered that the convergence field κ(n̂) can be expressed also as a function
of the matter density contrast by Equation 2.24 and Equation 2.22:

κ(θ) = bL

〈
δM(n̂, zL)

 z∫
0

dz′
r(z′)[r(z)− r(z′)]

r(z) 4πGa2ρ̄δM(n̂, z)
〉 . (2.66)

This leads finally to [97]:

κ(θ) = 3H2
0 Ω0

M

2c2

∞∫
0
dz′L

φL(z′L)
1+z′L

∞∫
z′L

dz′SφS(z′S) r(z
′
L)[r(z′S)−r(z′L)]

r(z′S) × (2.67)

∞∫
0

dkk
2π PM(k, z′L)J0[kθr(z′i)],

where φL, φS are the redshift distributions of the lens and source sample respec-
tively, PM the matter power spectrum of the lens sample and J0 is the zero-th
order Bessel function.

The calculation of the convergence profile for a void needs to assume a void
profile. A solution on General Relativity for voids can be found at [98–100], based
on the LTB metric,

δ(rv) = δ0g(a)
(

1− 2
3
r2
v

r2
0

)
exp

(
−r

2
v

r2
0

)
, (2.68)

where rv is the radial comoving distance on the system of coordinates centered
at the void, r0 the radial size of the void, δ0 the central underdensity and g(a)
the growth factor not normalized at present. On the system of coordinates
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centered on the observer and considering non-spherical voids, this leads to the
Kovacs & Garcia-Bellido void-profile (KGB):

δKGB(θ, z) = δ0g(a)
[
1− 2

1 + 2q2

(
r2
‖

r2
0

+ q2r2
⊥

r2
0

)]
exp

[
−
(
r2
‖

q2r2
0

+ r2
⊥
r2

0

)]
, (2.69)

where q2 = 1− e2 with e the ellipticity of the void and

r‖ = r(z) cos θ − r(zv) (2.70)
r⊥ = r(z) sin θ. (2.71)

Here r(z) is the radial comoving distance at redshift z, whereas zv is the redshit
of the center of the void and θ the angular separation form the center of the void.
From Equation 2.69 and Equation 2.8, the convergence profile around a single void
can be obtained:

κ(θ) = 1
2

ΣKGB(θ)
Σc

, (2.72)

where the surface density is given by

ΣKGB(θ) =
∞∫
0

dz′ρ̄M(z′)[δKGB(θ, z′) + 1]. (2.73)

Here the ρ̄M (z′) is the matter average density of the Universe at redshift z′, given
by

ρ̄(z′) = Ω0
Mρc

(1 + z′)3 (2.74)

with ρc the critical energy density of the Universe.
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The Dark Energy Survey (DES) [101] is a grizY photometric galaxy survey that
has as main scientific goal to shed light on the nature of the Dark Energy. DES
uses four probes to unravel the nature of Dark Energy: the number of clusters
as a function of redshift, the measurement of the scale of the baryon acoustic
oscillations (BAO) peak, the weak gravitational lensing of galaxies and the mea-
surement of the Hubble diagram with type Ia Supernovae (SNIa). By the end of
five years of observations, DES will cover 5000 deg2 of the Southern Hemisphere
up to magnitude i < 24.0 at the 10σ detection level. Taking this into account,
this survey is expected to measure 10000 clusters up to redshift 1.0, 200 million
galaxy-shapes for weak-lensing (with z < 1), 300 million galaxies for BAO (z < 1.4)
and 3000 SNIa up to redshift 1.0. The power of DES resides on the combination
of all the probes breaking degeneracies on the cosmological parameter phase-space
leading to a precision better than the 5% on the parameters w0 and ∆wa < 0.2 on
the equation of state of the Dark Energy.

DES is an international collaboration formed by about 500 scientists from more
than 20 institutions from: USA, Spain, UK, Brazil, Germany, Australia, Chile
and Switzerland. The Collaboration has built a very sensitive camera, DECam
(see Figure 3.1 and Figure 3.2) [102], that has been mounted at the 4-m Victor
M. Blanco Telescope1 at the Cerro Tololo Inter-American Observatory (CTIO),
located near La Serena (Chile).

3.1 The DECam
The DECam (Dark Energy Camera), is the main instrument of the experiment. It
is composed mainly by:
• The 570 megapixel focal plane, formed by 70 CCDs.

1This is the same telescope where Schmidt and Perlmutter performed some of the observations
leading to the Nobel Prize in 2010 for the discovery of Dark Energy.
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• Low-noise readout electronics.
• Wide-field optical corrector, producing 3 deg2 field of view.
• Filter and shutter system.
• Hexapod for stability.

Since DES is going to observe very highly redshifted galaxies, the camera’s CCDs
have been specifically designed at Lawrence Berkeley National Laboratory to detect
red light. In order to do so, the silicon layer is ten times thicker –250 µm– than
conventional ones2. This results in a quantum efficiency >80% on the 600-950 nm
range, >60% on the 400-600 nm and >50% on the 900-1000 nm. The DECam
focal plane consist of the following types of CCDs:
• Science array: formed by 62 CCDs with 2048× 4096 pixels. Each pixel is

15µm of side that, at the prime focus fot the Blanco Telescope, results on a
pixel scale of 0.27 arc-seconds on the sky.
• Four 2048× 2048 guider CCDs.
• Eight 2048× 2048 focus and alignment CCDs.

To minimize the noise and dark currents due to the electronics system, DECam
operates on an environment cooled by liquid nitrogen at 180 K and a vacuum
of ∼ 10−9 atm. The whole readout process takes 17 seconds (about the same as
the slewing-time of the telescope). Readout and clocking electronic boards were
produced and designed in Spain at CIEMAT and IFAE.

3.2 Survey strategy
The total amount of time awarded to DES at CTIO for observing the total area
to the nominal depth on the five photometric bands is of 525 nights over a 5-year
period. The rest of the nights, DECam is available to the scientific community.
The tank-shaped footprint, that can be seen at Figure 3.3 is not casual but is
optimized for the several probes.
• The cannon located at the equator, is known as stripe-82 and overlaps with
several spectroscopic surveys such as SDSS, to calibrate the photometric
redshifts (photo-z hereafter).
• The rounded shape –the body– is intended to have the largest possible scales

for BAO measurement.
• The lower part –the wheels– is designed to overlap with the South Pole
Telescope (SPT) to measure the Sunyaev-Zel’dovich effect correlations with
CMB.

The DES observations can be split in two: the transient survey and the
wide-field survey.

The transient survey
The transient survey is designed to measure SNIa. Selected small portions of the
sky –known as the supernovae fields– are surveyed periodically to time to look
for supernovae explosions and measure its luminosity curve as a function of time.
Although it is designed to SNIa astronomy, some ancillary Solar-System astro-
nomical results have been reported, such as Jupiter-trojans and trans-Neptunian

2Sensitivity to long wavelengths is increased when passing trough more silicon.
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Figure 3.1: DECam mounted at the focus of the Victor Blanco Telescope. Image
credit: M. Garcia-Fernandez
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Figure 3.2: Location of the 4-m Victor Blanco Telescope at Cerro Tololo. Chilean
Andes. Image credit: M. Garcia-Fernandez

Figure 3.3: DES footprint on equatorial coordinates. Purple area is the total area
that DES will cover at the end of the five years (Y5). Red areas -that overlap with
the purple- are the Science Verification observations. Shaded areas are the first
year campaign of observations (Y1). Dark blue regions are the SNIa fields. Dotted
line represent the galactic plane. Image credit: The DES Collaboration.
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detection and searches for the recently proposed planet-9 [103]. These ancillary
physics also use the wide-field to increase the area.

The wide-field survey
The wide field survey is intended for the rest of the dark energy probes. The
observed area is visited 10 times on each band along the 5-year-period to reach
the full depth and the maximum level of homogeneity.

Nightly operations at CTIO
A typical night of observations, if the sky is not overcast and no earthquake
threatens the life of the observers, starts in the afternoon taking calibration data
on CCDs. Then, after the evening twilight, three standard stars are imaged to
calibrate the photometry. These, are well known stars with very well defined and
measured photometric properties. After that, the wide-field survey starts. When
the supernovae fields are visible –and time requirements are fulfilled–, they are
surveyed, returning to the wide-field survey when they are done. Some time before
the morning twilight, another three standard stars are imaged, finishing the night.
All nightly operations follows the same pattern except if some transient alarm
us received. In this case, DES points to the place where the transient has been
produced to look for an optical counterpart.

3.3 The data reduction pipeline
The data reduction that goes from images to science-ready catalogs of galaxies is
carried out at the NCSA3. The first step is to calibrate the data. Then, the different
exposures of the same region of the sky for a given band –single-epoch images–
are combined into a single image on a procedure called co-addition –multi-epoch
image–. This procedure allows the increase of the observed depth respect to each
individual single-epoch image (Figure 3.4). Nevertheless, to reach the DES nominal
depth, images are detected on the r + i+ z multi-epoch images. This multi-epoch
images will constitute the measurement images for each band. Co-addition of the
objects is made with the software Swarp [104] and the detection and photometric
measurements is made with SExtractor [105] in dual mode. IM3SHAPE [106]
and NGMIX [107] packages are used for specific needs like shapes for shear and
precise photometry.

3.4 Current status and latest results
The Dark Energy Survey began its journey in 2005 with the construction of DE-
Cam, starting the data acquisition on 2012 with the Science Verification period. By
the end of February 2017, the Year 4 observation campaign has ended (Figure 3.5).
The Year 3 reduction pipeline from images to galaxy-catalogs has just finished
and is still under inspection, so the most recent data-set that is being used for
Cosmology analysis, is the Year 1 release (Figure 3.6 and Figure 3.7).

3National Center for Supercomputing Applications. Illinois (USA).
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Figure 3.4: Comparison of the multi-epoch image for the griz bands with the
detection coadd. Images are taken from DES-database for a region of the tile
DES0419-4914 after the Y1 epoch. Image credit: M. Garcia-Fernandez & The
DES Collaboration.
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Figure 3.5: DES coverage at the end of Year 4 observations campaign for the grizY
photometric bands. All the area has at least 6 tiles out of 10. It can be also seen
that there is plenty of area with 7 tiles. Image credit: The DES Collaboration.

Currently, no precise constrains on dark energy have been made yet, since
they require an extensive and demanding control of systematic errors that is still
ongoing. Nevertheless several other works on Cosmology have been provided,
such as strong-lensing [74, 108, 109], Sunyaev-Zel’dovich [110], voids and troughs
[96, 111], tests of log-normality [112], clusters [113], weak-lensing [114–120] and
large-scale-structure correlations with CMB [116, 121, 122].

Constrains on the cosmological parameter space provided by DES are based on
the Science Verification shear analysis [123, 124]. Nevertheless, the most powerful
measurement is produced by the combination of clustering with gg-lensing [125]
on the σ8 − ΩM plane. Although results provided are not yet competitive, it is
a remarkable milestone for DES to provide such results with just the 3% of the
planed total area (Figure 3.8).

But not everything is about dark energy at DES. Several other results has
been provided [126]: discovery of several trans-neptunian objects (TNOs), Jupiter-
trojans and main belt asteroids, characterization of variable stars, detection and
characterization of Milky-Way satellite galaxies –and its use to put constrains on
dark matter– and gravitational-wave follow-up.
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Figure 3.6: DES Year 1 spatial distribution of objects on equatorial coordinates.
Image credit: The DES Collaboration.

Figure 3.7: DES Year 1 magnitude distribution of objects on the i-band (arbitrary
normalization). The average depth reached is i ∼ 22.8. Image credit: The DES
Collaboration.
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Figure 3.8: DES-SV constrains on the ΩM −σ8 plane combining clustering and gg-lensing [125]. Two scenarios are considered: ΛCDM
and the presence of non-evolving dark energy (wCDM).
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4. Magnification in DES

Extensive wide-field galaxy surveys have allowed accurate measurements of weak-
lensing effects. Previous magnification measurements involved the use of very
massive objects as lenses, such as luminous red galaxies (LRGs) and clusters
[127–130], or high redshift objects as sources, such as Lyman break galaxies (LBGs)
[131, 132], quasars (QSOs) [133–138] and sub-mm sources [139] to improve signal-
to-noise ratio. In addition to the number count technique used on this Thesis,
other observational effects produced by magnification have been measured as well:
the shift in magnitude [95], flux [140] and size [93].

On this chapter, first, the methodology to measure magnification is described
(section 4.1) and validated with simulations (section 4.2). Then, the methodology
is used to measure the magnification signal at the Dark Energy Survey Science
Verification data (SV; section 4.3). Finally, it is employed to measure the conver-
gence profile of voids and troughs with the Year 1 data (Y1; section 4.4).

It is worth remarking that, as it was defined in chapter 2, given both the
redshift of the lenses and the sources, the convergence is a two-dimensional scalar
field that is independent of the selected lens or source sample. Nevertheless, by
choosing a suitable lens sample, different parts of the log-normal distribution of the
convergence field [112] can be probed, leading to a different convergence profile.

4.1 Measuring Magnification through Number Count
As it was described in chapter 2, the amplitude of the magnification signal depends
on two factors: the magnitude number-count slope parameter (α − 1) and the
lensing kernel, which for a given lens sample, is a function of the redshift of the
source sample. LBGs and QSOs have been traditionally used on magnification
studies as sources since they have steep magnitude distribution, leading to a high
value of α − 1. In addition, this population of galaxies is located at very high
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redshift (2 . z . 4), leading to a high lensing efficiency and a clean redshift
separation between the lens and source samples. Nevertheless, this population
of galaxies has very low density, feature that can prevent the measurement of a
magnification signal for small-area surveys. In addition, the selection of a pop-
ulation of LBGs involves the method known as dropout technique, that requires
the development of a custom data-reduction pipeline just to select this specific
population of galaxies. For large-area surveys such as DES and LSST, the amount
of computing time to run the data-reduction pipeline makes this approach very
inefficient, and alternative methods must be developed.

The caveats related to the use of LBGs and QSOs as sources can be avoided
by using the whole measured galaxy population. Then, only redshift cuts are
imposed in order to separate the lens and source samples. This approach has the
advantage that the density of the source sample is higher, reducing significantly
the shot-noise. Nevertheless, the accuracy on the determination of the redshift on
broad-band galaxy-surveys –such as DES– is limited, introducing an important
source of systematic errors that must be avoided and carefully taken into account.

In addition to the lens-source redshift overlap, magnification suffers from
several systematic errors based on the photometry [141, 142], such as: depth-
inhomogeneities, the zero-point correction and calibration, or possible shifts on
the magnitude determination due to inaccurate sky-background subtraction. The
important reduction of shot-noise on wide-field surveys requires the development
of new techniques to estimate and control these sources of systematic errors.

The use of the general population of galaxies on small-area surveys is mandatory
to reach a significance that allows the detection of the magnification signal. On
wide-area surveys the use of this population is not necessary although new studies
can be made if it is used. Having a very dense population of galaxies as sources
allows to use a set of lenses that are less numerous: voids and troughs. This allows
to produce new physics analysis.

The usual approach that can be found on the literature to measure magnification
is the optimal weighting technique [97]. This methodology can be summarized as
follows:

1. Split data sample into two well-separated photo-z bins, termed lens and
source. Splitting must be done minimizing the overlap between the true
redshift distributions of the samples. Otherwise, by Equation 2.28, an
additive signal is introduced.

2. Weight each source galaxy by its optimal weight.
3. Compute the two-point angular cross-correlation between the lens and the

unique source sample.
The weight of the i-th galaxy (wi) is given by:

wi = αS(mi)− 1, (4.1)

where αS(mi) is the number-count slope given by Equation 2.35 and mi is the
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magnitude of the i-th galaxy. This procedure allows to obtain the maximum
signal-to-noise. Nevertheless, this weighting makes it hard to disentangle the
impact of the different systematic effects on the measured signal.

As an alternative approach the following procedure is proposed and imple-
mented:

1. Split the data sample into two well-separated photo-z bins, termed lens
and source. Splitting must be done minimizing the overlap between the
true redshift distributions of the samples. Otherwise, by Equation 2.28, an
additive signal is introduced.

2. For each photometric band, define several subsamples from the source sample
using different values for the maximum (threshold) magnitude. This is made
in order to trace the evolution of the amplitude of the magnification signal
with the number count slope (see Equation 2.35).

3. Compute the two-point angular cross-correlation function between the unique
common lens sample and each source subsample for each band.

Once the two-point angular correlation function has been measured, it can be
compared with theoretical predictions as described in chapter 2 allowing the desired
parameter constraints.

As it has been stated previously, the amplitude of the measured cross-correlation
function depends on the shape of the galaxy number count distribution. Neverthe-
less, due to this shape –for a fixed footprint, population of galaxies and redshift
distribution–, the brighter is the magnitude limit of the sample, the bigger is
the amplitude of the two point angular cross correlation function. However, the
number of bright galaxies is lower than the number of faint galaxies [143], so shot
noise becomes more important increasing their measurement uncertainties. For
this reason, there exists a magnitude cut that is a trade-off between amplitude
and shot noise, maximizing the signal-to-noise ratio. In order to find the optimum
magnitude cut for a given sample, define the signal-to-noise ratio for a given
angular range and magnitude cut m′ < m can be defined as [144]:

S

N
(m) = 〈ωLS(θ;m)〉

〈s(ωLS(θ;m))〉 , (4.2)

where 〈s(ωLS(θ;m))〉 is the average shot noise of the two point angular cross
correlation functions and the averages are extended to the angular range considered
in the analysis. The shot noise for a given angular aperture is given by the number
of pairs inside each angular bin as

σ(ωLS(θ;m)) = 1√
PLS(θ;m)

, (4.3)

where PLS(θ;m) is the number of pairs from the lens-source samples separated
by an angular distance θ for a magnitude cut m′ < m. The number of pairs per
angular bin is given by the product of the number of source galaxies that fall inside
a given annulus times the number of sources inside that annulus. Considering, as
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a first order approach, that the samples are uniform, the number of lens-source
pair-counts of galaxies for a bin centerd at θ with solid angle ∆Ω is given by

PLS(θ;m) =
[
NL

A
∆Ω(θ)

] [
NS(m)
A

∆Ω(θ)
]
. (4.4)

Here A is the solid angle subtended by the dataset, NL is the number of objects
at the lens sample and NS(m) the number of objects in the source sample with
magnitude limit m. Combining Equations 2.36, 4.2 and 4.4, results finally in

S

N
(m) = 〈ω0〉[α(m)− 1]bL

Ω
A

√
NLNS(m), (4.5)

where Ω is the solid angle subtended by an annulus with edges the maximum and
minimum scales considered. Thus, for a sample, given size, magnitude and redshift
distributions –assuming a cosmology– the signal-to-noise ratio can be estimated.
Nevertheless, Equation 4.5 assumes that the angular bins are uncorrelated and
should be taken as an upper bound to the signal-to-noise. Although this expression
does not take into account the full covariance, the behavior

S

N
∼ [α(m)− 1]

√
NS(m), (4.6)

is independent of cosmological and covariance assumptions up to a constant factor,
allowing us to use this expression for finding the optimal cut that maximizes the
signal-to-noise ratio. Equation 4.6 finds the magnitude cut with the maximum
signal-to-noise for a given source sample.

4.2 Magnification in the MICE-GC simulation
In order to test the methodology described above in a controlled environment,
isolated from any source of systematic error, it is applied to a simulated galaxy
sample, in particular MICECAT v1.0. This mock is the first catalog release of
the N-body simulation MICE-GC1 [145–147]. It assumes a flat ΛCDM Universe
with cosmological parameters ΩM = 0.25,Ωb = 0.044, h = 0.7 and σ8 = 0.8, using
a light-cone that spans one eighth of the celestial sphere. Another advantage of
using these simulations is the possibility of studying specific systematic effects, as
described in subsection 4.3.3.

Among other properties, MICE-GC provides lensed and unlensed coordinates,
true redshift (including redshift space distortions) and DES-griz unlensed mag-
nitudes for the simulated galaxies, along with convergence and shear. Conver-
sion from unlensed magnitudes to lensed magnitudes can be done by applying
mµ = m0 − 2.5 log10(1 + 2κ).

Having two sets of coordinates and magnitudes, one in a ‘universe’ with magni-
fication and another without magnification, allows us to follow the methodology
described in section 4.1 for both cases, serving as a test-bench to measure the
sensitivity of the method to the magnification effect. The full 5000 deg2 of the

1www.ice.cat/mice
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MICE simulation are used, but to match as much as possible the conditions of
the DES-SV data, the magnitude cuts described in subsection 4.3.1 are applied to
the lens and source samples. The covariance matrices of data (see section 4.3) are
used, in order to match the errors in the DES-SV sample.

In Figure 4.1, the results of the magnification analysis in the MICE simulation
for the cases with and without magnification can be seen compared with the
theoretical expectations. The methodology used in this work clearly allows us
to distinguish both cases for a data-set similar to that of the DES-SV data.
Nevertheless, results obtained with the MICE simulation can not be directly
extrapolated to SV data to estimate the expected significance because the density
of galaxies on the simulation is a factor ∼ 3 smaller than on the SV data. Also,
the luminosity function of the simulation is slightly different from the DES data,
which has a direct impact on the number count slope and, consequently, on the
amplitude of the measured signal.

4.3 Magnification in DES Science Verification data
As of January 2014 –when I started my PhD–, the only data available at DES
was the Science Verification data. The first data-release from DES. This dataset
was taken just for testing purposes and in order to explore the capabilities of the
experiment. Thus, although the nominal depth of the survey was reached, only
∼ 150 deg2 where taken. Taking this into account, only 104 LBGs are expected at
the full DES-SV data, preventing the measurement of magnification with the usual
approach. Thus, in order to be capable to reach a detection of the magnification
signal with the DES-SV data, the general population of galaxies was selected both
as lens and source sample.

The goal of this analysis is to detect a weak-lensing magnification signal
and develop methodology to mitigate systematic errors. The data sample is
described in subsection 4.3.1. Then, the analysis is described and the results
discussed in subsection 4.3.2 following the analysis of the possible systematic
errors in subsection 4.3.3. Finally a discussion on the analysis can be found in
subsection 4.3.4.

4.3.1 Data sample
From the DES SVA1-Gold2 main galaxy catalog [148], the largest contiguous field
is selected, the SPT-E. Regions with declination < −61◦ are removed in order to
avoid the Large Magellanic Cloud. Modest_class is employed as star-galaxy
classifier [149].

The following color cuts are made in order to remove outliers in color space:
• −1 < g − r < 3,
• −1 < r − i < 2,
• −1 < i− z < 2;

2des.ncsa.illinois.edu/releases/SVA1
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where g, r, i, z stand for the corresponding mag_auto magnitude measured by
SExtractor [105].

Regions of the sky that are tagged as bad, amounting to four per cent of the
total area, are removed. An area of radius 2 arcminutes around each 2MASS star
is masked to avoid stellar halos [138, 150].

The DES Data Management [151–153] produces a mangle3 [154] magnitude
limit mask that is later translated to a Nside = 4096 HEALPix4 [155] mask. Since
the HEALPix mask is a division of the celestial sphere with romboid-like shaped
pixels of the same area, to avoid boundary effects due to the possible mismatch
between the mangle and HEALPix masks, each pixel is required to be totally
inside the observed footprint as determined by mangle, by demanding
• rfracdet = 1,
• ifracdet = 1,
• zfracdet = 1;

where rfracdet, ifracdet, zfracdet is the fraction of the pixel lying inside the footprint
for r, i, z bands respectively.

Depth cuts are also imposed on the riz-bands in order to have uniform depth
when combined with the magnitude cuts. These depth cuts are reached by including
only the regions that meet the following conditions:
• rlim > 23.0,
• ilim > 22.5,
• zlim > 22.0;

where rlim, ilim, zlim stand for the magnitude limit in the corresponding band, that is,
the faintest magnitude at which the flux of a galaxy is detected at 10σ significance
level. The resulting footprint, as shown in Figure 4.2, after all the masking cuts
amounts to 121 deg2.

Photometric redshifts (photo-z) have been estimated using different techniques.
In particular, the fiducial code used in this work employs a machine-learning
algorithm (random forests) as implemented by TPZ [156], which was shown to
perform well on SV data [157]. The redshifts of the galaxies are defined according
to the mean of the probability density functions given by TPZ (zph). Other
methods are also employed to demonstrate that the measured two-point angular
cross-correlation are not a feature induced by TPZ.

Lens sample
A unique lens sample is defined by the additional photo-z and magnitude cuts:
• 0.2 < zph < 0.4;
• 18.0 < i < 22.5.

These requirements are imposed in order to be compatible with the first redshift
bin of the so called ‘benchmark sample’ [148]. Note that the mag_auto cut along

3http://space.mit.edu/∼molly/mangle/
4healpix.jpl.nasa.gov
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with the previous i-band depth cut guarantees uniformity [148].

Source sample

Three source samples are defined, one per band:
• R: 0.7 < zph < 1.0 and r < 23.0;
• I: 0.7 < zph < 1.0 and i < 22.5;
• Z: 0.7 < zph < 1.0 and z < 22.0.
Following the same approach we used on the lens, defined over the ‘benchmark’

sample, the mag_auto cut along with the previously defined depth cuts also
guarantee uniformity on the corresponding band. Within each R, I, Z source
sample five sub-samples that map the magnitude evolution are defined,
• R1: r < 21.0; R2: r < 21.5; R3: r < 22.0; R4: r < 22.5; R5: r < 23.0.
• I1: i < 20.5; I2: i < 21.0; I3: i < 21.5; I4: i < 22.0; I5: i < 22.5.
• Z1: z < 20.0; Z2: z < 20.5; Z3: z < 21.0; Z4: z < 21.5; Z5: z < 22.0.

Here Sj with j = 1, 2, 3, 4, 5 are the sub-samples of sample S with S ∈ {R, I,Z}.
In Figure 4.3, the redshift distributions of the lens and source sample are shown.
Note that the sub-samples R5, I5,Z5 are equal to R, I,Z respectively.

The g-band is not used on this analysis because when the same approach is
followed and a uniform sample is defined in that band, the number of galaxies of
the lens and source samples decrease dramatically. This increases the shot noise
preventing the measurement of number count magnification

4.3.2 Detection of the weak-lensing magnification signal

To estimate the cross-correlation functions, the tree-code TreeCorr5 [158] and
the Landy-Szalay estimator [159] are used demanding six logarithmic angular bins:

ωLSj(θ) =
DLDSj(θ)−DLRSj(θ)−DSjRL(θ)

RLRSj(θ)
+ 1, (4.7)

where DLDSj(θ) is the number of pairs from the lens data sample L and the source
data sub-sample Sj separated by an angular distance θ and DLRSj(θ), DSjRL(θ),
RLRSj(θ) are the corresponding values for the lens-random, source-random and
random-random combinations normalized by the total number of objects on each
sample.

Catalogs produced with Balrog6 [160] are used as random sample. See sec-
tion 4.3.3 for a detailed description and discussion on this.

A covariance matrix is computed for each band by jack-knife re-sampling the
data taking into account the correlations between the different magnitude cut

5github.com/rmjarvis/TreeCorr
6github.com/emhuff/Balrog
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within each band

CS(ωLSi(θη);ωLSj(θν)) = NJK

NJK − 1 (4.8)

×
NJK∑
k

[ωkLSi(θη)− ωLSi(θη)][ωkLSj(θν)− ωLSj(θν)],

where ωkLSj stands for the cross-correlation of the k-th jack-knife re-sample and
ωLSj is the cross-correlation of the full sample. The NJK = 120 jack-knife regions
are defined by a k-means algorithm [161] using Python’s machine learning library
scikit-learn7 [162]. In order to get NJK regions with equal area, the algorithm is
trained on a uniform random sample following the footprint of the data demanding
NJK centers. The regions used on the re-sampling are composed by the Voronoi
tessellation defined by these centers. These matrices trace the angular covariance
as well as the covariances between functions within each band. No covariance
between bands is considered, since each band is treated independently on this
work. The reduced covariance matrix of the i-band is displayed at Figure 4.4. The
behaviour is similar for the other bands.

The measured two-point angular cross-correlation functions and the ΛCDM
weak lensing theoretical predictions can be found in Figure 4.5, Figure 4.6 and
Figure 4.7. The measured correlation functions are found to be non-zero, com-
patible with ΛCDM and their amplitude evolves with the magnitude cut. The
magnitude cuts imposed to guarantee uniform depth make that, for this data, no
negative amplitudes are expected.

To compare with theory, Equation 2.36 and Equation 2.67 and have been used
assuming Planck 2015 [163] cosmological parameters. The bias of the lens sample
has already been measured independently with different techniques: clustering
[148], gg-lensing [119], shear [164] and CMB-lensing [121]. From these values the
most precise, from [148], is selected (bL = 1.07 ± 0.08) and is assumed to be a
constant scale-independent parameter. The number count slope parameter αS is
computed by fitting the cumulative number count of the sample S to a Schechter
function [143] on the range of interest

Nµ(m) = A
[
100.4(m−m∗)

]β
× exp

[
−100.4(m−m∗)

]
, (4.9)

where A,m∗, β are the free parameters of the fit. Then αS(m)− 1 is computed by
applying Equation 2.35, where mj is the magnitude limit of the Sj sub-sample on
the considered band. In Figure 4.8 the fit and the number count slope parameter
for the I sample are shown.

A goodness of fit test of the measured two-point angular cross-correlation
function respect to the theoretical predictions for each band is performed:

χ2
Planck = ∑

ηνij
[ω̃LSi(θη)− ωLSi(θη)] (4.10)

C−1(ωLSi(θη);ωLSj(θν))[ω̃LSj(θν)− ωLSj(θν)], (4.11)
7scikit-learn.org
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Figure 4.4: Covariance matrix of the i-band rescaled by the value of the diagonal
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√
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of the correlation function.

Weight Sample log10 B χ2/ndof
R 3.9 21.6/30

No I 3.4 23.9/30
Z 3.4 36.8/30

r < 23.0 3.2 3.2/6
Yes i < 22.5 2.1 2.1/6

z < 22.0 2.3 2.3/6

Table 4.1: Significance of the detection of a magnification signal. Results are
shown for the combination of the five subsamples within each band as well as for
the faintest sample with weighting.
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where ω̃, ω are the measured and theoretical cross-correlation functions respec-
tively. Goodness of fit tests are also made testing the hypothesis of absence of
magnification:

χ2
zero = (4.12)∑

ηνij
ω̃LSi(θη)C−1(ωLSi(θη);ωLSj(θν))ω̃LSj(θν).

The χ2 values can be seen in Table 4.1 showing good agreement with the theoretical
predictions described in chapter 2. To test which hypothesis is favored, the Bayes
factor is used:

B = P (M |Θ)
P (Z|Θ) = P (Θ|M)

P (Θ|Z)
P (M)
P (Z) , (4.13)

where
P (M |Θ) = e−χ

2
Planck/2 (4.14)

and
P (Z|Θ) = e−χ

2
zero/2. (4.15)

The assumed prior sets detection and non-detection of magnification to be equally
probable: P (M) = P (Z). Bayes factors are computed for each function individu-
ally as well as for each band using the full covariance.

The significance for each individual correlation function has a strong depen-
dence on the considered magnitude limit of the sub-sample. At the bright cuts,
shot-noise prevents the identification of a non-zero magnification signal. At the
faint end, although the sub-samples are much more populated, the strength of the
magnification signal is compatible with zero. This behaviour has been compared
with the predictions (see section 4.1). Predicted and measured values are plotted
together in Figure 4.9. It can be seen that the prediction of the location of the
maximum signal-to-noise can only be used as a first approach.

To compute the significance of the detection for each band, the full covariance
is used. One covariance matrix (see Figure 4.4 for the i-band matrix) per each
band is computed taking into account the correlations between each magnitude
cut. The logarithm of the Bayes factor can be found in Table 4.1, being all above
2, allowing to claim that magnification has been detected [165].

A usual approach to enhance the signal-to-noise ratio, is to define a unique
source sample and weight each source galaxy with its corresponding αS(m) − 1
value [97] and compute the two-point angular cross-correlation function. This
weighting procedure is used at the samples r < 23.0, i < 22.5 and z < 22.0.
These correlation functions can be seen in Figure 4.10 with a comparison with the
theoretical prediction and the correlation functions of the same sample computed
without weighting. Significances of these measurement can be found in Table 4.1
with a marginal difference respect to the one computed without weighting using
the five subsamples.
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Finally, in order to test that the signal is achromatic, the measured two-point
angular cross-correlation functions for each band, normalized by its αS(m) − 1
are compared. All cross-correlation functions fluctuate within 1σ errors (see
Figure 4.11 for an example) demonstrating that the measured convergence field
does not depend on the considered band.

4.3.3 Systematic error analysis
Here, the impact of potential sources of systematic errors on the measured two-
point angular cross-correlation function is investigated and how they are taken
into account in the measurement is described.

Number count slope α
When comparing the measured two point angular cross-correlation functions with
the theoretical prediction via Equation 2.36 for a given set of cosmological param-
eters, α(m) is determined by fitting the cumulative number count distribution to
Equation 4.9 and then using Equation 2.35. To compute the possible impact of
the uncertainty of this fit on the comparison with theory, a marginalisation over
all the parameters of fit (A,m∗, β) is made.

Parameters are randomly sampled with a Gaussian distribution centerd on the
value given by the fit to the cumulative number count and with a standard deviation
equal to the 1σ errors of the fit. The value of α is recalculated with these randomly
sampled parameters. The impact of the dispersion of the α values obtained is negli-
gible compared to the size of the jackknife errors, so they are not taken into account.

In addition to the parameter determination, a possible non-completeness on the
SPT-E field can modify the magnitude distribution altering the cumulative number
count slope parameter [142]. To estimate the possible impact of non-completeness,
the measured magnitude distributions of the SPT-E field are compared with those
of deeper fields measured by DES, such as the COSMOS field. Both distributions
are found to be equal at the range of magnitudes considered on this analysis (see
Figure 4.12 for an example in the i-band).

Object obscuration
Chang et al.[149] studied whether moderately bright objects in crowded environ-
ments produce a decrease in the detection probability of nearby fainter objects at
scales θ . 10 arcsec. However, such scales are well below those considered in this
analysis (θ > 36 arcsec) and therefore this effect is ignored.

Stellar contamination
For a given choice of star-galaxy classifier, there will be a number of stars mis-
classified as galaxies, so the observed two-point angular cross-correlation function
ωO(θ) must be corrected by the presence of any fake signal induced by stars (see
chapter A):

ωLSj =
ωO(θ)− λLω∗Sj(θ)− λSjωL∗(θ)

1− λL − λSj

, (4.16)
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where ωLSj is the corrected galaxy cross-correlation function, ωL∗ is the cross-
correlation function of the true galaxy lenses with the stars misclassified as galaxies
in the source sample, ω∗Sj is the cross correlation of the stars misclassified as galax-
ies in the lenses with the true source galaxies and λL, λSj are the fraction of stars in
the lens and in the source samples respectively. Assuming that the misclassification
of stars is spatially random and is a representative sample of the spatial distri-
bution of the population classified as stars and that the fraction of misclassified
stars is small, the functions ωL∗, ω∗Sj are estimated from the cross-correlation of
the galaxy population and the stellar population in the corresponding redshift bin.

Following a similar approach to [166], if the latter is true and the misclassified
stars trace the global population of stars, for a given patch of the sky the number
of objects classified as galaxies NO must be the average number of true galaxies
N̄g plus a quantity proportional to the number of stars on that given pixel,

NO = N̄g + γ̃Ns. (4.17)

Dividing by the average number of objects marked as galaxies N̄O,

NO

N̄O
= p+ γNs, (4.18)

where p = N̄g/N̄O is the purity of the sample, that is, λ = 1− p.

In order to estimate the purity of the galaxy sample with this method, an
Nside = 512 HEALPix pixelation is made and for each pixel NO/N̄O and Ns is
computed. Then, a fit to Equation 4.18 is made determining a purity of 94 per
cent for the lens sample and about 98 per cent for the source sample depending
on the considered band (see Figure 4.13 for an example). With this purity, the
correction due to stellar contamination given by Equation 4.16 is found to be
one order of magnitude smaller than the statistical errors (see Figure 4.14 for
the i-band correction), so stellar contamination is not taken into account in the
analysis. Nevertheless, on future analysis with more galaxies and area this may
be important. Note that the objects labeled as stars by our star-galaxy classifier
would be a combination of stars and galaxies thus these calculations are an upper
bound to stellar contamination.

Survey observing conditions
Observing conditions are not constant during the survey, leading to spatial de-
pendencies across the DES-SV footprint [167] that may affect the observed cross-
correlation function, such as seeing variations, air-mass, sky-brightness or exposure
time [141]. To trace these spatial variations, the catalog produced by the Monte
Carlo sampling code Balrog has been used as random sample [160]. It is im-
portant to remark that Balrog catalogs are produced with the same pipeline as
DES-SV data, allowing one to trace subtle effects such as patchiness on the zero-
points, deblending and possible magnitude errors due to a wrong sky subtraction
close to bright objects.
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The Balrog catalogs are DES-like catalogs, where no intrinsic magnification
signal has been included. The Balrog software generates images of fake objects,
all with zero convergence κ, that are embedded into the DES-SV coadd images
(convolving the objects with the measured point spread function, and applying the
measured photometric calibration). Then SExtractor was run on them, using
the same DES Data Management configuration parameters used for the image
processing. The positions for the simulated objects were generated randomly over
the celestial sphere, meaning that these positions are intrinsically unclustered.
Hence, the detected Balrog objects amount to a set of random points, which
sample the survey detection probability. For a full description and an application
to the same measurement as in [148] see [160]. This is the first time that this
extensive simulation is used to correct for systematics. The same cuts and masking
of the data sample (subsection 4.3.1) are also applied to the the Balrog sample.
A re-weighting following a nearest-neighbours approach was applied to Balrog
objects in order to follow the same magnitude distribution of the DES-SV data on
both lens and sources.

The use of Monte Carlo sampling methods provides a new approach to mitigate
systematic effects complementary to methods that cross-correlate the galaxy-
positions with the maps of the survey observing conditions [141, 166, 168] or
involve masking the regions of the sky with worst values of the observing condi-
tions [148]. The amount of sky to be masked in order to mitigate the systematic
effects on the correlation functions, is decided based on the impact on the corre-
lation function, which may lead to a biassed measurement. On the other hand,
the approach involving cross-correlations may lead to an overcorrection effect
since the different maps of the observing conditions are, in general, correlated
in a complicated manner [169]. This new Monte Carlo technique to sample the
selection function of the survey given by Balrog, has the advantage that takes
into account the correlation of the different observing conditions maps as well
as provides an objective criteria to mitigate systematic errors on the correlation
function for a given sample, avoiding biassed measurements. In addition, the use
of Balrog has the potential to allow us in the future to exploit the full depth of
the survey [160].

Balrog allows to explore how the real properties of the galaxies are mapped
into the observed ones. One might think that it may be translated from observed
to real quantities. This is not possible since that although the real → observed
map is one-to-one, meanwhile the observed→ real is not.

Although the use of Balrog is a ground-breaking technique on the mitigation
of systematic errors, its limitation must be taken into account. The simulated
catalogs inherit the properties of the input catalogs. Thus, if an specific population
of galaxies is not accurately described in the input, it will not be accurately taken
into account. DES-SV Balrog catalogs are based on the COSMOS survey8,
that is based on images from the Hubble Telescope which are deeper than the

8cosmos.astro.caltech.edu



4.3 Magnification in DES Science Verification data 61

DES survey. Thus, the overall quality of the input catalog should be good enough
to simulate DES and this should not be a limitation on this analysis.

Dust extinction
The possible presence of dust in the lenses may modify the observed magnitude in
addition to the magnitude shift due to magnification [95]. The change in magnitude
(δm) on the p-band may be written as

δmp = −2.5 log µ+ 2.5
ln 10τp, (4.19)

where µ ' 1 + 2κ is the change in magnitude due to magnification and τk is the
optical depth due to dust extinction. Whereas magnification is achromatic, dust
extinction induces a band-dependent magnitude change. Taking this into account,
the color-excess for bands p, q9 is defined as

Epq = δmp − δmq = 1.08[τp − τq]. (4.20)

Define the color-density cross-correlation as [95]

〈δgEpq〉(θ) = 1.09[τp(θ)− τq(θ)], (4.21)

where δg is the density contrast of the lenses and Epq is the color-excess of the
sources; from the measurements by [95] it can be parametrized as

〈δgEpq〉(θ) = 1.09τV
[
λV
λp
− λV
λq

](
θ

1′

)−0.8

, (4.22)

with τV = 2.3× 10−3 the optical depth at the V-band and λV , λp, λq the average
wavelengths of the V , p and q bands respectively. With this parametrization, the
impact of dust extinction is negligible at the scales considered on this analysis.
As it can be seen in Figure 4.15, color-density cross-correlation functions are
compatible with Equation 4.22 as well as with zero.

In addition, the impact of a dust profile has been simulated as described in
Equation 4.22 with the MICE simulation (section 4.2). To do so, for each galaxy
belonging to the source sample a magnitude shift is induced

md = mµ + 1.09τV
λV
λ

∑
l

(
θl
1′

)−0.8

. (4.23)

Here θl is the angular separation of the source-galaxy and the l-th lens galaxy
and the summation is over all the galaxies of the lens sample. In Figure 4.16 the
difference between the two-point angular cross-correlation with and without the
dust can be seen to be less than the statistical errors. It can be deduced that dust
has no impact on the angular scales considered on this work.

Since the parametrization used here only applies to a sample similar to the one
used at [95], statements about dust constrains are limited. Nevertheless this does
not change the fact that no chromatic effects are detected.

9In this section p, q stand for a generic index label while V stands for the V band of the UBV
system.
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Figure 4.17: Comparison of 1σ jackknife errors of the measured correlation function
(grey shade) with the expected signal induced by the photo-z migration between
the lens and the source sample (sample i < 22.5) computed theoretically with the
stacking of the pdfs (blue line).

Photometric redshifts
A general study of photo-z performance in DES-SV can be found in [157]. A
comprehensive study of the photo-z performance and its implications for weak
lensing for this data can be found in [170]. Both studies are followed in this
analysis.
Conservative photo-z cuts are made in order to minimize migration between lens and
source samples. Nevertheless, catastrophic outliers in the photo-z determination
can bias the measurement of κ [171]. Thus, the tails of the probability density
functions (pdfs) of the photo-z code are a crucial systematic to test.
As mentioned in chapter 2, in addition to the magnification signal, galaxy migration
due to a wrong photo-z assignment between lens and source samples may induce
a non-zero cross-correlation signal due to the physical signal coming from the
clustering of objects in the same redshift bin. As a first approach, estimation
of the expected signal induced by photo-z migration (ωph) is computed with
Equation 2.28:

ωph
LSj(θ) =

∞∫
0

dz

∞∫
0

dz′φL(z)φSj(z′)ξ(θ; z, z′), (4.24)

where ξ(θ; z, z′) is the 3D correlation-function and φL, φSj are the redshift distribu-
tion of the lens (L) sample and the source sample (Sj) estimated from the stacking
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of the pdfs given by TPZ. Figure 4.17 compares the measured two-point angular
cross-correlation and the expected signal induced by photo-z can be seen for the I
sample. The signal induced by photo-z is found to be smaller than the statistical
errors. Note that this method relies on an assumed cosmology and bias model, and
therefore should be considered only an approximation. A more accurate calculation
can be made with the help of N-body simulations.

From the overlap of the redshift distribution of both lens and source samples,
it is found that the total photo-z migration between lens and source sample is
o ∼ 0.6% depending on the magnitude cut of the source sample. The procedure to
compute this overlap is to integrate the product of the pdfs of the lens and source
sample:

o =
∞∫
0

dzφL(z)φS(z), (4.25)

where φL, φS are the stacked pdfs of the lens and source sample respectively. Since
TPZ provides an individual pdf for each galaxy, the stacked pdf of a given sample
is computed by adding all the individual pdfs of the galaxies that belong to that
sample (see [172] for a study of clustering with stacked pdfs).

To estimate the maximum photo-z migration allowed between the lens and the
source sample, the MICE simulation (section 4.2) with the un-lensed coordinates
and magnitudes is used. Galaxies are randomly sampled on the lens redshift bin
and then placed on the source redshift bin. Conversely, galaxies on the source
redshift bin are randomly sampled and placed on the lens redshift bin. For a given
lens or source sample, the number of galaxies introduced from the other redshift
bin is chosen to be 0.1, 0.3, 0.5, 0.7, 0.9 and 2 per cent of the galaxies. Then,
the two-point angular cross-correlation is computed for each case. The difference
of the correlation functions measured at the simulation with induced migration
between lens and source sample and the original used in section 4.2 is the signal
induced by photo-z migration. The signal induced by photo-z for the cases with 0.9
and 2 per cent computed with this method can be seen at Figure 4.18. It is found
that at 0.9 per cent of contamination, the induced signal due to photo-z migration
is comparable to the error in the correlation functions. This upper limit is greater
than the estimated photo-z migration, demonstrating that the effect of photo-z
migration is negligible. Photo-z migration has a larger impact on the brightest
samples. Nevertheless, since the errors of the correlation functions of these samples
are shot-noise dominated, the tightest constrains on photo-z migration are imposed
by the faintest samples. With a larger data sample this statement will no longer
be true.

Photo-z induced correlation functions that mimic magnification may affect the
measured significance. Thus, Bayes factor is recomputed with two new hypothesis,
the measured signal is a combination of magnification and photo-z (M + Ph) or
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the measured signal is only photo-z (Ph):

B = P (M + Ph|Θ)
P (Ph|Θ) = P (Θ|M + Ph)

P (Θ|Ph) , (4.26)

where
P (Θ|M + Ph) = e−χ

2
Planck+Ph/2 (4.27)

and
P (Θ|Ph) = e−χ

2
Ph/2. (4.28)

To compute χ2
Planck+Ph and χ2

Ph it has been assumed that the expected theory is
given by ωLSj(θ) + ωph

LSj(θ) and ωph
LSj respectively, where ω

ph
LSj is the expected signal

induced by photo-z computed using Equation 4.24. The significances recomputed
using these two new hypothesis for the r, i and z bands are log10 B = 2.5, 4.0, 3.5
respectively. Thus, it can be concluded that photo-z migration has a limited impact
on the measured significances.

All previous calculations were based on the assumption that the pdfs are a
reliable description of the true redshift distribution. This statement can be partially
validated comparing the pdfs with the spectroscopic redshift distribution for the
same sample (see Figure 4.19 for an example). Redshift distributions predicted by
TPZ are found to be representative of those given by the spectroscopic sample.
Nevertheless, this statement has limitations –but is good enough for SV data– and
a more accurate description of the real redshift distribution of the full sample will
be measured with methodologies involving clustering-based estimators [173–176]
when the size of the data sample grows. This type of estimators involve the
use of two-point angular cross-correlations between different redshift bins, whose
measurement may be biassed by number count magnification itself. Nevertheless,
as it has been stated in chapter 2, depending on the value of the number count
slope, the amplitude induced by magnification on the correlation-function may be
zero. Thus, when employing this kind of estimators, samples should be carefully
chosen so that αS − 1 = 0. This can be done by measuring the number count
slope at the cumulative magnitude distribution with methods such that used in
this work.

Finally, to demonstrate that the measured signal is independent of the photo-z
technique employed to estimate the redshift, the two-point angular cross-correlation
functions used on this analysis are re-computed with redshift estimated with other
two different approaches that have shown to have similar performance as TPZ
[157] a neural network, Skynet [177], and a template based approach, Bayesian
Photo-Z (BPZ) [178]. Figure 4.20 compares the cross-correlations computed with
the three codes for the i-band, showing them to be within 1σ errors.

4.3.4 Discussion
On this analysis, the weak-lensing magnification signal has been detected on the
DES-SV data using the general population of galaxies. In addition, a thorough
and detailed study of the systematic effects has been made. The systematic error
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Figure 4.19: Comparison of the redshift distribution computed by the stacking of
the pdfs given by TPZ ( solid lines) with the ones computed with the spectroscopic
sample of the lens (black dots) and the source sample i < 22.5 (blue squares).
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5. Conclusions

In this Thesis, the weak-lensing magnification has been measured using two data-
sets for the Dark Energy Survey: the Science Verification (DES-SV) and the
Year 1 (DES-Y1), with different goals each. The DES-SV analysis developed a
methodology to measure and mitigate the impact of systematic errors on number
count magnification with wide-field photometric surveys. On the other hand,
the DES-Y1 analysis used the techniques employed at DES-SV to measure the
convergence profile of voids and trough to provide constrains on cosmology.

The nature of dark energy –the responsible of the accelerated expansion of
the Universe–, constitutes one of the biggest puzzles of Modern Cosmology. The
emptiest regions of the Universe –voids and troughs– are dominated by dark energy.
Thus, its structure and evolution constitutes a powerful probe to shed light on dark
energy. One of the physical observables from voids and troughs that is sensitive to
dark energy is their convergence profile, that is a direct proxy for the matter profile.
Due to the presence of dark matter, the matter profile is only directly accessible
with gravitational lensing, since the other probes require the parametrization on
how galaxies assembly within dark matter.

Weak-lensing magnification provides a direct measurement of the convergence
profile. There are three observables that allow the determination of the conver-
gence profile: number count magnification, size magnification and flux/magnitude
magnification. These three methodologies can be combined to provide more ac-
curate measurements and mitigate systematic errors. In addition, magnification
can be combined with gg-lensing measurements to improve the systematic error
correction since the gg-lensing also probes the convergence profile, but the sources
of systematic errors are different.

In this work, a methodology to correct the effect of systematic errors using
two kinds of simulations (N-body and image simulations) has been developed.
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The most important systematic errors to be taken into account are the observing
conditions of the survey and the photo-z overlap of the lenses and sources. To
overcome the survey observing conditions, the Balrog image-simulation has
been used for the first time. The use of Balrog has demonstrated to provide
reliable and unbiased corrections for these kind of systematic errors. In addition,
this simulation maps depth inhomogeneities, allowing to use the full depth of the
survey, increasing the area and number of available galaxies. On the other hand,
the impact photo-z overlap was estimated with the help of the MICE N-body
simulation and then hard photo-z cuts where made requiring a negligible impact
on the magnification signal.

Finally, on this work the convergence profile of voids an troughs has been
measured for the first time using number count magnification. This measurement
opens the window to a new class of cosmological probes, since weak-lensing
magnification by voids and troughs constitutes a new and independent probe for
dark energy that on the immediate future may provide competitive and reliable
cosmological constrains.



A. Stellar contamination equation

The observed density contrast of objects is given by

δO(n̂, zi) = Ng(zi) +N∗(zi)
N̄g(zi) + N̄∗(zi)

− 1, (A.1)

where Ng, N∗ are the number of galaxies on direction n̂ and redshift zi and stars
respectively and N̄g, N̄∗ the average number of galaxies and stars over the footprint.
The previous equation can be expressed as

δO(n̂, zi) = Ng(zi) +N∗(zi)
N̄g(zi)

[
1 + N̄∗(zi)

N̄g(zi)

] − 1. (A.2)

Taylor expanding the brackets one has,

δO(n̂, zi) = Ng(zi) +N∗(zi)
N̄g(zi)

[
1− N̄∗(zi)

N̄g(zi)

]
− 1 (A.3)

and taking common factor N̄∗(zi)/N̄g(zi),

δO(zi) =
[
Ng(zi)
N̄g(zi)

− 1
]

+ (A.4)
N̄∗(zi)
N̄g(zi)

[
N∗(zi)
N̄∗(zi)

− Ng(zi)
N̄g(zi)

]
− N∗(zi)

N̄g(zi)
.

Assuming that N̄∗ � N̄g, the last term can be neglected and defining λi =
N̄∗(zi)/N̄g(zi) as the fraction of stars on the i-th sample,

δO(n̂, zi) = δg(n̂, zi) + λi[δ∗(n̂, zi)− δg(n̂, zi)]. (A.5)

Calculating the two point angular cross-correlation results finally in

ωO = (1− λi − λj)ωgg + λjωg∗ + λiω∗g + λiλjω∗∗. (A.6)





B. Additional figures

Here the plots and graphs not included on the main text are included.
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Figure B.1: Upper panel: Comparison of the magnitude distribution for the SPT-E
and the COSMOS fields for the r band.
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Figure B.2: Upper panel: Comparison of the magnitude distribution for the SPT-E
and the COSMOS fields for the z band.
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Figure B.5: Covariance matrix of the r-band rescaled by the value of the diagonal.

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

i < 20.0         i < 20.5          i < 21.0           i < 21.5           i < 22.0     

i 
<

 2
0
.0

  
  
  
  
 i

 <
 2

0
.5

  
  
  
  
  
i 

<
 2

1
.0

  
  
  
  
  
 i

 <
 2

1
.5

  
  
  
  
  
 i

 <
 2

2
.0

  
  
 

Figure B.6: Covariance matrix of the z-band rescaled by the value of the diagonal.
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