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Introduction

This thesis is focused on an inclusive search of the tt̄→ 6ET +jets decay channel
by means of neural network tools in proton antiproton collisions at

√
s = 1.96 TeV

recorded by the Collider Detector at Fermilab (CDF).
At the Tevatron pp̄ collider top quarks are mainly produced in pairs through

quark-antiquark annihilation and gluon-gluon fusion processes; in the Standard
Model description, the top quark then decays to a W boson and a b quark almost
100% of the times, so that its decay signatures are classi�ed according to the W
decay modes. When only oneW decays leptonically, the tt̄ event typically contains
a charged lepton, missing transverse energy due to the presence of a neutrino
escaping from the detector, and four high transverse momentum jets, two of which
originate from b quarks.

In this thesis we describe a tt̄ production cross section measurement which
uses data collected by a �multijet� trigger, and selects this kind of top decays by
requiring a high-PT neutrino signature and by using an optimized neural network
to discriminate top quark pair production from backgrounds.

In Chapter 1, a brief review of the Standard Model of particle physics will be
discussed, focusing on top quark properties and experimental signatures.

In Chapter 2 will be presented an overview of the Tevatron accelerator chain
that provides pp̄ collisions at the center-of-mass energy of

√
s = 1.96 TeV , and

proton and antiproton beams production procedure will be discussed.
The CDF detector and its components and subsystems used for the study of

pp̄ collisions provided by the Tevatron will be described in Chapter 3.
Chapter 4 will detail the reconstruction procedures used in CDF to detect

physical objects exploiting the features of the di�erent detector subsystems.
Chapter 5 will provide an overview of the main concepts regarding Arti�cial

Neural Networks, one of the most important tools we will use in the analysis.
Chapter 6 will be devoted to the description of the main characteristics of the

tt̄→ 6ET + jets decay channel used to train our neural network to discriminate the
top pair production from background processes. We will discuss the event selection
method and the tecnique used for background prediction, that will rely on b-jets
identi�cation rate parameterization.

Finally, Chapter 7 will provide a description of the �nal data sample and a
detailed discussion of the systematic uncertainties before determining the cross
section measurement by means of a likelihood maximization.





Chapter 1

Theoretical Overview

Our present understanding of the fundamental constituents of matter and their
interactions is expressed in a theory called the Standard Model. The Standard
Model was developed during the 1960's and 70's and has been extensively tested
experimentally. Whenever a prediction for an experimental observable could be
made by the Model, excellent agreement with experiment was found. The Stan-
dard Model integrates two gauge theories: Quantum Chromodynamics (QCD),
describing the strong interactions, and the electroweak (EW) theory of Glashow,
Weinberg and Salam, which uni�es the weak and the electromagnetic interactions.
These are both quantum �eld theories, and therefore the Standard Model is con-
sistent with both quantum mechanics and special relativity.

1.1 The Standard Model of particle physics

The Standard Model [1, 2, 3, 4] is a quantum �eld theory based on the gauge
symmetry group SU(3)C × SU(2)L × U(1)Y . The �rst gauge group SU(3)C is
related to the description of the strong interactions which a�ect quarks only and
are mediated by gluons. SU(3)C de�nes the Quantum Chromo Dynamics (QCD)
theory. On the other hand, SU(2)L × U(1)Y is the underlying symmetry which
provides a theoretical description of electromagnetic and weak interactions.

According to the Standard Model there are two families of elementary par-
ticles (i.e. particles which do not have any internal structure): fermions (with
spin 1/2) and bosons (with spin 1). Fermions are subject to interactions mediated
through the exchange of gauge bosons. There are 12 elementary fermions: the 6
ones interacting by the electroweak force only are named leptons and the 6 ones
interacting by both the electroweak and the strong force are named quarks. Lep-
tons and quarks are further organized into three families, called generations: for
each generation, particles have their corresponding anti-particles having the same
properties as the partner particles but opposite charges (the charge of the particle
is the quantum number that de�nes the coupling of the particle to the electroweak
force carriers).

The �rst generation comprises the electron e−, with electric charge Q = −1,
its corresponding neutrino νe with Q = 0, and two types (conventionally named
��avours�) of quarks, the up and down, and their corresponding antiparticles (e+,
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ν̄e, ū and d̄). The up and down quarks, denoted by u and d, carry fractionary elec-
tric charges Qu = 2

3
and Qd = −1

3
respectively. In addition to the electric charge,

quarks also carry an additional quantum number related to strong interaction, the
color, labeling the three degenerate indipendent state of the fundamental triplet
(anti-triplet) of exact SU(3)C �color� simmetry in which quarks (anti-quarks) live.
Since �colored� particles are not observed in nature, quarks must be con�ned into
color-neutral composite particles, called hadrons, which are categorized as baryons
and mesons depending on their quark composition: baryons are basically consti-
tuted by three �valence� quarks, like proton and neutron: p ∼ uud and n ∼ udd.
On the other hand, mesons are composed by a quark-antiquark pair, for instance
pions π+ ∼ ud̄ and π− ∼ dū.

Second and third generation particles have identical properties to �rst genera-
tion ones, but di�erent masses.

Interactions are mediated by gauge particles: the carrier of the electromagnetic
force is the photon γ, which is massless and chargeless. The weak force is mediated
by three massive vector bosons: W± and Z0, with charge Q = ±1 and 0 respec-
tively. The strong force among quarks is mediated by the eight gluons gα, which
are an octet of adjoint representation in color space; each gluon is massless and
chargeless and has the possibility of interacting with other gluons as well as with
quarks. Gravitational interactions are not part of the Standard Model framework.
A spin 2 graviton boson is supposed to be the carrier of the gravitational force but
has never been observed.

1.1.1 Quantum Electrodynamics

Elementary particles are spin-1
2
fermions: in absence of gauge �elds their dy-

namics is described by the Dirac equation and the corresponding Lagrangian:

LDirac = Ψ̄(x)(i∂µγ
µ −m)Ψ(x) (1.1)

LDirac is invariant under the following global U(1) transformation, acting on the
�elds and their derivatives:

Ψ → eiQθΨ Ψ̄ → e−iQθΨ̄ ∂µΨ → eiQθ∂µΨ (1.2)

It is possible to consider a local transformation of the same kind by allowing the
parameter θ in Eq. 1.2 to have a dependence on the space-time point x; but by
doing so the invariance of the Lagrangian in Eq. 1.1 is lost.

We can restore the invariance under local U(1) transformations of the type
Ψ → ΨeiQθ(x) if we introduce an additional boson �eld Aµ(x), a gauge vector
associated to the photon, interacting with the �eld Ψ and whose transformations
compensate the non-invariant terms in the Lagrangian. In this way, the U(1) gauge
invariant Lagrangian of Quantum Electrodynamic (qed) can be written as:

LQED = Ψ̄(x)(iDµγ
µ −m)Ψ(x)− 1

4
Fµν(x)F

µν(x) (1.3)

where we introduced the so called covariant derivative Dµ, de�ned as follows:

DµΨ = (∂µ − ieQAµ)Ψ (1.4)
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Figure 1.1: The three families of elementary particles in the Standard Model.

that contains the interaction term between the photon and fermions, and the �eld
strength tensor Fµν , de�ned by:

Fµν = ∂µAν − ∂νAµ (1.5)

in photon kinematical term of Eq. 1.3.

1.1.2 Electroweak Theory

The Electroweak theory uni�es the weak isospin non-Abelian group SU(2)L

acting on left-handed fermions and the weak hypercharge (Abelian) group U(1)Y

in SU(2)L×U(1)Y . Introducing the Pauli matrices σi with i = 1, 2, 3 we can write
the four generators of SU(2)L×U(1)Y as Ti = σi

2
coming from SU(2)L and Y

2
from

U(1)Y . The commutation relations of the four group generators are the following:

[Ti, Tj] = iεijkTk; [Ti, Y ] = 0; i, j, k = 1, 2, 3. (1.6)

Left-handed fermions are SU(2)L doublets:

fL → ei~T~θfL; fL =

(
νL

eL

)
,

(
uL

dL

)
, ... (1.7)

while right-handed fermions transform as singlets:

fR → fR; fR = eR, uR, dR, .... (1.8)
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Fermions T T 3 Q Y
νL 1/2 1/2 0 −1
eL 1/2 −1/2 −1 −1
eR 0 0 −1 −2
uL 1/2 1/2 2/3 1/3
dL 1/2 −1/2 −1/3 1/3
uR 0 0 2/3 4/3
dR 0 0 −1/3 −2/3

Table 1.1: Fermion quantum numbers for the �rst generation in the Standard
Model.

Fermions quantum numbers coming from the two groups are related to each
other and to charge by the following equation:

Q = T3 +
Y

2
. (1.9)

The number of associated gauge bosons of the model is equal to the number of
the symmetry group generators, so we have four bosons: W i

µ (i = 1, 2, 3) and Bµ,
associated to SU(2)L and U(1)Y respectively.

In order to write the Lagrangian for the electroweak sector of the Standard
Model we can follow the same procedure used previously for the Quantum Elec-
trodynamics, building the model around the conservation of the weak isospin and
weak hypercharge under local gauge transformations. We can thus change the
SU(2)L × U(1)Y symmetry from global to local and replace the �eld derivatives
with their corresponding covariant derivatives. For a generic fermion �eld f , we
can de�ne the covariant derivative as follows:

Dµf =

(
∂µ − ig ~T · ~Wµ − g′

Y

2
Bµ

)
f (1.10)

where g and g′ are the coupling constants associated to SU(2)L and U(1)Y , respec-
tively.

Similarly to QED the electroweak Lagrangian includes kinetic terms for the
gauge �elds:

L = −1

4
W i

µνW
µν
i − 1

4
BµνB

µν (1.11)

where the �eld strength tensors are de�ned as follows:

W i
µν = ∂µW

i
ν − ∂νW

i
µ + gεijkWµjWνk

Bµν = ∂µBν − ∂νBµ (1.12)

where i, j, k are indeces of vector components in the adjoint representation of
SU(2)L.

The gauge invariant interactions and the fermion kinematics are generated by
f̄ iDµγ

µf terms in the Lagrangian, while the physical gauge bosons �elds W±
µ , Zµ
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Figure 1.2: The Higgs potential, and a pictorial representation of the spontaneus
symmetry breaking mechanism.

and Aµ can be obtained calculating the electroweak interaction eigenstates, that
are found to be:

W±
µ =

W1µ ∓ iW2µ√
2

Zµ = W3µ cos θ −Bµ sin θ

Aµ = W3µ sin θ +Bµ cos θ (1.13)

where θ is the weak mixing angle.
The gauge invariance of the electroweak Lagrangian is complicated by the ob-

served non-zero mass of the physical gauge bosons �elds W± and Z0, carriers of
the weak force. In fact mass terms like M2

WWµW
µ, M2

ZZµZ
µ and m2

f f̄f cannot
be added to the derived Lagrangian, since they explicitly violate SU(2)L × U(1)Y

gauge invariance.
A method called Higgs Mechanism, based on spontaneous symmetry breaking,

is then used to solve the mass generation problem and will be brie�y described.

Spontaneous symmetry breaking

The spontaneous symmetry breaking happens when the Lagrangian describing
the dynamics of a physical system has a symmetry that is not preserved by the
system ground states.

Given a gauge theory based on a local invariance with respect to a symmetry
group G, and beingH⊂G the symmetry group of the vacuum state, with dim(G) =
N and dim(H) = M , the general formulation of the Goldstone theorem states
that N −M massless bosons will be absorbed by N −M massive vector bosons.
Therefore, in the SU(2)L × U(1)Y , where dim(G) = 4 and H = U(1)em, three
vector bosons will realize the desired mass spectrum. This mechanism requires
the introduction of the Higgs �eld, a doublet of complex �elds: three of its four
degrees of freedom will be spent for the longitudinal polarization states of the
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massive bosons. The remaining degree of freedom is associated to the presence of
the undetected Higgs particle, H0.

The result of this theoretical environment is that the spontaneous symmetry
breaking mechanism is responsible for the reduction of the symmetry group of the
theory from SU(2)L × U(1)Y to U(1)em, the latter being related to the electric
charge conservation only.

The simplest Lagrangian for the SU(2)L×U(1)Y group manifesting spontaneous
symmetry breaking can be written as:

LSSB = (DµΦ)†(DµΦ)− V (Φ)

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 λ > 0 (1.14)

where Φ =
(

φ+

φ0

)
is a complex doublet with hypercharge Y (Φ) = 1, and V (Φ) is the

simplest renormalizable potential we can choose. If we choose (−µ2) < 0, then the
minimum of the potential is realized on a circle of radius v =

√
µ2/λ (see Fig. 1.2),

and

| < 0|Φ|0 > | =
(

0

v/
√

2

)
(1.15)

As a consequence of this choice, the lowest energy state of the system has a vacuum
expectation value which no longer re�ects the symmetry of the potential V (Φ), and
the physical spectrum is then realized by performing �small oscillations� around
the vacuum state. By parameterizing Φ(x) as

Φ(x) = exp

(
i
~ξ(x)~σ

v

)(
0

(v +H(x))/
√

2

)
(1.16)

and eliminating the unphysical �elds ~ξ(x) by means of gauge transformations, the
mass spectrum can be obtained from the following terms of LSM :

(DµΦ′)†(DµΦ′) =
g2v2

4
W+

µ W
−µ +

1

2

(g2 + g′2)v2

4
ZµZ

µ + . . .

V (Φ′) =
1

2
2µ2H2 + . . .

LY W = λe
v√
2
ē′Le

′
R + λu

v√
2
ū′Lu

′
R + λd

v√
2
d̄′Ld

′
R + . . . (1.17)

The tree level mass predictions for gauge and Higgs bosons are then the following:

MW±
µ

=
gv

2

MZµ =

√
g2 + g′2v

2
MAµ = 0

MHiggs =
√

2λv (1.18)

where

v =

√
µ2

λ
(1.19)
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is determined from the muon decay: v = (
√

2GF )−1/2 ∼ 246 GeV and �xes the
scale of the spontaneous symmetry breaking.

This mechanism is called the Higgs mechanism and gives rise to mass terms
for W±, Z, as well as for quarks and leptons preserving the gauge invariance of
the theory, at the cost of introducing a new scalar particle, not yet experimentally
observed, the Higgs boson, whose mass and self-interaction are not theoretically
determined.

1.1.3 Quantum Chromo Dynamics

The gauge theory for strong interactions is based on SU(3)C , which is a non
Abelian Lie group generated by color transformations. The Quantum Chromo
Dynamics invariant Lagrangian can be built similarly to the qed one, with the
di�erence that the SU(3)C symmetry will require the color to be conserved. Since
the gauge group is non Abelian, this will cause the bosons mediating the interac-
tion, the gluons, to posses color charge and to interact among themselves as well
as with quarks.

Moreover, the additional gluon-gluon interactions cause the strong coupling
constant αS to have a qualitatively di�erent behaviour with the interaction mo-
mentum transfer scale with respect to the QED coupling constant αQED.

We can introduce the qcd covariant derivative:

Dµq =

(
∂µ − igs

λα

2
Aα

µ

)
q (1.20)

where

q =

q1q2
q3

 (1.21)

are the quark �elds, gs is the strong coupling constant, λα

2
are SU(3) generators

given by 3× 3 traceless hermitian matrices, and Aα
µ are gluon �elds, α = 1, ..., 8.

Then the qcd Lagrangian can be written as:

LQCD =
∑

q

q̄(x)(iDµγ
µ −mq)q(x)−

1

4
Fα

µνF
µν
α (1.22)

where the gluon �eld strength tensors are de�ned as follows:

Fα
µν(x) = ∂µA

α
ν (x)− ∂νA

α
µ(x) + gsf

αβγAµβAνγ (1.23)

and the related term in Eq. 1.22 provides three and four gluon interaction vertices.
In expression 1.23, gS, the strong coupling constant (which is usually denoted

as αS =
g2

S

4π
), is found to decrease as the interaction energy scale increases, due to

vacuum polarization e�ects induced by gluon self-interactions:

αS(q2) =
4π(

11− 2
3
Nf (q2)

)
ln
(

−q2

Λ2
QCD

) (1.24)



10 Theoretical Overview

In eq. 1.24, ΛQCD is the qcd energy scale, Nf (q
2) is the number of quark �avours

that can be pair-produced at a given energy (i.e. the number of quark �avours with
mq <

√
−q2/2). The �running� of αS with energy allows the strong coupling to

be small enough at high energy, allowing a perturbative description of the strong
force. However, at small momentum transfer comparable with the mass of the light
hadrons, αS becomes of order unity and the perturbation approximation breaks
down. This large value of the coupling constant is the source of most mathematical
complications and uncertainties in QCD calculations at low energy. On the other
hand, it is of great importance that αS tends to zero in the high energy limit. This
property gives rise to the so-called �asymptotic freedom�, and allows perturbation
theory to be used in theoretical calculations to produce experimentally veri�able
predictions for hard scattering processes. At the same time the behaviour of the
strong coupling constant at low energy is responsible for quark con�nement into
hadrons.

Trying to separate colored particles requires increasing energy density in the
binding color string, since the interaction potential grows linearly with the distance
between the outgoing partons, until the creation of new color-singlet hadronic states
becomes energetically favorable and energy is materialized into colored quark pairs.
The fact that quarks are forced into color singlets yields �nal state color-neutral
hadrons rather than free quarks and gluons. Thus a hard scattered parton evolves
into a shower of partons and �nally into hadrons. This process is called parton
shower evolution or hadronization.

1.2 Physics beyond the Standard Model

Recent developments show that the Standard Model of particle physics is in-
complete and many issues still remain open, for example the recently proved non
zero masses of neutrinos, that would require an extension of the model.

Another problem, the so-called hierarchy problem concerns the corrections to
the Higgs mass: in fact the Higgs boson mass receives divergent quadratic radiative
corrections which need to be controlled by means of �ne-tuning cancellations in or-
der to keep the mass at the electroweak energy scale �xed. Several ways of solving
this issue have been explored, for example the hypothesis of new strong dynamics
that could appear at the TeV scale (Technicolor theories). Another possible expla-
nation allows the divergent corrections to mH to be cancelled by a new spectrum
of particles at the electroweak scale: supersymmetric (SUSY) theories propose a
supersymmetric partner for each SM particle with di�erent spin, solving the hier-
archy problem by considering radiative corrections from supersymmetric partners.
SUSY requires additional Higgs �elds in order to provide mass to fermions and
their superpartners, for example in the minimal supersymmetric extension of SM,
the MSSM, there are �ve Higgs bosons: h, H, A and H± which are associated to
two complex doublets.

Furthermore, Grand Uni�cation would require an extension of the Standard
Model to include gravitational interactions in the theory.
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1.3 The Top quark

The top quark was discovered during Run 1 of the Tevatron operation by cdf
and dØ collaborations at Fermilab in 1995 [5, 6]. It was another success of the
Standard Model, which had strongly predicted its existence.

Several experimental results and theoretical arguments already prior to the top
quark discovery had provided evidence for its existence. These hints are mainly
based on theoretical self-consistency (namely the absence of anomalies), the ab-
sence of �avour changing neutral currents (FCNC), and the measurement of weak
isospin of the b-quark T3 = −1/2, thus demanding a T3 = 1/2 partner in its isospin
multiplet.

In 1964 Christenson and collaborators observed violation of CP symmetry in
rare decays of neutral kaons at the Brookhaven National Laboratory [7].

To accomodate this result in the theory, in 1973, Kobayashi and Maskawa
added a phase factor eiδ into their quark mixing matrix [8]. At that time, only
three quarks (u, d, s) were known. In their work they concluded that the only way
to have a renormalizable theory of weak interactions with CP violation was to intro-
duce additional �elds, thus proposing the existence of three complete generations
of quarks, since the smallest unitary matrix which can exhibit a non removable
complex phase is 3× 3 in size.

Afterwads, in 1974, at Brookhaven [9] and SLAC [10], two experiments inde-
pendently observed a new resonance at 3.1 GeV/c2, the particle J/ψ, which was
immediately interpreted as a cc̄ bound state: this discovery of the charm-quark
completed the second generation of quarks.

Furthermore, one year later, in 1975, M. L. Perl and collaborators at SLAC
made the �rst observation of the τ lepton [11], evidence for the existence of a third
lepton and quark generation.

In 1977 the FNAL-E-0288 experiment collaboration at Fermilab discovered the
b-quark (Υ = bb̄) [12]. The searches for a companion, the top quark, initiated im-
mediately, based on the existence of the b and the empirically observed generation
grouping of the quarks and leptons previously discovered.

The quark model suggested that within any family fermions must appear in left-
handed doublets and right-handed singlets of weak isospin [13]. So, in accordance
with the structure of the �rst generation, the left-handed b-quark was expected
to be part of a doublet of weak isospin (T 3

bL
= −1/2), while the right-handed

b was associated to a isospin singlet: T 3
bR

= 0. In the hypothesis that the t-
quark did not exist, a b-quark would have appeared only as a singlet state: T 3

bL
=

T 3
bR

= 0. However the weak isospin of b-quarks was determined on the basis of the
measurement of the forward-backward asymmetry and of the total width of the bb̄
production, by the JADE collaboration at DESY [14] and more recently from LEP
experiments [15], determining the b-quark to be part of a doublet of weak isospin.

Additionally, the experimentally determined absence of �avour changing neutral
currents, an important feature of the Standard Model that excludes processes like
b→ µ+µ−X or b→ sX, where X is a state with no net �avour quantum numbers,
implies that the b quark is a member of a SU(2) doublet.

Another compelling argument for the existence of the top quark follows from a
theoretical consistency requirement. The renormalizability of the Standard Model
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demands the absence of triangle anomalies. Triangular fermion loops built-up by
an axial-vector charge combined with two electric vector charges Q would break
the renormalizability of the Standard Model. In order to avoid this from happening
it is su�cient to impose a constraint on the sum of the electric charges of all the
left-handed fermions: ∑

L

Q = 0 (1.25)

This condition is met in a complete standard generation in which the electric charge
of the leptons and those of the quarks of all color components add up to zero:∑

L

Q = −1 + 3×
[(

+
2

3

)
+

(
−1

3

)]
= 0 (1.26)

The absence of the top quark in the third generation would violate the condition
of Eq. 1.25.

1.3.1 Top quark production

At hadron colliders top quarks are produced mainly in pairs through strong
interactions. Even if protons and antiprotons are not elementary particles, but
composed of quarks and gluons, thanks to the asymptotic freedom property of qcd
if the momenta of the initial particles are high enough (� ΛQCD ∼ 200 MeV ), we
can consider the interaction to take place between just two elementary particles
(quarks or gluons), one in each incoming hadron, neglecting interactions among
the other constituents of proton and antiproton.

The initial momentum of the interacting partons is however unknown, since a
given parton carries a fraction x of the proton (or antiproton) momentum according
to a statistical distribution named �parton distribution function� (PDF). For each
parton type these functions describe the probability to �nd it with a momentum
xP inside the proton [16], where P is the momentum of the proton (Fig. 1.3).
The valence quarks (u and d) are most likely to carry a large fraction of the
proton momentum, while gluons and sea quarks tend to carry smaller fractions.
All allowed parton-parton interaction channels contribute to the experimental tt̄
production cross section σtt̄ to an amount depending on their distribution functions
in the primary hadrons, so in order to calculate it we must sum over all the possible
interactions, weighted by their probability speci�ed by the PDF's. For proton-
antiproton collisions:

σ(pp̄→ tt̄) =
∑
i,j

∫
dzidzjfi/p(zi, µ

2)fj/p̄(zj, µ
2)σ̂(ij → tt̄; ŝ, µ2,Mtop) (1.27)

where the sum is over light quarks and gluons contained in the initial proton and
antiproton, carrying momentum zi and zj of the initial hadron respectively; fi/p

and fj/p̄ are the parton distribution functions for proton and antiproton respec-
tively; σ̂ is the parton-parton cross section. The center-of-mass energy of the i− j
parton system is denoted by ŝ and the parameter µ is a factorization scale which is
introduced to include resultant contributions from higher order Feynman diagrams.
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Figure 1.3: Parton distribution functions of quarks and gluons in the proton at
two di�erent momentum transfers µ2 [16].

Figure 1.4: Leading order Feynman diagrams for tt̄ production via strong interac-
tion: (a) qq̄ annihilation, (b) and (c) gg fusion.

At the Tevatron center-of-mass energy of
√
s = 1.96 TeV top quark pair pro-

duction occurs 85% of the times via quark-antiquark annihilation (qq̄) and for the
remaining 15% via gluon fusion (gg). The leading order Feynman diagrams are
shown in Fig. 1.4.

The theoretical Standard Model prediction for tt̄ production at
√
s = 1.96 TeV ,

depends on the top mass valueMtop as shown in Fig. 1.5, and is σtt̄ = 6.7+0.7
−0.9 pb for

a top mass of 175 GeV/c2 [17, 18], meaning that, since the total pp̄ inelastic cross
section is about 80 mbarn, we expect roughly one in 1010 collisions (≈ 7 · 10−4Hz
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Figure 1.5: Dependence of tt̄ top pair production cross section on top quark mass.

rate) at Tevatron to produce a tt̄ top quark pair, thus providing a real challenge
in the discrimination of the top events among a huge background.

The measurement of the production cross section for tt̄ pairs can be a test for
QCD, since a signi�cant deviation from the predicted value could indicate some
kind of non Standard Model production mechanism. Fig. 1.6 shows some recent
cross section measurements by CDF.

Single-top Production

Within the Standard Model, a single top quark can also be produced via elec-
troweak interaction trough the following processes (see Fig. 1.7):

• t-channel: a space-like W boson (q2 ≤ 0) strikes a b quark in the proton sea,
promoting it to a top quark; this channel is often referred to as W−gluon
fusion, since the b quark arises from a gluon splitting to bb̄.

• s-channel: rotating the t-channel diagram so that the W boson becomes
time-like (q2 ≥ (mt + m2

b)), single top production can happen trough qq̄
annihilation.

• associated production: single top may be also produced via weak interaction
in association with a real W boson (q2 = M2

W ); one of the initial partons is
a b quark in the proton sea, as in the t-channel.

The cross sections for all these processes are proportional to the matrix element
|Vtb|2 of the CKM matrix (see next section), therefore measuring the single top
production cross section provides a direct probe of this SM parameter.
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Figure 1.6: Cross section measurements by CDF compared with theoretical pre-
dictions (shaded). This plot is updated to March 2007.

1.3.2 Top quark decays

In the Standard Model the top quark decay is mediated by the weak force,
and its dominant decay signature is t → W+b or t̄ → W−b̄ with branching ratio
BR(t→ Wb) ∼ 1. The additional decay channels t→ Wd and t→ Ws are allowed
by the Standard Model but highly suppressed, thus giving minimal contribution,
due to the very small values of the o�-diagonal elements in the quark �avour mix-
ing matrix of weak eigenstates, the Cabibbo-Kobayashi-Maskawa (CKM ) matrix.
CKM matrix arises because of the di�erence of mass and weak eigenstates for
quarks, and can be expressed as a 3 × 3 unitary matrix operating on the charge
−1/3 quark mass eigenstates (d, s and b) [16]:

VCKM

ds
b

 =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

ds
b

 ≈

 0.973 0.227 0.0039
0.021 0.972 0.042
0.0081 0.041 0.999

ds
b
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Figure 1.7: Leading order Feynman diagrams for electroweak production of single
top quarks: (a) s-channel, (b,c) t-channel and (d,e) associated production with
a W .

The Standard Model predicts the top quark decay width to be [16]:

Γ(t→ Wb) =
GFM

3
top

8π
√

2

(
1− M2

W

M2
top

)(
1 + 2

M2
W

M2
top

)[
1− 2αS

3π

(
2π2

3
− 5

2

)]
(1.28)

For Mtop = 175 GeV/c2 we have:

Γ(t→ Wb) ≈ 1, 55 GeV −→ τtop =
1

Γtop

≈ 4 · 10−25 s (1.29)

This large width (Γtop � ΛQCD) causes the top quark to decay before hadronizing
(its width is smaller then the characteristic hadronization time of QCD τhad ≈
28 · 10−25 s), allowing its observation as a free particle. In particular, this feature
enables precision mass measurements, otherwise impossible for the other quarks
due to non-perturbative e�ects in the hadronic bound state.

Thus to detect the top quark we just need to identify and reconstruct its decay
products; consequently, the top pair decay signatures are classi�ed according to the
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Figure 1.8: Pictorial view of tt̄ top pair production at tree level by qq̄ annihilation
followed by the pair decay into the µ+ jets channel.

Channel Decay Mode Branching Ratio

All-hadronic tt̄→ qq̄′b qq̄′b̄ 36/81
Lepton+jets tt̄→ qq̄′b eνb̄ 12/81

tt̄→ qq̄′b µνb̄ 12/81
tt̄→ qq̄′b eτ b̄ 12/81

Di-lepton tt̄→ eνb eνb̄ 1/81
tt̄→ µνb µνb̄ 1/81
tt̄→ eνb µνb̄ 2/81
tt̄→ eνb τνb̄ 2/81
tt̄→ µνb τνb̄ 2/81
tt̄→ τνb τνb̄ 1/81

Table 1.2: Standard Model tt̄ decay modes and their associated relative branching
ratios.

W decay modes. TheW bosons decay to either one of the three generation leptons,
W+ → e+νe, W

+ → µ+νµ, W
+ → τ+ντ , or into the lightest two generations of

quarks: W+ → ud̄, W+ → cs̄.

This gives rise to di�erent decay channels that produce di�erent experimental
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Figure 1.9: Standard Model tt̄ decay signatures.

signatures in the detector. The di-lepton category represents the case in which
both W bosons decay leptonically; this channel is somehow complicated by the
two non-observable neutrinos in the �nal state, has the lowest branching ratio, but
is the cleanest among the three, due to the clear signature of its two leptons. Main
background sources are di-boson and Drell-Yan events.

The lepton+jets signature on the other hand arises when one of the W decays
hadronically and the other into lν; those involving τ 's are di�cult to isolate because
of the poor tau signature.

Finally, the all-hadronic channel corresponds to the case in which both W
bosons decay into quarks; this channel has the largest branching ratio but su�ers
from a large QCD background of multijet states.

The possible tt̄ decay modes and their corresponding branching ratios are sum-
marized in Tab. 1.2 and Fig. 1.9.

1.3.3 Top quark mass

The top quark mass Mtop, is an important parameter in di�erent areas of Par-
ticle Physics. Its precise measurement is important to set basic parameters in the
calculation of the electroweak processes, and provides a constraint on the mass of
the Higgs boson.

In fact, W mass theoretical calculation is subject to radiative corrections that
arise from creation and absorbtion of virtual quarks and bosons. Quark corrections
depend on top mass while boson corrections depend on log(MH), where MH is the
Higgs boson mass. Measuring with high precision W and top mass we can thus
obtain a constraint on the mass of the Higgs. Fig. 1.10 shows the limits on Higgs
mass that can be derived from direct and indirect measurement of top quark and
W masses.

The current value of the top mass is set at 170.9±1.1 (stat) ±1.5 (syst) GeV/c2

(which corresponds to a total uncertainty of 1.8 GeV/c2) as a result of a combi-
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Figure 1.10: Relationship between MW and Mtop as a function of the Higgs mass.
Expectations for a number of H masses are shown within the shaded band. Avail-
able EW data and Run 1 Tevatron measurements of MW and Mtop favour low MH

values. The small ellipse (1σ radius in the two observables) indicates the expected
constraint by higher precision measurements of MW , Mtop at the end of Run 2.
Results are from CDF, DØ, LEP and SLD.

nation of Tevatron Run I and Run II measurements [19], making it the heaviest
known elementary particle (see Fig. 1.11 for CDF results).
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Figure 1.11: Most recent CDF results using di�erent techniques and channels com-
pared to the Tevatron average. Measurements in blue were included in the CDF
combination of March 2007.
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Chapter 2

Tevatron Accelerator complex

The Tevatron [1] is a proton-antiproton accelerator hosted at the Fermi National
Accelerator Laboratory. With its center-of-mass energy of

√
s = 1.96 TeV it is

the source of the highest energy pp̄ collisions to date, up to now the only machine
capable of letting us examine dimensions up to 10−15 m, looking at the hadron
constituents, the quarks.

The Tevatron is the �nal and largest element of the Fermilab accelerator com-
plex, illustrated in Fig. 2.1, and works primarily as a pp̄ collider; however, it can
also accelerate a single proton beam and operate in �xed target mode to provide
a number of neutral and charged particle beams. The Tevatron collider obtained
the �rst collisions in 1985, and during the course of its lifetime provided several
physics runs, as listed in Tab. 2.1.

In the following, after spending a few words on one of the fundamental accel-
erator parameters, the luminosity, a description of the acceleration apparatus will
be given.

2.1 Instantaneous and integrated Luminosity

While building an accelerator, a fundamental construction parameter is the
design luminosity that needs to be achieved; in fact luminosity is a resource directly
related to the computation of the probability Wi→f for a generic process i → f ,
where i and f are the initial and �nal states, respectively. In the case of Tevatron,
the initial state is made up by two particles, a proton and an antiproton, while the
�nal state is composed by a generic number N of particles. Taking into account the
overall four-momentum conservation, the probability amplitude for the p, p̄ → f
process has the following general structure:

〈f |T |p; p̄〉 = (2π)2δ(4)(Pf − pp − pp̄)〈Pf |M |pp; pp̄〉 (2.1)

where we made the following assumptions regarding each particle a in the initial
and �nal states: a is described by a narrow wave packet that obeys, as obvious,
the on-shell mass condition, the Klein-Gordon equation, and moreover, that is
peaked around a four-momentum pa, giving the following equation (were we hided
all remaining quantum numbers):

Fa
p (x) ≡ 〈x|a〉 =

1

(2π)3/2

∫
d4q θ(q0)δ(q

2 −m2
a)f̂p(q)e

−i qx (2.2)
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(a) (b)

Figure 2.1: (a): An airplane view of the Fermilab laboratory. The ring at the
bottom of the �gure is the Main Injector, the above ring is the Tevatron. On the
left are clearly visible the paths of the external beamlines: the central beamline is
for neutral beams and the side beamlines are for charged beams (protons on the
right, mesons on the left). (b): A sketch of the Fermilab accelerator chain.

Run Period Int. Lum. (pb−1)
First Test 1997 0.025
Run 0 1988-1989 4.5
Run 1A 1992-1993 19
Run 1B 1994-1995 90
Run 1C 1995-1996 1.9
Run 2A 2001-2004 400
Run 2B 2004- >2000

Table 2.1: Integrated luminosity delivered by the Tevatron in its physics runs.
Run2B is still in progress.

Integrating the square modulus of Eq. 2.1 over its space dependencies and after
other manipulations that use approximations allowed by the narrowness of the
wave packets, assuming that protons and antiprotons are grouped in bunches, we
end up with the following transition probability Wi→f :

Wi→f ≈ (2π)4δ4(Pf − pp − pp̄)|〈Pf |M |pp; pp̄〉|2
1

4ωpωp̄

∫
d4x ρp(x)ρp̄(x) (2.3)

where ω's denote energies and ρ's, that have the meaning of probability density of
particle location, are the time component of conserved four-currents given by:

i(F∗∂µF − F∂µF∗) (2.4)

The square amplitude in Eq. 2.3 is what can be computed by means of the Standard
Model theory. What appears in the integral depends on the experimental setup;
the integral itself has dimension of an inverse cross section and is a measure of the
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probability that incoming protons and antiprotons have to come in interaction. We
can assume that the densities ρ are Gaussian near the collision points and that, for
simplicity, the collisions themselves are head-on; then, parameterizing the bunches
path by s and calling x(s)y(s) a plane orthogonal to the path in s, we can write
approximately

ρ±(x(s), y(s), s± vt) =
N±

(2π)3/2σxσyσs

exp

(
− x2

2σ2
x

− y2

2σ2
y

− (s± vt)2

2σ2
s

)
(2.5)

where ± refers to proton/antiproton, N is the number of particles in a bunch, v
is the speed of the bunches and σ's denote the radii of the portion of the crossing
bunches that e�ectively overlap. In Eq. 2.3 we have consequently:∫

d4x ρp(x)ρp̄(x) ≡ ν∆

∫
dx dy ds dtρp(x, y, s+ vt)ρp̄(x, y, s− vt)

= ν
NpNp̄

4πσxσy

∆

2v
(2.6)

≡ L∆

2v

where ∆ is the whole lasting of the data taking, long with respect to the duration
of each e�ective crossing of the colliding bunches, ν is the frequency of the crossing
of the proton and anti-proton bunches, and (the lab reference frame is also the
center of mass frame in our case)

v =
|~p|
ω
, |~p| = |~pp| = |~pp̄|,

√
m2

p + ~p2 = ω = ωp = ωp̄ (2.7)

Thus we have

dWi→f

dt
≈ δ4(Pf − pp − pp̄)

(2π)4

2ω|~p|
|〈f |M |pp; pp̄〉|2L

=
(2π)4δ4(Pf − pp − pp̄)√

(pp · pp̄)2 −m2
pm

2
p̄

|〈f |M |pp; pp̄〉|2L

≡ σintL (2.8)

L is usually called (instantaneous) luminosity, while its integral over time L is
called integrated luminosity. The bigger the luminosity, the bigger the probability
to observe an interaction. For this reason the Tevatron has undergone a series of
improvements during its lifetime in order to increase this fundamental parameter.
Tab. 2.1 shows the luminosity served by the accelerator during its di�erent physics
runs.

2.2 The proton source

The process leading to pp̄ collisions begins in a Cockroft-Walton generator (see
Fig. 2.2) in which H− gas is produced by hydrogen ionization. H− ions are im-
mediately accelerated by means of a multi step voltage divider up to an energy of
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Figure 2.2: The Cockroft-Walton generator, the starting point of the proton accel-
eration chain.

Figure 2.3: Left: upstream view of the 400 MeV section of the Linac. Right: Teva-
tron Superconducting Dipole Magnet.
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750 KeV and then transported through a transfer line to the linear accelerator,
the Linac.

The second stage of the accelerator chain is a 150 meters long linear accelerator
(see Fig. 2.3): the Linac [2, 3] picks up the H− ions at energy of 750 KeV , and
accelerates them up to the energy of 400 MeV inducing an oscillating electric �eld
between a series of electrodes.

The Booster [4] takes the 400 MeV negative hydrogen ions from Linac, strips
the electrons o�, which leaves only protons, and accelerates them up to 8 GeV .
The Booster is the �rst circular accelerator in the Tevatron chain, and consists of a
series of magnets arranged around a 75-meter radius circle with 18 radio frequency
cavities. The Booster loading scheme overlays the injected beam of negative H−

ions from the Linac with the one of H+ already circulating in the machine in order
to increase beam intensity; then the mixed beams go through a carbon foil, which
strips o� the electrons turning the negative hydrogens into protons. When the bare
protons are collected in the Booster, they are accelerated to the energy of 8 GeV
by the conventional method of varying the phase of RF �elds in the accelerator
cavities [1], and subsequently injected into the Main Injector. The �nal �batch�
will contain a maximum of 5× 1012 protons divided among 84 bunches spaced by
18.9 ns, each consisting of 6× 1010 protons.

2.3 The Main Injector

The Main Injector [5] is a circular synchrotron with a 3 km circumference
(seven times the circumference of the Booster) and plays a crucial role in linking
the Fermilab acceleration facilities: the Main Injector can accelerate or decelerate
particles between the energies of 8GeV and 150GeV . The sources of these particles
and their �nal destination are variable, depending on the Main Injector operation
mode: it can accept 8 GeV protons from the Booster, or 8 GeV antiprotons from
the Recycler; it can accelerate protons up to 120 GeV for antiproton production
or deliver a proton beam to �xed target experiments. The beam energy, for both
proton and antiproton, can reach 150 GeV during the collider mode when particles
are injected to the Tevatron for the last stage of the acceleration. Furthermore,
once Tevatron collisions end, the Main Injector can accept back the 150 GeV
antiprotons in order to decelerate them down to 8 GeV before injecting them in
the Recycler.

The Linac accelerates protons to 400 MeV , and the Booster guides them up
to 8 GeV . Afterwards the proton beam, through a transfer line, reaches the Main
Injector where by means of radio frequency systems it is accelerated and bunched.

We can summarize the functions of the Main Injector as:

• Antiproton production: Providing beam to the antiproton production target
is one of the simplest tasks of the Main Injector. In this mode, a single
batch of protons is accepted from the Booster, accelerated up to 120 GeV
and extracted towards the target, which yields 8 GeV antiprotons.

• Fixed target modes : During �xed target operation, protons are accelerated
to the desired energy and then extracted to a stationary target, external to
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the ring. Extraction takes place from the Main Injector at 120 GeV . The
target can be anything from a sliver of metal to a �ask of liquid hydrogen
depending on the experiment needs.

• Collider operations : in Collider Mode, in addition to supplying 120 GeV pro-
tons for antiproton production, the Main Injector must also feed the Tevatron
protons and antiprotons at 150 GeV . The Main Injector maximum stored
beams are ∼ 3 · 1013 protons and ∼ 2 · 1012 antiprotons, beams are stored in
36 bunches in the Tevatron. When the collision operation ends, another task
of the Main Injector is to recover antiprotons from the Tevatron, decelerate
and then send them to the Recycler.

2.4 The antiproton source

The number of antiprotons available is an important limiting factor in produc-
ing the high luminosity desired for Tevatron physics.

The Fermilab antiproton source [6] is comprised of a target station, two rings
called the Debuncher and the Accumulator, and the transfer lines between these
rings and the Main Injector.

Antiprotons p̄ are produced from the 120 GeV proton beam extracted from the
Main Injector and focused on a nikel target. Antiprotons are collected at 8 GeV
with wide acceptance around the forward direction, injected into the Debuncher
Ring, debunched into a continuous beam and stochastically cooled. The beam is
then transferred between cicles to the Accumulator were antiprotons are stored at
a rate of about 25 · 1010 p̄/hour (improvements in the storage rate are still being
made). Stacking within the accumulator acceptance is limited to a stored beam of
about 1012 antiprotons.

When enough antiprotons have been accumulated in the Accumulator, their
transfer starts. Antiproton beam destination can be either the Main Injector or
the Recycler ring (see Sec. 2.4.1).

Overall it can take from 10 to 20 hours to build up a stack of antiprotons, which
is then used in the Tevatron collisions. Antiproton availability is the most limiting
factor attaining high luminosities, so in this context it is important to mention
the Recycler, the part of the acceleration chain designed to collect antiprotons left
at the end of a collider store, the period of time in which the colliding beams are
retained in the Tevatron (roughly 20 hours).

2.4.1 The Recycler ring

The Recycler [7, 8] is a 3.3 Km long storage ring of �xed 8 GeV kinetic en-
ergy, and is located directly above the Main Injector. It is composed primarily of
permanent gradient magnets and quadrupoles. Three main tasks are designed for
the Recycler operations:

1. The most important feature of the Recycler is that it allows antiprotons
left over at the end of Tevatron Collider stores to be re-cooled and re-used,
allowing to recycle almost 75% of the antiprotons left after a store.
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Figure 2.4: Bunch structure of the Tevatron beams in Run 2.

2. It allows the Accumulator to operate optimally: since the antiproton produc-
tion rate decreases as the beam current in the Accumulator ring increases,
the Recycler is designed to act as a post-Accumulator cooler ring, being the
�nal storage for 8 GeV antiprotons.

3. The usage of permanent magnets in the construction of the Recycler allows
to dramatically reduce the probability of unexpected losses of antiprotons.
In fact, the ring has been designed so that Fermilab-wide power could be lost
for an hour with the antiproton beam surviving.

After a store has been circulating in the Tevatron for several hours, as particles
are gradually lost, the beam size slowly grows, and the luminosity degrades: a
decision is then made to terminate the store and load a fresh one. To do so, since
proton and antiproton orbits follow di�erent paths in the Tevatron, large chunks
of metal are slowly moved into the proton beam until only the antiprotons are
left. At this point, antiprotons can be decelerated from 1 TeV to 150 GeV and
then transferred to the Main Injector. While the antiprotons are still circulating
at 150 GeV , they are decomposed back into fewer bunches (usually seven). The
antiprotons are then decelerated to 8 GeV and transferred to the Recycler ring.
This procedure is repeated until no antiprotons from the store are left into the
Tevatron ring.

2.5 The Tevatron ring

The Tevatron [9] is the last stage of the Fermilab accelerator chain. The Teva-
tron is a 1 km radius synchrotron able to accelerate the incoming 150 GeV beams
from Main Injector to 980 GeV , providing a center of mass energy of 1.96 TeV .
The accelerator employs superconducting magnets (see Fig. 2.3) requiring cryo-
genic cooling and consequently a large scale production and distribution of liquid
helium. During Run II the Tevatron operates at the 36× 36 bunches mode.

The antiprotons are injected after the protons have already been loaded. When
the Tevatron loading is complete, the beams are accelerated to the maximum
energy and collisions begin. The beam revolution time is 21 µs. The beams are
split in 36 bunches organized in 3 trains each containing 12 bunches (see Fig. 2.4).
Within a train the time spacing between bunches is 396 ns. An empty sector 139
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buckets long (2.6 µs) is provided in order to allow the kickers to raise to full power
and abort the full beam into a dump in a single turn. This is done at the end
of a run or in case of an emergency. In the 36 × 36 mode, there are 72 regions
along the ring where the bunch crossing occurs. While 70 of these are parasitic,
in the vicinity of CDF and DØ detectors additional focusing and beam steering
is performed, to maximize the chance of a proton striking an antiproton. The
focusing reduces the beam spot size and thus increases the luminosity, as seen in
Eq. 2.7 that shows how smaller values of σx, σy imply larger luminosity values.
During collisions the instantaneous luminosity decreases in time as particles are
lost and the beams begin to heat up. When the luminosity becomes too low to
allow a signi�cant datataking (approximately after 15-20 hours) the current store
is dumped and a new cycle starts. A number of reasons can cause unwanted early
termination of runs. Typical failures are a vacuum leak, a power supply failure or
a magnet quench, a loss of magnet superconductivity in the ring.

Table 2.2 summarizes the accelerator parameters for Run II.

Parameter Value

Particles collided pp̄
Maximum beam energy 0.980 TeV
Time between collisions 0.396 µs
Crossing angle 0 µrad
Energy spread 0.14× 10−3

Bunch length 57 cm
Beam radius 39µm for p, 31µm for p̄
Filling time 30 min
Injection energy 0.15 TeV
Particles per bunch 2410 for p; 3× 1010 for p̄
Bunches per ring per species 36
Average beam current 66µA for p, 8.2µA for p̄
Circumference 6.12 Km
p̄ source accumulation rate 13.5× 1010/hr
Max number of p̄ in accumulation ring 2.4× 1012

Table 2.2: Accelerator parameters for Run II con�guration [10].

Fig. 2.5 shows the Tevatron peak luminosity as a function of the time from the
beginning of Run II. The blue squares show the peak luminosity at the beginning
of each store. The red triangle displays a point representing the last 20 peak values
averaged together.

Fig. 2.6 on the other hand shows the weekly and total integrated luminosity to
date; while Fig. 2.7 shows the total luminosity delivered by the Tevatron compared
to the total luminosity recorded by the CDF experiment as a function of the store
number.
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Figure 2.5: Run II peak luminosity.

Figure 2.6: Weekly and total integrated luminosity.
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Figure 2.7: Delivered and CDF acquired integrated luminosity as a function of the
Store number.
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Chapter 3

The CDF Detector in Run II

This Chapter is dedicated to a detailed description of the CDF detector used
to study pp̄ interactions provided by the Tevatron, and to a speci�c explanation
of all the detector sub-systems, whose role is crucial for the reconstruction of the
physical objects needed for our analysis.

At the center of mass energy available at the Tevatron, proton-antiproton in-
teractions are interpreted in terms of collisions between their constituents. At
this level, the phenomenology is usually described in the framework of Quantum
Chromo Dynamics (QCD), as already highlighted in Chapter 1. At the end of
the interaction process and after hadronization, collimated jets of particles emerge
from the scattering, whose energies and directions carry a reminiscence of initial
partons ones.

In the collisions, apart from QCD processes, electroweak production of W and
Z bosons takes place as well. For that reason, aside the detection of collimated
spray of particles, the capability of detecting charged leptons and neutrinos as
missing energy is of great importance in the design of a particle detector.

The Collider Detector at Fermilab (CDF) is described below as con�gured for
Run II; additional technical details covering all parts of the detector can be found
in CDF Technical Design Report [1] and in a series of guides for experimenters [2]
and o�cial lectures [3].

A detector elevation view is presented in Fig. 3.1. The CDF architecture is
quite common for this type of detectors: radially from the inside to the outside it
features a tracking system contained in a superconducting solenoid, calorimeters
(electromagnetic and hadronic) and muon detectors. The whole CDF detector
weighs about 6000 tons.

CDF is located around one of the the two interaction points along the Tevatron
ring and has been designed in order to perform precise measurements of energy and
momentum of the jets and charged leptons produced by the pp̄ collisions, as well as
the missing energy due to the neutrinos created inW and Z decays. Besides, it has
been studied to provide a �rst identi�cation of the produced particles, particularly
of the ones with relatively long lifetime coming from heavy quarks hadronization.

The reconstruction of an event begins with the identi�cation of jets performed
by the calorimetry system. In order to determine the direction of the jet momenta,
a precise measurement of the event interaction center is needed; moreover, the iden-
ti�cation of the jets originated by heavy quarks requires an accurate reconstruction
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Figure 3.1: Elevation view of the CDF II Detector.

of the secondary vertices produced in heavy �avour decays. These measurements
take advantage of the presence in the jets of charged particles, whose transverse
momentum and trajectories can be reconstructed by a performant tracking system
situated between the beam pipe and the calorimeter. Calorimetric and tracking
informations are also used to identify electrons produced in the event. Outside the
calorimeter, a complex of drift chambers for muon identi�cation is arranged. Muons
are very penetrating and leave a modest quantity of energy in the calorimeter: in
order to identify them, tracks with high transverse momentum are extrapolated
and matched to low energy calorimetric deposits and to stubs reconstructed in the
external muon chambers.

In the following the structure of the detector CDF II will be examined in detail.

3.1 CDF Coordinate systems

CDF uses a Cartesian coordinate system centered in the nominal point of in-
teraction, with the z axis coincident with the beamline and oriented parallel to the
motion of the proton beam. The x axis is in the horizontal plane of the accelerator
ring, pointing radially outward, while the y axis points vertically up (see Fig. 3.2).

For the simmetry of the detector, it is often convenient to work with cylindri-
cal (z, r, φ) or polar (r, θ, φ) coordinates. The azimuthal angle φ is measured in the
x− y plane starting from the x axis, and it is de�ned positive in the anti-clockwise
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Figure 3.2: Isometric view of the CDF II Detector and its coordinate system.

direction; on the other side, the polar angle θ is measured from the positive di-
rection of the z axis. The coordinate r de�nes the transverse distance from the z
axis. Another important coordinate that can be used instead of the polar angle θ,
is called pseudorapidity and it is de�ned as:

η = − log tan
θ

2
(3.1)

The pseudorapidity is usually preferred to θ at hadron colliders, where events are
boosted along the beamline, since it transforms linearly under Lorentz boosts, i.e.
η intervals are invariant with respect to boosts. For these reasons, the detector
components are chosen to be as uniformly segmented as possible along η and φ
coordinates.

3.2 Tracking system

Charged particles passing through matter cause ionization typically localized
near the trajectory followed by the particle through the medium. Detecting ion-
ization products gives geometrical information that can be used to reconstruct the
particle's path in the detector by means of the tracking procedure.

The inner part of CDF II is devoted to the tracking system, whose volume is
immersed in an uniform magnetic �eld of magnitude B = 1.4T , oriented along
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Figure 3.3: The CDF II detector subsystems projected on the z/y plane.

the z-axis. The Lorentz force induced on charged particles constrains them to an
helicoidal trajectory, whose radius measured in the transverse plane x−y is directly
related to the particles transverse momentum PT (see 4.1 for details).

The CDF II tracking system is basically divided into an inner silicon strip de-
tector aimed to provide a precise vertex determination, and an outer drift chamber
for momentum measurements. Fig. 3.3 shows the overall CDF II tracking volume,
covering a pseudorapidity range up to |η| = 2.

3.2.1 Silicon vertex detector

The silicon vertex detector is crucial for precise determination of particle po-
sitions, and in particular its information can be used to infer the presence in the
event of secondary decay vertices produced by heavy �avour decays.

The basic principle on which silicon strip detectors are based relies on the fact
that a charged particle traveling across a silicon crystal produces electron-hole
pairs. In fact the fundamental characteristic of semiconductor materials, such as
silicon, is the presence of a full valence band that is separated from the conduction
band by an energy gap of only few eV .

When an electron is excited from the valence band to the conduction band,
a positive �hole� is left in the valence band while the excited electron becomes a
negative charge carrier in the conduction band.

By introducing impurities (doping) with a di�erent number of valence electrons,
the number of available charge carriers in the semiconductor can be increased.

Doped semiconductors can be divided in two categories:



3.2 Tracking system 39

Figure 3.4: A generic silicon micro-strip detector.

1. n-type semiconductors, when the introduced impurity has one more valence
electron than the silicon: the semiconductor will have additional electrons
for excitation into the conduction band.

2. p-type semiconductors, when the introduced impurity has one less valence
electron than the silicon: the semiconductor has an excess of �holes� as charge
carriers in the valence band.

When one n-type semiconductor and one p-type semiconductor are placed together,
the resulting device, called n−p junction, has some very special properties. Due to
the fact that each semiconductor contains charge carriers of di�ering polarity, the
negative electrons in the n-type semiconductor will be drawn towards the positive
holes in the p-type semiconductor and viceversa. After the equilibrium is reached,
the n-type side possesses a net positive charge and the p-type side possesses a net
negative charge: an electrical potential barrier is created and a depletion region
arises between the n-type and p-type regions. For the silicon, the size of this
depletion region is typically 10 µm and the potential through the junction is 0.6 eV .
For each µm of depletion region traversed by an ionizing particle typically 100
electron-hole pairs are produced, whose identi�cation becomes easier as the size of
the depletion region increases; that's why the size of the depletion region is thus
increased applying external electric voltages to the p−n junction (reverse-biasing).
This results in a larger sensitivity in detecting the ionization signals produced by
incoming charged particles.

In a typical silicon micro-strip detector (Fig. 3.4), �nely spaced strips of strongly
doped p-type silicon (p+) are implanted on a lightly doped n-type silicon sub-
strate (n−) ∼ 300 µm thick. On the opposite side, with respect to the p-type sil-
icon implantation, a thin layer of strongly doped n-type silicon (n+) is deposited.
A positive voltage applied to the n+ side depletes the n− volume of free electrons
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(a) r−φ view of SVX II. (b) Perspective view of SVX II.

Figure 3.5: CDF II Silicon Vertex Detector.

Layer Radius [cm] # of strips Strip pitch [µm] Stereo Ladder [mm]
stereo r - phi stereo r - φ stereo r - φ angle width length

0 2.55 3.00 256 256 60 141 90◦ 15.30 4× 72.43
1 4.12 4.57 576 384 62 125.5 90◦ 23.75 4× 72.43
2 6.52 7.02 640 640 60 60 +1.2◦ 38.34 4× 72.43
3 8.22 8.72 512 768 60 141 90◦ 46.02 4× 72.43
4 10.10 10.65 896 896 65 65 -1.2◦ 58.18 4× 72.43

Table 3.1: SVX summary.

and creates an electric �eld. When a charged particle crosses the active volume it
creates a trail of electron-hole pairs from ionization and the presence of the electric
�eld drifts the holes to the p+ implanted strips producing a well localized signal.
Usually the signal is collected by a cluster of strips, rather than being concentrated
in just one strip. This allows to calculate the crossing point of the particle with
a precision greater than the strip spacing, by weighting the strip positions by the
amount of charge collected by each strip. With this method the Silicon Vertex De-
tector installed by CDF collaboration can achieve individual hit position accuracy
of 12 µm.

The CDF II Silicon VerteX Detector is shown in Fig. 3.5(a) and 3.5(b), and it is
known as SVX II [1]. It is composed of three di�erent barrels each 29 cm long, each
barrel supporting �ve layers of double-sided silicon micro-strip detectors between
2.5 and 10.7 cm from the beamline. The layers are numbered from 0 (innermost)
to 4 (outermost); layers 0, 1 and 3 have wires parallel to the beam axis on one
side (axial strips for r - φ measurement) and tilted by 90◦on the other side (stereo
strips for r - z measurement); layers 2 and 4 have axial strips on one side and stereo
strips tilted by a small angle (1.2◦) on the other (Tab. 3.1).

To reach better performances in terms of resolution and tracking coverage, two
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Figure 3.6: Left: cutaway transverse to the beam of the three subsystems of the
silicon vertex system. Right: sketch of the silicon detector in a z/y projection
showing the η coverage of each layer.

special sub-detectors are added to the silicon tracker: the Layer 00 (L00) [4, 5] and
the Intermediate Silicon Layer (ISL), as illustrated in Fig. 3.6.

• L00: L00 is composed of a set of silicon strips assembled directly onto the
beam pipe (Fig. 3.7(a)). This device has six narrow and six wide groups of
ladder in φ at radii 1.35 and 1.62 cm respectively, providing 128 read out
channels for the narrow groups and 256 channels for the wide groups. The
silicon wafers are mounted on a carbon-�ber support which also provides
cooling. L00 sensors are made of light-weight radiation-hard single-sided
silicon (di�erent from the ones used within SVX). Being so close to the beam,
L00 allows to reach a resolution of ∼ 25/30 µm on the impact parameter of
tracks of moderate pT , providing a powerful help to signal long-lived hadrons
containing a b quark. L00 allows to overcome the e�ects of multiple scattering
for tracks passing through high density regions of SVX thus making it possible
to improve vertexing resolution.

• ISL: The Intermediate Silicon Layers (ISL) consist of double-sided silicon
crystals: one side has axial microstrips to provide measurements in the r-φ
plane, while the other one supplies z information by means of stereo strips.
The arrangement of this device, shown in Fig. 3.7(b), varies according to the
η range: in the central region (|η| < 1) it consists of a single layer placed
at ∼ 22 cm from the beam line, while for 1 < |η| < 2 ISL is made of two
layers placed at r = 20 and 29 cm respectively (see Fig. 3.3). The two
layers at 1 < |η| < 2 are important to help tracking in a region where the
COT coverage is incomplete. In both regions, the stereo sampling enables
a full three-dimensional stand-alone silicon tracking. The ISL is intended
to improve the tracking resolution in the central region, while in the 1.0 <
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(a) Transverse view of Layer 00, the innermost
silicon layer.

(b) Perspective view of ISL.

Figure 3.7: Layer 00 and ISL.

|η| < 2.0 region it provides a useful tool for silicon stand alone tracking in
conjunction with SVX layers.

3.2.2 The COT

In addition to the silicon detector, the Central Outer Tracker (COT) [1] is
located at larger radii, and is used both to improve the momentum resolution and
to provide useful informations to the trigger system.

This system is installed in the region |z| < 155 cm and between the radii of 43
and 133 cm.

The COT is a cylindrical multi-wire open-cell drift chamber with a mixture of
50:35:15 Ar-Ethane-CF4 gas used as active medium. The COT contains 96 sense
wire layers, which are radially grouped into eight �superlayers� (see Fig. 3.8). Each
superlayer is divided in φ �supercells�, and each supercell has 12 sense wires and
it is designed so that the maximum drift distance is approximately the same for
all supercells. Therefore, the number of supercells in a given superlayer scales
approximately with the radius of the superlayer. Half of the 30,240 sense wires
within the COT run along the z direction (�axial�), while the others are installed
at a small angle (2◦) with respect to the z direction (�stereo�).

A charged particle passing through the gas mixture leaves a trail of ionization
electrons. These electrons are carried towards sense wires of the corresponding cell.
The electron drift direction is not aligned with the electric �eld, being a�ected by
the 1.4 T magnetic �eld provided by the solenoid. Thus electrons originally at
rest move in the plane perpendicular to the magnetic �eld forming an angle α
with respect to the electric �eld lines. The value of α, the so-called Lorentz angle,
depends on the magnitude of both �elds and on the properties of the gas mixture.
In the COT α ' 35◦(see Fig. 3.9).



3.2 Tracking system 43

Figure 3.8: COT section: the eight superlayers (left) and the alternation of �eld
plates and wire plates (right).

Figure 3.9: Cross-sectional view of some COT cells. The radial direction in the
picture is horizontal and the angle between wire plane of the central cell and the
radial direction is α ' 35◦.

The optimal situation in terms of resolution power is realized when the drift
direction is perpendicular to that of the track. Usually the optimization is done
for high PT tracks, which are almost radial. As a result, all COT cells are tilted
35◦away from the radial direction, so that the ionization electrons drift in the φ
direction. When the electrons get near the sense wire, the local 1

r
electric �eld

accelerates them causing further ionization. The r - φ position of the track with
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Figure 3.10: Time of Flight detector position.

respect to the sense wire is inferred by the signal arrival time.

A measurement of COT performance is given by the single hit position res-
olution and has been measured to be about 140 µm, which translates into the
transverse momentum resolution δpT

pT
∼0.15% pT

GeV/c
.

3.2.3 Time of �ight detector

The Time of Flight system (TOF) [4, 6] is a Run II upgrade to the CDF detector
and it expands the particle identi�cation capability of CDF II in the low PT region.
The TOF consists of 216 scintillator bars installed at a radial distance of about
138 cm from the z axis in the 4.7 cm space between the outer shell of the COT and
the superconducting solenoid (see Figure 3.10). Bars are approximately 279 cm
long and 4 × 4 cm2 in cross-section. With its cylindrical geometry TOF provides
2π coverage in φ, and covers the pseudorapidity range |η| < 1.0. Scintillator bars
are read out at both ends by photomultiplier tubes, capable of providing adequate
gain even if used inside the 1.4 T magnetic �eld. The TOF detector measures
the arrival time t of a particle with respect to the collision time t0. The mass
m of a particle traversing the device is determined using the path length L and
momentum P measured by the tracking system via the relationship

m =
P

c

√
(ct)2

L2
− 1 (3.2)

A resolution of ∼ 110 ps has been achieved which allows a 2σ separation of
kaons from pions up to ∼ 1.6 GeV at |η| < 1.
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Figure 3.11: Geometry, parameters and performance summary of CDF Calorimet-
ric System. The position resolution is given in r · φ× z cm2 and is measured for a
50 GeV incident particle.

3.3 Calorimetric systems

The CDF II calorimetry system has been designed to measure energy and di-
rection of neutral and charged particles leaving the tracking region. In particular,
it is devoted to jet reconstruction as well as used to measure the missing transverse
energy associated to neutrino production.

Particles hitting the calorimeter can be divided in two classes according to their
interaction with matter: electromagnetically interacting particles, such as electrons
and photons, and hadronically interacting particles, such as mesons or baryons
produced in hadronization processes. To detect these two classes of particles, two
di�erent calorimetric parts have been developed: an inner electromagnetic and an
outer hadronic section, providing coverage up to |η| < 3.6. The calorimeter is also
segmented in η−φ sections, called towers, projected towards the geometrical center
of the detector, in order to supply information on particle positions. Each tower
consists of alternating layers of passive material and scintillator tiles. The signal
is read out via wavelength shifters (WLS) embedded in the scintillator and light
from WLS is then carried by light guides to photomultiplier tubes.

The calorimetric system is subdivided into three regions, central, wall and plug,
in order of increasing pseudorapidity ranges, with the following naming convention:
Central Electromagnetic (CEM), Central Hadronic (CHA), Wall Hadronic (WHA),
Plug Electromagnetic (PEM) and Plug Hadronic (PHA); an inner commented view
of the detector is shown in Fig. 3.12. Table in Fig. 3.11 summarizes the most
important characteristics of each part of the calorimeter.

3.3.1 The Central Calorimeter

The Central Electro-Magnetic calorimeter (CEM) [1] is segmented in ∆η ×
∆φ=0.11×15◦ projective towers consisting of alternate layers of lead and scintil-
lator, while the Central and End Wall Hadronic calorimeters (CHA and WHA
respectively), whose geometric tower segmentation matches the CEM one, use iron
layers as radiators. A perspective view of a central electromagnetic calorimeter
module, a wedge, is shown in Figure 3.13.
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Figure 3.12: Schematic view of the inner parts of CDF detector.

Two position detectors are embedded in each wedge of the CEM:

• The Central Electromagnetic Strip chamber (CES) (see Fig. 3.14) is a two-
dimensional strip/wire chamber located at the radial distance 184 cm. It
measures the charge deposition of the electromagnetic showers, providing
information on their pulse-height and position with a �ner azimuthal seg-
mentation than the calorimeter towers. This results in an increased purity
of electromagnetic object reconstruction.

• The Central Pre-Radiator (CPR) consists of two wire chamber modules
placed immediately in front of the calorimeter. It acts as pre-shower detector
and with its 3072 channels collects charge deposit by showers originated by
interaction of particles with tracking system and solenoid material. It can
help in discriminating pions from electron and photons, because the latter
deposit a greater amount of energy in the chamber.

3.3.2 The plug calorimeter

The plug calorimeter, shown in Fig. 3.15, covers the η region from 1.1 to 3.6.
Both electromagnetic and hadronic sectors are divided in 12 concentric η regions,
with ∆η ranging from 0.10 to 0.64 according to increasing pseudorapidity, each
segmented in 48 or 24 (for |η| < 2.1 or |η| > 2.1 respectively) projective towers.

As in the central calorimeter, there is a front electromagnetic compartment and
a rear hadronic compartment (PEM and PHA). Projective towers consist of alter-
nating layers of absorbing material (lead and iron for electromagnetic and hadronic
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Figure 3.13: Perspective view of a CEM module.

Figure 3.14: The CES detector in CEM. The cathode strips run in the x direction
and the anode wires run in the z direction providing x and (r · φ) measurements.

sectors respectively) and scintillator tiles. The �rst layer of the electromagnetic
calorimeter acts as a pre-shower detector; to this scope, the �rst scintillator tile is
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Figure 3.15: Plug Calorimeter (PEM and PHA) inserted in the Hadron End Wall
calorimeter WHA and into the solenoid.

thicker (10 mm instead of 6 mm) and made of a brighter material.

As in the central calorimeter, a shower maximum detector (SMD) is also in-
cluded in the plug electromagnetic calorimeter (PES). The PES consists of two lay-
ers of 200 scintillating bars each, oriented at crossed relative angles of 45o (±22.5o

with respect to the radial direction). The position of a shower on the transverse
plane is measured with a resolution of ∼ 1 mm.

3.4 Muon detectors

Muons are highly penetrating, so they are separated from charged hadrons by
the calorimeter, that acts as a shield for strongly and electromagnetic interacting
particles.

Muon identi�cation can then be performed by extrapolating the tracks outside
the calorimeter and matching them to tracks segments (called stubs) reconstructed
in an external muon detector.
Figure 3.16 provides an overview of the muon detectors coverage, that goes up to
|η| < 2.0. Muon systems are divided in muon chambers and muon scintillators, see
Fig. 3.17:

• Central MUon detector (CMU) consists of a set of 144 modules, each contain-
ing four layers of rectangular drift cells, operating in proportional mode. It
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Figure 3.16: η − φ coverage of the Run II muon detector system. The shape is
irregular because of the obstruction by systems such as cryo pipes or structural
elements.

is placed immediately outside the calorimeter and supplies a global coverage
up to |η| <0.6.

• Central Muon uPgrade (CMP) consists of four layers of single-wire propor-
tional drift tubes stagged by half cell per layer and shielded by an additional
60 cm steel layer. It is arranged in a square box around the CMU, providing
a φ-dependent η coverage (see Figure 3.16).

• Central Scintillator uPgrade (CSP) is a layer of rectangular scintillator coun-
ters placed on the outer surface of CMP.

• Central Muon eXtension (CMX) consists of a stack of eight proportional drift
tubes, arranged in conical sections to extend the CMU/CMP coverage in the
0.6 < |η| <1 region.

• Central Scintillator eXtension (CSX) consists of a layer of scintillator counters
on both side of CMX. Thanks to scintillator timing, this device completes
with z information the measurement of the muon position provided by CMX
(φ).

• Intermediate MUon detector (IMU) consists of four staggered layers of pro-
portional drift tubes and two layers of scintillator tiles, arranged as for the
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Figure 3.17: Schematic view of the whole CDF detector.

CMP/CSP system to extend triggering and identi�cation of muons up to
|η| ≤ 1.5 and |η| ≤ 2, respectively.

3.5 Cherenkov luminosity counters

CDF measures the collider luminosity with a coincidence between two arrays of
Cherenkov counters, the CLC, placed around the beam pipes on the two detector
sides [7]. The counters measure the average number of interactions per bunch
crossing µ, which is used to provide a measurement of the instantaneous luminosity
L, by means of the following relation:

µ · fbc = σpp̄ · L, (3.3)

where σpp̄ is the total pp̄ cross section at
√
s = 1.96 TeV (σpp̄ = 60.7 ± 2.4 mb)

and fbc is the bunch crossing rate in the Tevatron. This method measures the
luminosity with about the 6% systematic uncertainty. Each CLC module contains
48 gas Cherenkov counters of conical shape projecting to the nominal interaction
point, organized in concentric layers. It utilizes Cherenkov radiation: particles
traversing a medium at a speed higher than the speed of the light in the medium
radiate light into a cone around the particle direction; the cone opening angle
depends on the ratio of the two speeds and the refraction index of the medium.
Taking into account that light produced by any particle originated at the collision
point is collected with much higher e�ciency than for background stray particles,
the CLC signal is thus approximately proportional to the number of traversing
particles produced in the collision.
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Figure 3.18: Schematic view of the luminosity monitor inside a quadrant of CDF.

3.6 Forward Detectors

CDF Forward Detectors (see scheme in Fig. 3.19) include the Roman Pots de-
tectors (RPS), beam shower counters (BSC) and two forward Mini Plug Calorime-
ters (MP). These detectors enhance CDF sensitivity to production processes where
the primary beam particles scatter inelastically in large impact parameter interac-
tions.

The Tevatron complex allowed to arrange a proper spectrometer making use
of the Tevatron bending magnets only on the antiproton side. On this side, at
appropriate locations, scintillating �ber hodoscopes inside three RPS measure the
momentum of the inelastically scattered antiproton. Only the direction of the
scattered proton is measured on the opposite side. The BSC counters at 5.5 <
|η| < 7.5 measure the rate of charged particles around the scattered primaries.

The MiniPlugs calorimeters at 3.5 < |η| < 5.1 measure the very forward en-
ergy �ow. MiniPlugs are a single compartment integrating calorimeter, consisting
of alternate layers of lead and liquid scintillator read by longitudinal wavelenght
shifting �bers (WLS) pointing to the interaction vertex. Although the miniplug is
not physically split into projective towers, its response can be split into solid angle
bins in the o�-line analysis. The MiniPlug energy resolution is about σ

E
= 18%√

E
for

single electrons.
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Figure 3.19: The forward detectors system in CDF, as arranged for Run II.

3.7 Trigger and data acquisition system

At hadron collider experiments the collision rate is much higher than the rate
at which data can be stored on tape. At CDF II the predicted inelastic cross
section for pp̄ scattering is 60.7 ± 2.4 mb, which, considering an instantaneous
luminosity of order 1032 cm−2s−1, results in a collision rate of about 6 MHz, while
the tape writing speed is only of ∼ 100 events per second. The role of the trigger
is to e�ciently select the most interesting physics events from the large number of
minimum bias events. Events selected by the trigger system are saved permanently
on a mass storage and subsequently fully reconstructed o�ine.

The CDF trigger system has a three-level architecture providing a rate reduc-
tion su�cient to allow more sophisticated event processing one level after another
with minimal deadtime (see Fig. 3.20). The front-end electronics of all detectors is
interfaced to a syncronous pipeline where up to 42 subsequent events can be stored
for 5.5 µs while the hardware is taking a decision. If by this time no decision is
made, the event is lost. Level 1 (L1) always occurs at a �xed time < 4 µs so that
it doesn't cause any dead time. Using a custom designed hardware, L1 makes a
raw reconstruction of physical objects and takes a decision after counting them.
Events passing the L1 trigger requirements are then moved to one of four on-board
Level 2 (L2) bu�ers. Each separate L2 bu�er is connected to a two-step pipeline,
each step having a latency time of 10 µs: in step one, single detector signals are
analyzed, while in step two the combination of the outcome of step one are merged
and trigger decisions are made. The data acquisition system allows a L2 trigger
accept rate of ∼ 1 kHz and a L1 + L2 rejection factor of about 2500. Events
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(a) CDF readout functional diagram. (b) Block diagram of the CDF trigger system.

Figure 3.20: CDF trigger system.

satisfying both L1 and L2 requirements are transferred to the Level 3 (L3) trigger
processor farm where they are reconstructed and �ltered using the complete event
information, with an accept rate < 150 Hz and a rejection factor > 6, and then
�nally written to permanent storage.

According to the signal one wants to isolate, speci�c sets of requirements are
established by exploiting the physics objects (primitives) available for each trigger
level. Successively, links across di�erent levels are established by de�ning trigger
paths: a trigger path identi�es a unique combination of a L1, a L2, and a L3 trigger;
datasets (or data streams) are then �nally formed by merging the data samples
collected via di�erent trigger paths.

3.7.1 Level 1 primitives

Tracks

The most signi�cant tool for L1 trigger is the possibility of track �nding by
means of a hardwired algorithm named eXtremely Fast Tracker (XFT). The XFT
has been designed to work with COT signals at high collision rates, returning track
PT and φ0 by means of a fast r-φ reconstruction. These tracks are then extrapolated
to the central calorimeter wedges and to the muon chambers (CMU and CMX),
allowing a track to be matched to an electromagnetic calorimeter cluster for a
�rst electron identi�cation, or to a stub on the muon detectors for improved muon
reconstruction, and tracks to be used alone for speci�c triggers.
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Calorimetric primitives

At L1 calorimetric towers are merged in pairs along η to de�ne trigger towers,
which are the basis for two types of primitives:

• object primitives: electromagnetic and hadronic transverse energy contribu-
tions are used to de�ne electron/photon and jet primitives respectively;

• global primitives: transverse energy deposits in all trigger towers above
1 GeV are summed to compute event ΣET and 6ET .

Correspondingly, object and global triggers can be de�ned by applying a threshold
to the respective primitives.

Leptons

As already mentioned above, L1 muon and electron triggers are obtained by
matching a XFT track to a corresponding primitive: for electrons, primitives are
essentially the calorimetric trigger towers described above, while for muons they
are obtained from clusters of hits in the muon chambers.

3.7.2 Level 2 primitives

L2 trigger takes a decision on a partially reconstructed event, exploiting data
collected from L1 and from the calorimeter shower maximum detectors. Simulta-
neously a hardware cluster �nder processes data from calorimeters while a track
processor �nds tracks in the silicon vertex detector.

Calorimeter clusters

Since jets are expected not to be fully contained into a single calorimeter trigger
tower, the energy threshold on L1 jet primitives must be set much lower than the
typical jet energy in order to maintain high selection e�ciency. As a consequence,
jet trigger rates are too high to be fed directly into L3. An e�ective rate reduction
can be obtained at L2 by triggering both on multiplicity and transverse energy of
trigger tower clusters. The algorithm for cluster �nding is based on the four-step
procedure described in Fig. 3.21:

• electromagnetic and hadronic transverse energy of the trigger towers are
checked to see if they are above predetermined seed and shoulder thresholds;

• all trigger towers whose energy has been found above the seed threshold are
ordered according to increasing φ and η values.

• Cluster �nding begins with the �rst seed tower. The four orthogonal nearest
towers are considered: if their energy is above the shoulder threshold, they are
merged to the cluster and their orthogonal neighbors are in turn considered.
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Figure 3.21: Level 2 calorimeter cluster �nding procedure.

• Towers merged in the cluster are disabled from being merged into another
cluster. When no other tower is found to be added to the cluster, tower energy
values are summed to de�ne cluster ET and a new clustering procedure starts
with the successive seed tower.

L2 clusters can be used to build object triggers by applying a cut on their transverse
energy and position (provided from η-φ address of the seed towers), and global
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Figure 3.22: The svt architecture.

triggers by selecting on the number and
∑
ET of clusters.

SVT tracks

One of the most signi�cant tools for the L2 trigger system is the Silicon Vertex
Tracker (SVT) [8] which exploits the potential of a high precision silicon vertex
detector to trigger on tracks with large impact parameter: this can allow to detect
secondary vertexes and to study a large number of processes involving decays of
b-hadrons with a long lifetime.

The architecture of SVT is shown in Fig. 3.22. Its inputs are the list of axial
COT tracks found by XFT and the data from SVXII. First SVXII hits are found
by a Hit Finder algorithm and stored in hit bu�ers; then association between XFT
and SVXII tracks is performed by Associative Memory (AM), a massive parallel
mechanism based on the search of roads among the list of SVXII hits and XFT
tracks; a road is a coincidence between hits on four of the silicon layers and XFT
tracks. Upon receiving a list of hits and tracks, each AM chip checks if all the
components of one of its roads are present in the list of hits and XFT tracks. When
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AM has determined that a road might contain a track, hits belonging to that road
are retrieved from the input bu�er and passed to a track �tter to compute track
parameters.

Leptons

L2 muon primitives are essentially unchanged with respect to L1, the only
di�erence consists in an improved φ-matching (within 1.25o) between XFT tracks
and stubs. In the case of electrons, a �ner φ-matching can be instead performed at
L2 thanks to the information from central and plug shower maximum detectors.

3.7.3 Level 3 primitives

The L3 trigger is a software trigger that runs on a Linux PC farm where all
events are almost fully reconstructed using C++ codes and object-oriented tech-
niques. In particular jets, COT tracks and leptons are identi�ed. The algorithms
used for the reconstruction are the same used in o�ine analysis. Events coming
from L2 are addressed to the Event Builder (EVB), which associates information on
the same event from di�erent detector parts. Some variables, like global kinematic
event observables, cannot be computed due to the long processing time required.
Other tasks, like a full track reconstruction, could be possible only on subsets of
data passing low-rate triggers. The �nal decision to accept an event is made on the
basis of its features of interest (large ET leptons, large missing ET , large energy
jets and a combination of such) for a physics process under study, as de�ned by the
trigger path tables containing up to about 150 entries. Events exit L3 at a rate up
to about 100 Hz and are permanently stored on tapes for further o�ine analisys.
Each stored event is about 250 kB large on tape. Further o�ine processing is then
performed on the selected events.

3.7.4 Trigger Upgrades

CDF has recently undergone two major trigger upgrades in order to deal with
high trigger rates with increasing luminosity and to augment signal acceptance: an
XFT upgrade and an upgrade in L2CAL system [9, 10].

XFT upgrade regards both Level 1 (L1) and Level 2 (L2) trigger systems. At
L1 it rejects fake axial tracks by requiring the association with stereo segments,
with a rejection factor of about 7. Moreover XFT segments of �ner granularity
can be sent to L2 where a 3D-track reconstruction can be performed with a good
resolution on cotθ (σcotθ= 0.12) and z0 (σz0 = 11 cm).

The upgraded L2CAL system uses a �xed cone cluster �nding algorithm which
prevents fake cluster formation and exploits full 10-bit trigger tower energy infor-
mation for 6ET and ΣET calculation (the old system, due to hardware limitations,
used only 8-bit tower information). A jet is formed starting from a seed tower
above a 3 GeV threshold and adding all the towers inside a �xed cone centered at
the seed tower and having a radius ∆R =

√
∆φ2 + ∆η2 = 0.7 units in the azimuth-

pseudorapidity space. Jet position is calculated weighting each tower inside the
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cone according to its transverse energy. This upgrade has reduced L2 trigger rate
and has provided at L2 jets nearly equivalent to o�ine ones.

3.8 O�ine data processing

The raw data �ow from L3 triggers, segmented into streams according to trigger
sets tuned to a speci�c physics process, is then stored on fast-access disks in real
time (on-line), as the data are collected. All other manipulations with data are
referred to as o�-line data handling. The most important of these operations
is the so-called �production� which stands for the complete reconstruction of the
collected data. At this stage raw data banks are unpacked and physics objects
suitable for analysis, such as tracks, vertices, leptons and jets are generated. The
procedure is similar to what is done at L3, except that it is done in a much more
elaborate fashion, applying the most up-to-date detector calibrations, using the
best measured beamlines, etc. The output of the production is further categorized
into datasets which are used as input to physics analyses. Occasionally, if more
detailed calibrations or signi�cantly improved codes become available, data are re-
processed. Re-processing is an heavy computer time-consuming operation which is
performed only when a signi�cant gain in reconstructed event quality is expected.
For the analysis performed in the present work, the reconstruction code versions
5.3.3_nt5 and 6.1.4 were used.
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Chapter 4

Reconstruction of Physical Objects

In this chapter we will describe how particles produced in a pp̄ collision are
reconstructed starting from the raw outputs of the di�erent parts of the detector.
First we will see how information from silicon detectors and COT are used to
reconstruct charged particle trajectories. Then we will move to the reconstruction
of jets of hadronic particles, based on calorimeters, analyzing the corrections of jet
energies for di�erent error sources introduced by calorimeters and reconstruction
algorithms. Then we will give a brief description of the identi�cation procedures for
leptons and photons, and of the method used at CDF to identify a jet of particles
originated from a b quark.

4.1 Track reconstruction

Track reconstruction is performed using data from silicon tracking system and
COT. The reconstruction is based on the position of the hits leaved by charged
particles on detector components. Several algorithms have been developed in order
to reconstruct tracks: a tracking algorithm can use either COT or silicon detector
only information, or can rely on information provided by the complete tracking
systems.

In any case, track reconstruction requires an excellent alignment between COT
and silicon detectors, since the global CDF II coordinate system is anchored to
the center of the COT. Positions of other detector components are measured with
respect to COT reference frame and encoded in so-called alignments tables.

We remind that the whole tracking system is immersed in a 1.4 T magnetic
�eld, causing charged particles moving trough it to describe a helix trajectory,
whose axis is parallel to the magnetic �eld. Measuring the radius of curvature
of the helix, one can obtain the particle's transverse momentum PT , while the
longitudinal momentum is related to the helix pitch. Particle trajectories can be
completely described by the following parameters [1]:

• z0 : the z coordinate of the closest point to the z axis;

• d0 : the impact parameter, de�ned as the distance between the point of
closest approach to z axis and the z axis;



62 Reconstruction of Physical Objects

Figure 4.1: Illustration of track helix parameterization.

• φ0 : the φ direction of the transverse momentum of the particle (tangential
to the helix) at the point of the closest approach to the z axis;

• cotθ : the helix pitch, de�ned as the ratio of the helix step to its parameter;

• C : the helix curvature, de�ned as C = q
2R
, where q is the charge of the

particle and R is the radius of the helix.

Starting from helix parameters, particle transverse and longitudinal momenta can
be calculated as:

PT =
cB

2|C|
Pz = PT cot θ (4.1)

Track parameters and the relation between particle charge sign and impact param-
eter are illustrated in Fig. 4.1.

4.1.1 Outside-In tracking

The standard CDF track reconstruction is performed by the so called Outside-
In algorithm [2], that exploits information from both COT and silicon detectors.
The process starts by considering tracks reconstructed with information provided
by the drift chamber (COT) alone, and by extrapolating them through the Silicon
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Detector, where additional hits can be used for the �nal determination of track
parameters.

Track reconstruction in the COT begins by �nding track segments or just in-
dividual hits in the axial superlayers; matched segments and hits are then used to
produce a track candidate.

Tracking in the COT starts translating the measured drift times in hits posi-
tions; once all COT hit candidates in the event are known, the eight superlayers
are scanned looking for line segments. A line segment is de�ned as a triplet of
aligned hits which belong to consecutive layers. A list of candidate segments is
formed and ordered by increasing slope of the segment with respect to the radial
direction so that high transverse momentum tracks will be given precedence. Once
segments are available, the tracking algorithm tries to assemble them into tracks.
At �rst, axial segments are joined in a 2D track and then stereo segments and
individual stereo hits are attached to each axial track. Outside-In algorithm takes
COT tracks and extrapolates them into the silicon detectors, adding hits via a
progressive �t.

As extrapolation proceeds from the outermost SVX layer towards the beampipe
(going from the outside in), the track error matrix is updated to re�ect the amount
of scattering material traversed. At each SVX layer, hits that are within a certain
radius are appended to the track which is then re-�tted. A new track candidate is
generated for each of the newly appended hits, but only the best two candidates
(in terms of the �t quality and the number of hits) are considered for the next
reconstruction steps. Each of these candidates is extrapolated further in, where
the process is repeated. In the end there may still be several candidates associated
to the original COT-only track. In this case the best one in terms of the number
of hits and in terms of �t quality is retained.

4.1.2 Inside-Out algorithm

Although the Outside-In algorithm can achieve high performance in the central
detector region, it looses e�ciency in the forward region. For this region another
tracking algorithm, named Inside-Out [3], has been developed.

This algorithm essentially works in a reverse mode with respect to the Outside-
In one: it uses silicon stand alone reconstructed tracks to de�ne a search road
through the COT chamber.

Standalone tracking consists in �nding triplets of aligned 3D hits, extrapolat-
ing them and adding matching 3D hits on other layers. This technique is called
standalone because it doesn't require any input from outside: it performs tracking
completely inside the silicon detector. First the algorithm builds 3D hits from all
possible couples of intersecting axial and stereo strips on each layer. Once a list
of such hits is available, the algorithm searches for triplets of aligned hits. This
search is performed �xing a layer and doing a loop on all hits in the inner and outer
layer with respect to the �xed one. For each hit pair - one in the inner and one in
the outer layer - a straight line in the r − z plane is drawn. Next step consists in
examining the layer in the middle: each of its hits is used to build a helix together
with the two hits of the inner and outer layers.

The triplets found so far are track candidates. Once the list of candidates is
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complete, each of them is extrapolated to all silicon layers looking for new hits in
the proximity of the intersection between candidate and layer. If there is more
than one hit, the candidate is cloned and a di�erent hit is attached to each clone.
Full helix �ts are performed on all the candidates. The best candidate in a clone
group is kept, the others are rejected.

Inside-Out tracks can be used in conjunction to the standard Outside-In tracks
to increases the detector tracking capabilities.

Precise determination of track parameters allows to discern which track come
from what vertex and thereby to distinguish the primary vertex (PV) from the
possible secondary vertices (SV) originated by long-lived particle decays, such as
B hadrons.

4.2 Primary vertex reconstruction

The position of the interaction point of the pp̄ collision (primary vertex) is of
fundamental importance for event reconstruction. At CDF two algorithms can be
used for primary vertex reconstruction. One is called PrimVtx [4] and is used, as
an example, in b quark identi�cation. PrimVtx starts from the beamline z-position
(seed vertex) measured during collisions and then proceeds through an iterative
algorithm that combines all the information on the reconstructed tracks.

The following cuts (with respect to the seed vertex position) are applied to the
tracks:

• |ztrk − zvertex| < 1.0 cm;

• |d0| < 1.0 cm, where d0 denotes the track impact parameter;

• d0

σ
< 3.0, where σ is the error on d0.

Tracks surviving the cuts are ordered in decreasing PT and used in a PT -
weighted �t to a common vertex. Tracks with χ2 relative to the vertex greater
than 10 are removed and the remaining ones are �t again to a common point. This
procedure is iterated until no tracks have χ2 > 10 relative to the vertex.

The resulting resolution on the primary vertex position in the transverse plane
ranges from 6 to 26 µm, depending on the topology of the event and on the
number of tracks used in the �t. It is a signi�cant improvement over the beam
spot (∼ 35µm) information alone, and it provides the benchmark to secondary
vertex searches for heavy �avour jets tagging. Finally, the z coordinate of the
primary vertex is used to de�ne the actual pseudorapidity of each physics object
reconstructed in the event.

The second vertex �nding algorithm developed in CDF is ZVertexColl [5]. This
algorithm starts from pre-tracking vertices, i.e. vertices obtained from tracks pass-
ing minimal quality requirements. Among these, a lot of fake vertices are present:
ZVertexColl cleans up these vertices requiring a certain number of tracks with
PT > 300 MeV be associated to them. A track is associated to a vertex if it is
within 1 cm from a silicon standalone vertex (or 5 cm from a COT standalone
vertex), where a vertex is considered �standalone� if it is reconstructed completely
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inside a single detector - silicon detector or COT - without any input from other
detectors.

The vertex position z is calculated from tracks positions z0 weighted by the
error σ:

z =

∑
i

z0i

δ2
i∑

i
1
δ2
i

(4.2)

Vertices found by ZVertexColl are classi�ed by quality �ags according to the
number of tracks with silicon/COT tracks associated to the vertex. Associated
COT tracks have shown to reduce the fake rate of vertices thus higher quality is
given to vertices with COT tracks associated:

• Quality 0: all vertices;

• Quality 4: ≥ 1 track with COT hits;

• Quality 7: ≥ 6 tracks with silicon hits, ≥ 1 track with COT hits;

• Quality 12: ≥ 2 tracks with COT hits;

• Quality 28: ≥ 4 tracks with COT hits;

• Quality 60: ≥ 6 tracks with COT hits.

4.3 Jet reconstruction

In general jets are the results of the fragmentation process of partons outcoming
from pp̄ collision, see Fig. 4.2. The fragmentation yields a stream of energetic,
colorless, spatially collimated particles along the original parton direction.

Jets are observed as clusters of energy located in adjacent calorimetric towers.
Depending on the nature of the particles contained in a jet, energy deposit can be
detected in the electromagnetic and/or hadronic sectors of the calorimeters.

The reconstruction procedure, named jet clustering, is based on the algorithm
JetClu [6]; it starts with preclustering by identifying a list of seed towers (i.e.
towers having ET ≥ 1 GeV ) and assigning a vector in the (r, η, φ)-space whose
module is de�ned by the tower transverse energy content.

The vector origin is set in the interaction point, while its direction points to-
wards the energy barycenter of the tower. The barycenter is de�ned assuming that
all energy has been released at the average depth computed for CDF calorimeter
(6 radiation lengths, X0, and 1.5 interaction lengths, λ, for electromagnetic and
hadronic sectors respectively).

Preclusters are created by combining adjacent seed towers within a preselected
window in the η−φ plane. Starting from the highest ET seed, the algorithm
incorporates into the precluster the adjacent seed towers within the window and
removes them from the list. The process is iterated by adding the seeds adjacent
to the previous ones until no new such seeds are found in the window (see Fig. 4.3).

The jet reconstruction algorithm at CDF continues using the energy depositions
in the calorimetric towers in a �xed opening cone. The opening of the cone is
usually de�ned in terms of a radius in the η−φ plane, Rcone =

√
∆η2 + ∆φ2, and
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Figure 4.2: The scheme shows the development of a jet from parton level to particle
level and to detector level.

has to be chosen according to the topology and the characteristics of the physical
process to be studied: in high jet multiplicity events, a small cone radius (typically
0.4) is preferred, in order to avoid jet overlapping, on the contrary higher cone
radii are chosen for the reconstruction of low jet multiplicity events in order to
ensure the most of the energy �ow to be contained therein. A �xed radius cone
is drawn around each pre-cluster in the η−φ plane, whose axis is the vector with
maximum module. All vectors falling inside a cone are grouped together, their
energies summed up and the pre-cluster axis is re-estimated. This step is repeated
until all vectors with ET > 100 MeV are assigned to a cone.

Then ET is calculated by assigning a massless four-vector with magnitude equal
to the energy deposited in the tower, with a direction de�ned by a unit vector
pointing from the center of the detector to the center of the calorimetric tower.
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Figure 4.3: Prelustering of two jets on the η−φ plane. The green circles are the
projections of the jet cone on the η−φ plane.

The center of the cluster is calculated according to the following de�nitions:

Ejet
T =

N∑
i=1

Ei
T

ηjet =
N∑

i=1

Ei
Tηi

Ei
T

φjet =
N∑

i=1

Ei
Tφi

Ei
T

(4.3)

where N is the number of towers associated to the cluster and Ei
T = Ei sin θi is

the transverse energy of the i-th tower with respect to the z-position of the pp̄
interaction.

This procedure is repeated iteratively with the jet ET and direction being recal-
culated until the list of towers assigned to the clusters is stable. If two jets overlap,
a decision has to be taken: if more than 50% of the transverse energy of the less
energetic one is common, the two cones are replaced by a single one, centered
around the sum of their resultants. Otherwise, the two jets are kept distinguished,
and common vectors are assigned to the closest cone in the η-φ plane.

At the end of the procedure, the jet four-momentum (ET,jet, Px,jet, Py,jet, Pz,jet),
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is calculated using the �nal list of towers associated to the cluster:

Ejet =
N∑

i=1

Ei

Px,jet =
N∑

i=1

Ei sin θi cosφi

Py,jet =
N∑

i=1

Ei sin θi sinφi

Pz,jet =
N∑

i=1

Ei cos θi

PT,jet =
√
P 2

x,jet + P 2
y,jet

φjet = tan
Py,jet

Px,jet

sin θjet =
PT,jet√

P 2
x,jet + P 2

y,jet + P 2
z,jet

ET,jet = Ejet sin θjet (4.4)

Jet quadrimomentum explained so far is computed starting from raw calori-
metric energies.

4.3.1 Jet corrections

Jet energies measured in calorimeters su�er from the intrinsic limits of both
calorimeters and jet reconstruction algorithm. Raw energies di�er from real de-
posited energies, thus jet four-momenta need to be corrected, as we will discuss in
this section.

A lot of factors can contribute to mis-measurements of the real parton energies:

• Some particles can fall outside the cone of the reconstructed jet causing an
under-estimation of the energy measurement (out-of-cone energy).

• Particles like muons, whose energy is not completely detected, or neutrinos,
which escape from the calorimeter, can be present in the jet, causing energy
mismeasurements.

• The calorimeter coverage of the detector is imperfect, and there are some
un-instrumented detector regions (so-called cracks) that can contribute to
the degradation of the energy measurement.

• Calorimeter response can be non-homogeneous for particles hitting di�erent
regions of the detector.

• Strong interactions involving beam remnants (underlying event) or due to
multiple interactions in the same bunch crossing can produce soft hadrons
interfering with the jet clustering procedure.
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Level Type of jet correction
Level 0 Calorimeter energy scale setting
Level 1 η-dependent correction, fη

Level 2 Time dependent corrections (already included into Level 0)
Level 3 Not in use
Level 4 Multiple pp̄ interactions correction, Mpp̄I

Level 5 Absolute energy scale (P calo
T → P particle

T ), fjes

Level 6 Underlying Event correction, UE
Level 7 Out-of-Cone correction, OOC

Table 4.1: Naming convention for the di�erent jet corrections.

For all these reasons, a set of correction algorithms have been developed [7],
whose input variables are ET and η of the jet, in order to scale measured jet energy
back to the energy of the particle originating the jet. Tab. 4.1 shows the current
naming convention for the di�erent type of corrections.

Level 0 correction

These corrections are applied in the CEM to set the overall energy scale with
electrons resulting from the Z0 boson decay. The same calibration is performed
in CHA and WHA via J/Ψ electrons about every 40 pb−1 of collected data. 60Co
radioactive sources and laser beams allow to transport the relative calibration to
the entire calorimeter volume.

η-dependent correction

Even after the calorimetric absolute scale calibrations, the response of the
calorimeter is not uniform in pseudorapidity. The di�erences are due to unin-
strumented regions, di�erent amount of material in the tracking volume and in the
calorimeters, di�erent responses by detectors built with di�erent technologies. The
response dependencies on η arise from the separation of calorimeter components at
η = 0, where the two halves of the central calorimeter join, and at η ∼ 1.1, where
the plug and central calorimeter are merged.

The η-dependent corrections are obtained by requiring PT balance between
the two leading jets in dijet events (dijet balancing method). The corrections are
determined based on the fact that the two leading jets in dijet events should be
balanced in PT in absence of hard QCD radiation. To determine the corrections,
events with exactly two jets are selected, one of which is called trigger and is
in the region 0.2 < |ηjet| < 0.6 where the response of the calorimeter is well
understood, while the other one is called probe. If both jets in an event are
within 0.2 < |ηjet| < 0.6, trigger and probe jets are assigned randomly. The
correction consists in modifying the probe jet transverse energy in order to balance
the transverse energy of the trigger. The PT balancing fraction, ∆PTf , is then
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Figure 4.4: Relative energy scale correction factor as a function of η for three
di�erent values of cone radii. Jet20 is the name of the sample on which correction
was calculated: it is a sample of events collected with a trigger requiring at Level 1
one calorimetric tower with energy above 20 GeV .

de�ned as:

∆PTf =
∆PT

P ave
T

=
P probe

T − P trigger
T(

P probe
T + P trigger

T

)
/2

(4.5)

With the above de�nition, the correction factor required to correct the probe jet
can be inferred as:

βdijet =
2+ < ∆PTf >

2− < ∆PTf >
(4.6)

In Fig. 4.4 we show the correction factor as a function of η. The η-depended
corrections also include time dependence corrections for the calorimeter response
and PT dependence.

Multiple pp̄ interaction

At high instantaneous luminosity more than one pp̄ interaction may occur in the
same bunch crossing due to the large pp̄ cross section at the Tevatron center-of-mass
energy. Given the Tevatron characteristics, the average number of interactions is
one for L = 0.4×1032 cm−2s−1, and increases to 3 and 8 for L = 1×1032 cm−2s−1,
and L = 3× 1032 cm−2s−1, respectively.

Energy from these non overlapping minimum bias events may fall into the jet
clustering cone of the hard interaction thus causing a mismeasurement of jet energy.

In order to compute the corrections, the number of primary vertices of quality 12
(see Sec. 4.2 for de�nitions) in the event Nvtx is taken into account. Indeed, Nvtx
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Figure 4.5: Average transverse energy as a function of the number of primary
vertices in the event: a correction factor for multiple interaction is extracted from
the slope of the �tting line.

is a good indicator of additional interactions occurring in the same bunch crossing.
For each event, the transverse energy inside cones of di�erent radii (0.4, 0.7 and
1.0) is measured in a region far away from cracks (0.1 ≤ |η| ≤ 0.7) in a minimum
bias data sample [8]. Then the distribution of average ET as a function of the
number of quality 12 vertices is �tted with a straight line and the slope of the
�tting line is taken as a correction factor (see Fig. 4.5). This procedure allows to
extract the average energy each extra vertex in the event is adding, and then to
correct jet energies accordingly.

Absolute jet energy scale

A jet contains di�erent types of particles with wide momentum spectra. As
calorimeter response to a particle depends on its momentum, position, incident
angle and type of particle, the jet momentum at hadron level is in general di�er-
ent from its momentum measured at calorimeter level [9]. Absolute energy scale
correction converts the calorimeter cluster transverse momentum PT to the sum of
transverse momenta of the particles in the jet cone: calorimeter energy is converted
to particle energy. After this correction the energy scale of a jet becomes indepen-
dent from the CDF II detector. The procedure to extract a calorimeter-to-hadron
correction factor is based on the following steps :

1. Generate a large sample of MC events with full CDF simulation to cover the
PT range [0, 600] GeV ;
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Figure 4.6: Absolute corrections for di�erent cone sizes as a function of calorimeter
jet momentum.

2. Create clusters of calorimeter towers and of HEPG particles using the same
CDF standard cluster algorithm;

3. Associate calorimeter-level jets with hadron-level jets;

4. Parameterize the mapping between calorimeter and hadron-level jets as a
function of hadron-level jets;

5. The absolute correction is de�ned maximizing the probability dP(P particle
T , P calo

T )
of measuring a jet with P cal

T given a jet with a �xed value of P had
T .

Absolute corrections as a function of calorimeter-level jet momentum are shown in
Fig. 4.6 for di�erent cone sizes.

Underlying event

In a hadron-hadron collision, in addition to the hard interaction that produces
the jets in the �nal state, there is also an underlying event, originating mostly from
soft spectator interactions. In some of the events, the spectator interaction may be
hard enough to produce soft jets. Energy from the underlying event can fall in the
jet cones of the hard scattering process thus biasing jet energy measurements. A
correction factor for such e�ect has been calculated using a sample of minimum bias
events as for multiple interaction correction, but selecting only those events with
one vertex [10]. For each event, transverse energy ET inside cones of di�erent radii
(0.4, 0.7 and 1.0) is measured in a region far away from cracks (0.1 ≤ |η| ≤ 0.7).
The correction factor is extracted from the mean values of ET distribution.
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Figure 4.7: Out-of-cone correction factor as a function of jet momentum for di�er-
ent cone sizes.

Out-of-cone energy

The jet clustering may not include all the energy from the initiating partons.
Some of the partons generated during fragmentation may fall outside the cone
chosen for the clustering algorithm. This energy must be added to the jet to get
the parton level energy. A correction factor is obtained using MC events [11]:
hadron-level jets are matched to partons if their distance in the η−φ plane is
less than 0.1. Then the di�erence in energy between hadron and parton jet is
parameterized using the same method as for absolute corrections (see Fig. 4.7).

Depending on the physics analysis, all of the reviewed corrections or just a
subset of them can be applied.

Corrections are applied to the raw measured jet momentum according to the
following equation [7]:

PT (R,PT , η) = [P raw
T (R)× fη(R,P

raw
T , η)−Mpp̄I(R)]× fjes(R,P

raw
T )−

−UE(R) +OOC(R,P raw
T ) (4.7)

where R is the clustering cone radius, P raw
T is the raw (i.e. measured) energy, and

η is the pseudorapidity of the jet with respect to the center of the detector. On
the other hand, fη refers to the η-dependent correction, Mpp̄I stands for multiple
interaction correction; fjes is the jet scale energy correction, and �nally, UE and
OOC indicate the underlying event and out-of-cone correction factors, respectively.
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Figure 4.8: Total systematic uncertainties to corrected jet PT .

Jet energy measurement systematic uncertainties

The application of jet corrections is subjected to systematic uncertainties whose
origin can be either related to the method used for their calculation or to discrep-
ancies in the jet modelling between data and Monte Carlo. The systematic uncer-
tainties associated to the jet energy response are found to be largely independent
of the correction applied and mostly arising from the jet description provided by
the Monte Carlo simulation.

The total systematic uncertainty to the jet corrected PT is shown in Fig. 4.8,
and it results from the sum in quadrature of several contributions coming from the
systematics associated with each level of correction described previously. For high
PT the largest contribution arises from the absolute energy scale which is limited
by the uncertainty of the calorimeter response to charged hadrons. On the other
hand, at low PT the main contribution to the total uncertainty arises from the
modelling comparison of the energy �ow around the jet cone between data and
Monte Carlo samples.

4.4 Missing energy measurement

Neutrinos cannot be directly detected however their production can be inferred
by the presence of imbalance in the calorimeter energy. The longitudinal compo-
nent of the colliding particle momenta is not accessible, but the transverse com-
ponent can be measured and it is subjected to conservation. From the transverse
energy measured in the calorimeter, the transverse component of the neutrino mo-
menta can be calculated.

The missing transverse energy ~6ET is a two component vector (6ET x, 6ET y) whose
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raw value is de�ned by the negative vector sum of the transverse energy of all
calorimeter towers:

~6ET

raw
= −

∑
towers

(Ei
T )~ni (4.8)

where Ei
T is the transverse energy of the i-th calorimeter tower, and ~ni is a trans-

verse unit vector pointing from the center of the detector to the center of the tower.
The sum extends up to |η| < 3.6.

The value ~6ET

raw
needs to be corrected for the actual primary vertex position,

for escaping muons and for energy mismeasurements. Muons do not deposit sub-
stantial energy in the calorimeter, but may carry out a signi�cant amount of energy.
The sum of transverse momenta of escaping muons

∑ ~PT,µ measured in the COT

has to be accounted for in the calculation of ~6ET . On the other hand, the energy
corrections to jets must be taken into account too.

Uncertainties on 6Ecorr
T =

√
6ET

2
x + 6ET

2
y are dominated by uncertainties related

to jet energy response (Sec. 4.3.1).
The resolution of the 6ET generally depends on the response of the calorimeter

to the total transverse energy deposited in the event. It is parameterized in terms
of the total scalar transverse energy

∑
ET , which is de�ned as:∑

ET =
∑

towers

Ei
T . (4.9)

The 6ET resolution in the data is measured using minimum bias events [12], dom-
inated by inelastic pp̄ collisions. Since minimum bias events are spherically dis-
tributed, no large energy imbalance is expected.

The 6ET resolution is de�ned by ∆ =
√
< 6ET

2 >. For minimum bias events
both the x and y component of the missing energy are distributed according to a
Gaussian distribution with zero mean and σx = σy = σ so that:

dN

d6ET x

∼ e−
6ET

2
x

2σ2

dN

d6ET y

∼ e−
6ET

2
y

2σ2 (4.10)

Consequently, ∆ =
√

2σ =
√
< 6ET

2 >. The 6ET resolution, ∆, is observed to
scale as the square root of the total transverse energy,

∑
ET . From minimum bias

studies it is found to be ∆ ∼ 0.64
∑
ET [12], as shown in Fig. 4.9.

4.5 b-jet identi�cation

The high position resolution provided by the silicon vertex detector can be
exploited to identify secondary vertices originated inside a jet by decays of long
lifetime particles produced in heavy quark hadronization. For this purpose, the
SECondary VerTeX (secvtx) tagging algorithm [13, 14] has been developed.

The B hadrons produced by bottom quark hadronization have a lifetime of the
order of a picosecond and at the typical energy of the bottom quark originating
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Figure 4.9: 6ET resolution as a function of
∑
ET measured in minimum bias

events [12].

by top quark they travel some millimeters before decaying. This provides a way
to discriminate high PT b-jets from jets originated by light quarks or gluons: the
secvtx algorithm relies on the displacement of secondary vertices relative to the
primary event vertex to identify b hadron decays. In the following the secvtx
algorithm will be described.

The SecVtx algorithm

The secondary vertex tagging algorithm operates on a per-jet basis, where only
tracks within the jet cone are considered for each jet in the event. A set of cuts
involving the transverse momentum, the number of silicon hits attached to the
track, the quality of those hits and the χ2/n.d.f. of the �nal track �t are applied
to reject poorly reconstructed tracks.

Only jets with at least two of these tracks can produce a displaced vertex; a jet
is de�ned as �taggable� if it has at least two good tracks. Displaced tracks in the jet
are selected on the basis of the signi�cance of their impact parameter with respect
to the primary vertex and are used as input to the secvtx algorithm (Fig. 4.10).
Tracks identi�ed as KS or Λ daughters, or consistent with primary vertex or too
far from it are removed.

secvtx uses a two-pass approach to �nd secondary vertices: in the �rst pass,
using tracks with PT > 0.5 GeV and d0/σd0 > 2.0, it attempts to reconstruct a sec-
ondary vertex which includes at least three tracks. If the �rst pass is unsuccessful,
it performs a second pass which makes tighter track requirements (PT > 1 GeV
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Figure 4.10: Reconstruction of the primary and secondary vertices in the r-φ plane.
The impact parameter d and the distance Lxy (or L2d) between the vertices in the
transverse plane are shown.

and d0/σd0 > 3.5) and attempts to reconstruct a two-track vertex.

Once a secondary vertex is found in a jet, the two-dimensional decay length of
the secondary vertex L2d is calculated as the projection onto the jet axis in the
r − φ view only of the vector pointing from the primary vertex to the secondary
vertex. To reduce the background from false secondary vertices (mistags), a good
secondary vertex is required to have |L2d/σL2d

| > 7.5. A tagged jet is de�ned to
be a jet containing a good secondary vertex. Secondary vertices corresponding
to the decay of b and c hadrons are expected to have large positive L2d while
the secondary vertices from random mis-measured tracks are expected to be less
displaced from the primary vertex. The tags are classi�ed depending on where the
secondary vertex is located with respect to the jet cone axis.

Secondary vertices on the same side of the interaction point as the jet cone axis
are positive tags, otherwise they are classi�ed as negative tags. Negative tags can
arise from tracks mismeasurements as illustrated in Fig. 4.11.

4.6 Electron identi�cation

Electrons resulting from electroweak W and Z production or from top decays
are generally highly energetic and can be identi�ed as high-PT tracks in the drift
chamber accompanying large energy deposition in the electromagnetic calorime-
ters. Electron identi�cation relies on the combination of tracking and calorimetric
information. Electrons and photons leave a characteristic signature in the calorime-
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Figure 4.11: Real and fake secondary vertices as seen in the transverse plane.

ter, their electromagnetic shower. Electrons can be distinguished from photons in
part by the slight di�erence of the shape of the electromagnetic shower, but mostly
by requiring a track to point to the calorimetric cluster produced by the shower;
photons, being neutral, do not leave any trace in the tracking systems [15].

4.7 Muon reconstruction

Unlike electrons, muons do not initiate an electromagnetic shower in the calorime-
ters due to their larger mass (105 MeV compared to 0.511 MeV ). Moreover, unlike
hadrons, muons do not interact strongly and hence do not shower in the hadronic
calorimeter either. As a result, muons with a transverse energy of few GeV or more
deposit only a small fraction of their energy in the calorimeters due to ionization,
and escape the detector. Muons are thus identi�ed by matching hits in the muon
chambers with a well reconstructed track in the drift chamber and requiring lit-
tle energy to be deposited in the calorimeter along the particle trajectory. In each
muon system (CMU, CMP, CMX) the scintillator layers provide the reconstruction
of muon track segments (stubs). A muon candidate is reconstructed if such a stub
is found in one of the muon systems and if an extrapolated COT track matches
with the stub [16].

4.8 Tau reconstruction

Tau lepton can decay leptonically into electron or muon (and the corresponding
neutrinos) or semileptonically into charged and neutral pions; the �rst case is not
distinguishable from a leptonic decay from W , while the second has a precise
signature: tau decays preferably into 1 or 3 charged pions (One/Three prong event)
and in most cases also neutral pions are present. So a well isolated jet with low
track multiplicity and neutral pions is a good tau candidate. Tau reconstruction
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procedure exploits information from the calorimeter and tracking systems: the
algorithm searches for an isolated narrow cluster above a certain energy treshold
and then matches it to COT tracks [17].

4.9 Photon identi�cation

A photon traversing CDF detector interacts only with electromagnetic calorime-
ter and shower maximum detector. Thus photon identi�cation starts by looking for
clusters around a seed tower with energy ≥ 3 GeV . Total energy of the hadronic
towers located behind the photon cluster has to be negligible with respect to the
photon cluster energy. Additionally, photon cluster isolation is required: the dif-
ference between photon energy and the energy in a 0.4 cone around the seed tower
has to be less tan 15% of the photon energy. Moreover the sum of transverse
momenta of all tracks pointing to the 0.4 cone is required to be less than 2 GeV .
Electromagnetic shower shape shall be transverse and no matching tracks have
to be present. The line connecting the primary event vertex to the CES shower
position determines the photon's direction [18].
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Chapter 5

Neural Networks

The main goal of our analysis will be to extract the tt̄→ 6ET +jets signal events
from our complete data sample and to be able to discriminate between top-like
and background events. We will rely heavily on the features provided by Arti�cial
Neural Networks, having as inputs the kinematical variables that best discriminate
signal among backgrounds. In the following we will give a brief description of the
main concepts about neural networks, describing in detail the learning strategy we
used in this work.

5.1 Introduction

Arti�cial Neural Networks, more precisely Feed Forward Neural Networks, be-
long to the multivariate analysis branch of statistics; they may be de�ned as a
computing system of Von Neumann type aiming at approximating e�ciently a
given mapping from a subset D of Rn into Rm with m ≤ n on the basis of a set
of known examples, often called training set. In particular, in this work we will
restrict ourselves to the case m = 1 so that the network will be mapping a vector
of variables into a single scalar variable; this will allow the use of the FFNN as a
simple classi�er between signal and background events by searching for a mapping
that will assign 0 to all background and 1 to all signal events. The mapping is
de�ned as a function of a number of parameters, called weights, and organized in
a particular hierarchical structure, called architecture, whose smallest unit is the
perceptron.

5.2 Perceptrons and Neural Networks

A perceptron is a mathematical abstraction of a biological neuron, see Fig. 5.1.
Given a set ~x = (x1, . . . , xN) of N input variables, the perceptron output value y
is given by the following expression:

y = θ

(
1

N

N∑
i=1

ωixi − φ

)
(5.1)

where {ωi} are the weights of the connections entering the perceptron, θ(ζ) is a
transfer function (among the many available choices, the most common are Heav-
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Figure 5.1: Perceptron as a mathematical abstraction of a neuron.

Figure 5.2: Example of two classes separated by perceptron weights {ωi}.

iside's step function, heath bath function θ(ζ) = tanh(βζ) or any smooth variant
of the step function) and φ is a bias. The operating mode of a perceptron has
an easy geometrical interpretation: basically it provides two-class classi�cation, as
illustrated in Fig. 5.2. In fact, if we have a mapping into two linearly separated
subsets A and B with A,B ⊂ I (i.e. it is possible to �nd an hyperplane that
separates the two subsets), then a single perceptron is su�cient to reproduce the
mapping, since there exists a vector ~ω such that the two conditions:

• A = {~x ∈ I : ~ω · ~x ≥ 0}

• B = {~x ∈ I : ~ω · ~x < 0}

are su�cient to de�ne the two subsets; in this case the components of the vector
{ωi} will be the perceptron's weights.

Unfortunately only linearly separable sets can be classi�ed using a single per-
ceptron: for example two dimensional AND and OR logic operators can be imple-
mented using a single perceptron, while an exclusive OR,XOR, cannot; to overcome
this limitation one can combine multiple perceptrons in such a way that the output
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Figure 5.3: Example of a multi-layer percepetron.

Figure 5.4: A simple neural network implementing the XOR logic operator.

of one becomes the input of another, building an architecture with multiple layers,
as depicted in Fig. 5.3. Then it is understandable that in this kind of network
perceptrons could cooperate to build some sort of set of contiguous �pieces� of �at
hypersurfaces capable of approximating the generally curved surface of separation
between the two sets. As an example, Fig. 5.4 illustrates a simple multi layer
network implementing the XOR logic operator.

Mappings that separate their de�nition sets into multiple subsets are typical
in classi�cation problems through pattern recognition and in high-energy physics
analysis. What makes Neural Networks particularly suitable in these tasks and
better performing than the usual �sequential-cuts� attack to the problem is that a
cut on their output for classi�cation pourposes may be completely impossible to
reach using simple sequential cuts on any of the projections of the de�nition sets
on the available axis: this is visualized in Fig. 5.5 for a simple two-dimensional
case.

Neural Networks architectures are usually identi�ed by the number of layers
they are made of, each composed by a de�nite number of neurons, and by the
activation function used in those neurons. Typically, in software implementations
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Figure 5.5: Example of a two-dimensional classi�cation: while the two de�nition
classes are not separable using any set of sequential cuts on the two axis, the blue
line could be an hypersurface of constant output for a suitable Neural Network,
thus allowing a cut separating the two classes.

the sigmoid function is used:

S(x) =
1− e−1

1 + e−1
(5.2)

The set of input nodes is called input layer, the set of output nodes output layer,
while all the remaining layers are called hidden layers. The speci�c class of net-
works we will use in the following are called �feed forward� networks because the
informations proceeds from input to output along successive layers.

It is possible to prove that any continous functional mapping from a �nite-
dimensional space to a �nite-dimensional space can be approximated aribitrarily
well using a two-layer network, if a su�cient number of hidden perceptrons is
provided; a complete discussion of this important feature can be found in [1,
2, 3] and references. What is particularly interesting is that in the context of
classi�cation problems, networks with sigmoidal nonlinearities of two layers can
approximate any decision boundary with arbitrary accuracy.

5.3 Training

Once we choose a topology, in order to use the desired network as a classi�er �rst
we need to determine the weights to be associated to each perceptron. This task is
performed using a set of a priori known samples belonging to the classes we want
to separate, and the whole process goes under the name of �supervised learning�.
The procedure of creating the approximate mapping (known as training) consists
in �nding the set of weights and biases that minimizes the di�erence between the
desired outputs {y} and the outputs {o} obtained by the neural network on the
training samples. Usually the function to minimize is the following quadratic error
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function:

f({o}, {y}) =
1

#

#∑
i=1

(oi − yi)
2 (5.3)

where # is the number of elements in the training sample.

General theorems ensure that absolute minima of this kind of function do exist
(see for example [4]), but �nding them is obviously complex and computing inten-
sive due to the high dimensionality of the con�guration space; doing an exhaustive
search exploring all possible values of the weights is not an option in any real
case scenario. That's why many di�erent algorithms have been created in order
to implement optimal strategies to �nd minima; we will review in the following
some aspects of a particular search method based on the so called �Reactive Taboo
Search� strategy and a review of a method in the steepest gradient class known as
�BFGS�: both of them were important during the preparation of this work.

Before we proceed any further, it is also useful to stress another important issue,
related to the choice of training samples. The fact that the training samples have
a �nite number of elements implies that the mapping function implemented by the
network will by de�nition have some noise, so that there will be an overlapping in
its output for elements belonging to di�erent classes in the input variable space. It
is then crucial to �nd some training patterns that are good enough representative
of the classes we want to separate.

Once a set of weights is chosen, the next step is to proceed with the testing or
generalization phase and to classify some new known elements in order to test the
performances of the network and check the value of the error function on the test
sample. The choice of a set of weights and the successive testing phase constitute
an epoch of the training process. A training can continue through several epochs
before reaching a minimum of the error function.

When using networks trained with a single output neuron used to separate two
classes (this will be our case throughout this work, where we will try to discriminate
signal and background in our decay channel) it can be shown that the output of
the network may be interpreted as the probability that an element belongs to a
particular class. In this two-dimensional problem the performances of the network
are usually evaluated using an e�ciency vs. purity curve where e�ciency ε(cut)
and purity η(cut) are de�ned as follows:

ε(cut) =
Npass

s (cut)

Ns

, η(cut) =
Npass

s (cut)

Npass
s (cut) +Npass

b (cut)
(5.4)

and Npass
s (cut) (Npass

b (cut)) is the number of signal (background) events passing
the cut on the neural network output (i.e. withNNout >= cut), andNs is the total
number of signal events in the test sample. Basically, purity describes how well a
neural network can discriminate between signal and background, while e�ciency
is a measure of the neural network capability in recognizing signal events. An
ideal neural network should have in�nite precision in discriminating signal from
background, so ε ≈ 1 and η ≈ 1 and the e�ciency vs. purity plot would be in this
case a step function: the more the plot obtained after the training approaches the
ideal one, the better the performances of the neural network.
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Figure 5.6: Basic operations of the RTS training algorithm.

5.3.1 Reactive Taboo Search training algorithm

In the early stages of this work we have been using this non-derivative based
search strategy to train our network. The RTS training algorithm was developed
by a joint INFN IRST e�ort in Trento to exploit the features of a custom hard-
ware neural network chip called TOTEM. The algorithm (see [5, 6] for a detailed
description) makes a combinatorial optimization of the squared error function by
means of a heuristic operational method that will be brie�y described. First of all
the problem is translated from the weight space into a {0 − 1} string using Grey
encoding, to fully exploit the features of the chip hardware. The method is based
on the construction of search paths in the string space, with the aim of locating
an optimal minumum on the error surface by means of a sequence of elementary
moves, each consisting in a single bit �ip in the string of weights. Each visited
con�guration is recorded for future reference: an important feature of RTS is that
it is intensively history based. When a move is done, its inverse is forbidden for
a number of successive steps T called prohibition period, that can be dinamically
adjusted if the con�guration was already visited in the past. The path is built
by choosing among the admissible elementary moves in the string space the one
producing the minimal value of the error function and by iterating the process un-
til the required precision is reached. Every time the same con�guration is visited
again T is increased, while it decreases if the moves are exploring new unknown
con�gurations; if T grows too much, meaning that the same con�guration is visited
too often (or if its neighbours in terms of elementary moves are) then the algorithm
escapes to a di�erent random con�guration. A summary of the steps involved in
the training algorithm is shown in Fig. 5.6.



5.3 Training 89

This allows some diversi�cation in the training process, in a way that prevents
to get trapped in local minima, reacting dinamically to the local shape of the error
surface and avoiding attractive cycles by random escapes.

5.3.2 BFGS training algorithm

Another approach to the minimization problem is constituted by the so called
steepest gradient methods: in this kind of approach the minimum on the error
surface is searched starting from a random point in the weights space and then by
moving along the steepest direction around that point; this is repeated until no
further improvements are possible. Methods like these go usually under the name
of backpropagation and require to compute the local slope of the error surface,
usually a di�cult task since it involves the calculation of many derivatives.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is based on the quasi-
Newtonian method developed around 1970 indipendently by the authors of [7], [8],
[9] and [10] to solve an unconstrained nonlinear optimization problem. Following
the Newtonian optimization method, one assumes that the error function can be
approximated as quadratic in the region around its minumum and uses its �rst and
second derivatives to �nd the stationary point; the iterative procedure to �nd the
minumum starts from a random point x0 in the weights space and for each step k,
if f is the function we want to minimize, one would have to calculate in the point
xk the steepest direction pk like:

Hkpk = −∇f(xk) (5.5)

where Hk denotes the complete Hessian Matrix of the function f in that point:

Hk(xk)ij =
∂2f(xk)

∂xi∂xj

(5.6)

Then a line search along pk is used to �nd the next point xk+1, by loosely mini-
mizing (i.e. requiring a su�cient decrease) the following function of the parameter
αk, φ(αk):

φ(αk) = f(xk + αkpk), αk ∈ R (5.7)

In quasi-Newtonian methods, instead of computing the full Hessian matrix Hk

of the function in Eq.5.5 at each iteration step, an approximated matrix Bk is
de�ned and updated by analyzing successive gradient vectors. In particular, in the
BFGS method the following approximation is used:

xk+1 = xk + αkpk, yk =
∇f(xk+1)−∇f(xk)

αk

(5.8)

Bk+1 = Bk +
yky

T
k

yT
k pk

− Bkpk(Bkpk)
T

pT
kBkpk

(5.9)

A complete review of the algorithm goes beyond the pourpose of this thesis, so we
suggest the curious reader to check for example [11].
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Even if in our experience RTS based training strategies have proven to give
slightly better results than derivative based ones, during this analysis we decided
to use a neural network training method based on BFGS optimization procedure
for its fast and easy to use software implementation in the ROOT Analysis Frame-
work [12], the program used for data access and analysis in the preparation of the
work.
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Chapter 6

The tt̄→ 6ET + jets channel selection

In pp̄ collisions at
√
s = 1.96 TeV top quark pairs are produced through qq̄

annihilation (∼ 85%) and gluon fusion (∼ 15%). Since |Vtb| ∼ 1 and Mt > MW +
Mb, the t→ W+b decay is dominant (and has branching ratio ∼ 100% in Standard
Model); so we can classify the di�erent top quark pairs search channels with respect
to the W boson decay modes.

When both the produced W bosons decay into eν̄e (or c.c.) or µν̄µ (or c.c.) we
have the so called �di-lepton� channel; if both W bosons decay into quark pairs,
the �nal state is instead called �all-hadronic�. If one W decays hadronically and
the other one leptonically, we have the �lepton+jets� channel. Finally, a so-called
�tau dilepton� category was introduced to take into account eτ and µτ topologies
studied in [1].

In this chapter we will describe an inclusive search of the tt̄ production process
in the 6ET +jets �nal state, using a Neural Network to isolate the decay channel. We
will show how this choice grants a high acceptance to general leptonic W decays,
with a sizeable presence of τ+jets top pair decays, that are very di�cult to isolate
by means of standard τ identi�cation procedure.

Moreover 6ET + jets tt̄ decays, that were already studied in previous CDF anal-
yses in a lower statistics data sample (see [2, 3]), provide complementary results
with respect to standard lepton+jets, di-lepton, and all-hadronic top pair searches:
in fact the signal sample we will estract is by means of our choice of cuts orthog-
onal to the ones used by any other cross section analysis produced so far by the
collaboration. This allows us to produce a measurement that will have a strong
impact on the combination of the results produced by the CDF experiment.

In following we will review the analysis setup and the tools we used in our work.

6.1 Monte Carlo samples

The two software packages PYTHIA version v6.216 [4] and HERWIG v6.510 [5]
are used for the simulation of tt̄ events; they can calculate the hard process with
leading order QCD matrix elements, and then use di�erent parton showering al-
gorithms to simulate gluon radiation and fragmentation starting from the chosen
parton distribution functions.
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After that, CDF II detector simulation reproduces the response of each subsys-
tem to particles produced in the collision, for instance:

• Tracking of particles through the detector material is performed using the
GEANT package [6];

• Charge deposition in the silicon detectors is calculated using the model in [7];

• The COT drift model uses GARFIELD [8];

• The calorimeter simulation uses GFLASH [9];

• The trigger simulation can be performed using TRIGSIM++ [10];

The main Monte Carlo data sample used in this work, ttop75, is a set of almost
4 millions inclusive tt̄ events generated using PYTHIA with Mtop = 175 GeV/c2,
and with corresponding integrated luminosity of 594 fb−1 assuming σtt̄ = 6.7 pb.

6.2 Data

Several among the available CDF datasets can contain a detectable amount of
6ET + jets tt̄ events and, in principle, many of the available trigger paths could be
used to select a data sample in which to perform the analysis.

Our choice was to use the TOP_MULTI_JET trigger, which is speci�cally
designed for the all hadronic tt̄ decays, whose �nal state nominally consists of six
hadronic jets. Trigger requirements, among the three-level trigger architecture of
the CDF data acquisition system, are the following:

• at Level 1: at least one calorimetric tower with ET ≥ 10 GeV ;

• at Level 2: at least four calorimetric clusters with ET ≥ 15 GeV each plus a
total

∑
ET ≥ 125 GeV ;

• at Level 3: at least four jets with ET ≥ 10 GeV and |η| ≤ 2.

Additionally, starting from Run 194328 the Level 2 requirements have been
changed to cope with higher accelerator luminosity in:

• at Level 2: at least four calorimetric clusters with ET ≥ 15 GeV each plus a
total

∑
ET ≥ 175 GeV ;

This choice of trigger is mainly due to the analysis strategy we want to deploy:
this �multijet� trigger contains the signal signature we are looking for and gives
us the possibility of investigating a sample of events that are normally not used
by other analyses, providing us a cross section determination uncorrelated with
the remaining ones at CDF. Moreover, we will rely on the b-tagging algorithm to
indentify heavy �avour jets due to top quark decay: for this reason, triggers using
selections based on SVT tracks with large impact parameter are not suitable for our
purpose, since they can enrich the heavy �avour fraction of the data sample at the
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Dataset Run Range CDF code version Lum. (nb−1)
gset0d 138425 - 186598 prod 5.3.1 - topCode 6.1.4 355,460
gset0h 190697 - 203799 prod 6.1.1 - topCode 6.1.4 418,122
gset0i 203819 - 212133 prod 6.1.1 - topCode 6.1.4

217990 - 222426 prod 6.1.1 - topCode 6.1.4
222529 - 228596 prod 6.1.1 - topCode 6.1.4
228664 - 233111 prod 6.1.1 - topCode 6.1.4 886,494

gset0j 233133 - 237795 prod 6.1.1 - topCode 6.1.4 246,742
Total 1,906,818

Table 6.1: CDF datasets used for this analysis. The table shows the available run
range, the version of the production and reconstruction software and the corre-
sponding integrated luminosity for each dataset.

cost of introducing a sizeable and di�cult to model bias as far as the b-tagging al-
gorithm is concerned. Additionally, triggers with explicit missing ET requirements
can reduce the initial background amount in the triggered data sample, but they
enhance the EWK+jets component with respect to the QCD-dominated fraction
of events, which is essential to parameterize background b-tagging rates, as will be
described in Sec. 6.9.

For these reasons, our choice is to use the TOP_MULTI_JET trigger which
provides, at the �rst order, a QCD-dominated sample in which background predic-
tion tools can be developed and used to estimate the background to 6ET + jets tt̄
decays.

The results reported in this work are based on data collected from March 2002
to March 2007 by the Collider Detector at Fermilab using the TOP_MULTI_JET
trigger. With the requirement of fully operational silicon detectors, calorimeters
and muon systems, the total integrated luminosity used in the analysis and corre-
sponding to this period is 1.9 fb−1. Additional details about the datasets used in
this analysis are reported in Tab. 6.1.

The main features of the decay channel we want to study are the following: �rst
of all, the W boson from the t-quark decaying leptonically yields a considerable
amount of missing transverse energy 6ET , whose direction in the transverse plane
r− φ is expected to be uncorrelated with respect to any jet direction in the event.
Moreover, each tt̄ event contains two b-jets whose presence can be established by
using the secvtx tagging algorithm.

6.3 6ET and 6ET signi�cance

We recall that the missing transverse energy, ~6ET , is a two component vector
(6ET x, 6ET y) whose raw value is de�ned by the opposite of the vector sum of the
transverse energy of all calorimetric towers:

~6ET

raw
= −

∑
towers

(Ei
T )~ni (6.1)
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where Ei
T is the transverse energy of the i-th calorimeter tower, and ~ni is a trans-

verse unit vector pointing from the center of the detector to the center of the
tower.

The 6ET is the only observable signature that genuine neutrinos fromW leptonic
decays leave in CDF II detector. However missing transverse energy can be also
produced by jet energy mismeasurement and by b-quark semi-leptonic decays. The
former is an instrumental e�ect that can be partly accounted for with the appli-
cation of jet energy corrections; the second is due to possible decays of b hadrons
into ν +X, that yield some missing energy oriented along the jet direction.

The resolution on the 6ET measurement is observed to scale as the square root
of the total transverse energy

∑
ET [11], so for this reason the 6ET signi�cance

de�ned as:

6Esig
T =

6ET√∑
ET

(6.2)

is expected to be more discriminant than the 6ET as an analysis cut. In our analysis∑
ET will be over all jets with EL5

T ≥ 15 GeV and |η| ≤ 2.0 in the event, where
EL5

T is the jet L5-corrected energy, and we will refer to them as to tight jets.

Corrections to the 6ET

As seen in 4.4, several corrections have to be applied to the 6ET to account for
the actual primary vertex location, as well as to correct for the presence of high-
PT muons, and �nally to propagate the e�ect of the jet energy corrections to the
missing ET measurement. We can summarize the corrections as follows:

• Vertex correction: since the geometric center of the CDF detector is used for
the raw 6ET evaluation, the 6ET is recalculated using the primary vertex of
the interaction.

• Muon corrections are then applied to account for the low energy deposits in
the calorimeter released by high-PT muons.

• Jet corrections are propagated to the 6ET measurement: the 6ET is recomputed
after previous corrections taking into account the corrections applied to jets.

Regarding the last item, in this analysis we will use tight jets, i.e. jets recon-
structed within the pseudorapidity range |η| < 2.0 with EL5

T ≥ 15 GeV , where EL5
T

denotes the jet L5-corrected energy. We note that this cut on the value of jets EL5
T

has been chosen in order to enforce a jet energy threshold of Eraw
T ≥ 10 GeV acting

at trigger level, according to the correlation between uncorrected jet energies and
L5-corrected values already observed in [2] for multijet data.

On the basis of studies already available in [12] we decided to adopt L5 jet
corrections. The application of jet energy corrections can in fact alter the shape
and the characteristics of the 6ET and 6ET signi�cance distributions both for tt̄
and background data: Fig. 6.1, taken from [12], shows the comparison of 6ET and
6ET signi�cance cuts discrimination power for jet corrections up to level 7. The
conclusion of this aproach is that L5 corrections for jets, when accounted for in the
6ET and 6ET signi�cance calculation, provide the best signal to noise discrimination,
and will thus be adopted for this analysis.
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Figure 6.1: Cut S/B and S/
√
B optimization studies performed using both 6ET

and 6ET
sig distributions for Monte Carlo signal and multijet data as a function of

the applied jet correction level. Figure is taken from [12].

All these corrections are very important, since a good knowledge of the 6ET of
the event is essential to isolate the decay channel we are interested in; not only the
6ET absolute value is of great importance, but also the direction of the 6ET in the
r−φ plane can provide an interesting handle to discriminate the possible sources of
missing transverse energy on a geometrical basis. In fact, for example the 6ET due
to neutrino production in leptonic W boson decays is generally uncorrelated with
any jet direction in the event, so if we de�ne the DPhiMin = min ∆φ(6ET , jet)
as the minimum angular di�erence between 6ET and each jet in the event, we
expect to observe large values of DPhiMin in the cases of W → lν decays and of
tt̄ → 6ET + jets events. On the other hand, since for background events the main
source of 6ET is represented by jet energy mis-measurement, the 6ET is expected
to be aligned with the jet direction, thus providing values of DPhiMin peaked
around zero.

It is important to note that high 6ET signi�cance uncorrelated with jet direction
can still be produced by processes di�erent from tt̄ production: for example W →
lν can be produced in association with jets giving the same missing energy signature
as the tt̄ → 6ET + jets decays. To further reject these kind of processes, we can
rely on the additional requirement of at least one identi�ed b-jet in the event using
the secvtx algorithm.
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6.4 b-jet identi�cation e�ciency and scale factor

The b-jet identi�cation is performed using the secvtx algorithm described in
Sec. 4.5.

secvtx b-jet identi�cation e�ciency cannot be determined only on a Monte
Carlo basis: imperfect detector descriptions, di�cult to model tracks coming from
underlying events, multiple interactions which are not modeled in the Monte Carlo,
di�erent heavy �avour contents of the various samples, raise the need to measure
the b-tagging e�ciency directly from data and then to introduce a data-to-Monte
Carlo scale factor to account for the di�erences.

If we want to estimate the e�ciency of the secvtx tagger directly using data
events, we need to identify a control sample made only of pure b-jets. Next we need
to examine the ratio of the b-tagging e�ciencies as measured in the data and in
the Monte Carlo and to correct accordingly the Monte Carlo derived e�ciency (i.e.
applying the so-called secvtx scale factor, or SF ). By doing so, the e�ciency
of the secvtx tagger in a given signal sample (such as the tt̄ sample) is given
by rescaling the measured Monte Carlo e�ciency according to the scale factor
estimate.

We can use dijet events which have a lepton within one jet (�lepton-jet� events)
as a b-enriched control sample, and as an additional prerequisite on the sample we
can require the presence of at least one tagged jet back-to-back with respect to the
lepton jet (a so called �away-jet�). Using this selection, we end up with a heavy
�avour enriched sample thanks to the requirement of a lepton within the jet, which
is consistent with a semileptonic b-quark decay, and to the presence of a tagged
away jet, which means that we are preferentially selecting bb̄ events. Next step is
to calculate the b-tagging rates in the selected sample in order to determine the
b-jet identi�cation e�ciency. Additional complications can arise mainly because
of the possible presence of a residual light �avour contamination to the lepton-jet
tags. In order to account for this e�ect a combination of two methods, the electron
and muon method, is adopted.

The electron method [13] makes use of conversions in order to calculate the
residual light �avour contribution to the lepton-jet tags, by comparing the tag
rates in jets where the electron is found to be part of a conversion with non-
conversion jets, and attributing the enhancement to heavy-�avour processes. On
the other hand, the muon method [14] uses a Monte Carlo template of the trans-
verse momentum of the muon relative to the jet axis to �t to data distribution,
and to determine the fraction of untagged and tagged jets attributable to b-quarks,
thereby extracting the tagging e�ciency for such jets.

Both methods rely on the following assumptions:

• the scale factor for tagging both jets in the event is the same as the scale
factor for tagging only one of them, i.e. that the scale factor is the same for
single and double tagged events;

• the tagging on the lepton side is uncorrelated with the tagging on the away
side;

• the scale factor is the same for b- and c-jets.
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Finally, a combination of the two scale factor measurements can be performed
by maximizing a generalized likelihood that requires the knowledge of the corre-
lation between the two scale factor measurements and the associated systemat-
ics [15, 16]. The combined result provides a secvtx scale factor determination of
SF = 0.95± 0.050.

Misidenti�cations

We call mistag or fake tag a positive secvtx tag on a jet that does not con-
tain heavy �avour; this kind of misidenti�cation by the b-tagging algorithm may
be due to several reasons. For example, some false tags can arise from tracking
resolution e�ects: when several tracks have large displacement signi�cancies, they
can combine to form a mistag. This e�ect can be reduced by selecting good-quality
vertices with large L2d displacement. Additionally, some mistags can be produced
by long-lived particles, such as KS

0 and Λ, decaying into light-�avour jets. These
can be reduced requiring the total mass of the tracks inside the tags to fall outside
opportune mass windows around these particles. Finally, b-jet misidenti�cations
can be due to material interactions or conversions on the beampipe or on inner
silicon detector layers. These e�ects can be reduced by disallowing two-track ver-
tices reconstructed within the region occupied by the detector material. Even if
the amount of mis-identi�cation can be partially reduced, any method is not 100%
e�ective.

Since mistags due to limited detector resolution are expected to be symmetric
in the signed 2D displacement Lxy of the vector separating the secondary and
primary vertices, one can then use the ensemble of negative tagged jets (Lxy < 0)
in order to estimate the residual light �avour jet contribution to the positive tag
sample.

Tagging e�ciency and mistag rate

The e�ciency of the secvtx algorithm is de�ned as the fraction of �ducial
b-jets that possess a positive b-tag. Fiducial jets are de�ned according to the
following requirements: Eraw

T > 10 GeV and |η| < 2.0. Figures 6.2(a) and 6.2(b)
show the secvtx e�ciency times scale factor in tt̄ events versus jet ET and η,
respectively; �gures 6.2(c) and 6.2(d) show the secvtx negative tag rates versus
jet ET and η, respectively. Performances for both the tight and loose versions of
secvtx are shown, even if only the tight (blue) version of the algorithm is used
in this analysis. The error bands for the e�ciency are derived from the b-tagging
data-to-Monte Carlo scale factor (SF) uncertainties.

The e�ciency curve rises as a function of jet ET and then falls down. This is
due to the imposed cuts on the maximum allowed vertex radius, and to the veto on
vertices with 2 tracks within material regions. This a�ects the e�ciency at high jet
ET where b-hadrons are more boosted, and have a higher probability of reaching
large radii before decaying. The e�ciency is �at in the |η| < 1.0 range, but then
falls o� due to reduced COT coverage for higher |η| values. The negative tag rate
also rises as a function of jet ET , however it doesn't show the same drop-o� as
the e�ciency. The negative tag rate also increases with jet |η|, and then falls o�
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(a) (b)

(c) (d)

Figure 6.2: secvtx tagging e�ciency and mistag rate. Both tight (blue) and loose
(red) options of the secvtx algorithm are shown. See text for details.

as silicon coverage decreases. The initial increase is due to the fact that as jet
|η| increases, the tracks in the jet pass through more and more material, and the
tracking algorithm becomes steadily worse due to multiple scattering. The result
is an increase in the fake rate in that case.

In order to de�ne our �nal sample to be used for the tt̄ production cross section
measurement, we will require the presence of at least one secvtx-positive tagged
jet in the selected events.

6.5 Additional kinematical variables

Besides the 6ET , DPhiMin and the b-tagging requirements, other kinemati-
cal variables related to the topology of the event or to its energy can be used to
characterize the tt̄ production with respect to background processes. In the fol-
lowing we will de�ne some topological variables called Aplanarity, Centrality and
Sphericity [17] in order to give a description of the jet activity in the event.

For each event we can de�ne the following normalized momentum tensor Mab:

Mab =

∑
j PjaPjb∑

j P
2
j

(6.3)



6.5 Additional kinematical variables 101

where a, b run over the three space coordinates and Pj is the momentum of the
jet j.

We are interested in �nding the axis ~n such that the normalized sum of the
square components of the jet momenta along it has a maximum

max

∑
j(
~Pj · ~n)2∑
j
~P 2

j

. (6.4)

This quantity can characterize the space direction distribution of the jet momenta,
i.e. topologies where the jets are mostly along the direction ~n with respect to
isotropical distributions. The ratio in 6.4 can be written as:∑

j(
~Pj · ~n)2∑
j
~P 2

j

=
3∑

a,b=1

na

∑
j PjaPjb∑

j
~P 2

j

nb =
3∑

a,b=1

naMab (6.5)

Mab is a symmetric and de�nite positive matrix, so it can be diagonalized. Its unit
eigenvectors ~n1, ~n2, ~n3 have corresponding eigenvalues Qj satisfying the relation
Q1+Q2+Q3 = 1 since the trace ofMab is null. So, ordering the eigenvalues such as
0 ≤ Q1 ≤ Q2 ≤ Q3 the axis ~n we are looking for is ~n3, the normalized eigenvector
corresponding to the highest eigenvalue.

Mab eigenvalues can be used to characterize the event shape. In particular for
roughly spherical events, Q1 ≈ Q2 ≈ Q3; for coplanar events, Q1 � Q2 and �nally
for collinear events Q2 � Q3. Particular combinations of the Qj are used to de�ne
topological variables.

The Sphericity S is de�ned as:

S =
3

2
(Q1 +Q2) =

3

2
(1−Q3) =

=
3

2

(
1−

∑
j(
~Pj · ~n3)

2∑
j
~P 2

j

)
=

3

2

(∑
j
~P 2

jT3∑
j
~P 2

j

)
(6.6)

where subscript T denotes momentum component transverse to ~n3 axis. Sphericity
values lie in the range [0, 1]: S is null in the limiting case where momenta are
directed all exactly along ~n3, like a pair of back-to-back jets, while S approaches 1
for events with a perfectly isotropic jet momenta, when Q1 = Q2 = Q3 = 1

3
, thus

giving a spherical distribution.
The Aplanarity A is de�ned as

A =
3

2
Q1 (6.7)

and it is normalized to lie in the range [0, 1/2]. A is null when the sum of jet
momenta has null component on ~n1 axis, and this is the case for coplanar or
collinear events. On the contrary, when jet momenta have isotropic distribution
Q1 = Q2 = Q3 = 1

3
and A reaches its maximum 1

2
, so that extremal values of A

are reached in the case of two opposite jets and in the case of evenly distributed
jets, respectively.
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Jets emerging from a tt̄ pair are expected to be uniformly distributed and as a
consequence they will hardly lie on the same plane: thus we expect high aplanarity
and sphericity values for tt̄ events and this will give us a handle to discriminate
them from the background.

In addition to kinematical variables describing the topology of the event, also
distributions of energy-related variables, such as the Centrality,

∑
ET ,

∑
E3

T can
be useful to give a discriminant for tt̄ events over their background.

The Centrality C is de�ned as:

C =

∑
ET√
ŝ

(6.8)

where
√
ŝ is the center of mass energy in the hard scattering reference frame: ŝ

is estimated as ŝ =
√
x1x2/1.96 TeV where x1 = (

∑
E +

∑
Pz)/(1.96 TeV ) and

x2 = (
∑
E −

∑
Pz)/(1.96 TeV ),

∑
E is the sum of the energy in the event and∑

Pz is the sum of the z component of the momentum of all jets in the event.
In the case of tt̄ pairs decaying hadronically, jets are emitted preferably in the
transverse plane (r − φ plane), so we expect to have a greater amount of energy
emitted in this plane thus giving values of C closer to 1 with respect to background
events.

We recall that the total transverse clustered energy
∑
ET is de�ned as the jet

ET sum over all tight jets of the event, i.e. jets with EL5
T ≥ 15 GeV and |η| ≤ 2.0.

On the other hand, the
∑
E3

T is de�ned as the ET sum over all tight jets with
EL5

T ≥ 15 GeV and |η| ≤ 2.0 in the event except the two leading ones. In QCD
events the two most energetic jets are produced by qq̄ processes while the least
energetic ones come from gluons bremmsstrahlung ; on the contrary, in tt̄ events up
to 6 jets can be produced by hard processes, and as a consequence

∑
E3

T can help
us discriminating signal and background.

Another kinematical variable we will use is ET1, the energy of the leading jet
in the event.

6.6 Event Prerequisites

Before going into the details of Neural Network training, it is useful to de-
�ne a set of clean-up cuts which will reject those events we are not interested in
analyzing. First of all we will exclude events collected when the detector is not
under optimal conditions (i.e. with partial functionality of the silicon, muon or
calorimeter detectors) or reconstructed in regions not fully covered by the CDF
II instrumentation. Moreover, we will preliminary reject events with well recon-
structed high-PT leptons in order to guarantee orthogonality with respect to other
tt̄ cross section analyses relying on the lepton+jets decay signature [18]. In ad-
dition to this, we will also reject events with low 6ET signi�cance, enforcing the
requirement 6ET

sig ≥ 3 GeV 1/2: this will also assure the orthogonality of our cross
section measurement with respect the all-hadronic one [19].

The following prerequisites will be applied both to data and Monte Carlo sam-
ples:
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• A Run is a set of events collected under the same conditions of the detector
and on a time window of 6÷12 hours. We use the Good run list v17 provided
by the CDF Data Quality Group requiring runs to have silicon, muon and
calorimeter detectors fully operational [20].

• We discard events whose primary vertex location is not well centered in the
CDF II detector, in particular:

� In order to select well centered events, the z coordinate of the highest-∑
PT good quality vertex is required to be within ±60 cm from the

geometrical center of the detector: |zvert| < 60 cm.

� We require that the vertex used for jet reclustering and then for the
secondary vertex search is close to be the primary vertex found in the
event by means of the PrimVtx algorithm described in Sec. 4.2. So we
require the distance between the event primary vertex and the vertex
used for jet reclustering |zjet − zprimvtx| to be less than 5 cm, where zjet

denotes the z0 of the good quality highest-PT vertex.

� A good quality vertex, by de�nition, is formed with at least three COT
tracks [21]. We require the number of good quality vertices in the event
to be greater than zero.

• We reject events with a good, high − PT reconstructed electron or muon to
avoid overlaps with other top lepton+jets analyses.

• We clean up our sample by requiring events to have at least 3 tight jets, i.e.
jets with EL5

T ≥ 15 GeV and |η| ≤ 2.0.

• We reject events with low 6ET by requiring 6ET
sig ≥ 3 GeV 1/2, thus avoiding

overlaps with top all-hadronic analyses.

• We simulate the new L2 trigger requirements (See Sec. 6.2) on data taken
before run 194328, to have an homogenous sample to perform our analysis.

• When dealing with Monte Carlo events, we perform on each event a full
simulation of the new TOP_MULTI_JET trigger path.

The impact of these preliminary selections on data and inclusive Monte Carlo
tt̄ is shown in Tab. 6.2 and Tab. 6.3. After prerequisites application we expect a
signal to background ratio S/B of 1.33% in the sample with NJets ≥ 3, of 0.12%
in the sample with exactly 3 tight jets and of 1.83% in the sample with NJets ≥ 4.
In the following this negligible signal contamination will allow us to train a neural
network using all data events after prerequisites as background and to determine
an e�ective b tag parameterization to be used to predict the amount of background
b tags in our network selected sample.

6.7 Neural Network Training

As previously discussed, in order to enhance the signal to background ra-
tio in our �nal sample, we will use a neural network, trained to discriminate



104 The tt̄→ 6ET + jets channel selection

N evts gset0d gset0h gset0i gset0j tot.
Tot. Events 7219495 3802935 4018550 1222587 16263567
Good Run 4750786 3185795 3579217 1196129 12711927
Trigger 1243047 2012475 3579216 1196129 8030867
|Zvert| < 60 cm 1162209 1770306 3227545 1150029 7310089
|Zjet − Zprimvtx| < 5 cm,
Nvert good quality ≥ 1 1127916 1665737 3077048 1051121 6921822
N tight leptons = 0 1126273 1663557 3072541 1049820 6912191
NJets ≥ 3 1088740 1562059 3001054 1013434 6665287
6ET

sig ≥ 3 GeV 1/2 14403 23808 41376 17652 97239

Out of which:
with NJets= 3 4220 8884 10190 5166 28460
with NJets≥ 4 10183 14924 31186 12486 68779

Table 6.2: Events surviving the clean-up requirements for data, divided in each
period of data taking.

N evts MCincl e�.(%) evts in 1.9 fb−1

Tot. Events 4719385
Good Run 4658603
L2 Trigger 2786636 59.82 7642
L3 Trigger 2719975 97.61 7459
|Zvert| < 60 cm 2610396 95.97 7159
|Zjet − Zprimvtx| < 5 cm,
Nvert good quality ≥ 1 2607087 99.87 7150
N tight leptons = 0 2333998 89.53 6401
NJets ≥ 3 2333351 99.97 6399
6ET

sig ≥ 3 GeV 1/2 464067 19.89 1273

Out of which:
with NJets= 3 12058 33
with NJets≥ 4 452009 1240

Table 6.3: Events surviving the clean-up requirements for inclusive Monte Carlo tt̄
samples. Last column shows the amount of tt̄ events expected in 1.9 fb−1 of data.
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Figure 6.3: The 8-16-8-1 topology of the network used in the analysis: a feed
forward neural network with 2 hidden layers, 8 input nodes and one single output
for classi�cation. The thickness of the black lines connecting each perceptron is
proportional to the associated weight.

tt̄ → 6ET + jets signal events from background. We will use the class TMultiLay-
erPerceptron available in ROOT to build a software abstraction of the network.
For what concerns training samples, as background we will use all the data taken
with the TOP_MULTI_JET trigger and passing the prerequisites previously dis-
cussed; additionally, we will require the presence of at least 4 tight jets in the event
(i.e. jets with EL5

T ≥ 15 GeV and |η| ≤ 2.0) to perform the training in a sample
completely uncorrelated with the one we will use to determine a background pa-
rameterization. For signal we will use the same amount of events passing the same
requirements of the data, taken randomly from the available Monte Carlo sam-
ples. As seen in the previous section, since S/B is negligible in the data sample
with NJets ≥ 4 obtained after prerequisites application, we can use all these data
events for background in our neural network training without a�ecting its rejection
power.

We used the topology depicted in Fig. 6.3, using as inputs for the network the
following kinematical variables, normalized with respect to their maximum value:

• ET1, the transverse energy of the leading jet;

• DPhiMin, already de�ned as min ∆φ(6ET , jet), the minimum di�erence be-
tween the 6ET and each jet in the event in the φ coordinates;

• 6ET
sig, the 6ET signi�cance of the event, de�ned as 6ET/

√
ΣET ;

• the energy-related variables
∑
ET ,

∑
E3

T and the Centrality;

• the topology-related variables Sphericity and Aplanarity.

Fig. 6.4 shows the signal versus background distributions of each input variable
going into the network after the application of the previously discussed prerequi-
sites. The obtained sample made of signal and background events will be split in
two parts: half will be used for neural network training and the other half for the
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Figure 6.4: Distribution of neural network input variables for top multi jet data
(background) and tt̄ Monte Carlo (signal) samples, after prerequisites application
(see text for details).
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Figure 6.5: Average neural network error during training on training and test
samples.

so called testing during each iteration of the training procedure; as previously dis-
cussed, we will use the ROOT implementation of the BFGS optimization method
(see Sec. 5.3.2). A plot describing the �history� of the training is shown in Fig. 6.5:
for each training epoch the average error made by the network in trying to dis-
criminate events belonging to the signal or background class is calculated both for
the events in the training sample and in the test one (see Sec. 5.3 for details).

We stop our training pocedure after 300 epochs, since after this number of
iterations the network reaches the minimum of the error function for the chosen
topology. Additionally, we want to avoid a situation of overtraining : overtraining
happens when a neural network learns �too well� the details of the training set,
getting stuck in the statistical �uctuations of its input variables, and looses the
capability of generalizing its results on a di�erent sample. The fact that errors on
the training sample and on the test one are almost the same over all the training
period tells us that the network has not been overtrained.

The neural network obtained after the training procedure is then applied to
all the available events (training + test samples), its output is shown in Fig. 6.6:
signal and background are well separated and their distributions are well peaked
around their expected values. The performances of the neural network obtained
will be brie�y described using the quantities de�ned in Sec. 5.3: the e�ciency of
the network is good over all possible cuts on the output variable, while purity
as a function of the cut on the output variable has a good trend, showing low
background contamination for high cuts, as shown in Fig. 6.7. We recall that the
purity parameter does not refer directly to the purity of the �nal sample we will use
for the cross section measurement: in fact it is just a measure of the performances
of the network, being calculated submitting to the network a sample made of the
same number of signal and background events. Finally, the e�ciency versus purity
plot approaches quite well the ideal �step� one, as shown in Fig. 6.8.
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Figure 6.6: Output of the neural network after the training, bottom �gure shows
the same plot in log scale.

Figure 6.7: Performances of the Neural Network after training: e�ciency vs cut on
the output variable on top and purity vs cut on the output variable on the bottom.
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Figure 6.8: E�ciency versus Purity plot of the network obtained after the training.

Figure 6.9: Impact of the input variables on the output of the neural network (see
text for details).
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Another important variable we can use to characterize the neural network ob-
tained after the training is the impact of each di�erent input variable on the output
of the network itself. A way to estimate this quantity is the following: we choose
a �xed input variable α and, for each event, while keeping all the other input vari-
ables untouched, we shift the value of the αi input by ± 1

10
· RMS, where RMS

denotes the root mean square (
√∑

i α
2
i ) of that input variable calculated over all

events submitted to the network. The output of the network after the shift of this
single input is calculated and then compared to the output of the network without
the shift. Finally, the square root of the di�erence of the squares of the 2 outputs
is calculated and then used to �ll an histogram. This is repeated for every variable
and for each event in the sample, and provides a way to quantify how the output of
the network depends on the �uctuations of each single input variable. The result
of this procedure is shown in Fig. 6.9: it is easy to notice how

∑
ET and 6ET

sig

variations have the most determinant impact on the output of the network.

6.8 Background estimation

In the following we will describe our background prediction method aimed at
measuring the tt̄→ 6ET + jets production cross section.

Our analysis setup is based on the idea, already developed for instance in [22],
that it is possible to discriminate tt̄ production from background processes in a
given kinematically selected sample using their di�erent b-jet identi�cation rates,
meaning that the secvtx tagging probability for a b-jet produced by top quark
decay is expected to be higher than the probability of identifying b-quark jets
yielded by background processes.

The cross section measurement will then exploit the excess in the number of
b-tagged jets over the background expectation:

σtt̄ =
Nobs −Nexp

εkin · εave
tag · L

(6.9)

where Nobs and Nexp are the number of b-tagged jets observed and expected from
background parameterization, εkin is the combined trigger and kinematical selection
e�ciency on inclusive Monte Carlo tt̄ events; εave

tag is the average number of b-jets
per tt̄ event, and �nally, L is the integrated luminosity of the TOP_MULTI_JET
data sample.

In the following we will try to obtain a reliable prediction of the total amount
of b-tags coming from background events, which will then be a part of the neural
network selection optimization procedure on the data sample. Given our tight
prerequisite cut on 6ET/

√
ΣET and the ≥ 1 positive b-tag requirement that will

be enforced on the �nal sample, we expect the main background contributions to
come from events like bb̄+ jets and Wbb̄+ jets [23].

In order to determine the background parameterization, the complete data
sample obtained in the previous discussion can not be directly used since it has
a sizeable signal contamination. Making the assumption that the per-jet posi-
tive tagging rate does not depend on the number of jets in the event, we will
limit ourselves to the subsample of events with exactly 3 tight jets (i.e. jets with
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ET ≥ 15 GeV and |η| ≤ 2.0), where the tt̄ fraction is totally negligible, and we
will use this background-dominated sample to derive a per-jet b-tagging probability
parameterization for events that are not top-like. We will then check the param-
eterization predictions for higher jet multiplicities and use it for the background
determination.

6.9 Positive b-tagging rate parameterization

As previously discussed, the background rejection power provided by the neural
network alone is not su�cient to isolate completely the tt̄ events present in our
data sample after the application of the prerequisites; the b-tagging algorithm is
necessary to enhance the signal presence, but in order to derive a cross section
measurement from the �nal tagged sample we need to �nd an estimate of the
number of b-tagged jets yielded by background processes. Once obtained this
estimation, we will use the amount of b-tagged jets expected from background
processes in a given selected sample to optimize the cut on the neural network
output, with the aim of minimizing the expected statistical uncertainty on the
cross section measurement; we will rely on an estimate of both the amount of
expected b-tagged jets from inclusive Monte Carlo tt̄ and background events to
perform such an optimization.

In the following we provide a description of the approach we adopted in order to
estimate the background contribution in terms of b-tagged jets yielded by processes
other than tt̄ production.

The basic idea of our background prediction method rests on the assumption
that b-tag rates for tt̄ signal and background processes show di�erences that are due
to the di�erent properties of the b-jets produced by the top quark decays compared
to the b-jets arising from qcd and vector boson plus heavy �avour production
processes. In this hypothesis, parameterizing the b-tag rates as a function of some
chosen jet characteristics, in events depleted of signal contamination, will allow to
predict the number of b-tagged jets from background processes present in a given
selected sample.

We summarize below the steps needed for this approach:

1. identify a subsample of data with negligible tt̄ contamination;

2. in the identi�ed sample, parameterize the b-tagging rate as a function of the
N variables on which it mainly depends.

3. Build a N -dimensional b-tagging matrix in order to associate to a given jet
a probability to be identi�ed as a b-jet given its characteristics.

4. Predict the total amount of expected background tags in a given sample by
summing b-tagging probabilities over all jets in the selected events.

5. In samples depleted of signal, check the matrix background prediction by
comparing the number of expected and observed secvtx tagged jets.
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6. Use the tagging matrix to calculate the amount of background tags in the
sample to be used for a cross section measurement (i.e. after neural network
selection and the requirement of at least 1 secvtx tag).

We remind that the use of this method based on tagging rate parameterizations
rests on the assumption that the sample used for b-tag rates dependencies studies
shows a negligible tt̄ contamination: a tt̄ presence in the sample used to parameter-
ize the tagging rate may have a sizable impact in the amount of background tags
prediction. For this reason, we need to choose as base sample a data region de-
pleted as much as possible of signal: in our case, we decide to use for the background
tagging rate parameterization the data sample obtained after the prerequisites ap-
plication with exactly 3 tight jets (i.e. jets with EL5

T ≥ 15 GeV, |η| ≤ 2.0).
Fig. 6.10 and Tab. 6.4 show the number of events in the data sample and the

tt̄ contamination expected from Monte Carlo assuming the theoretical production
cross section of 6.7 pb, corresponding to a top mass of Mtop = 175 GeV/c2 for
di�erent tight jet multiplicities.

Figure 6.10: Data (left) and inclusive Monte Carlo tt̄ (right) events versus number
of tight jets (i.e. jets with EL5

T ≥ 15 GeV, |η| ≤ 2.0) in the event after prereq-
uisites. The Monte Carlo expectation is rescaled according to the assumption of
a theoretical production cross section of 6.7 pb, corresponding to a top mass of
Mtop = 175 GeV/c2.

Number of Events 3 jets 4 jets 5 jets 6 jets 7 jets 8 jets

Exp. Inclusive tt̄ 33 380 490 260 85 20
Data 28,460 37,796 20,743 7,529 2,051 475
Exp. Contamination (%) 0.12 1.01 2.36 3.45 4.14 4.21

Table 6.4: Expected signal contamination for di�erent jet multiplicities. Number
of events is also plotted in Fig. 6.10.

6.9.1 b-tagging rate parameterization

We can de�ne the b-tagging probability as the ratio of the number of positive
secvtx tagged jets to the number of taggable jets in the sample of data events
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after prerequisites with exactly 3 jets, where we de�ne as taggable a tight jet (again,
with EL5

T ≥ 15 GeV , and |η| < 2.0) with at least two good secvtx tracks (see
Sec. 4.5 for details).

The per-jet b-tagging probability has been parameterized as a function of several
jet and event variables in order to extract its main dependencies, and is found to
depend mainly on jet characteristics such as ET , the number of good quality tracks
contained in the jet cone Ntrk, and the 6ET projection along the jet direction 6ET

prj,
de�ned by:

6ET
prj = 6ET cos ∆φ(6ET , jet). (6.10)

Figures 6.11, 6.12 and 6.13 show both the positive and negative tagging rates
dependence on a set of event and jet variables.

Jet ET and Ntrk correlation with the tagging probability is expected due to
the implementation details of the b-tagging algorithm. The 6ET projection along
the jet direction is instead correlated with the heavy �avour component of the
sample [12, 23] and with the geometrical properties of the event: in fact b-quarks
can yield a considerable amount of missing transverse energy due to their semi-
leptonic decays and in that case the 6ET is expected to be aligned with the jet
direction; on the contrary, 6ET produced in W boson decays stands more likely
away from jets, depending on the process-allowed regions of the phases space. By
requiring the events to have large missing ET signi�cance (6ET/

√
ΣET ≥ 3 GeV 1/2)

as an analysis prerequisite, we reject those events whose missing ET is mainly due
to residual energy mis-measurement e�ects, and in turn concentrate our attention
on physics-induced 6ET .

These 6ET
prj features are depicted in Fig. 6.14. The upper left plot of Fig. 6.14

shows the 6ET
prj for taggable jets in 3-jet inclusive Monte Carlo tt̄ events. On the

other hand, in the upper right plot the corresponding distribution extracted from
3-jet events in multijet data is shown for comparison. On the second row, the
missing transverse energy projection is drawn for secvtx positive tagged jets, for
both the samples.

In general, most of the dependencies observed on the variables in Fig. 6.12 and
Fig. 6.13 are weaker than those on the jet ET , Ntrk and missing ET projection: this
is the case for the event luminosity, the aplanarity, centrality and sphericity. On
the other hand, as far as the 6Esig

T and DPhiMin dependences are concerned, they
are already accounted for by the 6ET projection parameterization, so we decided to
favour a per-jet variable instead of a per-event one in our matrix parameterization.
The number of good quality vertices in the event Nv12 is found to be discriminant
for positive tagged jets but not much for negative ones, and additionally is a per-
event variable; we decided not to include it in our parameterization. Finally, jet η
is strongly correlated with the number of tracks in the jet (Ntrk): the higher the
track multiplicity the most central the jet is, so we can consider the η dependence
to be hidden in the jet Ntrk parameterization.

For the previous reasons, we decided not to include other variables except the
jet ET , Ntrk and 6Eprj

T for the b-tagging rate dependence description.
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Figure 6.11: Positive and negative b-tagging rates as a function of ET , Ntrk and
6ET

prj for the data sample with exactly 3 tight jets in the event.
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Figure 6.12: Positive and negative b-tagging rates as a function of (from top to
bottom, from left to right): 6Esig

T , DPhiMin,
∑
ET and

∑
E3

T for 3-jet events.

6.9.2 b-tagging matrix

Now we can de�ne a so-called b-tagging matrix, using the per-jet b-tagging
probability dependencies studied previously. The 3-dimensional matrix binning we
decided to choose, according to the tagging rate dependencies shown in Fig. 6.11
and in order to minimize the number of low statistics or unde�ned matrix bins, is
the one that was already successful in previous analyses:

• 3 bins in jet ET : [15, 40); [40, 70); ≥ 70 GeV;

• 11 bins in jet Ntrk: from Ntrk = 2 to Ntrk ≥ 12;

• 10 bins in 6ET
prj: < −40; [−40, −30); [−30, −20); [−20, −10); [−10, 0);

[0, 10); [10, 20); [20, 30); [30, 40); and ≥ 40 GeV.

Each jet contained in the 3-jet events data sample will be classi�ed according to
the matrix bin it belongs to, in terms of the corresponding jet variables ET , Ntrk

and 6ET
prj. After the classi�cation, for each matrix bin (x, y, z), with x, y, z integers

in the range allowed by the chosen matrix binning, the total number of positive
b-tagged jets N+

jets(x, y, z) and the total number of taggable jets N taggable
jets (x, y, z)

falling in the (x, y, z) matrix bin will be used to calculate the following tagging
rate

R(x, y, z) =
N+

jets(x, y, z)

N taggable
jets (x, y, z)

(6.11)



116 The tt̄→ 6ET + jets channel selection

Figure 6.13: Positive and negative b-tagging rates as a function of (from top to
bottom, from left to right): Aplanarity, Centrality and Sphericity, luminosity, Nv12,
and jet η for 3-jet events.
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Figure 6.14: 6ET
prj distribution for inclusive Monte Carlo tt̄ and data 3-jet events.

Top row: left (right) 6ET
prj plot for taggable jets in tt̄ (data). Second row: missing

transverse energy projection for positive tagged jets for both tt̄ (left) and data
(right).

This allows us to associate to each k − th jet in an event a 3 − d b-tagging
probability:

P(Ek
T , N

k
trk, 6ET

k
prj) = R(x, y, z) (6.12)

by �nding the (x, y, z) matrix bin corresponding to the (Ek
T , N

k
trk, 6ET

k
prj) triplet of

jet variables.
This per-jet probability will allow to calculate the number of background b-tags

expected in a given data sample as follows: the number of expected background
b-tags in the i− th event in a given sample, is de�ned as:

N i
tags =

n∑
k=1

P(Ek
T , N

k
trk, 6ET

k
prj) (6.13)

where the sum on k is over all taggable jets in the event. The total number of
tagged jets expected for a given data sample will then be the sum of the expected
tags per each event.

In the next section we will check if this choice of parameterization and binning
is satisfactory.

6.9.3 b-tagging matrix checks

Before applying the parameterization we found previously to estimate the num-
ber of background b-tagged jets in a given data sample, we �rst want to check that
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it can predict the right kinematical distributions for b-tagged events in samples of
data before any selection, where the tt̄ signal contamination is quite small.

Kinematical distributions of matrix-predicted background

Once we chose our parameterization variables and built the tagging matrix, we
can use the matrix de�nition in order to construct kinematical distributions and
compare them with the observed data distributions for events with Njet(E

L5
T ≥

15 GeV, |η| ≤ 2.0) ≥ 3 and at least one b-tagged jet before any other kinematical
requirements except the clean-up prerequisites selection.

The matrix-predicted kinematical distributions are obtained by weighting each
jet according to its parameterized tagging probability.

Fig. 6.15 shows the observed and matrix-predicted distribution for kinematical
variables such as jet ET , Ntrk, 6Eprj

T , η, φ, then global event variables Aplanarity,
Centrality and Sphericity.

Fig. 6.16 shows the observed and matrix-predicted distribution for another set
of kinematical variables such as 6ET , 6E

sig
T ,
∑
ET ,

∑
E3

T , DPhiMin, the number of
good quality vertices Nv12, luminosity and event run.

The insets at the bottom of each panel display the bin-by-bin ratio of observed
to matrix-calculated distributions. In general, the observed to expected ratio is
almost �at for all the variables here considered. Exceptions are for example the
jet ET and jet η spectra. For jet ET the ratio shows some structure at low ET ,
in the range 15÷ 40 GeV , where the b-tagging rate is parameterized with a single
matrix bin. On the other hand, the jet η ratio presents some structure over all the
η range, mainly due to a residual η dependence left by the jet Ntrk b-tagging rate
parameterization. Generally the ratio between observed and expected distributions
behaves well, con�rming the e�ectiveness of the tagging matrix in describing the
kinematical distribution of tagged data.

b-tagging rate extrapolation at high jet multiplicities

Another important check consists in extrapolating the b-tagging rate depen-
dencies at jet multiplicities higher than 3, where the matrix is parameterized, and
compare the b-tags prediction from tagging matrix application to data to the ob-
served number of b-tagged jets. This extrapolation is performed on the complete
data sample obtained after the application of the prerequisites but before any ad-
ditional kinematical requirement. As already discussed, our data sample has a
sizeable content of tt̄ events in jet multiplicities higher than 3: we thus expect the
matrix predictions to be sistematically underestimating the number of observed
tags in the sample.

Additionally, we have to take into account another problem: since the data
sample before the tagging requirement is expected to contain a non-negligible tt̄
component, the tagging rate parameterization procedure overestimates the back-
ground. In fact the expected number of b-tags provided by the positive tagging
matrix parameterization does not refer only to background events, since it receives
a contribution from tt̄ events in the pre-tagging sample.
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Figure 6.15: Checks of tagging matrix-based variables distributions in data events
with at least three EL5

T ≥ 15 GeV and |η| ≤ 2.0 jets. From top to bottom, from left
to right: Jet ET , Ntrk, 6Eprj

T η, φ; then global event variables Aplanarity, Centrality
and Sphericity. All plots except the one for η are in log scale. The insets at the
bottom of each panel display the bin-by-bin ratio of observed to matrix-calculated
distributions.
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Figure 6.16: Checks of tagging matrix based event variables distributions in data
events with at least three EL5

T ≥ 15 GeV and |η| ≤ 2.0 jets. From top to bottom,
from left to right: 6ET , 6E

sig
T ,
∑
ET ,

∑
E3

T , DPhiMin, the number of good quality
vertices Nv12, luminosity and event run. All plots are in log scale. The insets at the
bottom of each panel display the bin-by-bin ratio of observed to matrix-calculated
distributions.
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Figure 6.17: Tagging matrix check after prerequisites application and before any
kinematical selection. Observed and predicted positive b-tags as a function of the
jet multiplicity. The expected contribution coming from tt̄ events is also shown,
see text for details.

The consequence of this is that we need to remove the tt̄ contribution in each jet
bin in order to have a background-only determination of the number of expected
b-tags. To do so, we iteratively correct the number of expected b-tags for each jet
multiplicity as follows [22]:

N ′
exp = N fix

exp

Nevt −N tt̄
evt

Nevt

= N fix
exp

Nevt − Nobs−Nexp

εave
tag

Nevt

(6.14)

where, for a chosen jet multiplicity:

• N fix
exp is the number of expected tags for that jet multiplicity coming from the

tag rate parameterization before any correction; this number is �xed during
the iterative procedure.

• Nevt is the number of events in the pre-tagging data sample of that jet mul-
tiplicity used to determine N fix

exp through the tag matrix prediction;

• εave
tag is the average tagging e�ciency, de�ned as the Monte Carlo ratio between
the number of positive b-tagged jets and the number of events in the pre-tag
sample in the chosen jet multiplicity;

• N tt̄
evt is the tt̄ contamination in the pre-tagging sample of the chosen jet mul-

tiplicity, estimated as Nobs−Nexp

εave
tag

.

The iterative procedure stops when the di�erence |N ′
exp −Nexp| ≤ 1%.

The results of this approach are shown in Fig. 6.17, where we assumed a tt̄
production cross section σtt̄ = 6.7 pb for the Monte Carlo. The red error bands in
the plot are statistical only and come from the tag matrix application: we recall
that for each matrix bin, the tag rate is calculated as N+

bin/N
taggable
bin with N+

bin
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Figure 6.18: Tagging matrix check after prerequisites application and before any
kinematical selection. Observed and predicted positive b-tags as a function of Neu-
ral Network output. Left plot shows the predictions for data events with at least
three tight jets, right plot for at least four tight jets. The expected contribution
coming from tt̄ events is also shown, see text for details.

being the number of positive tagged jets and N taggable
bin the number of taggable jets

in that matrix bin in the 3-jets sample used for matrix parameterization. We thus
propagate the error associated with this ratio to the expected number of tags.

Once we take into account the tt̄ signal contamination in the sample and its
contribution to the number of observed b-tags, the agreement between the number
of observed and predicted b-tags is good in all the jet multiplicity bins, being
exactly the same by de�nition for 3-jet events, on which the matrix is calculated.

b-tagging rate extrapolation and Neural Network

An additional check we want to perform is related to the behaviour of the matrix
predictions with respect to the output of the Neural Network we will use later for
our kinematical selection; we want to verify that the prediction of the background
works well over all the spectrum of the output of the neural network. Fig. 6.18
shows the output of the Neural Network and the corresponding background pre-
diction from the tag matrix and the expected contribution from tt̄ signal both
for events with at least three tight jets and at least four tight jets. Matrix pre-
dicted tags for bins with a considerable amount of signal contamination have been
corrected according to the iterative procedure described in Sec. 6.9.3.

Results are quite good over all the neural network spectrum, altough some
discrepancies arise mainly in the low output region. In the high neural network
output region we can see that the tagging matrix predictions are not su�cient to
justify the number of observed tags, while the agreement is good if we add the
amount of tags coming from the expected tt̄ signal contribution. This is both a
con�rmation of the e�ectiveness of the method we used to estimate the background
and an additional check of the correct behaviour of the neural network we trained.

Fig. 6.19 shows the same kind of plot for 3, 4 and 5 tight jet events. As expected,
agreement is very good in the 3 jets sample and this provides an additional check
of the fact that the matrix parameterization is not a�ected by the application of
the neural network. Furthermore, since we don't expect a sizeable signal presence
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in the sample, the fact that the vast majority of 3 jet events has a neural network
output close to zero is again an indication of a well trained network. The behaviour
of the matrix predictions in the 4 and 5 jets data samples is less accurate and
more a�ected by statistical �uctuations mainly due to the fact that bins are low
populated, but further highlights the desired features of the network, that classi�es
as expected the signal events.

Figure 6.19: Tagging matrix check after prerequisites application and before any
kinematical selection. Observed and predicted positive b-tags as a function of
Neural Network output. Upper left plot shows the predictions for data events with
exactly three tight jets, upper right plot is in log scale. Bottom left plot shows
the predictions for data events with exactly four tight jets, bottom right plot for
data events with exactly �ve tight jets. The expected contribution coming from tt̄
events is also shown, see text for details.
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6.10 Event selection

In this section the optimization procedure we adopted to set the best values of
the neural network output cut will be described.

As previously described, b-jet identi�cation provided by the secvtx algorithm
constitutes an e�ective handle to discriminate the tt̄ production against background
processes. The �nal data sample to be used for a cross section measurement will
thus be obtained by applying, in addition to the neural network selection, the
requirement of at least one positive secvtx tagged jet.

The optimization procedure we seek is aimed at minimizing the statistical un-
certainty on the cross section measurement, in order to optimize the measurement
in terms of the expected number of b-tags over the background prediction. The
former quantity is evaluated from inclusive Monte Carlo tt̄ sample, the latter is
derived from the b-tagging matrix application to data.

6.10.1 Optimization and Best Cut

After the clean up cuts described in Sec. 6.6, the analysis selection starts by
asking for multijet data events with at least four jets with EL5

T ≥ 15 GeV and
|η| ≤ 2.0: 3-jet data events are not considered in the optimization procedure since
they are used for the b-tagging rates parameterization and thus are intrinsically
biased.

The optimization procedure for the event selection de�nition is performed after
the Njets ≥ 4 requirement and scans di�erent cuts on neural network output;
among all possible cut con�gurations it chooses the one promising the minimum
relative statistical error on the cross section measurement.

The central value of the production cross section we want to measure is given
by:

σ(pp̄→ tt̄)×BR(tt̄→ 6ET + jets) =
Nobs −Nexp

εkin · εave
tag · L

(6.15)

where Nobs and Nexp are the number of observed and matrix-predicted tagged jets
in the selected sample, respectively; εkin is the trigger, prerequisites and neural net-
work selection e�ciency measured on inclusive Monte Carlo tt̄ events; εave

tag , de�ned
as the ratio of the number of positive tagged jets to the number of pre-tagging
events in the inclusive tt̄ Monte Carlo sample, gives the average number of b-tags
per tt̄ event. Finally, L is the luminosity of the dataset used.

Using in input to Equation 6.15 the measured kinematical e�ciency, the aver-
age number of b-tags per tt̄ event, the actual integrated luminosity and the number
of b-tagged jet expected from the tag rate parameterization in the selected sample,
we can estimate the expected cross section value and its relative statistical uncer-
tainty for each neural network cut. The only missing piece is Nobs. We cannot
use the actual number of observed b-tags in the selected data, since it would bias
our conclusion given its possible statistical �uctuations. For this reason, in order
to obtain an a priori determination of the best cut, we substitute Nobs with the
expression Nexp +NMC , where Nexp and NMC are the number of expected b-tagged
jets from the tagging rate application and from inclusive tt̄ Monte Carlo samples
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Figure 6.20: From top to bottom, from left to right: MCevt and Dataevt, NMC and
Nexp, εkin and εave

tag , S/B ratio and signal statistical signi�cance S/
√
S +B as a

function of the cut on the Neural Network output. MCevt and NMC have not been
rescaled to their expectation value in 1.9 fb−1. S/B and εave

tag plots show e�ects
due to low statistics for cuts on neural network output in the region close to 1.

after the application of the given neural network cut, respectively. Using these val-
ues, the statistical uncertainty a�ecting the measurement can be computed before
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Figure 6.21: Expected relative statistical error on the cross section measurement
σxsec/xsec versus neural network cut. Best cut is set as NNout ≥ 0.92.

looking at the �post-tagging� data sample, allowing in this way to choose the cut
minimizing the relative error on the cross section measurement.

For each neural network output cut the following quantities are calculated:

• MCevt, and Dataevt: number of inclusive Monte Carlo tt̄ and data events in
the selected sample, before any b-jet identi�cation requirement.

• NMC and Nexp: number of positive tags expected from Monte Carlo inclusive
events and from tagging rate parameterization after the kinematical selection
de�ned by the cut on the neural network output. Since we want to derive
a �blind� minimization procedure, we don't want to look at the post-tagging
sample, meaning we won't use any information on the number of observed
b-tags Nobs in the sample obtained after the neural network cut. Since Nobs

is necessary for our iterative correction procedure, we will then rely on the
uncorrected matrix predictions only.

• εkin and εave
tag are derived from the application of the cut to the Monte Carlo

sample.

• the signal statistical signi�cance obtained as S/
√
S +B: ratio of the number

of tags expected for tt̄ events and the square root of the number of tags
expected from background processes plus the number of tags expected from
signal.

• σxsec/xsec: relative error on the cross section measurement.

Results are reported in Fig. 6.20, while Fig. 6.21 shows the cross section uncertainty
versus the neural network output cut, calculated using only the statistical errors
of the involved quantities.

The �nal result of this procedure sets as the best event selection cut NNout ≥
0.92, promising a relative statistical cross section uncertainty of 8.6% and a S/B
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ratio in terms of positive tags due to signal versus tags coming from background
processes of 2.18. The pre-tagging combined kinematical e�ciency of trigger, event
clean-up, and neural network cut on tt̄ inclusive events is measured to be εkin =
4.907 ± 0.001%, where the uncertainty is statistical only. The average number of
tags per tt̄ event under these selections is found to be εave

tag = 0.8188± 0.0008, and
is determined by dividing the number of b-tagged jets in the kinetically selected
sample (Ntag = 187, 201) by the number of inclusive tt̄ events surviving the selection
(Nevt = 228, 614). The εkin and εave

tag values will be used for the cross section
measurement as it will be described in Chapter 7.

Previous kinematical selection and new trigger e�ect

MC inc. tt̄ ttopel εcut(%) ttop75 ot εcut(%) ttop75 nt εcut(%)
Tot. evts 4719385 − 4719385 −
Good Run 1021924 − 3979960 − 3979960 −
Trigger 2579315 64.81 2311270 58.07
Vertex Req. 2466709 95.63 2213324 95.76
Lepton Veto 558528 − 2196636 89.05 1982264 89.56
NJet ≥ 4 549138 98,32 2156643 98.18 1958949 98.82
6ET

sig ≥ 4 GeV 1/2 78145 14.23 309425 14.35 238426 12.17
DPhiMin ≥ 0.4 49848 63.79 197264 63.75 145197 60.90
Tot. E�. 4.88 4.96 3.65

Table 6.5: E�ect of the introduction of the new L2 TOP_MULTI_JET trigger
on inclusive tt̄ Monte Carlo events. The column for ttopel shows results taken
from [3]; the one for ttop75 ot shows the results obtained on ttop75, the Monte
Carlo dataset used in our neural network analysis, after a full simulation of the old
trigger. Column for ttop75 nt show the results of the selection on ttop75 with a
full simulation of the new trigger path. For each cut, the e�ciency with respect
to the previous selection is provided. Last line shows the overall e�ciency of the
selection. The expected loss in the e�ciency of the selection on inclusive tt̄ signal
due to the introduction of the new trigger is ∼ 26.4%.

The kinematical selection studied in [3] for the cross section measurement in
the tt̄→ 6ET +jets channel with the 311 pb−1 data sample was optimized for the old
TOP_MULTI_JET trigger path and reached a kinematical e�ciency on inclusive
tt̄ events of εkin = 4.878± 0.021%.

Tab. 6.5 shows the e�ect caused on this kinematical selection by the intro-
duction of the higher energy treshold in the new Level 2 requirements of the
TOP_MULTI_JET trigger, starting from Run 194328 (see 6.2 for details). Re-
sults in the table are obtained with a Good Run List older than the one used in
our analysis.

First two columns, referring to the dataset ttopel, show results of the selection
on inclusive tt̄ Monte Carlo events, taken from the published article [3]. For com-
parison, the results of the old selection on the inclusive Monte Carlo dataset used in
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this analysis, ttop75, treated with a full simulation of the old TOP_MULTI_JET
trigger path are reported in the two central columns (�ttop75 ot�). Relative e�-
ciencies of the di�erent selections agree very well, and thus give us the possibility of
estimating the e�ect of the new trigger introduction by simulating its requirements
on ttop75. The e�ects of the new trigger and the kinematical selection are shown
in the last two columns of Tab. 6.5 under the label �ttop75 nt�. Relative e�ciencies
of the analysis kinematical cuts are almost left unchanged by the introduction of
the new trigger, but we notice an overall reduction of the kinematical e�ciency
on the sample with the new trigger simulation from 4.96± 0.01% to 3.65± 0.01%,
causing an expected tt̄ signal loss around the 26.4% with respect to the previous
trigger.

It is interesting to note that the neural network selection described in this work
achieves an e�ciency εkin = 4.907 ± 0.001% on tt̄ inclusive events taken with the
new trigger path, comparable with the one obtained in [3] for the old trigger. In
conclusion, with the introduction of the neural network selection we were then
able to mitigate the e�ect of the new trigger on the signal acceptance of the old
kinematical selection in this decay channel.

Event selection acceptances

The impact of the trigger, prerequisites and optimized neural network selection
on exclusive e + jets, µ + jets, τ + jets, all-hadronic and di-lepton tt̄ Monte
Carlo events is shown in Tab. 6.6. We note that, as expected, the di-lepton decay
channel is highly suppressed by our choice of TOP_MULTI_JET trigger, that is
not designed for this kind of analysis. Moreover, the all-hadronic tt̄ decay channel is
highly suppressed by the requirement of large missing ET signi�cance 6ET/

√
ΣET ≥

3 GeV 1/2: as we already pointed out, this analysis prerequisite rejects those events
whose missing ET is due mainly to residual energy mis-measurement e�ects, such
as all-hadronic events, while it focuses on events containing physics-induced 6ET .

Considering the leptonic decay channels, we note that the selection we described
allows tt̄ isolation by requiring the presence of large 6Esig

T in the event, thus searching
for high-PT neutrino signature produced in the leptonic decay of theW boson. This
signature is produced in a similar way for all the top pair e + jets, µ + jets and
τ + jets decay channels.

Even if we didn't use any lepton identi�cation procedure and despite the well-
identi�ed high-PT lepton veto imposed for e and µ, the �nal acceptance provided
by the kinematical selection is comparable for all the lepton+jets decays. The
e�ciencies calculated with respect to the number of events for each decay mode of
all selection requirements are found to be 9.44± 0.03%, 7.38± 0.03% and 12.66±
0.04% for e+ jets, µ+ jets and τ + jets channels respectively.

This is due to the fact that the trigger requirement has a large impact on µ+jets
tt̄ decays with respect to the other leptonic ones (the muons does not make any
jet), while the tight lepton veto prerequisite decreases the selection e�ciency for
both e and µ plus jets events. Additionally, the relative e�ciency for the 6Esig

T

selection with respect to the Njet requirement is more or less the same for τ and
electron plus jets events, but it is higher for muon: we correct the 6ET for muon
transverse momentum but we do not include the muon PT in the calculation of the



6.10 Event selection 129

N evt tt̄ e+ jets εcut(%) µ+ jets εcut(%) τ + jets εcut(%)
Branching Ratio 689,083 − 688,787 − 689,743 −
Good Run 680,317 − 679,962 − 680,758 −
Trigger 411,734 60.52 201,436 29.62 315,536 46.35
Vertex Req. 393,562 95,59 193,513 96.07 302,867 95.98
Lepton Veto 220,834 56.11 128,906 66.61 285,637 94.31
NJet ≥ 4 215,022 97.37 124,367 96.48 280,032 98.04
6ET

sig ≥ 3 GeV 1/2 117,360 54.58 82,472 66.31 160,683 57.38
NNout ≥ 0.92 65,072 55.45 50,819 61.62 87,352 54.36
Tot. E� wrt BR 9.44 7.38 12.66

N evt tt̄ all-hadronic εcut(%) di-lepton εcut(%)
Branching Ratio 2,154,096 − 221,659 −
Good Run 2,126,366 − 218,737 −
Trigger 1,744,325 82.03 18,555 8.48
Vertex Req. 1,673,326 95.93 17,172 92.55
Lepton Veto 1,672,094 99.93 7,853 45.73
NJet ≥ 4 1,662,229 99.41 7,089 90.27
6ET

sig ≥ 3 GeV 1/2 74,833 4.50 4,890 68.98
NNout ≥ 0.92 10,432 13.94 2,851 58.30
Tot. E� wrt BR 0.48 1.29

Table 6.6: E�ect of the trigger, prerequisites and neural network selection cuts
for e/µ/τ + jets (top) and all-hadronic and di-lepton (bottom) exclusive tt̄ Monte
Carlo events. For each cut, the e�ciency with respect to the previous selection is
provided for each tt̄ decay channel. Last line shows the overall e�ciency of the
selection with respect to the branching ratio of the channel.

event
∑
ET . This increases the possibility for a µ + jets event to pass this cut,

given that
√∑

ET is the denominator of the missing ET signi�cance. The same
e�ect happens for the neural network selection cut, that is sensitive to the event∑
ET and missing ET signi�cance since it uses these two variables as inputs: the

neural network cut shows a higher e�ciency on µ+ jets tt̄ decays.
Overall, the described event selection provides comparable e�ciencies in the

pre-tagging sample and thus selects comparable tt̄ signal contributions from each
lepton+jets decay mode. Rescaling the number of Monte Carlo events surviving the
selection according to the 1.9 fb−1 data luminosity, we expect about 178/139/239
events from e/µ/τ + jets decays, respectively.

Background prediction systematic uncertainty

The optimized neural network cut de�nition found in previous sections allows
us to de�ne control data samples in which to further check the b-tagging rate
parameterization for the background. In fact, once the selection is de�ned, we
can reverse its cut to construct control data samples close to the signal region but
depleted as much as possible of signal contribution, where to compare the number
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N jet 3 4 5 6 7 8

Obs + tags 2230 4977 3361 1329 405 76
Exp + tags 2231.18 4974.27 3231.98 1259.23 359.62 80.26
error ±51.34 ±130.05 ±93.99 ±40.52 ±14.22 ±4.96
Exp/Obs ratio ≈ 1 ≈ 1 0.96 0.95 0.89 1.06

Table 6.7: Tagging matrix check in the data sample with NNout <= 0.9. For each
jet multiplicity bin, the number of observed and predicted positive b-tags is shown.
Uncertainties are statistical only.

Exp + tags, N Jets: 3 4 5 6 7 8

Complete mtx 2238 5049.75 3336.98 1335.07 389 90.77
error ±51.53 ±134.08 ±99.18 ±43.66 ±15.52 ±5.49
Even mtx 2261.82 5050.97 3369.02 1342.38 392.39 91.09
error ±84.09 ±208.51 ±156.68 ±72.64 ±24.09 ±7.87
Odd mtx 2184.92 4851.31 3153.2 1258.63 357.03 80.67
error ±86.67 ±210.09 ±158.72 ±69.22 ±24.76 ±8.69
Even−Odd
Complete

ratio (%) 3.44 3.95 6.47 6.27 9.09 11.48

Table 6.8: Even-odd tagging matrix check in the complete data sample after pre-
requisites. For each jet multiplicity bin, the number of predicted positive b-tags
with the complete, even and odd matrix is shown. Uncertainties are statistical
only.

of observed positive tags to the number of predicted tags derived from the tagging
rate parameterization applied to data. This will allow us to verify the predictions
of the matrix and to account for possible deviations from the desired behaviour
deriving a systematic uncertainty on the background prediction.

The �rst sample we want to analyze is made of events with NNout <= 0.9.
The performances of the tagging matrix as a function of the jet multiplicity are
shown in Tab. 6.7. The agreement is quite good and any discrepancy can be limited
at the level of few percent.

Additionally, we can try to give an estimate of how our background predictions
are a�ected by statistical �uctuations in the sample we used to construct the matrix
parameterization. To do so, we split our 3-jets data sample after prerequisites in
even and odd events and use this two orthogonal samples to build two tag matrixes
with the same characteristics of the one we used in the analysis.

The comparison of the tag rates obtained with these two samples and the ones
used in the analysis is shown in Fig. 6.22. We now use the matrixes to derive
the number of expected positive b-tags for each jet multiplicity in the data sample
obtained after prerequisites application, and account any discrepancy among the
two and the complete matrix as a systematic error on our background prediction.
Tab. 6.8 shows the results of this additional check.

From the studies performed, a systematic uncertainty on the background pre-
diction can be derived.
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Figure 6.22: Tag Rates for the variables jet ET , jet Ntrk and 6ET
prj used in the

matrix parameterization are compared for the matrix built using all 3-jets data
and for the odd and even matrixes.

Considering the obs/exp b-tag ratio as a function of the jet multiplicity , the
overall discrepancy between observed and matrix predicted number of b-tags due
to intrinsic limits of the matrix and to the dependance from the sample in which
the matrix has been built can be quoted conservatively at 15%. This value will
be assumed as the systematics uncertainty to be associated to our background
prediction, and will be used in Chapter 7 for the cross section measurement.
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Chapter 7

Cross section measurement and

systematic uncertainties

In this Chapter we will �nalize our tt̄ → 6ET + jets cross section measure-
ment. After describing the �nal data sample obtained with our neural network
selection, we will analyze and discuss the sources of systematic uncertainties and
�nally we will determine the cross section measurement by means of a likelihood
maximization.

7.1 The �nal sample

The optimized neural network selection described in previous chapter allows
to isolate a tagged data sample in which the tt̄ → 6ET + jets signal is estimated
to contribute with a signal to background ratio of at least S/B ∼ 2 after the re-
quirement of selecting events containing at least one positive secvtx tagged jet.
Indeed the tagging probability for a b-jet produced by top quark decay is expected
to be higher than the probability to identify b-quark jets yielded by background
processes. Additionally, the selection is expected to provide a statistical uncer-
tainty of 8.6% on the cross section measurement. Moreover, we will see at the end
of this section that after the correction of the expected background for the pres-
ence of signal in the pre-tagging sample used for b-tagging rate parameterization
application, the S/B ratio will increase to ∼ 4.5, since almost 50% of the expected
background b-tags will be found to be due to tt̄ contamination.

Fig. 7.1 displays the sample composition after the cut on the neural network:
the predicted amount of background b-tags after the selection is shown together
with the expected inclusive tt̄ contribution; the observed positive tags in the data
are shown by dots. After selection we are left with a sample containing 1415 events,
and 627 positive b-tags.

As already discussed, since the data events selected before the tagging require-
ment are expected to contain a non-negligible tt̄ component, the tagging rate pa-
rameterization procedure overestimates the background. We correct for this e�ect
each jet multiplicity bin of Fig. 7.1 using the iterative procedure discussed in pre-
vious chapter.

A good agreement between observed and predicted background tags is noted
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Figure 7.1: Number of tagged jets versus jet multiplicity. Data (points), iteratively
corrected background (yellow histogram) and tt̄ expectation (blue histogram) for
σtt̄ = 6.7 pb are shown after neural network selection.

in the 3-jet bin, where the tagging matrix is computed before the kinematical
selection, while on the contrary for 4 to 8 jet bins the addition of Monte Carlo
inclusive contribution is required in order to explain the data behavior. However,
the 4-jets bin shows a noticeable mismatch between the number of observed and
predicted b-tags: this e�ect is still under investigation.

Now that we estimated the tt̄ component in the selected sample and the overall
background to the signal signature by means of the tagging rate parameteriza-
tion applied to data, we can �nally provide the top pairs production cross section
measurement in the selected data sample.

We have all the ingredients to proceed directly for a measurement, we are
only missing the systematic uncertainties determination. The measurement we
will describe uses the excess of b-tagged jets over the background prediction to
estimate the top pairs production cross section. In order to properly account for
each systematic source a�ecting the measurement, a likelihood function will be
used to determine the cross section value.

The cross section measurement will be obtained by maximizing logL, where
the likelihood function is de�ned as follows:

L = e
− (L−L̄)2

2σ2
L · e

− (εkin−ε̄kin)2

2σ2
εkin · e

−
(εave

tag−ε̄ave
tag )2

2σ2
εave
tag · e

− (Nexp−N̄exp)2

2σ2
Nexp · (7.1)

·
(σtt̄ · εkin · εave

tag · L+Nexp)
Nobs

Nobs!
· e−(σtt̄·εkin·εave

tag ·L+Nexp)

where L is the integrated luminosity of the data sample we used, εkin is the com-
bined trigger, prerequisites and neural network selection e�ciency on inclusive
Monte Carlo tt̄ events, and εave

tag is the average number of b-tags per tt̄ event. Nexp

is the number of background b-tags returned by the tagging matrix application to
the selected data sample; Nobs is the number of observed b tags in the data.
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Figure 7.2: Results of background correction, see text for details.

The cross section central value is then given by the likelihood maximization as:

σtt̄ =
Nobs −Nexp

εkin · εave
tag · L

(7.2)

In the following, we review the input values we need to perform the likelihood
maximization.

In previous Chapter we determined the overall kinematical e�ciency and the
average number of b-tagged jets per tt̄ event to be εkin = 4.907±0.001% and εave

tag =
0.8188±0.0008 respectively. Using the tagging rate parameterization applied to the
1415 events passing the selection, the background amount in terms of b-tagged jets
is calculated to be 237.64± 15.28(stat)± 35.64(syst) = 237.64± 38.77, where the
�rst uncertainty is statistical only, while the latter is systematic and is calculated by
comparing observed to matrix-predicted b-tags in data control samples and quoting
a 15% systematic uncertainty. This value needs to be corrected for the signal
presence in the pre-tagging sample, as seen in the previous chapter: the application
of our iterative correction procedure yelds a top-free background determination of
N corr

exp = 137.5. The uncertainty on the background correction depends both on
the uncertainty on Nexp and the uncertainty on εave

tag . In order to evaluate both
contributions we follow the tecnique adopted in [1]: we generate 1, 000, 000 random
samples of Nexp events smeared with its ±15.28 statistical uncertainty and apply
the iterative correction using εave

tag smeared with its statistical uncertainty. The
resulting Nexp distribution is shown in Fig. 7.2 and gives N corr

exp = 137.5± 11.2, so
the relative statistical uncertainty on the expected background becomes 8.1%.

On the other hand, the number of observed b-tagged jets in the data sample
selected with the neural network selection is found to be 627.

Finally, the integrated luminosity of the considered data sample is L = 1906.8±
110.6 pb−1.

For a proper determination of the cross section, we need to assign to each of
the input values its corresponding uncertainty, accounting for both the statistical
and systematic e�ects.

In the following the sources of systematic uncertainty will be described and
quanti�ed.
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N evt PYTHIA HERWIG

Tot. Events 4,719,385 − 979,066 −
Good Run 4,658,603 − 975,615 −
L2 Trigger 2,786,636 59.82 % 608,639 62.39 %
L3 Trigger 2,719,975 97.61 % 595,200 97.79 %
Good Vertex 2,607,087 95.85 % 569,944 95.76 %
Nlep = 0 2,333,998 89.53 % 505,885 88.76 %
Njet ≥ 3 2,333,351 99.97 % 505,714 99.97 %
6ET/

√
ΣET ≥ 3 GeV 1/2 464,067 19.89 % 109,140 21.58 %

Njet ≥ 4 452,009 97.40 % 106,141 97.25 %

Table 7.1: E�ect of the trigger and prerequisites selection on PYTHIA and HER-
WIG inclusive tt̄ generated events. Last requirement before neural network appli-
cation is is Njet(E

L5
T ≥ 15, |η| ≤ 2.0) ≥ 4.

7.2 Systematics

7.2.1 Background prediction systematic

The systematic uncertainty on the background prediction is calculated, as al-
ready explained in previous Chapter, by comparing the number of b-tags yelded
by the tagging matrix application to the actual number of positive secvtx tags
in a control sample depleted of signal contamination (we chose the one with
NNout ≤ 0.9), obtained from the TOP_MULTI_JET triggered dataset; addition-
ally, another source of systematic uncertainties has been considered, depending on
the statistical �uctuations in the sample used for the tagging matrix parameteri-
zation. As a result of these checks a 15% systematic uncertainty to the number of
background b-tags returned by the tagging matrix application to data is assigned.

7.2.2 Luminosity systematic

The integrated luminosity calculation is based on the instantaneous luminosity
measurement provided by the CLC detector described in Sec. 3.5. Two compo-
nents of uncertainty play a role in the luminosity measurement determination: the
acceptance and operation of the luminosity monitor (the CLC detector) and the
theoretical uncertainty of the total inelastic pp̄ cross section (60.7± 2.4 mb). The
uncertainties on these quantities are 4.2% and 4.0% respectively, giving a total
uncertainty of 5.8% on the integrated luminosity calculated for any given CDF
dataset [2].

7.2.3 Monte Carlo generator dependent systematics

The base Monte Carlo sample adopted for this work consists of almost 4 millions
inclusive tt̄ events (exactly 3, 979, 960 after the Good Run requirement) generated
using PYTHIA with Mtop = 175 GeV/c2, and with corresponding integrated lumi-
nosity of 594 fb−1 assuming σtt̄ = 6.7 pb.
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Figure 7.3: Top: kinematical e�ciency of trigger, prerequisites and neural net-
work selection versus cut applied on neural network output for both PYTHIA
Monte Carlo sample (ttop75) and HERWIG sample (htop75) generated at Mtop =
175 GeV/c2. Bottom: Monte Carlo generator dependent systematic versus cut on
neural network output. The error peak for neural network output cuts close to 1
is due to low statistics e�ects.

The neural network selection optimization was derived using these PYTHIA
inclusive tt̄ Monte Carlo events. In order to evaluate the generator dependence of
the kinematical e�ciency computed for signal events we used a sample of almost
1 million (exactly 975, 615 after the Good Run requirement) tt̄ events generated
with HERWIG, corresponding to an integrated luminosity of 145.6 fb−1.

All these samples are processed through the CDF detector and trigger simula-
tion, as described in Sec. 6.1.

Tab. 7.1 shows the e�ect of each cut of trigger and prerequisites selection,
before neural network application, for inclusive tt̄ events generated with PYTHIA
and HERWIG. The e�ciency of each cut with respect to the previous one is also
reported.

The overall systematic uncertainty to be assigned to generator e�ects can then
be computed for each neural network output cut as:

systgen(cut) =
∆ε(cut)

ε(cut)
=
εHERWIG(cut)− εPY THIA(cut)

εPY THIA(cut)
(7.3)

where εPY THIA(cut) and εHERWIG(cut) are the kinematical e�ciency for the
chosen cut on tt̄ inclusive Monte Carlo events generated with PYTHIA and HER-
WIG, respectively. Fig. 7.3 shows the results of this calculation in the 0.8 − 1.0
neural network output cut range.

For the optimized cut we chose in previous chapter NNout ≥ 0.92 the corre-
sponding systematic uncertainty to be assigned to generator dependence e�ects is
systgen = 10.84%.
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Figure 7.4: PDF dependent systematic, obtained with Monte Carlo reweighting
tecnique, versus cut on neural network output. The error increases for neural
network output cuts close to 1 because of low statistics e�ects.

7.2.4 PDF-related systematics

The parton distribution functions (PDFs) chosen for the standard CDF Monte
Carlo generation correspond to the CTEQ parameterization outlined in [3]. There
are uncertainties associated with this parameterization, since the usage of di�erent
parameterizations of the PDFs could slightly change the kinematics and thus the
acceptance for signal events.

In order to account for these e�ects, we used a standard Monte Carlo reweight-
ing tecnique. Instead of generating new samples for each di�erent PDF, we re-
weighted the events already generated with PYTHIA according to di�erent PDF
eigenvectors. The weight for each event is calculated as the ratio of the new PDFs
with respect to the standard one. We then sum the weights in order to determine
the e�ect on the total kinematic e�ciency [4].

The results of the calculation for neural network output cuts in the range 0.8−
1.0 are shown in Fig. 7.4. For the optimized cut we chose in previous chapter
NNout ≥ 0.92, as a result of this approach we set a systPDF = 1.64% systematic
uncertainty associated with our choice of PDFs.

7.2.5 ISR/FSR-related systematics

In general it is very di�cult for Monte Carlo generators to model accurately
initial and �nal state radiation processes. If more or less extra radiation is present
in the event with respect to the default values set in the base Monte Carlo sample,
the event kinematics could change a�ecting the kinematic e�ciency determination.
Indeed the presence of less or more radiation associated to the tt̄ production can
alter the acceptance of the Njet and 6ET/

√
ΣET requirements.

We evaluated this e�ect using di�erent inclusive Monte Carlo tt̄ samples gen-
erated with di�erent tunings for initial (ISR) and �nal state (FSR) radiation:
less/more ISR, and less/more FSR.

The impact of trigger and prerequisites selection for di�erent ISR/FSR radia-
tion settings is presented in Tab. 7.2.
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N evt MCincl less ISR more ISR

Tot. Events 1,180,947 − 1,172,571 −
Good Run 1,165,597 − 1,157,221 −
L2 Trigger 701,208 60.16 % 714,682 61.76 %
L3 Trigger 684,004 97.55 % 698,426 97.73 %
Good Vertex 656,016 95.91 % 669,708 95.89 %
Nlep = 0 588,301 89.68 % 598,031 89.30 %
Njet ≥ 3 588,128 99.97 % 597,845 99.97 %
6ET/

√
ΣET ≥ 3 GeV 1/2 118,009 20.07 % 122,629 20.51 %

Njet ≥ 4 114,694 97.19 % 119,349 97.33 %

less FSR more FSR

Tot. Events 1,150,650 − 1,142,486 −
Good Run 1,135,300 − 1,127,136 −
L2 Trigger 693,212 61.06 % 684,307 60.71 %
L3 Trigger 676,968 97.66 % 668,192 97.65 %
Good Vertex 648,582 95.81 % 640,481 95.85 %
Nlep = 0 579,746 89.39 % 573,900 89.60 %
Njet ≥ 3 579,571 99.97 % 573,729 99.97 %
6ET/

√
ΣET ≥ 3 GeV 1/2 118,308 20.41 % 115,643 20.16 %

Njet ≥ 4 115,022 97.22 % 112,548 97.32 %

Table 7.2: E�ect of ISR/FSR radiation variation on trigger and prerequisites se-
lection, before neural network application.

Here and in the next sections, we will calculate systematic e�ects for each cut
on neural network output with the following approach: taking as an example the
systematic uncertainty to be related to initial state radiation e�ect we will compute
it as:

systISR(cut) =
|ε+ISR(cut)− ε−ISR(cut)|

2εPY THIA(cut)

when our nominal value for the kinematical e�ciency εPY THIA(cut) is in between
the values ε+ISR(cut) and ε−ISR(cut) we use for comparison; when it is not, we will
use half the maximum di�erence:

systISR(cut) =
max (|ε+ISR(cut)− εPY THIA(cut)|, |εPY THIA(cut)ε−ISR(cut)|)

2εPY THIA(cut)
(7.4)

The same will hold on the other hand for �nal state radiation e�ect, wich we
will compute for each cut as:

systFSR(cut) =
|ε+FSR(cut)− ε−FSR(cut)|

2εPY THIA(cut)

or

systFSR(cut) =
max (|ε+FSR(cut)− εPY THIA(cut)|, |εPY THIA(cut)− ε−FSR(cut)|)

2εPY THIA(cut)
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Figure 7.5: Top: kinematical e�ciency of trigger, prerequisites and neural network
selection versus cut applied on neural network output for PYTHIA Monte Carlo
sample (ttop75) and samples generated with more and less initial state radiation.
Bottom: Initial state radiation systematic uncertainty versus cut on neural network
output. The behaviour of the error function for neural network output cuts in the
region close to 1 is due to low statistics e�ects.

according to the criteria described above.

Fig. 7.5 and Fig. 7.6 show the results of this calculation in the 0.8− 1.0 neural
network output cut range for both the ISR and FSR contributions respectively.

For the optimized cut NNout ≥ 0.92, we can estimate a systematics to be
assigned to initial state radiation e�ects of systISR = 2.86%, and a systematic for
�nal state radiation e�ects of systFSR = 1.71%. Summing in quadrature the two
e�ects we can estimate a total systematic uncertainty to be assigned to initial and
�nal state radiation e�ects of systISR/FSR = 3.33%.

7.2.6 Systematics due to the jet energy response

In this section we discuss the systematic uncertainty related to the jet energy
response. In Sec. 4.3.1 the total systematic uncertainty on the corrected jet ET

was found to vary in the range [3,10]%, where the extreme values are reached for
high and low jet ET , respectively. Moreover, the uncertainty associated to the
jet energy response was found to be largely independent of the level of correction
applied but to be mostly arising from the jet description provided by the Monte
Carlo simulation.

In order to account for the jet response systematic in the cross section mea-
surement, we varied the corrected jet energies within ±1σ of their corresponding
systematic uncertainty. Therefore, signal trigger and prerequisites e�ciencies are
recalculated after these variations. The results are provided in Tab.7.3.

As described in previous section, we can assign a systematic uncertainty de-
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Figure 7.6: Top: kinematical e�ciency of trigger, prerequisites and neural network
selection versus cut applied on neural network output for PYTHIA Monte Carlo
sample (ttop75) and samples generated with more and less �nal state radiation.
Bottom: Final state radiation systematic uncertainty versus cut on neural network
output. The behaviour of the error for neural network output cuts close to 1 is due
to low statistics e�ects.

N evt MCincl standard jet corrs +1σ jet systs −1σ jet systs

Total 4,719,385 4,719,385 4,719,385
Prereq 2,333,998 2,333,998 2,333,998
Njet ≥ 4 2,306,282 2,310,830 2,300,028
6ET/

√
ΣET ≥ 3 GeV 1/2 452,009 469,481 449,568

Table 7.3: E�ect of the jet energy correction within their uncertainty on the trigger
and prerequisites selection on tt̄ inclusive events, before neural network application.

pending on the cut we apply on the neural network output as follows:

systjetcorr(cut) =
|εjetcorr,+1σ(cut)− εjetcorr,−1σ(cut)|

2εkin(cut)

when our nominal value for the kinematical e�ciency εkin(cut) is in between the
values εjetcorr,+1σ(cut) and εjetcorr,−1σ(cut), while in the other case we will use half
the maximum di�erence de�ned according to Eq. 7.4.

Fig. 7.7 show the results of this calculation in the 0.8 − 1.0 neural network
output cut range.

For the optimized cut NNout ≥ 0.92, we can estimate a systematic uncertainty
to be assigned to jet energy response of systjetcorr = 4.73%.
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Figure 7.7: Top: kinematical e�ciency of trigger, prerequisites and neural network
selection versus cut applied on neural network output for the Monte Carlo sam-
ple (ttop75) with standard jet corrections and with jet energy corrections shifted
by ±σ of their systematic error. Bottom: Systematic uncertainty due to jet en-
ergy repsonse versus cut applied on neural network output. In the neural network
output cut region close to 1 low statistics e�ects arise, causing the error to increase.

7.2.7 b-tagging scale factor systematics

As described in Sec. 6.4, the secvtx e�ciency scale factor we used in this
analysis, to count the number of b-tags on Monte Carlo events is SF = 0.95 ±
0.050. Since the average number of b-tags per tt̄ event, εave

tag , enters directly in the
cross section measurement we have to compute the systematics e�ect related to its
determination.

In particular, to account for the scale factor uncertainty we varied it from its
central value of 0.95 within the ±1σ range and we determined the di�erence in
terms of average number of b-tags per event on the Monte Carlo sample with
respect to the standard value, taking into account that the secvtx scale factor
has the same central value for both b- and c-quarks, but for the latter has a doubled
uncertainty: SFb = 0.95± 0.050, SFc = 0.95± 0.100.

For each cut on neural network output we can assign the following systematic
uncertainty:

systεtag(cut) =
|εtag,+1σ(cut)− εtag,−1σ(cut)|

2εave
tag (cut)

(7.5)

The results are shown in Fig. 7.8. As expected, the systematic uncertainty due
to the scale factor application does not depend much on the choice of the cut on
the network output, since it only rescales the number of positive tags in a given
sample.

For the cut NNout ≥ 0.92, we can estimate a systematic uncertainty to be
assigned to b-tagging scale factor application of systεtag = 3.98%.
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Figure 7.8: Top: Average tagging e�ciency in the sample obtained after trigger,
prerequisites and neural network selection versus cut applied on neural network
output for the Monte Carlo sample (ttop75) with standard b-tagging Scale Factor
and with Scale Factor shifted by ±σ of its systematic error. Bottom: Systematic
uncertainty due to b-tagging scale factor application versus cut applied on neural
network output. The behaviour of the error function in the output region close
to 1 is due to low statistic e�ects.

7.2.8 Trigger systematics

Trigger systematics have already been studied and characterized for the old
TOP_MULTI_JET trigger (used up to Run 194328) [6] using the following tec-
nique. A sample of collider data called �Single Tower-10� is used, triggered with
the following requirements

• at Level 1: at least one calorimetric tower with ET ≥ 10 GeV .

• at Level 2: a static prescaling factor of 1K.

• at Level 3: auto-accept.

with a corresponding integrated luminosity of 196± 12 pb−1. This dataset is then
used to extract the e�ciency of the TOP_MULTI_JET trigger on a data-driven
basis, evaluating its e�ciency by applying its L2 requirements directly on �Single
Tower-10� triggered data.

Then the systematic uncertainty a�ecting the trigger e�ciency measurement on
Monte Carlo tt̄ events is evaluated by comparing trigger turn-on curves for Tower-
10 data and bb̄ and bb̄+6 partons Monte Carlo samples. The trigger turn-on curves
are derived as functions of of the 4th jet L5-corrected ET in the event.

From a study of the mismatch of turn-on curves between Monte Carlo samples
and data, a trigger e�ciency systematic of a few percent (2.0%) is derived.

Since we didn't have enogh time to reproduce such a detailed study of the
trigger turn-on curves for the new TOP_MULTI_JET trigger, we will rely on this
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Source Method Uncertainty

εkin systematics

Generator dependence |εPY THIA−εHERWIG|
εPY THIA

10.84 %

PDFs MC reweighting 1.64 %
ISR/FSR samples comparison 3.33 %

Jet Energy Scale
|εjetcorr,+1σ−εjetcorr,−1σ |

2εkin
4.73 %

Trigger simulation turn-on curves 2.0 %

εtag systematics

SecVtX scale factor |εtag,+1σ−εtag,−1σ |
2εtag

3.98 %

Tagging matrix systematics
Data control samples Nobs/Nexp 15.0 %

Luminosity systematics
Luminosity measurement − 5.8 %

Table 7.4: Summary of the sources of systematic uncertainty. Trigger simulation
systematic uncertainty is based on a determination on the old TOP_MULTI_JET
trigger and is to be considered a preliminary result.

Variable Symbol Input Value Output Value

Integrated Luminosity (pb−1) L 1906.8± 110.6 1907.1± 111.7
Observed Tags Nobs 627 −
Expected Tags N corr

exp 137.5± 23.4 137.1± 23.3
Kin. e�ciency (%) εkin 4.907± 0.613 4.889± 0.668
Ave. b-tagging e�ciency εave

tag 0.8188± 0.0325 0.8187± 0.0327

Table 7.5: Input and output values of the likelihood maximization.

previous determination to give a preliminary cross section measurement in this
channel.

7.3 Cross section measurement

The summary of all the sources of systematic uncertainty to the cross section
evaluation is listed in Tab. 7.4.

Now that we have evaluated all the sources of systematic uncertainty a�ecting
the kinematical selection e�ciency as well as the determination of the average
number of b-tags per tt̄ event and the background prediction, we are ready to use
all the ingredients described in 7.1 to perform the cross section measurement.

We remind that we will interpret the excess in the number of tags de�ned as
Nobs − N corr

exp as a sign of tt̄ production and it will be used for the cross section
measurement.

As already mentioned, the cross section is measured by maximizing logL, where
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Figure 7.9: Latest CDF cross section results. Last two rows show the measurement
obtained with kinematical selection and secondary vertex tag on 311 pb−1 and the
determination presented in this work.

the likelihood function is de�ned as follows:

L = e
− (L−L̄)2

2σ2
L · e

− (εkin−ε̄kin)2

2σ2
εkin · e

−
(εave

tag−ε̄ave
tag )2

2σ2
εave
tag · e

−
(Ncorr

exp −N̄corr
exp )2

2σ2
Ncorr

exp · (7.6)

·
(σtt̄ · εkin · εave

tag · L+N corr
exp )Nobs

Nobs!
· e−(σtt̄·εkin·εave

tag ·L+Ncorr
exp )

The central value is given by the likelihood maximization, that is:

σtt̄ =
Nobs −N corr

exp

εkin · εave
tag · L

(7.7)

The input and output parameters of the likelihood maximization are quoted in
Tab.7.5.

The measured cross section value is:
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σtt̄ = 6.42± 0.51 (stat) +0.98
−0.74(syst) pb

= 6.42 +1.1
−0.9 pb

Separating the contribution due to the uncertainty coming from the luminosity
measurement, we can rewrite the result as follows:

σtt̄ = 6.42± 0.51 (stat) +0.90
−0.62(syst)

+0.40
−0.37(lum) pb

To have an idea on how this preliminary, not yet o�cially approved by the
collaboration, cross section measurement compares with the other CDF determi-
nations, Fig. 7.9 shows a summary of latest results from the experiment together
with the previous tt̄→ 6ET + jets cross section determination obtained on 311 pb−1

in [5]. We note that all measurements reported assume Mtop = 175 GeV/c2 and
that our preliminary determination is extracted from the highest luminosity sam-
ple.

As Fig. 7.9 summarizes, CDF has produced several measurements of the top pair
production cross section in the di-lepton, lepton+jets and all-hadronic channels.
Since several of the measurements are based on totally or partially uncorrelated
data samples and have di�erent sources of systematic uncertainty, the combination
of the results reduces the experimental uncertainty.

The combination technique uses the BLUE algorithm [7], which stands for
Best Linear Unbiased Estimate, and needs as inputs the statistical, systematic
uncertainties as well as the correlation between di�erent analyses. These are used
to construct a covariance matrix, which is inverted to obtain weights for each
analysis. Thanks to the fact that it was derived on a data sample completely
uncorrelated to the ones used in the remaining analyses, the previous cross section
measurement in the 6ET + jets channel in 311 pb−1 was found in [8] to carry a
relative weight of 17% on the �nal combination, thus giving a very important
contribution to the combined cross section determination. We �nally note that the
new cross section measurement we have obtained in this work has a lower statistic
uncertainty than the previous one, thanks to the luminosity increase of the dataset
and to the fact that we could compensate the signal loss caused by the introduction
of a higher treshold in the Level 2 TOP_MULTI_JET trigger by means of a neural
network selection. Indeed, also this measurement is derived from a data sample
that was chosen by prerequisites to be orthogonal to the ones used for the other
cross section determinations at CDF. We thus think that once approved o�cially by
the collaboration, this cross section measurement could have an important impact
in the combination of the results obtained by the CDF experiment.
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Conclusions

We presented a research aimed at the isolation of the tt̄ → 6ET + jets signal
by means of neural network tools from a dataset containing �multijet� triggered
events with a total integrated luminosity amounting to 1.9 fb−1.

The decay channel has been extracted using neutrino signatures such as pres-
ence of high 6ET in the event and explicitly vetoing well identi�ed high-PT electrons
or muons from W boson decay.

A 2-hidden layers neural network trained with input variables related to jet
characteristics and energy and event topology and energy has been used to classify
and discriminate between top-like events obtained from a Monte Carlo sample
generated at Mtop = 175 GeV/c2 and background processes contained in the data
sample after prerequisites requirements.

Secondary vertex b-tagging algorithm has been exploited to indentify heavy
�avour jets due to top quark decay, while the amount of tags coming from back-
ground processes has been evaluated by means of a parameterization of the b-
tagging rate as a function of the jet transverse energy, jet number of tracks and
projection of the 6ET of the event along the jet direction, in a data sample with
negligible signal contamination containing exactly 3 tight jets.

Once checked the performance of the tagging parameterization and the correct-
ness of its predictions, the optimized cut on the neural network output NNout ≥
0.92 has been computed by minimizing the relative statistical error on the cross
section measurement.

With the resulting selection we obtained a pre-tagging sample of 1415 events:
in order to derive our �nal cross section measurement, we added the requirement of
the presence of at least one jet identi�ed as originating from a b-quark, observing
627 b-tags. Thanks to our b-tagging rate parameterization we accounted for 490
tags coming from tt̄ events.

A likelihood function in which the input parameters are subject to Gaussian
constraints was �nally used for a proper determination of the top pair production
cross section, after having taken into account the possible sources of systematic
uncertainties. Assuming a top quark mass of 175 GeV/c2, our �nal measurement
was:

σtt̄ = 6.42± 0.51 (stat) +0.98
−0.74(syst) pb

= 6.42 +1.1
−0.9 pb

in agreement with Standard Model predictions and with previous determinations.
Moreover, being derived from a data sample that was chosen by prerequisites to



be orthogonal to the ones used for the other cross section determinations at CDF,
this measurement promises to be particularly important in the combination of the
results obtained by the experiment.

Issues and Future plans

As discussed during the systematic uncertainties analysis, this result lacks a
correct and detailed description of the trigger systematic error related to the im-
pact of the new Level 2 TOP_MULTI_JET trigger to our selected sample; our
estimation relies instead on a previous determination made for the old trigger path.
Even if we expect the new trigger systematic error to be of the same order of magni-
tude of the old one (i.e. ≤ 10%), we should nevertheless consider this cross section
measurement as a preliminary result still subject to changes.

Additionally, we believe there's still room for improvement in the b-tagging rate
parameterization: many di�erent choices of variables have been tested and the one
used in this work has been selected for its best performances, but a �ner tuning of
the limits of the matrix bins could provide a better prediction of the background
in the control samples and consequently a lower systematic uncertainty on the
tagging rate parameterization predictions in the selected sample.
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