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1

CHAPTER 1

CHARM MIXING OVERVIEW

“The universe is not what it used to be, nor what it appears to be .... nor

is space what it appears to be. What appears to our eyes as empty space is

revealed to our minds a complex medium full of spontaneous activity.”

-Frank Wilczek, The Lightness of Being (2008).

Since the discovery of the D0 meson, scientists have been searching for D0− D̄0 mixing.

This chapter describes the formalism of D0−D̄0 mixing and the current experimental status.

1.1 The Standard Model, New Physics, and the Motivation to search for

Charm Mixing

The electroweak (EWK) theory together with quantum chromodynamics (QCD) forms the

Standard Model (SM). Built on the concepts of quantum mechanics, relativity, and SU(3)

× SU(2) × U(1) gauge symmetry, the Standard Model summarizes completely the present

state of our knowledge of particle physics. Two types of elementary particles are described

in the Standard Model: fermions and bosons. Fermions are matter particles of two types:

leptons and quarks. The leptons include electron (e−), muon (µ−), and tau (τ−) particles

and the associated neutrinos (νe, νµ, and ντ ). The quarks include, up (u), down (d), charm

(c), strange (s), top (t), and bottom (b). Bosons include twelve force carriers: photon, the

W+, W−, and Z0 bosons, the eight gluons, and Higgs bosons. In addition, every particle

has its own anti-particle [1].

It is fascinating that with only few particles and concepts, the Standard Model elegantly

describes all the known particle interactions (except gravity).

However, most physicists believe that the Standard Model is not the complete theory of

physics; rather, it is only a step towards the formulation of the final theory of physics. One

of the shortcomings of the Standard Model is that it has a large number of parameters that

must be put into the model by hand. For example, the Standard Model fails in explaining



2
the origin of mass. For instance, the mass of the electron cannot be computed within the

Standard Model framework. Secondly, the Standard Model leaves out gravity. There are

also unanswered questions about dark matter and dark energy.

Many theories and models have been proposed to overcome these shortcomings of the

Standard Model, or to answer the outstanding questions. Some of the popular theories are:

Super-symmetry, Extra Dimensions, and String Theory. Supersymmetry is the symmetry

between fermions and bosons. This is an extension of the Standard Model that predicts a

supersymmetric partner for every Standard Model particle. The theory of extra dimensions

explores the possibility that the world actually has more than four dimensions. String

theory, put in an oversimplified manner, suggests that extremely small vibrating strings

are the fundamental building blocks of the universe. The predictions of such theories are

usually labelled as “New Physics” or “physics beyond the Standard Model” [3, 4].

There are several ways to probe into new physics in high energy physics experiments.

One of them is the “direct search” for the non-SM particles or particle interactions predicted

by new theories. For instance, the search for super symmetric partners of SM particles such

as squarks or the search for fourth generation quark flavor, would fall in the category of

“direct search”. Another way to look beyond the Standard Model is to search for any

deviations from the Standard Model predictions in the current experimental set-ups. These

are the “indirect probes” into new physics. These include the search for some strongly

suppressed particle interactions in the Standard Model.

This second type of reasoning; i.e. indirect probes, is the motivation behind the search

for mixing and for CP violation in neutral D meson decays. Neutral D mesons are bound

states of charm and anti-up quarks. The charm mixing provides excellent opportunities to

constrain the parameter space of a wide range of new physics models through the precise

measurement of the mixing parameters of neutral D mesons [5].

Also, CP violation in charm mixing is predicted to be extremely small in the Standard

Model since mixing and relevant decays can be described by physics of the first two quark

generations [10, 12]. So the observation of CP violation in charm mixing in the current

round of experiments will be an unambiguous signal of new physics.

The first evidence of charm mixing was found very recently in 2007. The mixing is now
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fairly established by combining all the published results; however, it was not observed in a

single decay channel with more than 5σ significance.

This thesis presents the observation of the neutral D meson mixing in D0 → Kπ channel

using the Collider Detector at Fermilab (CDF II). The CDF II experiment is described in

the second chapter and the analysis and results are discussed in the third chapter.

1.2 Charm Mixing

Mixing is the quantum mechanical phenomena of oscillations between particles and anti-

particles. It has been observed in the K0 − K̄0 and B0 − B̄0 systems. Evidence for mixing

in the D0 − D̄0 system has been recently found. In analogy with K0 − K̄0 and B0 − B̄0

systems, the D0 − D̄0 system can be described by the Schrodinger equation

i
∂

∂t

⎛

⎜⎝
D0(t)

D̄0(t)

⎞

⎟⎠ =
(

M− i
2Γ

)
⎛

⎜⎝
D0(t)

D̄0(t)

⎞

⎟⎠ ,

where M and Γ are Hermitian matrices. The Γ term ensures the particles decay. The charge-

parity-time (CPT) invariance requires M11 = M22 and Γ11 = Γ22. In case of negligible CP

violation, the flavor eigenstates D0 and D̄0 can be written as linear combinations of mass

eigenstates |D1⟩ and |D2⟩ as

D0 =
1√
2

(|D1⟩+ |D2⟩) , D̄0 =
1√
2

(|D1⟩ − |D2⟩) .

The time evolution of the D0 − D̄0 system shows the oscillations of D0 into D̄0 and

vice-versa. The mixing is characterized by the difference in masses and decay widths of

|D1⟩ and |D2⟩ states. The mixing parameters are then defined as

x =
m1 −m2

Γ
=

δm

Γ
and y =

Γ1 − Γ2

2Γ
=

δΓ
2Γ

,

where δm is the mass difference between the mass eigenstates and δΓ is the decay width

difference, with Γ being the average decay width of the eigenstates.

The D mesons decay through weak interactions in which charged-current W± inter-
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actions couple to physical quarks with the couplings given by the Cabibbo-Kobaysahi-

Maskawa (CKM) matrix. The CKM matrix is a 3× 3 unitary matrix defined as

VCKM =

⎛

⎜⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞

⎟⎟⎟⎟⎠
.

The magnitudes of CKM elements are determined empirically [13]. The CKM matrix can

be written in terms of three mixing angles (θij , i, j representing quark generations) and a

CP-violating phase (δ) as:

VCKM =

⎛

⎜⎜⎜⎜⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎟⎟⎟⎟⎠
,

where sij = sinθij , cij = cosθij [13]. The Wolfenstein parametrization [17] expands the

CKM matrix in terms of λ, A, ρ, η as:

VCKM =

⎛

⎜⎜⎜⎜⎝

1− 1
2λ2 − 1

8λ3 λ Aλ3(ρ− iη)

−λ + 1
2A2λ5[1− 2(ρ + iη)] 1− 1

2λ2 − 1
8λ4(1 + 4A2) Aλ2

Aλ3[1− (1− 1
2λ2)(ρ + iη)] −Aλ2 + 1

2Aλ4[1− 2(ρ + iη)] 1− 1
2A2λ4

⎞

⎟⎟⎟⎟⎠
,

(1.1)

where λ ≈ 0.23, A ≈ 0.81, ρ ≈ 0.14, and η ≈ 0.35. The three matrices are related as follows:

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ , s13e
iδ = V ∗

ub = Aλ3(ρ + iη).

Weak interactions give rise to hadronic and semileptonic decays. One of the hadronic

decay modes has the end products of a kaon and a pion. In semileptonic processes, the final

decay products are neutrinos and other leptons along with hadrons. The mixing parameters

x and y can be measured in any of these decay modes. This analysis is concerned with the

hadronic decay D0 → Kπ.
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The D0 → Kπ decay can proceed in two ways as shown in the Feynman diagrams

in Figure 1.1. The D0 → K−π+ decay, as shown in Figure 1.1 (a), is called Cabibbo

favored (CF) decay and the D0 → K+π− decay, as shown in Figure 1.1 (b), is called doubly

Cabibbo suppressed (DCS) decay. The CF and DCS decays are also called the “right sign

(RS)” and “wrong sign (WS)” decays respectively. The DCS decay is suppressed by CKM

factors at two vertices, the cdW vertex and usW vertex (so the decay is called doubly

Cabibbo suppressed decay). The CF decay involves the CKM elements Vcs and Vud. From

Equation 1.1, the values of these elements are ≈ 1. The DCS decay involves the CKM

elements Vcd and Vus and from Equation 1.1, their values are of order λ. So the probability

of occurrence of DCS decay relative to CF decay is of order λ4 which is approximately

0.003. In fact the measured branching ratio of DCS to CF decay is Γ(K+π−)/Γ(K−π+) =

3.80 ± 0.18× 10−3 [2].

ū

c

ū

s

W+ d̄

u

D0 K−

π+

(a)

Vcs

V ∗
ud

ū

c

ū

d

W+ s̄

u

D0 π−

K+

(b)

Vcd

V ∗
us

Figure 1.1. Two D0 → Kπ decays. A D0 decays into K and π as Cabibbo favored (a) or
as doubly Cabibbo suppressed decay (b). The DCS decay is suppressed by CKM factors at
two vertices: cdW vertex and usW vertex

In the Standard Model, charm mixing in the D0 → Kπ channel can occur through long

range processes or through short range processes. In the long range processes, as depicted

in Figure 1.2 (a), a D0 evolves into an intermediate state such as K+K− or π+π− and then

into D̄0 which subsequently decays into K−π+ as Cabibbo favored decay.

Figure 1.2 (b) illustrates mixing through short range processes in which a D̄0 decay

proceeds through box diagram involving d, s, and b quarks and advances into D0. Since the

short-range processes in D0 − D̄0 system are dominated by light quarks, their contribution

is negligible in the Standard Model. The predicted values of the mixing parameters are

x ≈ y ≈ O(10−7) [6]. This is in contrast with K0 − K̄0 and B0 − B̄0 systems in which the

box diagrams are dominated by super heavy top quarks. However, exotic particles from
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ū
ū

c
s, d

u

s̄, d̄
c̄

u

W

W

D0

D̄0

(a)

W W
D̄0 D0

d, s, b

d̄, s̄, b̄

cu

ūc̄

(b)

Figure 1.2. In long range processes (a), a D0 evolves into an intermediate state such
as K+K− or π+π− and then into D̄0 which subsequently decays into K−π+ as Cabibbo
favored decay. In short range processes (b) a D̄0 is shown decaying into D0 through the
box diagram.

new physics, such as fourth generation quark, appearing in the box diagram can enhance

D0 − D̄0 mixing.

The contributions from the long-range processes are proportional to the mass of strange

quark (ms) through SU(3) symmetry breaking, with

x, y ≈ sin2θC ×m2
s ,

where θC = tan−1 |Vus|
|Vud| ≈ 12.7◦, is the Cabibbo angle. Recent calculations from long range

processes predict x, y ≈ O(10−2) [7].

1.3 Measurement of Mixing Parameters

The D0 − D̄0 mixing parameters x and y are measured in several ways such as, D0 decays

to hadronic final states (e.g. K+π− and K−π+), D0 decays to CP-even and non-CP eigen-

states, semileptonic decays, time dependent Dalitz plot analysis, and quantum-correlated

final states. This section gives a brief overview of these methods. For detailed discussion

please refer to [8, 9, 11].

1.3.1 D0 decay to CP-mixed hadronic final states

An example of D0 hadronic decay is D0 → Kπ. In this decay channel, the time dependent

ratio of DCS (D0 → K+π−) and CF (D0 → K−π+) decay rates is measured. The DCS

and CF decays are identified by using “flavor tagging” method in which the pions from D
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decays are tagged.

In this method, it is not possible to measure x and y directly due to an unknown

strong phase difference δ between the DCS and CF amplitudes. This phase needs to be

determined independently. The ratio of DCS to CF decay rates, assuming no CP violation,

can be approximated [8] as

r(t/τ) = RD +
√

RDy′(t/τ) +
(x′2 + y′2)

4
(t/τ)2, (1.2)

where RD is the squared modulus of the ratio of DCS to CF amplitudes RD = |A(DCS)
A(CF ) |2,

x′ and y′ are the rotated x and y by strong phase difference δ between the DCS and CF

amplitudes as x′ = xcosδ + ysinδ and y′ = −xsinδ + ycosδ, τ is the mean D0 lifetime and

t is proper decay time. This formula nicely separates DCS decays from mixing. The first

two terms correspond to DCS decay and the non-zero values of x′2 and y′ in the last term

correspond to D0 − D̄0 mixing.

1.3.2 D0 decays to CP-even and non-CP eigenstates

This method compares the decay time distribution of CP-even and non-CP eigenstates. For

example in D0 → K+K− and D0 → π+π− (CP-even) decays and D0 → K−π+ decays.

The parameter measured is

yCP =
τ(D0 → K−π+)
τ(D0 → fCP )

− 1 = ycosφ− 1
2
Amsinφ, (1.3)

where fCP is the K+K− or π+π− final states, the CP violating phase φ is due to the

interference between mixing and decays, and Am is the real valued parameter describing

CP violation in mixing amplitude. In the absence of CP violation, φ = Am = 0, gives

yCP = y. The CP violation can be studied by comparing the decay time distributions of

CP-even and CP-odd final states.

1.3.3 Semileptonic decays

The decay D0 → Kµν is an example of a D0 semileptonic decay. In this decay channel,

in the limit of CP conservation, the time integrated mixing rate relative to time integrated
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right sign decay rate (RM ) is measured. The relation between RM and x, y is given by

RM =
∫

r(t)dt =
1
2
(x2 + y2).

1.3.4 Time dependent Dalitz plot analysis

Multibody hadronic decays such as D0 → KSπ+π− can be analyzed with the Dalitz analysis

method. The individual contributions of CF decay (D0 → K∗−π+), DCS decay (D0 →

K∗+π−), and CP eigenstates (e.g D0 → ρ0KS) can be identified by analyzing their Dalitz

plots. The time evolution of the Dalitz plot is used to measure the mixing parameters.

1.3.5 Quantum-correlated final states

Heavy quarkonium resonances produce CP correlated meson-anti meson pairs, for example

ψ(3770) → D0D̄0. The effective branching ratio of correlated decays are modified with

respect to uncorrelated D0 decays. The parameters RM and
√

RDcosδ can be measured,

for example in ψ(3770) → D0D̄0 channel, by measuring the branching ratio of one D0 decay

into a CP eigenstate and the other D0 decay into a semileptonic final state.

1.4 Experimental Status

D mesons were discovered in 1976. Since then, physicists have searched for neutral D

meson mixing. Thirty-one years after the discovery, the first evidence for the D0 − D̄0

mixing was provided by the BaBar and Belle experiments in March 2007, at the Moriond

conference [18, 20, 19]. The BaBar result was soon confirmed by the CDF experiment and

announced at the Lepton-Photon conference in August 2007 [21, 22].

BaBar analyzed the difference in decay time distributions of D0 → K+π− and D0 →

K−π+ decays in the PEP-II storage rings at SLAC with 384 fb−1 data. The results are

shown in Figure 1.3. The plot shows the projections of the proper-time distributions of

combined D0 and D̄0 wrong sign candidates. They fit this data in two ways: with mixing

and without allowing mixing, and with no CP violation. The two fits are overlaid as solid

(with mixing) and dashed (without mixing) lines. The bottom plot shows the difference



9

Figure 1.3. The BaBar result. The BaBar experiment compares the decay time distributions
of D0 → K+π− and D0 → K−π+. The plot shows combined D0 and D̄0 WS candidates
with and without mixing fits (with no CP violation). The residual plot is the difference
between the two fits and the structure appearing in that plot corresponds to D0 − D̄0

mixing [19].

between the two fits (residuals). The structure appearing in the residual plot corresponds

to D0− D̄0 mixing. Their result excludes no mixing with 3.9 Gaussian standard deviations.

This result was confirmed by CDF by analyzing the same decay channel. The CDF result

excludes mixing with 3.8 Gaussian standard deviations.

The Belle experiment compares decay time distributions of D0 → K+K− and D0 →

π+π− decays with D0 → K−π+ decays, to measure yCP given by Equation 1.3. Figure 1.4

shows the Belle result using 540 fb−1 of data recorded at the KEKB asymmetric energy

e+e− collider. The results of the simultaneous fits to decay time distributions of the selected

D0 → K+K−, D0 → K−π+, and D0 → π+π− candidates are shown in Figure 1.4(a), (b),

and (c) respectively. The fits were performed with yCP as a common free parameter. The

shaded areas are the backgrounds. Figure 1.4(d) shows the ratio of decay time distributions

between the CP-even and non-CP (D0 → K−π+) decays. The slight differences in the fit

results corresponds to D0 − D̄0 mixing. The result excludes no mixing with 3.2 Gaussian

standard deviations. This result was confirmed by BaBar in December 2007 [23].
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Figure 1.4. The Belle results. The plots show simultaneous fits to decay time distributions
of the selected (a) D0 → K+K−, (b) D0 → K−π+, and (c) D0 → π+π− candidates.
The fits were performed with yCP as a common free parameter. The shaded areas are the
backgrounds. Plot (d) is the ratio of decay time distributions between the CP even and
non-CP decays [20].

Other charm mixing measurements from semileptonic decays [24], multi-pion or two

body and three body hadronic decays [25], and time dependent Dalitz plot analyses [26, 27]

are of 1 to 3 σ in significance. The CLEO experiment provided the measurement of the

mixing parameter y and strong phase difference δ using ψ(3770) → D0D̄0 channel [28].

Figure 1.5 shows the evidence for D0−D̄0 mixing from the BaBar and CDF experiments

published in 2007. The measurements of the mixing parameters are listed in Table 1.1.

Figure 1.6 shows 1-σ contours (standard error ellipses) in x′2-y′ space allowing the result

to be compared for consistency. These contours are based on the fit error matrices of the

BaBar, Belle, and CDF (2007) results. The ellipses are drawn using the formula:

(x− a)2

σ2
x

− 2ρ(x− a)(y − b)
σxσy

+
(y − b)2

σ2
y

= 1− ρ2,
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Experiment RD(×10−3) y′(×10−3) x′2(×10−3)

BaBar 3.03 ± 0.16 ± 0.10 9.7 ± 4.4 ± 3.1 −0.22 ± 0.30 ± 0.21
Belle 3.64 ± 0.17 0.6 ± 4.0 ± 3.9 0.18 ± 0.21 ± 0.23
CDF 3.04 ± 0.55 8.54 ± 7.55 −0.12 ± 0.35

Table 1.1. Current values of D0 − D̄0 mixing parameters provided by BaBar, Belle, and
CDF experiments from D0 → Kπ decays.

where x and y are the points in x′2-y′ space, a is the measured value of x′2, b is the measured

value of y′, σx is the uncertainty on x′2, σy is the uncertainty on y′, and ρ is the covariance

coefficient defined as ρ = (< xy > − < x >< y >)/σxσy. The values of a, b, σx, and σy

are given in Table 1.1. Covariances for the BaBar and Belle results were quoted in their

publications as ρBaBar = −0.94 and ρBelle = −0.909. For the CDF II (2007) result, the

covariance ρCDF was −0.98.

(a) )
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y
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-10
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(b)

Figure 1.5. Evidence for D0− D̄0 mixing. (a) Babar result (384 fb−1 ). The 1-5 σ contours
exclude no-mixing at 3.9 σ level [19]. (b) CDF result (1.5 fb−1 ). The Bayesian probability
contours equivalent to 1− 4σ. No-mixing point is excluded at 3.8 σ level [22].

By combining all the published results and performing a χ2 fit on the related observables,

the Heavy Flavor Averaging Group (HFAG) provided the world average value of the D0 −

D̄0 mixing significance as 9.2 Gaussian standard deviations [29]. Figure 1.7 shows a two

dimensional contour plots for mixing parameters x and y. HFAG provided the values of x
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Figure 1.6. Visual comparison of Belle (green), BaBar (blue), and CDF (2007) (red) mea-
surements. These are the standard error ellipses based on the fit error matrices of the
three results. The BaBar measurements are centered around x′2 = −0.022%, y′ = 0.97%.
The Belle measurements are centered around x′2 = 0.018%, y′ = 0.06%. The CDF (2007)
measurements are centered around x′2 = −0.012%, y′ = 0.85%.

and y as

x = 0.89 ± 0.26 ± 0.27 and y = 0.75 ± 0.17 ± 0.18.

The world average significance clearly represents D0− D̄0 mixing from the combination

of all published results. However, mixing was not been observed in a single decay channel

with more than 5σ significance. There is also no evidence for CP violation.

The results presented in this thesis will show the observation of D0 − D̄0 mixing in

D0 → Kπ channel using the CDF II detector.
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Figure 1.7. Two dimensional contours for mixing parameters x and y provided by heavy
flavor averaging group [29].



14

CHAPTER 2

EXPERIMENTAL SETUP

“What is known about a collision is what goes in and what comes out-and how it

comes out. What happens in that tiny volume of the collision? The maddening

truth is that we can’t see it... We see what goes in and what comes out, and we

ask if the patterns are predictable by our model of what is in box.”

- Leon M. Lederman, The God Particle (1993).

Oscillations of neutral D mesons are detected using the CDF II detector. The CDF II

detector observes the products of proton-anti proton collisions at the Tevatron accelerator

at Fermilab. This chapter describes the Tevatron accelerator and the components of the

CDF II detector that are relevant to this analysis.

2.1 The Tevatron

The Tevatron is a high energy particle accelerator that collides protons and anti-protons at

the center of mass energy of
√

s = 1.96 TeV. The Tevatron is a superconducting synchrotron

of radius 1 km and is a part of the Fermilab accelerator chain [30]. A sketch of the Fermilab

accelerator chain is shown in Figure 2.1. The following text gives a simplified description

of the accelerator.

A synchrotron uses a time-varying magnetic field to maintain a constant orbital radius

for the charged particles while the energy of the particles increases as they are accelerated

by radio frequency (RF) cavities. Protons are produced by ionizing hydrogen gas using

an electric discharge in the Cockcroft-Walton accelerator. The hydrogen ions (H−) are

accelerated up to an energy of 750 KeV before they are injected into a 130 meter long linear

accelerator called the Linac. A series of RF cavities in the Linac accelerates the hydrogen

ions to an energy of 400 MeV [32, 33]. The ion beam passes through a carbon foil which

strips off electrons to produce protons. The protons are injected into a smaller rapid cycling

synchrotron called the booster. The booster is about 150 meters in diameter. The protons
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Figure 2.1. Fermilab accelerator chain [30, 31].

travel through the ring multiple times, gaining an energy of 8 GeV [34]. Then the protons

are transferred to the main injector, a synchrotron of about 1 km in diameter. The main

injector accelerates the protons up to an energy of 150 GeV before injecting them into the

Tevatron ring [35].

At the main injector, some proton bunches of energy 120 GeV are diverted into the

Target Hall to strike a nickel target in order to produce anti-protons [36]. This is done at

1.5 second intervals. Since a relatively small number of anti-protons are produced in each

cycle, they need to be accumulated in a storage ring until a sufficient number is reached.

The density of anti-protons is increased using the electron cooling method. In this method, a

beam of electrons travels in parallel with the anti-proton beam. During this process, some of

the transverse energy of the anti-protons is transferred to the electron beam. When enough

anti-protons are collected, they are transferred back to the main injector and accelerated

up to an energy of 150 GeV before they are injected in the Tevatron ring.
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At the Tevatron, over a thousand superconducting dipole magnets guide the beam

around the ring. Anti-protons are injected after the protons are loaded into the Tevatron.

Once the Tevatron loading is complete, the particles are accelerated to an energy of 980

GeV. The protons and anti-protons run in 36 bunches each. A proton bunch contains about

2.6× 1011 protons, while an anti-proton bunch contains about 3.5× 1010 anti-protons. The

proton anti-proton bunches cross at intervals of 396 ns. The protons and anti-protons travel

in non-intersecting helices. At the collision point, the beams are focused using quadrupole

magnets and the beam spot size is reduced to increase the luminosity.

The instantaneous Tevatron luminosity is given by:

L =
NBNpNp̄f

2π(σ2
p + σ2

p̄)
,

where, NB is the number of bunches, Np is the number of protons, Np̄ is the number of

anti-protons, f is bunch revolution frequency, and σp and σp̄ are effective widths of proton

and anti-proton beams.

The time integrated luminosity is measured in the units of inverse femtobarn (fb−1 ),

where one barn is equivalent to 10−24 cm2.

In the beginning, when the collisions start with a new store, the initial luminosity is

quite high. As particles are lost over time, the instantaneous luminosity decreases. After

the accelerator runs for about 15 hours, the beam is terminated. By this time, enough new

anti-protons are accumulated to start a new cycle. One such cycle is called a “store”.

2.2 The CDF II Detector

CDF II is a general purpose detector designed to accommodate many of the particle physics

programs such as heavy flavor, electroweak, top, QCD, Higgs, and Exotic and other new

physics searches. The Roman number II in the name of the detector symbolizes the upgraded

detector system. Figure 2.2 shows a picture of the CDF II detector. A schematic view of

the detector complex is shown in Figure 2.3.

In the coordinate system of the CDF II detector, the z-axis is along the beam line

with its origin at the center of the detector. The positive z-axis is chosen to be in the
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Figure 2.2. A picture of CDF II detector with end plug opened [31, 37].

Figure 2.3. Elevation view of the CDF II detector [31, 37].

direction of the proton beam. The x-axis and y-axis are chosen to make it a right-handed

coordinate system with vertical y-axis. The x-axis points horizontally to the center of the

ring. Sometimes, a cylindrical coordinate system is also considered due to the cylindrical

shape of the detector. In this system, r is the radius, φ is the azimuthal angle measured

from the positive x-axis; and the z-axis is the same as that in Cartesian geometry. In the

polar coordinate system, θ is measured from the positive z-axis. Sometimes, θ is replaced



18

Silicon
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Figure 2.4. Isometric view of the CDF II detector [31, 37].

by pseudo-rapidity η defined as η = −ln(tan θ
2).

The most probable collision point is at the center of the detector. The collision re-

gion is surrounded by various detector systems as shown in Figure 2.4. In our analysis,

we reconstruct charged particle tracks using the tracking and vertexing systems, a silicon

detector and a multi-wire drift chamber called the “Central Outer Tracker” or “COT”.

These two components are described in the following text. A comprehensive description of

the complete system can be found in reference [37]. The following discussion is based on

references [39, 40, 41, 42].

The r-z view of the CDF II tracking and vertexing system is shown in Figure 2.5. The

tracking system is surrounded by a 4.8 meter long cylindrical superconducting solenoid with

a diameter of 3 meters and axis along the z-axis. The solenoid produces a uniform magnetic

field of 1.4 T. A charged particle travelling in this magnetic field forms a helical trajectory

that is characterized by the charge and momentum of the particle. The projection of the

helix on the transverse plane (the plane perpendicular to beam line) is a circle of radius

r. The curvature C of the helix is defined as |C| = q/2r, where q is the charge of the

particle. A helical fit is performed to determine the curvature of a track and other track

parameters. The transverse momentum of the particle is measured from the curvature as

pT = Bqr, where B is the magnitude of the magnetic field. The longitudinal component of
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Figure 2.5. The r-z view of the CDF II tracking system [31, 37].

the momentum is given by pz = pT cotθ. The momentum is measured in the units of GeV/c.

A vertex is the point in the detector coordinate system at which a particle originates.

A vertex is formed when a particle decays into another particle. Since the decaying particle

decays into more than one particle, the decay vertex can be determined from the intersection

of the trajectories of at least two decay products.

The particle trajectories are determined using the silicon detector system and the Central

Outer Tracker (COT).

2.2.1 Silicon Detector System

The silicon detector system is the innermost part of the CDF II detector. The purpose

of the silicon detector system is precision tracking and vertexing. It spans the region of

|η| < 2.0, as shown in Figure 2.6.

The silicon detector system comes in three subsystems as illustrated in Figure 2.7.

• L00: Immediately around the beam pipe (r = 1.6 cm ), there is a single sided silicon

micro strip detector, called L00. The micro-strip array has a pitch of 50 µm.
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• SVX II: Outside the L00, extending from r = 2.4 cm to r = 10.7 cm, is a double sided

micro-strip detector called silicon vertex detector SVX II. The SVX II is arranged in

5 concentric barrels. Three of them have silicon strips positioned at a stereo angle of

90◦ to provide information in the z direction. The strips on the other two layers have

a small stereo angle of 1.2◦ making them sensitive to both z and φ directions.

• ISL: Outside the SVX II is the Intermediate Silicon Layer or ISL ranging from r = 20

cm to r = 29 cm, corresponding to 1.0 < |η| < 2.0 region. The ISL is again a set of

double sided micro-strip detectors arranged in three concentric barrels. One side of

the silicon detector has a strip pitch of 55 µm, the strip pitch on the other side is 73

µm.

Figure 2.8 is a sketch to illustrate how a particle is detected in the silicon micro-strip de-

tectors. When a charged particle passes through the silicon strips, it leaves behind electron-

hole pairs. An electric pulse (called hit) is detected in the nearest strips. The hit position is

extracted by weighting the strip positions by the amount of charge collected on the strips.

The accuracy of the silicon detector in measuring the hit position is about 12 µm. The

particle track is reconstructed from the signals in different layers. Tracking is performed

by a dedicated system called Silicon Vertex Tracker (SVT). Most of the electronics such as

amplifiers and analog-to-digital converters are kept close to the silicon detectors to avoid

loss of signal. This makes the system extremely sensitive to particle radiation.

2.2.2 Central Outer Tracker

The Central Outer Tracker is a cylindrical drift chamber located between r = 44 cm and

r = 132 cm. It is 310 cm long and spans the range of |η| < 1.0. The COT is filled with a

mixture of argon and ethane gases with equal concentration.

As illustrated in Figure 2.9, the COT is divided in eight superlayers (SL1 to SL8, with

SL1 being the innermost and SL8 being the outermost superlayer). Each superlayer has 12

sense wires providing total 96 radial measurement points. The number of cells (peripheral

divisions) in each superlayer ranges from 168 for SL1 to 480 for SL8. Superlayers 2, 4, 6,

and 8 are axial (wires parallel to the beam) while superlayers 1, 3, 5, and 7 are at a small
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Figure 2.6. Components of silicon detector system spanning various pseudo-rapidity (η)
regions [31, 37].

stereo angle (2◦). Thus, there are a total of 2520 cells. Figure 2.10 shows one such cell. As

illustrated in the figure, the wire plane makes an angle of 35◦ with the radial direction.

Similar to what happens in the silicon detector, a charged particle travelling through

the gas mixture leaves a trail of ions. An electric field is created by cathode field panels

and potential wires. This electric field causes the ions to drift toward the sense wires. Due

to the combined effect of the magnetic field in the COT and the electric field in the cell,

the ions drift towards the sense wire with an angle α = 35◦.

The COT has a resolution of 180 µm for a single hit. COT tracks are reconstructed

by a hardware system called eXtremely Fast Tracker (XFT). For the complete track recon-

struction, the COT and SVX information are combined. The XFT extrapolates the COT

tracks into SVX. The COT also measures the ionization energy loss (dE/dx) of a particle.

Apart from COT and SVX detectors, the CDF II also has a third detector called Muon

Detector. The Muon detector is comprised of Central Muon detector (CMU), Central

Muon Upgrade detector (CMP), Central Muon eXtension detector (CMX), and Intermedi-

ate Muon System (IMU).
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Figure 2.7. Silicon Vertex Detector end view [31, 37].

Figure 2.8. Detection of a particle track in a silicon strip detector [31, 37].

In addition, there are other components of the CDF II detector such as Cherenkov

Luminosity Counter (CLC), calorimeters, and Time Of Flight (TOF) systems. The Muon

detector and these components are not relevant for our analysis. For a complete review of

the CDF II detector system, please refer to [37].

2.3 Trigger System

The bunch crossing interval of 396 ns at the Tevatron produces collisions at the the rate

of 2.5 MHz. Only a subset of this data is of physics interest. Also, it is not feasible to
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Figure 2.9. COT superlayers. COT is divided in 8 superlayers, each containing 12 wires,
to provide 96 measurement points radially. The number of cells in each superlayer ranges
from 168 for SL1 to 480 for SL8, providing a total of 2520 cells [31, 37].

Figure 2.10. A COT cell. The wire plane makes an angle of 35◦ with the radial direction [31,
37].

maintain the records of all these events in physical storage. The trigger system at CDF

II is therefore designed to filter out unwanted events and only retain those events that are

judged as desirable for physics analyses.

The data acquisition system at CDF II is a three level trigger system described by Level

1 (L1), Level 2 (L2), and Level 3 (L3) triggers. The triggers are designed with increasing

sophistication at each level. It takes only 5.5 µs to make a judgement to accept or reject
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an event at level 1. If an event is accepted at level 1, then further constraints are applied

at level 2, which may take as much as 50 µs to make a decision.

For the triggers relevant to this analysis, at level 1, the trigger primitives are azimuthal

angle φ and transverse momentum pT of a track. A hardware system called the “extremely

fast tracker” (XFT) uses COT hits to reconstruct the particle tracks.

Level 2 is a combination of hardware and software in which the silicon vertex tracker

(SVT) system uses digitized data from the SVX II detector. The SVT looks for the tracks

with displaced vertices. At level 2, an important trigger primitive is the impact parameter

along with Level 1 primitives.

Level 3 is a purely software trigger running on a cluster of about 300 processors. At this

level, a block of data, called an event record, is formed with complete information about an

event. Further constraints are applied and if the event is selected then the data are passed

to permanent storage and offline processing. The final output rate at Level 3 is less than

75 Hz. Figure 2.11 is the block diagram of the trigger system.

There are two types of triggers: pre-scaled triggers and luminosity enabled triggers. If

the data rate is too high, some triggers are dynamically adjusted (prescaled) to match what

the data acquisition system can handle. For example, in the beginning of a store, the initial

luminosity is high. At this time, tight constraints are placed on low momentum (pT ) tracks.

When luminosity drops, these constraints are loosened to make full use of the available

bandwidth. The luminosity enabled triggers are enabled only when the luminosity is within

a specified range.

All triggers are stored in the CDF II trigger database. For a given trigger, the complete

sequence of level 1, level 2, and level 3 requirements is called a “trigger path”. This design

avoids interference of triggers by separating well defined sequences of independent trigger

requirements. They follow a naming convention such that an important requirement of the

trigger appears in the name. For example, L1_TWO_TRK_B_HAD_LUMI_80_v2 is the trigger

that looks for two oppositely charged particle tracks; it is designed for B hadrons; and it

is a luminosity enabled trigger that turns on after the luminosity is below 80× 1030 cm2/s.

The last number in the name represents the version of the trigger.

The data is divided into logical sets called “runs”. Each run corresponds to a certain
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Figure 2.11. Block diagram of the three level trigger system at CDF II detector. For the
purpose of this analysis, the data from COT and SVX is used. The COT data is processed
by XFT (eXtremely Fast Tracker) and XTRP (Extrapolator). The SVX data is processed
by Secondary Vertex Tracker (SVT). Level 2 accepts the data from Level 1 [31, 37].

time period over which the data is collected and is assigned a specific run number. A store is

divided into several runs. The detector operations manager records the information about

luminosity (as determined by Cherenkov Luminosity Counter or CLC) and the status of the

detector components at the end of each run. This information is stored in a database called

the CDF II run summary database. The runs are also marked as “good” or “bad” depending

on the health of the important detector components at the time of data acquisition. The

information about the total luminosity of the data used in an analysis can be obtained from

this database. This is done by selecting the required components of the detector, and a

range of run numbers corresponding to the used data.



26
2.4 Offline Processing

The events accepted by Level 3 are written to tape in the mass storage system. The

events are written to one of the eight data streams based on the triggers they satisfy. The

tapes are cataloged in the CDF Data File Catalog, which is an Oracle database. After the

necessary calibrations are applied, the data is processed on a parallel computing farm. The

selected data files from tape are sent to worker nodes (the individual processors ) in the

parallel computing farm. Each worker node receives a file of approximately 1 GByte in size.

The events are reconstructed and the output is split into multiple (≈ 50) files. Each file

corresponds to a dataset defined by the event type in the trigger system. An event may

satisfy several trigger requirements and can be written to multiple datasets [38].

At the end, the output files from all nodes for each dataset are combined and stored in

the CDF Data Handling system (DHS). At this point, the files are accessible for various

analyses.
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CHAPTER 3

ANALYSIS AND RESULTS

“Results! Why, man, I have gotten a lot of results. I know several thousand

things that won’t work.”

-Thomas A. Edison

The design of the CDF II detector and its trigger system that accommodates heavy

flavor physics is conducive towards the search for charm mixing. This analysis used the

D0 → Kπ decay channel data that was available in large quantities in the data collected

from February 2002 to January 2009.

3.1 The Goal of the Analysis

In order to measure charm mixing, we reconstruct the D∗ → D0π; D0 → Kπ decay chain

and use the flavor tagging method that was briefly discussed in Section 1.3.1. In our analysis,

we define right sign (RS) and wrong sign (WS) decays from the relative signs of the pions

from D∗ and from D0, as follows:

• Right sign: If pions from D∗ and D0 have the same sign, an event is defined as a

right sign decay. For example, D∗+ → D0π+; D0 → K−π+. These decays arise from

Cabibbo favored decays.

• Wrong sign: If pions from D∗ and D0 have opposite signs, the event is defined as a

wrong sign decay. For example, D∗+ → D0π+; D0 → K+π−. A wrong sign decay

can originate from doubly Cabibbo suppressed decays or through mixing.

• Similarly, we define right sign and wrong sign decays for charge conjugates. For

example, D∗− → D̄0π−; D̄0 → K+π− is a right sign decay.

The goal of the analysis is to measure the ratio of wrong sign and right sign decay rates

as a function of D0 decay time. This ratio, assuming no CP violation, is given by
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r(t/τ) = RD +
√

RDy′(t/τ) +
(x′2 + y′2)

4
(t/τ)2, (3.1)

where, as previously defined in Section 1.3.1, RD = |A(DCS)
A(CF ) |2, x′ = xcosδ+ysinδ and y′ =

−xsinδ + ycosδ, δ is the strong phase difference between DCS and CF amplitudes, τ is the

mean D0 lifetime and t is the proper decay time of D0.

The mixing parameters x′2 and y′ are determined from the WS/RS ratio. This analysis

was performed assuming no CP violation, and so we combined D∗+ and D∗− data. For a

CP-violation study in charm mixing, the same technique of measuring the time dependent

WS/RS ratio is employed separately for D∗+ and D∗−.

In the following sections, we will discuss the event reconstruction, the data sample that

was used for the analysis, the analysis method to extract the number of wrong sign and

right sign D∗s as a function of decay time, and the final result.

3.2 Event Reconstruction

Figure 3.1 illustrates the D∗ → D0π; D0 → Kπ decay chain in a CDF detector plane

transverse to the beam line (x-y plane). At the primary vertex, a D∗ meson decays promptly

into a pion and a D0 meson. The D0 meson further decays into K−π+ or K+π−. The pion

from the D∗ has a lower momentum (and so, a larger curvature) as compared to the pion

from the D0. This pion is referred to as soft pion throughout this analysis.

The D0 candidate is reconstructed from the oppositely charged K and π tracks. These

tracks are selected using the trigger requirements of the Two-Track Trigger (TTT), which

will be described in the next section. The D0 is then combined with the third track of softer

momentum to form a D∗ candidate. This is the tagging pion that is used to determine

whether the event is a wrong sign or a right sign event.

The proper decay time of the D0 is measured using the transverse decay length Lxy,

given by

Lxy =
r · pT

|pT|
, (3.2)
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Figure 3.1. Illustration of D∗ → D0π; D0 → Kπ decay chain at the CDF II detector in
the x-y plane transverse to beam line. The D∗ decays promptly into π and D0 and the
D0 further decays into K and π. The figure also illustrates decay length (Lxy) of D0. The
impact parameter d0 for a kaon track is illustrated as an example.

where r is the vector pointing to the D0 decay vertex, and pT is the transverse momentum

of the D0. The proper decay time t is calculated from the equation

ct =
L

γβ
=

cLxyMD0

|pT|
, (3.3)

where L is the decay length of the D0 meson, β = v/c, γ = 1/
√

1− β2, and MD0 is the

mass of the D0 meson.

Since Lxy is measured from the primary vertex, we can accurately measure the proper
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decay time by requiring that the D∗ comes from the primary vertex.

Figure 3.1 also illustrates another important variable - the impact parameter of a track.

The impact parameter of a track is defined as the distance of closest approach from the

primary vertex to the extrapolated trajectory of the track, in the plane transverse to the

beam line. In the Figure 3.1, the impact parameter of a kaon track is shown as d0(K).

The impact parameter can also be computed for other tracks. The formula to compute the

impact parameter is

d0 =
ẑ · (r× pT)

|pT|
, (3.4)

where ẑ is the unit vector along the z-axis.

The impact parameter distribution plays an important role in the analysis to distinguish

prompt D∗s originating at the primary vertex from the non-prompt D∗s originating at the

secondary vertices. This is explained in detail in Section 3.6.4.

3.3 Two Track Trigger

The events are selected in real-time using the two-track trigger (TTT). The TTT was

developed for a broad range of heavy flavor physics, especially b-Physics (physics of hadrons

involving b quarks, such as B mesons). The trigger has a good acceptance for charm mesons

due to some similarities between B and charm mesons. Both B and charm mesons have

longer lifetimes as compared to the random combinatorial background, and smaller lifetimes

compared to strange particles. The trigger, therefore, looks for a displaced vertex (to avoid

background from the primary interaction), with characteristics consistent with the decay of

long lived particles.

Along with good a charm acceptance, the trigger also has good time resolution of greater

than 0.16 × D0 lifetime. We confirm that both K and π tracks are the trigger tracks,

satisfying the TTT trigger requirements.

In the TTT trigger, at Level 1, the extremely fast tracker (XFT) reconstructs COT

tracks. The Level 1 requirements defined for the XFT are listed below:

• The trigger requires two oppositely charged tracks.
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• The XFT reconstructs these tracks from four COT axial superlayers.

• The transverse momentum pT of each of the individual tracks is greater than 2.04

GeV/c.

• The scalar sum of the pT s of tracks is greater than 5.5 GeV/c.

• The angle between the two tracks should be between 0 and 135 degrees.

At Level 2, all Level 1 constraints are applicable, with some requirements made more

stringent and new constraints added. The displaced vertex is identified by the secondary

vertex tracker (SVT) at Level 2. The Level 2 requirements are:

• All Level 1 requirements satisfied.

• Impact parameter d0 of each track is between 0.12 mm and 1.0 mm.

• The angle between two tracks is now required to lie between 0 and 90 degrees.

• The χ2 of the SVT fit is required to be less than 25.

• The intersection point in the r-φ plane projected along the net momentum vector of

the two tracks is required to be greater than 200 µm from the beam line.

At Level 3, the COT tracks are extrapolated and matched with SVT tracks. Once the

matches are made, constraints similar to Level 1 and Level 2 requirements are applied.

The triggers are prescaled to handle high data rates. The prescaling of the TTT lowers

the pT cuts when the luminosity falls below a certain magnitude. This prescaling does not

affect our analysis, since it has the same effect on RS and WS decays.

The events passing the above trigger requirements are written to tapes in the mass

storage system for offline processing.

3.4 Data Sample

The data used for this analysis was collected from February 2002 to January 2009. This

data corresponds to an integrated luminosity of ≈ 4.0 fb−1 for pp̄ collisions at a center of

mass energy
√

s = 1.96 TeV.



32
The data is extracted from the data files prepared for B physics. The luminosity was

determined by selecting the “good” runs and the following detector components in the run

summary data base: Level 1 to 3 triggers, CLC, COT, CMU, CMP, CMX, SVX, ISL, and

Layer 00 of silicon.

3.5 A Brief History of This Analysis

The measurement of the ratio of branching fractions of DCS to CF decays (time indepen-

dent) was performed with 0.35 fb−1 of integrated luminosity. This result was published in

2006 [43]. It was during this study that the method to extract D∗ yields was developed and

most of the cuts were optimized using the D∗ yield technique.

The time dependent measurement of the ratio of DCS and CF decay rates was performed

with 1.5 fb−1 integrated luminosity using the same D∗ yield technique. The data was

collected from February 2002 to January 2007. This measurement provided the evidence

for D0 − D̄0 mixing in 2007 [22].

We extended the analysis technique by exploring new cuts and by applying an Artificial

Neural Network. These methods are described in detail in Appendix A. However, no sig-

nificant improvements were observed by using the new cuts. The Artificial Neural Network

analysis yielded similar results to the standard analysis technique that was employed in

the previous publications. So no changes were proposed to the existing technique and the

same technique was employed for the current analysis with about 4.0 fb−1 of integrated

luminosity.

3.6 Analysis

3.6.1 Backgrounds and Basic Cuts

While looking for the wrong sign signal, we encounter four sources of backgrounds: mis-

identification of KK and ππ tracks as Kπ tracks, mis-identification of πK track as Kπ

track, random pion background, and combinatorial background. These backgrounds are

discussed below. The signal and background shapes are illustrated in Figure 3.2. The D∗

mass difference illustrated in this sketch is defined as ∆M = m(D∗)−m(D0)−m(πs).
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Figure 3.2. A sketch to illustrate signal and backgrounds in Kπ mass and mass difference
distributions. The D0(Kπ) mass distribution has the range from 1.80 to 1.92 GeV/c2 on
the x-axis and the number of events per 2 MeV/c2 on the y-axis. The mass difference
distribution has the range from 0 to 30 MeV/c2 on the x-axis and the number of events per
0.5 MeV/c2 on the y-axis [44].

Mis-identification backgrounds

We reconstruct a D0 candidate from two oppositely charged tracks with both Kπ and πK

interpretations. When we combine the reconstructed D0 with a third track for the soft pion,

we get a D∗ candidate with wrong sign and right sign D0s. A correct mass assignment will

result in a narrow peak in the mass distribution plot.

Figure 3.3 shows the mass distribution for wrong sign (along x-axis) and right sign (along

y-axis ) interpretations. The plot has events clustered in the high mass (upper right) and low

mass (lower left) regions. These clusters are π+π− and K+K− events reconstructed as Kπ

events. To remove this background, we restrict the Kπ mass region to 1.8 ≤ mKπ ≤ 1.92

GeV/c2. The resulting plot is shown in Figure 3.4.

In Figure 3.4, we notice that the wrong sign signal (vertical yellow band) is dominated

by the broad right sign distribution (horizontal red band). This happens because the kaon

and the pion assignments of the D0 daughter tracks are interchanged. To reduce this

particular background, we apply a mass cut on right sign events corresponding to a 40

MeV/c2 window around the world average D0 mass as depicted in Figure 3.5. This cut

is defined as |mKπ(RS) − mD0 | ≤ 20 MeV/c2 . We call this requirement the “opposite

assignment mass cut”. This removes most of the red colored background.
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Figure 3.3. WS and RS Kπ mass plotted together (using 60 pb−1 data). The dashed lines
correspond to the world average D0 mass, 1.8645 GeV/c2 [45].

Figure 3.4. WS and RS plot after removing KK and ππ background (using 1.5 fb−1

data) [44].
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Figure 3.5. Opposite assignment mass cut on RS Kπ mass for WS signal using 1.5 fb−1

data) [44].

To further clean up the right sign background from wrong sign signal, we apply a particle

identification cut. The particle identification cut uses ionization energy loss per unit length

(dE/dx) measured in the multi-wire drift chamber (COT). In our analysis, we use a Z

variable defined as

Z = log

(
dE
dx measured
dE
dx expected

)

For correctly identified K tracks, the Z distribution will be a unit Gaussian centered at

Z = −0.44. For correctly identified π tracks, the Z distribution will be centered at Z =

−0.51. Real kaon tracks incorrectly interpreted as pion tracks (pion hypothesis) will have

a Z Gaussian distribution centered at −1.6. For a kaon hypothesis, a real pion will be

centered at 0.6.

Figure 3.6 shows the Z distributions for the kaon track with both K and π hypotheses.

Figure 3.7 shows the same for a pion track.

The idea behind the particle identification cut is to compare the probability distributions
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for Kπ and πK assignments and to use the more probable hypothesis. For the RS decay,

D0 → K−π+, with RS hypothesis, the Z value of the first track is ZK,1, and the Z value

for the second track is Zπ,2. With Kπ assignments interchanged, the Z values of the first

and the second track will be Zπ,1 and ZK,2, respectively.

The cut variable is then defined as

(Z2
K,1 + Z2

π,2)− (Z2
π,1 + Z2

K,2)

for which the RS D0 will have a negative value, since the WS sum of squares will be larger

than the RS sum of squares. Similarly, for the WS D0, the cut variable will have a positive

value.
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Figure 3.6. dE/dx (Z variable) distribution for a kaon track (a) with a kaon hypothesis and
(b) with a pion hypothesis.

The two cuts, opposite mass assignment cut and particle identification cut, together

remove more than 96.4% of the right sign background from wrong sign signal and retain

78% of the signal. Figure 3.8 depicts RS and WS distributions before and after the two

cuts are applied.

Random Pion Background

We call the background generated from combining a D0 with a random pion track not

associated with a D0 the random pion background.
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Figure 3.7. dE/dx (Z variable) distribution for a pion track (a) with a kaon hypothesis and
(b) with a pion hypothesis.

Combinatorial Background

In some events, one or both tracks do not belong to a D0 → Kπ decay. The candidates

formed from such a random selection of tracks sometimes happen to pass our selection

criteria. These events form the combinatorial background.

Figure 3.9 is the projection of WS D0 fit results obtained from 0.35 fb−1 data. This figure

illustrates the relative amounts of signal and backgrounds. The combinatorial background

can be modelled as a linear or quadratic decreasing function.

To reduce the combinatorial background, we apply a series of cuts. We require the

transverse decay length significance Lxy/σxy to be greater than 4, where σxy is the uncer-

tainty on Lxy. The impact parameter for the soft pion track must have d0 < 500 µm. The

soft pion must also have a point of closest approach to the primary vertex less than 1.5 cm

along the beam line, and transverse momentum greater than 0.3 GeV/c.

Cut Optimization

All the cuts were optimized in the time-independent study performed with 0.35 fb−1 inte-

grated luminosity and using the time integrated D∗ yield technique for RS events [43]. The

cuts were chosen to maximize the signal significance S√
S+B

, where S is the WS signal and B

is the WS background. The optimization was performed with the WS signal kept blinded.

The WS signal was estimated by scaling the RS signal by the measured time integrated
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Figure 3.8. The right sign and wrong sign distributions with 0.35 fb−1 data. The figures
on the left are right sign and wrong distributions before the opposite assignment mass cut
and PID cuts are applied. The figures on the right are the RS and WS distributions after
the application of these cuts. In all these plots, the red colored peak region is the RS(WS)
signal. The blue colored broad background is mis-identified background. The green colored
linear distribution is from the combinatorial background [44].

ratio of WS/RS rates RD = 0.0035. The WS background was estimated from the region

outside the signal peak in the D∗ mass plot [45].

3.6.2 The Clean RS Signal

Figure 3.10 shows the fits for the time integrated RS Kπ mass plot using the data with

|d0| < 60 µm. The plot shows a huge and pure RS D0 signal, shown by a dark gray colored

fit projection and a small background at the bottom shown by a light gray fit. The fits are

described in the next section.

The right sign and wrong sign decays have the same kinematics, so they will have the

same distributions. Due to this fact, we can obtain probability distribution shapes from

right sign decays and use them for the wrong sign decays. This technique eliminates the

need for Monte Carlo simulations and avoids the systematic uncertainties arising from fixing
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Figure 3.9. Projection of WS D0 fit results obtained from 0.35 fb−1 data to illustrate
relative amounts of signal and backgrounds [43].

the shapes from Monte Carlo.

Another advantage of this technique is that, in measuring the WS/RS ratio, most of the

systematic uncertainties are cancelled in the ratio. This will be described in Section 3.7.2.

3.6.3 The D∗ Yield Technique

Kπ Mass Fits

In order to extract RS and WS D∗s, the first step in our analysis is to perform Kπ mass

fits to extract the number of D0s. We adopted the following approach:

1. Divide the data into RS and WS events.

2. Divide each of the RS and WS data into 20 time bins.

3. Divide each time bin into 60 mass difference (∆M) bins.

4. For a given time bin and a given mass difference bin, fit the Kπ mass distribution.

The choice of time bins is based on statistics. The following choices were made:
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Figure 3.10. The time integrated RS D0 sample. Dark grey is the signal fit, light grey is
the background fit.

• 13 time bins of width 0.25 D0 lifetime, for decay times from 0.75 - 4.0 D0 lifetimes.

• 4 time bins of width 0.5 D0 lifetime, for decay times from 4.0 - 6.0 D0 lifetimes.

• 2 time bins of width one D0 lifetime, for decay times from 6.0 - 8.0 D0 lifetimes.

• 1 time bin of width 2.0 D0 lifetime, for decay times from 8.0 - 10.0 D0 lifetimes.
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Figure 3.11. RS Kπ mass fit for 2.75 < t/τ < 3.00 and 5.5 < ∆M < 6.0 MeV/c2.

Since we divide the mass difference range 0 < ∆M < 30 MeV/c2 into 60 bins, the size

of each bin is 0.5 MeV/c2 .

Figure 3.11 shows an example of the RS Kπ mass fit for the time bin 2.75 < t/τ < 3.00

and mass difference bin 5.5 < ∆M < 6.0 MeV/c2. Figure 3.12 shows the WS Kπ mass fit

for the same time and mass difference bins.

The signal shape is a double Gaussian. The mean of the first Gaussian is 1.8652±0.00001

GeV/c2 and that of the second Gaussian is 1.8648 ± 0.00003 GeV/c2. The widths of the

two Gaussians are 7.19 and 11.63 MeV/c2, respectively. The signal shapes for Kπ mass

distributions are fixed from the time integrated RS Kπ mass distribution that was shown

in Figure 3.10. The same shapes are used for both RS and WS distributions. For these fits,

a typical χ2/ndf ≈ 1.0, where ndf stands for number of degrees of freedom.

For each mKπ distribution, a parabola with floating parameters is used to fit the back-

ground. The amplitudes of the signal and background shapes are determined independently

for all Kπ distributions.
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Figure 3.12. WS Kπ mass fit for 2.75 < t/τ < 3.00 and 5.5 < ∆M < 6.0 MeV/c2.

The signal peak has correctly reconstructed D0 candidates with some background from

random pions. The background contains mis-identification and combinatorial backgrounds.

The Kπ mass fit gives the D0 yield for a given time bin and mass difference bin.

Mass Difference Fits

For a given time bin, when we fit the Kπ mass distributions for all 60 mass difference bins,

we get a number of D0 vs. mass difference distributions. On fitting these distributions,

we get the D∗ yield. Figures 3.13 and 3.14 show the RS and WS ∆M fits for time bin

2.75 < t/τ < 3.00.

As in the Kπ mass fits, the signal shapes in all time dependent ∆M distributions were

fixed from the time integrated right sign ∆M distribution. The same shapes were applied

to both the RS and WS ∆M distributions.

The background shape has a power term of ∆M . The background shapes for all the RS

∆M distributions were fixed from the time integrated RS ∆M distributions. Similarly, the
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Figure 3.13. RS D∗ distribution for 2.75 < t/τ < 3.00.
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Figure 3.14. WS D∗ distribution for 2.75 < t/τ < 3.00.
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background shapes for all the WS ∆M distributions were fixed from the time integrated

WS ∆M distributions. The amplitudes of the signal and background shapes are determined

independently for all ∆M distributions.

The signal peak has the correctly reconstructed D∗s. The background is from correctly

reconstructed D0s combined with a random pion not associated with the D0.

The RS and WS distributions have approximately the same amount of background.

However, the RS signal is about 250 times larger than the WS signal.

The ∆M distribution fits give the D∗ yield for a given time bin. We do this for all 20

time bins for both RS and WS events to get the number of RS and WS D∗s in each of the

time bins. The time integrated RS and WS ∆M distributions are shown in Figures 3.15

and 3.16.

For 4.0 fb−1 integrated luminosity, the time integrated RS D∗ yield was ≈ 5.7 million.

The time integrated WS D∗ yield was 24000.

We can use this yield to estimate the expected mixing significance as a “back of the

envelope” calculation. The time integrated RS D∗ yield for the result published in 2007

with 1.5 fb−1 data was 3.0 million. The published result provided the mixing significance

of σold = 3.8. If we assume that the central values of the mixing parameters remain the

same and that the significance is proportional to the square root of the number of events

(significance ∝
√

N), then we can estimate the expected significance (σexp) using:

σexp = σold ×
√

Ntotal

Nold
.

With σold = 3.8, Ntotal = 5.7 million, Nold = 3.0 million, we get σexp = 5.23.

3.6.4 Non-prompt D∗ Correction

Before we look for the ratio of WS and RS D∗s as a function of D0 decay time, we have

one more step to complete. Since we measure the proper decay time of the D0 from its

transverse decay length Lxy, and as Lxy is measured from the primary vertex, we need to

ensure that the D∗s originate at the primary vertex (called prompt D∗s). This also avoids

the complication of measuring the proper decay time of a D0 from a secondary vertex (non-
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Figure 3.15. Time integrated right sign ∆M distribution.

prompt D∗s). For example, the D∗ originating at a secondary vertex from a B-decay will

have a wrong decay time.

We use the impact parameter (IP) distribution of D0 to eliminate the non-prompt

D∗s. The D0 mesons originating from the prompt D∗s have a narrow impact parameter

(d0) distribution. The D0 mesons produced from the D∗ mesons coming from secondary

decays have a wide d0 distribution. The D0 impact parameter distribution for one time bin

(5 < t/τ < 6) is shown in Figure 3.17.

The shapes of the narrow and wide distributions are determined from right-sign data,

and the same shapes are used for wrong-sign data. A double Gaussian shape was used for

the narrow peak and a single Gaussian shape was used for the wide distribution. The width
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Figure 3.16. Time integrated wrong sign ∆M distribution.

of the wide distribution increases with time, whereas the width of the narrow distribution

is time-independent. The width of the single Gaussian is parametrized from RS data using

a polynomial of order 3. This parametrization is used to obtain the width of the single

Gaussian in WS IP distributions.

To determine the prompt RS signal in each time bin, we adopted the following approach:

1. The impact parameter (IP) distribution for each time bin was divided into two regions:

|d0| < 60 µm (inner IP region) and |d0| > 60 µm (outer IP region). This cut was

chosen to maximize the WS D∗ yield significance.

2. For a given time bin i, we use the single Gaussian shape for the non-prompt distribu-
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Figure 3.17. Impact parameter distribution for RS D0 mesons with 5 < t/τ < 6 using 4.0
fb−1 data.

tion to compute the fraction of events fi as an integral over 0 ≤ |d0| ≤ 60 µm divided

by the integral over the total range 0 ≤ |d0| ≤ 500 µm. Similarly, the fraction of

events gi is computed as an integral over 60 < |d0| ≤ 500 µm divided by the integral

over the total range 0 ≤ |d0| ≤ 500 µm.

3. From the prompt distribution shape, we get fractions fp and gp for the two IP regions.

4. The D∗ yield technique was used to get the number of D∗s for inner (ni) and outer

(oi) IP regions.

5. The number of prompt (NP ) and non-prompt (NNP ) D∗s were then computed from

the above values as follows:

NP =
nigi − oifi

fpgi − figp
,

NNP =
oifp − nigp

fpgi − figp
.
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6. The uncertainties on the number of D∗s and on the IP fractions were propagated to

get the uncertainties on the number of prompt events.

Thus, we obtain the number of prompt RS D∗ as a function of D0 decay time. Using

steps 5 and 6 from the above procedure for WS distributions, we obtain prompt WS D∗s.

The ratio of non-prompt to prompt signal is ≈ 0.02 at t/τ = 2 and this ratio increases with

time. At t/τ = 7, the ratio is ≈ 1.0, as was found in the 1.5 fb−1 study. The amount of the

prompt and non-prompt distributions in each IP region using 4.0 fb−1 data is summarized

in Table 3.1.

Time Bin Fraction In (fi) σfi Fraction Out (gi)
prompt

distribution 0.95702 0.00024 0.04298
0.75-1.00 0.70800 0.00271 0.29200
1.00-1.25 0.64350 0.00304 0.35650
1.25-1.50 0.58812 0.00321 0.41188
1.50-1.75 0.54072 0.00329 0.45928
1.75-2.00 0.50007 0.00330 0.49993
2.00-2.25 0.46502 0.00328 0.53498
2.25-2.50 0.43462 0.00323 0.56538
2.50-2.75 0.40809 0.00318 0.59191
2.75-3.00 0.38479 0.00311 0.61521
3.00-3.25 0.36421 0.00304 0.63579
3.25-3.50 0.34593 0.00298 0.65407
3.50-3.75 0.32963 0.00292 0.67037
3.75-4.00 0.31501 0.00285 0.68499
4.0-4.5 0.29576 0.00277 0.70424
4.5-5.0 0.27418 0.00267 0.72582
5.0-5.5 0.25631 0.00259 0.74369
5.5-6.0 0.24137 0.00252 0.75863
6.0-7.0 0.22327 0.00244 0.77673
7.0-8.0 0.20521 0.00238 0.79479
8.0-10.0 0.18744 0.00239 0.81256

Table 3.1. Prompt and non-prompt distribution fractions using 4.0 fb−1 data. σfi is the
uncertainty on fi based on the uncertainties of the parametrization for the non-prompt
Gaussian width.

This completes the illustration of the D∗ yield technique. The total number of Kπ mass

fits equals 60 (∆M bins)× 20(time bins)× 2(IP regions) × 2 (RS and WS events) = 48000

fits.
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Figure 3.18. The ratio of wrong sign to right sign D∗s as a function of normalized D0 decay
time (4.0 fb−1).

3.7 Results

3.7.1 WS/RS Ratio

The ratio of wrong sign to right sign prompt D∗ in 20 time bins is summarized in Table

3.2 and plotted in Figure 3.18. The large uncertainties at small t/τ are due to the trigger

turn on. The large uncertainties appearing at larger t/τ are due to the exponential decays.

We fit the time dependent WS/RS ratio using the fit function given by Equation 3.1. The

dashed curve is from a least-square fit with x′2 and y′ allowed to vary. This fit determines

the mixing parameters. The χ2 for this fit is 19.2. The dotted line is the fit assuming

no-mixing (x′2 = y′ = 0). The χ2 for this fit is 36.8.

The difference between the χ2s of the best fit and the no-mixing fit clearly favors the

mixing fit. This difference can be used to cross check the final result of mixing significance.

The results of the two fits are given in Table 3.3. The variables x′2 and y′ are highly

correlated with covariance ρ = −0.976.
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Time Bin WS/RS Ratio
0.75− 1.00 4.54 ± 1.074
1.00− 1.25 3.32 ± 0.38
1.25− 1.50 4.26 ± 0.25
1.50− 1.75 4.13 ± 0.21
1.75− 2.00 3.76 ± 0.19
2.00− 2.25 4.45 ± 0.21
2.25− 2.50 4.31 ± 0.22
2.50− 2.75 4.41 ± 0.24
2.75− 3.00 4.63 ± 0.26
3.00− 3.25 4.32 ± 0.31
3.25− 3.50 4.71 ± 0.32
3.50− 3.75 4.61 ± 0.39
3.75− 4.00 4.88 ± 0.44
4.00− 4.50 5.15 ± 0.39
4.50− 5.00 5.11 ± 0.49
5.00− 5.50 5.68 ± 0.69
5.50− 6.00 4.99 ± 0.83
6.00− 7.00 7.83 ± 1.04
7.00− 8.00 4.98 ± 1.92
8.00− 10.00 10.13 ± 4.45

Table 3.2. WS/RS ratios for 4.0 fb−1 data.

Fit RD(10−3) y′(10−3) x′2(10−3) χ2/ndf
Best fit(unconstrained) 3.61 ± 0.42 3.5 ± 4.8 0.11 ± 0.21 15.3/17
No-mxing (x′2 = y′ = 0) 4.35 ± 0.07 0.0 0.0 46.7/19

Table 3.3. The results of the WS/RS ratio fits (4.0 fb−1 data).

3.7.2 Systematic Uncertainties

Systematic uncertainties on the fit shapes arise because the true distribution shapes could

be complicated, but well matched by simple functions that we have chosen. Since the

fit parameters in the fit shape are floating (allowed to vary), the statistical uncertainties

include shape uncertainties. This is not true if the parameters are fixed beforehand from

other sources, for example from Monte Carlo or from time integrated data.

In the ratio plot, the uncertainties for each bin include contributions from statistical

and systematic uncertainties. Most systematic uncertainties, such as the detector time

resolution, cancel in WS/RS ratio.

The significant systematic uncertainties arise from the background shapes in Kπ mass

distributions and in mass difference distributions.
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The following sections examine the possible sources of systematic uncertainties. These

studies were made using RS D∗s from the signal region in the ∆M distribution, with

4.0 < ∆M < 9.0 MeV/c2 and the impact parameter region |d0| < 60 µm.

Signal Shapes

The time dependent signal shapes used to fit the Kπ mass distributions and the ∆M

distributions were fixed from the time integrated RS distributions. Since RS and WS decays

have the same kinematics, they have the same distribution. Any systematic uncertainties

in RS and WS distributions will cancel in the ratio. So, there is no additional systematic

uncertainty assigned due to signal shapes.

Background shape in Kπ

Since we allow the quadratic polynomial parameters to float for every Kπ fit, the systematic

uncertainties are already included in the statistical uncertainties returned by the fitter. To

cross check the possibility of having an alternate fit function available for the background

shape, we tried adding an extra third order term in the polynomial. This did not result in

a significant change in the signal yield and we observed that the third order term was set

to zero in all the fits.

In Figure 3.19 showing the RS Kπ distribution, the background fit suggests that an

additional Gaussian “lump” is needed at 1.83 GeV/c2. A fit for the right sign Kπ plot

has a χ2/ndf of 24.2 with quadratic background without an additional Gaussian. With

addition of the Gaussian, the χ2/ndf changes to 1.89. Figure 3.19 shows the quadratic fit

with and without the extra Gaussian. This additional Gaussian is required only in RS and

is very small in amplitude compared to the signal amplitude. In the WS distribution, the

amplitude of the extra Gaussian was essentially zero.

As will be discussed in Appendix C.2, we did not find a source for the lump at 1.83

GeV/c2. We therefore assign a small systematic uncertainty to the final result. We treat

the lump as a part of the background shape. If we treat the lump as a part of signal shape,

it changes the WS/RS ratio by 0.07 %. A systematic uncertainty of the same amount was

added in each time bin.
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(a) (b)

Figure 3.19. RS Kπ mass distribution with quadratic fit function for background (a) without
additional Gaussian and (b) with extra Gaussian at 1.83 GeV/c2 . The signal shape is a
double Gaussian. These plots were made using 1.5 fb−1 data [44].

Non-prompt D∗ distribution

The width of the non-prompt single Gaussian in the IP distribution is obtained from RS

data. To check for the systematic effects arising from fixing the width from RS data, we

vary the width by ±1σ and observe the change in the WS/RS ratio. The effect was observed

to be negligible.

Background in Mass Difference Distribution

In the mass difference distribution, we have a power term of ∆M in the background shape.

This term was fixed from the time integrated WS distribution. The change in the power

term by ±1σ resulted in a change to the WS/RS ratio in each time bin. On average, we

observe an effect of 0.46%. We add a systematic uncertainty of this amount in each time

bin.

3.7.3 Mixing Significance

The mixing significance is the consistency of the data with the null hypothesis i.e. no-

mixing or x′2 = y′ = 0. We interpret the mixing significance using Bayesian probability

contours in x′2-y′ space, with RD treated as a nuisance parameter. The nuisance parameter

is the variable whose values are known with some limited accuracy but they are not of

immediate interest. However, they must be accounted for the measurement of the variables
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of interest [46].

For a data represented by vector x and for a set of parameters defined by φ, Bayes

theorem gives the posterior probability p(φ|x) by

p(φ|x) =
L(x|φ)π(φ)∫

L(x|φ′)π(φ′)dφ′ ,

where π(φ) is the prior probability distribution, the denominator m(φ) =
∫
L(x|φ′)π(φ′)dφ′

is called the marginal distribution that ensures that the probability is normalized, and

L(x|φ) is the likelihood function related to the χ2 by the relation

L(x|φ) = e−χ2(x|φ)/2.

Given the posterior probability p(φ|x), one can choose a region D for which

∫

D
p(φ|x)dφ = α,

where α is the desired significance level.

From the WS/RS ratio plot, for a time bin i, we have a measured ratio Ri with un-

certainty σi. With φ being the set of given mixing parameters that we wish to test, and

E(φ, i) the predicted ratio from Equation 3.1, the χ2 is given by

χ2 = Σ
[Ri − E(φ, i)]2

σ2
i

.

Using this χ2, we can calculate the likelihood L(Ri|φ) and then the posterior probability

p(φ|Ri) from Bayes theorem. We assume a flat prior probability of x′2 and y′ variables.

Since our likelihood distribution is a grid of possible φ values in x′2 - y′ space, we

accumulate a set of points in region D until the sum of all the probabilities equals α. We

add points such that the probability p(φ|Ri) for every point within the interval D is higher

than every point outside the interval.

Figure 3.20 shows the 1 to 6 σ Bayesian probability contours. The no-mixing point

(x′2 = y′ = 0) falls on the 5.3 sigma contour. In other words, no-mixing is excluded with
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Figure 3.20. Bayesian probability contours equivalent to 1 to 6 Gaussian standard deviation.
The no-mixing point (x′2 = y′ = 0), shown as a cross, falls on the 5.3 σ contour. In other
words, our result excludes no-mixing hypothesis with 5.3 Gaussian standard deviation. The
solid dot shows the measured values of x′2 and y′ from the best fit.

5.3 Gaussian standard deviations. This corresponds to an observation of D0 − D̄0 mixing

in D0 → Kπ channel using the CDF II detector.

3.8 Cross-check of Mixing Significance

We use three methods to cross check the observed mixing significance:

• The difference in log likelihood (∆χ2) between the mixing and no-mixing fits.

• The ∆χ2 distribution from an ensemble of simulated WS/RS ratios.

• Bayesian contours from a simulated WS/RS ratio.
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The difference between the χ2s of the mixing fit and no-mixing fit gives a significance

of 5.2 Gaussian standard deviations for 2 degrees of freedom. This is consistent with the

observed significance from the Bayesian contours. The calculations are based on the incom-

plete Gamma function P(a, x) where a = ndf/2, x = χ2/2, and the variable P(a, x) is the

probability that the observed χ2 for a correct model should be less than the value of χ2.

To simulate the WS/RS ratios, we use the central values of the mixing parameters from

the 1.5 fb−1 data. On each data point in the 1.5 fb−1 ratio plot, we add random noise

from a Gaussian distribution having standard deviation equal to the uncertainty on the

data point in the corresponding time bin in the 4.0 fb−1 ratio plot. We fit the simulated

ratio plot with the mixing Equation 3.1 in two ways: with mixing and without mixing, and

compute the ∆χ2 for these fits.

We make a thousand such simulations to get a ∆χ2 distribution. Using the numerical

mean of the ∆χ2 distribution we compute the significance as we did for the observed ∆χ2.

The top plot in Figure 3.21 shows one simulation in which the dashed curve is the best

fit and the solid line corresponds to no mixing with x′2 and y′ fixed to zero. The bottom

plot in Figure 3.21 shows a δχ2 distribution from one thousand simulated experiments.

The numerical mean of this distribution is 30.36 which corresponds to a significance of 5.15

Gaussian standard deviations for 2 degrees of freedom. This value is consistent with our

observed value.

In the third cross-check, we compute Bayesian probability contours for a single simulated

experiment. The Bayesian contours are computed in the same way as was done for the real

data. Figure 3.22 shows the result of one such experiment. In the resulting plot, the

no-mixing point lies on the 5.0 sigma contour.
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Figure 3.21. The simulated experiment and δχ2 distribution: the top plot shows a single
simulation of a WS/RS ratio. The bottom plot shows the δχ2 distribution from 1000
simulated experiments.
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Figure 3.22. Bayesian contours from a simulated experiment. The no-mixing point is on
the 5.0σ contour. The solid dot shows the measured values of x′2 and y′ from the best fit.
The diamond shows the highest probability point in physically allowed x′2.
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CHAPTER 4

SUMMARY AND FUTURE PROSPECTS

We presented the first observation of D0− D̄0 mixing in a single analysis. We measured the

ratio of doubly Cabibbo suppressed or WS (D0 → K+π−) decay rate to Cabibbo favored

or RS (D0 → K−π+) decay rate as a function of D0 decay time. We used an integrated

luminosity of 4.0 fb−1 of proton anti-proton collisions at
√

s = 1.96 TeV at the collider

detector at Fermilab (CDF II).

A signal of 24000 D0 → K+π− decays was obtained using the D∗ yield technique that

was presented in Section 3.6.3. We measured the D0 − D̄0 mixing parameters RD, y′, and

x′2 from the WS/RS ratio. Using the Bayesian probability contours, we found that the

no-mixing hypothesis was excluded with a probability equivalent to 5.3 Gaussian standard

deviations. The probabilities from the frequentist cross-checks were consistent with the

probabilities from the Bayesian contours.

Table 4.1 summarizes the results from the BaBar, Belle, and CDF II experiments.

Figure 4.1 shows the approximate standard error ellipses for the three experiments to help

us visually compare the three results. These error ellipses were obtained as described in

Section 1.4 using the fit error matrices of the BaBar, Belle, and current CDF results.

This analysis was performed assuming no CP violation. This allowed us to combine

D∗+ and D∗− decays. The CP violation study in D0 − D̄0 mixing can be performed in the

future. For CP violation study, the same analysis can be performed to measure the mixing

parameters separately for D∗+ and D∗− data. However, since kaon and pion have different

absorption cross-sections in the detector material, we need to determine the corrections on

the mixing parameters.
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Experiment RD(×10−3) y′(×10−3) x′2(×10−3)
BaBar 3.03 ± 0.16 ± 0.10 9.7 ± 4.4 ± 3.1 −0.22 ± 0.30 ± 0.21
Belle 3.64 ± 0.17 0.6 ± 4.0 ± 3.9 0.18 ± 0.21 ± 0.23
CDF 3.04 ± 0.55 3.5 ± 4.8 0.11 ± 0.21

Table 4.1. The D0 − D̄0 mixing parameters provided by BaBar and Belle experiments
compared with the new CDF result.
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Figure 4.1. Visual comparison of the Belle, BaBar, and the new CDF II results. The plot
shows standard error ellipses obtained from the fit error matrices. The BaBar and Belle
measurements are the same as in Figure 1.6. The new CDF II measurement is centered
around x′2 = 0.011% and y′ = 0.35%.
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Appendix A

ARTIFICIAL NEURAL NETWORK METHOD

In our efforts to improve the results of the D0 − D̄0 mixing analysis, we attempted the

application of Artificial Neural Network method. This method is described in this section.

A.1 Neural network method for D0 − D̄0 mixing analysis

We discussed four types of backgrounds and the related cuts to clean up those backgrounds

in Section 3.6.1. Even after applying all the cuts, the data can still have some random pion

and combinatorial backgrounds. We attempted to use Artificial Neural Network methods

to reduce these backgrounds.

The belief that a neural network can reduce combinatorial and random pion backgrounds

was based on the neural network’s ability to learn a complicated, non-linear, multidimen-

sional discrimination function in the hyper surface of its input parameter space. Neural

networks make the signal and background discrimination possible by reducing multidimen-

sional cuts to a one dimensional neural-network output cut. This can bring an improvement

in the signal significance over the standard cut optimization method.

The artificial neural network algorithm finds a non-linear discrimination function by

adjusting hundreds of internal parameters. The algorithm can be graphically visualized as

a set of input nodes, middle layers (called hidden layers), connecting links called synapses

and output nodes, as shown in Figure A.1. The algorithm starts with a random weight

assigned to each synapse. At each subsequent layer, the linear combination of the sigmoid

functions is computed. The sigmoid function is defined as

σ(x) =
1

1 + ex

where x is the input on a synapse. The sigmoid function has an “S” shape lying between 0

and +1. The function can be modified to have a range of -1 to +1. The linear combination
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Figure A.1. A typical artificial neural network has input nodes, synapses, middle layer with
hidden nodes, and output node. In the above sketch, the nodes are shown by circles while
the arrows are synapses. The network finds a discrimination function by adjusting weights
on each of the synapses.

of these sigmoid functions will be a non-linear function. If, as is usual in particle physics,

the problem is a classification problem, then only one output node is required. The output

at this node will be between -1 and +1. If the neural network is used to find a probability

distribution function, then more than one output node may be required. There are no

specific rules to decide the number of hidden layers and the number of nodes in each hidden

layer. In most cases, only one hidden layer is sufficient and the rule of thumb says that the

number of nodes in the hidden layer should be equal to twice the number of input variables.

In the training stage, a set of input values from a known data sample is given to the input

nodes of the neural network. The target output is set to +1 for signal and -1 for background.

If the neural network output at the end node is different from the target output, then the

difference is back-propagated and the weights at all the synapses are adjusted to reduce

the error. Several error minimization algorithms are available and the choice of algorithm

depends on the type of problem. The learning process is repeated for all sets of inputs

until the weights on the synapses become stable. At this stage, the network is said to be

“trained” and can be used for signal and background separation in new data.

For our purpose, we used a commercial neural network software product called NeruoBayes [47]

which is made available for CDF users under a special license.
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A.2 Training sample preparation

For training the neural network, we needed signal and background samples. Many neural

network analyses use Monte Carlo generated training samples. But, since in our case, it

is difficult to simulate all significant backgrounds, the background samples are taken from

real data.

We used RS signal as our training sample. The RS signal was extracted from the data

requiring |mD0 | < 20 MeV/c2 and ∆M < 20 MeV/c2. We also applied standard dE/dx and

impact parameter cuts on the data.

For the background training sample, we extracted random pion and combinatorial back-

grounds from the WS sample. To extract the background sample, we applied the dE/dx

cut described in Section 3.6.1, but not the impact parameter cut. We required the wrong

sign Kπ mass to lie between either 1.8 and 1.835 GeV/c2 or 1.895 and 1.928 GeV/c2. A

wrong sign mass difference ∆MD∗ (WS) > 30 MeV/c2 was required to remove most signal

events, keeping the random pion background. In addition, we applied a right sign mass cut

of |mKπ − mD0 | < 70 MeV/c2 to eliminate the mis-identification background. The final

regions in the mass distributions from where the signal and background are extracted can

be best illustrated by Figure A.2. The central green area indicates the signal region and

the four red boxes indicate the background region. Even with a very narrow signal region,

we get 8 to 10 times larger signal than background.

A.3 Input parameters and settings

We followed a rule that the variables, such as D0 mass, D∗ mass difference, dE/dx and

impact parameter of D0, that used to obtain the training data would not be used as inputs

to the neural network. The reason is that there is nothing for the neural network to learn

from these already used variables. For the rest of the available variables in our mini-data

set, we studied the distribution for signal and background for each variable and decided to

keep the variable as a neural network (NN) input only if there is a significant difference

between the two distributions.

Following this process, we finalized twelve variables as follows:
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Figure A.2. The RS and WS Kπ mass in GeV/c2 plotted together to illustrate signal and
background samples used for neural network training. The red boxes show the region from
where background sample is extracted. The central green area shows the signal region.

We tried impact parameter of soft pion, transverse momentum and Z0 variables (the

distance of the closest approach along the beam line) for kaon, pion, and the tagging pion.

Transverse and z components of the decay length significance of the D0 were also considered.

We also considered an isolation variable for the D0 meson. The definition of isolation

is given in Appendix B.1. In addition, we used the η variables for the tagging pion and

the D0. The signal and background distributions for kaon and pion η variables were not

significantly different, and so they are not used as neural network inputs. Apart from these

12 variables, NeuroBayes requires one extra unnamed input variable for internal use.

The plots for the signal and background distributions for these variables are shown in

Figures A.5 through A.15. As can be seen from these plots, some variables such as trans-

verse momentum of kaons and pions have large differences in their signal and background

distributions. We expect the neural network to learn more from these inputs than from

others. The output of the neural network training provides information about the final

weights assigned to each input synapse. This information is consistent with our expectation

that the synapses corresponding to kaon and pion transverse momentum inputs were always

given relatively higher weights. Interestingly, we found that the D0 isolation variable which

we found not very useful in the standard analysis was also given significant weight and
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removing it from the neural network inputs reduced the neural network’s discrimination

power.

Since the purpose of the neural network in our case was to separate signal from back-

ground, this becomes a classification problem and so the neural network was designed to

have a single output node. The default setting of the NeuroBayes program uses only 80%

of the training sample events for training and leaves 20% for testing. This setting was

kept unchanged. The number of epochs was set to 200, where an epoch is the number of

iterations or events after which the weights are updated. This number was obtained by

trial and error to maximize the learning speed. The number of training iterations was set

to 15. The error minimization method used was BFGS ( Broyden, Fletcher, Goldfarb, and

Shanno) learning method. The other default settings were kept unchanged. For 12 input

variables, we set 24 nodes in the hidden layer and one node in the output layer.

The teacher program reads events from the signal and background data files that pre-

pared for training. Only 1.5 million total (signal + background) events are allowed for the

training. Since we have very few background events compared to signal events, we wanted

to use all the available background events. For 2.5 fb−1 data, we have a total of 5.3 million

signal events and 0.65 million background events. We used all the 0.65 million background

events and only 0.85 million signal events in order to maintain the total number of 1.5

million events. The signal to background ratio was then 1.3.

To train the neural network, we provided it with signal events with target output value

set to +1.0 and background events with the target output value set to -1.0. The neural

network then started the training process and after it was complete, the configuration

(which includes the final weights on synapses) was stored. The executable also produces

histograms of output node value (NN output) for each event in the signal and background

training sample. Figure A.3 shows the training output in which signal is shown in red

and background is shown in black. We observe that the signal gradually increases and the

background decreases with NN output from -1.00 to +1.00. From Figure A.3, we expected

to get maximum integrated signal and minimum integrated background if we required the

NN output to be slightly greater than 0.0.

The NN executable applies the stored configuration on the new data which we wanted
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Figure A.3. Neural network training output. Signal is shown in red color and background
in black color. Signal gradually increases and background decreases with NN output. Max-
imum signal significance is found at NN cut > 0.10.

to classify. The executable takes the input variables from the new data in the same order

as they were given for training and computes the NN output value for each event using the

saved configuration.

The optimal neural network cut was chosen to maximize the WS D∗ yield significance.

We applied a neural network cut for which we expected to get the maximum signal to

background ratio. The data passing that cut was used to find the WS D∗ yield using

the yield technique described previously. The yield technique gives the number of WS D∗

as a value of the first fit parameter. The uncertainties δ on the first parameter can be

considered as equivalent to
√

(S + B), where S is signal and B is background. We used the

ratio of yield/δ to compare the NN result with the result from the standard analysis method.

Table A.1 shows the WS D∗ significance we got from the standard method for various neural

network cuts. We see from the table that we got the maximum signal significance for the

neural network cut of 0.10. This was close to the expected NN cut value.



66
Analysis WS D∗ yield Uncertainty δ Ratio:Yield/δ
Standard method 24056.82 374.40 64.25
NN cut > 0.0 24363.45 376.61 64.69
NN cut > 0.05 238888.9 368.61 64.80
NN cut> 0.10 23481.15 360.88 65.06
NN cut > 0.15 22838.22 352.92 64.71
NN cut > 0.20 22133.21 344.70 64.20

Table A.1. WS D∗ significance using the standard method and various neural network cuts.
The maximum signal significance is at NN cut > 0.10.

The maximum WS D∗ yield significance achieved with the neural network method

yielded only 1.5% improvement over the standard method. When we started with lesser

data, we got about 5 to 6% improvements over the standard method, but after adding all

available data, the improvement dropped to 1.5%. We ran the complete analysis to generate

the ratio plots using the neural network classified data to see if the result looked sensible.

The ratio plot was sensible and uncertainties on the values of the mixing parameters were

slightly reduced as was expected. For a data sample of about 2.5fb−1 , we compare the

results of the standard method and the neural network analysis in Figure A.4.

A.4 Some variables used as Neural network inputs

Some of the input variables used for the neural network analysis are shown in Figures A.5

through A.15. In all the plots, the red data shows the distribution of the signal sample and

the black data shows the distribution of the background sample.
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Figure A.4. Comparison of the ratio plots obtained from the neural network method (top)
and from the standard analysis (bottom) for 2.5 fb−1 data.
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Figure A.5. Comparison of the transverse momentum of the kaon for signal and background
samples.
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Figure A.6. Comparison of the transverse momentum of the pion for signal and background
samples.
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Figure A.7. Comparison of the transverse momentum of the soft pion for signal and back-
ground samples.
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Figure A.8. Comparison of the Z0 variable-the point of closest approach along the beam
line -for the stable pion for signal and background samples.
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Figure A.9. Comparison of the Z0 variable-the point of closest approach along the beam
line -for the kaon for signal and background samples.
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Figure A.10. Comparison of the Z0 variable-the point of closest approach along the beam
line -for the soft pion for signal and background samples.
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Figure A.11. Comparison of the impact parameter of the soft pion for signal and background
samples.
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Figure A.12. Comparison of the η variable of the D0 for signal and background samples.
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Figure A.13. Comparison of the η variable of the soft pion for signal and background
samples.
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Figure A.14. Comparison of the transverse decay length significance of the D0 for signal
and background samples.
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Figure A.15. Comparison of the z component of the decay length significance of the D0 for
signal and background samples.
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Appendix B

OTHER ATTEMPTS TO IMPROVE THE ANALYSIS

We tried to improve the standard analysis method by adding new cuts and by finding ways

to reduce backgrounds. Two such studies are mentioned here: the D0 isolation cut and the

multiple candidate background study.

B.1 D0 isolation variable cut

We tried to add a new cut using the D0 isolation variable, where the isolation variable is

defined as

It =
P cand

T

P cand
T +

∑
∆R<0.4 PT

,

where It is the isolation of tracks, P cand
t is the transverse momentum of the candidate

particle, PT is the transverse momentum of all other tracks except descendants of the

candidate particle, and ∆R =
√

∆η2 + ∆φ2, where η is the pseudo-rapidity and φ is the

azimuthal angle in η − φ space of the CDF II detector. The ∆R variable can have values

0.4, 0.7, or 1.0. In our analysis, we used ∆R = 0.4.

For a fixed radius ∆R = 0.4, we computed the WS D∗ yield for 10 isolation cuts using

the standard yield technique. Figure B.1 shows the WS D∗ yield/uncertainty, where the

uncertainty comes from the statistical error on the first fit parameter of the Kπ mass fit

and is equivalent to
√

S + B. As we can see from the figure, the yield significance is almost

flat. This indicates that the isolation variable is not very useful as a standard cut.

B.2 Multiple candidate background

We applied dE/dx, Kπ mass, and ∆M cuts on a small fraction of the data. We processed

the resulting 146000 events to look for events with multiple D0 candidates. We found 4745

events having two candidates and 140 events with three candidates. No events were found

with more than three candidates. We also observed that the multiple candidates differ only
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Figure B.1. WS D∗ yield vs. Isolation of D0 cut. The yield is almost flat. It appears that
the D0 isolation variable is not useful as a standard cut.

in the selection of the soft pion with which they combine. In conclusion, only 3% of the

total events have multiple candidates. Since this is a small number, we retain all the events

in our data.
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Appendix C

MONTE CARLO SIMULATION STUDIES

This section describes some studies that were performed using Monte Carlo simulations.

C.1 Monte Carlo Study of Impact Parameter Distribution of D0 for Non-

Prompt D∗s

In Section 3.6.4, we saw that the D∗s originating from the primary vertex produce a narrow

peak in the D0 impact parameter (IP) distribution. The D∗s originating from secondary

decays produce a wide IP distribution. We assumed that these secondary decays are mostly

B-decays. To qualitatively confirm this assumption, we applied the shapes of non-prompt

IP distributions obtained from the CDF RS data to the simulated B to charm distributions.

We produced a small sample of long lived B to charm decays using the standard CDF

realistic Monte Carlo. The MC events were generated using Pythia [48, 49]. The silicon

vertex two track trigger was also simulated to select the events.

In a typical simulated event, two gluons from a p− p̄ collision produce a b− b̄ pair. The

b quarks combine with other quarks or anti-quarks to produce B mesons. The B mesons

then decay into charm mesons. We included all long lived charm mesons such as D0, Λ+
c ,

Λ−
c , Ξ+

c , Ξ0
c , Ξ++

cc , and Ω0
c . We also included long lived b-baryons such as Λ0

b , Σ+
b , Σ−

b , Σ0
b ,

Ξ−
b , Ξ0

b , and Ω−
b . We treated all these decays as non-prompt background.

The Pythia output contains the information about the decay vertices, momentum, and

energy of the simulated particles. From this information, we computed the impact param-

eter of the D0 candidate using Equation 3.4. The required vectors r and PT were obtained

from the x, y, and z coordinates of the D0 decay vertex and the associated momentum

vector components px, py, and pz. We computed the proper decay time of the D0 from

Equation 3.3.

We divided the data into 8 time bins. For each time bin, we fit the impact parameter

distribution with a single Gaussian function. The mean of the Gaussian was fixed to zero,
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Figure C.1. IP distribution for simulated B to charm decays. Time bin 1 (1.00 to 2.75 t/τ).

the amplitude was allowed to float, and the width of the Gaussian was fixed from the

parametrization obtained from the CDF RS data, as described in Section 3.6.4. Figures C.1

through C.8 show these fits. These figures show that the non-prompt single Gaussian shapes

obtained from the data qualitatively describe the Monte Carlo generated IP distributions.

This supports our assumption that the secondary decays are B-decays.

C.2 Lump study

We tried to search for the decay that can cause the extra lump in the RS Kπ background,

discussed in Section 3.7.2. We generated a realistic Monte Carlo simulation of the semilep-

tonic decay chain D∗ → D0π+ → K−µ+νµ. For a quick study, we generated 3000 events

of this decay chain using the Pythia generator. We found that the D0 mass reconstructed

from this decay falls below 1.8 GeV/c2 and after applying the D∗ mass difference cut (but

not all the standard cuts), it cannot form a peak at 1.83 GeV/c2 where the lump was found

in the real RS D0 data. Figure C.9 shows the invariant mass of the D0 reconstructed from
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Figure C.2. IP distribution for simulated B to charm decays. Time bin 2 (2.75 to 3.00 t/τ).
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Figure C.3. IP distribution for simulated B to charm decays. Time bin 3 (3.00 to 3.5 t/τ).
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Figure C.4. IP distribution for simulated B to charm decays. Time bin 4 (3.5 to 4.0 t/τ).
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Figure C.5. IP distribution for simulated B to charm decays. Time bin 5 (4.00 to 5.5 t/τ).
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Figure C.6. IP distribution for simulated B to charm decays. Time bin 6 (5.5 to 7.0 t/τ).
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Figure C.7. IP distribution for simulated B to charm decays. Time bin 7 (7.00 to 8.00 t/τ).
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Figure C.8. IP distribution for simulated B to charm decays. Time bin 8 (8.00 to 10.00
t/τ).

the D0 → K−µ+νµ decay.

Similar results were found for other decay chains that were tried. Figure C.10 shows

the invariant mass of Λ+
c reconstructed from Λ+

c → p+K−π+ decay. This was one of the

candidates that was expected to cause the RS lump. We also tried D+
s → KKπ and

reconstructed a D0 from the oppositely charged kaon and pion. Another attempt was

Ds → πππ decay, with one of the pions reconstructed as a kaon. None of these decays had

their mean invariant mass close to 1.83 GeV/c2 . The cause of the extra lump remains a

mystery.
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Figure C.9. The D0 mass distribution for the D0 reconstructed from simulated D0 →
K−µ+νµ decay assuming the muon as a pion. We applied the standard mass difference cut.
The mean invariant mass falls below 1.83 GeV/c2 . The lump in RS K]pi mass plot was
found at 1.83 GeV/c2.
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Figure C.10. Invariant mass of Λ+
c reconstructed from simulated Λ+

c → p+K−π+ decay.
This was another decay that we thought would cause the lump in RS plot. But the mean
invariant mass of Λ+

c found to be well below 1.83 GeV/c2.
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ABSTRACT

ANALYSIS OF D0 − D̄0 MIXING IN D0 → Kπ DECAYS USING THE CDF II
DETECTOR

by

NAGESH P. KULKARNI

2009

Advisor: Dr. Paul E. Karchin

Major: Physics

Degree: Doctor of Philosophy

We measure the ratio of doubly Cabibbo suppressed (D0 → K+π−) decay rate to

Cabibbo favored (D0 → K−π+) decay rate as a function of D0 decay time. We used an

integrated luminosity of 4.0 fb−1 of proton anti-proton collisions at
√

s = 1.96 TeV at the

collider detector at Fermilab (CDF II). A signal of 24000 D0 → K+π− decays was obtained

in this experiment. We measure the D0 − D̄0 mixing parameters RD, y′, and x′2 from the

ratio. We find that the data excludes the no-mixing hypothesis with probability equivalent

to 5.3 Gaussian standard deviations. This amounts to an observation of D0− D̄0 mixing in

D0 → Kπ channel.
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