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Preface

In this dissertation, I describe a novel apparatus for studying the transport of charge

in semiconductors at cryogenic temperatures. The motivation to conduct this exper-

iment originated from an asymmetry observed between the behavior of electrons and

holes in the germanium detector crystals used by the Cryogenic Dark Matter Search

(CDMS).

This asymmetry is a consequence of the anisotropic propagation of electrons in

germanium at cryogenic temperatures. To better model our detectors, we incorpo-

rated this e↵ect into our Monte Carlo simulations of charge transport. The purpose

of the experiment described in this dissertation is to test those models in detail.

Our measurements have allowed us to discover a shortcoming in our most recent

Monte Carlo simulations of electrons in germanium. This discovery would not have

been possible without the measurement of the full, two-dimensional charge distribu-

tion, which our experimental apparatus has allowed for the first time at cryogenic

temperatures.
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Chapter 1

Introduction

The experiment described in this dissertation is a study of semiconductor physics

under extreme conditions—specifically the transport of charge through ultra pure

germanium crystals at cryogenic temperatures and in low electric fields. The fact

that such an investigation of fundamental semiconductor physics is still necessary,

even after half a century of industrial research on semiconductors, illustrates the

exceptional nature of the conditions under which we wish to study these crystals.

The setting in which these unusual conditions arise, and to which this study is

immediately applicable, is an experiment called the Cryogenic Dark Matter Search

(CDMS). It is a fundamental physics experiment which aims to either prove or dis-

prove some of the latest theories concerning the nature of a mysterious substance

called dark matter, which makes up 26% of the mass of the universe, according to

the latest astrophysical and cosmological studies.[1, 2, 3] The Cryogenic Dark Mat-

ter Search uses large, ultra pure, single crystals of germanium and silicon, held at

cryogenic temperatures, as dark matter detectors.

The motivation for our charge transport experiment originated from an anomalous

asymmetry observed between the behavior of electrons and holes in our germanium

detector crystals. This asymmetry was found to be a consequence of the anisotropic

propagation of electrons in germanium—an unexpected e↵ect which only appears in

the unusual combination of conditions (high purity, low temperature, and low electric

field) under which our CDMS detectors are operated.

1
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This anomaly motivated the development of our Monte Carlo simulations of charge

transport, which we used to confirm our explanation of the observed asymmetry.

These computer models have subsequently proven to be extremely useful for both

detector design and data analysis.

As our Monte Carlo simulations have grown to become indispensable tools for our

investigations, the task of ensuring their accuracy has become imperative. Therefore,

to refine our computer models, and to confirm their accuracy in detail, we designed

and carried out the experiment described in this dissertation.

In order to provide the reader with the necessary context in which to understand

both the motivation for this experiment and its applicability to CDMS, some back-

ground information regarding the current state of our knowledge of dark matter and

its potential detection is provided in Chapter 2, and an overview of the theory of

operation of our detector crystals is given in Chapter 3.

The anomalous e↵ects which motivated the charge transport experiment are de-

scribed in detail in Chapter 4, along with our e↵orts to explain these e↵ects and

analyze defective detectors using our Monte Carlo simulations.

Chapter 5 provides an overview of the theory of charge transport in semiconduc-

tors, and a brief description of our Monte Carlo models. More details can be found

in reference [4], and a derivation of the phonon absorption and emission rates for free

carriers in semiconductors is provided in Appendix F.

Chapters 6 & 7 describe the setup and methods for the charge transport experi-

ment. The experimental results, and a discussion of their implications, are provided

in Chapters 8 & 9. Chapter 10 summarizes the conclusions and provides a discussion

of our plans for future work.



Chapter 2

Dark Matter and CDMS

2.1 Indirect Evidence for Dark Matter

Since the 1930’s evidence has accumulated for the existence of a new form of matter,

called “dark matter”, which does not interact with light.[5, 6] So far, the evidence for

its existence has only come from its gravitational e↵ects—namely the gravitational

attraction of matter toward regions of space in which very little visible matter exists.

The first strong evidence that our universe might contain something other than

ordinary matter came from measurements of the orbital velocities of stars and gas

in galaxies.[7, 8] The relation between orbital velocity and orbital radius is called

the galactic rotation curve, an example of which is plotted in Figure 2.1a.[9] Most

galaxies follow the same pattern: orbital velocities do not approach zero at large

orbital radius as would be expected from the visible mass distribution, but instead

tend to asymptotically approach a constant value at large orbital radius.

The discrepancy can be explained by the presence of extra, invisible mass, called a

dark matter halo, which surrounds and permeates the galaxy, and provides the extra

gravity needed to keep the stars and gas gravitationally bound. However, this still

leaves open the question of what comprises the dark matter, and why it should assume

the particular density profile needed to give rise to the observed rotation curves.

3
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(a) Rotation curve for galaxy M33.[9, 10] (b) The Bullet Cluster.[11]

Figure 2.1: Astrophysical evidence for dark matter. (a) Example of a galactic rotation
curve.[9] The data points indicate the orbital velocity of gas and stars as a function
of orbital radius, measured by Doppler shift. The dashed line indicates the predicted
orbital velocity based on the visible matter alone. The addition of extra mass is
required to make the model fit the data. (b) Modified image of the Bullet Cluster.
The pink regions have been shaded to indicate the location of the visible matter in
the galaxy cluster, measured by X-ray emission. The blue regions have been shaded
to indicate the presence of mass, measured by gravitational lensing. The total mass
of the galaxy cluster far outweighs the mass of visible matter, and it is located in a
completely separate region.

It can be shown (see Appendix A) that a cloud of self-gravitating particles, in

thermal and hydrostatic equilibrium, will naturally form a structure with an orbital

velocity which approaches a constant value at large orbital radius, with the asymptotic

velocity being proportional to the thermal velocity of the particles. Similar results

have been predicted numerically from N-body simulations (see Figure 2.2). Therefore,

if the hypothetical dark matter consists a new kind of fundamental uncharged particle,

the galactic rotation curves can be explained in a natural and straightforward way.

Alternative theories have been proposed which instead try to explain galactic ro-

tation curves by postulating modifications to the laws of gravity or inertia on galactic

scales. [13, 14, 15] Despite the success of these theories in the context of intra-galactic

dynamics, a serious challenge to such ideas has arisen from recent observations of

galaxy clusters, such as the Bullet Cluster in Figure 2.1b.[16] These data show a
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Figure 2.2: N-body simulation of a dark matter halo.[12] Scale indicated on bottom.
Ordinary matter collects in the gravitational wells formed by these large structures
and coalesces into what we see as the visible part of galaxies.

large spatial separation between the visible matter in a cluster and the major source

of its gravitational mass, an e↵ect which is di�cult to reproduce through modifica-

tions to the laws of gravity or inertia alone.

Recently, additional evidence for dark matter has come from cosmology.[1, 2, 3]

The power spectrum of fluctuations in the Cosmic Microwave Background (CMB)

radiation are well fit by a model that requires a cold form of matter without electro-

magnetic interactions, i.e. dark matter. A plot of the CMB power spectrum is shown

in Figure 2.3.
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(a) CMB Temperature Fluctuations.[1] (b) Angular Power Spectrum.[17]

Figure 2.3: CMB Temperature Fluctuations. (a) Spatial fluctuations in the tempera-
ture of the CMB plotted on the surface of the celestial sphere with mean temperature
subtracted. (Data from [1].) (b) Angular power spectrum of the temperature fluctua-
tions. The power spectrum is extremely well fit by the ⇤CDM model, which contains
a contribution from dark matter and dark energy in addition to the known particles
of the standard model.

Figure 2.4: ⇤CDMmodel parameters from Planck, 2013 data release.[2, 18] According
to this model, most of the mass of the universe comes from dark energy (⇤) and cold
dark matter (CDM). Ordinary matter comprises less than 5% of the mass of the
universe.
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2.2 Dark Matter Candidates

Independent considerations in particle physics have led to extensions of the Standard

Model which predict the existence of stable, uncharged fundamental particles.[19]

One or more of these particles could potentially be what constitutes dark matter.

Most relevant to this dissertation is the Weakly Interacting Massive Particle

(WIMP), a common product of supersymmetric extensions to the Standard Model.[20,

21] These hypothetical particles are predicted to have a mass somewhere between 1

and 10,000 GeV/c2, and a nucleon scattering cross-section between 10�44 and 10�52

cm2.[22]
5
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FIG. 2: Several well-motivated candidates of DM are shown.
�int is the typical strength of the interaction with ordinary
matter. The red, pink and blue colors represent HDM, WDM
and CDM, respectively. We updated the previous figures [18,
48] by including the sterile neutrino DM [49–51].

A. Production of relic axinos

As stated in Introduction, there are two generic ways
of producing relic axinos in the early Universe: thermal
production from scatterings and decays of particles in
thermal equilibrium, and non-thermal production from
the decays of heavier particles after their freezeout.

1. Thermal production

Primordial axinos decouple from thermal equilibrium
at the temperature [24]

Tdec = 1011 GeV

�
fa

1012GeV

⇥2�0.1

�s

⇥3

. (7)

They overclose the Universe unless their mass is bounded
to be smaller than keV [24]. In inflationary cosmology,
the population of primordial axinos is strongly diluted by
cosmic inflation; however axinos are re-generated during
reheating. When the reheating temperature TR is be-
low the decoupling temperature, axinos do not reach the
equilibrium level. However, axinos can be produced from
the scatterings in thermal plasma, and the number den-
sity is proportional to TR, in which case the keV mass
upper bound of Ref. [24] is relaxed. The calculation fol-
lows the same line of logic which was used for the grav-
itino regeneration and decay [52, 53]. If the axino mass

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Y
T

P
ax

in
o

TR (GeV)

Axino Thermal Production

fa=10
11

 GeV, SU(3) only

scattering

squark decay

gluino decay

neutralino decay

for U(1)

Stru
mia

eff
. m

ass
 ap

prox.

HTL ap
pro

x.

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Y
T

P
ax

in
o

TR (GeV)

Axino Thermal Production

fa=10
11

 GeV, SU(3) only

scattering

squark decay

gluino decay

neutralino decay

for U(1)

Stru
mia

eff
. m

ass
 ap

prox.

HTL ap
pro

x.

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Y
T

P
ax

in
o

TR (GeV)

Axino Thermal Production

fa=10
11

 GeV, SU(3) only

scattering

squark decay

gluino decay

neutralino decay

for U(1)

Stru
mia

eff
. m

ass
 ap

prox.

HTL ap
pro

x.

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Y
T

P
ax

in
o

TR (GeV)

Axino Thermal Production

fa=10
11

 GeV, SU(3) only

scattering

squark decay

gluino decay

neutralino decay

for U(1)

Stru
mia

eff
. m

ass
 ap

prox.

HTL ap
pro

x.

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Y
T

P
ax

in
o

TR (GeV)

Axino Thermal Production

fa=10
11

 GeV, SU(3) only

scattering

squark decay

gluino decay

neutralino decay

for U(1)

Stru
mia

eff
. m

ass
 ap

prox.

HTL ap
pro

x.

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Y
T

P
ax

in
o

TR (GeV)

Axino Thermal Production

fa=10
11

 GeV, SU(3) only

scattering

squark decay

gluino decay

neutralino decay

for U(1)

Stru
mia

eff
. m

ass
 ap

prox.

HTL ap
pro

x.

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Y
T

P
ax

in
o

TR (GeV)

Axino Thermal Production

fa=10
11

 GeV, SU(3) only

scattering

squark decay

gluino decay

neutralino decay

for U(1)

Stru
mia

eff
. m

ass
 ap

prox.

HTL ap
pro

x.

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Y
T

P
ax

in
o

TR (GeV)

Axino Thermal Production

fa=10
11

 GeV, SU(3) only

scattering

squark decay

gluino decay

neutralino decay

for U(1)

Stru
mia

eff
. m

ass
 ap

prox.

HTL ap
pro

x.

FIG. 3: Thermal yield of axino, Y TP
ã � nã/s, versus TR. For

strong interactions, the e�ective thermal mass (ETM) approx-
imation (black) is used. We use the representative values of
fa = 1011 GeV and m�q = mG̃ = 1TeV. For comparison, we
also show the HTL approximation (dotted blue/dark grey)
and that of Strumia (green/light grey). We also denote the
yield from squark (solid green/light grey) and gluino decay
(dotted red), as well as out-of-equilibrium bino-like neutralino
decay (dashed black) with CaY Y = 8/3.

is between around an MeV to several GeV, the correct
axino CDM density is obtained with TR less than about
5� 104GeV [2].
Thermal production of axinos is described by the

Boltzmann equation where the first term on the r.h.s.
corresponds to scatterings and the second one to de-
cays [2, 5, 6, 54],

dnã

dt
+ 3Hnã =

⇤

i,j

⇤⇥(i + j ⇥ ã+ . . .)vrel⌅ninj

+
⇤

i

⇤�(i ⇥ ã+ . . .)⌅ni,
(8)

where H denotes the Hubble parameter, ⇥(i + j ⇥ ã +
. . .) is the scattering cross section for particles i, j into
final states involving axinos and ni stands for the number
density of the ith particle species, while �(i ⇥ ã+ . . .) is
the corresponding decay width into final states involving
axinos. Approximate solutions for the number density of
relic axinos are given in Ref. [55].
In Fig. 3 (taken from Ref. [34] where it was updated

from Refs. [2, 3]) we show the axino yield Y resulting

Figure 2.5: Hypothetical particles predicted by modern particle theory which could
make up dark matter.[22] The plot shows the range of possible masses and interaction
cross-sections allowed for each dark matter candidate. Weakly Interacting Massive
Particles (WIMPs) and Axions are currently the most accessible dark matter candi-
dates, and are hence the most actively studied.
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2.3 Direct Detection of Dark Matter

Because all forms of energy interact through gravity in an identical manner, the

only way to di↵erentiate between di↵erent dark matter candidates is by detecting a

non-gravitational interaction between dark matter and ordinary matter. Figure 2.6

shows three methods for detecting non-gravitational interactions between ordinary

matter and a dark matter particle, using a pseudo-Feynman diagram as a guide for

categorizing the three types of possible interactions.[23, 24, 25, 26, 27]

The Cryogenic Dark Matter Search (CDMS) is an experiment which aims to di-

rectly detect the interaction between WIMPs and the atoms in a large, single crystal

of germanium or silicon, illustrated by the red arrow in the diagram below.

Figure 2.6: Non-gravitational searches for dark matter through 2-to-2 scattering. The
arrows represent the direction of time in the pseudo-Feynman diagram for each type
of interaction. The e↵ective interaction point in the center represents a short-range
interaction such as Z-boson exchange.



Chapter 3

CDMS Detector Physics

3.1 Particle Interactions

Not much is currently known about the manner in which dark matter particles interact

with ordinary matter.1 However, it is known that dark matter particles must be

gravitationally bound to the dark matter halo, and therefore must travel with an

orbital velocity comparable to that of all other stars and gas within the galaxy.2

Within the Milky Way, the asymptotic orbital velocity is about 220 km/s.[29, 30,

31, 32] We expect the dark matter particles in our vicinity to assume a Maxwell-

Boltzmann distribution with a velocity spread on the order of 220 km/s, centered

around a drift velocity of 220 km/s due to the orbital motion of our sun.3

Because these velocities are non-relativistic, the kinetic energy carried by the dark

matter particles is simply 1

2

m�v2, where m� is the mass of the dark matter particle,

and v is its speed. For Weakly Interacting Massive Particles (WIMPs), the typical

kinetic energy will be about 0.1 keV for a particle of mass 1 GeV/c2, and 1,000 keV

for a particle of mass 10,000 GeV/c2.

1See the work by Kristi Schneck in [28] for a detailed study of all possible interaction modes
between WIMPs and atomic nuclei.

2This is the primary reason why neutrinos cannot constitute dark matter. Due to their low mass,
neutrinos travel with relativistic speeds at the known temperature of the neutrino background.
Evidence for cold (i.e. non-relativistic) dark matter comes from cosmological observations.[1, 2, 3]

3See [33] for a more detailed model which accounts for Earth’s orbital velocity.

9
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Figure 3.1: Interaction between a dark matter particle and a germanium nucleus. A
continuous flux of dark matter particles (black) pass through the germanium crystal
(gray). Occasionally a dark matter particle will interact with a germanium nucleus
(red), rebounding elastically and transferring energy and momentum to the a↵ected
nucleus.

In the CDMS detector crystals, WIMPs can interact either with the electrons

or the nuclei of germanium atoms. Interactions with electrons are not detectable

because of the large mass mismatch between WIMPs and electrons which suppresses

the WIMP scattering cross-section.4 In addition, scattered electrons can rebound

with at most twice the velocity of the incident WIMP, at which speed they only carry

a kinetic energy of about 0.5 eV. This is far below the threshold of detection.5

However, because the WIMP mass is predicted to be close to the mass of a typical

atomic nucleus, the nuclei of the germanium atoms are capable of absorbing a sub-

stantial fraction of the kinetic energy of an incident WIMP. This energy is too small

for the production of new particles or for the excitation of nuclear energy levels, so

these interactions are expected to be purely elastic collisions.

Following reference [33], we may estimate the rate of interaction, r, between a

single atomic nucleus and the flux of WIMPs as:

4At non-relativistic speeds, the interaction cross-section between a WIMP and a particle of or-
dinary matter is proportional to µ2, where µ is the reduced mass of the pair. (See appendix B for
further discussion).

5Current detector thresholds are 100eV for phonons and 1keV for charge.[34]
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Figure 3.2: Current limits on the WIMP interaction cross-section from multiple ex-
periments as a function of the WIMP mass.[35] Interaction strengths above the limit
curves are excluded.

r = nv�
0

A2

µ2

µ2

0

(3.1)

where n is the number density of WIMPs, v is the mean WIMP speed, �
0

is the

WIMP-nucleon scattering cross-section, µ is the reduced mass of the nucleus, µ
0

is

the reduced mass of a nucleon, and A is the atomic mass number of the nucleus.6

6The scattering rate is enhanced by a factor of A2 rather than A because the WIMP wavefunction
scatters coherently from all of the nucleons within the atomic nucleus. This is a consequence of the
fact that the interaction energy is not large enough to excite nuclear energy levels. The final state
therefore contains no information about which nucleon the WIMP scattered from. (See appendix B
for further discussion.)
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The number density, n, of WIMPs can be estimated from the halo mass density,

⇢, using the relation ⇢ = nm�, where m� is the WIMP mass. A good approximation

(see Appendix A, Equation A.10) for the mass density at the location of the sun is:

⇢ =
v2
0

4⇡Ga2
= 0.5

GeV/c2

cm3

(3.2)

where G is Newton’s constant, v
0

= 220 km/s is the asymptotic orbital velocity

in the Milky Way, and a = 8.3 kpc is the orbital radius of the sun in the Milky

Way.[36, 37, 38]

Let us consider the case of a WIMP with a mass of 100 GeV/c2. If such a particle

exists, its scattering cross-section has been shown by CDMS to be less than 2 · 10�44

cm2. (See Figure 3.2.) The average rate of WIMP collisions experienced by a single

germanium nucleus can be roughly estimated to be:

r =
⇢

m�

v�
0

A2

µ2

µ2

0

< 2.5 · 10�32/s (3.3)

where7

A = 73

m� = 100 GeV/c2

m
Ge

= 73 amu

µ = 1/(1/m� + 1/m
Ge

) = 43.4 amu

µ
0

= 1.0 amu

v = 250 km/s

� < 2 · 10�44 cm2 (3.4)

The rate per unit mass, R, may be calculated by dividing r by the mass of a single

germanium atom:

R =
r

m
Ge

<
0.02

kg day
(3.5)

7v =

d3v0 |v0|(2⇥v2T/3)�3/2e

� (v0�v0)2

2v2
T/3
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During the last run of SuperCDMS, lasting from 2012 to 2014, the total detector

exposure, E, was about 600 kg days.[39] During this run, the expected number of dark

matter events, N , generated by a 100 GeV/c2 WIMP, with interaction cross-section

�
0

< 2 · 10�44, was:

N = RE < 10 (3.6)

which is consistent with the number of events generated by known background pro-

cesses. At a mean energy of 10 keV per interaction, this corresponds to an average

radiation dose rate of less than 10�14 gray/yr.

We therefore see that dark matter interactions are quite rare, making long expo-

sure times necessary. The di�culty of dark matter detection is further exacerbated

by its exceedingly low dose rate compared to natural background radiation at Earth’s

surface, which is roughly 10�3 gray/yr, or 1011 times higher than the dose rate from

dark matter interactions.[40]

For a more detailed calculation of the expected interaction rates in our detectors,

see references [28] and [33].

3.2 Energy Collection

CDMS detectors consist of large, ultra pure, cylindrical, single crystals of germa-

nium or silicon (see Figure 3.3). The top and bottom surfaces of these crystals are

instrumented with sensors capable of detecting free charges and phonons.

When an incident particle impacts an atom within the detector, its deposited

energy excites the atoms within a small region of the crystal. These high-energy

excitations eventually down-convert into more numerous low-energy excitations until

all of the deposited energy is contained in three forms: free charge carriers, phonons,

and crystal defects, the crystal defects containing no more than about 3% of the total

energy.[41]

Electrodes on the surface of the crystal create an electric field in the bulk which

separates the free electrons and holes and drifts them toward the two surfaces. When

these charges are collected on the surface electrodes, they cause a small change in
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Figure 3.3: CDMS iZIP (Interleaved Z-sensitive Ionization and Phonon) detector.
Left: Photograph of detector in copper housing. Right: iZIP surface pattern.

voltage of each electrode, which is amplified and measured.

The surface also contains multiple small transition-edge sensors (TES’s), consist-

ing of small wires of tungsten biased at their superconducting transition temperature

of 70mK. These sensors are sensitive to incident phonons, which raise the temper-

ature of the tungsten, causing a significant and measurable change in its electrical

resistance.

The transition-edge sensors on the crystal surface detect both the phonons gener-

ated directly by the incident particle (primary phonons), as well as phonons emitted

by the free charge carriers as they fall through the potential gradient in the crystal

bulk (Luke phonons). Figure 3.4 illustrates this complete process.

The analysis of phonon di↵usion is complicated by the fact that the mean-free-

path of phonons is wavelength-dependent, with longer-wavelength phonons having

longer mean-free paths.8 In addition, the phonons down-convert to lower frequencies

as they propagate through the crystal due to non-linearities in the crystal elasticity,

causing the mean-free-path to grow. Therefore, there will always come a point at

8Primary phonons have energies close to the Debye frequency when they are first created, and
therefore initially have a very short mean-free-path. Luke phonons have much lower frequencies and
are balistic.
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Figure 3.4: The result of a localized event of energy deposition by an incident gamma
ray (green) in a CDMS iZIP detector crystal (gray). Trajectories of charge carriers
are shown in black. Trajectories of primary and Luke phonons are shown in blue and
red, respectively. Phonon trajectories are truncated to reduce visual clutter.

which the mean-free-path is comparable to the crystal size. At this point, the phonon

transport is poorly modeled as either a purely di↵usive or a purely ballistic process.

Appendix C provides a model for phonon transport in this quasiballistic regime.

In order to enhance the collection e�ciency of the transition-edge sensors, the

tungsten wires are attached to short superconducting aluminum collection fins, alu-

minum having a superconducting transition temperature of approximately 1K. These

fins absorb incident phonons which break Cooper pairs, generating unpaired charges

known as quasiparticles. These quasiparticles di↵use through the aluminum until

they reach the tungsten, at which point they are absorbed. Appendix D provides

a detailed calculation of this di↵usion and absorption process. For an experimental

study of this di↵usion process, see the work by Je↵ Yen in reference [42].

Appendix E provides a derivation of the linear response of a transition-edge sen-

sor to an impulse of heat power. For the case in which the transition-edge sensor

becomes non-linear, it becomes necessary to use a non-linear template-fitting method

to estimate the absorbed energy. For further discussion of this method, see the work

by Ben Shank in reference [43].
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3.3 Shielding and Discrimination Power

As discussed in §3.1, known background sources produce a radiation dose rate at least

1011 times larger than the dose rate expected from potential dark matter interactions.

This large discrepancy makes both shielding and background discrimination essential

to any unambiguous detection of dark matter.

Figure 3.5: Left: Headframe for the Soudan Mine (photo courtesy of Dan Bauer).
Right: Cavern in the Soudan Mine containing the CDMS experiment.

In order to reduce its exposure to background radiation, the CDMS experiment

is conducted at a depth of 2341ft in the Soudan Mine in northern Minnesota, which

provides protection from high-energy cosmic rays. (See Figure 3.5.) Further shielding

is achieved through the use of passive layers of lead and polyethylene, and an active

veto signal generated by a layer of muon-sensitive scintillator surrounding the experi-

mental apparatus. (See Figure 3.6.) Together, these measures reduce the background

rate by about six orders of magnitude.

A further reduction by a factor of about 105 is achieved by discriminating between

di↵erent types of observed events and rejecting those events which show a signature

characteristic of background sources. This type of discrimination is made possible

by the fact that CDMS detectors measure two forms of energy: both phonons and

charge. Di↵erent types of particle interactions will distribute their energy di↵erently

between the phonons and charge. Particles that interact primarily with electrons,
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Figure 3.6: Diagram of the CDMS experimental apparatus showing lead and polyethy-
lene shielding, along with the active scintillator panels.

such as gamma and beta radiation, distribute more of their energy into the produc-

tion of electron-hole pairs, while particles that interact primarily with atomic nuclei,

such as neutrons and hypothetical WIMPS, distribute more of their energy into the

production of primary phonons.

Therefore, the dimensionless ratio of charge energy to phonon energy, called the

“ionization yield”, provides a good indication of the type of particle interaction.

Figure 3.7 shows a plot of two populations of events: electron-recoil events are plotted

in blue, while nuclear-recoil events are plotted in red. Notice how the ionization yield

clearly separates the two populations.

This type of discrimination power is vitally important for any low-background

experiment like CDMS which must look for extremely rare events which occur at a

rate much lower than known sources of background radiation.
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Figure 3.7: CDMS detector background discrimination. Vertical axis represents the
yield, defined to be proportional to the ratio of charge to phonon energy, normalized
such that electron-recoil events have a yield of 1. The horizontal axis represents the
sum of electron and phonon energy. The population of electron-recoil (background)
events is colored blue, while the nuclear-recoil (signal) events are colored red. The
signal events in this case were provided by a neutron calibration source.



Chapter 4

Anomalous E↵ects in CDMS

Crystals

4.1 Charge Sharing Asymmetry

As described in Chapter 1, an unexpected asymmetry between electron and hole

propagation was observed in several CDMS crystals.[44] One such example was a

dislocation-free germanium crystal from E. Haller, which was being used to measure

the rate of charge trapping in germanium crystals without dislocations at cryogenic

temperatures.[45]

The Haller crystal was biased and exposed to gamma radiation from an 241Am

source. Charges were collected by two cylindrically-symmetric electrodes on the top

of the crystal. The geometry of the electrodes and the internal electric field for the

Haller crystal are shown in Figure 4.1.

It was originally assumed that any free carriers generated within the bulk of

the crystal would be drifted parallel to the electric field lines until they reached

the electrodes at the surface. This would imply that charges could only be shared

between inner and outer electrodes if the point of interaction occurred exactly on

the border which separates the region containing electric field lines which end on the

inner electrode from the region containing electric field lines which end on the outer

electrode. An interaction which occurred at any other location would distribute all

19
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(a) Charge channels on Haller crystal. (b) Cross section showing E-field.

Figure 4.1: Illustration of the crystal geometry used in the tests of charge sharing
between electrodes in the Haller dislocation-free crystal.

of its charge either on the inner or on the outer electrode.

However, this is not what was seen in the experimental data. Figure 4.2 shows

plots of the charge event energy vs. the charge-sharing parameter. It was expected

that very few events would have a charge-sharing parameter with a value other than

+1 or -1. However, when the crystal was under positive bias, a large population of

events appeared which had a substantial amount of shared charge between the inner

and outer electrode.

This e↵ect was not only observed in the Haller dislocation-free crystal, but also

in the germanium CDMS II detectors [47], and the germanium SuperCDMS iZIP

detectors [46]. Figure 4.3 shows plots of the yield (charge energy divided by phonon

energy) for the outer vs. the inner electrode on one side of a SuperCDMS iZIP

detector. Unshared events occur along the axes, while shared events occur in the

middle of the plot. Note the large populations of shared events when electrons are

collected by the electrodes.

Unlike the Haller crystal and the CDMS II detectors, the SuperCDMS iZIP de-

tectors are symmetric, having split inner and outer electrodes and charge amplifiers

on both sides. By reversing the bias across the crystal, the charge sharing was clearly

shown to be associated with electron propagation, and not with an asymmetry in the

detector design.
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(a) Hole propagation. (b) Electron propagation.

Figure 4.2: Charge partitioning between inner and outer channels for positive and
negative bias. Note that charge is shared between electrodes much more frequently
under positive bias.[44]

The correlation of this e↵ect with electron propagation was the key to its explana-

tion. The e↵ect comes from the anisotropy of electron transport due to the structure

of the conduction band in germanium. The e↵ect is only noticeable at low tempera-

ture and low electric field in crystals of high purity. A simple Monte Carlo simulation,

shown in Figure 4.4, demonstrates how the anisotropy of electron propagation can

generate shared events for electrons but not for holes.

The details of this anisotropy, and the conditions under which it is important, are

discussed in Chapter 5.
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(a) Hole propagation. (b) Electron propagation.

Figure 4.3: Yield plots (charge energy divided by total phonon energy) for the outer
vs. the inner electrodes of a SuperCDMS iZIP detector under two di↵erent bias
conditions. Points falling on the axes represent events in which one or the other
electrode collected no charge. Points in the middle of the plot represent events in
which some charge arrived on both electrodes. Note the large population of events
which share charge between both electrodes when electrons are collected (b) vs. the
low number of shared events when holes are collected (a). Note also that some events
in (b) have a low total yield. These represent events which occurred near the edge of
the crystal in which not all charge was collected. This occurs with a higher frequency
in the case of the electrons because of their oblique propagation.[46]
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Figure 4.4: Three-dimensional Monte Carlo simulation of oblique electron propaga-
tion through the Haller crystal, projected along x, y, and z directions. The electrons
(blue) travel obliquely to the applied electric field and separate into four clusters.
The holes (red) travel parallel to the applied electric field and remain in a single tight
cluster.[44]
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4.2 Shorted Charge Channel

In the SuperCDMS experiment, one of the detectors1 developed a short in one of the

outer charge-collection electrodes2. This modified the electric field pattern within the

crystal bulk, as illustrated in Figure 4.5 a&b.

Monte Carlo simulations, shown in Figure 4.5 c&d, revealed that events near the

shorted electrode allowed electrons to propagate to the inner electrode due to the

modified electric field and the oblique propagation of the electrons. The distribution

of charge from such events would subsequently give a false estimation of the radial

coordinate of the event location. This is especially problematic due to the fact that

events near the surfaces of CDMS crystals are regularly cut from the dataset due to

their high probability of coming from radioactive surface contamination.

See the dissertation by Kristi Schneck (reference [28]) for a detailed analysis of

the behavior of the shorted charge channel.

4.3 Importance of Accurate Modeling

Both of the anomalous e↵ects discussed in this chapter illustrate the importance of

having an accurate Monte Carlo model to simulate the behavior of the CDMS detector

crystals. Such a model is useful for understanding the behavior of detectors, as well

as for diagnosing problems.

1Detector T5Z3.
2Channel QOS1.
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(a) E-field in normal detector. (b) E-field in defective detector.

(c) Chage propagation in normal detector. (d) Charge propagation in defective detector.

Figure 4.5: Simulated electric fields and charge propagation in an iZIP detector with
a shorted outer charge channel (right) and without a short (left). Electric field and
Monte Carlo plots provided by K. Schneck.[28]



Chapter 5

Charge Transport in

Semiconductors

5.1 Band Structure and Bloch Wavefunctions

Any understanding of the motion of charges through crystalline solids must begin

from the perspective of wave mechanics. Crystals, by definition, are spatially periodic.

According to Bloch’s theorem, any eigenfunction of the wave equation for a particle

in a periodic potential must have the form:[48, 49]

 k(r) = uk(r)e
ik·r (5.1)

where uk(r) is a function with the same periodicity as the crystal lattice, and k is

a wavevector, called the crystal momentum1, which is a conserved quantity in most

scattering processes, and which can take on any of a continuum of values within the

Brillouin zone. For any given wavevector, k, there exists a discrete spectrum of energy

eigenvalues, En(k), such that:

Ĥ (n)
k (r) = En(k) 

(n)
k (r) (5.2)

1Here the wavevector is given its quantum-mechanical interpretation as representing a momen-
tum, p = h̄k.

26
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Figure 5.1: Structure of the valance and conduction bands of germanium along two
crystal directions. (Adapted from [50].)

where, n, is an integer index. These discrete energy eigenvalues form a family of

functions in momentum space. The set of all quantum eigenstates associated with a

particular function is called an energy band. Figure 5.1 illustrates what some of these

bands look like in germanium, projected along two directions in momentum space.

At a finite temperature, the thermally-averaged electron occupation number of

any state, ⌧ni�, is given by the Fermi-Dirac distribution:

⌧ni� =
1

e(Ei�µ)/(kT ) + 1
(5.3)

where, µ, is the chemical potential. If µ falls within an energy band, the material is a

metal. If µ falls in a gap between bands, the material is a semiconductor or insulator.

Such is the case for germanium and silicon, which are semiconductors with band gap

energies at 300K of 0.66 eV and 1.1eV, respectively.[48, 49] The bands which play the
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largest role in charge transport are the valance and conduction bands, being defined

as the bands with energy just below and just above µ.

5.2 Indirect-Gap Semiconductors

If an electron in the valance band of a semiconductor absorbs enough energy, it is

capable of making a quantum transition to an unoccupied state in the conduction

band, leaving behind a newly-unoccupied state in the valance band, called a hole.

Various relaxation processes will tend to reduce the energy of the system by driving

the electrons and holes to their lowest energy states, causing them to collect in the

local minima of their respective energy bands, also known as energy valleys.2

In germanium, the band gap is “indirect”, meaning the lowest energy states for

the electrons and holes do not align in momentum space. While the holes in the

valance band assume their lowest energy at zero crystal momentum, the electrons in

the conduction band reach a minimum of energy in the high momentum states at the

very edge of the Brillouin zone in the ⌧1, 1, 1� crystal directions.[48] It is interesting
to note that silicon, which has the same crystal structure as germanium, is also an

indirect-gap semiconductor. However, in contrast to germanium, the energy minima

in the silicon conduction band occur along the ⌧1, 0, 0� crystal directions.[48] These
attributes of the conduction bands of silicon and germanium are illustrated in Figure

5.2, which shows three-dimensional contours of constant energy in momentum space

close to the energy valleys.

Indirect energy gaps in semiconductors can give rise to interesting optical prop-

erties, the most notable being that electrons and holes are incapable of annihilating

through direct photon emission, as photons do not carry enough momentum to ac-

commodate the large momentum di↵erence between the two band minima. This

is one of the reasons why light-emitting diodes are typically made from direct-gap

semiconductors like gallium arsenide.

2Holes, being absences of electrons, reduce their energy by moving upward in the valance band.
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(a) Si Energy Valleys (b) Ge Energy Valleys

Figure 5.2: Three-dimensional plots of equal-energy surfaces in the conduction bands
of silicon (a) and germanium (b). The shaded regions indicate the ellipsoidal equal-
energy surfaces surrounding the energy minima near the edges of the Brillouin zone.
In Si, these minima occur along the six ⌧100� directions, while in Ge they occur along
the eight ⌧111� directions. (Adapted from [51].)

5.3 Semiclassical Model of Charge Transport

On length scales large compared to the interatomic spacing, the Bloch wavefunctions

described in §5.1 take on the appearance of plane waves. The energy vs. momentum

functions for each band represent the dispersion relations for these waves, where the

momentum, p, wavevector, k, energy, E , and angular frequency, !, have the following

quantum-mechanical relations:

E = h̄!

p = h̄ k (5.4)
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Because the densities of the free electrons and holes in undoped semiconductors are

low when the thermal energy is substantially lower than the band gap, the wavefunc-

tions of the free charge carriers may be approximated as localized, non-overlapping

wavepackets. These wavepackets travel with group velocities, vg, given by:

vg = @k! = @pE (5.5)

To a good approximation, the mean position, q, and momentum, p, of each

wavepacket can be described by the classical Hamiltonian system described by equa-

tions 5.6, where the function, E (p) is the energy vs. momentum function for the

energy band that the charge carrier is occupying, and V (q) is the electrostatic poten-

tial energy of the charge carrier due to the presence of an external field.3

H = V (q) + E (p)

ṗ = �@qH (q, p) = �@qV (q) = F

q̇ = @pH (q, p) = @pE (p) = vg (5.6)

As mentioned in §5.2, various relaxation processes will tend to reduce the kinetic

energies of the free charge carriers until they collect into local minima of energy in

momentum space. In the conditions relevant to our experiment, the level of thermal

excitations is low enough4 that the charge carriers all remain very close to their

energy minima. Consequently, the energy vs. momentum relations for the charge

carriers may be well approximated by a Taylor expansion truncated at the quadratic

term.5 A general quadratic energy vs. momentum relation may be written as:

E (p) =
1

2
(p� p

0

) ·m�1 · (p� p
0

) + E
0

(5.7)

3Note that the e�ects of a magnetic field may be incorporated into this model by substituting
p � eA for p in the Hamiltonian, where A is the magnetic vector potential, and e is the electric
charge of the charge carrier.

4Thermal energy at 1K = 8.6 · 10�4eV
5Note that this argument applies only approximately to the holes, as their energy vs. momentum

function is not smooth at k = 0. The second and all higher derivatives do not exist.
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where p
0

is the momentum vector of the local minimum. The mass tensor, m, is a

general, real-valued, symmetric, positive-definite, 3⇤3 matrix. If we insert this energy

vs. momentum relation into the equations of Hamiltonian mechanics, we obtain a

modified version of Newton’s Second Law:

q̇ = @pE (p) = m�1 · (p� p
0

)

q̈ = m�1 · ṗ = m�1 · F

F = m · q̈ (5.8)

Therefore, we see that the applied force, F , and the acceleration vector, q̈, are not

parallel to each other unless F lies within a subspace of spanned by degenerate eigen-

vectors of m. Such alignment will be rare if m has multiple di↵erent eigenvalues,

which is the case for the mass tensors of the energy valleys in the conduction bands

of germanium and silicon.

Silicon Germanium
mh/m0

0.5 0.35
me||/m0

0.91 1.58
me?/m0

0.19 0.081

Table 5.1: Hole and electron masses in Si and Ge relative to the free-space electron
mass, m

0

.[44]

This quadratic approximation is valid only in the vicinity of one particular energy

valley. In silicon, there are six distinct energy valleys, and in germanium there are

four.6 The mass tensors associated with these valleys are all di↵erent, although they

are constrained by crystal symmetries to share the same set of eigenvalues.

In general, the eigenvectors of the mass tensor for each energy valley lie either

parallel or perpendicular to the momentum vector, p
0

, which defines the location

6Because the energy valleys of germanium occur at the edges of the Brillouin zone, and because
opposite sides of the Brillouin zones are identified, energy minima lying in opposite directions from
the origin represent the same point in momentum space. This means that there are only four unique
valleys rather than the eight which would be expected from a set of valleys lying in the eight ⌧1, 1, 1�
directions.
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of the local energy minimum, with the two perpendicular eigenvectors forming a

degenerate subspace. Table 5.1 gives the parallel, me||, and perpendicular, me?,

eigenvalues of the electron mass tensors in germanium and silicon, relative to the

mass of the electron in vacuo, m
0

.

The holes, which have a single energy minimum at zero momentum, are well

approximated by an isotropic quadratic energy surface centered at zero with the

relative hole masses, mh, given in the top row of Table 5.1 .

5.4 Scattering Processes

One interesting consequence of Bloch’s theorem is that a crystal presents no im-

pediment to the motion of free charge carriers as long as it is perfectly periodic.7

Therefore, a free carrier will only scatter to a new momentum state if it experiences

some sort of interruption in the otherwise perfect periodicity of the crystal lattice.

Such non-periodic perturbations can be created by crystal defects, impurities, lattice

vibrations, or the presence of other free carriers.

Because crystal defects and impurities break the discrete translational symmetry

of the crystal lattice, they allow for scattering processes in which the momentum of

free carriers is not conserved. However, defects and impurities do not break the time-

translation symmetry of the crystal lattice, and therefore the energy of free carriers

is preserved in these scattering processes.

Lattice vibrations, being non-equilibrium distortions of the crystal lattice, are

likewise capable of scattering free carriers. However, the scattering processes involving

lattice vibrations have two important di↵erences from impurity scattering:

First, unlike static defects or impurities, lattice vibrations necessarily involve a

temporal variation in the structure of the crystal lattice, which explicitly breaks

time-translation symmetry. It is therefore possible for not only momentum, but also

energy to be exchanged between the free carriers and the lattice vibrations.

The second distinction between scattering from impurities and lattice vibrations

7Bloch was partly motivated to develop his theory by measurements which showed that free
charges could posses scattering lengths far in excess of the interatomic spacing.[52]
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is that the amplitudes of lattice vibrations are temperature-dependent. To properly

describe this temperature dependence at the energy scales relevant to our experi-

ment, the quantum nature of the lattice vibrations must be taken into account. The

thermally-averaged number of sound quanta, or phonons, occupying a particular vi-

brational mode with frequency !i is given by the Bose-Einstein distribution:

⌧ni� =
1

eh̄!i/(kT ) � 1
(5.9)

At any non-zero temperature, the crystal will contain a thermal bath of phonons

from which free carriers will scatter. Because the phonon density depends on temper-

ature, so does the mean-free-path for phonon scattering, unlike the mean-free-path

for impurity or defect scattering.

The quantum nature of phonon interactions leads also to another important con-

sequence. The classical process of a carrier scattering from a crystal vibration may

be represented quantum-mechanically as the absorption of a phonon by the free car-

rier. However, the fact that the quantum Hamiltonian is Hermetian requires that the

inverse process, that of phonon emission by a free carrier, must also be allowed. This

implies that phonons need not be present in the initial quantum state of the system

in order for phonon scattering to take place. (See §5.5 and §5.6.)
In the conditions relevant to the experiment described in this dissertation, scatter-

ing between carriers is only important during a short interval after the initial energy

deposition event when the density of free carriers is high. In our simulations, the

interaction between charge carriers is modeled as a pairwise Coulomb force. Further

detail is provided in Chapter 9.

Figure 5.3 illustrates the two primary e↵ects of these scattering processes: “intra-

valley” scattering, which leaves the charge carrier in the same energy valley as its

initial state, and “inter-valley” scattering, which causes the carrier to transition to

a momentum state lying in a di↵erent energy valley. Inter-valley scattering neces-

sarily requires a large change in crystal momentum, but could potentially involve no

change in energy. Intra-valley scattering requires a much smaller change in crystal

momentum, and therefore occurs much more easily and frequently.
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Figure 5.3: Diagram in momentum space showing scattering of electrons both within
an energy valley (intra-valley scattering), and between energy valleys (inter-valley
scattering). (Adapted from [53].)

5.5 Electron-Phonon Interaction

As discussed in the previous section, free electrons and holes in semiconductors can

interact with the crystal lattice through the emission or absorption of a phonon. This

interaction is mediated through a quantum interaction Hamiltonian of the form:

HI =

⌫
d3x X · s ⇤ (5.10)

where s is the crystal strain tensor, X, is the deformation potential tensor, and  is

the electron field. This interaction conserves energy and momentum, and it allows

an electron or hole to change momentum by creating or destroying a phonon.
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The total interaction rate can be calculated by integrating the square of the tran-

sition amplitude over the phonon phase space. The transition amplitudes and inter-

action rates are derived in §F.12 using a continuum approximation for the electron

and phonon fields. Analytic forms are found for the rates in the special case of an

isotropic material.

To incorporate this scattering process into our semiclassical model, we introduce

classical Poisson processes for phonon emission and absorption into our Monte Carlo

simulation of charge transport with average rates given by the quantum mechanical

transition rates.[4]

Unfortunately, the integrals F.92 and F.93 only have closed-form solutions in

the isotropic case. In Kyle Sundqvist’s Monte Carlo simulation, these integrals are

computed numerically for each charge carrier as a function of that charge carrier’s

velocity.[4]

In order to increase the speed of the simulation, we decided to employ the Herring-

Vogt approximation, in which the momentum space is stretched so that the surfaces of

constant energy become spheres.[54] The variables in the transformed space, denoted

by “⇤”, are defined by the relations:[44]

k = m�1/2
c m1/2 · k⇤

E = m�1/2
c m1/2 · E⇤

x = m1/2
c m�1/2 · x⇤

v = m1/2
c m�1/2 · v⇤

E = E ⇤

! = !⇤

mc ⌃ 3
1

me||
+ 1

me?

(5.11)

where the wavevector, k, is measured from the center of the valley. We see that the

equal-energy surfaces are spheres in the new momentum space:

E ⇤ = E =
1

2
k ·m�1 · k =

1

2
m�1

c k⇤ ·m1/2m�1m1/2 · k⇤ =
1

2
m�1

c k⇤ · k⇤ (5.12)
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The purpose of this transformation is to reformulate the problem so that it can be

approximated as closely as possible by an isotropic scattering process. The reformula-

tion could be made exact if not for the fact that the speed of sound in the transformed

space is no longer isotropic. We approximate the integral using an isotropic speed of

sound in the transformed space, which gives a closed-form solution while simultane-

ously introducing a certain irreducible error. The values of the deformation potential

and speed of sound used in the Herring-Vogt approximation are given in Table 5.2.

This approximation, utilized by Peter Redl in his Monte Carlo simulation, in-

creases the simulation speed by a factor of 20 relative to the Sundqvist simulation.

However, the price paid for this gain in computational speed is the explicit violation

of momentum conservation in the phonon scattering process. The scale and rela-

tive importance of the errors introduced into the simulation as a consequence of this

approximation are discussed in detail in Chapter 9.

Silicon Germanium
Electrons Holes Electrons Holes

X (eV) 9.0 5.0 11.0 3.4
cs (km/s) 9.0 5.4

Table 5.2: Values used in the Herring-Vogt approximation for the deformation po-
tential, X, and the longitudinal speed of sound, cs.[44]

5.6 Carrier Mobility

One of the interesting consequences of energy and momentum conservation in phonon

interactions is that charge carriers cannot emit phonons if their initial speed is less

than the speed of sound. Figure 5.4 provides a simple graphical proof of this e↵ect

in one dimension. The blue curve represents the quadratic energy vs. momentum

relation for an electron or hole. The green cones represent the set of all possible final

states after the emission of a single phonon, starting from the black dot, assuming

conservation of energy and momentum. Because the final state of the electron or

hole is kinematically constrained to lie on the blue curve, the intersections between
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Figure 5.4: A simple graphical illustration of the kinematics of phonon emission in
one dimension.

the green cones and the blue curve represent allowed final states. Note that phonon

emission is only possible from starting points on the blue curve with slope greater

than the speed of sound, cs. The carrier velocity, v, which is equal to the slope of the

blue curve, is indicated for each of the three starting points.

As the crystal temperature approaches zero, the probability of phonon absorption

approaches zero, and phonon scattering becomes dominated by the process of phonon

emission. Therefore, in ultra-pure crystals where impurity scattering is negligible,

charge carriers accelerate in a uniform field without resistance until they exceed the

velocity of sound, at which point they begin to loose energy through phonon emission.
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Figure 5.5: Comparison of simulated and measured carrier drift velocity as a function

of electric field along the [1, 0, 0] axis for ultra-pure (Na = 1.83 ⇤ 1011 cm�3) Ge

crystals at 31 mK.[44, 55]

Consequently, charge carriers will tend to travel with a drift velocity comparable

to the speed of sound over a wide range of applied electric field strengths, resulting

in a non-Ohmic conductivity. Both experiment and simulation show a power-law

relation between carrier drift velocity and electric field of the form vd � E1/5.[44]

Figure 5.5 shows the comparison between our experimental data and Monte Carlo

simulations.
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5.7 Electron Anisotropy

As discussed in §5.3, electrons in silicon and germanium occupy energy valleys with

anisotropic mass tensors. An electron occupying a particular energy valley with mass

tensor, m, accelerates in the presence of a uniform electric field, E, with a magnitude

and direction given by �em�1 · E. The electron continues to gain velocity in this

direction until a scattering event occurs, mediated either by a phonon interaction or

by a crystal defect or impurity.

Because interactions involving low momentum transfer are more likely than inter-

actions involving high momentum transfer, most scattering events cause the electron

to transition to a new state within the same energy valley. After the scattering event,

the electron begins to accelerate again in the same direction as before. The result is

a random walk plus a mean drift in the direction of the acceleration, �em�1 · E.

Occasionally, a scattering event will cause a momentum transfer of su�cient mag-

nitude to mediate a quantum transition to a new energy valley. After such an inter-

valley scattering event takes place, the electron begins to accelerate in a new direction

determined by the mass tensor of the new energy valley.

Inter-valley scattering events occur with a mean rate, �
IV

, which is a function of

the impurity and defect concentration, the crystal temperature, and the electric field

strength. Under the assumption that the scattering events may be well modeled as

a Poisson process, the probability, p(t) that an electron remains in the same valley

after time, t, is given by the exponential distribution:

p(t) = e��IVt (5.13)

During the time, t, the electron drifts a distance, x = �vd · Ê t projected onto the

direction of the applied electric force, �Ê. Therefore, the probability, p(x), that an

electron drifts for a distance, x, while remaining in the same energy valley is given

by a similar exponential law:

p(x) = e�x/�IV (5.14)

where �
IV

⌃ �vd · Ê/�
IV

is defined to be the projection of the mean inter-valley
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scattering length onto the direction of the applied force.

Because the inter-valley scattering rate, �
IV

, is the sum of the rates of all inter-

valley scattering processes, the following relations will hold between the total scat-

tering rate and length, and those of the constituent processes:

�
IV

= �(C)

IV

+ �(A)

IV

+ �(E)

IV

(5.15)
1

�
IV

=
1

�(C)

IV

+
1

�(A)

IV

+
1

�(E)
IV

(5.16)

where the superscripts represent the scattering processes mediated by the crystal

defects and impurities (C), by phonon absorption (A), and by phonon emission (E).

The division of the scattering rate into a sum of contributions from these three

constituent processes is useful not only as a means of understanding their relative

importance to the overall rate, but it also clarifies the functional dependence of the

scattering rate on the impurity and defect concentration, the crystal temperature,

and the electric field strength, as each rate associated with a particular constituent

processes is primarily a function of only one of these parameters.

The first term in Equation 5.15, �(C)

IV

, is determined solely by the concentration of

crystal defects and impurities and by the scattering cross-section which they present

to free carriers. In the germanium crystals used in the SuperCDMS experiment,

we measure the mean-free-path for inter-valley scattering induced by impurities and

defects to be on the order of 20 cm.

The second term, �(A)

IV

, which depends only on temperature. is determined by the

thermal phonon background, and is therefore proportional to the thermal occupation

number of the phonon modes which are responsible for inter-valley transitions. Be-

cause this number is exponentially suppressed at low temperatures, this process very

quickly becomes negligible relative to impurity and defect scattering in SuperCDMS

crystals at temperatures below 4K.

The third term, �(E)

IV

, depends only on the applied electric field strength. Electrons

need a minimum energy to undergo an inter-valley transition by phonon emission.

Therefore, this rate is determined by the number of electrons in the high-energy tail

of the energy distribution of the free electrons in the presence of an electric field. The
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population of electrons capable of emitting inter-valley phonons is larger in stronger

fields because the probability is higher that an electron can reach a high velocity, and

consequently a high kinetic energy, before undergoing a scattering event. This process

is negligible relative to impurity and defect scattering in the SuperCDMS crystals for

electric fields smaller than 1V/cm.

The combination of defect and impurity concentration, crystal temperature, and

electric field strength together determine the overall inter-valley scattering rate, �
IV

,

and the corresponding inter-valley scattering length, �
IV

. Based on this length, three

regimes of carrier transport may be distinguished by their qualitatively-di↵erent trans-

port properties.

In the anisotropic regime, the inter-valley scattering length is much larger than the

size of the crystal sample. In this case, electrons propagate across the entire thickness

of the crystal without transitioning to a di↵erent valley. The initial distribution of

electrons among the di↵erent energy valleys is therefore maintained throughout the

transport process, with the drift velocity of each electron depending on the valley the

electron is currently occupying.

This type of transport is illustrated by the Monte Carlo simulation plotted in

Figure 5.6. The simulation shows the paths of electrons in a germanium crystal with

a uniform electric field of strength 1V/cm. The electrons are all given an initial

position at the origin of the coordinate system, with equal populations of electrons

occupying the four di↵erent energy valleys. The most notable aspect of the transport

process is how the di↵erent mass tensors of the four valleys cause a spatial separation

to develop between the four di↵erent populations.

In the isotropic regime, the inter-valley scattering length is much smaller than the

size of the crystal. In this case, electrons cannot cross the thickness of the crystal while

remaining in the same energy valley. Instead, electrons scatter frequently between

the di↵erent energy valleys, spending roughly equal time in each. The average drift

velocity will then be the average of the drift velocities of all of the energy valleys,

which is isotropic. In this regime, the electron transport becomes very similar to that

of the holes when viewed on macroscopic scales.
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The third regime is intermediate between the isotropic and anisotropic cases,

and occurs when the inter-valley scattering length is comparable to the size of the

crystal. In this case, carriers are capable of traversing the entire crystal thickness

while remaining in the same energy valley, but also have a non-negligible probability

of undergoing one or more inter-valley transitions during the transport process. This

regime of carrier transport is of most relevance to the experiment described in this

dissertation.

Figure 5.6: Monte Carlo simulation of electron propagation in germanium in a uniform
electric field, starting from an initial position at the origin of the coordinate system.
Note how the electrons separate into four clusters.[44]



Chapter 6

Experimental Setup

6.1 Overview

The system described in this chapter was designed to directly measure the propagation

of charges in germanium by forming a two-dimensional image of charge density on

the surface of a small germanium test crystal.

The charge carriers are excited on one face of a germanium crystal by a focused

laser pulse. Once free, they are drifted through the crystal by a uniform electric

field, and collected by electrodes on the opposite face. A two-dimensional map of the

charge density is formed using an electrically controllable mirror which can scan the

excitation point across the illuminated face of the crystal.

6.2 Crystal Sample

The crystal under test was cut from a 3.89mm thick wafer of high purity germa-

nium.1[56] The front and back faces are 1cm⇤1cm, and lie in the (0, 0, 1) crystal

plane, while the sides lie in the (1, 1, 0) and (1, 1, 0) planes. The illuminated (front)

face of the crystal is patterned with an aluminum-tungsten mesh electrode, with 10µm

1N-type, net impurity concentration  8e10 cm�3, etch pit dislocation density  3.2e3 cm�2,
mobility at room temperature  2.7e4 cm2/Vs. (From Umicore)

43
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pitch and 20% coverage.2 The non-illuminated (back) face is covered by two solid

electrodes, one of which is circular with a diameter of 160µm, and separated by a

10µm gap from the other electrode, which covers the rest of the face of the crys-

tal. Both electrodes on the non-illuminated face are connected to ground through

10.75M⌦ of resistance.

(a) Illuminated surface. (b) Non-illuminated surface.

Figure 6.1: Microscope images of the surfaces of the germanium crystal sample.
Annotations show the sizes of various features.

6.3 Optical System

Figure 6.2 shows the experimental payload with annotations indicating the various

components and their nominal operational temperatures. A benchtop photograph

of the crystal sample is shown in Fig. 6.3b. The sample is mounted to a copper

baseplate (bottom of photograph), and is cooled to 630mK under vacuum in a He-3

2Electrodes composed of tri-layer consisting of 40nm of W on 20nm of Al on 40nm of amorphous
Si.
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Figure 6.2: Annotated photograph of experimental payload on benchtop with infrared
shield removed.

cryostat. The crystal sample is shielded from both electrical noise and 4K thermal

radiation by a copper enclosure mounted on the baseplate.

To generate free charge carriers, the illuminated face of the test crystal is exposed

to a 20µW, 100ns pulse of 650nm laser light, focused to a 70µm diameter spot,

which creates a cloud of electron-hole pairs near the illuminated surface.3 Carriers

are propagated through the bulk of the crystal in the uniform electric field induced

3The short pulses of laser light are generated by a Berkeley Nucleonics 6040 pulsed laser source,
and are coupled into the 3He cryostat through a single-mode optical fiber. The peak laser power
output from the BNC 6040 is set to 2mW. The laser light passed through a 20dB optical attenuator
at room temperature to reduce the peak laser power to 20µW.
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by the DC bias voltage of the mesh electrode on the illuminated face. The sign of

the bias voltage determines whether electrons or holes propagate through the bulk

of the crystal. Once collected by the electrodes on the non-illuminated face, the

charge carriers produce proportional pulses in voltage, which are measured by high-

impedance MESFET amplifiers, mounted on the 4K stage in the He-3 cryostat.[57, 58]

The two-dimensional pattern of charge density is determined by measuring the

charge collected by the small, circular electrode as a function of the position of the

excitation point on the illuminated face. Because translation of the excitation point

causes a corresponding translation of the charge density pattern, this procedure is

equivalent to keeping the excitation point fixed, while moving the small, circular elec-

trode to probe di↵erent regions of the charge density pattern. The position of the ex-

citation point is controlled by means of a Micro Electro-Mechanical System (MEMS)

mirror from Mirrorcle Technologies, Inc.[59]4 The MEMS mirror can be tilted along

two axes by computer control, and was modified by the vendor for operation below

1K. (See Figure 6.4.)
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(a) Diagram (b) Photo

Figure 6.3: Diagram (a) and photograph (b) of the laser scanning system, consisting
of a focused laser beam, electrically controllable MEMS mirror, and crystal sample.
The photograph (b) shows the laser beam executing a horizontal raster scan across
the crystal surface.

4Previous designs of the scanning experiment used a piezoelectric actuator to move the mirror
rather than a MEMS system. The piezoelectric actuator was found to be inferior due to its heat
dissipation, hysteretic e�ects, and reduced deflection at low temperature. However, in the course
of this research a useful model was developed for the purpose of characterizing the behavior of
piezoelectric actuators using only electrical measurements. This model is described in Appendix I.
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(a) MEMS mirrors mounted on PCBs. (b) MEMS mirror under microscope.

Figure 6.4: MEMS (Micro Electro-Mechanical Systems) mirrors from Mirrorcle, used
to control the position of the laser spot in two dimensions at cryogenic temperatures.

Figure 6.5: Image of the 60µm wide central calibration square taken with the laser
scanning system using the channel 2 charge signal. The outline of the calibration
square is shown in black. This image is consistent with the laser spot having a
Gaussian profile with a FWHM of 70µm.
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6.4 Amplifier Circuit

When charges are collected by the electrodes, they cause a change in voltage which

is amplified by a high-impedance, cryogenic MESFET amplifier circuit, based on the

successful past design by Adrian Lee[57].5 The MESFETs used in this circuit are the

Sony 3SK165, which was determined by Lee to have good transconductance (about

5mS) and low 1/f noise at a temperature of 4K.[60] (See Figure G.23.)

The MESFETs are held on a 4K stage separate from the crystal. The signals

from the crystal are sent to the gates of the MESFETs through 0.020 inch diameter

stainless steel coaxial lines. A simplified schematic for the amplifier circuit used in

this experiment is shown in Figure 6.6. The full schematic is shown in Figure G.13

in Appendix G.

The first stage of each signal chain consists of two FETs in a cascode configuration.

The Sony 3SK165 MESFETs (Q1 and Q2) act as high impedance, common source,

transconductance amplifiers. The drain currents from Q1 and Q2 are sent through

the wiring of the He-3 cryostat to the room-temperature Sony 2SK152 JFETs (Q3

and Q4), which act as current bu↵ers. Resistors R9 and R10 transform the current

signal back into a voltage signal.

The voltages across R9 and R10 are capacitively coupled to 30dB voltage am-

plifiers, and sent through three-pole low-pass filters (fc = 24kHz) for Nyquist band

limiting.6 The outputs are read by a National Instruments USB-6009 DAQ at a

sampling rate of 48kHz. The gain of the signal chains was chosen so that the noise

amplitude at the output of the amplifier was comparable in magnitude to the input

noise of the USB-6009 DAQ. This was done in order to maximize the dynamic range

of the system without significantly compromising the signal-to-noise ratio.

The room-temperature circuitry allows the drain bias current and the drain-to-

source bias voltage of Q1 and Q2 to each be set independently. The drain currents

for Q1 and Q2 are set by the current sources, I1 and I2, while capacitors C3-C6

5MESFETs (metal-semiconductor field-e�ect transistors) are similar to JFETs in their construc-
tion and operation, except that the gate consists of a metal-semiconductor junction rather than a
p-n junction.

6In addition to the low-bandwidth outputs, the amplifier also has separate high-bandwidth (fc =
1MHz) outputs with less gain, shown in the full schematic in Figure G.13 in the appendix.
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Figure 6.6: Simplified schematic of the amplifier circuit. The dotted line indicates the
part of the circuit contained within the cryostat. The rest of the circuit is at room
temperature. The full schematic is shown in Figure G.13.

provide an AC connection from source to ground. The drain-to-source voltages are

set by potentiometers R11 and R12. The bias point chosen for both Q1 and Q2 was

I
D

= 2.0mA, V
DS

= 0.9V, and V
GS

= �1.8V.
Resistors R1-R4 drain the charge to ground from the crystal electrodes and the

MESFET gates. The DC-blocking capacitors, C1 and C2, are not necessary under

ordinary circumstances. However, on one occasion it was discovered that stray con-

ductance, perhaps from residual soldering flux, caused current leakage from the drain

to the gate in Q1 or Q2, resulting in an unknown voltage being applied to the crystal
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electrodes. C1 and C2 were subsequently added to prevent any unintended current

leakage from a↵ecting the crystal bias voltage.

Resistors R7 and R8 prevent instability by forming a single-pole low pass filter in

combination with the MESFET gate capacitance with a cuto↵ frequency between 150

and 250MHz. These resistors were found to be necessary when earlier versions of the

amplifier circuit produced oscillations at 315MHz. This instability was a consequence

of the high bandwidth of the 3SK165 MESFETs, which were manufactured for use

as RF amplifiers in cellphone applications. Because of their relatively low value com-

pared to R1-R4, these gate resistors have a negligible e↵ect on the noise performance

or gain in the frequency band of interest.

Both channels include electrically-controllable transistor switches (S1 and S2 in

Fig.6.6), made from specially-biased 3SK165 MESFETs, and controlled by TTL sig-

nals from the NI USB-6009 DAQ. (See detailed schematic in Fig.G.13) These switches

connect the gates of transistors Q1 and Q2 to ground through 307⌦ resistors. The

purpose of these switches is to eliminate cross-talk between the high-impedance in-

puts of the two channels by allowing one channel to be e↵ectively shorted to ground

while the voltage of the other channel is measured.

In addition, S1 and S2 allow test signals to be directly injected into the gates of

Q1 and Q2 from external test inputs at room temperature while the cold amplifier

board is at a temperature of 4K. These test inputs were used to measure the transfer

function of the full signal chain, shown in Figure 6.7, while the circuit was at its

normal operating temperature of 4K.

In order to determine the noise performance of the amplifier, 400 noise traces were

recorded with the NI USB-6009 DAQ with 1024 samples per trace. The median noise

power spectral density was calculated for each channel, and divided by the transfer

function to arrive at the input-referenced noise spectrum. The noise spectra of the

two channels are shown in Figure 6.8.

In order to determine the quantity of charge collected by the crystal electrodes, it

was necessary to estimate the input capacitances of the two amplifier channels. These

estimates were calculated using two independent methods: first by measuring the RC
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Figure 6.7: Transfer functions for the low-bandwidth outputs of channel 1 and channel
2, measured by injecting small sine-wave signals into the test inputs of both channels
with S1 and S2 closed. The amplitude and phase of the output sine waves were mea-
sured as a function of frequency when the cold amplifier board was at a temperature
of 4K.

decay time of an impulse response, and second by summing all known contributions

to the input capacitance.

The RC time constants for both channels were measured at 4K. (See Figure 6.9.)

The RC time constant is determined by the resistors R1-R4 (nominal value of 10M⌦

each). At 4K, these resistors were each measured to have 21.5M⌦ of resistance, giving

a parallel resistance of 10.75M⌦ for each channel. From the RC time constants, the

capacitances of channels 1 and 2 were estimated to be 14pF and 18pF, respectively.

These capacitances were also estimated independently from three main contribu-

tions: the crystal electrode capacitance, the coax capacitance, and the MESFET gate

capacitance. A parallel-plate approximation for the capacitance of the channel 2 elec-

trode is 3.6pF, assuming a dielectric constant of 16 for germanium. The capacitance

of the channel 1 electrode is necessarily less than this.

The 0.020” diameter, stainless steel coax was measured to have a capacitance of

95pF/m. The lengths of the channel 1 and channel 2 coaxial lines were 4.0” and 5.4”

respectively. This gives a capacitance of 10pF for the channel 1 coax, and 13pF for

the channel 2 coax.
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Figure 6.8: Noise spectra for channels 1 and 2 from low-bandwidth output, measured
with NI USB-6009 DAQ, referenced to the input, and measured with crystal at 0.6K
and cold amplifier board at 4K. The noise spike at 10kHz is due to local noise on the
DAQ. The other noise spikes are aliased harmonics of 10kHz.

According to the datasheet for the 3SK165 MESFETs, the typical input capaci-

tance is 0.5pF, with a maximum value of 1pF. Therefore the total capacitances may

be estimated to be 11pF for Ch1 and 17pF for Ch2, which are close to the estimates

derived from the measured RC time constants.

Due to the possible existence of extra stray capacitance not accounted for by the

sum of the contributions from all known capacitance sources, the capacitance esti-

mates derived from the RC time constants were used for all subsequent measurements

of the charge collection on the channel 1 and channel 2 electrodes.
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Figure 6.9: Impulse response for channels 1 and 2 from a 1µs long laser pulse. These
signals were measured using the high-bandwidth output of the amplifier circuit (by-
passing the 24kHz low-pass filter). Assuming a resistance of 10.75M⌦ per channel,
this gives capacitance values of 14pF and 18pF for channels 1 and 2, respectively.

6.5 3He Cryostat

A thermal schematic of the 3He cryostat is shown in Figure 6.10. The system contains

three sorption refrigeration stages, only two of which are used.[61] Each stage consists

of a still for holding liquid 3He or 4He connected through an insulating stainless steel

pipe to a pump consisting of a chamber containing an activated charcoal adsorber.

When the system is at equilibrium at 4K, the helium is all adsorbed onto the high

surface area of the activated charcoal. To initiate a cooling cycle, the heat switch for

the 4He pump is turned o↵, and the activated charcoal is heated to 54K. This causes

the 4He to desorb from the charcoal, increasing the vapor pressure in the chamber

and causing liquid to form at the 4K condensation point between the pump and the

still.
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Figure 6.10: Schematic diagram of 3He/4He cooling system. Red lines show ther-
mal connections. T0-T6 are diode thermometers. GRT is a germanium resistance
thermometer, and RuOx is a ruthenium oxide thermometer. Heat switches 1 and 2
are electrically controllable gas-gap switches. Thermometers T3 and T4 measure the
temperatures of internal charcoal adsorbers of the heat switches. Heat switch 3 is a
passive gas gap which facilitates the initial cool-down and opens once the worksurface
reaches 4K.

Once the condensed liquid has filled the 4He still, the heater is turned o↵, and

the heat switch turned back on. This causes the vapor pressure of the 4He to drop,

depressing the boiling temperature of the liquid and cooling the still

A similar cycle is then performed with the 3He pump, except in this case the

cooling power of the liquid 4He is used to condense the 3He vapor into liquid. Once

the 3He still is full and the 4He still is empty, the 3He pump is activated, and the 3He

still approaches its base temperature of 400mK.

Using a 131k⌦ heater resistor and a ruthenium oxide thermometer attached to

the payload, the load line for the 3He still was measured by Brendan Corcoran, and

is plotted in Figure 6.11. At low power levels, the payload temperature was observed

to rise by approximately 0.55K per mW of applied heat power.

The 4He stage contains 18 STP liters of 4He, and the 3He stage contains 11 STP

liters of 3He.[61] The product of cooling power and hold-time for the 3He stage was
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Figure 6.11: Temperature of the 3He still (measured by GRT) and the experimental
payload (measured by RuOx) as a function of power applied to a heater mounted on
the payload.

measured by Corcoran to be 2.56mW-hours, which is consistent with the measure-

ments by Bhatia in [61]. Based on the 11.6 hour hold-time at base temperature, the

net heat leakage to the 3He still is estimated to be 220µW.

When the cryogenic amplifier is activated, Q1 and Q2 each dissipate approxi-

mately 1.8mW of thermal power. Most of this power is conducted to the 4K work

surface through a copper heat strap. However, some of this power leaks to the copper

baseplate of the experimental payload. This leaked power increases the base temper-

ature of the payload to about 630mK and reduces the hold time to about 6 hours,

which is consistent with a heat leakage power of about 200µW.

Figure 6.12 shows a photograph of the experimental payload mounted in the 3He

cryostat. The optical system is covered with a copper enclosure for shielding electrical

noise and 4K infrared radiation. The sorption refrigeration stages are the gold-plated

cylinders behind the payload.
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Figure 6.12: Photograph of the experimental payload mounted in the 3He cryostat
with vacuum jacket and 4K/77K radiation shields removed.

6.6 Control System

The system was controlled using Matlab code on a master control laptop. (See Ap-

pendix J) All of the laboratory instruments were connected to the laptop through

either USB or GPIB. The control laptop was connected to the internet, which al-

lowed remote status reports and control of the system.

The 3He cryostat was controlled by a separate computer which was also connected

to the internet. The control laptop was able to execute remote commands on the fridge

control computer through the internet connection.
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Figure 6.13: Simplified block diagram of the control system.



Chapter 7

Experimental Methods

7.1 Neutralization

The 3He cryostat requires approximately two hours to cool from 4K to base tem-

perature. During this time, the crystal electrodes are grounded, and the crystal is

illuminated with di↵use laser light by shining the laser spot onto the plastic housing

of an LED mounted in front of the crystal holder (see Figure 6.3b). The di↵use illu-

mination is then followed by a raster scan with zero bias. The purpose of this process

is neutralize the crystal, i.e. to ensure that no charge carriers remained bound by

shallow traps created by impurities or defects either in the crystal bulk or on the

surfaces. (See the work by Kyle Sundqvist in [4] for a detailed discussion of charge

trapping.)

7.2 Scanning Process

Once the crystal is at base temperature, the amplifier is turned on and the scanning

process is commenced. Due to the trapping of charge by impurities, it was found to be

necessary to flash the crystal with laser light at zero bias between each measurement

in order to ensure the crystal remained in its neutralized state. For the flash, the

laser is pointed at the LED to di↵usively illuminate the crystal for a period of 10ms.

58
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The set of steps executed at each pixel location are:

1. Record time and temperatures.

2. Set bias voltage to zero.

3. Move mirror to flash location.

4. Flash crystal.

5. Move mirror to pixel location.

6. Turn on bias voltage.

7. Enable channel 1.

8. Apply laser pulse train to crystal. Record channel 1 voltage.

9. Disable channel 1. Enable channel 2.

10. Apply laser pulse train to crystal. Record channel 2 voltage.

11. Disable channel 2.

For more details regarding the scanning process, see Appendix J which contains the

Matlab code and a description of its operation.

7.3 Maximum-Likelihood Fits

At each pixel location in the two-dimensional scan, a train of 20 laser pulses is applied

to the crystal at a rate of one pulse every 1053.1µs.1 The amplified voltage pulses

from each channel are recorded by the NI USB-6009 DAQ.

An example of the raw data collected from a scan of the crystal is shown in Figure

7.1. The voltage amplitudes shown in the two plots on the left refer to the pulse

amplitudes measured at the low-bandwidth outputs of the amplifier circuit.

1This period was chosen so that the gap between the harmonics in the Fourier Series of the signal
would coincide with the prominent noise spike at 10kHz, thereby reducing the overlap between the
frequency spectra of the signal and noise.
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Figure 7.1: Example of raw data from a scan of the crystal.

Once each scan is complete, the mean of all pulse trains for each channel is cal-

culated to form a pair of templates. Figure 7.2 shows the templates generated from

the same scan as that in Figure 7.1. The templates are both normalized to have a

peak-to-peak amplitude of 1.

Because the start-time of the pulse train is known, the only unknown variable

that determines its shape is a linear scale factor which is proportional to the total

quantity of charge collected during each pulse. The scale factor for each pulse train,

as a function of position, is therefore a quantity of interest.

The scale factor for a particular pulse train is defined to be the factor which,

when multiplied by the template, gives the closest fit. Because the noise spectrum is

not white, closeness of fit is defined by a weighted least-squares fit in the frequency

domain, with the weighting factor for each frequency bin being proportional to the

inverse of the measured noise power-spectral-density in that bin. Appendix H provides

a derivation this formula under the assumption of stationary, Gaussian noise.

7.4 Pulse Gain

The maximum-likelihood fitting algorithm described in §7.3 provides an estimate of

the amplitudes of the pulses measured at the low-bandwidth output of the amplifier.
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Figure 7.2: Low-bandwidth pulse train templates.

To estimate the total charge collected by the crystal electrodes during each pulse, it

is necessary to estimate the input voltage for each channel. Assuming the amplifier

response is linear, the input amplitude may be determined from the output pulse if the

overall pulse gain of the amplifier circuit is known. However, because the amplifier

gain is a function of frequency, it is necessary to utilize the known amplitude and

phase of the full transfer function for each channel.

The input pulse shape for each channel was assumed to be a decaying exponen-

tial. The known amplifier transfer functions were applied to these pulses to generate

theoretical output responses. The amplitude and decay time of the exponentials were

then varied to find a least-squares fit to the unit-amplitude template for each channel.2

These fits are shown in Figure 7.3.

The pulse gain for each channel is therefore given by the inverse of the best-fit

amplitudes of the exponential pulses. These gain factors were found to be G
1

= 612

and G
2

= 359 for channel 1 and channel 2, respectively.

2The pulse trains were wrapped in the time domain modulo the pulse period. This e�ectively
increased the sample rate, and provided 20 times more averaging.
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Note also that the best estimates for the exponential decay times are larger than

the decay times measured from the high-bandwith outputs, shown in Figure 6.9, by

14% for channel 1, and 61% for channel 2.
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Figure 7.3: Least-squares fits to the wrapped templates for channel 1 and channel
2. The templates were scaled to have an amplitude of 1. The fitting functions were
generated by applying the known transfer function for each channel to an exponential
pulse.

7.5 Charge Collection Estimates

We may use the amplifier pulse gain and output pulse amplitude to estimate the total

charge collected by the channel 1 and channel 2 electrodes. The maximum amplitudes

of the output pulses are roughly 60mV for channel 1 and 450mV for channel 2. (See

Figure 7.1.) From the estimates of the pulse gains, these correspond to input pulse

amplitudes of roughly 98µV for channel 1, and 1.3mV for channel 2. Using 14pF

and 18pF for the capacitances of these two channels (see §6.4), we estimate the total

charge collected to be 8,600 and 140,000 electrons per pulse for channels 1 and 2,

respectively.

We may compare these numbers to the estimated number of electron-hole pairs

generated by each laser pulse. The laser pulses have a peak power of 20µW, and

a duration of 100ns, giving a total pulse energy of 12.6MeV. Each 650nm photon
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carries an energy of 1.9eV. Therefore, each laser pulse contains an average of 6.5 · 106

photons.

However, about 20% of the crystal surface is covered by reflective aluminum, and

we estimate the remaining surface to have a power reflectivity of 40% due to the

change in index of refraction between vacuum, amorphous silicon, and germanium.3

Therefore, we estimate about 3.1 · 106 photons penetrate into the germanium per

pulse. Because each photon can generate at most one electron-hole pair, this number

represents the maximum number of charge carriers which could be generated by such

a laser pulse, assuming 100% e�ciency.

We see that the charge collected by the channel 2 electrode represents only about

5% of this number. This low e�ciency is likely due to the occurrence of recombination

in the initial cloud of electron-hole pairs generated by the laser pulse. We have not yet

attempted a calculation to reproduce the observed e�ciency factor, as the presence of

complex e↵ects, such as electron-hole plasma physics, or the generation of excitons,

makes this initial process very di�cult to model or predict.

7.6 Charge Noise

There are four main noise contributions to the measured charge signals: shot noise,

electronic noise, systematic error, and hysteresis.

The shot noise may be estimated by assuming that the number of charges collected

during each pulse follows a Poisson distribution. Because the variance of a Poisson

distribution is equal to its mean, the contribution to the standard deviation in the

number of collected charges is equal to the square root of the number of charges

collected during each pulse. For a pulse train consisting of N
pulse

pulses, the variance

is reduced by a factor of N
pulse

. Therefore, the shot noise contribution to the charge

collected by the two channels is:

3Reflectivity calculated using the Luxpop online calculator, assuming 40nm of aSi on Ge.[62]
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where e is the electron charge, and where Q
1

and Q
2

are the quantities of charge

collected by channel 1 and channel 2, respectively. The maximum shot noise occurs

where the charge collection is largest. For the maximum charge collection quoted in

§7.5, these contributions are:
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The electronic noise comes from both thermal Johnson noise, and other sources

of voltage noise both internal and external to the amplifier system. The noise power-

spectral-density for each channel is known, and is observed to be stable throughout

each scan. According to Appendix H, the contribution from electronic noise is given

by:
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where �(elec.)

ov1 and �(elec.)

ov2 are the standard deviations in the fit parameters for the

voltage amplitude of the output pulses, R
1

and R
2

are the Fourier transforms of the

fit templates, and �n1 and �n2 are the electronic noise power-spectral-density functions

for channels 1 and 2 referenced to the amplifier output. We may use the pulse gain,

G, and capacitance, C, for each channel to compute the equivalent input charge noise

for channel 1, �(elec.)

q1 , and channel 2, �(elec.)

q1 :
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Several sources contribute to the systematic error in the estimate of the total

charge collection. The most prominent is the systematic error in the estimate of

the capacitance of each channel. As discussed in §7.4, the two di↵erent estimates

of this capacitance from the exponential decay time di↵er by 14% for channel 1 and

61% for channel 2. (See Figures 7.3 and 6.9.) The uncertainty in the total charge

collection is directly proportional to the uncertainty in the input capacitance of each

channel. However, since these capacitances are constant, their uncertainty only a↵ects

the absolute charge calibration, and has no e↵ect on relative measurements between

pulses from di↵erent crystal locations.

An additional systematic error was observed in the overall signal amplitude as a

function of position. The channel 2 charge collection shows a standard deviation of

roughly 3.4% in pulse amplitude as a function of position in regions where the pulse

amplitude should be uniform. This variation is visible as a wavelike pattern the lower

left of Figure 7.1. Because this pattern was observed to be constant throughout all of

the crystal scans, we hypothesize that it is caused by a combination of a variation in

the overlap between the mesh electrode and the laser beam profile, and a spatial vari-

ation in the fractional coverage by the aluminum mesh electrode on the illuminated

face of the crystal.

7.7 Raster Scan Patterns and Hysteresis

The largest systematic error in the charge measurement came from hysteresis. It was

discovered that the crystal demonstrated a memory e↵ect; a charge pulse with a large

amplitude was found to suppress the amplitudes of the succeeding pulses. This e↵ect

was reduced by flashing the crystal between the measurement of each pixel, but some
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residual hysteresis remained. The crystal surface was scanned in both horizontal and

vertical zig-zag raster patterns, shown in Figure 7.4. Even with the intermediate

flashes, the pulse heights were observed to vary by as much as 30% depending on the

direction of the scan, resulting in the notable striping patterns visible Figure 7.4.

In order to mitigate the remaining hysteresis, the results from both a horizontal

and a vertical raster scan pattern were averaged together, and a two-dimensional filter

was applied which eliminated the highest spatial frequencies contained in the image.

(See Figure 7.5.)

(a) Horizontal raster scan pattern. (b) Vertical raster scan pattern.

(c) Horizontal raster scan. (d) Vertical raster scan.

Figure 7.4: Examples of horizontal (a) and vertical (b) scan patterns. Note the
hysteretic e↵ects visible in the charge collection (c) and (d).
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7.8 Edge E↵ects

Also apparent in Figure 7.4 (c) and (d) is an increase in the channel 1 pulse amplitude

for laser positions close to the edge of the crystal. This pattern was consistent across

various bias conditions on the crystal, and its cause is currently unknown.

In order to avoid contamination of the charge density pattern from this edge

e↵ect, an average of the edge signal was taken across the top and right edges in

regions where the charge density pattern was presumed to be zero. These averages

were then subtracted from the image across the entire top and right edges.

(a) Combined scans. (b) Edge e�ects subtracted. (c) Filtered.

Figure 7.5: Steps for processing of charge density scans. (a) Sum formed from one
horizontal and one vertical scan, taken sequentially. (b) Edge e↵ects subtracted. (c)
2-D filter applied to image to remove high spatial frequencies.

7.9 Position Calibration

Four circular calibration spots were placed in the corners of the electrode pattern

on the illuminated face of the crystal, and one spot was placed in the center. The

calibration spots in the corners are circles with a diameter of 160µm. The calibration

spot in the center is a square with a side length of 60µm. The center-to-center

separation between the calibration spots in the corners is 8400µm.
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The locations of these spots in the mirror coordinate system were used to create

a linear map to the physical coordinate system on the surface of the crystal. The

calibration spot in the center of the illuminated face was used to define the origin of

the crystal coordinate system. The x and y directions of this coordinate system are

shown by the annotations in Figure 6.2.

Figure 7.6: Images of the calibration spots in the four corners of the crystal. Also
note the shadows of the wire-bonds which are visible in the lower left image.
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7.10 Inter-Valley Scattering Length

In order to estimate the inter-valley scattering length, we divided the electron charge

density pattern into di↵erent regions based on whether the electrons in those re-

gions did or did not undergo inter-valley scattering. (See Figure 7.7.) Based on the

charge collected in these regions, and using Equation 5.14, we defined the inter-valley

scattering length to be:

�
IV

= � x

ln p(x)
= � x

ln
⌃

Qns

Qtot

⌥ (7.5)

where x = 3.89mm is the crystal thickness, p(x) = Q
ns

/Q
tot

is the probability of an

electron traversing the crystal without undergoing inver-valley scattering, Q
ns

is the

quantity of charge which did not undergo inter-valley scattering, and Q
tot

is the total

quantity of charge in the 2D charge density pattern.

Figure 7.7: Regions in the 2D charge density pattern used to define populations
of charge both with inter-valley scattering events (green shaded region) and without
inter-valley scattering events (red shaded regions). The mean signal in the gray boxes
was used to define the background, which was subtracted from the rest of the charge
density pattern.
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Experimental Results

8.1 Two-Dimensional Charge Density

Experimental measurements of the two-dimensional charge patterns for a variety of

electric field strengths are shown in Figure 8.1 (a) for holes and Figure 8.2 (a) for elec-

trons. For comparison, Figures 8.1 (b) and 8.2 (b) show the charge density patterns

generated from the Redl simulation for the same electric field strengths. Figures 8.1

(c) and 8.2 (c) show a cross-sectional comparison between the simulated and measured

charge distributions.

The e↵ects of the electron mass anisotropy are clearly evident in Figure 8.2 (a). At

low electric fields (less than �3V/cm), the electrons separate into four groups, each

corresponding to one of the conduction band minima, or valleys. At high electric

fields (greater than �4V/cm), the inter-valley scattering induced by phonon emis-

sion washes out the e↵ects of the anisotropic mass, and the charge density pattern

approaches a Gaussian distribution.

Also evident is an increase in the background noise at high field strength, which

we attribute to the noise generated by charge leakage. (See our measurements of the

leakage current vs. electric field in §8.3.)

70
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Figure 8.1: Hole Charge Density Patterns at 600mK. (a): Data. (b): Simulation.
(c): One-dimensional projection of charge density onto x-axis. In (c), the data (solid,
blue) are compared to the simulation incorporating electrostatic repulsion (dotted,
red), and the simulation with no repulsion (dotted, green). The horizontal scale
ranges from -4mm to +4mm. The vertical scale is arbitrary.
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Figure 8.2: Electron Charge Density Patterns at 600mK. (a): Data. (b): Redl simu-
lation. (c): One-dimensional projection of charge density onto a diagonal axis. In (c),
the data (solid, blue) are compared to the Redl simulation employing the Herring-
Vogt approximation (dotted, red). The horizontal scale ranges from -4mm to +4mm.
The vertical scale is arbitrary.
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8.2 Inter-Valley Scattering Length

Figure 8.3 shows the mean path length between electron inter-valley scattering events,

projected along the [0, 0, 1] direction, as a function of electric field strength. The data

from our experiment are shown in blue, and are in good agreement with the Redl

simulation, shown in green. Note that the parameters which determine the electron

scattering rate in the Redl simulation were taken from reference [63], and were not

modified to fit our data. For comparison, we also show data from references [64] and

[65], plotted on the same axes.

Figure 8.3: Electron inter-valley scattering length at 600mK, projected along [0, 0, 1],
as a function of electric field strength. The data (blue) are compared to the Redl
simulation (green) and the Sundqvist simulation (black). Also included is the IV
scattering length calculated using data from references [64] and [65].
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8.3 Leakage Current and Charge Trapping

The leakage current was studied by cycling the bias voltage through a loop with ex-

ponentially growing amplitude at base temperature (600mK).1 For each bias level,

voltage was applied and the crystal leakage current was measured with no illumina-

tion, followed by a 10ms long di↵use flash at zero bias. The leakage current is shown

as a function of electric field in the plot on the left in Figure 8.4.

The leakage current has a knee close to a field strength of 4V/cm, which is con-

sistent with the higher noise levels observed in the charge density measurements at

field strengths above 4V/cm. The current also exhibits a notable hysteresis, which

may be caused by the trapping of charge in the crystal.

In order to measure the charge trapping as a function of electric field strength, a

laser pulse train2 was applied to the crystal3 at each voltage level. The amplitude of

channel 2 was used to estimate the total number of collected charges.

We see from the plot on the right in Figure 8.4 that the charge collection is reduced

for electric fields weaker than 1V/cm, which is evidence of charge trapping. (More

information about charge trapping may be found in reference [4].)
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Figure 8.4: Left: current conducted through the crystal as a function of electric field
strength (no illumination). Right: charge collection vs. electric field strength.

1The entire sweep had a duration of about 40min.
2Each pulse had 20µW peak power, 100ns duration.
3The laser pulses were applied to location [0.20,0.20] in the mirror coordinate system.



Chapter 9

Discussion

To obtain good agreement between the Monte Carlo simulation by Peter Redl and the

experimental data, several e↵ects need to be taken into account. The first e↵ect is a

distortion in the locations of the centers of the four electron clusters. This distortion

is explained by a 2 degree o↵set between the crystal axes and the faces of the crystal,

which is consistent with the tolerances of our crystal fabrication process and with

subsequent X-ray di↵raction measurements of the crystal axes.

The second e↵ect is the lateral spreading of the carriers due to electrostatic re-

pulsion. Without accounting for this e↵ect, our original Monte Carlo simulation for

the holes produced charge distributions that were too narrow (see Figure 8.1 (c)).

The additional spreading seen in our data can be reproduced in our simulations by

incorporating the e↵ect of electrostatic repulsion. Based on the total charge collected

by the large electrode on the non-illuminated face, we estimate 1.5± .5⇤ 105 charge

carriers are collected per laser pulse. To obtain good agreement with the data, the

simulation contains 2±1⇤105 holes, assuming the initial charge cloud diameter after

the separation of opposite charges is equal in size to the laser spot (70µm).

However, even after accounting for electrostatic repulsion, a discrepancy remains

in the case of the electrons, as the electron charge distribution is narrower in the

data than in the Redl simulation (compare Figures 8.2 (a) and 8.2 (b)). We at-

tribute this discrepancy to the fact that the Redl simulation uses the Herring-Vogt

approximation.[54, 63] As discussed in §5.5, this approximation provides a faster
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means of simulating the phonon emission process at the expense of violating momen-

tum conservation. This non-conservation of momentum is likely the cause of the extra

lateral di↵usion seen in the simulated charge density patterns.

To estimate the systematic error introduced by the Herring-Vogt approximation,

we use a simulation written by Kyle Sundqvist[4, 66, 67] which explicitly conserves

crystal momentum. Figure 9.2 shows a comparison of the Redl simulation (a), with

the more accurate, but slower, Sundqvist simulation (b). The widths of the distribu-

tions of electrons in a single cluster are shown in Figure 9.3 for both simulations, and

for the data.

(a) Redl simulation. (b) Data.

Figure 9.1: Detailed comparison between data and the Redl simulation for electrons
at 2V/cm. Note that the electron clusters are wider in the simulation than in the
experimental data.

Using the Sundqvist simulation as a standard of comparison, we are able to observe

and model the extra lateral spreading of the electrons due to electrostatic repulsion.

The repulsion causes the centers of the four electron clusters to spread further from

each other, and causes the clusters to spread more in the low-mass directions. Figure

9.2 (c) shows an approximate correction to the Sundqvist simulation for the e↵ects of
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(a) Redl Simulation (b) Sundqvist Simulation (c) Sundqvist Simulation with
Repulsion

Figure 9.2: Comparison of Redl and Sundqvist Simulations: (a), (b), and (c)
show scatter plots of the final x and y electron locations in three simulations. The
axes extend from -4mm to +4mm in the x and y-directions. (a) Reld simulation using
Herring-Vogt approximation, which does not conserve momentum. (b) Sundqvist sim-
ulation, which correctly conserves momentum during phonon scattering.[4, 66, 67] (c)
Sundqvist simulation with correction for electrostatic repulsion. For all simulations,
the electric field strength was 2V/cm, and no impurity scattering was included.

electrostatic repulsion, generated by post-processing the electron trajectories. Figure

9.3 shows how this e↵ect brings the Sundqvist simulation into agreement with the

experimental data, assuming the same number of charge-carriers per pulse (2±1⇤105)
as we assume for holes.

We also note that, unlike the Redl simulation, the Sundqvist simulation does not

include the e↵ects of impurity scattering. This fact is apparent in Figure 8.3, where

the IV scattering length for the Sundqvist simulation diverges for low electric field.

However, a discrepancy still exists between the Redl and Sundqvist simulations even

at high fields where scattering is dominated by phonon emission. This discrepancy

remains unexplained.
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Figure 9.3: Comparison of Lateral Spreading of Electron Charge Density. (a) and (b)
show plots of one-dimensional charge density of a single electron cluster, projected
along the narrow and wide principle axes, respectively. A Gaussian fit to the data is
shown in black, and is compared to three di↵erent simulations. For both simulations
and data, the electric field strength was 2V/cm.



Chapter 10

Conclusions and Future Work

Using the cryogenic scanning apparatus described in this dissertation, we have suc-

cessfully imaged the two-dimensional charge density distributions of both electrons

and holes in high purity germanium crystals at sub-Kelvin temperatures. This work

has provided a detailed test of our two Monte Carlo simulations, and our results have

revealed the magnitude and relative importance of subtle e↵ects such as electrostatic

repulsion between carriers and o↵sets in the crystal axes. The comparison between

experiment and theory indicates the degree of accuracy which our simulations are

currently able to achieve, and provides both motivation and direction for further

improvements to those simulations.

Because we plan to use silicon detectors in future dark matter searches, we wish

to repeat all of the measurements described in this dissertation on high purity silicon

samples. The same experimental apparatus can be used for testing silicon, and e↵orts

in this direction are ongoing. In addition to measurements of silicon, we also wish to

measure charge propagation along di↵erent crystal directions using samples cut from

boules grown along di↵erent crystal axes. Our future plans include measurement of

both silicon and germanium samples cut such that the electric field is oriented along

the [1, 0, 0] and [1, 1, 1] crystal directions.

Due to recent increased interest in low-mass dark matter (m < 10GeV/c2), the

use of high voltage bias is being explored as a means of lowering the minimum energy

threshold in our dark matter detectors. For these designs to be practical, the crystals
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must be capable of withstanding high electric fields both in the bulk and and near

their surface electrodes. We plan to continue tests of crystal breakdown, such as those

described in §8.3, for crystals with di↵erent electrode structures.



Appendix A

An Isothermal Cloud

In this section, a simple model of a dark matter halo is investigated, consisting of a

spherically symmetric cloud of particles of mass, m, in a state of thermal and hy-

drostatic equilibrium. Such a model represents an approximation to the final state of

a self-gravitating cloud of particles, assuming they have zero net angular momentum

and have had su�cient time to come to equilibrium. The orbital rotation curve cal-

culated from this model is shown to closely resemble the shape of observed galactic

rotation curves. This illustrates, in a simple way, how the existence of a dark matter

halo can explain the flat rotation curves of galaxies.

A.1 Newton’s Laws and the Equation of State

Consider a dark matter halo in hydrostatic and thermal equilibrium which is com-

posed of massive particles with mass, m, and temperature, T . In the limit where

Newtonian gravity applies, the relation between the mass density, ⇢, and the gravi-

tational potential, �, is:

!2� = �4⇡G⇢ (A.1)
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If the halo is assumed to have spherical symmetry, both the mass density and gravi-

tational potential will be functions of only the radial coordinate, r:

1

r2
d

dr

�
r2
d�

dr

 
= �4⇡G⇢ (A.2)

In hydrostatic equilibrium, the sum of the pressure force and gravitational force den-

sities must be zero everywhere:

�!p� ⇢!� = 0 (A.3)

where p is the local pressure.

In order to find the equilibrium density profile of the halo, we require an equation

of state which relates the local pressure to the local mass density. The simplest

assumption is the equation of state of an ideal gas:

p = nkT =
⇢

m
kT = ⇢

2

3
v2T (A.4)

where n is the particle number density, k is Boltzmann’s constant, and vT is the RMS

thermal particle velocity. We may substitute the equation of state into equation A.3

to find a relation between the mass density and the gravitational potential:

� 2

3
v2T!⇢� ⇢!� = 0

!
�
2

3
v2T ln ⇢+ �

 
= 0

2

3
v2T ln ⇢+ � = C (A.5)

where C is a constant of integration.
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A.2 A Di↵erential Equation for the Density Pro-

file

The relation between � and ⇢ in equation A.5 may be substituted into equation A.2

to derive a di↵erential equation for ⇢:

2

3
v2T

1

r2
d

dr

�
r2

d

dr
ln ⇢

 
= �4⇡G⇢ (A.6)

Equation A.6 may be made dimensionless by choosing a characteristic density, ⇢
0

,

and a characteristic length, r
0

:

1

⇠2
d

d⇠

�
⇠2

d

d⇠
ln �

 
= �� (A.7)

r
0

⌃

�
2

3

v2T
4⇡G⇢

0

⇠ ⌃ r

r
0

� ⌃ ⇢

⇢
0

(A.8)

This equation for the density profile of a spherically symmetric isothermal halo of gas

in hydrostatic equilibrium is known as the Isothermal Lane Emden equation, and was

initially studied as an early model for stellar interiors.[68, 69, 70]

A.3 A Simple Solution

A simple solution to equation A.7 is:

� =
2

⇠2
(A.9)

or

⇢ =
2⇢

0

r2
0

r2
=

2

3

v2T
4⇡G⇢

0

2⇢
0

r2
=

v2T
3⇡Gr2

(A.10)
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This solution has the unphysical aspect of a divergent halo mass density at r = 0.

However, note that the total mass enclosed within a radius, r, is still finite:

M(r) =

⌫ r

0

⇢(r0)4⇡r02dr0 =

⌫ R

0

v2T
3⇡Gr02

4⇡r02dr =
4v2TR

3G
(A.11)

The velocity of a body in a circular orbit about the center of the halo at distance, R,

from the center is:

v(r) =

⌧
GM(r)

r
=

⌧
4

3
v2T =

2 
3
vT (A.12)

which is independent of the orbital radius. This matches the observed behavior of

stars and gas in galaxies at large orbital radii. However, the orbital velocities of stars

are observed to approach zero as their distances from the galactic center approach

zero. In order to better model this behavior, we must more accurately treat the halo

density at the point r = 0.

A.4 A Solution with Realistic Boundary Condi-

tions

Let us assume that the halo mass density is both finite and smooth at r = 0. Let ⇢
0

represent the mass density at r = 0. The corresponding boundary conditions on �(⇠)

at ⇠ = 0 are:

�(0) = 1

�0(0) = 0 (A.13)

Because equation A.7 is a second order di↵erential equation, these two boundary

conditions uniquely determine its solution. The solution, computed numerically, is

plotted in Figure A.1.

The total mass enclosed within radius, r, may be found by integration of �(⇠):

M(r) =

⌫ r

0

⇢(r0)4⇡r02dr0 = ⇢
0

r3
0

⌫ r/r0

0

�(⇠)4⇡⇠2d⇠ (A.14)
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Figure A.1: Dimensionless halo mass density, �, vs. dimensionless radius, ⇠.

We may define a characteristic mass scale:

m
0

⌃ ⇢
0

r3
0

(A.15)

Let us define the dimensionless cumulative mass function, µ(⇠), to be:

µ(⇠) ⌃ M(⇠r
0

)

m
0

=

⌫ ⇠

0

�(⇠0)4⇡⇠02d⇠0 (A.16)

which is determined by the dimensionless density profile, �(⇠), alone. The dimension-

less cumulative mass function is plotted in Figure A.2.

The velocity of a body in circular orbit about the center of the halo at a dimen-

sionless distance, ⇠, from the center is:

v(⇠) =

�
GM(⇠r

0

)

⇠r
0

=

�
G⇢

0

r3
0

µ(⇠)

⇠r
0

=

�
v2T
6⇡

µ(⇠)

⇠
(A.17)



APPENDIX A. AN ISOTHERMAL CLOUD 86

10 20 30 40 50
⇥

200

400

600

800

1000

1200

��⇥⇥

Figure A.2: Dimensionless cumulative mass, µ, vs. dimensionless radius, ⇠. The
dashed line represents µ = 8⇡⇠.

Based on the solution from §A.3, we may define a characteristic velocity scale:

v
0

⌃ 2 
3
vT (A.18)

Let us define the dimensionless orbital velocity, u(⇠), to be:

u(⇠) ⌃ v(⇠)

v
0

=
v(⇠)�

4

3

v2T

=

�
µ(⇠)

8⇡⇠
(A.19)

The dimensionless orbital velocity, u(⇠), depends only on the dimensionless cumula-

tive mass function, µ(⇠), and is plotted in Figure A.3. As can be seen in Figure A.3,

u(⇠) approaches a value of 1 as the orbital radius approaches infinity.



APPENDIX A. AN ISOTHERMAL CLOUD 87

0 10 20 30 40 50
�

0.2

0.4

0.6

0.8

1.0

1.2
u��⇥

Figure A.3: Dimensionless rotation curve.

A.5 Comparison to Observation

Figure A.4 shows the comparison between the observed rotation curves of 31 galaxies,

using data from reference [71], and the theoretical rotation curve of a spherically

symmetric halo in thermal and hydrostatic equilibrium. We see that, despite the

simplicity of our model, it still captures most of the prominent features of the galactic

rotation curves.

This calculation provides motivation for the idea that a dark matter halo is capable

of explaining the flat rotation curves observed in galaxies. Although more complex

numerical simulations have provided better estimates for the shapes of dark matter

halo density profiles, it is useful to see how the observed rotation curves can be

reproduced in a natural way from a simple model without the necessity of any ad hoc

assumptions.
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Figure A.4: Experimentally measured rotation curves from 31 galaxies (blue) scaled
to fit the theoretical curve from Figure A.3 (red) by the method of least squares.
Data from reference [71].

Figure A.5: Best fit values of orbital velocity, v
0

, and core radius, r
0

, for the 31
galaxies whose scaled rotation curves are plotted in Figure A.4.



Appendix B

WIMP Scattering Cross-Section

In this section, the scattering cross-section is found between a Weakly Interacting

Massive Particle (WIMP) and a free particle of ordinary matter, assuming the particle

of ordinary matter is initially at rest, the WIMP speed is much slower than the speed

of light, and the scattering is mediated by an electrically neutral vector boson.

B.1 Kinematics

Assume a WIMP with a mass, m�, traveling at velocity, v�, impacts a free fermionic

particle of ordinary matter of mass, mf , initially at rest. Let the momentum of the

particle of ordinary matter after the collision be denoted by q. In the non-relativistic

limit, the total initial kinetic energy, K, is:

K =
1

2
m�v

2

� (B.1)

Assuming momentum conservation, the total final kinetic energy, K 0, is:

K 0 =
q2

2mf

+
(m�v� � q)2

2m�

=
q2

2mf

+
1

2
m�v

2

� � v� · q+
q2

2m�

(B.2)
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Figure B.1: Feynmann diagram for the scattering of a WIMP (�) from a fermion (f),
through the exchange of a massive vector boson.

The di↵erence between the final and initial kinetic energies is:

K 0 �K =
q2

2µ
� v� · q (B.3)

where µ is the reduced mass of the pair of particles:

µ ⌃ 1
1

mf
+ 1

m�

(B.4)

In the case of an elastic collision, kinetic energy is conserved and K 0 = K. However,

the expression for K 0 � K as a function of q will become important later in the

calculation of the scattering cross-section.

B.2 Scattering Amplitude

Consider the case in which the WIMP, denoted by �, and the fermion, denoted by f ,

interact through the exchange of a vector boson, denoted by Bµ, which has mass mB.

(See Figure B.1.) In the case where q is much smaller than mB, the boson propagator
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can be approximated as:1

⌧Bµ(q)B⌫(�q)� = �igµ⌫

q2 �m2

B

 igµ⌫

m2

B

(B.5)

where gµ⌫ is the space-time metric. Using this approximation, the e↵ective Lagrangian

for the interaction is:2

�L =
g2

m2

B

�
f�µ(↵f + �f�

5)f
⇥ �
��µ(↵� + ���

5)�
⇥

(B.6)

where g is the coupling coe�cient for the B field and where the ↵ and � factors

represent spin-dependent coupling coe�cients.

It may safely be assumed that the incoming particles are not spin polarized. There-

fore, we are interested in the square of the matrix element, |M|2, averaged over all

initial spin states and summed over all final spin states. The result contains dot

products between all combinations of the four-momentum vectors of the interacting

particles.3 In the non-relativistic limit, we may approximate such dot products by

the product of the magnitudes of the two vectors, which are equal to mf and m� for

the fermion and WIMP, respectively. Using this approximation, the spin-averaged

squared matrix element, |M|2, is:

1

4

�

spins

|M|2 = g04

m4

B

m2

fm
2

� (B.7)

where g0 is an e↵ective coupling coe�cient which depends on the ↵ and � coe�cients.

1This approximation was first employed by Enrico Fermi in 1933 in the context of beta decay.
See reference [72], pg. 708.

2See reference [72], pg. 709.
3See, for example, reference [72], pg. 154.
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B.3 Scattering Cross-Section

The di↵erential cross-section for an interaction between two particles, A, and B, is:4

d� =
1

2EA2EB|vA � vB|

�
�

i

d3pi

(2⇡)3
1

2Ei

�

⇤|M(pA, pB ↵ {pi}|2(2⇡)4�(4)
⌃
pA + pB �

�
pi
⌥

(B.8)

where EX represents the relativistic energy of particle X, and where the set, {pi},
represents the momentum states of the final particles produced by the interaction. If

we are interested in the total cross-section, we must integrate the di↵erential cross-

section, d�, over the phase space of all final states.

For an elastic collision between a WIMP and a fermion, the total interaction

cross-section, �, is:

� =
1

16EfE�|v�|(2⇡)2
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E 0
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(B.9)

4See reference [72], pg. 106.
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Therefore, we see that the total cross-section is proportional to the square of the

reduced mass, and inversely proportional to the fourth power of the mass of the

vector boson.

B.4 Composite Particles

In the limit of low momentum transfer between a WIMP and a composite particle,

the scattered waves from each component of the composite particle will add coher-

ently. If each amplitude is identical in magnitude and phase, then the total scattering

amplitude will be directly proportional to the number of component particles, A. The

scattering probability and scattering cross-section are proportional to the square of

this scattering amplitude. Therefore, in the case of a composite particle with A

identical constituents, the scattering cross-section will grow proportionally to A2.

Two e↵ects may cause partial cancellations in the total scattering amplitude. The

first is the relative phase shifts of the constituents caused by the spatial extent of the

composite particle, which become important when the size of the composite particle

is large compared to the wavelength of the momentum transfer. This factor is called

the form factor of the composite particle, and can be thought of as a spatial Fourier

transform of the internal particle density of the composite particle.[21]

The second e↵ect occurs when the composite particle consists of constituents which

do not have identical scattering amplitudes. Such may be the case, for example, if

the scattering amplitude depends on spin. See reference [28] for a detailed overview

of spin-dependent interactions.

B.5 Bound Particles

The phase-space integrals performed in §B.3 are based on the assumption that the

fermion and WIMP were both free particles. Situations exist in which this is a poor

approximation, such as the case of electrons in a solid. See references [73] and [74]

for analyses of low-mass WIMP interactions with bound electrons.



Appendix C

Quasiballistic Di↵usion of Phonons

In this section, a first-order linear di↵erential equation is derived for the phase-space

density of phonons moving through a medium in the limit where both di↵usive and

ballistic transport e↵ects are of equal importance. This di↵erential equation can be

cast in a matrix form, and is amenable to numerical solution using standard eigenval-

ue/eigenvector methods. The di↵erential equation for particle density is demonstrated

to reduce to the di↵usion equation in the limit where the spatial variations are much

larger than the mean scattering length and the temporal variations are much longer

than the mean scattering time. (See [75] for a similar approach in one dimension.)

C.1 The Ballistic Transport of Particles

Consider an isotropic and homogeneous D-dimensional medium which contains a

collection of particles, each of which obeys the following Hamiltonian:

H (q, p) = c|p| (C.1)

The equations of motion for any one of these particles will be:

ṗ = �@qH = 0

q̇ = @pH = c p̂ (C.2)
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where p̂ denotes a unit vector which points in the same direction as the vector p.

Now consider a large ensemble of these particles. The particles may each be

described by a point in a 2D-dimensional single-particle phase space. Because there

are no interactions between particles, the particles will evolve in time independently

according to the equations of motion above.

Let the continuous function f(q, p) describe the density of these points in phase

space in the limit where the number of particles is very large, such that the number

of particles in a given volume element is very close to f(q, p)dDqdDp.

The flow of points in phase space may be described by a vector field, v, defined

such that its first D components are equal to q̇, and its second D components are

equal to ṗ. The current density, j, of points in phase space is given by:

j(q, p) = f(q, p)v(q, p) (C.3)

If it is assumed that the number of particles is locally conserved, the rate of change

of f must be equal to minus the divergence of the current density:

@tf = �! · j = �v ·!f � f ! · v

From this, it follows that the convective derivative of f is directly proportional to the

divergence of v:

Dtf ⌃ @tf + v ·!f = �f! · v (C.4)

However, Liouville’s Theorem states that ! · v = 0:

! · v = @q · q̇ + @p · ṗ = @q · @pH � @p · @qH = 0 (C.5)

Therefore, in the case of ballistic transport, the convective derivative of f is zero, and

it will obey the following linear, first-order di↵erential equation:

ḟ(q, p) = �v ·!f(q, p) = �c p̂ · @qf(q, p) (C.6)

Note that because the Hamiltonian is time-independent, it will be a conserved
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quantity in the motion of any one particle, which implies that for each particle the

vector, p, has a constant magnitude.

C.2 Elastic Scattering

In the process of elastic scattering, let it be assumed that a particle will change only

the direction of its momentum vector, p. The magnitude of its momentum, |p|, and
the position, q, will both remain unchanged. Let the time, ⌧ , represent the average

time between scattering events, which are assumed to occur for each particle in a

Poisson process.

Because the magnitude of p is unchanged either by elastic scattering or by ballistic

transport, and because the velocity of a particle, q̇, depends only on the direction of p,

and not on its magnitude, then, without loss of generality, the behavior of a collection

of particles undergoing elastic scattering and ballistic transport may be described by

a density function which is independent of the magnitude of p.

Let this new density operator, �(q, p̂), be defined in the following way:

�(q, p̂) ⌃
⌫ 1

0

d|p| |p|D f(q, |p| p̂) (C.7)

According to this density operator, the number of particles, N , in a small volume,

dDq, around point q, traveling in a group of directions within a certain solid angle,

d⌦, around the direction p̂, is: N = dDq d⌦ �(q, p̂).

Consider a region dDq centered around point q. The number of particles in this

region is:

N = dDq

⌫
d⌦ �(q, p̂) (C.8)

The total rate of scattering, r
s

, occurring in this region is:

r
s

=
N

⌧
(C.9)

Now consider a single bin of solid angle, d⌦. The number of particles contained in
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this bin is:

M = dDq d⌦ �(q, p̂) (C.10)

Let the scattering process be assumed to be isotropic, such that a particle scatters

from any direction, to any direction, with equal probability. The average rate at

which particles are lost, r
loss

, from the small bin is:

r
loss

=
M

⌧
(C.11)

The average rate at which particles are gained in this bin is:

r
gain

=
d⌦

SD�1

r
s

=
d⌦

SD�1

N

⌧
(C.12)

where Sn denotes the surface area of a unit n-sphere. Combining these two equations,

we have the relations:

Ṁ = �r
loss

+ r
gain

= �M

⌧
+

d⌦

SD�1

N

⌧

dDq d⌦ �̇(q, p̂) = �1

⌧
dDq d⌦ �(q, p̂) +

d⌦

SD�1

1

⌧
dDq

⌫
d⌦ �(q, p̂)

�̇(q, p̂) = �1

⌧
�(q, p̂) +

1

⌧

⌫
d⌦

SD�1

�(q, p̂)

�̇(q, p̂) = �1

⌧

�
�(q, p̂)� �(q)

⇥
(C.13)

where �(q) is defined to be the average of �(q, p̂) over all directions:

�(q) ⌃
⌫

d⌦

SD�1

�(q, p̂) (C.14)

C.3 Time Evolution

The time evolution of the density function, �(q, p̂), including both elastic scattering

and ballistic transport is:

�̇(q, p̂) = �c p̂ · @q�(q, p̂)�
1

⌧

�
�(q, p̂)� �(q)

⇥
(C.15)
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This equation has the form:

�̇(t) = H�(t) (C.16)

where H is a linear operator acting on the function �. This is a linear, first-order

di↵erential equation for �, which has the formal solution:

�(t) = eHt�(0) (C.17)

This equation may be solved numerically by dividing the position and angular

spaces intoNs andN
⌦

bins, respectively, and by replacing the integrals and derivatives

by their numerical approximations. The operator, H, then becomes an N⇤N matrix,

where N = NsN⌦

.

Alternatively, the angular component of � may be transformed into the basis of

spherical harmonics, with only the N
⌦

lowest angular frequencies kept as an approx-

imation. In this case, the term c p̂ · @q�(q, p̂) introduces a mixing between di↵erent

spherical harmonics.

C.4 The Di↵usion Equation

Let �(q, p̂) be written as the sum of two terms:

�(q, p̂) = �(q) + �(q, p̂) (C.18)

where � necessarily has the property that its average over all directions, p̂, is zero.

The equation for time evolution may be rewritten as:

�̇+ �̇ = �c p̂ · @q�� c p̂ · @q��
1

⌧
� (C.19)

This equation may be averaged over all directions, p̂, to arrive at the rate of change

of � alone:

�̇ = ⌧�c p̂ · @q�� (C.20)
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where the brackets, ⌧.�, represent an average over all p̂ directions. Equation C.20 may

be substituted into equation C.19 to arrive at the rate of change of �:

�̇ = �c p̂ · @q�� c p̂ · @q�+ c ⌧p̂ · @q�� �
1

⌧
� (C.21)

Define the scattering length, �, to be:

� ⌃ c ⌧ (C.22)

In terms of � and ⌧ , we arrive at the equation:

(�+ ⌧ �̇+ � p̂ · @q�� � ⌧p̂ · @q��) = �� p̂ · @q� (C.23)

If the temporal variation in � is much longer than the scattering time, ⌧ , and if the

spatial variation in � is much longer than the scattering length, �, then equation C.23

may be approximated as:

�  �� p̂ · @q� (C.24)

The result of equation C.24 may be substituted back into equation C.20 to arrive at

an approximate time evolution equation for �:

�̇  c� ⌧p̂ · @q p̂ · @q�� = c� @q · ⌧P � · @q � (C.25)

where P is the projection operator onto the direction p̂. It is simple to show that the

average of the projection operator over all directions of p̂ is:

⌧P � = 1

D
(C.26)

where D is the number of dimensions. Therefore, the approximate time evolution of

� is:

�̇  c�

D
@2q� (C.27)

Here we see that the di↵usion equation is recovered in the limit where the spatial and

temporal variations in � are much larger than � and ⌧ , respectively.



Appendix D

Di↵usion in a Lossy Medium

In this section, the process of di↵usion and absorption of particles is investigated in

the case where the particles have a finite lifetime, ⌧ . The total number of particles

absorbed by a set of perfectly absorbing bodies in N dimensions due to a point source

is calculated. The case of one or two imperfectly absorbing bodies is treated in one

dimension, and a formula is derived for the fraction of particles absorbed by each

absorber as a function of the position of the source. The case of imperfectly absorbing

bodies is treated in two dimensions for the cylindrically symmetric case.

D.1 The Di↵usion Equation

Consider an infinite isotropic and homogeneous medium in which particles di↵use

with di↵usion coe�cient, D. Let it furthermore be assumed that the particles have

a finite lifetime, ⌧ . The number density of particles, n, will obey the di↵erential

equation:

ṅ = D!2n� n

⌧
+ s (D.1)

where s represents a source of particles. The average current density of particles, J ,

is proportional to the gradient in the number density:

J = �D!n (D.2)

100
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The total flux of particles, �, leaving a closed surface, S, is given by the surface

integral of J over the surface:

� =

⌘

S
dA · J (D.3)

Assume that the medium contains absorbing bodies of arbitrary shape. Each absorber

obeys the boundary condition:

dA · J = �DdA ·!n = �|dA|n� (D.4)

where � is the absorption coe�cient, which has units of velocity. In terms of D and

�, a characteristic absorption length, l
a

, may be defined for each absorber:

l
a

⌃ D

�
(D.5)

D.2 The Integrated Absorption

Assume that the source of particles, s, is only non-zero for a finite time and only

over a finite volume of space. This source will create a total quantity of particles,

q, which will di↵use through the medium. Some quantity, Qi, will be absorbed on

the ith absorber. This quantity is the integral over all time of the flux through the

surface of that absorber:

Qi =

⌫ 1

�1
dt�i =

⌫ 1

�1
dt

⌘

Si

dA · J (D.6)

Note that this quantity will be negative, as it represents absorption rather than

emission of particles. Let the scalar field, �, be defined to be:

�(x) ⌃
⌫ 1

�1
dt n(x, t) (D.7)

and let the vector field, E, be defined to be:

E ⌃ �!� (D.8)
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In terms of these, the quantity of particles absorbed by the ith absorber is:

Qi

D
=

⌘

Si

dA · E (D.9)

Therefore, Qi, depends only on the scalar field �, and not on the detailed time-

dependance of n. Using the method described in reference [76], an equation for �

may be found by integrating equation D.1 with respect to time:

⌫ 1

�1
dt ṅ = 0 = D!2

⌫ 1

�1
dt n� 1

⌧

⌫ 1

�1
dt n+

⌫ 1

�1
dt s

0 = D!2�� �

⌧
+ ⇢ (D.10)

where the left-hand side vanishes because n(x,��) = n(x,�) = 0, and the source

density, ⇢, is defined to be:

⇢(x) ⌃
⌫ 1

�1
dt s(x, t) (D.11)

The equation relating � and ⇢ is:

�
!2 � 1

l2
d

 
� = � ⇢

D
(D.12)

where the characteristic di↵usion length, l
d

, is defined to be:

l
d

⌃
 
D⌧ (D.13)

Equation I.37 may also be written as:

Ô� = � ⇢

D
(D.14)

where the operator, Ô, is:

Ô ⌃
�
!2 � 1

l2
d

 
(D.15)
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D.3 A Point Source in the Presence of Perfect Ab-

sorbers

Consider the case where all absorbing bodies are perfect absorbers. In this case,

� =� and l
a

= 0. The boundary condition at an absorbing surface is:

n = �l
a

dA
|dA| ·!n = 0 (D.16)

which implies that � = 0 on the boundaries of all absorbing bodies.

Let the particle source have the form:

s(x, t) = q �N(x� r)�(t) (D.17)

where N is the number of dimensions. The density due to this source is:

⇢(x) = q �N(x� r) (D.18)

To find the total absorption on the ith absorber due to this source, one must solve

equation I.37 for �, and then perform the integral in equation D.9.

This calculation may be simplified by means of a technique similar to that used

in the proof of the Shockley–Ramo theorem. Consider two configurations, Ô�(1) =

�⇢(1)/D, and Ô�(2) = �⇢(2)/D. Due to the symmetry of the operator Ô, a reciprocity

relation holds between the two configurations:

⌫
dV �(1)⇢(2) = �D

⌫
dV �(1)

�
!2 � 1

l2
d

 
�(2)

= �D
⌫

dV �(2)

�
!2 � 1

l2
d

 
�(1)

=

⌫
dV �(2)⇢(1) (D.19)

which can be proved by means of integration by parts.

Consider two configurations like those shown in Figure D.1. Configuration (1) is

that which we wish to solve, i.e. a point source of magnitude q in the presence of
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Figure D.1: Two configurations of � and ⇢. On the left, a point source of particles,
q, is located at position, r. The field �(1) is zero on the surfaces of all absorbers. On
the right, there is no source at position, r, but the field, �(2), at location r is non-zero
due to the modified boundary condition of absorber 2.

perfect absorbers having the boundary condition � = 0. In the second configuration,

there is no point source, and the ith absorber is given a boundary condition of � = 1,

while the rest have the boundary condition � = 0.

In configuration (2), the volume surrounding the absorbers will be filled with the

field �(2), generated by the ith absorber, which satisfies the equation Ô� = 0 in the

volume between absorbers. In general, let �i denote the field generated where ⇢ = 0

and where � = 0 on the boundaries of the absorbers, except for the ith absorber, for

which the boundary condition is � = 1.

Using equation I.38, we may calculate the quantity, Qi, of particles absorbed onto

the ith absorber. The integrals of equation I.38 are:

⌫
dV �(1)⇢(2) = 0 =

⌫
dV �(2)⇢(1) = q �(2)(r) +Qi (D.20)

Therefore, the quantity of particles absorbed by the ith absorber may be determined

by the product of the source magnitude, q, and the ith absorber field:

Qi = �q �i(r) (D.21)
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D.4 A Point Source in One Dimension

Consider a finite region of space in one dimension of width w, with particle absorbers

located at �w/2 and +w/2. Let the particle source have the form:

s = q �(x� r)�(t) (D.22)

The corresponding density, ⇢, is:

⇢(x) = q �(x� r) (D.23)

The field, �, will obey the equation:

�
@2x �

1

l2
d

 
� = 0 (D.24)

in the regions �w/2 < x < r, and r < x < w/2. A general solution to this equation

has the form:

� = C
1

ex/ld + C
2

e�x/ld (D.25)

Define two fields, �L and �R, each of which solves equation D.24 in the left and

right regions respectively:

�L(x) = L
1

ex/ld + L
2

e�x/ld (D.26)

�R(x) = R
1

ex/ld +R
2

e�x/ld (D.27)

The full field, �, is:

�(x) = ⇥(x� r)�R(x) +⇥(r � x)�L(x) (D.28)

where ⇥ is the Heaviside step function. The first derivative of � is:

�0(x) = �(x� r)�R(r) +⇥(x� r)�0
R(x)

��(x� r)�L(r) +⇥(r � x)�0
L(x) (D.29)
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The second derivative of � is:

�00(x) = �0(x� r)�R(r) + �(x� r)�0
R(r) +⇥(x� r)�00

R(x)

��0(x� r)�L(r)� �(x� r)�0
L(r) +⇥(r � x)�00

L(x) (D.30)

Rearranging equation D.30 results in:

�00(x)� 1

l2
d

�(x) = �0(x� r) (�R(r)� �L(r))

+�(x� r) (�0
R(r)� �0

L(r))

= � q

D
�(x� r) (D.31)

Therefore, at x = r, we have the conditions:

�R(r)� �L(r) = 0

�0
R(r)� �0

L(r) = � q

D
(D.32)

We must also impose the following boundary conditions at the locations of the ab-

sorbers:

�L(�w/2) = l
al

�0
L(�w/2)

�R(w/2) = �l
ar

�0
R(w/2) (D.33)

where l
al

and l
ar

are the left and right absorption lengths respectively. The condi-

tions in equations D.32 and D.33 provide four constraints from which the the four

unknowns, L
1

, L
2

, R
1

, and R
2

, may be determined.

Based on this solution, the quantities of particles absorbed by the left and right

absorbers, QL and QR, are:

QL = �D�0(�w/2) = �qFL

QR = D�0(w/2) = �qFR (D.34)

where FL(⇠) and FR(⇠) represent the fractional absorption into the left and right
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absorbers, respectively, as functions of position:

FL(⇠) =
�
d

⌃
�
ar

cosh
⌃

1�2⇠
2�d

⌥
+ �

d

sinh
⌃

1�2⇠
2�d

⌥⌥

�
d

(�
al

+ �
ar

) cosh
⌃

1

�d

⌥
+ (�2

d

+ �
al

�
ar

) sinh
⌃

1

�d

⌥

FR(⇠) =
�
d

⌃
�
al

cosh
⌃

1+2⇠
2�d

⌥
+ �

d

sinh
⌃

1+2⇠
2�d

⌥⌥

�
d

(�
al

+ �
ar

) cosh
⌃

1

�d

⌥
+ (�2

d

+ �
al

�
ar

) sinh
⌃

1

�d

⌥ (D.35)

and the dimensionless variables, ⇠, �
d

, �
al

, and �
ar

, are defined to be:

⇠ ⌃ r/w

�
d

⌃ l
d

/w

�
al

⌃ l
al

/w

�
ar

⌃ l
ar

/w (D.36)

D.5 Mean Collection Fraction in One Dimension

Consider the case in which energy is deposited in the di↵usive medium with a uniform

distribution. The mean fractional energy collection may be found by averaging the

collection fraction functions over all positions, ⇠. The results are:

FL =

⌫
1/2

�1/2

FL(⇠)d⇠ =
�2
d

⌃
�
ar

+ �
d

tanh
⌃

1

2�d

⌥⌥
sinh

⌃
1

�d

⌥

�
d

(�
al

+ �
ar

) cosh
⌃

1

�d

⌥
+ (�2

d

+ �
al

�
ar

) sinh
⌃

1

�d

⌥

FR =

⌫
1/2

�1/2

FR(⇠)d⇠ =
�2
d

⌃
�
al

+ �
d

tanh
⌃

1

2�d

⌥⌥
sinh

⌃
1

�d

⌥

�
d

(�
al

+ �
ar

) cosh
⌃

1

�d

⌥
+ (�2

d

+ �
al

�
ar

) sinh
⌃

1

�d

⌥(D.37)

In the special case where one boundary is perfectly reflecting, the absorption

length for that side is infinite. Therefore, the mean one-sided absorption fraction, F ,

for a di↵usive medium with an absorption length of �
a

may be found by taking the



APPENDIX D. DIFFUSION IN A LOSSY MEDIUM 108

limit of FL as �
ar

approaches infinity, evaluated at the point �
al

= �
a

:

F = lim
�ar!1

FL

⇧⇧⇧⇧
�al=�a

=
�2
d

sinh
⌃

1

�d

⌥

�
a

sinh
⌃

1

�d

⌥
+ �

d

cosh
⌃

1

�d

⌥ =
�2
d

�
a

+ �
d

coth
⌃

1

�d

⌥ (D.38)

D.6 Mean Collection Fraction in an Annulus

Consider a di↵usive medium shaped like an annulus, with inner radius, r
1

, and outer

radius, r
2

, and with an absorbing boundary on the inner circumference and a reflecting

boundary on the outer circumference, as shown in Figure D.2.

Figure D.2: A di↵usive medium shaped like an annulus, with inner radius, r
1

, and
outer radius, r

2

, and with a homogeneous source of particles distributed throughout
the medium, creating a steady-state two-dimensional current density of particles, J .

Assume that a homogeneous particle source fills the entire di↵usive medium. In

this case, the geometry and particle source both have cylindrical symmetry. Conse-

quently, the field, � will also have cylindrical symmetry, and will satisfy the equation:

!2�� �

l2
d

= � �
D

(D.39)



APPENDIX D. DIFFUSION IN A LOSSY MEDIUM 109

where the two-dimensional source density, �, is:

� =
Q

⇡(r2
2

� r2
1

)
(D.40)

where Q is the total number of particles. In cylindrical coordinates, the 2D Laplace

operator is:

!2f =
1

r

@

@r

�
r
@f

@r

 
+

1

r2
@2f

@✓2
(D.41)

Due to the cylindrical symmetry, we may assume that � is constant with respect to

the azimuthal angle, ✓. Therefore, equation D.39 may be written as:

@2�

@r2
+

1

r

@�

@r
� �

l2
d

= � �
D

(D.42)

which can be rearranged in the following way:

r2
@2�

@r2
+ r

@�

@r
� r2

�� � l2
d

/D

l2
d

= 0 (D.43)

A general solution to this equation has the form:

�(r) =
� l2

d

D
+ C

1

I
0

�
r

l
d

 
+ C

2

K
0

�
r

l
d

 
(D.44)

where C
1

and C
2

are undetermined constants, and I
0

and K
0

are modified Bessel

functions of the first and second kind, respectively. The constants, C
1

and C
2

, are

fixed by the two boundary conditions:

�0(r
2

) = 0

l
a

�0(r
1

) = �(r
1

) (D.45)



APPENDIX D. DIFFUSION IN A LOSSY MEDIUM 110

where l
a

is the absorption length of the absorbing boundary on the inner circumfer-

ence. Solving for C
1

and C
2

, we get:

C
1

= � l2
d

�

D

K
1

(⇢
2

)

I
1

(⇢
2

) (K
0

(⇢
1

) + �
a

K
1

(⇢
1

)) +K
1

(⇢
2

) (I
0

(⇢
1

)� �
a

I
1

(⇢
1

))

C
2

= � l2
d

�

D

I
1

(⇢
2

)

I
1

(⇢
2

) (K
0

(⇢
1

) + �
a

K
1

(⇢
1

)) +K
1

(⇢
2

) (I
0

(⇢
1

)� �
a

I
1

(⇢
1

))
(D.46)

where the dimensionless quantities, ⇢
1

, ⇢
2

, and �
a

, are defined to be:

⇢
1

⌃ r
1

/l
d

⇢
2

⌃ r
2

/l
d

�
a

⌃ l
a

/l
d

(D.47)

The quantity of particles absorbed on the inner boundary is:

Q
a

= 2⇡r
1

D�0(r
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The fraction of particles absorbed is:
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Q
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Finally, note that the di↵usion current, J , has only a radial component. Therefore,

we may take a wedge-shaped slice out of the annulus, as shown in Figure D.2, and

the new edges formed by the cut will obey the boundary condition of a perfectly

reflecting boundary. Therefore, the collection fraction for a wedge-shaped slice of an

annulus is also given by equation D.49.
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D.7 Comparison of 1D and 2D Solutions

In order to compare the collection fraction in equation D.49 to that in equation D.38,

we may use the following asymptotic forms of the Bessel functions:

I↵(z)  ez 
2⇡z

K↵(z)  
⌧

⇡

2z
e�z (D.50)

Applying these substitutions to equation D.49, we get:

F  2⇢
1
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2

� ⇢2
1

sinh (⇢
2

� ⇢
1

)

�a sinh (⇢2 � ⇢1) + �d cosh (⇢2 � ⇢1)
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for r
2

> r
1

⌦ l
d

. In the limit where r
2

= r
1

+ w and r
1

↵�, the wedge approaches

a rectangular shape with width w. In this limit, F becomes:

F  
�
ld
w

⇥
2

�
la
w

⇥
+
�
ld
w

⇥
coth

⌃
w
ld

⌥ (D.52)

which is equivalent to equation D.38, as would be expected.



Appendix E

Linear TES Response

In this section, the linear response of a transition-edge sensor to a small perturbation

is found. From this result, a relation is derived between the total energy deposited in

the transition-edge sensor and the integrated deviation in the electrical power from its

steady-state value.

E.1 The Electro-Thermal Feedback of a Transition-

Edge Sensor

A transition-edge sensor consists of a thin film of conducting material which transi-

tions to a superconducting phase below a critical temperature, Tc. The conducting

film rests upon on a non-conducting substrate at a temperature Ts. Because the

electron system in the conductive film is only weakly coupled to the phonon system

within the insulating substrate, it may be assumed that at any point in time the

electron system in the film is in thermal equilibrium at a uniform temperature, T ,

even though T may di↵er from Ts.

If T is greater than Ts, the conducting film will loose energy to the substrate.

According to reference [77], the rate of energy loss is:

P
loss

= K(T n � T n
s ) (E.1)

112



APPENDIX E. LINEAR TES RESPONSE 113

In a typical implementation of a transition-edge sensor, a voltage source with

voltage, V , and output resistance, Ro, is connected across the conducting film. The

electrical power dissipated in the film is:

P
diss

=

�
V

R +Ro

 
2

R (E.2)

where R is the resistance of the film. The derivative of the dissipated power with

respect to resistance is:

dP
diss

dR
=

V 2

(R +Ro)2
� 2

V 2

(R +Ro)3
R =

P
diss

R

�
1� 2

R

R +Ro

 
= �⇢Pdiss

R
(E.3)

where the dimensionless quantity, ⇢, is defined to be:

⇢ ⌃ R�Ro

R +Ro

=
1� r

1 + r
(E.4)

and where the dimensionless quantity, r, is defined to be:

r ⌃ Ro

R
(E.5)

Near the critical temperature the resistance varies rapidly with small changes in tem-

perature. If the temperature of the substrate is lower than the critical temperature,

and if R > Ro, electro-thermal feedback will maintain the film at a constant temper-

ature close to Tc, as any increase in T will cause an increase in R, and a decrease in

Pdiss, while a decrease in T will cause the opposite e↵ect.

E.2 The Resistance vs. Temperature

In general, the resistance of the conducting film will be a function of both its tem-

perature, and the current, I, passing through it:

R = R(T, I) (E.6)
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Define the dimensionless quantities, ↵ and �, to be the following partial derivatives:

↵ ⌃ @ lnR

@ lnT

� ⌃ @ lnR

@ ln I
(E.7)

In the biased state, the following relation holds between the current and the resistance:

I =
V

R +Ro

dI = � V

(R +Ro)2
dR

d ln I = �� d lnR (E.8)

where the dimensionless quantity, �, is defined to be:

� ⌃ R

R +Ro

=
1

1 + r
(E.9)

This constraint leads to the following relation between the total di↵erentials of lnR

and lnT :

d lnR = ↵ d lnT + � d ln I

= ↵ d lnT � �� d lnR

(1 + ��) d lnR = ↵ d lnT (E.10)

Let the dimensionless quantity, �, be defined to be following total derivative:

� ⌃ d lnR

d lnT
(E.11)

Gamma may be expressed in terms of ↵ and � as follows:

� =
d lnR

d lnT
=

↵

1 + ��
=

↵(1 + r)

1 + r + �
(E.12)
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E.3 The Dynamics of a Transition-Edge Sensor

The film will reach a steady-state at a temperature where P
diss

= P
loss

. Define T
0

to be the temperature at which this equality holds, and define P
0

to be equal the

steady-state power loss or dissipation:

P
0

⌃ P
loss

= P
diss

(E.13)

The response of the film to the addition of a small quantity of energy may be

approximated by taking the first-order Taylor expansion of the power loss and dis-

sipation functions at the temperature T
0

. Let the symbol � denote the change in a

quantity from its steady-state value. The first-order change in P
loss

is:

�P
loss

= nKT n�1

0

�T = G�T (E.14)

where G, defined by:

G ⌃ nKT n�1

0

(E.15)

is the coe�cient of thermal conduction. The first-order change in P
diss

is:

�P
diss

= �⇢P
0

�R

R
= ��⇢P

0

�T

T
0

= �⇣P
0

�T

T
0

(E.16)

where the dimensionless quantity, ⇣, is defined to be:

⇣ ⌃ �⇢ =
↵(1� r)

1 + � + r
(E.17)

As long as the electron system remains in a state of quasi-equilibrium, any change

in its internal energy, U , will be accompanied by a change in its temperature:

�U = C�T (E.18)

where C is the heat capacity. The internal energy will change with time according to
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the equation:

�U̇ = �P
diss

� �P
loss

+ P
ext

(E.19)

where the dot denotes a time derivative, and P
ext

represents an external source of

thermal power, separate from the electrical dissipation. Equation E.19 may be used

to derive a first-order linear di↵erential equation for �T :

C�Ṫ = �
�
⇣
P
0

T
0

+G

 
�T + P

ext

�Ṫ = �G

C
(L+ 1)�T +

P
ext

C
(E.20)

where, following [1], the dimensionless quantity, L, is defined to be:

L ⌃ ⇣P
0

T
0

G
=
⇣K(T n

0

� T n
s )

nKT n
0

=
⇣

n

�
1� T n

s

T n
0

 
 ⇣

n

�
1� T n

s

T n
c

 
(E.21)

The response of the temperature to an instantaneous deposition of energy, P
ext

=

E �(t), is a decaying exponential:

�T =
E

C
e�t/⌧⇥(t) (E.22)

where ⇥(t) is the Heaviside step-function, and the time constant, ⌧ , is given by:

⌧ =
C

G

1

L+ 1
(E.23)

E.4 The Loss of Deposited Energy to the Sub-

strate

For the duration of time that the conducting film is recovering from a small perturba-

tion, its temperature deviates above the steady-state value. This necessarily implies

that a certain quantity of energy, Es, is lost to the substrate over and above that

amount which would have been lost had the film remained in its steady state. This
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quantity of energy may be calculated by integrating the deviation in the power loss,

�P
loss

, with respect to time:

Es =

⌫ 1

�1
dt �P

loss

=

⌫ 1

�1
dt G�T

=

⌫ 1

�1
dt G

E

C
e�t/⌧⇥(t)

=
G

C
⌧E

=
1

L+ 1
E (E.24)

E.5 The Integrated Electrical Power

While the conducting film is recovering from a small perturbation, the electric power

dissipated by it is less than its steady-state value. The integral of this deficiency in

power is easily measurable by electrical means, and may be used to define a quantity

which may be called the integrated energy, E
int

:

E
int

⌃ �
⌫ 1

�1
dt �P

diss

(E.25)

This transfer of energy, along with the others, causes the internal energy of the film

to change with time. However, once the conducting film returns again to a steady-

state, its internal energy must return to the same value as before the perturbation.

Consequently, the integral of the rate of change of the internal energy must be zero.

Using this fact, and equation E.19, a relation may be derived between E
int

and the

total deposited energy, E :

⌫ 1

�1
dt �U̇ = 0 =

⌫ 1

�1
dt (�P

diss

� �P
loss

+ �P
ext

) (E.26)

E
int

⌃ �
⌫ 1

�1
dt �P

diss

=

⌫ 1

�1
dt (��P

loss

+ �P
ext

) = �Es + E (E.27)
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Using the result of the previous section, we may conclude that the integrated deviation

in electrical power is directly proportional to the deposited energy, with a constant

of proportionality given by:

E
int

=
L

L+ 1
E (E.28)



Appendix F

Electron-Phonon Interactions

In this section, the di↵erential rate of phonon emission and absorption by electrons in

a semiconductor is derived in the continuum limit. The speed of sound and the electron

mass are both allowed to be anisotropic. The di↵erential emission and absorption rates

are integrated to find the total emission and absorption rates in the case of an isotropic

medium.

F.1 Generalized Vectors

In order to formulate Lagrangian mechanics in a way which may be applied simul-

taneously to both charge carriers and crystal vibrations in a uniform medium, it is

useful to first summarize the common algebraic properties shared by the fields used

to model these physical systems. Complex numbers, tensors, and functions of contin-

uous variables can all be shown to satisfy the axioms of linear algebra over the field

of real numbers. For this reason, these sets may each be treated as vector spaces.

Each contains a generalized inner product, a ⌅ b, defined in the table below:

Complex Numbers: a ⌅ b ⌃ ⇣ [a⇤b]
Geometric Vectors: a ⌅ b ⌃ a · b
Tensors: a ⌅ b ⌃ Tr[a b] = aijbji
Functions: a ⌅ b ⌃


dNx a(x) b(x)

The inner product of two complex, vector, or tensor functions is defined to be the

119
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integral of the inner product of the two functions at each point.

Vectors may be written as the sum of scalar components, ai, multiplied by basis

elements, �i, using Einstein notation: a = ai �i. (In the case of functions, this sum is

an integral over a continuous index.) The metric is a matrix defined by: gij ⌃ �i ⌅�j.
The matrix, gij, is defined to be the matrix inverse of gij, and the reciprocal basis

is defined to be �i ⌃ gij �j, such that, �i ⌅ �j = �ij, and the scalar components,

ai = gij aj, are defined such that a = ai �i. The derivative with respect to a vector,

a, is defined to be:

@a ⌃ �i @

@ai
(F.1)

and has the property that:

@a a ⌅ b = b (F.2)

or in index notation:

@ai a
j bj = bi (F.3)

For geometric vectors, the vector derivative is simply the gradient operator. For

functions, the vector derivative is the functional derivative.

See reference [78] for a more detailed description of the properties of vector deriva-

tives.

F.2 Euler-Lagrange Equations

The classical configuration of a system may be represented by a generalized vector, q.

The Lagrangian, L (q, q̇), is a real, scalar function of the two vectors, q and q̇. The

action, S, is defined as:

S =

⌫
dt L (q, q̇) (F.4)
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The first-order variation in the action, �S, with respect to a variation in the path,

�q(t), is:

�S =

⌫
dt (�q ⌅ @qL + �q̇ ⌅ @q̇L )

=

⌫
dt �q ⌅ (@qL � dt @q̇L ) (F.5)

where the usual trick of integration by parts has been employed. The conjugate

momentum is defined by:

p ⌃ @q̇L (F.6)

From the requirement that the action be extremized, or �S = 0 for all �q, we arrive

at the Euler-Lagrange equation:

ṗ = @qL (F.7)

The Hamiltonian, H , may be derived from the Lagrangian by the Legandre trans-

formation with respect to q̇:

H = p ⌅ q̇ �L (F.8)

F.3 Linear Operators

Linear operators may be defined as linear functions which map vectors to vectors in

the generalized vector space of functions. For example, take a linear operator, O, to

be the Laplacian operator, !2. We may represent the action of this operator on some

scalar field, a(x), in the following way:

O ⌅ a ⌃ !2 a(x) (F.9)

We may take the generalized inner product of the result with the scalar field b(x):

b ⌅O ⌅ a =

⌫
dNx b(x)!2 a(x) (F.10)
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The transpose of the operator, O, is a linear operator defined such that:

b ⌅O ⌅ a = a ⌅O ⌅ b (F.11)

We may find this operator through integration by parts (assuming the boundary

terms may be ignored):

b ⌅O ⌅ a =

⌫
dNx b(x)!2 a(x)

= �
⌫

dNx (! b(x)) · (! a(x))

=

⌫
dNx a(x)!2 b(x)

= a ⌅O ⌅ b (F.12)

Therefore, we conclude that O is a symmetric operator: O = O.

F.4 The Schrödinger Lagrangian

As described in reference [79], the Lagrangian for a complex scalar field whose Euler-

Lagrange equation of motion is the Schrödinger equation is:

L =

⌫
d3x ⇣

⌦
i  ̇  ⇤ � 1

2m
(! )⇤ · (! )� U  ⇤  

↵
(F.13)

where U(x) is the potential, and where the units are chosen such that h̄ = 1. Using

linear operator notation, this Lagrangian may be written as:

L =  ̇ ⌅ A ⌅  �  ⌅B ⌅  (F.14)

where the operator, A, is defined as:

A ⌅  ⌃ �i (F.15)
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the operator, B, is defined as:

B ⌅  ⌃ � 1

2m
!2  + U (F.16)

and ⌅ represents the inner product over the space of functions. The two operators, A

and B, have the properties:

A = �A

B = B (F.17)

The conjugate momentum, p , is given by:

p ⌃ @
˙ L = A ⌅  (F.18)

and the Euler-Lagrange equation is:

ṗ = @ L

dt(A ⌅  ) = A ⌅  ̇ � 2B ⌅  

A ⌅  ̇ = �A ⌅  ̇ � 2B ⌅  

A ⌅  ̇ = �B ⌅  

i ̇ = � 1

2m
!2  + U (F.19)

which is the Schrödinger equation. The Hamiltonian is given by:

H = p ⌅  ̇ �L =  ̇ ⌅ A ⌅  �  ̇ ⌅ A ⌅  +  ⌅B ⌅  

=  ⌅B ⌅  =

⌫
d3x ⇣

⌦
 ⇤
�
� 1

2m
!2 + U

 
 

↵
(F.20)

However, we would like the mass to be represented by an anisotropic mass tensor.

The classical theory of a particle with an anisotropic mass is given by the Lagrangian:

L =
1

2
v ·m · v � U(x) (F.21)
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and the Euler-Lagrange equation:

p = @vL = m · v

ṗ = m · v̇ = �@xU = F

F = m · a (F.22)

We would like the center of mass of a wavepacket of our Schrödinger field to obey

this classical equation. Therefore, we may modify the Schrödinger Lagrangian in the

following way:

L =

⌫
d3x ⇣

⌦
i  ̇  ⇤ � 1

2
(! )⇤ ·m�1 · (! )� U  ⇤  

↵
(F.23)

which gives rise to the anisotropic Schrödinger equation:

i ̇ = �1

2
! ·m�1 ·!  + U (F.24)

and the anisotropic Hamiltonian:

H =

⌫
d3x ⇣

⌦
 ⇤
�
�1

2
! ·m�1 ·!+ U

 
 

↵
(F.25)

F.5 The Elastic Lagrangian

Following reference [78], we may derive the Lagrangian for an elastic body in the

limit of small distortions. It is assumed that the elastic body has some equilibrium

reference configuration, in which each point on the body may be labeled with its

vector position, x. When the body is deformed, each point, x, moves to a new

location, y(x) = x+ u(x), where u(x) is the displacement of the point, x. Therefore,

the displacement field, u(x), may be used to define the deformation of the elastic

body.

The displacement field will cause the local neighborhood of a point, x, to become

stretched and rotated. The tensor, f , representing this stretch and rotation is given
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by the derivative of the new position, y, with respect to the old position, x:

f = ý !́ = 1 + ú !́ (F.26)

where 1 is the identity operator, and where the over and underbars on the vectors

are equivalent to the column and row vectors of matrix algebra, respectively. Or,

equivalently, in index notation:

f i
j = @i yj = �ij + @i uj (F.27)

We define the h tensor to be:

h = ú !́ (F.28)

such that f = 1 + h. The local elastic potential energy density will depend on the

local stretching, but not on the local rotation. Therefore, we define a tensor, G, to

be:

G = f f = (1 + h)(1 + h) = 1 + h+ h+ h h (F.29)

This tensor is the square of the local stretch, and is independent of the local rotation.

Next, if we assume that the deformation is small, we may linearize the theory by

dropping terms of order h2:

G = 1 + h+ h (F.30)

This necessarily precludes the treatment of anharmonic phonon processes within this

model. Because G is the square of the local stretch, we may define the strain tensor

to be the deviation of the local stretch,
 
G, from unity:

s =
⇢

G� 1 =
�
1 + h+ h� 1 (F.31)

Therefore, the linearized strain tensor is equal to:

s ⌃ 1

2
(h+ h) (F.32)
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The strain tensor represents the deviation from the unstretched state, and it is sym-

metric by definition: s = s. The local elastic potential energy, V , is a function of s.

It is also minimized when the elastic body is in its undeformed state where s = 0. If

V is expanded as a power-series in s, the lowest-order term is quadratic, and in the

linearized theory all higher-order terms will be assumed to be negligible. Therefore,

V has the form:

V =
1

2
s ·K · s = 1

2
sijK

ijklskl (F.33)

where K is the elasticity tensor. Without loss of generality, the K tensor may be

assumed symmetric in its first two and last two indices, and under their exchange,

which, in three dimensions, gives 21 independent components. Using this form of the

potential energy, the linearized elastic Lagrangian is:

L =

⌫
d3x

�
1

2
⇢ u̇ · u̇� 1

2
s ·K · s

 
(F.34)

where ⇢ is the mass density of the material, and therefore 1

2

⇢ u̇ · u̇ is the kinetic energy

density.

As before, this Lagrangian may be rewritten in the language of generalized vectors:

L =
1

2
u̇ ⌅ A ⌅ u̇� 1

2
u ⌅B ⌅ u (F.35)

where the operator, A, is defined as:

A ⌅ u ⌃ ⇢ u (F.36)

and the operator, B, is defined as:

B ⌅ u ⌃ �(K · ś) · !́ = �(K · (! ú)) · !́ (F.37)

or in index notation:

Bil ⌅ ul = �Kijkl @j@kul (F.38)
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The conjugate momentum, pu, is:

pu = @u̇L = A ⌅ u̇ = ⇢ u̇ (F.39)

and is equal to the density of physical momentum in the elastic material. The Euler-

Lagrange equation is:

ṗu = @uL

⇢ ü = �B ⌅ u

⇢ ü = (K · ś) · !́

⇢ ü = �́ · !́ (F.40)

where the tensor, �, is defined to be:

� ⌃ K · s (F.41)

The left-hand-side of the Euler-Lagrange equation is the rate of change of physical

momentum density, which, by Newton’s second law, is equal to the force density,

which is the divergence of the stress tensor. Therefore, �, must be the stress tensor.

The Hamiltonian is given by:

H = pu ⌅ u̇�L = u̇ ⌅ A ⌅ u̇� 1

2
u̇ ⌅ A ⌅ u̇+

1

2
u ⌅B ⌅ u

=
1

2
u̇ ⌅ A ⌅ u̇+

1

2
u ⌅B ⌅ u

=

⌫
d3x

�
1

2⇢
pu · pu +

1

2
s ·K · s

 

=

⌫
d3x

�
1

2⇢
pu · pu �

1

2
u · (K · ś) · !́

 
(F.42)

F.6 The Electron-Phonon Interaction

The Schrödinger field and the elastic displacement field described in the previous two

sections may be used to model the electron and phonon systems in a semiconductor
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crystal. Both of these fields are based on a continuum, and therefore neglect the

atomic nature of the crystal. However, for length scales much larger than the inter-

atomic spacing, this model will be su�cient to capture the most prominent aspects

of the electron-phonon interaction.1

Following reference [80], an interaction between the electron and phonon systems

may be introduced into the model. As discussed in §5.1, the eigenstates of electrons

traveling through a periodic crystal lattice are Bloch wavefunctions with energy vs.

momentum functions which form distinct energy bands. As discussed in §5.3, the
function, E (k), may be Taylor-expanded about its local minimum:

E (k) = E
0

+
1

2
k ·m�1 · k + ... (F.43)

where tensor, m, is the e↵ective mass tensor of the electron. The e↵ective continuum

wavefunction obeys the anisotropic Schrödinger equation:

i ̇ = �1

2
! ·m�1 ·!  + E

0

 (F.44)

The energy vs. momentum function, E (k), for a particular band depends on the

crystal structure, and it is therefore modified in the presence of a uniform crystal

strain. If the strain is small, we may Taylor-expand the parameters, E
0

and m, with

respect to the strain tensor, s. However, as stated in [80], the e↵ects of the shift in

m will be negligable compared to the e↵ects of the shift in E
0

at low momentum.

Therefore, the dominant e↵ect will be the shift in E
0

, which we may write as:

E
0

(s) = U
0

+X · s+ ... = U
0

+Xijs
ij + ... (F.45)

where the tensor, X, is called the deformation potential. For small deformations, we

may neglect all terms higher than first-order in s.

To complete the model of electron-phonon interactions, we may return to the

1This model also neglects electron spin, although it could be added in a straightforward way by
allowing the ⇤ field to be a spinor rather than a complex scalar.
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anisotropic Schrödinger Lagrangian:

L =

⌫
d3x ⇣

⌦
i  ̇  ⇤ � 1

2
(! )⇤ ·m�1 · (! )� U  ⇤  

↵
(F.46)

When the strain is not uniform, the e↵ective mass and the energy minimum will vary

with position in the crystal. This e↵ect may be modeled by allowing m and U in the

Schrödinger Lagrangian to be functions of position. Neglecting the variations in m,

we may allow the potential, U , to be given by U = X · s.2 This term leads to an

interaction Lagrangian of the form:

LI = �
⌫

d3x X · s  ⇤ (F.47)

F.7 The Continuum Model

Using the results of the previous sections, we may describe a simple continuum model

of electrons and phonons in a crystal with the following Lagrangian:

L = LE + LP + LI

LE =

⌫
d3x ⇣

⌦
i  ̇  ⇤ � 1

2
(! )⇤ ·m�1 · (! )

↵

LP =

⌫
d3x

�
1

2
⇢ u̇ · u̇� 1

2
s ·K · s

 

LI = �
⌫

d3x X · s  ⇤ (F.48)

2We may drop the constant term, U0, because it has no e�ect on the interaction.
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The corresponding Hamiltonian is:

H = HE + HP + HI

HE =

⌫
d3x ⇣

⌦
 ⇤(�1

2
! ·m�1 ·!) 

↵

HP =

⌫
d3x

�
1

2⇢
pu · pu �

1

2
u · (K · ś) · !́

 

HI =

⌫
d3x X · s  ⇤ (F.49)

F.8 Transformation to Fourier Space

We may transform the problem to Fourier space by assuming the electron and phonon

fields exist within a cubical box of volume V with periodic boundary conditions.

The electron and phonon fields may be rewritten in terms of their complex Fourier

components:

 (x) =
�

k

 ke
ik·x (F.50)

u(x) =
�

k

uke
ik·x (F.51)

where uk is a complex vector satisfying u�k = u⇤
k, and uk = us

ke
s
k, where s is the

polarization index, running from 1 to 3, and esk is a set of polarization vectors which

are, in general, a function of the wavevector, k. These plane-waves are modes of their

corresponding wave equations. For the electron field:

i ̇ = �1

2
! ·m�1 ·!  

=
1

2
k ·m�1 · k  = Ek  (F.52)

Where Ek is defined to be the frequency of the k electron mode. Therefore, the

electron dispersion relation is:

Ek =
1

2
k ·m�1 · k (F.53)
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For the phonon field:

⇢ ü = (K · ś) · !́

⇢ üi = Kijkl@j@kul

= �Ki
jklk

jkkul = �M i
l(k) u

l (F.54)

For any value of k, there will be three phonon modes, corresponding to the three

eigenvectors and eigenvalues of the symmetric tensor, M(k), which is itself a function

of k. The polarization vectors, esk, may be chosen to be unit vectors directed along

the principle axes of M(k). The eigenvalues of M(k) determine the frequencies of

these three modes:

M(k) · esk = ⇢(!s
k)

2esk (F.55)

Because M(k) is symmetric, both the eigenvalues and the eigenvectors will be real.

The tensor, M(k), is also quadratic in k, which means that the dispersion relation for

the phonons is linear, and all phonons have a constant3 speed of sound: !s
k = csk |k|.

The speed of sound for each mode, csk, is generally a function of the direction of k. In

an isotropic medium, the speeds of sound are constant with respect to the direction

of k.

Additionally, note that M(�k) = M(k), which means phonon modes with oppo-

site wavevectors will have the same eigenvalues, and also the same unit eigenvectors,

up to an arbitrary choice of sign.

The terms in the Hamiltonian may now each be rewritten in terms of Fourier

3This is only true when the phonon wavelength is much larger than the inter-atomic spacing.
As the phonon wavelength approaches the inter-atomic spacing, the dispersion relation becomes
non-linear, and the speed of sound becomes a function of phonon momentum.
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modes:

⌫
d3x pu · pu =

⌫
d3x

�

k1, k2

pk1 · pk2ei(k1+k2)·x

=
�

k1, k2

pk1 · pk2�[k1 + k
2

]V =
�

k

p�k · pk V

=
�

k

p⇤k · pk V =
�

k, s

ps⇤k pskV (F.56)

⌫
d3x u · (K · ś) · !́ =

⌫
d3x

�

k1, k2, s

uk1 ·M(k
2

) · uk2e
i(k1+k2)·x

=
�

k

u⇤
k ·M(k) · uk V =

�

k, s

⇢(!s
k)

2us⇤
k us

kV (F.57)

⌫
d3x ⇣

⌦
 ⇤(�1

2
! ·m�1 ·!) 

↵
=

⌫
d3x

�

k1, k2

⇣
⇠
 †
k1

Ek2 k2e
i(k2�k1)·x

⇡

=
�

k

Ek  
†
k k V (F.58)

Therefore, in terms of Fourier modes, the full electron and phonon Hamiltonians are

given by:

HP =
�

k, s

V

�
1

2⇢
p⇤k · pk +

1

2
u⇤
k ·M(k) · uk

 

=
�

k, s

V

�
1

2⇢
ps⇤k psk +

1

2
⇢(!s

k)
2us⇤

k us
k

 

HE =
�

k

V Ek  
†
k k (F.59)
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F.9 Canonical Quantization

The field theory may be quantized by reinterpreting the mode amplitudes as opera-

tors, and introducing creation and annihilation operators. For the phonon field:

uk =

�
1

2⇢V !s
k

(aske
s
k + as †�ke

s
�k)

pk = �i
⌧
⇢!s

k

2V
(aske

s
k � as †�ke

s
�k) (F.60)

The phonon field is bosonic, which implies the creation and annihilation operators

have bosonic commutation relations:

[as1k1 , a
s2 †
k2

] = �[k
1

� k
2

] �s1 s2 (F.61)

[as1k1 , a
s2
k2
] = [as1 †

k1
, as2 †

k2
] = 0 (F.62)

where �[...] is the Kronecker delta function. The electron field may also be expressed

in terms of creation and annihilation operators:

 k =
1 
V
bk

pk =
i 
V
b†�k (F.63)

The electron field is fermionic, which imples the creation and annihilation operators

have fermionic anti-commutation relations:

{bk1 , b
†
k2
} = �[k

1

� k
2

] (F.64)

{bk1 , bk2} = {b†k1 , b
†
k2
} = 0 (F.65)

These commutation and anti-commutation relations give rise to the following com-

mutation and anti-commutation relations for the field operators:

[u(x), pu(y)] = i�3(x� y) (F.66)



APPENDIX F. ELECTRON-PHONON INTERACTIONS 134

{ (x), p (y)} = i�3(x� y) (F.67)

In terms of these creation and annihilation operators, the electron and phonon Hamil-

tonians are:

HP =
�

k, s

!s
k

�
as †k ask +

1

2

 

HE =
�

k

Ek b
†
kbk (F.68)

Each mode of the phonon field behaves like a quantum harmonic oscillator, and may

be populated by any non-negative integer number of phonons. Each mode of the

electron field behaves like a quantum two-state system, and may only be populated

by either 0 or 1 electrons.

F.10 The Interaction Hamiltonian

The interaction Hamiltonian may be written in terms of the creation and annihilation

operators:

HI =

⌫
d3x ! ·X · u  ⇤ 

=

⌫
d3x

�

q, k1, k2

i q ·X · uq  
†
k1
 k2 e

i(q�k1+k2)·x

=
�

q, s, k1, k2

i q ·X ·
(asqe

s
q + as †�qe

s
�q)⇢

2⇢V !s
q

b†k1bk2 �[q � k
1

+ k
2

] (F.69)

This Hamiltonian may be written as the sum of two terms:

HI =
�

q, s, k1, k2

i q ·X · esq⇢
2⇢V !s

q

asq b
†
k1
bk2 �[q � k

1

+ k
2

]

�
�

q, s, k1, k2

i q ·X · esq⇢
2⇢V !s

q

as †q b†k1bk2 �[�q � k
1

+ k
2

] (F.70)
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The first term represents phonon absorption by an electron, and the second term

represents phonon emission by an electron.

F.11 Phonon Emission and Absorption Rates

In this section, the rate of phonon emission or absorption by an electron in a mo-

mentum eigenstate is calculated, following the methods outlined in references [81] &

[72]. For clarity, electron momentum vectors will be designated by k, and phonon

momentum vectors will be designated by q. The initial state is assumed to consist of a

single electron with momentum, k, and a phonon background with mode occupation

numbers, ns
q:

| (0)� = |k;n
1

, n
2

, n
3

, . . . � (F.71)

This problem is best solved in the interaction picture, in which the time-evolution due

to the free-particle Hamiltonian has been factored out. In this picture, the interaction

Hamiltonian is time-dependant:

HI(t) =
�

q, s, k1, k2

i q ·X · esq⇢
2⇢V !s

q

asq b
†
k1
bk2 �[q � k

1

+ k
2

] ei(�!q+Ek1
�Ek2

)t

�
�

q, s, k1, k2

i q ·X · esq⇢
2⇢V !s

q

as †q b†k1bk2 �[�q � k
1

+ k
2

] ei(!q+Ek1
�Ek2

)t (F.72)

The Schrödinger equation in the interaction picture is:

i
d

dt
| (t)� = HI(t) | (t)� (F.73)

The interaction Hamiltonian allows the initial state to decay to a state consisting of

an electron with a new momentum vector, plus or minus one phonon. For simplicity,

we will focus only on single phonon emission or absorption at early times.
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In this case, the wavefunction is given approximately by:

| (t)�  |k;n
1

, n
2

, n
3

, . . . �

+
�

q, s

✏sq(t)
⇧⇧k � q; . . . , ns

q + 1, . . .
⌅

+
�

q, s

↵s
q(t)

⇧⇧k + q; . . . , ns
q � 1, . . .

⌅
(F.74)

The Schrödinger equation gives the following set of first-order di↵erential equations

for the s and ↵ coe�cients:

✏̇sq  �i
�

ns
q + 1

q ·X · esq⇢
2⇢V !s

q

ei(!q+Ek�q�Ek)t (F.75)

↵̇s
q  i

⇢
ns
q

q ·X · esq⇢
2⇢V !s

q

ei(�!q+Ek+q�Ek)t (F.76)

This set of di↵erential equations is easily solved by the following integral:

⌫ t

0

dt0ei!t
0
=

ei!t � 1

i!
⌃ f(!; t) (F.77)

The function, f , has the following important properties:

f(!; t)f ⇤(!; t) =
2� 2 cos (!t)

!2

(F.78)

d

dt
(f ⇤f) =

2 sin (!t)

!
 2⇡�(!) (F.79)

The function 2 sin (!t)/! has a width of approximately 1/t and for values of ! much

larger than this it may be approximated by a delta function. The set of ✏ and ↵

coe�cients is given by:

✏sq(t) = �i
�

ns
q + 1

q ·X · esq⇢
2⇢V !s

q

f(!q + Ek�q � Ek; t) (F.80)

↵s
q(t) = i

⇢
ns
q

q ·X · esq⇢
2⇢V !s

q

f(�!q + Ek+q � Ek; t) (F.81)
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The probability of phonon emission into the mode, q, with polarization, s, is:

p s
E q = ✏s ⇤q ✏sq = (ns

q + 1)
(q ·X · esq)2

2⇢V !s
q

f ⇤f (F.82)

The probability of phonon absorption from the mode, q, with polarization, s, is:

p s
A q = ↵s ⇤

q ↵s
q = (ns

q)
(q ·X · esq)2

2⇢V !s
q

f ⇤f (F.83)

The rates of change of these probabilities are:

ṗ s
E q  (ns

q + 1)
(q ·X · esq)2

2⇢V !s
q

2⇡�(!s
q + Ek�q � Ek) (F.84)

ṗ s
A q  (ns

q)
(q ·X · esq)2

2⇢V !s
q

2⇡�(�!s
q + Ek+q � Ek) (F.85)

The probability that a phonon has been emitted or absorbed is the sum over the

probabilities of emission or absorption into each phonon mode:

PE =
�

q, s

p s
E q (F.86)

PA =
�

q, s

p s
A q (F.87)

The rates at which these probabilities increase are defined to be the scattering rates

for both emission and absorption:

�E ⌃ ṖE =
�

q, s

ṗ s
E q =

�

q, s

(ns
q + 1)

(q ·X · esq)2

2⇢V !s
q

2⇡�(!s
q + Ek�q � Ek) (F.88)

�A ⌃ ṖA =
�

q, s

ṗ s
A q =

�

q, s

(ns
q)
(q ·X · esq)2

2⇢V !s
q

2⇡�(�!s
q + Ek+q � Ek) (F.89)

These sums over modes may be approximated by integrals over q-space when the
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volume, V , is large. The volume element in q-space is given by: �q3/(2⇡)3 = 1/V .

�E =
�

s

⌫
d3q

(2⇡)3
(ns

q + 1)
(q ·X · esq)2

2⇢!s
q

2⇡�(!s
q + Ek�q � Ek) (F.90)

�A =
�

s

⌫
d3q

(2⇡)3
(ns

q)
(q ·X · esq)2

2⇢!s
q

2⇡�(�!s
q + Ek+q � Ek) (F.91)

F.12 Di↵erential Intra-Valley Scattering Rates

The scattering rates for both emission and absorption may be written as integrals over

both the magnitude and solid angle of the q vector using the relation: d3q = |q|2d⌦d|q|:

�E =
�

s

⌫ |q|2d⌦ d|q|
(2⇡)3

(ns
q + 1)

|q|2

|q|
(q̂ ·X · esq)2

2⇢csq
2⇡�(!s

q + Ek�q � Ek)

=
�

s

⌫
d⌦ d|q|
(2⇡)2

(ns
q + 1)|q|3

(q̂ ·X · esq)2

2⇢csq
�(!s

q + Ek�q � Ek) (F.92)

�A =
�

s

⌫ |q|2d⌦ d|q|
(2⇡)3

(ns
q)
|q|2

|q|
(q̂ ·X · esq)2

2⇢csq
2⇡�(�!s

q + Ek+q � Ek)

=
�

s

⌫
d⌦ d|q|
(2⇡)2

(ns
q)|q|3

(q̂ ·X · esq)2

2⇢csq
�(�!s

q + Ek+q � Ek) (F.93)

The integral over |q| may be performed using the identity:

⌫
dxf(x)�(g(x)) =

⌫
dg

�
dx

dg

 
f(x(g))�(g) =

�

i

f(xi)

|g0(xi)|
(F.94)

where xi is the ith zero of g(x). For emission, g(|q|) is:

gE(|q|) = !s
q + Ek�q � Ek

= |q|csq +
1

2
(k � q) ·m�1 · (k � q)� 1

2
k ·m�1 · k

= |q|csq +
1

2
|q|2 q̂ ·m�1 · q̂ � |q| q̂ ·m�1 · k

= |q|(csq � q̂ · v + 1

2
|q| q̂ ·m�1 · q̂) (F.95)
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Where v is the electron velocity, v = m�1 · k. The function gE(|q|) is zero at:

|q| = 0 or |q| = 2(q̂ ·m�1 · q̂)�1(q̂ · v � csq) (F.96)

Its derivative is:

g0E(|q|) = csq � q̂ · v + |q| q̂ ·m�1 · q̂ (F.97)

At the point where |q| = 2(q̂ ·m�1 · q̂)�1(q̂ · v � csq):

g0E(|q|) = q̂ · v � csq (F.98)

Likewise, for absorption, the function g(|q|) is:

gA(|q|) = �!s
q + Ek+q � Ek

= �|q|csq +
1

2
(k + q) ·m�1 · (k + q)� 1

2
k ·m�1 · k

= �|q|csq +
1

2
|q|2 q̂ ·m�1 · q̂ + |q| q̂ ·m�1k

= |q|(q̂ · v � csq +
1

2
|q| q̂ ·m�1 · q̂) (F.99)

The function gA(|q|) is zero at:

|q| = 0 or |q| = 2(q̂ ·m�1 · q̂)�1(csq � q̂ · v) (F.100)

Its derivative is:

g0A(|q|) = q̂ · v � csq + |q| q̂ ·m�1 · q̂ (F.101)

At the point where |q| = 2(q̂ ·m�1 · q̂)�1(csq � q̂ · v):

g0A(|q|) = csq � q̂ · v (F.102)
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The functions, gE and gA, may be used to perform the integrals over |q|:

�E =
�

s

⌫
d⌦ d|q|
(2⇡)2

(ns
q + 1)|q|3

(q̂ ·X · esq)2

2⇢csq
�(gE(|q|))

=
�

s

⌫
d⌦

(2⇡)2
(ns

q + 1)|q|3
(q̂ ·X · esq)2

2⇢csq g
0
E(|q|)

⇧⇧⇧⇧⇧
|q|=2(q̂·m�1·q̂)�1

(q̂·v�csq)

=
�

s

⌫
d⌦

⇡2

(ns
q + 1)(q̂ ·m�1 · q̂)�3(q̂ · v � csq)

2

(q̂ ·X · esq)2

⇢csq
⇥(q̂ · v � csq)(F.103)

�A =
�

s

⌫
d⌦ d|q|
(2⇡)2

(ns
q)|q|3

(q̂ ·X · esq)2

2⇢csq
�(gA(|q|))

=
�

s

⌫
d⌦

(2⇡)2
(ns

q)|q|3
(q̂ ·X · esq)2

2⇢csq g
0
A(|q|)

⇧⇧⇧⇧⇧
|q|=2(q̂·m�1·q̂)�1

(csq�q̂·v)

=
�

s

⌫
d⌦

⇡2

(ns
q)(q̂ ·m�1 · q̂)�3(csq � q̂ · v)2

(q̂ ·X · esq)2

⇢csq
⇥(csq � q̂ · v) (F.104)

Therefore, the di↵erential scattering rates are given by:

d�s
E

d⌦
= (ns

q + 1)(q̂ ·m�1 · q̂)�3(q̂ · v � csq)
2

(q̂ ·X · esq)2

⇡2⇢csq
⇥(q̂ · v � csq) (F.105)

d�s
A

d⌦
= (ns

q)(q̂ ·m�1 · q̂)�3(csq � q̂ · v)2
(q̂ ·X · esq)2

⇡2⇢csq
⇥(csq � q̂ · v) (F.106)

F.13 Isotropic Intra-Valley Scattering Rates

In an isotropic crystal, the mass tensor, m, and deformation potential, X, are both

proportional to the identity tensor: m = m, X = X. In addition, the transverse

and longitudinal phonon modes have isotropic speeds of sound, and their polarization

vectors are perpendicular and parallel to the phonon momentum vector, respectively.

Therefore, in an isotropic crystal:

q̂ ·X · esq = X q̂ · esq =
�

X : s = Longitudinal

0 : s = Transverse
(F.107)
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This implies that only longitudinal phonons are emitted or absorbed in an isotropic

crystal. The scattering rates are:

�E =

⌫
d⌦ (ns

q + 1)m3 (q̂ · v � cl)
2

X2

⇡2⇢cl
⇥(q̂ · v � cl) (F.108)

�A =

⌫
d⌦ (ns

q)m
3 (cl � q̂ · v)2 X2

⇡2⇢cl
⇥(cl � q̂ · v) (F.109)

where cl is the longitudinal speed of sound. Let us assume that the phonon system

is in thermal equilibrium at temperature, T = 1/�. In an integral over q-space, we

can assume that each volume element, d3q, contains a large number of modes, each

with a random population number, ns
q, with the frequency of occurence each value of

ns
q given by the Boltzmann Distribution. Therefore, any such integral which contains

the mode population number, ns
q, multiplied by a slowly-varying function of q can be

approximated by replacing ns
q with its thermal average,

⇤
ns
q

⌅
:

⇤
ns
q

⌅
=

1

e�!
s
q � 1

=
1

e�|q|c
s
q � 1

(F.110)

For temperatures much higher than the phonon energies, the thermally averaged

mode occupation number may be approximated by:

⇤
ns
q

⌅
 1

�|q|csq
=

T

|q|csq
⌦ 1 (F.111)
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F.14 The High Temperature Limit

In the high temperature limit, the scattering rates are approximately given by:

�E =

⌫
d⌦

T

|q|cl
m3 (q̂ · v � cl)

2

X2

⇡2⇢cl
⇥(q̂ · v � cl)

=

⌫
d⌦

m2TX2

2⇡2⇢c2l
(q̂ · v � cl)⇥(q̂ · v � cl)

=
m2TX2

2⇡2⇢c2l

⌫
sin ✓ d✓ d� (v cos ✓ � cl)⇥(v cos ✓ � cl)

=
m2TX2

2⇡2⇢c2l

⌫
1

�1

dx

⌫
2⇡

0

d� (vx� cl)⇥(vx� cl)

=
m2TX2

⇡⇢c2l

⌫
1

cl/v

dx (vx� cl)

=
m2TX2(v � cl)2

2⇡⇢c2l v
⇥(v � cl) (F.112)

�A =

⌫
d⌦

T

|q|cl
m3 (cl � q̂ · v)2 X2

⇡2⇢cl
⇥(cl � q̂ · v)

=

⌫
d⌦

m2TX2

2⇡2⇢c2l
(cl � q̂ · v)⇥(cl � q̂ · v)

=
m2TX2

2⇡2⇢c2l

⌫
sin ✓ d✓ d� (cl � v cos ✓)⇥(cl � v cos ✓)

=
m2TX2

2⇡2⇢c2l

⌫
1

�1

dx

⌫
2⇡

0

d� (cl � vx)⇥(cl � vx)

=
m2TX2

⇡⇢c2l

⌫
min(1,cl/v)

�1

dx (cl � vx)

=

�
2m2TX2

⇡⇢cl
for v < cl

m2TX2
(cl+v)2

2⇡⇢c2l v
for v ⌥ cl

(F.113)
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F.15 The Low Temperature Limit

In the low temperature limit, the thermally averaged phonon population number

approaches zero. Therefore, as T ↵ 0, the phonon absorption rate will also approach

zero. The phonon emission rate will be:

�E =

⌫
d⌦ m3 (q̂ · v � cl)

2

X2

⇡2⇢cl
⇥(q̂ · v � cl)

=
m3X2

⇡2⇢cl

⌫
sin ✓ d✓ d� (v cos ✓ � cl)

2 ⇥(v cos ✓ � cl)

=
2m3X2

⇡⇢cl

⌫
1

cl/v

dx (vx� cl)
2

=
2m3X2(v � cl)3

3⇡⇢clv
⇥(v � cl) (F.114)
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G.1 Mechanical Drawings
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Figure G.1: Layout for the copper baseplate of the experimental payload.

144



APPENDIX G. EXPERIMENTAL SETUP - SUPPLEMENTAL MATERIAL 145

1.062"

0.750"

0.438"

1.188"

0.375"

1.500"

0.188"

0.625" 0.938"
0.938"

0.156"

0.188"

0.188"0.625"

0.875"

0.938"

0.375"

0.125"

0.438"

0.750"

0.188"

0.500"

0.062"

0.062"

0.188"

0.781"

Fiber Focuser Holder:

Figure G.2: Design of fiber focuser holder.

0.310"

0.694"

0.577"

1.048"

0.358"

0.812"

1.250"

1.030"

Ø0.161"

0.345"

1.257"

0.452"

0.934"

0.543"

1.081"

0.880"

0.180"

1.250"

0.250"

1.000"

5.9°

1.257"

0.694"

0.160"0.000"

0.140"

0.000"

0.630" 0.250"

A

B

A B

Mirror Holder:

1.135"

0.490"

0.513"

0.875"

Figure G.3: Design of mirror holder.



APPENDIX G. EXPERIMENTAL SETUP - SUPPLEMENTAL MATERIAL 146

0.987"

0.102"

0.490"
0.740"

0.250"

1.250"

0.250"
1.000"

1.278"

1.250"

0.188"

1.277"

1.438"

0.368"

 12°

0.987"

0.087"
0.287"
0.487"

0.687"

1.187"

0.363"
0.463"

0.812"

1.162"
1.263"

0.563"

1.062"

0.096"

0.260"

A

B

A B

Sample Stage:

Figure G.4: Design of sample stage.

3.
00
0"

0.
43
8"

1.
75
2"

1.
30
0"

1.
44
8"

1.
30
0"

1.
44
8"

6.
60
0"

1.
70
2"

0.
48
8"

1.
55
0"

1.
80
0"

0.
50
0"

4.
70
0"

2.
26
2"

0.
30
2"

0.
50
0"

1.
18
3"

1.
25
0"

1.
65
0"

0.
95
0"

1.
01
2"

1.
07
9"

1.
11
5"

0.
84
9"

0.
15
5"

0.
18
0"

1.
11
5"

0.
18
0"

0.
84
9"

0.
18
0"

1.
25
0"

1.
25
0"

0.
25
0"

0.
25
0"

1.
00
0"

3.
89
8"

3.
62
5"

0.
75
0"

Figure G.5: Design of copper enclosure.



APPENDIX G. EXPERIMENTAL SETUP - SUPPLEMENTAL MATERIAL 147

Holder for Crystal Sample

Robert Moffatt, Stanford University

March 29, 2013

Side View:

Top View:

Oblique View:

Material: Brass

Quantity: 5

Holes:
All Clearance-holes












for 0-80 screw
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Top View:
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Figure G.6: Crystal sample holder.
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Holder for Crystal Sample

Robert Moffatt, Stanford University

March 29, 2013

Cross-Section View:

Top View:

Oblique View:

Material: 0.047" Copper-Clad












G10 Circuit Board

Quantity: 10

Holes:
All Clearance-holes












for 0-80 screw
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Figure G.7: Crystal sample holder.
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Figure G.8: Break-out box for the 3He cryostat.
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March 12, 2014

Material: Copper

Quantity: 1
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Figure G.9: Copper back plate for the cold amplifier.
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G10 Circuit Board for Cryogenic Amplifier

Robert Moffatt, Stanford University

March 24, 2014
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Quantity: 1
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Figure G.10: Circuit board for cold amplifier.
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Circuit Board Layout for Cryogenic Amplifier

Robert Moffatt, Stanford University

June 30, 2014

R1, R2, R12, R13 = 10MΩ (21.5MΩ)

R3, R6, R7, R9, R10, R14, R17, R18 = 4.99kΩ (7.7kΩ)

R4, R5, R11, R15, R16 = 680kΩ (1.8MΩ)

R8, R19 = 220Ω (307Ω)

C1, C3, C6, C8 = 8.2µF (420nF)

C2, C4, C5, C7, C9 = 100nF (8nF)

D1, D2, D3, D4, D5, D6 = RLS4150TE-11

Q1, Q2, Q3, Q4 = 3SK165



All values not in parenthesis are nominal.

Parenthesis indicate values at 4K.
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Figure G.11: Component layout for cold amplifier.
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Figure G.12: Germanium crystal wafer used as source for crystal test samples.
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G.2 Amplifier Circuit

Figure G.13: Full schematic for the amplifier circuit. The dotted line indicates the

part of the circuit contained within the cryostat. The rest of the circuit is at room

temperature.
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G.3 Photos

Figure G.14: Version 1 of the cold amplifier. This version used single wires to con-
nect the board to the crystal bias electrode and the charge collection electrodes. It
oscillated badly.
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(a) Twisted pair connections.

(b) Coax connections.

Figure G.15: Version 2 of the cold amplifier. Twisted pairs were introduced (top)
in order to reduce capacitive coupling between the input and output in an attempt
to avoid oscillation. However, oscillation was still a problem, so coaxial lines were
installed instead (bottom). The coax helped avoid oscillation, but the circuit still
oscillated under certain bias conditions.
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(a) Copper backplate for cold amp.

(b) Backplate with cold amp board installed.

Figure G.16: Copper plate for version 3 of the cold amplifier. This backplate was
intended to fully shield the circuit to prevent capacitive or inductive coupling from
producing any unintended positive feedback loops.
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Figure G.17: Circuit board for version 3 of the cold amplifier before etching (top)
and after etching (bottom).
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(a) Cold amplifier board.

(b) Cold amplifier mounted on payload.

Figure G.18: Version 3 of the cold amplifier. The inputs in this version were com-
pletely shielded. Oscillation was not a problem in this version.
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Figure G.19: Circuit board for the warm amplifier.
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Figure G.20: Circuit board for the control circuit.
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Figure G.21: Circuit board for the bias circuit.
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G.4 Transfer Function

Least-squares fits were performed for the channel 1 and channel 2 transfer functions

using rational function models of the form:

H(s) = K

◆
i(s� zi)◆
j(s� pj)

(G.1)

A model using five zeros and eight poles was found to fit well. The best fit parameters

are given in Table G.1. The locations of the poles and zeros are plotted in Figure

G.22

H
1

:
K = 3.213e13
z
1

= 0.041085
z
2

= �0.066912
z
3

= �28013
z
4

= �3199.7� 12273i
z
5

= �3199.7 + 12273i
p
1

= �251.83
p
2

= �17.465
p
3

= �113730 + 3.1271i
p
4

= �3004.8� 12789i
p
5

= �49161� 100320i
p
6

= �113730� 3.1271i
p
7

= �3004.8 + 12789i
p
8

= �49161 + 100320i

H
2

:
K = 1.4753e13
z
1

= 1.2094
z
2

= �0.24422
z
3

= �33714
z
4

= �3060.3� 12273i
z
5

= �3060.3 + 12273i
p
1

= �17.331
p
2

= �190.43
p
3

= �100880 + 3.1271i
p
4

= �2820.7� 12789i
p
5

= �48005� 100320i
p
6

= �100880� 3.1271i
p
7

= �2820.7 + 12789i
p
8

= �48005 + 100320i

Table G.1: Poles and zeros for H
1

and H
2

in units of Hz.
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Figure G.22: Poles and zeros for the channel 1 and channel 2 transfer functions. Each
pole is denoted by a red “x”, and each zero is denoted by a blue “o”.
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G.5 Noise
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Figure G.23: Noise spectrum of Sony 3SK165 MESFET, measured at 290K and 1mA
bias. Measurements from Lee in [60] for the same model transistor at 293K are plotted
for comparison.
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G.6 3He Cryostat

Figure G.24: Photograph of the 3He cryostat and laboratory equipment used in the
charge transport experiment.
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Figure G.25: Measurements taken by James Allen of the 3He still temperature as
a function of the electrical current applied to the resistive heater in the 3He pump
with the heat switch turned o↵. Raising the temperature of the pump increases the
equilibrium vapor pressure of 3He in the 3He still, which raises the temperature of the
boiling point. This e↵ect was investigated as a method for actively controlling the
temperature of the payload without adding heat to the 3He still, which would reduce
the hold time at base temperature. The power dissipated by the heater can be found
my multiplying the square of the current by the heater resistance, which is 200⌦.[61]
This power is dissipated into the 4K helium bath, and causes an increase in the rate
of helium boil-o↵.
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G.7 Control System

Figure G.26: Detailed block diagram for the experiment control system.



Appendix H

Maximum Likelihood Linear Fits

In this section, a formula is derived for the maximum-likelihood fit of a model to a

measurement, assuming the set of all possible models forms a linear vector space,

and the measurement can be accurately represented as a pure (noiseless) signal plus

Gaussian noise.

H.1 Signal Vectors and Inner Products

Assume a Nyquist band-limited continuous signal is sampled N times over a time

period T with a time interval of �t = T /N between each sample. The signal may

be represented by an N -dimensional vector whose components are equal to the sample

values, a[t] at each sampling time. The signal vector may also be decomposed into

Fourier components, A[!], defined in the following way:

A[!] ⌃ �t
�

t

a[t]e�i!t (H.1)

a[t] = �⌫
�

!

A[!]ei!t (H.2)

�⌫ ⌃1/T , �! ⌃ 2⇡�⌫ (H.3)

169
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where the variables t and ! take on only discrete values:

t = 0, �t, 2�t, ... , (N � 1)�t (H.4)

! = ... ,��!, 0, �!, ... (H.5)

In the limit where �t↵ 0 and T ↵�, these equations become:

A(!) =

⌫
dt a(t)e�i!t (H.6)

a(t) =

⌫
d⌫A(!)ei!t (H.7)

Let the inner product between two signal vectors be defined in the following way:

a · b ⌃ �t
�

t

a[t] b[t] (H.8)

If the sample amplitudes, a[t], are scaled such that their squares, a2[t], are equal to

the instantaneous power, then the inner product of the vector, a, with itself is equal

to the total energy contained in the signal:

Es = a · a = �t
�

t

a2[t]↵
⌫

dt a2(t) (H.9)

The inner product of two vectors may also be written in terms of the Fourier

components:

a · b = �t
�

t

a[t] b[t] =
T

N

�

t

�

!1, !2

1

T 2

A[!
1

]B[!
2

]ei(!1+!2)t

=
1

T

�

!1, !2

A[!
1

]B[!
2

]�[!
1

+ !
2

]

= �⌫
�

!

A⇤[!]B[!]↵
⌫

d⌫ A⇤(!)B(!) (H.10)
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H.2 Gaussian Noise

Let n[t] be a noise signal, and let it be represented by the vector, n. If the noise is

Gaussian, the probability distribution for n will have the following form:

p(n) = |
 
2⇡ �n|�1 e�

1
2 n·��2

n ·n (H.11)

where the matrix, �2

n, is the N ⇤N covariance matrix, and |�n| represents the deter-
minant of the matrix, �n. Let the brackets, ⌧ �, around some quantity, Q(n), denote

the average value of this quantity with respect to the probability density of n:

⌧Q(n)� ⌃
⌫

dNn p(n)Q(n) (H.12)

If it is the case that �2

n is diagonal in Fourier space,

b ⌃ ��2

n · a (H.13)

B[!] = ��2

n [!] A[!] (H.14)

then the following simplification can be made:

n · ��2

n · n = �⌫
�

!

N⇤[!]��2

n [!]N [!]

= 2�⌫
�

!>0

N⇤[!]N [!] ��2

n [!]

=
�

!>0

�
⇣[N [!]]2 + ⌘[N [!]]2

⇥ 2�⌫

�2

n[!]
(H.15)

where the sum is taken only over positive values of ! because the Fourier components,

N [!], for negative ! are not independent variables.

The probability distribution for n may be factored into a product of independent

normal distributions for each real and imaginary component in the Fourier basis. The
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variance of each component is given by:

⌧⇣[N [!]]2� = ⌧⌘[N [!]]2� = �2

n[!]

2�⌫
(H.16)

The average instantaneous noise power, ⌧n2[t]�, is given by:

⌧n2[t]� =
✏
�⌫2

�

!1, !2

N [!
1

]N [!
2

]ei(!1+!2)t

⇣

= �⌫2
�

!1, !2

⌧N [!
1

]N [!
2

]�ei(!1+!2)t

= �⌫
�

!

�⌫⌧N⇤[!]N [!]�

= �⌫
�

!

Pn[!]↵
⌫

d⌫ Pn(!) (H.17)

Note that the average instantaneous power is time-independent. The function,

Pn[!] or Pn(!), is the noise power contribution per unit frequency. The relation

between Pn[!] and �2

n[!] is:

Pn[!] = �⌫⌧N⇤[!]N [!]�

= �⌫⌧⇣[N [!]]2 + ⌘[N [!]]2�

= 2�⌫⌧⇣[N [!]]2�

= �2

n[!] (H.18)

H.3 Linear Curve Fitting

Suppose a signal, s[t], is a linear function of M parameters. This relationship may

be written in terms of signal vectors:

s = r · � (H.19)
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where s is an N -component column vector, r is an N ⇤ M matrix, and � is an

M -component column vector. The transpose of r, denoted by r, is an M ⇤N matrix.

Suppose the measurement, m, of the signal, s, is corrupted by some additive

Gaussian noise. This may be written in terms of vectors as:

m = s+ n = r · �+ n (H.20)

Given some � as input, the probability distribution for the measured signal is

simply a Gaussian with its mean equal to the noiseless signal, s = r · �:

p(m|�) = |
 
2⇡ �n|�1 e�

1
2 (m�r·�)·��2

n ·(m�r·�) (H.21)

Given some measurement, m, we wish to estimate the input, �, which caused this

measured signal. A probability distribution over � may be calculated using Bayes’

theorem:

p(�,m) = p(m|�)p(�) = p(�|m)p(m) (H.22)

� p(�|m) =
p(m|�)p(�)

p(m)
(H.23)

If all values of � are assumed to be equally probable in our prior distribution, then

p(�) is a constant and:

p(�|m) � p(m|�) � e�
1
2 (m�r·�)·��2

n ·(m�r·�)

� e�
1
2 (�·r�

�2
n r·���·r��2

n ·m�m·��2
n r·�)

� e�
1
2 (��µ)·��2·(��µ)

� e�
1
2 (�·�

�2·���·��2·µ�µ·��2·�) (H.24)

Therefore, the probability distribution for the fit parameters, �, is a Gaussian

centered at mean value µ. The inverse covariance matrix, ��2, and mean, µ, can be
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easily determined by matching terms linear and quadratic in �:

��2 = r��2

n r (H.25)

µ = �2r��2

n ·m (H.26)

H.4 Signal to Noise Ratio

The value of µ calculated in the previous section provides the maximum likelihood

estimate of the signal parameters, �, based on a noisy measurement, m. Suppose the

exact signal parameters are given by �
0

, and the exact signal is given by s
0

= r · �
0

.

Then µ and s = r · µ will be noisy estimates of �
0

and s
0

respectively.

The mean values of µ and s are given by:

⌧µ� = ⌧�2r��2

n ·m� = �2r��2

n · ⌧m�

= �2r��2

n · ⌧r · �
0

+ n�

= �2r��2

n r · �
0

= �
0

(H.27)

⌧s� = ⌧r · µ� = r · ⌧µ� = s
0

(H.28)

Therefore, these are unbiased estimators. The deviation of s from its mean value is:

s� ⌧s� = s� s
0

= r · (µ� �
0

) = r �2r��2

n · n (H.29)



APPENDIX H. MAXIMUM LIKELIHOOD LINEAR FITS 175

The covariance matrix of s is:

�s ⌃ ⌧(s� ⌧s�)(s� ⌧s�)� = ⌧r �2r��2

n nn��2

n r �2r�

= r �2r��2

n ⌧nn���2

n r �2r

= r �2r��2

n �2

n�
�2

n r �2r

= r �2r��2

n r �2r

= r �2r (H.30)

The mean-squared value of s is given by:

⌧s · s� = ⌧µ · rr · µ� = ⌧(�
0

+ �2r��2

n · n) · rr · (�
0

+ �2r��2

n · n)�

= s
0

· s
0

+ ⌧n · ��2

n r �2rr �2r��2

n · n�

= ⌧s� · ⌧s�+ ⌧Tr(nn ��2

n r �2rr �2r��2

n )�

= ⌧s� · ⌧s�+ Tr(⌧nn� ��2

n r �2rr �2r��2

n )

= ⌧s� · ⌧s�+ Tr(�2

n �
�2

n r �2rr �2r��2

n )

= ⌧s� · ⌧s�+ Tr(r �2rr �2r��2

n )

= ⌧s� · ⌧s�+ Tr(�2rr �2r��2

n r)

= ⌧s� · ⌧s�+ Tr(�2rr) (H.31)

Therefore, the variance of s is given by:

⌧s · s� � ⌧s� · ⌧s� = Tr(�2rr) (H.32)

The signal to noise ratio is defined to be the ratio of the square of the mean of s

to the variance of s:

SNR =
⌧s� · ⌧s�

⌧s · s� � ⌧s� · ⌧s� =
s
0

· s
0

Tr(�2rr)
(H.33)

The quantity, s
0

· s
0

, is the energy contained in the signal, Es. Therefore, the
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signal to noise ratio is equal to the signal energy divided by the noise energy:

SNR =
Es

En

(H.34)

where the noise energy is given by:

En = Tr(�2rr) (H.35)

H.5 Fits with Only One Parameter

For a fit with only one parameter, the matrix, r, is an N -component column vector,

r. The matrix rr has only one component, and is simply equal to r · r. Likewise, the
matrix, ��2, has only one component, and is equal to r · ��2

n · r. Using these values,

the noise energy is given by:

En = Tr(�2rr) =
r · r

r · ��2

n · r (H.36)

If �n is diagonal in Fourier space, then, using the previously derived results, the

noise energy may be rewritten as:

En =
�⌫

✓
! R

⇤[!]R[!]

�⌫
✓

! R
⇤[!]R[!]��2

n [!]
=

�⌫
✓

! R
⇤[!]R[!]

�⌫
✓

!
R⇤

[!]R[!]
Pn[!]

(H.37)

In the continuum limit, the noise energy may be rewritten as:

En =


d⌫ R⇤(!)R(!)

d⌫ R⇤

(!)R(!)
Pn(!)

(H.38)

If the noise spectral power density, Pn(!), is constant in all regions of frequency

space in which R(!) is non-zero, then Pn(!) = Pn may be factored out of the integral

in the denominator, and the noise energy is given by:

En = Pn (H.39)



Appendix I

Piezoelectric Resonators

This section provides a general analysis of the electrical and mechanical properties of

a piezoelectric resonator. The device under consideration consists of two electrodes

connected to a piezoelectric material. The material has natural modes of vibration

determined by its mass density and elasticity. It will be assumed in this paper that

the resonances are sharp, i.e. that they all have a high Q. It will also be assumed in

this paper that all of the mechanical and electrical properties of the piezo are linear.

I.1 The Elastic Lagrangian of the Piezo Actuator

Assume the displacement field of the piezo resonator is u(x). The kinetic energy

density is 1/2 ⇢ u̇2, where ⇢ is the mass density of the piezo, and the elastic potential

energy density is 1/2 s · K · s, where K is the elasticity tensor, and s is the strain

tensor, defined by:

s =
1

2
(!u+ u!) (I.1)

In general, both ⇢ and K may be functions of position.

The stress tensor, �, is related to the strain tensor by the following equation:

� = K · s (I.2)

177
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The total kinetic energy is given by:

T =

⌫
dV 1

2
⇢ u̇2 (I.3)

and the total potential energy is given by:

U =

⌫
dV 1

2
s ·K · s =

⌫
dV 1

2
(u!) ·K · s =

⌫
dV 1

2
(u!) · �

=

⌫
dV 1

2
!́ · � · ú = �

⌫
dV 1

2
(!́ · �́) · u+

⌘
1

2
dA · � · u (I.4)

The surface term in equation I.4 is zero because the boundary conditions on the

resonator are either Neumann, in which case � · dA = 0 on the boundary, or else

Dirichlet, in which case u = 0 on the boundary. Therefore, the potential energy is:

U = �
⌫

dV 1

2
u · (�́ · !́) (I.5)

These equations may be rewritten using operator notation:

T =
1

2
u̇ ⌅ M̂ ⌅ u̇

U =
1

2
u ⌅ K̂ ⌅ u (I.6)

where the ⌅ symbol denotes an inner product between two functions, defined by:

u ⌅ v ⌃
⌫

dV u(x) · v(x) (I.7)

The M̂ and K̂ operators are defined by:

M̂ ⌅ u ⌃ ⇢u

K̂ ⌅ u ⌃ ��́ · !́ = �
⌃
Ḱ · (!ú)

⌥
· !́ (I.8)

Both of these operators are symmetric, and in terms of them the elastic Lagrangian
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is:

LEl =
1

2
u̇ ⌅ M̂ ⌅ u̇� 1

2
u ⌅ K̂ ⌅ u (I.9)

The Euler-Lagrange equation of motion is:

M̂ ⌅ ü = �K̂ ⌅ u (I.10)

Define the field, v ⌃ M̂1/2 ⌅ u. In terms of v the Euler-Lagrange equation is:

v̈ = �M̂�1/2K̂M̂�1/2 ⌅ v = �⌦̂2 ⌅ v (I.11)

Where the symmetric operator, ⌦̂2, is defined to be equal to M̂�1/2K̂M̂�1/2. Because

⌦̂ is symmetric, all of its eigenvalues are real. Define vn to be the nth eigenfunction

of ⌦̂ with eigenvalue !n, and define fn to be:

fn ⌃ M̂�1/2 ⌅ vn (I.12)

Because all the vn functions are orthogonal, the fn functions have the properties:

fn ⌅ M̂ ⌅ fm = vn ⌅ vm = 0 for n ✏= m (I.13)

and

fn ⌅ K̂ ⌅ fm = vn ⌅ M̂�1/2K̂M̂�1/2 ⌅ vm = vn ⌅ ⌦̂2 ⌅ vm = 0 for n ✏= m (I.14)

The functions, fn, are the modes of vibration of the resonator. Because the scale of

each eigenfunction is arbitrary, let the fn be defined to be dimensionless, and let the

displacement field, u, be decomposed in terms of these modes and a set of generalized

coordinates, qn, with units of length:

u(x) =
�

n

qn fn(x) (I.15)
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In terms of the qn, the elastic Lagrangian is:

LEl =
�

n

�
1

2
mnq̇

2

n �
1

2
knq

2

n

 
(I.16)

where the mn and kn coe�cients are defined by:

mn ⌃ fn ⌅ M̂ ⌅ fn
kn ⌃ fn ⌅ K̂ ⌅ fn (I.17)

From the definition of these eigenfunctions, it also follows that !n =
⇢
kn/mn.

For future use, let the dimensionless strain of each mode, fn, be defined by the

equation:

fn ⌃
1

2
(!fn + f

n
!) (I.18)

The strain, s, is therefore equal to:

s =
�

n

qn fn (I.19)

I.2 Electromagnetic Lagrangian and Coupling

The Electromagnetic Lagrangian density is:

LEM =
1

2
E · ✏ · E +

1

2
B · µ�1 · B (I.20)

where:

E = �!�� Ȧ , B = !⇡ A (I.21)

The charge and current source term is:

LS tot = �⇢tot�+ Jtot · A (I.22)

The total charge and current densities, ⇢tot and Jtot, are assumed to be the sum of a

free charge and current density, ⇢ and J , and a charge and current density, ⇢s and
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Js, generated by a strain-induced polarization, Ps, where ⇢s = �! · Ps and Js = Ṗs.

The polarization is a linear function of the strain tensor, s:

Ps = e · s (I.23)

where e is the piezoelectric tensor. Up to a total derivative, the source term involving

the polarization may be rewritten in terms of the electric field:

LC ⌃ �⇢s�+ Js · A = �! · Ps + A · Ṗs

= �Ps ·!�� Ps · Ȧ

= Ps · E

= E · e · s (I.24)

This term in the Lagrangian represents the coupling between the electrical and me-

chanical systems. The remaining source term is:

LS ⌃ �⇢�+ J · A (I.25)

and

LS tot = LS + LC (I.26)

When a voltage is applied to the electrodes of the piezo resonator, an electric field

is generated which is linearly proportional to the voltage:

E = V g (I.27)

where g is a vector field with units of inverse length. In terms of this field, the coupling

term may be rewritten in terms of the potential and the generalized coordinates, qn:

LC =

⌫
dV E · e · s =

�

n

⌫
dV V qn g · e · fn =

�

n

kn↵nqnV (I.28)
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where ↵n is defined to be:

↵n ⌃
1

kn

⌫
dV g · e · fn (I.29)

I.3 The Lagrangian and the Euler-Lagrange Equa-

tions

The full Lagrangian is:

L = LEl + LC + LEM + LS

=
�

n

�
1

2
mnq̇

2

n �
1

2
knq

2

n + kn↵nqnV

 

+

⌫
dV
�
1

2
E · ✏ · E +

1

2
B · µ�1 · B � ⇢�+ J · A

 
(I.30)

The D and H fields are defined to be:

D = ✏ · E + Ps , H = µ�1 · B (I.31)

In terms of these fields, Maxwell’s Equations are:

!⇡ B = 0 (I.32)

!⇡ E = �Ḃ (I.33)

! ·D = ⇢ (I.34)

! ·H = �J � Ḋ (I.35)

The Euler-Lagrange equations for the vibrational modes are:

mnq̈n = �mn!
2

nqn +mn!
2

n↵nV

q̈n + !2

nqn = !2

n↵nV (I.36)

For frequencies far below resonance, the solution to this equation is qn = ↵nV . The
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electromechanical coupling coe�cient, ↵n, is therefore equal to the deflection of mode

n per volt.

I.4 Induced Charge

According to Gauss’ Law:

! ·D = ! · (✏ · E + Ps) = �! · ✏ ·!�+! · Ps = ⇢

or

�! · ✏ ·!� = ⇢s + ⇢ = ⇢tot (I.37)

Because ! · ✏ · ! is a symmetric operator, the reciprocity theorem holds. For any

two separate configurations of charge, ⇢
1

and ⇢
2

, and potentials, �
1

and �
2

, which are

solutions to equation I.37, the following equation is satisfied:

⌫
dV�

1

⇢
2

=

⌫
dV�

2

⇢
1

(I.38)

Consider the following two charge configurations:

(1) Let a voltage +V
1

/2 be applied to one electrode and a voltage �V
1

/2 be applied

to the other.1 Assume the piezo strain is zero, such that ⇢s = 0. The free charge, ⇢,

will also be zero everywhere except on the surfaces of the electrodes. The electrodes

will be surrounded by a potential, �
1

= rV
1

, where r is the dimensionless Ramo

potential. The electric field, E
1

, is equal to �!�
1

= �!rV
1

= gV
1

, and therefore

g = �!r.

The first electrode will have charge Q
1

= CV
1

, where C is the capacitance, and the

second electrode will have charge �Q
1

. The stored energy is E = 1/2Q
1

V
1

= 1/2CV 2

1

.

In terms of g:

E =

⌫
dV 1

2
⇢
1

�
1

=

⌫
dV 1

2
E

1

· ✏ · E
1

=
1

2

⌫
dV g · ✏ · g V 2

1

(I.39)

1The electrodes’ capacitance to infinity is assumed to be negligible.



APPENDIX I. PIEZOELECTRIC RESONATORS 184

Therefore, the capacitance is given by the equation:

C =

⌫
dV g · ✏ · g (I.40)

(2) Now assume both electrodes are held at ground potential, and a strain is

applied to the piezo generating a charge density, ⇢s, and inducing a charge Q
2

and

�Q
2

on the first and second electrodes respectively.

The reciprocity theorem may be applied to this pair of charge configurations and

potentials. Because �
2

is zero in all locations where ⇢
1

is nonzero, the right hand side

of equation I.38 is zero. The left hand side is equal to:

⌫
dV�

1

⇢
2

=

⌫
dV rV ⇢s + V Q

2

= 0 (I.41)

Therefore, the induced charge, Q
2

, is:

Q
2

= �
⌫

dV r⇢s =

⌫
dV r! · Ps = �

⌫
dV !r · Ps =

⌫
dV g · Ps

=

⌫
dV g · e · s =

�

n

⌫
dV g · e · fn qn =

�

n

kn↵nqn (I.42)

Due to the linearity of Maxwell’s Equations, the total charge, Qind, induced by

both an applied voltage and a strain is the sum of the charges in these two configu-

rations:

Qind = CV +
�

n

kn↵nqn (I.43)

I.5 Dissipation and Impedance

The Euler-Lagrange equations do not include the e↵ects of dissipation. These e↵ects

may be modeled by including a linear damping term in the equations of motion for

the vibrational modes:

q̈n + �nq̇n + !2

nqn = ↵n!
2

nV (I.44)
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In frequency space, this equation has the solution:

(�!2 + i!�n + !2

n)qn = ↵n!
2

nV (I.45)

qn =
↵n!2

n

�!2 + i!�n + !2

n

V (I.46)

The current is the time derivative of the charge:

I = Q̇ind = i!CV +
�

n

i!
mn↵2

n!
4

n

�!2 + i!�n + !2

n

V (I.47)

Therefore, the input admittance of the piezo resonator is:

Y = i!C +
�

n

i!
mn↵2

n!
4

n

�!2 + i!�n + !2

n

= i!C +
�

n

mn↵2

n!
4

n

i! + �n +
!2
n

i!

(I.48)

= i!C +
�

n

1

i!Ln +Rn +
1

i!Cn

(I.49)

This impedance is electrically equivalent to one series RLC circuit for each mode in

parallel with the intrinsic capacitance of the piezo. The RLC values are given by:

Ln =
1

mn↵2

n!
4

n

Cn = mn↵
2

n!
2

n

Rn =
�n

mn↵2

n!
4

n

(I.50)

The RLC circuits may equivalently be described by their impedances, Zn =
⇢

Ln/Cn, resonant frequencies, !n = 1/
 
LnCn, and quality factors, Qn = Zn/Rn,

with:

Zn =
1

mn↵2

n!
3

n

Qn =
!n

�n
(I.51)
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Figure I.1: An equivalent circuit for the electrical behavior of the piezo resonator.

The RLC values are related to these by the following equations:

Ln =
Zn

!n

Cn =
1

!nZn

Rn =
Zn

Qn

(I.52)

I.6 Piezo Properties and Electrically Measurable

Quantities

The following tables list the properties of the piezoelectric material and the piezo

resonator, as well as whether they vary with temperature.

The functions, fi, are eigenfunctions of the elastic wave equation. If K only varies

in magnitude, then the fi should be temperature-independent. Likewise, g depends

only on the electrode geometry and on ✏. If ✏ only varies in magnitude, then g is

also temperature-independent. The invariance of fi and g with temperature may still

hold for certain geometries of the resonator and electrodes, even if the components

of the elasticity and permittivity tensors change independently, as long as there are

no near-degeneracies in the eigenvalues of ⌦̂.

The electrically-measurable properties of the piezo resonator are !n, Qn, Zn, and
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Table I.1: Piezoelectric Material Properties

Property Symbol Variable

Mass Density ⇢ no
Elasticity Tensor K yes

Piezoelectric Tensor e yes
Permittivity Tensor ✏ yes

Table I.2: Resonator Properties

Property Symbol Value Variable

E↵ective Mass mn


dV ⇢f 2

n no
Sti↵ness kn


dV fn ·K · fn yes

Coupling ↵n


dV g · e · fn /kn yes

Capacitance C

dV g · ✏ · g yes

C. The resonator properties, kn and ↵n, may be derived from the electrically measur-

able properties and from the e↵ective mass, mn, which is temperature-independent:

kn = mn!
2

n

↵n =
1⇢

mnZn!3

n

(I.53)



Appendix J

Matlab Code

The following sections contain the Matlab code for the main functions used in exe-

cuting a raster scan. The primary function is Scan.m, which first defines file names

for saving data, calls the initialization script, Setup.m, and reads in the Points.csv

file which defines the points in the raster scan pattern. Setup.m reads the initializa-

tion file, Setup.ini, which contains parameters which control the behavior of the

various functions, and which can be changed from scan to scan. Noise traces are then

acquired for channels 1 and 2, and the function Neutralize.m is called to neutralize

the crystal before entering the for-loop, which executes the raster scan and records

the pulse traces, temperature, and time for each point. Finally, the data is saved to a

.mat file, and copied to a back-up disk and a server, where the raw data is processed

and converted into a two-dimensional charge density map.

1 function Scan(varargin)

2 %Scan(varargin)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Robert Moffatt

5 % July 24, 2014

6 %

7 % This function performs a scan of the MEMS mirror,

8 % and records traces from a burst of laser pulses at

9 % each location.

188
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10 %

11 % Note that the MirrorControl.exe executable must be

12 % run and set to "External Control" mode before this

13 % function is run.

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 %Define Run Name:

17 RunName = 'Run07';

18

19 %Close all Figures:

20 close all

21

22 %Find Iteration Number:

23 if isempty(varargin)

24 iteration = 0;

25 else

26 iteration = varargin{1};
27 end

28

29 %Set Plot Boolean:

30 if length(varargin)>1

31 b plot = varargin{2};
32 else

33 b plot = 0;

34 end

35

36 %Determine Current Time:

37 StartTime = now;

38 tic

39

40 %Get Current Temperatures:

41 StartTemperatures = GetCurrentTemperatures();

42

43 %Define Save Directory:

44 savedirectory = ['E:\CDMS\MATLAB\',RunName,'\RawData\'];
45

46 %Define Filenames:
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47 basename = datestr(StartTime,'yyyy-mm-dd-HHMM');

48 logfilename = ['Scan-',basename,'.log'];

49 datafilename = ['Scan-',basename,'.mat'];

50 infofilename = ['Info-',basename,'.mat'];

51 inifilename = ['Scan-',basename,'.ini'];

52 pointsfilename = ['Scan-',basename,'-Points.csv'];

53

54 %Start Diary:

55 diary([savedirectory,logfilename])

56

57 %Declare Start of Scan:

58 disp(['Scan Commenced at ',basename])

59

60 %Define Variables and Initialize Instruments:

61 Setup

62

63 %Turn on Heater:

64 if TempSetPoint==0

65 heaterpower = 0;

66 else

67 heaterpower = Temp2Power(TempSetPoint);

68 if heaterpower<0

69 heaterpower = 0;

70 end

71 end

72 SetHeaterPower(heaterpower);

73 disp(['Pausing for ',num2str(TempDelay),' seconds.']);

74 pause(TempDelay);

75

76 %Define Scan X and Y Values:

77 M = dlmread('Points.csv');

78 x = M(:,1);

79 y = M(:,2);

80 clear M;

81

82 %Define Number of Points per Scan:

83 Npoints = length(x);
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84

85 %Acquire a Noise Trace:

86 [ch1,t] = TakeNoiseTrace(ai0);

87

88 %Define Length of Signal Vector:

89 Nbins = length(ch1);

90

91 %Preallocate Matrices:

92 N1 = zeros(Nbins,Nnoise,'single');

93 N2 = zeros(Nbins,Nnoise,'single');

94 BN1 = zeros(Nbins,Nnoise,'single');

95 BN2 = zeros(Nbins,Nnoise,'single');

96 CH1 = zeros(Nbins,Npoints,'single');

97 CH2 = zeros(Nbins,Npoints,'single');

98 Times = zeros(1,Npoints,'double');

99

100 %Acquire Noise Traces:

101 disp('Acquiring Noise Traces...')

102 SetBias(0);

103 EnableAmp(1);

104 EnableCh1(1);

105 EnableCh2(1);

106 for i=1:Nnoise

107 N1(:,i) = TakeNoiseTrace(ai0);

108 N2(:,i) = TakeNoiseTrace(ai1);

109 end

110 SetBias(Vbias);

111 for i=1:Nnoise

112 BN1(:,i) = TakeNoiseTrace(ai0);

113 BN2(:,i) = TakeNoiseTrace(ai1);

114 end

115 SetBias(0);

116 EnableCh1(0);

117 EnableCh2(0);

118 EnableAmp(0);

119 disp('Noise Traces Complete.')

120
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121 %Neutralize Crystal:

122 Neutralize();

123

124 %Acquire Signal Traces:

125 disp('Scanning Crystal...')

126 EnableCh1(0);

127 EnableCh2(0);

128 EnableAmp(1);

129 %Allow for Temperature Equilibration:

130 disp(['Pausing for ',num2str(TempDelay),' seconds.']);

131 pause(TempDelay);

132 %Configure Hardware for Burst:

133 ConfigureBurst('pulse');

134 %Define Start Time for Laser Excitation:

135 t start = toc;

136 %Define Time for next Resistance Measurement:

137 t meas = 0;

138 %Create Resistance Array:

139 ThermometerResistance = [];

140 for q=1:Npoints

141 %Determine Time Since Start:

142 t = toc;

143 %Measure Payload Temperature:

144 if t-t start>=t meas

145 R = GetThermometerResistance();

146 disp(['Payload Temperature is ...

',num2str(RuOx3487 Temp Fast(R)),' K.'])

147 ThermometerResistance = cat(1,ThermometerResistance,[t,R]);

148 t meas = t meas+TempInterval;

149 end

150 %Go to Location:

151 MirrorGoTo(x(q),y(q));

152 %Flash XTL if Point Number is Divisible by Bunch Size:

153 if ~mod(q-1,Nbunch)
154 %Turn off Bias:

155 SetBias(0);

156 %Progress Indicator:
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157 progress = ['Iteration ',num2str(iteration),', Point ...

',num2str(q),' of ',num2str(Npoints)];

158 disp(progress)

159 %Flash Crystal:

160 FlashXTL();

161 %Configure Hardware for Burst:

162 ConfigureBurst('pulse');

163 end

164 %Turn on Bias:

165 SetBias(Vbias);

166 %Acquire Traces:

167 EnableCh1(1);

168 CH1(:,q) = TakePulseTrace(ai0);

169 EnableCh1(0);

170 EnableCh2(1);

171 CH2(:,q) = TakePulseTrace(ai1);

172 EnableCh2(0);

173 Times(q) = StartTime+t/86400;

174 end

175

176 disp('Scan Complete.')

177 EnableCh1(0);

178 EnableCh2(0);

179 EnableAmp(0);

180 toc

181

182 %Determine End Time:

183 EndTime = now;

184

185 %Determine Final Temperatures:

186 EndTemperatures = GetCurrentTemperatures();

187

188 diary off

189

190 SaveVariables

191 RsyncScriptsToE

192 RsyncDataToNero
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193 AutoProcess();

194

195 clear all

196 close all

197 end

Setup.m:

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Robert Moffatt

3 % December 10, 2013

4 %

5 % This script sets up the variables used for perform-

6 % ing a scan and initializes instrument IO.

7 %

8 % This script reads configuration parameters from an

9 % ini file using an ini file reader object. The code

10 % for IniConfig.m is free software, and may be down-

11 % loaded from https://www.mathworks.com/matlabcentral

12 % /fileexchange/24992-ini-config/content/IniConfig.m.

13 %

14 % Variable Definitions:

15 % Tsample = DAQ Sampling Period (seconds)

16 % Tpulse = Pulse Period (seconds)

17 % Npulse = Number of Pulses

18 % BiasOffset = Bias Offset Voltage (V)

19 % Vbias = Bias Voltage (V)

20 % Tbias = Bias Delay Time (s)

21 % ao = Bias Voltage (analog output)

22 % ai0 = Ch1 (analog input)

23 % ai1 = Ch2 (analog input)

24 % dio trig = Trigger (digital output)

25 % dio amp = Amplifier enable (digital output)

26 % dio en1 = Ch1 enable (digital output)

27 % dio en2 = Ch2 enable (digital output)

28 % XTLPPM = DAQ Crystal Freq. Offset in PPM

29 % Tshift = DAQ Time Shift (us)

30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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31

32 %Define Global Variables:

33 global ini

34

35 %Create INI File Reader and Open Initialization File:

36 ini = IniConfig();

37 ini.ReadFile('Setup.ini');

38

39 %Read in Scan Parameters:

40 Vbias = ini.GetValues('SCAN','BIASVOLT');

41 Tbias = ini.GetValues('SCAN','BIASDELAY');

42 Npulse = ini.GetValues('SCAN','NPULSE');

43 Tpulse = ini.GetValues('SCAN','TPULSE');

44 Wpulse = ini.GetValues('SCAN','WPULSE');

45 Nnoise = ini.GetValues('SCAN','NNOISE');

46 Nbias = ini.GetValues('SCAN','NBIAS');

47 TempSetPoint = ini.GetValues('SCAN','TEMPERATURE');

48 TempDelay = ini.GetValues('SCAN','TEMPDELAY');

49 TempInterval = ini.GetValues('SCAN','TEMPINTERVAL');

50

51 %Read in Bunch Size:

52 Nbunch = ini.GetValues('LASERFLASH','NBUNCH');

53

54 %Read in Hardware Configuration:

55 LaserAtten = ini.GetValues('HARDWARE','ATTENUATION');

56

57 %Connect and Initialize GPIB Instruments:

58 ConnectAndInitializeGPIBInstruments

59

60 %Connect and Initialize NI DAQ:

61 ConnectAndInitializeNIDAQ

Setup.ini:

1 ;###################################################

2 ; Configuration File for Laser Scanning Measurement

3 ;

4 ; Lines preceded with ; are ignored.
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5 ;###################################################

6

7 [SCAN] ; Defines the parameters of the scan.

8 BIASVOLT=-1.2 ; Bias voltage (V).

9 TEMPERATURE=0 ; Define temperature set point (K).

10 TEMPDELAY=120 ; Define equilibration time for changing ...

temperature (s).

11 TEMPINTERVAL=60 ; Define payload temperature measurement interval ...

(s).

12 BIASDELAY=0.1 ; Bias delay time in (s).

13 NPULSE=20 ; Number of laser pulses per location.

14 TPULSE=1053.1e-6 ; Laser pulse period (s).

15 WPULSE=100e-9 ; Laser pulse width (s).

16 NNOISE=400 ; Number of noise traces to acquire before each scan.

17 NEUTSOURCE=LASER ; Define source of neutralization.

18 AMPENABLEDELAY=1 ; Delay after amplifier enable (s).

19 CHANENABLEDELAY=0.02 ;Delay after channel enable/disable (s).

20 MIRRORDELAY=0.1 ; Delay after moving mirror (s).

21 ENABLEMODE=0 ; Define enable mode. 0 = Only one channel on at ...

once.

22

23 [LASERFLASH]

24 TYPE=DIFFUSE ; Flash type ("DIFFUSE" or "SPOT").

25 NBUNCH=1 ; Number of points between flashes.

26 FLASHTIME=10e-3 ; Flash time (s).

27 COOLTIME=0.1 ; Cool time (s).

28 XSPOT=SAME ; X-location for 'SPOT' flash type. 'SAME' keeps ...

current position.

29 YSPOT=SAME ; Y-location for 'SPOT' flash type. 'SAME' keeps ...

current position.

30

31 [LASERNEUT]

32 REDUCTFACT=0 ; CW laser power reduction factor during ...

neutralization (dB).

33 NEUTTIME=0 ; Neutralization time (s).

34 COOLTIME=1 ; Cool time (s).

35
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36 [INSTRUMENTS] ; List of instruments.

37 FUNCGEN=AGILENT 33220A

38 HEATER=AGILENT E3642A

39 THERMOMETER=KEITHLEY 2400

40 LASER=BNC 6040

41 LEDFLASHER=AGILENT 33120A

42 VOLTSOURCE=NI USB6009

43 DAQ=NI USB6009

44

45 [GPIB] ; List of GPIB Addresses.

46 FUNCGEN=10

47 HEATER=5

48 LASER=6

49 LEDFLASHER=11

50 THERMOMETER=24

51

52 [FUNCGEN] ;Function Generator GPIB Commands

53 OUTP:LOAD=INF ; Output load.

54 FUNC=PULS ; Pulse mode.

55 FUNC:PULS:WIDTH=10E-6 ; Pulse width (default value).

56 PULS:PER=1E-3 ; Pulse period (default value).

57 BURS:NCYC=1 ; Number of cycles per burst (default value).

58 BURS:STAT=ON ; Turn on Burst mode.

59 TRIG:SOUR=EXT ; Burst trigger source.

60 TRIG:SLOP=POS ; Burst trigger slope.

61 VOLT:LOW=0 ; Lower voltage limit.

62 VOLT:HIGH=5 ; Upper voltage limit.

63 OUTP=ON ; Turn on output.

64

65 [THERMOMETER] ; Default Settings for the Thermometer

66 SENS:FUNC="RES" ; Set to resistance mode.

67 SENS:RES:RANG=20e3 ; Set resistance range.

68 SENS:RES:MODE=MAN ; Set to manual resistance mode.

69 SENS:RES:OCOM=OFF ; Disable offset compensation.

70 SENS:VOLT:PROT=1 ; Set voltage compliance for manual setting.

71 SENS:CURR:PROT=10e-6 ; Set current compliance for manual setting.

72 SOUR:FUNC=CURR ; Set to constant-current mode.
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73 SOUR:CURR=1e-6 ; Set excitation current level.

74 SYST:RSEN=ON ; Set to 4-wire mode.

75 SENS:CURR:NPLC=10 ; Number of power line cycles in signal average.

76 OUTP=ON ; Turn on output.

77

78 [HEATER] ; Default settings for heater.

79 VMAX=20 ; Maximum voltage output (V).

80 VOLT=0 ; Initial voltage setting (V).

81 CURR=0.1 ; Current limit (A).

82 OUTP=ON ; Turn off output.

83

84 [LASER]

85 MO=PL ; Pulse mode.

86 TR=EP ; External trigger, positive edge.

87 TR ET=1 ; External trigger, at 1V.

88 TI WD=100E-9 ; Pulse width (default value).

89 LV PK=2E-3 ; Pulse peak power.

90 LV AV=0E-3 ; CW power (default value).

91

92 [LEDFLASHER]

93 OUTP=OFF ; Turn off output.

94 OUTP:LOAD=INF ; Output load.

95 FUNC=PULS ; Pulse mode.

96 FUNC:PULS:WIDTH=100E-6 ; Pulse width (default value).

97 PULS:PER=1E-3 ; Pulse period (default value).

98 BURS:NCYC=1 ; Number of cycles per burst (default value).

99 BURS:STAT=ON ; Turn on Burst mode.

100 TRIG:SOUR=EXT ; Burst trigger source.

101 TRIG:SLOP=POS ; Burst trigger slope.

102 VOLT:LOW=0 ; Lower voltage limit.

103 VOLT:HIGH=5 ; Upper voltage limit.

104

105 [HARDWARE]

106 ;These hardware settings are controlled by the equipment ...

configuration,

107 ;and cannot be changed from software. The hardware configuration ...

must be
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108 ;checked to match these values before each scan.

109 THERMOMETER=3487 ; Part number of RuOx thermometer.

110 HEATER=131000 ; Resistance of heater in Ohms.

111 XDIFF=0.90 ; X-location of diffuse scatterer.

112 YDIFF=-1.00 ; Y-location of diffuse scatterer.

113 ATTENUATION=20 ; Attenuator on Laser Output in dB.

114 IDBIAS1=2 ; Ch1 Id bias current (mA)

115 IDBIAS2=2 ; Ch2 Id bias current (mA)

116 CH1GAIN=1 ; Ch1 extra gain (default is 1).

117 CH2GAIN=1 ; Ch2 extra gain (default is 1).

118

119 [DAQ]

120 FS=48000 ; DAQ Sample Rate in Hz.

121 SPT=1024 ; Samples per Trigger. Must be less than 32768.

122 XTLPPM=55 ; DAQ Oscillator Offset in PPM.

123 TSHIFT=21 ; DAQ Time Shift in Microseconds:

124

125 [DAQCONNECTIONS]

126 TRIGIN=PFIO ; Trigger input.

127 TRIGOUT=P13 ; Trigger output.

128 CH1=AI0 ; Ch1 input.

129 CH2=AI1 ; Ch2 input.

130 IXTL=AI2 ; Current monitor input.

131 VXTL=NC ; Bias monitor input.

132 AMPEN=P12 ; Amplifier enable output.

133 EN1=P11 ; Ch1 enable output.

134 EN2=P10 ; Ch2 enable output.

135

136 [VOLTSOURCE]

137 BIASOFFSET=2.487 ; Offset voltage for NIDAQ bias control.

138 BIASSCALE=1.0086 ; Voltage scaling for NIDAQ bias control.

ConnectAndInitializeGPIBInstruments.m:

1 %Define Global Variables:

2 global VFunctionGenerator VHeater VLaser VLEDFlasher VThermometer

3

4 %Connect to Function Generator:
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5 address = ini.GetValues('GPIB','FUNCGEN');

6 VFunctionGenerator = ...

visa('agilent',['GPIB0::',num2str(address),'::INSTR']);

7 fopen(VFunctionGenerator);

8 set(VFunctionGenerator,'EOSMode','read');

9 set(VFunctionGenerator,'EOSCharCode','LF');

10

11 %Set Function Generator Initial Configuration:

12 [keys, count keys] = ini.GetKeys('FUNCGEN');

13 name = ini.GetValues('INSTRUMENTS','FUNCGEN');

14 disp(['Sending GPIB commands to ',name,':'])

15 for i=1:count keys

16 value = ini.GetValues('FUNCGEN',keys{i});
17 disp([' ',keys{i},' ',num2str(value)])

18 fprintf(VFunctionGenerator,[keys{i},' ',num2str(value)]);

19 end

20

21 %Connect to Thermometer:

22 address = ini.GetValues('GPIB','THERMOMETER');

23 VThermometer = ...

visa('agilent',['GPIB0::',num2str(address),'::INSTR']);

24 fopen(VThermometer);

25 set(VThermometer,'EOSMode','read');

26 set(VThermometer,'EOSCharCode','LF');

27

28 %Set Heater Initial Configuration:

29 [keys, count keys] = ini.GetKeys('THERMOMETER');

30 name = ini.GetValues('INSTRUMENTS','THERMOMETER');

31 disp(['Sending GPIB commands to ',name,':'])

32 for i=1:count keys

33 value = ini.GetValues('THERMOMETER',keys{i});
34 disp([' ',keys{i},' ',num2str(value)])

35 fprintf(VThermometer,[keys{i},' ',num2str(value)]);

36 end

37

38

39 %Connect to Heater:
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40 address = ini.GetValues('GPIB','HEATER');

41 VHeater = visa('agilent',['GPIB0::',num2str(address),'::INSTR']);

42 fopen(VHeater);

43 set(VHeater,'EOSMode','read');

44 set(VHeater,'EOSCharCode','LF');

45

46 %Set Heater Initial Configuration:

47 [keys, count keys] = ini.GetKeys('HEATER');

48 name = ini.GetValues('INSTRUMENTS','HEATER');

49 disp(['Sending GPIB commands to ',name,':'])

50 for i=1:count keys

51 value = ini.GetValues('HEATER',keys{i});
52 disp([' ',keys{i},' ',num2str(value)])

53 fprintf(VHeater,[keys{i},' ',num2str(value)]);

54 end

55

56 %Connect to Laser:

57 address = ini.GetValues('GPIB','LASER');

58 VLaser = visa('agilent',['GPIB0::',num2str(address),'::INSTR']);

59 fopen(VLaser);

60 set(VLaser,'EOSMode','read');

61 set(VLaser,'EOSCharCode','LF');

62

63 %Set Laser Initial Configuration:

64 [keys, count keys] = ini.GetKeys('LASER');

65 name = ini.GetValues('INSTRUMENTS','LASER');

66 disp(['Sending GPIB commands to ',name,':'])

67 for i=1:count keys

68 value = ini.GetValues('LASER',keys{i});
69 disp([' ',keys{i},' ',num2str(value)])

70 fprintf(VLaser,[keys{i},' ',num2str(value)]);

71 end

72

73 %Connect to LED Flasher:

74 address = ini.GetValues('GPIB','LEDFLASHER');

75 VLEDFlasher = visa('agilent',['GPIB0::',num2str(address),'::INSTR']);

76 fopen(VLEDFlasher);
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77 set(VLEDFlasher,'EOSMode','read');

78 set(VLEDFlasher,'EOSCharCode','LF');

79

80 %Set LED Flasher Initial Configuration:

81 [keys, count keys] = ini.GetKeys('LEDFLASHER');

82 name = ini.GetValues('INSTRUMENTS','LEDFLASHER');

83 disp(['Sending GPIB commands to ',name,':'])

84 for i=1:count keys

85 value = ini.GetValues('LEDFLASHER',keys{i});
86 disp([' ',keys{i},' ',num2str(value)])

87 fprintf(VLEDFlasher,[keys{i},' ',num2str(value)]);

88 end

89

90 clear keys count keys name address

ConnectAndInitializeNIDAQ.m:

1 %Define Global Variables:

2 global ao ai0 ai1 ai2 dio vc

3

4 %Create input/output objects:

5 ai0 = analoginput('nidaq','Dev1');

6 ai1 = analoginput('nidaq','Dev1');

7 ai2 = analoginput('nidaq','Dev1');

8 dio = digitalio('nidaq','Dev1');

9 ao = analogoutput('nidaq','Dev1');

10

11 %Analog Data will be acquired from AI channels 0, 1, and 2:

12 aichan0 = addchannel(ai0,0);

13 aichan1 = addchannel(ai1,1);

14 aichan2 = addchannel(ai2,2);

15

16 %Configure the analog input for single-ended or differential mode:

17 set(ai0,'InputType','SingleEnded');

18 set(ai0,'triggertype','hwdigital','triggercondition','positiveedge')

19 set(ai1,'InputType','SingleEnded');

20 set(ai1,'triggertype','hwdigital','triggercondition','positiveedge')

21 set(ai2,'InputType','SingleEnded');
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22 set(ai2,'triggertype','immediate')

23

24 %Set Sample Rate and Samples per Trigger:

25 spt = ini.GetValues('DAQ','SPT');

26 Fs = ini.GetValues('DAQ','FS');

27 ai0.SampleRate = Fs;

28 ai0.SamplesPerTrigger = int16(spt);

29 spt = get(ai0,'SamplesPerTrigger');

30 Tsample = spt/Fs;

31 ai1.SampleRate = Fs;

32 ai1.SamplesPerTrigger = int16(spt);

33 ai2.SampleRate = Fs;

34 ai2.SamplesPerTrigger = int16(spt);

35

36 %Analog Output will be sent to AO channel 0:

37 aochan = addchannel(ao,0);

38 Voffset = ini.GetValues('VOLTSOURCE','BIASOFFSET');

39 putsample(ao,Voffset) %Set bias output to 0V.

40 vc = 0; %Define the current bias voltage to be 0V.

41

42 %Digital Output will be sent to Pin 11:

43 addline(dio,8:11,'out');

44

45 %Define Crystal Freq. Offset in PPM:

46 XTLPPM = ini.GetValues('DAQ','XTLPPM');

47

48 %Define DAQ Time Shift in Microseconds:

49 Tshift = ini.GetValues('DAQ','TSHIFT');

1 function Neutralize()

2 %Neutralize()

3 %Neutralizes the crystal.

4

5 global ini

6

7 neuttime = ini.GetValues('LASERNEUT','NEUTTIME');
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8 cooltime = ini.GetValues('LASERNEUT','COOLTIME');

9 ReductionFactor = ini.GetValues('LASERNEUT','REDUCTFACT');

10 xdiff = ini.GetValues('HARDWARE','XDIFF');

11 ydiff = ini.GetValues('HARDWARE','YDIFF');

12

13 if neuttime==0

14 pause(cooltime)

15 return

16 end

17

18 %Announce Neutralization:

19 disp('Neutralizing Crystal.')

20

21 %Record original mirror location:

22 L = MirrorLocation();

23

24 %Go to diffusor location:

25 MirrorGoTo(xdiff,ydiff);

26

27 %Set Bias to 0V:

28 SetBias(0);

29

30 %Turn off Amplifier:

31 EnableAmp(0);

32

33 %Illuminate Crystal:

34 IlluminateXTL(neuttime,ReductionFactor)

35

36 %Return mirror to original location:

37 MirrorGoTo(L(1),L(2));

38 pause(cooltime);

39

40 %Turn on Amplifier:

41 EnableAmp(1);

42

43 end
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1 function FlashXTL()

2 %FlashXTL()

3 %Flashes Crystal.

4

5 global ini VLaser

6

7 type = ini.GetValues('LASERFLASH','TYPE');

8 flashtime = ini.GetValues('LASERFLASH','FLASHTIME');

9 cooltime = ini.GetValues('LASERFLASH','COOLTIME');

10

11 if flashtime==0

12 pause(cooltime)

13 return

14 end

15

16 %Announce Flash:

17 disp(' Flashing Crystal.')

18

19 %Go to diffusor location if type 'DIFFUSE'.

20 %If type 'SPOT', then go to spot location.

21 L = MirrorLocation();

22 switch type

23 case 'DIFFUSE'

24 xdiff = ini.GetValues('HARDWARE','XDIFF');

25 ydiff = ini.GetValues('HARDWARE','YDIFF');

26 MirrorGoTo(xdiff,ydiff);

27 case 'SPOT'

28 xspot = ini.GetValues('LASERFLASH','XSPOT');

29 if strcmp(xspot,'SAME')

30 xspot = L(1);

31 end

32 yspot = ini.GetValues('LASERFLASH','YSPOT');

33 if strcmp(yspot,'SAME')

34 yspot = L(2);

35 end

36 MirrorGoTo(xspot,yspot);

37 end
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38

39 %Illuminate Crystal:

40

41 %Set Laser Pulse Width:

42 fprintf(VLaser,['TI WD ',num2str(flashtime)]);

43

44 %Set Laser to Single Cycle:

45 fprintf(VLaser,'TR SC');

46

47 %Read Attenuator Level:

48 LaserAtten = ini.GetValues('HARDWARE','ATTENUATION');

49

50 %Report Laser Power:

51 p = 2e-3*10ˆ(-LaserAtten/10);

52 if p>1e-3

53 disp([' Illuminating XTL with ',num2str(p*1e3),' mW'])

54 elseif p>1e-6

55 disp([' Illuminating XTL with ',num2str(p*1e6),' uW'])

56 else

57 disp([' Illuminating XTL with ',num2str(p*1e9),' nW'])

58 end

59

60 %Trigger the Laser Pulse:

61 fprintf(VLaser,'EX');

62

63 %Wait for Completion of Flash:

64 pause(flashtime+0.1)

65

66 %Reset Laser Initial Configuration:

67 [keys, count keys] = ini.GetKeys('LASER');

68 for i=1:count keys

69 value = ini.GetValues('LASER',keys{i});
70 fprintf(VLaser,[keys{i},' ',num2str(value)]);

71 end

72

73 %Return mirror to original location:

74 MirrorGoTo(L(1),L(2));
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75

76 pause(cooltime)

77 end

1 function IlluminateXTL(t,varargin)

2 %IlluminateXTL(t,{p})
3 %Illuminates crystal with p watts for t seconds.

4

5 global ini VLaser

6

7 %Define Maximum Laser Output Power:

8 pmax = 2e-3;

9

10 %Define Time Offset:

11 t offset = 0.07;

12

13 %Configure Laser for CW:

14 fprintf(VLaser,'MO CW');

15 pause(1)

16

17 %Read Attenuation Level and Reduction Factor:

18 LaserAtten = ini.GetValues('HARDWARE','ATTENUATION');

19 %ReductionFactor = ini.GetValues('LASERNEUT','REDUCTFACT');

20

21 %Determine Laser Power:

22 if isempty(varargin)

23 ReductionFactor = 0;

24 else

25 ReductionFactor = varargin{1};
26 end

27

28 p output = pmax*10ˆ(-ReductionFactor/10);

29 p = p output*10ˆ(-LaserAtten/10);

30

31 %Correct p if too large:

32 if p output>pmax
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33 disp(' Warning: Attenuation too large. Laser power will be ...

reduced.')

34 p output = pmax;

35 p = p output*10ˆ(-LaserAtten/10);

36 end

37

38 %Turn on Laser:

39 fprintf(VLaser,['LV AV ',num2str(p output)]);

40 if p>1e-3

41 disp([' Illuminating XTL with ',num2str(p*1e3),' mW'])

42 elseif p>1e-6

43 disp([' Illuminating XTL with ',num2str(p*1e6),' uW'])

44 else

45 disp([' Illuminating XTL with ',num2str(p*1e9),' nW'])

46 end

47

48 %Wait for t seconds:

49 if t>3600

50 disp([' Pausing for ',num2str(t/3600),' hr.'])

51 elseif t>60

52 disp([' Pausing for ',num2str(t/60),' min.'])

53 else

54 disp([' Pausing for ',num2str(t),' s.'])

55 end

56 pause(t+t offset);

57

58 %Turn off Laser:

59 fprintf(VLaser,'LV AV 0');

60 disp(' Illumination off.')

61

62 %Return to Pulse Mode:

63 fprintf(VLaser,'MO PL');

64 pause(1)

65

66 end
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1 function MirrorGoTo(x,y)

2 %MirrorGoTo(x,y)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %Robert Moffatt

5 %June 14, 2013

6 %

7 %MirrorGoTo moves the Mirrorcle MEMS mirror by

8 %writing the x and y position to the file, pos-

9 %ition.txt, which is read by the MirrorControl

10 %executable.

11 %

12 %The position coordinates, x and y, are floats

13 %between the values of -1 and 1.

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 global ini

17

18 %Read in Mirror Delay:

19 if exist('ini','var')

20 delay = ini.GetValues('SCAN','MIRRORDELAY');

21 else

22 delay = 0;

23 end

24

25 %Directory of Position File:

26 filepath='C:\Program ...

Files\MirrorcleTech\MTIDeviceSerial\SDK-Cpp\Debug\';
27

28 %Announce Mirror Motion:

29 %disp([' Moving Mirror to ...

[',num2str(x,'%0.3f'),',',num2str(y,'%0.3f'),']'])

30 %Write Position File:

31 for i=1:10

32 try

33 dlmwrite([filepath,'position.txt'],[x;y])

34 break

35 catch
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36 pause(0.0005)

37 if i==10

38 disp('Mirror movement failed.');

39 end

40 end

41 end

42

43 %Settling Time for Mirror Control:

44 pause(delay + 0.01);

45

46 end

1 function L = MirrorLocation()

2 %L = MirrorLocation()

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Robert Moffatt

5 % September 19, 2013

6 %

7 % MirrorLocation returns the current x and y pos-

8 % ition of the Mirrorcle MEMS mirror. The x and y

9 % values are read from the file, position.txt,

10 % which is read by the MirrorControl executable.

11 %

12 % The position coordinates, x and y, are floats

13 % between the values of -1 and 1.

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 %Directory of Position File:

17 filepath='C:\Program ...

Files\MirrorcleTech\MTIDeviceSerial\SDK-Cpp\Debug\';
18 %Read Position Vector:

19 L = dlmread([filepath,'position.txt']);

20 end

1 function SetBias(v)
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2 %SetBias(v)

3 global ini ao vc

4

5 %Return if requested voltage equals current voltage setting:

6 if v==vc

7 return

8 end

9

10 %Read in voltage source offset and scale:

11 Voffset = ini.GetValues('VOLTSOURCE','BIASOFFSET');

12 Vscale = ini.GetValues('VOLTSOURCE','BIASSCALE');

13

14 %Read in Bias Delay:

15 Tbias = ini.GetValues('SCAN','BIASDELAY');

16

17 %Report new bias voltage and put new sample on NIDAQ output:

18 disp([' Bias Voltage set to ',num2str(v),'V'])

19 putsample(ao,Voffset+v*Vscale)

20 vc = v;

21

22 pause(Tbias);

23 end

1 function Tburst = ConfigureBurst(type)

2 %ConfigureBurst(type)

3

4 global ini VLaser VFunctionGenerator

5

6 switch type

7 case 'pulse'

8 Npulse = ini.GetValues('SCAN','NPULSE');

9 Tpulse = ini.GetValues('SCAN','TPULSE');

10 Wpulse = ini.GetValues('SCAN','WPULSE');

11 fprintf(VFunctionGenerator,['BURS:NCYC ',num2str(Npulse)]);

12 fprintf(VFunctionGenerator,['PULS:PER ...

',num2str(Tpulse,'%10.8e')]);



APPENDIX J. MATLAB CODE 212

13 fprintf(VLaser,['TI WD ',num2str(Wpulse)]);

14 Tburst = Npulse*Tpulse;

15 end

16

17

18 end

1 function [data,time] = TakeNoiseTrace(ai)

2 %TakeNoiseTrace(ai)

3

4 %Make Trigger Immediate:

5 set(ai,'triggertype','immediate')

6

7 %Start Acquisition:

8 start(ai);

9

10 %Wait for the acquisition to complete:

11 wait(ai,2);

12

13 %Acquire the data into the MATLAB workspace:

14 [data,time] = getdata(ai);

15

16 %Stop Analog Input:

17 stop(ai)

18

19 %Reset Trigger to Digital Input:

20 set(ai,'triggertype','hwdigital','triggercondition','positiveedge')

21

22 end

1 function [data,time] = TakePulseTrace(ai)

2 %TakePulseTrace(ai,{Vb})
3

4 %Prepare the Trigger:

5 TriggerOut(0);
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6

7 %Start Acquisition:

8 start(ai);

9

10 %Trigger the Pulse:

11 TriggerOut(1);

12

13 %Wait for the acquisition to complete:

14 wait(ai,2);

15

16 %Acquire the data into the MATLAB workspace:

17 [data,time] = getdata(ai);

18

19 %Stop Analog Input:

20 stop(ai)

21

22 %Reset Trigger:

23 TriggerOut(0);

24 end

1 function EnableAmp(value)

2 %EnableAmp(value)

3 global ini dio

4

5 %Define amplifier enable delay:

6 Tenabledelay = ini.GetValues('SCAN','AMPENABLEDELAY');

7

8 %Set digital output:

9 putvalue(dio.Line(3),value)

10

11 %Pause for amplifier enable delay:

12 pause(Tenabledelay)

13

14 end



APPENDIX J. MATLAB CODE 214

1 function EnableCh1(value)

2 %EnableAmp(value)

3 global dio ini

4

5 %Define channel enable delay:

6 Tenabledelay = ini.GetValues('SCAN','CHANENABLEDELAY');

7

8 %Set digital output:

9 putvalue(dio.Line(2),value)

10

11 %Pause for amplifier enable delay:

12 pause(Tenabledelay)

13

14 end

1 function EnableCh2(value)

2 %EnableAmp(value)

3 global dio ini

4

5 %Define channel enable delay:

6 Tenabledelay = ini.GetValues('SCAN','CHANENABLEDELAY');

7

8 %Set digital output:

9 putvalue(dio.Line(1),value)

10

11 %Pause for amplifier enable delay:

12 pause(Tenabledelay)

13

14 end

1 function T = GetCurrentTemperatures()

2 %T = GetCurrentTemperatures()

3
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4 [~,result] = system('C:\cygwin\bin\bash -c ...

"~/Scripts/get current temperatures.sh"');

5

6 T = str2num(result);

7

8 end

1 function [ resistance ] = GetThermometerResistance()

2 % [ resistance ] = GetThermometerResistance()

3 %GetThermometerResistance Returns the current resistance of ...

thermometer

4

5 global VThermometer

6

7 fprintf(VThermometer,'READ?');

8 reply = fscanf(VThermometer);

9 values = regexp(reply,'([ˆ ,:]*)','tokens');

10

11 resistance = str2double(values{3}{1});
12

13 end

1 function T = GRT2Temp Fast(R)

2 %T = GRT2Temp Fast(R)

3

4 %Find Good Values of R:

5 n = 1:length(R);

6 b = (R>0);

7 Rgood = R(b);

8 ngood = n(b);

9

10 %Interpolate R over Bad Regions:

11 if length(ngood)>1

12 R = interp1(ngood,Rgood,n,'linear','extrap');

13 end
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14

15 %Find Logarithm of R:

16 lR = log(R);

17

18 %Best Fit Parameters:

19 a = 0.6842;

20 b = 4.306;

21 c = 2.485;

22 d = -0.8605;

23 e = 2.91;

24

25 %Find Best-Fit Interpolated Logarithm of Temperature:

26 lT = a*sqrt((lR-b).ˆ2+c)+d*lR+e;

27

28 %Define Temperature:

29 T = exp(lT);

30 end

1 function T = RuOx3487 Temp Fast(R)

2 %T = RuOx3487 Temp Fast(R)

3

4 %Find Good Values of R:

5 n = 1:length(R);

6 b = (R>0);

7 Rgood = R(b);

8 ngood = n(b);

9

10 %Interpolate R over Bad Regions:

11 if length(ngood)>1

12 R = interp1(ngood,Rgood,n,'linear','extrap');

13 end

14

15 %Find Logarithm of R:

16 lR = log(R);

17

18 %Best Fit Parameters:
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19 a = 3.597;

20 b = 7.101;

21 c = 0.3159;

22 d = -4.571;

23 e = 32.36;

24

25 %Find Best-Fit Interpolated Logarithm of Temperature:

26 lT = a*sqrt((lR-b).ˆ2+c)+d*lR+e;

27

28 %Define Temperature:

29 T = exp(lT);

30 end

SaveVariables.m:

1 DisconnectGPIBInstruments

2 DisconnectNIDAQ

3

4 disp('Writing INI file.')

5 ini.WriteFile([savedirectory,inifilename])

6 disp('Deleting ini object.')

7 delete(ini)

8 disp('Clearing ini workspace variable.')

9 clear ini;

10

11 disp('Saving Points File.')

12 dlmwrite([savedirectory,pointsfilename],[x,y])

13

14 disp('Saving Data File.')

15 save([savedirectory,datafilename])

16

17 disp('Saving Info File.')

18 save([savedirectory,infofilename],'StartTime',...

19 'StartTemperatures','EndTime','EndTemperatures')

DisconnectGPIBInstruments.m:

1 %Turn off Heater:
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2 disp('Turning off heater.')

3 SetHeaterVoltage(0);

4

5 %Turn off Thermometer:

6 disp('Turning off Thermometer.')

7 EnableThermometer(0);

8

9 %Disconnect Function Generator:

10 disp('Disconnecting Function Generator.')

11 fclose(VFunctionGenerator);

12 delete(VFunctionGenerator);

13 clear VFunctionGenerator;

14

15 %Disconnect Thermometer:

16 disp('Disconnecting Thermometer.')

17 fclose(VThermometer);

18 delete(VThermometer);

19 clear VThermometer;

20

21 %Disconnect Heater:

22 disp('Disconnecting Heater.')

23 fclose(VHeater);

24 delete(VHeater);

25 clear VHeater;

26

27 %Disconnect LED Flasher:

28 disp('Disconnecting LED Flasher.')

29 fclose(VLEDFlasher);

30 delete(VLEDFlasher);

31 clear VLEDFlasher;

32

33 %Disconnect Laser:

34 disp('Disconnecting Laser.')

35 fclose(VLaser);

36 delete(VLaser);

37 clear VLaser;
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DisconnectNIDAQ.m:

1 disp('Resetting Bias Voltage.')

2 SetBias(0);

3

4 disp('Deleting IO Channels.')

5 delete(ai0)

6 delete(ai1)

7 delete(ai2)

8 delete(dio)

9 delete(ao)

10

11 disp('Clearing IO Variables.')

12 clear('ai0','ai1','ai2','dio','ao','aichan0','aichan1',...

13 'aichan2','aochan','ans')

RsyncScriptsToE.m:

1 system(['rsync --verbose --progress --stats --compress ',...

2 ' --recursive --times --links --chmod=ugo+rwx ',...

3 '../ /cygdrive/e/CDMS/MATLAB/',RunName,'/'])

RsyncDataToNero.m:

1 localdirectory = ['/cygdrive/e/CDMS/MATLAB/',RunName,'/'];

2 remotedirectory = ['/scratch/rmoffatt/',RunName,'/'];

3 system(['rsync --verbose --progress --stats --compress ',...

4 '--rsh=''ssh -p26'' --recursive --times --links ...

--chmod=ugo+rwx ',...

5 localdirectory,' rmoffatt@nero.stanford.edu:',remotedirectory])

6

7 localsimdirectory = '/cygdrive/e/CDMS/MATLAB/Simlogger/';

8 remotesimdirectory = '/scratch/rmoffatt/Simlogger/';

9 system(['rsync --verbose --progress --stats --compress ',...

10 '--rsh=''ssh -p26'' --recursive --times --links ...

--chmod=ugo+rwx ',...

11 localsimdirectory,' ...

rmoffatt@nero.stanford.edu:',remotesimdirectory])

12
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13 system(['ssh -t -t -p26 rmoffatt@nero.stanford.edu ',...

14 '"chmod ugo+rwx ',remotedirectory,'RawData/*"'])

1 function AutoProcess()

2 %AutoProcess()

3 %Automatically process data on nero.

4

5 system(['C:\cygwin\bin\bash -c "cd ~/Scripts/; ./autoprocess.sh']);

6

7 end

1 function temp = Power2Temp( power )

2 %POWER2TEMP Summary of this function goes here

3 % Detailed explanation goes here

4

5 data=load('PowerSweep825.mat');

6 temp = interp1(data.P,data.T,power);

7

8 end

1 function [ actual power ] = SetHeaterPower(power)

2 %[ actual power ] = set power(power)

3 %SET POWER This function sets the voltage of the Agilent

4 % so that the power of the heater is the input arg.

5

6 global VHeater ini

7

8 % Read in resistance of heater from ini file

9 resistance = ini.GetValues('HARDWARE','HEATER');

10

11 % Calculate voltage setting from power and resistance

12 voltage = sqrt(resistance*power/1000);

13



APPENDIX J. MATLAB CODE 221

14 % Read in maximum voltage:

15 Vmax = ini.GetValues('HEATER','VMAX');

16

17 %Reduce voltage if it exceed Vmax:

18 if voltage > Vmax

19 disp('Power too high');

20 voltage = Vmax;

21 end

22

23 actual power = 1000*voltageˆ2/resistance;

24

25 disp(['Setting heater to ',num2str(actual power),' mW.']);

26

27 fprintf(VHeater,['VOLT ',num2str(voltage)]);

28

29 end

1 function power = Temp2Power( temp )

2 %TEMP2POWER Summary of this function goes here

3 % Detailed explanation goes here

4

5 data=load('PowerSweep825.mat');

6 power = interp1(data.T,data.P,temp);

7

8 end
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