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ABSTRACT 

Electron cloud instabilities affect the performance of many circular high-intensity particle accelerators. 

They usually have a fast growth rate and might lead to an increase of the transverse emittance and 

beam loss. A peculiar example of such an instability is observed in the Fermilab Recycler proton 

storage ring. Although this instability might pose a challenge for future intensity upgrades, its nature 

had not been completely understood. The phenomena has been studied experimentally by comparing 

the dynamics of stable and unstable beam, numerically by simulating the build-up of the electron cloud 

and its interaction with the beam, and analytically by constructing a model of an electron cloud driven 

instability with the electrons trapped in combined function dipoles. Stabilization of the beam by a 

clearing bunch reveals that the instability is caused by the electron cloud, trapped in beam optics 

magnets. Measurements of microwave propagation confirm the presence of the cloud in the combined 

function dipoles. Numerical simulations show that up to 10-2 of the particles can be trapped by their 

magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount 

of electrons significantly increases the density of the cloud on the next revolution. In a combined 

function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders 

of magnitude greater than in a pure dipole. The estimated fast instability growth rate of about 30 

revolutions and low mode frequency of 0.4 MHz are consistent with experimental observations and 

agree with the simulations. The created instability model allows investigating the beam stability for the 

future intensity upgrades. 
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CHAPTER 1 

ELECTRON CLOUD IN PARTICLE ACCELERATORS 

One of the physical effects limiting the intensity in contemporary circular accelerators is the formation 

of a cloud of low energy electrons inside its beam pipe. The process usually starts with the ionization 

of residual gas by the beam or photoemission from the walls of the vacuum chamber by synchrotron 

radiation. The number of electrons then may be multiplied through the emission of secondary 

electrons from the surface of the chamber. If the secondary emission happens in resonance with an 

alternating electric field of the incoming beam it can lead to an avalanche multiplication of the number 

of electrons that form a so-called electron cloud.  

The electron cloud can affect the performance of a particle accelerator in several ways. It impacts 

beam diagnostic equipment [1], causes the degradation of vacuum [2], and increases the heat load, 

which is critical for superconducting components operating at cryogenic temperatures [3]. The 

electron cloud also affects both coherent and incoherent transverse motion and causes a spread of 

incoherent betatron frequencies within the beam, which may affect particle stability. And finally and 

most importantly, the interaction with the electron cloud can induce transverse instabilities in the 

beam. Both single-bunch and multi-bunch electron cloud instabilities have been observed in 

accelerators. The instabilities typically have a fast growth rate and lead to increase of beam emittance 

and particle losses. Currently, the electron cloud effects are observed in many high intensity machines 

worldwide: Relativistic Heavy Ion Collider (RHIC) at BNL [4], Cornell Electron Storage Ring (CESR) 

at Cornell during a dedicated study program with a positron beam [5], Proton Storage Ring (PSR) at 

LANL [6], KEKB electron-positron collider at KEK in Japan [7], DAΦNE electron-positron collider 

at INFN Frascati in Italy [8], and in the CERN accelerator complex (PS, SPS, LHC) [9-11]. 
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At Fermilab, an electron cloud instability has been observed at some conditions in the Recycler 

proton storage ring. While it does not limit the current operation with slip-stacking up to 700 kW of 

beam power, the instability may pose a challenge for the future PIP-II intensity upgrade [12]. 

Investigating the electron cloud instability in Recycler we discovered that a previously overlooked 

mechanism of long-term electron cloud confinement in the magnetic field of combined function 

dipoles plays a crucial role in the accumulation of the cloud. It allows the electrons accumulating inside 

the vacuum chamber over multiple beam revolutions in the ring, reaching much greater densities then 

they would in a pure dipole magnet with no long-term confinement. The resulting dense electron 

cloud couples with the betatron motion of the beam, driving a fast transverse multi-bunch instability. 

This thesis consists of five chapters. Charter 1 introduces the main mechanisms involved in the 

formation of the electron cloud and various effects arising from its interaction with the beam. Chapters 

2 and 3 address experimental studies of the fast electron cloud instability in Recycler. Chapter 2 focuses 

on the investigation of beam dynamics and presents a novel technique of beam stabilization by 

injection of a clearing pilot bunch of low charge. The findings of Chapter 2 prove that the observed 

instability is caused by the electron cloud trapped in beam optics magnets. Chapter 3 is devoted to the 

microwave measurements of electron cloud density inside the Recycler magnets. Chapter 4 addresses 

the numerical studies of the electron cloud build-up and the resulting transverse multibunch instability 

in the Recycler proton beam. Finally, Chapter 5 presents an analytical model of the electron cloud 

instability. Using the developed model, we estimate the strength of the instability for the future higher 

intensities and discuss the ways of its mitigation. 

In this chapter we first describe the different physical processes leading to the generation and 

accumulation of the electron cloud in a particle accelerator. Then we briefly review the instabilities 

arising from the beam-cloud interaction. In conclusion, we discuss a way of electron cloud suppression 

through the so-called ‘conditioning’ of the beam-pipe. 
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1.1 Electron cloud build-up 

The process of electron cloud build-up starts with a few “primary” electrons that launch a multipacting 

avalanche (Fig. 1.1). The circulating beam can produce these electrons through different mechanisms, 

e. g. ionization of the residual gas in the vacuum chamber or photoemission from the chamber’s wall 

due to the synchrotron radiation. The primary particles then can be accelerated by a passing bunch to 

the energies of several hundreds of eV to a few keV, depending on the beam intensity. When an 

electron of such a high energy hits the wall of the vacuum chamber, it is likely to create several 

“secondary” electrons on impact. The secondaries typically have low energies – up to a few tens of 

eV – insufficient to produce their own secondaries on impact. But, if these particles have the right 

energies, they can survive until the passage of the next bunch and, in turn, be accelerated, projected 

onto the wall and produce more secondaries. Repeating on the passage of every bunch, this 

multipacting cascade builds up the electron cloud during the passage of the beam. 

  

 

Figure 1.1: A qualitative illustration of the build-up of the electron cloud in the LHC for the case of 

25-ns bunch spacing [13]. The process starts with photoelectrons and is amplified by the secondary 

emission. 
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1.1.1 Generation of primary electrons 

There are several processes, contributing to the generation of primary electrons: photoemission from 

synchrotron-radiated photons striking the chamber walls; ionization of residual gas; and beam halo 

particles striking the walls of the chamber. Depending on the type of machine, one of these three 

processes is typically dominant. For example, in positron or electron storage rings, the beam emits 

synchrotron radiation in the bending magnets with a critical energy [14]: 

 33
/

2
c c   ,  (1.1) 

where  is the Planck constant, c – speed of light, γ – relativistic factor, and   – bending radius. 

Typically, ~ 1c  keV, leading to emission of photoelectrons upon striking the vacuum chamber. The 

total instantaneous power emitted by a beam particle (positron or electron) is  

 
 

4

32 2

2

3

e

e

cr E
P

m c



 , (1.2) 

where me stands for electron mass, re – classical electron radius, and E – beam kinetic energy. Because 

of the steep dependence of P on beam energy, the ratio of the number of generated primary electrons 

to the number of particles in the beam can be as high as ~1 [15].  

In proton rings, the process is typically dominated by ionization of residual gas, or by electron 

generation when stray beam particles strike the chamber. The number of ionization electrons depends 

on the density and chemical composition of the residual gas: 

 
ion ion mn N  , (1.3) 

where nion is the linear density of ionization electrons, σion – ionization cross-section, m – molecular 

density, and N – number of beam particles. A notable exception is the LHC and some of the proposed 

future colliders i.e. FCC and CEPC, where the dominant mechanism is the photoemission. In the 
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LHC, for example, the beam emits significant synchrotron radiation, ~ 0.4 photons per proton per 

bending magnet, with a photon critical energy ~ 44 eV [16].  

 

1.1.2 Secondary emission 

The aggregate effect of secondary emission is usually what determines the density of the electron 

cloud. It is particularly strong in positively-charged bunched beams, when the production of secondary 

electrons comes in resonance with their acceleration by oncoming bunches. In negatively charged 

beams, the electrons born at the wall of the vacuum chamber are pushed back towards the wall with 

relatively low energy, resulting in relatively inefficient secondary emission. 

Following the work of Furman and Pivi [17], we can define three separate components of the 

secondary emission yield: electrons elastically scattered back from the surface; scattered from one or 

more atoms in the bulk and reflected back, or “rediffused”; and the “true-secondary” electrons 

(Fig. 1.2). There is no fundamental difference between the processes of backscattering and rediffusion, 

and in our simulation (Chapter 4) we treat them on equal footing in our numerical model. Multiple 

models exist to describe each of the components of the SEY. We are not going to cover all of them 

in this Section, rather we will present some typical properties of the secondary emission. More details 

can be found, for example in [17] and [18]. 

 

Figure 1.2: The three types of emission processes. The blob is represents a nontrivial interaction 

yielding true-secondary electrons [17]. 
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The total SEY δ is a sum of a true secondary and an elastic backscattering (which includes 

reflection and rediffusion) components: 

  
true el    .  (1.4) 

The probability of an electron to reflect back can be described by an exponential fall-off: 

 ( ) exp( / )el wE E E   .  (1.5) 

el  is independent of the incident angle   and only depends on the electron’s energy E. The width 

Ew = 10 eV. The backscattered electrons elastically interact with the material and are emitted with the 

same energy with which they impacted on the surface. 

The true secondary component of the SEY can be estimated as: 

 max
max

max

( / )

1 ( / )
true s

s E E

s E E
 

 
, (1.6) 

where s is a material specific parameter. δtrue reaches a maximum value δmax at the incidence energy Emax. 

the parameters δmax and Emax depend of the incidence angle, but can be considered constant for 

incidence close to normal [17]. The true secondary electrons are emitted with a cos( )  angular 

distribution with respect to the direction normal to the surface and their energy spectrum has a sharp 

spike around a few eV (Fig. 1.3).   

Since Emax ~ 200-300 eV is much greater than the width of elastic backscattering Ew the maximum, 

the true secondary emission dominates at higher energies and the maximum total value of SEY is 

equal to δmax. The value of δmax  determines whether the wall of the vacuum chamber acts as an absorber 

or an emitter of electrons (Fig. 1.4), and thus plays a key role in the accumulation of the electron cloud.  

In the following pages we will refer to the maximum value of the total secondary yield as just SEY. 
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Figure 1.3: Most of the true secondary electrons have relatively low energies, below 10 eV [19]. 

 

1.1.3 Build-up regimes 

When a bunch passes through a section of accelerator beampipe, containing an electron cloud, the 

cloud density does not remain constant. As it was discussed in the previous section, the bunch 

produces new primary electrons and kicks the existing ones. The electrons then impact the chamber 

and may be backscattered, rediffuse, or be absorbed, possibly producing one or more secondaries. 

Following Iadarola [19] we can define an effective secondary electron yield as the ratio of the average 

electron cloud densities during the passage two consecutive bunches: 

 1 0i
eff

i

n n

n
  

 , (1.7) 

where ni and ni+1 are the electron cloud densities ‘seen’ by the i-th and the i+1-th bunches respectively, 

and n0 is the density of primary electrons. The value of δeff depends on the energy of electrons, hitting 

the wall of the vacuum chamber and its material properties. 

If the SEY is below 1 for any energy of incident electron δ(E) < 1, the vacuum chamber acts as 

an electron absorber. This regime is called the “seed accumulation”. The electron density increases 

linearly with time until it reaches an equilibrium between the production of primary electrons and 

electron absorption by the wall. The equilibrium density is comparable with the density of the primary 

electrons: 
0( ) ~en t n . 
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If the effective SEY is greater than 1, the number of electrons will multiply with the passage of 

each new bunch, increasing exponentially with time. This regime is called the “multipacting regime”. 

The rate of the exponential build-up is ( ) exp[( 1) ]e effn t t t   , where t  is the bunch spacing. Here 

we assumed that the density of primary electrons n0 is small compared to the total density ne. 

As the electron cloud builds up, its density increases exponentially with time and at a certain point 

the particle losses compensate the production, bringing δeff down to 1. This is called the “saturation”. 

One of the mechanisms of the saturation is the screening of the positive charge of the beam by the 

dense negatively charged cloud, as considered in detail in Sect. 4.3.3. The screening reduces the energy 

the beam supplies to the cloud electrons and, consequently, the lowers the yield (Fig. 1.4). Figure 1.5 

depicts the three build-up regimes, simulated in PEI code (the simulation tools and procedures are 

described in Chapter 4). In the simulation we varied the SEY from a moderate to somewhat 

unreasonably high values to see how it changes the build-up of the electron cloud density. 

 

Figure 1.4: The material behaves as an absorber when the secondary yield δ < 1 and as an emitter 

when δ > 1.  

  

A transition from the seed accumulation to the multipacting regime happens when the bunch 

charge becomes high enough to accelerate the electron cloud electron to the energies where δ > 1 

(Fig. 1.4). When the cumulative effective yield δeff becomes greater than unity an avalanche 

multiplication process starts, significantly increasing the cloud density (Fig. 1.6).  
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Figure 1.5: As the secondary yield increases the electron cloud goes from the seed accumulation regime 

to the exponential build-up. Linear density of the cloud in a Recycler dipole magnet is plotted as a 

function of time during a passage of a typical proton bunch train of 80 bunches. Each bunch produces 

106 m-1 primary ionization e-. The SEY stands for the maximum total yield, achieved at E = 250 eV.  

  

  

 

Figure 1.6: The density of the electron cloud increases dramatically as the beam intensity crosses the 

threshold. The signal from an electron cloud Retarded Field Analyser (RFA) detector, installed in the 

Fermilab Main Injector, is plotted as a fuction of the total beam intensity. The color repesents the 

strength of the signal in a logarithmic scale. Above the threshold intensity of ~ 1220 10  p most of the 

signals exceeded the voltage limits of the preamplifier; this data is shown separately below the main 

plot [20]. 
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1.1.4 Effect of external magnetic field 

During the above discussion we assumed that the electron cloud was forming in a drift section with 

no external fields applied. Presence of strong magnetic field (for example, in bending dipole magnets, 

focusing quadrupoles, or sextupole chromaticity correctors) significantly affects the build-up rate and 

the resulting spatial distribution of the electron cloud.  

In a strong constant magnetic field non-relativistic electrons will follow a helical trajectory around 

the field lines (Fig. 1.7). The revolution, or cyclotron, angular frequency ωc and radius rc of the orbit 

are given by simple relations (in CGS units): 

 
c

e

e

c

eB

m c

m cv
r

eB









 , (1.8) 

where me and e are the electron mass and charge, c – speed of light, B – magnetic field, and v
 is the 

component of the electron’s velocity transverse to magnetic field line. When a cloud electron receives 

a kick for a passing beam, it acquires an energy of a few hundred eV. For a typical field of 1 kG and 

an electron energy of 200 eV we get 10 11.8 10 sc
   and 0.5mmcr  . Since the radius of the orbit 

remains quite small compared to the dimensions of the beam camber (a few to ten cm), and the 

cyclotron period is much smaller than a typical bunch spacing (tens of ns) the electrons, essentially, 

only move along the lines of the magnetic field. That restriction concentrates the cloud in a small area 

of space, for example a stripe, crossing the beam center for the case of a dipole field, increasing its 

maximum density and enhancing the resonant multipacting process.  
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Figure 1.7: An electron moving in a uniform magnetic field follows a helical trajectory. 

  

Fig. 1.8 shows the typical electron cloud distributions for three different magnetic field 

configurations. In the absence of the field the cloud uniformly fills the available aperture with a slightly 

higher density near the surface of the vacuum chamber, where the new secondary electrons are 

produce. In a strong magnetic field cloud is aligned along the field lines and the maximum density is 

located near the magnetic poles. For the dipole field the dense electron cloud is located at the beam 

center, which is dangerous because of a potential cloud-beam instability. The difference in the cloud 

build-up between Fermilab Recycler dipoles and drifts is examined in Sect. 4.3.7. 

 

Figure 1.8: Snapshots of electron cloud density in a drift section (left), a dipole (middle), and a 

quadrupole (right). Yellow lines show the direction of the external magnetic field; white circle 

represents 2 rms beam size. The distribution was simulated using the PEI code. The simulation 

procedure and parameters of the model are described in Chap. 4. 
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1.2 Electron cloud instabilities 

The electron cloud provides a media for the beam to interact with itself and may cause a collective 

beam instability. A typical picture of the instability is as follows: a part of the beam, displaced from 

the reference orbit, impacts the electron cloud, the cloud then kicks the following part of the beam. 

If the kicks fall in phase with the transverse motion of the beam, it starts increasing exponentially. 

This uncontrolled increase of beam oscillations is called an instability. Multiple models exist to 

describe the electron cloud instabilities (see, for example, [21]). A detailed analytical description of a 

multi-bunch instability with the cloud located in a dipole magnet is presented in Chapter 5. 

The first observation of a beam-cloud instability dates back to 1965, when it was observed in a 

bunched proton beam at storage ring at the Budker Institute (BINP) in Novosibirsk, Russia. The 

instability lead a coherent growth of betatron oscillations and beam loss above a threshold intensity 

of 101 1.5 10   p (Fig. 1.9). Later the instability was observed with a coasting proton beam at BINP. 

Since then the electron cloud induced instabilities were observed in many rings around the world: for 

example, in Argonne ZGS and BNL AGS in 1960’s (bunched beams), CERN ISR in 1972 (coasting 

beam), Los Alamos PSR in 1988 (Fig. 1.9) (long bunch, harmonic number h = 1). The instabilities 

shared common characteristic features: coherent betatron oscillation in the vertical plane starts, grows, 

and ultimately results in a loss of the beam [21]. 
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Figure 1.9: Observations of an electron-driven instability at the INP PSR in 1965 (left) and LANL 

PSR in 1990 (right). A coherent betatron oscillation starts, grows, and results in beam loss [21]. 

 

 
An electron cloud effect in lepton beams had not been seen before 1989 when the KEK Photon 

Factory switched from electron to positron operation. The positron beam suffered from a vertical 

multibunch instability which had not been seen with electron beams. The pattern of unstable modes 

indicated a presence of short-range wakefields, extending only over a few bunches. The instability was 

interpreted as one driven by photoelectrons. It was suppressed by applying a clearing voltage of 2.5 kV 

to the beam-position monitors around the ring. In an attempt to model this phenomenon numerically, 

a computer code was developed to simulate the build-up of the electron cloud inside the vacuum 

chamber and the resulting wake forces [22]. 

Apart from the multi-bunch instabilities the electron cloud can also lead to a single bunch head-

tail instability, often observed as the blow-up of the transverse size of individual bunches. An intra-

bunch head-tail instability in a positron beam was first observed in 1999 at the KEKB. The size of a 

beam consisting of closely spaced bunches blew up above a certain intensity threshold. Since the key 

source of the primary electrons in a lepton machine is the photoemission, it was possible ‘cure’ the 

instability by installing special solenoids. The solenoids kept the electrons near the surface of the 

vacuum chamber, away from the beam, thus preventing the multipacting (Fig. 1.10, left). The single 

bunch nature of the blowup was proven by injecting a test bunch immediately behind a train of 
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bunches and studying the variation of its size with the charge the charge, while keeping the charge of 

the preceding bunches constant. The observed increase of the size of the test bunch with the bunch 

current confirmed the single-bunch range of the instability (Fig. 1.10, right).  

The character of the instability can be different in the two transverse planes. An example of such 

phenomena can be found in the CERN SPS. The machine operates with bunched proton beams with 

the spacing of 25 ns and bunch intensity 111.15 10 p. At high intensity a fast transverse instability was 

observed with the growth time of about 50 revolutions (~ 1 ms) in both planes. In the horizontal 

plane it is a long wavelength coupled bunch instability with all bunches oscillating approximately in 

phase (Fig. 1.11, left). In the vertical plane the instability shows a single-bunch character with no phase 

or amplitude correlation between the successive bunches (Fig. 1.11, right).  

 

 

Figure 1.10: Left - vertical beam size of the KEKB increases above the threshold current. Installation 

of solenoids covering 800 m of ring circumference allows increasing the threshold. Two trains with 

60 bunches with a bunch spacing of 4 RF buckets were injected in opposite sides of the ring. Rigt – 

when a test bunch follows the beam, its vertical size increases. The horizontal axis shows the length 

of the main bunch train [21].  
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Figure 1.11:  At SPS the electron cloud instability is multi-bunch in the horizontal plain (left) and 

single-bunch in the vertical (right). Snapshots of horizontal position of the first 48 bunches in the SPS 

when the instability is present [21]. 

 

To sum it up, a dense electron in a particle accelerator cloud can drive a transverse instability. It is 

characterized by a fast rise time and a sharp intensity threshold. Depending on the location of the 

electron cloud: beam optics magnets or free space, the instability can have either short or long 

wavelength (head-tail or multi-bunch) and can affect one or both transverse planes. The instability 

was observed both in proton and positron rings in bunched and coasting beams. 

 

1.3 Electron cloud tune shift 

Even if the electron cloud does not cause an instability, it still affects the coherent and incoherent 

betatron frequencies. In accelerators the betatron frequencies are commonly measured in the units of 

‘tune’ Q, which is a ratio of the frequency   to the revolution frequency 
0 : 0/Q   . Assuming a 

uniform cloud distribution and a round beam, the negative charge of the electron cloud induces a 

coherent single-bunch tune shift, which is related to its density as [23]: 

 , , ,
2

p
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where rp denotes the classical radius of the beam particles (p or e+),   - average β-function, 
cln  - 

cloud density, and C – accelerator circumference. For a flat beam and a flat geometry the vertical tune 

shift would be larger by a factor of 2. The tune shift Q  can be considerable for a sufficiently high 

electron cloud density. According to simulations, it can be as high as ~10-2 in the CERN SPS 

(Fig. 1.12). 

If the ring is filled with the beam non-uniformly, the electron cloud density 
e  varies along the 

bunch train. Bunches in the head of the train encounter little amount of the electron cloud and their 

betatron frequencies stays unperturbed, whereas bunches in the tail see the much higher amount of 

electrons, accumulated during the passage of the previous bunches, and consequently experience a 

strong betatron tune shift. 

Since the actual cloud distribution is non-uniform (Fig. 1.8) the field of the electron has higher 

order components that introduce dependence of incoherent betatron frequencies on the amplitude of 

the motion. This nonlinear spread of the incoherent tunes might be beneficial for Landau damping of 

collective effects (we briefly touch the concept of Landau damping in Chapter 5, for more details refer 

to [24]). A stabilization of the beam by Landau damping through the cloud-induced tune spread was 

observed in 1967 at the BINP PSR. Then an electron cloud instability in a coasting proton beam was 

suppressed by simultaneously increasing the beam intensity and the density of residual gas. This 

compensation scheme allowed increasing the instability threshold by a factor of 15: from 111.2 10  to 

121.8 10  p [21]. The fast accumulation of the secondary plasma electrons by gas ionization was 

essential for the stabilization of the beam [25]. 
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Figure 1.12: Presence of an electron cloud shifts the betatron frequency at CERN SPS. Simulation for 

different cloud densities made using a QUICKPIC code [26]. The tune spread is relatively small (much 

less than the tune shift), suggesting that the force of the electron cloud is almost linear with 

displacement. The model did not include gradients of the cloud density along the ring. 

 

1.4  Beampipe conditioning 

When an accelerator operates its vacuum chambers get exposed to a high radiation environment. 

Under this exposure the secondary emission properties change, lowering the SEY. This process is 

commonly referred to as ‘conditioning’. Conditioning is beneficial for lowering the density of the 

electron cloud and increasing the instability threshold. It can be achieved both naturally, over the 

course of standard operation, and by means of special scrubbing runs. Conditioning during the 

operation has been observed at the Fermilab Main Injector and Recycler and has been studied at a 

dedicated test stand at the Main Injector. 

The test stand, depicted in Fig. 1.13, studied the secondary yield material samples in the typical 

accelerator conditions. The samples undergo standard cleaning and polishing before going into the 

beampipe. They can be retracted into the study chamber for the SEY measurement using a specially 

designed arm. The arms are protected by faraday boxes to eliminate leakage current. The SEY 

measurement is performed using an electron gun that scans over an energy spectrum of 45 eV to 1545 
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eV with a 1 mm diameter spot. The measurement stand has two different arms so that two samples 

can be exposed to the same dose for comparison.  

According to test stand data, the secondary yield of a new, ‘fresh’, stainless steel vacuum chamber 

can be as high as 2.1 – 2.4. After being exposed to the accelerator environment the SEY slowly 

decreases (Fig. 1.14). The ultimate value of the peak secondary yield decreases linearly with the beam 

intensity [27]. After the beam has been shut down the secondary emission yield of exposed beampipe 

rapidly increases. This process is known as ‘deconditioning’. Recent measurements at the Fermilab 

SEY test indicate that the deconditioning is very rapid: a significant increase of SEY is observed 

already on the first day of the shutdown. The SEY of 316L stainless steel increases by over 20% over 

the course of the first week (Fig. 1.15). More detailed studies of deconditioning are currently under 

way at the Fermilab test stand. 

 

 

Figure 1.13: A picture of the SEY test stand in the Fermilab Main Injector 
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Figure 1.14: The secondary emission yield of 316L stainless steel reduces significantly as it conditions 

under the exposure to the accelerator beam during the 2013-14 run [27] 

  

 

Figure 1.15: The SEY decreases during an accelerator run and then rapidly increases after the beam 

has been turned off. SEY measurement at the Fermilab Main Injector test stand during the 2015-16 

run and the following maintenance shutdown [28]. 

 

Emission of secondary electrons is the key process governing the accumulation of the electron 

cloud in particle accelerators. Sufficiently high secondary yield leads to an avalanche multiplication of 

the cloud during the passage of the beam, which might induce to a fast transverse instability, leading 

to increase of betatron oscillations, emittance growth, and beam loss. The process of build-up depends 

on the material and cleanliness of the beampipe, beam intensity, and external magnetic fields. The 

SEY of the vacuum chamber, which plays a major role in the build-up, reduces as the beampipe 

conditions during the high-intensity operation.  This conditioning significantly reduces the amount of 

the cloud and increases the intensity thresholds of electron cloud driven instabilities.   
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CHAPTER 2 

BEAM DYNAMICS MEASUREMENTS OF THE FAST INSTABILITY 

In 2014 a fast transverse instability was observed in the proton beam of the Fermilab Recycler. The 

instability acts only in the horizontal plane and typically develops in about 20 revolutions. The 

instability also has the unusual feature of selectively impacting the first batch above the threshold 

intensity of ~ 4*1010 protons per bunch. These peculiar features suggest that a possible cause of the 

instability is electron cloud. Earlier studies by Eldred et. al. [29] indicated the presence of electron 

cloud in the Recycler and suggested the possibility of its trapping in Recycler beam optics magnets. 

The fast instability seems to be severe only during the start-up phase after a shutdown, with 

significant reduction being observed after beam pipe conditioning during beam scrubbing runs [30]. 

It does not limit the current operation with slip-stacking up to 700 kW of beam power, but may pose 

a challenge for a future PIP-II intensity upgrade. In order to understand the true nature of the 

instability in Recycler measurements of the dynamics of both stable and unstable beams have been 

performed. 

In this chapter we, first, describe the beam manipulation and diagnostic tools available at Recycler. 

Then we show the results of beam dynamics study of the fast instability, supporting the hypothesis of 

its electron cloud nature.  And finally, we present the technique of beam stabilization using a pilot 

bunch to clear the electron cloud and discuss its possible implementation in Recycler. 

  

2.1 Beam manipulation and diagnostics 

The beam dynamics measurements were made using the Fermilab’s Accelerator Control Network 

(ACNET) [31]. ACNET allows tuning beam and accelerator parameters in real time and offers a 

variety of methods of beam diagnostics. Using ACNET one can control beam structure and intensity; 
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adjust ring parameters, such as betatron frequencies and chromaticities, etc.; run beam diagnostics: 

longitudinal beam profile, and its transverse position (Fig. 2.1). 

 

Figure 2.1: Sample ACNET page: Recycler Chromaticity Control. The control program automatically 

adjusts the sextupole strengths to achieve the desired chromaticity values during a study cycle. 

  

2.1.1 Beam manipulation 

The Recycler receives its 8 GeV proton beam form the Fermilab Booster synchrotron ring [32]. The 

azimuthal space in the Booster is divided into 84 buckets with up to 80 of those buckets filled with 

the beam. The beam intensity can be varied in the multiples of about 0.3*1010 protons per bunch, also 

known as ‘turns’. This limitation comes from the specifics of the multi-turn injection procedure from 

the Linac into the Booster. 

The Booster extracts 8 GeV protons to the Recycler (or the Main Injector) at a rate of 15 Hz and 

each Booster pulse is known as a batch. During the injection one can remove an arbitrary amount of 

bunches from the batch, varying the total number of bunches from 1 to 80. This is done by mistiming 

the Recycler injection kickers and sending the extra beam to the beam abort. Also, during the injection 
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one can adjust the so-called longitudinal bunch rotation, creating and controlling oscillations of bunch 

length and thus beam density, and mismatch the beam transversely, creating transverse dipole 

oscillations of the beam. 

Six 84-bucket Booster batches and a 84-bucket kicker gap fill the 588-bucket azimuthal space of 

the Recycler. During the normal operation all six batches are present, but during the studies one can 

order any amount of batches from one to six. The individual injection positions of those batches can 

be adjusted as well. 

 

2.1.2 Ring manipulation 

ACNET allows its users controlling the betatron frequencies 
,x yQ  and the linear chromaticities 

, , / ( / )x y x yQ p p     by automatically tuning ring quadrupole and sextupole magnets to reach the 

desired values. It does not feature a separate control for the synchrotron frequency sQ , instead it gives 

control over RF voltage and phase RFV  and RF  , allowing to change both sQ  and the height of RF 

bucket. 

The total amount of time the beam spends in the ring is controlled by the timing of injection and 

extraction kickers. During a study cycle one inject up to six 80-bunch Booster batches with 

1/15 0.067s between subsequent injections. The injection positions of these bathes can be adjusted, 

allowing to create an empty gap between the batches of an arbitrary length (Fig. 2.2).  
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Figure 1.2: ACNET control of injecting beam. Left – Booster intensity control that allows changing 

the beam intensity (in turns) and the number of bunches for each specific event. Right – Recycler 

injection control with two injection events into the RF buckets 126 and 36; RF frequency set at 

52.8 MHz, RF phase – at -45 deg. 

 

Recycler transverse feedback system can be configured to damp dipole oscillations for a part of 

the beam, the whole beam, or not damp at all. It is convenient to leave the dampers on when searching 

for the instability threshold. The dampers prevent intolerable beam loss and triggering of the beam 

abort system. Since damper kicks affect the coherent beam frequencies, it is necessary to have them 

off when studying the dynamics of the instability. 

 

2.1.3 Beam diagnostics 

For the purpose of this study the most commonly used tools of beam diagnostics were beam position 

monitors (BPMs) to measure the motion of the beam centroid and determine the thresholds of the 

instability, wall current monitors (WCMs) to measure the oscillations of the longitudinal beam size 

and its peak intensity, and stripline detectors to measure betatron frequency shifts and find unstable 

modes. 
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The Recycler BPMs are 1-foot-long split-can type monitors, consisting of two either vertical or 

horizontal plates inside an elliptical vacuum chamber [33,34]. The difference signal from the plates is 

amplified and integrated over the course of 40 RF buckets to show the respecting (horizontal or 

vertical) displacement of the beam relative to its reference orbit. The BPM gain can vary to adjust the 

dynamic range to a particular beam intensity and its timing can be set up to collect data at an arbitrary 

time during the machine cycle. 

A wall current monitor is a device that measures the image charge that flows on the vacuum 

chamber following the beam. Recycler WCMs have a 4 GHz bandwidth and are capable of 

reproducing the exact longitudinal beam profile [35].  Together with the stripline detector the WCM 

allows an acquisition of the full 3D profile of the beam. 

An important piece of beam diagnostics is the stripline detector. There are two detectors in 

Recycler, each composing of two striplines: horizontal or vertical inside a common vacuum chamber 

(Fig. 2.3). The striplines are quarter-wave for the RF frequency of 52.8 MHz. They are connected to 

a fast oscilloscope, capable of digitizing the signal at sampling rate of 0.1 ns. This high temporal 

resolution allows looking at the internal structure of a bunch and finding higher order oscillation 

modes, in contrast to the BMP’s which are only capable of tracing the motion of the center of mass. 

 

Figure 2.3: Cross section of stripline detector [36]. 
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2.1.4 Factors beyond control 

A major factor affecting the precision of the measurements is the quality of the Booster beam. As the 

Booster team is upgrading the machine and its operations, the amount of beam losses and hence the 

intensity in Recycler changes. The beam’s transverse emittance and longitudinal profile also tend to 

change with time, making repeated measurements a challenging task. The beam losses in the MI-8 

beam line, which is used to transfer the beam from the Booster to the Recycler, also vary slightly from 

injection to injection, affecting the control over the beam intensity in the Recycler. 

Another important unknown factor is the secondary emission yield of the Recycler beampipes. 

SEY changes with time during accelerator operation due to the process called ‘conditioning’. Recent 

studies show that during the conditioning SEY can change by as much as 30% for a typical 316L 

stainless steel [27]. During the long summer shutdowns and short maintenance windows some 

portions of the beampipe get exposed to air and the SEY of those regions might increase dramatically.  

The uncertainties in the beam quality and the condition of the vacuum chambers make it hard to 

give a quantitative description of the electron cloud based on the observations of beam dynamics. 

Nevertheless, the measurements of beam dynamics can reveal the physics behind the instability and 

provide a qualitative description of the phenomenon. 
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2.2 Dynamics of  the unstable beam 

In this section we present the results of  a series of  beam dynamics measurements of  the unstable 

beam at Recycler. We discover a number of  features, unique to the electron cloud instability, such as 

the highly nonlinear dependence of  the instability increment on the beam intensity and the gradual 

increase of  the instability threshold over the course of  the machine operation. 

 

2.2.1 Peculiar features of  the instability 

The fast instability affects the motion in the horizontal plane only, its occurrence in the vertical plane 

has never been seen. The vertical motion, however, is still affected by the instability because of  the 

coupling between the vertical and the horizontal degrees of  freedom (Fig. 2.4). The coupling arises 

from the close position of  the transverse betatron frequencies: the fractional tunes are close to 0.4 

and differ by 0.05. As the instability progresses, the beam starts hitting the physical aperture. Typically, 

several percent of  the beam is lost due the fast instability (Fig. 2.5), but in severe cases the losses may 

exceed 25%, and then the control system extracts the beam into the beam dump to prevent the 

excessive irradiation of  the ring tunnel. As the beam loses charge and its effective emittance increases 

due to the betatron oscillations ( 2

eff A  ) the transverse tampers can start suppressing the oscillations, 

stabilising the beam (Fig. 2.4). It is important to note that although in this case the beam is not lost, 

its intensity decreases significantly during the instability. With the transverse dampers off, the unstable 
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beam is usually kicked out of  the machine by the safety interlock within 500-1000 revolutions due to 

high losses. 

 

Figure 2.4: The fast blow-up of  beam centroid oscillations is observed only in the horizontal plane. 

Turn-by-turn measurement of  beam position of  1 batch after its injection into Recycler. 

  

 

Figure 2.5: In a severe case 10% or more of the beam intensity can be lost within 0.01 s after the 

injection. Beam: 1 batch, 80 bunches, initial total intensity 103.7 10  p. The variance in the initial 

intensities is caused by slightly different losses in the MI-8 injection beamline and the insufficient 

sampling frequency of the beam intensity monitor – only 720 Hz. 
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In an experiment, the beam becomes unstable when its bunch length shrinks (Fig. 2.6) due to 

quadrupole oscillations of  the bunch length. During the longitudinal squeeze the betatron oscillation 

amplitude increases by several mm in 20-30 revolutions and then stays constant until the next bunch 

compression. The oscillations of  the bunch length appear because of  the longitudinal injection 

mismatch and insufficient Recycler RF voltage. The amplitude of  the oscillations can be increased 

manually by adjusting the Booster bunch rotation. Normally, the amplitude of  oscillations of  the peak 

intensity (which is inversely proportional to the bunch length Ipeak ~ 1/σz) is of  the order of  10% and 

can be as high as 30%.  

 

Figure 2.6: The beam becomes unstable horizontally when its bunch length shrinks due to synchrotron 

oscillations and its peak intensity increases. Top – turn-by-turn BPM measurement of the beam 

centroid position, bottom – turn-by-turn measurement of the peak beam intensity. 

 

A stripline measurement reveals the internal structure within the unstable beam. We injected one 

batch of 105 10  ppb with the transverse feedback system off, so that its interference did not change 

the characteristic modes and their frequencies, and adjusting the Booster bunch rotation to increase 

the oscillations of the bunch legth. The results are shown in Fig. 2.7. After the beam compresses 
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longitudinally large betatron oscillations (over 3 rms beam sizes) appear in the tail of the batch. The 

amplitude of this oscillations remains roughly constant until the beam compresses longitudinally one 

more time, half a synchrotron period, or about 200 revolutions, later. Then the betatron amplitude 

significantly increases again and the whole batch becomes unstable. One can notice that between the 

turns 50 and 200 the oscillations of the head of the bunch train, bunches no. 0-10, start to increase, 

while bunches directly after them, no. 10-15, remain stable. This may be an indicator of a presence of 

a long-term memory in the system – the tail of the batch affects the motion of the head on the next 

revolution. A similar measurement in the vertical plane shows no blow-up, triggered by the bunch 

length contraction. Due to the coupling between the horizontal and vertical degrees of freedom the 

vertical oscillations do gradually increase though after the beam becomes unstable horizontally, and 

their amplitude stays below ~ 1 mm.  

 

 

Figure 2.7: The instability mostly affects the last bunches in the train. It starts after the beam 

compresses longitudinally (left) and then becomes more severe after it compresses again, half a 

synchrotron period later. The color depicts the amplitude of the horizontal betatron oscillations of 

the beam center of mass as a function revolution number and position within the batch. The 

horizontal stripes a caused by our sampling of beam position once a revolution and appear at twice 

the betatron frequency: 2Qx = 0.9 or 1/10 turns. The data was gathered over 300 revolutions with the 

transverse dampers off. Beam: 1 batch, 80 bunches, 105 10  ppb. 
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A relatively low chromaticity is needed for the instability to occur. No instability has been observed 

at the horizontal chromaticity 10x    or higher at the current operational intensity of  105 10 ppb. 

Typically, the chromaticity of  about 6x    or lower is required to induce the instability. The 

disappearance of  the instability at a high chromaticity is expectable, since it creates a chromatic 

betatron frequency spread 
x x pQ     leading to the Landau damping of  collective motion (discussed 

in more detail in Sect. 5.1). 

The lower chromaticities are beneficial for the single particle stability, since the chromaticity 

provides coupling between the transverse and longitudinal degrees of  freedom. The strengths of  

synchro-betatron coupling resonances decreases with the chromaticity, leading to larger dynamic 

aperture, and beam lifetime. Currently, the ring operates at the moderate chromaticities of  , 5, 7x y     

during the first stage of  slip stacking, and this is where the instability can be most dangerous. 

Finally, a peculiar feature of  the instability is its selectivity – it only affects the 1st injected batch 

above the threshold intensity; the subsequent injections of  the same intensity are not affected 

(Fig. 2.8). This feature cannot be explained from the standpoint of  a conventional resistive wall 

instability, where the wake-fields beam intensity (see, for example, Table 2.2 in [37]) Hence, for the 

resistive wall one would expect a the instability to become more potent as more beam is injected into 

the machine. The stability of  the last injections can be explained by the electron cloud though, since, 
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first, its density is a highly nonlinear function of  the beam current (Sect. 4.3.6) and, second, it works 

as a nonlinear lens, providing an additional Landau damping.  

 

Figure 2.8: The first batch above the threshold intensity suffers the blow-up after injection into the 

ring. The plots show bunch intensities of six consecutive injections into the Recycler and turn-by-turn 

measurement of the beam center horizontal position for each injecting batch. Left – the 1st batch is 

above the threshold intensity of 104 10 ppb and is affected by the instability, the other five batches of 

the same intensity remain stable. Right – the 1st batch below the threshold, the instability moves to the 

2nd batch [30]. 

 

2.2.2 Intensity dependence of  the instability growth rate 

The growth rate of a conventional resistive wall instability scales linearly with the beam intensity. The 

observed fast instability, on the other side, does not follow a linear dependence (Fig. 2.9). For a beam 

of one batch of 80 bunches the instability does not manifest itself below the intensity of 10 turns or 

4.2*1010 ppb. The instability threshold seems to be at 4.6*1010 ppb and its growth rate rapidly increases 

for higher intensities. The maximum growth rate is achieved at 13-14 turns or 5.4–5.8*1010 ppb, where 

high beam losses trigger the beam abort in less than 500 revolutions. Above 6.3*1010 ppb, however, 

the beam blowup starts to decrease. The beam intensity in this measurement was limited by the losses 
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in the Booster. The highest achieved intensity was 17 turns or 7.0*1010 ppb. At this intensity the 1 mm 

blowup is already barely seen on the BPMs. 

Figure 2.10 shows the maximum observed betatron amplitude as a function of beam intensity with 

the transverse damper ON. At two intensities a beam loss was registered, for those intensities the 

maximum amplitude right before the loss was recorded (red dots). The width of the instability in the 

intensity space is quite narrow – about 101.5 10 ppb. This nonlinear dependence of the beam blowup 

on its intensity is a characteristic feature of electron cloud driven instabilities. 

 

 

Figure 2.9: The instability goes up and then down with intensity (in Booster injection turns). 

Horizontal position of the beam center vs revolution number; 1 batch of 80 bunches; ξx,y = -6, -8. 
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Figure 2.10: Maximum amplitude of resulting betatron oscillations has a sharp spike at the intensities 

around 5-6x1010 ppb. Red points indicate total beam loss due. Data from the Apr 4, 2016 test. 

  

2.2.3 Conditioning during the high-intensity operation 

The fast instability is most prominent during the start-up phase after a shutdown, when the vacuum 

in the machine is broken for ring maintenance and upgrade. As the accelerator operates the instability 

thresholds go up, which is consistent with a hypothesis of  beampipe conditioning through scrubbing 

by the beam. The conditioning effect in Recycler was first mentioned by Eldred et al in 2014 [29]. At 

that time the threshold intensity was 4*1010 ppb, or 9 Booster turns. Later studies have shown the 
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threshold going up as the machine runs high intensity beams. After the 2015 shutdown the threshold 

was at 4.5*1010 and during the course of  the 2015-16 operation increased to 6.3*1010 (Fig. 2.11).  

 

Figure 2.11: The instability threshold goes up as the machine runs high-intensity beams. Left – 

evolution of the threshold during the 2015-16 run; the last measurement was made at higher 

chromaticities – no instability observed at -6,-8. Right – conditioning during the machine start-up after 

the long summer shutdown in 2016. No increase of the threshold seen during the first two weeks 

when the machine was running low intensity (1 batch, < 103 10  p). 

 

The conditioning effect is consistent with the electron cloud nature of  the instability. Recent 

studies by Y. Ji [27] show that the stainless steel beampipe slowly conditions when being exposed to 

the beam in an actual accelerator environment. The steel then rapidly deconditions after the beam is 

turned off  [28]. During the latest run in 2016 the secondary emission yield went down by 30% from 

1.95 to 1.35 in 7 months and then increased by 10% during the first two days of  the deconditioning. 

The peculiar features of the instability, in particular its high growth rate, the nonlinear dependence 

on beam intensity, and the conditioning during the high-intensity runs suggest the electron cloud 

nature of the instability. Its appearance only in the horizontal plane suggests that the cloud is located 

in the ring’s dipole magnets. The Recycler dipoles are combined function magnets that have a linear 

focusing component in addition to the constant bending magnetic field. The presence of focusing 
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allows the magnets to trap the electron cloud, leading its build up over multiple revolutions (more 

details on this in the following chapters).  

 

2.3 Beam stabilization by a clearing bunch 

To check whether the instability is caused by the trapped electron cloud a clearing bunch test has been 

done. The clearing bunch technique is a method, originally developed in Cornell, which allows a 

detection of the trapped cloud by a special witness bunch. If a trapped electron cloud is present in the 

machine, a single bunch of high enough charge following the main batch, will kick it and clear the 

aperture. This clearing of electron cloud then can be noted by observing a change in beam dynamics. 

Figure 2.12 (top) shows the increase beam center oscillations, measured by BPMs, of an unstable 

batch of 3.6*1012 p. The horizontal oscillations rapidly grow, leading to beam dilution and a loss of a 

fraction of intensity, then the beam is stabilized by the dampers. When a single clearing bunch of ≥ 

1*1010 p is injected in the machine before the high-intensity batch, the later remains stable (Fig. 2.12, 

bottom). The position of the clearing bunch does not change the picture – it can be as far as half of 

the ring (or ~ 5 μs) apart from the batch, suggesting that there is a portion of the electron cloud that 

survives over one revolution, and it can be removed with a clearing bunch. Further increase of the 

clearing bunch intensity does not change the picture – the high-intensity batch remains stable. This 

agrees qualitatively with the simulation of electron cloud build-up and trapping in Recycler dipoles, 

discussed in Sects. 4.1, 4.2. 
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Figure 2.12: Without the clearing bunch the beam of 3.6*1012 p blows up in about 20 turns (top); with 

the clearing bunch of 1*1010 p it remains stable (bottom). 

 

Figure 2.13 depicts the betatron tune shift within the 80-bunch train with respect to the first 

bunch, measured over 600 revolutions with a stripline detector, with the dampers off during the 

measurement. Since the space charge does not change the coherent tune and the resistive wall creates 

a negative tune shift, the positive horizontal tune shift is a clear signature of the presence of a negative 

charge at the beam center. The vertical tune shift is negative, indicating that the maximum density of 

the cloud is outside the beam. When a clearing bunch is added, the tune shifts decrease, indicating, as 

expected, a reduction of electron cloud density. 

 

Figure 2.13: Presence of the clearing bunch reduces the tune shift between the head and the tail of the 

high-intensity bunch train: 5*1010 ppb, 80 bunches. The error bars represent the spread between 

different measurements. The black dotted lines represent the resistive wall tune shift. 
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There is a second effect that can affect the coherent betatron frequencies – the finite resistivity of 

the walls of the vacuum chamber (or “resistive wall”). It creates negative horizontal and vertical tune 

shifts, which scale linearly with the total charge (or bunch number in the batch). The resistive wall 

may be responsible for the remaining slope in the vertical tune shifts. According to the recent 

measurements, in Recycler the vertical resistive wall impedance is at least five times larger than the 

horizontal [38]. In order to account for the resistive wall contribution we performed a series of stripline 

measurements at lower intensities, where the fast instability is not observed. Thanks to the highly 

nonlinear dependence of the could build-up on intensity (see Sect. 4.3), the electron cloud density 

below the threshold is negligible compared to one above. Therefore the betatron frequency shift 

observed below the threshold is created only by the resistive wall. The frequency shift between the 

first and the last bunches of the batch scales linearly with intensity for a stable beam below the 

threshold (Fig. 2.14). This linear dependence can be used to estimate the resistive wall contribution to 

the total tune shift above the threshold intensity and separate the electron cloud part. The dashed lines 

in Fig. 2.13 represent the frequency shift due to the resistive wall.  

Taking the resistive wall effect into account we see that the insertion of a clearing bunch 

completely removes the shifts of both horizontal and vertical betatron frequencies, confirming that 

the shifts are caused by the electron cloud. The electron cloud be sufficiently long-lived in order for 

the clearing bunch to affect it. This long (~ 1 μs) lifetime suggests that the cloud must be confined by 

magnetic field of beam optics magnets. 
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Figure 2.14: The resistive wall contribution of the head-tail tune shift scales linearly with the beam 

intensity. The slope is horizontal (< 0.1/1010 p) in the horizontal plane and ~0.4/1010 p in the vertical. 

The resistive wall part of the tune shift of an unstable beam above the threshold (grey area) can be 

found by extrapolation. The small positive offset (non-zero shift at zero intensity) is probably caused 

by the injection mismatch of the leading bunches due to the finite rise time of the injection kickers. 

  

To sum it up, an addition of a low charge clearing bunch can stabilize a high-intensity beam. The 

stabilization proves the electron cloud nature of the instability and suggests that the cloud must be 

trapped in the beam optics magnets. The observed bunch-by-bunch shifts of the betatron frequencies 

and their reduction by a clearing bunch are consistent with the electron cloud picture.  

 

2.3.1 Possible operational implementation of  electron cloud clearing 

It has been previously shown that only the first batch above the threshold intensity suffers from the 

fast instability, while the subsequent batches remain stable. If the first batch can be stabilized by a 

clearing bunch, injected before it, then all beam should remain stable. To confirm this idea a proof-

of-principle experiment has been done on April 04, 2016. 

In the proof-of-principle clearing experiment a clearing bunch of 4.2*1010 p was first injected. 

Then, in the next three injection cycles three high-intensity batches of 5.8*1010 ppb (14 Booster turns) 
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were injected in the ring (Fig. 2.15). The first four injection cycles of an actual 4+6 slip-stacking 

machine state were used in this test to simulate the real operation. Since the first cycle was occupied 

by the clearing bunch we were limited by only three high intensity batches. 

Without the clearing bunch the 1st batch is unstable, as seen before in [29], and the 2nd and 3rd 

batches remain stable. With the clearing bunch all beam remained stable with no fast instability 

observed (Fig. 2.16). 

In order to save an injection position in the ring the clearing bunch can be kicked out before the 

injection of the 2nd or 3rd batches, and the beam still remains stable. This way the clearing bunch does 

not need an extra position in the ring. In Figure 2.17 the bunch is extracted by the gap clearing kickers 

and the second high-intensity batch takes its place; the beam remains stable. 

The clearing bunch can be placed at almost any position in the ring, arbitrarily far from the beam 

it is supposed to stabilize. Empirically it has been established that the bunch should not be place closer 

than 5-7 RF buckets in order for the stabilization to happen. This is probably due to the presence of 

decaying unconfined shortly after the beam has passed. When that cloud decays and only the trapped 

particles are left the pilot bunch can clear the aperture. According to the numerical build-up 

simulations (discussed in detail in the Chapter 4), the untrapped cloud decays in about 10 RF cycles, 

which is consistent with the above hypothesis. 
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Figure 2.15: Positions of the clearing bunch and three high-intensity batches. The horizontal axis 

shows bunch position in the ring in nanoseconds, the vertical – time into the machine cycle, the 

separation between the horizontal lines is 300 revolutions (3.3 ms).  

 

Figure 2.16: Without the clearing bunch the 1st batch is unstable, with the clearing bunch all beam is 

stable. Horizontal position of the beam center is plotted vs number of revolutions after its injection. 

Beam: 5.8*1010 ppb. 
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Figure 2.17: The clearing bunch (the single spike) stabilizes the first high-intensity batch; it is then 

thrown away and the second and third batches are injected. No fast instability is observed in any of 

the batches. The horizontal axis shows bunch position in the ring in nanoseconds, the vertical – time 

into the machine cycle, the separation between the horizontal lines is 300 revolutions (3.3 ms). 

 

The main disadvantage of the described approach comes from the way how the clearing bunch is 

created. In order to achieve a single bunch in the Recycler its injection kickers and Booster extraction 

kickers are mistimed in such a way that 79 of 80 Boosted bunches go to the beam dump and only the 

first one gets injected into the ring. This procedure leads to a waste of the whole Booster cycle and 

unnecessary contamination of the beam dump and therefore is unpractical. 

A possible solution could be an installation of a fast notcher to kick out several bunches from the 

tail of the first batch, creating the desired batch-clearing-bunch beam pattern. This can done on an 

early stage of acceleration in the linac, when the radiation damage from bunches sent to the beam 
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dump is minimal. This procedure does not require a separate injection Booster cycle for the clearing 

bunch, since the clearing bunch and the first batch are injected simultaneously. Only the first batch 

needs to be notched and only 7-10 bunches need to be removed, so the loss of 10-12% of beam 

intensity due to the creation of the clearing bunch is outweighed by the ability to work above the 

threshold. 
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CHAPTER 3 

MICROWAVE MEASUREMENT OF THE CLOUD DENSITY 

A microwave technique provides a non-invasive measurement of the electron cloud density and its 

evolution during an accelerator cycle. It is based on detecting a phase modulation of a microwave, 

propagating through the cloud. The method was initially proposed for measuring the cumulative 

average density of the electron cloud, which can vary significantly along the beampipe depending on 

local geometry and surface conditions, over a large section of an accelerator [39]. It proved to be 

valuable for studying the clouds at many large scale high intensity accelerators: MI at Fermilab [40], 

CESR at Cornell [41], PS and SPS at CERN [42], etc. The technique is also useful for measuring the 

cloud in the regions where an installation of a pick-up detector is technically challenging, for example 

inside the magnets.  

The first attempt to perform a microwave measurement in Recycler was made Eldred et al. in 2014 

[29]. The researchers used standard stripline beam position monitors to transmit the 2.0 GHz carrier 

signal ~ 50 m of  Recycler beampipe. The studied section of  the ring had several combined function 

dipoles, corrector quadrupoles and sextupoles, and drift sections. The spectrum of  the received signal 

showed a characteristic spike in the modulation sideband, occurring simultaneously with the injection 

of  an unstable batch (Fig. 3.1). That result allowed confirming the electron cloud hypothesis on the 

physics behind the instability. High noise and low signal level in the experiment limited its temporal 

resolution and did not making a reliable measurement of  the density of  the cloud. It was suggested 

that the electron cloud must be located in the dipoles, since the previous studies of  the electron cloud 

in a similar MI beampipe did not predict a high cloud density in the drifts, and the occurrence of  the 

fast instability only in the horizontal plane, which is typical for an instability, driven by an electron 

cloud in the dipole magnets. Because of  the large spacing between the antennas, the exact origin of  
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the signal remained unknown [30]. To resolve the location uncertainty and improve the temporal 

resolution a new attempt has been made. 

 

Figure 3.1: Left – the first batch above the threshold intensity suffers the blow-up after injection into 

the ring. Right – a phase modulation of the 2.0 GHz carrier at the revolution frequency of 90 kHz 

occurs simultaneously with the instability. The fine structure of the modulation sideband implies that 

it is connected with the longitudinal quadrupole oscillations that have a periodicity of a half of the 

synchrotron period [30]. 

 

In this chapter we describe the electron cloud experimental test setup at Recycler: its hardware, 

principles of operation, expected results, and limitations. Then we present the analysis of the noise 

that limits the precision of the microwave measurement, which turned out to be the beam Schottky 

signal. Finally, we present the results on the density of the electron cloud in a Recycler combined 

function magnet, its build-up and decay. 

  

3.1 Experimental setup 

In order to measure the cloud density inside a combined function magnet, we installed the source and 

receiver directly upstream and downstream of the dipole. This way we can isolate we origin of the 

electron cloud signal – if it is observed it is guaranteed to come from that magnet. The close location 
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of the antennas allowed greatly reducing the time of flight compared to the previous attempt [6] and 

hence enhancing the temporal resolution. 

 

3.1.1 Hardware 

A layout of the experiment is depicted in Fig. 3.2. All the electronics is located at the MI-50 service 

building. We generate a 1.97 GHz carrier with a signal generator and then amplify it with a 10 W 

preamplifier before sending it to the tunnel. In the tunnel, we are using two regular Recycler vertical 

BPMs to send and receive the TE microwave signal. The choice BPMs as antennas was made because 

of their availability and the time constraints of the project. To account for the cable losses in a 100 m 

cable run from MI-50 to the location of the test setup in the tunnel we are using an additional 1 W 

amplifier, sitting next the sender BPM. The amplifier is protected from interference with the reflected 

signal and the beam signal by a 1-2 GHz circulator, which sends them to a 5 W 50 Ω resistive load. 

The microwave travels about 5 m through a combined function magnet. The electron cloud, if present 

in the magnet, delays the propagation of the microwave, modulating its phase.  The microwave signal 

is then picked up by the second BPM. The received signal, first, goes through a narrow band filter to 

reduce the interference from the beam signal and then is amplified and sent to the 20 GS/s 

oscilloscope. The oscilloscope is triggered by a beam-synchronized trigger. It measures the phase delay 

between the generated and the received signals, which is then converted into the density of the electron 

cloud inside the magnet. 
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Figure 3.2: Layout of the microwave measurement setup 

 

3.1.2 Physical principle 

One can consider the electron cloud inside a magnet as a cold collisionless magnetoactive plasma. 

Generally, the propagation of a microwave through the plasma depends on its polarization with 

respect to the external magnetic field. In a uniform magnetic field B0 the dielectric tensor εαβ can be 

reduced to two components,   and  , where the subscript stands for the orientation of the electric 

field E of the RF wave parallel or perpendicular to B0. Assuming the electron density is much larger 

than the ion density, 
e in n  one can write [24] 
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where 24pl e en r c   is the plasma frequency, 2rf rff   is the RF frequency, and 0
B

e

eB

m c
   is the 

Larmor frequency; e and me are the electron charge and mass, re – classical electron radius. For the 

Recycler magnets B0 = 1.38 kG and 2 3.72GHzB    (Table 3.1). 

A 
0

E B  (horizontally polarized) can be resonantly absorbed at ωrf ~ ωB. The high value of ωB 

makes such a measurement technically challenging at Recycler. At lower frequencies the electron 

contribution to   is negligible. For a TE wave with 
0

E B  (vertically polarized) the deviation of   

from the unity is linear with the electron density ne and does not depend on the magnetic field strength 

B0. For the typical electron cloud densities < 107 cm-3 it is quite small, of order or less than 10-4. 

A TE wave propagating in a waveguide filled with vacuum has a group velocity of  

 2

, cutoff rf1 ( / )g vacv c      (3.2) 

where 2cutoff cutofff   is the cutoff frequency of the waveguide, corresponding to the TE10 mode. The 

electron plasma changes the dielectric constant of the medium, and consequently the group velocity. 

For a vertically polarized wave , , /g pl g vacv v  . Assuming the beampipe in the combined function is 

uniformly filled with the cloud, the resulting phase delay is 
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where Lm is the length of the magnet.  

The temporal resolution of the experiment is limited by the time it takes the microwave to 

propagate through the magnet 
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Here we used 1pl  . Examining Eqs. (3.3) and (3.4) one can easily notice the tradeoff between the 

sensitivity and the temporal resolution. On one hand, a lower RF frequency, closer to the cutoff of 
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the beampipe, increases the measured phase delay for a given cloud density. On the other hand, the 

lower the frequency – the higher the propagation time. To resolve the dynamics of electron cloud 

build-up one needs to have a temporal resolution comparable with the bunch spacing. For Recycler 

that means Δtmin < 100 ns. For this experiment we chose frf = 1.97 GHz, it was then fine-tuned to 

reduce the noise (see Sect. 3.2). Table 3.1 summarizes the key physics parameters of our set-up. For 

an electron cloud density of ~106 cm-3 we would expect to see a signal of 0.35 deg. 

 

Table 3.1: Key physics parameters of the set-up 

Parameter Symbol Value 

Length of the dipole Lm 4.5 m 

Magnetic field B0 1.38 kG 

Larmor frequency fB 3.72 GHz 

Cutoff frequency fcutoff 1.87 GHz 

RF frequency frf 1.97 GHz 

Group velocity vg,vac 0.3c 

Temporal resolution Δtmin 50 ns 

Sensitivity dΔφ/dne 6 mrad/(106cm-3) 

 

3.1.3 Signal transmission 

There are two major sources of signal losses in the experiment: signal reflection due to imperfect 

coupling of the BPM and cable losses. The attenuation of the microwave during its propagation 

through the beampipe is insignificant. 

The signal reflection losses are caused by the design of the BPMs, which were not intended to be 

used as launch pads for microwaves. The BPMs have a 50 Ω, matched to the cables, only at low 

frequencies. Near 2 GHz, however, most of the incoming signal is reflected back. To estimate the 

contribution of this part of the losses, we assembled a test stand, consisting of two BPMs – a source 
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and a receiver, located at the ends of a 1-m-long beampipe. By a careful choice of the working point 

one can achieve the total attenuation in the range of 20-30 dB (Fig. 3.3). This measurement also gave 

us the cutoff frequency of the beampipe fcutoff = 1.87 GHz (measured at -60 dB). 

 

Figure 3.3: The BPMs reflect most of the power back at 2 GHz. The total transmission loss due to 

reflection is 20-30 dB. Beampipe cutoff frequency is 1.87 GHz.  

 

The major portion of the losses happens in the cables. We used ¼ in. superflex heliax cables, 

mainly due to their availability, which have a high attenuation above 1 GHz. It is rated at 28.5 

dB/100m signal attenuation at 2 GHz. We lose about 30 dB on the way from the preamplifier, located 

upstairs at the MI-50 service building, to the BPMs in the tunnel and another 30 dB on the way back. 

To account for the losses on the way forward we installed an additional 30 dB amplifier in the tunnel, 

next to the BPMs. The losses on the way back seem to be unavoidable. Due to high radiation in the 

tunnel it is impossible to install the sensitive electronics like an oscilloscope downstairs. A down-

conversion might improve the signal attenuation but requires an installation of high power bandpass 

filters (like cavity-type filters) to protect the mixer from the low frequency high peak power 

components of the coherent beam signal. 
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3.2 Schottky noise 

An investigation of the noise spectrum in the measurement revealed that it is a Schottky signal induced 

by the beam, which has a random component due to its large but finite number of particles [43]. The 

characteristic feature of the Schottky signal is the linear increase of its bandwidth with the frequency. 

This increase makes performing a microwave measurement a challenging task. In this section we 

briefly describe the physics behind and the structure of the Schottky signal and then show how we 

choose the microwave frequency to minimize the interference. 

 

3.2.1 Noise spectrum 

The Schottky signals are a powerful tool of beam diagnostics of coasting and bunched beams, and the 

power spectrum of these signals is well known. In this section we present a simple analysis of the 

spectrum of, first a coasting beam, and then a beam bunched by a linear RF voltage. The main 

conclusions, however, hold true for a beam bunched by an arbitrary wave-form stationary RF voltage 

[44].  

Consider, first, an unbunched beam, travelling through a pick-up. The current of the k’th particle 

can be written as 
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where t stands for the time, tk = T0φk is its initial phase of the k’th particle, m is the revolution number, 

T0 – revolution period, and δ is the Dirac delta-function. Applying a Fourier expansion to ik we get 
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where f0 = 1/T0 is the revolution frequency. Thus the spectrum of the k’th particle is a series of delta-

functions with a period of f0 (Fig. 3.4, top). Another, l’th particle may have a slightly different 
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revolution frequency f1 due to a different energy. The frequency shift Δf relates to the relative 

momentum difference Δp/p as  

 
0 /f f p p   , (3.7)  

where η is the momentum compaction factor. Adding up all the particles in the beam we obtain the 

total beam current ( ) ( )k

k

I t i t . Its average value is 
0 0( )I I t ef N  , where N is the total number of 

particles in the beam. The average power of the beam signal is proportional to 2( )I t : 
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Assuming a random distribution of the initial phases, Eq. (3.8) reduces to a sum of a series of periodic 

bands around the harmonics of the revolution frequency with an rms width proportional to the rms 

momentum spread σp (Fig. 3.4, bottom): 

 2 2 2 2
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I t e f N I     (3.9) 

 The average total beam power in each band is the same, it is equal to 

 2 2 2

0 0 02 2 ,nI e f N ef I    (3.10) 

where N is the number of particles and I0 is the beam current. 
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Figure 3.4: Single particle current (top) and spectrum (middle) are series of periodic delta-functions. 

When all the particles in the beam are added together, the resulting spectrum gets broader with 

frequency (bottom) [45]. 

  

In a bunched beam in addition to the cyclotron motion each particle undergoes longitudinal 

oscillations within its RF. Then Eq. (3.5) should be rewritten as 
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where ϴ is the azimuthal displacement of the k’th particle from the bunch center and fs is the 

synchrotron frequency. The synchrotron modulation splits each single particle spectral line into an 

infinite number of lines with a spacing of fs. For a linear RF voltage the amplitudes of the lines decrease 

as (see Eq. (9.33) in [46]): 
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where Δz is the span of longitudinal particle motion, C is the ring circumference, and Jh is the hth-

order Bessel function. 
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3.2.2 Schottky noise on the Recycler BPMs 

The noise signal from one of the BPM plates was measured directly with a spectrum analyzer. To 

remove the interference from a relatively low frequency coherent signal (main harmonic at the RF 

frequency 53 MHz) we used a 1.7-2.4 GHz bandpass filter. Despite the filters attenuation of 60 dB 

the some low frequency signal still went through, particularly at the frequencies below 250 MHz. This 

leakage can be explained by negligible cable losses at low frequencies (more details on cable losses are 

provided in Sect. 3.1.3). Despite somewhat unwanted, the low frequency signal proved to be useful 

for determining the nature of the noise signal. 

The observed signal has all the characteristic properties of the Schottky signal described above. It 

appears on the harmonics of the revolution frequency, 90 kHz (Fig. 3.5). During the slip stacking, 

when two beams of different energies are stored in the ring, the slip-stacking sidebands appear in the 

signal. The 2 Hz difference in the revolution frequencies translates into a 2GHz / 90kHz 2Hz 45kHz   

shift at 2 GHz, putting the slip-stacking sidebands exactly in between the main peaks. At lower 

frequencies one can resolve the 250 Hz synchrotron frequency of the machine (the synchrotron lines 

merge at high frequencies as their width increases). Comparing the width of the spectral lines at 200 

MHz and 2 GHz, one can easily see that it is proportional to the frequency, as expected for a Schottky 

signal. At 200 MHz the FWHM is 1 kHz, about 0.1 of the FWHM at the 2 GHz – 10 kHz. The rms 

momentum spread, estimated from the width of the spectral lines 

 41 5kHz
~ 115.3 ~ 2.9 10

2GHz
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p f




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agrees with the tomography measurement of 43.3 10 . The 10% discrepancy in the result can be 

attributed to a rough method used to estimate the rms frequency spread σf: we estimated it as ½ of the 

linewidth at -5 dB, or at about 
1

2e


 of its maximum value. 
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Figure 3.5: Spectrum of the Recycler Schottky signal. When the machine operates with the slip-

stacking, the two beams of different energies produce signal at the revolution harmonics of ~ 90 kHz. 

Because of the 2 kHz difference in the frequencies, the signals separate at high harmonic numbers. At 

2 GHz (harmonic number 4~ 2 10hn  ) the slip-stacking signal is in the middle between the main peaks 

(top-left). The slip-stacking signal disappears when the machine operates with a monochromatic beam 

(bottom left). At 200 MHz ( 3~ 2 10hn  ) one can resolve the sidebands on the harmonics of the 

synchrotron frequency (top right). The distance to the slip-stacking sideband scales with the harmonic 

number: it is ~4.5 kHz at 200 MHz and ~45 kHz at 2 GHz. 

  

The Schottky spectrum is a powerful noninvasive diagnostic tool that can reveal valuable 

information about the internal structure of the beam. Apart from the relevant frequencies and the 

momentum spread, discussed above, one can derive in a straightforward matter from the Schottky 

spectrum such quantities as the betatron frequency spread, chromaticity [45], and space charge 
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frequency shift [47]. An important parameter is the transverse emittance, which is proportional to the 

total power, concentrated in a betatron sideband: 

 ,A f      (3.14) 

where Aβ and Δfβ are, respectively, the height and width of the sideband. The power can be calibrated, 

using a beam of known emittance (for example using scrapers to shape the beam transversely). An 

attempt to show that a conventional stripline BPM can be used as a Schottky detector at high 

intensities is currently under way at Recycler [48]. 

 

3.2.3 Frequency selection 

Despite all of its usefulness, for the purpose of the microwave electron cloud detection the Schottky 

signal is the noise background that has to be reduced. The power of the signal is proportional to the 

measurement bandwidth. We measured the power around the desired frequency 2 GHz. Before the 

amplification the power in a 1 MHz bandwidth is of the order of (for a typical total beam intensity of 

1240 10 p) 8

1MHz ~ 80dB 10 WP   . To detect the build-up and decay of the electron cloud we need a 

temporal resolution of at least 100 ns, meaning at least 10 MHz measurement bandwidth and at least 

-70 dB of noise signal (before the amplification). Since the noise has the same frequency as the signal, 

it cannot be filtered out. After the final amplification the signal and noise power levels are about the 

same, -40 dB. The huge interference and the overall low signal level make the fast measurement did 

not let us doing the fast measurement. 

It is possible to pick a frequency between the noise bands for a slow measurement. With a 

measurement bandwidth low enough to avoid both cyclotron and betatron bands one can select the 

microwave frequency between them and significantly reduce the interference from the beam. That can 

be achieved with a bandwidth up to 1-3 kHz (Fig. 3.5), resulting in a temporal resolution up to 0.3-
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1.0 ms. The frequency, where one can achieve (a) a relatively high transmission, (b) a relatively low 

group velocity, and (c) stay away from the Schottky bands is 1.970 GHz. 

 

3.3 Measured electron cloud density 

3.3.1 Density vs beam intensity 

To measure the average density of the electron cloud inside a combined function magnet during the 

Recycler operation a we performed a ‘slow’ measurement, using a network analyzer both drive the 

1.97 GHz microwave and measure the phase delay. For each beam intensity 1000 measurements of 

the phase delay were made during a 60.2 s machine supercycle. On each supercycle the phase was 

calibrated during the 6 s window of no beam in the Recycler, when the Main Injector does slow-spill 

extraction. The lowest intensities were obtained with 6 batches in the ring.  The highest intensities 

were measured during the 4+6 ‘slipstacking’ operation, when the machine stores ten batches of two 

slightly different energies.  

Averaging over 1000 data samples (limit set by the memory of our analyzer) allowed reducing the 

interference from the beam Schottky signal, discussed above, and resolving the small delay, 

presumably created by the electron cloud. For low intensities no signal was detected. For higher 

intensities we detected the phase delay of up to 0.5 deg, corresponding an electron cloud density of 

121.5 10 m-3 (Fig.3.6). The density increases sharply above the total beam intensity of 131 10  p and then 

reaches a saturation, which is consistent with the simulations of electron cloud build-up discussed in 

Chapter 4.  



57 
 

 

Figure 3.6: The electron cloud density increases dramatically above 131 10 p total beam intensity. 

  

It should be noted that the measured density of electron cloud is still an estimate rather than the 

exact value. Its calculation is based on the assumption that the cloud fills the beampipe aperture 

uniformly, which, strictly speaking, is not the case for a cloud in strong dipole magnetic field, as will 

be shown in the next Chapter. Moreover, some portions of the beampipe may be more contaminated 

than the others and consequently have more electron cloud in them. Nevertheless, the microwave 

measurement has shown the presence of the electron cloud in a combined function magnet. It can 

reach high densities for high-intensity beams. 

  

3.3.1 Electron cloud decay 

To measure the rate of accumulation and decay of the electron cloud we did a measurement of the 

phase shift during and after the passage of a batch and with a 50 ns rolling window. The short window 

length was determined by the bunch spacing and was required to resolve the change in the density of 

the cloud, which may vary significantly over a course of a few bunches. In the frequency domain the 

sapling window corresponded to 20 MHz bandwidth. Because of the huge bandwidth, the 

measurement received a lot of interference from the Schottky beam signals, discussed in Sect. 3.2. To 

reduce the noise we collected the data for 100 turns after the beam injection and performed averaging.  
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The results of this measurement are inconclusive. While we do observe some decay of the RF 

phase with time after the last bunch has left the magnet, and while the magnitude of the decrease is 

consistent with our expectations from electron cloud (Sect. 4.3.4), there is a great uncertainty in the 

results, resulting from the Schottky signal (Fig. 3.7). The noise signal did not disappear immediately 

after the beam is gone, because of the imperfect coupling of the BPM’s at high frequencies. The 

resulting ‘ringing’ lasted for several hundred microsecond, spoiling the measurement.  

 

Figure 3.7: Left – the average phase shift decreases with time after the beam has left the combined 

function magnet; beam: 80 bunches, 105.4 10  ppb. Right – the maximum phase shift, measured 25 ns 

after the last bunch, increases with the beam intensity; error bars not shown. RF frequency: 1.970 

GHz. 

  

The small RF phase shift makes it is challenging to perform a microwave measurement of the 

electron cloud density in an isolated magnet. The phase shift is limited by the wave propagation time 

or, in other words, by the temporal resolution of the measurement. In a fast microwave measurement 

the problem is further complicated by the interference from the Schottky beam signal. It is still 

possible to observe the decay of the cloud after the beam, and hence the Schottky noise, is gone, but 

one needs to design special RF launch pads, coupled at the desired frequency. The standard BPM’s 

have high impedance at the microwave frequencies, resulting in multiple reflections of the beam 

induced signals.   
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CHAPTER 4 

NUMERICAL SIMULATION 

A numerical simulation allows an estimation of the density of electron cloud and the rate of the 

induced instability for different parameters of the problem: beam intensities, bunch lengths, and the 

secondary emission yield of the beampipe. A combined solution of the build-up of electron cloud and 

its interaction with the beam is a complex, computationally intense problem. The simulation results 

may vary significantly depending on the exact modelling details [18]. Because of its complexity and 

sensitivity to details, we approach the problem in several steps. 

First, we examine analytically the process of the electron cloud trapping in a combined function 

magnet. We find the conditions when a fraction of the electron cloud particle is confined by the 

magnetic field and estimate its population and lifetime. 

Then we study numerically the build-up of the electron cloud with a stationary beam. We show 

how the trapping affects the build-up and compare the simulation results with the analytical estimates 

of the electron cloud trapping and the experimental observations of the fast instability, presented in 

Chapter 2. Having confirmed the numerical model, we extend the studies to the higher beam 

intensities, planned for the PIP-II upgrade. 

And finally, after the parameters of the electron cloud have been determined, we simulate the 

beam-cloud interaction to find the growth rate and the characteristic mode frequencies of the electron 

cloud driven instability. 
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4.1 Electron cloud trapping in a combined function magnet 

4.1.1 Combined function dipole as a magnetic trap 

In a combined function dipole the electrons of the cloud move along the vertical field lines. This 

motion conserves their energy E and magnetic moment 

 
2

,
2

mv
const

B
     (4.1) 

where v  is the component of the velocity normal to the magnetic field B. As an electron moves closer 

to a magnet pole it sees a higher B (Fig. 4.1) and it can reflect back if 

 0E B   (4.2)  

Alternatively, the electron will reflect back at the point of maximum magnetic field if the angle between 

the electron’s velocity and the normal to the field line is lower than: 

 1

max 0 maxcos ( / ).B B      (4.3) 

Eq. (4.3) is a commonly known formula for a ‘magnetic mirror’. Particles with angles max| |   are 

trapped by the field. For Recycler magnets (Table 4.1), Eq. (4.3) gives a capture of ~10-2 particles of 

electron cloud, assuming their uniform distribution.  

 

4.1.1 Electron capture by the field 

Let us look at the process of electron cloud trapping in more detail and consider the last two bunches 

of the batch. The first bunch kicks the electrons of the cloud, created by the batch. With an energy of 

the order of 100 eV the electrons drift along the magnetic field in the vacuum chamber, finally reaching 

its walls and producing secondary electrons with the energies of a few eV [19]. In the absence of the 

beam these secondary electrons would eventually reach the aperture and die. But the next proton 
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bunch can stop a fraction of the secondaries, reducing their angle to max   (Fig. 4.2). These electrons 

will remain trapped in the magnetic field after the beam is gone. 

 

 

Figure 4.1: Electron cloud can get trapped by magnetic field of  a combined function magnet. Cross-

section of  a Recycler permanent combined function dipole; the vacuum chamber is not shown. 

 

Figure 4.2: The first bunch kicks the cloud, creating secondary electrons, the second bunch stops some 

of them. 

 

Thanks to the strong magnetic field the motion of an electron is essentially a 1D problem that can 

be easily solved. Initially, the secondaries start at the wall of the vacuum chamber, at / 2y A  , where 

A is the vertical aperture, and have some distribution of velocities ( , )yv vv . During one RF period 

the electrons travel y RFy v    before receiving a kick from the next proton bunch. Assuming a 

transverse waterbag and longitudinal Gaussian beam profile and neglecting the space-charge of the 

electron cloud the equation of motion during the proton kick becomes  
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where 0r  and s  are the transverse and longitudinal bunch sizes and bN – bunch population. This 

system has to be solved with a restricting condition |y|<A/2 – the electron should stay inside the 

vacuum chamber. 

For some initial values of  vy an electron loses the vertical velocity completely after the kick by the 

proton bunch. For Fermilab Recycler (Table 4.1) we find five such trapping ‘modes’ (Fig. 4.3). 

 

Figure 4.3: There are five distinct trapping ‘modes’ in Recycler combined function dipoles. Electrons 

(red trajectories) start at the wall of the vacuum chamber, drift, and then are stopped by the proton 

bunch (blue). Electron energy E = 5 eV. Timescale – one RF period. 

  

Assuming an initial velocity distribution ( )f v from [19] one can estimate the fraction of  the 

electron cloud that falls within the trapping modes (Fig. 4.3) and stays trapped by the field after the 

beam is gone. For Recycler magnets this ratio can be as high as a few percent for low beam intensities. 

At the current operational intensity of  105 10 ppb about 1% of  particles are trapped, and at higher 

intensities this amount gets smaller (Fig. 4.4). 
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Figure 4.4: About 1% of electrons are trapped at the current beam intensity in Recycler. This fraction 

reduces for higher intensities. 

 

4.1.2 Electron cloud clearing with a witness bunch 

As mentioned above, the trapping requires at least two bunches: the first to kick the cloud and create 

the secondaries; and the second to stop a fraction of  those. Therefore, a single bunch of  high enough 

intensity does not trap the cloud but clears the aperture instead. This clearing bunch can be used to 

indicate the presence of  the trapped electron cloud and measure its density [49] or to bring the electron 

cloud density below the threshold, stabilizing the beam. The experimental results on the clearing 

bunch test in Recycler are presented in Sect. 2.3 and the corresponding numerical simulations – in 

Sect. 4.3. 

 

4.1.3 Lifetime of  the trapped cloud 

In the absence of  the beam, the long-term confinement of  the electron cloud can be affected by two 

effects: longitudinal drift and scattering. The drift is caused by the presence of  the magnetic field 

gradient ' /B dB dx  in the transverse plane and its absence in the longitudinal direction. In a pure 

quadrupole field configuration, the drift might lead to a cloud lifetime of  as low as several revolution 

periods [50], and thus reduce the cloud density the beam sees on the next revolution. An exponential 

decay with a time constant ~ 60 to 90 μs has been measured in a quadrupole at the PSR ring in 
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LANL [51]. The effect is significantly weaker for a combined function magnet. The longitudinal drift 

velocity in this case is  

 2

0

1 '
,

2
d c c

B
v r

B
   (4.5) 

where 0 / ( )c eeB m c   is the cyclotron frequency, B0 – the dipole magnetic field component, and cr – 

the radius of the cyclotron orbit. If the cloud drifts a distance ld comparable with the magnet length 

Ldip it may escape the magnet and decay. For the Fermilab Recycler 52 10 cm/sdv   , Ldip = 5 m and the 

resulting lifetime is ~ 1 ms.  

In general, the lifetime of trapped electrons may be also limited by scattering on each other and 

on the residual gas. For the scattering on the other electron cloud particles the Coulomb cross-section 

σC can be estimated as (see Eq. (41.7) in [24]) 
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where re – is the classical electron radius, ε – the electron energy, c – the speed of light, ΛC –  the 

Coulomb logarithm, and χmin – the minimal scattering angle. χmin can be estimated as min max~  , since 

the scattering does not lead to a particle loss if it stays within the trapping cone max  . Then for the 

electron energies ~1 10   eV the cross-section 1310C
  cm2. 

According to the experimental measurements [52], the scattering cross-section for many residual 

gases is of the order of 15 210 cm at the energies 10  eV. Combining the two scattering effects we 

obtain a lifetime ~ 1 ms for the electron cloud density ne < 107 cm-3 and the residual gas pressure P ~ 

10-8 Torr. 

Since all the loss mechanisms result in the lifetime significantly greater than the revolution period 

of 11 μs, all the trapped cloud will be present on the next turn. It will act as the new seed electrons, 

and can lead to a higher electron cloud density on the next revolution. 
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4.2 Numerical model 

In order to see how the presence of trapping changes the build-up of the electron cloud and leads to 

a two-stream instability, we used an electron cloud simulation code PEI4, running on the Fermilab’s 

Wilson computing cluster. PEI4 is fast and flexible Fortran-based code, initially developed at KEK 

for simulation of electron cloud driven instabilities in positron rings [53]. It is capable of solving a 

combined problem of electron cloud build-up and its interaction with the beam in 2D (only the 

transverse motion). The flexibility of the code allows incorporation of an arbitrary magnetic field, 

proton or positron beams, and various bunch train distributions.  

 

4.2.1 Model of  the beam 

The beam is represented by a series of rigid bunches with Gaussian shape. Their transverse and 

longitudinal sizes are defined by three sets of corresponding emittances and beta-functions. The 

bunches are separated by longitudinally by 1 RF period and form bunch trains. The number of trains, 

number of bunches in a train, and the intensity of each individual bunch can be adjusted. Because the 

bunches are considered to be rigid, there is no Landau damping in the simulation.  

 

4.2.2 Model of  the ring 

The ring was modelled as a linear transfer matrix with one thin interaction point, representing the 

electron cloud inside of a magnet. With the help of its author K. Ohmi (KEK) the PEI code was 

changed to accommodate a combined function magnet, as well as a pure dipole or a quadrupole. The 

replacement of a set of extended magnets by one lumped element is justified from the beam dynamics 
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point of view. It gives the same result in the first, linear, order of perturbation theory [37], but is 

significantly less demanding computationally. 

 

4.2.3 Model of  the electron cloud 

The electron cloud is represented by an ensemble of macroparticles of a constant weight. Each 

macroparticle is described by its transverse displacement relative to the center of the beampipe and 

transverse velocity. When a particle reaches a wall of the vacuum chamber, the secondary electrons 

are produced. The macropartilces are then rearranged to keep the number of electrons in each of them 

constant.  

The main source of primary electrons in Recycler is ionization of residual gas by the beam. To 

simulate it the seed electrons were put at the beam with their linear density following 

-1[m ] ~ 6 [Torr],bN P  where P is the gas pressure and Nb is the number of particles per bunch [14].   

The model of secondary emission includes true secondary and elastically reflected electrons and 

assumes normal incidence (for more details refer to Sect. 1.1.2). In a dipole field, however, an electron 

hits the wall of a vacuum chamber at an angle. That increases the time the electron spends near the 

wall surface and consequently the SEY. Experimental data on angular dependence of SEY fits an 

empirical formula: 

 2

0 1(1 (1 cos( ) )),
a

SEY SEY a      (4.7)  

where a1 and a2 are material specific parameters and SEY0 – the yield measured at normal incidence 

[17]. For a simple estimate one can use 1 20.26, 2a a  . Then for the Fermilab Recycler combined 

function dipoles the simulated mean incident angle is 15 deg (Fig. 4.5) and the resulting increase of 

SEY, according to Eq. (4.7) is about 5%. 
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Figure 4.5: Most particles hit the vacuum chamber at small angles to the normal. 

 

4.2.4 Beam-cloud interaction 

The beam-cloud interaction is calculated using the classical Basetti-Erskine model [54]. The models 

uses the complex error functions for a fast evaluation of the electric field of a two-dimensional 

Gaussian charge distribution. To calculate the impact of the three-dimensional Gaussian beam on the 

cloud the program splits the bunch into a number or longitudinal slices and then calculates the kick 

of each slice.  

The PEI code supports three main modes of operation. In the first regime it calculates only the 

build-up of the electron cloud, created by a train of stationary proton or positron bunches. The kick 

of the cloud on the beam is not calculated. This mode is suitable for a fast computation of the cloud 

density for a particular beam intensity. In the second regime the code computes the impact of the 

electron cloud on every bunch, but still treats the bunches as stationary. This allows a fast computation 

of the unstable modes in the beam and their growth rates. And finally, the last mode is tracking, 

coupled with the electron cloud build-up.  
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4.3 Electron cloud build-up 

The accumulation of the electron cloud depends on a vast variety of parameters, including the 

properties of the beam, the vacuum chamber, and the magnetic fields. In this section we, first briefly 

examine these dependencies, then show how the mechanism of trapping changes the build-up, and 

finally find the density of electron cloud for current and planned future intensities in Recycler. 

 

4.3.1 Dependence on the secondary emission 

One of the major unknown parameters of the problem is the secondary emission yield (SEY) of the 

beampipe. Because the build-up of electron cloud is an exponential process even a small change in 

SEY can change the picture of the build-up (Fig. 4.6). For a batch of 60-cm-long bunches of 105 10 p  

for smaller SEY’s, below 2.2, the electron cloud does not accumulate during the passage of the beam. 

For SEY ~ 2.5 the cloud builds-up to a certain linear density and then decays after the beam is gone, 

but the final density remains higher than the ionization density, allowing multi-turn accumulation of 

the cloud. For high SEY’s, greater than 2.8, the cloud reaches saturation at about the beam density 

(more detail in Sect. 4.3.3). The saturation is likely to occur because the self space charge force of the 

cloud starts to compensate the Coulomb force of the beam. 

 



69 
 

 

Figure 4.6: A small change in SEY leads to a drastic increase of electron cloud density after the passage 

of one bunch train. 105 10 , 60cmb zN    . At high SEY's the cloud reaches saturation at about the 

linear density comparable to the density of the beam ( 9~ 9 10 m-1). 

 

For normal Recycler 60-cm-long bunches the secondary emission yield of at about 2.5 or higher 

is required for the electron cloud to accumulate at the current intensities. Such a high SEY typically is 

not achieved in stainless steel. Shorter bunches have a higher peak charge density and therefore may 

create the cloud at lower SEY. The dependence of the cloud build-up on the bunch length is discussed 

in the next section. 

 

4.3.2 Dependence on bunch length 

The bunch length is an important parameter of the problem. In an experiment the beam becomes 

unstable when its bunch length shrinks (Fig. 2.6) due to quadrupole oscillations of the bunch length. 

Their magnitude of these oscillations (based on the observations of the normal Recycler operation) 

can be as high as 30%. This is enough to significantly change the picture of the electron cloud build-

up. 
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Figure 4.7 depicts accumulation of the cloud during one passage of a batch of 80 105 10 p  for 

different bunch lengths and SEY = 2.1 For the nominal bunch length of 60 cm and longer bunches 

the maximum electron cloud density is small – of the order of 107 m-1. For a shorter 40-cm-long bunch 

the cloud reaches the density between 108 and 109 m-1. About 10-2 of those particles stay tapped after 

the beam has passed, allowing the cloud to accumulate over multiple revolutions. For even shorter 

bunches, the cloud might reach a saturation density of about 1010 m-1 in a single pass. The small density 

of the cloud at 60cmz  and significantly higher density for shorter bunches qualitatively explain why 

the instability is only seen when the bunches compress longitudinally. 

 

 

Figure 4.7: The build-up of electron cloud is much faster for shorter bunches. SEY = 2.1; single pass,

105 10bN   , 80 bunches; ionization density 106 m-1. 

  

4.3.3 Saturation of  the electron cloud 

It is often seen in the simulation that the density the electron cloud increases exponentially and the 

stops at a certain threshold. This levelling off is called ‘saturation’. It happens when the flux of the 

particles hitting the wall of the vacuum chamber equalizes the flux of the new born secondaries. There 

are two possible explanations for this effect. First, as the density of the cloud increases its own space 
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charge starts playing a role in the dynamics of the build-up. The negative charge of a dense cloud can 

screen the positive charge of the proton beam, reducing its kick and hence the energy of the electrons 

hitting the wall of the vacuum chamber. Because of the dependence of the secondary yield on the 

incident energy the lower energetic electrons are likely to produce less secondaries, so the secondary 

flux decreases. If the hypothesis is correct, the electron cloud should saturate at about the average 

beam intensity, which is what we saw in Fig. 4.7. 

The second explanation is that as the electron density increases, the diffusion losses during the 

periods of no beam go up and, at a certain point, start compensating the production during the arrival 

of the next bunch. The amount of particles the cloud loses due to diffusion depends on the distance 

between the bunches, so if this is the mechanism of the saturation, the saturation density should 

depend on the bunch length (shorter bunches mean more no-beam time for the same RF period).  

To find out the true nature of the saturation we ran the build-up simulations for the same beam 

intensity and a number of bunch lengths. The results show that the cloud saturates at about the beam 

intensity both for short and for long bunches with no dependence on the bunch length, or alternatively 

on the drift time (Fig. 4.8). For shorter bunches the cloud just reaches the saturation slightly earlier, 

which is expectable since the shorter bunches have more peak intensity and supply more energy to 

the cloud on impact, leading to a higher secondary yield. When the space charge of the cloud was 

turned off, the cloud no longer saturated, proving that the saturation is caused the self space charge 

of the electron cloud. 
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Figure 4.8: The electron cloud saturates at a linear density comparable with the density of the beam, 

independent its bunch length. Without the self space charge the cloud intensity continues to grow 

exponentially with no saturation (no SC lines). The lines show different bunch lengths for the same 

intensity 105 10bN    and SEY = 3.0. 

 

4.3.4 Trapping in a combined function magnet 

To determine the effect of particle trapping on the density of the electron cloud we performed 

simulations of the cloud build-up over multiple revolutions in the machine and compared the outcome 

with the analytical estimates, presented in Sect. 4.1. 

For a pure dipole field, the cloud rapidly builds up during the passage of the bunch train and then 

decays back to the initial ionization electron density in about 300 RF buckets, or ~ 6 μs (Fig. 4.9). 

When the field gradient is added, up to 1% of the electron cloud stays trapped, increasing the initial 

density on the next revolution. The final density, which the cloud reaches after ~ 10 revolutions, is 

two orders of magnitude greater than in the pure dipole case (Fig. 4.9). The resulting cloud distribution 

is a stripe along the magnetic field lines, with a higher particle density being closer to the walls of the 

vacuum chamber (Fig. 4.10). The electron cloud stripe should produce a horizontal focusing effect, 

because of its horizontal location at the beam center. In the vertical plane, the simulated cloud 

distribution should defocus the beam due to the higher charge density outside of the beam. This agrees 
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qualitatively with the observed betatron frequency shifts (Fig. 2.13). A more rigorous, qualitative 

comparison is given in Sect. 5.2. 

At lower densities ~10-2 of particles are trapped, which agrees with an estimate from Eq. (4.3); as 

the density of electron cloud increases the trapping ratio goes down to ~10-3. The most likely cause 

of this decrease is the space charge of electron cloud which was neglected in the analytical estimates. 

 

Figure 4.9: In a combined function magnet the electron cloud accumulates over many revolutions, 

reaching a final density much higher than in a dipole. Beam: 5*1010 ppb, 80 bunches. 

 

Figure 4.10: Electron cloud forms a stripe inside the vacuum chamber and its intensity increases with 

the number of turns. Its horizontal position – beam center (white dot). White circles represent 2 rms 

beam size. 
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The multi-turn electron cloud accumulation due to the trapping mechanism might play an 

important role in a proton ring, where the density of the primary ionization electrons is relatively low. 

For a positron machine of a similar energy the amount of primary electrons is much greater due to 

the photoemission by synchrotron radiation. Because of the large number of primary electrons, the 

cloud can reach a saturation density during just one passage of a bunch train. Then the presence of 

trapping would only slightly affect the overall picture, shifting the saturation towards the head of the 

batch. The recent numerical study at CESR using an ECLOUD code shows that, due to the high 

average photon absorption rate of 2.15 γ/m/e+ the cloud in its combined function magnets reaches a 

saturation density during the passage of one positron bunch train [15]. We obtain similar results 

simulating the positron beam in the DAFNE ring [55] (Fig. 4.11). 

 

Figure 4.11: The electron cloud reaches the saturation density within one revolution period in the 

DAFNE ring. The ring circumference of 0.3 μs is uniformly filled with 120 e+ bunches, 102.4 10 .bN  

The key ring parameters are summarized in Table 4.2. 
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4.3.5 Clearing with a witness bunch 

As mentioned in Sect. 4.1.3, a trapped cloud can be cleared by a single bunch following the beam at a 

sufficient distance. In Fig. 4.12 a bunch of 5*1010 protons, added 120 RF buckets after the main batch, 

destroys the trapped cloud, preventing the multi-turn build-up. First, one can see a small increase in 

the cloud density as the clearing bunch kick the cloud and it reaches the vacuum chamber, producing 

the secondary electrons. Then, the density rapidly drops as these secondaries reach the aperture. 

 

Figure 4.12: A clearing bunch destroys the trapped cloud, preventing the multi-turn accumulation in 

a combined function magnet. The resulting maximum electron cloud density is the same as in a pure 

dipole. Beam: 5*1010 ppb, 80+1 bunches 

 

The clearing effect observed in this simulation explains the stabilization of a high-intensity beam 

by a low intensity pilot bunch, described in Sect. 2.3. The clearing bunch prevents the multi-turn 

accumulation of the electron cloud, significantly reducing its final density. In the above simulation the 

density was reduced by two orders of magnitude to the level seen in a pure dipole. 
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Table 4.1: Recycler parameters for simulation in PEI 

Beam energy 8 GeV 

Machine circumference 3.3 km 

Batch structure 80 bunches, 5e10 p 

Tunes: x, y, z 25.45, 24.40, 0.003 

RF harmonic number 588 

RMS bunch size: x, y, z 0.3, 0.3, 40 cm 

Secondary emission yield 2.1 @ 250 eV 

Density of ionization e- 104 m-1 (at 10-8 Torr) 

B-field and its gradient 1.38 kG, 3.4 kG/m 

Beampipe Elliptical, 100 x 44 mm 

 

 

Table 4.2: DAΦNE e+ parameters for simulation in PEI 

e+ energy 0.51 GeV 

Machine circumference 97.7 m 

Batch structure 120 bunches, 2.44x1010 e+ 

Tunes: x, y, z 5.15, 5.21, 0.012 

RF harmonic number 120 

RMS bunch size: x, y, z 0.3, 0.01, 2.5 cm 

Secondary emission yield 2.1 @ 250 eV 

Density of photo e- 3.3x108 m-1 

B-field Dipole, 10 kG 

Beampipe Rectangular, 64 x 20 mm 
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4.3.6 Peak density of  the electron cloud 

Thanks to the trapping mechanism, the electron cloud, accumulating over many revolutions, might 

reach a significantly higher density than after the first passage of  the beam. The amount of  the 

accumulated cloud depends on the beam intensity and on the efficiency of  trapping, which, in turn, 

also depends on the beam intensity (Fig. 4.4). Figure 4.13 shows the final steady state distributions of  

the electron cloud density during a passage of  1 batch in Recycler. The maximum linear density is 

achieved not at the highest intensities, but instead for 10~ 6 7 10pN   ppb (Fig. 4.14). An interesting 

case in the line at 7.5*1010 ppb: while the build-up rate is high due to high bunch charge, the trapping 

ratio is low, resulting in the peak density lower than for smaller intensities 105 7 10  ppb. 

 

Figure 4.13: The final distribution of the electron cloud density after 20 revolutions of multi-turn 

build-up. 1 batch of different intensities. SEY = 2.1, σz = 40  cm, ionization density 104 m-1.  
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Figure 4.14: Electron cloud density reaches its maximum density at the intensities of 10~ 6 7 10pN    

ppb. The vertical axis shows the normalized electron cloud density Ne/Np. The dashed line shows the 

maximum betatron amplitude measured for these intensities. 

 
The maximum of the cloud density in Fig. 4.15 coincides with the intensities where the most rapid 

instability is observed (for more details on the intensity scan, refer to Sect. 2.2.2). That is one more 

evidence that the observed instability is caused by the electron cloud. The discrepancy in the width of 

the two peaks in Fig. 4.14 can be caused by several effects. The first one is the change of bunch length 

in the experiment – the Recycler was optimized to work at the intensity of 14 turns (about 6*1010 ppb); 

and operation at higher intensities lead to a deterioration of the quality of the Booster beam and 

increase of longitudinal emittance in Recycler. The second effect is the absence of Landau damping 

in the simulation – as the electron cloud density increases it should start creating a spread of the 

incoherent frequencies leading to Landau damping of betatron coherent oscillations. This is effect is 

not accounted for in our rigid bunch model. 
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4.3.7 Electron cloud in drift sections 

The picture would have been incomplete without the consideration of electron cloud in the straight 

sections. The drifts, that occupy almost 40% of the machine circumference, might also accumulate 

the electron cloud. Due to the absence of the strong magnetic fields the trapping and consequently 

the multi-turn accumulation of the cloud, described in the previous sections, in impossible in a drift. 

Therefore one only need to study the evolution of the cloud density during a single pass of the beam 

through the straight section.  

 In a drift the electron cloud fills the aperture almost uniformly with a slightly higher density near 

the wall of the vacuum chamber directly above and below the beam (Fig. 4.15). Unlike in the dipole 

case, in a straight section most of the cloud is located outside of the beam, and therefore has a low 

impact on its dynamics. In the extreme case of a uniform charge density only the charges inside the 

beam affect its motion. 

 

Figure 4.15: The electron cloud fills the aperture almost uniformly in a drift section. The snapshot was 

taken at the moment the last bunch of the train left the section. The beam center and its 2 rms size 

are shown in white. 1 batch of 80 bunches, 5*1010 ppb, SEY = 2.1, σz = 40 cm. 

  

 For the cloud to start to exponentially build-up during the passage of the beam, its intensity has 

to above the threshold of about 104 10 for SEY = 2.1 (Fig. 4.16). The build-up becomes more rapid 

at higher intensities. After the beam has passed, the electron cloud density falls down rapidly as the 

particles drift, eventually reaching the physical aperture (Fig. 4.16).  
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Figure 4.16: The cloud in a drift section accumulates rapidly during the passage of a bunch train for 

beam intensities greater 104 10  ppb, it then decays quickly after the beam has left the section. 

SEY = 2.1, σz = 40 cm. At the highest intensities the computation was interrupted after exhausting all 

available memory. 

  

At the current beam intensities the dominant source of the electron cloud in Recycler is its 

combined function magnets (Fig. 4.17). They create a cloud of a greater number of electrons, which 

are located mostly at the beam center, compared to the free space that creates a lower number, almost 

uniformly cloud distributed throughout the vacuum chamber. At the higher proton intensity of 111 10

ppb, required for the PIP-II upgrade, the two effects are of the dame order though. The high density 

of the cloud in the straight sections may pose a challenge at the PIP-II intensity. Electron cloud effects 

in the drifts have to be carefully studies. 
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Figure 4.17: Combined function magnets provide one to two orders of magnitude greater electron 

cloud density at the beam center ne than the free space at the current Recycler intensities.  For the 

higher PIP-II intensities the tow effects are comparable. SEY = 2.1, σz = 40 cm, P = 10-8 Torr. 

  
  

4.4 Electron cloud instability 

Using of the electron cloud, estimated in the previous section, we can now proceed to the study of 

the resulting instability. The PEI code allows the tracking of the proton beam with a simultaneous 

simulation of the cloud build-up. Because of the huge computational complexity of the problem, the 

numerical model (described in Sect. 4.2) is rather simplified. The proton beam is treated in the rigid 

bunch approximation, therefore only the multibunch modes appear in the simulation. The high-

frequency head-tail intra-bunch modes cannot be resolved in this model. Another consequence of the 

rigid bunch model is the absence of the stabilizing Landau damping. Finally, the long range resistive 

wall interaction, that could provide an additional coupling between the tail of the bunch train and its 

head, is out of the scope of this study. 
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4.4.1 Growth rate 

The simulation starts with a batch of 80 proton bunches of 105 10  ppb at the reference orbit (no 

injection mismatch). At the interaction point each bunch creates primary ionization electrons and 

kicks the cloud producing the secondary electrons. The action of the electron cloud on the bunch is 

also calculated at each time step. The key simulation parameters are summarized in Tables 4.1, 4.3. 

The initial beam oscillations in the simulation appear due to numerical noise and the random kicks 

from the low number of macroparticles, representing the electron cloud in the beginning of its build-

up. After the electron cloud reaches its steady state density due to the trapping and the resulting multi-

turn build-up, the horizontal oscillations of the bunch train start to grow rapidly (Fig. 4.18). The 

bunches in the tail of the batch are the most unstable, since they receive the accumulated kick from 

all the previous bunches. The head of the batch remains relatively stable, as it interacts only with the 

trapped particles, whose density is relatively low. As the oscillation amplitude increases, the bunches 

in the head and in the tail start building up the cloud at different horizontal positions. Consequently 

the build-up becomes less efficient, and the electron cloud density decreases. The simulation also show 

relatively high-frequency betatron oscillations in the vertical plane, although no visible increase is seen 

during the first 20 revolutions. 

The amplitude modulation seen in Fig. 4.18 is caused by the betatron motion. In the absence of 

the instability a particle rotates on its phase-space ellipse with its betatron frequency (Fig. 4.19). Since 

the particle’s position, plotted in Fig. 4.18, is a mere projection of the phase-space ellipse of the 

horizontal axis x, the betatron motion leads to a sin-like modulation of the observable. The period of 

the modulation is defined by the fractional horizontal tune, and equals to 10 turns for the Recycler 

horizontal tune of 0.45. One can remove the effect by going to the normalized coordinates: 
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and similarly for the vertical plane. α and β are the Twiss parameters (see for example [15]). In the 

normalized coordinates the phase space trajectory is a circle. The rate of the increase of its radius 

2 2

,N x NR x p    will give us the growth rate of the instability. 

 

Figure 4.18: As the electron cloud reaches its maximum density the horizontal instability starts 

developing. The horizontal and vertical positions of every bunch in the batch and the electron cloud 

density are plotted for the first 20 revolutions after the cloud has accumulated to its maximum density 

(about 95 10 m-1). On the 21st revolution the simulation was stopped due to a loss of some of the 

particles. 
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Table 4.3: Twiss parameters at the interaction point 

Axis α β, m γ, m-1 ε, mm-mrad 

x 0 40 0.025 0.22 

y 0 40 0.025 0.2 

s 0 1000 0.001 200 

 

 

Figure 4.19: The phase space trajectory in the physical coordinates x and x’ is an ellipse. α, β, and γ are 

the Twiss parameters, ε is the Courant-Snyder invariant 2 22 ' 'x xx x const        [56].   

 

Figure 4.20 plots the logarithm of the radius of the phase-space trajectory R as a function of the 

revolution number. Applying linear fits to the data we can estimate the instability growth rates in both 

planes. We obtain the horizontal growth rate of 11 turns; no instability is observed in the vertical 

plane. The resulting high growth rate of the instability is likely to be an overestimate, because our 

macroparticle numerical model with a linear accelerator lattice could not include the stabilizing effects 

of Landau damping and nonlinear decoherence. 
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Figure 4.20: The instability develops only in the horizontal plane. The dashed lines represent linear 

fits. The horizontal growth rate is 28.6 10 rev.-1, the vertical growth rate is 0.  

  

4.4.2 Most unstable mode 

As the beam becomes unstable, the transverse mode with the highest growth rate rapidly suppresses 

the others. The frequency of this most unstable mode can be derived from the tracking results by a 

simple Fourier transform. In order to reduce the numerical noise, one has to prepare the data before 

the processing. First, the average offset, was accounted for to remove the constant component. Then 

a Hamming window was applied to the data to enforce its periodicity and reduce the noise in the 

resulting spectrum. Finally, a Discrete Fourier Transform (DFT) was performed to the horizontal 

positions of the bunches in the batch on each revolution. The resulting spectrum has a sharp peak at 

the low frequencies (Fig. 4.21). 

The spectral density in Fig. 4.21 has a maximum at low frequencies, with the peak being at 

0.66 MHz. The density rapidly falls down at the higher frequencies. The upper frequency bound, 

26.5 MHz is set by our rigid bunch model and the RF frequency of fRF = 53 MHz. The frequency 

resolution of the method is Δf = fRF /80 = 0.66 MHz is limited by the number of bunches in the batch. 
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Figure 4.21: The frequency of the most unstable mode is 0.66 MHz. Left – the evolution of the 

spectrum over the time scope of the instability – 20 turns. Right – the normalized spectral density, 

averaged over the last 10 revolutions.  

  

To sum it up, the analysis shows that the trapping in combined function magnets allows the multi-

turn accumulation of the electron cloud. The resulting cloud density can be up to two orders of 

magnitude greater than that in a pure dipole. After the electron cloud has reached its maximum density, 

it starts driving a multibunch instability in the horizontal plane with a growth rate of 11 revolutions. 

The most unstable mode is the low frequency mode with a frequency below 1 MHz. It can therefore 

be efficiently suppressed with a strong enough transverse feedback system, acting on the center of 

mass of each bunch. 
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CHAPTER 5 

ANALYTICAL MODEL OF THE ELECTRON CLOUD INSTABILITY 

 

An analytical model is potent to give an important insight into the dynamics of the instability. In this 

chapter we, first, present a model of the transverse multibunch instability, driven by the electron cloud 

trapped in the combined function magnets. Then, we apply the model to explain the instability 

currently seen in Recycler and compare the analytic estimates with experiment and simulation. And 

finally, we consider the impact of increasing the beam intensity to the limit set by the PIP-II. 

 

5.1 Model of  the beam-cloud interaction 

According to numerical studies with the PEI code (presented in  Chapter 4), the trapping mechanism 

allows the electron cloud to gradually build up over multiple turns, reaching a final density orders of 

magnitude greater than in a pure dipole. The resulting cloud distribution is a stripe along the magnetic 

field lines, with higher particle density closer to the walls of the vacuum chamber (Fig. 5.1). The width 

of the stripe is about the size of the beam. Knowledge of the electron cloud build-up and its 

distribution allows the construction of a simple model of the electron cloud instability in Recycler. 

 

Figure 5.1: Electron cloud forms a stripe inside the vacuum chamber; the beam center and its 2 rms 

size are shown in white (for more details refer to the Sect. 4.3.4). 
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5.1.1 Coasting Beam 

First, consider a round coasting proton beam travelling in a ring, uniformly filled with electron cloud. 

Let us denote the position of  the beam centroid at an azimuthal angle θ at time t as Xp(t, θ). Further, 

assume that the beam travels at a constant azimuthal velocity around the ring ω0 and use a smooth 

focusing approximation with betatron frequency ωβ. 

For simplicity, we represent the electron cloud by a vertical stripe of  uniform charge density, 

located at a horizontal position Xe. Let us further assume that the number of  electrons remains, on 

average, constant in time. Because of  the vertical dipole field, the individual electrons of  the cloud 

cannot drift horizontally, but the position of  the cloud can change as some regions build up and others 

are depleted, following the transverse motion of  the proton beam. The characteristic time constant 

of  this slow motion is then the time of  build-up: ~1/ buildup  . 

For small oscillation amplitudes we can assume the electron-proton interaction force to be linear 

in displacement. Then the coupled collective motion of  the beam and the electron cloud is described 

by the following system of  equations: 
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where Γ is the rate of  Landau damping. The coupling frequency ωp is 
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where re is the classical radius of  electron, σ – RMS transverse size of  the beam, R – radius of  the ring, 

ne – electron cloud density, and γ – relativistic factor.  
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The linear damping term Γ in Eq. (1) arises from the spread in betatron frequencies for particles 

oscillating with different amplitudes. The characteristic rate of  the Landau damping can be estimated 

as 

 ~ ,x

x

Q

Q



    (5.3) 

where Qx is the horizontal tune and ΔQx is its rms spread. 

Looking for solutions of  Eq. (5.1) in a form 
,

i t in

e pX e     one obtains an equation for the mode 

frequency ω: 
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It can be solved perturbatively, under the assumption that  

 0, , ,p     .   (5.5) 

This assumption is valid only for a relatively high betatron tune 0/ 1xQ    and a relatively long 

ring (needed for 0  ), which is generally the case for storage rings.  

Solving Eq. (5.4) in the leading order one gets two modes for each wave number n: 0n      

. Then in first order: 

 0n        ,  (5.6) 

where the small complex tune shift | | , ,       is: 
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It may be more convenient to look at the real and imaginary parts of   separately: 
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The imaginary tune shift in Eq. (5.8) consists of  two parts with the first being the negative Landau 

damping term. The motion becomes unstable only if  the whole expression is positive. The “+” modes 

are always stable, while the “-“ modes can be unstable for some n if  Im( ) 0.   The most unstable 

mode, for which Im( )  is the greatest, is max   and its wave number maxn  is 

 max

0 0

,xn Q
  

 


      (5.9) 

and the growth rate of this mode is 
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In an experiment an observer sees the most unstable mode as it suppresses the others thanks to 

its higher exponential growth rate. Thus, a turn-by-turn measurement of  beam position at 
0   will 

detect a shift of  the betatron tune of 
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The resulting betatron tune shift is two times lower than the tune shift for a uniform electron cloud 

density [23].  

 

5.1.2 Bunched Beam 

The previous discussion is valid for the case of  a coasting beam. In order to calculate the instability 

growth rate for a bunched beam one needs to first compute the wake-functions or the electron cloud 

impedance.  

First, let us use the complex frequency shift  , obtained for a coasting beam, and find the 

impedance of  the cloud as (see for example A. Chao [37] Eq. (6.262)): 
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where N is the total number of  protons in the ring and 
0r is the classical proton radius. We can do this 

trick because the impedance is the property of  the medium only and hence does not depend on the 

model of  the beam. 

Eq. (5.12) is valid for wake-fields that do not affect the incoherent frequencies. Because the 

electron cloud does shift both coherent and incoherent frequencies, and because what matters for an 

instability is the distance between the coherent and the incoherent tunes, we have to subtract the 

incoherent tune shift from   before plugging it into the equation. The incoherent tune shift can be 

found from Eq. (5.8) in the limit of  large ω as 
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Knowing the impedance one can compute the wake functions using a well-known relation (see for 

example Eq. (2.72) in [37]): 
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In the case of  a bunched beam, in the rigid bunch approximation, one does not need to compute W(z) 

along all the z-axis, but only at a discreet set of  bunch positions k rfz kc , where rf  is the RF period. 

Finally, from the impedance of  the most unstable mode one can estimate the instability growth 

rate of  a bunched beam as [57]: 
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where C is the ring circumference and L is the total length of  the magnets. For the Recycler / 1/ 2.L C   
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5.2 Fast instability in Recycler 

The described model was applied to estimate the growth rate of the fast electron cloud instability in 

Recycler. In order to use the model one needs to know the density of the electron cloud and the rate 

of its build-up. These quantities were obtained by measuring the betatron frequency shift and 

comparing it with the build-up simulations. 

To determine the parameters of the electron cloud one batch of 80 proton bunches of 105 10 ppb 

was injected into the ring and the shift of the horizontal tune was measured as a function of the bunch 

number. Because the positive horizontal tune shift is a distinctive feature of the electron cloud, it 

allowed an estimation of the cloud density. In order to check with the simulation the cloud density 

both within the high-intensity batch and after its passage, a witness bunch of low intensity – 8*109 p, 

insufficient to clear the electron cloud, was injected at different positions behind the main batch. 

The experimental results are in good agreement with the simulation (Fig. 5.2) and the small 

discrepancies may come from the multiple assumptions used in Eq. (5.11), namely the smooth 

focusing optics, the rigid bunch approximation, and the assumption of  the constant electron cloud 

density. The resulting dependence allows the estimation of  the maximum density of  electron cloud – 

11 3~ 6 10 m .en   The density increases by an order of  magnitude in 40 bunches (800 ns) and falls after 

the beam has passed in 10 bunches (200 ns). The characteristic rate of  the build-up, defined as the 

increase of  the cloud density by a factor of  e, is about 1/20 bunches or 6 -1~ 2.65 10 s  . The parameters 

of  the model are summarized in Table 5.1. 
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Figure 5.2: Results the of electron cloud simulation agree with the measured horizontal tune shift. 

Beam: 5*1010 ppb, 80 bunches, followed by one witness bunch of 0.8*1010 p at various positions. The 

gap between the high-intensity batch and the witness is due to the rise-time of the injection kickers. 

 

Table 5.1: Parameters of the model 

Parameter Symbol Value 

Relativistic factor γ 10 

Revolution frequency  ω0 60.57 10  s-1 

Betatron frequency ωβ  614.54 10  s-1 

Protons per bunch Nb 105 10   

RF period τrf 18.9 ns 

Electron cloud density ne 116 10  m-3 

e-p coupling frequency  ωp 60.23 10  s-1 

Electron cloud build-up rate  λ 62.65 10  s-1 

Chromatic tune spread ΔQx/Qx 10-4 

Landau damping rate Γ 30.25 10  s-1 
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According to Eq. (5.9), the most unstable mode is 
max 30n  , and its frequency is about 0.4 MHz. 

The impedance of  this mode, calculated using Eq. (12), is 20 MΩ/m (Fig. 5.3). Figure 5.4 depicts the 

corresponding wake function W(k) as a function of  bunch number k. W(k) fits an exponential decay 

curve  

 
0 exp( / c ), z 0W W z     .   (5.16) 

The estimate of  the mode frequency qualitatively agrees with the simulation in the PEI code and 

the stripline measurement. PEI simulated the ring, completely filled with 588 bunches of  105 10  p. 

The resulting frequency is about 0.7 MHz (Fig. 5.5). In the stripline measurement one batch of  80 

bunches of  the same charge was injected. The measured frequency was about 0.9 MHz. Both 

simulated and measured frequencies agree to about a factor of  two with each other and the estimate. 

 

Figure 5.3: Real and imaginary parts of impedance as a function of a mode angular frequency ω. The 

dashed line represents the Landau damping term in Eq. (5.15). The modes with Re(Z(ω)) below the 

dashed line are unstable. 
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Figure 5.4: Electron cloud wake falls down exponentially with distance. 

 

Using the calculated value of  the real part of  the impedance we can now estimate the growth rate 

using Eq. (5.15). We obtain a growth rate of  
max 0.033   and the characteristic time of  the instability 

max max1/ 30   revolutions (0.3 ms). This rate is consistent with the observations of  the fast 

instability in Recycler (Fig. 2.6). 

The instability threshold can be estimated from the condition Im( ) 0   for all modes. At the 

threshold the positive growth term in Im(Δω) is compensated by the negative Landau damping term 

Γ. For the considered parameters of  the Recycler ring the threshold electron cloud density is 

108 10thrn    m-3. According to the build-up simulation (Sect. 4.3.6) the threshold density is reached at 

the beam intensity of 104.5 10  ppb, which is consistent with the observations of  the fast instability 

(Figs. 2.7, 2.8). 

 

Figure 5.5: Simulation in PEI and stripline measurements show an instability in the horizontal plane 

with a period of slightly less than the length of a batch and a frequency < 1 MHz. 
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5.3 Instability at higher intensities 

We developed a simple analytical model of the electron cloud instability with the cloud trapped in the 

combined function dipoles has been developed. It allows an estimation of the instability threshold, 

the frequency of the most unstable mode and its growth rate. For the current parameters of the 

Recycler beam, the model yields an unstable mode with a frequency of 0.4 MHz and a growth rate of 

30 revolutions, which is consistent with the observations of the fast instability and the simulations in 

PEI. The estimated threshold intensity of resulting multibunch instability is also consistent with the 

intensity scans performed at Recycler. 

The model allows the prediction of the rate of the instability for higher intensities of the proton 

beam, given an estimate of the electron cloud density, which can be obtained from numerical 

simulations or a direct measurement. In this analysis we compare the resulting growth rates using the 

simulated electron cloud density for different secondary emission yields. 

According to the model, the instability can be dangerous at higher intensities. For SEY = 2.1 the 

instability is most severe at the beam intensity 106 10pN    ppb, which is consistent with the 

measurements (Fig. 5.6). Because of the saturation of the electron cloud build-up, the instability rate 

increase further at higher intensities. The rate is significantly lower for lower SEY’s. Decreasing the 

yield by 0.1 one can reduce the rate by one to two orders of magnitude.  

Although the rate for the PIP-II intensity of 1011 ppb does not exceed one for lower intensities, 

the instability can still be extremely dangerous – with a growth rate below 10 revolutions – for high 

enough secondary yields. With sufficient scrubbing one should be able to condition the beampipe 

enough to allow for the high intensity operation. A test of scrubbing can be done at a lower intensity 

of 106 7 10  pbb, where the growth rate is reaches its maximum.  



97 
 

 

Figure 5.6: The maximum growth rate is achieved at the intensities of 106 7 10   ppb. The growth 

rate decreases significantly for lower secondary emission yield.  

  

5.4 Landau damping of  the fast instability using octupoles 

As shown in Sect. 5.1, the presence of  a spread of  the betatron frequencies leads to reduction of  the 

instability growth rate via Landau damping (Eq. (5.15)). Normally, the frequency spread is too small 

to change the landscape of  the unstable of  (Fig. 5.3) and significantly affect the growth rate. The 

spread can be increased though either artificially, introducing special nonlinear focusing elements (i. e. 

octupoles or electron lenses), or by the electron cloud itself, thanks to the nonlinearity of  its potential. 

In this section we consider increasing the Landau damping using a special set of  octupole magnets. 

In our model the Landau damping is linear with the frequency spread. Due to the fast growth rate 

of  the instability a high damping rate, and hence a huge frequency spread is required to stabilize the 
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beam (Fig. 5.7). According to Eqs. (5.3), (5.15), a 0.04xQ   spread is needed to suppress the 

instability in the Fermilab Recycler.  

 

Figure 5.7: The estimated instability growth rate decreases linearly with the spread of horizontal 

betatron frequencies. 

  

Achieving such a huge spread of betatron frequencies with nonlinear octupole magnet might be 

challenging. Typically, adding a strong nonlinearity to an otherwise perfect linear focusing lattice 

breaks down the integrability of the single particle motion. It leads to resonant behavior and chaotic 

motion at large amplitudes, resulting in a reduction of the dynamic aperture. The exact value of the 

maximum attainable octupole tune spread is machine-specific and depends on the choice of bare 

betatron tunes (which are typically about equal). For example, a maximum tune shift of 35 10  at 6σ 

can be obtained without damaging the dynamic aperture at the LHC [58].  

One of the ways of improving the single particle stability is to restore the integrability by using a 

special linear focusing lattice and tailoring the nonlinear potential to it as described in [59]. Using 

conventional octupole magnets one can achieve single particle dynamics with one integral of motion 

(for two transverse degrees of freedom. Even a single integral of motion can significantly improve 

particle dynamics in terms of achievable tune shifts and dynamical aperture. For instance, it proved to 
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be beneficial for achieving a record-high beam-beam tune shift with round colliding beams at VEPP-

2000 at BINP [60].  

 

Figure 5.8: The ring outside of the nonlinear section has a transfer matrix of a thin axially symmetric 

lens [59].  

  

To obtain one integral of motion one can create the nonlinearity by a set of octupole magnets, 

placed in a drift section with equal beta-functions and zero dispersion (Fig. 5.8). The rest of the ring 

outside the octupole channel has to have a linear transfer matrix of a thin axially symmetric lens with. 

The strength of the octupoles should vary inversely proportional to the cube of the beta-function β3 

at their location, creating a potential: 
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where α is the strength of the potential, x and y are the transverse coordinates, and s is the longitudinal 

coordinate. Then, in the normalized coordinates the potential , and the resulting 

Hamiltonian H (neglecting the longitudinal motion) is  
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where xN, yN, Px, and Py are the normalized transverse coordinates and momenta. H is independent of 

the longitudinal position s and, thus, is an integral of motion in the octupole channel. Since the ring 

( ) ( , ; )U s V x y s
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outside of the channel has the betatron phase advance of a multiple of π, it therefore preserves the 

integral of motion to first order. 

The Hamiltonian (5.17) has two integral manifolds 0N xx P   and 0N yy P   where the motion 

essentially in 1D and therefore integrable. Because the potential of this system is a positive-definite 

form, the motion is stable and bounded for any initial amplitude, and its frequency increases infinitely 

with amplitude (for α > 0). In general, apart from these special cases, the motion is in 2D. Due the 

lack of the second integral the motion the system has a finite dynamic aperture (Fig. 5.9 (a)). The size 

of the region of stable motion is approximately defined by the distance to the unstable fixed points 

0, 1/ 2x y N NP P x y     . From our modeling we observed that a particle becomes unstable if its 

amplitude is greater than ~ 0.6/α1/2. The region of regular motion is actually slightly smaller because 

of a thin layer of bounded chaotic motion near the boundary of the stable zone. The normalized 

acceptance of the system is 

 
2 1/2 2(0.6 ) 0.4 /NA x     (5) 

Unlike the 1D case, the frequency shifts of a 2D system are both positive and negative. Figure 5.9 (b) 

depicts the spread of frequencies, obtained by tracking of 104 particles with a Hamiltonian given by 

Eq. (5.17). The maximum positive tune shift is about 0.14, while the negative is about 0.26, resulting 

in the total frequency spread of 0.4, or, going back to the physical units, 40 % of the fractional tune. 
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Figure 5.9: The motion remains bounded only for initial amplitudes < 0.6α-1/2, and the corresponding 

tune spread is 0.7. a) – Lines of equal potential of the Hamiltonian (2). b) – Frequency spread of the 

stable particles; the linear tune (without the octupole potential) is normalized to 1 (red dot) [61]. 

  

Unlike the case of a short octupole, added to a linear lattice, the maximum betatron frequency 

spread 
maxQ , achievable with this octupole channel is not limited by the octupole and higher order 

resonances. Instead, it scales linearly with the phase advance in the nonlinear section  [61]: 

 max ~ 0.4Q   (5.18) 

Numerical studies show that a spread of 2

max ~ 8 10Q    can be achieved with conventional octupole 

magnets in a realistic 3D accelerator lattice with imperfections. This spread is sufficient for stabilizing 

the Recycler beam by Landau damping. Creating it requires a total phase advance of 0.3 over one or 

several nonlinear sections and a control the linear optics at the 10-2 level of precision [61].  
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CHAPTER 6 

CONCLUSION 

Combined function magnets are widely used in the present day particle accelerators. Because of the 

gradient of the magnetic field (which provides the transverse focusing) these magnets can trap the 

electrons of the electron cloud, created by the beam. These trapped particles make it possible for the 

cloud to accumulate over multiple revolutions, possibly leading to a fast transverse instability. Such an 

instability, driven by the multi-turn accumulation of the electron cloud in combined function magnets 

has been observed in the Fermilab Recycler proton storage ring. 

The fast instability in Recycler has a number of features, characteristic of an electron cloud 

instability: very fast growth rate, nonlinear dependence on beam intensity and bunch length, and 

conditioning during the high-intensity operation. Its electron cloud nature has been proven by the 

clearing bunch experiment – a pilot bunch of low charge, following the main high-intensity beam, 

kicks the electrons, confined by the magnetic field, and clears the aperture. The clearing bunch 

destroys the trapped cloud, preventing its multi-turn accumulation. We have observed that the fast 

instability can be mitigated using this method. This finding suggests that the instability is caused by 

electron cloud and that the cloud is trapped in Recycler magnets. 

A measurement of microwave propagation through has shown the presence of electron cloud 

inside a Recycler combined function magnet. Its density reaches ~1012 m-3 at high beam intensities. 

Measuring the time constants of cloud build-up and decay has proven to be technically challenging 

because of the interference from the beam Schottky signal. This interference seems unavoidable for a 

fast measurement. 

Numerical simulation of the electron cloud build-up in the PEI code agrees with analytical 

estimates and show that up to 10-2 of the electrons can be trapped in the magnetic field of a Recycler 
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combined function dipole after beam has left the magnet. The trapping significantly affects the density 

of the electron could, allowing it accumulating over multiple revolutions and eventually reaching a 

density much higher than in a pure dipole. For the parameters of Fermilab Recycler with one batch 

of normal intensity the cloud reaches an average linear density of ~109 m-1 in a combined function 

magnet compared to ~107 m-1 in a pure dipole of the same field strength. These results agree 

qualitatively with the observed stabilization of the beam by a clearing bunch and quantitatively with 

the measurements of betatron tune shift. At higher beam intensities the electron cloud reaches the 

saturation at the density of 1010 m-1, or the peak density on axis of 122 10  m-3, which is consistent with 

the microwave measurement. The saturation occurs when the space charge force of the cloud starts 

compensating the kick of proton beam. 

We have constructed a simple analytical model of the electron cloud instability with the cloud 

trapped in the combined function dipoles. The model allows the estimation of the instability threshold 

and growth rate for a given electron cloud density. For the current parameters of the Fermilab Recycler 

the model predicts a multibunch instability in the horizontal plane with a growth rate of 30 revolutions 

and the frequency of the most unstable mode of 0.4 MHz. The analytical estimates are in good 

agreement with the experimental observations of the fast instability in Recycler and with the numerical 

simulations in PEI. 

Thanks to its low frequency the instability can, in principle, be efficiently suppressed with a strong 

enough transverse feedback system, acting on the center of mass of each bunch. Stabilization of the 

Recycler beam by means of the intrinsic Landau damping requires a huge spread of betatron 

frequencies of the order of 23 10 . Such a betatron frequency spread is an order of magnitude greater 

than what is typically achieved in accelerators with conventional octupole magnets. The required 

spread can be created in a special but realistic accelerator focusing lattice with a special octupole 
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channel that preserves one integral of motion – the Hamiltonian. Numerical simulations show that 

one can achieve a spread of up to 28 10  without restricting the dynamic aperture [61].  

According to the numerical studies in PEI, the maximum electron cloud density and the most 

severe resulting instability is achieved at the intensity of 106 7 10  ppb. The instability growth rate at 

the PIP-II intensity of 1110  ppb the electron cloud density shall not exceed that at the lower intensities. 

Reduction of the secondary emission yield even by as little as 0.1, for example during special beampipe 

conditioning runs, can significantly reduce the instability growth rate.  
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