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ABSTRACT

Accelerating cavities are devices resonating in the radio-frequency (RF) range

used to accelerate charged particles in accelerators. Superconducting accelerating

cavities are made out of niobium and operate at the liquid helium temperature. Even

if superconducting, these resonating structures have some RF driven surface resistance

that causes power dissipation. In order to decrease as much as possible the power

losses, the cavity quality factor must be increased by decreasing the surface resistance.

In this dissertation, the RF surface resistance is analyzed for a large vari-

ety of cavities made with different state-of-the-art surface treatments, with the goal

of finding the surface treatment capable to return the highest Q-factor values in

a cryomodule-like environment. This study analyzes not only the superconducting

properties described by the BCS surface resistance, which is the contribution that

takes into account dissipation due to quasi-particle excitations, but also the increas-

ing of the surface resistance due to trapped flux. When cavities are cooled down

below their critical temperature inside a cryomodule, there is always some remnant

magnetic field that may be trapped increasing the global RF surface resistance.

This thesis also analyzes how the fraction of external magnetic field, which is

actually trapped in the cavity during the cooldown, can be minimized. This study

is performed on an elliptical single-cell horizontally cooled cavity, resembling the ge-

ometry of cavities cooled in accelerator cryomodules. The horizontal cooldown study

reveals that, as in case of the vertical cooldown, when the cooling is performed fast,

large thermal gradients are created along the cavity helping magnetic flux expulsion.

However, for this geometry the complete magnetic flux expulsion from the cavity

equator is more difficult to achieve. This becomes even more challenging in pres-

ence of orthogonal magnetic field, that is easily trapped on top of the cavity equator

causing temperature rising.

xix



The physics behind the magnetic flux expulsion is also analyzed, showing that

during a fast cooldown the magnetic field structures, called vortices, tend to move

in the same direction of the thermal gradient, from the Meissner state region to the

mixed state region, minimizing the Gibbs free energy. On the other hand, during a

slow cool down, not only the vortices movement is limited by the absence of ther-

mal gradients, but, also, at the end of the superconducting transition, the magnetic

field concentrates along randomly distributed normal-conducting region from which

it cannot be expelled anymore.

The systematic study of the surface resistance components performed for the

different surface treatments, reveals that the BCS surface resistance and the trapped

flux surface resistance have opposite trends as a function of the surface impurity

content, defined by the mean free path. At medium field value, the BCS surface re-

sistance is minimized for nitrogen-doped cavities and significantly larger for standard

niobium cavities. On the other hand, Nitrogen-doped cavities show larger dissipation

due to trapped flux. This is consequence of the bell-shaped trend of the trapped flux

sensitivity as a function of the mean free path. Such experimental findings allow also

a better understanding of the RF dissipation due to trapped flux.

The best compromise between all the surface resistance components, taking

into account the possibility of trapping some external magnetic field, is given by light

nitrogen-doping treatments. However, the beneficial effects of the nitrogen-doping is

completely lost when large amount of magnetic field is trapped during the cooldown,

underlying the importance of both cooldown and magnetic field shielding optimization

in high quality factors cryomodules.

xx
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CHAPTER 1

INTRODUCTION

Modern particle accelerators employ superconducting resonators in order to

accelerate charged particle up to speed very close to the speed of light.

The recent discovery of the Higgs boson by the Large Hadron Collider (LHC)

at the European Organization for Nuclear Research (CERN) [12, 13], is just the last

demonstration on how important are accelerators to answer the most fundamental

questions of our nature and our universe.

Accelerators are not useful only for fundamental physics research, which brought

about 30% of the Nobel prizes in physics [14], but also as synchrotron radiation

sources, needed for material science and biological experiment, for medial applica-

tions, providing hadron beams for radiation therapy or production of isotopes , for

food sterilization, and so on [15, 16, 17, 18].

Particle accelerators are, however, really expensive machines and sometimes

their high prohibitive costs prevent their realization. In order to avoid that, it is

very important to improve the technology behind accelerators in order to cut down

as much as possible both the capital and the operational cost of these machines.

1.1 The importance of high Q-factors for particle accelerators

Taking into account accelerating cavities, the employment of the supercon-

ducting technology allows to provide an affordable technology for continuous wave

(CW) and high duty cycle accelerators. The decreasing of the dissipated power in

superconducting cavities is given by the several order of magnitude lower surface

resistance, compared with normal-conducting cavities.

The accelerating field, or accelerating gradient, is proportional to the energy
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gained by the charged particle during each passage through the cavity. The large

dissipated power in normal-conducting cavities limits their usage, in CW mode, at ac-

celerating gradient of about 1 MV/m, while the current limit for the superconducting

technology is about 45 MV/m. Therefore, the lower dissipation of superconducting

cavities is really important in order to build more efficient and powerful accelerators.

The quality factor Q0, or Q-factor, is the parameter that indicates the power

dissipation in accelerating cavities, being defined as:

Q0 =
G

Rs

=
ω0U

Pc

, (1.1)

where G is a geometrical constant, Rs the surface resistance, ω0 the angular resonance

frequency, U the stored energy and Pc is the power dissipated in the cavity walls. Low

values of surface resistance defines low dissipated power and high Q-factor.

When quality factors are maximized, the power consumption needed to reach

a certain level of accelerating field is lowered, decreasing the operational costs. In

addition, the possibility to reach larger values of accelerating field means that a

smaller number of cavities may be used to make the beam reach a certain energy.

This means that increasing the Q-factors the operational cost of accelerators may be

reduced as well.

For the reason above, the R&D of superconducting cavities has always been

focused on the improving of Q-factors and accelerating fields. Superconducting cavi-

ties operating in accelerators are usually made out of bulk niobium, and in order to

improve the superconducting performance, the optimization of the first hundreds of

nanometers of the cavity surface is needed. Thanks to the R&D efforts, the supercon-

ducting cavities performance improved considerably in the last years, gaining a final

boost with the discovery of the nitrogen-doping treatment in 2013 [19]. Nitrogen-

doped elliptical TESLA-type cavities [3] can easily reach Q-factor of 5 · 1010 at 2
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K and 16 MV/m, which is three times larger than the Q-factor achievable with the

standard niobium technology [19]. For a CW machine this traduces in a minimization

of the SRF cryogenic cost of more than 50% [20].

During the same period of the discovery of the nitrogen-doping, SLAC was

working on the construction concept of the upgrading of its Linac Coherent Ligth

Source (LCLS-II). Under suggestion of the US DOE, they were considering the con-

struction of a CW SRF LINAC in the existing SLAC tunnel. Therefore SLAC invested

in the nitrogen-doping technology with the purpose of supporting a rapid develop-

ment of procedures capable of minimizing LCLS-II cryogenic heat load. Fermilab,

JLAB and Cornell University joined the LCLS-II collaboration working on the R&D

to make the nitrogen-doping a reliable technology capable to systematically provide

high-Q 9-cells TESLA-type cavities [20]. Part of this thesis work is performed in the

framework of this collaboration.

1.2 Thesis goals and organization

Even though the nitrogen-doping treatments immediately shows very high

values of quality factors, it also reveals larger dissipations due to trapped flux [8, 21,

22, 23]. This dissipation is due to magnetic field that may be trapped in the cavity

walls during the superconducting transition.

Purpose of this thesis work is to clarify how the high Q-factors given by the

nitrogen-doping treatment can be achieved and preserved when cavities are placed

inside a cryomodule and operate in the accelerator.

Together with this practical purpose, also some fundamental aspects behind

the physics of the magnetic flux trapping, the nitrogen-doping superconductivity en-

hancement and the trapped flux dissipation are revealed.

Chapter 2 shows an overview on radio-frequency accelerating cavities, how
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they work and the figures of merit needed to understand their performance. The

elliptical TESLA-type cavities are here described, clarifying the nomenclature of their

different part which is used in the rest of the thesis. The Chapter ends underlying

the importance of the superconducting technology, needed to provide an affordable

method of acceleration especially for CW and high duty cycle accelerators.

An overview of the main theories of superconductivity is shown in Chapter

3. The definitions of the Mattis and Bardeen surface resistance, called BCS surface

resistance and the residual resistance contributions are explained at the end of the

chapter. These two components of the surface resistance are further analyzed in the

other chapters of the thesis.

Superconducting cavities are characterized by performing RF measurements

in which the power dissipated in the cavity walls is calculated from a power balance

that takes into account the power forwarded, reflected and transmitted to and from

the cavity, as explained in Chapter 4. In the same chapter the main steps of cavities

fabrication are explained, underlying the importance of the final surface treatment

on the cavity performance. The state-of-the-art surface treatments are therefore

described, from the standard niobium treatments to the recently discovered nitrogen-

doping treatment. A summary of the surface treatments done on the cavities studied

through the thesis work is presented with a brief analysis on their surface resistance

properties.

Chapters 5 and 6 are focused on the study and understanding of the magnetic

flux trapping in superconducting cavities during the cooldown below their critical

temperatures. When magnetic field is trapped during the superconducting transi-

tion, an additional term on the surface resistance appear, called trapped flux surface

resistance Rfl. This surface resistance contribution takes into account losses due to
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trapped flux and is defined by:

Rfl = η ·Bext · S , (1.2)

where η is the flux trapping efficiency that multiplied by the external magnetic field

Bext gives the amount of magnetic field trapped in the cavity Btrap, and S is the

trapped flux sensitivity which indicates the resistance for unit of trapped field. Chap-

ter 5 and 6 focus on the understanding of the flux trapping efficiency η which depends

on how the cavity cooldown is performed. In particular, in Chapter 5 the cooldown is

studied for a single-cell cavity horizontally cooled, resembling the cooldown geometry

of cavities in accelerators. The study is performed for both axial and orthogonal mag-

netic field applied, revealing that the magnetic field orientation matters and, under

specific condition, magnetic field may be trapped on top of the cavity equator as a

consequence of the orientation between cavity cooling and magnetic field. In Chapter

6 instead, the physics behind the magnetic flux expulsion is studied, explaining the

mechanisms of efficient flux expulsion during fast cooldowns and full flux trapping

during slow cooldowns.

The last experimental chapter of the thesis, Chapter 7, shows the systematic

study of the surface resistance contributions of several cavities treated with standard

niobium treatments and several different nitrogen-doping recipes. Both the trapped

flux sensitivity S and the BCS surface resistance RBCS are studied as a function of

the mean free path and of the accelerating field. This analysis allows to clarify which

is the surface treatment capable to maximize the quality factor even in presence of

trapped flux, therefore considering a realistic situation comparable with the cavities

in the cryomodule. These results also provide new insights on the physics behind the

change in the field dependence of the Mattis and Bardeen surface resistance between

different surface treatments, and of the trapped magnetic vortices induced losses in

superconducting niobium resonators.
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This experimental work allows to define all the ingredients needed to success-

fully obtain high Q-factor, in the SRF modules of accelerators, by implementing the

N-doping treatment.
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CHAPTER 2

RADIO-FREQUENCY ACCELERATING CAVITIES

2.1 Accelerating cavities

Resonant radio-frequency (RF) cavities are devices capable to store electro-

magnetic energy and are used to accelerate charged particles in accelerators. Depend-

ing on their nature, particles may reach from small fraction of the speed of light, as

for heavy ions, to values very close to the speed of light in case of electrons, positrons

and so on.

Accelerating cavities may have different shape and fundamental resonance fre-

quency, depending on their application. Usual resonance frequencies for accelerating

cavities are within the RF range, in particular between 100 MHz and 10 GHz.

The simplest example of such a resonator is the pill-box cavity, which is a

cylindrical wave-guide closed with metallic plates at both the two ends. Thanks to

its easy shape, the spatial distribution of the electromagnetic field can be calculated

analytically [24].

Considering a pill-box with length h and radius a (Figure 2.1), made out

of a perfect conductor and filled with a lossless dielectric, the electromagnetic field

distribution must satisfy both the wave equation:

(

∇2 − 1

c2
∂2

∂t2

)















E

H















= 0 , (2.1)

and the boundary conditions:

n̂× Ē = 0 , n̂ · H̄ = 0 , (2.2)

where c is the speed of light, n̂ is the unit vector normal to the surface, and E and

H the electric and magnetic field respectively. The boundary conditions assure that
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Et Ht,
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ρ

ϕ z

a

h

Figure 2.1. Sketch of a pill-box cavity with radius a and length h.

the tangential component of the electric field E, and the normal component of the

magnetic field H are continuous across the interface between the dielectric and the

conductor.

Because of the cylindrical symmetry of the problem it is useful to consider

a cylindrical system of coordinates in which the fields can be decomposed in their

longitudinal (Ez and Hz) and transverse components (Et and Ht) as:

E(ρ, φ, z, t) = Ez(ρ, φ, z, t) + Et(ρ, φ, z, t) ,

H(ρ, φ, z, t) = Hz(ρ, φ, z, t) +Ht(ρ, φ, z, t) ,

(2.3)

where ρ is the radial distance, φ is the azimuthal angle and z is the distance along

the z-axis, as indicated in Figure 2.1. The wave-equation (Equation 2.1) is therefore

solved for the longitudinal component of the fields Ez and Hz.

Because of the different boundary conditions for Ez and Hz:

Ez

∣

∣

S
= 0 , n̂

∂Hz

∂n̂

∣

∣

∣

∣

S

= 0 , (2.4)

where S is the surface of the pill-box, the solution of Equation 2.1 defines two different

types of modes. One is the transverse-electric mode (TEnlm), in which the electro-

magnetic wave has only the electric field along the cavity axis, and the other is the
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transverse-magnetic mode (TMnlm) in which the magnetic field is the only component

along the cavity axis.

The indexes n, l, and m are integers that identify the number of zeros along

the φ, ρ, and z directions respectively.

In order to accelerate a charged particle beam, electric field along the direction

of propagation of the beam is needed. For this reason the only modes useful at this

purpose are the TMnlm. Considering that also the end surfaces of the pill-box, placed

at z = 0 and z = h, are made of perfect conductor, the complete set of TMnlm modes

is given by [24]:

Ez = E0Jn

(αnl

a
ρ
)

cos
(mπz

h

)

cos (nϕ) e±iωnlmt

Eρ = −mπa
hαnl

E0

[(

na

ραnl

)

Jn

(αnl

a
ρ
)

− Jn+1

(αnl

a
ρ
)

]

· sin
(mπz

h

)

cos (nϕ) e±iωnlmt

Eϕ =
mnπa2

ρhα2
nl

E0Jn

(αnl

a
ρ
)

cos
(mπz

h

)

sin (nϕ) e±iωnlmt

Hz = 0

Hρ =
iε0ωnlmna

2

ρα2
nl

E0Jn

(αnl

a
ρ
)

cos
(mπz

h

)

sin (nϕ) e±iωnlmt

Hϕ =
iε0ωnlma

αnl

E0

[(

na

ραnl

)

Jn

(αnl

a
ρ
)

− Jn+1

(αnl

a
ρ
)

]

· cos
(mπz

h

)

cos (nϕ) e±iωnlmt ,

(2.5)

where ε0 is the vacuum permittivity and ωnlm is the angular resonance frequency:

ωnlm = c

√

(αnl

a

)2

+
(mπ

h

)2

, (2.6)

where αnl identifies the l-th zero of the n-th Bessel function Jn

(αnl

a
ρ
)

and n =

0, 1, 2..., l = 1, 2, 3..., m = 0, 1, 2....

The lowest TM mode is therefore the TM010. Its resonance frequency is:

ω010 =
2.405c

a
, (2.7)
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(a) (b)

Figure 2.2. Axial (top) and polar (bottom) plots of the field Ez (a) and Bφ that
resonates in the TM010 mode inside a pill-box. Both the fields are normalized for
the electric field amplitude E0.

and the fields are:

Ez = E0J0

(

2.405

a
ρ

)

e±iω010t ,

Hϕ = −iε0cE0J1

(

2.405

a
ρ

)

e±iω010t ,

(2.8)

where α01 = 2.405 corresponds to the first zero of the zeroth Bessel function. The

distribution of the fields in the TM010 is shown in Figure 2.2. From this figure it is

clear that for this mode the electric field is maximum at the center of the pill-box and

decreases approaching the conducting walls at which it vanishes. On the other hand,

the magnetic field is zero at the center of the pill-box and it reaches its maximum

value really close to the pill-box wall, specifically at ρ = 0.77a.
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the set of TM0nl modes, called monopole modes, are the only one that can be

used to accelerate particles since the electric field does not vanish along the beam

axis. Indeed only the zeroth Bessel function goes to zero for ρ = 0. Usually the

TM010 mode is preferred since it has the lowest eigenfrequency.

In order to let the beam being accelerated, holes and beam pipes have to be

added at the two ends of the cylinder. Since the beam pipes act as wave-guides, their

dimension has to be chosen so that their cut-off frequency is above the frequency of

the mode used for acceleration. The holes in the pill-box walls act as perturbation

for the electromagnetic field making difficult to solve analytically the wave equation,

therefore computer codes are usually needed for this purpose [25, 26].

2.2 Figure of merits

2.2.1 The accelerating field. The accelerating field Eacc is the field that provide

the acceleration of charged particle and it is defined as the accelerating voltage Vacc

divided by the accelerating gap d (which for the pill-box case corresponds to its

length). The accelerating voltage is given by the integral of the electric field seen by

the particle which is passing through the cavity. Considering the acceleration of an

electron in a pill-box operating in the TM010 mode, Vacc is defined as:

Vacc = E0

∣

∣

∣

∣

∫ d

0

eiω0z/c dz

∣

∣

∣

∣

= dE0

sin(ω0d
2c

)
ω0d
2c

= dE0T , (2.9)

where T is the transit-time factor, which is a measure of the reduction in energy gain

caused by the sinusoidal time variation of the field in the accelerating gap. Therefore,

in order to gain the maximum acceleration, the condition
ω0d

2c
=
π

2
has to be satisfy.

This corresponds to:

d

v
=
TRF

2
, (2.10)

where TRF =
2π

ω0

is the period of oscillation of the RF field. This condition sets that

the particle with velocity v has to be synchronous with the RF field in the cavity. In
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this case the accelerating field results Eacc = 2E0/π.

2.2.2 The Quality Factor. In the previous section a perfect conducting behavior

of the resonant cavity was assumed. In reality, even superconducting materials have

some losses when exposed to micro-wave field, therefore the electromagnetic energy

U stored in the cavity exponentially decays with time, instead of remaining constant.

The number of RF periods needed to consume the energy U are related to the cavity

quality factor Q0:

U = U0e
−ω0t

Q0 . (2.11)

Since the dissipated power Pc is defined as the negative change of the stored energy

U with the time, Pc is inversely proportional to Q0:

Pc =
ω0U

Q0
. (2.12)

Now, taking into account that the energy stored in the resonator is defined as:

U =
1

2
µ0

∫

V

|H̄|2 dv = 1

2
ε0

∫

V

|Ē|2 dv , (2.13)

where V is the cavity volume, dv is the volume element and the dissipated power is

defined as:

Pc =
1

2
Rs

∫

S

|H̄|2 ds , (2.14)

where S is the cavity surface and ds is the surface element, the quality factor may be

defined as:

Q0 =
1
2
µ0

∫

V
|H̄|2 dv

1
2
Rs

∫

S
|H̄|2 ds =

G

Rs
, (2.15)

where G is the geometrical factor, which is a constant value that depends only on the

cavity geometry and does not depend on its size. In order to bring Rs outside the

integral, the surface resistance is assumed to not vary over the cavity surface.

The quality factor therefore depends on the cavity geometry and is inversely

proportional to the surface resistance. For accelerating cavities Q0 is of crucial im-
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portance since defines the power dissipated from a cavity during its operation in the

accelerator.

2.2.3 Other figures of merit. Other figures of merit of accelerating cavities are

useful in order to compare and optimize cavity shapes, which vary depending on the

accelerator application.

The maximum accelerating field achievable at the surface of the cavity is de-

fined by Epk/Eacc and Hpk/Eacc, where Epk and Hpk are the peak surface electric and

magnetic field, respectively. Taking into account the TM010 mode resonating in a

pill-box cavity, from Equation 2.8 the peak fields are:

Epk = E0 , Hpk = ε0cE0J1 (1.84) , (2.16)

being Epk on axis (ρ = 0) and Hpk at ρ = 0.77a. The ratios therefore are:

Epk

Eacc
=
π

2
= 1.6 ,

Hpk

Eacc
=
π

2
= 2430

A/m

MV/m
. (2.17)

The shunt impedance Ra is another important parameter correlated to the power

dissipated in the cavity wall and it is defined in three different ways:

Ra =
V 2
acc

Pc
, Rc

a =
V 2
acc

2Pc
, rca =

V 2
acc

P ′

c

, (2.18)

where Rc
a is the definition used in circuit theory, rca is the definition for linear ac-

celerators (LINACs) and P
′

c is the power dissipated per unit length. In order to

minimize the dissipated power to reach a certain voltage across the cavity gap, the

shunt impedance has to be maximized.

The ratio between the shunt impedance and the Q-factor, called r over q, is

defined as:

Ra

Q
=

V 2
c

ω0U
(2.19)

and is useful to measure how efficient is the cavity to reach a certain voltage across

the cavity gap per unit of stored energy, for a given frequency [25, 27].
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2.3 Cavities classification

Accelerating cavities may have different shape, size and therefore fundamental

resonance frequency. The choice of the design is mainly dictated by the type of

particles that have to be accelerated, the speed they have before the acceleration and

the desired speed after the acceleration. Cavities are therefore classified depending on

the speed that particles reach after being accelerated, and it is possible to distinguish

between low-β, medium-β and high-β resonators, where β = v/c.

Low-β cavities (β ≃ 0.001 − 0.2) are used to accelerate heavy-ions, while

medium-β cavities (β ≃ 0.2 − 0.7) are used for protons with non relativistic energy

and ions, and high-β cavities (β ≃ 1) are used for electrons, positrons and high energy

protons.

Material R&D is nowadays focused principally on high-β structure, since the

most relevant for the final energy of the accelerated particle in synchrotron and elec-

trons (or positrons) LINACs. These cavities are elliptically shaped and usually cou-

pled in a chain of multi-cell in order to maximize the accelerating gradient per unit

of length.

During the last decade the R&D has been particularly focused on TESLA-

type elliptical cavities [3], which are 9-cells 1.3 GHz cavities that operates in the

TM010 mode. The intensive R&D had the main purpose of delivering an affordable

technology capable to fulfill the requirements for the International Linear Collider

(ILC) cryomodules. While this project has bot been fully financed yet, the SRF

technology originated from it was implemented in the cryomodule production of the

Free Electron LaSer (FLASH), the European X-ray Free Electron Laser (XFEL) both

in Hamburg and the Light Coherent Luminosity Source superconducting linac (LCLS-

II) at SLAC.



15

(a) (b)(a) (b)

Figure 2.3. Electric a) and magnetic b) field density in an elliptical 1.3 GHz Tesla
type cavity. The dark red region indicates the highest field density, while the dark
blue region indicates the lowest.

Because of the large cost of a 9-cells cavity, the R&D is usually initially focused

on single-cell cavities.

The electromagnetic field distribution of a TESLA-type cavity is similar to the

one described previously for the pill-box cavity, having the maximum of the electric

field along the beam axis, where the magnetic field is minimum, and the maximum

of the magnetic field close the the equatorial region (see Figure 2.3).

In Figure 2.4, it is possible to better see the magnetic field distribution along

the surface of the cavity cell. The distribution of the surface magnetic field is par-

ticularly important since the dissipation in superconductors are concentrated in the

high magnetic field region. Therefore, for elliptical cavities losses are concentrated in

the equatorial region.

2.4 Advantages of superconductivity

Superconducting cavities offer many advantages compare to the normal-conducting

technology. The main advantage is given by the low RF surface resistance of super-

conductors, which translates in Q-factors of five order of magnitude higher than the

highest reachable with copper cavities.
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Figure 2.4. (a) Sketch of a single-cell elliptical cavity, electric and magnetic field
resonates in the cavity cell, while the beam tube is needed for the passage of the
beam. (b) surface electric and magnetic field distribution as a function of the
distance along the beam axis, from the center of the cavity. The peak surface
magnetic field is very close to the cavity equator, while the peak surface electric
field is close to the cavity irises.

For continuous wave (CW) or high duty factor accelerator the quality factor

is really important in order to decrease as much as possible the power dissipated

during the cavity operation. In particular, considering that the dissipated power

scales with the square of the operational field, the advantage of low surface resistance

value becomes of crucial importance in order to operate at large value of accelerating

field.

Nowadays, typical Q-factor values of niobium 1.3 GHz cavities at 2 K are

larger than 1010, while copper cavities with same shape, frequency and temperature

are limited to 105. Surface resistance of normal-conductors exposed to RF field is

indeed limited even at very low temperature because of the anomalous skin effect.

However, even though the Q-factors of superconducting cavities is four order

of magnitude larger than the one of normal conducting cavities, the real gain in terms
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of dissipated power is lower, since the elevated power consumption due to the helium

refrigeration.

In order to calculate the real gain given by the superconducting technology,

a normal-conducting cavity is compared with a superconducting one which operate

at the same frequency (f = 500 MHz) and accelerating field (Eacc = 3 MV/m). The

temperature of operation of the superconducting cavity is set at 4.2 K, while the one

of the normal-conducting cavity is 300 K. From the definition of the shunt impedance

(Equation 2.18), the dissipated power per unit of length can be defined as:

P

L
=

E2
acc

ra
Q0

Q0

, (2.20)

therefore, considering reasonable values of ra/Q and Q0 (for the NC cavity: ra/Q =

900 Ω/m, Q0 = 2 · 104, while for the SC cavity: ra/Q = 330 Ω/m, Q0 = 2 · 109 [25]),

the dissipated power per unit of length for the two case is:

P

L
= 500000 W/m ,

P

L
= 13.6 W/m , (2.21)

Now, for the normal-conducting case, it is necessary to take into account the efficiency

of the RF power source which is usually around 50 %, increasing the required power to

1000 kW/m. For the superconducting case instead, it is necessary to take into account

that also a static heat dissipation contributes to the helium bath consumption [28]. A

reasonable power consumption due to static dissipation is around 1−2 W/m [29, 3].

The required power also depends on the efficiency of the helium refrigeration, which is

given by both the Carnot efficiency and the technical efficiency. The Carnot efficiency

is given by:

η =
4.2K

300K − 4.2K
= 0.014 , (2.22)

while the technical efficiency is around 0.2−0.3 depending on the system [25]. Taking

into account both the RF and the static dissipation, and considering the global refrig-

eration efficiency of about 0.0035, the total required power results of about 40 kW/m.
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Therefore, the superconducting technology allows a reduction of the required power

of operation of a factor of 200 when compared to the normal-conducting technology.

Since the dissipated power increases with the square of the accelerating field, it

is clear that the superconducting technology becomes necessary for accelerators that

operates in CW, or with high duty factor, and that require high accelerating field.

The needed of the superconducting technology is not only given by the reduction of

the power consumption, but also to overcome the practical limitation for which the

power dissipated in a copper cavities operating in CW can not be more than 100 kW.

This limit is imposed in order to avoid excessive temperature rising that may cause

vacuum degradation, thermal expansion and so on. Because of this power limitation,

copper cavities cannot operate in CW at accelerating field grater than 1 MV/m.

In addition, for normal-conducting cavities usually the parameter ra/Q is max-

imized, decreasing the dimension of the beam hole, in order to decrease the power

consumption. On the other hand, using superconducting cavities the limited power

consumption open the possibility to make the beam hole much larger, increasing the

stability and the quality of the beam [25].
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CHAPTER 3

INTRODUCTION TO SUPERCONDUCTIVITY

3.1 Overview

In 1911 Kamerlingh Onnes observed for the first time that the electrical resis-

tance of Mercury drops to zero when cooled to the liquid Helium temperature (4.2

K). This phenomenon in which the material shows zero resistivity if cooled below its

critical temperature (Tc) is called superconductivity and the material superconductor.

Other than the zero resistance when DC current is applied, superconductors

show also another peculiar characteristic: when they are exposed to external magnetic

field, the field is completely expelled from the interior and the magnetic induction is

equal to zero inside the superconductor. This perfect screening from the external field

is given by super-currents that circulate in a tiny layer at the surface of the material.

This behavior is called Meissner-Ochsenfeld effect [30].

The superconducting transition is defined, for type I superconductor, by three

critical parameters: the critical temperature Tc, the critical magnetic field Hc and

the critical current density Jc. These three parameters define the critical surface

which divides the super-conducting and the normal-conducting phases. A material

can show superconducting properties only below the critical surface T < Tc, H < Hc

and J < Jc, therefore the superconducting state can be destroyed not only increasing

the temperature but also increasing the magnetic field or the current density. The

temperature dependence of the critical magnetic field follows the empirical relation:

Hc(T ) = Hc(0)

[

1−
(

T

Tc

)2
]

. (3.1)

Hc as a function of the temperature is shown in Figure 3.1. From this graph it

is possible to notice that the transition actually appears at T = Tc only in absence of
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Hc(0)

Tc

NC state

H
c(T

)

T

SC state

Figure 3.1. Critical magnetic field Hc as a function of the temperature T . ForH < Hc

the material is in the superconducting (SC) state, while for H > Hc it is in the
normal-conducting (NC) state.

external magnetic field. If H 6= 0, the temperature of the superconducting transition

is lowered.

The first explanation of these hallmarks of superconductivity comes from the

empirical macroscopic theory of the brothers Heinz and Fritz London developed in

1935 [31]. Their theory is based on the two fluid model, developed by Gorter and

Casimir [32] for which the charge carrier in the superconductor can be divided in

normal-fluid and super-fluid components. The two London equations are capable to

easily explain the perfect conduction and the Meissner effect, but are not capable to

explain the quantum behavior of superconductors.

The first microscopic theory capable to explain the superconductivity phe-

nomenon was developed by John Bardeen, Leon Cooper, and Robert Schrieffer in

1957 and called BCS theory. This theory is based on the formation of electron pairs,

called Cooper pairs, due to the electron-phonon interaction. All the electron pairs
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must obey at the Bose statistic, so they condense in a common superconducting

ground state with lower energy than the Fermi level of the normal state, creating an

energy gap of size 2∆. The gap ∆ depends on the electron-phonon interaction, so it

is different for each materials, and depends on the temperature. As the temperature

increases from 0 to Tc, ∆ slowly decrease, and it drops to zero for T → Tc. The

unpaired electrons behave as normal electrons, while the paired electrons are super-

conducting electrons which have a long-range order defined by the coherence length

ξ0 [25, 33].

Absorption of photons with energy grater than 2∆ or thermal excitations

cause the depairing of the Cooper pairs, leading to a non-zero RF surface resistance,

as widely studied by D. C. Mattis and J. Bardeen in 1958. This surface resistance

term is called BCS surface resistance and nowadays used to analyze properties of

superconductors exposed to RF field.

3.2 Two fluid model

In the two fluid model, the charge carriers of a superconductor can be divided

in two components called normal- and super-fluid. The super-fluid component is a

Bose condensate which do not carry entropy, indeed for T=0 K all the electrons are

part of the super-fluid. The normal-fluid is instead responsible for energy losses via

Joule effect, and for T > Tc all the electrons are normal-fluid. The total density of

charge carries is therefore the sum between these two components, n = nn+ns, where

nn and ns are the density of the normal- and the super-fluid respectively. The same

is for the total current density J = Jn + Js.

The first London equation:

∂J̄s
∂t

=
1

µ0λ
2
L

Ē , (3.2)

may be derived considering the equation of motion of the charge carriers of an ideal
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perfect conductor in which the electrons are freely accelerated. The super-current

density is defined as J̄s = −nsev̄s, where v̄s is the velocity of super-electrons and e is

the elementary charge. The London penetration depth λL results:

λL =

√

m

µ0e2ns

. (3.3)

The first London equation is capable to explain the zero resistivity observed in super-

conductors exposed to direct current (DC). Indeed from Equation 3.2 it is possible to

infer that when the current is constant in time, as in the case of DC, there is no elec-

tric field inside the superconductor and the conduction takes place without losses. On

the other hand, in alternate current (AC), the variation in time of the super-current

density generates an electric field inside the material, involving a non-zero surface

resistance.

The second London equation can be obtained by applying the Farady-Lenz

equation ∇̄ × Ē = −∂B̄
∂t

to the first London equation:

∇̄ × J̄ = − H̄

λ2L
. (3.4)

Applying the Ampere’s Law to the second London equation, the latter may be rewrit-

ten as:

∇̄2H̄ =
1

λ2L
H̄ . (3.5)

Considering that the superconductor extends in the half-space x > 0, and the field is

applied parallel to its surface, along the z-direction, solution of this equation is:

Hz = H0e
x/λL , (3.6)

from which is clear that the magnetic field decays exponentially going deeper in the

material. The London penetration depth λL is the decay constant that defines the

distance at which the magnetic field reaches 1/e of its value at the surface, where

e is the Euler’s number. The penetration of the magnetic field at the surface of
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the superconductor is consequence of the presence of super-currents, that screen the

superconductor from the external magnetic field.

The temperature dependence of λL is usually indicated as:

λL =
λ0

√

1−
(

T
Tc

)4
, (3.7)

which is an empirical formulation that was extrapolated by fitting experimental data

of penetration depth as a function of temperature measured for mercury [1]. Com-

paring Equation 3.7 with 3.3 it is possible to notice that the temperature dependence

of λL is given by the temperature variation of the density of super-electrons ns, being

m, µ0 and e constants.

The two fluid model allows to analyze the surface impedance of a supercon-

ductor. For the normal-fluid component the Drude formulation is valid, therefore

Jn = σnE and the conductivity σn is:

σn =
nne

2τ

m
, (3.8)

where nn is the density of the normal-electrons, m the electron mass, τ the electron

relaxation time.

The conductivity of the super-fluid can be instead calculated using the first

London equation, assuming that in case of an RF current, Js = Js0e
iωt. In this case

the current density is a complex number:

Js = −i 1

ωµ0λ2L
E = −iσsE , (3.9)

from which it is possible to define:

σs =
nse

2

mω
. (3.10)

The conductivity of a superconductor is therefore a complex quantity:

J = (σn − iσs)E , (3.11)
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and the surface impedance may be defined as:

Zs = Rs + iXs =

√

iωµ0

σn − iσs
. (3.12)

In the approximation σn << σs, the real and the imaginary part of the impedance in

the two fluid model are:

Rs =
1

2
σnω

2µ2
0λ

3
L

Xs = ωµ0λL ,

(3.13)

Where the temperature dependence of the surface resistance Rs is given by the

temperature dependence of λL. It is also possible to notice that Rs is proportional

to the normal-state conductivity σn, meaning that a good superconductor has poor

normal-conducting properties. Since σn is directly proportional to the electronic mean

free path ℓ, this implies that Rs increases with ℓ, so dirty superconductors (small ℓ)

should show lower RF dissipation. Important for the choosing of the cavity frequency

and design is that the surface resistance has a square dependence with the frequency.

3.3 From local to non-local electrodynamics

In 1950 it was experimentally observed that the penetration depth of super-

conductors is affected by the introduction of impurities, as shown in Figure 3.2. Since

this fact can not be explained using the phenomenological approach of the London

theory, Pippard proposed a new non-local description capable to explain the variation

of the penetration depth with the introduction of impurities. This non-local descrip-

tion relates the super-currents with an average of the vector potential calculated over

a region around the considered point. The size of this region is defined by the coher-

ent length ξ which depends on the mean free path ℓ. The Pippard’s current density

is therefore:

J̄(r̄) = − 3

4πµ0λ2ξ0

∫

R̄
[

R̄ · Ā(r̄′

)
]

e−R/ξ

R4
dr̄

′

, (3.14)
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Figure 3.2. Variation of the penetration depth with the mean free path [1].

where R̄ = r̄ − r̄
′

, taking into account that the current at a point r̄ depends on the

vector potential at a point r̄
′

within a distance ξ0, called coherence length. Equation

3.14 is analogous to the non-local relation between current density and electric field

found by Reuter and Sondheimer [34], capable to explain the anomalous skin effect

in normal-metal. In Equation 3.14, ξ is the parameter which depends on the purity

of the material, while ξ0 is a constant with dimension of a length. These parameters

are related by the equation:

1

ξ
=

1

ξ0
+

1

ℓ
, (3.15)

where can be noticed that in case of a very clean metal: ℓ→ ∞ and ξ → ξ0. Therefore

ξ0 can be considered as the coherence length of the pure metal.

Using the Maxwell equation ∇2Ā = −µ0J̄ , Equation 3.14 can be solved for

the penetration depth λ, which is defined as:

λ =
1

Hy(0)

∫ ∞

0

Hy dz . (3.16)

The result can be simplified by looking at the two limits:
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• ξ << λ:

λ = λL

√

ξ0
ξ

= λL

√

1 +
ξ0
ℓ
, (3.17)

• ξ >> λ:

λ∞ =
31/6 (4πλ2Lξ0)

1/3

2π2/3
. (3.18)

From these equations it is possible to notice that for ξ << λ, λ depends on ξ−1/2,

meaning that the penetration depth increases as the mean free path decreases, while

for ξ >> λ, λ is independent on ξ, in agreement with the experimental result shown

in Figure 3.2. These values of λ represent the real penetration depth that defines the

magnetic field decay inside the superconductor. The Pippard’s λ is therefore some-

times called effective penetration depth in order to distinguish it from the London’s

definition.

3.4 The Ginsburg and Landau theory

During approximately the same period, in 1950, Vitaly Lazarevich Ginzburg

and Lev Landau proposed a theory capable to explain the superconducting transition

phase, called Ginzburg-Landau (GL) theory [35]. The GL theory is based on Landau’s

theory of second-order phase transition in which a complex pseudo-wavefunction ψ

was introduced as order parameter. This wavefunction describes the local density of

super-electrons: ns = |ψ(r)|2.

The theory is then based on the expansion in series of the free energy density

f for small values of ψ, i.e. for T → Tc:

f = fn + α|ψ|2 + β

2
|ψ|4 + 1

2m∗

∣

∣

∣

∣

(

h̄

i
∇− e∗

c
Ā

)

ψ

∣

∣

∣

∣

2

+
h2

8π
, (3.19)

where fn is the free energy density in the normal-conducting phase, α and β are the

expansion coefficients, h̄ is the reduced Planck constant and the quantities e∗ and
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m∗ are the effective charge and mass of the current carriers respectively and Ā is the

vector potential.

The constant α changes sign at T = Tc. For α > 0 the minimum of the

free energy density occurs at |ψ|2 = 0 which correspond to the normal state with

T > Tc. On the other hand, for α < 0, the minimum occurs at |ψ|2 > 0, defying the

superconducting state for T < Tc. At transition α = 0 therefore β > 0 is a necessary

condition in order to define a minimum of the free energy density [36].

Using a variation principle, the minimum of Equation 3.19 was calculated with

respect to the spatial variations of ψ(r) and A(r), finding the two GL equations. From

these equations two important parameters are defined: the temperature-dependent

coherence length ξGL, and the penetration depth λGL. The GL coherent length ξGL

represent the distance over which the order parameter can naturally vary. Even

though in pure superconductors at T << Tc, ξGL approaches the Pippard coherent

length ξ0, the two parameters are distinct quantities. The GL penetration depth λGL

has instead the same meaning of the London penetration depth [33].

Since ξGL(T ) and λGL(T ) have the same temperature dependence, their ratio

define a useful dimensionless parameter, called GL parameter:

κ =
λ

ξ
. (3.20)

This parameter is particularly useful to distinguish between different classes of su-

perconductors: Type I (κ < 1/
√
2) and Type II (κ > 1/

√
2), depending on the sign

of their surface energy.

In presence of external field He, the boundary energy between the supercon-

ducting and the normal-conducting phase is:

µ0

2

(

ξ0H
2
c − λLH

2
e

)

. (3.21)
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Therefore ξ0 and λL determines the response of a superconductor exposed to external

magnetic field. When ξ0 > λL the surface energy is positive, while for ξ0 < λL

the surface energy is negative. This means that, when λ > ξ, the total energy is

minimized in presence of superconducting/normal-conducting interfaces [25].

As shown in Figure 3.1, Type-I superconductors show a discontinuous break-

down of the superconducting state, when the external magnetic field is increased

above the critical field Hc.

Abrikosov in 1957 showed that for type II superconductors instead, it is neces-

sary to defined two different critical fields: the lower critical field Hc1 and the upper

critical field Hc2. For H < Hc1 the material is completely in the superconducting

state, which is called now Meissner state, while for H > Hc2 the material is com-

pletely in the normal-conducting state (see Figure 3.3a). When the external field is

in between these two critical fields, the material is in the so-called mixed state, in

which flux can penetrate in the superconductor forming a regular array of flux tubes.

Each flux tube carries a magnetic flux quantum, called fluxoid:

Φ0 =
h

2e
= 2.07 · 10−15Wb , (3.22)

and a vortex of supercurrent concentrates the flux toward its center, screening the

superconductor from the flux tube (see Figure 3.3b). Such magnetic flux structures

are called vortices.

When vortices are present in the superconductor, and a static transport current

J̄ is established, the vortices are moved by the Lorentz force J̄×φ̄0 causing dissipation

inside the material. This situation can be controlled by the presence of defects in the

material that can pin the flux, minimizing its free energy. So the static current J̄ can

flow without dissipation as long as the Lorentz force is lower than the pinning force

[33].
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B

(a) (b)

Figure 3.3. (a) Lower (Hc1) and upper (Hc2) critical magnetic fields as a function of
the temperature for a type II superconductor. For H < Hc1 the superconductor
is in the Meissner state, while for Hc1 < H < Hc2 it is in the mixed state. The
normal-conducting state is instead defined for H > Hc2. (b) Sketch of a side view
of the magnetic flux structures present in the mixed state.

3.5 The BCS theory

In 1957 Bardeen, Cooper and Schrieffer published a microscopic theory of

superconductivity [37]. They demonstrated that superconductivity is consequence

of an attractive interaction existing between electrons that allows the formation of

electron pairs called Cooper pairs. This attractive interaction is due to exchange of a

lattice phonon between electrons. A bound state forms as a result of this interaction,

with energy lower than the Fermi energy of the normal-conductor.

The idea of an electron-phonon interaction was suggested by Fröhlich in 1950

and experimentally confirmed with the discovery of the isotope effect, i.e. the de-

pendence of the critical temperature of a superconductor on the mass of the isotope

composing the material.

This interaction may be thought as due to an electron that passing through

the lattice, polarizes the medium by attracting positive ions. In turn, the excess
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of positive charge attracts a second electron, resulting in an attractive interaction

between electrons. If this interaction is greater than the repulsive Coulomb interaction

a Cooper pair is formed. Important is also that, in order to form Cooper pairs,

electrons must have both opposite momentum and spin.

When Cooper pairs are formed they condense in a common superconducting

ground state with lower energy than the Fermi level, creating an energy gap of size

2∆.

The Cooper pairs have the following characteristics:

• The size of a Cooper pair is ∼ ξ0 = h̄vF/kTc, which is much larger than the

interparticle distance, meaning that Cooper pairs overlap with each other.

• Cooper pairs represent a Bose condensate, so they all have same quantum state

and same energy.

• When current flows in the superconductor, each Cooper pair acquires a momen-

tum which is the same for all the pairs.

• The total momentum of a Cooper pair is constant.

• The minimum energy needed to broke a Cooper pair is equal to the energy gap

Eg = 2∆. The breaking of a pair generates two quasi-particle excitations.

The formation of an energy gap between the superconducting ground state and

the normal-conducting ground state, was already proven experimentally by Corak et

al. [38], from measurements of specific heat of superconductors. Such measurements

showed that at T << Tc the specific heat has an exponential dependence with the

temperature, implying the presence of an energy gap [33].
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The energy gap at T = 0 K, ∆(0), is defined as:

∆(0) ≃ 2h̄ωce
−1/N(0)V , (3.23)

where ωc is the cut-off frequency of pair attraction and is of the order of magnitude of

the Debay frequency ωD, N(0) is the density of states at the Fermi level for electrons

of one spin orientation and V in the potential of the attractive interaction. Since

N(0) and V are material dependent parameters, the energy gap ∆ is a characteristic

parameter that varies between different materials. Important to take into account

is that Equation 3.23 is an approximate results obtained with the weak-coupling

approximation N(0)V << 1.

The energy gap depends also on the temperature: as the temperature increases

from 0 to Tc, ∆ slowly decrease, and it drops rapidly to zero for T → Tc. A useful

approximated formula capable to describe this behavior is:

∆(T )

∆0
=

√

cos

(

πt2

2

)

. (3.24)

In the framework of the BCS theory, the critical temperature is defined as the tem-

perature at which ∆(T ) → 0 and results to be:

kTc = 1.13h̄ωce
−1/N(0)V . (3.25)

Comparing this with Equation 3.23, it is possible to notice that the energy

gap ∆(0) is of the same order of magnitude of kTc:

∆(0)

kTc
≃ 1.764 , (3.26)

this value was found to be reasonable from different experiments, however it varies

from superconductor to superconductor and it is usually between 1.5 and 2.2 [33].

As previously mentioned, Cooper pairs can be broken with energy grater than

2∆, generating quasi-particle excitations and, therefore, dissipation in the supercon-

ductor. The electrodynamic properties of superconductors were studied by Bardeen,
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Cooper and Schriefeer using a similar non-local approach of Pippard, by defining that

the current density is a function of the vector potential Ā:

J̄(r̄) = − 3

4πµ0λ2ξ0

∫

R̄
[

R̄ · Ā(r̄)
]

J(R, T )

R4
dr̄ , (3.27)

where R is the distance between scattering centers and the kernel J(R, T ), at T = 0

K, approaches at the Pippard coefficient e−R/ξ0 . A more convenient expression is

given by the Fourier transform of J̄(r̄):

J̄(q̄) = − c

4π
K(q)ā(q̄) , (3.28)

where K(q) is a function that in the limit q̄ = 0 approaches to the inverse of the

square of the London penetration depth: K(0, T ) = 1/λ2(T ). The penetration depth,

defined as in Equation 3.16, can be calculated from the current density [37]. In case

of specular reflection, the penetration depth results:

λ =
2

π

∫ ∞

0

1

q2 +K(q)
dq , (3.29)

while in case of random scattering:

λ =
π

∫ ∞

0

ln

[

1 +
K(q)

q2

]

dq

, (3.30)

In the approximation of q̄ = 0, which is the case of ξ0 << λ, and for T/Tc > 0.8,

the temperature dependence of the penetration depth approaches at the empirical

formula of Equation 3.7, while for T/Tc < 0.5 [39]:

λ(T )− λ(0)

λ(0)
=

√

π∆

2kT
e
−
∆

kT . (3.31)

In 1958, Mattis and Bardeen refines the BCS treatment of the electrodynamic

properties of superconductors, deriving a general quanto-mechanic expression for the

kernel I(ω,R, T ) in the BCS expression for the current density [40]:

J̄(r̄, t) =
∑

ω

e2N(0)v0
2π2h̄c

∫

R̄
[

R̄ · Āω(r̄)
]

I(ω,R, T )e−R/ℓ

R4
dr̄ . (3.32)
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This extension is valid for field of arbitrary frequencies, while the BCS current

density of Equation 3.27 is valid only for low frequency.

In order to derive an expression for the conductivity of superconductors, Mattis

and Bardeen introduced a complex conductivity for the superconducting state, σs =

σ1−iσ2, as previously defined by Glover and Tinkham [41]. This conductivity depends

on the kernel I(ω,R, T ) and, in extreme anomalous limit, λ << ξ0, for which it is

possible to set R = 0, it is defined as:

σs = σn
I(ω, 0, T )

−πih̄ω . (3.33)

From this equation it is possible to define σ1 and σ2:

σ1
σn

=
2

h̄ω

∫ ∞

∆

[f(E)− f(E + h̄ω)] g(E) dE

+
1

h̄ω

∫ −∆

∆−h̄ω

[1− 2f(E + h̄ω)] g(E) dE ,

(3.34)

σ2
σn

=
1

h̄ω

∫ ∆

∆−h̄ω,−∆

[1− 2f(E + h̄ω)] (E2 +∆2 + h̄ωE)

(∆− E2)1/2
[

(E + h̄ω)2 −∆2
]1/2

dE , (3.35)

these two expressions are usually called Mattis and Bardeen integrals and they have

to be resolved numerically. The term g(E) is defined as:

g(E) =
(E2 +∆2 + h̄ωE)

(E2 −∆2)1/2
[

(E + h̄ω)2 −∆2
]1/2

, (3.36)

and f is the Fermi-Dirac distribution function.

The real part of the conductivity σ1 is the term from which dissipation arises

in the superconductor, and from Equation 3.34 it is possible to distinguish that there

are two mechanisms that can cause dissipation. The first integral of σ1 takes into

account thermal excitation of quasi-particle, while the second integral takes into ac-

count absorption of photons with energy greater than the energy gap, indeed this

term does not appear unless h̄ω > 2∆. The imaginary part of the conductivity σ1

takes instead account generation of Cooper pairs.
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Knowing the two contributions at the conductivity σ1 and σ2, it is possible to

calculate the surface impedance which, in the extreme anomalous limit, is defined as:

Zs = Zn

(

σ1 − iσ2
σn

)−1/3

. (3.37)

The real part of the surface impedance defines the surface resistance Rs.

Considering the case of superconducting cavities, dissipations are only due to

thermal excitation of quasi-particle, since h̄ω < 2∆. Therefore only the first integral

of Equation 3.34 has to be taken into account. This integral can be solved analitically

in the approximation T << Tc. Using this approximation and T >> h̄ω/2kT , the

surface resistance results [42]:

RBCS =
µ2
0ω

2λ3σn∆

kT
ln

(

2.246kT

h̄ω

)

e
−
∆

kT . (3.38)

This equation shows that the surface resistance:

• exponentially decreases with the temperature,

• depends on the square of the angular frequency ω,

• is directly proportional to the conductivity of the normal-conducting state σn,

• depends on the material mean free path by the dependence with λ3σn, in agree-

ment with the two fluid model result (Equation 3.13).

The dependence of λ on the mean free path cannot be easily seen from Equa-

tions 3.29 and 3.30, therefore in order to look at the dependence of RBCS with the

mean free path it is convenient to take into account the Pippard’s definition shown in

Equation 3.17. The conductivity σn is instead defined by the Drude formula (Equa-

tion 3.8). Therefore:

RBCS ∝ λ3σn ∝ ℓ

(

1 +
ξ0
ℓ

)3/2

, (3.39)
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a) b)

Figure 3.4. BCS surface resistance as a function of the mean free path for different
values of reduced energy gap ∆/kTc (a), and for different values of temperature T
(b). The curves are calculated using the program SRIMP [2].

this relation has a minimum at ℓ = ξ/2, meaning that the surface resistance is mini-

mized when the mean free path is around ξ/2.

The surface resistance as a function of mean free path calculated using the

Mattis and Bardeen theory is shown in Figure 3.4. The graphs are generated using

the Halbritter code called SRIMP [2]. In Figure 3.4 (a), curves of RBCS as a function

of ℓ are shown for different values of the reduced energy gap ∆/kTc, keeping all the

other parameters fixed. It is clear that increasing ∆/kTc the resistance decreases. In

Figure 3.4 (b), curves of RBCS versus ℓ are shown for different temperatures. The

dependence of the BCS surface resistance with the mean free path was first verified

by Flécher [43].

Also the exponential dependence of the surface resistance on the temperature

was experimentally verified. However, comparing the theoretical behaviour with ex-

perimental data, see Figure 3.5, it is possible to notice that the experimental data

can be fitted by the BCS theory up to a certain temperature, below that temperature

the surface resistance assets to a constant value.

Therefore, the complete expression of the surface resistance must take into ac-
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Figure 3.5. Comparison between experimental and theoretical data of the surface
resistance as a function of the temperature [3].

count not only the temperature-dependent term derived using the Mattis and Bardeen

theory, RBCS, but also a temperature-independent term which is called residual resis-

tance, R0:

Rs = RBCS +R0 . (3.40)

The residual resistance term is not fully understood yet, possible causes may be:

presence of defects within the superconductor penetration depth region, non-ideality

of the surface, magnetic flux trapped in the superconductor, presence of hydrides or

oxidized layer on the surface or within grain boundaries, residuals from chemical or

mechanical surface treatment, welding imperfections, and so on [25].

The BCS surface resistance, Equation 3.38, is usually approximate using the

following relation:

RBCS =
A

T
ω2e−∆/kT , (3.41)

where A is a constant which depends on the following material parameters: London
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penetration depth λL, coherence length ξ0, Fermi velocity vF , mean free path l. This

relation is valid for T < Tc/2 [25].
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CHAPTER 4

RF MEASUREMENTS AND CAVITY PROCESSING

4.1 Power balance in a resonator

Because of the very narrow resonant peak, characteristic of superconducting

cavities, the quality factor cannot be measured directly with a network analyzed

but has to be measured through a power balance between the forwarded, reflected,

transmitted and dissipated powers. This kind on RF measurement is described in the

following section.

The fundamental resonant mode is excited in the cavity by using a RF source.

The power from the RF source is carried inside the cavity using an input probe called

input coupler, while the transmitted power probe picks up the power transmitted

through the cavity. A typical configuration is shown in Figure 4.1.

There are different methods used to couple the field in or out of the cavity,

the most common are: the electric coupling using a coaxial antenna, the magnetic-

coupling using a loop at the end of a coaxial transmission line, or a wave-guide

connected through a hole in the cavity. The configuration used for the experiment

described in this thesis work, consists on electric coupling with two antennas acting

as input and output couplers.

These antennas are cylindrical conductors that penetrate the cavity generating

a coaxial cable configuration, in which the antenna is the inner conductor and the

cavity is the external one. The overlap between the cavity field and the field prop-

agating in the cut-off region from the input coupler defines the coupling strength.

The coupling strength increases exponentially by inserting the coupler in the cavity.

Usually the coupling strength is minimized for the transmitted probe.

In order to understand the power dissipation of the whole system, it is useful
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Figure 4.1. Scheme of a single-cell cavity with the two antennas, input coupler and
transmitted power probe, needed for the RF measurement.

to begin analyzing the situation just after that the RF source is switched off. A

fraction of power is dissipated in the cavity walls, while another fraction leaks out

from both input and output couplers. The total dissipated power Ptot is given by the

sum of all these contribution:

Ptot = Pc + Pe + Pt , (4.1)

where Pc is the power dissipated in the cavity walls, Pe is the power leaking back

through the input coupler and Pt is the power leaking forward to the transmitted

probe. The total dissipated power is related to the unloaded quality factor QL, which

is the quality factor of the entire system composed by cavity, input coupler and output

coupler:

QL =
ω0U

Ptot
. (4.2)

As seen in previous section, the energy stored in the cavity U exponentially decay
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with a time constant τ = QL/ω0:

U = U0e
−ω0t

QL , (4.3)

meaning that the loaded quality factor can be calculated by measuring the time decay

of the stored energy and knowing the cavity resonance frequency.

The intrinsic quality factor of the cavity is now indicated withQ0 and takes into

account only dissipation coming from the cavity walls. The external quality factors

Q1 and Q2 take instead into account the power dissipated in the two antennas, Pe

and Pt respectively:

Q1 =
ω0U

Pe

, Q2 =
ω0U

Pt

. (4.4)

The coupling strength between the cavity and the couplers can be quantified as:

β1 =
Q0

Qe

=
Pe

Pc

, β2 =
Q0

Qt

=
Pt

Pc

, (4.5)

therefore, the stronger is the coupling strength, the larger is the power dissipated

in the coupler compared to the power dissipated in the cavity walls. Note that the

external quality factors depend only on the geometry of both cavity and coupler,

while the coupling strengths depend also on the intrinsic quality factor.

The intrinsic quality factor Q0 can be calculated knowing the loaded quality

factor and the coupling strengths:

1

QL

=
1

Q0

+
1

Q1

+
1

Q2

=
1

Q0

(1 + β1 + β2) . (4.6)

Usually the transmitted probe is weakly coupled with the cavity, β2 << 1, so that

the dissipation in that coupler are negligible and the Q−loaded may be easily defined

as:

1

QL

=
1

Q0

(1 + β1) . (4.7)
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Starting from an empty cavity, when the RF power reaches the cavity at first

there is a transient behavior in which the stored energy increases with the time until

it reaches its equilibrium value U . Let us now take into account a situation in which

the cavity is in steady state, so it had already reached the equilibrium, and is driven

exactly on resonance.

At this point it is necessary to take into account also the forward power Pf ,

which is the power forwarded to the cavity from the RF generator, and the reflected

power Pr, which is the subtraction between the forward power and the power that

leaks in the cavity. Under the previous assumption, Pr is defined as:

Pr = Pf |Γ|2 = Pf

∣

∣

∣

∣

β1 − 1

β1 + 1

∣

∣

∣

∣

2

, (4.8)

where Γ is the reflection coefficient which depends strongly on β1.

In particular, if β1 = 1, then Γ = 0 and there is no reflected power, meaning

that all the forwarded power enters in the cavity. This situation in which cavity and

coupler are perfectly matched is called critical coupling. Sometimes the input coupler

is a movable antenna so that it can be adjusted to reach this condition. The system

is instead undercoupled when β1 < 1, and overcoupled when β1 > 1.

From the conservation of energy, the power that actually flows in the cavity

results:

Pin = Pf

(

1− |Γ|2
)

, (4.9)

therefore, when the system is critically coupled Pin is maximum and equal to the

forward power.

Knowing Pf and Pr it is possible to calculate the coupling strength β1 using

the following equation:

β1 =
1±

√

Pr/Pf

1∓
√

Pr/Pf

, (4.10)
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which is calculated by solving Equation 4.8 for β1. The upper sign is used when the

system is overcoupled, while the lower sign when it is undercoupled.

4.2 RF measurements

Once the cavity has been properly treated, it has to be RF tested in order

to verify its performance. The cavity is therefore assembled with two fixed antenna,

the input and output couplers, in a clean room in order to avoid the introduction of

contaminants inside the cavity. Once the cavity is vacuum sealed and evacuated, it

is mounted on a RF stand that holds the cavity inside the cryostat. The cryostat

can be at this point filled with liquid helium. Once the cavity is soaked liquid helium

(4.2 K), the temperature is decreased reaching, usually, 2 or 1.5 K by pumping on

the helium bath.

Once the cavity reached the desired temperature, the RF test can start.

Because of the narrow resonant peak of superconducting cavities, the cavity is

kept on resonance by means of a phase-looked-loop. The phase-looked-loop is com-

posed of a voltage-controlled-oscillator (VCO), a mixer and a phase shifter. The VCO

generates the initial RF signal at the cavity resonance frequency, which is amplified

and fed into the cavity. Using a bidirectional coupler, the forward signal can be

measured with a power meter before entering in the cavity, and another power meter

measure the reflected signal. Similarly, also the transmitted signal is measured with

a power meter. Part of the transmitted signal is then fed into the RF mixer, together

with part of the signal generated by the VCO. The mixer then generates a voltage

that is proportional to the phase difference between the two signals and this voltage

is used to correct the frequency of the signal generated by the VCO.

A picture of part of the RF system present at the vertical test facility at

Fermilab is shown in Figure 4.2 (a). In Figure 4.2 (b) is shown a picture of the three
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(a)

(b) (c)

Figure 4.2. Pictures of: (a) the RF measurement system, (b) the three cryostat used
for the cavities vertical test and (c) a 9-cells cavity mounted on the RF stand. This
instrumentation is part of the vertical test facility at Fermilab.
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cryostat of the facility, while in (c) is shown a picture of a 9-cells cavity hanged on

the RF stand.

The RF measurement can be divided in three main step: RF cable calibration,

decay measurement and CW measurement.

4.2.1 Cable calibration. Since the forward, reflected and transmitted powers are

not directly measured at the input and transmitted couplers, the RF cable calibration

is needed in order to take into account dissipations due to all the RF components

that are in between couplers and power meters, such as: cables, directional couplers,

attenuators and so on.

In Figure 4.3, a scheme of the circuit of the RF system, useful to understand

the different steps of the cable calibration is shown.

The labels A, B, C, D, E, F, G indicates the points at which the power is

measured during the calibration process. The purpose of this calibration step is to

determine the power attenuation between:

• DF: in order to estimate what is the real power forwarded in the cavity compared

to the power level read by the incident power meter

• DG: in order to estimate what is the real power reflected back from the cavity

compared to the power level read by the reflected power meter

• AC: in order to estimate what is the real power transmitted by the cavity

compared to the power level read by the transmitted power meter

The power attenuation measured between AC, DF and DG defines the respec-

tive coefficient Cf , Cr and Ct needed to convert the power measured by the power
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Figure 4.3. Scheme of the vertical test RF calibration system.

meters in the real forward, reflected and transmitted powers:

P cavity
f,r,t = Cf,r,t · Pmeasured

f,r,t , (4.11)

where the coefficients Cf , Cr and Ct are measured as follow:

Cf = 10(−CFE−CED) ,

Cr = 10(CGE+CED) ,

Ct = 10(CCB+CBA) ,

(4.12)

where CFE is the power attenuation between the incident power meter and the forward

connection at the top plate of the cryostat, CGE and CCB are the analogous for the

reflected and transmitted line respectively, CED is the power attenuation of the cold

part of both the forward and reflected line, from the connection at the cryostat flange
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Figure 4.4. Reflected power response in pulse mode, as a function of time, for different
coupling regime.

to the forward coupler, and CED is the power attenuation of the cold part of the

transmitted line, as shown in Figure 4.3.

4.2.2 Decay measurement. The decay measurement step is needed in order to

measure the external quality factor of the transmitted power probe Q2.

Once the cavity is excited at its resonance frequency f0, the forward, reflected

and transmitted powers are recorded. From the power balance it is possible to calcu-

lated the power dissipated in the cavity walls:

Pc = Pf − Pr − Pt . (4.13)

Knowing the forward and the reflected powers it is possible to calculate the coupling

strength neglecting the presence of the output coupler using Equation 4.10, where

the different signs have to be chosen depending on whether the system is over- or

under-coupled, as explained in the previous paragraph. An easy way to understand

that consists on looking at the shape of the reflected power when a rectangular drive

pulse is fed into the cavity, as shown in Figure 4.4.

Once β1 is known, it is possible to calculate the real input coupling strength

β as [27]:

β = β1 (1 + β2) , (4.14)

where β2 is easily calculated as β2 = Pt/Pc.
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At this point the power is turned off. In this way it is possible to calculate

the decay constant τL by looking at the decay profile of the transmitted or reflected

power level. The loaded quality factor is therefore estimated as QL = 2πf0τL. The

loaded quality factor is then converted in intrinsic quality factor:

Q0 = QL (1 + β1 + β2) , (4.15)

and the transmitted probe quality factor calculated as:

Q2 =
Q0

β2
. (4.16)

After this calibration step, the first point of the curve is measured. Q0 is obtained

from Equation 4.15, while the accelerating field is calculated as:

Eacc =

√

U

k
, (4.17)

where U = Q0Pc/ω0 and k is a constant parameter that depends on the cavity geom-

etry and is usually calculated using simulation codes.

The knowledge of the value of Q2 allows to measure the other points of the

curve with an easier CW measurement.

4.2.3 CW measurement. The CW measurement is the real measurement of

the intrinsic Q-factor versus accelerating field Eacc and it is performed from CW

measurements of the power levels, using the parameter Q2 previously determined.

The intrinsic Q-factor is now calculated as:

Q0 =
Q2Pt

Pc

, (4.18)

and the accelerating field as:

Eacc =

√

Q2Pt

(

r/Q

L

)

, (4.19)



48

2 4 6 8 10 12 14 16 18 20

5x1010

1011

1.5x1011

2x1011

 Decay measurements @ 2 K
 CW measurements @ 2 K
 CW measurements @1.5 K

Q
0

Eacc (MV/m)

Figure 4.5. Example of Q-factor versus accelerating field curves acquired at 2 K and
1.5 K. The red points are acquired in decay mode while all the other points are
acquired in CW mode.

where r/Q is the geometrical shunt impedance per unith of length and L the effective

length of the cavity.

4.3 Q-factor versus accelerating field curves

Example of two Q0 versus Eacc curves acquired at 2 K and at 1.5 K are shown

in Figure 4.5. The points acquired during the transmitted power calibration step are

highlighted in red.

This step is usually done at 2 K because the input coupler is a fixed antenna

designed in order to be as close as possible to to the critically coupled condition at 2

K. In this way the error of both the calculation of Q2 and all the RF measurement

is minimized at 2 K [44]. Since Q2 depends only on the coupler and cavity geometry,

its value does not change with the temperature, therefore the transmitted power

calibration does not need to be repeated again after changing the temperature.

The measurement errors on the Q-factors and accelerating field values depend
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on the coupling strength with the input antenna. The more the measurement is

done in a critically coupled condition, the lower is the measurement uncertainty. The

antennas adopted in the RF measurements at Fermilab usually introduce a relative

error of about 10 % [44].

The maximum accelerating field shown in the graph usually represents the

maximum accelerating field reachable before the quench of the superconducting state.

The quench is due to a point on the cavity surface that suddenly turns normal-

conducting, causing a dramatic increasing of the surface resistance and of the dissipa-

tion. This, in turn, causes the spreading of the normal-conducting area that increases

consuming all the stored energy in the resonator.

Quench in superconducting cavities can be due to several reasons. The most

common quench scenarios are the thermal breakdown and the magnetic enhancement.

The thermal breakdown appears if defects, in which RF losses are higher than the

other area of the cavity, are present. In this case the anomalous temperature in-

creasing as a function of the accelerating field at the defect can be detected until the

temperature around it becomes larger than Tc. At this point the whole area turns

normal-conducting causing the quench. Quench via magnetic enhancement happens

instead if the RF magnetic field at the cavity surface exceeds the local critical field

Hc1. This situation may be facilitated by the presence of irregularity and asperities

at the cavity surface, from which the local magnetic field is enhanced [25, 45].

Sometimes quench is instead due to different phenomena such as multipacting

or field emission. In these peculiar case the quench is not a direct consequence but it

can happen in the most severe cases [25].

After the quench, the cavity may shows higher surface resistance values. Dur-

ing the opening of the normal-conducting area some flux can be trapped locally,
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causing additional dissipation [46]. For this reason sometimes RF measurements are

interrupted at a certain Eacc value, in order to not quench the cavity. This adminis-

trative limit is applied in particular when the curve Q versus Eacc has to be acquired

at different temperature. In this case the cavity is not quenched until the last curve

is acquired, so that the measurement is not affected by additional dissipation.

4.4 Niobium cavities fabrication and preparation

The performance of niobium accelerating cavities may be really different de-

pending on the surface treatment. In particular, since at 2 K the RF field penetrates

for just some tens of nanometers, the properties of the material in this thin surface

layer determines all the RF superconducting properties of the cavity.

During the years, the fabrication process of niobium cavities has been opti-

mized in order to obtain very clean niobium cavities with very smooth surface. The

main common steps of the fabrication are here reported.

After the extraction the niobium ore is purified in an electron-beam melting

furnace. During this process impurities evaporates out the niobium and are pumped

away. Then a final annealing step is performed for recristallization. Depending on

the vacuum level of the furnace, temperature and time of the recristallization pro-

cess, the niobium reaches very high level of purity, measured in Residual Resistivity

Ratio (RRR). The RRR is the ratio between the resistivity measured at room tem-

perature ρ(300 K), and the residual resistivity ρi, usually measured just before the

superconducting transition:

RRR =
ρ(300K)

ρi
. (4.20)

Since at very low temperature the phonons contribution at the resistivity be-

comes negligible, ρi is only given by the scattering with the impurities. The RRR

indicates indeed the purity level of the material, and it is therefore directly propor-
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tional to the mean free path. Typical values of RRR of niobium sheets used for

cavities are around RRR = 300− 500.

In order to turn the niobium sheets in the elliptical shape typical of high-β

niobium cavities, deep drawing is usually used to form half-cells. The half-cells are

then electron beam welded together in a vacuum chamber to create the elliptical cell.

The beam tubes are electron beam welded at the irises of the cell.

After the fabrication process, the inner surface of the cavity is electro-polished

(EP) in order to remove the first 100− 150 µm from the surface, that may have been

contaminated during previous processes. The EP treatment is done using the niobium

cavity as the positive electrode (anode) while an alluminum cage inserted inside the

cavity is the cathode. The electrolyte is made with about 9 volumes of sulphuric acid

(H2SO4) and 1 volume of hydrofluoric acid (HF). The EP is capable to give a very

smooth niobium surface and it is not sensitive to defects, grains orientations and so

on [47].

Cavities are then usually further processed in order to improve performance.

Typically cavities are baked at 800 ◦C in a ultra high vacuum (UHV) furnace for

3 hours. This baking process is needed to degas the hydrogen that may have been

adsorbed in the niobium during the EP step. Cavities measured without this kind of

baking may show a peculiar Q-factor decreasing as a function of the accelerating field,

that starts from low field level, as shown in Figure 4.6 [4]. This behavior is called Q-

disease and appears when cavities are parked for long time at temperatures between

100 and 150 K during the cooldown. At these temperatures, if the concentration

of hydrogen is large enough (greater than ≃ 100−200 ppm), niobium hydrides can

nucleate and grow. Such NbxHy compounds are superconducting only at very low

fields, at 5 MV/m losses are already very large [45].
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Figure 4.6. Q-factor degradation due to Q-disease after a slow cooldown [4].

In order to avoid that contaminants from the furnace jeopardize the cavity

performance, after the 800 ◦C baking a further EP can be done to remove the first ≃

50 µm from the inner surface of the cavity. Alternatively, niobium caps are used to

cover the cavity beam tubes and avoid that contaminants from the furnace reach the

inner surface of the cavity [48].

Cavities prepared in this way are called EP cavities and a typical Q versus

Eacc curve at 2 K is shown in Figure 4.7. Characteristic feature of these cavities is

the presence of high-field Q-slope (HFQS) above 25 MV/m. The HFQS is a really

important issue for superconducting cavities since limits the usable accelerating field

at around 25 MV/m.

The presence of niobium hydrides is considered to be a possible mechanism

responsible for the HFQS. Differently from the hydrides responsible for the Q-disease,

this time this compounds must be very small. Under this hypothesis, these nano-

hydrides are superconducting via proximity effect, until the surface magnetic field
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Figure 4.7. Q-factor versus accelerating field curves measured at 2 K for an EP and
a 120 ◦C baked cavity.

reaches their breakdown field Hb. When H ≥ Hb they start to behave as normal-

conducting defects, increasing the dissipation [49].

Another chemical treatment that can be used as an alternative to the EP, or

as an additional chemical treatment, is the buffered chemical polishing (BCP) which

is a chemical etching made with 1 volume of hydrofluoric acid (HF), 1 volume of

nitric acid (HNO3) and 2 parts of phosphoric acid (H3PO4). This chemical treatment

is really easy to perform and the etching rate is fast, however BCP tends to etch

preferentially grain boundaries and the etch rate depends on the grain orientation.

The surface after the BCP is therefore more rough than after EP [47]. Because of

this, EP is usually preferred as final polishing treatment.

After the chemical treatments the cavity is further cleaned with the high-

pressure rinsing (HPR), in which ultra-pure water is sprayed at high pressure (about

100 bar) inside the cavity. The water jet strikes all the inner surface of the cavity,
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removing microscopic contaminants from it. After the cavity is completely dried

inside a Class 10 or 100 clean room, the cavity is assembled with the antennas needed

for the RF test and then is evacuated in order to reach a good vacuum level (p ≃

10−7mbar). The evacuation is done slowly in order to avoid turbulent flow that may

bring contaminants from the vacuum system to the cavity. At this point the cavity

is ready to be connected to the RF stand and inserted in the cryostat for the RF

measurement.

It was found that the HFQS may be cured by further baking the EP, or BCP,

cavity at 120 ◦C for 48 hours (see Figure 4.7). Such baking treatment is done after

that the cavity has already been assembled with the antennas for the RF test.

There are experimental evidences that show that during the 120 ◦C baking

process some oxygen from the oxidized surface layer diffuses inside the cavity for a

depth not larger than ≃100 nm [50]. However, the mechanism that seems to prevent

the formation of nano-hydrides is the diffusion of vacancies that are favorable to

bound the hydrogen preventing the nano-hydrides precipitation [51]. In terms of Q-

factors at low and medium field, the introduction of these impurities on the surface

decreases a little bit the BCS surface resistance but, on the other hand, increases the

values of residual resistance of a couple of nanohoms [50, 52].

The discovery of the 120◦C baking treatment represented a large improvement

for the SRF field, since 120 ◦C baked cavities are able to reach accelerating fields

larger than 35 MV/m. Such achievement is particularly important for accelerators

that need high field level such as the International Linear Collider (ILC). The 120 ◦C

baking represents indeed the standard treatment of niobium cavities for the ILC. Since

considered a reliable SRF technology, the 120 ◦C baking has also been implemented

as the cavities treatment for the cryomodule production of the European X-ray Free

Electron Laser (XFEL).
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Figure 4.8. Q-factor versus accelerating field curve measured at 2 K for a N-doped
and a 120 ◦C baked cavity.

4.5 The nitrogen-doping treatment

An even larger improvement in the SRF field was given by the discovery of the

nitrogen doping, or N-doping, treatment. This surface treatment is capable to give

ultra high value of Q-factors at medium field level. An example of Q-factor versus

accelerating field curve measured at 2 K is shown in Figure 4.8, where it is compared

with a curve of a standard 120 ◦C baked cavity. The quality factor after the N-doping

actually increases as a function of the accelerating field, until it reaches its maximum

value around accelerating field of 15−20 MV/m. Such peculiar behavior is called

anti-Q-slope and is the typical signature of optimal N-doped cavities [19].

The nitrogen doping treatment is performed just after the 800 ◦C baking,

when the cavity is still inside the UHV furnace. After this step nitrogen is injected

with a partial pressure of about 25 mTorr and it is kept inside the furnace for some

minutes at 800 ◦C. During this step nitrogen reaches the cavity surface and reacts
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Figure 4.9. Temperature (black curve) and pressure (blue curve) of the chamber
during the 2/6 nitrogen doping treatment.

with niobium. This reaction causes the dissociation of nitrogen molecules in nitrogen

atoms, that can be adsorbed from the niobium surface. Once nitrogen is absorbed

diffuses deeper inside the niobium lattice.

The parameter of the process are: temperature, nitrogen partial pressure and

time of nitrogen exposure. These parameters may be changed to modify the concen-

tration and the depth profile of the nitrogen in the niobium cavity.

A second step may be added in order to extend the diffusion process. Dur-

ing this second step the nitrogen flow is shut off and the cavity stays at the same

temperature, say 800 ◦C, for some minutes in an UHV environment.

The temperature and pressure of the chamber recorded during a nitrogen dop-

ing treatment are shown in Figure 4.9. The N-doping treatment shown in the figure

is called 2/6 N-doping, indicating that the nitrogen is kept inside the furnace for 2

minutes (first step), and then the nitrogen is shut off and the cavity is left for other

6 minutes at the same temperature but without nitrogen (second step).

In Figure 4.10, some Secondary Ion Mass Spectrometry (SIMS) spectra are
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Figure 4.10. SIMS spectra of a N-doped sample and some cut-outs from the cavity
ACC002. Both sample and cut-outs are measured after a 20 minutes N-doping
treatment. The cavity cut-outs were also electro-polished removing 5 µm from the
surface.

shown. These were acquired for a sample and some cavity cut-outs (from the cavity

ACC002). The sample was N-doped in the same way of the cavity ACC002, with

a 20 minutes N-doping treatment. After the doping treatment, the cavity ACC002

has been electro-polished, removing the first 5 µm from the surface. From the graph

it is possible to notice that the sample show very high concentration of nitrogen

within the first 1 − 2 µm of depth from the surface. This high concentration of

nitrogen is attributed to non-stechiometric niobium nitrides phases that forms during

the nitrogen treatment [53]. As it can be seen, the 5 µm EP removal is effective in

removing these niobium nitrides, that are bad superconductor and, if present, cause

the increasing of the residual resistance [19]. Because of that, the EP removal of 5

µm from the surface is always done after the N-doping treatment.

In Reference [19], the surface resistance of N-doped cavities was decomposed

in the two component BCS and residual resistance, in order to understand what is the

origin of the anti-Q-slope. It was found that, surprisingly, the BCS surface resistance
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of N-doped cavities decreases as a function of the accelerating field, while for standard

EP and 120 ◦C baked cavities RBCS increases as a function of the accelerating field.

This aspect is further studied in Chapter 7 of this thesis.

4.6 Surface treatments of the studied cavities

The 1.3 GHz single cell cavities studied during this thesis work were processed

with different surface treatments, a summary is shown in Table 4.1. During all the

treatments with nitrogen, or other gases, the partial pressure was wept at about 25

mTorr.

In case of N-doped cavities, in the surface treatment column is indicated the

duration, in minutes, and temperature of the treatment. If also the second step of

the N-doping treatment is performed, the surface treatment column indicates the

duration of the first step / the duration of the second step, in minutes. When more

treatments were done subsequently in the same cavity, a progressive number is added

in the name, as: cavity name treatment number.

The cavity AES018 was treated with helium but the final performance re-

mained the same of a typical EP cavity, proving that helium does not diffuse in the

niobium lattice for that range of pressure and temperature. Another peculiar treat-

ment was done on cavity AES021 that was treated with air instead of pure nitrogen.

In Figure 4.11, the Q-factor versus accelerating field curves at 2 K, of some of

the studied cavities, are shown. Since at 2 K for most of the cavities the administrative

limit of 17 MV/m was imposed in order to not quench the cavity, all the curves are

shown till about the same level of accelerating field.

In Chapter 7, a full analysis of the RF surface resistance versus the mean free

path will be shown for all these cavities. Important is to point out that from Figure
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Table 4.1. Summary of the surface treatments of the cavities studied in this thesis work.

Cavity Name Surface Treatment

AES018 30 min He (at 800 ◦C)

ACC005 120 ◦C bake

AES014 120 µm EP

AES014 2 Additional 120 ◦C bake

AES005 1 hour N2 (at 1000 ◦C) + 60 µm EP

ACC002 20 min N2 (at 800 ◦C) + 5 µm EP

CBMM 2/6 min N2 (at 800 ◦C) + 5 µm EP

PAV009 20 min N2 (at 900 ◦C) + 5 µm EP

AES011 2/6 min N2 (at 800 ◦C) + 5 µm EP

AES009 2/6 min N2 (at 800 ◦C) + 5 µm EP

AES017 2/6 min N2 (at 800 ◦C) + 5 µm EP

AES017 2 Additional 2/6 min N2 (at 800 ◦C) + 5 µm EP

AES019 10 min N2 (at 800 ◦C) + 5 µm EP

AES019 2 Additional 50 µm BCP

AES019 3 Additional 30 min N2 (at 800 ◦C) + 5 µm EP

AES021 Air 30 min (at 800 ◦C) + 3 µm EP

AES021 2 Additional 5 µm EP
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Figure 4.11. Q-factor versus accelerating field curves, measured at 2 K, of some of
the cavities studied.

4.11 it is possible to notice that some N-doping treatments are not optimal. For ex-

ample, cavities AES021 and AES019 3 show an important Q-slope starting from low

field level. Both these cavities are heavily doped as can be seen from Table 4.1. These

kind of heavily doped treatments are called over-doped, and a possible explanation

of their bad performance may be the non-optimal concentration of dopant in the

lattice, or the presence of non-stechiometric nitrides, or other bad superconducting

phases at the surface, that may have not be fully removed with the EP treatment. In-

deed, cavity AES021 showed better performance after an additional 5 µm EP removal

(AES021 2 in Figure 4.11), likely because spurious non-superconducting phases have

been removed from the RF surface, as suggested previously.

Measuring the cavity Q-factor at both 2 K and 1.5 K, it is possible to decom-

pose the BCS surface resistance from the residual resistance contribution, indeed:

Rs(2K) = RBCS(2K) +Rres , Rs(1.5K) ≃ Rres , (4.21)

therefore: RBCS(2K) = Rs(2K)− Rs(1.5K) and Rres ≃ Rs(1.5K). The result of this
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Figure 4.12. Surface resistance decomposition in BCS and residual resistance contri-
butions for the cavity AES021.

decomposition for cavity AES021 is shown in Figure 4.12. AES021 2 indicates the

result from the same cavity after 5 µm of EP removal. It is possible to notice that the

Q-slope of Figure 4.11 is due to the increasing of the residual resistance contribution

with the field. After the 5 µm of EP removal the residual resistance contribution

becomes almost constant as a function of the accelerating field. The BCS surface

resistance contribution is instead really low and it slightly decreases as a function of

the accelerating field, as expected from N-doped cavities.
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CHAPTER 5

MAGNETIC FLUX EXPULSION IN HORIZONTALLY COOLED CAVITIES

5.1 Introduction

Trapped magnetic flux in superconducting resonators contributes to radio-

frequency (RF) surface resistance (Rs), in the form of the temperature-independent

resistance called residual resistance R0 [25].

The residual resistance due to trapped flux plays an important role in super-

conducting radio-frequency (SRF) cavity performance, potentially degrading the effi-

ciency of the cavity. Recent studies [54, 5] have shown that performing fast cooldowns,

with large thermal gradients along the cavity, is vital to obtain efficient magnetic flux

expulsion, and that slow and homogeneous cooling through transition leads to full

flux trapping.

The speed of the cooldown determines the thermal gradient along the cavity

length during the superconducting transition, which seems to be the key parameter

that establishes the final amount of trapped flux.

In Reference [5] the residual resistance of the same cavity was acquired under

different cooldown condition, but comparable external magnetic field. The graph of

residual resistance as function of the thermal gradient T1− T2 (Figure 5.1) highlights

how the residual resistance strongly depends on the cooldown detail. Here T1 is the

temperature at the top cavity position and T2 is the temperature at the equator,

and their difference is measured when T1 = 9.2 K, i.e. when the equator becomes

superconducting. During the experiment described in Reference [5], the cavity is

vertically placed with respect to the cryostat axis and the helium flow. The vertical

cooldown is the one generally used to test SRF cavities performance, however, cavities

in accelerators are horizontally placed with respect to the helium flow.
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Figure 5.1. Residual resistance at as a function of the thermal gradient T1 − T2
between equator T2 and top iris T1 when the equator become SC. The inset shows
the corresponding Q0 values [5].

For this reason in this chapter the cooldown is studied placing the cavity

horizontally with respect to the cryostat axis. The geometry of the cavity cooling in

real accelerator is in this way resembled.

During a fast cooldown the liquid helium is injected from the bottom of the

cryostat, which is then filled fast until all the thermal sensor attached to the cavity

indicates temperature well below Tc.

When the fast cooldown is performed with the cavity oriented horizontally

with respect to the cryostat axis, the boundary between the superconducting (SC)

and the normal conducting (NC) phases will move from the very bottom to the very

top point of the cell equator, rather than from beam tube to beam tube as in vertical

orientation studies. A scheme of such configurations is shown in Figure 5.2.

Conversely, during a slow cooldown, the gaseous helium is injected from both

bottom and top of the cryostat in order to make the cavity temperature as more
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Figure 5.2. Sketch of the two cooldowns orientation: a) vertical and b) horizontal.

uniform as possible during the SC transition.

Several continuous wave (CW) accelerators currently being built worldwide

(for example x-ray FELs such as LCLS-II at SLAC [55, 56]) require very high Q-

factors, highly efficient SRF cavities, to reduce cryogenic costs. Therefore, the un-

derstanding of the cooldown dynamics in a configuration that resembles the cavity in

an accelerator, in the presence of magnetic field levels comparable to those present

in shielded cavities placed in a cryomodule, is crucial in order to investigate how to

minimize the surface losses due to trapped flux.

5.2 Experimental set-up

A single cell 1.3 GHz TESLA type nitrogen doped bulk niobium cavity was

used for this study, which is the same cavity used in Reference [5]. It is worth

mentioning that this cavity has achieved world record quality factors Q0 > 1 · 1011 up

to the highest fields 30 MV/m at 1.5 K and with a Q0 > 5 · 1010 up to 30 MV/m at
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Figure 5.3. Horizontal cooldown cavity set-up. The orange squares and the green
rectangle represents respectively the thermometers and the fluxgates, while a and
b stand for the two Helmholtz coils.

2 K.

The set-up and the instrumentation of this experiment are shown in Figure 5.3.

Two pairs of Helmholtz coils were placed orthogonally one to each other (Figure 5.3),

one parallel to the cavity axis (a) and the other perpendicular to it (b). In addition,

four Cernox thermometers were placed at the cavity equator (orange squares in Figure

5.3) in the following position: bottom of the cell, middle, top, and one half way in

between the top and the middle ones.

The external magnetic field applied to the cavity was measured by means of

four single-axis Bartington Mag-01H cryogenic fluxgate magnetometers (green rect-

angles in Figure 5.3). Two of them were placed perpendicularly to the cavity axis,

one at the very top of the cell and one at the middle, while the other two were placed

at the same positions but axially to the cavity axis.

Several fast cooldowns were performed under different magnetic field orien-

tations (orthogonal or axial) with the same magnitude, about 10 mG. In order to

obtain different thermal gradients across the cavity, different starting temperatures
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were chosen for these fast cooldowns.

5.3 Horizontal cooldown data analysis

5.3.1 RF measurements analysis. RF measurements were performed at the

Fermilab SRF cavity vertical test facility. The unloaded Q-factor (Q0) versus acceler-

ating field (Eacc) curves were acquired at 2 K and at the lowest temperature achievable

with the pumping system, which is slightly lower than the calibration range of the

thermometers (T < 1.4 K). At such low temperatures, the surface resistance is dom-

inated by the temperature-independent part (residual resistance, R0). Therefore, at

this temperature the differences in terms of losses due to trap flux, which affects only

R0, are well visible.

The Q0 versus accelerating field curves acquired at T < 1.4 K are shown in

Figure 5.4, while the cooldown conditions of the data series are summarized in Table

5.1. As studied in previous work [44], the uncertainty of the measurement of Q0 does

not exceed 10%.

The cooldowns of the data series named nAx (axial) were performed applying

10 mG of external axial magnetic field. For curves 1Ax and 2Ax an administrative

limit of 16 MV/m was set for the accelerating field to avoid quenching the cavity.

Table 5.1. Cooldowns summary and associated measured residual resistance.

Name Field Orientation Starting T (K) R0 (nΩ)

1Ax Axial 300 2.1

2Ax Axial 50 5.3

3Ax Axial 300 2.9

1Ort Orthogonal 300 6.3

2Ort Orthogonal 260 6.1

3Ort Orthogonal 170 7.7

4Ort Orthogonal 25 13.9
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Figure 5.4. Q0 versus accelerating field measured at T < 1.4 K.

The highest quality factor was reached with 1Ax: the Q-factor increases

slightly at low field and it reaches 1.3 · 1011 at 16 MV/m. The 3Ax data set re-

veals a reduced performance. Q0 decreases considerably with the accelerating field,

showing the typical slope due to trapped magnetic flux [57, 5]. The worst perfor-

mance for the axial series is found for the 2Ax data set, in which the Q-factor reaches

only 5.1 · 1010 at 16 MV/m.

The cooldowns of the nOrt (orthogonal) series were performed applying 10 mG

orthogonally to the cavity axis. In general, all the curves of the orthogonal series show

reduced performance compared to the axial series, and they all show field dependent

Q-slopes characteristic of trapped flux. The best performance for the orthogonal

series is shown by 2Ort with Q0 = 4.3 · 1010 at 16 MV/m, while the lowest Q-factor

values are given by the 4Ort data series, and in this case the Q-factor is 1.9 · 1010 at

16 MV/m.

The residual resistance at 16 MV/m was calculated directly as Rres = G/Q0

(with G = 270Ω), since, as already mentioned, the surface resistance at T < 1.4 K
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a) b)

Figure 5.5. Residual resistance versus mid-top (a) and bot-top (b) thermal gradients
[6].

is affected only by the residual part. These values of residual resistance, reported in

Table 5.1, allows to compare the global cavity losses of each series.

5.3.2 Cooldown dynamics analysis. Examining the data series axial and

orthogonal separately, different cooldowns lead to different residual resistances, as

reported previously for the usual vertical configuration [5].

Two parameters seem useful to describe the dynamics of the cavity cooldown:

the temperature differences ∆Tbot−top and ∆Tmid−top. The first one corresponds to the

temperature difference between the top and the bottom of the cell, when the bottom

reaches Tc. The second one is the temperature difference between the top and the

mid positions of the cell when the middle position passes through the SC transition.

The residual resistance as a function of the thermal gradients ∆Tmid−top and

∆Tbot−top is displayed in Figure 5.5. Looking at Figure 5.5 (a), the residual resistance,

for the orthogonal series, seems to follow a trend with the thermal gradient ∆Tmid−top.

No particular trend appears for the axial series. On the other hand, the linear trend

of the residual resistance as a function of the thermal gradient ∆Tbot−top appears only

for the axial series (Figure 5.5 (b)).
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Figure 5.6. Evolution of the SC-NC interface during the cooldown [6].

Comparing 2Ort and 3Ort, they show the same ∆Tbot−top thermal gradients,

but lower R0 value is measured for 3Ort, which instead has a higher ∆Tmid−top.

The data suggests that both mid-top and bottom-top thermal gradients may

play an important role to determine the residual losses. As one could intuitively

expect: cooling details may vary as the SC-NC boundary progresses along the cavity

profile, but what matters for efficient flux expulsion are thermal gradients at the SC-

NC phase front present during the whole period of time when the transition front

progresses through the cavity.

In order to better understand the global behavior of the cavity during the

cooldown, the SC-NC interface evolution has been investigated. Setting to zero the

time at which the cavity bottom position passes through transition, the position

of the SC-NC interface can be plotted against the time it takes moving from one

thermometer position to another, as shown in Figure 5.6.

It is important to underline that the slope of the segment connecting two points



70

corresponds to the average speed (cm/min) of the SC-NC interface along the cell, that

should not be confused with the cooling speed (K/min) which, on the contrary, does

not seem to be a key parameter for cavity losses.

From Figure 5.6 it is possible to conclude that thermal gradients per unit length

are not constant throughout the movement of the SC-NC interface, but they decrease

as the boundary moves towards the top. This is perhaps an effect of the cavity starting

out warm but then rapidly cooling by conduction. This could potentially cause more

flux to get trapped at the top, which in the horizontal cavity case corresponds to the

equator, causing a greater performance degradation compared to the vertical cavity

orientation.

As an extreme case, it can be noticed that for the series 4Ort the top of the

cavity passes through transition before the mid-top position. The last point which

becomes SC is not the very top as in all the other cases, therefore the trapped flux

is not concentrated at the equator but rather is redistributed in the nearby zone.

The fact that the mid-top position becomes superconducting after the very top of

the cavity suggests that the SC transition dynamic does not follow a sharp SC-NC

interface movement across the cavity, but is rather described by random nucleation

of SC island. In this nucleation scenario, the incomplete Meissner effect is enhanced

by the presence of normal conducting islands surrounded by SC material, leading to

a reduced efficiency of flux expulsion and large residual losses, as hypothesized in

previous work [54] and demonstrated in Chapet 6.

Looking carefully at the series 3Ax and 2Ort, they show the same ∆Tbot−top

and ∆Tmid−top thermal gradients (Figure 5.5), and also the same SC-NC transition

dynamics (Figure 5.6). This implies that the two cooldowns can be considered com-

parable, and the difference by a factor of 2 in the residual resistance between them

can be more likely attributed to some effects introduced by the different orientation
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Figure 5.7. Temperature variation versus the accelerating field [6].

of the magnetic field.

It is important to point out that the magnetic field just before the transition

was slightly higher in case of the 2Ort (about 12 mG) than in the case of 3Ax (about

9 mG), yet this difference does not seem sufficient to account for a factor of two

difference in residual resistance per same cooling regime. In general, looking at Figure

5.4 and at the residual resistances listed in Table 5.1, seems that the magnetic field

applied orthogonally to the cavity axis may have a larger effect in deteriorating the

cavity performance and increasing the residual losses than the axial magnetic field.

5.3.3 Flux hole scenario. In Figure 5.7 is shown the temperature acquired

at the bottom, mid, mid-top and top positions of the cavity equator, as a function

of the accelerating field. The figure shows that the orthogonal magnetic field can
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Figure 5.8. Q0 and Ttop versus accelerating field for HTS measurements done with
cooldowns started at 100 K and 60 K [6].

lead to local heating on top of the cavity equator, meaning that the magnetic field

concentrates in this area after the SC transition. Indeed, during the acquisition of the

series 1Ort, 2Ort and 3Ort the thermometers at the top position warmed up at high

field, as shown in Figure 5.7. This temperature rising is prominent in the 1Ort series,

where the temperature starts to exceed 1.4 K at about 20 MV/m, and it reaches 1.6

K at about 30 MV/m. The warming up is lower for the 2Ort and 3Ort series where

it starts from about 27 MV/m reaching just 1.45 K. The absence of heating of 4Ort

may be due to the different cooldown dynamics, as discussed previously, which does

not involve the concentration of magnetic flux at the very top of the cavity, but rather

flux being homogeneously trapped because of lack of cooling thermal gradients.

In the other cases instead, the heating on the very top position of the cavity

is a newly described phenomenon for SRF cavities, and it can be considered a proof

of the local dissipation due to concentrated trapped flux on top of the cavity equator

that appears when cavities are cooled in horizontal configuration, and in presence of

orthogonal magnetic field.
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Interestingly, the same effect was repeatedly observed during test of the 9-cell

nitrogen-doped niobium cavity TB9AES021 dressed with the LCLS-II vessel at the

FNAL horizontal test facility (HTS). This cavity was instrumented with flux gates and

thermometers inside the helium vessel, and as shown in Figure 5.8, the thermometer

located on top of cell 1 of the cavity (input coupler side) showed significant heating

starting at medium field (about 10 MV/m) and the temperature reached values larger

than 3 K at above 20 MV/m. This heating strongly affected cavity performance,

causing Q0 degradation.

As can be seen in Figure 5.8, increasing the cooldown starting temperature

pushes the onset of the heating and correspondingly improves cavity performance.

Note that the increasing of the starting temperature usually traduces in larger thermal

gradients along the cavity. This nine cell data, together with the previously presented

single cell data suggests a scenario where an orthogonal magnetic field component

might be present close to cell 1 during the SC-NC transition, causing a ”flux hole” hot

spot to appear on top of cell 1, and suggesting that this is an important performance

limiting mechanism for superconducting cavities placed in accelerators.

5.3.4 Flux expulsion analysis. In order to further analyze this phenomenon,

the magnetic field data acquired during the single-cell cavity horizontal cooldown are

analyzed.

The magnetic field data acquired during the cooldowns are shown in Figure

5.9 (axial magnetic field series) and 5.10 (orthogonal magnetic field series). In order

to properly interpret these data it is necessary to take into account that, because of

the Meissner effect, after an efficient flux expulsion the magnetic field redistributes

outside the superconductor depending on its geometry.

In case of an elliptical single-cell cavity with field parallel to its beam axis, the
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Figure 5.10. Flux expulsion ratio BSC/BNC, for the orthogonal magnetic field series,
measured with the fluxgate at the cavity mid position (a) and with the fluxgate at
the cavity top position (b) [6].

magnetic field lines thickened at the equator. In the ideal case, when the magnetic

field is completely expelled from the cavity walls, the magnetic field at the cavity

equator increases by approximately a factor of 1.74 when passing from the NC to

the SC state (Figure 5.11). The cylindrical symmetry of the system implies that the

magnitude of the field after the SC transition is the same all around the equator.

This means that when the cavity expels some magnetic field, a step should

appear in the magnetic field data at the moment of the SC transition. On the other
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B   /BSC NC

Figure 5.11. COMSOL simulation of the magnetic field redistribution outside the
cavity due to the Meissner effect, considering axial magnetic field applied.

hand, when no step appears during the transition means that all the magnetic field

get trapped in the cavity during the cooldown.

The magnetic field step occurs always at the SC transition temperature Tc, but

from Figure 5.9 it seems to be different from one series to another, this is possibly due

to the imperfect thermal equilibrium between cavity and thermometers, especially for

fast cooldowns with large starting temperatures.

In Figure 5.9 the ratio between the axial magnetic field after (BSC) and before

(BNC) the SC transition is shown as a function of temperature, for the mid (a) and top

positions (b). When the mid position pass through the SC transition, good magnetic

flux explosion is recorder for all the three cooldowns. At the top position instead only

Ax2 fully expelled the magnetic flux and for Ax3 the expulsion was instead poor. This

flux expulsion data are not fully in agreement with residual resistance values. This

is another proof that during the horizontal cooldown the magnetic flux expulsion is

driven by the local thermal gradient and therefore in order to obtain a clear picture

of the amount of flux expelled it would be necessary to have more flux gates along

the cavity equator.

In case of orthogonal field applied, the magnetic field redistributes differently
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Figure 5.12. a) COMSOL simulation of the magnetic field redistribution, along the yx-
plane, considering orthogonal magnetic field applied (along the z-axis). b) COM-
SOL simulation of the magnetic field redistribution, along the zx-plane, considering
orthogonal magnetic field applied (along the z-axis).

than in the previous case. In addition, in this case the cylindrical symmetry is broken.

Assuming that the cavity axis is along the x-axis and the orthogonal magnetic field

is applied along the z-direction, it is necessary to analyze the redistribution along

both the xy and xz planes in order to understand the magnetic field value reads

from the orthogonal mid and top fluxgates. When the magnetic flux is completely

expelled from the cavity walls, the magnetic field at the cavity mid position increases

by approximately a factor of 1.4 (Figure 5.12 (a)), while it tends to zero at the top

position (Figure 5.12 (b)).

In Figure 5.10 (a) the ratio BSC/BNC, acquired with the orthogonal fluxgate

at the mid position of the cavity, is shown as a function of temperature. The series

Ort1, Ort2, and Ort3 show good flux expulsion while 4Ort shows poor flux expulsion.

In Figure 5.10 (b) the ratio BSC/BNC, acquired with the orthogonal fluxgate on top,

as a function of temperature, gives instead information regarding the field trapped

on this position. This data suggest that Ort1, Ort2, and Ort3 trapped a considerably

larger amount of magnetic field on top of the cavity equator with respect to 4Ort.
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a) b)

Figure 5.13. Sketch of the field redistribution in the Meissner state with magnetic
field applied a) axially and b) orthogonally to the cavity axis [6].

The magnetic field data are in agreement with what it was previously inferred

in this section, i.e. during a fast cooldown thermal gradients decrease as the SC

transition moves towards the top of the cavity, causing flux to get trapped in this

position. On the other hand, if the cooldown happens slowly the flux is homogeneously

trapped around the cavity wall.

5.4 Physics behind the flux hole scenario

After the SC transition the magnetic field lines can redistribute in three pos-

sible ways: i) completely outside the cavity, ii) escaping through the beam pipes, or

iii) escaping across the cavity wall if pinning centers are present, when a non-efficient

expulsion occurs.

When the magnetic field is applied axially to the cavity (Figure 5.13 (a)) the

expulsion can be efficient whenever thermal gradients are large enough to allow so,

because the flux lines that cross the cavity walls always have an easy path to follow

when they are expelled during the SC transition.

Whereas, when the applied field is perpendicular to the cavity axis (Figure
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5.13 (b)), the magnetic flux lines redistributed with the ii) and iii) mechanisms do

not have any possibility to escape from the cavity inner volume except crossing the

cavity walls. Assuming a sharp SC-NC interface, the magnetic flux lines concentrate

in the normal-conducting region, at the top of the cavity. This region becomes smaller

and smaller as the transition boundary advances, until the magnetic field is completely

squeezed at the very top of the cavity equator. The top point of the cell is the last

to be cooled below the transition temperature Tc, becoming a ”flux hole” in the

superconductor, from which the flux is not energetically favorable to escape, as the

only way out would be via crossing the already superconducting regions.

The situation depicted implies that the geometry of the system could lead to

incomplete Meissner effect, even though the thermal gradient across the cavity is high

enough to provide efficient flux expulsion.

This may explain why the orthogonal magnetic field series always lead to

poorer cavity performance than the axial ones. As verified also with magnetic field

data, the orthogonal magnetic field is trapped on top of the cavity equator during

fast cooldowns even when large thermal gradients are present, leading to temperature

rising starting from medium RF field values.

5.5 Conclusions

This chapter presents the study of a superconducting single cell elliptical cavity

that was horizontally cooled in presence of different magnetic field orientations.

The first important conclusion is that cooling cavities in the horizontal orien-

tation results in the thermal gradient at the SC-NC phase front, which - differently

from the vertical cavity orientation cooling - significantly decreases at the later stages

of the cavity transition when the top of the cavity is approached. This reduce thermal

gradient at the top leads to more trapped flux in that region, and therefore an increase
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in RF losses as it resides in the high surface magnetic field area. Cooldown procedure

should therefore be sought in accelerators to ensure that a sufficient thermal gradient

is maintained throughout the full cell profile, or that the final resting place of flux is

not at a cavity equator.

The second important conclusion is that different field orientations may have

a different impact on final performance; in particular, an orthogonal magnetic field

may have a larger degrading impact for RF losses than an axial component for the

same efficient cooldown procedure. Finally, an important new phenomena of heating

at the top of the cavity has been observed in both the single cell and dressed nine cell

studies, compatible with the ”flux hole” scenario, where vertical field lines become

encircled by superconducting regions and highly concentrated at the very top of the

cavity. This can be harmful for cavity performance in an accelerator and could lead

to both Q-factor and quench degradation.
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CHAPTER 6

COOLDOWN DYNAMICS: FAST VS SLOW

6.1 Introduction

As mentioned in Chapter 5, fast cooldowns magnetic flux expulsion when

large thermal gradients are generated along the cavity during the superconducting

transition. On the other hand, slow cooldowns lead to fully trap the external magnetic

field causing the increasing of losses.

Looking at the flux expulsion behavior of a cavity vertically cooled, the corre-

lation between the flux trapping and the thermal gradient along the cavity appears

clear looking at the graph of flux expulsion ratio (BSC/BNC) versus the temperature

difference T1−T2 (see Figure 6.1), where BSC and BNC are respectively the magnetic

field after and before the superconducting transition, and T1 is the temperature of

the top iris of the cavity, measured when the temperature at the equator (T2) is equal

to the critical temperature Tc. As discussed in the previous chapter, considering the

cavity cooled in presence of axial magnetic field, BSC/BNC ≃ 1.74 in case of perfect

Meissner effect and BSC/BNC ≃ 1 in case of complete flux trapping.

This phenomenon was first studied in Reference [54], in which the authors

hypothesized two possible mechanisms that may explain the difference between fast

and slow cooldown. The first mechanism takes into account that thermal gradient

may generate a thermal force capable to depin trapped flux from the superconductor,

allowing efficient magnetic flux expulsion. The second mechanism instead takes into

account the possibility that during the fast cooldown the superconducting/normal-

conducting (SC-NC) transition progress sharply during all the process, while during

the slow cooldown islands of normal-conducting material surrounded by supercon-

ducting material are generated. Therefore, during the slow-cooldown the magnetic
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Figure 6.1. Ratio between the magnetic field after BSC and before BNC the supercon-
ducting transition as a function of the temperature difference T1 − T2 [5].

field in the NC region cannot be expelled even after the complete SC transition of

the cavity, since an energetically favorable path does not exists for the field to be

expelled.

Recently, a theoretical model was proposed by T. Kubo [58] in order to ex-

plain the flux expulsion behavior as a function of the thermal gradient. This model

considers that the mixed state covers a wider spatial range along the cavity during

the cooldown when poor thermal gradients are present, compared to a scenario where

thermal gradients are large. The presence of this wider range increases the probability

of flux trapping. Under this assumption the number of trapped vortices are equal to:

Ntrap = AMBext

(

1

T̃ ′
+DM

)

, (6.1)

where AM is a material dependent parameter proportional to the number of pinning

center, Bext is the external field, T̃
′

= T
′

/Tc is the thermal gradient T
′

normalized

for the critical temperature Tc and DM is another material dependent contribution.

As shown in [58] this model is capable of interpolating the data of Romanenko
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et al. [5] using AM and DM as free parameters of the interpolation.

The major limitation of this model is that for T̃ → 0, i.e for low values of

thermal gradients, Ntrap diverges, implying that the amount of trapped field tends to

infinity.

In this chapter a simple model is described in order to explain magnetic flux

expulsion as a consequence of the thermodynamic force winning against the pinning

force. In this model a Gaussian distribution of defects with different pinning forces

is assumed in order to explain recent flux expulsion data, in which the level of flux

expulsion is affected not only by the thermal gradient, but also by the micro-structure

of the cavity material [59, 60].

In the second part of this chapter, the dynamics of fast and slow cooldown

are studied by means of a T-map system capable to map the temperature around

the cavity during the cooldown. This experiment pointed out that the complete flux

trapping observed with slow cooldown may be due to normal-conducting islands from

which the magnetic flux cannot be expelled even once the whole cavity is cooled below

the critical temperature [61].

6.2 Thermodynamic force acting on a vortex

In order to understand the mechanism behind magnetic flux expulsion, a sim-

ple model that describes the vortex dynamics during the superconducting transition,

governed by a thermodynamic force, is developed.

The Gibbs free energy density of a material in presence of magnetic field is

defined as g = f + BM , where f is the free energy density, B the magnetic field

induction and M the magnetization. The magnetization of a superconductor in the

Meissner state is defined by setting at zero the magnetic induction B = µ0(H+M) =

0, giving M = −H . Therefore, the Gibbs free energy density of a superconductor is
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Figure 6.2. Gibbs free energy density g as a function of the magnetic field H (a) and
as a function of temperature T (b).

defined as:

g = f −BH , (6.2)

where f is the Helmholtz free energy density, defined as the areal vortex density n

times the energy per unit of length of a single vortex line E: f = nE. Similarly, the

magnetic induction can be defined as B = nΦ0, where Φ0 is the magnetic flux quanta.

The Gibbs free energy can be rewritten as:

g = nE −BH = B (Hc1 −H) , (6.3)

where Hc1 = E/Φ0 is the lower critical field. In Figure 6.2 the Gibbs free energy

density g is plotted as a function of the field H . The field H = Hc1 represents the

transition point from the Meissner (H < Hc1) to the mixed (H > Hc1) state. From

Equation 6.3, it is possible to notice that g = 0 at the transition between the two

states, g > 0 in the Meissner state, and g < 0 in the mixed state. This means that

the Gibbs free energy is minimized when vortices are in the mixed state [36].

The temperature dependence in the Gibbs free energy is given by the temper-

ature dependence of Hc1, resulting in:

g = B

[

Hc1(0)

(

1−
(

T

Tc1

)2
)

−H

]

, (6.4)
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where Tc1 is the lower critical temperature, associated with the transition from the

Meissner to the mixed state. In absence of magnetic field Tc1 = Tc2 = Tc. Since

during the cooldown of superconducting cavities the external magnetic field is actually

very small, of the order of some milliGauss, it is possible to assume that Tc1 ≃ Tc.

Considering an uni-dimensional thermal gradient, the force that drives the vortex

movement can be defined as:

f = −∂g
∂x

= − ∂g

∂T

∂T

∂x
, (6.5)

where∇T = ∂T/∂x is the thermal gradient along the x direction. From the derivative

of Equation 6.4, the force per unit of volume results:

f =
2BHc1(0)T

T 2
c

∇T , (6.6)

which defines that during the superconducting transition vortices move toward the

direction of the thermal gradient, minimizing the Gibbs free energy.

During the superconducting transition, this thermodynamic force moves free

vortices from the Meissner to the mixed state. Considering a fast cooldown of a cavity,

the superconducting transition starts from the bottom and propagates through the

top of the cavity. The same happens for the vortices which are continuously pushed

up, toward the warm area of the cavity.

However, since some vortices may be pinned in defects in the material, the

thermodynamic force has to be greater than the pinning force fp, in order to be able

to move the pinned vortices. The pinning force acts against the flux motion and it is

generated by the interaction between flux lines and inhomogeneities or defects in the

material. Historically, the pinning force was defined in terms of the minimum current

density needed to depin vortices, i.e. the critical current density Jc. In this scenario

the pinning force compensates the Lorentz force acting on a vortex and the pinning
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force per unit of volume can be defined as:

fp =
∣

∣J̄c × nΦ̄0

∣

∣ = JcB , (6.7)

where n = B/Φ0 is the vortex density and Jc is the critical current density.

By equating Equation 6.6 to 6.7, it is possible to define the thermal gradient for

which the two forces compensate each other, the so-called critical thermal gradient:

∇Tc =
JcT

2
c

2Hc1(0)T
, (6.8)

which defines the minimal thermal gradient needed to depin a vortex subjected to

pinning. For a certain superconductor, with Tc and Hc1(0) fixed, the critical thermal

gradient depends on the temperature and on the critical current density Jc. Where

Jc is an average value that takes into account the different nature and concentration

of the defects present in the material.

Note also that to compare the model results with the experimental data, the

thermal gradient ∇Tc has to be convert in the temperature difference ∆T measured

during the superconducting transition, which is the temperature difference along the

cavity cell, from bottom iris to top iris (or along half cavity cell, from equator to

upper iris). Therefore:

∆Tc ≃ ∇Tc · l1/2cell ∆Tc ≃ ∇Tc · lcell , (6.9)

where lcell ≃ 32 cm is the length of the cavity cell and l1/2cell ≃ 16 cm is the length of

half cell. Depending on how data are shown, it is necessary to use one or the other

definition.

The critical current density is shown as a function of the critical temperature

difference ∆Tc in Figure 6.3, considering T = Tc = 9.2 K andBc1(0) = µ0Hc1(0) = 180

mT. From this figure it is possible to notice that, if complete flux expulsion is reached
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Figure 6.3. Critical current density as a function of the critical temperature difference
∆Tc.

with a temperature difference of ∆T = 5 K along the cavity cell, the average critical

current density has to be of the order of Jc ∼ 1 A/mm2, which seems to be a reasonable

value for niobium near Tc [62].

6.3 Statistical model of the flux expulsion

It is reasonable to assume that in the superconducting material there is a

statistical distribution of defects, where each defect is characterized by a certain

pinning force. Therefore, this model assumes that the distribution of pinning centers

can be described with a probability density function that defines the probability of

expelling a vortex that has a pinning force fp,i. The probability density function

(PDF) is centered around a most probable value of pinning force fp0 . Since the

pinning force can be directly converted in critical current density, the probability of

expelling vortices can also be described by the critical current Jci associated with the

pinning force fp,i.

The critical thermal gradient is, in turn, directly proportional to Jc at a specific
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Figure 6.4. Gaussian probability density function as a function of the critical tem-
perature difference ∆Tc. The orange area defines the probability that vortices are
swiped out when the critical temperature difference ∆Tci is reached.

temperature, therefore the statistical distribution of Jc may be converted in ∇Tc and

then in ∆Tc. Assuming that the distribution of defects have a random nature, the

probability that a vortex is pinned with a force proportional to the critical thermal

gradient ∇Tc may be described with a Gaussian probability density function. The

Gaussian distribution’s probability is defined as:

P (∇Tc) =
∫ ∇Tc

0

Ae
−
(∇Tc −∇Tc0)2

2σ2 d∇Tc , (6.10)

where A is the normalization constant, ∇Tc0 is the centroid of the PDF and σ2 is its

variance. The normalization constant A can be calculated by solving the following

integral:

P (∇Tc) =
∫ ∇Tcmax

0

Ae
−
(∇Tci −∇Tc0)2

2σ2 d∇Tc = 1 , (6.11)

this integral assures that the area of the Guassian distribution is equal to 1. This

implies that, considering all the possible values of critical thermal gradient ∇Tci , the

probability of expelling vortices is maximum and equal to 1. In order to solve thin
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integral numerically, the upper limit can not be set to infinite, so it is set at a value

∇Tcmax
>> ∇Tc0 .

The normalization constant A is therefore equal to:

A =

√

2
π

σ
[

erf
(

∇Tcmax−∇Tc0√
2σ

)

+ erf
(

∇Tc0√
2σ

)] . (6.12)

In Figure 6.4 the probability density p (∇Tc) is shown as a function of the

critical thermal gradient∇Tc. The orange area under the curve defines the probability

P (∇Tci) that vortices are swiped out with a thermal gradient ∇Tci . On the other

hand, the white area defines the probability 1− P (∇Tci) of trapping vortices at the

thermal gradient ∇Tci .

It is possible now to define the density of trapped vortices, ntrap, as the prob-

ability to trap vortices, times the vortex density n = Be/Φ0 generated by applying

an external magnetic field Be:

ntrap = [1− P (∇Tci)]n . (6.13)

Knowing ntrap, the trapped magnetic field may be easily calculated as: Btrap =

ntrapΦ0.

Therefore, using the definition of P (∇Tci) in Equation 6.11, the total magnetic

field trapped in the cavity results:

Btrap = Be






1−

∫ ∇Tci

0

Ae
−
(∇Tc −∇Tc0)2

2σ2 d∇Tc






, (6.14)

where ∇Tc is defined by Equation 6.8.

Experimental data of flux expulsion are usually represented as flux expulsion

ratio (BSC/BNC) as a function of the thermal gradient along the cavity, from equator

to upper iris, or from bottom iris to upper iris.



89

Therefore, in order to compare the statistical model with the experimental

data, it is useful to convert the Btrap in BSC/BNC. In order to perform this conversion,

it is necessary to take into account that when BSC/BNC ≃ 1.74 the flux is completely

expelled, while when BSC/BNC ≃ 1 the flux is completely trapped in the cavity walls

(as defined in Chapter 5). Considering then a linear trend of the flux expulsion within

1 < BSC/BNC < 1.74, the trapped flux can be defined as:

Btrap = BNC

[

1−
BSC

BNC
− 1

0.74

]

, (6.15)

and solving this formula for BSC/BNC, the flux expulsion ratio can be calculated

knowing the trapped field Btrap and the external magnetic field when the cavity is

still normal-conducting Be = BNC. In Figure 6.5, the percentage of trapped flux

%Btrap as a function of the ratio BSC/BNC is shown. The red line is calculated using

Equation 6.15, while the light blue points are experimental data that confirms the

linear trend. The %Btrap of the experimental data is calculated as:

%Btrap =
Rfl

S
· 100 , (6.16)

where Rfl is the trapped flux surface resistance and S the trapped flux sensitivity.

The meaning of these parameters are well discussed in Chapter 7.

6.3.1 Single distribution of pinning centers. In Figure 6.6, the probability

density p (∇Tc) is shown as a function of the critical thermal gradient, for three

examples of PDF. The PDF shown with the red curve (a) has the same centroid ∇Tc0
of the blue curve (b) but double standard deviation σ. The PDF shown with the

green curve instead (c) has same σ of the red curve but double value of ∆Tc0 . The

legend shows the values of the centroids of the PDF converted in Jc.

Interesting is to see what is the effect of the different parameters of the PDF,

on the flux expulsion behavior. In Figure 6.7, the flux expulsion ratio as a function

of the temperature difference ∆T is shown for the three PDF shown in Figure 6.6.
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Figure 6.5. Linear trend of the percentage of trapped field (Btrap) versus the flux
expulsion ratio BSC/BNC.

It is possible to notice that when the standard deviation of the PDF is doubled

(curve a vs b in Figure 6.7), this has a considerably large effect on the flux expulsion

behavior, increasing the thermal gradient needed to reach complete flux expulsion.

This effect seems to be less pronounced when the center value of the PDF is doubled

(curve a vs c in Figure 6.7). In this case indeed the thermal gradient needed to reach

complete flux expulsion remains unchanged. The slope of the flux expulsion ratio is

instead lowered, indicating poorer flux expulsion behavior for low values of thermal

gradients.

6.3.2 Double distribution of pinning centers. Depending on the material,

more than one distribution of pinning centers may be present. Each group of defects

as dislocations, grain boundaries, precipitates, etc., defines a certain probability to

expel vortices with a pinning force proportional to a specific Jci and ∇Tci .

Therefore, the model take into account the presence of two distributions of

pinning centers through a double peaked probability density function. This time the
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Figure 6.6. Probability density of expelling vortices as a function of the critical
temperature difference for three example of probability density functions.
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Figure 6.7. Flux expulsion ratio as a function of the temperature difference for the
three example of probability density functions described in Figure 6.6.
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normalization is made taking into account both the distributions in order to consider

that the complete flux expulsion is achieved only when vortices are flushed out from

both distributions of pinning centers.

In order to understand how the presence of the second distribution modifies

the flux expulsion property, in Figure 6.8 the probability density function is shown,

for four example of pinning centers distributions, as a function of the temperature

difference ∆Tc. In Figure 6.9, are shown the correspondent curves of flux expulsion

ratio as a function of the temperature difference.

The four examples have the same parameters for the first peak of the PDF

and different parameters for the second peak. Looking at the red curve (b), its second

peak has double standard deviation σ than the one of the blue curve (a). The green

curve (c) has instead same σ but double ∆Tc0 compared to the red curve (b). The

orange curve (d) has the same center value ∆Tc0 but double σ compared to the green

curve (c).

From Figure 6.9 it is possible to see that, when σ of the second peak is doubled,

once ∆T reaches the value of the maximum critical thermal gradient of the first

peak, the first plateau of the flux expulsion ratio appears at lower values of BSC/BNC

(comparing the red curve with the blue curve and the orange curve with the green

curve of Figure 6.9). This happens because the percentage of vortices flushed out

from the first distribution of pinning centers is lowered, since a bigger fraction is now

part of the second distribution. When instead the centroid of the peak is doubled,

the first plateau of the flux expulsion ratio last for higher values of ∆T . It is indeed

necessary to reach larger thermal gradients in order to start to expel vortices pinned

to the second distribution of pinning centers.

6.3.3 Comparison with experimental data. In order to verify this model, the
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experimental data show in the References [59, 5] are interpolated.

In Figure 6.10, the flux expulsion data of the cavity AES011 studied in Ref-

erence [5] is shown and interpolated with the statistical model. In Figure 6.11, the

same is shown for the cavity CBMM studied in Reference [59]. The blue curves are

the results of the statistical model, in which the parameters ∇T0 and σ are optimized

in order to make the model adhere to the experimental points. The red curve show

instead the respective probability density function.

Both these cavities show good flux expulsion behavior, and the cavity AES011

is capable to reach the ideal value of BSC/BNC = 1.74. For the cavity CBMM the

flux expulsion ratio saturates around BSC/BNC ≃ 1.7, therefore for this cavity the

ration BSC/BNC = 1.7 was considered as indicating complete flux expulsion instead

of BSC/BNC = 1.74.

The parameters of the Gaussian probability density function are summarized

in Table 6.1. The PDF of CBMM has larger values of both ∆T0 and σ∆T0
than

AES011, in agreement with the fact that larger thermal gradients are needed to flush

out vortices. Note that the temperature difference ∆T of AES011 in Figure 6.10 is

defined along half cell, while the one of CBMM in Figure 6.11 is defined along the

entire cell (as all the other cavities).

As can be seen in Figures 6.10 and 6.11, the Gaussian PDF start with a finite

value for ∆T = 0. This is necessary in order to take into account the finite probability

that some vortices may not be pinned.

Using this single distribution of pinning centers, it is not possible to describe

a scenario where the cavity is capable to expel flux only until a certain level. This is

the case of some of the cavities studied in Reference [59] for which flux expulsion is

not anymore improved by increasing the temperature difference along the cavity cell
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Figure 6.10. Comparison between the experimental values (yellow diamonds) and the
simulated curve (blue curve) of the flux expulsion behavior of the cavity AES011.
The red curve shows the probability density function used to generate the simulated
curve.
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Table 6.1. Summary of the parameters of the Gaussian probability density functions
used to describe flux expulsion data of AES011 and CBMM.

Cavity Name ∆T0 (K/m) σ∆T0
(K/m) Jc (A/mm2) σJc (A/mm2)

AES011 2 1 0.06 0.03

CBMM 3 4 0.09 0.12

during the cooldown.

This behavior may be interpreted as consequence of the presence of different

distributions of pinning centers with larger average pinning force and therefore larger

∆T0. In this case, in order to achieve the complete flux expulsion, it is necessary to

reach the critical thermal gradient of all the distributions.

A double peaked PDF is taken into account in order to describe the exper-

imental data. The first peak is defined as the one with the lowest ∆Tc0 , which is

indicated as ∆T 1
c0 . ∆Tc0 of the second peak is indicated as ∆T 2

c0 instead. The same

notation is used to indicate the different values of Jc0 and σ.

In Figure 6.12 the simulations are compared with the flux expulsion data of

the cavities CBMM and ACC002 show in Reference [59]. It is clear that in both

cases, the model well interpolates the experimental data. The parameters set in the

simulation are shown in Table 6.2.

Interpolating the data of the cavity CBMM using the double peaked PDF, it

is clear that this cavity reached only BSC/BNC = 1.7, because the thermal gradients

reached during the cooldowns were actually lower than the critical thermal gradients

needed to depin vortices from the second distribution of defects.

Comparing the parameters needed to simulate the flux expulsion behavior of

CBMM with ACC002, it is possible to notice that ACC002 needs larger thermal

gradient than CBMM in order to reach the first plateau. This is due to both larger
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circles) and the simulated curves (blue curve) of the flux expulsion behavior of the
cavities CBMM and ACC002. The simulation is done taking into account a double
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the cavities AES017 and AES017b. The simulation is done taking into account a
double distribution of pinning centers.
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Table 6.2. Summary of the parameters of the double peaked probability density function used to describe flux expulsion data
of the cavities ACC002, CBMM, AES017 and AES017b.

Cavity Name
I distribution II distribution

∆T 1
c0

(K/m) σ1
∆Tc0

(K/m) J1
c0

(A/mm2) σ1
Jc0

(A/mm2) ∆T 2
c0

(K/m) σ2
∆Tc0

(K/m) J2
c0

(A/mm2) σ2
Jc0

(A/mm2)

ACC002 12 13 0.36 0.39 80 13 2.4 0.39

CBMM 1 3 0.03 0.09 75 0.2 2.26 0.006

AES017 1 6 0.03 0.18 75 17 2.26 0.5

AES017b 1 2 0.03 0.06 75 0.28 2.26 0.008
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∆T 1
c0 and σ∆T 1

c0

. The ratio between the two peaks area plays instead a central role in

determining the value of BSC/BNC of the plateau. The smaller value of ACC002 is

given by the larger area of the second peak compared to the first one.

In Reference [59], it is also shown a case in which a cavity with poor flux

expulsion property, become capable to efficiently expel magnetic flux after a heat

treatment of one hour at 1000 ◦C.

In Figure 6.13 the simulations are compared with the flux expulsion data of

such cavity before (AES017) and after the high temperature baking (AES017b). Also

in this case the simulations are capable to well describe the flux expulsion behaviors.

The simulations are done considering the same ∆T 1
c0

and ∆T 2
c0

for both the double

peaked PDF of AES017 and AES017b (see Table 6.2). The only parameters that are

different between the two double peaked PDF are the two standard deviations σ1 and

σ2. The σ of both PDF are considerably narrowed after the baking treatment. The

differences between the simulated distributions can be better seen in Figure 6.14.

It is possible to think that the high temperature baking randomly dissolve

defects, without changing their own pinning force. This results in a narrower PDF,

which is centered around the same peak centroid as before the baking treatment.

In order to better visualize the problem, let us assume an arbitrary initial

number of defects equal to N = 20 × 107, distributed over a double distribution

of pinning center with pinning force proportional to the critical thermal difference

along the cavity ∆Tc, as shown in Figure 6.16 (a) by the blue histogram. From

this distribution it is possible to calculate the probability density p(∆Ti) of swiping

vortices out of the superconductor at ∆Tci :

p(∆Tci) =
n(∆Tci)/N

w
, (6.17)

where w is the histogram’s bin width (w = 2 K). The probability density function
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Figure 6.15. Modeled flux expulsion behaviors of the studied cavities.
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Figure 6.16. Histogram representation of the pinning centers distribution (a) and
probability density of expelling vortices (b) before and after the high temperature
baking.

calculated using Equation 6.17 is reported with the blue histogram in Figure 6.16 (b).

Now, assuming that after the high temperature baking, the total number of

pinning centers N decreased to one fifth of the initial value (4× 107), the height and

standard deviation of the distributions change accordingly. The distribution centroids

remain instead fixed since not affected by the thermal treatment. In Figure 6.16 (a),

the red histogram shows how the distribution of of pinning centers change after the

baking under these assumptions.

In Figure 6.16 (b), the red histogram shown how the probability density p(∆T )

calculated with Equation 6.17, change after the baking treatment. Since the pinning

center distributions are now narrower, the probability density function narrows ac-

cordingly and increases also its height in order to maintain the total probability equal

to 1.
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Figure 6.17. Comparison between experimental (yellow diamonds) and simulated flux
expulsion data (blue curve) of the cavity AES011 using a double peaked probability
density function.

In Figure 6.15 are show the complete flux expulsion curves simulated for the

cavities CBMM, ACC002, AES017 and AES017b. As expected the thermal gradient

needed in order to reach the complete flux expulsion are too large to be achieved

during the cooldown. From the simulation, for all the four cavities, in order to reach

BSC/BNC = 1.74, ∆T of about 90 K are needed along the cavity cell.

Considering again cavity AES011, this cavity is the only one capable to reach

BSC/BNC = 1.74, as can be seen from Figure 6.10. However, from this graph it is

possible to notice that only the point with ∆T1/2cell = 5.5 K reaches this situation.

Therefore, it may be possible that even this cavity has to be described by a double

distribution of defects. The result obtained using a double distribution in shown in

Figure 6.17. The model is capable to well simulate the flux expulsion behavior by

using the following parameters: J1
c0

= 0.03 A/mm2, σ1 = 0.06 A/mm2, J2
c0

= 0.9

A/mm2, σ2 = 0.005 A/mm2.
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6.4 Cooldown dynamics recorded via T-map

Flushing out of vortices due to the thermodynamic force is a possible mech-

anism that may explain both the intermediate and the complete magnetic flux ex-

pulsion behavior of superconducting cavities during their cooldown. However, in the

rest part of this chapter the flux expulsion dynamics during fast and slow cooldown

are analyzed in order to understand if their differences may play an important role

too in determining the magnetic flux expulsion behavior.

When a slow cooldown is performed, the nucleation of the superconducting

phase may be different compared to the one during the fast cooldown.

In order to verify whether the nucleation is really different in these two cases,

the NC-SC transition dynamics is recorder by mapping the temperature all around

the cavity during both a fast and a slow cooldown.

6.4.1 Experimental set-up. The cavity was instrumented with a T-map (Fig-

ure 6.18), an advanced diagnostic technique which allows to measure and map the

temperature all around the cavity [63]. The FNAL T-map system consist on 570

thermometers installed on 36 boards that are assembled around the cavity every 10

degrees each. Every board counts 16 thermometers. In the experiments discuss in

this chapter the T-map system is used for two different reasons: 1) to detect the

temperature all around the cavity during the cooldown below its critical temperature

and 2) to measure the temperature around the cavity during the RF measurement.

6.4.2 Data analysis and discussion. In order to clarify the difference between

the dynamic of slow and fast cooldown, the T-map system is used to detect the

temperature all around the cavity during both types of cooling.

In Figure 6.19 (a) is shown an example of a T-map image. The image illustrates

that the white area corresponds to the superconducting region, with T < 9.25 K,
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a) b)

Figure 6.18. Picture of: (a) the T-map system mounted on a single-cell cavity, (b) a
single board of the T-map system mounted on the cavity.

while the colorful area corresponds to the normal-conducting region with temperature

T > 9.25 K indicated by the color legend. In Figure 6.19 are also indicated the

positions of both the bottom and the top of the cavity equator, which corresponds

to the board number 13 and 31, respectively. Moreover, the temperature of the

equatorial region of the cavity is given by the thermometer number 8. This can be

better seen from the sketch in Figure 6.19 (b) in which a scheme of the cavity is shown

with one line of thermometers (board number 13).

The T-maps acquired during the fast cooldown are reported in Figures 6.20,

6.21 and 6.22. The Figures 6.20 (a), (b) and (c) shows the moments just before the

starting of the superconducting transition. Figure 6.20 (d) capture the beginning of

the SC transition, that starts from the bottom of the cavity equator, when the top is

instead still at T ∼ 15 K. From the successive images it is possible to notice than the

interface between the normal-conducting and the superconducting propagates really
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(a) (b)

Figure 6.19. (a) Sketch of a T-map image in which the temperature of the top and
the bottom of the cavity equator are pointed out. The image also shows that
the equator temperature is recorded with the thermometer number 8. The white
region of the T-map indicates a superconducting area with T < Tc, while the
colored region indicates the normal-conducting area with T > Tc. (b) Scheme
of a horizontal single-cell cavity in which the top, mid and bottom positions are
indicated with the correspondent T-map board number. The scheme also shows
how the 16 thermometers of one board are arranged around the cavity cell.

sharply from the bottom to the top of the cavity (Figures 6.21 (c)-(f) and Figures

6.22 (a) and (b)). Only at the end of the cooling the interface becomes diffuse and

some islands of normal-conducting phase appears at the top of the cavity (Figures

6.22 (c) and (d)).

The dynamic of the slow cooldown is shown in Figures 6.23, 6.24, 6.25, 6.26,

6.27 and 6.28. It appears from the beginning very different than the fast cooldown.

Figure 6.23 (a) show the moment before the superconducting transition really starts.

It is possible to notice how the temperature is now rather uniform around the cavity.

In Figure 6.23 (b), is shown the beginning of the transition which starts from the top

of the cavity equator. The warmest area of the cavity shows T ∼ 9.8 K, indicating
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(a) (b)

(c) (d)

(f)(e)

Figure 6.20. T-map images recorded during a fast cooldown.
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(a) (b)

(c) (d)

(f)(e)

Figure 6.21. T-map images recorded during a fast cooldown.
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(a) (b)

(c) (d)

(f)(e)

Figure 6.22. T-map images recorded during a fast cooldown.
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that there are no important thermal gradient along the cavity during this type of

cooldown. Moreover these warmer zones are randomly distributes around the cavity.

The same is true for the cold zones, indeed from Figures 6.23 (c)-(f) and Figures

6.24 (a)-(f) it is possible to notice how the SC regions nucleate in random spot of

the cavity. The further images show the growth of the superconducting areas and

also nucleation of new SC regions. Toward the end of the cavity transition, Figures

6.26 (d)-(f) and Figures 6.27 (a)-(f) show the presence of several normal-conducting

regions encircle by superconducting material.

These macroscopic islands of NC phase might be responsible of the complete

magnetic flux trapping observed during the slow cooldown. The magnetic field con-

centrates along these NC regions during the cavity transition and then, even once

the superconducting transition is complete, it is not allowed to escape anymore from

the material. Indeed, being surrounded by SC phases, the field does not have any

energetically favorable path to follow to be expelled from the superconductor.

Since these NC regions are randomly distributed all over the surface, the mag-

netic field is expected to be trapped rather uniformly on the cavity surface during

the slow cooldown.

In order to see the distribution of the magnetic field trapped in the cavity, the

T-map is used to record the temperature of the cavity during the RF measurement.

Such acquisition is done after that the magnetic field trapped in the cavity was min-

imized (after fast cooldown using the Helmontz coil to compensate for the external

magnetic field), and after that the cavity trapped 10 mG during a slow cooldown.

The images acquired at 1.5 K and 27.5 MV/m are shown in Figure 6.29. In order to

better seen the difference between these two scenarios, the measurements are done

after a vertical cooldown of the cavity. After the horizontal cooldown indeed the

measurements are affected by the concentration of the field on top of the cavity as
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(a) (b)

(c) (d)

(f)(e)

Figure 6.23. T-map images recorded during a slow cooldown.
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(a) (b)

(c) (d)

(f)(e)

Figure 6.24. T-map images recorded during a slow cooldown.
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(a) (b)

(c) (d)

(f)(e)

Figure 6.25. T-map images recorded during a slow cooldown.
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(a) (b)

(c) (d)

(f)(e)

Figure 6.26. T-map images recorded during a slow cooldown.
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(a) (b)

(c) (d)

(f)(e)

Figure 6.27. T-map images recorded during a slow cooldown.
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(a) (b)

(c) (d)

Figure 6.28. T-map images recorded during a slow cooldown.
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(a) (b)

Figure 6.29. Comparison between the T-map images acquired after fast cooldown in
compensated field (no magnetic field trapped) and slow cooldown in 10 mG (10
mG of magnetic field trapped). Both images are acquired on the cavity AES019
at about 27 MV/m and 1.5 K.

discussed in Chapter 5. From Figure 6.29 it is possible to see that after the slow

cooldown the cavity shows larger losses, distributed all around the cavity. These

losses are due to the magnetic field uniformly trapped around the cavity. Such losses

are of course confirmed also by the lowered Q-factor measured after this cooldown

(see Figure 6.30).

6.5 Conclusions

In this chapter the physics behind the magnetic flux expulsion was studied.

A simple model based on the thermodynamic force of the vortex was discussed as

possible mechanism capable of promoting magnetic flux expulsion. It was shown that

vortices tend to move from Meissner state to mixed state regions in order to minimize

their Gibbs free energy. This traduces in a movement of the vortices from the bottom

to the top of the cavity during the superconducting transition.

Taking into account that vortices may also be pinned in the material, the

thermodynamic force has to be greater than the pinning force in order to flushed

out also pinned vortices. Including a Gaussian probability density function that
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Figure 6.30. Q-factor versus accelerating field curves acquired at 1.5 K for the cavity
AES019 acquired after the cooldown with no field trapped (blue curve) and after
that the cavity trapped about 10 mG of magnetic field (pink curve). The T-map
images of Figure 6.29 are acquired during the same measurements.

takes into account the probability of expelling vortices and that is representative of

the distribution of the defects in the material, the magnetic flux expulsion data of

cavities with have been successfully described with the model. Most of the cavity

analyzed are described by a double distribution of defects, which sometimes traduces

in poor flux expulsion behavior. Indeed, in order to achieve complete flux expulsion,

it is necessary to reach the maximum critical thermal gradient of the second peak

of the probability density function. This may indeed explain why it is very rare to

measure flux expulsion ratios equal to the ideal value of 1.74.

Using a T-map system the dynamic of both slow and fast cooldown were

recorder during the superconducting transition. It was shown that during a fast

cooldown the SC transition moves sharply from the bottom to the top of the cavity.

This sharp interface promotes the vortex movement due to thermodynamic force,

from the bottom to the top of the cavity.
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As discussed in Chapter 5, when the cavity is horizontally cooled and the

thermal gradient are large enough, this vortex movement results in magnetic flux

expulsion for the magnetic component parallel to the cavity axis and flux trapping at

the top of the cavity equator for the perpendicular magnetic field component. When

the cavity is vertically cooled instead this situation results in magnetic flux expulsion

in both cases.

The T-map images also show that during the slow cooldown, at the end of

the cavity SC transition, several normal-conducting islands surrounded by the super-

conducting phase appear around the cavity. Therefore vortices may be concentrated

in these regions. Once also these areas become superconducting, vortices can not

escape, since surrounded by superconducting material. This may explain why during

the slow cooldown all the magnetic field is trapped in the cavity.
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CHAPTER 7

SURFACE RESISTANCE DEPENDENCE ON THE MEAN FREE PATH

Previous work has demonstrated that the radio frequency surface resistance of

niobium resonators is dramatically reduced when nitrogen impurities are dissolved as

interstitial in the material [19]. This effect is attributed to the lowering of the Mattis-

Bardeen surface resistance with increasing accelerating field, however the microscopic

origin of this phenomenon is poorly understood. Meanwhile, an enhancement of the

sensitivity to trapped magnetic field is typically observed for such cavities [21, 22, 8,

23].

In this chapter a systematic study on these different components contributing

to the total surface resistance as a function of different levels of dissolved nitrogen,

in comparison with standard surface treatments for niobium resonators is conducted.

At the end of the chapter these results are added together in order to define which

is the optimum surface treatment that maximizes the Q-factor of superconducting

niobium resonators as a function of reasonable values of trapped magnetic field in

the cavity walls. These results also provide insights on the physics behind the change

in the field dependence of the Mattis-Bardeen surface resistance, and of the trapped

magnetic vortex induced losses in superconducting niobium resonators.

7.1 Introduction

Nitrogen-doping is a surface treatment which allows nitrogen atoms to be ab-

sorbed as interstitial impurities in the niobium lattice. This treatment has shown

a dramatic improvement of superconducting radio-frequency (SRF) properties. In

particular, as shown in Chapter 4, the cavity quality factor, which is inversely pro-

portional to the power dissipated on the cavity walls, can increase by a factor of three

at medium values of accelerating field (Eacc = 16MV/m) [19].
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The RF surface resistance Rs is the material parameter that determines the

Q-factor values: Q0 = G/Rs, where G = 270 Ω [3] is the geometrical factor which

is independent on material properties. It is important to take into account that,

as explained in Chapter 3, the RF surface resistance can be decomposed in two

contributions, one temperature dependent called BCS surface resistance (RBCS), and

one temperature independent called residual resistance (Rres).

In this chapter these two surface resistance contributions are analyzed for bulk

niobium resonators, looking at both the mean free path and the RF field dependen-

cies. The findings here reported allow a much better understanding of which surface

treatment is required to maximize the Q-factor for a certain RF field, taking into

account the external DC magnetic field trapped during the cooldown through the

superconducting (SC) transition.

Q-factor maximization is extremely beneficial in order to decrease the cryo-

genic cost of continuous-wave accelerators. For this reason the Linear Coherent Light

Source (LCLS-II) at SLAC embraced the nitrogen-doping technology as treatment

for the SRF cavities of the superconducting upgrading of their linear accelerator [20].

As seen in Chapter 3, the BCS surface resistance was defined by Mattis and

Bardeen [40]. Based on the Bardeen-Cooper-Schrieffer theory of superconductivity

[37], RBCS decays exponentially with the temperature and depends on several material

parameters, such as: London penetration depth λL, coherence length ξ0, energy gap

∆, critical temperature Tc and mean free path ℓ. Of most interest here is that from

the Mattis-Bardeen calculation, RBCS as a function of the mean free path shows a

minimum around ξ0/2 [64].

It is well known that nitrogen-doping affects the BCS contribution [19] which,

in contrary of what happens with standard treatments, decreases with the accelerating
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field. This results in an increasing of Q-factor with accelerating field called anti-Q-

slope. The mechanisms that govern the anti-Q-slope are not well understood yet,

even though some theories have been proposed [65, 66].

This study adds important insight on the BCS surface resistance field depen-

dence, suggesting that the decreasing of RBCS may be due to an increasing of the

energy gap ∆ with the RF field.

The introduction of interstitial impurities and the subsequent change in mean

free path affects also Rres. Principal sources of residual losses are: condensed gasses,

material inclusions, hydrides and trapped magnetic flux [25]. This last contribution

defines the trapped flux sensitivity which in turns depends strongly on the mean free

path [21]. Here a complete and detailed study which gives a clear picture of trapped

flux dissipation in SRF niobium cavities is shown, from its dependence on the mean

free path to its dependence on the RF field. This part of the study is of crucial

importance in order to understand both the surface treatment of SRF cavities and

the level of magnetic field shielding needed in cryomodules.

As seen in Chapters 5 and 6, this additional residual resistance contribution

is due to ambient magnetic field that may be trapped during the SC transition.

The amount of trapped flux depends on both the amount of external magnetic field

which surrounds the cavity during the SC transition, and on the cooldown details,

which affects the magnetic flux trapping efficiency. In particular, fast cooldowns with

large thermal gradients along the cavity length help to obtain efficient magnetic flux

expulsion, while slow and homogeneous cooling through transition leads to full flux

trapping [54, 67, 68, 6].

7.2 Experimental procedure

The cavities analyzed are single cell 1.3 GHz TESLA-type bulk niobium cav-
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a

a

Figure 7.1. Scheme of the cavity instrumentation needed to monitor the external
magnetic field and the cavity temperature during the cooldowns. The thermome-
ters are represented as orange squares, while the green rectangles represent the
fluxgates. The Helmholtz coil is indicated in the figure with the letter a.

ities [3], processed with different surface treatment: N-doping, EP, BCP, 120 ◦C

baking (see Chapter 4 for more detail of these treatments). The surface treatment of

the analyzed cavities are summarized in Table 7.1.

The values of mean free path were estimated by interpolating with SRIMP

[2] the variation of the penetration depth as a function of the temperature during

the cavities warm up, unless otherwise specified in Table 7.1. The mean free path

uncertainty reported is the one directly estimated by the interpolation with SRIMP.

The uncertainties on the sensitivity and BCS surface resistance values are ex-

trapolated via the uncertainty propagation method, setting a priory errors for the

magnetic field (10 %) and Q-factors (depending on the coupling parameter during

the RF test, as explained in Reference [44]) measurements. A schematic of the in-

strumentation used to characterize the trapped flux surface resistance is shown in

Figure 7.1. Helmholtz coils adjust the magnetic field around the cavity, three Bart-

ington single axis fluxgate magnetometers monitor the external magnetic field at the

cavity equator and thermometers monitor the cooldown details.

In order to estimate the trapped flux surface resistance, each cavity is measured
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Table 7.1. Summary of the cavity surface treatments with the estimated values of mean free path, trapped flux sensitivity at 5
MV/m and 2 K BCS surface resistance at 16 MV/m (unless specified otherwise).

Cavity Name Surface Treatment ℓ (nm) Sensitivity (nΩ/mG) RBCS(nΩ)

AES014 2 Additional 120 ◦C bake 16 ± 1.6 a 0.39 ± 0.05 12 ± 2

ACC005 120 ◦C bake 16 ± 1.6 a - 10.2 ± 0.7

AES021 Air 30 min (at 800 ◦C) + 3 µm EP 30 ± 20 0.58 ± 0.08 4.6 ± 0.8 b

AES005 1 hour N2 (at 1000 ◦C) + 60 µm EP 40±4 c - 4.5 ± 0.7

AES021 2 Additional 5 µm EP 57 ± 5 1.1 ± 0.16 4.5 ± 1.8

ACC002 20 min N2 (at 800 ◦C) + 5 µm EP 70 ± 10 1.6 ± 0.2 4.3 ± 0.8

CBMM 2/6 min N2 (at 800 ◦C) + 5 µm EP 90 ± 10 1.52 ± 0.2 4.9 ± 0.7

PAV009 20 min N2 (at 900 ◦C) + 5 µm EP 90 ± 10 1.6 ± 0.18 3.5 ± 0.7

AES019 3 Additional 30 min N2 (at 800 ◦C) + 5 µm EP 100 ± 2 1.25 ± 0.18 4 ± 2

AES011 2/6 min N2 (at 800 ◦C) + 5 µm EP 122 ± 3 1.2 ± 0.14 4.3 ± 1.9

AES009 2/6 min N2 (at 800 ◦C) + 5 µm EP 128 ± 5 1.3 ± 0.3 3.7 ± 0.4

AES017 2 Additional 2/6 min N2 (at 800 ◦C) + 5 µm EP 128 ± 4 1.2 ± 0.15 4.9 ± 0.4

AES019 10 min N2 (at 800 ◦C) + 5 µm EP 134 ± 7 1.0 ± 0.15 4.7 ± 0.7

AES017 2/6 min N2 (at 800 ◦C) + 5 µm EP 182 ± 7 0.8 ± 0.11 4 ± 1

AES018 30 min He (at 800 ◦C) 860 ± 90 0.43 ± 0.08 12 ± 2

AES014 120 µm EP 860 ± 90 d - 12.3 ± 0.2

AES019 2 Additional 50 µm BCP 1200 ± 200 0.30 ± 0.04 11 ± 2

a Calculated with LE-µSR on a cavity cut-out representative for the 120 ◦C baking treatment.
b Calculated at 5 MV/m.
c Calculated with LE-µSR on a cavity cut-out.
d Fixed at the same value of AES018.
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after two different cooldowns: i) compensating the magnetic field outside the cavity

during the SC transition, ii) cooling slowly the cavity with about 10 − 20 mG of

external magnetic field. After each cooldown, the cavities are tested at the vertical

test facility at Fermilab.

The residual resistance Rres is here defined as sum of two terms: the trapped

flux residual resistance, Rfl, and the “intrinsic” residual resistance, R0. In this way it

is possible to distinguish the effect of trapped flux from other contributions, therefore:

Rs(T,Btrap) = RBCS(T ) +Rfl(Btrap) +R0 , (7.1)

where T is the temperature and Btrap the trapped field. Since at very low tempera-

tures RBCS becomes negligible, the Q-factor is measured at T = 1.5 K and the residual

resistance is calculated as Rres = G/Q(1.5 K). If during the cooldown the amount of

trapped flux is minimized, then: Rfl ≃ 0 and Rres ≃ R0. In order to obtain Rfl ≃ 0,

the magnetic field outside the cavity is compensated during the cooldown through the

SC transition. The average value of magnetic field measured at the cavity equator

is always kept lower than 1 mG. Alternatively, when possible, the measurement was

done after a complete magnetic flux expulsion (BSC/BNC ∼ 1.74 at the equator) [59].

It was observed that these two methods gave the same results within the measure-

ments uncertainties. On the other hand, after the cavity trapped some external field:

Rres(Btrap) = Rfl(Btrap) +R0.

RBCS and Rfl are therefore estimated as follows:

RBCS(2K) = Rs(2K)−R0 ,

Rfl(Btrap) = Rres(Btrap)− R0 .

(7.2)

Rres(Btrap) was always calculated from the RF measurements after slow cooldowns so

that the amount of trapped flux tends to the amount of external field: Btrap ≃ BNC.

7.3 Mean free path calculation
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The mean free path of the majority of the cavities analyzed is estimated by

means of a C++ translated version of SRIMP [2] implemented in the OriginLab data

analysis program.

The cavity resonance frequency as a function of temperature during the cavity

warm up is acquired in order to obtain the variation of the penetration depth, ∆λ,

as a function of T close to Tc [64].

The variation of frequency during the cavity warming up is a consequence of

the variation of the penetration depth with the temperature, which, for T/Tc > 0.8,

can be approximated as:

1

λ2(T )
=

1

λ20

[

1−
(

T

Tc

)4
]

. (7.3)

The penetration depth λ increases by increasing the temperature, meaning that the

volume occupied by the magnetic field inside the cavity is also increasing with the

temperature. This volumetric variation leads to a decreasing of the resonance fre-

quency, in agreement with the Slater’s theorem [69].

The frequency variation ∆f is indeed proportional to the variation of the

penetration depth ∆λ:

∆λ =
G∆f

µ0πf 2(T0)
, (7.4)

where ∆f = f(T )− f(T0), ∆λ = λ(T ) − λ(T0) and T0 is the temperature at which

the frequency is still constant, usually T0 ∼ 7.5 K.

The measurements of the cavity resonance frequency were done by using a

network analyzer which fed the cavity with low power.

The SRIMP code is used to interpolate ∆λ versus temperature. The fixed

parameters of the interpolation are: critical temperature, coherence length (ξ0 = 38

nm) and London penetration depth (λL = 39 nm). The parameters obtained from
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Figure 7.2. Interpolation using SRIMP of the penetration depth variation as a func-
tion of the temperature of the cavity AES011.

the interpolation are: mean free path ℓ and reduced energy gap (∆/kTc).

An example of the fit is shown in Figure 7.2. The critical temperature is

estimated from the measurement of the resonance frequency as a function of tem-

perature. The resonance frequency drops at the normal-conducting transition, and

stabilizes when the cavity is normal-conducting. The critical temperature is usually

calculated as the average between the temperature of the last point of the cavity in

the SC state and the first point of the cavity in the NC state.

The variation of ∆λ as a function of temperature differs for cavities with

different mean free path values. This may be well visualize looking at the variation

of ∆λ as a function of y =

[

1−
(

T
Tc

)2
]−1/2

[50], indeed for T/Tc > 0.8 the trend

between penetration depth and temperature may be approximated with Equation 7.3.

For dirty materials, the variation of the penetration depth tends to be larger than

for clean materials. This can be easily inferred just taking into account the Pippard
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Figure 7.3. Penetration depth variation as a function of y for some of the analyzed
cavities, representative of different surface treatments. The connection line between
the points serves just as guidance for the eyes.

definition of the penetration depth at T = 0 K:

λ0 = λL

(

1 +
ξ0
ℓ

)1/2

. (7.5)

In Figure 7.3, the curves of ∆λ as a function of y are reported for some cavities rep-

resentative of different surface treatments. The trend of mean free path that appears

from this graph is in agreement with the results obtained from the interpolation with

SRIMP.

Ideally ∆λ as a function of y should be a straight line. Variation from this

ideal behavior is observed for some cavities, in particular AES021 and AES018. This

may be due to a variation of the mean free path in the material surface, or to the

presence of different superconducting phases.

The mean free path of 120 ◦C baked cavities is estimated from low energy muon

spin rotation (LE-µSR) [70] measurements performed on a representative cavity cut-

out [67], since the fit with SRIMP would have introduced larger error. Indeed, the
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Figure 7.4. Magnetic field penetration as a function of the depth, measured with
the µSR technique for different cavity cut-outs. The measured magnetic field B is
normalized for the applied field Ba [7].

120 ◦C baking treatment modifies the mean free path only at the very surface of the

cavity, for the first 60 nm or so. For temperatures close to Tc the penetration depth

becomes larger than the modified layer, about thousands of nanometers, probing

a region which is not representative of the mean free path in the RF layer at the

temperature of interest. In [67] the mean free path of the 120 ◦C baked cavity cut-

out was estimated as between 2 and 16 nm within the RF layer at 2 K. While the

mean free path of the N-doped and EP cut-outs were estimated as 40 nm and > 400

nm respectively.

In Figure 7.4 the magnetic field penetration acquired with LE-µSR for dif-

ferent cavity cut-outs, representative of different surface treatments, is shown as a

function of the depth [67]. From this graph is clear that the less efficient magnetic

field screening is given by the 120 ◦C baked cut-out, while cut-outs from EP and BCP

cavities show the most efficient screening. The nitrogen-doped cut-out shows instead

an intermediate screening behavior. This graph therefore suggests the following as-
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cending order of mean free paths for the studied SRF cavities surface treatments:

120 ◦C baking, N-doping, EP.

This mean free path trend suggested from the LE-µSR measurement is in

agreement with the trend found by looking at Figure 7.3 and with the values obtained

from the interpolation with SRIMP (Table 7.1).

7.4 Trapped flux sensitivity

The trapped flux sensitivity S is defined as the trapped flux surface resistance

divided by the amount of trapped field:

S = Rfl/Btrap , (7.6)

and indicates the amount of losses generated in the cavity per amount of trapped

flux.

In order to clarify the meaning of the trapped flux sensitivity, in Figure 7.5

the Q-factor versus accelerating field curves of two cavities are shown at 1.5 K after

a cooldown with zero trap flux and a cooldown with about 10 mG of trapped flux.

Comparing the curves after that the cooldown with zero trap flux, the cavity AES009

show higher value of Q-factors than the cavity AES014. Looking now at the perfor-

mance of the same cavities after that they trapped about 10 mG, in both cases the

Q-factor degraded considerably, but now AES014 shows higher Q-factor values than

AES009. Indeed, even though they both trapped the same amount of magnetic field,

the trapped flux sensitivity of AES014 (S ≃ 0.5 nΩ/mG) is considerably lower than

the sensitivity of AES009 (S ≃ 1.5 nΩ/mG).

The values of sensitivity estimated for all the cavities analyzed are listed in

Table 7.1 and are shown as a function of the mean free path in Figure 7.6.

Figure 7.6 shows that the sensitivity has a bell-shaped trend as a function of
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Figure 7.5. Comparison between cavities with same amount of trapped flux and
different sensitivity values.

the mean free path. The sensitivity is minimized for both very small (120 ◦C bake

cavities) and very large (EP and BCP cavities) mean free paths, and it is maximized

around ℓ ≃ 70 nm. Taking into account optimal N-doped cavities, when heavily-

doped they show the highest sensitivity (ℓ between 70 and 100 nm), while the 2/6

recipe, with ℓ around 120− 180 nm, gives the lowest sensitivity. Doped cavities with

ℓ < 70 nm are not optimally doped, and even though they show low sensitivity,

they have large intrinsic residual resistance [19], which nullifies the beneficial effect

of interstitial nitrogen, as shown in Chapter 4.

The values of sensitivity obtained for EP and BCP cavities are in agreement

with previous studies [71], in which sensitivity of 0.35 nΩ/mG was measured for a 1.5

GHz cavity made out high purity niobium sheet. Trapped flux sensitivity of 1.3 GHz

EP niobium cavities was studied also in Reference [23] in which larger values were

found compared to both ours and Reference [71] values.

The experimental data in Figure 7.6 shows some scatter that may be due to
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16 MV/m (green dots) as a function of the mean free path [8].

a larger uncertainty on the mean free path values than the error bars since the large

number of fit parameters. Differences in terms of pinning force and dimension or

position of pinning centers between the analyzed cavities may also increase the data

scattering. These parameters indeed seem to play an important role on the trapped

flux dissipation [10].

In Figure 7.7 it can be seen that the sensitivity, and therefore the trapped flux

surface resistance, increases with the RF field. A field dependence of Rfl was also

found studying large grain cavities [72] and niobium on copper thin film cavities [57].

A possible explanation to the trapped flux surface resistance field dependence

might be the progressive depinning of vortices from their pinning center, driven by

the increasing of the RF field, as hypothesized also in Reference [57].

7.5 Theoretical explanations of the dissipation due to trap flux

7.5.1 Vortex local description. In a local description, a vortex may be described
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Figure 7.7. Sensitivity dependence on the accelerating field [8].

as a normal conducting core with radius of the order of the coherence length a ≃ ξ.

The vortex contains a single flux quanta Φ0, and the magnetic field decays over a

distance λL from the center of the core [73, 9]. In Figure 7.8, the variation of the

energy gap ∆ as a function of the distance r from the center of the vortex is shown.

From this graph it can be seen that in the local description ∆ = 0 at the core of the

vortex, indicating its normal-conducting nature.

Once the external field Bext is trapped over a surface Σ of the cavity, it gen-

erates N vortices, each containing the fluxoid Φ0:

ΣBe = NΦ0 . (7.7)

A simple model to calculate losses due to trap flux can be developed considering that

the normal-conducting core of the vortex dissipates exactly as the material in the

normal state [25]. The trapped flux surface resistance is then calculated as the normal-
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Figure 7.8. Variation of the energy gap ∆ as a function of the distance r from the
center of the vortex. The solid line shows the non-local description while the dashed
line shown the local description [9].

conducting surface resistance times the fraction of the normal-conducting area:

Rfl = N
πa2

Σ
Rn =

πa2Rn

Φ0

Be , (7.8)

where πa2 is the vortex normal-conducting area. Considering that all the external

flux is trapped, the sensitivity results:

S =
πa2Rn

Φ0

. (7.9)

From the Bardeen and Stephen analysis [9] the radius of the normal conducting core

a = h̄/2pc is defined as the distance from the center of the vortex, at which the

superelectrons momentum assumes the critical value pc, and the energy gap ∆ goes

to zero. In the clean limit (ℓ > ξ0), the critical superelectrons momentum and the

vortex radius are:

pc =
2.178h̄

2πξ0
, aclean = 1.16ξ0 , (7.10)

while in the dirty limit (ℓ < ξ0):

pc =

√

3h̄2

4πℓξ0
, adirty =

√

π

3
ℓξ0 , (7.11)

therefore, in this description, the dimension of the vortex’s normal-conducting core

strictly depends on the mean free path.
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The normal-conducting resistance Rn of niobium at 2 K and 1.3 GHz is defined

by the normal skin effect when ℓ < 500 nm and by the anomalous skin effect when

ℓ > 500 [25]. The surface resistance in these two limits is:

Rnormal
n =

√

µ0ω

2σn
=

√

µ0ωvF
2ne2ℓ

, (7.12)

Ranomalous
n =

[√
3π
(µ0

4π

)2
]1/3

ω2/3

(

ℓ

σn

)1/3

. (7.13)

For the normal skin effect regime, the sensitivity can be calculated as:

Sclean =
π

Φ0
(1.16ξ0)

2

√

µ0ωvF
2ne2ℓ

, (7.14)

Sdirty =
π2

3Φ0
ℓξ0

√

µ0ωvF
2ne2ℓ

, (7.15)

on the other hand, in the anomalous skin regime the sensitivity does not depend on

the mean free path in clean limit, while in dirty limit Sdirty ∝
√
ℓ.

Since the majority of the studied cavities show ℓ < 400 nm, the case of normal

skin effect seems to be the most interesting. The sensitivity calculated in the normal-

skin regime versus ℓ/ξ0, in the dirty and clean limits, are shown in Figure 7.9 and

compared with the experimental data. Since this model is not field dependent, the

experimental data of sensitivity shown in Figure 7.9 represents the value at zero field

and are extrapolated with a linear interpolation of the sensitivity versus accelerating

field curves 7.7.

Considering that the boundary between clean and dirty limit is around ℓ/ξ0 ∼

1, it is possible to notice that this simple model is capable to predict the bell-shape

trend of the sensitivity as a function of the mean free path. In the clean limit the

sensitivity decreases as the mean free path increases because the resistance of the

normal-conducting core decreases for cleaner materials, while the area of the core

remains constant. In the dirty limit instead, the sensitivity increases as the mean
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Figure 7.9. Sensitivity as a function of mean free path for the clean (black curve)
and dirty (red curve) limits calculated considering dissipation coming from the
normal-conducting core of the vortex. The yellow diamonds correspond to the
experimental data at zero field.

free path increases because the area of the normal-conducting core increases and this

effect prevails on the decreasing of Rn.

However, comparing the curves with the experimental data, this model seems

to overestimate the sensitivity. The local description of the vortex is probably a

too crude approximation and a non-local description is needed in order to take into

account that the normal-conducting core is actually a zero-singularity point of the

density of Cooper pairs. Using this description the dissipation is introduces only from

the vortex oscillation driven by the RF field.

7.5.1.1 Vortex non-local description. The structure of an isolated vortex was

described by Abrikosov after solving the Ginzburg-Landau equations for Ψ(r) and

h(r), where Ψ(r) is the order parameter and h = H/Hc1 is the reduced magnetic

field. In Figure 7.10 it is possible to see that Ψ(r) is constant at r → ∞ and rapidly
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Figure 7.10. Normalized reduced magnetic filed h(r)/h(0) and order parameter Ψ(r)
as a function of the radial distance from the center of vortex r in the Abrikosov
vortex description.

decay to zero when r ≈ ξ, h(r) instead is maximum at the center of the vortex

and decays approaching to zero for r → ∞. For simplicity, in Figure 7.10, h(r) is

calculated using the Clem model which is an approximation valid for high κGL [36].

Therefore, in this non-local description, it is not possible to define a normal-

conducting core with a finite radius.

In this case the dissipation is instead related to the vortex oscillation due to

the Lorentz force J̄ × Φ0 that acts on the vortex whenever a current density J̄ flows

in the superconductor. In case of SRF cavities, the current density J̄ flows at the

surface of the cavity induced by the RF field.

The vortex movement can be described, as first proposed by Gittleman and

Rosenblum [74], as a damped oscillator:

M
∂2x

∂t2
= fL + fv + fp , (7.16)

where M is the inertial mass of the vortex [9], fL is the Lorentz force per unit of
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length:

fL =
∣

∣J̄ × Φ0ûn
∣

∣ = j0Φ0 sin θe
iωt−z/λ , (7.17)

where ûn is the unit vector normal to the RF surface, θ is the angle between J̄ and

ûn, ω is the angular frequency, z is the depth in the material and λ is the penetration

depth; fv = −ηẋ is the viscous force where η is the viscous drag coefficient [9]:

η =
Φ0Bc2

ρn
, (7.18)

where ρn is the normal state resistivity and Bc2 the upper critical field; the pinning

force fp can be assumed, in first approximation, as a simple elastic restoring force:

fp = − ∂

∂x
Up = −px , (7.19)

where Up is the pinning potential and p is the pinning constant.

The vortex dissipation was recently calculated by Checchin et al. [10] by

solving the vortex motion equation, considering a bi-dimensional Lorentzian where

more than one pinning sites are considered along the z-direction. By means of a

parabolic approximation along the direction of oscillation (x), the pinning potential

is defined as parabolic along the direction of oscillation and Lorentzian along z. The

equation of motion can in this way be solved analytically.

This model predicts that for large values of mean free path the dissipation

is described by the flux flow regime while for low mean free path the dissipation is

governed by the pinning in the material, in the so-called pinning regime.

In the flux flow regime the pinning force can be neglected, therefore the main

force acting on the vortex is the viscous drag force. Under this assumption the

resistivity is purely real and equal to:

ρ ≃ Φ0 sin
2 θ

πξ20η
, (7.20)
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Figure 7.11. Sensitivity as a function of the mean free path calculated considering
dissipation coming from the vortex oscillation due to RF field [10] (red curve) and
comparison with experimental data at zero field (yellow diamonds).

which is the same found in References [75, 76]. This results highlights that the

dissipation in this regime depends only on the mean free path through the viscous

coefficient η. Since η increases due to the decreasing of ρn, the resistivity decreases

as the mean free path increases .

At small value of mean free path the viscous drag force becomes negligible,

while the pinning force is large. Such condition is called pinning regime and the

complex resistivity is defined as:

ρ =
ωΦ2

0 sin
2 θ

πξ20p
2

[ηω + ip] . (7.21)

As the mean free path decreases, the real part of the resistivity decreases as well and

becomes negligible for very low value of mean free path. In this limit the resistivity

is purely imaginary.
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Once the resistivity is known, the surface impedance is calculated as:

Z =
Ex(0)

∫∞
0
jx(z) dz

=
1

∫ ∞

0

e−z/λ

ρ(z, ℓ)
dz

. (7.22)

The sensitivity is then defined as the real part of the surface impedance divided by

the trapped field. The result obtained of the sensitivity as a function of the mean

free path is shown in Figure 7.11. The graph shows that the model is adherent to the

experimental data at zero field.

Another model was developed by Gurevich and Ciovati [11], taking into ac-

count the non-local description of the vortices. They used an alternative approach in

which the pinning force is not included in the equation of motion:

η
∂u

∂t
= ǫ̂

∂2u

∂z2
+ j0Φ0e

iωt−z/λ , (7.23)

where z is the axis perpendicular to the surface, u(z, t) is the vortex displacement

parallel to the surface and ǫ is the vortex line tension in an uniaxial superconduc-

tor. The pinning condition is instead introduced by applying the following boundary

conditions to the equation of motion (Equation 7.23):

∂u(0)

∂z
= 0 , u(d) = 0 , (7.24)

where d is the distance of the pinning center from the surface. These boundary

conditions set that at one end the vortex has to be perpendicular at the surface,

while the other end is fixed by the pinning center.

This approach allows to solve the vortex equation of motion analytically, and

to calculate the dissipated power, from which it is possible to calculate the trapped

flux surface resistance, as:

P = −ωJ0Φ0

2

∫ d

0

u(z, ω)e−z/λ dz =
RflH

2

2
. (7.25)
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Figure 7.12. Sensitivity as a function of mean free path calculated from the Gurevich
and Ciovati model [11]. The yellow diamonds correspond to the experimental data
at zero field.

In the range of frequency interesting for SRF applications, Rfl results [11]:

Rfl =
Be

Bc







µ0ρnω

1 +
2

Γ
ln(ΓκGL)







1/2

, (7.26)

where Be is the external field, Γ = λc/λ is the anisotropic parameter and λc the

penetration depth along the z-axis.

The sensitivity can be therefore calculated from Equation 7.26. Since niobium

has a body centered cubic lattice the anisotropy effects may be disregarded and it is

possible to set Γ = 1 [77]. The normal resistance ρn is calculated as before from the

Drude model and λ and ξ defined in the GL constant κGL are calculated from the

Pippard’s definitions:

λ = λL

√

1 +
ξ0
ℓ

,
1

ξ
=

1

ξ0
+

1

ℓ
, (7.27)

while the critical field does not depends on the mean free path and it is set as Bc = 180

mT [78].
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The curve of sensitivity as a function of the mean free path obtained from this

model is shown in Figure 7.12, where it is also compared with the experimental data.

From this graph it is possible to notice that this model is capable to explain only the

decreasing of the sensitivity as a function of the mean free path that appears for large

ℓ. The values of sensitivity obtained with this model are overestimated in comparison

with the experimental data.

From this section it is possible to conclude that the experimental data of

sensitivity as a function of mean free path can be described by the model made by

Checchin et al. [10]. In agreement with this model, the motion of the vortices is

subject to viscous drag and pinning, which introduce dissipation. The viscous drag

prevails for very clean superconductors, while the pinning prevails for low mean free

path values. Interesting is also that the model predicts that the trapped flux surface

resistance is proportional to ω2, in the pinning regime (Equation 7.21). This means

that for low values of mean free path the sensitivity increases with the increasing of

the resonance frequency. It is therefore expected that nitrogen-doped cavities with

low resonance frequency, as 650 MHz elliptical cavities, show lower values of trapped

flux sensitivity. Another interesting point is that in the pinning regime the resistance

is proportional to p−2 (Equation 7.21). Therefore, for dirty materials, the sensitivity

is minimized when defects define strong pinning centers.

7.6 BCS surface resistance analysis

The BCS surface resistance at 2 K is extrapolated after the cooldown with

no flux trapped, as the difference between the Rs measured at 2 K and at 1.5 K

(Equation 7.2).

As it can be seen from Figure 7.13, the BCS surface resistance of N-doped

cavities decreases as a function of the accelerating field. On the other hand, for
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Figure 7.13. 2 K BCS surface resistance as a function of the accelerating field of some
of the cavities analyzed.

standard niobium cavities, both EP and 120 ◦C baked cavities, RBCS increases as

a function of the accelerating field. The peculiar decreasing of RBCS versus Eacc is

shown only in N-doped cavities, and represent the origin of the typical anti-Q-slope

[19].

In order to further understand the physical origin of such small values of RBCS

at medium field, RBCS is analyzed as a function of the mean free path.

RBCS as a function of the mean free path is shown in Figure 7.14. The upper

graph shows the results obtained at low field (5 MV/m), while the bottom graph

shows the results at medium field (16 MV/m).

Regarding the EP cavities, the mean free path is calculated for one cavity

(AES018) and the other one is fixed at the same value, assuming that they should

show very similar values. For one N-doped cavity (AES005) the mean free path is

directly measured on a cavity cut-out with LE-µSR [7].
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Figure 7.14. 2 K BCS surface resistance as a function of mean free path, at 5 MV/m
(upper graph) and 16 MV/m (lower graph). The green diamonds represent doped
cavities, while the pink circles represent non doped cavities [8].

The green diamonds represent doped cavities, while the pink circles are nio-

bium cavities with different standard treatments (120 ◦C bake, BCP and EP). The

black curves are theoretical curves of RBCS versus mean free path estimated using

SRIMP [2] for different reduced energy gap values.

In both field regimes, doped cavities show lower values of RBCS than non-doped

cavities, proving that RBCS is lowered with the introduction of interstitial impurities,

as predicted by the Mattis and Bardeen theory. At medium field the difference in

RBCS between doped and non-doped cavities is maximized due to the opposite trend

of this surface resistance contribution as a function of the accelerating field.
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The values of RBCS obtained for all the cavities analyzed cannot be described

by one single theoretical curve, both at low and medium field, suggesting that the

mean free path is not the only parameter changing with the introduction of impurities.

Following this hypothesis, one of the other parameters on which the BCS surface

resistance depends on (λL, ξ0, ∆, Tc) is changing as well. In the low field case,

fixing all the other parameters and changing the reduced energy gap ∆/kTc, the

120 ◦C baked, BCP and EP cavities are interpolated with ∆/kTc = 1.95, while doped

cavities are better interpolated setting ∆/kTc = 2. At medium field, the difference

is even larger being ∆/kTc = 1.85 for 120 ◦C baked cavities and ∆/kTc = 2.05 for

doped cavities. For BCP and EP cavities, ∆/kTc is probably slightly larger than the

value assumed for 120 ◦C baked cavities.

This suggests a possible field dependence of the gap. Comparing the upper

and lower graph of Figure 7.14, for doped cavities ∆/kTc increases passing from 5 to

16 MV/m. This variation may be the reason why RBCS decreases with the RF field for

doped cavities. Increasing of the energy gap with the RF field has been measured in

the past [79], and in that case the enhancement of superconductivity was attributed to

non-equilibrium effects [80, 81]. In the Eliashberg theory the minimum frequency at

which non-equilibrium effects may be visible depends on the inelastic collision time of

quasi-particles scattering with phonons τE and for niobium this minimum frequency is

around 15 GHz [80]. One possibility is therefore that the introduction of interstitial

nitrogen inside the niobium lattice, modifies this parameter, decreasing the cut-off

frequency at values lower that 1.3 GHz.

7.7 The best surface treatment for SRF cavities

Adding together the measured values of RBCS and sensitivity, it is possible to

reveal which treatment is capable to give the highest Q-factors taking into account

different amount of trapped flux.
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In order to visualize that, the Q-factor is calculated, for each treatments among

EP, 120 ◦C baking and N-doping, as follows:

Q0 = G/(RBCS + S ×Btrap +R0) , (7.28)

where the values of Btrap ranges from 0 to 20 mG.

The intrinsic residual resistance R0 depends on many parameters, some related

to the surface treatments and others related to the bulk itself [45]. 120 ◦C baked

cavities usually show value ofR0 greater than both EP and optimized N-doped cavities

[19, 82]. Because of that, the calculation was performed assuming as intrinsic residual

resistance: R0 = 4 nΩ for the 120 ◦C baked cavity and R0 = 2 nΩ for both EP and

N-doped cavities, which are common values found for these treatments.

In Figure 7.15 is shown the resulting Q-factors, at 16 MV/m and 2 K, versus

the mean free path. For simplicity one point is shown for the 120 ◦C baking and EP

treatments, and two points for the N-doping treatment. The two points are chosen

as indicating the best and the worst scenario. The curves of Q-factor versus mean

free path are calculated considering different values of trapped field. From the graph

it is possible to notice that when there is no field trapped, the N-doping treatment

gives the highest Q-factors, which are more than doubled compared with the standard

niobium cavities. In addition, it is possible to notice that under this condition the

highest Q-factor is actually given by heavily doped cavities.

As soon as some field is trapped in the cavity, the highest Q-factors are given

by light N-doping treatment. The Q-factors of heavily-doped cavities become lower

than the ones obtainable with standard treatments after that the trapped field is

around 10 mG. For the best case of N-doping treatment instead, the Q-factor is the

highest as long as the trapped field in the cavity is about 20 mG.

Therefore, Figure 7.15 highlight that, even though N-doped cavities have larger
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Figure 7.15. Q-factor at 2 K and 16 MV/m as a function of the mean free path. In
order to make the graph as clear as possible, for the N-doped cavities only two
points are shown. These two points represent the best and the worst case scenario
among all the N-doped studied cavities [8].

sensitivity to trapped flux, optimizing the mean free path it is still possible to maintain

the high Q-factors, even in presence of trapped flux.

In order to further clarify the range of trapped flux in which the N-doping

is capable to give the highest Q-factor, in Figure 7.16 the Q-factor is shown as a

function of Btrap. In this graph the 2/6 N-doping treatment is compared with the

two standard niobium treatments. Among the N-doped cavities, the 2/6 N-doping is

indeed the recipe of greatest interest for high-Q application, since it shows the best

compromise between RBCS and sensitivity values exploited so far. From this graph

it is clear that the 2/6 N-doped cavity shows the highest values of Q-factor as long

as the trapped field is lower than 10 mG, i.e. within the range of realistic values of

remnant magnetic field achievable in modern cryomodules.
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For example, using the 2/6 N-doping treatment it is possible to fully trap in

the cavity 2.5 mGauss of external magnetic field and reach the LCLS-II specification

(Q0 = 2.7 · 1010 at 2 K and 16 MV/m). Since the situation in which the magnetic

field is fully trapped in the cavity is the worst scenario that may happen during the

cavity cooldown, interesting is to analyze the level of remnant magnetic field that the

cryomodule may sustain as a function of the flux expulsion level. In Figure 7.17 the

percentage of expelled flux needed to maintain the trapped flux at 2.5 mG is shown

as a function of the remnant magnetic field (Bamb) in the cryomodule. For example,

with 50 % of flux expulsion the field may be up to 5 mG, while with 75 % may be up

to 10 mG, and so on.

7.8 Conclusions

This chapter provides insight on how the global surface resistance, and hence

the Q-factor, vary with the different surface treatments. Both the BCS and the
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Figure 7.17. Percentage of expelled flux needed to reach LCLS-II specification with
2/6 N-doped cavities as a function of the remnant magnetic field in the cryomodule.

trapped flux surface resistance contributions have been indeed analyzed as a function

of the mean free path.

It was found that the trapped flux surface resistance normalized per amount

of trapped flux, i.e. the sensitivity, has a bell-shaped behavior as a function of the

mean free path. Consequence of this behavior is that N-doped cavities have larger

values of sensitivity and, therefore, larger losses due to trap flux. In order to minimize

this kind of losses in N-doped cavities, light treatments are needed, as for example,

the 2/6 N-doping treatment.

In order to understand the physics behind the trapped flux dissipation, some

model have been described. One simple model consider the dissipation as coming

from the normal-core of the vortex. This model is capable to explain the bell-shaped

trend of the sensitivity as a function of the mean free path. For large mean free

path, the sensitivity decreases with the mean free paths because of the lowering of

the normal state resistivity. On the other hand, for low value of mean free path, the
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opposite trend is given by the increasing of the area of the vortex core moving toward

larger value of mean free path. However, the values of sensitivity that results from

this simple model are overestimated.

It was shown that a better approach takes into account that the dissipation is

due to the vortex movement under the RF field, using a non-local description of the

vortex. The model developed by Checchin et al. [10], is capable to well describe the

experimental data and it suggests that the bell shape trend is a consequence of the

damping of the vortex movement due to: the material viscosity for large mean free

path, and the pinning for low mean free path.

In addition, the physics behind the lowering of the BCS surface resistance with

the accelerating field was analyzed in this chapter. Comparing experimental data with

theoretical curves, it was shown that the introduction of impurities in the material

causes not only the modification of the mean free path, but also the increasing of the

reduced energy gap ∆/kTc at medium field. The anti Q-slope of N-doped cavities

may be therefore explained as the decreasing of the energy gap with the field caused

by microwave-driven non-equilibrium effects.

Concluding, from a practical point of view, these results are of crucial impor-

tance in order to identify the best surface treatment that allows to reach the highest

Q-factors, taking into account all the surface resistance contributions and their depen-

dencies on mean free path, RF field and DC external magnetic field. It was verified

that the 2/6 N-doping treatment is capable to give the highest Q-factor values, as

long as the magnetic field fully trapped in the cavity is lower than 10 mG. This

implies that: i) it is crucial to optimize magnetic flux expulsion during the cavity

superconducting transition and ii) high Q-factors SRF cryomodules need sophisticate

magnetic field screening in order to obtain very low values of remnant magnetic field.
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CHAPTER 8

CONCLUSIONS

In this thesis work different aspects of superconducting accelerating cavities are stud-

ied in order to understand how quality factors can be maximized, from the vertical

test measurement to a cryomodule-like environment.

In order to maximize quality factors in superconducting cavities, it is neces-

sary to minimize all the surface resistance components, that are: the BCS surface

resistance, the trapped flux surface resistance and the intrinsic residual resistance.

The intrinsic residual resistance does not have a particular trend as a function

of the mean free path. As a matter of fact, the intrinsic residual resistance of 120 ◦C

baked cavities is in general larger than EP and N-doped cavities. In Chapter 4 it was

shown that also heavily doped cavities may present larger values of intrinsic residual

resistance.

The BCS and the trapped flux surface resistance strongly depend on the cav-

ity surface treatment. Both these contributions were therefore studied for several

different cavities as a function of the mean free path. The mean free path is indeed

the parameter that correlates with the impurities introduced in the cavities surface

during each treatment.

In Chapter 7 it was shown that the BCS surface resistance of N-doped cavities

shows two peculiarity:

• it is really close to the theoretical minimum of the BCS surface resistance versus

mean free path curve.

• it decreases as a function of the accelerating field, while for standard niobium

cavities it increases.
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Analyzing the RBCS versus mean free path trend for low and medium accelerating

field values, and comparing the experimental points with theoretical curves, it was

found that the lower values of RBCS of N-doped cavities at medium field may be due

to an increasing of the reduced energy gap ∆/kTc with the RF field.

When looking for the best surface treatment, it is really important to take

into account the possibility to have field trapped in the cavity walls. Indeed, when

the cavity is inside a cryomodule, there will be always some remnant magnetic field

presents during the cavity cooldown that can be trapped. In Chapter 7 it was shown

that N-doped cavities show larger trapped flux sensitivity than standard niobium

cavities, meaning that they have larger trapped flux surface resistance when the same

amount of magnetic field is trapped in the cavity walls. It was found that the curve of

sensitivity as a function of the mean free path has a maximum around 70 nm, which

is a typical mean free path value of heavily doped cavities. Both EP and 120 ◦C

baked cavities stay instead at the tail of this curves, showing low dissipation due to

trapped flux. Consequently, in order to minimize the trapped flux surface resistance

contribution, light N-doping treatments, like the 2/6 N-doping, are needed.

Since the BCS and the trapped flux surface resistance have almost opposite be-

havior as a function of the mean free path, the surface treatment capable to maximize

Q-factors is the one that show the best compromise between these two contributions.

Among all the surface treatments studied, the 2/6 N-doping treatment is the one that

gives the best compromise. Precisely, it was shown that the 2/6 N-doping treatment

gives the highest Q-factor values as long as the trapped field is lower than 10 mG.

Another method to decrease the trapped flux surface resistance is to decrease

the amount of magnetic field trapped in the cavity wall. In Chapter 5 the cavity

cooldown is studied in order to understand how the fraction of external magnetic

field which is actually trapped in the cavity can be minimized. This study was
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performed cooling down the cavity in a horizontal configuration that resembles the

geometry of cavities cooled in a cryomodule. It was found that, as for the vertical

cooldown configuration, fast cooldowns generate large thermal gradients along the

cavity that helps the magnetic flux expulsion during the superconducting transition.

However, during the vertical cooldown large thermal gradients are easy to generate

during the SC transition at the cavity equator, which is the area of the cavity in which

losses are concentrated. While, during the horizontal cooldown, it is more difficult to

maintain large thermal gradient during the transition of the whole the cavity equator,

increasing the probability of trapping flux.

In addition, in Chapter 5 it was also found that the orientation of the external

magnetic field matters in the case of horizontal cooldown. In particular, when the

cavity is cooled fast in the horizontal configuration, with orthogonal magnetic field

applied, this field is trapped on top of the cavity equator, increasing the dissipation

and causing a local temperature rising. This phenomenon was called flux-hole, since

the top of the equator acts as a hole in the superconductor in which the magnetic

field is free to penetrate.

Because of the importance of the cooldown in determining the amount of mag-

netic field trapped in the cavity and, therefore, the trapped flux surface resistance

contribution, the physics behind the magnetic flux expulsion during the SC transi-

tion was studied in Chapter 6. The magnetic flux expulsion, i.e. the flushing out of

vortices from the superconducting cavities, is found to be consequence of the ther-

modynamic force which moves vortices from the Meissner state to the mixed state in

order to minimize the Gibbs free energy. Moreover, in order to take into account that

different material properties may cause different flux expulsion behavior, a statistical

distribution of pinning centers was introduced as distribution of probability density

of trapping vortices when a critical thermal gradient is reached. In order to achieve
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a complete flux expulsion situation, it is necessary to reach the maximum value of

the critical thermal gradient of the probability density function that describes the

pinning centers distribution. Comparing this model with experimental data it was

found that most of the studied cavities are actually described by a double pinning

centers distributions, suggesting that there are two main group of defects that act as

a pinning centers.

In Chapter 6 the different dynamics of slow and fast cooldown was studied by

means of a T-map system. This allowed to monitor and map the temperature around

the whole cavity during both the fast and the slow cooldown. The temperature maps

revealed that during the fast cooldown the SC transition starts from the bottom and

propagates through the top of the cavity, really sharply, defining the large thermal

gradients needed for the flux expulsion. On the other hand, the temperature maps

acquired during the slow cooldown reveals how the temperature is homogeneous all

around the cavity, minimizing the thermal gradients. The SC transition starts and

propagates randomly around the cavity, therefore at the end of the cavity transition

several normal-conducting regions are randomly distributed among the cavity, sur-

rounded by the superconducting phase. The vortices are therefore concentrated in

this region and the magnetic field can not be expelled anymore even after that these

areas become superconducting.

Summarizing, during the fast cooldown, the sharp interface between the SC

and NC phases promotes the generation of large thermal gradient that facilitates

the vortices movement from the bottom to the top of the cavity. If the cavity is

vertically cooled, the magnetic field can be successfully expelled from the cavity once

it become completely superconducting. The same happens if the cavity is horizontally

cooled in presence of axial magnetic field. When, instead, the cavity is horizontally

cooled in presence of orthogonal magnetic field, the vortices that are moved toward
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the top of the cavity, reaching the top of the equator, can not be expelled anymore

because they do not have any energetically favorable path to follow. Similarly, during

the slow cooldown the poor thermal gradients move vortices toward the normal-

conducting area. These vortices, however, can not be expelled because surrounded

by superconducting material.

Once the best surface treatment is determined, in order to really maximize

Q-factors when the cavity is horizontally placed inside the cryomodule, it is necessary

to take into account all these results. In particular, it is crucial to screen very well

the cryomodule from the external magnetic field, and especially from the orthogonal

magnetic field component. Essential is also the optimization of the cavity cool-down

in order to maximize the magnetic flux expulsion.
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