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By
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August 2007

Chair: Jacobo Konigsberg
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This study presents a measurement of the top quark mass in the all hadronic channel

of the top quark pair production mechanism, using 1 fb−1 of pp collisions at
√

s=1.96 TeV

collected at the Collider Detector at Fermilab (CDF). Few novel techniques have been

used in this measurement. A template technique was used to simultaneously determine

the mass of the top quark and the energy scale of the jets. Two sets of distributions have

been parameterized as a function of the top quark mass and jet energy scale. One set of

distributions is built from the event-by-event reconstructed top masses, determined using

the Standard Model matrix element for the tt̄ all hadronic process. This set is sensitive

to changes in the value of the top quark mass. The other set of distributions is sensitive

to changes in the scale of jet energies and is built from the invariant mass of pairs of light

flavor jets, providing an in situ calibration of the jet energy scale. The energy scale of the

measured jets in the final state is expressed in units of its uncertainty, σc. The measured

mass of the top quark is 171.1±3.7(stat.unc.)±2.1(syst.unc.) GeV/c2 and to the date

represents the most precise mass measurement in the all hadronic channel and third best

overall.
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CHAPTER 1
INTRODUCTION

1.1 History of Particle Physics

At the end of the 19th century, the scientists were convinced that matter is made up

by atoms. The atomic theory has been first conjectured by ancient Greek philosophers

like Leucippus, Democritus, and Epicurus, then later indicated by Dalton’s chemistry

experiments. One of the philosophical motivations behind this theory was the reductionist

desire to explain the diversity of matter by the existence of few fundamental and

indivisible particles.

The atoms were thought to be these fundamental particles, but an uncomfortably

large number of different atoms have been identified. Moreover, some experiments were

showing evidence that the atoms are not indivisible. By 1897, Thomson discovered the

electrons and measured its charge to mass ratio. Also he proposed his plum-pudding

model of the atom, where the electrons are small, negatively charged and distributed

inside the massive, positively charged atom. It was already known that some atoms

decay spontaneously producing three types of radiations: α-rays, bent slightly by a

magnetic field, β-rays, bent significantly in a magnetic field, and γ-rays, not affected by

the magnetic field. Therefore the atoms were no longer seen as fundamental.

In 1900, studying the radiation of the black body, Planck determined that the power

of light emitted by matter is a multiple of a fundamental quantum of energy. At a given

frequency of the light ν, the minimum quantum of energy is hν. He introduced the

constant h=6.625×10−34 Js, which is one of the most important constants of the quantum

theory. Later in 1905, Einstein’s explanation of the photoelectric effect confirmed the

quantum theory of light and then in 1923 Compton’s experiment settled in the photon as

particle of light.

Back in 1909, Rutherford concluded following the scattering of α-particles off gold

atoms that Thomson’s atom is not realistic and that the positive charge and almost all
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mass is concentrated in a nucleus with the electrons orbiting around it. Several years later

in 1918, following a different scattering experiment with α-particles, he will conclude that

the hydrogen nucleus is an elementary particle and it is present inside the nucleus of every

atom. This new particle was later called proton. While the proton was able to explain the

charge of the nucleus, it couldn’t explain the mass of heavier atoms. Rutherford believed

that a neutral particle he called neutron exists, but this was confirmed experimentally only

in 1932 by Chadwick.

Rutherford’s atom was not a satisfactory model. The electron going around the

nucleus would be accelerated centripetally and therefore should emit electromagnetic

radiation according to the classical theory of electromagnetism. The loss of energy through

radiation should make the electron collapse on the nucleus rendering Rutherford’s atom

unstable. In 1913, Bohr will propose a different model for the atom in which the electrons

sit on orbits with discrete values of the orbital angular momentum. The electron can

move from one orbit to another by releasing or receiving a photon with an energy equal

to the energy difference between the orbits. This model will receive support from the

Franck-Hertz experiment where it was observed that the atoms can absorb only specific

amounts of photons.

Bohr’s atom was still not explaining several experimental observations like the

splitting of the atomic spectral lines (Zeeman effect) or the splitting of a beam of electrons

when passing a magnetic field (Stern-Gerlach experiment). To explain this, in 1925,

Uhlenbeck and Goudsmit proposed that the electron spins on its axis as it orbits around

the nucleus. Soon Pauli introduced the exclusion principle stating that two particles can

occupy a state defined by the same quantum numbers explaining why the electrons were

spread overall several orbits.

In 1924, De Broglie extended the particle-wave duality from photons to any particle

such as the electron. The wavelike character of the electron was observed in 1927 in

a diffractive experiment by Davisson and Germer. Based on this idea, Schrodinger
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formulated his famous matter wave equation predicting precisely the energies levels of

the electron in a hydrogen atom. Simultaneously, Heisenberg introduce the uncertainty

principle which helped explain the concept of matter as both waves and particles. This

constitutes the starting point of the quantum mechanics.

The quantum theory developed by Schrodinger and Heisenberg wasn’t incorporating

the special relativity theory and the spin of the electron. This problem was solved by

Dirac by writing the appropriate equation which could also explain the fine splitting

and hyperfine splitting of energy levels within the hydrogen atom. The Dirac equation

also predicted the existence of negative energy states which lead to the prediction of

antiparticles. This surprising prediction was validated in 1931 by Anderson who discovered

the positron, the anti-particle of the electron. Later in 1955, the antiproton was discovered

and a year later the antineutron.

Besides the gravitational force and the electromagnetic force which were known

at that time, a new force was introduced which will bind the protons and the neutrons

inside the nucleus. This force was called the strong force and in 1935 Yukawa believed it

is mediated by a massive particle called pion, denoted by π. To account for all possible

interactions between the nucleons it was expected that the pion exists in three charge

states: positive, neutral and negative. In 1937, Anderson observed a new particle, but it

wasn’t exhibiting the expected properties of the pion. Therefore the scientists decided that

the new particle wasn’t not the pion, but a different new particle they called the muon,

denoted µ.

Studying the β decay of nuclei, the scientists concluded that it was due to either

neutron decay or proton decay. While it was found that the proton decays only if

stimulated, the neutron was decaying spontaneously with a half-time of about 10 minutes.

This period couldn’t be associated to strong force or the electromagnetic force. So a new

force was introduced to explain the process and they called it the weak force. The neutron

decays into a proton and an electron. The spectrum of the electron energy led Pauli
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in 1930 to postulate the existence of a new particle which Fermi called neutrino. This

particle was discovered in 1956 by Reines.

Eventually, in 1947, Powell, Lattes and Occhialini discovered the charged pions,

while the neutral pion was discovered later in 1950. However, in about the same time

with the pion discovery other new strongly interacting particles were observed, the

kaons and the hyperons. They were generically called strange particles because they

were unexpected and they seemed to be produced via strong interaction, but decay via

the weak interaction. Attempting to classify the strongly interacting particles, in 1964

Gell-Mann and Zweig introduced the quark model containing three varieties of quarks:

up, down and strange. All the known particles are either mesons where two quarks are

combined or baryons where three quarks are combined. This was not a totally new idea

because between 1953 and 1957 scattering of electrons off nuclei revealed a charge density

distribution inside the protons and the neutrons. Later in 1968, Feynman and Bjorken

made the same observation in an experiment at Stanford Linear Accelerator where

electrons were collided with protons.

The decay of the strange kaons led Lee and Yang in 1956 to propose that the weak

interaction doesn’t conserve parity. Later that year Wu observed this feature in the

decay of the cobalt. This discovery shocked the scientific community as much as the

corpuscular theory of light did in the past. Following this property of the weak interaction,

it was expected that the electron and the neutrino have preferred polarizations. In 1957,

Frauenfelder determined that the electron is left-handed and in 1958 Goldhaber showed

that the neutrino is left-handed as well. Studying the spins of the electrons emitted in

the muon decays, it was discovered that the charge conjugation symmetry is also violated

by the weak interaction. It was believed though that the CP symmetry is preserved by

the weak interaction. However, in 1964, Christenson, Cronin, Fitch and Turlay showed

that the kaon decay doesn’t preserve this symmetry either. The CP violation of the weak
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interaction was not understood until later. However, the CP conservation by the strong

force remains a mystery.

Another thing that puzzled the physicists was why the decay of the muon into an

electron and a photon was not observed. The solution adopted was the postulation

of two types of neutrinos, the electron-neutrino and the muon-neutrino, along with

the conservation of two new quantum numbers, the electron number and the muon

number. The muon-neutrino was eventually discovered in 1962 by Lederman, Schwarts

and Steinberger.

Through the work of Feynman in 1947, the physicists were able to calculate the

electromagnetic properties of the electron, positron and the photon using the Feynman

diagrams. This constitutes the birth of quantum electrodynamics, or QED.

The theory of weak interaction was first formulated by Fermi in 1933 and it was

assuming a four-fermion interaction acting at a single point. The Fermi coupling constant

GF =1.16639×10−5 GeV−2 was giving the strength of the weak interaction. In 1956,

Feynman and Gell-Mann incorporated the phenomenon of parity violation into this theory.

The Fermi theory of weak interaction was able to explain the low-energy processes, but

was making unacceptable prediction for high-energy weak interactions. The solution

to this problem was to introduce a particle which mediates the weak interaction. This

particle was thought to be a spin 1 boson, with three charge states, W−,W 0,W+ and

was the result of work done by Schwinger, Bludman and Glashow in 1959. Later in 1967

Weinberg and Salam propose a theory that unifies the weak and the electromagnetic

forces. In this theory the neutral boson carrying the weak force is called Z0. In addition

to that a massive boson called the Higgs boson is predicted. The W and Z bosons will be

eventually discovered in 1983 at CERN in according to the predictions.

In 1964 the fundamental particles were: three quarks - up (u), down (d) and strange

(s), and two pairs of leptons - the electron (e) with its neutrino (νe), and the muon

(µ) with its neutrino (νµ). Their corresponding antiparticles were also considered as
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fundamental. Observing the pattern of the leptons many physicists started believing

in the existence of a fourth quark, called charm (c). In 1970 Glashow, Iliopoulos and

Maiani proposed a mechanism through which the weak theory will allow flavor-conserving

Z0-mediated weak interactions. This mechanism was requiring the existence of a fourth

quark. Later in 1973, at CERN, Perkins found evidence of weak interactions with no

charge exchange. The existence of charm was confirmed in 1974 by Richter and Ting who

found a charm-anticharm meson called J/Ψ, and then reconfirmed in 1976 by Goldhaber

and Pierre who found a charm-antiup meson called D0.

A quantum field theory of strong interaction is formulated in 1973 by Fritzsch and

Gell-Mann. They introduce the gluon (g) as a massless quanta of the strong force. This

theory of quarks and gluons is similar in structure to QED, but since strong interaction

deals with color charge this theory is called quantum chromodynamics, or QCD. The

color charge was a concept introduced earlier in 1963 by Greenberg, Han and Nambu.

The hadrons made of quarks were considered color neutral. In 1973, Politzer, Gross and

Wilczek discover that at short distances the strong force was vanishing. This special

property was called asymptotic freedom. In 1979, a strong evidence for a gluon radiated

by a quark is found at DESY, in Hamburg, Germany.

In 1976, another unexpected particle is discovered. This new particle seen by Perl at

SLAC was the tau lepton, denoted τ , and it was the first particle of the third generation.

In 1977, the existence of a third generation was confirmed by Lederman at Fermilab by

discovering a new quark, called bottom (b). In 1989, the experiments at SLAC and CERN

strongly supported the hypothesis of only three generations of fundamental particles by

measuring the lifetime of Z0-boson. Later in 1995 at Fermilab the remaining quark of the

third generation is discovered. This is called the top quark (t) and it has mass much larger

than the other quarks. Also at Fermilab the third generation is completed by the discovery

of the tau neutrino (ντ ) in 2000.
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All the discoveries described above led to the formulation of a theory that summarizes

the current knowledge of the fundamental particles and the interactions between them.

This theory is called the Standard Model of particle physics and it will be described in

more detail in the next section.

1.2 The Standard Model

The Standard Model of particle physics is a theory which describes three of the four

known fundamental interactions between the elementary particles that make up all matter.

It is a quantum field theory which is consistent with both quantum mechanics and special

relativity. To date, almost all experimental tests of the three forces described by the

Standard Model have agreed with its predictions. However, the Standard Model falls short

of being a complete theory of fundamental interactions, primarily because of its lack of

inclusion of gravity, the fourth known fundamental interaction, but also because of the

large number of numerical parameters (such as masses and coupling constants) that must

be put ”by hand” into the theory (rather than being derived from first principles).

The matter particles described by the Standard Model all have an intrinsic spin whose

value is determined to be 1/2, making them fermions. For this reason, they follow the

Pauli exclusion principle in accordance with the spin-statistics theorem giving them their

material quality. Apart from their antiparticle partners, a total of twelve different types

of matter particles are known and accounted for by the Standard Model. Six of these

are classified as quarks (up, down, strange, charm, top and bottom), and the other six as

leptons (electron, muon, tau, and their corresponding neutrinos).

Each quark carries any one of three color charges - red, green or blue, enabling them

to participate in strong interactions. The up-type quarks (up, charm, and top quarks)

carry an electric charge of +2/3, and the down-type quarks (down, strange, and bottom)

carry an electric charge of -1/3, enabling both types to participate in electromagnetic

interactions.
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Leptons do not carry any color charge - they are color neutral, preventing them

from participating in strong interactions. The down-type leptons (the electron, the

muon, and the tau lepton) carry an electric charge of -1, enabling them to participate in

electromagnetic interactions. The up-type leptons (the neutrinos) carry no electric charge,

preventing them from participating in electromagnetic interactions.

Both quarks and leptons carry a handful of flavor charges, including the weak isospin,

enabling all particles to interact via the weak nuclear interaction. Pairs from each group

(one up-type quark, one down-type quarks, a lepton and its corresponding neutrino) form

a generation. Corresponding particles between each generation are identical to each other

apart from their masses and flavors (Table 1-1). The force-mediating particles described

by the Standard Model all have an intrinsic spin whose value is 1, making them bosons

(Table 1-2). As a result, they do not follow the Pauli Exclusion Principle.

The photons mediate the familiar electromagnetic force between electrically charged

particles (these are the quarks, electrons, muons, tau, W -boson). They are massless and

are described by the theory of quantum electrodynamics. The W and Z gauge bosons

mediate the weak nuclear interactions between particles of different flavors (all quarks and

leptons). They are massive, with the Z-boson being more massive than the W -boson.

An interesting feature of the weak force is that interactions involving the W gauge

bosons act on exclusively left-handed particles. The right-handed particles are completely

neutral to the W bosons. Furthermore, the W -bosons carry an electric charge of +1

and -1 making those susceptible to electromagnetic interactions. The electrically neutral

Z-boson acts on particles of both chiralities, but preferentially on left-handed ones.

The weak nuclear interaction is unique in that it is the only one that selectively acts on

particles of different chiralities; the photons of electromagnetism and the gluons of the

strong force act on particles without such prejudice. These three gauge bosons along with

the photons are grouped together which collectively mediate the electroweak interactions.
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There are no mass terms for the fermions. Everything else will come through

the scalar (Higgs) sector. The eight gluons mediate the strong nuclear interactions

between color charged particles (the quarks). They are massless. But, each of the eight

carry combinations of color and an anticolor charge enabling them to interact among

themselves. The gluons and their interactions are described by the theory of quantum

chromodynamics. Leptons carry no color charge; quarks do. Moreover, the quarks have

only vector couplings to the gluons, ie, the two helicities are treated on par in this part of

the standard model.

The Higgs particle described by the Standard Model has no intrinsic spin, and thus

is also classified as a boson. As of early 2007 there have been indications of particles at

the predicted mass of the Higgs boson found by the Tevatron at Fermilab; the significance

level of these indications is however not high enough to warrant it being confirmed as

the Higgs particle. It is hoped that upon the completion of the Large Hadron Collider,

experiments conducted at CERN would bring experimental evidence confirming the

existence for the particle. The Higgs boson plays a unique role in the Standard Model.

The Standard Model predicted the existence of W and Z bosons, the gluon,

the top quark and the charm quark before these particles had been observed. Their

predicted properties were experimentally confirmed with good precision. The Large

Electron-Positron collider at CERN tested various predictions about the decay of Z

bosons, and found them confirmed.

1.3 Top Quark Physics

The first observations of the top quark were reported twelve years ago by the CDF

and D0 experiments [1]. The discovery of the top quark was not a surprise. Indeed, the

existence of an isospin partner for the b-quark is strongly motivated by arguments of

theoretical consistency of the Standard Model, absence of flavor changing neutral current

in B meson decays and studies of Z boson decays [2]. However, the large mass of the top

quark, nearly 175 GeV/c2, was in itself a surprise at the time. In this regard, the top
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quark separates itself from all other quarks. For example, it is the most massive fermion

by a factor of nearly 40 (the bottom being the closest competitor).

Interestingly, even though the top quark is the most recent quark observed, its mass

is the best known of all quarks. This is because it has such a short lifetime that it decays

before any hadronization effects can occur. We should not be satisfied with this relative

success and a more accurate determination of Mtop is strongly motivated inside and

beyond the SM.

The top quark is the weak isospin partner of the b-quark in the Standard Model. As

such, it carries the following quantum numbers: an electric charge +2/3, an intrinsic spin

of 1/2 and a color charge associated with the strong force. Due to the relatively small data

sample collected in Run I of the Tevatron, none of these assignments have been measured

directly. However, strong indirect evidence exists. First, the precision electroweak data of

Z boson decay properties requires the existence of an isospin partner of the b-quark with

electric charge +2/3 and a large mass. Furthermore, the predicted rate of top quark pair

production, which is very sensitive to the spin and strong coupling of the top quark, is

in good agreement with the data [3] [4] [5] [6]. Therefore, current observations lead us to

believe that the particle observed at the Tevatron is indeed the top quark. However, direct

measurements are still desirable and will be attempted in the case of the electric charge

and spin using data from the Run II of the Tevatron or the LHC [7].

The other intrinsic properties of an elementary particle are its mass and lifetime. The

most precise knowledge of the mass comes from direct measurements. The current world

average containing only measurements performed during Run I at the Tevatron is 178

± 4.3 GeV/c2. In quantum mechanics, the lifetime of a particle is related to its natural

width through the relationship τ = ~/Γ. The branching ratio for the electroweak top

quark decay t → Wb is far larger than any other decay mode and thus its full width can

be approximately calculated from the partial width Γ(t → Wb). Assuming MW = Mb = 0,

the lowest order calculation of the partial width has the expression shown in Equation 1–1,
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where GF is the Fermi constant and Vtb is the Cabibbo-Kobayashi-Maskawa (CKM)

matrix element linking the top and bottom quarks.

Γ0(t→ Wb) =
GF M2

top|Vtb|2

8π
√

2
= 1.76 GeV, (1–1)

This simplified picture illustrate that the width is driven by the square of Mtop. More

sophisticated calculations result in negative corrections of about 20%, the final result being

1.42 GeV with theoretical uncertainties less than 1%. This results in a lifetime for the top

quark of approximately 4 x 10−25 s. This is about an order of magnitude lower than the

characteristic time for QCD effects to take place. Therefore, due to its very large mass,

the top quark will not form hadrons before it decays. This property makes the top quark

the only quark without hadron spectroscopy (i.e., where we can expect meson or baryon

states including a top quark). In addition, the short lifetime facilitates the measurement of

top quark properties since the information about the bare quark is directly reflected by the

decay products.

The top quark is produced predominantly in tt pairs at the Tevatron via the strong

interaction. At a center-of-mass energy of 1.96 TeV, the process qq → tt and gg → tt

occur approximately 85% and 15% of the time, respectively. The leading order diagrams

for the two processes are shown in Figure 1-1 and in Figure 1-2. Calculations of the total

tt̄ cross-sections σ(tt̄) have been performed up to the next-to-leading order (NLO) in the

coupling constant of the strong force (αs). The theoretical value at a center-of-mass energy

of 1.96 TeV [8] is shown in Equation 1–2 for Mtop = 175 GeV/c2.

σth(tt̄) = 6.7+0.7
−0.9 pb, (1–2)

Since the typical partonic center-of-mass energy available at the Tevatron is still

relatively close to the tt̄ threshold production, (for example the average velocity of the

produced top quarks is β ≈ 0.5), the cross-section displays significant dependence on Mtop.

This is illustrated in Figure 1-3 where we show σ(tt̄) as a function of the center-of-mass
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energy for various values of Mtop. The theoretical calculations are in good agreement with

the measurements performed at 1.8 TeV (Run I) [3] [4] and 1.96 TeV (Run II) [5] [6].

Figure 1-3 illustrates one motivation to measure accurately Mtop: the knowledge of the

top quark mass is necessary to compare as precisely as possible the theoretical predictions

and measurements of the tt̄ cross-section. An eventual discrepancy could be a sign of new

physics as discussed in more detail in [7].

The electroweak production of single top quarks is also predicted by the Standard

Model but has not been observed to date [9] [10]. The production cross-section is

predicted to be smaller than for tt̄ (≈ 2.4 pb) and the experimental signature suffers

from much larger background contamination.

The top quark decay is mediated by the electroweak interaction. Since flavor changing

neutral currents are forbidden in the Standard Model due to the GIM mechanism [11],

the decays of the top quark involving Z or γ bosons in the final state (e.g., t → Zc) are

highly suppressed and can only occur through higher order diagrams. Therefore, the top

quark decay vertex must include a W boson. Three possible final states exist: t → Wb,

t → Ws and t → Wd. As illustrated in Equation 1–1, the partial width of charged current

top decays is proportional to the square of the corresponding CKM matrix element.

Assuming a Standard Model with three families, the relevant CKM matrix elements have

the constraints [12] given in Equation 1–3.

0.0048 < |Vtd| < 0.014,

0.037 < |Vts| < 0.043,

0.9990 < |Vtb| < 0.9992. (1–3)

Therefore, the decay t → Wb is completely dominant and its predicted branching

ratio is BR(t → Wb) > 99.8%. Hence only t → Wb decays have been considered

in the identification of top quarks, though searches for other decay modes have been

undertaken [13]. We note that the W boson from the top quark decay is real (i.e., its mass
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corresponds to the measured mass MW ≈ 80.4 GeV/c2), given that Mtop > MW + Mb.

This is an important characteristic of tt̄ events that is exploited in this analysis in the

reconstruction of the top quark mass and the W boson mass. The W boson will in

trn decay to two quarks about 2/3 of the time and a charged lepton associated with a

neutrino about 1/3 of the time.

The experimental signature of top quarks thus emerge. They are produced as tt̄ pairs,

each one decaying immediately to a real W boson and a b-quark, the latter hadronizing

to form a b-jet. The resulting W decay defines the tt̄ final state: There can be two

hadronic decays (all-hadronic channel), one leptonic and one hadronic decay (lepton + jets

channel), and two leptonic decays (dilepton channel), where the leptonic decays considered

are usually only to electrons and muons (with their associated neutrinos) due to the

experimental difficulty of identifying tau leptons. The approximate branching ratios for

each channel are given in Table 1-3.

The top quark plays a central role in the predictions of many SM observables by

contributing to their radiative corrections. Good examples are the W and Z boson

propagators, in which loops involving top quarks are expected to strongly contribute, as

illustrated in Figure 1-4. These diagrams can exist for any type of quark or lepton, but

the very large value of Mtop makes the top quark contribution dominant. To illustrate the

effect of the top quark, we consider in Equation 1–4 the theoretical calculation of the W

boson mass [12].

M2
W =

πα√
2GF sin2θW

1

1−∆r
, (1–4)

α is the fine structure constant, θW is the Weinberg angle and ∆r contains the

radiative corrections and is approximately given by Equation 1–5.

∆r ≈ ∆r0 −
∆ρ

tan2θW

(1–5)
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The term ∆r0 is due to the running of α. The term ∆ρ is due to the one-loop

top quark correction to W -boson propagators shown in Figure 1-4, and is given by

Equation 1–6.

∆ρ =
3GF M2

top

8
√

2π2
(1–6)

The uncertainty on the Fermi constant GF is completely negligible with respect to the

one on the top quark mass in the computation of ∆ρ. The term ∆r0 and the Weinberg

angle in Equation 1–5 are known to a precision of 0.2%. The uncertainty on the top quark

mass is currently about an order of magnitude larger than the other uncertainties and

moreover it contributes quadratically to ∆r. Thus the precision on Mtop is currently the

limiting factor in the theoretical prediction of the W boson mass. The parameter ∆ρ is

qualified as “universal” in the literature because it enters in the calculation of many other

electroweak observable like sinθW and the ratio of the production of b-quark hadrons of all

types (usually denoted Rb), to name a few. Therefore, the top quark mass plays a central

role in the interplay between theoretical predictions and experimental observables that

aims to test consistency of the SM.

One consistency check is to compare the measured value of Mtop with the predicted

value from SM precision observables (excluding of course direct measurements of Mtop).

The indirect constraints, inferred from the effect of top quark radiative corrections,

yields Mtop = 181+12
−9 GeV/c2 [14]. The relatively small uncertainty is achieved because of

the large dependence of Mtop on many electroweak observables. This is in remarkable

agreement with the Run I world average of Mtop = 178 ± 4.3 GeV/c2 [15], and is

considered a success of the SM.

A similar procedure can be used to constrain the Higgs boson mass (MH), the last

particle in the SM that has yet to be observed. The only direct information on MH is a

lower bound obtained from searches at LEP-II: MH > 114 GeV/c2 at 95% confidence

level [16]. Indirect constraints on MH can be obtained with precise measurements of
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MW and Mtop. Indeed, the correction to the W boson mass ∆r given in Equation 1–4

contains additional terms due to Higgs boson loops. These corrections depend only

logarithmically on MH and have thus weaker dependence on MH than on Mtop. Still,

precise determination of Mtop and MW can be used to obtain meaningful constraints on

MH as illustrated in Figure 1-5. Numerically, the constraints are [14] made explicit in

Equations 1–7 and 1–8.

MH = 126+73
−48 GeV/c2 (1–7)

MH < 280 GeV/c2 at 95% C.L., (1–8)

Only the top quark mass measurements from Run I have been used. Such constraints

on MH can help direct future searches at the Tevatron and LHC and constitutes another

stringent test of the Standard Model when compared to limits from direct searches or

mass measurements from an eventual discovery.

Even though the Standard Model successfully describes experimental data up to a few

hundred GeV, it is believed that new physics must come into play at some greater energy

scale. At the very least, gravity effects are expected at the Planck scale (≈ 1019 GeV) that

the SM ignores in its current form.

The SM can thus be thought of as an effective theory with some unknown new

physics existing at higher energy scale. A link exists between the new physics and

the SM that manifests itself through radiative corrections to SM particles. The Higgs

boson sector is the most sensitive to loops of new physics. For example the Higgs boson

mass corrections from fermion loops shown in diagram (a) of Figure 1-6 are given by

Equation 1–9, where mf is the fermion mass and Λ is the “cut-off” scale used to regulate

the loop integral.

∆MH − 2Λ2 + 6m2
f ln(Λ/mf ) + ..., (1–9)

The parameter Λ can be interpreted as the scale for new physics that typically

corresponds to the scale of the Grand Unified Theory (GUT) near 1016 GeV. This is a

29



problem for the SM, since on the one hand the Higgs boson mass receives corrections of

the order of 100 GeV/c2 to give the correct mass to the SM electroweak gauge bosons.

There is a discrepancy of 14 orders of magnitude between the targeted mass and the

radiative corrections! This is known as the fine-tuning problem of the SM Higgs boson (or

gauge hierarchy problem) and has occupied theoretical physicists for several decades. A

few solutions have emerged from this work, all of them manifesting themselves near the

scale of the origin of mass near 1 TeV (or electroweak symmetry breaking scale).

The top quark, with its large mass of nearly 0.2 TeV, could be more closely connected

to new physics than any other SM particle. One interesting numerological argument

suggests the top quark is indeed a special case. Its Yukawa coupling (yt) (i.e., its coupling

to the Higgs field), is approximately equal to unity as shown in Equation 1–10, where v is

the vacuum expectation value of the Higgs field that is known from properties of the weak

interaction to be approximately 171 GeV.

yt =
√

2
Mtop

v
≈ 1, (1–10)

This could be a coincidence, or it could be a sign that the top quark mass is related

to the mechanism of the origin of mass that physics beyond the SM must explain, as

suggested above. In this respect, the top quark mass could turn out to be a more

fundamental parameter of nature. For these reasons, albeit somewhat hypothetical, a

precise measurement of Mtop would certainly be desirable for the understanding of any

theory.

One example of a new physics model is Supersymmetry (SUSY), which constitutes

an extension of the SM where the SM fermionic particles have associated bosonic particles

and vice-versa. It is generally regarded as the favored option to extend or replace the

SM at higher energies. Indeed, SUSY solves elegantly the gauge hierarchy problem since

the fermion and boson partners cancel each other’s divergent corrections to the Higgs

boson mass proportional to Λ2 (given in Equation 1–9 for fermionic particles). Moreover,
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SUSY has other attractive features, such as providing a good candidate for dark matter,

predicting the unification of the gauge coupling constants at the GUT scale and being

required by the only consistent theory of quantum gravity currently available (superstring

theory).

The top quark plays an important role in SUSY models. Indeed, the radiative

corrections from SUSY particles to electroweak observables, which can be computed

in a similar fashion as for the SM particles, are dominated by loops involving the top

quark and its scalar partners, the stop quarks. This effect is especially apparent in the

Higgs sector of SUSY models. Considering the simplest model of SUSY, the Minimum

Supersymmetric Standard Model (MSSM), the one-loop correction to the lightest MSSM

Higgs boson mass (Mh) is proportional to [17] as shown in Equation 1–11, where Mt̃1 and

Mt̃2 are the masses of the lightest and the heaviest stop quarks, respectively.

∆M2
h ≈ GF M4

toplog
°Mt̃1Mt̃2

M2
top

¢
, (1–11)

Thus the corrections to Mh depend quartically on Mtop! Therefore, the same

conclusion as discussed previously for the SM is valid for SUSY (and even reinforced

due to the stronger Mtop dependence): high precision measurements of Mtop will be crucial

for the self-consistency check of the theory and determination of unknown parameters.

For instance, the value of the top quark mass was crucial to determine the current upper

bound of about 135 GeV/c2 on the lightest MSSM Higgs boson mass [18].

Using the current measurements of precision observables, it is already possible to set

meaningful constraints on SUSY. For example, Figure 1-7 shows the current measurements

of Mtop and MW as well as the region allowed exclusively inside the MSSM (green), the

SM (red) as well as an overlap region between the MSSM and SM (blue). As can be seen,

the additional radiative corrections from SUSY particles are large enough such that the

overlap region between SM and MSSM is small in the Mtop − MW plane. The current

experimental accuracies are not good enough to distinguish between the two theories, but
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future prospects (e.g., black curve for Tevatron/LHC and red curve for the International

Linear Collider (ILC)) demonstrates very good discriminating power. The radiative

corrections from MSSM particles to the SM precision observables are discussed in more

detail in [19].

Other alternatives to replace the SM at energies near the TeV scale are theories

involving dynamical breaking of the electroweak symmetry [20]. These models, one

well-known example being Technicolor [21], do not include an elementary Higgs boson,

but rather give mass to the SM particles by introducing a new strong gauge interaction

that produce condensates of fermions that act as Higgs bosons. In some versions of

these models, denoted “topcolor”, the new gauge interaction acts only on the third

generation, and the fermion condensates are made of top quarks [22]. Such a model could

be discovered by looking for evidence of new particles in the tt̄ invariant mass at the

Tevatron or LHC.

1.4 Highlights of Mass Measurement

Now that the top quark was placed in the context of particle physics and of the

Standard Model, the most successful theory describing it, we stop to outline the remaining

of the study. In the following chapters a detailed analysis of the measurement of the mass

of the quark will be presented.

The experimental apparatus used to produce and collect the data is described in

broad details. This description is divided into a section dedicated to the accelerator of

particles, Tevatron, and another for detailing the particle detector, the Collider Detector

at Fermilab (CDF). Many techniques are used for the identification of particles separately

for leptons, photons, quarks and gluons.

A more sophisticated tool involves the calculation of the matrix element for the

process uū → tt̄ → bb̄uūdd̄ used in the computation of a probability to observe such

process. This probability will be later used in the event selection and the in the mass

32



reconstruction. However, in the fourth chapter details of the matrix element calculation

are offered as well as consistency checks.

The data samples and the Monte Carlo samples used in this study to determine

the event selection used to enhance the tt̄ content of the data sample. The achieved

signal to background ratio is almost 1/1 and it will have a big impact in the value of the

uncertainty on the mass. The modeling of the background processes is extracted from a

data sample with small tt̄ contribution.

The top quark mass reconstruction technique allows for the simultaneous determination

of the top quark mass and of the scale of jet energies. The need for having the jet energy

scale determined together with the top mass is to take into account the correlation

between the two. As a consequence the effect of the jet energy scale on the uncertainty on

the top mass is not double counted. This would be the case of a method where the top

mass is determined separately from the jet energy scale but a systematic uncertainty due

to the jet energy scale uncertainty has to be assigned. Moreover, in the bi-dimensional

analysis the jet energy scale can be easily constrained and calibrated as it will be seen.

The method briefly described above involves the full statistical treatment of the expected

uncertainties. Also various systematic effects are described in detail and the corresponding

uncertainty evaluated.

The mass measurement represented the best such measurement in the tt̄ all hadronic

channel. The treatment of the jet energy scale was one of the main improvements

with respect to other mass measurements in this channel along with the use of the tt̄

matrix element in the event selection and in the mass measurement technique itself. This

measurement had a 11% weight in the world averaged top quark mass. Only two other

measurements had a larger impact in the world average and those were done in the tt̄

lepton+jets channel.
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Table 1-1. Classification of the fundamental fermions in Standard Model. They are
arranged in three generations.

Generation Flavor Mass (GeV/c2) Charge Weak Isospin
Up (u) 0.003 2

3
1
2

I Down (d) 0.006 -1
3 -1

2
e-Neutrino (νe) < 2× 10−6 0 1

2
Electron (e) 0.0005 -1 -1

2

Charm (c) 1.5 2
3

1
2

II Strange (s) 0.1 -1
3 -1

2
µ-Neutrino (νµ) < 2× 10−6 0 1

2
Muon (µ) 0.1 -1 -1

2

Top (t) 171 2
3

1
2

III Bottom (b) 4.2 -1
3 -1

2
τ -Neutrino (ντ ) < 2× 10−6 0 1

2
Tau (τ) 1.7 -1 -1

2

Table 1-2. Force carriers described in Standard Model.

Boson Force Mass (GeV/c2) Charge
Photon (γ) EM 0 0
W± weak 80.4 ±1
Z0 weak 91.2 0
Gluon (g) strong 0 0

u

u
g

t

t

Figure 1-1. Leading order diagram for tt̄ production via quark-antiquark annihilation. In
this figure the incident quarks are the up-quarks.

Figure 1-2. Leading order diagrams for tt̄ production via gluon-gluon fusion.
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Figure 1-3. Cross-section of tt̄ pair production as a function of center-of-mass energy for
the theory prediction and CDF measurements.

Table 1-3. Branching ratios of the tt̄ decay channels.

Channel Branching Ratio
all-hadronic 44 %
lepton+jets 30 %
dilepton 5 %
tau lepton + X 21 %

Figure 1-4. Diagrams for the self-energies of W -boson and Z-boson where a loop involving
the top quark is contributing.
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Figure 1-6. Loop contributions to the Higgs boson propagator from (a) fermionic and (b)
scalar particles.
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CHAPTER 2
EXPERIMENTAL APPARATUS

The Fermi National Accelerator Laboratory (FNAL, Fermilab) has been running in

its current phase of operation since 2001. Located near Batavia, IL, the pp synchrotron

accelerator supports several experiments, including two collider detectors, one of which,

the Collider Detector at Fermilab (CDF), collected data for this analysis. The accelerator

also provides protons to fixed target experiments. CDF is a general purpose hard

scattering detector supporting a wide variety of physics analyses. One of the priorities

of FNAL is a precise measurement of the top quark mass. Several hundred people support

the operation of the accelerator and another several hundred are responsible for the

commissioning and operation of the CDF detector. A competing collaboration, D0,

independently measures similar physics quantities. Combined results from these two

collaborations have resulted in increasingly precise measurements of the top quark mass

and other interesting physical phenomena. This chapter outlines the basic operation and

structure of the accelerator and of the detector.

2.1 Tevatron Overview

The main accelerator at FNAL, the Tevatron, accelerates protons and antiprotons,

colliding them at a center of mass energy of 1.96 TeV. Several stages of acceleration are

necessary before protons and antiprotons can be brought to this energy. Since no readily

available source of antiprotons exists, they must be produced using energetic proton

collisions. Figure 2-1 schematically describes the Tevatron complex.

Protons colliding in the Tevatron start out as hydrogen gas. The hydrogen is ionized

by adding an electron and then fed to a Cockroft-Walton direct current electrostatic

accelerator. Exiting the Cockroft-Walton with 750 keV, the hydrogen ions are fed into a

RF linear accelerator, the Linac, and ramped to 400 MeV. The hydrogen ions then strike a

stationary target of carbon foil, stripping the two electrons from the ions and leaving bare

protons.
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Protons are collected and accelerated to 8 GeV in the Booster, a 475 m circumference

synchrotron. The Booster then injects them into the Main Injector, a 3 km circumference

synchrotron. The Main Injector has several purposes. It accelerates protons and

antiprotons from 8 GeV to 150 GeV, preparing them for injection into the Tevatron;

and it also accelerates protons to 120 GeV for antiproton production, as described later.

The Tevatron is a 6.3 km circumference synchrotron using superconducting magnets

with a peak field of 4.2 T. Protons and antiprotons are injected into the Tevatron forming

a beam containing 36 discrete packages of particles known as bunches and are accelerated

from 150 to 980 GeV. Protons and antiprotons rotate in opposite directions in the ring

and are held in separate helical orbits. Focusing quadrupole magnets at two collision

points bring the proton and the antiproton beams to intersection. Bunches pass a given

collision point every 396 ns. Each bunch collides approximately 2.6 x 1011 p and 3.5 x 1010

p. These numbers contribute to the instantaneous luminosity of the beam [23] as shown in

Equation 2–1.

L =
3γfoNBNpNpF

β(�p + �p)
, (2–1)

NB is the number of bunches in the accelerator; Np and Np are the number of p and

p per bunch, respectively; fo is the revolution frequency; γ = E/m is the relativistic

energy factor; β is the beta function at the low beta focus; �p and �p are the proton

and antiproton beam emittances, respectively; and F is a form factor describing bunch

geometry. Integrating instantaneous luminosity over time and taking the product with a

scattering cross-section returns the number of events produced.

Antiprotons are produced by colliding accelerated protons from the Main Injector

with a stationary nickel target in the Target Station. Magnets focus charged particles from

this collision into a beam and strip away everything but the antiprotons. Antiproton

production is not very efficient, requiring a million incident protons to produce 20

antiprotons.
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Once collected into a beam, the antiproton are sent to the Debuncher, a triangular

synchrotron with a radius of 90 m, where their spread in energy is reduced using a

synchronized oscillating potential in the RF cavities. This potential is designed to

accelerate slower particles and decelerate faster particles. Uniform velocities of antiprotons

enables more efficient beam manipulation and increases instantaneous luminosity by

reducing bunch widths.

Thus prepared, the antiprotons are collected and stored until they are needed

for acceleration and collisions. One storage unit, the Accumulator, is a synchrotron

in the same tunnel as the Debuncher, labeled “antiproton source” in Figure 2-1. The

Accumulator reduces the longitudinal momentum of the antiprotons using a synchronized

potential and stochastic cooling [24]. Stochastic cooling was developed at CERN in the

1970s and dampens unwanted momentum phase-space components of the particle beam

using a feedback loop. Essentially, the beam orbit is measured with a pickup and corrected

with a kicker.

The other antiproton storage unit is the Recycler, a synchrotron in the same ring as

the Main Injector. The Recycler was originally designed to collect antiprotons from the

Tevatron once collisions for a given store were finished, but attempts to use it for this

purpose have not been worthwhile. As an additional storage unit, the Recycler has allowed

increased instantaneous luminosity since 2004. The Recycler takes advantage of electron

cooling, in which a 4.3 MeV beam of electrons over 20 m is used to reduce longitudinal

momentum. When a store is ready to begin, antiprotons are transferred from either or

both the Accumulator and the Recycler to the Tevatron for final acceleration.

2.2 CDF Overview and Design

The Collider Detector at FNAL (CDF) is a general purpose charged and neutral

particle detector [25] [26]. It surrounds one of the beam crossing points described in

section 2.1. The detector observes particles or their decay remnants via charged tracks

bending in a 1.4 T solenoidal field, electromagnetic and hadronic showers in calorimeters,
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and charged tracks in muon detection chambers. Additionally, Cherenkov counters

measure the instantaneous luminosity of the colliding beams. In order from nearest to

beam line to the outermost region of the detector, the major components are the silicon

tracking system, the central outer tracking system, the solenoid, the calorimeters, and the

muon chambers, Figure 2-2.

CDF is cylindrical in construction, with the beam line defining the z-axis oriented

with the direction of proton travel, which is also the direction of the solenoidal field lines.

The x-axis is defined as pointing away from the Tevatron ring, and the y-axis is defined as

pointing directly upward. Transverse components are defined to be perpendicular to the

beam line, in other words the polar r − φ dimension as given in Equation 2–2. Another

useful coordinate variable is the rapidity shown in Equation 2–3. The pseudo-rapidity, η, is

the massless limit of rapidity and is given in Equation 2–4.

ET = Esinθ (2–2)

y =
1

2
ln

E + pz

E − pz

. (2–3)

η = −1

2
ln(tanθ). (2–4)

Pseudo-rapidity is always defined with respect to the detector coordinates unless

explicitly specified. Many of the components of CDF are segmented in pseudo-rapidity.

Figure 2-3 shows the η coordinates relative to the tracking volume and plug calorimeter.

2.2.1 Cherenkov Luminosity Counters

To measure luminosity, Cherenkov Luminosity Counters (CLC) [27] are positioned

near the beam line, 3.7 < |η| < 4.7. The counters are long, conical chambers filled

with isobutane at atmospheric pressure. Cherenkov light radiated from particles passing

through the chambers is collected with Photo-Multiplier Tubes (PMTs) allowing a

measurement of the number of inelastic pp interactions at each bunch crossing. The

momentum threshold for detection of electrons is 9.3 MeV/c and of pions is 2.6 GeV/c.
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Figure 2-4 shows the initial instantaneous luminosity and total integrated luminosity as a

function of year. The initial instantaneous luminosity increased with running time due to

improvements such as using the Recycler to store antiprotons. Total integrated luminosity

is separated according to that delivered by the Tevatron and that recorded to tape by the

CDF detector.

2.2.2 Silicon Tracking

The innermost component of CDF is a tracking system composed of silicon

micro-strip arrays. Its main function is to provide precise position measurements near

collision vertices, and it is essential for identification of secondary vertices.

Constructed in three separate components, L00 [28], SVXII [29] and ISL [30], the

silicon tracking system covers detector |η| < 2. L00 is a single layer mounted directly on

the beam pipe, r = 1.6 cm, and is a single-sided array with a pitch of 50 µm providing

solely axial measurements. SVXII is mounted outside of L00, 2.4 < r < 10.7 cm, and is

composed of 5 concentric layers in φ and 3 segments, or barrels, in z. Each layer is further

subdivided into 12 segments in φ, or wedges. Double-sided arrays provide axial (r − φ)

measurements on one side and stereo (z) measurements on the other. The stereo position

of layer 0, 1 and 3 is perpendicular to the z-axis, and that of layer 2 and 4 is is -1.2o

and +1.2o, respectively. The SVXII detector spatial resolution for axial measurements

is 12 µm. ISL surrounds SVXII, 20 < r < 29 cm, and is composed of three layers of

double-sided arrays. As with SVXII, one side provides axial measurements and the other

stereo measurements at 1.2o relative to the z-axis. The ISL detector resolution for axial

measurements is 16 µm (Figure 2-5).

2.2.3 Central Outer Tracker

The Central Outer Tracker (COT) [31] comprises the bulk of CDF’s tracking volume,

located between 40 < r < 132 cm and detector |η| < 1. The COT provides the best

measurements of charged particle momentum, but does not measure position as precisely

as the silicon tracking system. It is a 96-layer open-cell drift chamber subdivided into 8
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super-layers. Each super-layer is further divided with gold covered Mylar field sheets into

cells containing 25 wires alternating between potential and sense wires, see Figure 2-6.

In half of the super-layers, the wires are parallel to the beam line and provide axial

measurements, while in the other half, the wires are alternately at ±2o and provide stereo

measurements. The innermost super-layer provides a stereo measurement and subsequent

layers alternate between axial and stereo measurements. The gas filling the chamber is

comprised of 50% argon and 50% ethane (and lately, some oxygen was added to prevent

corrosion). This results in a maximum drift time of 100 ns, far shorter than the time

between bunch collisions. The single hit resolution of the COT is 140 µm, and the track

momentum resolution using muon cosmic rays is σp
T

/p2
T

≈ 0.001 (GeV/c)−1.

2.2.4 Calorimeters

Calorimeters provide energy and position measurements of electron, photon and

hadron showers. They are divided into electromagnetic (EM) and hadronic (HA)

segments, with EM positioned closer to the interaction region than the HA. Both regions

are sampling calorimeters with alternating layers of scintillators and absorbers. Showers

generate photons in the scintillators which are collected and carried to PMTs with

wavelength shifting optical fibers. Lead is used as the absorber in EM segments and iron

in HA segments. The EM segment closest to the interaction region acts as a pre-shower

detector useful for photon and π0 discrimination. A shower-maximum detector, placed at

about 6 radiation lengths in the EM calorimeter, measures the shower profile and obtains

a position measurement with a resolution on the order of a few mm.

Due to detector geometry, calorimeters are divided into a barrel shaped region

surrounding the solenoid, the central calorimeters (CPR, CES, CEM and CHA) [32]; and

calorimeters capping the barrel, the plug calorimeters (PPR, PES, PEM and PHA) [33]. A

wall hadronic calorimeter (WHA) fills the gap between the two. The central region covers

detector |η| < 1, the wall 0.6 < |η| < 1.3, and the plug 1.1 < |η| < 3.6. Each of these

regions is further segmented in η and φ into towers covering 0.1 x 15o in the central, 0.1 x
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7.5o in the wall, and 0.16 x 7.5o or 0.2-0.6 x 15o in the plug. The energy resolution of the

CEM is σ(E)/E = 0.135/
p

ET (GeV ) ± 0.015. Figure 2-7 shows a cross-sectional view of

the plug calorimeter.

2.2.5 The Muon System

Whereas electrons create showers confined to the calorimeters, the mass of muons

makes them nearly minimum ionizing particles (MIPs), and high momentum pass through

the calorimeters. The calorimeters (and in some cases additional steel shielding) block the

majority of hadronic particles from reaching the outer detector. Drift chambers placed on

the outside of the detector identify charged tracks from muons and measure their position.

There are three muon detection systems: CMU, CMP and CMX [34]. CMU and CMP

cover detector |η| < 0.6, with CMP located outside CMU, and CMX covers detector 0.6

< |η| < 1.

The CMU chambers surround the central calorimeter in φ. They are composed of

4 concentric layers of cells containing argon-ethane gas and high-voltage sense wires

parallel to the beam pipe (Figure 2-8). The CMP chambers are separated from the CMU

chambers by 60 cm of steel shielding. They are similar in construction to the CMU

chambers, but the layers are successively offset by half of a cell. The CMX chambers

are nearly identical to the CMU chambers. They are arranged in four logical layers

successively offset by half of a cell. Each logical layer consists of two partially overlapping

physical layers of cells. On average, a particle will traverse six cells. Sense wires are

independent in the CMP chambers, but are shared between φ neighbors in CMU and

CMX. The single-hit r − φ resolution is 0.25 mm. Measurements in z with a resolution

of 1.2 mm are also possible by using differences in arrival times and amplitudes of pulses

measured at either end of each wire in neighboring cells.

2.2.6 The Trigger System

Collisions occur every 396 ns (2.5 MHz), far too quickly even for CDF’s custom

hardware to process and read out detector information. To reduce the number of collisions
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for which data is stored, CDF uses information from some detector components to make a

decision to save an event, called a trigger. Data is stored in buffers until trigger decisions

cause some of the events to be read out and stored on computer disk or the buffer to be

emptied. The trigger is divided into three levels of increasing sophistication in object

identification (Figure 2-9).

Data is stored in synchronous buffers awaiting an initial trigger decision. The first

trigger level returns a decision with a latency of 5.5 µs and a maximum accept rate of 50

kHz and will always occur in time to read out the event. Level one uses solely custom

hardware operating in three parallel streams. One stream, the extremely Fast Tracker

(XFT), reconstructs transverse COT tracks and extrapolates them to calorimeters and

muon chambers. Another stream detects possible electron, photon or jet candidates, along

with total and missing transverse energy. The final stream searches for tracks in muon

chambers. These streams are combined in the final level one decision.

After a level one accept, the event information is read out into asynchronous buffers.

Since events remain in these buffers until a level two decision is made, it is possible some

events passing level one will be lost when these buffers are full. The level two trigger

returns a decision with a latency of 25 µs and a maximum accept rate of 300 Hz. Level

two used custom hardware and modified commercial microprocessors to cluster energy

in calorimeters and reconstruct tracks in the silicon detector using the Silicon Vertex

Tracker (SVT). Calorimeter clusters estimate the total jet energy and help to identify

electrons and photons. The SVT measures the impact parameters of tracks, part of

locating displaced vertices.

The third trigger level runs on a commercial dual microprocessor farm and returns a

decision with a maximum accept rate of 150 Hz. The farm runs a version of CDF offline

reconstruction merging information from many detector systems to identify physical

objects in the event. Data passing level three trigger requirements is transferred via
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computer network to a storage facility using a robotic tape library. This data is then

processed with offline reconstruction software for use in analyses.

Figure 2-1. Diagram of the Tevatron accelerator complex

Figure 2-2. Elevation view of the East hall of the CDF detector. The West half is nearly
symmetric.
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Figure 2-3. Schematic of tracking volume and plug calorimeters of the upper east quadrant
of the CDF detector.
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Figure 2-5. Schematic with the r-φ and the y-z views of the Run II CDF silicon tracking
system.
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Figure 2-6. East end-plate slots Sense and field planes are at the clock-wise edge of each
slot (left). Nominal cell layout (right).

48



Figure 2-7. Cross section of upper part of new end plug calorimeter.

µ

Figure 2-8. Detail showing the configuration of steel, chambers and counters for the
Central Muon Upgrade walls. A muon track is drawn to establish the
interaction point. Counter readout is located at z=0. Counters layers are
offset from the chambers and from each other in x to allow overlapping light
guides and PMTs, minimizing the space required.
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CHAPTER 3
EVENT RECONSTRUCTION

In this chapter we will describe how we can identify the particles produced in a pp

collision starting from the raw outputs of the different parts of the detector. First we

will see how information from silicon detectors and COT are used to reconstruct charged

particle trajectories. Then we will move to the reconstruction of jets of hadronic particles,

based on calorimeters. A section will be devoted to the correction of jet energies for

different error sources introduced by calorimeters and reconstruction algorithms. After a

brief description of the identification of leptons and photons, we will end with the different

methods used at CDF to identify a jet of particles originated from a b quark.

3.1 Tracks

Track reconstruction is performed using data from silicon tracking system and COT.

The reconstruction is based on the position of the hits left b charged particles on detector

components. Combining these hits one can reconstruct particle trajectories.

The whole tracking system is immersed in a 1.4 T magnetic field. Charged particles

moving in a homogeneous magnetic field follow a helix trajectory. The helix axis is parallel

to the magnetic field. Measuring the radius of curvature of the helix, one can obtain the

transverse momentum of the particle, while the longitudinal momentum is related to the

helix pitch. To describe a helix five parameters are needed, three to parameterize the circle

in r − φ projection and two to parameterize the trajectory in z. At CDF, as shown by

Equation 3–1, the helix of a charged particle is parameterized.

�α = (cotθ, C, z0, D,φ0) (3–1)

The parameters used to describe the helix of a charged particle are: cot θ is the

cotangent of the polar angle at minimum approach to the origin; C is the half curvature,

whose sign is given by the charge of the particle; z0 is the position on z axis of the

minimum approach to the helix origin; D is the signed impact parameter (i.e., the distance
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between the helix and the origin at minimum approach); φ0 is the direction in r − φ of the

helix at the point of minimum approach.

If (x0, y0) is the center of the circle, then the impact parameter is calculated as in

Equation 3–2, where ρ = 1
2CQ

is the radius of the circle and Q the charge of the particle.

D = Q(
q

x2
0 + y2

0 − ρ) (3–2)

Having described the parameterization of a particle trajectory, we’ll turn on the main

tracking algorithms developed for offline analysis, the Standalone and the Outside-In

algorithms.

Standalone tracking [35] is a strategy to reconstruct tracks in the silicon detector. It

consists in finding triplets of aligned 3D hits, extrapolating them and adding matching

3D hits on other layers. This technique is called standalone because it doesn’t require any

input from outside: it performs tracking completely inside the silicon detector. First the

algorithm builds 3D hits from all possible couples of intersecting axial and stereo strips

on each layer. Once a list of such hits is available, the algorithm searches for triplets of

aligned hits. This search is performed fixing a layer and doing a loop on all hits in the

inner and outer layers with respect to the fixed one. For each hit pair - one in the inner

and one in the outer layer - a straight line in the r − z plane is drawn. Next step consists

in examining the layer in the middle: each of its hits is used to build a helix together with

the two hits of the inner and outer layers. The triplets found so far are track candidates.

Once the list of candidates is complete, each of them is extrapolated to all silicon layers

looking for new hits in the proximity of the intersection between candidate and layer. If

there is more than one hit, the candidate is cloned and a different hit is attached to each

clone. Full helix fits are performed on all candidates. The best candidate in a clone group

is kept, the others rejected.

The Outside-In algorithm [36] exploits information from both COT and silicon. The

first step is tracking in the COT, which starts translating the measured drift times in
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hits positions: once all COT hit candidates in the event are known, the eight super-layers

are scanned looking for line segments. A line segment is defined as a triplet of aligned

hits which belong to consecutive layers. A list of candidate segments is formed and

ordered by increasing slope of the segment with respect to the radial direction so that high

momentum tracks will be given precedence. Once segments are available, the tracking

algorithm tries to assemble them into tracks. At first, axial segments are joined in a 2D

track and then stereo segments and individual stereo hits are attached to each axial track.

Outside-In algorithm takes COT tracks and extrapolates them into the silicon detectors,

adding hits vi a progressive fit. As each layer of silicon is encountered (going from the

outside in), a road size is established based on the error matrix of the track: currently,

it is four standard deviations big. Hits that are within the road are added to the track,

and the track parameters and error matrix are refit with this new information. A new

track candidate is generated for each hit in the road, and each of these new candidates are

then extrapolated to the next layer in, where the process is repeated. At the end of this

process, there may be many track candidates associated with the original COT track. The

candidate that has hits in the largest number of silicon layers is chosen as the real track:

if more than one candidate has the same number of hits, the χ2 of the fit in the silicon is

used to choose the best track.

3.2 Vertex Reconstruction

The position of the interaction point of the pp collision (primary vertex) is of

fundamental importance for event reconstruction. At CDF two algorithms can be use

for primary vertex reconstruction.

One is called PrimVtx [37] and starts by using the beam line z-position (seed vertex)

measured during collisions. Then the following cuts (with respect to the seed vertex

position) are applied to the tracks: |ztrk−zvertex| < 1.0 cm, |d0| < 1.0 cm, where d0 is track

impact parameter, and d0
σ

< 3.0, where σ is error on d0.
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Tracks surviving the cuts are ordered in decreasing pT and used in a fit to a common

vertex. Tracks with χ2 relative to the vertex greater than 10 are removed and the

remaining ones are fit again to a common point. This procedure is iterated until no

tracks have χ2 > 10 relative to the vertex.

The second vertex finding algorithm developed at CDF is ZVertexColl [38].

This algorithm starts from pre-tracking vertices (i.e., vertices obtained from tracks

passing minimal quality requirements). Among these, a lot of fake vertices are present:

ZVertexColl cleans up these vertices requiring a certain number tracks with pT > 300 MeV

be associated to them. A track is associated to a vertex if it is within 1 cm from silicon

standalone vertex (or 5 cm from COT standalone vertex). Vertex position z is calculated

from tracks positions z0 weighed by their error δ according to Equation 3–3.

z =

P
i

z0
i

δ2
iP

i
1
δ2
i

(3–3)

Vertices found by ZVertexColl are classified by quality flags according to the number

of tracks with silicon/COT tracks associated to the vertex. Associated COT tracks have

shown to reduce the fake rate of vertices thus higher quality is given to vertices with COT

tracks associated:

• Quality 0: all vertices

• Quality 4: at least one track with COT hits

• Quality 7: at least one track with COT hits, at least 6 tracks with silicon hits

• Quality 12: at least 2 tracks with COT hits

• Quality 28: at least 4 tracks with COT hits

• Quality 60: at least 6 tracks with COT hits

3.3 Jets Reconstruction

Jets are reconstructed by applying a clustering algorithm to calorimeter data. This

algorithm determines the number of jets in an event, their energies and directions.
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Each tower in the calorimeter is assigned a vector in the rηφ space: it originates in

the interaction point and points toward the tower energy barycenter. Its module is equal

to the total transverse energy of the tower. The tower barycenter is located at 6 radiation

lengths X0 for electromagnetic calorimeters and 1.5 interaction lengths λ for hadronic ones

(i.e., it is assumed that all energy has been released at the average depth of calorimeters).

Towers with ET > 1 GeV are ordered according to their decreasing energy and

adjacent towers are grouped in pre-clusters. A fixed radius cone is drawn around each

precluster in the η − φ plane (∆r =
p

∆η2 + ∆φ2); High multiplicity events have a smaller

value for radius (typically ∆r = 0.4), while a greater radius (∆r = 0.7) is chosen in other

cases. The cone axis is the vector with maximum module.

All vectors falling inside a cone are summed and the axis is estimated again. This

step is repeated until all vectors are assigned to a cone. Remaining vectors with ET > 1

GeV are associated to the cone containing them and the axis is estimated again until no

new vector is found inside the cone.

If two cone overlap, two solutions are possible, depending on how much is the

energy they have in common: if the less energetic one has more than 75% of its energy in

common with the other, the two comes are merged into a single one. Otherwise, they are

kept separated and common vectors are assigned to the closest cone in the η − φ plane.

Finally, summing all vectors in a cone, jet 4-momentum is computed in Equation 3–4

assuming that each vector corresponds to a massless particle that deposited all its energy

in the tower barycenter.

E =
X

i

(Ehad
i + Eem

i )

px =
X

i

(Ehad
i sinθhad

i + Eem
i sinθem

i )cosφi

py =
X

i

(Ehad
i sinθhad

i + Eem
i sinθem

i )sinφi

pz =
X

i

(Ehad
i cosθhad

i + Eem
i cosθem

i ) (3–4)
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Starting from the quantities in Equation 3–4, the jet transverse energy, transverse

momentum and pseudo-rapidity are calculated in Equations 3–5, 3–6 and 3–7.

PT =
q

p2
x + p2

y (3–5)

ET = PT
E

P
(3–6)

η = 0.5ln
E + pz

E − pz

(3–7)

The jet 4-momenta measured in the calorimeter suffer from intrinsic limits of

both calorimeter and jet algorithm. Different particles produce different responses

in calorimeters and some of them can fall in uninstrumented regions of the detector.

Moreover, calorimeter response to particle energies is non-linear. The jet clustering

algorithm, on the other hand, doesn’t take into account multiple interactions and

energy that can be radiated outside the fixed radius cone. For all these reasons, a set

of corrections has been developed in order to scale measured jet energy back to the energy

of the particle [39].

3.3.1 Relative Energy Scale Correction

Relative (or η-dependent) jet energy corrections [40] are applied to raw jet energies

to correct for non-uniformities in calorimeter response along η. Calorimeter response in

each η bin is normalized to the response in the region with 0.2 ≤ |η| ≤ 0.6, because this

region is far away from detector cracks and it is expected to have a stable response. The

correction factor is obtained using the dijet balancing method applied to dijet events.

This method starts selecting events with one out of two jets in the region 0.2 ≤ |η| ≤

0.6. This jet is defined as trigger jet. The other jet is defined as probe jet. If both jets

are in the region of 0.2 ≤ |η| ≤ 0.6, trigger and probe jet are assigned randomly. The

transverse momentum of two jets in a 2→2 process should be equal and this property is

used to calculate first a pT balancing fraction ∆pT f as shown in Equation 3–8.

∆pT f =
∆pT

pave
T

=
pprobe

T − ptrigger
T

(pprobe
T + ptrigger

T )/2
(3–8)
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Then a correction factor to make, on average, the probe jet scale equal to trigger is

calculated in Equation 3–9.

β =
pprobe

T

ptrigger
T

=
2 + ∆pT f

2−∆pT f
(3–9)

In Figure 3-1 we show the correction factor as a function of η for dijet data (black)

and for dijet Monte Carlo using Pythia as generator (red).

3.3.2 Multiple Interactions Correction

At current instantaneous luminosity and with 36 bunches, we expect on average

one hard interaction per beam crossing. However, in a fraction of events more than one

pp interaction can occur. Energy from these non overlapping minimum bias events may

fall into the jet clustering cone of the hard interaction causing thus a mis-measurement

of jet energy. A correction for this effect is extracted using a sample of minimum bias

events [41]: for each event, transverse energy ET inside cones of different radii (0.4,

0.7 and 1.0) is measured in a region far away from cracks (0.1 ≤ |η| ≤ 0.7): then, the

distribution of average ET as a function of the number of quality 12 vertices is fitted with

a straight line and the slope of the fitting lines are taken as correction factors (Figure 3-2).

3.3.3 Absolute Energy Scale Correction

A jet contains different types of particles with wide momentum spectra. Absolute

energy scale correction converts the calorimeter cluster transverse momentum pT to the

sum of transverse momenta of the particles in the jet cone [42]. The procedure to extract a

calorimeter-to-hadron correction factor is based on the following steps:

• use fully simulated CDF samples where particles have pT ranging from 0 to 600 GeV,

• cluster the calorimeter towers and the HEPG particles,

• associate calorimeter-level jets with hadron-level jets,

• parameterize the mapping between calorimeter and hadron-level jets as a function of
hadron-level jets,

• as a correction factor, extract the probabilities of measuring a jet with pcal
T given a jet

with fixed value of phad
T .
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In Figure 3-3 the absolute jet energy scale corrections for jets cone size of 0.4 as a

function of the jet momentum (blue). The uncertainty for this correction is also shown as

a function of the jet momentum (black).

3.3.4 Underlying Event Correction

In a hadron-hadron collision, in addition to the hard interaction that produces the

jets in the final state, there is also activity in the detector originating from soft spectator

interactions. In some event, the spectator interaction may be hard enough to produce

soft jets. Energy from the underlying event can fall in the jet cones of the hard scattering

process thus biasing jet energy measurements. A correction factor for such effect has been

calculated using a sample of minimum bias events as for multiple interaction correction,

but selecting only those events with one vertex [43]. For each event, transverse energy

ET inside cones of different radii (0.4, 0.7 and 1.0) is measured in a region far away from

cracks (0.1 ≤ |η| ≤ 0.7). The correction factor is extracted from the mean values of ET

distribution (Figure 3-4).

3.3.5 Out of Cone Correction

The jet clustering may not include all the energy from the initiating partons. Some

of the partons generated during fragmentation may fall outside the cone chosen for the

clustering algorithm. This energy must be added to the jet to get the parton level energy.

A correction factor is obtained using MC events [44]: hadron-level jets are matched to

partons if their distance in the η − φ plane is less than 0.1. Then the difference in energy

between hadron and parton jet is parameterized using the same method as for absolute

correction (Figure 3-5).

We have seen different corrections that account for different sources of jet energy

mis-measurement. Depending on the physics analysis, all of them or just a subset can be

applied. The corrections are applied to the raw measured jet momentum.

PT (R, PT , η) = (P raw
T (R)·fη(R, PT , η)−MI(R))·fabs(R, PT )−UE(R)+OOC(R,PT ) (3–10)
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In Equation 3–10, R is the clustering cone radius, PT is the raw energy measured in

the cone and η the pseudo-rapidity of the jet: fη,MI , fabs, UE and OOC are respectively

relative, multiple interactions, absolute, underlying event and out-of-cone correction

factors.

3.4 Leptons Reconstruction

3.4.1 Electrons

Being a charged particle, an electron traversing the detector first leaves a track in the

tracking system and then loses its energy in the electromagnetic calorimeter. So a good

electron candidate is made of a cluster in the electromagnetic calorimeter (central or plug)

and one or more associated tracks; if available, shower max cluster and preshower clusters

can help electron identification. The shower has to be narrow and well defined in shape,

both longitudinally and transversely. The ratio between hadronic and electromagnetic

energies has to be small and track momentum has to match electromagnetic cluster

energy [45].

3.4.2 Muons

Muons can leave a track in the tracking system and in the muon system, with little

energy deposition in the calorimeter. Muons are reconstructed using the information

coming from muon chambers (CMU, CMP, CMX, BMU) and muon scintillators

(CSP,CSX,BSU, TSU). The first provide measurements of drift time, which is then

converted to a drift distance (i.e., a distance from the wire to a location that the muon has

occupied in its flight, in the plane perpendicular to the chamber sense wire). Scintillators,

on the other hand, only produce timing information. The output of chambers and

scintillators produce muon hits. A muon track segment (a stub) is obtained by fitting

the muon hits. Finally, COT tracks are extrapolated to the muon chambers and matched

to muon stubs in the r − φ plane [46].
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3.4.3 Tau Leptons

Tau lepton can decay leptonic-ally into electron or muon (and the corresponding

neutrinos) or semileptonically into charged and neutral pions: the first case is not

distinguishable from a leptonic decay from W bosons, while the second has a precise

signature. Taus decay preferably into 1 or 3 charged pions and in most cases neutral

pions are present. So a well isolated jet with low track multiplicity and neutral pions is a

good tau candidate. The reconstruction procedure exploits information from calorimeter

and tracking systems. One looks for an isolated narrow cluster above a certain energy

threshold and then matches it to COT tracks.

3.4.4 Neutrinos

Neutrinos don’t leave any signature in the detector, but their presence can be inferred

from requiring momentum conservation in the plane transverse to the beam line. As

the mass of the neutrino is negligible, then its transverse energy can be expressed as the

opposite of the vector sum of all calorimetric towers.

�� ET = −
X

towers

(Eisinθi)�ni (3–11)

In Equation 3–11, Ei is the energy of the ith tower, θi is the polar angle of the line

pointing from the interaction point to the ith tower and �ni is the transverse unit vector

pointing from the interaction point to the center of the tower.

3.5 Photon Reconstruction

A photon traversing with the CDF detector leaves most of its energy in the

electromagnetic calorimeter and leaves a signature in the shower max detector without

a track pointing to it. Its identification algorithms start looking for clusters of energy

around a seed tower with energy greater than 3 GeV. Total energy of the hadronic towers

located behind the photon cluster has to be very small with respect to the electromagnetic

cluster. Photon cluster isolation is required: the difference between photon energy and the

energy in a cone of radius 0.4 around the seed tower has to be less than 15% of photon

60



energy. Moreover, the sum of transverse momenta of all tracks pointing to the 0.4 cone

should be less than 2 GeV/c. The line connecting the primary vertex to the shower max

position of the photon candidate determines the photon direction.

3.6 Bottom Quark Tagging

The hadrons produced by a b quark have two important properties: long lifetime

allowing it to travel before decaying and the possibility of semi-leptonic decay b → lνs.

Typically, the lifetime is about 1.5 ps for a hadron with an energy of about 40 GeV, so

the distance it travels if few millimeters. From these properties it is possible to construct

algorithms to tag jets if they are produced by b quarks. At CDF there are used three such

algorithms: the SecVtx algorithm, the JetProbability (JP) algorithm and the Soft Lepton

Tagging (SLT) algorithm.

3.6.1 SecVtx Algorithm

This algorithm [47] exploits the fact that the B hadron travels before it decays

and therefore the jet produced by it will contain a secondary vertex (Figure 3-6). The

algorithm starts from COT and silicon tracks inside a cone and as a first step, using as

discriminating variable their impact parameter, it removes tracks identified as KS, Λ or γ

daughters, or consistent with primary vertex or too far from it. Then a three dimensional

common vertex constrained fit is performed using two tracks: if χ2 < 50 the two tracks are

used as seed to find other tracks that point toward the same secondary vertex. If at least

three tracks are found to be compatible with a secondary vertex, the jet containing them

is considered a b-tag if it passes the following cuts:

• |Lxy| < 2.5 cm, where Lxy is the decay length of the secondary vertex; this cut helps
rejecting conversions from the first layer of SVXII;

• L
xy

σ
L

xy

> 3;

• if Mtrk is the invariant mass of the tracks, |mK
S

−Mtrk| > 0.01 GeV and |mΛ−Mtrk| >
0.006 GeV;

• |Lxy · (Mtrk/ptrk)| < 1 cm.
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The tags are classified depending on where the secondary vertex is located with

respect to the jet cone axis. Secondary vertices on the same side of the interaction point

as the jet cone axis are positive tags, otherwise they are labeled as negative tags. Negative

tags can arise from tracks mis-measurements.

3.6.2 Jet Probability Algorithm

This algorithm uses the information of the tracks associated to a jet to determine

the probability that the jet comes from the primary vertex [48]. The probability

distribution is uniformly distributed for a jet arising from the primary vertex, while

it shows a peak at zero for a long-lived jet (Figure 3-7). The probability is based on

track impact parameters and on their uncertainties. All tracks associated to the primary

vertex have equal probability to be either positively or negatively signed as far as their

impact parameter is concerned. The width of the impact parameter distribution from

these tracks is solely due to the tracking detector resolution and multiple scattering. A

long-lived particle will produce more tracks with positive impact parameter (Figure 3-8).

To minimize the contribution of mis-measured tracks, the final probability is computed

using the signed impact parameter significance (ratio of the impact parameter to its

measured error) instead of the parameter itself. Given a track with impact parameter

significance Sd0 , the probability that a track from a light quark has a larger value of Sd0 is

calculated. Combining probabilities for all tracks in a jet, one obtains the jet probability.

By construction, this probability is flat for jets coming from light quarks or peaked at zero

for those coming from heavy quarks.

3.6.3 Soft Lepton Tag Algorithm

This algorithm is based on the fact that about 20 % of b quarks decay to mons.

In general, muon identification relies on the presence of a stub in the muon chambers,

associated with a track and minimum ionization energy deposition in the calorimeter.

Muons coming from b quarks are not isolated so information from calorimeters can’t be

used. Moreover, multiple scattering of muons in the material of CDF detector has to be
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taken into account. This causes a deflection in the muon path that ranges from about a

few milimeters for a momentum of 2 GeV/c to about half a meter for a 50 GeV/c muon.

The SLT algorithm procedure can be divide in two steps [49].

First, the taggable tracks are found (i.e., tracks that could have been left by muons).

To take into account the fact that the muon might not have had enough energy to

reach the muon chambers, tracks whose momentum is lower than 2.8 GeV are rejected.

Moreover, it has to point to a volume limited by the physical edges of the muon chambers,

or a distance of 3 σMS inside/outside the physical edges. Here σMS is the standard

deviation of the maximum deflection expected from multiple scattering through the

material of the detector.

If a track is taggable and has a stub associated to it, the algorithm computes a

likelihood comparing all the available information about the muon candidate with the

expected values. Besides variables from muon detectors, for the likelihood one can use

also some track quality information, like the number of COT hits, the beam line-corrected

impact parameter and the track z0 position.

ηJet -3 -2 -1 0 1 2 3
ηJet -3 -2 -1 0 1 2 3

β
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trig/Ptprobe = Ptβ

jet50 data 5.3.1pre2
dijet50 MC 5.3.1pre2

R = 0.4

CDF Run 2 Preliminarytrig/Ptprobe = Ptβ

Figure 3-1. Correction factor as a function of η for dijet data (black) and for dijet Monte
Carlo using Pythia as generator (red). The jets were reconstructed with a cone
of 0.4.
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Figure 3-2. Average transverse energy as a function of the number of primary vertices in
the event: a correction factor is extracted from the slope of the fitting line.
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Figure 3-3. Absolute jet energy scale corrections for jets with cone size of 0.4 as a function
of the jet momentum (blue). The uncertainty for this correction is also shown
as a function of the jet momentum (black).
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Figure 3-6. Schematic view of an event containing a jet with a secondary vertex.

Figure 3-7. Jet probability distribution for prompt, charm and bottom jets.
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Figure 3-8. Signed impact parameter distribution for tracks from primary vertex (left) and
from secondary vertex (right).
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CHAPTER 4
DESCRIPTION OF THE MATRIX ELEMENT MACHINERY

In this section we will present in detail how the matrix element is calculated and used

in our analysis. The matrix element is used to calculate the a priori probability density for

an event to be the result of the tt̄ Standard Model production and decay at a given pole

mass Mtop. We will dedicate a section for the general expression of the probability density,

one section discussing the combinatorics, another for the matrix element calculation,

another for the transfer functions, another on the transverse momentum of the tt̄ system,

and in the final section of this chapter we will put together the final expression of the

probability density with its implementation details.

4.1 Probability Density Definition

Given an event defined by a set of six observables (i.e., jets) one can compute the

elementary cross-section at a given top mass m as if the event were the result of tt̄

production followed by the all hadronic decay as given by Equation 4–1.

dσ(m, j) =

Z
dzadzbf(za)f(zb)

4EaEb|va − vb|
|M(m, j)|2(2π)4δ(4)(Efin − Eini)

6Y

i=1

∑
d3�ji

(2π)32Ei

∏
(4–1)

In Equation 4–1, j is a generic notation by which we understand all six 4-momenta

describing the final state; za(zb) is the fraction of the proton(anti-proton) momentum

carried by the colliding partons; f(za) and f(zb) stand for the parton distribution

functions for proton and for anti-proton respectively; M(m, j) is the matrix element

corresponding to the all hadronic tt̄; Efin is a generic notation for the 4-vector of the final

state, and similarly for the initial state we use Eini.

If the elementary cross-sections from a group of events are added up we should obtain

a fraction of total tt̄ cross-section, σtot(m), for top mass m as shown in Equation 4–2.

σ(m) =

Z
dσ(m, j) = σtot(m)�(m) (4–2)
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where �(m) represents the fraction of events considered. In practice we use only a fraction

of the events, namely those passing certain selection criteria.

At this point, we can define a probability density for each event. This is nothing

but the normalized elementary cross-section without the d3j measure as given by

Equation 4–3.

P (j|m) =

Z
dzadzbf(za)f(zb)

4EaEb|va − vb|
|M(m, j)|2(2π)4δ(4)(Efin − Eini)

σtot(m)�(m)

6Y

i=1

∑
1

(2π)32Ei

∏
(4–3)

The quantity P (j|m)
Q6

i=1 d3�ji will be the probability for an event defined by the

set of six jets (i.e., six 4-momenta) to be the result of tt̄ production followed by an all

hadronic decay for top mass m.

So far we didn’t worry about how accurately we can determine the six 4-momenta.

In reality, the final state partons which are observed as jets in the detector, can be

mis-measured. We can account for this using our tt̄ Monte Carlo samples and determine a

probability for a parton with 4-momentum p to be observed as a jet with 4-momentum j.

This new probability is called TransferFunction TF (�j|�p) and all the technical details on

how we determine them will be presented in section 4.4.

Since we don’t know what is the parton 4-momentum that generated a given jet

4-momentum we have to consider all possibilities and integrate over them weighed by the

transfer functions. The Equation 4–3 can be rewritten as in Equation 4–4.

P (j|m) =
1

σtot(m)�(m)

Z
dzadzbf(za)f(zb)

4EaEb|va − vb|

Z 6Y

i=1

∑
d3�pi

(2π)32Ei

∏
|M(m, p)|2 ×

×TF (�j|�p)(2π)4δ(4)(Efin − Eini) (4–4)

The parton configurations integrated over in Equation 4–4 are weighed by the

transfer functions so that those more likely to produce a given 6-jets event are enhanced.

Ideally the tt̄ phase space should be enhanced as well and not diminished. In order to

enforce this last aspect of the integration, we introduce an additional weight, PT (�p),

that follows the shape of the transverse momentum of the tt̄ system. This last weight
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is also determined with the help of a Monte Carlo sample and we’ll offer more details

in section 4.5. Therefore the new expression for the probability density is shown in

Equation 4–5.

P (j|m) =
1

σtot(m)�(m)

Z
dzadzbf(za)f(zb)

4EaEb|va − vb|

Z 6Y

i=1

∑
d3�pi

(2π)32Ei

∏
|M(m, p)|2 ×

×(2π)4δ(4)(Efin − Eini)TF (�j|�p)PT (�p) (4–5)

Even though a tt̄ event in the all hadronic final state is fully reconstructed, there is

an ambiguity in assigning the jets to the partons. Therefore all the possible combinations

are considered and their contributions averaged. The number of possible assignments

depends on the topology of the event and this will be discussed in section 4.2. Until then

the Equation 4–6 gives the most general expression of the probability density.

P (j|m) =
1

σtot(m)�(m)Ncombi

X

combi

Z
dzadzbf(za)f(zb)

4EaEb|va − vb|

Z 6Y

i=1

∑
d3�pi

(2π)32Ei

∏
×

×|M(m, p)|2(2π)4δ(4)(Efin − Eini)TF (�j|�p)PT (�p) (4–6)

4.2 Combinatorics

In general, there are 6! = 720 ways to assign the observed jets to the six partons of

the final state in an all hadronic tt̄ process. This number can be reduced by making few

observations and assumptions.

First, one has to notice that the matrix element is symmetric to t ↔ t. Let’s write

down in Equation 4–7 the spin averaged matrix element squared for the process uū→ tt̄.

1

4

X

spins

|M|2 =
g4

s

288(pu + pu)4
Tr[γµ(� pu +mu)γ

ν(� pu−mu)]Tr[γµ(� pt−mt)γν(� pt +mt)] (4–7)

Assuming that the masses of the up quarks are zero and omitting the constant and

the gluon propagator term, we can write Equation 4–8.

1

4

X

spins

|M|2 ≈ Tr[γµ � puγ
ν � pu]Tr[γµ(� pt −mt)γν(� pt + mt)] (4–8)
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After using the properties of the gamma matrices and the full trace technology, we are

left with the expression in Equation 4–9.

1

4

X

spins

|M|2 ≈ 32(pu · pt)(pu · pt) + 32(pu · pt)(pu · pt) + 32m(pu · pu) (4–9)

From Equation 4–9 the t ↔ t symmetry is evident. This should hold for the matrix

element of the process containing the decay of the top quarks since this symmetry reflects

the invariance to the charge conjugation of the strong interaction. This symmetry can be

translated into a symmetry to b ↔ b once we consider all possible b-W pairings for each

top quark: {t = (b1,W1), t = (b2, W2)}, {t = (b1,W2), t = (b2,W1)}. It is obvious that

swapping the b’s is equivalent with swapping the top quarks.

In conclusion, due to the t↔ t symmetry the total number of combinations is reduced

to 360. Secondly, if any of the jets can be identified as a heavy flavor jet we can assume

that jet to be produced by a b-quark. This assumption results in a factor of 3 reduction

of the total number of combinations, down to 120 (or 5!). If there is an additional heavy

flavor jet, we get a factor of 5 reduction down to 24 (or 4!). If there are more than two

heavy flavor jets, we will assign to a b-quark only the two jets with the highest transverse

energy since we expect the b-quarks to be more energetic than the W -boson decay

products. The Equation 4–10 summarizes the possible values for Ncombi.

Ncombi =

8
>>>><

>>>>:

360, for 0 b−tags

120, for 1 b−tags

24, for 2 b−tags

(4–10)

4.3 Calculation of the Matrix Element

In this analysis we use the matrix element describing the process uū → tt̄ → bb̄uūdd̄.

As far as the incident partons are concerned, the dd̄ annihilation and the gluon-gluon

fusion should be considered as well. For the energy at the Tevatron the gluon-gluon fusion

is about 15%, and of the remaining contributions the uū dominates at 90%. In a sample
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with only gluon-gluon fusion we reconstructed the top mass using an only uū matrix

element and we didn’t observe any bias. We concluded that using uū in the initial state

should be sufficient for mass reconstruction.

For the final state, having a W boson decay into a ud pair or a cs pair doesn’t make

a difference. The other decays are suppressed via the CKM matrix. Therefore all we need

to do is calculate the matrix element for the case when both W bosons decay into ud pairs

and multiply by 4 in the expression of the probability density given in Equation 4–6.

The invariant amplitude for the process uū → tt̄ → bb̄uūdd̄ is given below as a

product of several factors as shown in Equation 4–11.

iM = A · C(ij → kl) · I · Pg · T · Pt · Pt ·W1 · PW1 ·W2 · PW2 (4–11)

All the terms entering the invariant amplitude shown in Equation 4–11 are detailed

by the Equation 4–12.

A =
−ig2

sg
4
W

28

C(ij → kl) = λa
ijλ

b
kl

I = v(pu)γ
µu(pu)

Pg =
1

(pu + pu)2 + i�

T = u(pb)γ
α(1− γ5)(� pt + m)γµ(� pt + m)γρ(1− γ5)v(pb)

Pt =
1

p2
t −m2 + imΓt

Pt =
1

p2
t
−m2 + imΓt

W1 = u(qu)γα(1− γ5)v(qd)

PW1 =
1

P 2
W+
−M2

W + iMW ΓW

W2 = u(qd)γρ(1− γ5)v(qu)

PW2 =
1

P 2
W−
−M2

W + iMW ΓW

(4–12)
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The term A is a constant representing the product of all constants present in the

vertex terms and the propagator terms of the process uū → tt̄ → bb̄uūdd̄. We will omit

this term in the actual calculation since only the top mass dependent terms are useful.

The term C(ij → kl) is the color term with ij being the colors of the uū pair and

kl being the colors of the tt̄ pair. λa
ij and λb

kl are the Gell-Mann SU(3) matrices with

a, b = 1, 2, . . . , 8. For completeness we will average over the initial state colors and sum

over the final state colors, but we will ignore this constant as well in the final expression of

the probability density for the same reason given for term A.

The term I represents the uū and gluon vertex. The term Pg is the denominator of

the gluon propagator between uū and tt̄.

The term T is the product of the tt̄g, tbW+ and tbW− vertices with the numerators

of the top quark and the antitop quark propagators. The terms Pt and Pt are the

denominators of the top quark and the antitop quark propagators.

The terms W1 and W2 represent the W+ud and W−du vertices. The terms PW1 and

PW2 are the denominators of the W+ and W− propagators. We have used the Feynman

gauge for the W boson propagator.

The Dirac gamma matrices γµ are defined in the Dirac representation as shown in

Equation 4–13, where σµ = (1,�σ) and σµ = (1,−�σ). �σ are the Pauli spin matrices.

γµ =

0

B@
0 σµ

σµ 0

1

CA , γ5 =

0

B@
−1 0

0 1

1

CA (4–13)

In general, the solutions of the Dirac equation for positive frequencies, u(p), and for

negative frequencies, v(p), for any spin states ξ (or η for antiparticles) can be written as in

Equation 4–14.

u(p) =

0

B@
√

p · σ ξ

√
p · σ ξ

1

CA , v(p) =

0

B@
√

p · σ η

−
√

p · σ η

1

CA (4–14)
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In the high-energy limit (or the massless limit) the solutions to the Dirac equation

can be written as in Equation 4–15.

u(p) =
p

2Ep

0

B@
1
2(1− p̂ · �σ)ξ

1
2(1 + p̂ · �σ)ξ

1

CA , v(p) =
p

2Ep

0

B@
1
2(1− p̂ · �σ)η

−1
2(1 + p̂ · �σ)η

1

CA (4–15)

The presence of the operator p̂ · �σ will project the spin states along the direction

of movement defined by p̂. For a particle traveling in the direction defined by the polar

angle θ and by the azimuthal angle φ, the spin states along this direction are shown in

Equation 4–16.

ξ(↑) =

0

B@
cos θ

2

eiφsin θ
2

1

CA , ξ(↓) =

0

B@
−e−iφsin θ

2

cos θ
2

1

CA (4–16)

For an antiparticle we have that η(↑) = ξ(↓) and η(↓) = −ξ(↑). These spin states

satisfy the Equation 4–17.
8
><

>:

(p̂ · �σ)ξ(↑) = ξ(↑) and (p̂ · �σ)ξ(↓) = −ξ(↓)

(p̂ · �σ)η(↑) = −η(↑) and (p̂ · �σ)η(↓) = η(↓)
(4–17)

Using Equations 4–15 and 4–17, we can rewrite in Equation 4–18 the 4-vectors W1

and W2 from Equation 4–12.

W1 = u(qu)γα(1− γ5)v(qd) = 2
p

2Eu

p
2Ed ξ†u(↓) σα ξd(↓) = (W1)α

W2 = u(qd)γρ(1− γ5)v(qu) = 2
p

2Ed

p
2Eu ξ†d(↓) σρ ξu(↓) = (W2)ρ (4–18)

Also the tensor in term T from Equation 4–12 can be rewritten in the form given by

Equation 4–19.

T = 4
p

2Eb

p
2Eb

µ
ξ†b(↓) σα 0

∂
(� ptγµ � pt + m2γµ)

0

B@
0

σρ ξ†
b
(↓)

1

CA (4–19)

We assume that the incoming partons travel along the z-axis, with the proton going

in the positive direction. For the final expression of the probability density given in
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Equation 4–6, we will need to sum over all the possible spin configurations of the initial

state. We find two non-zero contributions corresponding to the situations when the

incoming partons have the same handedness. Therefore for the term I from Equation 4–12

is expressed in Equation 4–20.

I = v(pu)γ
µu(pu) =

8
><

>:

Iµ
RR =

p
2Ein

u

p
2Ein

u (0, 1, i, 0)

Iµ
LL =

p
2Ein

u

p
2Ein

u (0, 1,−i, 0)
(4–20)

In principle, we need to average over all the possible spin configurations of the

final state. The Equations 4–18 and 4–19 represent the non-zero contributions. Using

Equations 4–18, 4–19 and 4–20, the product of the terms I, T , W1 and W2 is given in

Equation 4–21.

I · T ·W1 ·W2 = E ×MRR,LL (4–21)

From Equation 4–21, the term E proportional to the product of the energies of all

particles, incoming or outgoing, is shown in Equation 4–22.

E = 24
p

2Eb

p
2Eb

p
2Eu

p
2Ed

p
2Ed

p
2Eu

p
2Ein

u

q
2Ein

u (4–22)

MRR,LL =

µ
ξ†b(↓) (W1 · σ) 0

∂
(� pt � IRR,LL � pt + m2 � IRR,LL)

0

B@
0

(W2 · σ) ξ†
b
(↓)

1

CA (4–23)

The terms MRR and MLL, shown in Equation 4–23, are calculated in a C++ code

using Equation 4–15 and the matrix algebra. Therefore we can write down the expression

of the matrix element squared from Equation 4–6 in the form of Equation 4–24.

|M|2 → 1

26

X

spins
colors

|M|2 =
|A|2 · C · |E|2

26
fPg · ePt · ePt · gPW1 · gPW2 · (|MRR|2 + |MLL|2) (4–24)
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The factors entering the final expression of the matrix element squared from

Equation 4–24 are detailed in Equation 4–25.

C =
1

9

3X

i,j,k,l=1

λa
ijλ

a
kl × 36 = 2× 34

fPg = |Pg|2 =
1

(pu + pu)4

ePt = |Pt|2 =
1

(p2
t −m2)2 + m2Γ2

t

ePt = |Pt|2 =
1

(p2
t
−m2)2 + m2Γ2

t

gPW1 = |PW1|2 =
1

(P 2
W+
−M2

W )2 + M2
W Γ2

W

gPW2 = |PW2|2 =
1

(P 2
W−
−M2

W )2 + M2
W Γ2

W

(4–25)

4.4 Transfer Functions

These functions are defined as the probability for a parton of energy Ep to be

associated to a jet of energy Ej. The transfer functions term present in Equation 4–6 is

in fact a product of six terms, one for each of the final state quarks: two for the b-quarks

and four for the decay products of the W -boson. The probability density for the transfer

functions is given in Equation 4–26.

TF (�j|�p)→
6Y

i=1

TF (�ji|�pi) (4–26)

For each jet in the final state we assume that the jet angles are in fact the angles of

the parton that went on to form the jet. Therefore we can write Equation 4–27 to express

the transfer functions in a more general way.

TF (�ji|�pi) = TF (ji|pi) j2
i δ(2)(ΩJ

i

− ΩP
i

) (4–27)

The transfer function depends both on the jet energy and on the parton energy. This

bi-dimensional dependence can be projected either on the jet axis to obtain the jet-to-

parton type of transfer functions or on the parton axis to obtain the parton-to-jet type.

76



We use the second type, parton-to-jet. That is for a given parton energy p we build a

probability to produce a jet of energy j normalized as shown in Equation 4–28.

Z
TF (�ji|�pi)d�ji = 1 =

Z
TF (ji|pi) j2

i dji (4–28)

In order to assure Lorentz invariance for transfer functions we will make a change of

variables j → ξ = 1 − j/p. Therefore the transfer functions we will use are gTF (ξi|pi) and

Equation 4–29 gives their normalization.

Z
gTF (ξi|pi)dξi = 1 =

Z
gTF (ξ(ji)|pi)

−1

pi

dji (4–29)

We can write the Equation 4–26 again with the full expression entering Equation 4–6

holding the probability density for the tt̄ all hadronic process.

TF (�j|�p)→
6Y

i=1

TF (�ji|�pi) =
6Y

i=1

gTF (ξ(ji)|pi)
−1

pi

δ(2)(ΩJ
i

− ΩP
i

) (4–30)

The transfer functions gTF (ξi|pi) are built using tt Monte Carlo samples. More

exactly, a jet is associated to a parton if its direction is within a cone of ∆R = 0.4 around

the parton direction. We say that a jet is matched to the parton if no other jet should

satisfy this geometrical requirement. We call an event as being a matched event if each

of the six partons in the final state has a different jet matched to it. Of all the tt Monte

Carlo events passing the kinematical selection defined later in section 5, about 50% are

matched events.

The jets formed by the decay partons of the W -bosons have a different energy

spectrum than the jets originating from the b-quarks. Thus we form different sets of

transfer functions depending on the flavor of the parton the jet has been matched to.

The transfer functions are described using a parameterization in bins of the parton

energies and of the parton pseudo-rapidities. Table 4-1 shows the definition of the binning

in pseudo-rapidity. The same definition holds for b-jet transfer function and for W -jets

transfer functions.

77



The binning in parton energy is defined such that each bin contains at least 3000

entries and it is wider than 5 GeV. This is done in each bin of pseudo-rapidity. Table 4-2

shows the definition of energy binning for the b-jets transfer functions, while Table 4-3 is

for the W -jets transfer functions.

In each bin the transfer function is represented by the distribution of the variable

1 − Ejet/Eparton. The shape of this distribution is fitted to the sum of two gaussians.

Appendix C holds the fitted shapes.

4.5 Transverse Momentum of the tt̄ System

The PT (�p) weight is written as dependent on the 4-vectors of the partons in the final

state, generically represented by �p in the argument of the function. This dependence is

difficult to parameterize. Therefore we will pick a more natural set of parameters to work

with. In the next section we will detail the change of variables needed to accommodate

this simplification. Until then we anticipate that the variables used for integration in

Equation 4–6 are p6
x and p6

y, representing the projections of the transverse momentum of

the tt̄ system along the x and y axes. The probability density related to the transverse

momentum of the tt̄ system weight is shown in Equation 4–31.

PT (�p)→ PT (p6
x, p

6
y) (4–31)

The parameters we actually use are the magnitude of the transverse momentum of the

tt̄ system, p6
T , and the azimuthal angle, φ6

T . The upper index means that these parameters

are determined using the 6 partons in the final state. We expect to have a flat dependence

on φ6
T and therefore we can factorize the two dependences. The Equation 4–32 gives the

normalization relation.

Z
dp6

T dφ6
T P̂T (p6

T ,φ6
T ) = 1 =

Z
dp6

T
ePT (p6

T )

Z
dφ6

T Φ6
T (4–32)

The transverse momentum spectrum of the tt̄ events, represented by ePT (p6
T ) in the

Equation 4–32, is obtained from a tt̄ Monte Carlo sample with Mtop = 178 GeV. The
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shape of this distribution is normalized to unity and therefore we have in Equation 4–33

the value for Φ6
T . Z

dp6
T

ePT (p6
T ) = 1 , Φ6

T =
1

2π
(4–33)

As mentioned before we need to express everything in terms of p6
x and p6

y. This can be

done just by changing the variables from the polar to the Cartesian coordinates as shown

in Equation 4–34.

Z
dp6

T dφ6
T

ePT (p6
T )

1

2π
= 1 =

Z
dp6

xdp6
y

ePT

≥
p6

T =
q

(p6
x)

2 + (p6
y)

2
¥

q
(p6

x)
2 + (p6

y)
2

1

2π
=

=

Z
dp6

xdp6
yPT (p6

x, p
6
y) (4–34)

We can now write in Equation 4–35 the full expression of the transverse momentum of

the tt̄ system weight.

PT (�p)→ PT (p6
x, p

6
y) =

ePT

≥
p6

T =
q

(p6
x)

2 + (p6
y)

2
¥

q
(p6

x)
2 + (p6

y)
2

1

2π
(4–35)

The shape of ePT (p6
T ) has a slight dependence on the top mass, but it turns out that

choosing the shape obtained with Mtop = 178 GeV doesn’t introduce a significant bias in

the final mass reconstruction. See Appendix B for the mass dependence of this shape. In

Figure 4-2 the shape of the transverse momentum of the tt̄ events is shown fitted to a sum

of 3 gaussians.

4.6 Implementation and Evaluation of the Probability Density

The last expression of the probability density was given by Equation 4–6. The

sections 4.3, 4.4 and 4.5 offered details on the expressions of several important pieces

entering the probability density. Using Equations 4–24, 4–30 and 4–35, we can write in

Equation 4–36 the new expression for the probability density.
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P (j|m) =
X

combi

Z
dzadzbf(za)f(zb)

4EaEb|va − vb|

Z 6Y

i=1

∑
d3�pi

(2π)32Ei

∏
(2π)4δ(4)(Efin − Eini)

σtot(m)�(m)Ncombi

×

× |A|
2 · C · |E|2

26
fPg · ePt · ePt · gPW1 · gPW2 · (|MRR|2 + |MLL|2)×

×
6Y

i=1

∑
(−gTF (ξ(ji)|pi))

pi

δ(2)(ΩJ
i

− ΩP
i

)

∏
·

ePT

≥
p6

T =
q

(p6
x)

2 + (p6
y)

2
¥

2π
q

(p6
x)

2 + (p6
y)

2
(4–36)

As mentioned previously, we will not use any constant that can be factored out in

the expression of the probability density. From now on we will omit all such constants

except for the number of combinations, Ncombi. Also in the argument of ePT we will put

just p6
T , but it should be understood

q
(p6

x)
2 + (p6

y)
2 which in turn should be understood

as a function of the 4-vectors of the final state partons.

We will move to spherical coordinates in the integration over the partons momenta.

Due to the assumption that the angles of the partons are known as the measured angles

of the jets, made explicit by the delta functions, δ(2)(ΩJ
i

− ΩP
i

), all the integrals after the

angles will be dropped together with the aforementioned delta functions. Also we use ξi

instead of ξ(ji) in the argument of gTF .

One should notice that |E|2 is divided out by the energy factors in the denominator

as seen in Equation 4–37.

P (j|m) =
X

combi

Z
dzadzbf(za)f(zb)

|va − vb|σtot(m)�(m)Ncombi

Z 6Y

i=1

∑
dpi pi

gTF (ξi|pi)

∏
×

×
ePT (p6

T )

p6
T

· fPg · ePt · ePt · gPW1 · gPW2 · (|MRR|2 + |MLL|2) · δ(4)(Efin − Eini) (4–37)

To reduce the number of integrals we will work in the narrow width approximation for

the W -bosons. This translates in two more delta functions arising from the square of the

W -boson propagators as shown by Equation 4–38.

fPW =
1

(P 2
W −M2

W )2 + M2
W Γ2

W

Γ
W

�M
W−→ δ(P 2

W −M2
W )

π

MW ΓW

(4–38)
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Considering the high-energy limit, we have that the invariant mass of the W -boson

decay products is given by Equation 4–39. Ω1,2 is a generic notation for the polar, θ1,2,

and the azimuthal, φ1,2, angles of the two decay products. ∆η12 is the difference in

pseudo-rapidities of the two decay partons and ∆φ12 = φ1 − φ2.

P 2
W = 2p1p2sinθ1sinθ2(cosh∆η12 − cos∆φ12) = 2p1p2ω12(Ω1, Ω2) (4–39)

Making the change of variables P 2
W → p1, the Equation 4–38 can be written as a

delta function depending on the energy of one of the W -boson decay partons as shown in

Equation 4–40, where p0
1 = M2

W /(2p2ω12).

fPW
Γ

W

�M
W−→ π

MW ΓW

1

2p2ω12(Ω1, Ω2)
δ(p1 − p0

1) (4–40)

The mass of the W -boson is 80.4 GeV and its width is 2.1 GeV. Without these

new constants and using the expression from Equation 4–40 for both W -boson squared

propagators, we can write in Equation 4–41 the probability density.

P (j|m) =
X

combi

Z
dzadzbf(za)f(zb)

|va − vb|σtot(m)�(m)Ncombi

Z
dpbdpbdp2dp4

pbpb

p2p4

ePT (p6
T )

p6
T

×

×
6Y

i=1

∑
gTF (ξi|pi)

∏
· fPg · ePt · ePt ·

(|MRR|2 + |MLL|2)
(ω12)2(ω34)2

· δ(4)(Efin − Eini) (4–41)

When we calculated the matrix element in section 4.3 we assumed that the incoming

partons were traveling along the z-axis. This means their transverse momentum is zero.

Therefore the energy conservation is violated in the transverse coordinates since based

on Figure 4-2 we considered non-zero transverse momentum for the tt̄ system. However,

we expect this to be a small effect covered by the uncertainty on the parton distribution

functions of the proton and of the antiproton. Anyway, we need ignore the delta functions

requiring energy conservation along the x and y axes as shown in Equation 4–42.

81
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¢
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(4–42)

In Equation 4–41, we made the change of variables za → pu and zb → pu given

that za = pu/pproton and zb = pu/pantiproton. The values of the proton and antiproton

momenta, pproton and pantiproton, are constant and from now on we will drop them from any

expressions. In the high-energy limit we will have |va − vb| = 2c and therefore we will omit

this term as well. In preparation for this change of variables, we write in Equation 4–43

the expression for the energy-conserving delta function, where p0
u =

P6
i=1 pi(1 + cosθi)/2

and p0
u =

P6
i=1 pi(1− cosθi)/2.

δ(4)(Efin − Eini)→ δ
°
pu + pu −

6X

i=1

pi

¢
δ
°
pu − pu −

6X

i=1

picosθi

¢
=

=
1

2
δ(pu − p0

u)δ(pu − p0
u) (4–43)

Using all of the above, the expression for the probability density is given by

Equation 4–44 in an almost final form.

P (j|m) =
1

σtot(m)�(m)Ncombi

X

combi

Z
dpbdpbdp2dp4

pbpbf(p0
u)f(p0

u)

(ω12)2(ω34)2p2p4
×

×
6Y

i=1

∑
gTF (ξi|pi)

∏
·

ePT (p6
T )

p6
T

· fPg · ePt · ePt · (|MRR|2 + |MLL|2) (4–44)

In section 4.5, we announced our preference to integrate over the x and y components

of the momentum of the tt̄ system. That is accomplished by a last change of variables

{pb, pb}→ {p6
x, p

6
y} whose Jacobian, J(b→ 6), is given by Equation 4–45.

J(b→ 6) =
1

sinθbsinθb(cosφbsinφb − sinφbcosφb)
(4–45)
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The Jacobian is obtained by solving a system of equations for pb and pb. The relations

entering the system of equations are shown in Equation 4–46.
8
><

>:

p6
x = pbcosφbsinθb + pbcosφbsinθb +

P6
i=3 px

i

p6
y = pbsinφbsinθb + pbsinφbsinθb +

P6
i=3 py

i

(4–46)

We can then write in Equation 4–47 the expression of the probability density in its

final form which is used inside a C++ code.

P (j|m) =
X

combi

Z
dp6

xdp6
ydp2dp4

σtot(m)�(m)Ncombi

J(b→ 6)pbpbf(p0
u)f(p0

u)

(ω12)2(ω34)2p2p4
×

×
6Y

i=1

∑
gTF (ξi|pi)

∏
·

ePT (p6
T )

p6
T

· fPg · ePt · ePt · (|MRR|2 + |MLL|2) (4–47)

The integration is performed by simply giving values to the 4 integration variables

and then by adding up the integrand obtained at each step. The limits of the integration

are -60 GeV → 60 GeV for p6
x,y and 10 GeV → 300 GeV for p2,4. The step of integration is

2 GeV. Given these limits, at each step of integration we have to check the physicality of

the components entering Equation 4–47. The probability density is evaluated for top mass

values going in 1 GeV increments from 125 GeV → 225 GeV.

The dependence on mass of the tt cross-section is obtained from values calculated by

CompHep Monte Carlo generator for the processes uu → tt, dd → tt and gg → tt. The

absolute values for these cross sections are not as important as their top mass dependence.

Figure 4-1 shows this dependence.

For the proton and antiproton PDF, f(p0
u)f(p0

u), we will use the CTEQ5L distributions

with the scale corresponding to 175 GeV. The shapes are given in Appendix A. The tt

acceptance, �(m), depends on the top mass and will be described later when the event

selection is addressed.

The final expression of the probability density has been given and its implementation

has been detailed. The following section is dedicated to the checks we performed in order

to assure the proper functionality of the matrix element technique.
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4.7 Checks of the Matrix Element Calculation

The event probability described in the section 4.6 depends on the top quark pole mass

and is expected to be minimized in negative log scale around the true masses in the event.

Multiplying all the event probabilities we obtain a likelihood function that depends on the

top pole mass. Equation 4–48 shows the expression of the likelihood.

L(Mtop) =
Y

events

P (j|Mtop) (4–48)

In negative log scale this likelihood is expected to have a minimum around the true

pole mass, and so the top mass reconstruction can be performed. This reconstruction

is the traditional matrix element top mass reconstruction. However, we only use this

reconstruction to check the matrix element calculation.

We use Monte Carlo samples generated at various input top masses. Only signal

events are used. For each sample, the reconstructed top mass done by using only the

matrix element calculation can be plotted against the input top mass. This can be done

at various levels of complexity. Ideally, we’d see a linear dependence with no bias and a

unitary slope.

The first check to do is at the parton level. We take the final state partons momenta

from our Monte Carlo, smear their energies and use them as jets momenta. Figure 4-5

shows a good linearity in the case of a 5% uniform smearing. There is a small bias of

about 0.8 GeV, but the slope is consistent with 1. As the smearing is increased the bias

becomes more evident, and slope degrades slightly. This can be also seen in Figure 4-5

for 10% smearing and for 20% smearing, respectively. In all of these situations a gaussian

centered on 0 and with width equal to the amount of smearing used has been employed as

a transfer function in the event probability computation.

The partons can also be smeared using the functions described in section 4.4, in

which case the same functions are used as transfer functions in the event probability

computation. This test makes the transition between the parton level to the jets level,
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although it’s still a parton level check. Figure 4-5 shows the linearity check in this case as

well.

The next check is moving closer to reality by using in the reconstruction the jets

that have been matched to the partons. This is already a check at the jets level and the

functions defined in section 4.4 have to be used. Figure 4-6 shows the linearity check.

The final check is the most realistic we can get using only signal events, and that is

we use all the events we have with disregard to whether the jets have been matched or not

to the partons. Figure 4-7 shows the linearity check in this case.

All the checks we have listed above show the good performance of our matrix element

calculation. In general, the traditional matrix element approach is expected to provide

a better statistical uncertainty on the top mass than the template analyses. In the case

of the present analysis, the traditional matrix element method does better only the

reconstruction is performed on signal samples. When the background is mixed in, the

template method we use has a greater sensitivity.

u

u
g

t

t

Figure 4-1. Tree level Feynman diagram for the process uū→ tt̄

Table 4-1. Definition of the binning of the parton pseudo-rapidity for the parameterization
of the transfer functions.

Bin |η|
1 0→ 0.7
2 0.7→ 1.3
3 1.3→ 2.0
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Table 4-2. Definition of the binning of the parton energy for the b-jets transfer functions
parameterization.

Bin 0 ≤ |η| < 0.7 0.7 ≤ |η| < 1.3 1.3 ≤ |η| ≤ 2.0
1 10→ 53 10→ 83 10→∞
2 53→ 64 83→ 111
3 64→ 74 111→∞
4 74→ 85
5 85→ 97
6 97→ 114
7 114→∞

u

u
g

t

t

+W

b

b

-W

u

d

d

u

Figure 4-2. Tree level Feynman diagram for the process uū→ tt̄→ bb̄uūdd̄
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Table 4-3. Definition of the binning of the parton energy for the W -jets transfer functions
parameterization.

Bin 0 ≤ |η| < 0.7 0.7 ≤ |η| < 1.3 1.3 ≤ |η| ≤ 2.0
1 10→ 32 10→ 50 10→ 98
2 32→ 38 50→ 63 98→∞
3 38→ 44 63→ 76
4 44→ 49 76→ 90
5 49→ 54 90→ 108
6 54→ 59 108→∞
7 59→ 64
8 64→ 69
9 69→ 75

10 75→ 81
11 81→ 89
12 89→ 99
13 99→ 113
14 113→∞
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Figure 4-3. Cross section for tt production as a function of the top mass, as obtained from
CompHep. The line is not a fit.
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Figure 4-4. Transverse momentum of the tt events. The fit is a sum of 3 gaussians.
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Figure 4-5. Reconstructed top mass versus input top mass at parton level. A) The
energies of the partons have been smeared by 5%. B) The energies of the
partons have been smeared by 10%. C) The energies of the partons have been
smeared by 20%. D) The energies of the partons have been smeared using the
transfer functions.
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Figure 4-5. Continued
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Figure 4-6. Reconstructed top mass versus input top mass using jets that were uniquely
matched to partons.
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Figure 4-7. Reconstructed top mass versus input top mass using realistic jets.
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CHAPTER 5
DATA SAMPLE AND EVENT SELECTION

5.1 Data and Monte Carlo Samples

The data events are the Run2 CDF multi-jet events selected with the TOP MULTIJET

trigger, and it amounts to approximately 943 pb−1. This trigger selects about 88% of the

tt̄ all hadronic events.

The Monte Carlo samples are the official CDF samples. We use 12 different samples

generated with the Herwig package to parameterize the mass dependence of our templates.

The mass takes values from 150 GeV to 200 GeV in 5 GeV increments. There are also

samples with a top mass of 178 GeV used to determine various systematic uncertainties:

different choice of generator (in this case we used the Pythia package), different modeling

of the initial state radiation (ISR) and of the final state radiation (FSR), different choice

of proton parton distribution function (PDF). The background model described in

section 6 is validated with the help of two Monte Carlo samples generated with the Alpgen

package: one with events having bb+4 light partons in the final state and another with

events having 6 light partons in the final state.

5.2 Event Selection

Before describing and listing the selection cuts, we need to mention the sample

composition. The multi-jet events contain beside our signal events, a multitude of

backgrounds:

• QCD multi-jets

• hadronic W,Z production

• single top production

• pair production in other channels

The QCD multi-jet production has the biggest contribution, while the others can be

neglected since they involve electroweak couplings.
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There are three sets of cuts. The first set, clean-up cuts, is aimed at enhancing the all

hadronic top content of our datasets. They are listed below:

• vertex position: |z| < 60 cm and |z − zp| < 5 cm

• � ET /
pP

ET < 3 (GeV)1/2

• remove events having muons or electrons

These clean-up cuts select about 37% of the tt Monte Carlo samples out of which

about 84% are all-hadronic events. In the data only 27% of the events pass these cuts,

most of the events failing the good run list and the trigger cuts.
Next, the kinematical and topological cuts are applied in order to enhance the tt

events over the background:

• require events with exactly 6 jets with |η| < 2 and ET > 15 GeV

• Aplanarity +0.005
P

ET3 > 0.96

• centrality > 0.78

•
P

ET > 280 GeV

• ≥ 1 SVX tags

where ΣET is sum of all the transverse energies of all the six jets in the event, Σ3ET

is the sum of all the six jets minus the two most energetic ones, Centrality is defined

in Equation 5–1 and the Aplanarity is defined as 3/2 of the smallest eigenvalue of the

sphericity matrix Ŝij. The sphericity matrix Ŝij is defined in Equation 5–2.

Centrality =

P6
j=1(ET )jq

(
P6

j=1(ET )j)2 − (
P6

j=1(Pz)j)2
(5–1)

Sij =

P6
p=1(P

i
p × P j

p )
P6

p=1(P
2
p )

, where i, j = x, y, z (5–2)

The values of the cuts have been optimized using a tt̄ Monte Carlo sample and a

sample of background events. The background events were in fact from the multi-jet

dataset passing only the clean-up cuts, so that the tt̄ content is negligible. The details of
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the optimization can be found in [50]. Table 5-1 shows the number of events in the data

sample. Table 5-2 shows the number of events in a tt Monte Carlo sample with Mtop =

170 GeV.

The SVX b-tagger used has a higher efficiency in the Monte Carlo than in the data.

Therefore we need to degrade the number of tagged events according to the appropriate

scale factor which is SF = 0.91. Taking this scale factor into account, and converting to

the luminosity of the data, we show in Table 5-3 the signal to background ratios, S/B,

for different top masses after the kinematical cuts for single and double tagged events

separately. The conversion to the observed luminosity is done by using the theoretical tt

cross section. The number of background events is the difference between the observed

number of events in the data shown in Table 5-1 and the signal expectation.

An additional cut is introduced to further cut down the background. This new

variable we cut on is the minimum of the event probability given in Equation 4–6 of

section 4. Figure 5-1 shows the distribution of the minimum of the negative log event

probability for a signal sample versus the background shape.

Note that the top mass value for which this event probability is minimized will be

used in the final top mass reconstruction, and the value of the probability in negative log

scale is used as a discriminating variable between tt̄ and background. We denote this value

as minLKL, and the cut definition is requiring this variable to be less than 10.

The value of this last cut has been obtained by minimizing the statistical uncertainty

on the top mass value as reconstructed in section 4, that is using only the matrix element

calculation. Table 5-4 shows the efficiency of this cut relative to the number of events

after tagging and after the kinematical cuts, for signal at different top masses and for

background. The table also shows the number of signal events corresponding to 943 pb−1

and the appropriate signal to background ratio.

Comparing the signal-to-background ratios S/B between Table 5-3 and Table 5-4

there is an improvement of about a factor of 3 for samples with one tagged heavy
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flavor jets and about a factor of 6 for samples with two tagged heavy flavor jets. This

improvement in the signal-to-background ratio will result in a better resolution in the top

mass reconstruction.

Table 5-1. Number of events in the multi-jet data after the clean-up cuts, kinematical cuts
and tagging. The integrated luminosity is L = 943 pb−1.

Cut Events Fraction (%)

Initial 12274958 100
|z| < 60cm 3555054 28.9
|z − zp| < 5cm 3397341 27.7
Lepton Veto 3392551 27.6
� ET /

pP
ET < 3 3333451 27.2

Ntight jets = 6 380676 3.1
Kinematic Cuts 4172 0.034
1 tag 782 6.37e-5
≥ 2 tag 148 1.21e-5

Table 5-2. Number of events in the tt Monte Carlo sample with Mtop = 170 GeV.

Cut Events Fraction (%)
Initial 233233 100
|z| < 60cm 128169 55.0
|z − zp| < 5cm 128045 54.9
Tight Lepton Veto 113970 48.9
� ET /

pP
ET < 3 88027 37.7

Ntight jets = 6 29485 12.6
Kinematic Cuts 5999 2.6
1 tag 2603 1.1
≥ 2 tag 1599 0.69
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Table 5-3. Number of events and expected signal to background ratios for the tt Monte
Carlo samples with top masses between 150 GeV and 200 GeV for a luminosity
of L = 943 pb−1. The number of data events is shown too. These events are
passing the kinematical selection, but not the minimum likelihood cut.

Mtop (GeV/c2) Single Tag S/B Double Tag S/B
150 73 1/10 45 1/2
155 72 1/10 46 1/2
160 74 1/10 45 1/2
165 74 1/10 48 1/2
170 74 1/10 49 1/2
175 71 1/10 47 1/2
178 75 1/9 50 1/2
180 69 1/10 47 1/2
185 67 1/11 44 1/2
190 61 1/12 43 1/2
195 59 1/12 39 1/3
200 56 1/13 38 1/3
Data Events 782 - 148 -

minLKL
Entries  3641
Mean    13.16
RMS     4.613
Underflow       0
Overflow        0
Integral    3589
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Figure 5-1. Minimum of the negative log event probability. In blue it’s shown the curve for
tt sample of Mtop = 175 GeV, while in red it’s shown the background shape.
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Table 5-4. Number of events, minLKL cut efficiency (�) relative to the kinematical cuts
and the signal to background ratios for the tt Monte Carlo samples with top
masses between 150 GeV and 200 GeV for a luminosity of 943 pb−1. These
events pass all the cuts. The efficiency for background events is also shown.

Mtop (GeV/c2) Single Tag � S/B Double Tag � S/B
150 18 0.25 1/2 14 0.32 3/1
155 17 0.23 1/2 15 0.33 4/1
160 16 0.21 1/2 14 0.31 3/1
165 16 0.22 1/2 14 0.3 4/1
170 15 0.2 1/2 14 0.29 4/1
175 13 0.19 1/3 14 0.29 3/1
178 14 0.18 1/3 14 0.28 4/1
180 12 0.18 1/3 13 0.27 3/1
185 11 0.16 1/3 11 0.26 3/1
190 9 0.15 1/4 11 0.25 3/1
195 9 0.15 1/4 10 0.25 2/1
200 7 0.12 1/5 8 0.22 2/1
Background - 0.05 - - 0.04 -
Data Events 48 - - 24 - -
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CHAPTER 6
BACKGROUND MODEL

6.1 Definition

After all the cuts the background events represent at least half of the whole sample.

Therefore we need to have a good description of these events. There are two things we

have to understand well: the shape of the distributions and the number of such events.

Since there is no cross section measurement of this background, and also, the

composition of our data sample hasn’t been determined at CDF, we define the expected

number of background events as the difference between the total number of events

observed in the data and the expected number of tt events based on the Standard Model.

The shape of the background events can be determined with the help of our Monte

Carlo samples. However, due the small statistics of this samples, we will be forced to

re-sample heavily when we will perform the sensitivity studies of our technique. In order

to overcome that, we will form a sample of background-like events using data events from

a sample quasi-dominated by background. Then we’ll make sure that the shape of this

data-driven background model corresponds to the shape from Monte Carlo background

events.

To form the data-driven background events, we start with our pretag data events

before the minimum likelihood cut, but after all the clean-up and kinematical cuts. In

this sample the signal to background ratio is about 1/25. Then we start to randomly

b-tag the jets of these events by using the b-tag rates of the mistag matrix defined in

the all hadronic cross-section analysis [51]. Each event can end up in any of the possible

tagged configurations by having a number of tagged jets between 0 and 6. We iterate

this artificial b-tagging procedure many times keeping all the configurations that have

at least one b-tagged jet. Some configurations will appear multiple times in this process,

and we will use it that often in our studies as if it were a distinct configuration. The
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reason behind this is to preserve the tag rates determined by the mistag matrix, which by

definition are the rates in the background events.

We start with around 2,600 multi-jet data events which passed only the kinematical

cuts without requiring the presence of a heavy flavor jet. We apply our b-tag procedure

for 20,000 times, and we end up with approximately 9 million configurations with only one

heavy flavor jet and 1 million configurations with only two heavy flavor jets in the final

sample. Only about 13,000 single tagged configurations and about 27,000 double tagged

configurations are indeed distinct.

6.2 Validation of the Background Model

To validate the background model proposed in the previous section, we check the

shapes of several variables of interest in two control regions and in the signal region. The

three regions are defined as follows:

• Control Region 1: events passing the clean-up cuts

• Control Region 2: events passing the kinematical cuts

• Signal Region: events passing all the cuts

6.2.1 Validation in Control Region 1

The mistag matrix used for the background model is based on the tagging rates of

the data sample with 4 tight jets and passing all the other clean-up cuts. This check is

meant to validate our assumption that the mistag rates from the 4-jet bin can be used to

predict the mistag rates in the 6-jet bin. We do this by comparing the observed rates in

the data sample passing the clean-up cuts with the predicted rates for this sample based

on the mistag matrix. Figure 6-1 shows the comparison in the exclusive single tagged

sample, while Figure 6-2 shows the comparison in the inclusive double tagged sample. The

variables chosen for this comparison are the transverse energies, pseudo-rapidity and the

polar angle of the jets, and the number of vertices, sum of the transverse energies of the
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leading six jets, and of the sub-leading four jets, aplanarity and centrality as defined in

section 5.

6.2.2 Validation in Control Region 2

We compare shapes between our background model for this region and a Monte Carlo

background. The background model for this region is formed by taking the pretag data

sample in this kinematical region and by using the mistag matrix to obtain the tag rates.

The Monte Carlo sample used has bb + 4 light partons in its final state.

One variable we can look at is the sum of the event probabilities as defined in

section 4 using the matrix element. The sum is between a top mass equal to 125 GeV up

to 225 GeV in steps of 1 GeV. Figure 6-3 shows the shapes of Monte Carlo background

and of the data-driven background.

Another interesting variable is the invariant mass of all the untagged pairs of jets in

the event. Figure 6-4 shows this variable for the tagged events before the minLKL cut,

while Figure 6-5 shows the case of tagged events after the minLKL cut.

6.2.3 Validation in the Signal Region

The top mass value for which the event probability is minimized represents another

interesting variable. Figure 6-6 shows this variable for events after the minLKL cut.

The event by event most probable top mass and the dijet mass variables are of

particular interest since they will be used in the reconstruction of the top mass and of the

JES variable to be described in section 7. All these comparisons show good agreement

between our data-driven background model and the Alpgen bb + 4 light partons.

6.2.4 Effects on the Statistical Uncertainty

Using a top mass reconstruction technique based solely on the matrix element, we can

vary the background fraction of our mixture of signal and background events and observe

the effects on the statistical uncertainty of the top mass.

The goodness of the mass reconstruction is related to the parameters of the

reconstructed versus the input top mass. The statistical uncertainty is affected by the
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slope of the calibration curve. The bias in the mass reconstruction is related to the

intercept of the calibration curve.

In the upper plot, Figure 6-7 shows how the slope decreases with the background

fraction, while the lower plot shows how the intercept changes with the background

fraction. The slope decrease indicates a decrease in the sensitivity, in other words an

increase in the statistical uncertainty on the top mass. For the calibration curves studied

in these plots the intercept should be 178 GeV, and it can be seen that as the background

fraction increases the intercept gets further from the 178 GeV value, that is the bias

increases.

The reason for the background fraction to have such a big effect on the mass

reconstruction using the matrix element technique of section 4 is because the background

is completely ignored in the matrix element calculation or in assessing a background event

probability. In this analysis we still won’t calculate a background matrix element, but we

will use a background probability instead, which will be described in the next sections.
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Figure 6-1. Background validation in control region 1 for single tagged events. The red
points are the data points, while the black points are from the background
model.
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Figure 6-2. Background validation in control region 1 for double tagged events. The red
points are the data points, while the black points are from the background
model.
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Figure 6-3. Sum of event probabilities calculated for Mtop = 125 GeV up to Mtop = 225
GeV in steps of 1 GeV. These are the events before the minLKL cut for
Alpgen bb + 4 light partons in blue, and for the background model in black.
The plot to the left shows the single tagged events (Kolmogorov-Smirnov
probability is 1%), while the plot to the right shows the double tagged events
(Kolmogorov-Smirnov probability is 13%).
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Figure 6-4. Dijet invariant mass of the untagged jets. These are the events before the
minLKL cut for Alpgen bb + 4 light partons in blue, and for the background
model in black. The plot to the left shows the single tagged events
(Kolmogorov-Smirnov probability is 25%), while the plot to the right shows
the double tagged events (Kolmogorov-Smirnov probability is 43%).
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Figure 6-5. Dijet invariant mass of the untagged jets. These are the events after the
minLKL cut for Alpgen bb + 4 light partons in blue, and for the background
model in black. The plot to the left shows the single tagged events
(Kolmogorov-Smirnov probability is 90%), while the plot to the right shows
the double tagged events (Kolmogorov-Smirnov probability is 70%).
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Figure 6-6. Event by event most probable top masses. These are the events after the
minLKL cut for Alpgen bb + 4 light partons in blue, and for the background
model in red. The plot to the left shows the single tagged events, while the
plot to the right shows the double tagged events.
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Figure 6-7. Effect of the background contamination in the top mass reconstruction using
only the matrix element technique. The upper plot: slope of the calibration
curve versus the background fraction. The lower plot: intercept of the
calibration curve versus the background fraction. The calibration curves are
built using only the matrix element reconstruction technique described in
section 4.
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CHAPTER 7
DESCRIPTION OF THE MASS MEASUREMENT METHOD

The biggest contribution to the uncertainty on the top quark mass is the jet energy

scale uncertainty. The jet energy scale and its uncertainty is measured independently at

CDF by the Jet Energy Resolution working group. It takes into account the differences

between the energy scale of the jets in our Monte Carlo samples and the scale observed

in the data. Its value depends on the transverse energy, pseudo-rapidity and the

electromagnetic fraction of the total energy of a jet. So the jet energy uncertainty is

different from jet to jet, but we will generically denote that with σc. The environment in

which this scale and uncertainty is determined is quite different than that of the tt events,

and additional corrections might be needed at this level. We define a variable, JES, called

Jet Energy Scale, measured in units of σc. There is a correlation between the top mass

and the value of JES, and that’s why we plan to measure them simultaneously to avoid

any double counting in the final uncertainty on the mass.

Our technique starts by modeling the data using a mixture of Monte Carlo signal

and Monte Carlo background events. The events will be represented by two variables:

dijet invariant mass and an event-by-event reconstructed top mass. The latter is obtained

using the matrix element technique described in section 4. For signal, the shapes obtained

in these two variables are parameterized as a function of top quark pole mass and JES.

For background no such parameterization is needed. Hence our model will depend on the

top mass and the JES. The measured values for the top quark mass and for the JES are

determined using a likelihood technique described in this section.

7.1 Likelihood Definitions

The likelihood function used to reconstruct the top mass, shown in Equation 7–1,

is product of 3 terms: the single tag likelihood used for single tagged events, L1tag, the

double tag likelihood used for double tagged events, L2tag and the JES constraint, LJES,

whose expression is shown in Equation 7–7.
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L = L1tag · L2tag · LJES (7–1)

Both the single tag likelihood and the double tag likelihood are a product of four

terms as shown in Equation 7–2. The top template term, Ltop, is shown in Equation 7–3.

The W template term, LW , is shown in Equation 7–4. The constraint on total number of

events, Lnev, is shown in Equation 7–5. The constraint on the tt number of events, Ln
s

, is

shown in Equation 7–6.

L1,2tag = Ltop · LW · Lnev · Ln
s

(7–2)

Both top and W template terms have the same structure: a weighted sum of

the event signal probability at a given top mass and JES and the event background

probability. The fraction of tt events, ns/(ns + nb), is the weight of the signal probability

and the fraction of background events, nb/(ns + nb), is the weight of the background

probability. Together with M and JES, the parameters ns and nb are free in the

likelihood fit.

Ltop =

Ntot

eventsY

evt=1

ns · P top
s (mtop

evt|M, JES) + nb · P top
b (mtop

evt)

ns + nb

(7–3)

LW =

Ntot

events

·N
combiY

evt=1

ns · PW
s (mW

evt|M,JES) + nb · PW
b (mW

evt)

ns + nb

(7–4)

The sum of signal and background events, ns + nb, is constrained to the total number

of observed events in the data, N tot
events, via a Poisson probability with a mean equal to

N tot
events.

Lnev =
(N tot

events)
n

s

+n
b exp(−N tot

events)

(ns + nb)!
(7–5)

The number of signal events, ns, is constrained to the expected number of tt events,

nexp
s , via a Gaussian of mean equal to nexp

s and width equal to σnexp

s

. The width of the

gaussian is simply the uncertainty on the expected number of tt events.

The expected numbers of signal events, nexp
s , are 13 single tagged and 14 double

tagged events, corresponding to a theoretical cross-section of 6.7+0.7
−0.9 pb [55] and an
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integrated luminosity of 943 pb−1. These numbers have been determined using a tt̄ Monte

Carlo sample with a cross-section equal to the theoretical value. The value of the top mass

used in the tt̄ Monte Carlo sample just mentioned is 175 GeV and it also corresponds to

the top mass value for which the theoretical cross-section has been calculated. Therefore

we read the expected number of signal events from Table 5-4.

The uncertainties on the numbers of signal events σnexp

s

are chosen to be the Poisson

errors. This is a conservative approach since the Poisson errors are larger than the

uncertainties derived based on the theoretical cross-section uncertainty.

Ln
s

= exp

µ
−(ns − nexp

s )2

2σn
s

∂
(7–6)

The value of JES is constrained to the a priori determination of this parameter by

the CDF Jet Energy Resolution group, JESexp. This constraint is a gaussian centered on

JESexp and width equal to 1. The unit used is σc which represents the uncertainty on the

jet energy scale.

LJES = exp

µ
−(JES − JESexp)2

2

∂
(7–7)

7.2 Top Templates

7.2.1 Definition of the Template

As mentioned in section 7.1, we use the matrix element to build the top templates.

The event probability defined in section 4 is plotted as a function of the top pole mass in

the range 125 GeV and 225 GeV. In negative logarithmic scale this event probability will

be minimized for a certain value of top mass which we’ll use to form the top templates.

The shape of these templates depends on the input top mass and JES for tt events, but

not for background events.

7.2.2 Parameterization of the Templates

We form signal templates for the mass samples described in section 5 with 7 different

JES values: −3,−2,−1, 0, 1, 2, 3, after all our selection cuts have been applied. In total

there are 84 templates for signal used for parameterization. The function used to fit them
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is a normalized product of a Breit-Wigner function and an exponential. The parameters

of this function depend linearly on top mass and JES. The Equation 7–8 displays the fit

function and the dependence of its parameters on top mass and JES.

P top
s (mtop

evt|M, JES) =
1

N(M,JES)
· α0 exp

°
−(mtop

evt − α1)α3

¢
×

×α2

2π
· 1

(mtop
evt − α1)2 + α2

2 ÷ 4
(7–8)

The expression for normalization term N(M,JES) from Equation 7–8 is given in

Equation 7–9.

N(M,JES) =
4X

k=0

(p3k + p3k+1 · JES + p3k+2 · JES2) ·Mk. (7–9)

The dependence of the parameters αi from Equation 7–8 as a function of the top mass

M and jet energy scale JES is given by Equation 7–10.

αi =

8
><

>:

p15 i = 0

p3i+13 + p3i+14 ·M + p3i+15 · JES i = 1, 2, 3
(7–10)

The χ2 per degree of freedom is 1554/1384 = 1.12 for the single tagged sample

and 1469/1140 = 1.29 for the double tagged sample. The expression for χ2 is given in

Equation 7–11.

χ2 =

P12
m=1

P7
j=1

PNbins
bin=1

≥
h

bin

−f
bin

σ
h

bin

¥2

(
P12

m=1

P7
j=1

PNbins
bin=1 1)− 25

(7–11)

where hbin is the bin content of the template histogram and fbin is the value of the

function from Equation 7–8 at the center of the bin. The summation in Equation 7–11

is done for all templates and for all the bins for which hbin has more than 5 entries. The

denominator of Equation 7–11 is the number of degrees of freedom.

For each sample, the values of the 25 parameters, p, are given in Table 7-1. The

shapes of few of the signal templates as well as the parameterized curves are shown in

Figure 7-1.
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The background template shape is build in the same way as the signal templates

using the matrix element, There is no top mass dependence. Also because we use data

events to model the background there is no JES dependence. There is one subtlety

regarding this shape: the procedure used to extract the background shape from data and

described in section 6 doesn’t remove any possible top contamination. After all the cuts

are applied, this contamination is quite significant. To remove it, from the raw shape

of the background template we subtract the shape corresponding to a signal template

for mass equal to 170 GeV and JES = 0, with the appropriate coefficients reflecting

the sample composition. We will assess a systematic uncertainty for the choice of signal

template we subtracted.

After corrections, the shape of the background template is fitted to a normalized

gaussian. For both the single tagged and the double tagged samples, we show the values of

the parameters in Table 7-2.

Figure 7-2 shows the shapes of the background templates as well as the parameterized

curves, for single and double tagged events. In Appendix D, all the top templates

corresponding to signal events are displayed.

7.3 Dijet Mass Templates

7.3.1 Definition of the Template

The dijet mass templates are formed by considering the invariant mass of all possible

pairs of untagged jets in the sample. The shape of these templates depends on the input

top mass and JES for tt events, but not for background events.

7.3.2 Parameterization of the Templates

To form the signal templates we use the same 84 samples used for determining the

top templates, after all our selection cuts have been applied. The function used to fit them

is a normalized sum of two gaussians and a gamma integrand. The parameters of this

function depend linearly on top mass and JES. The Equation 7–12 shows the fit function

and the dependence of its parameters on top mass and JES.
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PW
s (mW

evt|M, JES) =
1

N(M, JES)

"
α6α7 exp

°
− α7(mevtW − α8)

¢

Γ(1 + α9)
×

× (mevtW − α8)
α9 +

α0

α2

√
2π

exp

µ
−(mtop

evt − α1)2

2α2
2

∂
+

+
α3

α5

√
2π

exp

µ
−(mtop

evt − α4)2

2α2
5

∂∏
(7–12)

The expression for normalization term N(M,JES) from Equation 7–12 is given in

Equation 7–13.

N(M, JES) =
1X

k=0

(p3k + p3k+1 · JES + p3k+2 · JES2) ·Mk (7–13)

The dependence of the parameters αi from Equation 7–12 as a function of the top

mass M and jet energy scale JES is given by Equation 7–14.

αi = p3i+6 + p3i+7 ·M + p3i+8 · JES, i = 0, 9 (7–14)

The χ2 per degree of freedom is 3551/2636 = 1.35 for the single tagged sample and

2972/2524 = 1.18 for the double tagged sample. The χ2 has the same definition as in

Equation 7–11. In each sample, the values of the 36 parameters, p, are given in Table 7-3.

The shapes of few of the signal templates as well as the parameterized curves are shown in

Figure 7-3.

The background template shape is build in the same way as the signal templates. The

top contamination is removed in the same way as in the case of the top templates (see

section 7.2).

The background template is fitted to a normalized sum of two gaussians and a gamma

integrand. For both the single tagged and the double tagged samples, we show the values

of the parameters in Table 7-4.
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Figure 7-4 shows the shapes of the background templates as well as the parameterized

curves, for single and double tagged events. In Appendix E, all the dijet mass templates

corresponding to signal events are displayed.

Table 7-1. Values of the parameters describing the shapes of the top templates for the tt̄
samples.

Parameter Values (1Tag) Uncertainties (1Tag) Values (2Tags) Uncertainties (2Tags)
p0 1.56e+03 5.69e+02 1.76e+01 4.56e+00
p1 -3.25e+02 2.15e+02 -1.03e+01 4.65e-01
p2 1.25e+02 9.62e+01 -3.14e+00 2.05e-01
p3 -8.71e+00 2.85e+00 8.72e-02 1.14e-02
p4 2.68e+00 2.26e+00 1.39e-01 3.56e-03
p5 -1.06e+00 6.81e-01 4.12e-02 1.74e-03
p6 -6.70e-03 1.53e-02 -3.88e-03 3.82e-05
p7 3.44e-03 1.34e-02 -4.50e-04 2.09e-05
p8 -1.07e-03 2.69e-03 -8.99e-05 9.69e-06
p9 2.74e-04 9.24e-05 2.64e-05 1.48e-07
p10 -5.77e-05 7.07e-05 -8.36e-07 1.09e-07
p11 2.41e-05 1.40e-05 -6.36e-07 5.06e-08
p12 -5.47e-07 3.33e-07 -5.41e-08 7.52e-10
p13 5.81e-08 2.05e-07 4.39e-09 4.38e-10
p14 -3.66e-08 5.63e-08 2.25e-09 1.91e-10
p15 8.36e+02 7.17e+02 5.11e+00 5.02e+00
p16 4.28e+00 1.23e+00 4.84e+00 1.06e+00
p17 9.79e-01 6.97e-03 9.81e-01 6.03e-03
p18 1.98e+00 5.85e-02 1.63e+00 4.72e-02
p19 4.09e+00 2.29e+00 -7.95e+00 1.63e+00
p20 9.29e-02 1.32e-02 1.38e-01 9.30e-03
p21 2.13e-01 9.86e-02 5.01e-01 7.21e-02
p22 -3.87e-02 5.50e-03 1.28e-02 6.61e-03
p23 3.06e-04 3.04e-05 -4.10e-05 3.65e-05
p24 -1.35e-03 2.53e-04 -2.20e-03 2.680e-04

Table 7-2. Values of the parameters describing the shapes of the top templates in the case
of the background events.

Parameter Values (1Tag) Uncertainties (1Tag) Values (2Tags) Uncertainties (2Tags)
1 1.53e-02 3.09e-05 1.28e-02 9.08e-05
2 1.59e+02 7.68e-02 1.63e+02 3.73e-01
3 1.79e+03 7.17e+00 3.28e+03 6.42e+01
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Figure 7-1. Top templates for tt̄ events, single tags in the left plot, double tags in the right
plot. The upper plots show the parameterized curves, while the bottom plots
show the original histograms. The left column shows the templates variation
with top mass at JES = 0. The right column shows their variation with JES
at top mass Mtop = 170 GeV.
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Figure 7-2. Top templates for background events. Single tags in the left plot, and double
tags in the right plot.
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Figure 7-3. Dijet mass templates for tt̄ events, single tags in the left plot, double tags in
the right plot. The upper plots show the parameterized curves, while the
bottom plots show the original histograms. The left column shows the
templates variation with top mass at JES = 0. The right column shows their
variation with JES at top mass Mtop = 170 GeV.
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Table 7-3. Values of the parameters describing the dijet mass templates shapes for the tt̄
samples.

Parameter Values (1Tag) Uncertainties (1Tag) Values (2Tags) Uncertainties (2Tags)
p0 -1.11e+00 6.84e-02 1.60e+00 8.78e-03
p1 5.78e-01 3.45e-02 -5.84e-02 4.20e-03
p2 -1.49e-03 1.01e-02 -1.53e-03 1.25e-03
p3 3.44e-02 3.96e-04 -5.38e-03 4.83e-05
p4 4.33e-05 1.68e-04 -8.99e-06 2.11e-05
p5 6.51e-06 5.83e-05 7.51e-06 6.88e-06
p6 2.20e-02 3.70e-02 6.51e-01 5.48e-03
p7 6.46e-03 2.08e-04 -2.38e-03 2.86e-05
p8 1.63e-01 9.01e-03 -2.02e-02 1.73e-03
p9 8.20e+01 2.81e-01 8.19e+01 2.31e-01
p10 -1.60e-02 1.57e-03 -1.72e-02 1.28e-03
p11 1.07e+00 2.39e-02 1.37e+00 2.40e-02
p12 1.04e+01 2.29e-01 1.19e+01 1.91e-01
p13 -1.78e-02 1.27e-03 -2.21e-02 1.07e-03
p14 2.64e-02 2.56e-02 8.09e-02 2.42e-02
p15 -4.61e+00 4.58e-02 6.97e-01 6.25e-03
p16 3.52e-02 2.94e-04 -3.20e-03 3.28e-05
p17 1.24e-01 1.30e-02 -8.24e-03 1.82e-03
p18 4.86e+01 9.69e-01 1.22e+02 1.89e+00
p19 3.24e-01 5.39e-03 -1.10e-01 1.14e-02
p20 2.64e+00 1.39e-01 -1.15e+00 2.82e-01
p21 -2.48e+01 7.58e-01 3.90e+01 1.48e+00
p22 2.85e-01 4.12e-03 -3.29e-02 8.97e-03
p23 -2.53e-02 1.06e-01 1.17e+00 2.24e-01
p24 3.46e+00 5.52e-02 2.68e-01 6.71e-03
p25 -7.15e-03 3.05e-04 1.51e-04 3.81e-05
p26 2.99e-01 1.91e-02 -3.20e-02 2.67e-03
p27 8.61e-02 3.95e-04 5.75e-04 3.82e-04
p28 -3.04e-04 2.38e-06 1.49e-04 2.06e-06
p29 7.73e-04 1.29e-04 -5.69e-04 1.18e-04
p30 -2.55e+01 6.34e-01 2.29e+01 7.68e-01
p31 2.05e-01 3.58e-03 -6.22e-02 4.19e-03
p32 -2.16e-01 1.18e-01 1.35e+00 1.15e-01
p33 7.40e+00 3.64e-02 -1.67e+00 3.12e-02
p34 -3.10e-02 1.86e-04 1.79e-02 1.82e-04
p35 4.96e-02 1.39e-02 -9.61e-02 1.16e-02
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Figure 7-4. Dijet mass templates for background events. Single tags in the left plot, and
double tags in the right plot.

Table 7-4. Values of the parameters describing the dijet mass templates shapes in the case
of the background events.

Parameter Values (1Tag) Uncertainties (1Tag) Values (2Tags) Uncertainties (2Tags)
1 1.88e-01 9.52e-02 3.53e-01 2.39e-01
2 8.02e+01 4.29e-02 8.02e+01 1.12e-01
3 7.01e+00 1.70e-02 9.13e+00 4.41e-02
4 4.68e-01 9.52e-02 3.59e-01 2.39e-01
5 9.97e+01 4.29e-02 9.46e+01 1.12e-01
6 2.98e+01 1.70e-02 3.36e+01 4.41e-02
7 3.44e-01 9.52e-02 2.90e-01 2.39e-01
8 4.03e-02 4.29e-02 4.08e-02 1.12e-01
9 1.04e+01 1.70e-02 1.04e+01 4.41e-02

10 1.89e+00 9.52e-02 1.58e+00 2.39e-01

113



CHAPTER 8
MODEL VALIDATION AND SENSITIVITY STUDIES

Having defined in the previous sections the model used to describe the data, now we

need to validate it and then determine the sensitivity of our method given this model. The

validation of the method is in fact a self-consistency test since we will use the same Monte

Carlo samples on which the modeling of the data was determined.

The statistical fluctuations of the data sample can be estimated by building many

copies of the model, and by performing in each of them the same analysis we would in real

data. For obvious reasons, these copies are called pseudo-experiments, and in the following

subsection we describe their construction.

8.1 Pseudo-experiments Setup

Each pseudo-experiment is a mixture of signal and background events. The number

of events per pseudo-experiment is drawn from a Poisson distribution of mean equal to

the expected number of events. For signal events this expectation depends on the top

mass according to the Standard Model. The number of background events is the difference

between the observed total number of events in the data and the number of signal events.

The event-by-event top and dijet masses are randomly drawn from the shapes of

the top templates histograms and dijet mass templates histograms respectively. This

is what is called sampling with replacement. Therefore the pseudo-experiments thus

formed will be correlated. These correlations will affect the width of any distribution

filled with variables determined from the pseudo-experiments. Based on [52], we found

that for any distribution the statistical uncertainty on the mean should be expressed as

in Equation 8–1, the width should be expressed as in Equation 8–2 and the statistical

uncertainty on the width should be expressed as in Equation 8–3.

δM = σraw

s
1

(NPE − 1)(1− ρ)
+

ρ

1− ρ
(8–1)
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σ = σraw

s
NPE

(NPE − 1)(1− ρ)
(8–2)

δσ =
σp

2(NPE − 1)
(8–3)

In Equations 8–1, 8–2 and 8–3, NPE is the number of pseudo-experiments, σraw is

the uncorrected width of a distribution, and ρ is the average correlation between any

two pseudo-experiments. The value of the correlation factors depends on the size of the

number of events per pseudo-experiment and on the total number of events available.

Since the last two numbers depend on the top mass (see Table 5-4) then the average

correlation between any two pseudo-experiments will depend on the top mass. The values

for these correlation terms are given in Table 8-1.

When the JES prior is applied, the value of the JES each pseudo-experiment is

constrained to is randomly selected based on a gaussian centered on the true JES of the

sample and of width equal to 1.

The variables extracted from each pseudo-experiment are the values of mass,Mout, and

JES,JESout, that minimize the likelihoods defined in section 7; the statistical uncertainties

on the above variables, δMout and δJESout and the pulls as defined by Equation 8–4.

Pullmass =
Mout −Mtrue

δMout

, PullJES =
JESout − JEStrue

δJESout

(8–4)

The pseudo-experiment by pseudo-experiment reconstructed mass and JES form

the distribution of the most probable values for mass and JES respectively. These

distributions are each fitted to a gaussian. The means of these gaussians are interpreted

as the reconstructed top mass and JES respectively. The width of the gaussians will

represent the expected uncertainty on the top mass and on JES respectively.

8.2 Validation of the Model

This technique is used to simultaneously measure the top mass and the JES, and the

likelihood to be maximized is described in section 7. Neither the top mass, nor the JES
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are fixed in the likelihood. However the JES is constrained via a gaussian centered on the

true JES and with a width of 1.

Figure 8-1 shows the reconstructed JES and the reconstructed top mass represented

by the points, versus the true JES and true top mass represented by the grid. Ideally the

points should match the grid crossings. Figure 8-2 shows reconstructed top mass versus

the true top mass for a true JES of 0. Ideally, this curve should have a slope of 1, and

an intercept of 175 consistent with no bias. Figure 8-3 shows reconstructed JES versus

the true JES for a true top mass of 170 GeV, and again, ideally, this curve should have

a slope of 1, and an intercept of 0 consistent with no bias. Figure 8-4 shows how the

slope of Figure 8-2 changes with the true JES, while Figure 8-5 shows how the intercept

of Figure 8-2 changes with the true JES. Figure 8-6 shows how the slope of Figure 8-3

changes with the true top mass, while Figure 8-7 shows how the intercept of Figure 8-3

changes with the true top mass. Figure 8-8 shows the mass pull means versus true top

mass, while Figure 8-9 shows the mass pull widths versus true top mass. In both plots

the true JES is 0. Based on these figures it results that the uncertainty on top mass has

to be inflated by 10.5%. The average mass pull mean as a function of true JES is shown

in Figure 8-10, while the average mass pull width as a function of true JES is shown

in Figure 8-11. For a given true JES value, the average is over all the mass samples.

Figure 8-12 shows the JES pull means versus true JES, while Figure 8-13 shows the JES

pull widths versus true JES. In both plots the true top mass is 170 GeV. Based on these

plots it results that the uncertainty on the JES has to be inflated by 5.8%. The average

JES pull mean as a function of true top mass is shown in Figure 8-14, while the average

JES pull width as a function of true top mass is shown in Figure 8-15. For a given true

top mass value, the average is over all the JES samples.

As it can be seen in Figure 8-1, there seems to be a slight bias in the reconstruction

of JES and top mass. We can extract the slope and the intercept of the dependence of

the reconstructed mass on the true mass. This can be done for different JES values.
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Figures 8-4 and 8-5 show the dependences on the JES of the slopes and, respectively, of

the intercepts. Similarly, in the case of JES reconstruction we obtain Figures 8-6 and 8-7.

Based on the fits from Figures 8-4 and 8-5, we can express analytically how the

reconstructed mass depends on the true top mass and on the true JES. This is shown in

Equation 8–5. Using the fits from Figures 8-6 and 8-7, we can write similar expressions for

the reconstructed JES. This is shown in Equation 8–6.

Mout = Cm + Sm · (Mtrue − 175) (8–5)

JESout = Cj + Sj · JEStrue (8–6)

The parameters Cm, Cj, Sm, and Sj from Equations 8–5 and 8–6 depend on the

true values of top mass and jet energy scale as shown in Equation 8–7. The values of the

parameters of these equations correspond to the fit parameters of Figures 8-4, 8-5, 8-6

and 8-7. They are listed in Table 8-2.

Cm = a1 + a2 · JEStrue

Sm = a3 + a4 · JEStrue

Cj = b1 + b2 ·Mtrue

Sj = b3 + b4 ·Mtrue

(8–7)

Our studies indicate that the imperfect parameterization of the templates is behind

the poor reconstruction of JES and top mass. The failure of the parameterization to

describe the template histograms is linked to the poor statistics of the histograms. To

undo these effects on the reconstruction, we can use the Equations 8–5 and 8–6 as a

system of equations and solve them for the true top mass, Mtrue, and the true JES,

JEStrue. After these corrections are applied the new reconstructed values for JES and

top mass are consistent with the true value within the uncertainties, as it can be seen in

Figures 8-16, 8-17, 8-18, 8-19 and 8-20.
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Figure 8-21 shows the residual of the top mass reconstruction using samples for which

the input top mass was unknown to us, and Figure 8-22 shows the JES residuals for

samples with unknown true JES. The top mass group conveners provided the samples and

they were the only ones able to calculate these residuals. The plots indicate that within

the uncertainties the top mass and JES reconstruction is unbiased.

8.3 Expected Statistical Uncertainty

Similar to the correction on the top mass and JES reconstructed values, we need a

correction on the uncertainties on these values. By differentiating Equations 8–5 and 8–6,

we obtain another system of equations to be solved for the real uncertainties. Solving

Equations 8–8 and 8–9 will provide the correct uncertainties on top mass and on JES.

δMout = (a2 + a4 · (Mtrue − 175)) · δJEStrue + (a3 + a4 · JEStrue) · δMtrue (8–8)

δJESout = (b2 + b4 · JEStrue) · δMtrue + (b3 + b4 ·Mtrue) · δJEStrue (8–9)

Figure 8-23 shows the expected uncertainty on top mass versus input top mass, using

an input JES of 0. Figure 8-24 shows the expected uncertainty on the JES versus input

JES for an input top mass of 170 GeV. The expected uncertainties shown in Figure 8-23

contain both the pure statistical uncertainty on the top mass and the uncertainty due to

JES. This uncertainty depends on the top mass because the expected number of tt events

depends on the top mass.

In order to disentangle the statistical contribution from the JES component of this

uncertainty, we performed a different reconstruction of the top mass by fixing the JES

to the true value in the 2D fit. Following this reconstruction, the uncertainty on the top

mass is purely of statistical nature. For a top mass of 170 GeV the expected statistical

uncertainty is 2.5 GeV, whereas the combined statistical and JES-systematic uncertainty,

as per Figure 8-23, is 3.2 GeV. That means the systematic uncertainty due to JES on top

mass is 2.0 GeV. This systematic uncertainty shows an improvement of 10% over the 1D

JES systematic uncertainty on top mass of 2.2 GeV.
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On average, the uncertainty on the JES is 0.9 σc, and this also shows an improvement

of 10% over the uncertainty provided by the JER group. The uncertainty on JES is

consistent with the weighted average of the in situ measurement of JES provided by the

W templates and the measurement provided by the JER group. The uncertainty in the

latter case is 1. In order to estimate the uncertainty on the JES provided by the in situ

measurement using the W templates, we performed a different 2D reconstruction with

the JES constraint removed. The uncertainty on the JES in this case is 1.47, and it is

consistent with the weighted averaged result.

Table 8-1. Value of the average correlation factor between any two pseudo-experiments.
The dependence on the value of the top mass is due to the tt̄ cross-section
dependence on top mass.

Mtop (GeV/c2) ρ
150 0.073
155 0.068
160 0.065
165 0.064
170 0.062
175 0.061
178 0.055
180 0.059
185 0.059
190 0.062
195 0.059
200 0.061

Table 8-2. Values of the parameters describing the linear dependence on the true JES and
on the true Mtop, of the intercept and slope of the Mtop calibration curve and of
the JES calibration curve respectively.

Parameter Value Uncertainty
a1 175.0 0.1
a2 -0.09 0.05
a3 0.975 0.008
a4 0.016 0.004
b1 0.6 0.3
b2 -0.003 0.002
b3 1.35 0.15
b4 -0.0021 0.0008
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Figure 8-1. JES versus Top Mass plane. The points represent the reconstructed JES and
mass.
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Figure 8-2. Reconstructed top mass
versus input top mass,
for input JES equal to
0.
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Figure 8-3. Reconstructed JES
versus input JES, for
input top mass equal to
170 GeV.
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Figure 8-4. Slope of the mass
calibration curve versus
input JES.
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Figure 8-5. Constant of the mass
calibration curve versus
input JES.
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Figure 8-6. Slope of the JES
calibration curve versus
input JES.
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Figure 8-7. Constant of the JES
calibration curve versus
input JES.
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Figure 8-8. Mass pull means versus
input top mass, for
input JES equal to 0.
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Figure 8-9. Mass pull widths versus
input top mass, for
input JES equal to 0.
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Figure 8-10. Average of mass pull
means versus input
JES.
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Figure 8-11. Average of mass pull
widths versus input
JES.
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Figure 8-12. JES pull means versus
input top mass, for
input top mass equal
to 170 GeV.
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Figure 8-13. JES pull widths versus
input top mass, for
input top mass equal
to 170 GeV.
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Figure 8-14. Average of JES pull
means versus input top
mass.
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Figure 8-15. Average of JES pull
widths versus input
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123



Corrected Output Mass
150 160 170 180 190 200

Corrected Output Mass
150 160 170 180 190 200

C
or

re
ct

ed
 O

ut
pu

t J
ES

-4

-3

-2

-1

0

1

2

3

Corrected Output Mass
150 160 170 180 190 200

Corrected Output Mass
150 160 170 180 190 200

C
or

re
ct

ed
 O

ut
pu

t J
ES

-4

-3

-2

-1

0

1

2

3

Graph

Figure 8-16. JES versus Top Mass plane. The points represent the reconstructed JES and
mass after the 2D correction.
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Figure 8-17. Slope of the Mtop

calibration curve
versus true JES after
the 2D correction.
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Figure 8-18. Intercept of the Mtop

calibration curve
versus true JES after
the 2D correction.
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Figure 8-19. Slope of the JES
calibration curve
versus true Mtop after
the 2D correction.
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Figure 8-20. Intercept of the JES
calibration curve
versus true Mtop after
the 2D correction.
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Figure 8-21. Difference between the
reconstructed mass
and the true mass for
blind mass samples.
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Figure 8-23. Expected uncertainty on top mass versus input top mass, for input JES equal
to 0. This uncertainty includes the pure statistical uncertainty and the
systematic uncertainty due to JES.
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Figure 8-24. Expected uncertainty on JES versus input JES, for input top mass equal to
170GeV .
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CHAPTER 9
SYSTEMATIC UNCERTAINTIES

Our model for tt events is exclusively based on the simulation which doesn’t describe

the physics of such events very precisely. The major sources of uncertainties appear

from our understanding of jet fragmentation, our modeling of the radiation off the

initial or final partons, and our understanding of the proton and antiproton internal

structure. Apart from these generic uncertainties, we also address other issues specific to

the present method such as the shape of the background top templates following the tt

decontamination, the correlation between the dijet masses and the top mass determined

for each event, and the level of imprecision in the determination of the bi-dimensional

correction of the reconstructed top mass and JES.

9.1 Jet Fragmentation

The default Monte Carlo package used to determine our top and dijet templates is

Herwig which is known to differ from the Pythia package in terms of modeling the jet

fragmentation. We decided that reconstructing the top mass in a sample generated with

Pythia, but using our Herwig based machinery, will result in an offset with respect to

the Herwig sample that would represent the uncertainty on the jet fragmentation model.

Having the true top mass equal to 178 GeV, we reconstruct a top mass of 177.6 GeV

using Herwig as generator and 178.6 GeV using Pythia. Therefore the uncertainty due to

modeling of the jet fragmentation amounts to 1 GeV.

9.2 Initial State Radiation

The amount of radiation off the initial partons is regulated in Pythia by certain

parameters. Using the default set of values, a sample with the true top mass of 178 GeV

is reconstructed at 178.6 GeV. Increasing the amount of radiation off the initial partons

results in a reconstructed top mass of 178.9 GeV, while decreasing the amount of such

radiation results in a top mass of 178.6 GeV. Taking the maximum change in top mass, we

quote 0.3 GeV as the uncertainty due to initial state radiation modeling.

127



9.3 Final State Radiation

Similar arguments to those used for initial state radiation uncertainties will help us

determine the uncertainty due to modeling of the radiation off the final partons. The

reconstructed top mass in the default case is again 178.6 GeV for a true top mass of

178 GeV. Increasing the amount of radiation results in a top mass of 177.7 GeV, while

decreasing it we get 177.4 GeV. The maximum change in top mass is 1.2 GeV and this

will be the uncertainty on the modeling of the final state radiation.

9.4 Proton and Antiproton PDFs

In our default simulation, the internal structures of the proton and antiproton is given

by the CTEQ5L set of functions, and a true top mass of 178 GeV is reconstructed at 178.6

GeV. Changing the set of functions to those given by CTEQ6M, the reconstructed top

mass is 178.7 GeV. Within the CTEQ6M set, the top group has identified 20 independent

parameters whose variations will be representative for the uncertainty on the modeling

of such structure functions. Adding in quadrature all the 20 offsets observed on top mass

reconstruction due to these variations, we get 0.4 GeV.

Also, it is known that the value of ΛQCD has a direct effect on the shape of the

structure functions. In order to estimate this effect, we chose yet another set of PDFs

given by MRST, and reconstructed the top mass for ΛQCD = 228 GeV to get a top mass

of 177.7 GeV, and for ΛQCD = 300 GeV to get a top mass of 178.7 GeV. Therefore the

uncertainty due to the value of ΛQCD is 0.3 GeV.

Adding the two contributions in quadrature, we quote that the total uncertainty due

to the choice of structure functions of proton and antiproton is 0.5 GeV.

9.5 Background Shape

Since the background shape has been obtained initially from data, we had to remove

the tt contamination. To remove the top contamination, we assumed a top mass of

170 GeV, and now we have to estimate effect of this assumption. We have modify our

assumption on the top mass of the top contamination by 10 GeV, that is we got two
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background shapes one corrected for top of 160 GeV and the other corrected for top of 180

GeV. The change in the value of the reconstructed top mass is 0.9 GeV.

9.6 Background Statistics

Another effect we address here is the effect of the limited statistics of the sample

used to generate the background sample. To estimate this effect is enough to vary the

parameters describing the background shapes. First we notice that the dijet mass template

histograms for background are quite smooth, so only the event top mass template

histograms will be modified.

One has to remember that the background model is based on about 2600 pretag data

events passing the kinematical selection. Then using the mistag matrix we artificially

increased the size of this sample by calling “event” any distinct tagged configuration.

Therefore any of the original 2600 events will generate a number of these artificial

“events”. This number will be referred to as the multiplicity of the real event.

In order to find the uncertainties on the background parameters, we need to fluctuate

the content of the template histograms. Given the fact that entries of these histograms are

not real events, but artificial “events”, we have to somehow fluctuate the number of real

events from each bin. The procedure is described below:

• assume the event multiplicity the same for all real events and equal to the average
multiplicity for the whole sample: 735 for single tags and 41 for double tags

• before the tt contamination removal and based on the constants above, we scale down
the template histograms

• fluctuate the content of the scaled histograms using the Poisson probability

• after the Poisson fluctuation, scale back up the histograms, remove the tt contamination
and fit with a gaussian to obtain the new template function

• repeat the above steps 10,000 times, and histogram the parameters of the new
templates

• extract the uncertainties on the background parameters from these last histograms
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Figure 9-1 shows the event multiplicity single tagged events on the left, and for double

tagged events on the right. Figure 9-2 shows the histograms of the three parameters

describing the gaussian fit for the single tagged events, while Figure 9-3 shows the

equivalent plots in the case of the double tagged events. The uncertainties on the

background parameters as determined following the histogram fluctuation are shown

in Table 9-1. Varying the background parameters within these uncertainties results in a

shift in top mass of 0.4 GeV.

9.7 Correlation Between Top Mass and Dijet Mass

We investigate here the effect of the correlation between the event top mass and

dijet mass has on the top mass pull widths and pull means. Our pseudo-experiments were

formed by randomly selecting the event top masses from the top mass templates and by

randomly selecting the dijet masses from the dijet mass templates. As a consequence the

correlation between two masses is reduced to zero. Figure 9-4 shows on the left the top

mass pull mean in the default case when the above correlation was reduced to zero, while

on the right is shown the situation with full correlation. Figure 9-5 shows the equivalent

comparison involving the top mass pull widths.

On average over different top mass samples, the pull mean is consistent within the

uncertainties between the two scenarios. However, the pull widths appear higher when

the correlation between the event top mass and the dijet mass is zero. We conclude that

there is no need for a systematic uncertainty, and we keep the default pull width as the

correcting factor on the statistical error on the top mass since it represents the more

conservative approach.

9.8 2D Calibration

We have varied the parameters of Equations 8–5 and 8–6 within their uncertainties as

listed in Table 8-2. We then re-calibrated the reconstructed values for the top mass. The

change in top mass is 0.2 GeV.
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9.9 B-jet Energy Scale

We study the effect of the uncertainty on the modeling of heavy flavor jets due to

the uncertainty in the semi-leptonic branching ratio, the modeling of the heavy flavor

fragmentation and due to the color connection effects.

To determine this we reconstruct the top mass in a Monte Carlo sample where the

b-quarks could be geometrically matched to a jet, and the energy of such jets was modified

by 1%. As it turns out in [53], 0.6% of the jet energy uncertainty on the b-jets is coming

from the effects listed above. Therefore the final shift on the top mass following our

1% shift in b-jets energies needs to be scaled down by a factor of 0.6. The systematic

uncertainty on the top mass due to the b-jet energy scale is 0.4 GeV.

9.10 Residual Jet Energy Scale

From the bi-dimensional fit for top mass and JES, we extract an uncertainty on the

top mass that includes a statistical component as well as a systematic uncertainty due

to the uncertainty on the JES parameter. However, the JES parameter is defined as the

sum of six independent effects, and therefore the systematic uncertainty on the top mass

included in the 2D fit is only a leading order uncertainty due to our limited understanding

of the jet energy scale. Second order components of this uncertainty arise from the limited

understanding of the six individual contributions to JES. Additional details on this source

of uncertainty can be found in [54].

For this we have to study the effect on the top mass reconstruction from each of

these six sources: level 1, 4, 5, 6, 7 and 8. A Monte Carlo sample has been used where

the energies of the jets have been shifted up or down by the uncertainty at each level

separately, so a total of 12 samples have been obtained. We reconstruct the top mass in

each of them, without applying any constrain on the value of JES. In Table 9-2 we present

the average shift on the top mass at each level, and their sum in quadrature. We conclude

from this that the residual jet energy uncertainty on top mass is 0.7 GeV.
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9.11 Summary of the Systematic Uncertainties

The total systematic uncertainty on the top mass combining all the effects listed

above is 2.1 GeV. Table 9-3 summarizes all sources of systematic uncertainties with their

individual contribution as well as the combined effect.
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Figure 9-1. Event multiplicity for background events. On the left is shown the plot for
single tagged events, while on the right the plot for double tagged events is
shown.

Table 9-1. Uncertainties on the parameters of the top mass templates for background.

Parameter 1 tag 2 tags
Constant 10.2e-04 7.0e-04
Mean 2.59 3.35
Sigma 272.1 711.9

Table 9-2. Residual jet energy scale uncertainty on the top mass.

Level Uncertainty (GeV/c2)
L1 0.2
L4 0.1
L5 0.5
L6 0.0
L7 0.5
L8 0.1
Total JES Residual 0.7
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Figure 9-2. Histograms of the parameters of the gaussian fit of the background event top
mass template for single tagged events. Upper left plot shows the constant of
the gaussian, upper right shows the mean of the gaussian, lower left shows the
width of the gaussian, and lower right plot shows the normalization of the
gaussian.

Table 9-3. Summary of the systematic sources of uncertainty on the top mass.

Source Uncertainty (GeV/c2)
Initial State Radiation 0.3
Final State Radiation 1.2
PDF choice 0.5
Pythia vs. Herwig 1.0
Method Calibration 0.2
Background Shape 0.9
Background Statistics 0.4
Sample Composition 0.1
Heavy Flavor JES 0.4
Residual JES 0.7
Total 2.1
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Figure 9-3. Histograms of the parameters of the gaussian fit of the background event top
mass template for double tagged events. Upper left plot shows the constant of
the gaussian, upper right shows the mean of the gaussian, lower left shows the
width of the gaussian, and lower right plot shows the normalization of the
gaussian.
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Figure 9-4. Top mass pull mean as a function of top mass for different treatment of the
correlation between the event top mass and the dijet mass. On the left is the
default case when the correlation is zero, while on the right is shown the
situation with the full correlation.
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Figure 9-5. Top mass pull width as a function of top mass for different treatment of the
correlation between the event top mass and the dijet mass. On the left is the
default case when the correlation is zero, while on the right is shown the
situation with the full correlation.

135



CHAPTER 10
CONCLUSION

We have applied the method described in the previous chapters to the data sample

corresponding to 943 pb−1. In this sample, there are 48 single tagged and 24 double

tagged events after all the cuts have been applied.

In the second column of Table 10-1, we show in the total number of events and the

expected number of signal events used as input in the 2D likelihood of Equation 7–1. Note

that in Equation 7–1 we need the uncertainty on the expected number of signal events and

this is also shown in Table 10-1. The numbers of background events are shown as well,

but they are not used as input values in the likelihood. In the third column we show the

number of events as they result from the minimization of the 2D likelihood.

Following the minimization of the 2D likelihood, we measured a top mass of 171.1 ±

3.7 GeV, and a JES of 0.5 ± 0.9 σc. The value of the jet energy scale (JES) is therefore

consistent with the previous determination of JES at CDF.

The quoted uncertainty on the top mass represents the combination of the statistical

uncertainty with the systematic uncertainty due to JES uncertainty. In order to obtain

only the statistical uncertainty on the top mass, the minimization of the 2D likelihood is

modified such that the JES parameter is fixed to 0.5 σc (the result from 2D fit). Following

this procedure the statistical uncertainty on the top mass is 2.8 GeV. Therefore the

systematic uncertainty due to JES is 2.4 GeV.

Figure 10-1 shows the distributions of event by event reconstructed top masses as

the black points for data and as the orange histogram for the combination of signal and

background templates that best fitted the data. The blue histogram represents only the

background template. The sample with single tagged events is shown in the left plot, while

the double tagged events are shown in the right plot.
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The 2D likelihood is shown in Figure 10-2. The central point corresponds to the

minimum of the likelihood, while the contours represent the 1-sigma, 2-sigma, and 3-sigma

levels, respectively.

Using a tt̄ Monte Carlo sample with a top mass equal to 170 GeV and the number of

signal and background events as resulted from the data fit, we formed pseudo-experiments

and determined the expected uncertainty on the top mass due to statistical effects and

JES. About 41% of the pseudo-experiments had such combined uncertainty on the top

mass lower than the measured value of 3.7 GeV. This can be seen in Figure 10-3, where

the histogram shows the results of the pseudo-experiments and the blue line represents

the measured uncertainty. In conclusion, the measured combined statistical and JES

uncertainties on the top mass agrees with the expectation.

The total uncertainty on the top mass in this analysis is 4.3 GeV. The previous best

mass measurement in this channel had an equivalent total uncertainty of 5.3 GeV [56]

which is 23% more. The source for this improvement is the uncertainty due to jet energy

scale (JES) on the top mass. In this analysis this uncertainty amounts to 2.4 GeV

compared to 4.5 GeV in the previous best result which is 88% more. Some of this gain in

precision is lost due to the somewhat higher systematic uncertainties from other sources

and due to a slightly worse statistical uncertainty in this analysis compared with the

previous best mass result in this channel. A more careful estimation of the other sources of

systematic uncertainties on the top mass as well as a more efficient tt̄ event selection will

help further reduce the total uncertainty on the top mass.

Compared to mass measurements in other tt̄ decay channels, the mass measurement

from this analysis ranked third in the top mass world average [57] with a 11% weight.

The two better measurements were performed in the lepton+jets channel as it can be seen

in Figure 10-4. This measurement promotes the all hadronic channel as the second best

channel for the top quark mass analyses in Run II at the Tevatron.
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In conclusion, it is for the first time in the tt̄ all hadronic channel to have a

simultaneous measurement of the top mass and of the jet energy scale. It is also the

first mass measurement in this channel that involved the use of the tt̄ matrix element

either in the event selection or in the mass measurement itself. All of the above were

successfully mixed together resulting in the best top mass measurement in the all hadronic

channel.

Table 10-1. Number of events for the tt expectation and for the observed total for a
luminosity of 943 pb−1 passing all the cuts. The input values for signal have
the uncertainties next to them in parenthesis. The background expectation
being the difference between total and signal is also shown. For the output
values, the numbers in the parenthesis are the uncertainties.

Number of Events Input Reconstructed
Total Observed(1tag) 48 47.8
Expected Signal (1tag) 13 ± 3.6 13.2 ± 3.7
Background (1tag) 35 34.6 ± 7.2
Total Observed(2tags) 24 23.3
Expected Signal (2tags) 14 ± 3.7 14.1 ± 3.4
Background (2tags) 10 9.2 ± 4.3
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Figure 10-1. Event reconstructed top mass for data (black points), signal+background
(orange) and only background events (blue). Single tagged sample is on the
left, while the double tagged sample is on the right.
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Figure 10-2. Contours for 1-sigma (red), the 2-sigma (green) and the 3-sigma (blue) levels
of the mass and JES reconstruction in the data.
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Figure 10-3. Histogram shows the expected statistical uncertainty from Monte Carlo using
pseudo-experiments, while the line shows the measured one. About 41% of all
pseudo-experiments have a lower uncertainty.
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Figure 10-4. Most precise results from each channel from the D0 and CDF experiment at
Fermilab by March 2007. Taking correlated uncertainties properly into
account the resulting preliminary world average mass of the top quark is
170.9 ± 1.1 (stat) ± 1.5 (syst) GeV/c2 which corresponds to a total
uncertainty of 1.8 GeV/c2. The top quark mass is now known with a
precision of 1.1%.
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APPENDIX A
PARTON DISTRIBUTION FUNCTION OF THE PROTON
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Figure A-1. Upper plot shows the PDF shapes used in the matrix element calculation of
section 4.3. Bottom plot shows a cross check of the normalization of these
PDFs.
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APPENDIX B
TRANSVERSE MOMENTUM OF THE tt̄ SYSTEM
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Figure B-1. Transverse momentum of the tt̄ system for different generators and for
different top masses. Upper plot: shapes of the transverse momentum of the tt̄
system for different generators (CompHep, Pythia and Herwig) and for
different top masses. Middle plot: the Means of the distributions in the upper
plot. Lower plot: the RMS of the distributions in the upper plot.
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APPENDIX C
TRANSFER FUNCTIONS
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Figure C-1. Transfer functions for the W -boson decay partons. A) For partons with the
value for pseudo-rapidity |η| < 0.7. B) For partons with pseudo-rapidity
0.7 ≤ |η| < 1.3. C) For partons with pseudo-rapidity 1.3 ≤ |η| ≤ 2.
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Figure C-1. Continued
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Figure C-1. Continued
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Figure C-2. Transfer functions for the b-quark partons. A) For partons with the value for
pseudo-rapidity |η| < 0.7. B) For partons with pseudo-rapidity 0.7 ≤ |η| < 1.3.
C) For partons with pseudo-rapidity 1.3 ≤ |η| ≤ 2.
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Figure C-2. Continued
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Figure C-2. Continued
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APPENDIX D
SIGNAL TOP TEMPLATES
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Figure D-1. Top templates for tt̄ single tagged events for samples with different top
masses: from 150 GeV to 200 GeV. A) Case of JES = −3. B) Case of
JES = −2. C) Case of JES = −1. D) Case of JES = 0. E) Case of
JES = 1. F) Case of JES = 2. G) Case of JES = 3.

149



140 160 180 200 2200

5

10

15

20

25

30

minLKLmassV1

140 160 180 200 2200

5

10

15

20

25

30

minLKLmassV1

140 160 180 200 2200

5

10

15

20

25

30

35

40

minLKLmassV1

140 160 180 200 220
0

5

10

15

20

25

30

35

40

minLKLmassV1

140 160 180 200 220
0

5

10

15

20

25

30

35

40

45

minLKLmassV1

140 160 180 200 220
0

10

20

30

40

50

60

minLKLmassV1

140 160 180 200 2200

5

10

15

20

25

30

35

minLKLmassV1

140 160 180 200 220

5

10

15

20

25

30

35

40

45

minLKLmassV1

140 160 180 200 2200

10

20

30

40

50

minLKLmassV1

140 160 180 200 220
0

10

20

30

40

50

minLKLmassV1

140 160 180 200 220
0

10

20

30

40

50

minLKLmassV1

140 160 180 200 220
0

5

10

15

20

25

30

35

40

minLKLmassV1

B

Figure D-1. Continued
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Figure D-1. Continued
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Figure D-1. Continued
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Figure D-1. Continued
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Figure D-1. Continued
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Figure D-1. Continued
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Figure D-2. Top templates for tt̄ double tagged events for samples with different top
masses: from 150 GeV to 200 GeV. A) Case of JES = −3. B) Case of
JES = −2. C) Case of JES = −1. D) Case of JES = 0. E) Case of
JES = 1. F) Case of JES = 2. G) Case of JES = 3.
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Figure D-2. Continued
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APPENDIX E
SIGNAL DIJET MASS TEMPLATES
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Figure E-1. Dijet mass templates for tt̄ single tagged events for samples with different top
masses: from 150 GeV to 200 GeV. A) Case of JES = −3. B) Case of
JES = −2. C) Case of JES = −1. D) Case of JES = 0. E) Case of
JES = 1. F) Case of JES = 2. G) Case of JES = 3.
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Figure E-1. Continued
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Figure E-2. Dijet mass templates for tt̄ double tagged events for samples with different top
masses: from 150 GeV to 200 GeV. A) Case of JES = −3. B) Case of
JES = −2. C) Case of JES = −1. D) Case of JES = 0. E) Case of
JES = 1. F) Case of JES = 2. G) Case of JES = 3.
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