
Cross Section Measurements for Quasi-Elastic

Neutrino-Nucleus Scattering with the

MINOS Near Detector

Mark Edward Dorman

University College London

Submitted to University College London in fulfilment

of the requirements for the award of the

degree of Doctor of Philosophy.

April 2008



Declaration

I, Mark Dorman, confirm that the work presented in this thesis is my own. Where information

has been derived from other sources, I confirm that this has been indicated in the thesis.

Mark Dorman

2



Abstract

The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscilla-

tion experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illi-

nois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling

calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan

mine in northern Minnesota. The Near Detector has recorded a large number of neutrino inter-

actions and this high statistics dataset can be used to make precision measurements of neutrino

interaction cross sections.

The cross section for charged-current quasi-elastic scattering has been measured by a number

of previous experiments and these measurements disagree by up to 30%. A method to select a

quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented

and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic

cross section is introduced. The accuracy and robustness of the fitting procedure is studied

using mock data and finally results from fits to the MINOS Near Detector data are presented.
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1 Introduction

The ubiquitous Standard Model of Particle Physics has been extremely successful in describ-

ing the interactions and properties of the fundamental particles and forces present in nature.

It’s predictions have been tested many times by a succession of more and more powerful and

precise physics experiments and no serious deviations have been found. There are, however,

areas in which the Standard Model cannot provide an adequate framework. Most notable is the

inclusion of a description of the force of gravity although perhaps a more active area of current

research is the field of neutrino physics.

Of the twelve elementary fermionic particles in the Standard Model there are three flavours

of neutrino; the electron, muon and tau neutrinos (νe, νµ and ντ). In the Standard Model the

neutrinos are massless, spin- 1
2 leptons that carry no electromagnetic or colour charge and are

only able to interact via the weak nuclear force. Neutrinos were first postulated by Wolfgang

Pauli [1] as a solution to the problem of the continuous energy spectrum of the electrons emitted

in nuclear β-decays. In the classical two-body decay (n→ p+e−) energy and momentum could

not be conserved unless the energy of the emitted electron took a discrete value but the addition

of a third undetected particle, that carried away some fraction of the energy, restored this most

famous of conservation laws. It was not until 26 years later, in 1956, that Frederick Reines and

Clyde Cowan directly observed neutrinos interacting in a large tank of Cadmium-laced water

near the Savannah River nuclear plant in Augusta, Georgia [2].

The phenomenology of weak interactions has come a long was since Pauli’s ’Dear Radioactive

Ladies and Gentlemen’ letter of 1930 and Fermi’s point-like four fermion model of nuclear

β-decay but there are still experimental results that cannot be explained within the Standard

Model. One such set of observations became known as the atmospheric neutrino anomaly

and show a discrepancy in the numbers of electron and muon neutrinos arriving at the Earth’s

surface. Cosmic rays incident on the upper atmosphere interact with molecular nucleons and

produce a cascade of secondary particles including large numbers of pions. These pions pre-

dominantly decay to muons with the following decay chain:
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π− → µ− +νµ (1)

µ− → e− +νe +νµ (2)

Equations 1 and 2 (and their charge conjugates) suggest that the ratio of νµ(νµ) : νe(νe) arriving

should be 2 : 1, however, both water Čerenkov experiments such as IMB [3] and Kamiokande II

[4] and iron sampling calorimeter experiments such as Soudan 2 [5] have measured a deficit in

the numbers of νµ. A solution, suggested by Bruno Pontecorvo in 1967 [6], was the possibiltity

of neutrino flavour mixing analagous to the phenomenon of flavour changing weak decays for

the quarks. Pontecorvo postulated that if neutrinos had a finite mass and that the neutrino weak

eigenstates, which participate in the weak interaction, were not the same as the neutrino mass

eigenstates, which propagate through space, then a mixing matrix could be formed in a similar

way to the Cabbibo-Kobayashi-Maskawa (CKM) matrix of the quark sector. Consequently a

neutrino born of a particular flavour in a weak interaction will become a superposition of all

the flavours as the mass eigenstates propagate and at some time later can be detected in another

weak interaction as a neutrino of a different flavour. This phenomenon, known as neutrino

oscillations, can explain the apparent loss of atmospheric νµ and it’s subsequent discovery by

the Super-Kamiokande collaboration in 1998 [7] required at least one massive neutrino and a

theory beyond the Standard Model.

Neutrino oscillations have been investigated by various experiments over the last ten years and

limits on the parameters governing the oscillations have been set. Experiments study neutrinos

produced in the cosmic ray interactions mentioned above, neutrinos produced in the nuclear

reactions taking place in our Sun or neutrinos produced in nuclear power plants across the

globe. One limitation on the accurate measurement of oscillations, stemming from the use

of such sources, is that these experiments do not have direct control over the creation of the

neutrinos. Another experimental possibility is to use a beam of neutrinos produced at a particle

accelerator and regulated with a specialised neutrino beamline. This is the approach being

employed by the Main Injector Neutrino Oscillation Search (MINOS) experiment, currently

running at the Fermi National Accelerator Laboratory (FNAL) near Chicago, Illinois.

17



The primary physics goal of MINOS is to make an accurate measurement of the parameters

governing the oscillations of νµ 6→ νµ and the collaboration has already published it’s first re-

sults [8]. MINOS uses the Neutrinos at the Main Injector (NuMI) facility to produce a neutrino

beam, comprised almost entirely of νµ, and samples the beam composition and neutrino energy

spectrum with two large iron-scintillator tracking/sampling calorimeters; the Near Detector

on-site at FNAL and the Far Detector located in the Soudan Underground Laboratory, 734km

away in northern Minnesota. The most sensitive measurement of the neutrino oscillation pa-

rameters that MINOS can make is based on comparing the neutrino energy spectrum at the

two detectors; once at the Near Detector before the neutrinos have had a chance to oscillate

and then again at the Far Detector after oscillations have occured. The following sections will

present the theory of neutrino oscillations, describe in further detail the oscillation parameter

measurement technique used by MINOS and then finally motivate the analysis to be presented

in this thesis.

1.1 Theory of Neutrino Oscillations

In the Standard Model neutrinos are not given mass but it is now known, through the discovery

of neutrino oscillations, that this cannot be true. Neutrino masses can be generated in the

Standard Model but this requires additions to the framework and as such neutrino oscillations

are the first evidence for physics ‘beyond the Standard Model’.

Neutrino oscillations stem from the idea that the weak eigenstates of the neutrinos, in which

neutrinos are detected, are different from the mass eigenstates, which propagate through space.

These two ‘bases’ are related through a unitary mixing matrix, analagous to the CKM ma-

trix of the quark sector, called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [6][9] matrix.

A neutrino produced in a weak interaction will consist of a linear superposition of the mass

eigenstates νi:

|να〉 = ∑
i

V ∗
αi|νi〉 (3)

where Vαi are elements of the PMNS matrix. To understand the origin of neutrino oscillations

(in vacuum) consider a neutrino that is initially in the state να as defined in equation 3 and apply

18



the Schrödinger equation to the ith component in its rest frame to see that the time evolution of

this initial state component is:

|νi(τi)〉 = e−imiτi |νi(0)〉 (4)

where mi is the mass of νi and τi the time in the frame of that component. This Lorentz invariant

phase factor may be re-written in terms of the time t and position L in the laboratory frame and

the energy Ei and momentum pi of the νi component in this frame:

exp(−imiτi) = exp(−i(Eit − piL)) = exp(−i(Ei − pi)L) (5)

where equation 5 follows as the neutrino is, in practice, highly relativistic with t ≈ L. Then

assuming a definite common momentum p for all the components of να and mi � p:

E2
i = p2 +m2

i ⇒ Ei ≈ p+m2
i /2p (6)

Equations 3 to 6 can be combined and then using E ≈ p as the average energy of the compo-

nents of να:

|να(L)〉 ≈ ∑
i

V ∗
αie

−i(m2
i /2E)L|νi〉 (7)

Then using the unitarity of the PMNS matrix to invert equation 3 and inserting the result into

equation 7 yields:

|να(L)〉 ≈ ∑
β

[

∑
i

V ∗
αie

−i(m2
i /2E)LVβi

]

|νβ〉 (8)

It can be seen from equation 8 that a neutrino born of flavour α and travelling a distance L will

become a superposition of all the neutrino flavours. The probability, P(να → νβ), of this να

being of flavour β after travelling a distance L is given by |〈νβ|να(L)〉|2. Using the unitarity of

the MNS matrix and equation 8 this may be written:
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P(να → νβ) = δαβ − 4 ∑
i> j

R (V ∗
αiVβiVα jV

∗
β j)sin2[1.27∆m2

i j(L/E)]

+ 2 ∑
i> j

I (V ∗
αiVβiVα jV

∗
β j)sin[2.54∆m2

i j(L/E)] (9)

where ∆m2
i j ≡ m2

i −m2
j and the sine terms come from the relation:

∆m2
i j(L/4E) ' 1.27∆m2

i j(eV2)
L(km)

E(GeV)
(10)

In the case that only two mass eigenstates (and hence two linear combinations of flavour eigen-

states) and a single mass splitting, ∆m2, are important equation 9 can be simplified to:

P(να → νβ) ' 4

∣

∣

∣

∣

∣

∑
i±

V ∗
αiVβi

∣

∣

∣

∣

∣

2

sin2[1.27∆m2(L/E)] (α 6= β) (11)

where the notation i± means a sum over those mass eigenstates that lie above or below ∆m2.

Such situations can arise when, for example, the charged lepton that is produced along with the

subject neutrino for a particular experiment is only coupled to significantly by two mass eigen-

states. This is the case for the MINOS experiment where the muon type neutrinos produced by

the NuMI beam are only coupled to significantly by the ν2 and ν3 neutrino mass eigenstates.

For such ‘quasi-two-neutrino oscillations’ [10] the mixing of the flavour eigenstates is given

by:





να

νβ



=





cosθ sinθ

−sinθ cosθ









ν1

ν2



 (12)

where θ is the mixing angle and using the relation:

4

∣

∣

∣

∣

∣

∑
i±

V ∗
αiVβi

∣

∣

∣

∣

∣

2

= sin22θ (13)

the probability for a neutrino to oscillate from the initial state να to the state νβ after travelling

a distance L is:
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P(να → νβ) = sin22θsin2[1.27∆m2(L/E)] (14)

Equation 14 shows that for experiments, such as MINOS, that have a fixed1 ratio of L/E the

amount of oscillation is dependant on just two parameters, the mixing angle θ and the mass

splitting ∆m2. Figure 1 shows the survival probability of a νµ as a function of energy using

the form of equation 14, the MINOS baseline of 735km, sin22θ = 1 (maximal mixing) and

∆m2 = 2.74× 10−3 [11]. MINOS is sensitive to the disappearance of neutrinos at ∼2 GeV

corresponding to the first dip (from the right) in the probability function shown in figure 1.
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Figure 1: Muon neutrino survival probability as a function of neutrino energy.

The above derivations considered neutrinos travelling through a vacuum. The implications

of the passage of a neutrino through matter for its probabilities to oscillate to other flavours

are known as the Mikheyev-Smirnov-Wolfenstein (MSW) effect [12][13]. The MSW effect

considers the coherent forward scattering of neutrinos from particles they encounter as they

traverse a medium. Each of the νe, νµ and ντ can undergo a coherent forward scatter via

the neutral current (Z0 exchange) process shown in figure 2 but the νe can also undergo an

1The neutrinos are in general not mono-energetic but have an energy spectrum that is peaked at a certain value

that depends upon the running conditions of the experiment.
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additional charged current (W± exchange) coherent foward scatter via the interactions shown

in figure 3.

τ,µe,ν τ,µe,ν

0Z

-q,e -q,e

Figure 2: Neutral current coherent forward scattering diagram for neutrino interactions with matter.

eν -e

+W

-e eν

eν -e

-W

-e eν

Figure 3: Charged current coherent forward scattering diagrams for the interations of electron neutri-

nos (left-hand diagram) and anti-neutrinos (right-hand diagram) with matter.

The MSW effect is of great importance for the study of solar neutrinos due to the high electron

density of the sun but has little effect for the MINOS experiment which uses a beam comprised,

almost entirely, of muon neutrinos.

1.2 Measuring Neutrino Oscillations in MINOS

The signature for neutrino oscillations in MINOS is an energy dependant disappearance of νµ

at the Far Detector, relative to the expectation assuming no oscillations, in accordance with

the structure of the νµ survival probability function shown in figure 1. MINOS uses the data

from the Near Detector to validate the Monte Carlo simulation of the experiment and then

extrapolates the Near Detector neutrino energy spectrum, as predicted by the simulation, to
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the corresponding neutrino energy spectrum at the Far Detector. This prediction assumes that

none of the νµ have oscillated into another flavour of neutrino and can be compared to the

Far Detector data. Deviations between the Far Detector data and the predicted un-oscillated

spectrum can then be fit to extract the neutrino oscillation parameters; ∆m2 and the mixing

angle θ.

Figure 4 shows the reconstructed neutrino energy spectrum for interactions in the Far Detector

recorded during the first year of MINOS data taking as well as the predicted un-oscillated

spectrum, as extrapolated from the Near Detector via a number of different methods, and the

best fit Monte Carlo simulated energy spectrum assuming the oscillation hypothesis. Figure 4

also shows the ratio of data to the expectation from the Monte Carlo simulation as a function

of the reconstructed neutrino energy and this ratio exhibits a ‘dip’ structure indicative of the

presence of neutrino oscillations.
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Figure 4: The left-hand figure shows reconstructed neutrino energy spectra for MINOS Far Detector

data, un-oscillated Monte Carlo simulation and best fit Monte Carlo simulation assuming the neutrino

oscillation hypothesis. The right-hand figure shows the ratio of the data to the Monte Carlo expectation

as a function of reconstructed neutrino energy and exhibits an energy dependant loss of νµ events.

Figure 5 shows the best fit neutrino oscillation parameters extracted from the MINOS Far

Detector data along with the 68% and 90% confidence intervals for this measurement. It also

shows the 90% confidence intervals corresponding to measurements made by the K2K and

Super-Kamiokande collaborations. Figures 4 and 5 are taken from [11] and show that, using

data from only the first year of running, MINOS has already made a competitive measurement
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of the neutrino oscillation parameters.
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Figure 5: Best fit neutrino oscillation parameters and confidence intervals corresponding to an analysis

of MINOS Far Detector data taken during the first year of running. The subscripts on the oscillation

parameters ∆m2
32 and sin2(2θ23) denote the neutrino mass eigenstates involved in the oscillation.

1.3 Motivation for Cross Section Measurements

The MINOS neutrino oscillation analysis relies on a knowledge of the event rate in the detectors

and this event rate is a product of the incident neutrino flux from the NuMI beam and the

neutrino interaction cross sections. Neutrino interaction cross sections are not well known at

lower neutrino energies (Eν < 10 GeV) with uncertainties on the cross sections for certain

processes, such as quasi-elastic scattering, at the level of 20% to 30%.

An improved understanding of both the inclusive and exclusive cross sections for neutrino

interactions is both important for the analysis of MINOS data and interesting in it’s own right.

For quasi-elastic scattering, which is the dominant interaction type for neutrino energies below

∼1.5 GeV, there have been many previous measurements in disagreement with each other.

Increased accuracy for neutrino cross section measurements is also important for the next gen-
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eration of neutrino experiments, such as Noνa and T2K, that hope to measure a second mixing

angle, θ13, which is responsible for the sub-dominant oscillations of νµ to νe. These experi-

ments are going to be searching for a small effect and will have to tightly control their system-

atic error, to which the uncertainty on interaction cross sections will certainly contribute.

Finally, as will be demonstrated in the coming chapters, a study of quasi-elastic scattering

requires and can provide a large amount of other interesting information; (i) the NuMI neutrino

flux must be considered in a cross section analysis and an improved understanding of the NuMI

beam is advantageous for all MINOS physics analyses, (ii) quasi-elastic interactions probe the

axial nature of the nucleon in a way to which only neutrinos experiments have access and (iii)

in the MINOS detectors the νµ are not interacting with free nucleons but with steel nuclei and

quasi-elastic interactions are sensitive to the, currently not well modelled, details of the nuclear

system.
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2 The Weak Interaction and Neutrino Physics

2.1 The Phenomenology of Weak Interactions

2.1.1 Fermi’s Point-like Four-Fermion Theory of Nuclear β-Decay

Four years after Pauli first postulated the existence of the neutrino Enrico Fermi proposed the

first quantum field theory for the weak interaction. Analagous to the emission of photons in

nuclear γ-decay Fermi considered the neutrino-electron pair to be created and emitted in the

nuclear transition of a neutron to a proton (as shown in figure 6).

n

p

-e

eν

Figure 6: Fermi’s pointlike four-fermion interaction picture of neutron β-decay.

Motivated again by quantum electrodynamics, Fermi considered the interaction to happen at

a single spacetime point and to involve a weak 4-vector ‘current’ between the neutron and

proton. To make the interaction Lorentz invariant Fermi also included a current between the

electon and anti-neutrino and constructed a ‘current-current’ interaction amplitude given by:

GF√
2

ūpγµunūe−γµuν̄e =
GF√

2
j µ
N j µ

l (15)

where GF is Fermi’s constant (GF = 1.166×10−5 GeV−2), u and ū are Dirac spinors (math-

ematical repesentations of the quantum state of a particle), γµ are the Dirac matrices, µ is a

four-component index that labels time and spatial dimensions, j µ
N denotes the nucleon current

and j µ
l denotes the leptonic current. In the Dirac respresentation the γµ are defined by the

following matrices:
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γ0 =

















1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

















γ1 =

















0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

















(16)

γ2 =

















0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0

















γ3 =

















0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

















At some points in this chapter field theory notation (where ψ(x, t) denotes a quantum field) will

also be used and using this notation equation 15 can be written as a local interaction density

according to:

GF√
2

¯̂ψp(x, t)γµψ̂n(x, t) ¯̂ψe−(x, t)γµψ̂ν̄(x, t) (17)

Fermi’s current-current formalism was successful in describing many of the characteristics of

nuclear β-decay but it was unable to account for nucleon spin ‘flip’ (transitions where the nu-

clear spin changes by one unit). A further breakthrough came in 1936 when Gamow and Teller

introduced a more general four-fermion interaction in which they allowed bilinear terms (terms

with two indices), such as shown in equation 18, whose presence in the currents accomodated

the observed nucleon spin flips.

ūpσµνun where σµν =
i
2(γµγν − γνγµ) (18)

Over the next twenty years both the muon and pion were discovered and a wealth of weak

interaction data was collected that could not be adequately explained by any of the proposed

forms for the weak interaction. The solution was suggested in 1956 in a pioneering paper by

Lee and Yang [14] who questioned the conservation of parity (inversion of spatial coordinates)

in weak decays. It is now known that the weak interaction maximally violates parity but at that
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time parity was thought to be a fundamental property of all the interactions in nature and had

been implicitly built into the proposed structure of the weak interaction.

2.1.2 Parity Violation and the V-A Structure of the Weak Interaction

Parity is the inversion of spatial coordinates and allows for a definition of polar vectors, pseu-

dovectors (or axial vectors), scalars and pseudoscalars. A polar vector, V, is one that transforms

in the same way as the coordinate x under the parity operator, P:

P : x →−x , P : V →−V (19)

and common examples of polar vectors are velocity, momentum and the electromagnetic cur-

rent. Axial vectors transform in the same way as the vector product of two polar vectors and

do no change sign under the parity operator:

P : U×V → (−U)× (−V) = U×V , P : A → A (20)

and both angular momentum (l = x×p) and spin are examples of axial vectors. Scalars do not

change sign under the parity operator as can be seen when forming from the dot-product of two

polar vectors:

P : U ·V → (−U) · (−V) = U ·V (21)

whereas pseudoscalars do reverse sign under the parity operator and could be formed from the

triple scalar product of three polar vectors:

P : U · (V×W)→−U · (V×W) (22)

It can be shown that, under the parity operator, the free particle solution to the Dirac equation;

ψ(x, t) = N





φ
σ·p

E+mφ



e−iEt+ip·x (23)
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where φ is a two-component Dirac spinor and N a normalisation factor, has the following

transformation:

P : ψ(x, t) → ψP(x, t) = βψ(−x, t) (24)

where β = γ0. As such a unitary quantum field operator, P̂, can be introduced such that:

ψP(x, t) = P̂ψ(x, t)P̂−1 = βψ(−x, t) (25)

and possible forms of the weak interaction can be considered under the effect of this parity

operator. For example consider the spatial parts of Fermi’s weak 4-vector current:

¯̂ψ1P(x, t)γµψ̂2P(x, t) = ψ̂†
1P(x, t)βγµψ̂2P(x, t)

= ψ̂†
1(−x, t)ββγµβψ̂2(−x, t)

= − ¯̂ψ1(−x, t)γµψ̂2(−x, t) (26)

as βγµ = −γµβ , β2 = 1

Equation 26 shows that the spatial components of the 4-vector current transform like a polar

vector under parity. A similar exercise shows that the µ = 0 time component transforms as

a scalar under parity and as such Fermi’s 4-vector currents do not allow for parity violation

in the weak interaction. To accomodate parity violation the interaction must have terms that

transform like axial vectors so as to produce both pseudoscalars and scalars. For Dirac particles

these terms are introduced via the γ5 matrix:

γ5 = iγ0γ1γ2γ3 and {γ5,γµ} = 0 for µ ∈ {0,1,2,3} (27)

Equation 28 shows that a current involving γ5 transforms as a pseudoscalar under parity and

illustrates that the inclusion of γ5 allows for parity violation in the weak interaction:
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Interaction Type Current Form Parity
Scalar ¯̂ψψ̂ Even

Pseudoscalar ¯̂ψγ5ψ̂ Odd
Vector ¯̂ψγµψ̂ Odd

Axial Vector ¯̂ψγµγ5ψ̂ Even
Tensor ¯̂ψ i

2(γµγν − γνγµ)ψ̂ Odd
Pseudotensor ¯̂ψ i

2 (γµγν − γνγµ)γ5ψ̂ Even

Table 1: Possible forms of the weak interaction allowed in the Dirac theory.

¯̂ψ1P(x, t)γ5ψ̂2P(x, t) = ψ̂†
1P(x, t)βγ5ψ̂2P(x, t)

= ψ̂†
1(−x, t)ββγ5βψ̂2(−x, t)

= − ¯̂ψ1(−x, t)γ5ψ̂2(−x, t) as βγ5 = −γ5β (28)

It can be shown that currents of the form ¯̂ψ1(x, t)γµγ5ψ̂2(x, t) transform as axial 4-vectors under

parity (with the µ = 0 components transforming like a pseudoscalar and the spatial parts trans-

forming as an axial vector). Table 1 summarises the possible forms for the weak interaction

allowed in the Dirac theory and notes how they transform under parity.

Parity violation was discovered in 1957 by Wu et al [15] in the nuclear β-decays of 60Co and

shortly after it was realised that Fermi’s current-current interaction involved a combination of

V-type (vector) and A-type (axial-vector) currents. A ‘V-A’ (vector minus axial) structure was

proposed for the weak interaction which involved replacing Fermi’s original 4-vector currents

according to the following (where the Dirac spinor notation is again used):

ūe−γµuν → ūe−γµ(1− γ5)uν (29)

The V-A structure of the weak interaction is fundamental to the Standard Model and has the

profound implication that only the left-handed components of fermions and the right-handed

components of anti-fermions participate in the weak interaction.
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2.1.3 Chirality and Helicity

The helicity operator is defined as the projection of the spin of a particle in the direction of

motion:

1
2

σσσ ·p
|p| =

1
2σσσ · p̂ (30)

and chirality, which is an underlying characteristic of the weak interaction, can be expressed

as the sign of the helicity operator. Particles with negative chirality are said to be left-handed

whilst particles with positive chirality are said to be right-handed. In the Pauli-Dirac represen-

tation of the gamma matrices:

γ5 =





0 I2

I2 0



 (31)

and using the (fermionic) Dirac spinor solutions from equation 23:

γ5





ua

ub



=





0 I2

I2 0









φ
σ·p

E+mφ



=





σ·p
E+mφ

φ



 (32)

As the mass of the particle tends to zero then E → |p| and:

γ5





ua

ub



=





(σσσ · p̂)φ

φ



=





(σσσ · p̂)φ

(σσσ · p̂)2φ



 (33)

which implies that:

γ5





ua

ub



=





σσσ · p̂ 0

0 σσσ · p̂









ua

ub



 (34)

Equation 34 shows that as the mass of a particle tends to zero then γ5 tends to the helicity

operator. In the Standard Model the neutrino is assumed to be massless and so the neutrino’s

helicity is the same as it’s chirality. Left-handed chirality state massive particles will have
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mainly left-handed helicity but with some right-handed helicity and vice versa for right-handed

chirality state massive particles. Helicity projection operators may be introduced:

PL ≡
(

1− γ5
2

)

, PR ≡
(

1+ γ5
2

)

(35)

satisfying:

P2
R = PR , P2

L = PL , PRPL = PLPR = 0 , PR +PL = 1 (36)

and then the left-handed and right-handed helicity components of Dirac spinors may by defined

as:

uL ≡ PLu , uR ≡ PRu (37)

These relations allow us to write the V-A current between to fermionic Dirac spinors as:

ū1γµ 1− γ5
2 u2 = ū1γµPLu2 = ū1γµP2

Lu2

= ū1γµPLu2L = ū1PRγµu2L

= u†
1PLβγµu2L = u1Lγµu2L (38)

Equation 38 shows that the V-A structure, that has been built into the theory of the weak

interaction, implies that only the chiral L components of fermions enter into weak interactions

(a similar argument shows that only the chiral R components of anti-fermions enter into weak

interactions). Furthermore, due to the helicity operator transforming as a pseudoscalar under

parity, it can be shown that the V-A structure of the weak interaction also implies that the

positive helictity components of all massive fermions are suppressed in interactions by factors

of order m/E (and vice versa for the negative helicity components of anti-fermions).

The Standard Model does not predict the helicity state of the neutrino but, as it was assumed

to be massless, the neutrino could have either fully positive or negative helicity. In 1958 Gold-
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haber et al [16] considered the capture of electrons on 152Eu and showed that the helicity of the

emitted neutrinos was (within errors) 100% negative. This result was taken as strong confirma-

tion of the V-A nature of the weak interaction and strong motivation for massless neutrinos in

the Standard Model.

The V-A theory was very successful but it still assumed a current-current interaction which was

accompanied by a number of theoretical issues. In the 1960s physicists worked towards a gauge

theory of the weak interaction that involved the introduction of a weak gauge symmetry group

and resulting intermediate vector boson fields (introduced to keep the Lagrangian invariant un-

der certain local transformations). The weak interaction was unified with the electromagnetic

interaction and, through spontaneous symmetry breaking and the Higgs mechanism, these in-

termediate particles aquired masses and became the familiar photon, Z 0 and W± bosons of the

Standard Model.

2.1.4 The Glashow-Weinberg-Salam Electroweak Gauge Theory

The theory of weak interactions views e−L and νeL as two states of the same particle under

charged current (CC) processes which suggests that this pair (along with µ−
L ↔ νµL, uL ↔ dL...)

transform as doublets under some symmetry group. The group, originally proposed in 1961 by

Glashow [17] and the worked with in 1967 by Weinberg [18] and in 1968 by Salam [19]), was

SU(2).

The group is labelled SU(2)L to denote the fact that only the left-handed chiral components of

the fields enter the weak interaction and corresponds to transformations in the internal space

of weak isospin. SU(2) is isomorphic to SO(3) and so such tranformations can be thought of

as rotations in a three-dimensional weak isospin-space. We use I and I3 to denote the quantum

numbers of weak isospin and make the following assignments for the leptonic fields:

I =
1
2







I3 = +1/2

I3 = −1/2





ν̂e

ê−





L





ν̂µ

µ̂−





L





ν̂τ

τ̂−





L

(39)

The transformations can be written as:
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



ν̂e

ê−





′

L

= exp(−iααα · τττ/2)





ν̂e

ê−





L

(40)

where τττ are the Pauli matrices (denoted such to show that they act in an internal space). This

group could be considered as a local gauge invariance (meaning local transformations, ααα(xµ),

should be allowed but not change the observed physics) and would entail the introduction of

three gauge fields (for local definitions of the three axes in weak isospin-space); two of the

fields would have ‘charge’ ±1 (to allow transitions between the doublet members) with the

third being a neutral field. Weak neutral current (NC) interactions were first reported in 1973

by Hasert et al [20] using the Gargamelle bubble chamber experiment at CERN and are known

not to be pure V-A in nature. As such this third potential gauge field, coming from the pure

V-A phenomenology, would not suitably describe NC interactions.

The solution was the unification of the weak and electromagnetic interactions via the addition

of an extra U(1) gauge group resulting in an SU(2)L ⊗U(1) structure. This new gauge group

had to include an entity corresponding to a right-handed electron (for the electromagnetic in-

teraction) and, because such an object is not observed in CC weak interactions, this entity had

to be a singlet in weak isospin-space. For example, the first generation of leptons and quarks is

arranged into SU(2) doublets:





ν̂e

ê−





L





û

d̂





L

(41)

and SU(2) singlets; ê−R ,ûR and d̂R. Then the weak hypercharge, Y , was introduced (to dif-

ferentiate between left-handed doublet and right-handed singlet particles) in analogy with the

‘ordinary’ charge of the electromagentic interaction where:

Y = 2Q−2I3 (42)

where Q is the electric charge and I3 the third component of weak isospin. Local transforma-

tions in the internal space of weak isospin and local phase changes, corresponding to the U(1)
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part of the electroweak symmetry group, should not affect the observed physics and can be

expressed as:

χ̂
′
L = exp

(

igwααα(xµ) · τττ)/2+ ig
′
β(xµ)Y

)

χ̂L (43)

where χ̂L is a left-handed chiral doublet, gw and g
′ are coupling constants and xµ is a point in

space-time. In order to keep the Lagrangian invariant under such local SU(2)⊗U(1) trans-

formations four new gauge fields must be introduced; two charged (W µ
1,2) and one neutral field

(W µ
3 ) for the SU(2) part of the symmetry group and a second neutral field (Bµ) for the U(1)

part of the symmetry group. Again the charged fields are responsible for raising and lowering

members of the left handed chiral doublets whilst the two neutral fields will between them ac-

count for both weak NC and electromagnetic interactions. The gauge invariant Lagrangian can

be written as:

¯̂χLγµ

(

i∂µ −gw
τττ
2
·Ŵµ −

g
′

2
Y B̂µ

)

χ̂L + ¯̂χRγµ

(

i∂µ −
g
′

2
Y B̂µ

)

χ̂R

− 1
4

ŴµνŴ µν − 1
4

B̂µνB̂µν (44)

where the final two terms are the self-interactions of the introduced gauge fields and the right-

handed chiral fields only interact via the B̂µ leaving electromagnetism free from γ5 and parity

violating terms.

The electroweak Lagrangian of equation 44 is not permitted to contain mass terms for the gauge

fields, such as m2BµBµ. However, through spontanteous symmetry breaking the massless Ŵ µ
1

and Ŵ µ
2 combine to form the massive Ŵ± fields and the massless Ŵ µ

3 and B̂µ combine to form

the massive Ẑ0 and massless photon fields. These fields are viewed as propagators (exchanged

virtual bosons) and can be included in the construction of Feynamn diagrams for Standard

Model weak processes such as shown in figure 7.

The matrix element for the transition shown in figure 7 can now be written, in terms of Dirac

spinors and including the exchanged virtual boson, as:
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eν -e

+W

-µ µν

Figure 7: W + exchange process for νe +µ− → e− +νµ.

[

− igw√
2

ūνµ

1
2

γµ(1− γ5)uµ−

][

i
−gµν +qµqν/M2

W

q2 −M2
W

][

− igw√
2

ūe−
1
2

γµ(1− γ5)uνe−

]

(45)

where gw/
√

2 is the coupling strength at each vertex, gνµ is the metric tensor and q2 the squared

four-momentum transfer between the vertices.

At low q2 (q2 � M2
W ) the W-propagator can be replaced by the constant term gµν/M2

W leading

to a matrix element, as shown in equation 46, that looks very similar to the current-current form.

In fact the V-A current-current interaction can be thought of as the low energy approximation

of the full Glashow-Weinberg-Salam gauge theory of electroweak interactions.

− ig2
w

8M2
W

ūνµ

1
2γµ(1− γ5)uµ− ūe−

1
2 γµ(1− γ5)uνe− (46)

where it can be seen that gw relates to Fermi’s constant via:

GF√
2

=
g2

w

8M2
W

(47)

Equation 46 illustrates how the transition amplitudes for simple leptonic scattering in the Stan-

dard Model can be built from V-A currents involving Dirac spinors, a virtual boson propagator

and interaction coupling strengths. The weak interaction is known as ‘universal’ because all

lepton pairs undergo the same form of the V-A coupling, with the same ‘strength parameter’,
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and this property means that cross sections for a large number of scattering processes can be

computed using the above formalism. However, the phenomenology of neutrino scattering off

nucleons, and nucleons that are bound in nuclei, faces some additional complications.

2.2 Neutrino-Nucleus Scattering

2.2.1 Neutrino-Nucleon Scattering

The pure V-A structure of weak interactions, being the equal difference of the vector and axial

parts, is also valid at weak vertices where we have a current between quarks such as:

ūuγµ(1− γ5)ud (48)

but when moving from the quark level to vertices including nucleons there are additional strong

interaction effects to consider. The proton and neutron are not simple pointlike particles but

have some internal structure with quantum chromodynamics (QCD) allowing many processes

such as the emission of gluons from valence quarks and quark-antiquark pair formation from

the gluons. It is known that, even with such processes occuring, the net electric charge is

conserved (the proton always has a charge of e) but there is no reason to believe that the same

is true in the weak interaction. For example, when a quark-antiquark pair is formed the net

contribution of this pair to the weak interaction may not be zero.

If intermediate vector boson and q2 considerations are, for the moment, put aside then the

effects of the strong interactions can be accounted for by making the following replacement in

the weak current:

(1− γ5) → (cV − cAγ5) (49)

where the correction factors cV and cA can be determined experimentally. Experiments, such

as those looking at neutron β-decay, have measured these constants to be:

cV = 1.000±0.003 , cA = 1.26±0.02 (50)
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Equation 50 shows that the vector part of the weak current is not modified by the presence

of strong interations in the nucleon. This suggests that there is some conservation law that

‘protects’ the vector current in the same way that the electromagnetic charge is protected.

This conservation law is known as the Conserved Vector Current (CVC) hypothesis and was

theoretically formulated in 1958 by Feynman and Gell-Mann [21]. They postulated that the

vector part of the weak current ūpγµun, it’s conjugate current ūnγµup and the electromagnetic

current ūpγµup form a triplet of conserved currents in the internal isospin space of the strong

interaction.

Equation 50 also shows that the axial part of the weak current is not heavily modified by the

presence of the strong interaction and hinted at the Partially Conserved Axial Current (PCAC)

hypothesis that was presented in a paper in 1960 by Gell-Mann and Levy [22].

2.2.2 The Kinematics of Neutrino-Nucleon Scattering

Before further discussing the theory of neutrino-nucleon scattering it is helpful to formally

introduce the kinematic quantities associated with a general CC scattering process between a

neutrino and a nucleon. Figure 8 shows the diagram for the process νµ + P → µ− + X (where

X denotes the hadronic system) and labels the measured (lab frame) quantites for such an

event using the MINOS detectors and the centre of mass frame four-momenta of the involved

particles.

Table 2 lists the Lorentz invariant kinematic quantities (quantities that take the same value

independant of the frame of reference in which they are calculated) that describe the interaction

and presents the formulae for constructing these variables using both the centre of mass frame

particle four-momenta (as labelled in figure 8) and using the lab-frame measured quantities.

In a quasi-elastic scattering (QEL) event, νµ +n → µ−+ p, the neutrino is considered to scatter

off an entire nucleon, rather than it’s constituent partons, and the target nucleus is modified but

does not break up. If an event is assumed to be a quasi-elastic interaction then the hadronic

system constitutes a single proton (W 2 = M2
proton).
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Figure 8: Kinematics of CC νµ-N scattering. The diagram labels the four-momenta of the involved

particles in the centre of mass frame and the variables contained inside the red boxes correspond to the

lab frame quantities measured by the MINOS detectors. The Bjorken scaling variable, x, denotes the

fraction of the nucleon momentum carried by the struck quark.

Lorentz Invariant Centre of Mass Lab Frame
Frame Calculation Calculation

Energy transferred to ppp ·qqq/M Ehad

the hadronic system; ν
Inelasticity; y (ppp ·qqq)/(ppp · kkk1) Ehad/Eν

Squared four-momentum −qqq2 2EνEµ(1− cos(θµ))

transfer; Q2

Bjorken scaling variable; x Q2/2ppp ·qqq Q2/2EhadM

Squared invariant mass of (ppp+qqq)2 M2 +2EhadM−Q2

of the hadronic system, W 2

Table 2: Calculation of Lorentz invariant kinematic quantites describing charged current neutrino-

nucleon scattering. In the formulae M is the mass of the stuck nucleon.
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A consequence of this assumption is that a number of the kinematic variables describing a

quasi-elastic interaction can be redefined using just the measured quantities corresponding to

the outgoing muon. These QEL-assumed kinematic quantities are introduced in the following

list and both they and the standard kinematic variables of table 2 will be referred to extensively

throughout this thesis.

• Neutrino energy: in MINOS the neutrino energy is usually reconstructed by summing

the visible energy in the detector for a given event (Eν = Eµ + Ehad) but if an event is

assumed to be a quasi-elastic interaction then a QEL-assumed neutrino energy, E QEL
ν ,

can be constructed, using just the kinematics of the muon, according to:

EQEL
ν =

EµM− (M2
µ/2)

M−Eµ + pµcos(θµ)
(51)

where M is the mass of the struck nucleon, Mµ is the mass of the outgoing muon and

equation 51 neglects terms that are multiplied by the binding energy of the struck nucleon

inside the target nucleus.

• Squared four-momentum transfer: the QEL-assumed four-momentum transfer be-

tween the leptonic and hadronic vertices, Q2
QEL, can also be computed using just the

kinematics of the outgoing muon according to:

Q2
QEL = −2EQEL

ν [Eµ − pµcos(θµ)]+M2
µ (52)

2.2.3 The Quasi-Elastic Cross Section

For a QEL scattering event with four-momenta as given by equation 53:

νµ(p)+n(P) → µ−(p
′
)+ p(P

′
) (53)

we can write the most general matrix element from electroweak theory as:
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GF√
2

ūµ−(p
′
)γµ(1− γ5)uνµ(p)cos(θC)ūp(P

′
)Γµ

CC(q2)un(P) (54)

where θC is the Cabibbo angle (a measure of the probability that one flavor of quark will change

into other flavors under the weak interaction) and Γµ
CC(q2) is a term containing complex weak

form factors for the nucleon:

Γµ
CC = γµFV (q2)+

iσµνqν

2M
FM(q2)+

qµ

M
FS(q

2)

+

(

γµFA(q2)+
iσµνqν

2M
FT (q2)+

qµ

M
FP(q2)

)

γ5 (55)

where M is the mass of the struck nucleon. These weak form factors parameterise the amount

of each type of weak current participating in the interaction. They are functions of the four-

momentum carried by the vector boson ‘probe’, q2, reflecting the fact that for different values

of q2 the boson ‘sees’ different levels of the nucleon internal structure (and hence different

amounts of each coupling type contribute) and are related in the q2 = 0 limit to the correction

factors cV and cA of equation 49.

Using table 1 the V-type nucleon form factors can be identified as; the vector form factor

FV (also written as F1
V ), the weak magnetism form factor FM (often written2 as ξF2

V where

ξ = kp − kn + 1 and kp/n are the anomalous magnetic moments of the proton and neutron and

F2
V is a second V-type form factor) and the scalar form factor FS. The A-type form factors can

be similarly identified as; the axial-vector form factor FA, the pseudotensor form factor FT and

the pseudoscalar form factor FP.

These, in general complex, form factors must be measured experimentally and it has been

confirmed that neither the scalar-type or pseudotensor-type currents contribute to the weak

interaction with nucleons. This measurement has also been explained theoretically, for example

2Note that the superscript ‘2’ in F2
V denotes that this is a second V-type form factor and should not be read as

raising the form factor to the second power.
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in the 1972 paper of Llewellyn-Smith [23], where the preservation of time reversal invariance

(T) requires all the form factors to be real and the preservation of charge symmetry (C) requires

both FS and FT to be imaginary. As such these two form factors are set to zero:

FS(q
2) = FT (q2) = 0 ∀ q2 (56)

In cross section calculations FP is multipled by m2
µ and so for neutrino energies Eν � m2

µ the

pseudoscalar form factor can be neglected3 . Neglecting the pseudoscalar interaction and setting

the scalar and pseudotensor form factors to zero, equation 55 can be reduced to:

Γµ
CC = γµ

[

F1
V (q2)− γ5FA(q2)

]

+
iσµνqν

2M
ξF2

V (q2) (57)

Using this reduced form of the description of the hadronic vertex and turning the matrix element

of equation 54 into a cross section, the differential cross section, with respect to q2, for QEL

scattering can then be expressed as in equation 584:

dσ
d|q2| =

M2G2
Fcos2(θc)

8πE2
ν

[

A(q2)−B(q2)
s−u
M2 +C(q2)

(s−u)2

M4

]

(58)

where s−u = 4EνM +q2 −m2
l , ml is the mass of the produced charged lepton and the factors

A(q2), B(q2) and C(q2) can be written:

A(q2) =
m2

l −q2

4M2

[(

4− q2

M2

)

|FA|2 −
(

4+
q2

M2

)

|F1
V |2

− q2

M2 |ξF2
V |2
(

1+
q2

4M2

)

− 4q2ReF1
V ξF2

V

M2

− m2
l

M2
(

(F1
V +ξF2

V )2 + |FA|2
)

]

(59)

3If scattering involving the τ was considered FP should not be neglected.
4This is the equation for neutrinos (νn→ l−p). For anti-neutrinos (νp→ l+n) the term −B(q2) must be replaced

with +B(q2).
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B(q2) = − q2

M2
[

(F1
V +ξF2

V )ReFA
]

(60)

C(q2) =
1
4

(

|FA|2 + |F1
V |2 −

q2

4M2 |ξF2
V |2
)

(61)

To further constrain the vector form factors of equation 58 it is helpful to briefly consider the

elastic scattering of electrons from nucleons. Since the 1950s it has been known that the proton

(and neutron) can not just be a mathematical point charge with a pointlike magnetic moment

and in 1950 Rosenbluth [25] was one of the first to consider separating these two parts and using

form factors to describe their contributions. The ideas of Rosenbluth were applied to elastic

electon-proton scattering and it can be shown, for example in [24], that the electromagnetic

current part of the hadronic vertex for the elastic scattering of electrons off nucleons has the

following general form:

ūp,n(P
′
)

[

γµF1
p,n(q

2)− σµνqν

2M
F2

p,n(q
2)

]

un,p(P) (62)

where F1
p,n is the Dirac form factor, which relates to the deviation of the nucleon from a point

charge particle, and F2
p,n is the Pauli form factor, which relates to the deviation of the nucleon

from a pointlike magnetic moment. It is interesting to note that whilst equations 57 and 62 are

very similar there are no parity violating γ5 terms present for the electromagnetic interaction.

The Dirac and Pauli form factors are often combined into the Sachs [26] electric and magnetic

form factors for the proton and neutron according to:

Gp,n
E (Q2) = F1

p,n(Q
2)− Q2

4M2 F2
p,n(Q

2) , Gp,n
M (Q2) = F1

p,n(Q
2)+F2

p,n(Q
2) (63)

The Sachs form factors have been well measured in electron scattering experiments and fur-

thermore these measurements have established a common form that describes all of the form

factors; the dipole form factor GD(q2):
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Gp
E(q2) = GD(q2) , Gn

E(q2) = 0

Gp
M(q2) = µpGD(q2) , Gn

M(q2) = µnGD(q2) (64)

where:

GD(q2) =
1

(

1− q2

M2
V

)2 (65)

and MV is the vector mass (which has also been well measured in electron scattering exper-

iments). It should be noted that Gn
E(q2 = 0) has to be zero because the neutron has no net

electric charge and this form factor is usually set to zero for all values of q2.

Assuming the CVC hypothesis the Sachs form factors (which derived from the nucleon form

factors for the electromagnetic part of the elastic scattering of electrons off nucleons as given

in equation 62) can be related to the weak nucleon vector form factors of equation 57 according

to:

F1
V (q2) =

[

Gp
E(q2)−Gn

E(q2)
]

− q2

4M2

[

Gp
M(q2)−Gn

M(q2)
]

1− q2

4M2

(66)

F2
V (q2) =

[

Gp
M(q2)−Gn

M(q2)
]

−
[

Gp
E(q2)−Gn

E(q2)
]

1− q2

4M2

(67)

Equations 66 and 67 show that the weak vector form factors that enter into the calculation of

the cross section for QEL scattering can be constrained by the accurately measured Sachs form

factors using the CVC hypothesis. In the above prescription (where the Sachs form factors

are expressed in terms of the dipole form factor) the weak vector form factors are known as

‘Dipole Form Factors’.

The only remaining uncertainty in the cross section (equation 58) for QEL scattering comes
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from the axial-vector form factor, FA(q2). By analogy with the vector case the axial-vector

form factor can be written using a dipole approximation as follows:

FA(q2) =
FA(0)

(

1− q2

(MQEL
A )2

)2 (68)

where MQEL
A is the axial-vector mass. FA(q2 = 0) has been measured in neutron β-decay ex-

periments (following the discussion of the corrections factors cV and cA) but the q2 dependance

of the axial form factor (which is equivalent to measuring MQEL
A ) needs to be extracted from

weak CC neutrino-nucleon QEL scattering data. The dipole form is quite similar to the form

for a propagated vector boson and the axial-vector mass could be thought of as the mass of the

propagated boson corresponding to the axial-vector part of the weak interaction.

Figures 9 and 10 show the differential cross section for CC QEL scattering as a function of Q2

for mono-energetic neutrinos scattering off free nucleons using different values of M QEL
A . In

the first figure the curves are normalised to area and show that changing the value of M QEL
A has

an effect on the shape of the cross section whilst in the second figure the curves are absolutely

normalised and show that changes to MQEL
A also influence the overall normalisation of the cross

section.

2.2.4 Nuclear Effects

For values of Q2 ' 0.2 GeV2 the vector boson probe has a wavelength that is approximately

the size of the nuclear diameter for iron (the main nuclei with which neutrinos interact in

the MINOS detectors) and so, for Q2 values below ∼0.2 GeV2, the probe does not see the

internal structure of an individual nucleon but rather the scattering process is affected by the

fact that the target nucleon is embedded in a nucleus. The type and level of nuclear effects are

dependant on the target nucleus in question and, for example, older experiments that considered

QEL neutrino-deuterium scattering are less sensitive to these effects than MINOS where the

neutrinos are primarily incident on heavier iron nuclei.
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Figure 9: Effect of changing MQEL
A upon the free nucleon QEL scattering crosss section. The curves

correspond to mono-energetic neutrinos (at 1 GeV) and do not include any nuclear effects. The cutoff

at higher Q2 is purely kinematic and the curves are normalised by area. Figure courtesy of [27].

Figure 10: Effect of changing MQEL
A upon the free nucleon QEL scattering crosss section. The curves

correspond to mono-energetic neutrinos (at 1 GeV) and do not include any nuclear effects. The cutoff

at higher Q2 is purely kinematic and the curves are absolutely normalised. Figure courtesy of [27].
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Nuclear effects will change both σQEL and the kinematics of the final state. They include the

Fermi motion of the struck nucleon (the movement of the nucleon inside the target nucleus),

it’s binding energy in the nucleus, Pauli blocking (a consequence of the application of the

Pauli Exclusion Principle to the nucleus) and final state interactions (FSIs) such as intranuclear

re-scattering and the Coulomb interaction with the nuclear remnant.

Pauli blocking is a consequence of the fact that identical fermions cannot occupy the same

quantum state. In the case of QEL neutrino scattering this means that the struck nucleus can

only be excited if there is an unoccupied final energy state for the outgoing nucleon. Recent

experiments have used mean-field (MF) models such as the Hartree-Fock, shell and Fermi Gas

models to describe Pauli blocking (and nucleon Fermi motion) for QEL scattering. In MF

models the excitation of the nuclear system is described as the transition of a nucleon from a

state below the Fermi surface (a certain value of nucleon momentum, the Fermi momentum,

below which all energy levels are filled) to one above the Fermi surface. The MF models

represent the nucleus as a translationally invariant system composed of an infinite number of

nucleons with a momentum distribution given by:

n(|p|) =
τ

4
3 πk3

F

Θ(kF −|p|) (69)

where Θ is the Heaviside function, τ = Z or N for the nucleus in question, kF is the Fermi

momentum and p is the nucleon 3-momentum. The value of the Fermi momentum depends

upon the nucleus in question but is typically 200-300 MeV. In Fermi Gas (FG) simulations

all energy levels up to the Fermi surface are considered to be filled and any interaction with a

momentum transfer that leaves the final state nucleon with a momentum less than the Fermi

momentum is considered to be Pauli blocked.

QEL neutrino-nucleus scattering was first evaluated in a FG model in 1972 by Smith and Moniz

[28] and can have large effects at low values of Q2. Figure 11 shows an example of the effect

of moving from a free nucleon description of σQEL to a FG model with 3 different values of

the Fermi momentum.
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Figure 11: Implications of nuclear effects in a FG model, with 3 different values of the Fermi momentum,

on the QEL cross section as a function of Q2 compared to the free nucleon prediction. This figure was

taken from a talk by M. Sakuda at the NuFact 05 conference.

The FG model improves agreement with experimental data, especially when combined with a

model for FSIs, but it is not perfect in the Q2 < 0.2 GeV2 region and much progress has been

made in the last decade to improve understanding of nuclear effects beyond the MF approxi-

mation. Of particular interest is the development of nuclear spectral functions which include a

better description of the momentum distribution of nucleons within nuclei [29].

Pauli blocking is the most prominent nuclear effect for studies of QEL scattering at low neutrino

energies and low Q2 but final state interactions are also important. FSIs deal with the passage

of the final state through the nucleus and in the case of a νµ-CC QEL interaction the final

state proton can be re-absorbed or re-scattered by the nuclear remnant leading to different

observable particles and event kinematics in a detector. The propagation of the final state is

usually handled, in current simulations, by an intranuclear cascade model such as presented in

[30]. The ramifications of intranuclear re-scattering for MINOS are discussed further in [31].

2.2.5 Deviations from the Dipole Form

The amount of experimental data on the electromagnetic form factors of the proton and neutron

has increased dramatically since the proposition of the dipole form approximation. In 2003 new

fits were performed [32] to electron scattering data using an inverse polynomial form for each

of the Sachs form factors:
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GN
E,M(Q2) =

GN
E,M(Q2 = 0)

1+a2Q2 +a4Q4 +a6Q6 + · · · (70)

Gn
E is the Sachs electric form factor for the neutron and must take the value of zero at q2 = 0

because the neutron has no net electric charge. Many neutrino experiments had assumed that

this form factor was zero for all values of q2 but the new ‘BBA-2003 Form Factors’ allowed

Gn
E to evolve away from zero with q2. The change from using Dipole Form Factors to the

BBA-2003 Form Factors has a reasonably large effect on the QEL cross section and figure 12

shows that the cross section is reduced by up to ∼7%.

Figure 12: Ratios of σQEL versus energy using the BBA-2003 Form Factors with MQEL
A = 1.00 GeV

versus the Dipole Form Factors with MQEL
A = 1.05 GeV. The MQEL

A values are chosen such that the

sample Q2 distributions are as similar as possible. Figure taken from [32].

Figures 13 are again taken from [32] and show the cross sections for QEL scattering on Carbon

using the BBA-2003 Form Factors and MQEL
A = 1.0 GeV for free nucleon and FG calculations

along with experimental data taken using a number of different nuclear targets. They illustrate,

in the case of neutrinos, that the shape of the QEL cross section is approximately flat with

energy (above ∼1 GeV) and relatively well constrained whereas the overall normalisation of

the cross section is not so well known.

In 2005 the BBA-2003 Form Factors were revised [33] using a new fitting function for the
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Figure 13: Cross sections for νµ-CC QEL and ν̄µ-CC QEL scattering along with data from various

experiments. The calculations use MQEL
A = 1.0 GeV, FA(0) = −1.267, M2

V = 0.71 GeV2 and BBA-2003

vector form factors. These figures were taken from [32].
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nucleon electromagentic form factors and with the addition of some additional constraints.

The resulting QEL scattering cross sections did not change significantly from those presented

in [32] but, to differentiate this parameterisation from earlier work, these form factors are

known as the ‘BBA-2005 Form Factors’.

It is also worth restating that the dipole approximation for the axial-vector form factor, FA, is

not necessarily accurate and furthermore that it could depend upon the nuclear environment.

As such, fixed target neutrino scattering experiments that use different nuclear targets could

expect to measure slightly different values of MQEL
A (within the dipole approximation) due to

the different underlying parameterisations of FA required.

The next chapter of this thesis will introduce some of the previous measurements of M QEL
A ,

present a compilation of previous results and discuss some of the complications inherent in

comparing the measurements made with various experiments stemming from sources such as

differences in the target nuclei.
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3 Measuring MQEL
A

Electron scattering experiments, such as those at the Jefferson Laboratory in Virginia, have

measured the vector form factors of the nucleons and neutron β-decay experiments have mea-

sured the value of FA(q2 = 0) with both sets of measurements achieving high precision. How-

ever, only neutrino scattering experiments can extract the q2 evolution of the axial-vector form

factor and so, assuming a dipole form for FA, measurements of the QEL cross section are

essentially measurements of the axial-vector mass, MQEL
A .

There are a large number of previous experiments that have extracted MQEL
A for a variety of

nuclear targets and neutrino energies and with several different methods. This chapter will

first present a brief introduction to the methodology of extracting MQEL
A from QEL neutrino-

nucleus scattering data. Older results from a deuterium-filled bubble chamber will be discussed

followed by results from more recent experiments using carbon and oxygen targets. The final

section will collate results from a larger number of experiments and present the current world-

average values.

3.1 General Method for Extracting MQEL
A

The only uncertainty in the differential cross section for quasi-elastic scattering as a function of

Q2 (as given by equation 58), when the measurements mentioned above are taken into account,

is the axial-vector form factor FA(Q2). In turn the only uncertainty in the dipole approximation

for FA is the axial-vector mass, MQEL
A . Consequently neutrino scattering experiments extract

MQEL
A by analysing the Q2 distribution for weak charged current QEL events.

Figures 9 and 10 from the previous chapter showed that changes to the value of M QEL
A will af-

fect both the shape and normalisation of the Q2 distribution for QEL events and so experiments

can consider using pure rate information, pure shape information or both. In figure 9 the curves

were normalised by area illustrating the features that a shape-only fit uses to differentiate be-

tween values of MQEL
A whilst in figure 10 the curves were absolutely normalised and illustrated

the extra information that can be used in fits that look at both the shape and normalisation of

the Q2 distribution for QEL events.
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3.2 Results from the Argonne 12-Foot Bubble Chamber

Some of the most accurate previous measurements of MQEL
A came from the 12-foot bubble

chamber at the Argonne National Laboratory which was exposed to a neutrino beam produced

at the Zero Gradient Synchrotron (ZGS) facility. The ZGS brought 12.4 GeV protons to focus

on a beryllium target with the produced charged hadrons focussed by two5 magentic horns.

The hadrons, mainly π−, were allowed to decay in a 30m long drift space with a steel and lead

shield aborbing the resulting hadrons and charged leptons. The muon neutrinos passed through

the shielding and this beam was incident on the deuterium filled bubble chamber.

The neutrino beam flux peaked at ∼0.5 GeV with a tail out to 6 GeV and was modelled using

a simulation of the neutrino beamline and utilizing the measured yields of hadrons from p-Be

collisions. The uncertainty on the flux was estimated to be ±15% except at the higher neutrino

energies where the fraction of neutrinos coming from kaon decay increases and the lack of K +

production measurements drove the uncertainty to ±25%.

The bubble chamber was filled with liquid deuterium heated to just below it’s boiling point.

As particles entered the chamber the pressure was decreased and the deuterium entered a su-

perheated phase. Charged particles in the chamber then left ionization tracks around which the

deuterium vaporised forming tiny bubbles. These bubbles grew in size as the chamber was ex-

panded until the point where they could be photographed by an array of cameras. The bubble

density around a track (or ‘prong’) was proportional to the particle energy loss and, since a

magnetic field was applied to the chamber, the tracks were helical and allowed for a momen-

tum measurement. The final analysis used a data sample consisting of 2.4×106 pictures of the

chamber.

The bubble chamber pictures were scanned by physicists and the interesting one-, two- and

three-prong events were recorded. The overall efficiency of the scanning process was estimated

to be (98±2)% for events within the fiducial volume. In a deuterium filled bubble chamber

5The experiment originally ran with just one horn but a second was later added.
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the spectator proton, denoted ps, from the QEL scattering process νd → µ−pps is sometimes

visible leading to a three-prong event. All two- and three-prong events underwent geometric

reconstruction and kinematic fitting to the QEL hypothesis6 and the final background level in

the QEL sample was estimated to be (2±2)%. The final analysis paper [34] used a data sample

of 1737 events and, although this is not a large statistics sample, the extremely high QEL purity

allowed for a precision measurement of MQEL
A .

The Q2 distribution for the QEL sample events was fitted using a dipole description of the

axial-vector form factor and making the same assumptions about CVC, charge symmetry and

time-reversal invariance that were presented earlier when discussing the QEL scattering cross

section. Fermi motion and Pauli blocking effects were taken into account using a correction

factor that evolved with Q2, although these nuclear effects were not strong given the light

deuterium target nuclei.

The authors used a variety of different likelihood functions in the fits; rate-only, shape-only,

rate and shape and finally a flux independant likelihood function. The shape-only and flux

independant likelihood statistics are defined below in equations 71 and 72 respectively:

Lshape =
Ndata

∑
i=1

W (Q2
i )ln

[

dσ
dQ2 (Q2

i ,Eνi;MQEL
A )R(Q2

i )Φ(Eνi)
R R dσ

dQ2 (Q2
i ,Eνi;MQEL

A )R(Q2
i )Φ(Eνi)dQ2dEν

]

(71)

LFI =
Ndata

∑
i=1

W (Q2
i )ln

[

dσ
dQ2 (Q2

i ,Eνi;MQEL
A )R(Q2

i )
R R dσ

dQ2 (Q2
i ,Eνi;MQEL

A )R(Q2
i )dQ2

]

(72)

where W (Q2
i ) is the weight due to scanning efficiency, R(Q2

i ) is the correction factor accounting

for nuclear effects, Φ(Eνi) is the neutrino flux and dσ/dQ2 is the differential cross section. The

6The kinematics of QEL events are constrained and so the measured information from the main muon track and

the incident neutrino can be used to predict the energy and momentum of the outgoing proton. The energy and

momentum of the second prong in a candidate QEL event were then be compared to this kinematic prediction for

the proton and any differences used to remove background events from the sample.
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Likelihood Type Best Fit MQEL
A (GeV)

Rate 0.74±0.12
Shape 1.05±0.05

Rate and Shape 1.03±0.05
Flux Independant 1.00±0.05

Table 3: Maximum likelihood values for MQEL
A , with a dipole axial-vector form factor, as presented in

[34].

results from [34] are summarized in table 3 although there are also results presented in two

preceeding publications from the Argonne 12-foot bubble chamber; [35] and [36].

Figure 14 shows the Q2 distribution of the QEL event sample from the Argonne 12-foot deu-

terium bubble chamber along with the prediction (based on equation 58) using their best fit

MQEL
A value from the flux independant likelihood analysis. It should be noted that the fit was

only performed for Q2 > 0.05 GeV2.

Figure 14: Q2 distributions from [34]. The histogram shows the data whilst the solid curve corresponds

to a dipole axial-vector form factor with MQEL
A =1.00 GeV. The dotted curve shows an alternate form for

the axial-vector form factor with MQEL
A =1.11 GeV.
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3.3 Results from the K2K Scintillating Fiber Detector

In 2006 a measurement of MQEL
A for the QEL scattering of muon neutrinos off of oxygen

using the K2K Scintillating Fiber (SciFi) detector was presented [37]. The KEK accelerator in

Tsukuba, Japan, was used to generate a neutrino beam that passed through a number of ‘Near’

detectors and the Super-Kamiokande water Čerenkov ‘Far’ detector. K2K was a long baseline

neutrino oscillation experiment but the proximity of the Near detectors to the production point

of the neutrino beam allowed for high statistics data samples with which to make neutrino

interaction cross section measurements.

The KEK accelerator complex produced a beam of 12 GeV protons that were impinged on

an aluminium target. Similar to many experiments that produce neutrino beams, the resulting

charged pions and kaons were focussed using two magnetic horns and then allowed to decay

to hadrons, leptons and neutrinos. The positively charged hadrons were focussed such that

the resulting decay particles travelled towards the Near detectors with a beam dump absorbing

all but the muon neutrinos. The neutrino energy spectrum ranged from 0.3 GeV to 5 GeV and

peaked at 1.2 GeV. The uncertainties on the shape of this spectrum were estimated to be ±20%.

There were a number of different detectors placed 300m downstream of the aluminium target,

one of which was the SciFi detector. The SciFi detector consisted of 20 scintillating fiber track-

ing layers interspersed with water filled aluminium tanks and was read out using CCD cameras.

The fiducial mass fraction breakdown was ∼70% H2O, ∼22% Al and ∼8% CH . Unlike the

deuterium filled bubble chamber experiment the SciFi detector did not ‘see’ the spectator nucle-

ons (those nucleons not directly participating in the interaction) in QEL interactions but rather

observed the outgoing proton and muon. In practice the analysis event selection introduced a

threshold momentum, of 600 MeV for protons and 200 MeV for pions, for the second track to

be observable in the detector. As such the K2K QEL scattering analysis used samples of one-

and two-track events.

The MQEL
A extraction used the Q2 distribution of three distinct samples; the one-track sample

and two sub-divisions of the two-track sample. For the two-track sample the reconstructed

kinematics of the muon and neutrino were used to predict the kinematics of the outgoing proton
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and then this prediction could be compared to the observed kinematics of the second track.

An event selection criterion was placed on how well each two-track event matched the QEL

hypothesis allowing for a QEL-enriched two-track sample and a non-QEL two-track sample.

The shapes of the Q2 distributions for each of these three samples were fit in separate regions

of neutrino energy so as to minimize the systematic error coming from the uncertainties on the

incident neutrino flux. The fits used a dipole approximation for the axial-vector form factor

(with the usual assumptions about CVC and the removal of FS, FT and FP) with MQEL
A as a

free parameter and also included a number of systematic parameters. The region below Q2 =

0.2 GeV2 was excluded in the fit because in this regime the mis-modelling of nuclear effects,

which are much more important for QEL scattering off of oxygen as compared to deuterium,

constitutes a large uncertainty on the measurement.

The best fit value for the axial-vector mass was 1.27±0.12 GeV with the dipole approximation

for FA. The main result quoted in [37] used the updated BBA-2003 Form Factors which gave a

best fit MQEL
A of 1.20±0.12 GeV and this result which was shown to be robust under reasonable

changes to the analysis selection criteria and fitted range in Q2. Although many more events

were used in this analysis, compared to the Argonne results, the quoted error is larger. This

is probably due to the extremely high purity of the QEL event sample collected in the bubble

chamber and it’s enhanced resolution for kinematic variables such as Q2. Figure 15 shows the

Q2 distributions of the QEL event samples for the first part of the K2K data taking, ‘K2K-I’,

along with curves generated with a Monte Carlo simulation of the experiment that used the best

fit MQEL
A value.

The one-track and two-track QEL enhanced samples have the highest purity but figure 15

shows that there are relatively large contributions from backgrounds. The dominant back-

ground comes from resonant single pion production, such as νµ p(→ ∆++) → µ−pπ+. In such

events a final state particle can either be below threshold for detection or be re-absorbed in the

nucleus and both these processes will lead to a two-prong event being observed in the detec-

tor. The kinematic matching to the QEL hypothesis can remove some events from the two-track

QEL enhanced sample although intranuclear re-scattering of the final state particles can change
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Figure 15: Q2 distributions from [37]. The points with errors show the data for each of the three sub-

samples whilst the larger solid histograms show the prediction from a Monte Carlo simulation generated

using a dipole axial-vector form factor with MQEL
A =1.20 GeV and BBA-2003 vector form factors. The

smaller solid histograms show the true QEL events in each of the simulated sub-samples.

the observed kinematics. In fact these single pion events are kinematically very similar to QEL

scattering events and have their own axial-vector form factor and associated axial vector mass,

M1π
A . This suggests a possible explanation for the difference in MQEL

A values reported by the

deutrium experiments and K2K, namely that the lower purity K2K samples are being fitted for

MQEL
A but are ‘seeing’ some of the value of M1π

A in this measurement.

3.4 Results from the MiniBooNE Experiment

One of the most recent measurements of MQEL
A came in June 2007 from the MiniBooNE collab-

oration [38]. The MiniBooNE experiment at FNAL uses a beam of muon neutrinos incident on

a detector filled with 800 tons of mineral oil, CH2. The FNAL booster accelerator provides 8.89

GeV protons which are brought into collision with a beryllium target located inside a magnetic

horn. The magnetic field focusses the π+ and K+ such that when they decay the trajectory

of the muon neutrinos passes through the detector. The MiniBooNE beam provides a mean
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neutrino energy of 0.7 GeV with 99% of the neutrino energies below 2.5 GeV. The detector is

a spherical tank filled with CH2 and instrumented with photomultiplier tubes (PMTs) to collect

the Čerenkov light produced by the particles produced in the neutrino-carbon interactions.

MiniBooNE identifies QEL events by measuring the primary muon from the scattering and

then the electron from the subsequent decay of this muon; µ− → e−νµν̄e. This technique helps

to remove single π+ resonant events where a second electron is detected from the decay chain

of the pion. The MiniBooNE event sample consisted of 193709 events and was estimated to

have an QEL efficiency of 35% and a QEL purity of 74%.

The MiniBooNE neutrino interaction simulation uses a Relativistic Fermi Gas (RFG) model

for the scattering of neutrinos from carbon nuclei. The MQEL
A extraction proceeds in a similar

way to the previous analyses in that the Q2 distribution of the QEL events is fitted using MQEL
A

as a free parameter and the Dipole Form Factors are used. This analysis is slightly different

though and includes a second free parameter, κ, which is used to control the amount of Pauli

blocking at low values of Q2. MiniBooNE fits the shape of the Q2 distribution all the way down

to Q2 = 0 GeV2 and obtains best fit values of MQEL
A = 1.23±0.20 GeV and κ = 1.019±0.011.

Figure 16 is taken from [38] and shows the data and best fit MC Q2 distributions along with a

1σ confidence level contour as a function of MQEL
A and κ.

The best fit MQEL
A accomdates the Q2 behaviour of the QEL event sample at higher values

of Q2 whereas the Pauli blocking suppression factor κ allows the fit to include the low Q2

region (below 0.2 GeV2). In this measurement MQEL
A should be considered to be an effective

parameter because it is likely accounting for some mis-modelled feature in the RFG simulation

such as the momentum distribution of nucleons within the carbon nuclei. The following section

will comment further on the interpretation of MQEL
A measurements and comparisons between

the various experiments.

3.5 Summary of Current Knowledge and World-Average Values

Table 4 summarises many of the MQEL
A measurements that have been made previously along

with the target nuclei for each experiment. The weighted average for MQEL
A from neutrino
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Figure 16: Q2 distributions from [38]. The dashed histogram shows the output of a Monte Carlo

simulation of the experiment before the fit whilst the solid histogram shows the simulated prediction

with the best fit parameter values applied. The dotted and dot-dash histograms show the backgrounds

that are not CC QEL and not CC QEL-like respectively and the points show the data. The inset figure

shows the 1σ confidence contour as a function of MQEL
A and κ with the star showing the best fit point, the

circle showing the starting values and the triangle showing the fit results after varying the background

shape in Q2.

scattering experiments, as compiled in 2001 [46] (and hence not including the K2K and Mini-

BooNE measurements), and using the data selection criteria of the Particle Data Group (PDG)

[47], was 1.026±0.021 GeV.

There are a number of factors that need to be taken into consideration when comparing mea-

surements of MQEL
A including the nuclear target, analysis methodology, flux and background

cross section uncertainties and the set of form factors used. Depending on these particulars,

MQEL
A measurements should often be considered as effective measurements where the extracted

value is also accounting for some other physics effects. The above sections introduced some of

these factors and their importance is summarised below:

• Target Nucleus: For heavier target nuclei the modelling of nuclear effects has large

uncertainties at low Q2. Most previous fits for MQEL
A have used a lower cut-off in Q2 and

a large number of these measurements were shown to be consistent under small changes

60



Experiment Target MQEL
A (GeV) Comments

ANL 1982[34] D 1.00±0.05 Dipole
FNAL 1983[39] D 1.05+0.12

−0.16 Dipole
BNL 1990[40] D 1.07+0.040

−0.045 Dipole
M1π

A = 1.28+0.08
−0.10 GeV

CERN 1977[41] CF3Br 0.94±0.17 Dipole
SKAT 1990[42] CF3Br 1.05±0.14 Dipole
SKAT 1990[42] CF3Br 0.79±0.20 Dipole, anti-neutrino
BNL 1969[43] Fe 1.05±0.20 Dipole
BNL 1987[44] HC, Al 1.06±0.05 Dipole, NC elastic scattering
BNL 1988[45] HC, Al 1.09±0.04 Dipole, anti-neutrino
K2K 2006[37] H2O, Al 1.20±0.12 BBA-2003
K2K 2006[37] H20, Al 1.27±0.12 Dipole

MiniBooNE 2007[38] CH2 1.23±0.20 Dipole, κ = 1.019±0.011

Table 4: MQEL
A measurements from previous measurements grouped by target nucleus. The values

given all come from pure shape information (shape-only or flux independant) fits to the Q2 distributions

although some references also quota results from shape and rate fits. The comments column includes

the type of weak vector form factors used for each measurement.

to the cut-off value. It is not yet completely clear whether MQEL
A should be a constant

for all nuclei or take different values depending on the nucleus in question. Furthermore

the form of the axial-vector form factor itself could potentially be slightly different for

different target nuclei. It should be noted that a significant benefit of using heavier target

nuclei is a much increased rate of neutrino interactions.

• Fit Methodology: Previous measurements have used one or more of several different

methods to extract MQEL
A from their QEL scattering data; rate-only, shape-only, rate and

shape, flux independant. The rate and shape method uses the most information although

can be susceptible to uncertainties in background levels and the incident neutrino flux.

Most previous measurements that use multiple methods find consistent values for M QEL
A

(within errors) but there are some exceptions.

• Flux Uncertainties: Many previous experiments did not have sufficient knowledge of

the incident neutrino flux to perform a fit that included rate information. The shape-
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only and flux independant methods minimise the effect of such uncertainties (as the Q2

distributions for QEL scattering events are not very dependant upon Eν) although the

dependance increases at low values of Q2.

• Background Cross Section Uncertainties: The deuterium bubble chamber experiments

achieved very high QEL purities and so mostly eliminated the effect of uncertainties on

the levels of background in their samples. However, for the other experiments the un-

certainties in the cross sections (and cross section shapes) for the background processes

contributed significantly to the errors on the best fit MQEL
A values. The dominant back-

ground for QEL scattering is resonant single pion production events which have a cor-

responding M1π
A . Experiments with lower purity could have an artifically high or low

extracted MQEL
A value due to the presence of such events.

• Vector Form Factors: Most previous measurements of MQEL
A have used the dipole ap-

proximation for the weak vector form factors of the nucleon. However more recent work,

such as presented in [32], has suggested alternate forms for these form factors. The ex-

traction of MQEL
A is sensitive to both the set of vector form factors used and also to the

constants, such as FA(Q2 = 0), whose world average values have changed over time.

• Standard Assumptions: Assumptions, such as those of CVC and PCAC, are often made

and imply that MQEL
A is the only free parameter in the differential cross section for QEL

scattering with respect to Q2. Another assumption that is often made is a dipole descrip-

tion of the axial-vector form factor. Some previous experiments have also tried fitting

alternate expressions for FA(Q2) and such choices can effect the extracted MQEL
A value.
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4 The MINOS Experiment

MINOS [48] is a long baseline neutrino oscillation experiment that uses a neutrino beam pro-

duced by the NuMI [49] facility at FNAL. The neutrinos pass through a Near Detector (ND)

about 1km downstream of the production target and then through the Far Detector (FD) a fur-

ther 734km away in the Soudan Mine in northern Minnesota. The general layout of the MINOS

experiment is shown in figure 17. This chapter will discuss in detail the NuMI beamline, the

MINOS detectors and the physics goals for the experiment.

Figure 17: Overview of the MINOS experimental layout. Image courtesy of [50].

4.1 The NuMI Beamline

The first stage in the production of the NuMI neutrino beam is the acceleration of protons using

a linear accelerator (Linac), the Booster circular accelerator and finally the Main Injector (MI)

circular accelerator. The Linac takes the protons to a momentum of 400 MeV/c, the Booster

brings this up to 8 GeV/c and finally the MI forms the protons into batches and accelerates

them to a momentum of 120 GeV/c. For the majority of the first year of NuMI running the MI

contained seven batches, five of which were earmarked for the NuMI primary-proton line and

two of which were destined for the Tevatron accelerator.
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The whole acceleration process takes 1.6s after which the protons are extracted from the MI

using ‘kicker’ magnets and this beam is bent downward at an angle of 58 mrad, in order to

point towards the Soudan mine, and sent 350m to the NuMI target. The proton batches were

extracted in an 8.6µs spill with a typical spill containing about 2.1×1013 protons and a typical

repetition rate for the machine of about 2.2s. The NuMI beam has been designed to provide

an average beam power of up to 400kW. Figure 18 shows an overhead view of the FNAL

accelerator complex.

Figure 18: Overhead view of the FNAL accelerator complex. Image courtesy of [50].

The NuMI target is a water-cooled graphite rod (shown in figure 19). The target dimensions

are 6.4×15×940 mm3 and the target is segmented longitudinally into forty-seven fins. The

target is designed to be narrow so as to minimize the re-absorption of particles produced in the

primary proton collision whilst being long enough to maximise hadron production.
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Figure 19: Photograph of the NuMI graphite target. Photograph courtesy of [50].

The proton collisions with the carbon produce a spray of particles, mainly pions and kaons.

These secondary particles are focused (or de-focused depending on the experimental setup and

the particle charge) by a pair of parabolic focussing ‘horns’. The horns are pulsed with a

nominal current of 200kA to produce a toroidal magnetic field with a maximum strength of

30kG. The horns act as magnetic lenses that sign-select and momentum-select the secondary

hadrons. Figure 20 shows photographs of the NuMI horns.

Figure 20: Photographs of the NuMI parabolic focussing horn inner conductors (left) and bottom-view

(right). Photographs courtesy of [50].

After being focussed by the horns the charged hadrons enter a 675m long, 2m diameter evacu-

ated decay pipe in which many of them decay to neutrinos through processes such as π+(K+)→
µ+νµ. Hadrons that make it through this decay volume are stopped by a 5m hadron absorber

consisting of water-cooled aluminium core surrounded by steel blocks and then a layer of con-

crete.

Finally the remaining muons interact in the 300m of dolomite rock that lies between the hadron
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absorber and the ND cavern leaving a beam of neutrinos whose path takes them through the

MINOS detectors. Figure 21 shows the various components of the NuMI beamline. The neu-

trino beam comprises of 97.8% νµ with the major contaminations of 1.8% ν̄µ coming from

µ+ decays and target-produced π− decaying to µ−ν̄µ and 0.4% νe coming from µ+ decays

and target-produced K+
e3 decays (these numbers are based on a Monte Carlo simulation of the

neutrino beamline and the hadron production off of the NuMI target).

Figure 21: The components of the NuMI beamline. Image courtesy of [51].

The NuMI beam has a lot of flexibilty and can be setup to change the neutrino energy spectrum

seen by the MINOS detectors. Different neutrino energy spectra can be produced by moving the

NuMI target with respect to the first focussing horn or changing the magnetic field produced by

the horn by varying the electric current. Both methods result in different momentum hadrons

being focussed which leads to different energies of the resulting neutrinos. Table 5 lists the

different beam configurations in which MINOS has taken data. In addition to changing the

neutrino energy spectra the NuMI horn current could be reversed in the future to produce a

beam comprised predominantly of ν̄µ.

Figure 22 shows the weekly and total integrated protons-on-target (POT) delivered by the NuMI

beamline (in all beam configurations) from May 2005 through to March 2006. The dataset

used for the analysis presented in this thesis is taken from 20th May 2005 through to 25th

February 2006 and corresponds to an exposure of ∼1.27×1020 POT in the L010z185i beam

configuration.
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Beam Target Horn Most Probable Exposure
Configuration Position (cm) Current (kA) Eν ± RMS (1018 POT)

(GeV)
LE10/0kA 10 0 7.4±4.1 2.69

LE10/170kA 10 170 3.1±1.1 1.34
LE10/185kA 10 185 3.3±1.1 127.
LE10/200kA 10 200 3.5±1.1 1.26

LE100/200kA 100 200 5.6±1.5 1.11
LE250/200kA 250 200 8.6±2.7 1.55

Table 5: Beam configuration definitions and exposures, quantified by protons-on-target (POT), for the

corresponding datasets as recorded in the first year of running. The majority of NuMI running uses the

LE10/185kA configuration as the resulting neutrino flux is maximised in the region of interest suggested

by the Super-Kamiokande best fit oscillation parameters. The LE10/0kA beam configuration has the

broadest neutrino energy distrubution as the target-produced charged hadrons are not focussed. The

mean and RMS neutrino energies are calculated using a Monte Carlo simulation of the NuMI beamline

and the charged-current cross section.
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Figure 22: Weekly and integrated POT delivered by NuMI during it’s first year of operation. Figure

taken from [11].
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4.2 The MINOS Detectors

MINOS uses three detectors; the Near and Far detectors measure the NuMI neutrino interac-

tions whilst the smaller Calibration detector (CalDet) was exposed to a test beam at the CERN

Proton Synchrotron (PS). The results from CalDet characterise the response of the MINOS

detectors to electrons, muons, protons and pions.

The MINOS detectors are designed to be functionally identical in order to minimise the sys-

tematic uncertainties involved in the two-detector oscillation analysis but do have differences

stemming from the different environments in which they must operate. This section will de-

scribe the common features of the MINOS detectors before focussing on the particulars of the

Near, Far and Calibration detectors.

4.2.1 Common Features of the Detectors

The MINOS detectors are steel-scintillator tracking calorimeters. Both the Near and Far detec-

tors are magnetised with toroidal fields, with a field strength of up to 1.5 T, to allow momentum

and charge-sign measurements of the muons produced in νµN interactions.

Each detector consists of a number of steel-scintillator ‘planes’. Each plane consists of a

2.54cm thick plate of steel attached to a 1.0cm thick layer of scintillator. The detectors consist

of large numbers of planes which are hung perpendicular to the incident neutrinos with a 2.4cm

air gap between each plane. The higher density steel provides the main medium in which the

neutrinos will interact whilst the scintillator constitutes the active element of the detectors.

The scintillator layers consist of 1.0cm×4.1cm cross-section strips of polystyrene that can

measure up to 8m in length and are doped with the fluors PPO (1%) and POPOP (0.03%). The

strips are arranged side-by-side and then encased in aluminium to form light-tight scintillator

modules which can be mounted on the steel sheets. Strips in adjacent planes are oriented or-

thogonal to one another to allow for a three-dimensional reconstruction of neutrino interactions

in the detectors.

Particles traversing the scintillator strips produce scintillation light which is collected by 1.2mm
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diameter wavelength-shifting (WLS) optical fibres. Each strip has a 2mm deep groove run-

ning along one side into which the WLS fibres are glued. The WLS fibres shift the average

wavelength of photons from blue (λ=460nm), which are emitted from the scintillator, to green

(λ=530nm).

The strips have a TiO2 doped outer reflective coating which helps to trap and reflect scintillation

light until it is collected by the WLS fibres and routed out of the planes to be measured. After

exiting the strips the WLS fibres are collected in a manifold before terminating in an optical

connector. Figure 23 shows an individual scintillator strip along with a collection of strips

arranged into a module.

Figure 23: Photograph of a single scintillator strip containing a WLS fibre along with a photograph of

a collection of strips mounted side-by-side in a module. The WLS fibres are collected by the manifold at

the bottom of the picture to be routed out to the optical connector. Photographs courtesy of [50].

After reaching the optical connector photons are routed via clear optical fibres, which have

a much longer attenuation length, to multi-anode photomultiplier tubes (PMTs). The PMTs

convert the collected photons to an electrical signal which can then be processed by the data

acquisition (DAQ) systems. Figure 24 shows a schematic of a scintillator plane (in the FD) and

it’s readout.

The two main MINOS detectors each have specially designed front-end electronics which will

be described in the following sections. The detectors need different electronics to handle their

vastly different event rates; the ND is situated close to the neutrino production point and, in the
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Figure 24: Optical readout of a MINOS detector scintillator plane. The scintillation light from particle

interactions is collected by WLS fibres and then, through optical connectors and clear optical fibres,

routed to PMTs. The multiplex (MUX) box will be discussed further in the section describing the FD.

This image was taken from [11].

L010z185i beam configuration, observes activity from an average of 16 neutrino interactions

per spill whereas at the FD the beam has diverged to a width of ∼1 km with the FD observing

only a few neutrino interactions per day.

4.2.2 The Far Detector

The 5.4 kT Far detector is the largest of the three MINOS detectors and is situated 705m

underground at the Soudan Underground Laboratory in Minnesota, USA. The detector consists

of a total of 484 octagonal planes measuring 8 m across. The detector is divided into two ‘super-

modules’, of 249 and 237 planes, seperated by an air gap of 1.2 m because of restrictions on

the length of the magnetic coil. As such each super-module is independantly magnetised by a

15 kA field-coil running though the centre of the detector which provides an average field of

1.27 T in the steel. Figure 25 shows a photograph of the completed FD.
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Figure 25: Photograph of the Far detector. The magnetic coils can be seen entering the centre of the

first 8 m diameter octagonal plane. The PMTs and readout electronics are situated at the left- and

right-hand sides of the detector along the walkways. The cosmic ray veto shield can be seen above the

detector. Photograph courtesy of [50].

Each plane has a total of 192 scintillator strips arranged side-by-side and oriented at 45◦to

the vertical which are readout at both ends by Hamamatsu M16 PMTs. There are a total of

185856 strip-ends in the FD and to cope with this large number of channels the fibres from

eight different strips are readout by each PMT pixel using a ‘multiplexing’ technique. In order

to resolve the ambiguity in which strips were actually hit the strip-to-pixel pattern is different

for each side of the detector. This complex optical ‘summing’ is performed inside multiplexing

(MUX) boxes with each MUX box containing three PMTs and reading-out one side of two

planes.

The front-end electronics at the FD is based on a multi-channel application-specific integrated

circuit (ASIC) known as a ‘VA chip’ with one VA chip servicing each PMT. The electronics at

the FD is continuously live and each PMT can trigger independantly. The VA chips digitise the

signals from the PMTs with a precision of 2 fC and are triggered when the summed signal from

all the pixels of a single PMT (the dynode signal) exceeds a threshold of ∼0.25 photoelectrons.

In addition the front-end electronics time-stamp the signal with a least significant bit of 1.56

ns.
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These signals are pedestal suppresed and passed to a PC farm which then apply some higher-

level triggering conditions to decide whether the data is saved. During data taking the main

triggering condition is known as the ‘spill trigger’ which causes the FD to be readout coincident

with a beam spill from the MI. The Near and Far detectors are synchronised using Global

Positioning System (GPS) clocks and when a beam spill occurs at FNAL a time-stamp is sent

via the internet to the FD which then records all hits in a ±40 µs window centred about the spill

time. This ‘spill-window’ is extended to ensure that it is bounded by an activity-free period of

at least 156 ns so as not to split candidate neutrino events.

The FD is equipped with a veto shield positioned above the detector (see figure 25). The veto

shield provides a vital rejection of cosmic ray events which form a background to the analysis of

atmospheric neutrino interactions. MINOS has already published results [52] on the oscillation

parameters measured using atmospheric neutrino interactions in the FD.

4.2.3 The Near Detector

The Near detector has a mass of 0.98 kT and is located in a specially contructed cavern 98

m underground on-site at FNAL. The ND was designed to cope with a large rate of neutrino

interactions (the neutrino beam has a divergence of only ∼0.5 m at the detector). The ND

consists of 282 planes arranged into a single super-module and has an asymmetric octagonal

shape with each plane being 6.2 m wide and 3.8 m high. There is a 30×30 cm2 hole offset

0.56 m from the horizontal centre of the detector through which the magnetic field-coil passes.

The neutrino beam spot lies 0.93 m from the horizontal centres of the planes (in the direction

opposite to the coil) where the 40kA field-coil provides a magnetic field of 1.17 T. Figure 26

shows a photograph of the ND taken during it’s installation.

The ND is seperated into two parts; the upstream 120 planes constitute the calorimeter section

in which every steel plane is instrumented with scintillator whilst the remaining downstream

planes constitute the spectrometer section where only one in five planes is instrumented. The

calorimeter section is used to precisely measure the interaction vertices and toplogies whereas

the spectrometer section is used to measure the momentum of the produced muons via their

range (if they stop in the detector) or their curvature in the magnetic field (if they exit the
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Figure 26: Photograph of the Near detector during installation. The coil hole can be seen along with an

aluminium-covered scintillator module, the module does not extend the entire length of the steel as this

is a partially-instrumented plane. The racks on the right-hand side run along one side of the detector

and hold the PMTs and readout electronics. Photograph courtesy of [50].

detector).

One further difference in the two sections is that whilst one in five of all of the 284 planes are

fully instrumented the remaining four out of five calorimeter planes are only partially instru-

mented (see figure 26). This partial instrumentation is adaquate for measuring the development

of hadronic showers from the neutrino interactions (as they are centred about the beam spot).

Figure 27 shows a schematic of the various sections of the ND.

The scintillator strips in the ND are shorter than those at the FD and the planes are readout

at one end (the opposite strip-ends are coated with a reflective material to increase the level

of light being readout). ND strips are readout using Hamamatsu M64 multi-anode PMTs with

partially instrumented planes requiring one PMT (64 pixels for 64 strips) and fully instrumented

planes requiring 1 1
2 PMTs to readout their 96 strips. In the spectrometer section the amount of

intrumentation required is reduced by summing the signal from sets of four adjacent pixels on

each PMT into a single electronics channel. The adjacent pixels are not connected to adjacent

strips and so the four-fold ambiguity can be resolved by tracking events in the calorimeter and

projecting the events into the spectrometer to select one of the four possibilities. As such the
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Figure 27: Sections of the Near detector. The calorimeter section can be further divided into the veto

section (planes 0-20), the target section (planes 21-60) and the hadron shower section (planes 61-120).

Events from the veto section can consist of muons from neutrino interactions in the rock upstream of the

detector and can be removed due to the lack of knowledge of the hadronic shower. Events in the target

section will be well measured and can be used in comparisons of the neutrino energy spectra at the two

detectors. The hadronic shower section contains the showers whilst the spectrometer section is used to

provide estimates of the muon energy. Diagram taken from [53].

ambiguity cannot be resolved for events whose vertices are not located inside the calorimeter

section.

There are an average of sixteen events occurring in the ND for each beam spill (in the L010z185i

beam configuration) and so special high-speed and deadtime-less front-end electronics are

used. The system is based on the QIE chip that was developed at FNAL and used by the

CDF and KTEV experiments. In the primary triggering mode, the spill-trigger, the output from

every photomultiplier pixel is readout from 1.5 µs before the beam spill arrival time at the ND

continuously for a total of 13 µs. There is also a dynode trigger mode which is used when

taking cosmic ray data in the ND. Further details of the ND electronics can be found in [54].

4.2.4 The Calibration Detector

The 12 tonne Calibration detector was constructed to measure the response and topology of the

main MINOS detectors to hadronic and electromagnetic interactions. It was operated during

2001-2003 and was exposed to beams of p+, e±, µ± and π± in the few-GeV regime at the

CERN PS accelerator.
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CalDet consisted of sixty 1 m square planes with each plane having twenty-four scintillator

strips. CalDet was operated with electronics and readout that simulated that of both the Near

and Far detectors (sometimes simultaneously with each strip-end being readout by either the

ND or FD setup). CalDet was also instrumented with a time-of-flight system (to act as a trigger

and discriminate between e, π and p) and Čerenkov counters that were used to tag electrons in

the detector. CalDet’s input to the calibration of the main MINOS detectors will be discussed

further in the next chapter. Figure 28 shows a photograph of the calibration detector.

Figure 28: Photograph of the Calibration detector. The readout of the strips was setup to simulate the

configurations of both the ND and FD including using optical fibres with lengths closely approximating

those used at the detectors. These optical fibres can be seen at the left of the detector. Photograph

courtesy of [50].

4.3 MINOS Physics Goals

The main physics goal of the MINOS experiment is to establish neutrino oscillations as the

mechanism responsible for the apparent loss of atmospheric νµ and to precisely measure the

parameters governing these oscillations; the mass splitting ∆m2
32 and the mixing angle θ23.

This measurement compares the neutrino energy spectra at the Near and Far detectors in or-

der to search for an energy dependant disappearance of νµ. The latest MINOS results on the

atmospheric neutrino oscillation parameters using NuMI neutrino interactions in the MINOS

detectors are presented in [11].
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It is expected that the ‘missing’ νµ are predominantly oscillating to ντ. The region of oscillation

parameter space indicated by the results from Super-Kamiokande [7] suggests an oscillation

maximum in the FD at neutrino energies of ∼1-2 GeV. As such the neutrino enegies are mostly

below threshold for τ production (3.5 GeV) and the corresponding appearance search has not

yet been performed.

Figures 4 and 5 from chapter 1 showed the latest results from MINOS [11]. Figure 29 below

shows estimates for the sensitivity of MINOS to the atmospheric neutrino oscillation param-

eters using larger exposures of POT as well as indicating how the more exotic disappearance

models of neutrino decoherence [55] and neutrino decay [56] can be ruled-out by MINOS data.
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Figure 29: MINOS sensitivity to the atmospheric neutrino oscillation parameters based on a Monte

Carlo simulation. The left-hand plot shows the ratio of simulated, oscillated data over the Monte Carlo

expectation as a function of the reconstructed neutrino energy. The solid line shows the best fit to

the oscillation hypothesis whereas the dotted and dashed lines show the best fits for the decay and

decoherence hypotheses respectively. The right-hand plot shows the 90% confidence contours as a

function of the oscillation parameters, ∆m2
32 and sin2θ23, for a number of different POT exposures along

with the results from the Super-Kamiokande experiment. As of the end of 2007 MINOS had collected

∼3×1020 POT.

MINOS also hopes to be able to measure, or improve upon the existing limit of, the oscillation

parameter θ13 which governs the sub-dominant oscillations of νµ → νe. This is a very difficult

analysis both because the MINOS detectors were not designed to accurately reconstruct νe

interactions and because the backgrounds, such as the νe contamination present in the NuMI
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beam, cannot be expected to be well modelled by Monte Carlo simulation.

This analysis constitutes an appearance search in the FD and figure 30 shows the MINOS

sensitivity to sin22θ13 as a function of the CP-violating phase factor δ. The current best limit

on θ13 was set by the CHOOZ collaboration in 1999 [57] and if the neutrino mass hierarchy

and values of δ and θ13 take certain values MINOS could exceed this limit or even discover

νµ → νe oscillations, given a large enough exposure of POT.
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Figure 30: MINOS sensitivity to θ13 as a function of the CP-violating phase factor δ based on a Monte

Carlo simulation. The dotted line shows the 90% confidence limit from the CHOOZ experiment whilst

the red and blue curves show the MINOS sensitivity in either the normal or inverted neutrino mass eigen-

state hierarchies. This plot also assumes the values of the atmospheric neutrino oscillation parameters,

a total exposure of 3.25×1020 POT and a 10% systematic error.

The second disappearance analysis that MINOS can pursue considers neutral current interac-

tions which are sensitive to the presence of a sterile neutrino. Such a neutrino would have to

have no Standard Model weak interactions otherwise it would have influenced the number of

neutrino family measurements made by the LEP experiments at CERN using the width of the

Z0 boson [58].

A sterile neutrino has been proposed as an explanation for the results of the LSND experiment

[59] which looked for ν̄e appearance in an ν̄µ beam and found a neutrino mass splitting differ-

ent from both the solar and atmospheric ∆m2 values (which would require four neutrino mass
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eigenstates). The LSND result was recently checked by the MiniBooNE collaboration [60]

which did not find any evidence for neutrino oscillations in the region of parameter space sug-

gested by LSND. Nevertheless the possibility of the existence of sterile neutrinos and neutrino

oscillations corresponding to the LSND result remains an interesting topic in neutrino physics.

If νµ neutrinos from the NuMI beam were oscillating into a sterile neutrino then MINOS would

expect to see a disappearance at the FD in both the CC and NC energy spectra whereas if only

the ‘active’ neutrinos were involved in oscillations then the FD NC energy spectrum would

be unaffected by these oscillations. Figure 31 shows an illustration of oscillations to sterile

neutrinos in MINOS.
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Figure 31: Example of oscillations into sterile neutrinos based on a Monte Carlo simulation. The left-

hand plot shows the CC simulated data and MC along with the NC contamination in the sample whilst

the right-hand plot shows the NC visible energy spectrum. This illustration assumes that 50% of the

NuMI neutrinos oscillate to the sterile state.

MINOS can also use the large statistics data sample from the ND to perform non-oscillation

neutrino physics analyses including measurements of the incident neutrino flux and neutrino

interaction cross sections. Figure 32 shows the inclusive CC cross section as a function of

neutrino energy, as measured by fifteen experiments, and it can be seen that the data points

below 30 GeV have large error bars. In the main running beam configuration for MINOS, the

L010z185i beam, 70% of the neutrino interactions are below 10 GeV and so MINOS can make

significant contributions to the knowledge of the inclusive CC cross section.
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Figure 32: Inclusive CC ν + N scattering cross section divided by neutrino energy as a function of

neutrino energy as measured by fifteen experiments. The x-axis breaks at 30 GeV above which the cross

section is well constrained but below which the data points have large errors bars.

In addition to the inclusive measurements MINOS can look at specific channels. Deep-inelastic

scattering (DIS) events can be used to extract the proton structure function F2(x,Q2) as a func-

tion of Q2 and figure 33 illustrates that MINOS can add data points in a new kinematic region.

In the QEL scattering channel the work presented in this thesis will form the basis of a mea-

surement of the cross section in terms of the axial-vector mass, MQEL
A .
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Figure 33: MINOS sensitivy to the proton structure function F2(x,Q2) as a function of x and Q2 based

on a Monte Carlo simulation. The plot assumes an exposure of 3.7×1020 POT and the simulated MI-

NOS data points overlap with experiments such as CCFR and NuTeV as well as extending into a new

kinematic region.
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5 Near Detector Data and Monte Carlo Simulation

This chapter will discuss the reconstruction, calibration and modelling of neutrino interactions

in the MINOS detectors. The first section will briefly introduce the separation of candidate

single neutrino events from each beam spill in the ND and the tracking and energy reconstruc-

tion of these candidates. The second section will detail the calibration of the MINOS detectors

and the third section will demonstrate the stability of the fully reconstructed and calibrated

event sample recorded by the ND. The final section will present the Monte Carlo simulation of

neutrino interactions in the MINOS detectors.

5.1 Event Reconstruction

MINOS uses the level of energy deposition, topology and timing of scintillator strips through

which particles have traversed (hits) to reconstruct neutrino interactions inside the detectors.

At the FD there is typically only one (or in most cases zero) neutrino interaction in the detector

for a single beam spill but at the ND there are many interactions per beam spill. The first step

in the ND reconstruction is to seperate out the candidate single neutrino events using the timing

and spatial seperation of the hits. Figure 34 shows a single ND beam spill, containing multiple

neutrino events, which is ‘sliced’ to form single neutrino events.

The timing and topology of the hits in each slice are then used to reconstruct tracks, based on a

Hough Transform, and showers, using a clustering algorithm. Figure 35 shows an example of

a νµ-CC and an NC Monte Carlo simulated event in a single view of the detector.

The reconstructed tracks are used to estimate the particle energy via it’s range, if it stops inside

the detector, or via it’s curvature, if it exits the detector. For the curvature measurement a

Kalman Fitter technique is used to fit the track trajectory and takes into account effects such

as multiple Coulomb scattering. The energy resolution for the reconstructed muon energy is

∼5% when measured from range and ∼10% when measured from curvature. The curvature

measurement also provides an estimate of the sign of the charged particle.

Showers are reconstructed by forming clusters of hits that are localised in space and time. The
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Figure 34: Activity in the ND during a single beam spill (a spill with less than the average 16 neutrino

interactions has been chosen for clarity). The top figure shows one of the two possible orthogonal strip

orientations (known as the U and V views). In the top figure; × denote hit strips and a single neutrino

interaction has been selected with • denoting the reconstructed track hits and ◦ denoting reconstructed

hadronic shower (and PMT cross talk) hits. The bottom-left figure shows a ‘beam’s eye view’ of the spill

along with an outline of the ND steel and grey outlines of the partially and fully instrumented regions.

The bottom-right figure shows the time profile of the energy deposition in the detector with a shaded bin

corresponding to energy deposition from the selected event. Figures taken from [11].

individual energy depositions of the hits in the cluster are then summed to provide an estimate

of the energy of the shower. Often a hit can be reconstructed as part of both a track and a

shower and in these cases the fraction of energy deposited that belongs to the track is removed

(based on a minimum ionising particle assumption) and the remaining energy is attributed to

the shower.

The reconstructed neutrino energy is then formed by summing the visible energy in an event

coming from any reconstructed tracks and showers. The following chapter will further discuss
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Figure 35: Two-dimensional views of a νµ-CC and an NC event in the MINOS ND. The shaded rect-

angles show the hit strips with the darker shading corresponding to a larger energy deposition. The

topology of the two event types is quite disimilar with the CC event dominated by a muon track, with

some small amount of hadronic activity around the vertex, whilst the NC event consists of a diffuse

shower. Figures taken from [11].

the selection of νµ-CC events in the ND as well as presenting the resolutions for a number of

kinematic variables.

5.2 Calibration of the MINOS Detectors

The calibration of the MINOS detectors uses information from a special LED-based light-

injection (LI) system, test-bench scintillator measurements, measurements from CalDet and

cosmic-ray muons in the detectors. The overall goal of the calibration procedure is to take a

raw output signal Qraw(d,s, t,x), measured in detector d by strip s at time t and at position x

along the strip, and convert it to a fully corrected signal Qcor. This is done via a number of

‘calibration constants’ that multiply the raw signal:

Qcor = Qraw ×D(d, t)×L(d,s,Qraw)×S(d,s)×A(d,s,x)×M(d) (73)

where the constants D, L, S, A and M correspond to the following corrections:

• Drift Correction: a time-dependant correction that accounts for changes in the re-

sponse of the PMTs, readout electronics and scintillator. Originally this correction was

perfomed using LI data to measure the individual strip gains but the variations between

strips were found to be consistent enough for the drift calibration to be performed using
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the mean signal per plane induced by through-going cosmic-ray muons for each of the

Near and Far detectors. Remaining differences between the strip outputs are corrected

by the strip-to-strip correction mentioned below. Figure 36 shows that the % change in

the detector responses over the data taking period used for the analysis presented in this

thesis is < ±1%. A calibration constant for the drift in the two detectors is measured

once per day.
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Figure 36: % change in the ND and FD response, in terms of mean signal per plane, to through-going

cosmic-ray muons as a function of time. The variations are largely due to environmental considerations

such as the temperatures in the ND and FD halls. Note that the zero point for the y-axes is arbitrary.

Figure taken from [11].

• Linearity Correction: a correction that linearises the response of the PMTs and readout

electronics as a function of deposited signal (also known as pulse height, PH). The LI

system is used to produce ‘gain curves’ for each strip which map out the response as a

function of PH. The linearity corrections are measured once per month.

• Strip-to-Strip Correction: a correction that normalises the individual strip responses

to a mean strip response (in each detector seperately) by looking at cosmic-ray muons.

This ‘uniformity’ correction accounts for differences in the light-output between dif-

ferent strips and uses the attenuation corrections mentioned below, an event-by-event
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accounting for the muon path length through the detector and also takes into account the

expected inefficiency coming from the relatively low light-levels (the possibility that a

muon does not leave any signal). The strip-to-strip calibration constants are measured

once per month in the ND and once every three months in the FD and reduce the variation

in strip responses from ∼30% to ∼8%.

• Attenuation Correction: a procedure that corrects for the attenuation of the signal from

each strip depending upon the position of the muon crossing along the strip’s length.

Prior to the installation of the detectors a test-bench setup involving a radiactive source

was used to measure the signal output from each scintillator module at a number of dif-

ferent locations along each strip. The test-bench results were fit to a model of the optical

attenuation along both the WLS fibres running along each strip and the clear optical fi-

bres that route the light from the optical connectors to the PMTs. Figure 37 shows the

effect of the various stages of the calibration upon the mean signal per scintillator strip

per muon crossing. The attenuation corrections vary (on average) by factors of four along

the 8 m FD strips and factors of 1.8 over the 3 m ND strips.
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Figure 37: Effect of calibrations upon the mean signal per strip per muon crossing. The solid his-

togram shows the uncorrected data, the open circle points include the gain, attenuation, path length

and inefficiency corrections and finally the shaded histogram shows the strip signal output after all of

the corrections described up to this point. Figure taken from [11].
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• Absolute Energy Scale: this final scale factor fixes the absolute energy scale in the

detectors using the latter parts of the tracks of cosmic-ray muons that stop in the detectors

[61]. At these latter parts of the tracks the muon energy loss is best understood and,

having already been corrected by the above calibrations, the mean response is calculated

for each strip with the average value from all the strips defining the ‘muon equivalent

unit’ (MEU).

Now that the MEU has been defined the last calibration step is to set the MEU to GeV conver-

sion factor for muons and neutrino-induced hadronic and electromagnetic showers. For muons

comparisons of the corrected data from the Near, Far and Calibration detectors with the MI-

NOS Monte Carlo simulation as well as information on muon stopping power from [62] yield

the result that 1 MEU corresponds to 2.00±0.02 MeV of muon energy loss in scintillator. This

calibration was performed independantly at both the ND and FD and the results agree to within

2%.

Results from CalDet are also used to verify the electromagnetic and hadronic shower simu-

lation performed using GEANT/GCALOR [63][64]. The measurements, an example of which

are shown in figure 38, showed that the simulation agrees with the data at the level of 1-5%

(depending upon the particle type). An energy dependant MEU to GeV conversion factor was

extracted from the simulation such that the reconstructed shower energy estimates the energy

transferred to the hadronic system.

5.3 Near Detector Data Quality

MINOS continually monitors the neutrino events being reconstructed in the ND which provide

a check on the stability and quality of the neutino beam being produced by NuMI. Figure 39

shows that the number of reconstructed events per unit exposure in the ND is constant as a

function of the run number across the data set used for the analysis presented in this thesis.

The NuMI spill intensity varied over this set of runs, as the experiment moved on from the later

stages of commissioning into regular beam operation, and figure 39 also shows that the number

of reconstructed events in the ND is independant of the spill intensity.
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Figure 38: Detector response to the passage of electrons and pions of various energies. The coloured

points show CalDet data and the solid histograms show the Monte Carlo simulation. The data agrees

well with the simulation and it can be seen that for hadronic showers the width of the response curves

is greater than that for the electromagnetic showers. The energy resolution for hadronic showers is

55%/
√

E and the energy resolution for electromagetic showers is 22%/
√

E [63][64].

Figure 40 shows the mean reconstructed neutrino, muon and shower energies as a function

of run number and shows that the ND event energy reconstruction is stable as a function of

run number. This is important because the MINOS neutrino oscillation analysis compares the

energy spectra of neutrinos at the Near and Far detectors. Figure 40 also shows the mean

position of the reconstructed muon track vertex in the three cartesian coordinates as a function

of run number and the flatness of these three sets of points confirms that the neutrino beam

incident on the ND is focussed towards the same region as a function of time. Figure 41

confirms the stability of the NuMI neutrino energy spectrum and reconstruction and shows the

reconstructed neutrino energy spectrum broken down by month of data taking.

The NuMI beam is instrumented with twenty-four capacitative beam position monitors (BPMs),

two toroids, ten retractable segmented foil secondary emission monitors (SEMs) and three
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Figure 39: Number of reconstructed charged-current-like (CC-like) events per POT versus run number

in the ND for data taking in the L010z185i beam configuration. The exact definition of CC-like will be

presented in the following chapter. The top part of the figure corresponds to events with reconstructed

energy below 6 GeV and monitors the stability of the neutrino energy spectrum peak whereas the bottom

part of the figure corresponds to events with reconstructed energy above 6 GeV and monitors the stability

of the high energy tail of the spectrum. The x-axis shows the MINOS run number and whilst usually

a single run lasts 24 hours this is not always the case and so the x-axis does not quite have a linear

correspondance with time. For presentational purposes runs with a total exposure of less than 2.5×1017

POT are excluded from this figure. Such runs account for less than 10% of the overall total exposure.

The dotted lines show fitted first order polynomials and illustrate that the event rate is very stable over

this period of data taking.

muon stations (ionisation chambers) which allow measurements of the stability of the neutrino

beam, it’s position on the target and it’s profile and halo. The ND data quality checks provide

an extra layer of quality control and also serve to check the calibration and reconstruction of

the NuMI neutrino events.
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Figure 40: The left-hand plot shows the mean reconstructed neutrino, muon and shower energies for

CC-like events in the L010z185i beam configuration as a function of run number. All three sets of

points are consistent with straight lines verifying that the neutrino, muon and shower energies and

their reconstruction are stable as a function of time. The right-hand plot shows the mean reconstructed

muon track vertex position for CC-like events in the L010z185i beam configuration as a function of

run number. These three sets of points show that the beam position at the ND and the track vertex

reconstruction are stable as a function of time.
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Figure 41: Reconstructed neutrino energy spectrum for CC-like events broken down by month of data

taking in the L010z185i beam configuration. The gray histograms shows the average value over the

months and each point shows the bin content for that month with the same binning as the average value

histogram. The month-by-month neutrino energy spectra agree well with a largest deviation between

months of ∼2-3%.
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5.4 MINOS Monte Carlo Simulation

The MINOS Monte Carlo simulation (MC) consists of the simulation of hadron production off

the NuMI target, the propogation of these hadrons and the resulting neutrinos to the Near and

Far detectors, the simulation of neutrino interactions in the detectors and finally simulations of

particles traversing the detectors and the detectors’ response and readout.

The FLUKA05Monte Carlo simulation is used to calculate the production of secondary hadrons

coming from the inside of the NuMI target as well as to model their passage through it. The

simulation of the other components of the NuMI beamline, is performed in the GEANT-3 [65]

based program GNUMI. Hadronic decays in which a neutrino is produced are recorded to be

later used as input for the neutrino interactions and detector response simulations.

Neutrino-nucleus interactions in the MINOS detectors are modelled using the NEUGEN [66]

event generator. NEUGEN includes descriptions of the most important neutrino interaction

processes that occur in the MINOS detectors: quasi-elastic scattering, resonance production,

deep-inelastic scattering and coherent pion production. Figure 42 shows the NEUGEN cross

section predictions for a number of interaction modes along with data points from various

experiments.

Quasi-elastic scattering is modelled, following the formalism presented in chapter 2, using

BBA-2005 form factors and a dipole form for the axial-vector form factor. The value of

FA(Q2 = 0) is set to -1.267 and the nominal value of MQEL
A is 0.99 GeV. NEUGEN also uses a

RFG model of the nucleus which includes the effects of Fermi motion and Pauli blocking.

NEUGEN uses a Rein-Seghal [67] treatment of resonance production and a Bodek-Yang [68]

description of deep-inelastic scattering that has been extended [69] to improve the treatment of

the transition region from resonance production to deep-inelastic scattering. At lower invariant

masses (W < 2.3 GeV) a modified KNO [70] scaling is used to describe the multiplicity of

the final state but for higher invariant masses this hadronic shower model is integrated with

PYTHIA/JETSET [71]. The transition from the KNO model to the PYTHIA/JETSET model

takes place gradually between 2.3 < W < 3.0 GeV above which the PYTHIA/JETSETmodel
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Figure 42: NEUGEN cross sections for inclusive νµ-CC scattering, quasi-elastic scattering and single

pion production as a function of neutrino energy. The cross sections assume an isoscalar averaged

nucleon and the shaded band corresponds to the assumed uncertainty on the inclusive cross section.

A systematic uncertainty of 3% is assumed for the normalisation of the deep-inelastic scattering cross

section (W > 1.7 GeV2) whilst 10% is assumed for the quasi-elastic scattering and resonance production

cross sections.

is used exclusively. NEUGEN uses a modified version of the INTRANUKE [72] package to

describe FSIs such as the re-absorption and re-scattering of final state pions and nucleons within

the nucleus.

The modelling of the MINOS detectors uses the GEANT-3 based program GMINOS. The sim-

ulation randomly samples the neutrinos saved from the FLUKA05/GNUMI output and traces

them through the Near and Far detectors. Events are simulated both inside the detectors and in

the surrounding rock and GMINOS is interfaced with NEUGEN to generate neutrino interactions.

Particles produced by the neutrino interactions are transported in the detector by GMINOS.

Hadronic interactions are simulated using the GCALOR [73] package which was benchmarked

against measurements made at CalDet.

91



Finally in the simulation the energy depositions are converted into light signals and then elec-

tronic signals in the PMTs and front-end electronics. These MC events are then presented to

the MINOS reconstruction and analysis software in the same format as the real data.
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6 Near Detector Event Selection

This chapter will first describe the selection of a νµ-CC-enriched (CC-like) event sample in the

ND. The resulting sample was observed to differ from the MC expectation in a way consistent

with a mis-modelling of the NuMI neutrino beam. A reweighting procedure, using beam optics

and target secondary hadron production parameters, is introduced and shown to improve the

agreement between the ND data and MC. Next a procedure to select a νµ-CC QEL-enriched

(QEL-like) sample is described and comparisons of the QEL-like sample characteristics in data

and MC are presented. Finally the MC is used to quantify the ND resolution for a number of

kinematic variables.

6.1 Selecting νµ-CC Events

A number of criteria are imposed on the ND data and MC in order to define good νµ-CC events.

For the data, checks are first made on the configuration and quality of the beam delivered by

NuMI:

• Beam configuration: the MQEL
A analysis presented in this thesis only considers data

(and MC) from the L010z185i beam configuration. Data taken with the other beam

configurations listed in table 5 is not considered in the extraction of MQEL
A but is used for

the MC tuning procedure that will be described in a coming sub-section.

• Coincidence with spill trigger: a cut is placed on the time a reconstructed event occured

with respect to the nearest spill trigger. This cut removes the majority of the cosmic-ray

muons that traverse the ND because the spill trigger window is short.

• Beam position on the target: the beam position on the target is a good measure of

the stability of the beam being delivered by NuMI. The MC does not simulate neutrino

interactions produced by an off-target beam (just the tails of the on-target beam) and so

this cut also ensures that the MC and data samples originate from the same beam position

on the target.

• Horizontal and vertical beam width: as with the previous cut the horizontal and ver-

tical beam width is also a measure of the quality of the NuMI beam. The MC does not
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simulate an increased or reduced beam size and so this cut also ensures that the MC and

data samples originate from a beam of the same horizontal and vertical width.

• Magnetic field: a check is made that the ND magnetic coil was operational. This cut

ensures that the information on the curvature of particle tracks is available for analysis.

• Horn current: a check is made on the current flowing through the parabolic focussing

horns. Different horn currents lead to different neutrino energy spectra at the ND and so

this cut ensures that events used in the analysis come from the same underlying neutrino

flux.

The beam quality checks listed above (excluding the selection of data taken with a particular

beam configuration) remove approximately 1% of the data sample. Then the following CC-like

sample pre-selection criteria are imposed on both the data and MC:

• Fiducial volume: reconstructed event vertices must lie within a 1 m diameter cylinder,

centred about the neutrino beam spot and extending from 1 m to 5 m along the z-axis.

The diameter of the cylinder ensures that for most events the reconstructed hadronic

shower is contained in the detector and also that charged particles entering through the

sides of the detector are not accepted. The z > 1 m cut ensures that the analysis does not

include events where the incident neutrino interacted in the rock upstream of the detector

producing a muon that travels into the front face since in this case a measurement of the

hadronic energy (and hence the neutrino energy) is not possible. The z < 5 m cut ensures

that the hadronic showers from neutrino interactions are contained inside the calorimeter

section of the ND allowing for a much more accurate estimate of the shower energy than

is possible in the spectrometer region.

• Presence of a track: at least one track must have been reconstructed in the event. This

cut removes a large portion of the NC events although without further cuts the remaining

sample impurity from NC events where a track was reconstructed is ∼15%. The text

following this list of pre-selection cuts will describe the method used to further seperate

νµ-CC and NC events.
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• Track reconstruction quality: the track finding algorithm quantifies the quality of the

reconstructed track for a given event based on the reduced χ2 from the fit to the particle

trajectory. This cut requires that the algorithm considered the track to be well recon-

structed and also that the longitudinal difference in the track vertex position in the two

orthogonal (U and V) views of the ND does not differ by more than six planes. This

removes events where a bad fit to the track hits causes the the curvature estimation of the

muon energy to be worse as well as events where a mis-reconstructed track vertex can

cause both the curvature and range estimates of the muon energy to be worse. This cut

also removes many NC events for which the reconstructed ‘track’ is really a collection

of shower hits that have been mis-reconstructed.

• Track charge sign: the track fitter provides an estimate of the particle charge based

on it’s curvature in the magnetic field and this cut requires that the track corresponds

to a negatively charged particle. This cut removes both NC events where the mis-

reconstructed track happened to correspond to a positively charged particle and ν̄µ in-

teractions that produce a µ+.

The presence of a long muon track reconstructed in a MINOS neutrino event is a good indica-

tor that the underlying interaction was CC but at low neutrino energies tracks are sometimes

reconstructed in NC events; either spuriously or because of a pion ranging-out in the detectors

and leaving hits that are truly consistent with a track. MINOS has developed [74] an event

identification parameter to seperate CC (specifically νµ-CC) from NC events beyond what is

possible by simply requiring a reconstructed track.

The parameter is formed using a probability distribution function (PDF) based likelihood

method. A number of 1-dimensional and 2-dimensional PDFs are contructed that show dif-

ferences for true νµ-CC and NC neutrino interactions. The PDFs are based on the following

distributions:

• Number of planes in the reconstructed track: reconstructed tracks in NC events will

mostly be shorter than the long tracks from muons as they are due to reconstruction

failures or pions, which do not travel as far as muons in the detectors. This variable is

essentially a measurement of the track energy.
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• Number of track-like planes: for most CC events the muon track extends further in

the detector than the hadronic shower whereas for NC events the reconstructed track is

most likely contained inside the hadronic shower (either due to mis-reconstruction or a

track-like set of strip hits corresponding to a final state pion). This variable is defined

as the number of track planes containing strips that belong only to the track and not to a

reconstructed shower and as such can distinguish between CC and NC interactions.

• Goodness of track fit: the track finding algorithm, used to estimate the muon energy

via it’s curvature in the magnetic field, provides a percentage error on the momentum

measurement which can be used as a measure of the goodness of the track fit. For CC

events, which contain real muon tracks, a better fit and hence a smaller percentage error

is expected as opposed to the tracks reconstructed in NC events which are either mis-

reconstructed sets of hit strips or correspond to hadronic tracks.

• Track mean PH per plane: the mean pulse height (PH) for muon track planes should

be strongly peaked, as for the majority of the track the muon can be considered to be a

minimum ionising particle (MIP). The mean PH for NC track planes will be more spread

out with hits corresponding to hadronic particles such as pions (which do not deposit a

consistent level of energy in the detector).

• Reconstructed y: the reconstructed y (inelasticity) is defined as the ratio of the re-

constructed shower energy to the reconstructed neutrino energy. For CC events the y

distribution is approximately flat but for NC events the hadronic shower energy usually

constitutes the majority of the neutrino energy and as such the reconstructed y for NC

events will be peaked towards one.

• Track charge sign: for νµ-CC events the reconstructed charge sign should almost always

equal -1 whereas for reconstructed tracks from NC events the charge sign could take

either the positive or negative value. This represents the fact that NC ‘tracks’ could be

due to pions of either charge or reconstruction failures.

Figure 43 shows the above 6 variables for νµ-CC events and NC events from the L010z185i

beam configuration CC-like data and MC samples in the ND. The MC sample shown in fig-
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ure 43 has been weighted according to the reweighting scheme that will be described in the

following sub-section and agrees well with the data points.
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Figure 43: ND CC-like data and MC distributions of the event identification parameter input variables

mentioned in the text. The black points show the data, the red histograms show the fully reweighted MC

expectation for νµ-CC events and the blue shaded histograms show the MC expectation for NC events.

The red shaded envelope represents the uncertainties associated with the reweighting scheme that is

described in the following section.

These distributions, when normalised to unity, represent the underlying PDFs for a given event

to be either CC or NC as a function of the parameter values. For each event the compound

probabilities for the event to be either CC or NC, PCC and PNC, are formed according to:
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PCC,NC = ∏
i

fi(xi)CC,NC (74)

where fi is the ith PDF for either CC or NC events and xi represents either the one or two

dimensions of this PDF. The event identification parameter, PID, is then defined according to:

PID =
PCC

PCC +PNC
(75)

and takes values close to unity for CC events and close to zero for NC events. Figure 44 shows

that the L010z185i ND CC-like data and MC identifiaction parameter distributions agree well.

The final cut used to define the CC-like sample is a cut on the CC/NC separation parameter of

PID > 0.85.
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Figure 44: CC/NC separation parameter for CC-like data and MC in the ND. As with figure 43 the MC

has been fully reweighted according to the procedure described in the following section. The data and

MC distributions agree well, especially in the region where a cut is placed (> 0.85) to select CC-like

events.

Figure 45 shows the efficiency and purity (relative to the pre-selected sample) of this cut. The

CC-like sample has high efficiencies and purities except at low reconstructed neutrino energies

(Eν < 1 GeV). In this low energy regime even the muon tracks from true νµ-CC interactions do

not extend far and may be associated with large vertex hadronic showers causing the CC and

NC separation to become more difficult.
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Interaction Type Events per Percentage Events per Percentage
1e20 POT of Total 1e20 POT of Total

(Eν < 6 GeV) (Eν < 6 GeV)
νµ-CC QEL 333089.2 17.99 290399.6 25.24
νµ-CC RES 480091.2 25.93 402442.4 34.98
νµ-CC DIS 998035.9 53.91 428310.2 37.23

νµ-CC COH 10672.4 0.58 7780.2 0.68
νµ-NC 20423.1 1.10 17114.0 1.49

νµ 7849.0 0.42 3811.8 0.33

Table 6: Numbers of selected CC-like events per 1e20 POT in nominal MC broken down by true inter-

action type for reconstructed Eν < 120 GeV and Eν < 6 GeV. The second set of columns correspond to

the peak of the neutrino energy spectrum.
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Figure 45: Efficiency and purity of the PID > 0.85 cut as a function of reconstructed neutrino energy

based on MC.

Table 6 shows a breakdown of the CC-like sample, in MC, by truth interaction channel in terms

of the numbers of events per POT and the percentage contribution of that channel to the CC-like

sample.

One of the main purposes of the MINOS ND is to provide a check on the simulation of the

NuMI neutrino beam. The reconstructed neutrino energy spectra for ND data and MC in a

number of different beam configurations are shown in figure 46. Figure 46 shows that the

nominal MC does not agree well with the data and moreover that the disagreement changes

as the beam configuration changes. This observation suggests that the difference between the

data and MC is not due to effects such as cross section or detector mis-modelling (which would
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occur at a particular energy in all beam configurations) but rather due to a mis-modelling of the

NuMI neutrino beamline.

Figure 46: Comparison of ND data to nominal and fully reweighted MC in three different beam config-

urations; (a) the L010z185i beam, (b) the L100z200i beam and (c) the L250z200i beam configuration.

The ratio figures exhibit a ‘dip’ structure that occurs on the falling edge of the neutrino energy spectrum

in each of the different beam configurations.

6.1.1 Beam and Hadron Production Parameter Reweighting

The versitility of the NuMI beamline provides a powerful tool for understanding the neutrino

flux incident on the ND. Figure 46 shows a data/MC disagreement that occurs at the falling edge

of the neutrino energy spectrum in three different beam configurations and is suggestive of a

mis-modelling of the NuMI beam. This disagreement is attributed to both a poor knowledge of

secondary hadron production off the NuMI target and also from a number of beam focussing

effects. A method has been developed by MINOS [75] to constrain the NuMI neutrino flux

calculation using a fit to the reconstructed energy spectra of νµ-CC events in a number of

different beam configurations.

The uncertainty in the modelling of hadron production from the NuMI target can be addressed

because the relative positions of the target and first focussing horn and the horn current (which
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can be varied to yield the different beam configurations described in table 5) focus pions of

different longitudinal and transverse momentum. Figure 47 shows the pion yields from the

NuMI target in the six different beam configurations mentioned in table 5.

Figure 47: Pion yields from the NuMI target, as a function of pion pz and pT , for six different beam

configurations. The box sizes are proportional to the probability that a pion with the given pz and

pT produced a νµ-CC interaction in the detector. Using CC-like energy spectra from the six beam

configurations allows a sampling of (pz, pT )-space. Figure taken from [75].

The method first involves representing the FLUKA05 target hadron production yield, d 2N/d pzd pT ,

as a parametric function. The parameterisation used is based on that originally proposed in

[77]:

d2N
d pzd pT

= [A(pz)+B(pz)pT ]exp
(

−C(pz)p3/2
T

)

(76)

where the functions A, B and C can be written (in terms of xF = pz/120GeV) as follows:

A(xF) = a1(1− xF)a2(1+a3 ∗ xF)x−a4
F (77)

101



B(xF) = b1(1− xF)b2(1+b3 ∗ xF)x−b4
F (78)

C(xF) =
c1
xc2

F
+ c3[xF < 0.22] (79)

= c1ec2()xF−c3 + c4xF + c5[xF > 0.22]

The function A can be thought of as determining the low pT yields whilst B controls how fast

the distribution rises with pT and C influences the high pT fall-off. Figure 48 shows the fitted

FLUKA05 yields as a function of pT and for a number of different values of xF .

Figure 48: Parametric fits to the predicted target hadron production yields as given by FLUKA05. The

black dots show the FLUKA05 predictions, the black solid lines show overall fits using equation 76 and

the solid red lines show the fitted yields using equations 77-79. Figure taken from [75].

Given the above parameterisation of the target hadron production yields, the MC energy spectra

for the CC-like samples from the various beam configurations are fit to the data including
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a number of systematic parameters; modifications to the target hadron production yield, beam

focussing/optics and detector-based parameters. Each of these sets of parameters will be briefly

described below.

The parameters used in the fit to change the target hadron production yields are linear warpings

in xF of the functions A, B and C:

A′ = A(p0 + p1xF) B′ = B(p2 + p3xF) C′ = C(p4 + p5xF) (80)

where p0 through p5 are the fitted parameters. The weights used in the fits are constructed for

positively charged hadrons (π+ and K+) using a total of twelve parameters, p0 through p11,

according to:

W +(hadron type, pT ,xF) =
[A′(pz)+B′(pz)pT ]exp

(

−C′(pz)p3/2
T

)

[A(pz)+B(pz)pT ]exp
(

−C(pz)p3/2
T

) (81)

and for negatively charged hadrons the weights are tied to the weights for the positively charged

hadrons using four parameters, p12 through p15, according to:

W− = W+(p12 + p13xF) (82)

where only two parameters each are used to tune the target π− and K− yields because a much

smaller fraction of anti-neutrinos (coming from the decay of negatively charged hadrons) are

seen in the Near Detector CC-like sample.

The fits also consider a number of beam optics effects which relate to the uncertainties on the

focussing provided by the horns, the error on the counting of the number of protons-on-target

(POT) and the scraping of the beam on the collimator baffle. Figure 49 shows the effect of 1σ

changes to these parameters upon the true neutrino energy spectrum in the Near Detector.

The final set of parameters used in these fits are three detector-based parameters that are in-

cluded to ensure that the fitted beam optics and hadron production parameters do not ’absorb’
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Figure 49: Errors on the ND neutrino energy spectrum coming from beam optics/focussing effects.

The lines show the effects of 1σ shifts due to an offset in the horn position, uncertainties in the current

flowing through the horn’s inner conductor (both it’s absolute value and distribution), proton beam

scraping on the collimator baffle and a 2% constant error on the absolute normalisation stemming from

uncertainties in the counting of POT. Figure taken from [75].

a disagreement between data and MC that stems from uncertainties in the neutrino interac-

tion cross sections and/or detector effects such as reconstruction and calibration uncertainties.

Three parameters are included; a neutrino energy scale factor, a hadronic shower energy offset

and a scaling factor for the true NC background events that are present in the CC-like sample.

Similar MC flux tuning techniques have been employed by a number of previous experiments,

such as [76].

In the results of these fits none of the fitted beam optics or physics parameters are shifted by

more than their assumed 1σ errors and the weights given to the parent hadrons are close to unity

in the regions which give rise to neutrinos in the Near Detector (as shown in figure 50). Figure

46 shows that the fully reweighted MC agrees better with the data throughout including a large

change in the high energy tail of the L010z185i beam configuration where the MC spectrum is

shifted up by 20-30%. The specifics of the fitting procedure and fit parameter constraints are

discussed further in [11] and [75].
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Figure 50: Scale factors for target-produced π+ as a function of pz and pT . The L010z185i beam

configuration is dominated by pions with average pz ' 10 GeV/c and average pT ' 0.3 GeV/c and in

this regime the weights are close to unity. Figure taken from [75].

6.1.2 Comparison of Data to Monte Carlo

This section will present comparisons of the selected CC-like events in ND data and MC from

the L010z185i beam configuration. The comparisons will make use of the MC reweighting

procedure described above but will only apply the best fit values corresponding to the hadron

production and beam optics parameters. The remaining detector response parameters were

included in the above fits to ensure that the beam-related parameters did not absorb effects that

originate from mis-modelling of the neutrino interaction cross sections or detector response

but it is precisely these effects that the MQEL
A analysis investigates. As such the following

figures will show both nominal and ‘tuned’ MC with the label ‘tuned’ referring not to the full

reweighting procdure (as was used in figures 43-46) but rather to a reweighting based solely on

the best fit beam optics and hadron production parameters.

All of the distributions correspond to the samples of data and MC used in the MQEL
A analysis,

presented in the coming chapters of this thesis, with exposures of 1.2623e20 POT for the data

and 9.4496e19 POT for the MC. The figures also show the dominant interaction types for

the tuned MC, as selected using the MC truth information. These interaction types are νµ-

CC quasi-elastic scattering (QEL), νµ-CC resonance production (RES), νµ-CC deep-inelastic
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scattering (DIS) and neutral current (NC) events. In general error bars are only shown for the

data and tuned MC although the tuned MC errors are also indicative of the errors present for

the nominal MC.

Figures 51 through 54 show some lower level reconstructed quantities; the reconstructed track

vertex positions along the x, y and z directions and the reconstructed muon angle with respect

to the incident neutrino beam. The shapes of the track vertex distributions are generally well

modelled by the MC although there is a slight asymmetry between data and MC visible in the

vertex x distribution. The beam and hadron production tuning significantly improves the agree-

ment between data and MC in all cases and the dominant effect here is the 20-30% increase

that was shown in figure 46 and that comes from increased weights for the target produced K +.

The muon scattering angle shows reasonable agreement between the data and the tuned MC

although there is evidence of a shift to higher angles in the data. The tuning process can been

seen to be having the biggest effect at low muon scattering angles which corresponds to the

higher neutrino energy events (that gain the largest weights from the reweighting procedure).
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Figure 51: Reconstructed track vertex positions along the x-axis in data, nominal MC and tuned MC.

The left-hand plot shows the distributions whilst the right-hand plot shows the ratios of data to the two

MC distributions.
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Figure 52: Reconstructed track vertex positions along the y-axis in data, nominal MC and tuned MC.

The left-hand plot shows the distributions whilst the right-hand plot shows the ratios of data to the two

MC distributions.
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Figure 53: Reconstructed track vertex positions along the z-axis in data, nominal MC and tuned MC.

The left-hand plot shows the distributions whilst the right-hand plot shows the ratios of data to the two

MC distributions.
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Figure 54: Reconstructed muon scattering angle with respect to the incident neutrino direction in data,

nominal MC and tuned MC (left-hand figure) and ratios of data over MC (right-hand figure).
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Figures 55-59 show some higher level reconstructed quantities; the reconstructed muon and

shower energies and the resulting reconstructed neutrino energy as well as the reconstructed

Q2 and invariant mass of the hadronic system. In all cases the tuning improves the agreement

between data and MC although there is evidence throughout the figures of a deficit of events in

the MC and differences in the shapes of the distributions between the data and MC. This MC

deficit is prevalent in areas of the distributions where the QEL and RES interaction types dom-

inate whereas where the DIS events are situated the data and MC agree better. This deficit is

consistent with the uncertainties in the cross sections for these processes (see the caption of fig-

ure 42) with the higher energy and higher invariant mass DIS events being the best constained

experimentally.

 (GeV) µ Reco E
0 2 4 6 8 10 12 14

 P
er

 1
e2

0 
P

O
T

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

610×

Data
Nominal MC
Tuned MC

-CC QELµνTrue 
-CC RESµνTrue 
-CC DISµνTrue 

True NC

CC-like Events, L010z185i Beam 

 (GeV) µ Reco E
0 2 4 6 8 10 12 14

 D
at

a 
/ M

C

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Data over:

Nominal MC

Tuned MC

CC-like Events, L010z185i Beam 

Figure 55: Reconstructed muon energy in data, nominal MC and tuned MC (left-hand figure) and

ratios of data over MC (right-hand figure). The coloured vertical lines in the ratio figure show the mean

values for true QEL, RES and DIS events (using the colour scheme of the legend in the left-hand figure)

in the tuned MC and illustrate which interaction types dominate in the regions where the data and MC

disagree. The mean for the QEL and RES events is very similar.

These data and MC comparisons show that, in general, there is a good level of agreement and

that after the tuning process the MC is representing the data well. However, they are suggestive

of possible cross section mis-modelling in the QEL and/or RES modes which further motivates

the extraction of MQEL
A presented in this thesis.
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Figure 56: Reconstructed hadronic shower energy in data, nominal MC and tuned MC (left-hand figure)

and ratios of data over MC (right-hand figure). The coloured vertical lines in the ratio figure show the

mean values for true QEL, RES and DIS events (using the colour scheme of the legend in the left-hand

figure) in the tuned MC and illustrate which interaction types dominate in the regions where the data

and MC disagree. The x-axis has been extended in the right-hand figure to include the mean value for

DIS events.
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Figure 57: Reconstructed neutrino energy in data, nominal MC and tuned MC (left-hand figure) and

ratios of data over MC (right-hand figure). The coloured vertical lines in the ratio figure show the mean

values for true QEL, RES and DIS events (using the colour scheme of the legend in the left-hand figure)

in the tuned MC and illustrate which interaction types dominate in the regions where the data and MC

disagree.
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Figure 58: Reconstructed squared four-momentum transfer in data, nominal MC and tuned MC (left-

hand figure) and ratios of data over MC (right-hand figure). The coloured vertical lines in the ratio

figure show the mean values for true QEL, RES and DIS events (using the colour scheme of the legend

in the left-hand figure) in the tuned MC and illustrate which interaction types dominate in the regions

where the data and MC disagree.
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Figure 59: Reconstructed invariant mass squared of the hadronic system in data, nominal MC and

tuned MC (left-hand figure) and ratios of data over MC (right-hand figure). The coloured vertical lines

in the ratio figure show the mean values for true QEL, RES and DIS events (using the colour scheme

of the legend in the left-hand figure) in the tuned MC and illustrate which interaction types dominate in

the regions where the data and MC disagree. The x-axis has been extended in the right-hand figure to

include the mean value for DIS events.
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6.2 Selecting νµ-CC QEL Events

A QEL-like sample is selected in data and MC by requiring two more criteria on top of the

CC-like sample cuts:

• Reconstructed hadronic energy <<< 250 MeV: the three major components of the CC-

like event sample are QEL, RES and DIS interactions. These interaction types could

be defined (at the generator level) by considering the multiplicity of the hadronic final

state with QEL events producing a single proton, RES events producing a proton and

a pion and DIS events producing many pions. As such QEL events are likely to leave

the smallest energy hadronic showers in the detector and figure 56 shows that below 250

MeV QEL interactions dominate the hadronic energy distribution.

• One and only one reconstructed track: the most likely interaction type in which two

or more tracks could be reconstructed is DIS events with large hadronic showers. These

showers can have spuriously reconstructed tracks traced through them or reconstructed

tracks that correspond to pions that range-out in the detector. This cut does not remove

many QEL events because for these events there is little hadronic activity (a single pro-

ton) around the vertex through which a track may be reconstructed.

The above QEL-enriched sample selection criteria are very simple and a number of more so-

phisticated methods have been tried:

• PFD-based likelihood: a likelihood method, using variables that show differences be-

tween QEL events and other interaction types as one-dimensional PDFs, was developed.

These variables used the topology of the reconstructed vertex hadronic shower to dis-

criminate between events and as such were taking advantage of the different hadron

particle types and multiplicities found in the various interaction modes. This method

was not used because it was found not to have a significant advantage over the simpler

hadronic energy cut as well as requiring a large MC dataset for constructing PDFs and

training the cut on the resulting identification parameter.

• Two-prong selection: an event selection has been developed [78] that removes the

Ehad < 250 MeV events and concentrates on recovering QEL-like events from the re-
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maining sample. This technique attempts to identify the number of prongs (tracks) con-

tained in an event and is able to separate QEL events, which have two prongs correspond-

ing to the muon and proton, from RES and DIS events which have higher vertex hadronic

shower particle multiplicites. This selection is complimentary to that gained by impos-

ing the Ehad < 250 MeV cut but is not yet ready for inclusion in the analysis presented

in this thesis. In the future it is hoped that this event selection will be incorporated into

the MQEL
A extraction because it selects higher Q2 events than the sample obtained with

just the hadronic energy cut. Figure 60 illustrates the higher Q2 reach of the two-prong

selection.
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Figure 60: Selected QEL-like samples in MC as a function of the reconstructed Q2
QEL using the one-

prong (hadronic energy cut) and two-prong methods. The solid lines show the total selected samples

whilst the shaded histograms show the true QEL event contributions to these samples. The two selection

methods are complimentary with the one-prong method selecting primarily lower Q2
QEL events and the

two-prong method having a higher reach in Q2
QEL.

Figure 61 shows the efficiency and purity, relative to the CC-like sample, for selecting νµ-CC

QEL events as a function of the reconstructed Q2 and Eν. The purity is relatively flat as a

function of Q2 but the efficiency drops-off because the higher Q2 events tend to have larger

reconstructed hadronic energies. As a function of Eν the purity initially rises (and conversely

the efficiency drops) reflecting the fact that at very low neutrino energies all interaction types

are likely to leave only small amounts of visible hadronic energy whereas at 3-4 GeV the RES,
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DIS and NC events will produce larger showers in the detector and not pass the QEL-like

selection cut. Above 4 GeV the efficiency and purity flatten-off corresponding to the greater

chance that even the true QEL events deposit more than 250 MeV of hadronic energy in the

detector.

Figure 61 also shows that these features are stable if the hadronic energy cut value is changed

to either 200 MeV or 300 MeV. Table 7 shows the numbers of events and percentages of the

total QEL-like sample for the main interaction types. The major contamination comes from

RES events where either the outgoing proton or pion is absorbed in the nucleus leading to little

visible hadronic energy in the detector. Such events are kinematically very similar to the QEL

signal events and, to the extent that they can be called background, this background source is

irreducible when using the hadronic energy cut. The remainder of the QEL-like sample consists

of ∼10% DIS events and then small contributions from NC and ν̄µ interactions.
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Figure 61: Efficiency (solid lines) and purity (dashed lines) of the selected QEL-like event sample,

relative to the CC-like sample, as a function of the reconstructed neutrino energy and the reconstructed

Q2 for three different values of the reconstructed hadronic energy cut.

6.2.1 Comparison of Data to Monte Carlo

Figures 62 and 63 show the reconstructed QEL-assumed neutrino energy and squared four-

momentum transfer (as defined by equations 51 and 52) for QEL-like events and assume the

same conventions about beam configuration, POTs and MC tuning that were described when
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Interaction Type Events per Percentage
1e20 POT of Total

νµ-CC QEL 168970.1 62.97
νµ-CC RES 61064.0 22.76
νµ-CC DIS 31402.4 11.70
νµ-CC COH 1270.0 0.47

νµ-NC 4023.5 1.50
νµ 1307.0 0.49

Table 7: Numbers of selected QEL-like events per 1e20 POT in nominal MC broken down by true

interaction type.

presenting the data and MC comparisons for the CC-like sample. The MC deficit that was

evident in the data and MC comparisons for the CC-like sample is magnified with individual

histogram bins having up to 40% more events in data. It can be seen that the tuned MC does

agree slightly better with the data than the nominal MC although the beam and hadron pro-

duction reweighting does not have a large effect on these predominantly lower neutrino energy

events.

Figures 62 and 63 show that the QEL-like sample is not well modelled by the MC and that

the MC reweighting process, that tries to improve the agreement between data and MC using

parameters that change the incident neutrino flux, has little effect. The large data excess could

be addressed in terms of an increase in the QEL cross section in the MC which would in turn

correspond to an increase in the axial-vector mass, MQEL
A .
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Figure 62: Reconstructed QEL-assumed neutrino energy for QEL-like events in data, nominal MC and

tuned MC (left-hand figure) and ratios of data over MC (right-hand figure).
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Figure 63: Reconstructed QEL-assumed squared four-momentum transfer for QEL-like events in data,

nominal MC and tuned MC (left-hand figure) and ratios of data over MC (right-hand figure).
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6.3 Near Detector Kinematic Resolutions

In this section the MC will be used to quantify the ND resolutions for a numbers of kinematic

variables that are of importance to the MQEL
A extraction to be presented in the coming chapters.

This information is used to determine the choice of distribution binnings to be used in the M QEL
A

fits but also allows the reader to further judge the quality of the data taken in the Near Detector

beyond the data/MC comparisons shown previously.

6.3.1 Resolution Fitting Method

The resolution analysis proceeds by considering distributions of reconstructed minus truth (R−
T ) variables in a number of slices of a certain truth variable. In each of these slices the R−T

distribution is fitted with a log-normal distribution which may be written as:

f (x,µ,σ, t,N) = Nexp

{

−1
2

[

log
(

1+ t

(

x−µ
σ

)

sinh(tK)

tK

)]2
+

t2

2

}

(83)

where K =
√

log(4), x is the variable in question, µ is the mean, σ is the width, t is a tail

parameter and N a normalisation factor. This functional form describes a Gaussian distribution

with a one-sided tail. In the limit that t '0 the fitted function is given by:

f (x,µ,σ) ∝ Nexp

[

−1
2

(

x−µ
σ

)2
]

(84)

Figure 64 shows an example of the fitted R−T Q2 distributions for true νµ-CC events in the

CC-like sample in a number of slices of true Q2. In the resolution fitting analysis only the

true νµ-CC (or true νµ-CC QEL) events that are selected as CC-like are considered in order to

remove contaminations, such as NC events, that will bias the extracted resolutions.

The log-normal form provides a better estimate of the mean and width than can be obtained

either directly from the distributions (or via a standard Gaussian fit) by neglecting the con-

tributions of the tails of the R− T distributions. The Gaussian means from the log-normal

fits correspond to the pull on the resolution and provide an estimate for the accuracy of the

reconstruction. The Gaussian widths provide an estimate of the resolution (precision of the
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Figure 64: Distributions of R−T Q2 for true νµ-CC events in the CC-like sample in four slices of true

Q2. The red lines show the fitted log-normal distributions and the parameter p0 corresponds to the

overall normalisation, p1 to the Gaussian mean, p2 to the Gaussian width and p3 to the tail parameter.

reconstruction) for the variable in question. The Gaussian widths fitted in each slice can then

be plotted as a function of the truth variable in question and this distribution fitted to provide a

functional form to describe the detector resolution.

6.3.2 Results for ND Kinematic Resolutions

Using the methodology described above, this section will present the ND resolutions for the

muon energy, the muon angle (with respect to the incident neutrino direction) and the resulting

squared four-momentum transfer for true νµ-CC and true νµ-CC QEL events that are selected

as being CC-like. The resolution analysis uses the same MC sample and selection criteria as

were described previously in this chapter.

The muon energy resolution is broken down into two classes; the resolution for muons that stop

in the detector and whose momentum is measured using range and the resolution for muons that

exit the detector and whose momentum is measured by curvature in the magnetic field. In the

MQEL
A extraction from ND data, to be presented in the coming chapters, only events with muons
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that stop in the detector are considered and so this section will just present the resolution for

the muon energy as measured by range. Figure 65 shows the fitted Gaussian means and widths

(from the log-normal fits to the R−T muon energy distributions in slices of true muon energy)

as a function of true muon energy for true νµ-CC events in the CC-like sample and for true

νµ-CC QEL events in the CC-like sample.

Figure 65 shows that above 1 GeV the fractional resolution for the reconstruction of the muon

energy, as measured by range in the detector, is almost flat as a function of the true muon energy

for both true CC and true QEL events. The fractional resolution is ∼5-8% with fractional

biases in the reconstructed value of less than 2% below 8 GeV. Above 8 GeV there are almost

no events containing stopping muons and the drop-off to larger negative biases that can be

observed in the fractional pull distributions from figure 65 is likely due to muon tracks being

incorrectly assigned as stopping in the detector leading to an under-estimate of their energy.

Below 1 GeV the muon energy resolution increases and this is because very low energy tracks

contain few hits and are more susceptible to mis-assignment of hadronic shower hits to the

track or track hits to the hadronic shower. It can be seen that this effect is reduced for the true

QEL events (and also that the resolution for low energy muons in general is improved for the

QEL events) because of the small size of the hadronic shower compared to the RES and DIS

events. It should also be noted that for true QEL events the energy of the hadronic shower is

small and so the resolution for the neutrino energy for true QEL events is essentially the same

as the resolution for the muon energy as given by figure 65.

Figure 66 shows the resolution and pull on the resolution for the muon scattering angle with

respect to the incident neutrino direction, θµ, for true νµ-CC and true νµ-CC QEL events, that

are selected as being CC-like, as a function of the true scattering angle. In both cases the

absolute resolution for the angle increases almost linearly as a function of the true angle as

might be expected given that lower angles correspond to higher energy muons, which leave

longer and straighter tracks in the detector, for which the angle is better constrained. The

fractional resolution for the angle is better for the true QEL events than for the true CC events

because the smaller hadronic showers reduce the possibilty of mis-reconstruction of the track

vertex and the first hits on the muon track. Figure 66 also shows that the fractional pull on the
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Figure 65: The left-hand figures correspond to true νµ-CC events in the CC-like sample whilst the right-

hand figures correspond to true νµ-CC QEL events in the CC-like sample. The top figures show the

Gaussian widths from the log-normal fits to the R−T distributions as black circles along with the RMS

values of the R−T histograms as red triangles. The black curves correspond to a fitted parameterisation

of the detector resolution and all points are plotted at the mean value of the true muon energy in a given

slice rather than at the centre of that slice to make the parameterisations more accurate. The second

row of figures show the fractional fitted Gaussian widths and R−T histogram RMS values whilst the

bottom row of figures show the fractional fitted Gaussian means and R− T histogram means. In all

cases the differences between the black circles and red triangles correspond to the influence of the tails

of the R−T distributions.
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Figure 66: The left-hand figures correspond to true νµ-CC events in the CC-like sample whilst the right-

hand figures correspond to true νµ-CC QEL events in the CC-like sample. The top figures show the

Gaussian widths from the log-normal fits to the R−T distributions as black circles along with the RMS

values of the R−T histograms as red triangles. The black curves correspond to a fitted parameterisation

of the detector resolution and all points are plotted at the mean value of the true muon scattering angle

in a given slice rather than at the centre of that slice to make the parameterisations more accurate. The

second row of figures show the fractional fitted Gaussian widths and R−T histogram RMS values whilst

the bottom row of figures show the fractional fitted Gaussian means and R−T histogram means. In all

cases the differences between the black circles and red triangles correspond to the influence of the tails

of the R−T distributions.
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resolution is at most 4% for the true CC events and at most 2% for the true QEL events and that

these fractional pulls are everywhere smaller than the fractional resolutions for the scattering

angle.

The squared four-momentum transfer is reconstructed using the above variables and figure 67

shows the resolution for Q2 for the true νµ-CC events in the CC-like sample and for Q2
QEL for the

true νµ-CC QEL events in the CC-like sample with both sets of figures only considering events

where the muon stopped in the detector. In both cases the resolution rises almost linearly with

the true Q2 whilst the fractional resolution improves as the true Q2 increases. The Q2/Q2
QEL

fractional resolution is a convolution of the fractional resolution for the muon energy and the

fractional resolution for the muon scattering angle and it can be seen that it takes the expected

shape given the dependance of Q2 on the muon energy and angle (the most probable value

for Q2 is reasonably flat as a function of the muon energy whereas lower Q2 events tend to

correspond to muons with lower scattering angles). The resolution for Q2 for the true QEL

events is better than that for the true CC events and this effect can again be attributed to the

‘cleaner’ hadronic environment. The modulus of the fractional bias on the reconstructed Q2 is

at most ∼15% for both sets of events and is everywhere smaller than the fractional resolution.
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Figure 67: The left-hand figures correspond to true νµ-CC events in the CC-like sample whilst the right-

hand figures correspond to true νµ-CC QEL events in the CC-like sample and both sets of figures only

use events containing muons that stopped in the detector. The top figures show the Gaussian widths from

the log-normal fits to the R−T distributions as black circles along with the RMS values of the R−T

histograms as red triangles. The black curves correspond to a fitted parameterisation of the detector

resolution and all points are plotted at the mean value of the true squared four-momentum transfer in

a given slice rather than at the centre of that slice to make the parameterisations more accurate. The

second row of figures show the fractional fitted Gaussian widths and R−T histogram RMS values whilst

the bottom row of figures show the fractional fitted Gaussian means and R−T histogram means. In all

cases the differences between the black circles and red triangles correspond to the influence of the tails

of the R−T distributions.
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7 MQEL
A Fit Procedure

This chapter will introduce the fit method that will be used to extract MQEL
A from MINOS

ND data. The first section will present an overview of the fit with the following two sections

discussing the fit parameters and configurations in more detail. Next some fit convergence

issues will be highlighted and a method, based on the smearing of MC event variables, to

alleviate these problems will be introduced. The subsequent section will show an example fit to

a mock data sample before the final section presents a number of studies aimed at establishing

the robustness and accuracy of the fitting method.

7.1 Overview of the Fit

The MC QEL-like sample reconstructed Q2
QEL and EQEL

ν distributions (where these variables

are defined by equations 52 and 51) are fit to the data in an iterative procedure in which the

underlying parameters, in particular MQEL
A (via a scale factor applied to it’s nominal NEUGEN

value of 0.99 GeV), are varied and event weights re-calculated. This procedure uses the MC

directly to account for acceptance effects.

Two different fitting techniques have been developed. The first fits the data using only the Q2
QEL

distribution, in a method similar to that used by previous experiments such as those mentioned

in chapter 3, and the second fits the data using both the Q2
QEL and EQEL

ν distributions, a method

which allows for a more natural inclusion of neutrino flux information. The fit can be config-

ured to use any combination of shape and/or normalisation information for these distributions

and further details on the fit configuration will be presented in a later section. Figure 68 shows

the effect of up to ±20% changes to the value of MQEL
A on the QEL-like sample Q2

QEL and

EQEL
ν distributions and illustrates the shape and normalisation features that the fit will use to

constrain MQEL
A .

The fit is performed using the MINUIT package to minimise one of the following functions:

−2L =
nBins

∑
i=1

2
[

ei(α1, . . . ,αN)−oi +oi log
(

oi

ei(α1, . . . ,αN)

)]

+
N

∑
j=2

∆α2
j

σ2
α j

(85)
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Figure 68: Effect of up to ±20% changes to the value of MQEL
A upon the Q2

QEL and EQEL
ν distributions

of QEL-like events in MC. The left-hand plots show Q2
QEL and illustrate that there is both a change in

shape and normalisation when MQEL
A is varied. The positive and negative changes are not symmetric

due to the presence of non-νµ-CC QEL events in the QEL-like sample; such events are not reweighted

when MQEL
A is varied. The right-hand plots show EQEL

ν and as expected, given that the QEL cross

section is flat down to neutrino energies of ∼1 GeV (see figure 13), the effect of changing the value of

MQEL
A is largely a change in the normalisation of the distribution.

χ2 =
nBins

∑
i=1

(oi − ei(α1, . . . ,αN))2

oi
+

N

∑
j=2

∆α2
j

σ2
α j

(86)

χ2
MCstats =

nBins

∑
i=1

(oi − ei(α1, . . . ,αN))2

oi +Sei(α1, . . . ,αN)
+

N

∑
j=2

∆α2
j

σ2
α j

(87)
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where oi is the observed number of events in data for bin i, ei(α1, . . . ,αN) is the expected

number of events in MC for bin i given the fit parameters, α j is the jth fit parameter, S is the

scale factor applied to normalize the MC histogram and the penalty term is computed with

∆α j, the shift from nominal for the jth systematic parameter, and σα j , the assumed 1σ error

on the jth systematic parameter. The first fit parameter α1 ≡ MQEL
A and this is treated as a

free parameter in the fit and does not influence the penalty term. Note that the sum over bins

could refer to just the bins of the Q2
QEL distribution or both the bins of the Q2

QEL and EQEL
ν

distributions depending upon the fit configuration.

The −2L function is appropriate for cases where the sample has few events because it assumes

an underlying Poisson nature for the bin contents and was used when only small samples of

data were available. The χ2 and χ2
MCstats functions both assume a Gaussian nature for the bin

contents and in the limit of infinite statistics χ2 should give the same result as −2L (in practice

if there are more than ∼100 events per bin the two functions will give almost identical results).

The χ2
MCstats function is an attempt to include the statistical uncertainties in the MC directly

although this is not a trivial addition and in the future a more sophisticated treatment, such as

that presented in [79], could be adopted.

7.2 Fit Parameters

In addition to considering MQEL
A as a free parameter the fit also includes a number of systematic

parameters that contribute both to the portion of χ2 coming from bin contents of the fitted

distribution(s) and also to the penalty term. The following four sources are considered to be

the dominant systematic uncertainties on the extraction of MQEL
A from MINOS ND data and

are directly included in the fit:

• Muon energy scale: the muon energy enters directly into the computation of Q2
QEL

for a given event and changes to this parameter will move events to lower or higher

Q2
QEL values. For the QEL-like events the muon energy dominates the reconstruction of

the neutrino energy and so changes to this parameter will also move events to lower or

higher EQEL
ν values. An assumed 1σ error of 2% is used in the penalty term for the muon
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energy scale parameter as justified in [11]. Figure 69 shows the effect of ±2% changes

to the muon energy scale.
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Figure 69: Effect of ±2% changes to the muon energy scale on the Q2
QEL (left-hand plots) and EQEL

ν

(right-hand plots) distributions for QEL-like events in MC. The muon energy scale parameter does not

change the weight given to a particular MC event but rather distorts the shapes of the two distributions.

Recently the ND magnetic field has been re-calibrated and results showed that it in-

creased by 12.3% (averaged over the detector). This change shifts the muon momentum

scale for muons that exit the detector (with momentum measured by curvature) by ∼6%

[11] but has a minimal effect upon the momentum measurement for muons that stop in

the detector for which the path-length corrected range and detector material stopping-

power are used to reconstruct the momentum. As a result only muons that stop in the

ND are used when fitting the data for MQEL
A (the previously shown data and MC com-

parisons and the mock data fit studies use both stopping and exiting muons). This does

not result in a large loss of statistics as most of the QEL-like events correspond to lower

energy muons that stop in the detector.
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The assumed error for the muon energy scale could be reduced in the future because

the figure of 2% was calculated using all νµ-CC interactions whereas this analysis only

considers stopping muon events with small amounts of hadronic activity and for these

events the uncertainty in the energy scale could be smaller. In particular, recent work

[80] has shown that for low energy muons interacting in CalDet the data and MC agree

to better than 2%. Figure 70 shows that for 2 GeV muons interacting in CalDet the

positions of the peaks of the track length distributions, which are used to reconstruct the

energy of these stopping muons, in data and MC agree to 1%.
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Figure 70: Comparisons of the track length of 2 GeV muons for data and MC events in CalDet. Fits to

the peaks of these distributions show that the means agree to 1%. Figure taken from [80].

• Hadronic energy offset: the hadronic energy does not enter the reconstruction of Q2
QEL

or EQEL
ν directly but changes these distributions by causing a different number of events

to pass the hadronic energy cut that defines the QEL-like sample (as described in chapter

6). Figure 71 shows the average Q2 and Eν values for CC-like events as a function of

the reconstructed shower energy. In the region of the QEL-like sample hadronic energy

cut, at 250 MeV, there is a slope to these profiles and so changes to the hadronic energy

offset will not just be reflected as a flat change in normalisation for the fitted Q2
QEL and

EQEL
ν distributions but also will alter their shapes by a small amount.

This systematic parameter does encompass uncertainties in the detector modelling, cal-
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Figure 71: Mean Q2 (left-hand plot) and Eν (right-hand plot) values in slices of reconstructed shower

energy for CC-like events in data and nominal MC. Around the region of the QEL-like sample hadronic

energy cut at 250 MeV the distributions all exhibit slopes indicating that changes to the hadronic energy

will induce small shape changes in the fitted Q2
QEL and EQEL

ν distributions.

ibration and reconstruction of hadronic showers but was chosen to be an offset rather

than a scale factor that might be usually associated with such sources of uncertainty. The

choice of an offset versus a scale is somewhat arbitrary but the offset was chosen because

the dominant uncertainty for these low hadronic energy events comes from the potential

mis-modelling of FSIs such as the probability that a proton in a QEL event, or a pion

from a RES event, makes it out of the nucleus to deposit energy in the detector. Changes

to the INTRANUKE model result in discrete changes in the reconstructed hadronic en-

ergy on an event-by-event basis (rather than a simple scaling law that depends upon the

energy of the hadronic system) and studies of the effect of variations in INTRANUKE

parameters support an assumed 1σ error for the hadronic energy offset parameter of 35

MeV. Figure 72 shows the effect of ±35 MeV changes to the hadronic energy.

• Inelastic background scale: the inelastic background scale parameter is applied to all

non-νµ-CC QEL events in the QEL-like sample, the major component of which comes

from νµ-CC RES events (which are kinematically similar to the signal). There is also

a small but non-negligable contribution from DIS events. Previous MINOS analyses

have used an uncertainty of 10% for resonant axial-vector mass [11] (M1π
A relates to the

cross section for resonance production in a similar way to the relation between M QEL
A

and the cross section for QEL scattering) and a 3% uncertainty for the normalisation of
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Figure 72: Effect of ±35 MeV changes to the hadronic energy offset on the Q2
QEL (left-hand plots)

and EQEL
ν (right-hand plots) distributions for QEL-like events in MC. These changes cause more or

less CC-like events to be classified as QEL-like and so predominantly effect the normalisation of the

distributions.

the deep-inelastic scattering cross section at high invariant masses (W > 1.7 GeV). The

DIS component of the QEL-like sample is small and located at lower invariant masses

and so an assumed 1σ uncertainty of 10% is assigned to the background scale parameter.

Figure 73 shows the effect of ±10% changes to the background scale.

This systematic parameter is fairly basic in that no attempts have yet been made to pre-

serve the inclusive νµ-CC cross section at high energies (where it is well constrained ex-

perimentally) and also because it incorporates all the background interaction modes into

a single parameter. In the future the background scale could be replaced by a number

of systematic parameters that effect both the shape and normalisation of the background

contributions to the QEL-like sample. Such parameters could include M1π
A , to alter the

cross section for resonant inelastic processes, and changes to the parameters governing
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Figure 73: Effect of ±10% changes to the background scale on the Q2
QEL (left-hand plots) and EQEL

ν

(right-hand plots) distributions for QEL-like events in MC. These changes weight the non-νµ-CC QEL

events, which are distributed similarly to the signal in Q2
QEL and EQEL

ν , and so mostly induce changes

to the normalisation of the distributions. Note that this parameter does not change the shapes of the

background distributions in Q2
QEL and EQEL

ν .

the KNO scaling model (as mentioned in chapter 5), to alter the non-resonant inelastic

scattering events.

• Incident neutrino flux: the last systematic uncertainty that can be included in the fit

corresponds to uncertainties in both the shape and normalisation of the incident neutrino

flux. This uncertainty is accomodated by a number of ‘flux factors’ which act as scale

factors for slices of the true neutrino energy distribution. Currently seven slices are

considered, defined as 0-2, 2-3, 3-4, 4-6, 6-10, 10-20 and 20-40 GeV with each flux

factor acting as a weight for events whose true neutrino energies lie in that particular

slice. Studies of the beam and hadron production parameter reweighting procedure show

that a reasonable estimate for the 1σ errors on the flux factors is 8% for E true
ν ≤ 6 GeV
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and 15% for E true
ν > 6 GeV. Figure 74 shows the effect of ±8% changes to the true

neutrino flux between 3 and 4 GeV.
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Figure 74: Effect of ±8% changes to the neutrino flux for events with E true
ν ∈ [3.0,4.0) GeV on the

Q2
QEL (left-hand plots) and EQEL

ν (right-hand plots) distributions for QEL-like events in MC. Changes

to the neutrino flux have little effect on the shape of the Q2
QEL distribution except at the lowest neutrino

energies. Changes to the flux have a large effect on the EQEL
ν distribution and, because the flux factors

are based upon the true neutrino energy, this scaling is smeared over a number of bins.

These flux factors simply weight large ‘chunks’ of the neutrino energy spectrum and in

the future a more sophisticated method could be introduced to smooth the weights that

get applied to events from adjacent flux factor slices. A further advancement that could

be considered would be to combine the beam and hadron production fitting procedure

(as described in chapter 6) with the MQEL
A fitting procedure.

One problem with the use of the flux factors is that the slice-to-slice variations in the

scale values should not be allowed to differ by large amounts as this would introduce

132



unreasonable discontinuities and warping into the true neutrino energy spectrum. The fit

has been designed to calculate a penalty term for the flux factors that differs from that

presented in equations 85-87 and uses a full covariance matrix equation according to:

∆αTV−1∆α = (∆αk, . . . ,∆αN)











ραkαk σαk
2 . . .

ραk+1αk σαk+1σαk

. . .
...











−1









∆αk

...

∆αN











(88)

where V−1 is the inverse of the covariance matrix, ∆α are the deviations of the (N − k)

flux factors from their nominal values, σαi is the assumed 1σ error for the ith flux factor

and ραiα j is the correlation coefficient between the ith and jth flux factors. The diagonal

terms (i = j) penalise each flux factor depending on it’s deviation from the nominal

value (as with the previous penalty term forms) whereas the off-diagonal ραiα j terms

ensure that there are no large deviations between adjacent flux factors and hence no

discontinuous and unphysical ’jumps’ introduced to the true neutrino energy spectrum.

Unfortunately there is currently no obvious way to decide what the correlations between

the various true neutrino energy bins (which result from the a priori errors on the flux

prediction) should be and so a 7×7 matrix of correlation coefficients is put in by hand

and is given by:

ρρρ =



































1.0 0.5 0.0 0.0 0.0 0.0 0.0

0.5 1.0 0.5 0.0 0.0 0.0 0.0

0.0 0.5 1.0 0.5 0.0 0.0 0.0

0.0 0.0 0.5 1.0 0.5 0.0 0.0

0.0 0.0 0.0 0.5 1.0 0.5 0.0

0.0 0.0 0.0 0.0 0.5 1.0 0.5

0.0 0.0 0.0 0.0 0.0 0.5 1.0



































(89)

This matrix of correlation coefficients is based on intuition and is designed to only pe-

nalise deviations in adjacent flux factors with the remaining correlations set to zero. A
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number of alternate matrices were considered although the constraint that the matrix be

invertible (as given by equation 88) means that it can be difficult to chose appropriate

values for all of the 42 off-diagonal correlations. Similar forms to that shown in equation

89 where considered but with the adjacent correlations set to 0.25 and 0.75 and almost

identical results were returned by example fits using each of these choices. It seems that

the fits are not very sensitive to the actual value of the adjacent flux factor correlations

used but the fits must include some way to penalise unphysical warpings of the true neu-

trino energy spectrum and so the matrix given above was used to construct the penalty

term for fits involving the flux factors. Most of the mock data studies, to be presented in

the subsequent sections, are based on shape-only fits to just the Q2
QEL distribution and do

not include the flux factors because, in this case, the weak dependance of Q2
QEL on EQEL

ν

means that this fit configuration is not very sensitive to the incident neutrino flux.

The following section will discuss in more detail the various possible fit configurations and their

advantages and disadvantages with respect to the systematic parameters mentioned above.

7.3 Fit Configurations

The fit is highly configurable and the following list discusses a number of the more important

options:

• Fit type: the fit can be configured to use any permutation of Q2
QEL and/or EQEL

ν with

each distribution normalised by either area (equal integrated histogram bin contents and

hence a shape-only fit) or POT (absolute normalisation and hence a shape and rate fit).

Many of the earlier measurements of MQEL
A used shape-only fits to the Q2

QEL distribution

because this dramatically reduces the impact of a number of the systematic parameters.

The above section showed that only MQEL
A itself and the muon energy scale parameter

had a significant effect on the shape of the Q2
QEL distribution. Figure 75 shows that the

mean Q2 for QEL-like events is fairly flat as a function of neutrino energy, except at

the lowest energies, and reinforces the statement that the shape of the Q2 distribution is

not very sensitive to the underlying neutrino flux. This fit configuration does have the

least sensitivity in terms of the amount of information it uses but if, for example, the flux
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were a significant systematic uncertainty then a shape-only fit to Q2
QEL could provide the

smallest error on the fitted MQEL
A .

 (GeV) ν Reco E
0 1 2 3 4 5 6 7 8 9

)2
 (

G
eV

2
 M

ea
n 

Q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Data

Nominal MC

QEL-like Events, L010z185i Beam 

 (GeV) ν True E
0 1 2 3 4 5 6 7 8 9

)2
 (

G
eV

2
 T

ru
e 

Q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nominal MC

QEL-like Events, L010z185i Beam 

Figure 75: Mean reconstructed Q2 in slices of reconstructed neutrino energy for QEL-like events con-

taining stopping muons in data and nominal MC (left-hand figure) and mean true Q2 in slices of true

neutrino energy (right-hand figure). The figures show that for large parts of the reconstructed neutrino

energy spectrum the Q2 distribution does not depend strongly of the neutrino energy, in particular in

the peak of the QEL-like sample neutrino energy spectrum from 1.5 to 4 GeV. The difference in shape

between the nominal MC in the left-hand and right-hand figures is a result of the detector resolution for

Q2 and Eν.

The EQEL
ν distribution would not normally be fitted alone, because a large part of the

sensitivity to MQEL
A comes from the shape of the Q2

QEL distribution, but a shape and

normalisation fit to both Q2
QEL and EQEL

ν could be advantageous. In this configuration

all the systematic parameters are important but it allows for a much better way to try

to address the flux uncertainty as well as using the maximum information available.

Another benefit of this combined fit is that systematic uncertainties are better constrained

by the use of two distributions, in particular the muon energy scale parameter is heavily

constrained by the peak of the EQEL
ν distribution.

• Range in QQQ2
QEL: the fit can have any range (and indeed binning) in Q2

QEL and for many

of the mock data studies to be presented in this chapter events with Q2
QEL values down

to zero have been considered. However, the low Q2
QEL regime (< 0.2 GeV2) is the most

affected by the mis-modelling of nuclear effects and so when fitting the ND data this part

of the distribution is likely to cause problems for the fit. The binning of Q2
QEL distribution
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will be driven by the resolution studies presented at the end of the last chapter as well

as by the numbers of events contained in these bins. It is worth noting that only events

with neutrino energies that are reconstructed in a user-defined range will contribute to

the Q2
QEL distributions.

• Range in EEEQEL
ν : the fit can also have any range or binning in E QEL

ν . When only fitting the

Q2
QEL distribution this range can be changed to allow an extraction of MQEL

A in a number

of independant slices of neutrino energy. Nominally, when filling the E QEL
ν distribution,

only events where Q2
QEL is reconstructed inside the range of the Q2

QEL distribution to be

used in the fit will contribute to the neutrino energy distribution. However, a further pos-

sibility in the fit is to set the allowed range in Q2
QEL, for events to contribute to the EQEL

ν

distribution, independantly from the actual range of the fitted Q2
QEL distribution. This

option allows the low Q2
QEL events, where nuclear effect mis-modelling is likely, to be

ignored for the purposes of fitting Q2
QEL but to be included when filling the EQEL

ν distri-

bution. This setup is valid because low Q2
QEL nuclear effects are not expected to represent

a large uncertainty on the reconstruction of the neutrino energy, which is dominated by

the reconstructed muon.

7.4 Fit Convergence Problems

Early tests of the fit revealed that it was highly susceptible to non-convergence in MINUIT

and that this problem was found to be related to a number of effects that introduce fine-scale

discontinuities to the χ2-surface and stem from the fact that the size of the MC sample used is

not infinite:

• Hadronic energy offset parameter: changes to this systematic parameter result in dif-

ferent numbers of events passing the QEL-like sample hadronic energy cut. The finite

size of the MC sample means that very small changes to this parameter between different

iterations of a fit will result in a discontinous number of events being present in the fitted

distributions. For example a shift of +x MeV may result in y fewer events being present

in the QEL-like sample but a shift of +2x MeV may not necessarily result in 2y fewer

events.
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• Muon energy scale parameter: changes to the muon energy will move events between

bins in both the Q2
QEL and EQEL

ν distributions and again very small changes to the pa-

rameter will induce discontinous numbers of events in certain bins and hence introduce

discontinuities into the fit χ2 surface.

• Ranges of fitted distributions: another discontinuity can be introduced at the bound-

aries of the distributions where events could be shifted either into or out of the fitted

range as a result of changes to the systematic parameters. This effect can be reduced by

ensuring that the boundaries occur at the tails of the distributions where there are fewer

events. This problem is most noticable when fitting in a number of slices of neutrino

energy because slices with boundaries in the peak of the energy spectrum are likely to

experience large numbers of events moving into or out of the fitted range.

Figure 76 shows an example of a discontinuous χ2 surface from a fit. These problems not only

cause MINUIT to find a number of local minima and fail to converge but also invalidate the

errors it calculates for the fitted parameters and the correlations between them. A method has

been developed to artifically smooth the χ2 surface by applying a smearing to some of the kine-

matic quantities of individual MC events and this method allows the numerical minimisation

to converge.
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Figure 76: Example of a discontinuous χ2 surface. The figure shows a projection of ∆χ2 as a function

of the muon energy scale parameter value.
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7.4.1 Convergence with MC Smearing

The smearing procedure is applied to individual events in the MC and replaces the discrete

value of a certain kinematic variable for each event with a Gaussian distribution centred at

that value and with a certain width. As such each MC event will then have a contribution to

a number of bins in that kinematic distribution, although in practice the smearing widths are

so small that only events near to bin edges or cut boundaries are smeared into multiple bins.

A schematic of the smearing procedure is shown in figure 77. It should also be noted that the

Gaussian widths are chosen such that the resulting distortions in the kinematic distributions are

negligible. Smearing is applied to both of the possible fitted variables; the reconstructed Q2
QEL

and EQEL
ν as well as to the reconstructed hadronic shower energy.
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Figure 77: Schematic of MC smearing procedure. The left-hand figure shows a MC event with a weight

of 1 at value 1 that is replaced with a Gaussian of width σ and area equal to the weight. In the middle

figure 2 MC events are shown, with weights of 1 and 0.8, and each event is replaced by a Gaussian of

width σ and area equal to the event weight. The right-hand figure illustrates how the kinematic variable

distribution is built from the individual MC event Gaussians.

• QQQ2
QEL smearing: both Gaussian widths that evolve according to the detector resolution

(as defined in the previous chapter) and constant Gaussian widths of between 1 and

50 MeV 2 have been considered. The area under the Gaussian for each MC event is

constructed to be equal to the weight for that event which is a combination of the beam

and hadron production tuning weights (if they are chosen to be applied) and the weights

coming from the fit parameter values. If the Gaussian distribution for an event has a

contribution that has been smeared into the un-physical negative Q2
QEL region then this
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contribution is added back to the positive Q2
QEL part of the Gaussian distribution in such

a way as to preserve both the event weight and the Gaussian width. The result is that

events near bin edges and distribution boundaries in Q2
QEL after smearing contribute to

multiple bins and in this way differences between bin and sample contents, coming from

the slightly different fit parameter values used in different iterations of the fit, can be

smeared out to yield a smooth and continuous χ2-surface.

• EEEQEL
ν smearing: this smearing is designed to smooth the χ2 surface in the same way as

the Q2
QEL smearing and proceeds in the same manner. Again both Gaussian widths that

evolve according to the detector resolution and constant Gaussian widths (of between 1

and 100 MeV) have been considered.

• EEEhad smearing: the MC event Gaussian in hadronic energy is constructed with an area

equal to unity and then the fraction of the event that passes the QEL-like sample hadronic

energy cut is propagated as an event weight through the rest of the analysis chain. Con-

stant Gaussian widths of between 1 and 50 MeV have been considered. This smearing

process ensures that the number of events that pass into the QEL-like sample changes

in a continuous way under very small changes to the hadronic energy offset systematic

parameter and results in a smooth and continuous χ2-surface.

The criteria for choosing the values of the widths of the Gaussian distributions for the three

variables to be smeared were that they should allow for fit convergence with a smooth χ2-

surface whilst preserving the underlying shapes of the distributions. This second criterion

ensures that the smearing process does not warp the fitted Q2
QEL and EQEL

ν distributions as such

a warping would bias the fitted MQEL
A value.

It was found that these criteria were satisfied by Gaussian smearing widths of 5 MeV2 in

Q2
QEL, 10 MeV in EQEL

ν and 2.5 MeV in Ehad . These widths were the smallest values that

resulted in all the test fits converging and figure 78 shows an example of the smooth one-

dimensional projections of the ∆χ2-surface along the muon energy scale and hadronic energy

offset systematic parameters for one of these test fits. Figure 79 shows the ratios of the smeared
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MC to the unsmeared MC and illustrates that the smearing process has a neglibible sub-1%

effect on the shapes and normalisation of the fitted distibutions.
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Figure 78: Projections of ∆χ2 for the two main problematic fit parameters after a fit that used the MC

smearing of the three kinematic variables. These projections are now smooth and continuous (compare

to the dis-continuous ∆χ2 surface shown in figure 76) and resulted from a well behaved and converged

fit.
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Figure 79: Ratios of smeared to unsmeared MC. The smearing can be seen to be having less than a

1% effect over the majority of the two possible fit distributions and in particular that their shapes are

entirely consistent.
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7.5 Headline Fit Configurations

This section will detail the two main mock data fit configurations (as briefly mentioned in

section 7.3) and present example results from a fit with each. Firstly there are a number of fit

configuration options that are common to both these mock data headline fits:

• Hadronic energy cut: the nominal hadronic energy cut that defines the QEL-like sample

requires Ehad < 250 MeV. This value can be changed in order to study the robustness of

the fit and to consider QEL-like samples with higher efficiency (larger cut value) or purity

(lower cut value).

• Minimised function: the nominal function to be minimised in the fits is χ2
MCStats as

defined by equation 87.

• MC samples: for these mock data fits two independant sub-samples of MC are used and

they correspond to exposures of 2.26e19 POT for the MC and 2.27e19 POT for the mock

data. These are substantially lower exposures than will be used for the fit to the data but

do allow the fit to converge faster.

• MINUIT routines: the fits nominally use three routines inside MINUIT; SIMPLEX is

called first to get close to the minimum quickly then MIGRAD is called to find the exact

minimum before HESSE is called to provide a better estimate of the errors on the fitted

parameter values and to estimate the correlations between the parameters. These routines

will be discussed further in a following section along with an alternate error calculation

using the MINOS routine.

• Smearing of MC events: in all mock data fits smearing is applied according to Gaussian

widths of 5 MeV2 in Q2
QEL, 10 MeV in EQEL

ν and 2.5 MeV in Ehad .

The headline fit configurations are then further defined in the following sub-sections.

7.5.1 Headline Fit Configuration I

A shape-only fit to the Q2
QEL distribution. In this fit only three systematic parameters are used;

the muon energy and background scales and the hadronic energy offset. The incident neutrino
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flux has only a small effect on the shape of the Q2
QEL distribution and so the flux factor param-

eters are not used. The understanding of the systematic uncertainties was improving while this

work was under way and so the mock data studies that were performed with this fit configu-

ration used smaller assumed 1σ errors than those chosen for the fits to the data; 20 MeV for

the hadronic energy offset parameter (rather than 35 MeV) and 5% for the background scale

(rather than 10%). The assumed 1σ error for the muon energy scale was, however, set to it’s

appropriate value of 2%. Due to the large amount of work required these studies have not been

repeated using larger errors. However, the hadronic energy offset and background scale param-

eters do not have a large effect on the shape of the fitted distribution and so these smaller error

values are not expected to change the conclusions of the mock data studies of the fit robustness

and accuracy.

The Q2
QEL distribution is constructed using bins of width 0.1 GeV2 from 0.0 → 1.0 GeV2 and

a large overflow bin from 1.0 → 10.0 GeV2. There are very few events with reconstructed

Q2
QEL above ∼2 GeV2 however this overflow bin helps to mitigate against the discontinuities

in the χ2-surface that can result from events migrating into and out of the fitted distributions.

Events with neutrino energies from 0.0 → 40.0 GeV are used although the vast majority of

events in the QEL-like sample have neutrino energies below 20 GeV (the cross section for

QEL scattering peaks at ∼1 GeV and decreases as the incident neutrino energy rises).

7.5.2 Headline Fit Configuration II

A shape and normalisation fit to both the Q2
QEL and EQEL

ν distributions. In this fit a total of

eleven parameters are included; the MQEL
A -scale, the three systematic parameters used in fit

I and the seven flux factors which are utilised because the inclusion of the neutrino energy

distribution in the fit provides some sensitivity to the incident neutrino flux. For the mock

data studies performed with this fit configuration the penalty term for the flux factors only

considered the diagonal elements of the covariance matrix equation and so large deviations

in adjacent flux factors are not penalised. For this fit the appropriate assumed 1σ errors (as

described in the text) are used for all fit parameters.

The Q2
QEL distribution is binned in the same way as described for fit I and the E QEL

ν distribution
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Fit Parameter Assumed 1σ Mock Data Best Fit
Error Value Value

MA-scale Free 0.854 0.851 ± 0.037
Eµ-scale 0.02 0.988 0.986 ± 0.003

Ehad-offset (GeV) 0.02 0.010 0.022 ± 0.009
BG-scale 0.05 1.013 0.993 ± 0.042

Table 8: Summary of results for example fit I to mock data. The best fit values and symmetric errors

are those returned by the HESSE routine. The best fit parameter values agree well with the randomly

chosen input mock data parameter values.

has an asymmetric binning scheme that uses finer bins in the peak of the distribution and is

best illustrated (see figure 82) rather than described in words. The following example results

will show the distribution binnings used for these two headline fit configurations as well as

demonstrating the correlations that exist between different fit parameters.

7.5.3 Example Results for Fit I

For the purposes of studying the fit performance the mock data sample is adjusted with a certain

set of initial fit parameter values which, in the ideal case, would then be ‘fitted-out’ using the

MC. Figure 80 shows the Q2
QEL distribution for an example fit to the mock data and illustrates

the choice of analysis binning in Q2
QEL. Table 8 shows a summary of the results of this fit

and includes the best fit parameter values, the errors returned by the HESSE routine and the

mock data input parameter values. The fit does a good job of extracting the input mock data

parameters and results in an improvement in χ2 from 114.13 to 22.26 for ten degree of freedom.

This number of degrees of freedom comes from the eleven bins of the fitted distribution minus

the single free parameter; the MQEL
A -scale. Each of the systematic parameters consitute both a

degree of freedom and also a measurement point (the assumed nominal value of the parameter)

and so have zero net contribution to the total number of degrees of freedom in the fit.

Figure 81 shows two-dimensional contour plots for the MQEL
A -scale parameter versus each of

the three systematic parameters. The best way to construct such two-dimensional contour plots

for an N parameter fit would be to minimize over the remaining N − 2 parameters at each

point on the contour. However, this procedure requires a large amount of time (with a contour
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Figure 80: Example results for mock data fit I. The top right figure shows the fitted Q2
QEL distributions

whilst the top left figure shows a zoom of the region from 0.0 → 1.0 GeV2. The black histograms show

the mock data, the blue histograms show the nominal MC, the pink histograms show the unsmeared

nominal MC (which is almost identical to the smeared MC) and the red histograms show the best fit

MC. The bottom plot shows the ratios of the mock data to each MC sample.

needing a minimum of about twenty points) and so these contours are not minimized at each

point with respect to the parameters not shown on the axes but rather have been approximated

using an elliptical equation given by:

−2L (α,β) = −2L (α,β)min −N (90)

⇒ 1
1−ρ2

αβ





(

α− α̂
σα̂

)2
+

(

β− β̂
σβ̂

)2

−2ραβ

(

α− α̂
σα̂

)

(

β− β̂
σβ̂

)



= N (91)

where α and β are the two fit parameters for which the contour is to be drawn, ραβ is the

144



correlation coefficient between the two parameters as returned by HESSE, α̂, β̂, σα̂, σβ̂ are the

best fit parameter values and errors as returned by HESSE and N ∈ (2.30,6.18,11.83) for the

68.27%, 95.45% and 99.73% level contours respectively.
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Figure 81: Fit contours for the MQEL
A -scale parameter versus each of the systematic parameters. The

black points show the best fit values, the pink points show the initial mock data parameter values and

the black, red and blue ellipses show the 1σ, 2σ and 3σ contours respectively.

The fit parameter correlations returned by HESSE should not be considered to be accurate

to more than 10-20% (this statement will be qualified in the next section) but figure 81 does

illustrate the general trends in the correlations with the eccentricity of each ellipse relating to

the size of the correlation and the orientation of each ellipse indicating whether the correlation

is positive or negative.

As expected for fit I the hadronic energy offset and background scale parameters are not highly
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Fit Parameter Assumed 1σ Mock Data Best Fit
Error Value Value

MA-scale Free 0.948 0.960 ± 0.040
Eµ-scale 0.02 0.998 0.996 ± 0.003

Ehad-offset (GeV) 0.035 -0.025 -0.028 ± 0.009
BG-scale 0.10 0.992 0.968 ± 0.057

0-2 GeV Flux Scale 0.08 1.008 0.988 ± 0.035
2-3 GeV Flux Scale 0.08 0.997 1.029 ± 0.031
3-4 GeV Flux Scale 0.08 0.984 0.975 ± 0.026
4-6 GeV Flux Scale 0.08 0.963 1.034 ± 0.031

6-10 GeV Flux Scale 0.15 1.000 0.994 ± 0.046
10-20 GeV Flux Scale 0.15 1.081 1.085 ± 0.045
20-40 GeV Flux Scale 0.15 0.924 1.036 ± 0.065

Table 9: Summary of results for example fit II to mock data. The best fit values and symmetric errors

are those returned by the HESSE routine. The best fit parameter values agree well with the randomly

chosen input mock data parameter values. The higher neutrino energy flux factors have larger errors

both because the assumed 1σ errors on these parameters are larger than for the lower energy flux factors

but also because there are relatively few QEL-like events above ∼10 GeV.

correlated with the MQEL
A -scale since they do not have large effects on the shape of the Q2

QEL

distribution. The muon energy scale is highly anti-correlated with the MQEL
A scale because they

have opposing effects on the Q2
QEL distribution shape (see figures 68 and 69).

7.5.4 Example Results for Fit II

For this example, as before, the mock data has had randomly selected input fit parameter values

applied and figure 82 shows the mock data, nominal MC and best fit MC Q2
QEL and EQEL

ν

distributions. Table 9 summarises the results for this fit and shows a good agreement between

the input mock data fit parameter values and the resulting best fit point. In this fit the χ2 was

reduced from 112.90 to 17.77 for 23 degrees of freedom. This number of degrees of freedom

is constructed from the eleven bins of the Q2
QEL distribution plus the thirteen bins of the E QEL

ν

distribution minus the single free parameter; the MA
QEL-scale. As before, the net contribution

from the systematic parameters to the number of degrees of freedom in the fit is zero.
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Figure 82: Example results for mock data fit II. The left-hand plots show the Q2
QEL distributions and

the ratios of the mock data to the various MC samples and are all zoomed such that the overflow bin

from 1.0 → 10.0 GeV2 is not visible. The right-hand plots show the neutrino energy distributions and

illustrate the choice of binning used in the fits. The peak region uses the smallest bin widths, the widths

increase as the numbers of QEL-like events in a given bin decreases and in no region do the widths

become smaller than the expected resolution for the neutrino energy. The bins were also chosen such

that they do not completely overlap with the definition of the flux factors.

It can be seen from tables 8 and 9 that the HESSE errors for the parameters are similar between

fits I and II which is contrary to the expectation that the errors should be smaller for fit II

(since it uses extra EQEL
ν and normalisation information). However, the larger number of fit

paramaters used in fit II will introduce many more correlations into the fit with the result that

the fit sensitivity to the parameters will be degraded. The similarity in the parameter errors

for these two headline fit configurations suggests that, assuming the quoted exposures of POT,

they can both achieve similar sensitivities for MQEL
A and provides additional justification for the

continued use of both.
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Figure 83 shows two-dimensional contour plots for the MQEL
A -scale parameter versus each of

the three systematic parameters used in fit I and again uses the elliptical approximation as

defined by equation 91. For fit II there is still a fairly strong anti-correlation between the M QEL
A -

scale and Eµ-scale parameters but there are now also stronger correlations between the other

parameters, in particular the MQEL
A -scale and the Ehad-offset. This strong positive correlation

can be understood as the effect of normalisation in the fit; increases to MQEL
A will give larger

weights to the events in the QEL-like sample whereas increases in the hadronic energy will

move events out of the QEL-like sample. With eleven fit parameters there are a large number

of correlations to consider and further discussion of these correlations can be found in the

following chapter when discussing the results of fits to the data.
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Figure 83: Fit contours for the MQEL
A -scale parameter versus the non-flux factor systematic parameters.

The black points show the best fit values, the pink points show the initial mock data parameter values

and the black, red and blue ellipses show the 1σ, 2σ and 3σ contours respectively.
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7.6 Studying the Fit

This section presents results from a number of mock data studies aimed at quantifiying the

robustness and sensitivity of the fit method. These studies were performed by holding all fit

configuration choices constant apart from the option in question and then performing fits with

a number of different values of this option. Most of the studies were performed with fit I

(which should be assumed unless stated otherwise) since it converges far quicker than the more

complicated fit II and considered two very different choices of input mock data fit parameter

values in order to check for consistency between the results. The following list details checks

that were made on the robustness of the fitting method:

• −2L v.s. χ2 v.s. χ2
MCstats : in this study fits were performed using the three different

functions defined earlier in equations 85-87. All the fits converged to almost identical

parameter values with the best fit −2L and χ2 values being almost exactly the same (as

expected given the relatively large MC sample statistics). The best fit χ2
MCstats value was

about half the size as that given by the other functions which is also expected given that

the mock data and MC samples used have almost identical exposures.

• MINUIT initial parameter values: MINUIT requires the user to choose starting values

for each parameter to be included in the fit and the purpose of this study was to check

that moving the parameter start values, in particular both towards and away from the

truth input mock data parameter values, does not influence the results of the fit. Fits

were performed with many permutations of parameter start values and the best fit results

were consistent at the 0.01% level.

• MINUIT initial parameter errors: MINUIT also requires the user to choose the ini-

tial errors to be assigned to each fit parameter. These errors are used as step sizes in

MINUIT’s first iteration (in each parameter) and for all subsequent iterations the step

sizes are automatically decided inside MINUIT. In this study fits were run with many

permutations of initial parameter errors to check that this choice did not influence the

results. As with the initial parameter value study all results were consistent at the 0.01%

level.

• MINUIT parameter allowed ranges: MINUIT allows the user to set boundaries for
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each fit parameter which can be useful for problems with unphysical regions of parameter

space. The purpose of this study was to check that the chosen range for the fit parameters

did not affect the fit results. Fits were performed to many permutations of parameter

allowed ranges but did not allow these ranges to go unphysical or very tight about the

truth mock data input values. The fit results were once again consistent at the 0.01%

level.

• MINUIT strategy choice: some MINUIT routines, such as MIGRAD, are dependant on

the user inputted choice of ’strategy’. The strategy integer governs the way these routines

calculate the first and second derivatives of the function to be minimized and can take

values of:

– 0: Forces convergence to be fast at the expense of reliability.

– 1: The routine performs it’s own internal balancing of speed and reliability.

– 2: Forces convergence to be accurate at the expense of time taken.

Fits were performed with all choices of strategy to check what effect it had on the fit

results. The results were almost identical and the default choice of strategy=1 has been

chosen for use in the fits.

• Iterations of MINUIT routines: nominally the fits are performed with an initial call to

the minimization routine SIMPLEXwhich takes MINUIT to the vicinity of the minimum

in a timely fashion. Next the more rigourous minimization routine MIGRAD is called to

focus in on the true minimum and finally the HESSE routine is called which calculates

the matrix of second derivatives of the minimized function in order to provide better es-

timates of the parameter errors and correlations. As such HESSE assumes a symmetry in

the minimized function and only provides symmetric error estimates for each parameter.

A further step, that has not been taken for many of these fit studies due to time con-

siderations, is to call the MINOS routine which provides a much better estimate of the

parameter errors. MINOS does not use the matrix of second derivatives directly but rather

steps out from the minimum in parameter space and can provide asymmetric estimates

of the parameter errors.

150



The purpose of this study was to iteratively call the routines MIGRAD, HESSE and

MINOS and compare the best fit parameter values, errors and correlations at each step.

Several fits were performed with multiple iterations of these three routines (after the

initial SIMPLEX call) and the results show that:

– The second call to MIGRAD finds a slighlty better minimum than the first call. This

is due to the extra call to HESSEwhich forces a calculation of the matrix of second

derivatives and aids the second MIGRAD iteration. All further iterations of MIGRAD

find the same minimum.

– Each iteration of HESSE found different values for the fit parameter errors and

correlation coefficients with differences of up to 20%.

– Each iteration of MINOS found almost identical fit parameter errors. The asym-

metric errors given by MINOSwere generally slightly larger than those returned by

HESSE.

The conclusions from this study are that HESSE should only ever be considered as an

approximate estimate of the fit parameter errors and correlations (as mentioned previ-

ously) and that MINOS should be called to get a good estimate of these errors. The only

drawback for MINOS is that it is computationally intensive and, for more than a few

fit parameters, can take a long time. For this reason the majority of fits to both mock

data and real data do not use the MINOS routine and quote errors and correlations from

HESSE with the caveat that these are only an estimate.

• Varying the Ehad cut: the nominal QEL-like sample selection cut is at Ehad < 250 MeV

and the purpose of this study was to vary this cut value in both mock data and MC to

check the resulting fitted parameter values. Figure 84 shows a compilation of the results

for fits with seven different values of the hadronic energy cut and for two sets of input

mock data parameter values. This study was performed with a modified configuration

I; the fit considers both the shape and normalisation of the Q2
QEL distribution rather than

just it’s shape.
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Figure 84: Fit results with a variety of different Ehad cut values. For each of the 2 sets of mock data fit pa-

rameters there are 7 fits, indexed on the x-axes, corresponding to cut values of 200,225,240,250,260,275

and 300 MeV. The top-right figure shows the fit results for the MQEL
A -scale, the bottom left for the Eµ-

scale and the bottom right for the Ehad-offset. Error bars for each parameter correspond to the symmet-

ric errors reported by HESSE and are shown in black whilst the input mock data parameter values are

shown by the open red circles. The top left figure shows the χ2
MCStats for the best fit MC and for the MC

when the true mock data input parameters have been applied.

The top left part of figure 84 shows that the best fit points found in each case do have a

better χ2 value than when the true mock data input parameters are used. This is because

the mock data and MC samples are statistically independant and there are residual differ-

ences in the Q2
QEL distributions for the two samples that the fit will try to accomodate (as

well as trying to fit out the input mock data parameter values). For each set of seven fits

the remaining parts of figure 84 show that the best fit points for each parameter are very

consistent within the returned HESSE errors. The only exception is fit 1 which shows a

shift in both the MA-scale and the Ehad-offset relative to the surrounding fits. This is not

a bad fit but rather a reflection of the fact that in the shape and normalisation fit these two

parameters are highly correlated; an increase in MA will weight up events in the QEL-
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like sample whereas an increase in the hadronic energy will mean that fewer events pass

into the QEL-like sample. There is an apparent bias in the fitted parameter values which

is particularly evident for the best fit Eµ-scales.

• Apparent bias studies: as was mentioned above there are statistical differences in the

Q2
QEL distributions for the mock data and MC samples which the fit will have to acco-

modate on top of any adjustments of the mock data sample generated by the initial fit

parameter values. These residual differences result in a bias in the best fit parameters

when compared to the input mock data parameter values. Fits were performed where

each of the mock data and MC samples was broken down into two further sub-samples.

One of these four sub-samples was used as MC and the remaining three as statistically

independant sets of mock data. Fits to these separate mock data samples did not show

a consistent bias indicating that the apparent bias is not an inherent feature of the fit

method but rather due to these small statistical differences in the Q2
QEL distribution bin

contents.

As a further check (and to get away from the problem of parameter correlations com-

plicating the issue) shape-only fits to Q2
QEL were performed which included only the

MQEL
A -scale parameter. In the study presented here two of the four statistically indepen-

dant samples of MC were each used as both mock data and MC in the fits. The first

MC sample was used as mock data (with the second used as MC) and twenty fits were

performed to randomly generated (between ±20%) mock data MQEL
A -scale initial values.

A consistent bias in the fit results was observed. Following this the second MC sample

was then used as mock data (with the first used as MC) and a further twenty fits were

performed to randomly generated MQEL
A -scale initial values. Again a consistent bias was

observed in the results but this bias was opposite to that observed in the first set of twenty

fits. This reversal of the bias under a reversal of the two MC samples confirms that the

fit procedure is not inherently biased but rather that the fit is accomodating the statistical

differences between the Q2
QEL distributions of the two MC samples. Figure 85 shows the

results of the twenty fits to randomly generated (between ±20%) mock data MQEL
A -scale

initial values and also the results of the twenty fits with the MC samples reversed. Fur-
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ther details of the full set of apparent fit bias studies, including fits using the remaining

two statistically independant MC samples as well as figures illustrating the statistical

differences between the various samples, can be found in appendix A.
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Figure 85: Best fit minus truth MQEL
A -scale values for 20 single parameter fits (indexed on the x-axis) to

a mock data sample with randomly generated MQEL
A -scale input values and 20 fits with the mock data

and MC samples reversed.

• Range and binning of the Q2
QEL distribution: the purpose of this study was to see what

effect the choice of binning and range in Q2
QEL has upon the fit results. Again a modified

version of fit I that fits the Q2
QEL distribution using both shape and normalisation was

used for this study and a variety of ranges and binning in Q2
QEL were considered. Figure

86 summarises the results of these mock data fits.

Figure 86 shows that the best fit parameters are consistent within their errors and that

the fit is robust to these changes. It also shows that removal of the low Q2
QEL region

(where nuclear effect mis-modelling is most likely) does not change the fitted parameter

values in these shape and normalization fits. Fits were also performed with the same set

of ranges and binning but using a different set of input mock data parameters and these

fits confirmed the conclusions drawn here.
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Figure 86: Mock data fit results with a variety of ranges and binning in Q2
QEL. The fit numbers are

indexed along the x-axes, open red circles correspond to the mock data truth parameters and the black

points show the best fit values along with the symmetric errors returned by HESSE. Fit 0 uses 10 sym-

metric bins from 0.0 to 1.0 GeV2 whilst fit 1 extends this to 15 bins from 0.0 to 1.5 GeV2 and fit 2 uses

the nominal binning scheme of 10 bins from 0.0 to 1.0 GeV2 with an overflow bin from 1.0 to 10.0 GeV2.

Fits 3,4 and 5 use the same binning scheme as fits 0,1 and 2 (respectively) but with the low Q2
QEL region

from 0.0 to 0.2 GeV2 removed. Fits 6,7 and 8 all use a range from 0.0 to 1.0 GeV2 with an overflow

bin up to 10.0 GeV2 but use progressively smaller bin widths for the region below 0.3 GeV2 where the

majority of the shape information is contained.
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To quantify the sensitivity of the fit, to MQEL
A and the systematic parameters, large numbers

of fits to the mock data sample were run in a number of fit configurations and in each fit

the mock data input parameter values were sampled uniformly from between the ±1σ errors

for each parameter (and between ±20% for the MQEL
A -scale). After all of the fits in each

configuration had been run the widths of the distributions of best fit value minus truth values for

each parameter provide an estimate of the sensitivity of that fit configuration to that parameter.

Figure 87 shows best fit minus truth values for the four non-flux factor fit parameters from

the results of 30 configuration II fits to the mock data sample where in each fit the mock data

input parameters were chosen at random as decsribed above. Figure 88 shows projections of

best fit minus truth values for each of the parameters shown in figure 87 and quotes both mean

and RMS values for these projections. The apparent bias that can be seen in the means was

discussed above and should not be thought of as an intrinsic bias of the fit but the RMS values

do give an estimate of the fit sensitivity to each parameter.

For the first fit shown in figure 87 the initial mock data fit parameter values were set to the

nominal values of the parameters and so the best fit results are directly related to accomodating

any statistical differences between the Q2
QEL distributions of the mock data and MC. As such

the subsequent fits to randomly generated initial mock data parameter values might be expected

to exhibit similar biases in the best fit parameter values as the first fit (with some spread being

caused by the fit parameter correlations). The fitted zeroth order polynominals shown in figure

87 agree very well with the results of the first fit confirming that, on average, the bias in the

subsequent fits is consistent with that displayed by the fit to the nominal mock data.

The systematic parameters are constrained by the inclusion of the penalty term in the χ2 but the

MQEL
A -scale is a free parameter in the fits and it’s distribution of best fit minus truth values is

measured to have an RMS of ∼0.053. The size of this RMS is comparable to the quoted errors

of many of the previous measurements of MQEL
A (see chapter 3) and only corresponds to an

exposure about one tenth of the size of the current ND data sample. It is not obvious how this

RMS will scale with POT exposure but it’s value, along with the parameter errors quoted from

the example fit II shown in the previous section, illustrate that a MINOS MQEL
A measurement
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Figure 87: Best fit minus truth values for 30 shape and normalisation fits to the Q2
QEL and EQEL

ν distri-

butions in mock data. The x-axes index the fits and the y-axes show the best-fit minus truth parameter

values for the MQEL
A -scale (top left), Eµ-scale (top right), Ehad-offset (bottom left) and background scale

(bottom right). The black error bars show the assumed 1σ errors for each parameter whilst the red

error bars show the symmetric errors reported by HESSE. The blue solid lines correspond to zeroth

order polynominal fits to the points and use the errors reported by HESSE in calculating the fit χ2 which

is displayed at the top of each figure. These χ2 values illustrate how well each distribution of best fit

minus truth points corresponds to a constant value.

could potentially have errors similar to or smaller than all of the previous measurements of

MQEL
A .

The small value of the RMS also shows that the fit is working well and, modulo the bias caused

by the statistical differences between the mock data and MC fitted distributions, can correctly

extract randomly generated MQEL
A values with randomly generated systematic parameters ap-

plied to the mock data. These conclusions obviously assume that the MC is perfectly modelling

the mock data, apart from the exact parameters that are included in the fit, and it is unlikely
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Figure 88: Projections of the 30 best fit minus truth parameter values from figure 87 along with the

means and RMS values of these distributions.

that this is the case with the real data.

In addition to these 30 configuration II fits a further 30 fits were run with a modified fit con-

figuration II. For fits to the data the low Q2
QEL region may have to be excluded to obtain a

reasonable fit and so this second set of 30 fits used the same configuration choices as defined

by fit II but only fitted the Q2
QEL distribution above 0.2 GeV2 (these low Q2

QEL events were

used to fill the EQEL
ν distribution). Table 10 reports the RMS values of the best fit minus truth

parameter values from each of these two sets of 30 fits.

Table 10 shows that the sensitivity to MQEL
A is degraded when only considering events with

Q2
QEL > 0.2 GeV2 in the fitted Q2

QEL distribution. This is to be expected given that changes

to MQEL
A exhibit the largest Q2

QEL distribution shape difference at low Q2
QEL. The systematic

parameter sensitivites are quite similar for the two types of fits.
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Fit MQEL
A -Scale Eµ-Scale Ehad-Offset Background

Configuration RMS RMS RMS (GeV) Scale RMS
II 0.0531 0.0049 0.0205 0.0371

II, no low Q2
QEL 0.0695 0.0048 0.0202 0.0377

Table 10: RMS values for the distributions of best fit minus truth parameter values from 30 fits with

configuration II and 30 fits with configuration II modified such that Q2
QEL < 0.2 GeV2 events are not

considered in the fitted Q2
QEL distributions.

In addition to running many fits with configuration II large numbers of fits were run with

configuration I. In these fits an attempt was made to remove some of the apparent bias caused by

statistical differences between the mock data and MC samples. For each fit the mock data Q2
QEL

distribution was randomised by fluctuating the total number of events in the fitted distribution

according to a Poisson distribution (centred at this original total number of events) and then

filling a new mock data Q2
QEL distribution by randomly sampling from the original distribution

a number of times equal to the Poisson fluctuated total number of events. Unfortunately there

is no obvious similar procedure that can be applied to the MC sample (which is filled for each

iteration of a particular fit according to the current set of fit parameter values), which remains

the same for each fit, and so an apparent fit bias will remain.

Figures 89 and 90 show the best fit minus truth parameter values for configuration I fits to the

100 randomised mock data samples and their projections. As with configuration II, another

100 fits were run that used a modified fit configuration I with the Q2
QEL < 0.2 GeV2 events

ignored in the fit. Table 11 shows the RMS values of the best fit minus truth parameter value

projections for these two sets of 100 fits.

Table 11 shows similar trends as table 10 in that the removal of the low Q2
QEL events degrades

the sensitivity of the fit to MQEL
A whereas the sensitivities to the systematic parameters are

roughly equivalent between the two fit configurations. Comparing tables 10 and 11 is difficult

given the different numbers of fit parameters and the different fit parameter correlations but

both fits I and II seem to perform well, both with and without the low Q2
QEL events. It should

also be noted that the increase in the RMS values for the muon energy scale when moving
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Figure 89: Best fit minus truth values for 100 shape-only fits to the Q2
QEL distribution in mock data. The

x-axes index the fits and the y-axes show the best-fit minus truth parameter values for the MQEL
A -scale

(top left), Eµ-scale (top right), Ehad-offset (bottom left) and background scale (bottom right). The black

error bars show the assumed 1σ errors for each parameter whilst the red error bars show the symmetric

errors reported by HESSE. The blue solid lines correspond to zeroth order polynominal fits to the points

and use the errors reported by HESSE in calculating the fit χ2 which is displayed at the top of each

figure. These χ2 values illustrate how well each distribution of best fit minus truth points corresponds to

a constant value.

Fit MQEL
A -Scale Eµ-Scale Ehad-Offset Background

Configuration RMS RMS RMS (GeV) Scale RMS
I 0.0529 0.0067 0.0150 0.0291

I, no low Q2
QEL 0.0573 0.0066 0.0160 0.0272

Table 11: RMS values for the distributions of best fit minus truth parameter values from 100 fits with

configuration I and 100 fits with configuration I modified such that Q2
QEL < 0.2 GeV2 events are not

considered in the fitted Q2
QEL distributions.
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Figure 90: Projections of the 100 best fit minus truth parameter values from figure 89 along with the

means and RMS values of these distributions. As before a bias is visible in the distribution means which

could not be removed by fluctuating the mock data Q2
QEL distributions.

from fit configuration II to configuration I is likely due to the increased correlation between the

MQEL
A -scale and Eµ-scale when only fitting for the shape of the Q2

QEL distribution.

This chapter has presented the fit procedure for extracting MQEL
A from a QEL-like sample of

data in the ND. The main identified sources of systematic uncertainty are included directly in

the fit and the resulting discontinuities in the fit χ2 surface are smoothed-out using an event-

by-event smearing of MC kinematic variables. Example fit results have been shown in the

two headline fit configurations; shape-only fit to Q2
QEL and shape and normalisation fit to both

Q2
QEL and EQEL

ν . The fit has been studied using a mock data sample and the results of these

studies show that the fit is robust to changes in it’s internal mechanics and can correctly extract

randomly chosen input mock data fit parameter values. The fit sensitivities are encouraging

but do assume that the MC perfectly models the mock data and this assumption is not likely

to be correct in the case of the real data. The next chapter will present the results of the M QEL
A

extraction from the real MINOS ND data.
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8 MQEL
A Measurement with ND Data

This chapter will present results from a number of fits to the ND data. Two headline fit config-

urations are used; a shape-only fit to Q2
QEL and a shape and normalisation fit to both Q2

QEL and

EQEL
ν . These fit configurations are very similar to those used for the mock data studies but do

have a few differences that will be described in the following section. The results for the head-

line fits (and for a number of fits with small changes to the configurations) will be discussed in

detail and finally some potential improvements for the fitting method will be suggested.

8.1 Headline Fits to the Data

The main differences between the headline fits to the mock data and these headline fits to

the data correspond to the removal of exiting muon events (where the muon momentum was

measured by curvature in the magnetic field) and to the way flux information is used in the fits.

The following options are common to both the two headline data fit configurations:

• Stopping muons only: as was mentioned in the previous chapter the ND magnetic field

has recently been re-calibrated and the results changed the momentum scale for muons

that exit the detector by ∼6%. However, the re-calibration resulted in only a small effect

on the momentum scale for muons that stop in the detector and whose momenta are

measured by range. As a result of the increased uncertainty on the energy of exiting

muons only stopping muons are considered in the data and MC QEL-like samples used

for the MQEL
A fits. The removal of the exiting muon events does not result in a large loss

in sample statistics, particularly in the energy spectrum peak where most of the muons

do not have enough energy to exit the detector.

• Hadronic energy cut: the nominal hadronic energy cut of < 250 MeV is used to select

the QEL-like samples in data and MC.

• Minimised statistic: the χ2
MCStats statistic, as defined by equation 87, is used in all fits to

the data.

• Smearing of MC events: in all the fits to the data the Q2
QEL, EQEL

ν and Ehad values for

each MC event are smeared into Gaussians of widths 5 MeV2, 10 MeV and 2.5 MeV
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respectively.

• Systematic parameters: all the fits to the data will include the muon energy scale,

hadronic energy offset and background scale systematic parameters with assumed 1σ

errors of 2%, 35 MeV and 10% respectively.

• MINUIT routines: all the fits will call SIMPLEX, MIGRAD and then HESSE. Some of

the fits will also include a final call to MINOS to provide the most accurate estimates of

the errors on the fitted parameters.

• Sample exposures: the fitted data sample corresponds to a total exposure of 1.27e20

POT taken between May 2005 and March 2006 and using the L010z185i beam configu-

ration. The MC sample used in the fits corresponds to a total exposure of 9.450e19 POT

generated in the L010z185i beam configuration.

The two headline fits can then be further defined as follows:

• Data Fit I: shape-only fit to Q2
QEL. The Q2

QEL distribution is binned in a similar way

to mock data fit configuration I but the low Q2
QEL region (< 0.2 GeV2), where the mis-

modelling of nuclear effects is likely, is not considered in the fit. The fitted distribution

uses bins of width 0.1 GeV2 from 0.2 → 1.0 GeV2 and with an overflow bin from 1.0

→ 10.0 GeV2. The flux factor systematic parameters are not used but instead the beam

and hadron production tuning weights are applied to the MC so as to include the best

knowledge of the NuMI flux.

• Data Fit II: shape and normalisation fit to Q2
QEL and EQEL

ν . The fitted distributions

use similar binning to that described for mock data fit configuration II but again the

low Q2
QEL region is removed from consideration for the fitted Q2

QEL distribution. The

Q2
QEL distribution is binned as was described for data fit configuration I and the E QEL

ν

distibution binning is identical to that used for mock data fit configuration II. The low

Q2
QEL events are used when filling the neutrino energy distribution as the potential mis-

modelling of nuclear effects will not have a large effect on the reconstruction of E QEL
ν .

The beam and hadron production tuning weights are not applied to the MC but the seven

flux factors are included in the fit as systematic parameters. They have assumed 1σ
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errors of 8% for E true
ν ≤ 6 GeV and 15% for E true

ν > 6 GeV and the full matrix equation

penalty term, as defined by equation 88, is used to penalise the flux factors. The matrix

of correlation coefficients defined by equation 89 is used when constructing this penalty

term and as such only penalises deviations in adjacent flux factors.

8.2 Results for Data Fit Configuration I

Table 12 summarises the results for this fit to the ND data. The best fit axial mass value is

∼1.39 GeV compared to the nominal NEUGEN value of 0.99 GeV. The χ2 value is reduced

from 135.965 with the nominal MC to 8.425 at the best fit and the fit contains eight degrees

of freedom (corresponding to the nine bins of the fitted distribution minus the single free pa-

rameter). Figure 91 shows the fitted Q2
QEL distributions along with the ratios of the data to the

nominal and best fit MC and it can be seen that the best fit parameter values have flattened the

ratio of data to MC as a function of Q2
QEL.

MQEL
A (GeV) Eµ-Scale Ehad-Offset Background

(Nominal: 0.99 GeV) (GeV) Scale
Best Fit 1.38616 0.97891 -0.0323044 0.97938

HESSE Error 0.04387 0.00299 0.0081325 0.07787
+ve MINOS Error 0.07251 0.00331 0.0223089 0.07915
-ve MINOS Error 0.05044 0.00315 0.0111125 0.07797

Table 12: Best fit parameter values for a fit to the data with configuration I. The table shows the best

fit values, the symmetric errors reported by HESSE and the asymmetric errors reported by MINOS. The

correlation coefficients between the various fit parameters can be found in appendix B.

Table 12 shows that only the muon energy scale systematic parameter has been pulled by more

than it’s assumed 1σ error (and only by 1.05σ). It is also interesting to note the differences

between the parameter errors reported by HESSE and MINOS with the latter providing larger

asymmetric errors, in particular for the axial-vector mass and the hadronic energy offset. This

asymmetry reflects the non-linearity of the fitted ‘problem’ and is further demonstrated by fig-

ures 92 and 93 which show the two-dimensional fit contours between the various fit parameters

(again using the approximation of equation 82).
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Figure 91: Q2
QEL distributions for a fit to the data with configuration I. The left-hand figures show the

full fitted Q2
QEL distributions for the data, nominal unsmeared MC, nominal smeared MC and best fit

MC along with ratios of the data to each MC set. The right-hand figures show the same distributions

but zoomed such that the overflow bin is not visible.

Figure 92 shows that, modulo the elliptical approximation and uncertainty in the HESSE pa-

rameter correlation coefficients, all the systematic parameters are more highly correlated (or

anti-correlated) with MQEL
A than was seen in the example mock data fit with mock data fit con-

figuration I. This is due to the removal of the low Q2
QEL region from the fit where changes to

MQEL
A have the largest effect on the shape of the distribution. In particular the axial-vector

mass and the muon energy scale are tightly anti-correlated and the contours illustrate that ±1%

changes to the muon energy scale could be accomodated by ∼±15% changes to the value of

the MQEL
A -scale parameter. Figure 93 shows that there are no strong correlations between the

three systematic parameters implying that, in the situation described above, a large change in
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Figure 92: Two-dimensional fit contours for the MQEL
A -scale versus each of the three systematic param-

eters. These contours are made using an elliptical approximation and also use the parameter correla-

tions reported by HESSE which should not be considered accurate to more than ∼10-20%. The black

point shows the best fit values and the black, red and blue ellipses show the 1σ, 2σ and 3σ contours

respectively.

the MQEL
A -scale could be accomodated by movement in a single systematic parameter, most

likely the muon energy scale, without there being much of a pull on the remaining systematic

parameters.

Figure 94 shows the POT-normalised comparisons of the data to the nominal and best fit MC,

with a finer binning than was used in the fit itself, for the Q2
QEL distributions of QEL-like events

and also for the Q2 distributions of CC-like events. It is not really valid to apply the best fit

parameters to the entire CC-like distribution but this figure does suggest the kind of changes

that would be induced in the CC-like sample. Figure 94 shows that even though the fit only

considered the shape of the Q2
QEL distribution it can do a good job in ‘filling-in’ the MC deficit.

It also shows that in the excluded low Q2
QEL region there is a definite disagreement between the
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Figure 93: Two-dimensional fit contours for permutations of the three systematic parameters.

data and MC and this is attributed to incorrectly modelled nuclear effects. Similar low Q2
QEL

differences between QEL-like data and MC have been seen at previous experiments such as

MiniBooNE [38].

Figure 95 shows the POT-normalised comparisons of the data to the nominal and best fit MC

for the EQEL
ν distributions of QEL-like events and the Eν distributions of CC-like events. The

fit only used the Q2
QEL distribution but there is a much improved agreement in the E QEL

ν dis-

tribution for QEL-like events when using the best fit MC. Again it is not entirly valid to apply

the best fit parameters when comparing the full CC-like sample but figure 95 shows that the

best fit MC is in better agreement with the data and that, in particular, both the large deficit and

shape difference of the nominal MC (relative to the data) in the peak of the energy spectrum

have been mitigated. Figure 96 shows the two-dimensional ratios of the data to the nominal

and best fit MC as a function of the reconstructed Q2
QEL and EQEL

ν and it can be seen that the

best fit parameter values move the majority of these two-dimensional ratio bins close to unity.
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Figure 94: Comparisons of data, nominal and best fit MC for Q2 for all CC-like events (left-hand

figures) and Q2
QEL for QEL-like events (right-hand figures). The shape-only fit both flattens the Q2

QEL

distribution, as should be expected, but also manages to provide an improved agreement in the normal-

isation between data and MC.

A number of fits were also run with small modifications to data fit configuration I in order to

check for consistency between the results; the data was fitted without the application of the

beam and hadron production tuning weights to the MC, different hadronic energy cuts were

used to define the QEL-like sample and the data was fitted in a number of independant slices

of reconstructed QEL-assumed neutrino energy.

168



 (GeV) ν Reco E
0 2 4 6 8 10 12 14

 P
er

 1
e1

9 
P

O
T

0.000

0.002

0.004

0.006

0.008

0.010

0.012
610×

Data

Nominal MC

Best Fit MC

CC-like Events, L010z185i Beam 

 (GeV) QEL
ν Reco E

0 2 4 6 8 10

 P
er

 1
e1

9 
P

O
T

0.0

0.5

1.0

1.5

2.0

2.5

310×

Data

Nominal MC

Best Fit MC

QEL-like Events, L010z185i Beam 

 (GeV) ν Reco E
0 2 4 6 8 10 12 14

 D
at

a 
/ M

C

0.8

0.9

1.0

1.1

1.2

1.3

1.4
Ratios 

 (GeV) QEL
ν Reco E

0 2 4 6 8 10

 D
at

a 
/ M

C

0.8

0.9

1.0

1.1

1.2

1.3

1.4
Ratios 

Figure 95: Comparisons of data, nominal and best fit MC for Eν for all CC-like events (left-hand

figures) and EQEL
ν for QEL-like events (right-hand figures). The shape-only fit to the Q2

QEL distribution

results in an improved agreement between the data and MC neutrino energy spectra in both cases.
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Figure 96: Two-dimensional ratios of the data to the nominal MC (left-hand figure) and to the best fit

MC (right-hand figure). For presentational purposes the bins in the ratios are only filled if the number

of events in that bin, for both data and MC, is above ten. Apart from at low Q2
QEL where nuclear effect

mis-modelling is likely, the fit moves the majority of these ratio bins close to unity.
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Table 13 shows the headline fit I results from table 12 along with the results from an identical

fit except that the beam and hadron production weights were not applied to the MC. The Q2
QEL

distribution is not very sensitive to the underlying neutrino flux and so the absense of the

reweighting should not have a large impact on the results of the fit. Table 13 confirms that this

is the case with all the fit parameters consistent within their MINOS errors between the two fits.

Fit MQEL
A Eµ-Scale Ehad-Offset Bg-Scale (χ2

Nom)
Configuration (GeV) (GeV) χ2

BF

I 1.38616 0.97891 -0.032304 0.97938 (135.965)
0.04387 0.00299 0.008133 0.07787 8.42545
0.07251 0.00331 0.022309 0.07915
0.05044 0.00315 0.011113 0.07797

I without beam 1.46353 0.97978 -0.009759 0.97820 (170.096)
and hadron 0.05307 0.00287 0.012996 0.08370 9.45951

weights applied 0.06378 0.00304 0.013776 0.09367
to the MC 0.07581 0.00293 0.023603 0.09828

Table 13: Results for data fit configuration I with and without the beam and hadron production tuning

weights applied to the MC. The bold numbers show the best fit values whilst the row of numbers directly

beneath show the symmetric errors reported by HESSE. The final two rows of numbers for each fit show

the MINOS positive (3rd row) and negative (4th row) errors. The last column in the table shows the

inital χ2 value between the data and nominal MC in brackets and the best fit χ2 value below this.

Table 14 shows the results from the fit to the data with configuration I along with fits that

were performed with the same configuration but only using events from particular slices of

reconstructed EQEL
ν . It can be seen that the fits in the slices 0.0 → 2.0 GeV and 3.0 → 4.0 GeV

produced results that are very consistent with the original fit, to events from the full neutrino

energy spectrum, but that the fit in the slice from 2.0 → 3.0 GeV has produced a very different

set of best fit parameter values.

In this neutrino energy slice the best fit MQEL
A is much lower than that from headline fit I, the

muon energy scale is now pulled higher and the hadronic energy offset and background scale

parameters are pulled by more than their assumed 1σ errors. Figure 97 shows comparisons of

the QEL-like data, nominal MC and best fit MC (all normalised to POT) using these different
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Fit MQEL
A Eµ-Scale Ehad-Offset Bg-Scale (χ2

Nom)
Configuration (GeV) (GeV) χ2

BF

I 1.38616 0.97891 -0.032304 0.97938 (135.965)
0.04387 0.00299 0.008133 0.07787 8.42545
0.07251 0.00331 0.022309 0.07915
0.05044 0.00315 0.011113 0.07797

I with EQEL
ν 1.38152 0.98672 -0.000092 0.98429 (39.089)

∈ (0.0,2.0) GeV 0.07284 0.00393 0.005023 0.09705 13.69950
0.07610 0.00381 0.007774 0.09761
0.07210 0.00476 0.005619 0.09793

I with EQEL
ν 1.07813 1.01086 -0.040899 0.82855 (55.735)

∈ [2.0,3.0) GeV 0.05728 0.00387 0.006220 0.08106 19.07930
0.05655 0.00451 0.042261 0.08068
0.05911 0.00445 0.047586 0.08242

I with EQEL
ν 1.40231 0.98242 -0.033808 0.99501 (100.249)

∈ [3.0,4.0) GeV 0.04615 0.00606 0.007864 0.08752 6.38665
0.05944 0.00734 0.033593 0.09148
0.09136 0.00569 0.024293 0.09113

Table 14: Results for data fit configuration I using events from the full EQEL
ν distribution and in a number

of independant slices of EQEL
ν . The table structure is identical to that described in the caption for table

13.

best fit parameter values. It can be seen that this shape-only fit has performed as it should with

the ratio of data to best fit MC being flat in the fit region (above Q2
QEL = 0.2 GeV2) but in this

particular case the best fit results do not do such a good job filling-in the MC deficit.

When comparing these results to the results from the nominal configuration I fit to the data

the best fit MQEL
A and Eµ-scale values are not consistent within their MINOS errors, however,

these are not bad fits. Rather the difference reflects the strong anti-correlation between these

two parameters in a shape-only fit to the Q2
QEL distribution (see figure 92 or appendix B) with

a reduction in MQEL
A being countered by an increase in the muon energy scale. This shape-

only fit configuration is not very sensitive to the hadronic energy offset and background scale

systematic parameters (which mostly affect the normalisation of the Q2
QEL distribution) but they

are (anti-)correlated with MQEL
A and so large changes in their values should not be unexpected.
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Figure 97: POT-normalised data, nominal and best fit MC Q2
QEL distributions, along with the ratio of

the data to each MC set, using the results from a fit to the data with configuration I but only considering

events with EQEL
ν ∈ [2.0,3.0) GeV.

One possible explanation for the anomalous fit result, presented in table 14, is that the fit has

converged upon a local minimum in it’s four-dimensional internal χ2-space and that statisti-

cal differences between the data samples, coming from the different slices of neutrino energy

considered, led MIGRAD into this local minimum instead of towards the region of parameter

space suggested by the other fits in table 14. The errors reported by MINOS can be fooled by

such local minima if they are sufficiently far apart in parameter space and if the χ2 surface rises

steeply between these minima.

In order to test this hypothesis an alternate ‘grid search’ fitting method was employed. In the

grid search the hadronic energy offset and background scale fit parameters, which do not have

a large effect on the shape of the Q2
QEL distribution, were held constant at the best fit values

returned by the fit in headline configuration I (as shown in table 12). The grid search then cal-

culated the χ2 value between the MC and data using the shape of the Q2
QEL-distribution (using

the same construction as the MINUIT fits) at a number of points in the two-dimensional pa-

rameter space of (MQEL
A -scale, Eµ-scale) and recorded both the minimum χ2 and the parameter

values to which this minimum corresponded. Figure 98 shows the χ2-spaces for grid searches

performed using events from the full range of possible neutrino energies (as used in headline fit

I) and using events with neutrino energies between 2.0 and 3.0 GeV (with which the MINUIT

fit produced the anomalous fit result).
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Figure 98: χ2-surfaces for grid searches using events with all neutrino energies (left-hand figure) and

those in a slice from 2.0→3.0 GeV (right-hand figure). The statistical differences between the Q2
QEL

distributions for the two data samples with which these grid searches were performed result in a slight

warping of the χ2-surface although the large anti-correlation between the two parameters is seen in

both cases.

The grid search performed using events of all neutrino energies found a best fit point in excel-

lent agreement with the results from the corresponding MINUIT fit with a best fit M QEL
A -scale

of 1.40 (as compared to 1.4002 from MINUIT), a best fit Eµ-scale of 0.979 (as compared to

0.97891 from MINUIT) and a best fit χ2 value of 8.427 (as compared to 8.425 from MINUIT).

However, the grid search performed using events with neutrino energies between 2.0 and 3.0

GeV found a very different minimum to that found by the corresponding MINUIT fit. Figure

99 shows a zoomed version of the χ2-surface from the grid search to events in this neutrino en-

ergy slice and confirms the above hypothesis that there are both a local and a global minimum

in the χ2-space of this fit.

In this case the MINUIT fit results correspond to the local minimum that can be seen in figure

99 whereas the grid search locates the global minimum with a best fit MQEL
A -scale of 1.35 and

a best fit Eµ-scale of 0.976. These results are in good agreement with the MINUIT fit results

from all but the original 2.0→3.0 GeV slice fit as shown in table 14 and the best fit χ2 for this

energy slice is 12.421 (as compared to 19.079 as returned by the corresponding MINUIT fit).

The MINUIT fit in the 2.0→3.0 GeV neutrino energy slice was repeated with MIGRAD starting

at the best fit parameter values returned by headline fit I. In this case the fit converged upon the

global minimum and table 15 shows a repeated version of the results from headline fit I along
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with these new results.
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Figure 99: Zoom in on the χ2-surface from a grid search using events with neutrino energies in a slice

from 2.0→3.0 GeV. The corresponding MINUIT fit found the local minimum visible in the upper left of

the figure whilst the grid search correctly located the global minimum in the χ2-space.

Fit MQEL
A Eµ-Scale Ehad-Offset Bg-Scale (χ2

Nom)
Configuration (GeV) (GeV) χ2

BF

I 1.38616 0.97891 -0.032304 0.97938 (135.965)
0.04387 0.00299 0.008133 0.07787 8.42545
0.07251 0.00331 0.022309 0.07915
0.05044 0.00315 0.011113 0.07797

I with EQEL
ν 1.31152 0.97495 -0.041663 0.93537 (22.1397)

∈ [2.0,3.0) GeV 0.05192 0.00331 0.009017 0.09512 11.16540
0.05137 0.00327 0.025012 0.09564
0.15325 0.00778 0.043479 0.09602

Table 15: Results for data fit configuration I using events from the full EQEL
ν distribution and for the

repeated fit considering events with neutrino energies between 2.0 and 3.0 GeV.

The grid searches have shown that the best fit parameters corresponding to the true global

minima in each of the fits presented in table 15 agree within their errors but also highlight a

possible problem with the use of MINUIT. In the future fits could be run that include an extra
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call to the MINUIT routine IMPROVEwhich helps to guard against local minima by randomly

stepping away from the calculated minimum in parameter space for some number of iterations

and trying a quick convergence starting at each of these randomly chosen points. Another

possible alternative for the future, applicable to type I fits, would be a hybrid method that used

a course grid search in MQEL
A and the muon energy scale combined with calls to MINUIT. In

such a fit a minimum would be found at each grid point by minimising with respect to the

hadronic energy offset and background scale parameters and then the parameters from the grid

bin with the lowest χ2 would be fed to MIGRAD, HESSE and then MINOS to ensure that these

MINUIT routines were called in the vicinity of the global minimum.

A number of fits were also performed with configuration I but changing the value of the

hadronic energy cut used to define the QEL-like samples of data and MC. Table 16 shows

the results of the headline fit along with fits where the hadronic energy cut was set to 225 MeV

and 275 MeV and it can be seen that both these fits return parameter values that are consistent,

within their errors, with the headline fit.

Fit MQEL
A Eµ-Scale Ehad-Offset Bg-Scale (χ2

Nom)
Configuration (GeV) (GeV) χ2

BF

I 1.38616 0.97891 -0.032304 0.97938 (135.965)
0.04387 0.00299 0.008133 0.07787 8.42545
0.07251 0.00331 0.022309 0.07915
0.05044 0.00315 0.011113 0.07797

I with Ehad 1.42179 0.97931 -0.027266 0.96435 (143.804)
cut at 0.05720 0.00465 0.010509 0.08055 8.67243

225 MeV 0.05152 0.00318 0.008047 0.09082
0.07230 0.00340 0.020261 0.08015

I with Ehad 1.32611 0.97928 -0.048758 1.00476 (150.031)
cut at 0.04241 0.00213 0.009684 0.08523 11.32380

275 MeV 0.15909 0.00346 0.044459 0.08367
0.05796 0.00557 0.013047 0.15446

Table 16: Results for data fit configuration I using QEL-like samples defined with the nominal hadronic

energy cut at 250 MeV and with two alternate hadronic energy cuts at 225 MeV and 275 MeV. The table

structure is identical to that described in the caption for table 13.
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Table 16 reveals some interesting asymmetric MINOS errors reported for the fit with the hadronic

energy cut at 275 MeV, in particular the larger positive error on MQEL
A and the larger negative

error on the background scale parameter. It has already been seen that in this fit configuration

there is some correlation between these two parameters and the larger MINOS errors suggest

that, for this fit, MQEL
A could be increased and the background scale decreased (bringing the

fitted parameter values more in line with the other two sets of fit results presented in table 16)

without the value of the χ2 changing significantly.

In summary, all of the fits performed using configuration type I agree that the value for M QEL
A

should be increased dramatically from it’s default NEUGEN value of 0.99 GeV. A number of

fits using different permutations of the configuration options have shown that the correlations

between the fit parameters, when combined with statistical differences resulting from these

changed options, can result in movement of the best fit parameter values. However, these

movements are either within or just outside the quoted MINOS errors returned by MINUIT.

As such, the errors on the best fit MQEL
A for these shape-only fits to Q2

QEL are presented in

two parts; the asymmetric errors given by the MINOS routine and additional asymmetric errors

coming from the largest change in the fitted central value stemming from the different permuta-

tions of the fit configuration. The largest upward shift comes from the fit without the beam and

hadron production weighting applied to the MC and the largest downward shift comes from

the fit in the 2.0→3.0 GeV slice of neutrino energy. These two components are referred to

in equation 92 as the statistical (MINOS errors) and systematic (change in central value under

permutations) errors on the fitted MQEL
A . It should be noted that in this case the statistical error

has a component due to the fitted systematic parameters (in particular the muon energy scale)

which is not intrinsically statistical in nature and cannot be decoupled from the true statistical

error in the fit and likewise the systematic error has a component that is statistical in nature due

to the fact that these errors come from alternate fits to the data.

MQEL
A = 1.386 + 0.073

− 0.050 (stat.) + 0.077
− 0.075 (syst.) GeV (92)

The following section will now present results obtained using configuration type II.
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8.3 Results for Data Fit Configuration II

Table 17 summarises the results when the data is fit using this configuration. The best fit M QEL
A

value is ∼1.13 GeV and is again higher than the nominal NEUGEN value of 0.99 GeV. In this

fit the χ2 value between the data and MC is reduced from 20227.6 with the nominal MC to

244.748 when the best fit parameters are applied to the MC and the fit contains twenty-one

degrees of freedom; nine degrees from the bins of the Q2
QEL distribution plus thirteen degrees

from the bins of the EQEL
ν distribution minus one degree from the single free parameter, MQEL

A .

The reduced χ2 at the best fit point suggests that this is a bad fit and it will be demonstrated

during the following discussion that this high value is a product of the crudeness of the flux

factor systematic parameters. Due to computer processing time considerations MINOS errors

were only calculated for the non-flux factor fit parameters.

For this set of results many of the fit parameters have been pulled much further than their

assumed 1σ errors. In particlar the flux in the peak has been increased and the hadronic energy

offset made negative so as to ‘fill-in’ the large MC deficit in the energy spectrum peak whilst

conversely the background scale has been reduced, presumably to compensate for some of this

increase in the event numbers. The muon energy scale has not changed greatly, reflecting the

fact that the position of the energy spectum peak is well modelled, even by the nominal MC,

and the axial mass has been increased slightly to correct the shape of the Q2
QEL distribution.

Figure 100 shows the fitted Q2
QEL and EQEL

ν distributions along with the ratios of the data to

the best fit and nominal MC and shows that at the best fit the data to MC ratio is flat compared

with the nominal case. The EQEL
ν ratio for the data over best fit MC demonstrates the problem

introduced by the flux factors which is that they scale large chunks of the true neutrino energy

distribution and the smearing introduced by moving to a reconstructed quantity is not sufficient

to remove the discrete nature of the different best fit flux factor values. As a result of their

crude nature, the flux factors result in disagreements between the contents of the data and MC

reconstructed neutrino energy bins which inflate the best fit χ2 value. The best fit χ2 value of

244.748 can be broken down into components coming from the Q2
QEL distribution bin contents,

the EQEL
ν distibution bin contents, the non-flux factor systematic parameter penalty term and
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Fit II
Configuration

Best Fit HESSE +ve MINOS -ve MINOS
Value Error Error Error

MQEL
A (GeV) 1.13026 0.01964 0.02018 0.02051
Eµ-Scale 1.01787 0.00119 0.00171 0.00150

Ehad-Offset (GeV) -0.070314 0.003327 0.003466 0.003907
Background Scale 0.74427 0.04457 0.04566 0.4457

0-2 GeV Flux Scale 1.20484 0.02931
2-3 GeV Flux Scale 1.31674 0.02262
3-4 GeV Flux Scale 1.01731 0.01444
4-6 GeV Flux Scale 0.97623 0.01585

6-10 GeV Flux Scale 1.35798 0.03124
χ2

Nom 20227.6
χ2

BF 244.748

Table 17: Best fit parameter values for a fit to the data with configuration II. The table shows the best

fit values, the symmetric errors reported by HESSE and the asymmetric errors reported by MINOS. The

MINOS errors were not calculated for the flux factors. The correlation coefficients between the various

fit parameters can be found in appendix B.

the flux factor penalty term and in this case the contributions are 37.8, 169.8, 11.4 and 25.8

respectively. The largest contribution comes from the E QEL
ν bin contents.

Figure 101 shows more finely binned versions of the fitted distributions shown in figure 100 and

further demonstrates both that the low Q2
QEL regime is not well modelled by the MC and that

the best fit flux factors introduce a ‘sinusoidal’ warping to the MC E QEL
ν distribution. Figure

102 shows the two-dimensional ratios of the data to the nominal and best fit MC and it can

be seen that the best fit parameter values flatten large parts of this surface with the remaining

deviations of the MC from the data located, as expected, at low Q2
QEL.
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Figure 100: Q2
QEL (zoomed to exclude the overflow bin) and EQEL

ν distributions for a fit to the data

with configuration II. The top figures show the fitted distributions for the data, nominal unsmeared MC,

nominal smeared MC and best fit MC whilst the bottom figures show the ratios of the data to each MC

set.
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Figure 101: Comparisons of data, nominal and best fit MC as a function of EQEL
ν (left-hand figures)

and Q2
QEL (right-hand figures). The results from headline fit II can be seen to be flattening the ratios as

a function of both parameters but the crudeness of the flux factors is evident in the ratio of the data to

best fit MC as a function of the recontructed neutrino energy.
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Figure 102: Two-dimensional ratios of the data to the nominal MC (left-hand figure) and to the best fit

MC (right-hand figure). The bins in the ratios are only filled if the number of events in that bin, for both

data and MC, is above ten. Apart from at low Q2
QEL where nuclear effect mis-modelling is likely the fit

moves the majority of these ratio bins close to unity.
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There are a large number of correlations to consider for this headline fit configuration II and

so only a few examples will be shown here. However, further fit parameter contours will be

presented in the subsequent discussion of results from fits that were run with slight changes

to the headline configuration II. Figures 103 and 104 show the two-dimensional fit contours

between the non-flux factor fit parameters (again using the approximation of equation 82). The

correlations between the four non-flux factor fit parameters are quite similar to those shown for

headline fit I. The main difference is that the muon energy scale, hadronic energy offset and

inelastic background scale systematic parameters are not as (anti-)correlated with M QEL
A due to

the extra constraints provided by the inclusion of the E QEL
ν distribution. These three systematic

parameters are, as before, uncorrelated with each other.
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Figure 103: Two-dimensional fit contours for the MQEL
A -scale versus each of the three non-flux factor

systematic parameters. These contours are made using an elliptical approximation and also use the

parameter correlations reported by HESSE which should not be considered accurate to more than ∼10-

20%. The black point shows the best fit values and the black, red and blue ellipses show the 1σ, 2σ and

3σ contours respectively.
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Figure 104: Two-dimensional fit contours for permutations of the three non-flux factor systematic pa-

rameters.

A number of fits were also run with small modifications to data fit configuration II in order to

check for consistency between the results; the data was fitted with the application of the beam

and hadron production tuning weights to the MC and different hadronic energy cuts were used

to define the QEL-like sample. In these fits the MINOS routine was not run for any of the fit

parameters and so only the symmetric HESSE parameter errors are quoted. Table 18 shows the

results of headline fit II to the data with and without the beam and hadron production tuning

weights applied to the MC.

Table 18 shows that the results of the fit change quite dramatically when the MC tuning weights

are applied. The MC tuning only has a significant effect in the high energy tail of the neutrino

energy spectrum where it scales up the MC to better match the data and it can be seen that

the fit with MC tuning applied performs as would be expected; the initial χ2 between the data

and nominal MC is lower (better agreement in the tail) and after the fit the higher energy flux

factor (from 6→10 GeV) is much closer to unity. However, beyond these expected effects it
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can be seen that many of the best fit parameter values are inconsistent between the two fits,

most notably MQEL
A and the hadronic energy offset.

Table 19 shows the results from two versions of headline fit II to the data but with the QEL-like

sample hadronic energy cut changed to 200 MeV and 300 MeV. The results of these two fits

are more compatible with the headline fit II results than those from the fit that used the beam

and hadron production weights but there are still disagreements between the various fitted

parameter values that are larger than the quoted errors.

There are some patterns that emerge when one considers the various results from the permuta-

tions of headline configuration II. Firstly, the fitted muon energy scale parameter is consistently

∼2% higher than in the nominal MC and this is attributed to the extra constraint imposed by

the position of the neutrino energy spectrum peak (for these QEL-like events the reconstructed

muon energy constitutes the vast majority of the reconstructed neutrino energy). Secondly,

whilst the flux factors individually change by large amounts between the fits they do move

together. This is perhaps not surprising given that the flux factors were artificially constrained

to move together in the construction of the flux factor χ2 penalty term which used correlation

coefficients between adjacent flux factors of 0.5.

It appears that the crudeness of the flux factors is the main problem for these shape and normal-

isation fits in that they lead to MINUIT focussing more on the neutrino energy spectrum and

less on the shape of the Q2
QEL distribution where the main MQEL

A information is to be found.

It has been seen that the largest portion of the fit χ2 comes from the differences in the data

and MC neutrino energy distribution bin contents and that deviations in adjacent flux factors

are responsible for these differences. It is also true that small changes to the flux factors will

induce large changes in the χ2 whilst the effect of changes to MQEL
A will be far less pronounced.

As such MINUIT is likely to work hard using the flux factors to fit the data neutrino energy

spectrum, in particular the peak flux factors where the majority of the events are located, whilst

the other fit parameters can be used to ‘fine-tune’ the minimum. Another associated problem is

that with such a large χ2 the systematic parameter penalty term becomes much less important;

large changes to the systematic parameters should penalise the statistic heavily but in this fit
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Fit II II but with beam and hadron
Configuration weights applied to MC

Best Fit HESSE Best Fit HESSE

Value Error Value Error
MQEL

A (GeV) 1.13026 0.01964 1.26526 0.02434
Eµ-Scale 1.01787 0.00119 1.01796 0.00132

Ehad-Offset (GeV) -0.070314 0.003327 -0.016892 0.010305
Background Scale 0.74427 0.04457 0.70402 0.04644

0-2 GeV Flux Scale 1.20484 0.02931 1.29007 0.03290
2-3 GeV Flux Scale 1.31674 0.02262 1.37560 0.02549
3-4 GeV Flux Scale 1.01731 0.01444 1.06653 0.01617
4-6 GeV Flux Scale 0.97623 0.01585 0.96148 0.01627

6-10 GeV Flux Scale 1.35798 0.03124 1.05899 0.02466
χ2

Nom 20227.6 15406.6
χ2

BF 244.748 212.978

Table 18: Results for data fit configuration II with and without the beam and hadron production tuning

weights applied to the MC.

Fit II but with hadronic II but with hadronic
Configuration energy cut at 200 MeV energy cut at 300 MeV

Best Fit HESSE Best Fit HESSE

Value Error Value Error
MQEL

A (GeV) 1.07011 0.01168 1.16359 0.01703
Eµ-Scale 1.01828 0.00154 1.01773 0.00101

Ehad-Offset (GeV) -0.117808 0.003637 -0.045699 0.002964
Background Scale 0.75590 0.04122 0.73210 0.04594

0-2 GeV Flux Scale 1.12290 0.02861 1.27327 0.03162
2-3 GeV Flux Scale 1.23874 0.02253 1.38142 0.02420
3-4 GeV Flux Scale 0.97000 0.01404 1.05287 0.01534
4-6 GeV Flux Scale 0.93606 0.01541 1.01324 0.01678
6-10 GeV Flux Scale 1.28169 0.03017 1.42498 0.03294

χ2
Nom 19314.6 21321.5

χ2
BF 244.169 270.391

Table 19: Results for data fit configuration II with the QEL-like sample hadronic energy cut at 200 MeV

and 300 MeV.
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can be easily compensated by very small changes in the flux factors.

Under the hypothesis that the fit primarily focusses on the neutrino energy spectrum, in par-

ticular in the peak, it is now interesting to consider the correlations of the flux factors with

the other fit parameters to see if the observed fitted parameter value deviations (as evidenced

in tables 17-19) should be expected. Figure 105 shows two-dimensional contours between a

selection of flux factors using the elliptical approximation and the results from headline fit II.

It shows that the flux factors are positively correlated with each other, as should be expected

given that the correlation matrix was put in by hand to the flux factor penalty term part of the

fit χ2. As such the subsequent figure 106 only shows the fit contours between a peak flux factor

(from 2→3 GeV) and the non-flux factor fit parameters but does illustrate the general forms of

the correlations between all of the flux factors and the remaining fit parameters.

Figure 106 shows that the flux factors are only strongly correlated, in this case anti-correlated,

with the background scale parameter and figures 103 and 104 showed that in turn the back-

ground scale is only strongly correlated with MQEL
A . Then, assuming that the muon energy

scale parameter is fairly well constrained, changes in MQEL
A can be accomodated by changes to

the hadronic energy offset, which itself is not tightly correlated with any of the other fit param-

eters. Considering these correlations it is plausible that there is a lot of play between the flux

in the energy spectrum peak, the background scale, the value of MQEL
A and the hadronic energy

offset and that the large fit χ2, coming from the flux factors and the neutrino energy spectrum,

allows for movements in all of these parameters without appreciable penalty.

The above discussion shows that the shape and normalisation fit to both the Q2
QEL and EQEL

ν

distributions is sensitive to the systematic parameters and suffers from the crude nature of the

flux factors themselves with the fit results changing beyond what may be expected, given the

returned parameter errors, when slightly different configurations are used. For a consistent

MQEL
A to be reported by the above permutations of headline fit II the systematic parameters

would need to be better understood (and hence more strongly constrained in the χ2 penalty

term) and in particular the flux factors would need to be replaced with a more sophisticated

treatment of the uncertainties in the incident neutrino flux. However, all of the fits do agree
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Figure 105: Two-dimensional fit contours for a selection of flux factors. These contours are made

using an elliptical approximation and also use the parameter correlations reported by HESSE for the

results from headline fit II (which should not be considered accurate to more than ∼10-20%). The black

point shows the best fit values and the black, red and blue ellipses show the 1σ, 2σ and 3σ contours

respectively. It should be noted that the a priori correlation coefficients between the flux factors were

put into the fit χ2 by hand.

that the value of MQEL
A should be increased in the MC from the default value of 0.99 GeV and

suggest that this increase should be between ∼10% to ∼30%.

As with the result from the configuration I fits, equation 93 notes statistical errors which are

given by the MINOS errors from headline fit II and systematic errors that are given by the

largest deviations in the measured MQEL
A value using the fits with different permutations of the

fit configuration. In this case the largest upward shift comes from the fit where the beam and

hadron production weights were applied to the MC and the largest downward shift from the fit

where the QEL-like sample was defined by a cut on the hadronic energy at 200 MeV. It should

again be noted that this statistical error contains a non-statistical component that is due to the

inclusion of the systematic parameters used in the fits (particularly the muon energy scale)
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Figure 106: Two-dimensional fit contours as a function of the 2→3 GeV flux factor and each of the

non-flux factor systematic parameters. These contours are made using an elliptical approximation and

also use the parameter correlations reported by HESSE for the results from headline fit II (which should

not be considered accurate to more than ∼10-20%). The black point shows the best fit values and the

black, red and blue ellipses show the 1σ, 2σ and 3σ contours respectively.

and likewise that this systematic error contains a statistical component due to the fact that it is

calculated using alternate fits to the data.

MQEL
A = 1.130 + 0.020

− 0.021 (stat.) + 0.135
− 0.060 (syst.) GeV (93)

8.4 Reconciling the Fit Results

The previous section presented detailed comments on each of the headline fits individually

whereas this section will try to reconcile the differences between the results obtained using the

two headline fit configurations. The various fits to the data, in particular the results quoted in

equations 92 and 93, show that in general the shape-only fits to the Q2
QEL distribution result in

a higher best fit MQEL
A than for the results of the shape and normalisation fits to both the Q2

QEL
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and EQEL
ν distributions.

In both fit types there is a large anti-correlation between MQEL
A and the muon energy scale and

the results of headline fit II show a much lower MQEL
A value and a much higher muon energy

scale value (than the results of headline fit I) in occordance with this correlation. Furthermore,

it can be seen that the anomalous local minimum results from the shape-only fit performed in

the neutrino energy slice from 2.0→3.0 GeV are in much better agreement with those returned

by the type II fits and that with this set of best fit parameter values there is a flattening of the data

over MC ratio as a function of Q2
QEL (see figure 97). However, it can also be seen from figure

97 that when absolute normalisation is applied then this set of parameter values are not capable

of filling-in the MC deficit. In the type II fits, that also consider both the E QEL
ν distribution and

normalisation information, the lower MQEL
A values and higher muon energy scales produce just

such a flattening but now the additional fit parameters (the hadronic energy offset, background

scale and flux factors), which have little effect on the shape of the Q2
QEL distribution, are used

to correct the remaining difference in normalisation. Finally the large χ2 values seen in the

type II fits, stemming from the underlying discrete nature of the flux factors, mean that these

additional ‘normalisation fixing’ parameters are all but free to move to whatever values are

necessary.

The above interpretation explains the difference between the results from fits of type I and II in

terms of the different parameter sets used in the fit, the additional normalisation and neutrino

energy distribution information used in the type II fits and the different parameter correlations

and constraints. In particular, it seems that if one could more tightly constrain (or even fix) the

muon energy scale systematic parameter then both fit types could arrive at a consistent M QEL
A

value in order to appropriately adjust the MC Q2
QEL distribution. Some additional fits were run

in each configuration to test this hypothesis; firstly the muon energy scale assumed 1σ error

was reduced from 2.0% to 1.0% or 0.5% (which are perhaps not unreasonable values given

the recent work looking at low energy muons in CalDet) and secondly fits were run where the

muon energy scale was pinned to particular values.

Table 20 shows the results from headline fit I along with fit results from identical type I fits
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but using (a) an assumed 1σ error on the muon energy scale of 1.0%, (b) an assumed 1σ error

on the muon energy scale of 0.5%, (c) a fixed muon energy scale set to the best fit value from

headline fit II and (d) a fixed muon energy scale set to a value of unity. Table 21 shows the

results from headline fit II along with fit results from identical type II fits but using (a) an

assumed 1σ error on the muon energy scale of 1.0%, (b) an assumed 1σ error on the muon

energy scale of 0.5%, (c) a fixed muon energy scale set to the best fit value from headline fit I

and (d) a fixed muon energy scale set to a value of unity. Neither HESSE nor MINOS errors are

quoted in these tables although it is the central values for each of the fit parameters that are of

interest here.

Fit MQEL
A Eµ-Scale Ehad-Offset Bg-Scale χ2

BF

Configuration (GeV) (MeV)
I 1.3862 0.9789 -32.304 0.9794 8.425

I (a) 1.3992 0.9804 -21.798 0.9591 11.869
I (b) 1.2721 0.9981 -13.473 0.9026 17.518
I (c) 1.1161 1.0179 -15.131 0.8123 15.728
I (d) 1.2574 1.0000 -13.286 0.8958 17.591

Table 20: Results for data fit configuration I with a series of tigher constraints upon the muon energy

scale. The labels (a)-(d) are defined in the above text.

Table 21 shows that reducing the size of the assumed 1σ error on the muon energy scale has

little effect on the type II fitted MQEL
A value. This is because the fit χ2 is dominated by the

flux factor-induced discontinuities in the bin contents of the neutrino energy distribution and

so the extra penalty when the muon energy scale error is reduced is negligible. Table 20 shows

that reducing the assumed error on the muon energy scale to 1% also does not have a large

effect on the type I fitted MQEL
A value. However, when the assumed error is reduced to 0.5%

there is a noticable effect on the fit I results with the best fit muon energy scale closer to unity

and the best fit MQEL
A becoming lower in accordance with the anti-correlation between these

parameters.

Encouragingly the tables do show that the two types of fit agree upon the value of M QEL
A when

the muon energy scale is fixed. In particular, when the muon energy scale is fixed to unity both
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Fit II II (a) II (b) II (c) II (d)
Configuration
MQEL

A (GeV) 1.1303 1.0852 1.0628 1.3755 1.2622
Eµ-Scale 1.0179 1.0173 1.0099 0.9789 1.0000

Ehad-Offset (MeV) -70.314 -90.812 -123.685 -89.436 -70.927
Background Scale 0.7443 0.7385 0.6824 0.5987 0.6832

0-2 GeV Flux Scale 1.2048 1.1748 1.1211 1.0042 1.1142
2-3 GeV Flux Scale 1.3167 1.2959 1.2471 1.1403 1.2365
3-4 GeV Flux Scale 1.0173 1.0076 0.9970 0.9837 1.0031
4-6 GeV Flux Scale 0.9762 0.9708 0.9869 1.0447 1.0087
6-10 GeV Flux Scale 1.3580 1.3453 1.3476 1.4028 1.3784

χ2
BF 244.748 243.984 255.186 395.963 275.734

Table 21: Results for data fit configuration II with a series of tigher constraints upon the muon energy

scale. The labels (a)-(d) are defined in the above text.

fit types return an MQEL
A value of ∼1.25 GeV and when the muon energy scale is fixed to the

best fit value from headline fit I the type II fit returns a consistent best fit MQEL
A (and vice versa).

As a final check a type II (shape and rate) fit was performed where the flux factors were all kept

constant and in this case the best fit muon energy scale was 0.982 and the best fit M QEL
A was

1.285 GeV. The results of this final type II fit show that when the fit cannot use the flux factors

to force unphysical warpings of the neutrino energy distribution the prefered parameter values

are in much better agreement with those returned by headline fit I.

8.5 Summary and Final Result

Fits for the quasi-elastic axial-vector mass were performed in two possible configurations; to

the shape of the Q2
QEL distribution (type I) and to both the shape and rate of the Q2

QEL and EQEL
ν

distributions (type II). The results of the type II fits have been discredited due to the crude

nature of the flux factor parameters and furthermore it has been seen that when either the flux

factors are fixed or the muon energy scale parameter is fixed the best fit axial-mass values from

the type II fits are brought into agreement with those returned by the type I fit.
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As such, the result of the headline type I fit is presented as the final result of the work described

in this thesis. However, due to the large anti-correlation between MQEL
A and the muon energy

scale that has been seen to influence the results of all the fits presented in this chapter, this final

result is not presented as a single number for MQEL
A but rather as a set of confidence interval

contours in the two-dimensional space of (MQEL
A -scale,Eµ-scale). Figure 107 shows the 1σ, 2σ

and 3σ confidence interval contours (calculated by looking for changes in the fit χ2 of 2.30, 6.18

and 11.83 respectively) corresponding to headline fit I where at each point on each contour the

χ2 has been minimised with respect to the other two fit parameters; the hadronic energy offset

and the background scale.
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Figure 107: 1σ, 2σ and 3σ confidence interval contours for headline fit I. At each point on each contour

the fit χ2 has been minimised with respect to the other two fit parameters; the hadronic energy offset

and the background scale. The x-axis shows the MQEL
A -scale, as used directly in the fits, and can be

converted to an MQEL
A value in GeV by multiplying by the default MC value of 0.99 GeV. The dashed

lines show ±1% changes to the muon ennergy scale about the best fit point.

It can be seen from figure 107 that both the 1σ and 2σ contours can be closed into an elliptical

shape but that this is not the case for the 3σ contour. In the case of the 3σ contour the unusual

shape is very similar to that shown in figure 99 and there is not a sufficient change in χ2
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for this contour to be closed into an elliptical shape. Instead, this contour ranges-out in a

direction consistent with the anti-correlation between these fit parameters and around the region

of parameter space suggested by the best fit results from the type II fits.

As such the type II results are not excluded at 3σ although the nominal MC values, which in

the parameter space of figure 107 occur at (1.0,1.0), are excluded at the 3σ confidence level.

The best fit axial mass value is 1.386 GeV corresponding to a muon energy scale of 0.979 and

it can be seen from the ±1% changes to the muon energy scale lines from figure 107 that the

muon energy scale would have to be understood to a much higher level of accuracy for the

value of MQEL
A to be tightly constrained.

8.6 Improvements for the Future

The potential improvements for this measurement come in three main forms; improvements

to the fitting method, increased understanding of the systematic parameters and the use of

additional sources of information.

A very flexible and robust fit has been developed and the major advance that could now aid

the results is a better treatment of the uncertainty in the incident neutrino flux. It has been

demonstrated that the main problem with the shape-only fits to the Q2
QEL distribution is the anti-

correlation between MQEL
A and the muon energy scale. It was hoped that by additionally fitting

the EQEL
ν distribution this correlation could be reduced however any fit to the neutrino energy

spectrum must be able to account for the uncertainties in the neutrino flux incident on the ND.

There are two main possibilities for this improvement; a more sophisticated treatment of the

existing flux factors or replacing them with the parameters used in the MC tuning procedure

mentioned in chapter 6:

• Interpolated flux factors: the main problem with the existing flux factor parameters

is their discrete nature; moving adjacent pieces of the true neutrino energy spectrum

creates a discontinuity and when considering the reconstructed neutrino energy spectrum

such a discontinuity is not totally smeared out but leaves a residual sinusoidal warping.

One relatively simple extension would be to interpolate between the scale factors at the
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centres of adjacent flux factors and then apply a weight to an event based on the value

of this interpolated scale at the value of true neutrino energy taken by the event. Such a

procedure might smooth the effect on the reconstructed neutrino energy distribution of

deviations between adjacent flux factors.

• MC tuning parameters: a second and more sophisticated option would be to include

the beam and hadron production weighting parameters, as described in chapter 6, directly

into the fit for MQEL
A . This option would make the fit more complicated but has the

advantage that the a priori errors on the beam optics parameters (although not the hadron

production parameters) are known and that all of the parameters have a more physically

meaningful interpretation than scaling pieces of the true neutrino energy distribution.

In general an increased understanding of all of the systematic parameters would allow for

tighter assumed 1σ errors to be used in the construction of the penalty term to the fit χ2 which

may help to remove some of the degeneracy between the various sets of fit parameter results.

The following presents some possible avenues for further work with the systematic parameters:

• Muon energy scale: the assumed 1σ error, used in the penalty term for the fit χ2, for

this parameter was calculated using the full CC-like event sample. It is likely that the

uncertainty in the muon energy is smaller for the QEL-like event sample where there are

no large hadronic systems to confuse the muon tracking and vertex finding. This effect

was demonstrated in chapter 6 when the ND kinematic resolutions were discussed and

some further analysis could allow for a smaller assumed 1σ error to be evaluated.

The quoted uncertainty of 2% was calculated using events with both stopping and exiting

muons together and it could be that the negative effect of a loss in sample statistics, when

only events with stopping muons are used in the analysis, could be offset by a reduced

uncertainty in the muon energy scale for muons whose momentum is measured by range

in the detector. The uncertainty on the range-based measurement could be reduced by

further analysis of CalDet data, such as mentioned in chapter 7, or by a more accurate

accounting for the mass of the detector.

• Hadronic energy offset: MINOS has recently been updating it’s modelling of intra-

nuclear rescattering and in particular a reweighting procedure has been developed to
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facilitate detailed studies of the effects of model (and model parameter value) changes.

This reweighting opens the possibility of detailed studies of the effect of FSIs on the

QEL-like event sample and some of the more important parameters, for the MQEL
A mea-

surement, could be included directly as fit parameters to provide a more physically ac-

curate way of incorporating the uncertainty in the energy of the hadronic system.

• Inelastic background scale: it was mentioned previously that the background scale was

a crude way to consider the uncertainties in the level of the RES and DIS cross sections

and could not address uncertainties in the cross section shapes as a function of Q2 and

Eν. The fit could be adapted to use more physically meaningful parameters such as the

resonant event axial-vector mass, M1π
A , and changes to the parameters describing the

modified KNO scaling used in the modelling of DIS events.

The final area in which the MQEL
A analysis could be improved is in the utilisation of additional

sources of information. The analysis has not yet considered exiting muons, events from alter-

nate beam configurations or anti-neutrino interactions. The following list discusses the possible

implications of using such information:

• Exiting muons: uncertainties in the calibration of the magnetic field meant that inter-

actions where the produced muon exited the detector (and where the momentum was

measured by curvature) were not considered for this analysis. MINOS is currently eval-

uating a new calibration of the field and, when it is sufficiently understood, in the future

the exiting muon events could also be used in the MQEL
A extraction. This will benefit the

analysis both by increasing the sample statistics and by adding events with higher recon-

structed neutrino energies (there are virtually no stopping muon events with E reco
ν >10

GeV) and higher reconstructed squared four-momentum transfers.

• Alternate beam configurations: MINOS has taken data in a number of different beam

configurations and in particular there are substantial datasets that have been collected

using the higher energy L100z200i and L250z200i configurations. Firstly it would be

interesting to repeat the MQEL
A extraction for each of these independant datasets although

the statistical error on the measurement would be larger due to the reduced exposures

(compared to the L010z185 configuration) as well as the reduced fraction of true QEL
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events (the DIS cross section dominates as the neutrino energy increases). A second

use for this data is to provide further constraints on the flux in the fits; the different

beam configurations produce neutrinos whose parent hadrons come from different re-

gions of hadron (pz,pT )-space. Data from all the beam configurations could be fitted

for a single MQEL
A (and single systematic parameters) but with the fitted flux parameters

constrained by the information from the different beam configurations. The current flux

factors would probably not work in this case but a more sophisticated treatement, such

as via the beam optics and hadron production parameters, could be appropriate for such

a fit.

• Anti-neutrino interactions: in the current analysis anti-neutrino interactions are re-

moved using a cut on the muon charge-sign. It would be interesting to repeat the M QEL
A

extraction for the anti-neutrino sample to check for consistenty and it could also be ad-

vantageous to include these events in a combined analysis for extra statistical power.

However, both the inclusive and exclusive CC cross sections for anti-neutrino interac-

tions are not well constrained by experimental data and the large uncertainties could

result in large errors on the fit results.
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9 Conclusion

The field of neutrino physics is a fascinating and incredibly active area of particle physics re-

search which offers some unique insights into the way our universe works. In the last decade

the discovery of neutrino oscillations confirmed that neutrinos must possess mass and high pre-

cision measurements of some of the parameters governing these oscillations have been made.

The MINOS experiment continues to reduce the uncertainty on the parameters governing at-

mospheric neutrino oscillations and is in a good position to set a competitive limit on, or even

discover, the sub-dominant oscillation of muon neutrinos to electron neutrinos.

All measurements of neutrino oscillations are underpinned by our knowledge of the way neu-

trinos interact with matter and as the next generation of neutrino experiments is born the un-

certainties on the cross sections for neutrino scattering will need to be significantly reduced.

The MINOS Near Detector records a huge rate of neutrino interactions and has collected well

over three million events since the start of NuMI beam operation in 2005. This large data sam-

ple provides MINOS with an opportunity to make some of the most precise measurements of

neutrino interaction cross sections, in the few-GeV regime, that have ever been made.

Of particular interest is neutrino quasi-elastic scattering which is not only the most prominent

interaction type in the few-GeV regime (where the next generation of neutrino experiments will

operate) but also can probe the axial nature of the weak interaction with nucleons and provide

a window into the highly complex world of nuclear effects. Furthermore, there is considerable

uncertainty in the exclusive cross section for quasi-elastic scattering with a variety of previous

measurements disagreeing by up to 30%.

Theoretically quasi-elastic scattering is described using a number of nucleon form factors

which describe how much of each possible type of weak current contributes to a scatter as

a function of the squared four-momentum transfer between the leptonic and hadronic vertices.

Experimental observations tightly constrain all but one of these form factors; the axial-vector

form factor. When parameterised using a dipole form, the single unknown parameter in the

expression for the axial-vector form factor (and hence in the cross section for quasi-elastic

scattering) is the axial-vector mass, MQEL
A , and the Q2 evolution of which can only be extracted
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using neutrino scattering data.

A method to select a quasi-elastic enriched sample of events from the MINOS Near Detector

was presented and a highly versatile and robust fitting procedure was developed to use the

Q2
QEL and EQEL

ν distributions of the quasi-elastic enriched event sample to extract MQEL
A from

MINOS data. The fit includes a number of the most important systematic uncertainties directly

and has been shown to perform well in mock data studies. The fit can be run in two headline

configurations and the results from fits to the Near Detector data were presented for each of

these configurations.

The fit results obtained using these alternate configurations were shown not to agree and it was

demonstrated that the fits to both the Q2
QEL and EQEL

ν distributions suffered from an insufficient

treatment of the uncertainties in the neutrino flux incident on the Near Detector. As such the

shape of the Q2
QEL distribution was fit to result in an axial-vector mass value of 1.386 GeV

with a corresponding muon energy scale value of 0.979. This best fit result is 40% above the

nominal MINOS Monte Carlo value of 0.99 GeV although in this fit configuration the large

anti-correlation between the axial-vector mass and the muon energy scale meant that the result

was presented in the form of a set of two-dimensional confidence interval contours which span

a fairly large range of MQEL
A values.

A number of potential improvements to the fitting method were proposed and, given that the

measurement is not limited by the statistical error, the focus of further work will be to improve

the understanding and treatment of the systematic parameters. As the fitting method becomes

more sophisticated and robust the huge number of neutrino interactions recorded in the MINOS

Near Detector may provide the level of sensitivity required for MINOS to start to address some

of the more elusive questions in the modelling of quasi-elastic scattering; is the dipole approx-

imation for the axial-vector form factor correct and can low Q2 nuclear effects be understood

and accurately modelled?

Low energy neutrino-nucleus scattering is an engrossing and highly rewarding area of research

that requires a detailed understanding of phenomenology and input from a great variety of
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particle physics experiments. Neutrino-nucleus interaction cross sections need to be understood

at an ever increasing level of accuracy to facilitate the next generation of neutrino oscillation

measurements and the author has no doubt that they will continue to confound and intrigue

particle physicists for many years to come.
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A Apparent Fit Bias Studies

This appendix gives further details of the studies into the apparent fit bias that was presented in

chapter 7. In this previous discussion the apparent bias in the fit results, illustrated in a number

of fits to a mock data sample, was shown not to be an intrinsic bias in the fit method but rather

due to statistical differences between the various MC samples used. It was also mentioned that

the full MC sample had been sub-divided into four statistically independant sub-samples and

basic MQEL
A shape-only fit results using two of these sub-samples (one as mock data with the

other as MC and vice versa) were presented.

These results used a number of randomly inputted mock data MQEL
A -scales and showed that (a)

there was a consistent bias in the extracted MQEL
A -scale no matter what the input mock data

scale factor and (b) that when the two sub-samples were reversed then the apparent fit bias was

reversed no matter what the input mock data scale factor. These two observations implied that

it was statistical differences between the sub-samples that were being ‘fit-out’ in addition to

the input mock data MQEL
A -scale and that the fit was not inherently biased.

Of the four statistically independant sub-samples only two were used in the results shown in

chapter 7. This appendix will show the statistical differences that drive the observed bias in the

fit results when these two sub-samples are used and, in addition, present results obtained using

the remaining two MC sub-samples.

Of the four sub-samples one was always used in the fits as the MC whilst each of the remaining

three were used as sets of mock data. Shape-only fits were performed, using the M QEL
A -scale

as the single fitted parameter (as described in the apparent bias study section of chapter 7), to

the nominal Q2
QEL distributions of each of the three mock data samples and figures 108 through

110 show the un-smeared nominal, smeared nominal and best fit MC Q2
QEL distributions along

with the mock data Q2
QEL distribution for each of the mock data samples. Note that mock data

sample 3 was used to give the results shown in figure 85 in chapter 7.
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Figure 108: Reconstructed Q2
QEL for the MC and mock data used in the apparent bias studies with mock

data sub-sample 1. The left-hand figure shows the mock data in black points, the smeared nominal MC

in blue and the best fit MC in red. The pink curve shows the un-smeared nominal MC and it can be seen,

as expected, that this is almost identical to smeared MC. The three MC curves are each normalised to

the integral of the mock data sample. The right-hand figure shows the ratios of the mock data to each of

the three MC curves.
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Figure 109: Reconstructed Q2
QEL for the MC and mock data used in the apparent bias studies with mock

data sub-sample 2. The left-hand figure shows the mock data in black points, the smeared nominal MC

in blue and the best fit MC in red. The pink curve shows the un-smeared nominal MC and it can be seen,

as expected, that this is almost identical to smeared MC. The three MC curves are each normalised to

the integral of the mock data sample. The right-hand figure shows the ratios of the mock data to each of

the three MC curves.
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Figure 110: Reconstructed Q2
QEL for the MC and mock data used in the apparent bias studies with mock

data sub-sample 3. The left-hand figure shows the mock data in black points, the smeared nominal MC

in blue and the best fit MC in red. The pink curve shows the un-smeared nominal MC and it can be seen,

as expected, that this is almost identical to smeared MC. The three MC curves are each normalised to

the integral of the mock data sample. The right-hand figure shows the ratios of the mock data to each of

the three MC curves.

In figures 108 through 110 the black mock data sample points can be compared to the blue

nominal MC curves to see the statistical differences in the Q2
QEL distributions between these

sub-samples. The blue nominal MC curves can also be compared to the red best fit MC curves

to see that in each case the single fit parameter, the MQEL
A -scale, has been modified from it’s

nominal value of unity in order to force better agreement between the shape of the MC and the

mock data. Table 22 lists the χ2 values of each of the mock data samples as compared to the

nominal and best fit MC as well as the value of the MQEL
A -scale at best fit. It can be seen that in

all cases the best fit MC results in a smaller χ2 value than the nominal MC.

In the case of mock data sample 1 the largest difference is seen in the 0.1→0.2 GeV2 bin

where the nominal MC lies above the nominal mock data. The fit to mock data sample 1 has

decreased the value of MQEL
A in order to reduce the MC contents in this bin and provide a better

description of the mock data. For mock data sample 2 the MC can be seen to have a deficit in

both the 0.1→0.2 and 0.2→0.3 GeV2 bins and again the fit has reduced the value of MQEL
A to

force better agreement between the two samples. The most prominent difference between the
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Mock Data Sample χ2 to Nominal MC χ2 to Best Fit MC Best Fit MQEL
A -Scale

1 13.474 10.756 0.981
2 14.303 10.452 0.976
3 61.656 35.447 0.945

Table 22: Fit results for bias studies using four statistically independant sub-samples of MC. One of

the sub-samples is used as a MC sample and the other three as mock data samples. The table shows

the calculated χ2 between the nominal MC sample and each of the mock data samples as well as the χ2

value after a single parameter fit is performed for the MQEL
A -scale parameter. The final column shows

the value of the axial-mass scale factor at best fit.

MC and the various mock data sets is shown in figure 110 where mock data sample 3 can be

seen to have a significant excess in the 0.1→0.2 GeV2 bin. As with the previous mock data

samples, the fit uses a reduction in MQEL
A to ‘fit-out’ some of this difference but in this case the

reduction is larger and corresponds to a decrease of almost 6%.

Chapter 7 showed the results of 20 single parameter fits using the MC sample and mock data

sample 3 where the first fit corresponded to the nominal mock data and in the remaining 19

fits the value of MQEL
A had been randomly selected (between ±20%) and applied to the mock

data prior to fitting. In all 20 cases the best fit MQEL
A -scales were seen to have a consistent bias

relative to the input mock data MQEL
A -scale and furthermore when the samples were reversed

(with mock data sample 3 used as MC and the MC sample used as mock data) the bias in the

extracted MQEL
A -scales was reversed. Figures 111 through 113 show similar results for mock

data samples 1 and 2 along with the plots shown previously for mock data sample 3.

Given the assertation that the apparent fit bias is due to statistical differences between the

four sub-samples, figures 111 through 113 mights be expected to show error bars for the best

fit minus truth points (where the errors correspond to those on the fitted MQEL
A -scale value

returned by the MIGRAD routine) that are large enough to encompass zero. This is not the case

because, as seen in figures 108 through 110, there are differences between the samples that fall

outside the size of the statistical errors on the bin contents. In particular the 0.1→0.2 GeV2 bin

in figure 110 shows a (somewhat unlucky) ∼3σ deviation between the samples and explains

the larger distance between the error bars and lines at zero in figure 113.
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Figure 111: Best fit minus truth MQEL
A -scale values for 20 single parameter fits (indexed on the x-axis)

to mock data sample 1 with randomly generated MQEL
A -scale input values and 20 fits with the mock data

and MC samples reversed.
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Figure 112: Best fit minus truth MQEL
A -scale values for 20 single parameter fits (indexed on the x-axis)

to mock data sample 2 with randomly generated MQEL
A -scale input values and 20 fits with the mock data

and MC samples reversed.

 Fit Number 
0 2 4 6 8 10 12 14 16 18 20

 B
es

t F
it 

- 
T

ru
th

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01
 Scales QEL

ABest Fit M

 Fit Number 
0 2 4 6 8 10 12 14 16 18 20

 B
es

t F
it 

- 
T

ru
th

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Reversed Samples 

Figure 113: Best fit minus truth MQEL
A -scale values for 20 single parameter fits (indexed on the x-axis)

to mock data sample 3 with randomly generated MQEL
A -scale input values and 20 fits with the mock data

and MC samples reversed.
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One further thing to note when considering figures 111 through 113 is that the apparent bias is

not perfectly reversed when the samples are reversed and, in particular, slightly smaller upward

shifts in MQEL
A are found in the reversed sample fits. This is not evidence for a smaller, but real,

bias in the fit procedure but rather reflects the fact that whilst changes to the single fit parameter,

the MQEL
A -scale, increase or decrease the weights given to the true νµ−CC QEL events present

in the MC QEL-like sample they do not affect the non-QEL background events. As such, an

identical magnitude change in MQEL
A will produce slightly different results depending upon the

direction of the change.

This appendix has presented further evidence to justify the statement that the M QEL
A fitting

procedure that has been developed is not intrinsically biased but rather that the apparent biases

seen in the mock data fit results are due to differences between the various MC sub-samples

used. In this appendix four statistically independant sub-samples of MC were shown to have

differences in their Q2
QEL distributions and it was shown that:

• Fits to the various mock data sub-samples do not result in a consistent bias across the

samples but rather the size and direction of the apparent bias is in accordance with

‘fitting-out’ the differences between each mock data sample and the MC.

• Fits to the same mock data sample but with different inputted MQEL
A -scale values give a

consistent bias indicating that the bias does not depend upon the value of MQEL
A applied

to the mock data before each fit but rather is directly related to the differences between

the underlying nominal mock data sample and the MC.

• For each set of fits to a single mock data sample the apparent bias is reversed under a

reversal of the mock data and MC samples showing again that the observed bias in the

fit results is a function of the underlying differences between each mock data sample and

the MC rather than being an inherent feature of the fitting process.
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B Correlation Coefficients

This appendix presents correlation coefficiencts for the two headline fits to the data presented

in chapter 8. The correlation coefficients reported below are those returned by the HESSE

routine and, following the discussion presented in chapter 7, they should not be considered

accurate to better than 10-20%. The correlation coefficients are presented in matrix form with

rows and columns labelled by the numbers 1-9 which denote the fit parameters according to

the following:

1. MQEL
A -scale

2. Eµ-scale

3. Ehad-offset

4. Inelastic background scale

5. 0 < E true
ν < 2 GeV flux factor

6. 2 ≤ E true
ν < 3 GeV flux factor

7. 3 ≤ E true
ν < 4 GeV flux factor

8. 4 ≤ E true
ν < 6 GeV flux factor

9. 6 ≤ E true
ν < 10 GeV flux factor

where, as with the tables of results from chapter 8, the two higher energy flux factors have been

neglected.

Corrleation Coefficicents for Headline Fit I to the ND Data

1 2 3 4

1 1.0 −0.65 0.44 −0.48

2 −0.65 1.0 −0.06 −0.06

3 0.44 −0.06 1.0 −0.22

4 −0.48 −0.06 −0.22 1.0
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Corrleation Coefficicents for Headline Fit II to the ND Data

1 2 3 4 5 6 7 8 9

1 1.0 −0.41 0.38 −0.45 0.20 0.03 −0.06 −0.02 0.09

2 −0.41 1.0 0.05 0.05 0.26 0.30 0.09 −0.07 0.01

3 0.38 0.05 1.0 0.02 0.17 0.17 0.13 0.07 0.06

4 −0.45 0.05 0.02 1.0 −0.87 −0.78 −0.67 −0.61 −0.65

5 0.20 0.26 0.17 −0.87 1.0 0.86 0.75 0.63 0.66

6 0.03 0.30 0.17 −0.78 0.86 1.0 0.72 0.67 0.66

7 −0.06 0.09 0.13 −0.67 0.75 0.72 1.0 0.56 0.60

8 −0.02 −0.07 0.07 −0.61 0.63 0.67 0.56 1.0 0.50

9 0.09 0.01 0.06 −0.65 0.66 0.66 0.60 0.50 1.0
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