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Appendix A. Monte Carlo Validation
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Figure A.8: dy distributions of the four tracks produced in the Ag — AFn™ decay for
data (black) and MC' (red).
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Figure A.9: g distributions of the four tracks produced in the Ag — AFr™ decay for
data (black) and MC' (red).
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Appendix A. Monte Carlo Validation
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Figure A.10: zy distributions of the four tracks produced in the Ag — Afn™ decay for
data (black) and MC (red).
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Figure A.11: n distributions of the four tracks produced in the A(b) — Af7~ decay for
data (black) and MC' (red).
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Appendix B

Physics Background Study

In Chap. 5 we extracted the signal yields of the AY — Af7~7T7~ after the
veto on the charmed resonant A decay modes, with A} into a pK 7" final state.
A not biased extraction of these yields required an accurate modeling of the back-
ground shape and in particular of the physical background contributing into the
AY mass window.
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Figure B.1: AM~—" MC distribution ofE?s) — D(:;+7T_7T+7T_ (with inclusive DE:))+

decay modes).

Considering the inclusive AY — AF7~ 777~ candidates (see Fig. 5.2(a) and Fig. 5.2(b))
and also when the distribution is done for the A) — Af7~ 77, by vetoing the
A.(2595)T, A.(2625)T, ¥.(2455)T and X.(2455)° resonances (see Fig. 5.10(a) and
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Appendix B. Physics Background Study

Fig. 5.10(b)), the E(()S) — Dg:))+7r_7r+7r_1, with inclusive DE:)H decays modes, can

be assumed as the main sources of the physical background to the A) — Afr~ 7 7~
signal. This kind of background occurs, for example, in the D" — K~ 77" decay
mode when one of the two 7+ produced in the DT decay is assigned the proton
mass, and the combination of the three particles form an invariant mass compa-
tible with the AT so that the combination of the six tracks falls in the AY mass
region as well for a generic decay with an efficiency dependent on the D™+ decay
mode.

Just as an example, we present here the study done to determine the modeling
of the background for the A) — Afx~ 777~ without charmed resonant decay
modes (after applying the veto on the charmed resonances). MC distribution
are obtained applying the same requirements as for data. Fig. B.1 shows the
AM~~" mass distribution (template) of a MC sample of B’ — DWtnrta-
and ES — Dg*)+7r_7r+7r_ mixed in the proportions expected from the measured
fs/ fa ratio [1] (see Sec. 1.2) and the measured branching fractions [1], when re-
constructed as a A) — AF7~ 7 7~ without charmed resonances candidate.

The distribution peaks in the region around 3.3 GeV/c? and this is due to the
subsample where the D or D} decay exactly into three charged tracks, as shown
repectively in Fig. B.2(a) and Fig. B.2(b) where their AM~~" distribution is re-
ported.
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Figure B.2: AM—~+ MC distribution of B° — Dtr—rtr- B.2(a) and ES —
Dfr=ntn~ B.2(b) with D" and the D} decays in three charged tracks.

Fig. B.3(a) shows the AM 7 distribution for these candidates when the mode-

))+7r*7r+7r* the four decay modes B -

In the following we indicate with E(()S) — D((:

—0 —0 —0
Dtr—ntn~, B — D*"r ntn~, By - Dfr ntn~ and B, —» DiTr ntn—.
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Figure B.3:  B.3(a): Fit of all the Ag candidates when the resonant decay modes
have been removed with the cuts AM*T~ > 0.380 GeV/c?, AM* > 0.190 GeV/c? and
AM~ > 0.190 GeV/c?, the background is modeled using an exponential shape with
slope and normalization free to float in the fit. B.3(b): Unlike the previous plots
here have been also included the floating contribution due to B = DOHr—rtr— and
Eg — DYt (with inclusive D™ and DT decays) with a fized shape (MC
template).

ling assumes an exponential to model the background and a gaussian to model
the signal. In the fit, slope and contribution of the exponential, as well gaussian
mean and sigma, are free to float. Fig. B.3(b) shows the distribution of AM~~+
for the Ay reconstructed candidates, with overlaid the best fit curve, when we
add the modeling of a physical background, described by the templates made for
the E(()S) — DE:))+7T*7T+7T’, to the exponential, to model the combinatorial back-
ground; the slope of the exponential and the normalization of the two background
distributions are floating and determined by the fit: the green curve represents the
contribution due to the physical background. By comparison of these two figures,

the modeling including this physical backround is better (compare the x?) and the
misreconstructed E?s) — D((:))+7r_7r+7r_ decays contribute significantly to the A)

mass window. A similar result is obtained when in the modeling we fix the slope
of the exponential, using the high mass region (see Sec. 3.4), and we add, in the
modeling of the physical background, also a contribute due to the B° inclusive
decay modes.
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Appendix B. Physics Background Study
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Figure B.4: AM~=" MC distributions of B® — Inclusive B.4(a), A) —
Afr=ntr= 7% B.4(b) and A — n~ 7w, B.4(c).

In order to do that, we used a MC sample of B — Inclusive decays to obtain
the corresponding AM ™~ template (see Fig. B.4(a)) when these decays are re-
contructed as a A) — AT7 7 7~ candidate without charmed resonances. Adding
this physical background contribution (fixed shape, as determined by the template
and normalization free to float in the fit), the change in the signal yields is neg-
ligible. This can be inferred comparing the yield determined by the best fit of
AM~~* data (value of the variable sign in the fit result legenda) of Fig. B.3(b)
with the one of Fig. 5.10(a) for the A) — Af7~7t7~ without charmed resonances
with AT — pK~7". Added this background in the modeling, we verified that
futher contribution to the physical background modeling are not significant in the
AY mass window. AM ™" distributions for the MC samples of A) — 7~ 7 77"
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and A) — 7 7"(v,, the templates, are shown respectively in Fig. B.4(b) and
Fig. B.4(c) and show that these contributions are not significant in the AY mass
window.

Cross Check of the Physical Background Modeling using real
data

We performed further useful cross-check of the background directly on the data
using the AY reconstructed candidates, after the veto on the charmed resonances.
Fig. B.3(b) shows the AM~—7 distribution for this sample. Fig. B.5(a) shows the
invariant mass spectrum of the D™ — K~ 7nt7™ candidates reconstructed in these
data by assigning the kaon and pion masses to the AT candidate decay products
K~ pr™. The fit estimates a DT mass of 1.868 GeV/c? and a signal width of

7.5MeV/c? Fig. B.5(b) shows the reconstructed B’ — Dt rtn candidates,
when we applied the same exact cuts used to reconstruct the AY candidates without
charmed resonances.

We estimate a yield of 360440 B° events (N(B°)) in the AM~~" window

[3.15 — 3.55] GeV/c? used for the AY fit. The estimated B mass is (5278 +
1) MeV/c? and the width is (17.5 + 1.6) MeV /c?. Since the reconstruction in our

data has not been a success for both the D} and FS — Dfn~ntn~ signals, we
decided to estimate the total contribution expected from this source relative to the
estimated yield of 36040 B’ — Dtrntr events. Since the MC estimates a
relative efficiency e(B?)/e(B°) = 1.35, we can give a raw estimate of the expected
BY yield (N(B?)) using the following formula where for the BR of each decay we
used the corresponding PDG value:

=0 4 _ 4
N(Bg):N(BO)XEXB(BS—}D;FW wtm )XB(DJHK+K 7t or mowtw )Xe(Bg)

fa B(EO — Dtp—qta—) B(D* — K-wtnt) £(BY)
(B.1)
0.118 0.066
N(BY) =360 x —— x 1.05 1.35 = 133 B.2
(B;) “ 0323 T 0092 * (B-2)

The reconstructed AM~~7 distribution of the MC sample of B’ = Dtrntnand
ES — Dfn~ntn~ signals, in the expected proportions, is reported in Fig. B.6(a):
this background covers the entire [3.15 — 3.55] GeV/c? window.

In the fit, this distribution is then used as template to model the physical back-
ground while an exponential is used to model the combinatorial background.

The physical background normalization is given by the sum of the 360 B =
Dtr=nt7~ and of the 133 ES — Dfn~ 7t~ which gives a total of 493 events,
while the slope and the normalization of the exponential are free to float in the fit.
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Appendix B. Physics Background Study

The best fit returns a A yield of 596478 signal events (value of sig n in the fit re-
sults legenda of Fig. B.6(b)), which is consistent with the yield of A) — Af7—7t7~
without charmed resonances signal events, when the modeling is done using the
procedure described in Sec. 5.3 but in the enlarged range of mass, [3.15 — 3.55 ]
GeV/c? (see Fig. 5.10(a), sign value in the fit results legenda). We have also
performed the same fit with floating B’ — Dtrrtn and ES — Dir ntn™
backgrounds (Fig. B.6(c)) and the estimate of the signal and background yields
are consistent with the central result.
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Figure B.5: B.5(a): D% signal reconstructed in data by assigning the kaon and

pion masses to the A} decay products. B.5(b): B’ - Dtrrtre signal Tecon-
structed in data by using the DT signal (to reconstruct this signal we applied the cut
| m(DT)—1.868 |< 0.022GeV/c?). B.5(c): MC mass distribution of the A (from AY)
reconstructed as DV.
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Figure B.6: B.6(a): Reconstructed AM~~7" distribution of the MC sample of
E?S) — D(t)Tr_W*ﬂ_ signals in the expected proportions.  B.6(b): Fit of all the
Ag candidates: resonant decay modes removed with the cuts AM*~ > 0.380 GeV/c?,
AM* > 0.190 GeV/c? and AM~ > 0.190 GeV/c? and the B and B contribution

fized to 493 events. B.6(c): Fit of all the Ag candidates, including the the B® and B?
background left floating and determined by the fit.
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Appendix

MC Estimate of the Cabibbo Suppressed
decay modes contributions

In order to determine the yields of the AY in the A) — AFm—nt7~ mass spec-
tra, we need a good assessment of the backgrounds which reside under the A signal
peak. One such class of backgrounds are the CS decay modes, where one of the m~
1s replaced by a K~. In the following we estimate the ratios of the BRs of the
CS to the CF decay modes, and estimate the fraction of CS background to the
CF in all decay modes reported in Tab. C.1. We provide similar estimates for
the CS background relatively to the decay A) — AFfw—. These ratios of BRs are
used in Chap. 5 to estimate the expected yield of the CS background corresponding
to a given yield of the CF decay mode, once the respective efficiencies are known
from simulated samples. Here we give an example of how the expected contami-
nation of a CS decay mode can be evaluated when the signal is reconstructed as
the corresponding CF decay mode. We remember that the CS decay modes are not
modeled in the physical background (see section Sec. 5.1), since we expect very few
events, but are assumed as a systematic affecting the corresponding CF yields (see
Sec. 7.1.1).

QOutline

The yields of the AY decay modes, extracted by the fit procedure described in
Chap. 5 applied to the AM~~" mass distribution, are determined assuming no
contribution from the CS decay modes. The observed signals in the AM~~" mass
distribution, for each decay mode, have two contributions: the CF and the CS.
Denoting with N, the yield of the i decay mode extracted, and with N&g and

obs
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Appendix C. MC Estimate of the Cabibbo Suppressed decay modes
contributions

Né e the corresponding contributions of the CS and of the CF we can write:

Nl = Nop(1+ Nig/Nép) (C.1)

AY)  Cabibbo favored AY Cabibbo suppressed

decay modes decay modes
Ag e\ Ag — AFK-
A — Afrn ot A — Afrtn= K-

AY s A*(2595) AD s A%(2595)" K-

AD s A*(2625) AS s A% (2625)F K-

A) — ¥.(2455) T AO — X (2455) Tt K~
AD s 3L (2455)0 7t AD —» 3 (2455)0m K -
A) — AFpPm~ Ag — AP K~

Table C.1: CF and CS decay modes.

The amount of CS background we expect, relative to the CF signals, for each
decay mode 7 in Tab. C.1, is given by the expression:
Nis  B(A) — CS') x elg

Nip  B(A) — OF%) x by,

(C.2)

where &' is the efficiency of reconstructed signal in mode ¢ and B(A) — C'S?) and
B(A) — CF") is the BR of the A) in the CS and in the corresponding CF decay
modes. From Eq. C.2, in order to estimate N¢g/N¢ p, we need to know the relative
efficiency estimates and the relative BRs (B) of each decay mode. In the following
we describe the studies done for these estimates.

Evaluation of B(A) — CS*)

The CS decay modes for which we need BR have not been observed, let alone
measured. The decay amplitude, for the baryonic CF decay mode, is o< |V,q4|?
while is oc |V,4|? for the CS one. If we consider the decay amplitude for the related
mesonic decay mode, we find the same number in both cases, CF and CS decay
modes. We estimate the ratio B(A) — CS%)/B(A) — CF") either using similar
decay modes observed in B-mesons, where the measurements already exist (from
the B-Factories or CDF itself), or, when these measurements are not available,

simply using the ratio |Viq|?/|Vus|*.
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Just as an example, to illustrate the concepts described above, we estimate the
CS B(A) — %.(2455)%7" K ) relative to the CF decay A) — %.(2455)°7T7~. The
first order Feynman diagram of this decay, for the CF and for the corresponding
CS, is reported in Fig. C.1.

U U
>
d
AO C: d
b d > d
20(2455)0
b - ' C
W
u u
T K~
d s

Figure C.1: Feynman diagram illustrating the decays Ag — ¥.(2455)7 71~ and Ag —
¥.(2455)07 K.

The neutral B-meson decay modes, corresponding to the baryonic one of Fig. C.1,
are reported in Fig. C.2 and Fig. C.3. The diagrams of Fig. C.2 are obtained re-
moving the line of the AY u quark (one of the spectator quark) in Fig. C.1 and
changing, in the same figure, the A) d quark in a d quark. The only difference in
these two diagrams is that in one case (see Fig. C.2(b)) the gluon splits in a uu
pair, while in the other (see Fig. C.2(a)) in a dd pair.

d d d &
_ d _ U
0 0
B ( _ B _
= él «(2010)* - gDO D*(2007)°
W= W=
U H uu o -
ds" ds"

Figure C.2: Feynman diagrams illustrating the neutral B-meson decay modes corre-
sponding to the baryonic decay mode on Fig. C.1.

Using the same method, the two lower order Feynman diagrams for charged
B-meson decay modes are obtained removing the line of the A} d quark (one of the
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Appendix C. MC Estimate of the Cabibbo Suppressed decay modes
contributions

spectator quark) in Fig. C.1 and changing in the same figure the AY u quark in a @
quark. As before, the only difference in these two diagrams is that in one case (see
Fig. C.3(b)) the the gluon splits in a uw pair and in the other (see Fig. C.3(a))
in a dd pair. So, in principle the Feynman diagrams in Fig. C.2(a), Fig. C.2(b),
Fig. C.3(a) and Fig. C.3(b) are equivalent and we can choose anyone of them to
made our estimate.

U u U U

- T - 70
d U
B~ B~
dD+ D*(2010)+ UDO D*(2007)°
U wa
T
d s d s

Figure C.3: Feynman diagrams illustrating the charged B-meson decay modes corre-
sponding to the baryonic decay mode on Fig. C.1.

In this specific case in our calculation we used, to estimate B(A) — %.(2455)°7 T K™)/
B(A) — X.(2455)°7T77), the branching fractions of the decays B~ — D n 7~
(S-wave) , B~ — D*(2010)"n~ 7~ (P-wave) and of the corresponding CS decays,
which are all measured [1]. The Feynman diagram associated to these decays is
the one of Fig. C.3(a). This is due to the fact that the spin 1/2 A decays into a
spin 1/2 Al and, from angular momentum conservation, we expect contributions
from both S and P wave amplitudes.

The correspondence between the baryonic and mesonic decay modes here consid-
ered, is unfolded as follows:

gluon splits to a dd pair;

the decay rate for the baryonic CF decay mode is o< |Vya|? [Vie|? | f2];
the decay rate for the baryonic CS decay mode is o< |Vis|* |Vie|* | f3];
the decay rate for the mesonic CF decay modes is o< [Via|? [Viel? | f3];

the decay rate for the mesonic CS decay modes is o< |Vis|* |Vie|* | f7]-

Therefore, it’s easy to understand that each relative branching ratio B is given by:
Vasl? Wael2 3] _ Vsl Vacl 12
\‘VudP ’%c‘z‘fﬂ/ |Vud‘2 ’%0|2‘f32L

vV vV
baryonic decay mode mesonic decay mode

(C.3)
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where f3 = f; and f; = f5. Since the amplitude for the baryonic decay consid-
ered in this example includes contributions from both S-wave (J = 0) and P-wave
(J = 1) transitions then, in the case of mesons, f; and f; actually have two com-
ponents :

f3 = f3(5) + f3(P)
fa=fa(S) + fu(P) (C4)

Looking at the Eq. C.3 we have to add the two terms and then square them to get
the cross terms:

[fal* = () + [£(P)F + (£ () (f(P) + (f5(S) (f5(P))

negligible

[fal* = 1S + [A(P)]P + (f1(S) (fa(P)) + (f1(9))(fi (P)) (C.5)

~
negligible

Combining Eq. C.3 and Eq. C.5 and assuming negligible the cross terms, we get:

(©CS) (cs) (CS)
Bl _ Wasl® (S +1APIE) _ Brewm ) M Brsniry (0

*) _
B WVl (ISP +15P)P) B o+ BEE

baryon meson ( meson (P)

We applied this method to all studied decay modes once known the corresponding
B-meson decays modes contributing.

Therefore, in the example of the A) — ¥.(2455)7" K~ and A — ¥.(2455)7 7,
considering the contributions of all the corresponding B-meson decays modes Feyn-
man diagrams we have:

B(A) — 3.(2455)°7T K ™) BB — Dfn"K™)+ B(B~ — D(2010)""'n~ K)
B(A) — ¥.(2455)°7t7=)  B(B~ — Dtr—7~) + B(B~ — D(2010)*t7—7")
~ (0.55+£0.54) x 107" + (0.73 £ 0.54) x 10~*
© (1.0240.16) x 103 + (1.35 £ 0.22) x 103 (C.7)
(
(

1.28 £0.76) x 10~
2.37 +0.27) x 103
= (5.40 £3.26) x 1072

where all the used B are from PDG [1].
Tab. C.2 summarizes as input the B-meson decay modes contributing to the CF
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Meson Decay B (PDG) AY decay mode Sum of CF/CS B
B” = D*(2010)tn— (276 £0.13) x 1073 | AD — A%(2595)Tn~ (2.76 £ 0.13) x 10~3
B® — D*(2010)* K~ (2.14£0.16) x 10~ | AD — A¥(2595)t K~ (2.14 £0.16) x 1074
50 * +.— -3
Eo — D*(2010)Tw (2.76#0.16) x 10 A9 — A% (2625) - -
B~ — D3(2460) T 7~ not in PDG 2008
-0 * + - —4
50 — D*(2010)T K (2.14#0.16) x 10 A9 — A% (2625) K- -
B~ — D3(2460)* K~ not in PDG 2008
70 0, +. — —4
B =Dl (8.40 £ 0.90) x 10 A9 — ¥ (2455) Tt n— (14.60 = 2.40) x 10~4
B~ — D*(2007)%nt 7w~ (6.20 £ 2.20) x 1074
7Y 0, + pr— -5
EO - DK (8.80 £ 1.70) x 10 - A) — 3. (2455) T K (12.10 £5.70) x 105
B~ — D*(2007)°7t K— (3.34 £5.40) x 107° @
B~ - DVtrg—7— (1.02£0.16) x 10~3 0 0+ _ _3
B~ — D*(2010) T~ 7~ (1.35+ 0.22) x 10-3 | Db = Te(2455)° " m (2.37 £0.27) x 10
B~ — Dtn~ K~ (0.55 £ 0.54) x 10~4 @ 0 0t e 4
B~ — D*(2010) K~ (0.73 4 0.54) x 10—4 a | Ap = Te(2455)° 7T K (1.28+0.76) x 10
B® — Dtpon- (1.10 £1.00) x 1073 | AD — AT pOn— (1.10 £ 1.00) x 103
B = DK~ (0.59£0.55) x 10=4 @ | A9 — AFpOK— (0.59 £ 0.55) x 10~%
B~ — DV~ rntrn— (5+4) x 1073 o P _3
B~ — D*(2007)07 (1.03+0.12) x 10-2 | Ao 7 Adm 7T (153 £4.18) x 10
B~ — DOntr— K~ (2.70 £0.74) x 10~% @ o i

-+ - —4

B~ — D*(2007)Fr + 7~ K~ | (5.56+0.66) x 104 @ | A Z AT K (8.26 +0.69) x 10
—0 4+, — -3
B —Drn (2.684+0.13) x 10 A — Afn (5.44 +0.18) x 10~3
B — D*(2010)*7— (2.76 £ 0.13) x 1073
=0 4ore— ) _4
Eo — DtK (2.0£0.6) x 10 A) — ATK- (4.1440.62) x 10~*
B — D*(2010)t K~ (2.14£0.16) x 1074

Table C.2: List of CF and CS B-meson decay modes, the corresponding BR from
PDG [1], baryonic Ag decay modes and sum of BRs for the CF and CS associated B-
meson decay modes.

®These B are not in PDG [1] so that we evaluated them using Eq. C.8

and to the CS (Meson decay) , the corresponding BR (B(PDG)), the corresponding
AY decay mode, in which they are used (A} decay mode) and the sum of the BRs
of the B-mesons contributing to the CF and to the CS (Sum of CF/CS B).

The contributing mesonic decay modes were determined for the other A) decay
modes using the same method adopted in this example. Some of the B for B-
meson decays have not yet been measured and in this case we use the ratio in

Eq. C.8:

B(CSY)  |Vi|?
B(CF)  |V4l?

(C.8)

MC Evaluated Relative Efficiencies

We used MC samples to evaluate the efficiency for each decay mode of Tab. C.1.
There are several components in the MC simulation:

e production and decay of the b-hadrons;
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e detector simulation;
e trigger simulation;
e reconstruction.

In this example we give just an early estimate of how the efficiency can be evaluated
and we use here a generator-level simulation. We generate 10° AY decays in each
of the CF and CS modes of Tab. C.1 and we apply similar selections as those
described in Chap. 4. Details of the simulation and efficiency calculation for this
examle are given in the following sections.

Generating and Decaying b-hadrons with MC

This step is very similar to the one described in Sec. 3.2.1. We estimate the
contribution of CS backgrounds to the decays previously listed in Tab. C.1 by
generating MC samples containing 10° events of single A} hadrons, with a pr
threshold of 5 GeV /c and a pseudo-rapidity range |n| < 1.2 using the BGenerator
package [89]. Single A)’s are generated using a pr vs rapidity (y) spectrum modified
to match the pr spectrum observed in fully reconstructed A) — Afn~ decays.
Because we use a particle spectrum rather than the quark spectrum, as input to
BGenerator, fragmentation must be explicitly turned off. We force each generated
AY to decay through a single and specified decay chain using the EvtGen decay
package [98] and a user defined decay Table. Also phase space model is used
for all baryon decays. In addition, all A} are forced to decay into the pK 7+
final state including the resonance structures as measured by Aitala, et al. [99)].
CDF software version 6.1.4mc was used to generate the b-hadrons decays. The
information for each event is written in an HEPG Bank, containing full information
about them. For each decay mode, a file containing the HEPG Bank is then written
and converted to ROOT n-tuples for further analysis.

Candidate Requirements

The data used in the analysis subject of this Thesis have been collected by
the T'TT, specialized to select multibody b-hadronic decay modes. To emulate
the trigger, in this study we require that one of the tracks from the Al and
one of the AY decay products each pass the requirements for an SVT track with a
pr > 2GeV/c, 0.0120 < |dy| < 0.1 cm and a pseudo-rapidity || < 1.0. For the pair
of tracks we don’t have any requirement on charge combination, 2° < Agpy < 90°,
pry +pr, > 5 GeV/c and Ly, > 0.02 cm. The common requirements of skimming
and analysis are summarized in Tab. C.3 and are the same for A) — Af7r—,
A) — Afm~nt ™ and their associated CS decay modes. Two further requirements
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are applied to select A) — Af7m 77~ and the associated CS decay: the three
tracks from the AY’s decay vertex have to be in a cone fixed by AR = \/An? + Ap?
and the decay length of the A} candidate, projected in the transverse plane, has
to be Ly, > 0.02 cm.

Summary of common requirements

All tracks n Il <1
All tracks dp |do| < 0.2 em
pTAg candidate pTAg >8 GeV/C
A) candidate L, Ly, > 0.02 cm
Triggering tracks | one track from AY and one from A} are SVT trigger tracks

+7

Table C.3: Common requirements for the selection Ag — Afr—, Ag — Afrontrw
and corresponding CS decay modes.
With reference to Eq. C.2 the efficiency of each decay mode is calculated as:
N';L;GCO
€= —— (C.9)
© N

where N, is the number of events reconstructed, and N,,, is the number of events
generated in the corresponding decay mode. We evaluated the efficiency after ap-
plying the trigger and the analysis requirements for both Af7~ and Afn—7ntn~
selections, as reported in Tab. C.4.

To know how many events satisfy the overall selection, we use the information
from the generated ntuples and analyze the histograms (see Fig. C.4, Fig. C.5,
and Fig. C.6) to determine the number of these events (see Tab. C.5). The to-
tal efficiency of each decay mode is achieved by multiplying the efficiency values

relative to each kind of selection (trigger and analysis).

Estimated Relative Branching Ratio

Once evaluated B(AY) — CS*)/B(AY) — CF") and eg/ek ., after the overall
selection (see Tab. C.5), we can estimate the amount of CS background we expect
relative to the CF signal using Eq. C.2. The invariant mass spectrum, for each CS
and CF decay mode is reported in Fig. C.4, Fig. C.5 and Fig. C.6. In Fig. C.4 and
Fig. C.5 are shown the Af7~ 77~ invariant mass spectra for each CF (dashed
blue line) and corresponding CS (continuous red line) decay mode after the trigger
and the Af7— 77~ selection. Note well, for the A) — Af7r~7+7~ in Fig. C.5(b),
the generated CF events are 1/3 of the CS one. In Fig. C.6 is shown, for Af7~
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decay mode TTT effic.(x1072) | Afn~ effic. (x107%) | Afa—wFr— effic. (x107%)
A) — A (2593) T~ 4.024+0.02 10.30£0.10 60.30£0.80
A) — A.(2593)T K~ 3.97£0.02 10.50+0.10 62.80+0.80
A) — A (2625) T 3.91£0.02 10.10+0.10 52.50£0.70
A) — A (2625)F K~ 3.87£0.02 10.30+0.10 54.60+£0.70
A) — %,(2455) 2.50%0.02 3.0940.06 31.50+0.60
A) — ¥.(2455) 7~ K7 2.37£0.02 2.28+0.05 32.4040.60
A)— % (2455)071' Tt 2.67+0.02 1.64+0.04 6.10£0.20
A) — 2. (24 )0[(77T+ 2.69£0.02 1.66+0.04 6.50%0.30
Ag — AFp° 2.15+0.01 1.11+£0.03 10.80£0.30
A) — Ajp0K7 2.07+0.01 0.73£0.03 11.00£0.30
A — Afr—mtr— 2.03£0.02 0.6840.05 7.30£0.50
A) = ATa K~ 1.86£0.01 0.44+0.02 8.40+0.30
Ag — Afr~ 5.47+0.02 14.944+0.12 0

A — AFK- 5.4540.02 14.97+0.12 0

Table C.4: MC efficiency after trigger (TTT) and analysis cuts.

(dashed blue line) and A} K~ (continuous red line), the invariant mass spectra in
the mass hypothesis of Af7~ after the trigger and A7~ selection. From the plots
reported in these figures we count, for each decay mode, the number of CF and CS
passing events. Finally in Fig. C.7, Fig. C.8 and Fig. C.9 we made, in logarithmic
scale, the same plots of Fig. C.4, Fig. C.5 and Fig. C.6 normalizing each CS decay
mode spectrum to the number of expected CS events (Nig).

decay mode (#events CF) | (#events CS) | (#events CS exp.) | Nbg/Nip
Ag — A%(2595)" 6028 6281 526.60 0.087
Ag — A%(2625)" 5254 0456 300.74 0.057
AO — %,(2455)+ 3145 3241 281.92 0.089
AY — 3.(2455)° 614 654 36.80 0.060
Ag — AFpY 1075 1102 56.31 0.052
Ag — A3m 241 839 12.36 0.051
Ag — Afm 14936 14965 805.16 0.054

Table C.5: For each decay mode is reported the number of passing events for CF
(#events CF = N} ) and for CS (#events CS), the number of the expected CS events
(#events CS exp. = Nibg) and the ratio Nos/Ni,. (scaling factor).

The method described can be used to estimate the B(A) — CS;)/B(A) — CF})
for the decay modes of Tab. C.1 using the corresponding B-mesons decays (see
second column of Tab. C.6), and to estimate, for the same decay modes, the ratio of
the MC efficiencies ek ./et . In the example illustrated here, we used a generator
level MC and the resulting relative efficiencies are reported in the fourth column of
Tab. C.6, while N¢g/N& - is reported in the fifth column of the same Table. In the
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analysis this method was used to evaluate the systematic due to the CS yields in
the AY mass window (see Sec. 7.1.1), using a fully simulated samples of 10° events
for CS and CF decay mode of Tab. C.1. The CS events for each decay mode were
normalized to the 10°x B(A) — CS;)/B(A) — CF;). The fraction Nig/Nép after
the trigger and the analysis cuts falling in the A) mass window of the AM ™"
distribution was estimated counting the corresponding passing events, we call this
fraction scaling factor. The systematic due to the CS background for each decay
mode was then evaluated as the signal yield times this fraction.

AY decay mode R; = B;/B, Eanalysis €i/€o I Ri(ei/e0)
AD = A(2595) 7 1 (242 +0.09) 10 * 1 1

AS A (2595)+K— (7.75+0.68) 102 | (2.49 £ 0.09) 10~ | (1.03 £ 0.05) | (7.98 £ 1.09) 102
AS s AL(2625) - 1 (2.05 + 0.08) 10~* 1 1

AS s AL(2625) K- (5.55+0.28) 102 1 | (2.11 £ 0.08) 10* | (1.03 % 0.05) | (5.72 + 0.57) 102
AS s 3(2455) 1 (0.79 £ 0.05) 10~* 1 |

AS s 3 (2455) - (8.29+4.13) 1072 | (0.77£0.05) 10~ | (0.97 % 0.09) | (8.04 = 4.75) 10~2
AS s 3(2455)05 7 1 (0.16 = 0.05) 10~ 1 1

AS o ML(245507 K- | (540 4£3.26)10°2 | (017 +0.05) 10~ | (106 £ 0.46) | (5.72 4+ 5.93) 102
AS s A 1 (0.23 = 0.02) 10~ 1 1

AD s AU (5.36 £6.98) 102 | (0.23 £ 0.02)10* | (1.00 £ 0.12) | (5.36 £ 7.62) 102
AS s At 1 (0.15 = 0.04) 10~ 1 |

AS s A i (542 £ 2.11)1072 | (0.16 £ 0.02) 10~ | (1.00 % 0.02) | (5.42 = 2.22) 10~2
AS s AT 1 (8.17 +0.13) 10~ 1 1

AD A (7.66 4 1.18) 102 | (8.16+0.13)10~* | (0.99 4 0.02) | (7.58 + 1.32) 102

Table C.6: This summary reports, for each Ag decay modes, the relative B, the analysis
efficiency, the relative efficiencies, and the product of I R;(g; /o), which for the it" decay
mode is the evaluated N} g/Nkp (scaling factor for the it decay mode).
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Figure C.4: Afn ntn™ invariant mass spectra for A) — AF(2595)T 7~ and A) —
AF(2595)T K~ C.4(a), A) — AF(2625)T7~ and A) — AF(2625)T K~ C.4(b), A) —
¥e(2455) T a1 and A) — $.(2455) T T~ K~ C.4(c) and A) — £.(2455)°7 7~ and
A) — %.(2455)°7T K~ C.4(d) resonant final states after the trigger and Afm mn~
selection.
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Figure C.5: Af7— 77~ invariant mass spectra for A) — AT p°m~ and A) — AFp° K~
C.5(a) and A) — Afn~ntr~ and A) — Afn~nT K~ C.5(b) resonant final states after
the trigger and AFn~ntn~ selection: the dashed line and the continuous one indicate
the invariant mass distribution of the corresponding CF and CS decay modes reported in
Tab. C.4.
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Figure C.6: Afn~ invariant mass for the decay mode A) — Afm (Tab. C.4) after
the trigger and A requirements. The dashed line and the continuous one indicate the
invariant mass distribution of the corresponding CF and CS decay modes.
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Figure C.8: Afm— 77~ invariant mass spectra for A) — AT p°m~ and A) — AFp° K~
C.8(a) and A) — Afn—ntn™ and A) — Afn—atK~ C.8(b) resonant final states
after trigger and A} 3r selection: the dashed line and the continuous one indicate the in-
variant mass distribution of the corresponding CF and CS decay modes that are reported
in Tab. C.4.
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Figure C.9: A7~ invariant mass for the decay Ag — Afm in Tab. C.J after the
trigger and Af 7w~ selection. The dashed line indicate the invariant mass distribution of
the corresponding CF decay.
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Appendix D

Study of Ag — Ag—ﬂ‘_ﬂ'_l_ﬂ‘_ without
Charmed Resonant Decay Modes

Here we investigate on the composition of the A) — Afr—ntn~ signal, after

the veto on the AY charmed resonant decay modes. This study was done after the
the analysis presented in this Thesis was officially approved by the Collaboration.

D.1 Motivations

In Chap. 6 we assumed proportions (1/2, 1/2, 0) or (1/2, 0, 1/2) respectively of
A — AFp'n~ — Afrnta=, A) —» Afr 7t a (nr) and A) — Afa;(1260)" —
AFpPn= — AFr~nt7~ contributing to the mixed E, since, we declared, we were
not able to separate the contributions of these states, and to extract their yields.
The proportions assumed are importants since determine how to evaluate the
efficiency of the mixed E state. As example, when assumed proportions are (1/2,
/2. 0), the efficiency of the mixed FE state is the average of the efficiencies of
A — AFpPn™ — Afr—atr~ (F state) and of A) — Afa~ 77 (nr) (G state),

since we can write:

N(E)Prod _ N(F)prod _ N(F)Obs (D 1)
2 EF '
N(E)Prod _ N(G)pmd _ N(G)obs (Dz)
2 el
N(F)* + N(G)** ep+e
NEpe T 1 (D:3)

Where N(E), N(F) and N(G) indicate the number of events of the three states,
and ep and g are the MC efficiencies of the states F' and G.
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Appendix D. Study of A} — Atw~wt 7w~ without Charmed Resonant
Decay Modes

It is evident that it is important to know the decay modes which really contribute
to AY — Afn~ 77~ (nr) after the veto on the A) charmed resonant decay modes,
as well as to measure theirs yields, since one of the dominant systematic in the
measurement of the relative branching fractions, reported in Tab. 6.4 and Tab. 6.5,
arises from the assumption of the unknown proportions. In the following we decribe
the studies done to investigate on the composition of the A) — Af7~ 77~ signal,
after the veto on the AY charmed resonant decay modes.

D.2 p°Signal Contribution to the A) — Afn~wtnx™
Decay after the Veto on Charmed Resonant
Decay Modes.

In Fig. 5.10(b) we reported the AM~—" distribution obtained after the veto

on the A) charmed resonant decay modes (see Chap. 5) with overlaid the best fit
results when assuming in the modeling a Gaussian function for the signal, an expo-

nential for the combinatorial background, and including the E(()S) — D((:)) tronta,

with inclusive DE:)) * and E?s) contributions, for the physics background.

CDF Run |l preliminary, L = 2.4 fb™'

©
[=]
o

Candidates per 0.01 GeV/c?
o
o o
(=] =]

o g o

—— Combinatorial
0 CH -
B(g) — D(B, TRt

—— B}, — Other

400
P
mass window

sideband

Feooo Yoo e e e
3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55 3.6
M(AZT ) — MAY) (GeV/c?)

Figure D.1: AM~—% distribution with indicated the mass window (MW) and the side-
band (SB) used in the text.

The resulting Gaussian mean and o (sig-gauss_Min the legenda of Fig. 5.10(b))
from the best fit are used to define the AM~~" 4 30 mass window region
(MW=AM~""430 = 3.332+0.048 GeV/c?) and the sideband region (SB=[AM "
+ 30, AM ™" + 60]) as shown in Fig. D.1. Useful quantities, determined using
the best fits and that will be used in the next section, are reported in Tab. D.1.
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D.2. p° Signal Contribution to the A) — ATw~ w7~ Decay after the
Veto on Charmed Resonant Decay Modes.

total events in MW 5515
total events in SB SB., = 3559
signal events in MW 610 & 88 (sig-n in the legenda of Fig. 5.10(b))
background events in MW MWy = 5515-610 = 4905
MW 4905
sideband normalization SBj:g = 3559 =1.38

Table D.1: Some useful quantities determined using the best fit parameters of the
AM~=7 distribution of Fig. 5.10(b).

To demonstrate a p° signal in the A mass window of Fig. D.1, we reconstruted,
for each AY candidate in MW and in SB, the p° candidates using a pair of tracks
of opposit sign, not from the A, assigning both the pion mass. For each A)
candidate, the six tracks from the AY) — Af7 777~ decay mode are ordered in

this way:

1 2 3 4 5 6
NN NI AN AN
K p ot o= 7= «t

—_——
AZ

The same sign pions are ordered by momentum, and it means that py, > ps.

The main difficulty is given by the fact that we are dealing with these two pos-
sible p° candidates: one with an high pr (the pp,,;, combination, using tracks 4
and 6) and the other one with a low pr (the pY = combination, using tracks 5
and 6). Fig. D.2(a) shows the distribution of the invariant mass spectrum of the
two pions forming the pj, , candidates when the A} candidate is in the MW (red
filled histogram) with overlaid the same distribution when the Ay candidate is
in the SB region (yellow filled histrogram, normalized to the background content
of Fig. 5.10(b), see Tab. D.1, for the sideband normalization), while Fig. D.2(b)
shows the same distributions but for the pf = candidates.

The two pion combinations have different invariant mass spectra (Mpﬁigh and
Mo ) both in MW and SB regions (see Fig. D.2(a) and Fig. D.2(b)), but in
Fig. D.2(b) it is evident a clear signal of the p° resonance (p° Mass = (775.49 +
0.34)MeV, Full width I'=(149.1 £ 0.8)MeV [1]).

In the following we describe some of the techniques tested to extract the contri-
butions from the A) — AT p'7r~ — Afr—nta—, A} — Afa;(1260)" — Afp'n~ —
Afn~ 77~ and the non-resonant A) — Af7~ 7 7~ (nr) to the A} — Afr— 7t
without charmed resonances.
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Figure D.2: My D.2(a) and Mo D.2(b) 77~ invariant mass distribution in
ig ow

the mass window (red filled histogram) and in the sideband (yellow filled histogram) after
vetoed the Ag charmed resonant decay modes.

D.2.1 Estimate of the yields for the decay modes with a p°
and the A) — Afn~ 7w~ (nr)
We want now extract the signal yields of the sum of the A) — AFp’r~ —

Afn~mT7~ and of the A) — Afa;(1260)" — Afp’7r~ — Afm—7t7—, and of the
A) — Afr—nta(nr).
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Figure D.3: Mp%_ , mass distribution with overlaid the best fit curve (magenta curve)
ig

in the mass window D.3(a) and in the sideband D.3(b) in range [0.3 — 2.6] GeV/c2.

In order to that, we made a fit of both M o and M p0  Mass distribution in both
ig ow
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D.2. p° Signal Contribution to the A) — ATw~ w7~ Decay after the
Veto on Charmed Resonant Decay Modes.

MW and SB regions.

The fit is performed in the range [0.3 — 2.6] GeV/c? using different PDFs to model
the M, 0. on and M, 0o in the MW and SB regions. The M, 0 distribution is mo-
deled, 1n MW and SB regions, with a PDF composed of: a V01gt1an function for
the p” signal, with a width fixed to the PDG value (1,0 = 0.149 GeV) and the mass
resolution Gaussian with sigma and mean free to float in the fit, a Gaussian func-
tion with mean fixed to the central value of the K° mass (Mygo = 0.498 GeV [1])
and the sigma free to float in the fit, and a third degree Chebyshev polynomial for
the background.

The PDF function used to model the M o s parameterized like the M Ry ODC
with the exception that we used a convolution between a Landau and an exponen-
tial function for the background.

In Fig. D.3 and Fig. D.4 we report the mass distribution fit in both MW and SB
regions for the two possible combination pj, , and pj,,.

All have a signal of p°m~ 7", the p° mass returned by the best fits are in agreement
with the measured p" mass (see variables sig mean for the mass and the res_sigma
for the uncertainty on it in the fit results legenda of these figures).

The parameters estimated from the fits in Fig. D.3(a) and Fig. D.3(b) are summa-
rized on Tab. D.2, where the total p), , and pJ,, in the A} — A¥n~7" 7~ signal is
the difference between the p° signal yield fitted in the MW and the one fitted in
the SB region, respectively for M Kion and M o combinations.

Yields of p° — 7=t
Phigh 0 MW 1113 + 65 (peak-yield in the legenda of Fig. D.3(a))
Phign 0 normalized SB 604 £ 66 (peak_yield in the legenda of Fig. D.3(b))
Phign I AY — Afr=7t7™ signal 509 + 93
P, in MW 329 £ 64 (peak_yield in the legenda of Fig. D.4(a))
Py, in normalized SB 299 + 71 (peak_yield in the legenda of Fig. D.4(b))
P, in AY — Afr—ntr~ signal 30 + 96

Table D.2: Yields of pgigh and p?ow in the MW and in the SB regions obtained from

the best fit of My and My distributions reported in Fig. D.3(a) and Fig. D.3(b).
ig ow

The yield of the p?n-gh (p?ow) in the Ag — Afn—ntn™ is given by the difference between

the yields p?”.gh (P).,) in the MW and in the SB.

In Tab. D.3 we report Nror, that is the resulting yield of the fit reported on
Fig. 5.10(b), and the total yield of the p® (N,), that in principle is due to the
A — AFpPn™ — moatr and A — Afa;(1260)” — Afp7r~ — 7 ntr~ decays,
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Figure D.4: Mp? mass distribution fit with overlaid the best fit curve (magenta curve)
in the mass window D.4(a) and in the sideband D.4(b) in range [0.3 — 2.6] GeV/c2.

calculated as the sum of pj, , and pj,, in A) — A~ 7" 7~ signal of Tab. D.2.
In the same Table is reported the yield of the A) — Af7—7t 7~ (nr) (N,,) calcu-
lated as the difference between the total number of AY signal yield, after the veto
on the A charmed resonant decay modes (Nror), and Ny. The quoted result
for N, is consistent with the LHCb claim [17] which considers the proportion of
A) — Afrnta~(nr) decay mode as null.

AY Decay Mode Signal Yield
Nror = N(A) = AFp°7~ 4+ N(A) — AFa1(1260) 7 )ops) + N(A) — Afr— 77~ (nr)) 610 + 88
Ny = N(A) — AFp7 )ops + N(A) — Afa1(1260) ) ops 539 4+ 133
Npr = N(A) = Afr= 77 (nr)) 71 £ 159

Table D.3: In this table we report the yield of the Ag — Afr~ntn™ after the veto on
the charmed resonances (Ntor), the yield of the p° (N0 ) that in principle are due the
A) = AF 7™ = noatr™ and A) — AFai(1260)” — Af %7~ — n-ntn decays, and
the yield of the A) — AFr~nTn~(nr) (Ny,).
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D.3 sPlot to separate the contributions in Ag —
Afm—wto™

In these next Sections we want to use another technique to confirm, or improve,
the results obtained in the previous one. The aim is to determine the composition
of our A) — Afm 77~ sample, after the veto on the charmed resonant decay
modes, measuring the yields of the contributing decay modes: A — A p7—,
AY — AFa;(1260)" and AY) — Afr—at7(nr), all in A) — A7~ 777~ final state.
In order to do that, we decided to use a statistical tool dedicated to the exploration
of data samples populated by several classes of events, called sPlot [100], [101].
With the sPlot we can explore a data sample, consisting of several classes of events
merged into a single sample, assumed to be characterized by a set of variables which
can be split into two components: the first one is a set of variables for which the
distributions of all the classes of events are known (these variables are collectively
referred to as a (unique) discriminating variable). The second component is a set
of variables for which the distributions of some classes of events are either truly
unknown or considered as such (these variables are collectively referred to as a
(unique) control variable).

The sPlot technique allows us to reconstruct the distributions for the control va-
riable, independently for each of the various classes of events, without making use
of any a priori knowledge on this variable with the assumption that the control
variable is uncorrelated with the discriminating variable. The general idea is to
use the sPlot, first of all, in the AM~~" mass distribution fit (see in Fig. 5.10(b)),
where signal and background events can be separated by one-dimensional likeli-
hood fit, in order to obtain the two respective yields. Then, this technique uses
the results from the AM ™7 fit to calculate a weight (termed SWeights) for each
event, i.e. a sort of signal-likeness/background-likeness of a specific event, in or-
der to obtain a weighted dataset. With the specific weights, the mass distribution
of two pions can also be separated into the event classes, much better than an
advanced sideband subtraction because this is an unbinned subtraction between
signal and background, and the weighted dataset is being the result.

After having obtained the weighted dataset, we projected on it the variables that
represent the mass distribution of two pions (9, on and P ). We did the same with
the invariant mass of three pions, m3m, not from A} (tracks 4, 5, 6 of Sec. D.2) to
investigate on the a;(1260)” — p’n~ — 7 77~ signal.

The projections for these three control variables pp, 1., pf,,, and m3m on the weighted
dataset are reported in Fig. D.5.
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Figure D.5: p?Ligh D.5(a), p),, D.5(b) and m3r D.5(c) invariant mass projections
on the weighted dataset.

Fig. D.5(a) shows a clear p° peak and Fig. D.5(c) also shows peak due to
the a1(1260)~ (a1(1260)~ Full width I" from 250 to 600 MeV [1]), confirming the
contribution of the AY — Afa;(1260)” — Afp'7~ — Af7—7t 7~ in the AY signal,
after the veto on the charmed resonant decay modes.

At this point, once obtained the projections on the weighed dataset, the next
step is to find a way to fit these distributions, in order to obtain the yields in
the hypothesis that the decay modes contributing to the AY — AF7r~7t7~ signal
after the veto on the charmed resonances are: A) — ATp’7~ — Afna—ntr—,
A) = Afrnta=(nr) and A — Afa;(1260)” — AfpPn~ — Afrntr .

First of all, as a cross check of the p° yield determined in Sec. D.2, we performed
a fit of the projections of the two control variables pf), g and P, on the weighted
dataset of Fig. D.5(a) and Fig. D.5(b) using MC templates of these distributions
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for the three decay modes.

The fact that in principle there can be two different combinations of a pion pair,
is a reason to make the fit of one of the two combinations (pj,;,,, having the best
mass resolution) and to use the achieved results in terms of composition as a cross-
check on the other one. In the next Sections we illustrate the method to determine
the templates of the three decay modes using MC samples and the fit procedure
adopted to separate these contributions in the data.

D.3.1 Templates Extraction from MC

The main difficulty to separate the three decay modes concerns the separation
of the A — AFp°n~ from AY — AFa;(1260)~ candidates, since a;(1260)~ — pO7.
In order to make the fit on the weighted dataset of the pp; ;, and pp,,, distributions
we construct MC templates (shapes) of these distributions from the three decay
modes, that we describe in the following.

We generated MC samples of &~ x10° events for the A) — Afa;(1260)" —
AFpPr™ = Afantn, A) — AF 7~ — Afn ntn, and A) — Afa— 77 (nr)
decay modes and reconstructed, like on data, pj,,, and pj,,, candidates in the A}
mass window.

For each MC sample, corresponding to one of the three decay modes, we have two
possible combinations, pj,, and pj,,, the first one using the tracks 4 and 6 (see
Sec. D.2) and the second one using the tracks 5 and 6, and for each of them we fill
two different kind of histograms that we call good histogram and bad histogram.
The good histogram is filled for the track pair 5 and 6 with the invariant mass of
the reconstructed p{ ~candidate when the corresponding two pions are from the
p° decay, while, when the pion pair is not from the p° decay, the bad histogram
is filled with p =~ candidate reconstructed mass. The same is done for the good
histogram and bad histogram for the 4 and 6 tracks combination.

The p?n'gh invariant mass spectrum for the weighted data sample is expected to
have contributions from:

o A) — AT p°7~ decay mode, when the track pair is from the p° decay (Fig. D.6
top histogram reports the invariant mass distribution for the true track pair 4
and 6) and when the track pair is the wrong one (Fig. D.6 bottom histogram
reports the invariant mass distribution for the wrong track pair 4 and 6).

o AY — Ata(1260)" — Afp'7n~ decay mode, when the track pair is from
the p° decay (Fig. D.8 top histogram reports the invariant mass distribution
for the true track pair 4 and 6) and when the track pair is the wrong one
(Fig. D.8, bottom histogram report the invariant mass distribution for the
wrong track pair 4 and 6).
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e AY — Afnm 77 (nr), in this case the track pair is wrong in any case,
(Fig. D.10, top histogram reports the invariant mass distribution for the
track pair 4 and 6).

The corresponding distributions contributing to the p) = invariant mass spectrum
are reported in Fig. D.7 (top histogram good combination, bottom histogram
wrong combination for the A} — AT p%7 ™), Fig. D.9 (top histogram good combina-
tion, bottom histogram wrong combination for the A) — At a;(1260)~ — A p77)
and in the bottom of Fig. D.10 (for the A — Afr~nt7(nr)). For each decay
mode, each pair of the invariant mass distibution of Fig. D.6, Fig. D.7, Fig. D.8,
Fig. D.9, are fitted separately and then merged togheter to obtain the templates
for the pp,,, and pp,, mass distributions for the contribution mentioned above.
We could have used directly the distributions of pY ~—and pY, on as reconstructed in
the MC for each decay mode, but since the shapes of good and bad histograms
are very different, this procedure guarantees a better description of them.

For the two pions contribution from A) — Afzx~7"7~(nr), the templates for
Phign and pp,,, are respectively obtained fitting the invariant mass distribution of
Fig. D.10 top histogram and Fig. D.10 bottom histogram. Fig. D.11 shows the
templates of the three decay modes normalized to the unit (PDFs) for the pj, ,
(Fig. D.11(a)) and for the p? =~ (Fig. D.11(b)).
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Figure D.6: MC contributions to p?n'gh from Ag — A pO7~ decay.
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Figure D.8: MC contributions to p(i)u'gh from A) — AFai(1260)~ decay.
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D.3.2 Fit of Single Combinations

We made the fit on the weighted dataset of the pp, , and pp,, distributions of
Fig. D.5(a) and Fig. D.5(b) modeling the contributions of the three decay modes
with the corresponding PDFs of Fig. D.11, letting free to float in the fit their
contribution. The fact that in principle there can be two different combinations of
a pion pair, is a reason to make the fit of one of the two combinations (pj;,,, having
the best mass resolution) and to use the achieved results, in terms of composition,
as a cross-check on the other one, in order to verify that the fit of the 7~ 7" mass
projection on the weighted dataset for p? —and p?n.gh leads to the same results
within the uncertainty.

The best fit result is reported respectively in Fig. D.12(a) for the pf,, and in
Fig. D.12(b) for the p? combinations.

These fits show a clear and obvious difficulty in separating the p° contribution from
the AY — Afa;(1260)~ candidates, where a;(1260)” — p°7~ and p° — 77", and
the ones from the AY — AT p'7~ candidates, where p® — 7=7 .

For the best fit of the pj, , ditribution, the total yield of Aj — Ata;(1260)~ and
A) — AFp°7~ and the yield of the A) — A7~ 77~ (see the fit results legenda)
agrees with the same yields as determined in Sec. D.3. The same is not true for
the p? . best fit where the yields are differents and only the A) — AT o7~ is
compatible with a null contribution.

We did several checks about the modeling of the templates without success.

The problem seems to be related to a wrong modeling of the pf. = invariant mass
distribution, the one with the lowest momentum.

‘ Templates combinationp

| ‘ Templates combination p
high=46

high=56

—Lcal
Lcrhopi
— Lc3pi(nr)

—Lcal
Lcrhopi
—Lc3pi(nr)

o
=}
=3}

T

0.07F-

o

o

3
I

o
AL LA L LA LA AR LR R

© © © © o9
o o9 o o o
N ® & G &

Projection of Mass model global (LcalPdf)

o
o
=

Projection of Mass model global (Lcal56Pdf)

[ A R W 1
%5 GO 0.5 1 15 2 25

2 IS
TMass p, . [Gevic?] T Mass [GeV/c?]

(a) (b)

Figure D.11: MC templates used for the p?m.gh D.11(a) and pY A D.11(b) contribu-
tions in the fit.
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Figure D.12: Invariant mass distribution of p?“.gh D.12(a) and pf), D.12(b) with
overlaid the best fit curve (magenta curve).

D.3.3 Final Considerations

The sPlot technique, since it is an unbinned method, definitely gave us the
possibility to derive the maximum information, because of the low statistics we
have. Unfortunately the idea that make the fit of one of the two combinations
(Phign» having the best mass resolution) and to use the achieved results in terms
of composition as a cross-check on the other one, did not work.

Comparing the two fits separately (see Fig. D.12(a) and Fig. D.12(b)), we realize
that the combination pj, ,, characterized by the 7~ with highest momentum, is
one that gives less problems in the fit. Furthermore, for the best fit of the pj,
ditribution, the total yield of A) — At a;(1260)~ and A) — A p’7~ and the yield
of the A — Afn~ 77 (nr) (see the fit results legenda) agrees with the same
yields as determined in Sec. D.3 where a different method is used to extract the
contributions of the sum of the AY — ATa;(1260)~ and A} — Afp’7n~ | and of
the AY) — Afr nt7 (nr). Since, Fig. D.5(c) clearly shows a peak due to the
a1(1260)~, this decay definitively contributes to the A) — AT7~ 77~ signal.
Despite all the studies done, we cannot exclude the A} — AT7~ 7 7~ (nr) and we
decided to continue this analysis (the update) assuming equal proportion (1/3, 1/3,
1/3) of the three decay modes.
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Acronyms

SM Standard Model

LHC Large Hadron Collider

LHCb Large Hadron Collider beauty
CDF Collider Detector at Fermilab

CDF II CDF in Run II

FNAL Fermi National Accelerator Laboratory
Vexn Cabibbo-Kobayashi-Maskawa matrix
CKM Cabibbo-Kobayashi-Maskawa
QCD Quantum Chromo Dynamics

RF Radio-frequency cavities

PDG Particle Data Group

SLAC Stanford Linear Accelerator Center
SVXII Silicon VerteX

ISL Intermediate Silicon Layers

LO00 Layer @0

COT Central Outer Tracker
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Acronyms

TOF Time Of Flight detector

CEM Central Electro Magnetic calorimeter
CES Central Electromagnetic Strip multi-wire proportional chambers
CPR Central Pre-Radiator

CHA Central HAdronic calorimeter
WHA Wall HAdronic calorimeter
PEM Plug ElectroMagnetic calorimeter
PHA Plug HAdronic calorimeter
CMU Central MUon detector

CMP Central Muon uPgrade

CMX Central Muon eXtension

IMU Intermediate MUon system
BMU Barrel MUon chambers

BSU Barrel Scintillation counters

TSU Toroid Scintillation counters
CLC Cherenkov Luminosity Counters
BC bunch-crossing

HQET Heavy Quark Effective Theory
XFT eXtremely Fast Tracker

SVT Silicon Vertex Trigger

DAQ Data AcQuisition System

MC Monte Carlo

TTT Two Track Trigger

CSL Consumer Server/Data Logger
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Acronyms

VME Vesa Module Eurocard

PMT PhotoMultiplier Tube

OPE Operator Product Expansion

LEP Large Electron Positron

CP CP transformation that combines charge conjugation C with parity P
CERN Conseil Europen pour la Recherche Nuclaire

ALEPH Apparatus for LEP Physics (LEP Experiment)

DELPHI Detector with Lepton, Photon and Hadron Identification (LEP Exper-
iment)

FMPS Fermilab Multiparticle Spectrometer
WE Weak Exchange diagram

CPU Central Processing Unit

PDF Probability Density Function

SPS Super Proton Synchrotron (CERN)
HERA Hadron Electron Ring Accelerator (DESY)
NLO Next-to-Leading Order

SVX Silicon VerteX

VLSI Very Large-Scale Integration

AM Associative Memory

TDC Time to Digital Converter

PID Particle Identification

CWA Central Wall HAdronic calorimeters
BR Branching Ratio

CS Cabibbo suppressed

CF Cabibbo favored
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Acronyms

CL Confidence Level

rms Root Mean Square

XTRP eXTRaPolator unit

WLS wavelength shifters

HEPG High Energy Physics Group
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