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ABSTRACT

A clean signal of 78 (24) events has been observed in the rare nonleptonic

particle (antiparticle) decay modes Ω∓ → Ξ∓π±π∓ using data collected with the

HyperCP spectrometer during Fermilab’s 1999 fixed-target run. We obtain B(Ω− →
Ξ−π+π−) = [4.32± 0.56(stat)± 0.28(syst)]× 10−4 and B(Ω+ → Ξ+π−π+) = [3.13±
0.71(stat)± 0.20(syst)]× 10−4. This is the first observation of the antiparticle mode.

Our measurement for the particle mode agrees with the previous experimental result

and has an order-of-magnitude better precision. We extract the contribution from

the resonance decay mode Ω∓ → Ξ∗01530(Ξ
∗0
1530)π

∓ to the final state Ξ∓π±π∓. This,

the first actual measurement of the resonance-mode branching ratios, gives B(Ω− →
Ξ∗01530π

−) = [4.55 ± 2.33(stat) ± 0.38(syst)] × 10−5, B(Ω+ → Ξ∗01530π
+) = [1.40 ±

2.83(stat) ± 0.12(syst)] × 10−5 and disagrees with the current Particle Data Group

review value, being ≈ 14 times smaller. Since the central value of the resonance-mode

branching ratio is less than two standard deviations away from zero, we also calculate

branching ratio upper limits at 90% confidence level: B(Ω− → Ξ∗01530π
−) < 7.61×10−5

and B(Ω+ → Ξ∗01530π
+) < 5.61×10−5. This analysis provides new data on nonleptonic

hyperon decays which allows studies of how weak interaction processes occur in the

presence of strong interactions.

xv
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CHAPTER 1

INTRODUCTION

Elementary particle physics investigates what matter is made of on the funda-

mental level. Nonleptonic decays of the Ω (pronounced “o-mé-ga”) hyperon might be

among the most useful tools to probe the structure of the hadronic weak interactions.

The first section of this chapter provides the background, necessary for un-

derstanding the rest of the dissertation, and briefly describes the Standard Model.

The second section explains what rare nonleptonic decays of the Ω hyperon are and

presents our motivations for studying them. Theoretical predictions are summarized

in the third section. Finally, the fourth section discusses existing experimental results

and explains why we think that data collected by the HyperCP experiment are a good

place to study the decays of interest.

1.1 Elementary Particle Physics and the Standard Model

Elementary particle physics studies matter and its interactions on the smallest

scale. It is also often called high energy physics. To see an object, the wavelength

of a probe (λ) must be comparable to or smaller than the size of the object. The

relation between momentum (p) and λ is given by the de Broglie equation λ = h/p,

where h is Planck’s constant. For the typical beam particle momentum of hundreds

of GeV/c, experiments in high energy physics act as nanonanoscale microscopes!

Today we know that the fundamental particles of the Universe are six quarks

and six leptons. There is no evidence for sub-quarks or sub-leptons. There are four

forces in nature. Listed in descending order by strength, they are strong, electro-

magnetic, weak, and gravity. The strength of an interaction should be thought of as

a probability for this interaction to occur, rather than the actual strength in classical

physics. Fundamental particles are fermions, whereas carriers of the forces are bosons.
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There are hundreds of observed elementary particles. Particles can be clas-

sified into hadrons and leptons. Hadrons participate in all four interactions, while

leptons interact through the electromagnetic (except neutrinos), weak, and gravita-

tional forces, but not the strong force. Hadrons can be further classified into baryons

and mesons. Baryons are fermions that consist of three valence quarks in either qqq

or qqq combinations. Mesons are bosons that consist of two valence quarks in a qq

combination. Decay properties of quarks inside a hadron are greatly influenced by

the strong force between quarks, in spite of the fact that “free” quarks decay via the

weak force. Each particle has its corresponding antiparticle with the same mass and

spin, but with other quantum numbers opposite.

Almost all of our current knowledge about elementary particles can fit into

the Standard Model. It was extremely successful in predicting the W± and Z bosons,

the top quark and the charm quark before they were observed. During my years of

graduate study in elementary particle physics, I attended dozens of talks where results

probing the Standard Model, primarily from collider experiments, were reported.

I was always fascinated by how accurately experiment agrees with theory. However,

the Standard Model is not a complete theory of fundamental interactions. One of

the main problems is that it does not include gravity. The observed nonzero neutrino

mass is another pitfall. In addition, values for many parameters are put into the

Standard Model and are not derived from first principles.

Quarks and leptons are grouped into generations:



u

d







c

s







t

b




,




e

νe







µ

νµ







τ

ντ




.

Quarks carry fractional electric charges of +2/3|e| and −1/3|e|, while the leptons

carry integral electric charges, 0 or ±|e|. The quark mass eigenstates differ from the

quark weak eigenstates. The relation between the two sets of eigenstates is given by
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the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix:




d′

s′

b′




= VCKM




d

s

b




where primed (nonprimed) quarks correspond to the weak (mass) eigenstates. The

CKM matrix is a 3× 3 unitary matrix with four parameters. At the 90% confidence

level, its experimentally measured values are [32]1

VCKM =




0.9739 to 0.9751 0.221 to 0.227 0.0029 to 0.0045

0.221 to 0.227 0.9730 to 0.9744 0.039 to 0.044

0.0048 to 0.014 0.037 to 0.043 0.9990 to 0.9992




.

For example, according to these values, the u-quark is more likely to convert to the d-

quark, but has nonzero coupling to the s-quark as well. It very rarely converts to the

b-quark. The matrix can be described by four real parameters, i.e., three angles and

one phase. In the Kobayashi-Maskawa theory the nonzero phase value is responsible

for the observed CP violation in the K and B meson systems. For leptons, the analog

of the CKM matrix is the Pontecorvo-Maki-Nakagawa-Sakata matrix.

1.1.1 Experimental observables. In high energy physics new particles or bound

states are produced either by a beam of accelerated particles interacting with a sta-

tionary target (fixed-target experiments) or by two beams of accelerated particles

flying in opposite directions and colliding (collider experiments). To describe the

scattering of a particle, experimentalists measure a cross section. If a new particle

is created after the collision, it can be described by the measurement of its quantum

1Corresponding to references in the Bibliography.
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numbers, e.g., spin, parity, etc. Then, typically, the particle decays and one can

measure its lifetime.

The scattering cross section and inverse mean lifetime of a particle are propor-

tional to the square of the amplitude for the process (matrix element) and the available

phase space. An amplitude can be calculated by evaluating the corresponding Feyn-

man diagrams. The phase space depends on the four-momenta of the participating

particles.

Often, instead of lifetime, high energy physicists use decay rate (Γ), which is

the probability per unit time that any given particle of this sort will disintegrate.

Decay rate is the reciprocal of mean lifetime: Γ = 1/τ . Typically, a particle can

decay via different paths each with its own decay rate. The total decay rate is the

sum of the individual decay rates, i.e., Γ =
∑n

i=1 Γi. Each decay path is described

by the branching ratio which is the ratio of the individual decay rate to the total,

i.e., Bi = Γi/Γ. In other words, the branching ratio for the ith decay mode is the

probability that the particle will decay via the ith path.

More detailed information about elementary particle physics and the Standard

Model at the introductory level can be found, for example, in [13] and [24].

1.2 Rare Nonleptonic Decays of the Ω Hyperon

Hyperons are baryons with at least one strange quark, but without charm,

bottom, and top quarks. The Ω hyperon consists of three strange quarks (sss) and

is thus ideal for studying strange-quark decay properties. Any Ω decay requires a

change in the strangeness quantum number, which can happen only through the weak

interaction. In spite of the fact that the weak interaction is well understood, the decay

properties of strange quarks inside hadrons are not. Experimental measurements of

hyperon decay properties, together with the corresponding theoretical calculations,
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s u

d

u

W−

u,c,t
s d

g

W−

u

u

Figure 1.1. Tree-level (left graph) and penguin (right graph) Feynman diagrams for
the nonleptonic weak decays Ω− → ΛK− and Ω− → Ξ∗01530π

−.

can shed light on the subject.

We study how the strong interaction influences weak decays, and it is preferable

not to have leptons among the decay products. Thus, we need to study nonleptonic

decays. As emphasized by D. Wu and J. L. Rosner [31], nonleptonic decays of hyper-

ons are essential for the study of how weak interaction processes occur in the presence

of strong interactions.

The dominant decay mode for the Ω hyperon is

Ω∓ → Λ(Λ)K∓ (1.1)

with branching ratio equal to 0.678 ± 0.007. The basic Feynman diagrams for this

mode are shown in Figure 1.1. The strange (s) quark in the parent hyperon converts

into an up (u) or down (d) quark. This involves the “tree-level” diagram for the

former and the “penguin-type” diagram for the latter case. The “W” and “Z” are

charged and neutral vector bosons, respectively. They are carriers of the weak force.

The “g” is the gluon, which is a carrier of the strong force. This decay mode has

been extensively studied over the last 40 years. The Ω decay properties, including

the branching ratio and a parity-violation parameter, have been measured to great

precision [32].

Rare decay modes, in contrast to the dominant mode, have much smaller

branching ratios and are thus harder to study, primarily because of their smaller
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Table 1.1. Particle properties.

Particle Quark content Spin P-parity Isospin G-parity

Ω− sss 1.5 +1 0 –

Ξ∗01530 uss 1.5 +1 0.5 –

Ξ∗−1530 dss 1.5 +1 0.5 –

Ξ− dss 0.5 +1 0.5 –

Ξ0 uss 0.5 +1 0.5 –

π+ ud 0 −1 1 −1

π− ud 0 −1 1 −1

π0 (uu− dd)/
√

2 0 −1 1 −1

event samples. They have potential to provide new information in an area where

the knowledge is sparse. Moreover, studies of rare phenomena can bring intrigu-

ing surprises along the way. That is why we are highly motivated to examine rare

nonleptonic decays of the Ω hyperon.

The following rare nonleptonic modes are allowed by the energy, charge, and

baryon number conservation laws:

Ω− → Ξ∗01530π
− ,

Ω− → Ξ∗−1530π
0 ,

Ω− → Ξ−π+π− ,

Ω− → Ξ−π0π0 ,

Ω− → Ξ0π0π− ,

along with the corresponding antiparticle modes. We exclude second-order weak de-

cays because their decay rates are predicted to be extremely small within the Standard

Model. For example, it is predicted that B(Ω− → Λπ−) ' 10−17 [14], which is in

agreement with the most recent experimental upper limit of 2.9 × 10−6 [30]. Quark

content and quantum numbers for the involved particles are given in Table 1.1.
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u

u

d
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gg

Figure 1.2. Tree-level (left graph) and penguin (right graph) Feynman diagrams for
the nonleptonic weak decay Ω− → Ξ−π+π−.

The main decay mode of the π0 is π0 → γγ which has the branching ratio

of 0.98798 ± 0.00032 [32]. Anticipating the discussion in Section 2.1.13, I point out

here that the HyperCP spectrometer was not designed to detect γ-particles and,

consequently, reconstruction of π0 particles was not efficient. Thus, there are two

decays of interest to us:

Ω∓ → Ξ∗01530(Ξ
∗0
1530)π

∓ , (1.2)

Ω∓ → Ξ∓π±π∓ . (1.3)

The basic Feynman diagrams for the particle modes are given in Figure 1.1 and

Figure 1.2 respectively. Strange quark conversion can occur purely at tree-level or can

involve, in addition, a penguin-type diagram. We discuss the theoretical description

for both modes in the next section.

1.3 Theoretical Predictions

Theory predicts the branching ratio B(Ω− → Ξ∗0(1530)π−) to be at the 10−3

level [9, 10]. Since the Ξ∗01530 is a resonance with cτ ≈ 10−12 cm [32], it decays promptly

via the strong force with B(Ξ∗01530 → Ξ−π+) ' 2/3, where the branching ratio is

estimated from isospin considerations. The same final state can be reached directly

through the 3-body decay channel (1.3). However, theorists expected that the final
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d

u(s) u(s)

d

g

Figure 1.3. Feynman diagram for the strong decay Ξ∗01530 → Ξ−π+.

state Ξ−π+π− would be completely dominated by the Ξ∗01530 intermediate state [9, 10].

This suggests a decay chain Ω− → Ξ∗01530π
− → Ξ−π+π− with a consequent direct

relation between modes (1.2) and (1.3): B(Ω− → Ξ∗01530π
−) = 1.5B(Ω− → Ξ−π+π−).

One of the earliest calculations of Ω nonleptonic decay rates was done in the

phenomenological chiral-Lagrangian model [12]. The decay amplitude for the mode

(1.3) includes tree-level diagrams with (in the authors’ notation) type-1 and type-2

weak vertices. Type-1 weak interaction involves two decuplet lines, while type-2 weak

interaction involves a decuplet line and a baryon-octet line. Thus, only diagrams with

type-1 vertices contribute to the decay amplitude of mode (1.2).

At the time of the paper [12], neither mode of interest had yet been observed.

The type-1 weak interaction was thought to dominate and the rough estimate of the

decay-rate ratio yielded

R =
Γ(Ω → Ξππ)

Γ(Ω → ΛK)
' Γ(Ω → Ξ∗01530π)

Γ(Ω → ΛK)
' 0.05 . (1.4)

It was stated that if R turned out to be much smaller than this, it could mean that the

type-1 weak interaction was very small in comparison to the type-2. Consequently, it

was an open possibility that the final state Ξ−π+π− could be created directly, without

the formation of the Ξ∗01530 intermediate state.

A standard QCD-inspired description was examined in [10]. It was assumed

that the decay proceeds through the resonance channel (1.2), “as suggested by the

data” from [2], where a search for Ω− → Ξ−π+π− had yielded one clear event with
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a Ξ−π+ reconstructed invariant mass of 1533 MeV/c2, close to the Ξ0∗
1530 resonance

mass. The prediction was

B(Ω− → Ξ∗01530π
−) ' 3

1070
' 2.8× 10−3 , (1.5)

B(Ω− → Ξ−π+π−) =
2

3
B(Ω− → Ξ∗01530π

−) . (1.6)

Due to its relative simplicity, the rare nonleptonic hyperon 2-body decay (1.2)

continues to attract theorists’ attention. Recently, an attempt to estimate the branch-

ing ratio with an effective weak Hamiltonian in the SU(3) Skyrme model was made

[9]. The work was stimulated by the results from the HyperCP experiment [29]. The

calculated decay rate depends on the value of the Skyrme charge and strength of

the QCD correction contribution. The prediction closest to the existing experimental

data gives

B(Ω− → Ξ∗01530π
−) = 8.58× 10−4 . (1.7)

Lately, our reported preliminary results [16] have motivated theorists to revisit

decays (1.2) and (1.3) yet again [1]. Derivations were performed within heavy-baryon

chiral perturbation theory (χPT). At leading order, the decay (1.3) is completely

dominated by the Ξ∗01530 state with estimated B(Ω− → Ξ−π+π−) = (6.5± 4.1)× 10−3.

This, to a considerable extent, reproduces earlier theoretical results and is an order

of magnitude larger than experimental results. However, at next-to-leading order, it

is possible to soften the Ξ∗01530 dominance and lower the Ω− → Ξ−π+π− branching

ratio.

1.4 Experimental Results

The current Particle Data Group (PDG) [32] branching ratio is based on the

four observed events [3] and for each mode is:

B(Ω− → Ξ∗01530π
−) = (6.4+5.1

−2.0)× 10−4 ,
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B(Ω− → Ξ−π+π−) = (4.3+3.4
−1.3)× 10−4 .

The experiment [2, 3] had neither the statistics nor sufficient momentum resolution

to distinguish between these two mechanisms; that is why the same four events were

used to calculate the branching ratio for each process. The current PDG resonance-

channel (1.2) branching ratio was deduced using the branching ratio of 2/3 for Ξ∗01530 →
Ξ−π+ and by the assumption that the four events are Ω− → Ξ∗01530π

−. It is thus not

necessarily trustworthy.

Preliminary analysis of the HyperCP data set gave B(Ω− → Ξ−π+π−) =

(3.56 ± 0.33( stat)) × 10−4 and is based on 137 events [29]. However, it was done

for the 3-body decay mode (1.3) only, without numerical estimation of the resonance

decay channel contribution to the final state.

Using the HyperCP data sample — currently the world’s largest hyperon sam-

ple, with ∼ 1010 hyperon decays, including ∼ 107 total Ω decays — we are able to

measure the branching ratio for the resonance decay mode and to understand what

(if anything) resonance decays could be contributing to the Ω− → Ξ−π+π− branching

ratio. The unclear theoretical situation together with the poor existing experimental

data [32] bring additional motivation towards investigating the resonance-mode decay

(1.2) and the three-body decay channel (1.3).
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CHAPTER 2

HYPERCP EXPERIMENT

2.1 Spectrometer Overview

The HyperCP experiment (FNAL E871) was a fixed-target experiment at the

Fermi National Accelerator Laboratory (FNAL or Fermilab) in Batavia, Illinois. It

took data in 1996–1997 and 1999–2000. Data from the 1999–2000 run were used in

this analysis. Thus, we will describe the spectrometer as it existed in 1999–2000.

The full description of the HyperCP spectrometer may be found elsewhere

[4]. Figure 2.1 shows schematic representations of the elevation and plan views of the

HyperCP spectrometer. In a nutshell, the 800 GeV/c primary proton beam interacted

with a copper target and created various particles such as muons, pions, kaons, Ξ,

Ω, and others. Secondary beam rate and position were monitored by the beam

hodoscope. The hyperon magnet and collimator performed momentum selection of

charged secondary particles and directed them into the spectrometer. The particles

then passed into the vacuum decay region. Event reconstruction was performed in

three dimensions using a series of multiwire proportional chambers (MWPCs) arrayed

on both sides of the Analyzing Magnets. The hodoscopes and the calorimeter served

as the main trigger elements for data acquisition. Muon stations were used to identify

and reconstruct muon tracks.

To switch from particle to antiparticle decay modes, one needed to reverse the

magnetic field directions in both the Hyperon and Analyzing Magnets. This reduced

many systematic differences between particle and antiparticle runs and was essential

for CP-violation parameter measurement. Particles with the same (opposite) charge

as the primary secondary-beam particles were deflected by the Analyzing Magnets

to the spectrometer side that was called “same-sign” (“opposite-sign”). This nota-
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tion makes the spectrometer description equally correct for particle and antiparticle

modes.

2.1.1 Beam Description. Primary protons were accelerated to 800 GeV/c in

the Fermilab Tevatron. A small fraction of them, less than 4%, were sent to the

Meson Center beamline, where the experiment was located. Beam was delivered in a

40-second spill with a 40-second interspill (no beam) period. Approximately 3× 1011

protons hit the target during each cycle.

Primary beam position and shape were measured with eight segmented-wire

ion chambers (SWICs). Each SWIC had one vertical and one horizontal plane of wires.

The two SWICs closest to the target had 0.5 mm wire pitch, whereas the others had

1.0 mm. The shape of the beam at the target was approximately Gaussian with

σx = 0.45 ± 0.08 mm and σy = 0.38 ± 0.08 mm. For all data used in this analysis,

the beam was centered on a line that went through the target and the center of the

collimator entrance.

2.1.2 Target. Two targets, identical except for their length, were used. To produce

negative (positive) secondary beam, the copper target of 60 mm (20 mm) length

was secured in a target holder. Different lengths were necessary to get comparable

secondary beam intensities for both polarities. Target transverse dimensions were 2

mm × 2 mm. A remotely controlled precision manipulator could move the target

holder in the vertical and horizontal directions. The target center was lined up with

the center of the collimator entrance.

2.1.3 Hyperon Magnet. The Hyperon Magnet was an 11455 kg, 6.071 m long

dipole magnet built at Fermilab for the “Main Ring” accelerator. The field of 1.667

T was oriented in the horizontal direction. The magnetic field was monitored by two

Hall probes and was found to be very stable.
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Figure 2.1. Elevation and plan views of the HyperCP spectrometer.
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A 6.096 m long collimator was installed within the Hyperon Magnet. The

collimator was made of five segments. Each segment was a block of brass or tung-

sten with the curved channel inside. Secondary beam particles from the target were

deflected into the collimator channel by the Hyperon Magnet. A particle with a

trajectory along the center of the collimator channel entered the collimator at zero

horizontal angle and exited at an angle of 19.51 mrad above the horizontal. The

central-orbit momentum for the Hyperon Magnet field was 156.2 GeV/c. The charge

of the secondary beam was changed by reversing the Hyperon Magnet field direction.

The collimator and Hyperon Magnet served as the dump for neutral and off-

momentum charged secondary beam particles and for primary-beam protons that did

not interact in the target. To reduce radiation, the entire assembly was enclosed in

massive iron and concrete shielding.

2.1.4 Decay region. A decay pipe was situated downstream of the collimator. It

consisted of three joined cylindrical tubes and was 13 m long. Monte Carlo simulations

had shown that most of the decays of interest occurred completely inside the pipe. To

eliminate multiple scattering and interactions with matter, the pipe was evacuated.

2.1.5 Analyzing Magnets. Charged particles were deflected in the x-z plane

while passing through the apertures of a pair of dipole magnets, which were called

the Analyzing Magnets. The aperture dimensions of the first (upstream) magnet were

61.0 cm (width) by 25.9 cm (height). A field of 1.345 T (1.136 T) was produced in the

vertical direction by the upstream (downstream) magnet. The magnetic fields were

found to be quite stable. The rms deviation of all spills was 4.3 G (4.7 G) for the

upstream (downstream) magnet. The combined kick to the transverse momentum of

charged particles passing through the magnet was 1.43 GeV/c, and hence, sufficiently

downstream of the Analyzing Magnets, decay products were well separated from the

secondary beam.
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When the charge of the secondary beam was reversed by reversing the direction

of the Hyperon Magnet field, the direction of the magnetic field in the Analyzing

Magnets was also reversed. To achieve equal acceptances for hyperon and antihyperon

decays and to minimize potential biases in the CP-violation analysis, it was essential

to have the same magnetic field magnitudes for positive and negative secondary beam

runs. Differences were indeed small. Averaged on a spill-by-spill basis the difference

between magnetic fields for Positive99 and Negative99 runs was equal to −3.3 G (−0.9

G) for the upstream (downstream) magnet.

2.1.6 Multiwire proportional chambers. Charged particles were tracked by

MWPCs. Four of them were located upstream of the Analyzing Magnet and five

downstream. Each chamber had four anode-wire planes with cathode planes between

them. Operating voltages were in the range of 2 to 3 kV. Wire pitch varied from

1.016 mm for the two most upstream chambers to 2.000 mm for the three most

downstream chambers. Such a narrow pitch enabled precise space-point reconstruc-

tion and reduced individual wire rates.

2.1.7 Hodoscopes. The same-sign (SS) and opposite-sign (OS) hodoscopes were

the key elements in all HyperCP physics triggers. The SS and OS hodoscopes had 24

scintillators each. Each SS (OS) scintillator was 68 cm long, 9 cm wide, and 2 cm (1

cm) thick. For each hodoscope, scintillators were arranged into two planes with 12

counters each. In each SS (OS) plane adjacent counters were separated by 7 cm (0

cm) and, consequently, the overlap between counters from different planes was 1 cm

(4.5 cm) at each counter edge.

2.1.8 Hadronic calorimeter. The hadronic calorimeter served as another trigger

element. Most hits in SS and OS hodoscopes were due to the interaction of secondary

beam particles with the spectrometer material. The calorimeter required some min-

imum energy deposit and, thus, reduced the number of triggers from background
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events.

The calorimeter comprised 64 layers of 24.1 mm thick Fe sandwiched with 5

mm thick scintillator. Each scintillator layer had 32 waveshifting fibers that brought

the light to the light guide and photomultiplier. Since the calorimeter was used only

for the trigger and not for particle trajectory reconstruction, good shower-position

resolution was not necessary.

The energy threshold for the proton or antiproton from Ξ∓ → Λ(Λ)π∓ →
p(p)π∓π∓ decays was set at 60 GeV. The requirement to have the energy above

the threshold for at least one opposite-sign particle formed the CAL(CAS) trigger.

The energy threshold for the opposite-sign pion from K∓ → π∓π±π∓ decays was

45 GeV and formed the CAL(K) trigger. It might seem meaningless to have the

CAL(CAS) trigger since it was satisfied by every event that satisfied the CAL(K)

threshold. However, the prescale factor was set to one for CAL(CAS) and to two for

the CAL(K) trigger. This explains why both thresholds were used.

2.1.9 Muon system. The purpose of the Muon Stations was to identify and recon-

struct muon tracks. Each station contained three 0.75 m thick iron blocks sandwiched

with proportional tube planes in the x and y directions. Muon hodoscopes served

as the main trigger element for muonic modes. The vertical muon hodoscope was

situated between the second and third iron blocks whereas the horizontal hodoscope

was mounted behind the third block. Such a spatial separation reduced muon trigger

sensitivity to hadron punch-through and secondary beam halo.

2.1.10 Beam Hodoscope. The Beam Hodoscope was used to monitor the position

and intensity of the secondary beam. It consisted of scintillation counters arranged

in vertical and horizontal planes.

2.1.11 Triggers. To minimize biases simple triggers were designed. All decays
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of interest had at least one particle track on the same-sign side of the spectrometer

and one on the opposite-sign side. Thus, the basic trigger required the left-right

coincidence of charged particles in the SS and OS hodoscopes and was called the LR

trigger.

To reject background events from interactions of the secondary beam with the

spectrometer material, the CAL(CAS) and CAL(K) triggers were formed as described

in subsection 2.1.8. The cascade trigger (CAS) was formed by requiring both LR and

CAL(CAS) triggers. It was used to obtain the data for this analysis.

2.1.12 Data acquisition system (DAQ). To perform the most precise CP viola-

tion measurement and not “throw the baby out with the bath water,” one needed to

collect as many candidate events as possible. Subsequent offline event reconstruction

would reject bad candidate events. The HyperCP DAQ was designed to record up to

105 events per spill-second and to have data-to-tape rate of at least 23 MB/s. The

events were small, typically 500 bytes.

2.1.13 Track reconstruction. Since the HyperCP experiment did not have any

particle identification systems (e.g., time projection chamber, ring imaging Cherenkov

detector, etc.), the only available information for further physics analyses was spatial

position and momentum of every charged track. First, spacepoints were determined

from hits in MWPCs, then track segments upstream and downstream of the Analyzing

Magnets were reconstructed. Finally, track segments were matched, the complete

track was formed and track momentum was calculated.

Each MWPC had four wire planes with different wire directions (two of the

four planes had the same wire direction, but shifted wire positions). Spacepoints were

found by minimizing

χ2 =
4∑

i=1

(cos θix + sin θiy −mi)
2

σ2
i

, (2.1)
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where θ is the “stereo angle” and defines the wire direction for plane i and mi is

the hit coordinate with error σi. Equation (2.1) is true only when we neglect the

6-mm gap between the wire planes in the MWPCs. It was found that due to this

assumption, low momentum track reconstruction was not efficient. This problem was

fixed after the initial reconstruction. Data used in this analysis were processed with

the correct spacepoint-finding algorithm.

Separate reconstruction of tracks upstream and downstream of the Analyzing

Magnet was performed. Every track candidate was required to have at least three

spacepoints. Track parameters were found by minimizing the corresponding χ2 func-

tion. Tracks with poor χ2/dof were rejected. Rejection/acceptance cut value was

different for the upstream and downstream tracks. It was more relaxed for the up-

stream track candidates in order to have a high efficiency for reconstructing closely

spaced upstream tracks. Thus, upstream tracks had more fake tracks (also known as

“ghosts”). Most ghosts were rejected during the matching of the upstream with the

downstream track segments.

A complete track was constructed by matching upstream and downstream

candidates at the bend plane of the Analyzing Magnets. Complete tracks with poor

χ2/dof were rejected. A global constrained fit, with the requirement that the upstream

and downstream track segments intercept the bend plane at the same point, was

performed for accepted tracks.

Track momentum was calculated using the single-bend-plane approximation.

Monte Carlo studies had shown that this approximation did not bias the momentum

measurement and was much faster than using the full field map.

2.2 Summary of Data Collected

In 12 months of data taking during 1997–2000, HyperCP recorded one of
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the largest data samples ever by a particle-physics experiment: 231 billion events

(triggers), 29,401 tapes, and 119.5 TB of data. A series of steps were performed to

separate the data into different “streams” that were used for further physics analysis.

A first analysis pass with very loose track-finding and invariant mass requirements

was done at FNAL. This reduced the data volume by a factor of eight. Output from

the first step was separated into different “streams:”

• Main Stream

• Prescaled Stream

• Muon Stream

• Monitor Stream.

All streams contained raw-event information (e.g., what wires were hit in the MW-

PCs) as well as information from track reconstruction (e.g., x slope for the track’s

upstream segment). Only the Main Stream and the Muon Stream were created for

actual physics analyses. The Main Stream occupied 334 AIT2 tapes, with 50 GB

capacity each, and contained approximately 26 billion events. It was further reduced

with tighter selection criteria and separated into Data Summary Tape (DST) sub-

streams named “Ξ,” “Ω,” “K → πππ” and “Rare Decays.”

From the Fermilab computer-“farm” processing with loose track-finding and

invariant-mass selection criteria, a total of ∼ 14 · 106 Ω → ΛK → pπK events

were reconstructed for the negative-polarity mode and ∼ 5 · 106 for the positive

(antiparticle) mode. This, the world’s largest sample of Ω hyperons, is ideal for

searching for rare Ω decays.
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CHAPTER 3

DATA SELECTION

3.1 Analysis Approach and Decays of Interest

We select data according to our ultimate goal, which is to calculate branching

ratios for Ω∓ → Ξ∗01530(Ξ
∗0
1530)π

∓ and Ω∓ → Ξ∓π±π∓. For any particle decay mode,

the number of events observed in a spectrometer is determined as

Nobs = Nexit · A ·
n∏

i=1

Bi , (3.1)

where Nexit is the number of Ω-particles exiting the hyperon magnet, A is the spec-

trometer acceptance which is calculated from Monte Carlo simulations, and Bi are

all subsequent branching ratios. To cancel the unknown Nexit we write equation (3.1)

for signal and “normalizing” modes and divide one by the other. Thus, the equations

for branching ratios:

B(Ω− → Ξ∗01530π
−) =

NΩ−→Ξ∗01530π−

NΩ−→ΛK−
· AΩ−→ΛK−

AΩ−→Ξ∗01530π−
· BΩ−→ΛK− ·BK−→π+π−π−

BΞ∗01530→Ξ−π+ ·BΞ−→Λπ−
, (3.2)

B(Ω− → Ξ−π+π−) =
NΩ−→Ξ−π+π−

NΩ−→ΛK−
· AΩ−→ΛK−

AΩ−→Ξ−π+π−
· BΩ−→ΛK− ·BK−→π+π−π−

BΞ−→Λπ−
, (3.3)

and similarly for antiparticle modes.

The sequences of five-track decays that we need to reconstruct and study are

as follows:

• Signal-mode resonance decay:

Ω∓ → Ξ∗01530(Ξ
∗0
1530)π

∓

Ξ∗01530(Ξ
∗0
1530) → Ξ∓π± . (3.4)

Ξ∓ → Λ(Λ)π∓ , (3.5)

Λ(Λ) → p(p)π∓ ; (3.6)
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Table 3.1. Particle properties (from [32]).

Particle Mass (MeV/c2) Lifetime (cm/c) Spin

Ω± 1672.45± 0.29 2.461± 0.033 1.5

Ξ± 1321.31± 0.13 4.914± 0.045 0.5

Λ(Λ) 1115.683± 0.006 7.888± 0.060 0.5

K± 493.677± 0.016 371.293± 0.720 0

π± 139.570± 0.00 780.450± 0.150 0

p(p) 938.272± 0.00 stable 0.5

• Signal-mode 3-body decay:

Ω∓ → Ξ∓π±π∓ .

Ξ∓ → Λ(Λ)π∓ , Λ(Λ) → p(p)π∓ ;

• Normalizing-mode decay:

Ω∓ → Λ(Λ)K∓ ,

K∓ → π∓π∓π± , (3.7)

Λ(Λ) → p(p)π∓ .

For all three particle (antiparticle) modes the final state is pπ+π−π−π− (pπ−π+π+π+).

Particle properties are listed in Table 3.1. Decay topologies are indicated in Figures

3.1 and 3.2.

3.2 Selection of Event Candidates

The Rare Decay data subset was used for the analysis. All events in the Main

Stream that were suitable for forbidden decay searches (i.e., Ω → Λπ, Ξ0 → pπ−,

Ω → pKπ, Ω → pππ) or contained five or more fully reconstructed charged tracks

were saved to the Rare Decay substream. This procedure greatly reduced the size of

the data set with the candidate events going from 334 AIT2 tapes to only four.
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Figure 3.1. Signal-mode decay topology.
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Figure 3.2. Normalizing-mode decay topology.
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Conditions of the experiment as well as the experimental setup were different

for the 1997 and 1999 run periods. For example, in 1997 the target was mispositioned

due to alignment errors, and its position was corrected for the 1999 run. This implies

that the 1997 and 1999 runs should be analyzed separately. Systematic errors are

also different. Since the 1999 run has roughly twice as much data as the 1997, we

have analyzed data only from the 1999 run period.

The quality of the runs was checked by the members of the HyperCP collab-

oration. Some runs were identified as bad for various reasons, e.g., low efficiency in

hodoscopes, MWPCs or the calorimeter, movement of the target during the run, etc.

We excluded bad runs from the analysis.

We also excluded “polarized” runs, i.e., runs where Ω∓ were created with

nonzero polarization. Since the asymmetry parameters for both signal modes are

unknown, polarized runs may introduce errors in the branching ratio calculations.

Moreover, polarized runs are only 10% of the data set. Runs that we have used in

the analysis are listed in Appendix A.

The next step was to create a data set with events that could be potentially

reconstructed as one of the signal (1.2, 1.3) or normalizing (1.1) modes (this procedure

is also known as “skimming”). Candidate events were selected from the Rare Stream,

which also contains data for other searches, and saved on the local IIT hard drive.

To be saved, events were required to satisfy the following criteria:

1. have at least two opposite sign (OS) and at least three same sign (SS) fully

reconstructed tracks;

2. have the best Ω∓ reconstructed invariant mass within 50 MeV/c2 from its PDG

value.
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We found that 388, 909 (195, 928) particle (antiparticle)-mode events passed the re-

quirements above. This includes 133, 175 (60, 968) events with more than five fully

reconstructed tracks. The size of the data set for the actual analysis was thus reduced

from 151 GB to 811 MB.

The Ω∓ invariant mass was reconstructed for every possible track combination

as

M2
Ω = (pi

p + pj
π + pk

π + pl
π + pm

π )2 , (3.8)

where pi
p is the energy-momentum four-vector and the i-th track is a proton. The

index i varies from one to the number of OS tracks (in short, i = 1, . . . nOS). Given

such a notation we supplement equation (3.8) with

i = 1, . . . nOS , j = 1, . . . nOS , i 6= j ,

k = 1, . . . nSS − 2 , l = k + 1, . . . nSS − 1 , m = l + 1, . . . nSS .

We picked the combination that gave Ω mass closest to its PDG value. If the recon-

structed Ω∓ mass was within 50 MeV from the PDG value, then this event passed

the second requirement and was saved.

The difference between the reconstructed Ω− (Ω+) invariant mass and the

corresponding PDG value is shown in Figure 3.3 (3.4). Both distributions indicate an

enhancement of events near the Ω∓ mass. We fit the distributions with the Gaussian

plus polynomial of order one function, which returns 4, 768±276 (1, 814±167) particle

(antiparticle)-mode events under the peak.
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Figure 3.3. Difference between reconstructed Ω− invariant mass and PDG value. Solid
line is Gaussian plus polynomial of order one fit, which returns N = 4, 768 ± 276
events under the peak.

Figure 3.4. Difference between reconstructed Ω+ invariant mass and PDG value. Solid
line is Gaussian plus polynomial of order one fit, which returns N = 1, 814 ± 167
events under the peak.
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CHAPTER 4

ANALYSIS

4.1 Monte Carlo Simulation

Monte Carlo (MC) simulation is one of the most popular techniques for para-

meter estimation in elementary particle physics. For example, it provides information

about what fraction of particles emitted from the target decayed and were accepted

by the spectrometer. This value is necessary for the correct calculation of branch-

ing ratios. The Monte Carlo method is widely used to test event reconstruction and

analysis procedures in general.

We used the so-called External Monte Carlo (EMC) technique in this analysis.

In a nutshell, we

1. generate parent particle at the target by specifying its momentum (px, py, pz)

and position (x, y, z);

2. trace the particle through the spectrometer collimator;

3. simulate the particle decay in the mode of interest;

4. trace decay products through the spectrometer;

5. digitize decay product hits in the detector;

6. save the event if it satisfies trigger requirements.

To minimize the difference between EMC events and data, EMC output has the same

form as the data. To simulate decays of interest we make modifications to steps one

and three. All other steps are performed with the HyperCP MC package to which

many people have contributed. More information about the HyperCP MC may be

found elsewhere [4].
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The following sections describe in detail how we generate the parent particle

at the target and simulate decays via the signal and normalizing modes. To launch

the MC one has to provide values for various run-dependent variables, e.g., position

of the peak of the beam distribution at the target, standard deviation (σ) of the beam

distribution at the target, position of the center of the target, target size, etc. To fill

them out we have chosen run #4062 (#4063) as a typical Negative’99 (Positive’99)

run with average σx = 2.90 mm, σy = 2.80 mm (σx = 2.34 mm, σy = 2.45 mm) for

the beam distribution. The standard deviations of the beam distribution in x and y,

averaged over spills, for unpolarized good ’99 runs is shown in Figure 4.1. To make

the MC simulation as realistic as possible, multiple scattering, accidental hits, and

detector inefficiencies were incorporated.
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Figure 4.1. Average standard deviation of beam distribution in x (left plot) and y
(right plot). Only unpolarized good ’99 runs have been used.

4.1.1 Particle Polarization and Decay Parameters. First, let us give a brief

overview of particle polarization and decay parameters since we will often refer to

these concepts.

The state of spin-J particles at rest is specified by (2J + 1)2 real numbers

tML which are multipole parameters with 0 ≤ L ≤ 2J and −L ≤ M ≤ L. They
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are determined by the process that formed the spin-J particles and are expectation

values of tensors built from the components of spin operators ~S [5, 28]. For example,

polarization of spin-1/2 particles is described by a vector, whereas polarization of

spin-3/2 particles must be described by a vector (tensor of order one), quadrupole,

and octupole tensors.

For any decay that can be described as a spin-J to spin-J ′ transition the orbital

angular momentum of the final state L can be any value that satisfies |J − J ′| ≤ L ≤
(J +J ′). The decay can be characterized by 2(2J ′+1)−1 real constants of our choice

(if J < J ′, then by 2(2J + 1) − 1 real constants). For example, the orbital angular

momentum of the final state for a spin-1/2 to spin-1/2 transition (such decays as

Ξ∓ → Λ(Λ)π∓ and Λ(Λ) → p(p)π∓) can be parity-violating S state (L = 0) with

amplitude S = seiδs or parity-conserving P state (L = 1) with amplitude P = peiδp .

The decay can be characterized by three real constants. Parameters s, p, and δp − δs

can be chosen or Lee–Yang variables [18],

α =
2Re(S∗P )

|S|2 + |P |2 , β =
−Im(S∗P )

|S|2 + |P |2 , γ =
|S|2 − |P |2
|S|2 + |P |2 , (4.1)

can be introduced.

4.1.2 Position of Parent Particle at Target. The position of the parent particle

at the target was generated using Gaussian distributions for the x and y projections.

Mean positions of the distributions were determined by matching data with the Monte

Carlo for the normalizing mode. The z coordinate of the particle production point

at the target was generated with an exponential probability density function (pdf):

p(z) ∼ e−z/zint , (4.2)

where zint is the interaction length. For copper zint is equal to 15.06 cm.

4.1.3 Momentum of Parent Particle at Target. The Ω∓ was generated

unpolarized, in the momentum range 110 to 240 GeV/c. We did not employ a model
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to generate the momentum of the parent particle at the target in the laboratory frame.

Rather, we tried various distributions until we achieved a reasonable match between

MC and normalizing-mode data. This is described in greater detail in Section 4.4.

The momenta in the x and y projections were generated with uniform prob-

ability density functions, ranging from −0.35 to 0.35 GeV/c in x and from −1 to

1 GeV/c in y. We employed a more complicated pdf to generate the momentum z

component. It is plotted in Figure 4.2.
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Figure 4.2. Monte Carlo generated z projection of the Ω momentum at the target.

4.1.4 Resonance Mode Decay Chain. The resonance mode decay chain is

Ω∓ → Ξ∗01530(Ξ
∗0
1530)π

∓ → Ξ∓π±π∓ → Λ(Λ)π∓π±π∓ → p(p)π∓π∓π±π∓ . (4.3)

4.1.4.1 Ω∓ → Ξ∗01530(Ξ
∗0
1530)π

∓ decay. This is a spin-3/2 to spin-3/2 transition.

There are no published theoretical equations for the angular distribution and polar-

ization of a daughter-particle for such a case. Thus, we will rely on general consider-

ations. It is expected that all Ω∓ decays are nearly parity-conserving [19, 23] and the
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asymmetry parameter α is thus expected to be small. For all major Ω∓ decay modes

this is confirmed by various experiments [32]. Thus, it is natural to assume negligibly

small asymmetry parameters for the resonance decay mode and zero polarization for

the resulting Ξ∗01530(Ξ
∗0
1530).

Since the Ω∓ is unpolarized, we generate the resonance-mode decay isotropi-

cally in the Ω rest frame. For a two-body decay, where particle 1 decays into particles

2 and 3, the magnitude of the daughter-particle momentum in the parent-particle rest

frame is completely determined by their masses:

|p| =
(

(m2
1 + m2

2 −m2
3)

2

4m2
1

−m2
2

)1/2

. (4.4)

The components of the daughter-particle momentum are generated as

px = |p| sin θ cos ϕ , py = |p| sin θ sin ϕ , pz = |p| cos θ , (4.5)

where θ and ϕ are random angles. The momentum of the second daughter particle

has the opposite direction.

The Ξ∗01530(Ξ
∗0
1530) mass was simulated with a Breit–Wigner probability density

function:

p(E) = A
Γ/2

(E − E0)2 + (Γ/2)2
, (4.6)

where A is a normalizing constant, E0 = 1531.8 MeV, Γ = 9.1 MeV (values from [32]).

The normalizing constant was derived from the requirement
∫ Emax
Emin

p(E)dE = 1, where

Emin = 1460.88 MeV, Emax = 1532.88 MeV are determined from the allowed phase

space of the decay mode.

4.1.4.2 Ξ∗01530(Ξ
∗0
1530) → Ξ∓π± decay. This is a spin-3/2 to spin-1/2 transition.

For this type of transition, the daughter-particle (Ξ∓) polarization is described in [17]

and the angular distribution is described in [27]. The decay is completely dominated

by the strong force. In strong interactions only parity-conserving amplitudes are
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allowed, which gives the following values for the Lee–Yang variables: α = β = 0,

γ = 1. Substituting these values together with zero polarization for the Ξ∗01530(Ξ
∗0
1530)

into equation (28) in [17] and equation (13) in [27], we obtain ŝ = 0 for the Ξ∓

polarization and R = 1 for the transition rate. The latter means that the momentum

distribution of the Ξ∓ is isotropic in the Ξ∗01530(Ξ
∗0
1530) rest frame. Thus, we generate

the decay Ξ∗01530(Ξ
∗0
1530) → Ξ∓π± with uniform phase space (for details see second

paragraph in section 4.1.4.1). The Ξ∓ is unpolarized.

4.1.4.3 Ξ∓ → Λ(Λ)π∓ and Λ(Λ) → p(p)π∓ decays. Both decays are spin-1/2 to

spin-1/2 transitions. The polarization of the daughter particle is given by equation

(3) in [18] whereas the angular distribution is described in [8]. These decays are

dominated by the weak force. Their asymmetry parameters are given in Table 4.1.

There is no observed CP violation in hyperons and we therefore assume here that

α = α for all hyperon decays. However, we use measured (different) values for the

Ω− and the Ω+ parity-violating parameters.

Because the Ξ∓ is unpolarized, we generate the decay Ξ∓ → Λ(Λ)π∓ isotropi-

cally. The polarization of the Λ(Λ) after the decay is

PΛ = αΞp̂Λ , (4.7)

where p̂Λ is a unit vector in the direction of the Λ(Λ) in the Ξ∓ rest frame. The

transition rate [8] is

R = 1 + αΛPΛp̂p , (4.8)

where p̂p is a unit vector in the proton (antiproton) direction in the Λ(Λ) rest frame.

The corresponding angular distribution of the p(p) in the Λ(Λ) rest frame is

dN

d cos θ
=

N0

2
(1 + αΛPΛp̂p) , (4.9)

where θ is the polar angle of the p(p) and N0 is the total number of events. We

generate the decay Λ(Λ) → p(p)π∓ according to equation 4.8.
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Table 4.1. Asymmetry decay parameters (from [32]).

Decay mode Parameter

Ω− → ΛK− α = 0.0175± 0.0024

Ω+ → ΛK+ α = −0.0181± 0.0038

Ξ∓ → Λ(Λ)π∓ α(α) = −0.458± 0.012

Λ(Λ) → p(p)π∓ α(α) = 0.642± 0.013

K− → π−π+π− g− = −0.2170± 0.0070, h = 0.010± 0.006, k = −0.0084± 0.0019

K+ → π+π+π− g+ = −0.2154± 0.0035, h = 0.012± 0.008, k = −0.0101± 0.0034

4.1.5 Three-Body-Mode Decay Chain. The three-body-mode decay chain is

Ω∓ → Ξ∓π±π∓ → Λ(Λ)π∓π±π∓ → p(p)π∓π∓π±π∓ . (4.10)

4.1.5.1 Ω∓ → Ξ∓π±π∓ decay. We generate this decay with uniform phase space,

since it is a standard practice in the absence of a theoretical model. We assume zero

polarization for the Ξ∓.

To generate the 3-body decay with a uniform phase space we employ GEN-

BOD, the CERN library N-body Monte Carlo event generator [6], and transfer the

generated momenta to the HyperCP MC arrays. For the correct transformation one

must take into account the “weight” of each event, which is an output parameter

from GENBOD labelled as WT. To test the routine we generate the 3-body decay

Ω− → Ξ−π+π− with a uniform phase space and look at the pure decay kinematics

without the HyperCP spectrometer distortions. In other words, plots presented here

are directly from the decay-generator output. The Dalitz plot of reconstructed Ξ−π+

mass vs. π+π− mass is shown in Figure 4.3. For uniform decay it must be uniformly

populated with events (for details see e.g. [32], page 322) and one can see that it is.

The reconstructed Ξ−π+ invariant mass distribution is given in Figure 4.4.

4.1.6 Normalizing-Mode Decay Chain. The normalizing-mode decay chain is

Ω∓ → Λ(Λ)K∓ → p(p)π∓π∓π±π∓ . (4.11)
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Figure 4.3. Dalitz plot of reconstructed Ξ−π+ mass vs. π+π− mass for the decay
Ω− → Ξ−π+π−, generated with uniform phase space using GENBOD [6].

4.1.6.1 Ω∓ → Λ(Λ)K∓ and Λ(Λ) → p(p)π∓ decays. The first decay in this

sequence is a spin-3/2 to spin-1/2 transition, whereas the second decay is a spin-1/2

to spin-1/2 transition. Their asymmetry parameters are given in Table 4.1. For the

unpolarized Ω∓, equation (13) from [27] simplifies to R = 1 and we generate the Λ(Λ)

isotropically in the Ω rest frame. Again, since we have unpolarized Ω∓, equation (28)

from [17] simplifies and the polarization of the Λ(Λ) after the decay is given by

PΛ = αΩp̂Λ , (4.12)

where p̂Λ is a unit vector in the direction of the Λ(Λ) in the Ω∓ rest frame2. The

angular distribution of the proton in the Λ(Λ) rest frame is given by equation (4.8).

2Please note that for the joint decay chain of the spin-3/2 hyperon after integra-
tion over the full solid angle, one obtains PΛ = −0.6PΩ, if γΩ = −1. This was shown
in [20] and [21]. We emphasize that the case of the joint decay chain has nothing to
do with our task of generating the decay sequence (4.11).
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Figure 4.4. Reconstructed Ξ−π+ invariant mass for the decay Ω− → Ξ−π+π−, gener-
ated with uniform phase space using GENBOD [6].

Thus, the transition rate is

R = 1 + αΩαΛ cos θ , (4.13)

and the angular distribution of the proton is given by a well-known equation (see e.g.

[19]):

dN

d cos θ
=

N0

2
(1 + αΩαΛ cos θ) , (4.14)

where θ is the polar angle of the proton in the Λ(Λ) helicity frame.

To test the decay routine we looked at the angular distribution of the proton in

the Λ rest frame without the HyperCP spectrometer distortions. We then fit the cos θ

distribution with a linear function and found that the value returned from the fit is

αΩ = (1.62± 0.27)× 10−2, which is consistent with the input value αΩ = 1.75× 10−2.

The distribution of cos θ is given in Figure 4.5.

4.1.6.2 K∓ → π∓π±π∓ decay. We generate this 3-body weak decay with the
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Figure 4.5. Distribution of cos θ, where θ is the polar angle of the proton in the Λ
helicity frame. Solid line is a linear fit, which returns αΩ = (1.62± 0.27)× 10−2.

parametrization described in [32]:

|M |2 = 1 + gu + hu2 + kv2 , (4.15)

u =
(s3 − s0)

m2
π

, v =
(s2 − s1)

m2
π

,

si = (pK − pi)
2 , s0 =

1

3

3∑

i=1

si ,

where pi are four-vectors and index 3 is used for the odd-charge pion. The Dalitz-plot

parameters g, h, and k are given in Table 4.1.

4.2 Event Reconstruction

The signal (1.2, 1.3) and normalizing (1.1) modes have five charged particles in

their “final” state p(p)π±π∓π∓π∓. The particle tracks can thus be completely recon-

structed using only information from the hits in the MWPCs. Once the tracks have

been reconstructed, each event is tested with a signal or normalizing-mode hypothesis

using geometric or kinematic constraints.
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As described in Section 3.2, we preselected events with five or more fully

reconstructed tracks and reconstructed Ω∓ mass within 50 MeV of its PDG value.

Each event belongs to one of the following categories: signal mode, normalizing mode,

or background. For the reconstruction step, our goal is to associate each of the five

final-state particles for the given event with the corresponding charged track for the

signal and the normalizing-mode event hypotheses.

There are many methods to reconstruct such events. The technique that

is used in this analysis is based on the “best mass” hypothesis. For example, to

reconstruct the decay Ω− → Ξ−π+π−, followed by Ξ− → Λπ− and Λ → pπ−, we

sequentially reconstruct invariant masses for Λ, Ξ−, and Ω− by choosing the track

combination that gives each mass closest to the PDG value. This method was used

in other HyperCP analyses as well, for example in [30].

4.2.1 Reconstruction Details. After the track reconstruction step, for each

event information is saved about the total number of fully reconstructed tracks and

the numbers of OS, SS, and beam tracks. For each track in the event following values

are saved:

• x and y slopes for track segments upstream and downstream of the Analyzing

Magnets;

• coordinates of track interception with the bend plane;

• coordinates of hits in the MWPCs.

Knowing the magnetic field in the analyzing magnet together with track slopes, we

calculate the momentum for each track. The following sections explain how these

values were used for event reconstruction.

4.2.1.1 Mass and momentum calculation. When a particle decays to N
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daughter particles, its mass and momentum can be calculated from

M2 = (
N∑

i=1

pi)
2 , p =

N∑

i=1

pi , (4.16)

where pi are four-vectors. To form a daughter-particle four-vector we use its PDG

mass if the daughter-particle is the final particle in the decay chain; otherwise we use

its reconstructed invariant mass.

4.2.1.2 Decay vertex calculation. To calculate the decay vertex, one needs

values of the x and y slopes and the coordinates of a point on the track for each

daughter particle.

Since upstream and downstream track segments are straight lines, the i-th

track segment is described by

x− x0i

mi

=
y − y0i

ni

= z − z0i , (4.17)

where m and n are x and y slopes correspondingly (they form the directional vector

v = (mi, ni, 1)), and point A0 = (x0i, y0i, z0i) belongs to the track. To simplify

calculations, instead of A0, we can always use A = (xi; yi; 0), which is another point

on the track, where

xi = x0i −miz0i , yi = y0i − niz0i .

For a decay with N daughter particles we can define the average vertex coordinate

at closest approach as

Z = −
∑N−1

i=1

∑N
j=i+1[(mi −mj)(xi − xj) + (ni − nj)(yi − yj)]∑N−1

i=1

∑N
j=i+1[(mi −mj)2 + (ni − nj)2]

, (4.18)

X =
1

N

N∑

i=1

(xi + miZ) , Y =
1

N

N∑

i=1

(yi + niZ) . (4.19)

and average distance among the pairs of track combinations at closest approach as

D =
1

Ncb

N−1∑

i=1

N∑

j=i+1

√
[xi − xj + (mi −mj)Z]2 + [yi − yj + (ni − nj)Z]2 , (4.20)
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where Ncb is the binomial coefficient

Ncb =
N !

2(N − 2)!
.

Unfortunately, this method does not tell us how good the found vertex parameters

are.

4.2.1.3 Decay geometry fit with GFIT. Another method to find the decay

vertex is to use the geometric fitting routine GFIT, which was written in the 1970s

and has been exploited by many experiments. The user must provide the coordinates

of every point in the MWPCs that was used to form each of the tracks. The routine

returns not only vertex coordinates, but also a χ2 probability for the fit, which allows

us to judge whether or not the reconstructed event geometry is consistent with our

hypothesis. It also recalculates upstream and downstream slopes and intercepts of

the tracks which can be used to update the momentum calculation.

The limitation of GFIT is that it was designed to fit sequences of two two-body

decays such as Ξ∓ → Λ(Λ)π∓, Λ(Λ) → p(p)π∓. In other words it does the geometric

fit to a three-track, two-decay-vertex topology only. Besides the reconstruction of Ξ∓,

we use GFIT for the K∓ → π∓π±π∓ decay. Since this is a single-vertex decay, the

two vertices found by GFIT are expected to be equal.

4.2.1.4 Signal-mode geometric fit. In the steps described above we find de-

cay vertices for Λ, Ξ, and Ω and calculate the average distance of closest approach

(equation (4.20)) for each of them. Now we would like to use the found decay vertex

coordinates and construct some variable to distinguish events with good signal-mode

topology from others with poor topology. We test event topology with the signal-

mode geometry hypothesis and calculate

χ2 =
4∑

i=1

4∑

j=1

5∑

k=1

(
X ijk −X ijk

hit

σij

)2

, (4.21)

Nndof = Nhits − 5 , (4.22)
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where index i loops through four upstream wire chambers, index j loops through four

wire planes in each of the wire chambers, index k loops through five reconstructed

tracks, and X ijk
hit is the coordinate of the hit in chamber i, wire plane j used by track

k. Coordinate X is measured in the wire plane local coordinate system. Thus,

X = x cos θ + y sin θ , (4.23)

where x and y are coordinates of the track’s interception with the wire plane in the

laboratory frame and θ is the “stereo angle” of the wire plane. The rms uncertainty

in the individual hit position is defined as σ = (pitch of the wire plane)/
√

12.

We calculate the number of degrees of freedom (dof) as Ndof = Nhits− (Nvar−
Nc), where Nhits is the total number of hits that were used in the fit in upstream

MWPCs and Nvar is the number of fit variables with Nc constraints on them. In

more detail, there are two variables for each track, which are x and y slopes, and

three coordinates for each vertex. The total number of variables for the signal mode-

geometry fit is 19. For example, the constraints for the proton track are

xΛ = zΛ
px

pz

+ bx , yΛ = zΛ
py

pz

+ by , (4.24)

where xΛ, yΛ, zΛ are the coordinates of the Λ vertex, px, py, pz are the components

of the proton momentum, and bx and by are the known coordinates of the proton

track interception with the bend plane. We can write similar equations for each of

the five tracks plus the Λ and Ξ tracks, which gives us 14 constraints in total. Thus,

we obtain Nvar −Nc = 5 for the signal-mode fit.

4.2.1.5 Normalizing-mode geometric fit. For the normalizing mode we cannot

construct just one χ2 variable in analogy to the signal-mode geometry test described

above. This is because there are no saved hits in the upstream MWPCs for the Λ and

K tracks. Typically both particles decay before they reach the third wire chamber,

and their tracks are not directly reconstructed.
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Table 4.2. Numbers of degrees of freedom for upstream-hit fits.

Decay Nvar Nc Ndof

Ω∓ → Ξ∓π±π∓, Ξ∓ → Λ(Λ)π∓, Λ(Λ) → p(p)π∓ 19 14 Nhits − 5

K∓ → π∓π∓π± 9 6 Nhits − 3

Λ(Λ) → p(p)π∓ 7 4 Nhits − 3

Instead, we calculate χ2 and Ndof separately for the decays K∓ → π∓π∓π±

and Λ(Λ) → p(p)π∓. These can be used in addition to decay vertex parameters. To

calculate them we use the same technique as for the signal mode. Details on how we

derive the numbers of degrees of freedom are given in Table 4.2.

4.2.1.6 Particle at target calculation. To calculate the particle position at

the target we trace the particle backwards through the collimator. We start with

the reconstructed particle momentum p = (px; py; pz) and coordinates of the point

A0 = (x0; y0; z0) on the track, which is typically the reconstructed particle vertex.

First, we trace the particle to the exit of the collimator which is straightforward

due to the absence of magnetic field in the decay region. The next step is to trace

the particle back through the Hyperon Magnet field, from the collimator’s exit to

its entrance. While our considerations are simple, they are commonly utilized in

experimental particle physics. For clarity, let us consider the reverse situation, when

the particle moves from the collimator entrance (point a) to the exit (point b). Inside

the collimator, the magnetic force F = q[v × B] acts on the particle and rotates its

momentum vector. We write for the y-projection

∫ pyb

pya

dpy =
∫ (zb−za)/vz

0
Fydt (4.25)

and can introduce a “transverse kick” of the Hyperon Magnet,

pt = qBx(zb − za) . (4.26)
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The radius of the particle orbit is

R =
dr

dα
=

vzdt

dα
=

vzpdt

dpy

=
vzpdt

Fydt
=

√
p2

y + p2
z

qBx

=
√

p2
y + p2

z

∣∣∣∣∣
zb − za

pt

∣∣∣∣∣ . (4.27)

Please note that dα ≈ sin dα = dpy/p since the angle α is small (see Figure 4.6).

Finally, from geometrical considerations, we get the following dependences:

xa = xb +
px

pz

(za − zb) , (4.28)

ya = yR −
√

R2 − (za − zR)2 , (4.29)

where yR = yb + Rpz/p and zR = zb −Rpy/p are coordinates of the orbit center.

z

y

a

b

pz

py

R
R

R

Figure 4.6. A charged particle is deflected in the constant magnetic field while moving
along the z axis.

4.2.1.7 Trigger requirement for events with more than five tracks. For

events with more than five tracks we choose the five tracks that give the best agree-

ment with signal or normalizing-mode hypotheses. Then we check that the Cascade

trigger was fired by the tracks of our choice. This is necessary for the proper ac-

ceptance calculations, because our MC generates only five-track decay modes and,

therefore, MC-events have exactly five tracks, but data-events may have more than

five tracks.
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As mentioned in Section 2.1.13, the hodoscopes and calorimeter were the trig-

ger elements for nonmuonic decay modes. The Left-Right trigger required at least

one hit in the same-sign and opposite-sign hodoscopes. For each “fired” counter,

we projected the downstream segment of the chosen track to the counter z position.

If its intersection was within the counter’s active region, then the counter was hit

by this track. We required at least one counter hit by at least one track belonging

to the signal or normalizing-mode decay in each of the same-sign and opposite-sign

hodoscopes.

The method to define the counter active region with only the recorded data

is subtle. A counter can be fired by the tracks themselves or by the products of

accidental interaction of the secondary beam with spectrometer material. While we

have full information about the former, there are no recorded data for the latter

case. Moreover, data show that accidental interactions are responsible for roughly

10% of “fired” counters, thus, we cannot neglect them. To estimate the fraction of

accidental interactions, we calculate the distance along the x axis from the center

of the “fired” counter to the closest track and divide the number of events that are

more than 4.5 cm from the counter center by the total number of events. For selected

counters this distance is plotted in Figures 4.7 and 4.8. One can see the edges at ±4.5

cm.Counters were relatively long and particles that traversed the Analyzing Magnets

apertures were not able to pass above or below the hodoscopes. Given this we define

the counter active region as rectangle inscribed in the counter. The borderline of the

rectangle is 0.5 cm away from the vertical counter edges and 2 cm away from both

horizontal edges towards the counter center.

In spite of the somewhat subjective active-region border selection, we are con-

fident in the results. Our goal is to exclude events with more than five tracks that

were written to tape when the trigger was fired by the background particles. To
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maximize the probability of excluding such events, the area selected for the active

region is, perhaps, smaller than the “true” active region. Since there are five tracks

in our decay modes, the chances to satisfy our trigger requirements are high and the

downside will be rejecting only a small fraction of “good” events.

The hadronic calorimeter threshold for the Cascade trigger was set at 60 GeV/c,

thus we required the proton momentum to exceed this threshold. If the proton mo-

mentum was greater than or equal to the threshold, we projected its downstream seg-

ment to the calorimeter upstream face. If the intersection was within the calorimeter

active region, then the event was deemed to satisfy the CAL(CAS) trigger. The entire

calorimeter front face was used as the active area. The distribution of particles with

p ≥ 60 GeV/c at the position of the calorimeter front face is shown in Figure 4.9.

These active-region requirements were tested with Monte Carlo simulations

and were found to be 100% efficient, which means that all signal events in the MC

samples passed them. For the data, all signal- and normalizing-mode events after the

corresponding selection criteria also satisfied these requirements.

4.3 Final Event Selection

As mentioned in the preceding section, event reconstruction is based on the

“best mass” hypothesis. First, the track with the highest momentum is assigned as

the proton. The remaining tracks’ tagging is based on the track combination that

gives reconstructed invariant mass closest to the PDG value. Then we calculate all

other parameters needed to describe the event, e.g., vertex position, χ2/dof for the

decay geometry, particle position at the target, etc. A detailed explanation how to

calculate all these quantities is given in Section 4.2.

Event selection criteria (also known as “cuts”) for both signal modes and the

normalizing mode are
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Figure 4.7. Distance along the x axis from the center of the “fired” counter to the
closest track for selected SS counters.
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Figure 4.8. Distance along the x axis from the center of the “fired” counter to the
closest track for selected OS counters.
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Table 4.3. Parameters for the Gaussian-plus-polynomial fit for selected distributions
(normalizing-mode Neg99 MC).

Distribution Gaussian Mean Standard Deviation

mpπ− −mΛ(PDG) (−1.67± 0.35) · 10−2 MeV/c2 0.80± 0.35 · 10−2 MeV/c2

mπ−π−π+ −mK(PDG) (−16± 0.80) · 10−2 MeV/c2 1.75± 0.74 · 10−2 MeV/c2

mpπ+π−π−π− −mΩ(PDG) (−17.5± 0.88) · 10−2 MeV/c2 2.04± 0.76 · 10−2 MeV/c2

xtarget (1.52± 0.40) · 10−3 cm 0.09± 0.30 · 10−3 cm

ytarget 6.48± 0.45 · 10−3 cm 0.10± 0.34 · 10−3 cm

• reconstructed invariant masses of particles within 3σ of corresponding PDG

values;

• total momentum between 135 and 220 GeV/c;

• all decay vertices inside the vacuum decay region and vertex topology consistent

with the decay;

• tracks form good vertices;

• reasonable χ2/dof from fitting decay topology to upstream track segments;

• reconstructed Ω track within the aperture of the collimator and originating from

the target.

4.3.1 Normalizing Mode. We calculate standard deviations to be used in invari-

ant mass and target position cuts by fitting the corresponding Monte Carlo distri-

butions with Gaussian-plus-polynomial functions. Results for the normalizing-mode

“Neg99” (“Pos99”) MC are given in Table 4.3 (4.4) with corresponding distributions

plotted in Figures 4.10 and 4.11 (Figures B.1 and B.2).

Cuts for the normalizing mode are listed in Table 4.5. Monte Carlo distribu-

tions for each selection criterion are plotted in Figures 4.12 to 4.19 for the “Neg99”

subset. Monte Carlo distributions for the “Pos99” subset look similar. Not to bore
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Table 4.4. Parameters for the Gaussian-plus-polynomial fit for selected distributions
(normalizing-mode Pos99 MC).

Distribution Gaussian Mean Standard Deviation

mpπ+ −mΛ(PDG) (−0.62± 0.35) · 10−2 MeV/c2 0.80± 0.37 · 10−2 MeV/c2

mπ+π+π− −mK(PDG) (−16.9± 0.80) · 10−2 MeV/c2 1.75± 0.74 · 10−2 MeV/c2

mpπ−π+π+π+ −mΩ(PDG) (−17.3± 0.89) · 10−2 MeV/c2 2.04± 0.75 · 10−2 MeV/c2

xtarget (0.99± 0.39) · 10−3 cm 0.09± 0.30 · 10−3 cm

ytarget 6.48± 0.46 · 10−3 cm 0.10± 0.35 · 10−3 cm

the reader, we do not include them in this dissertation. Each cut can be characterized

with isolated and final efficiencies based on MC calculations. Isolated efficiency is the

number of events surviving this particular cut divided by the total number of events

before any cuts. Final efficiency is the number of events after all cuts have been

applied divided by the number of events surviving all cuts except this particular cut.

Efficiencies for the Neg99 and Pos99 MC are given in Table 4.6. Based on these values

we infer that we lose the largest fraction of good events due to poor reconstruction

of the particle-vertex z coordinate.
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Table 4.5. Selection cuts for the normalizing mode.

Cut Type Selection Rule Cut ID

p(p)π∓ invariant mass |mp(p)π∓ −mΛ(PDG)| ≤ 2.40 MeV N1

π∓π∓π± invariant mass |mπ∓π∓π± −mK(PDG)| ≤ 5.25 MeV N2

p(p)π±π∓π∓π∓ invariant mass |mp(p)π±π∓π∓π∓ −mΩ(PDG)| ≤ 6.12 MeV N3

Ω∓ total momentum 135 ≤ PΩ ≤ 220 GeV N4

Z coordinate of the particle vertex 50 < ZΩ < 1300 cm N5

ZΩ < ZΛ < 1300 cm N6

ZΩ < ZK < 1300 cm N7

Distance of closest approach DOCAΩ < 0.3 cm N8

DOCAΛ < 0.3 cm N9

DOCAK < 0.35 cm N10

Decay geometry fitter (χ2/dof)Λ < 2 N11

(χ2/dof)K < 3 N12

Ω∓ position at the target [(xtarget/0.25)2+

((ytarget − 6.4835)/0.285)2] ≤ 1 N13

Ω∓ at the collimator exit −1 cm ≤ exitx ≤ 1 cm N14

−0.6 cm ≤ exity ≤ 0.55 cm N15
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Figure 4.9. Distribution of particles with p ≥ 60 GeV/c at the position of the
calorimeter front face. The rectangle indicates the calorimeter active area.
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Figure 4.10. Difference between reconstructed invariant mass with no cuts and PDG
values for the normalizing-mode Neg99 MC. Solid line is Gaussian-plus-polynomial
fit.
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Figure 4.11. X and Y positions of the Ω− at the target with no cuts for the
normalizing-mode Neg99 MC. Solid line is Gaussian-plus-constant fit.

Table 4.6. Efficiency of selection cuts for the normalizing mode MC.

Isolated Effic., % Final Effic., %

Cut ID Neg99 Pos99 Neg99 Pos99

N1 97.9 97.8 98.4 98.4

N2 94.6 94.5 99.6 99.6

N3 98.7 98.6 99.7 99.8

N4 99.9 99.9 100 100

N5 80.2 80.4 78.5 78.9

N6 84.2 84.1 86.2 86.3

N7 74.5 74.4 79.3 79.5

N8 96.1 96.0 99.7 99.7

N9 94.8 94.7 99.2 99.0

N10 95.1 95.0 99.5 99.4

N11 92.7 92.6 97.4 97.4

N12 89.7 89.7 98.3 98.3

N13 95.8 95.8 99.0 99.1

N14 99.0 99.0 99.4 99.5

N15 99.3 99.2 99.8 99.8

All cuts 43.1 43.2
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Figure 4.12. Total momentum of Ω− with no cuts for the normalizing-mode Neg99
MC.

Figure 4.13. Z position of the decay vertex with no cuts for Ω−. Normalizing mode
Neg99 MC.
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Figure 4.14. Z position of the decay vertex with no cuts. Normalizing mode Neg99
MC.
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Figure 4.15. Distance of closest approach with no cuts. Normalizing mode Neg99
MC.
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Figure 4.16. Calculated χ2/dof with no cuts. Normalizing mode Neg99 MC.

Figure 4.17. Y vs. X position of the Ω− at the target with no cuts for the normalizing-
mode Neg99 MC. Solid line — elliptical cut.
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Figure 4.18. Normalized distance from the center r = (xtarget/0.25)2 + ((ytarget −
6.4835)/0.285)2. Normalizing mode Neg99 MC.

Figure 4.19. X and Y positions of the Ω− at the collimator exit with no cuts for the
normalizing-mode Neg99 MC.
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Table 4.7. Parameters for the Gaussian-plus-constant fit for selected distributions
(signal 3-body-mode Neg99 MC).

Distribution Gaussian Mean Standard Deviation

mpπ− −mΛ(PDG) (−1.47± 0.23) · 10−2 MeV/c2 0.85± 0.23 · 10−2 MeV/c2

mpπ−π− −mΞ(PDG) (−5.95± 0.41) · 10−2 MeV/c2 1.50± 0.38 · 10−2 MeV/c2

mpπ+π−π−π− −mΩ(PDG) (−6.64± 0.55) · 10−2 MeV/c2 2.03± 0.47 · 10−2 MeV/c2

xtarget (0.42± 0.26) · 10−3 cm 0.10± 0.14 · 10−3 cm

ytarget 6.48± 0.31 · 10−3 cm 0.11± 0.24 · 10−3 cm

Table 4.8. Parameters for the Gaussian-plus-constant fit for selected distributions
(signal 3-body-mode Pos99 MC).

Distribution Gaussian Mean Standard Deviation

mpπ+ −mΛ(PDG) (−0.73± 0.23) · 10−2 MeV/c2 0.85± 0.24 · 10−2 MeV/c2

mpπ+π+ −mΞ(PDG) (−5.58± 0.41) · 10−2 MeV/c2 1.50± 0.38 · 10−2 MeV/c2

mpπ−π+π+π+ −mΩ(PDG) (−6.36± 0.55) · 10−2 MeV/c2 2.03± 0.47 · 10−2 MeV/c2

xtarget (−0.08± 0.26) · 10−3 cm 0.10± 0.2 · 10−3 cm

ytarget 6.48± 0.31 · 10−3 cm 0.11± 0.24 · 10−3 cm

4.3.2 Signal Modes. Invariant mass and target position Monte Carlo distributions

for both, 3-body and resonance, signal modes were fit with Gaussian-plus-constant

functions. Parameters after the fit are given in Tables 4.7 through 4.10. Correspond-

ing distributions for the “Neg99” (“Pos99”) data subset are shown in Figures 4.20

through 4.22 (Figures B.3 through B.6).

Cuts for the signal mode are given in Table 4.11. Figures 4.24 through 4.39

show 3-body- and resonance-mode “Neg99” MC distributions for each selection crite-

rion. As well as for the normalizing mode, corresponding distributions for the “Pos99”

subset look similar and we omit them. Cut efficiencies for the 3-body (resonance)

mode are listed in Table 4.12 (4.13).
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Figure 4.20. Difference between reconstructed invariant mass with no cuts and PDG
values for the signal 3-body-mode Neg99 MC. Solid line is Gaussian-plus-constant
fit.
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Figure 4.21. X and Y positions of the Ω− at the target with no cuts for the signal
3-body-mode Neg99 MC. Solid line is Gaussian-plus-constant fit.

Figure 4.22. X and Y positions of the Ω− at the target with no cuts for the signal
resonance-mode Neg99 MC. Solid line is Gaussian-plus-constant fit.
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Figure 4.23. Difference between reconstructed invariant mass with no cuts and
PDG values for the signal resonance-mode Neg99 MC. Solid line is Gaussian-plus-
constant fit.
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Table 4.9. Parameters for the Gaussian-plus-constant fit for selected distributions
(signal resonance-mode Neg99 MC).

Distribution Gaussian Mean Standard Deviation

mpπ− −mΛ(PDG) (−1.44± 0.16) · 10−2 MeV/c2 0.87± 0.17 · 10−2 MeV/c2

mpπ−π− −mΞ(PDG) (−5.71± 0.28) · 10−2 MeV/c2 1.52± 0.26 · 10−2 MeV/c2

mpπ+π−π−π− −mΩ(PDG) (−6.11± 0.36) · 10−2 MeV/c2 1.98± 0.31 · 10−2 MeV/c2

xtarget (1.69± 0.18) · 10−3 cm 0.10± 0.14 · 10−3 cm

ytarget 6.48± 0.21 · 10−3 cm 0.11± 0.17 · 10−3 cm

Table 4.10. Parameters for the Gaussian-plus-constant fit for selected distributions
(signal resonance-mode Pos99 MC).

Distribution Gaussian Mean Standard Deviation

mpπ+ −mΛ(PDG) (−1.37± 0.16) · 10−2 MeV/c2 0.87± 0.17 · 10−2 MeV/c2

mpπ+π+ −mΞ(PDG) (−5.46± 0.28) · 10−2 MeV/c2 1.51± 0.25 · 10−2 MeV/c2

mpπ−π+π+π+ −mΩ(PDG) (−5.71± 0.36) · 10−2 MeV/c2 1.97± 0.31 · 10−2 MeV/c2

xtarget (2.37± 0.18) · 10−3 cm 0.10± 0.14 · 10−3 cm

ytarget 6.48± 0.21 · 10−3 cm 0.11± 0.16 · 10−3 cm
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Table 4.11. Selection cuts for the signal modes.

Cut Type Selection Rule Cut ID

p(p)π∓ invariant mass |mp(p)π∓ −mΛ(PDG)| ≤ 2.55 MeV S1

p(p)π∓π∓ invariant mass |mp(p)π∓π∓ −mΞ(PDG)| ≤ 4.50 MeV S2

p(p)π±π∓π∓π∓ invariant mass |mp(p)π±π∓π∓π∓ −mΩ(PDG)| ≤ 6.09 MeV S3

Ω∓ total momentum 135 ≤ PΩ ≤ 220 GeV S4

Z coordinate of the particle vertex 50 < ZΩ < 1300 cm S5

ZΩ < ZΞ < ZΛ cm S6

ZΛ < 1300 cm S7

Distance of closest approach DOCAΩ < 0.45 cm S8

DOCAΛ < 0.3 cm S9

DOCAΞ < 0.35 cm S10

Decay geometry fitter (χ2/dof)Λ < 2 S11

(χ2/dof)decay < 2.2 S12

Ω∓ position at the target [(xtarget/0.27)2+

((ytarget − 6.4822)/0.3)2] ≤ 1 S13

Ω∓ at the collimator exit −1 cm ≤ exitx ≤ 1 cm S14

−0.65 cm ≤ exity ≤ 0.55 cm S15
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Table 4.12. Efficiency of selection cuts for the signal 3-body-mode MC.

Isolated Effic., % Final Effic., %

Cut ID Neg99 Pos99 Neg99 Pos99

S1 97.9 97.8 98.8 98.8

S2 97.2 97.2 99.6 99.6

S3 99.0 99.0 99.8 99.8

S4 100 100 100 100

S5 82.8 82.6 81.4 81.2

S6 91.7 91.9 93.0 93.1

S7 77.1 77.2 76.3 76.4

S8 96.7 96.8 99.7 99.7

S9 97.7 97.7 99.7 99.6

S10 97.9 98.0 99.2 99.2

S11 93.8 93.8 97.9 98.0

S12 94.4 94.5 98.8 98.8

S13 95.6 95.7 98.4 98.5

S14 98.5 98.5 99.1 99.1

S15 99.1 99.1 99.8 99.7

All cuts 49.9 50.0
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Table 4.13. Efficiency of selection cuts for the signal resonance-mode MC.

Isolated Effic., % Final Effic., %

Cut ID Neg99 Pos99 Neg99 Pos99

S1 97.6 97.5 98.7 98.6

S2 98.4 98.4 99.6 99.6

S3 99.1 99.0 99.8 99.8

S4 100 100 100 100

S5 82.5 82.6 81.2 81.2

S6 93.5 93.4 92.8 92.6

S7 77.0 76.9 77.1 76.9

S8 98.1 98.1 99.5 99.6

S9 98.9 98.9 99.7 99.7

S10 98.7 98.7 99.2 99.1

S11 94.3 94.2 97.8 97.8

S12 95.1 95.1 98.2 98.2

S13 96.2 96.2 98.0 98.1

S14 98.9 98.9 99.1 99.1

S15 99.4 99.4 99.7 99.7

All cuts 50.0 49.9
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Figure 4.24. Total momentum of Ω− with no cuts for the signal 3-body mode Neg99
MC.

Figure 4.25. Z position of the decay vertex with no cuts for Ω−. Signal 3-body mode
Neg99 MC.
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Figure 4.26. Z position of the decay vertex with no cuts. Signal 3-body mode Neg99
MC.
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Figure 4.27. Distance of closest approach with no cuts. Signal 3-body mode Neg99
MC.
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Figure 4.28. Calculated χ2/dof with no cuts. Signal 3-body mode Neg99 MC.

Figure 4.29. Y vs. X position of the Ω− at the target with no cuts for the signal
3-body mode Neg99 MC. Solid line is elliptical cut.
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Figure 4.30. Normalized distance from the center r = (xtarget/0.27)2 + ((ytarget −
6.4822)/0.3)2. Signal 3-body mode Neg99 MC.

Figure 4.31. X and Y positions of the Ω− at the collimator exit with no cuts for the
signal 3-body mode Neg99 MC.
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Figure 4.32. Total momentum of Ω− with no cuts for the signal resonance mode
Neg99 MC.

Figure 4.33. Z position of the decay vertex with no cuts for Ω−. Signal resonance
mode Neg99 MC.
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Figure 4.34. Z position of the decay vertex with no cuts. Signal resonance mode
Neg99 MC.
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Figure 4.35. Distance of closest approach with no cuts. Signal resonance mode Neg99
MC.
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Figure 4.36. Calculated χ2/dof with no cuts. Signal resonance mode Neg99 MC.

Figure 4.37. Y vs. X position of the Ω− at the target with no cuts for the signal
resonance mode Neg99 MC. Solid line is elliptical cut.
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Figure 4.38. Normalized distance from the center r = (xtarget/0.27)2 + ((ytarget −
6.4822)/0.3)2. Signal resonance mode Neg99 MC.

Figure 4.39. X and Y positions of the Ω− at the collimator exit with no cuts for the
signal resonance mode Neg99 MC.
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4.4 Monte Carlo Tuning and Comparison with Data

The Monte Carlo was tuned to get a reasonable match with the data. We used

the normalizing mode for the tuning for two reasons: first, it has more events than the

signal mode and second, because tuning using the signal mode might bias our final

result. In the MC we varied the parameters for generation of Ω at the target. The

probability density function for the Ω momentum in px, py, pz was varied arbitrarily.

The position of the beam and the center of the target in x and y were varied by 0.1

mm until reasonable agreement between data and MC was reached.

We employed the Kolmogorov test to compare data with MC. All cuts from

Table 4.5 (4.11) were applied to the data and the normalizing (signal) mode MC.

Kolmogorov test probabilities for selected variables after tuning are given in Table

4.14 (4.15) for the Neg99 (Pos99) subset. Corresponding Neg99 (Pos99) data subset

distributions together with other variables are plotted in Figures 4.40 to 4.44 (C.1 to

C.5) for the normalizing mode and in Figures 4.45 to 4.49 (C.6 to C.10) for the signal

modes. One can see that indeed there is a reasonable, although not perfect, match

between data and MC. For completeness, numbers of events for each mode and each

data subset are listed in Table 4.16.

Table 4.14. Kolmogorov test probabilities (in percent) from data and MC comparison
for selected variables for the Neg99 subset.

Variable Normalizing mode Signal mode

px for Ω− 86.7 13.8

py for Ω− 30.6 38.9

pz for Ω− 2.8 10.3

xtarget for Ω− 2.4 7.7

ytarget for Ω− 48.4 60.9

xexit for Ω− 95.9 20.8

yexit for Ω− 9.2 99.5
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Table 4.15. Kolmogorov test probabilities (in percent) from data and MC comparison
for selected variables for the Pos99 subset.

Variable Normalizing mode Signal mode

px for Ω+ 91.0 91.6

py for Ω+ 5.2 100

pz for Ω+ 8.3 97.8

xtarget for Ω+ 16.0 55.9

ytarget for Ω+ 23.3 71.1

xexit for Ω+ 93.5 84.8

yexit for Ω+ 50.0 24.4

Table 4.16. Number of events in each of the data samples after all cuts.

Mode Negative99 Positive99

Normalizing 375 156

Signal 78 24

4.4.1 Remarks on histogram comparisons. There are more than one goodness-

of-fit test that can be used to compare a measured distribution (histogram) to a MC

prediction. In this section we explain why the Kolmogorov test has been chosen for

this analysis.

Undoubtedly, the most popular and widespreaded goodness-of-fit test is the

χ2 (chi-squared) test. However, it has one large disadvantage. Its results strongly

depend on the number of bins and number of events within a bin. To test this

we have created three MC and three data histograms with differing binning. Tests

have been performed with the same data events. Results are summarized in Table

4.17. Corresponding histograms are plotted in Figure 4.50. One can see that the χ2

test strongly depends on the binning and the resulting probabilities of compatibility

between data and MC histograms can differ by orders of magnitude. In contrast, the

Kolmogorov test returns a unique probability value.
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Furthermore, we have to satisfy other requirements to perform a reliable χ2

test. For example, the number of events within a bin should be large enough so that

the actual Poisson distribution of errors approximates a Gaussian. Various authors

suggest various rules for an optimal data binning. We have tried to satisfy the criteria

not to have bins with fewer than five events and not to have more than several bins

with ≤10 events. In the case of small data-sample size, which is exactly what we have,

the task of choosing optimal binning becomes even harder (more detailed discussion

may be found in references [33] and [22]).

Table 4.17. Probabilities for χ2 test with differing binning and the Kolmogorov test.
The same data events were used in all tests.

Test Probability, % Figure

χ2, 8 bins 6.8 4.50a

χ2, 10 bins 0.09 4.50b

χ2, 12 bins 14.78 4.50c

Kolmogorov 1.213

Contrary to the χ2 test, the Kolmogorov test does not require binning. It is

restricted to univariate distributions. Since we deal with one-dimensional low sta-

tistics histograms, the Kolmogorov test is perfectly suitable for us. In the Physics

Analysis Workstation (PAW) software package the Kolmogorov test is implemented

through the command /HIST/OPER/DIFF [7]. To employ it we must store our data in

a histogram which is a confusing requirement for the Kolmogorov test. However, if

our bin width is small compared with experimental resolution or the number of bins

is very large compared with the number of events, then we can confidently use it. To

be on the safe side all our histograms for the Kolmogorov test have been created with

3× 105 bins. We also request that overflow and underflow bins be taken into account

while performing histogram comparison.

To check the Kolmogorov test implementation within PAW we have generated
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an exponential distribution, uniform distribution, and their mixture with 95% from

the exponential and 5% from the uniform distributions. These was compared with

purely exponential and flat distributions. Probabilities of compatibility between the

histograms are given in Table 4.18. We can infer that the Kolmogorov test is a

powerful test and 6% probability of compatibility can be considered an excellent

match. Normalized to the same number of entries, these distributions are plotted in

Figure 4.51.

Table 4.18. The probability of compatibility between the histograms.

Histogram 1 Histogram 2 Probability, %

exp, 5 · 104 entries exp, 103 entries 94.02

exp, 5 · 104 entries flat, 103 entries 0

exp, 5 · 104 entries 95% exp + 5% flat, 103 entries 6.72

exp, 103 entries 95% exp + 5% flat, 103 entries 94.68

flat, 103 entries 95% exp + 5% flat, 103 entries 0
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Figure 4.40. Data (Neg99) and MC comparison for x, y, and z projections of the Ω−

momentum after the cuts. Normalizing mode.



80

Figure 4.41. Data (Neg99) and MC comparison for x and y positions of the Ω− at
the target after the cuts. Normalizing mode.

Figure 4.42. Data (Neg99) and MC comparison for x and y positions of the Ω− at
the collimator exit after the cuts. Normalizing mode.
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Figure 4.43. Data (Neg99) and MC comparison for the difference between recon-
structed invariant mass after the cuts and PDG values. Normalizing mode.
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Figure 4.44. Data (Neg99) and MC comparison for the z position of the decay vertex
after the cuts. Normalizing mode.
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Figure 4.45. Data (Neg99) and MC comparison for x, y, and z projections of the Ω−

momentum after the cuts. Signal mode.
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Figure 4.46. Data (Neg99) and MC comparison for x and y positions of the Ω− at
the target after the cuts. Signal mode.

Figure 4.47. Data (Neg99) and MC comparison for x and y positions of the Ω− at
the collimator exit after the cuts. Signal mode.
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Figure 4.48. Data (Neg99) and MC comparison for the difference between recon-
structed invariant mass after the cuts and PDG values. Signal mode.
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Figure 4.49. Data (Neg99) and MC comparison for the z position of the decay vertex
after the cuts. Signal mode.
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(a) (b)

(c)

Figure 4.50. Data and MC comparison for the z projection of the Ω− momentum.
The same data are histogrammed with differing binning.
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Figure 4.51. Distributions that were used to check the Kolmogorov test. Solid line
is the exponential distribution with 5 · 104 entries; dashed line is the exponential
distribution with 103 entries; dotted line is the uniform distribution with 103 entries;
dots with error bars is the mixture of 95% exponential and 5% uniform with 103

entries. All histograms are normalized to the same number of entries.
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CHAPTER 5

RESULTS

To calculate the branching ratios of interest we need to provide values for the

variables on the right-hand side of equations (3.2) and (3.3). In particular we must

calculate the number of events and acceptance for each decay mode. While the latter

can be estimated with Monte Carlo simulations, to calculate the former is not a trivial

task. In the first two sections of this chapter we explain how the number of events

for each decay mode was calculated. We calculate both branching ratios in the third

section.

5.1 Unbinned Generalized Log-Likelihood Fit Method

We would like to perform precise measurements, including parameter deter-

mination from fitting, but we have low statistics in both the normalizing and signal

modes (see Table 5.1). Moreover, we want to do two-dimensional Dalitz-plot analysis

with only 78 signal events! How should one proceed? First of all we must avoid data

binning. In fitting a binned sample, we lose information. Moreover, binned fitting

introduces biases due to empty bins and bin size. Second, we should use the likelihood

fitting method since it is more reliable than the χ2 method when there are doubts

about the applicability of Gaussian statistics, particularly for low-statistics data sets.

Finally, to make use of all available information, we would like to add the number of

observed events as an additional constraint on the likelihood function. This also helps

to avoid troubles with probability density function (pdf) renormalization. Thus, the

unbinned generalized log-likelihood fit method is our choice.

Detailed description of the generalized likelihood method may be found else-

where [11]. Here we describe it briefly. Suppose that we would like to fit some data

with the fit function f(x; ~p), where ~p is a vector of fit parameters. The fit function
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must be properly normalized or else the likelihood method will not work. The integral

over the fit range is

N(~p) =
∫ x2

x1

f(x; ~p) dx .

The likelihood is defined as

L(~p) =
n∏

i=1

f(xi; ~p)

N(~p)
, (5.1)

where n is the total number of observed events. The task of fitting is to find values

for ~p that maximize L. Now we add the probability for observing n events, when the

number of observed events is Poissonian with mean N(~p). Consequently, the equation

for the generalized likelihood is

L(~p) =
Nn(~p)eN(~p)

n!

n∏

i=1

f(xi; ~p)

N(~p)
. (5.2)

The negative logarithm of the likelihood function is a computationally preferred quan-

tity and is usually used. The likelihood L is maximal for the same values of ~p as when

− ln L is at the minimum. Constant additive terms in − ln L do not affect the location

of the minimum and can be safely removed. Thus, we need to minimize

− ln L(~p) = N(~p)−
n∑

i=1

ln f(xi; ~p) . (5.3)

Minimization of the quantity − ln L(~p) can be done in a variety of ways. We

chose to use the CERN function minimization program Minuit [15]. Several techni-

cal details about our use of Minuit are worth mentioning. We set the strategy for

calculating first and second derivatives to the most precise (second) level and defined

parameter errors as the change in parameter value required to change the − ln L func-

tion value by 0.5 since we used the likelihood fit method. We accepted fit results only

when Minuit reported “status=converged” and “error matrix accurate.”

5.1.1 Number of Ω decays calculation. To extract the numbers of normalizing-

and signal-mode Ω decays, we fit the distribution of the reconstructed invariant mass
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of the Ω with the Gaussian-plus-constant fit function. The unbinned generalized

log-likelihood fit method was employed. The fit function is

f(m; n, µ, σ, b) =
n

σ
√

2π
e−

1
2(

m−µ
σ )

2

+
b

x2 − x1

, (5.4)

where n is the number of Ω decays, b is the number of background events and the fit

range is between x1 and x2. The function to minimize is thus

− ln L(n, µ, σ, b) = n + b−
n∑

i=1

f(mi; n, µ, σ, b) . (5.5)

The reconstructed invariant Ω mass after all cuts except the Ω mass cut is

plotted in Figures 5.1 through 5.4. Histograms are plotted for visualization purposes

only: we do not fit them, we fit the unbinned data. The numbers of Ω decays and

background events after the fit are listed in Table 5.1.

Figure 5.3 shows a large number of background events. Signal-mode candidate

events for the Neg99 data subset have the largest ratio of background to Ω decays

as can be inferred from Table 5.1. That there are many more background events on

the right, higher-mass sideband than on the left suggests that the background is due

to identifying some lower-mass particles as pions. The β-decay Ω− → Ξ−π+lν̄l is a

possible explanation.3

Independent of the origin of the background events in Figure 5.3, it is possible

to reduce the background. The scatter plot of reconstructed4 Ξ−π+ mass vs. Ω−

mass for the Neg99 data subset is shown in Figure 5.5. Events distributed along the

diagonal show a correlation between the two masses. Furthermore, after all signal-

mode cuts, the reconstructed invariant Ξ−π+ mass is less than 1.54 GeV/c2. Thus,

it is possible to remove some background events from Figure 5.3 by requiring that

mΞ−π+ < 1.54 GeV/c2.

3Nick Solomey, HyperCP internal note.

4For brevity, we refer to the reconstructed p(p)π±π∓π∓ mass as “Ξ∓π± mass.”
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We applied the Gaussian-plus-polynomial fit to the distribution (shown in Fig-

ure 5.6) of the reconstructed invariant Ω− mass after the requirement that mΞ−π+ <

1.54 GeV/c2 and signal-mode cuts. We found 75.3 ± 8.9 decays of Ω− (consistent

with the corresponding value of 74.0± 8.9 from Table 5.1) and 21.7± 5.0 background

events.

Table 5.1. Number of events in each of the data samples after the Gaussian-plus-
polynomial fit.

Normalizing Mode Signal Mode

Events Neg99 Pos99 Neg99 Pos99

Ω decays 373.9± 19.4 155.4± 12.5 74.0± 8.9 22.7± 4.8

Background 7.1± 3.1 4.6± 2.3 32.0± 6.0 4.3± 2.1

5.2 Extraction of the Proportionality Coefficients

In Section 4.3 we plotted event variable distributions for both 3-body and

resonance signal modes from the Monte Carlo simulations. The MC distributions for

both signal modes have a large overlap region. As can be seen from Tables 4.12 and

4.13, the selection criteria efficiencies are also nearly the same for the 3-body and

resonance modes. Thus, it is impossible to separate one signal mode from another

just by applying a set of cuts to the data. More sophisticated methods must be used.

The numbers of resonance- and 3-body-mode decays are proportional to the

total numbers of observed signal decays

NΩ−→Ξ∗01530π− = pres ·Nsignal , (5.6)

NΩ−→Ξ−π+π− = p3b ·Nsignal , (5.7)

and similarly for antiparticle modes. The proportionality coefficients (pres and p3b) can

be found by fitting data to the combination of resonance and 3-body MCs. We can fit

the distribution of Ξ∓π± invariant mass, which is the best variable for distinguishing

between the resonance and 3-body modes. We can also perform the two-dimensional
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Figure 5.1. Reconstructed invariant Ω− mass after all normalizing-mode cuts, except
Ω− mass cut.

Figure 5.2. Reconstructed invariant Ω+ mass after all normalizing-mode cuts, except
Ω+ mass cut.
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Figure 5.3. Reconstructed invariant Ω− mass after all signal-mode cuts, except Ω−

mass cut.

Figure 5.4. Reconstructed invariant Ω+ mass after all signal-mode cuts, except Ω+

mass cut.
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Figure 5.5. Reconstructed Ξ−π+ mass vs. Ω− mass after all signal-mode cuts, except
Ω− mass cut.

Figure 5.6. Reconstructed invariant Ω− mass after the requirement that mΞ−π+ < 1.54
GeV/c2 and all signal-mode cuts, except Ω− mass cut.
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Dalitz-plot fit. Another sensitive variable is the angle between the opposite-sign pion

momentum in the dipion rest frame and the dipion momentum in the parent Ω rest

frame. We employ all three methods and show that they give consistent results.

5.2.1 Ξ∓π± invariant mass distribution fit. We apply the unbinned generalized

log-likelihood fit method described in the preceding section. The fit function is

f(mΞ∓π± ; pres, p3b) = Nsignal

(
pres

fres(mΞ∓π±)

NMC(res)

+ p3b
f3b(mΞ∓π±)

NMC(3b)

)
, (5.8)

where Nsignal is the number of reconstructed signal Ω decays, fres(mΞ∓π±) and f3b(mΞ∓π±)

are functional forms of the corresponding MCs, and NMC(res) and NMC(3b) are the total

numbers of events in the MCs. The function to minimize is thus

− ln L(pres, p3b) = Nsignal(pres + p3b)−
Nsignal∑

i=1

f(mi; pres, p3b) . (5.9)

The functions fres and f3b can be found by smoothing the histograms of Ξ∓π±

invariant mass for the resonance- and 3-body-mode MCs correspondingly. They are

shown in Figures 5.7 and 5.8.

The quantity − ln L(pres, p3b) was minimized in Minuit. The proportionality

coefficients after the fit for the Neg99 (Pos99) data subset are given in Table 5.2

(5.3). The fit function (5.8) after the Minuit fit is plotted in Figure 5.9 (5.10) for the

particle (antiparticle) mode. The resonance-mode and 3-body-mode MC histograms

together with the data are also shown (please note that histograms are plotted for

visualization purposes only and are not used in the fit procedure).

To make sure that Minuit returned meaningful result, we examined the log-

likelihood function in Minuit. We conclude by examining the − ln L contour that

there is a well-defined minimum and that the fit parameters are negatively correlated

with each other. We plotted − ln L as a function of pres with p3b fixed at the value

corresponding to the − ln L minimum. Our conclusion is that Minuit has found a
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well-defined local minimum which is stable against small perturbations. The Minuit

output is given in Appendix E (F) for the Neg99 (Pos99) data subset.

Table 5.2. Two-parameter unbinned log-likelihood fit results using Negative99 data.

Parameter Ξ∗01530 mass fit Dalitz plot fit cos ψ fit

p3b 0.851± 0.128 0.828± 0.125 0.898± 0.145

pres 0.149± 0.086 0.172± 0.085 0.102± 0.104

Table 5.3. Two-parameter unbinned log-likelihood fit results using Positive99 data.

Parameter Ξ∗01530 mass fit Dalitz plot fit cos ψ fit

p3b 0.973± 0.245 0.927± 0.238 0.737± 0.261

pres 0.027± 0.144 0.073± 0.146 0.263± 0.220

5.2.2 Dalitz plot fit. The Dalitz plot of reconstructed Ξ∓π± mass vs. π±π∓ mass

for the Neg99 (Pos99) data subset is shown as the large dots in Figures 5.11 (5.13)

and 5.12 (5.14). They can be compared with the distribution of resonance-channel

MC events in Figure 5.11 (5.13) and that of uniform-phase-space 3-body MC events

in Figure 5.12 (5.14). Qualitatively our data are more consistent with the 3-body

decay than with the resonance mode.

The fit function f(mΞ∓π± ,mπ±π∓ ; pres, p3b) is an extension of equation (5.8) to

the two-dimensional case. The functions fres and f3b were found by smoothing the

two-dimensional Monte Carlo Dalitz plot histograms. As an example, the histogram

and the corresponding analytical function for the resonance-mode MC are shown

in Figure 5.15. The proportionality coefficients after the fit for the Neg99 (Pos99)

data subset are given in Table 5.2 (5.3). They are consistent with the results of the

preceding method.

We examined the log-likelihood function behavior in Minuit and did not see

any indications of problems. Again, we concluded that Minuit found a well-defined
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Figure 5.7. Reconstructed invariant mass of Ξ∓π± after all cuts for the resonance-
mode MC. Solid line is the analytical function (fres) found by smoothing.

Figure 5.8. Reconstructed invariant mass of Ξ∓π± after all cuts for the 3-body-mode
MC. Solid line is the analytical function (f3b) found by smoothing.
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Figure 5.9. Reconstructed invariant Ξ−π+ mass for the Neg99 data subset (dots with
error bars) together with the resonance (dashed line) and 3-body (dotted line)
mode MCs. Solid line is the fit function with the proportionality coefficients after
Minuit minimization.
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Figure 5.10. Reconstructed invariant Ξ+π− mass for the Pos99 data subset (dots
with error bars) together with the resonance (dashed line) and 3-body (dotted
line) mode MCs. Solid line is the fit function with the proportionality coefficients
after Minuit minimization.
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local minimum. The Minuit output is given in Appendix E (F) for the Neg99 (Pos99)

data subset.

5.2.3 cos ψ distribution fit. The same procedure as was used to fit the recon-

structed Ξ∓π± mass can be applied to the cos ψ distribution. We only change mΞ∓π±

to cos ψ in the fit function (5.8). The analytical functions after smoothing are plotted

in Figures 5.16 and 5.17.

The proportionality coefficients after the fit for the Neg99 (Pos99) data subset

are given in Table 5.2 (5.3). They are consistent with both preceding results. The fit

function after the Minuit fit is plotted in Figure 5.18 (5.19) for the particle (antiparti-

cle) mode. The resonance-mode and 3-body-mode MC histograms together with the

data are also shown (again, please note that histograms are plotted for visualization

purposes only and are not used in the fit procedure). The fit function behavior in

Minuit indicates that a well-defined local minimum was found. The Minuit output is

given in Appendix E (F) for the Neg99 (Pos99) data subset.

5.2.4 Compatibility between data and MC. We employed χ2 and Kolmogorov

tests to estimate the compatibility between data and MC distributions for the vari-

ables that distinguish the resonance mode from the 3-body mode. Due to the small

numbers of reconstructed signal events, only univariate distributions were used. Data

were compared with the pure 3-body mode MC (f3b), the pure resonance mode

MC (fres), and with their combination with the found proportionality coefficients

(p3bf3b + presfres). Probabilities of compatibility for Neg99 (Pos99) data are given in

Table 5.4 (5.5). As discussed in Section 4.4.1, the χ2 test is unreliable for the small

data subsets and the Kolmogorov test gives the more accurate result. Calculated

Kolmogorov test probabilities confirm that the proportionality coefficients, found af-

ter the unbinned generalized log-likelihood fit, give a reasonable match between data

and MC.
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Figure 5.11. Reconstructed Ξ−π+ mass vs. π+π− mass for the resonance-channel
MC. The large dots represent the data.

Figure 5.12. Reconstructed Ξ−π+ mass vs. π+π− mass for the 3-body MC. The large
dots represent the data.
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Figure 5.13. Reconstructed Ξ+π− mass vs. π−π+ mass for the resonance-channel
MC. The large dots represent the data.

Figure 5.14. Reconstructed Ξ+π− mass vs. π−π+ mass for the 3-body MC. The large
dots represent the data.
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Figure 5.15. Reconstructed Ξ−π+ mass vs. π+π− mass for the resonance-channel
MC. Histogrammed MC (left plot) can be compared with the analytical function
(fres) (right plot) found by smoothing.

5.3 Calculation of the Branching Ratios

Now we have all necessary ingredients for the branching ratio calculation.

Acceptances for each mode are given in Table 5.6. Other decay mode branching

ratios that we need for the calculation are taken from the PDG review [32] as follows:

B(Ω∓ → Λ(Λ)K∓) = 6.78× 10−1 ,

B(K∓ → π∓π±π∓) = 5.59× 10−2 ,

Table 5.4. Compatibility between Negative99 data and MC.

Probability, %

MC function Fit variable χ2/dof χ2 test Kolmogorov test

f3b Ξ∗01530 mass 18.49/8 1.78 0.21

fres Ξ∗01530 mass 51.73/8 0.00 0.00

p3bf3b + presfres Ξ∗01530 mass 13.78/8 8.77 15.66

f3b cos ψ 14.49/6 2.46 2.01

fres cos ψ 45.11/6 0.00 0.00

p3bf3b + presfres cos ψ 12.13/6 5.91 23.69
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Figure 5.16. Distribution of cos ψ for particles (left plot) and antiparticles (right plot)
after all cuts for the resonance-mode MC. Solid line is the analytical function found
by smoothing.

Figure 5.17. Distribution of cos ψ for particles (left plot) and antiparticles (right plot)
after all cuts for the 3-body-mode MC. Solid line is the analytical function found
by smoothing.
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Figure 5.18. Distribution of cos ψ for the Neg99 data subset (dots with error bars)
together with the resonance- (dashed line) and 3-body- (dotted line) mode MCs.
Solid line is the fit function with the proportionality coefficients after Minuit min-
imization.
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Figure 5.19. Distribution of cos ψ for the Pos99 data subset (dots with error bars)
together with the resonance- (dashed line) and 3-body- (dotted line) mode MCs.
Solid line is the fit function with the proportionality coefficients after Minuit min-
imization.
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Table 5.5. Compatibility between Positive99 data and MC.

Probability, %

MC function Fit variable χ2/dof χ2 test Kolmogorov test

f3b Ξ∗01530 mass 1.74/6 94.21 0.43

fres Ξ∗01530 mass 18.73/6 0.46 0.00

p3bf3b + presfres Ξ∗01530 mass 2.43/6 87.59 1.04

f3b cos ψ 3.49/5 62.55 2.33

fres cos ψ 12.16/5 3.27 0.00

p3bf3b + presfres cos ψ 4.58/5 46.96 18.22

B(Ξ∗01530(Ξ
∗0
1530) → Ξ∓π±) = 2/3

B(Ξ∓ → Λ(Λ)π∓) = 9.99× 10−1 .

Using these values together with the proportionality-coefficient values from Tables

5.2 and 5.3 and the numbers of events from Table 5.1 in equations (3.2), (3.3), (5.6),

and (5.7), we obtain the particle (antiparticle) mode branching ratios summarized in

Table 5.7 (5.8). As expected, all these methods give consistent results. The errors

in both tables are statistical only. They arise from the number of events and fitting-

parameter uncertainties.

The branching ratio for the particle 3-body-decay mode is in agreement with

the previous experimental result [3] listed in the PDG review. We have performed

the first measurement for the antiparticle 3-body-decay mode and have found that

its branching ratio is in agreement with that for the particle mode.

The resonance-mode branching ratios disagree with the current PDG value,

being ≈ 14 times smaller. The particle and antiparticle results are consistent with

each other. Since the branching ratio central value is less than 2σ from zero, we also

calculate branching ratio upper limits at 90% confidence level following the method

described in [22] on page 79. The results are given in Table 5.9.
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Table 5.6. Mode acceptances.

Decay Neg99 subset Pos99 subset

Ω → Ξ∗01530π 1.20× 10−2 1.20× 10−2

Ω → Ξππ 4.88× 10−3 4.92× 10−3

Ω → ΛK 2.81× 10−4 2.78× 10−4

Table 5.7. Calculated branching ratios in units of 10−5 for the particle-mode decays
(errors are statistical only.)

Decay Ξ∗01530 mass fit Dalitz plot fit cos ψ fit

Ω− → Ξ∗01530π
− 3.94± 2.33 4.55± 2.33 2.68± 2.77

Ω− → Ξ−π+π− 36.75± 7.32 35.76± 7.14 38.81± 8.06

Table 5.8. Calculated branching ratios in units of 10−5 for the antiparticle-mode
decays (errors are statistical only.)

Decay Ξ∗01530 mass fit Dalitz plot fit cos ψ fit

Ω+ → Ξ∗01530π
+ 0.53± 2.80 1.40± 2.83 5.09± 4.41

Ω+ → Ξ+π−π+ 30.49± 10.33 29.07± 9.95 23.08± 9.70

Table 5.9. Calculated resonance-mode branching ratio upper limit in in units of 10−5

at 90% confidence level taking only statistical errors into account.

Decay Ξ∗01530 mass fit Dalitz plot fit cos ψ fit

Ω− → Ξ∗01530π
− 6.99 7.57 6.51

Ω+ → Ξ∗01530π
+ 4.93 5.61 11.05
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CHAPTER 6

SYSTEMATIC ERRORS

Parameters can be measured only with some finite precision. Parameter un-

certainties impact our branching ratio calculations and must be taken into account.

Moreover, running conditions varied during the data taking period and our results

must be corrected for this. Such errors, incorporated into the final branching ratios,

are called systematics.

Systematic errors for the parameters that are used explicitly in the branching

ratio equations (3.2) and (3.3) can be calculated straightforwardly. These include,

for example, the subsequent decay branching ratio B(Ξ∓ → Λ(Λ)π∓). Due to the

complexity of the experimental setup, for another large fraction of parameters it is

impossible to know exactly how their variations affect the final result. To estimate

the associated systematic errors we employ Monte Carlo simulation.

For any parameter contributing to the final answer, we first determine the

variation range, which for some variables is equal to one standard deviation (σ) away

from the central value. Then we change the parameter value by σ and, when necessary,

run MC simulations for the normalizing and signal modes. Finally, a new branching

ratio (Bvar) is calculated and the associated systematic error is estimated as

δB

B
=

Bvar −Bcentr

Bcentr

, (6.1)

where Bcentr is the branching ratio central value calculated in the preceding chapter.

We add individual errors in quadrature to get the total systematic error.

To estimate the variation in the target center position, we fit the Ω distribution

at the target with a Gaussian for the normalizing mode data and found the standard

deviation. Then we changed the location of the target center by σ and ran MC

simulations for the resonance, 3-body, and normalizing modes.
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We arbitrarily varied the Ω momentum spectrum at the target. To generate

the momentum component along the z axis, a uniform distribution was used instead

of the probability density function plotted in Figure 4.2. As a separate systematic

error, momentum components in the x and y directions were generated within an

extended range, from −5 to 5 GeV/c.

The magnetic field in the Hyperon Magnet was varied by ±0.1% from the

MC default value to estimate the systematic error. We reconstructed the new MC

files with the default (“old”) magnetic field. The same procedure was applied for the

Analyzing Magnet magnetic fields.

We varied the Ω, Ξ, and Λ asymmetry parameters within ranges stated in

the PDG book and ran MC simulations to study the associated systematic errors.

We did not vary the kaon decay form factors primarily because of the limited time

available. However, the linear term form factor is known with ≈ 1% precision and

the systematic error from the kaon form factor uncertainties is expected to be small.

Lifetimes for Ω, Ξ, Λ, and K were varied according to the PDG book uncer-

tainties. MC simulation was employed to calculate each systematic error.

MC statistics is another source of systematic error, which was estimated as
√

N/N , where N is the number of MC events.

Systematic errors are listed in Table 6.1 (6.2) for particle (antiparticle) decay

modes. The largest contribution is from the Ω momentum spectrum variation. The

second largest error is from the target position uncertainties.

To calculate branching ratio upper limits one needs to combine statistical

and systematic errors. Here we assumed that both errors are normally distributed

and added them in quadrature. As can be seen from Tables 6.1 and 6.2, the total

systematic errors are assymetric. For branching ratio calculations we assume them to
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be symmetric and use the error with the largest absolute value. Since the statistical

uncertainty dominates over systematics, the branching ratio upper limit depends

weakly on the systematic error value.

There is an alternative approach for an upper limit calculation taking into

account statistical and systematic errors. It is based on a Monte Carlo simulation

that generates proportionality coefficient values according to the actual probability

density functions from the Minuit fit. Other quantities are treated as Gaussian-

distributed. The upper limit can then be calculated from the distribution of the

calculated branching ratio. This method was used, for example, in [26, 25].
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Table 6.1. Systematic errors for particle signal modes.

Source Variation δB3b

B3b
(%) δBres

Bres
(%)

Target x center +0.69 mm 0.38 −1.87

−0.69 mm −0.70 1.50

Target y center +0.93 mm −0.99 −3.00

−0.93 mm −3.31 −1.22

Momentum Spectrum, pz uniform 3.49 6.53

Momentum Spectrum, px, py broader 1.45 1.87

Hyperon Magnet, B-field +0.1 % −0.82 −1.13

−0.1 % −0.56 −0.10

Analyzing Magnets, B-field +0.1 % 1.48 1.45

−0.1 % −0.83 −0.49

αΩ for Ω → ΛK +0.0024 0.41 0.41

−0.0024 −0.97 −0.97

αΞ for Ξ → Λπ +0.014 0.89 0.88

−0.014 0.58 0.29

αΛ for Λ → pπ +0.013 0.22 0.19

−0.013 1.43 1.62

Ω lifetime +0.33 mm 1.08 0.82

−0.33 mm 3.00 2.53

Λ lifetime +0.6 mm 1.32 0.98

−0.6 mm 2.04 1.28

K lifetime +7.2 mm 0.87 0.87

−7.2 mm 1.58 1.58

Ξ lifetime +0.45 mm 0.14 0.27

−0.45 mm −0.63 −0.62

B(Ω− → ΛK−) ±0.7 · 10−2 ±1.03 ±1.03

B(Ξ− → Λπ−) ±3.5 · 10−4 ∓0.04 ∓0.04

B(K− → π+π−π−) ±3.1 · 10−4 ±0.55 ±0.55

MC statistics ±0.75 ±0.70

Total +6.43 +8.31

−4.17 −4.32
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Table 6.2. Systematic errors for antiparticle signal modes.

Source Variation δB3b

B3b
(%) δBres

Bres
(%)

Target x center +0.69 mm 0.38 −1.87

−0.69 mm −0.70 1.50

Target y center +0.93 mm −0.99 −3.00

−0.93 mm −3.31 −1.22

Momentum Spectrum, pz uniform 3.49 6.53

Momentum Spectrum, px, py broader 1.45 1.87

Hyperon Magnet, B-field +0.1 % −0.82 −1.13

−0.1 % −0.56 −0.10

Analyzing Magnets, B-field +0.1 % 1.48 1.45

−0.1 % −0.83 −0.49

αΩ for Ω → ΛK +0.0038 0.58 0.58

−0.0038 −0.33 −0.33

αΞ for Ξ → Λπ +0.014 0.89 0.88

−0.014 0.58 0.29

αΛ for Λ → pπ +0.013 0.22 0.19

−0.013 1.43 1.62

Ω lifetime +0.33 mm 1.08 0.82

−0.33 mm 3.00 2.53

Λ lifetime +0.6 mm 1.32 0.98

−0.6 mm 2.04 1.28

K lifetime +7.2 mm 0.87 0.87

−7.2 mm 1.58 1.58

Ξ lifetime +0.45 mm 0.14 0.27

−0.45 mm −0.63 −0.62

B(Ω− → ΛK−) ±0.7 · 10−2 ±1.03 ±1.03

B(Ξ− → Λπ−) ±3.5 · 10−4 ∓0.04 ∓0.04

B(K− → π+π−π−) ±3.1 · 10−4 ±0.55 ±0.55

MC statistics ±0.76 ±0.70

Total +6.44 +8.32

−4.07 −4.23
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CHAPTER 7

CONCLUSIONS

A clean signal of 78 (24) events has been observed in the rare nonleptonic

particle (antiparticle) decay modes Ω∓ → Ξ∓π±π∓ and Ω∓ → Ξ∗01530(Ξ
∗0
1530)π

∓ using

data collected with the HyperCP (E871) spectrometer during Fermilab’s 1999 fixed-

target run. Including contributions from both the direct 3-body and the resonance

decay modes to the final state Ξ∓π±π∓, we calculate

B(Ω− → Ξ−π+π−) = [4.32± 0.56(stat)± 0.28(syst)]× 10−4 , (7.1)

B(Ω+ → Ξ+π−π+) = [3.13± 0.71(stat)± 0.20(syst)]× 10−4 . (7.2)

This is the first result for the antiparticle mode. Our measurement for the particle

mode agrees with the previous experimental result [3] and has order-of-magnitude

better precision.

The relative contribution of each channel was extracted using the unbinned

generalized log-likelihood Dalitz plot fit. The first actual measurement of the resonance-

mode branching ratios is

B(Ω− → Ξ∗01530π
−) = [4.55± 2.33(stat)± 0.38(syst)]× 10−5 , (7.3)

B(Ω+ → Ξ∗01530π
+) = [1.40± 2.83(stat)± 0.12(syst)]× 10−5 , (7.4)

together with the improved branching ratios for the 3-body mode,

B(Ω− → Ξ−π+π−) = [3.58± 0.71(stat)± 0.23(syst)]× 10−4 , (7.5)

B(Ω+ → Ξ+π−π+) = [2.91± 0.99(stat)± 0.19(syst)]× 10−4 . (7.6)

The resonance-mode branching ratio disagrees with the current PDG value [32], being

≈ 14 times smaller. The particle- and antiparticle-mode results are consistent with

each other. The statistical uncertainty dominates over systematics.
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Since the central value of the resonance-mode branching ratio is less than

2σ away from zero (we add statistical and systematic errors from equations (7.3)

and (7.4) in quadrature), we also calculate the branching ratio upper limits at 90%

confidence level:

B(Ω− → Ξ∗01530π
−) < 7.61× 10−5 , (7.7)

B(Ω+ → Ξ∗01530π
+) < 5.61× 10−5 . (7.8)
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APPENDIX A

LIST OF RUNS USED



118

Table A.1. List of Negative’99 runs used in the analysis.

3743 3762 3763 3769 3770 3777 3778 3786 3789 3794

3795 3802 3803 3809 3810 3818 3823 3824 3825 3831

3833 3854 3855 3874 3881 3882 3888 3889 3895 3896

3901 3902 3908 3910 3918 3919 3924 3925 3930 3931

3939 3941 3956 3957 3964 3965 3972 3973 3979 3980

3988 3989 4000 4015 4019 4023 4027 4032 4040 4047

4052 4053 4058 4062 4071 4076 4080 4085 4090 4095

4100 4110 4114 4119 4127 4131 4135 4139 4143 4148

4152 4165 4169 4173 4200 4204 4208 4215 4216 4244

4249 4253 4257 4270 4281 4286 4293 4297 4305 4311

4316 4320 4332 4344 4346 4353 4358 4364 4368 4372

4376 4380 4394 4398 4404 4408 4409 4414 4418 4424

4428 4432 4437 4441 4445 4447 4451 4455 4462 4466

4474 4478 4482 4489 4493 4497 4513 4518 4522 4524

4536 4541 4545 4629 4633 4635 4639 4641 4642 4644

4648 4652 4657 4661 4667 4671 4676 4695 4700 4704

4708 4714 4721 4722 4727 4732 4736 4740 4746 4750

4759 4765 4774

Table A.2. List of Positive’99 runs used in the analysis (continued in next table).

3735 3739 3741 3742 3760 3761 3764 3767 3768 3771

3773 3775 3776 3780 3781 3784 3785 3790 3792 3793

3798 3799 3800 3801 3804 3805 3806 3807 3811 3814

3815 3816 3819 3820 3821 3822 3826 3827 3828 3830

3834 3835 3836 3852 3858 3859 3860 3864 3872 3884

3885 3886 3887 3890 3891 3892 3893 3894 3897 3899

3900 3903 3905 3906 3907 3911 3912 3913 3917 3920

3921 3922 3923 3926 3927 3928 3929 3932 3934 3935

3936 3938 3942 3950 3951 3953 3954 3955 3958 3959

3960 3961 3968 3969 3970 3971 3974 3975 3976 3977

3981 3982 3983 3986 3992 3993 3996 3998 4001 4003

4004 4009 4010 4011 4016 4017 4018 4020 4021 4029
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Table A.3. List of Positive’99 runs used in the analysis (previous table continued).

4030 4031 4033 4034 4035 4037 4038 4039 4044 4045

4046 4049 4050 4051 4054 4055 4056 4059 4060 4061

4063 4064 4070 4072 4073 4074 4077 4078 4079 4082

4083 4084 4086 4087 4088 4089 4091 4092 4094 4097

4098 4099 4101 4103 4111 4112 4113 4115 4117 4118

4120 4121 4122 4129 4130 4132 4133 4134 4136 4137

4138 4140 4141 4142 4144 4145 4146 4147 4149 4150

4151 4155 4156 4163 4164 4166 4167 4168 4170 4171

4172 4174 4175 4176 4197 4198 4199 4201 4202 4203

4205 4206 4207 4209 4210 4211 4217 4218 4243 4245

4247 4248 4250 4251 4252 4254 4255 4256 4258 4259

4261 4266 4267 4268 4269 4272 4273 4274 4283 4284

4285 4289 4290 4294 4295 4296 4298 4299 4300 4306

4308 4309 4312 4313 4314 4317 4318 4319 4321 4328

4329 4331 4335 4336 4337 4338 4347 4349 4352 4355

4356 4357 4359 4360 4363 4365 4366 4367 4369 4370

4371 4373 4374 4375 4377 4378 4379 4381 4382 4386

4387 4395 4396 4397 4399 4400 4405 4406 4407 4410

4411 4412 4415 4416 4417 4420 4421 4423 4425 4426

4427 4429 4430 4431 4433 4435 4436 4438 4439 4440

4442 4443 4444 4448 4449 4450 4452 4453 4454 4456

4457 4460 4463 4464 4465 4468 4469 4470 4475 4476

4477 4479 4480 4481 4484 4485 4488 4490 4491 4492

4494 4495 4496 4500 4511 4512 4514 4515 4516 4519

4520 4521 4525 4528 4529 4530 4533 4534 4535 4537

4539 4540 4543 4544 4546 4547 4630 4631 4632 4636

4637 4638 4645 4646 4647 4649 4650 4651 4653 4655

4658 4659 4660 4662 4663 4664 4668 4669 4670 4673

4674 4677 4678 4679 4680 4684 4685 4694 4696 4697

4698 4705 4706 4707 4711 4712 4713 4715 4716 4717

4723 4724 4726 4728 4731 4733 4734 4735 4738 4739

4742 4745 4747 4748 4749 4751 4753 4756 4757 4760

4761 4762 4767 4768 4770 4771 4775 4776 4777 4784
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APPENDIX B

FINAL EVENT SELECTION PLOTS FOR POSITIVE 99 DATA SUBSET
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Figure B.1. Difference between reconstructed invariant mass with no cuts and PDG
values for the normalizing-mode Pos99 MC. Solid line is Gaussian-plus-polynomial
fit.
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Figure B.2. X and Y positions of the Ω+ at the target with no cuts for the
normalizing-mode Pos99 MC. Solid line is Gaussian-plus-constant fit.
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Figure B.3. Difference between reconstructed invariant mass with no cuts and PDG
values for the signal 3-body-mode Pos99 MC. Solid line is Gaussian-plus-constant
fit.
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Figure B.4. X and Y positions of the Ω+ at the target with no cuts for the signal
3-body-mode Pos99 MC. Solid line is Gaussian-plus-constant fit.
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Figure B.5. Difference between reconstructed invariant mass with no cuts and
PDG values for the signal resonance-mode Pos99 MC. Solid line is Gaussian-plus-
constant fit.
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Figure B.6. X and Y positions of the Ω+ at the target with no cuts for the signal
resonance-mode Pos99 MC. Solid line is Gaussian-plus-constant fit.
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APPENDIX C

MONTE CARLO TUNING AND COMPARISON WITH DATA PLOTS FOR

POSITIVE 99 DATA SUBSET
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Figure C.1. Data (Pos99) and MC comparison for x, y, and z projections of the Ω+

momentum after the cuts. Normalizing mode.
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Figure C.2. Data (Pos99) and MC comparison for x and y positions of the Ω+ at the
target after the cuts. Normalizing mode.

Figure C.3. Data (Pos99) and MC comparison for x and y positions of the Ω+ at the
collimator exit after the cuts. Normalizing mode.
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Figure C.4. Data (Pos99) and MC comparison for the difference between recon-
structed invariant mass after the cuts and PDG values. Normalizing mode.
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Figure C.5. Data (Pos99) and MC comparison for the z position of the decay vertex
after the cuts. Normalizing mode.
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Figure C.6. Data (Pos99) and MC comparison for x, y, and z projections of the Ω+

momentum after the cuts. Signal mode.
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Figure C.7. Data (Pos99) and MC comparison for x and y positions of the Ω+ at the
target after the cuts. Signal mode.

Figure C.8. Data (Pos99) and MC comparison for x and y positions of the Ω+ at the
collimator exit after the cuts. Signal mode.
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Figure C.9. Data (Pos99) and MC comparison for the difference between recon-
structed invariant mass after the cuts and PDG values. Signal mode.
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Figure C.10. Data (Pos99) and MC comparison for the z position of the decay vertex
after the cuts. Signal mode.
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APPENDIX D

MINUIT OUTPUT: FITS TO EXTRACT THE NUMBERS OF NORMALIZING

AND SIGNAL MODE EVENTS
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Negative99 normalizing mode data. MINOS command output:

FCN= -1101.703 FROM MINOS STATUS=SUCCESSFUL 231 CALLS

409 TOTAL EDM= 0.44E-07 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS

NO. NAME VALUE ERROR NEGATIVE POSITIVE

1 # signal 373.89 19.403 -19.073 19.734

2 mean (MeV) 1672.4 0.88119E-01 -0.88119E-01 0.88241E-01

3 sigma (MeV) 1.6734 0.68727E-01 -0.66957E-01 0.70582E-01

4 # bkg 7.1122 3.1106 -2.6968 3.5431

5 5 1620.0 constant

6 6 1700.0 constant

ERR DEF= 0.500

Positive99 normalizing mode data. MINOS command output:

FCN= -334.2250 FROM MINOS STATUS=SUCCESSFUL 242 CALLS

498 TOTAL EDM= 0.20E-12 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS

NO. NAME VALUE ERROR NEGATIVE POSITIVE

1 # signal 155.45 12.500 -12.162 12.828

2 mean (MeV) 1672.3 0.11860 -0.11882 0.11874

3 sigma (MeV) 1.4692 0.84700E-01 -0.81089E-01 0.88717E-01

4 # bkg 4.5509 2.2742 -1.9127 2.6670

5 5 1620.0 constant

6 6 1700.0 constant

ERR DEF= 0.500
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Negative99 signal mode data. MINOS command output:

FCN= -50.02664 FROM MINOS STATUS=SUCCESSFUL 203 CALLS

466 TOTAL EDM= 0.47E-11 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS

NO. NAME VALUE ERROR NEGATIVE POSITIVE

1 # signal 74.000 8.8554 -8.5268 9.1904

2 mean (MeV) 1672.1 0.21817 -0.21841 0.21915

3 sigma (MeV) 1.7724 0.15826 -0.14963 0.16855

4 # bkg 32.000 6.0346 -5.6620 6.4182

5 5 1650.0 constant

6 6 1730.0 constant

ERR DEF= 0.500

Positive99 signal mode data. MINOS command output:

FCN= -0.2765267 FROM MINOS STATUS=SUCCESSFUL 343 CALLS

508 TOTAL EDM= 0.81E-11 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS

NO. NAME VALUE ERROR NEGATIVE POSITIVE

1 # signal 22.727 4.7991 -4.4719 5.1384

2 mean (MeV) 1671.8 0.21656 -0.21867 0.21980

3 sigma (MeV) 1.0181 0.15581 -0.13741 0.18464

4 # bkg 4.2731 2.1394 -1.7988 2.5099

5 5 1650.0 constant

6 6 1730.0 constant

ERR DEF= 0.500
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APPENDIX E

MINUIT OUTPUT: FIT TO EXTRACT PROPORTIONALITY COEFFICIENTS

USING NEGATIVE99 DATA
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Fit to the reconstructed invariant pπ+π−π− mass:

COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN= 81.45359

FROM HESSE STATUS=OK 10 CALLS 120 TOTAL

EDM=0.35E-15 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER INTERNAL INTERNAL

NO. NAME VALUE ERROR STEP SIZE VALUE

1 3b 0.85055 0.12811 0.44417E-05 0.85055

2 res 0.14945 0.86149E-01 0.29872E-05 0.14945

ERR DEF= 0.500

EXTERNAL ERROR MATRIX. NDIM= 50 NPAR= 2 ERR DEF= 0.500

0.164E-01-0.551E-02

-0.551E-02 0.742E-02

PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2

1 0.49889 1.000-0.499

2 0.49889 -0.499 1.000

ENTER MINUIT COMMAND:

mino

MINUIT TASK:

FCN= 81.45359

FROM MINOS STATUS=SUCCESSFUL 66 CALLS 186 TOTAL

EDM= 0.35E-15 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS

NO. NAME VALUE ERROR NEGATIVE POSITIVE

1 3b 0.85055 0.12811 -0.12309 0.13315

2 res 0.14945 0.86149E-01 -0.80346E-01 0.91920E-01
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Two-dimensional Dalitz plot fit:

COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN= 336.1401

FROM HESSE STATUS=OK 10 CALLS 664 TOTAL

EDM= 0.79E-13 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER INTERNAL INTERNAL

NO. NAME VALUE ERROR STEP SIZE VALUE

1 3b 0.82768 0.12513 0.14274E-05 0.82768

2 res 0.17232 0.85405E-01 0.12198E-05 0.17232

ERR DEF= 0.500

EXTERNAL ERROR MATRIX. NDIM= 50 NPAR= 2 ERR DEF= 0.500

0.157E-01-0.507E-02

-0.507E-02 0.729E-02

PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2

1 0.47464 1.000-0.475

2 0.47464 -0.475 1.000

ENTER MINUIT COMMAND:

mino

MINUIT TASK:

FCN= 336.1401

FROM MINOS STATUS=SUCCESSFUL 63 CALLS 727 TOTAL

EDM= 0.79E-13 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS

NO. NAME VALUE ERROR NEGATIVE POSITIVE

1 3b 0.82768 0.12513 -0.12042 0.13037

2 res 0.17232 0.85405E-01 -0.79763E-01 0.91299E-01
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Fit to the cos ψ distribution:

COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN= 75.75967

FROM HESSE STATUS=OK 10 CALLS 85 TOTAL

EDM= 0.32E-10 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER INTERNAL INTERNAL

NO. NAME VALUE ERROR STEP SIZE VALUE

1 3b 0.89826 0.14504 0.27143E-04 0.89826

2 res 0.10174 0.10404 0.19477E-04 0.10174

ERR DEF= 0.500

EXTERNAL ERROR MATRIX. NDIM= 50 NPAR= 2 ERR DEF= 0.500

0.210E-01-0.952E-02

-0.952E-02 0.108E-01

PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2

1 0.63089 1.000-0.631

2 0.63089 -0.631 1.000

ENTER MINUIT COMMAND:

mino

MINUIT TASK:

FCN= 75.75967

FROM MINOS STATUS=SUCCESSFUL 60 CALLS 145 TOTAL

EDM= 0.32E-10 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS

NO. NAME VALUE ERROR NEGATIVE POSITIVE

1 3b 0.89826 0.14504 -0.13950 0.15061

2 res 0.10174 0.10404 -0.98474E-01 0.10960
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APPENDIX F

MINUIT OUTPUT: FIT TO EXTRACT PROPORTIONALITY COEFFICIENTS

USING POSITIVE99 DATA
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Fit to the reconstructed invariant pπ−π+π+ mass:

COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN= 54.40069

FROM HESSE STATUS=OK 10 CALLS 87 TOTAL

EDM= 0.20E-10 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER INTERNAL INTERNAL

NO. NAME VALUE ERROR STEP SIZE VALUE

1 3b 0.97267 0.24547 0.41726E-04 0.97267

2 res 0.27330E-01 0.14446 0.49054E-05 0.27330E-01

ERR DEF= 0.500

EXTERNAL ERROR MATRIX. NDIM= 50 NPAR= 2 ERR DEF= 0.500

0.603E-01-0.197E-01

-0.197E-01 0.209E-01

PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2

1 0.55636 1.000-0.556

2 0.55636 -0.556 1.000

ENTER MINUIT COMMAND:

mino

MINUIT TASK:

FCN= 54.40069

FROM MINOS STATUS=SUCCESSFUL 90 CALLS 177 TOTAL

EDM= 0.20E-10 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS

NO. NAME VALUE ERROR NEGATIVE POSITIVE

1 3b 0.97267 0.24547 -0.23081 0.26073

2 res 0.27330E-01 0.14446 -0.12051 0.16823
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Two-dimensional Dalitz plot fit:

COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN= 133.8691

FROM HESSE STATUS=OK 10 CALLS 212 TOTAL

EDM= 0.84E-10 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER INTERNAL INTERNAL

NO. NAME VALUE ERROR STEP SIZE VALUE

1 3b 0.92735 0.23844 0.65017E-04 0.92735

2 res 0.72656E-01 0.14576 0.39746E-04 0.72656E-01

ERR DEF= 0.500

EXTERNAL ERROR MATRIX. NDIM= 50 NPAR= 2 ERR DEF= 0.500

0.569E-01-0.182E-01

-0.182E-01 0.212E-01

PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2

1 0.52414 1.000-0.524

2 0.52414 -0.524 1.000

ENTER MINUIT COMMAND:

mino

MINUIT TASK:

FCN= 133.8691

FROM MINOS STATUS=SUCCESSFUL 87 CALLS 299 TOTAL

EDM= 0.84E-10 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS

NO. NAME VALUE ERROR NEGATIVE POSITIVE

1 3b 0.92735 0.23844 -0.22429 0.25314

2 res 0.72656E-01 0.14576 -0.12093 0.16978
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Fit to the cos ψ distribution:

COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN= 50.94555

FROM HESSE STATUS=OK 10 CALLS 75 TOTAL

EDM= 0.11E-09 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER INTERNAL INTERNAL

NO. NAME VALUE ERROR STEP SIZE VALUE

1 3b 0.73651 0.26109 0.39198E-04 0.73651

2 res 0.26349 0.22014 0.33073E-04 0.26349

ERR DEF= 0.500

EXTERNAL ERROR MATRIX. NDIM= 50 NPAR= 2 ERR DEF= 0.500

0.682E-01-0.375E-01

-0.375E-01 0.485E-01

PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2

1 0.65212 1.000-0.652

2 0.65212 -0.652 1.000

ENTER MINUIT COMMAND:

mino

MINUIT TASK:

FCN= 50.94555

FROM MINOS STATUS=SUCCESSFUL 74 CALLS 149 TOTAL

EDM= 0.11E-09 STRATEGY= 2 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS

NO. NAME VALUE ERROR NEGATIVE POSITIVE

1 3b 0.73651 0.26109 -0.24025 0.28153

2 res 0.26349 0.22014 -0.20473 0.23523
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