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CHAPTER 1
INTRODUCTION

1.1 Historical Perspective

The science of Physics investigates the laws governing the behavior of matter,

from the smallest subnuclear scales to the largest astronomical space-time regions

and even the nature of the universe as a whole, as in cosmology.

In High Energy Physics we are concerned with understanding the so-called

fundamental “bricks” of matter or elementary particles and their interactions. It

is not easy to ascertain elementariness, in fact it is quite impossible, and history

shows us that more often than not what was considered elementary at one point

was found later to be a composed system: molecules, which are the smallest units

of substance possessing specific physical and chemical properties, were found to

be made up of smaller units, atoms. A huge variety of organic matter with quite

different physicochemical properties is composed of just three atoms, hydrogen,

carbon and oxygen. For some time atoms were considered to live up to their

ancient meaning of indivisible units of matter, until the end of the 19th century

when the mysterious cathode rays puzzled physicists with their properties. As J.J.

Thomson correctly predicted, the cathode rays were actually streams of subatomic

particles known today as electrons. It wasn’t long until Rutherford proved in his

famous scattering experiments that the positive charge inside atoms is confined to

a pointlike core, or nucleus, a discovery which led to the classic planetary model

of the atom. The elementariness of the atom vanished, and the focus moved to

the structure of the nucleus. At first it was thought that the nucleus contained

electrons and protons, but eventually the neutron (postulated by Rutherford) was

discovered and the picture of matter had been simplified even more: just three

1
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particles, the proton, the neutron and the electron, were enough to build all known

atoms. They were the new elementary particles, however soon they were joined by

a large number of new particles with strange names like pions, kaons, eta and rho

particles. The simple and maybe beautiful picture of three elementary particles at

the basis of all matter had to be abandoned. Both experimental and theoretical

breakthroughs lead to the understanding that protons, neutrons and the vast

majority other particles are composed of smaller and stranger units, called quarks.

Two different developments took place during this time though. First, one of

the most brilliant physicists of all times, P.A.M. Dirac, predicted in 1928, solely

on theoretical grounds, the existence of a new particle which was later called the

positron. It was supposed to be just like the electron, but positively charged, an

antielectron. Amazingly, positrons were in fact observed only four years later

and then it was found that other particles had antiparticles. It was an universal

phenomenon.

Secondly, searching for a particle postulated in the Yukawa theory of nuclear

forces, experimentalists found something else, as it is often the case: a new

negatively charged particle which behaved just like an elecron except it had

much higher mass and it was unstable. It was called a muon. This phenomenon

was found to have its own kind of universality and lead to the classification of

elementary particles in three generations, as it will be detailed later.

Particle physics also investigates the interactions or forces between the

elementary constituents of matter. By mid 20th century physicists counted four

distinct forces: the gravitational force, the electromagnetic force, the strong

nuclear force responsible for holding quarks together inside a proton or neutron

for instance, and the weak nuclear force responsible for β decays and other

phenomena. The early picture of classical “force” fields mediating the interactions

was abandoned after Dirac quantized the Maxwell’s equations successfully, laying
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the foundation for quantum field theory and introducing the idea that interactions

are mediated by exchanges of virtual particles. Later it was discovered that indeed

the strong and weak nuclear forces are mediated by virtual particles, the gluon

and the massive W +, W− and Z bosons respectively. However, even though we

have a classical set of equations describing gravitation and powerful formalisms

for quantizing fields, all attempts at quantum gravity failed. Delving into that

mystery is not the purpose of this dissertation though, and now we will proceed

to a more formal presentation of the theoretical framework underlying our current

understanding of elementary particles and their interactions.

1.2 The Standard Model of Elementary Particles

The Standard Model is a quantum field theory which is based on the gauge

symmetry SU(3)C × SU(2)L × U(1)Y [1]. This gauge group includes the symmetry

group of the strong interaction, SU(3)C and the symmetry group of the unified

electroweak interaction, SU(2)L × U(1)Y . As pointed out earlier, gravitation didn’t

fit the scheme and it is not part of the Standard Model.

All the variety of phenomena is the result of the interactions of a small number

of elementary particles, classified as leptons, quarks and force carriers or mediators.

They are also classified in three generations with similar properties.

1.2.1 Leptons

All leptons and hadrons have spin 1/2, and all force mediators have spin 1.

There are three six charged leptons, the electron (e−), the muon (µ−), the tauon

(τ−) and their positively charged antiparticles. For each charged lepton there

corresponds a neutral lepton, called a neutrino (ν). Even though neutrinos do

not carry electric charge, they have distinct antiparticles due to the fact that

they possess a property called lepton number. There are three lepton numbers,

the electronic lepton number, the muonic lepton number and the tauonic lepton

number. An electron carries a +1 electronic lepton number and an electronic
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neutrino (νe) also carries a +1 electronic lepton number. Similarly a muon and a

muon neutrino (νµ) carry a +1 muonic lepton number, a tauon and a tau neutrino

(ντ ) carry a +1 tauonic lepton number. The antiparticles of these particles carry -1

leptonic numbers and in the Standard Model each lepton number is conserved such

that in any reaction the total lepton numbers of the initial state particles should

be equal to the total lepton numbers of the final state particles. It should be noted

that significant evidence has been gathered during the last decade indicating that

neutrinos oscillate, thus violating the leptonic number conservation.

Table 1–1: Properties of leptons. Antiparticles are not listed.

Particle Spin Charge Mass
1st generation e− 1/2 -1 0.51099892±0.00000004 MeV/c2

νe 1/2 0 < 3 eV/c2

2nd generation µ− 1/2 -1 105.658369±0.000009 MeV/c2

νµ 1/2 0 < 0.19 MeV/c2

3rd generation τ− 1/2 -1 1776.99+0.29
−0.26 MeV/c2

ντ 1/2 0 < 18.2 MeV/c2

The interactions of leptons are described by the electroweak theory which

unifies electromagnetism and the weak force. In this gauge theory there are three

massive force carriers, the W +, W− and Z bosons and one massless force carrier,

the photon(γ). In fact a pure gauge theory of leptons and gauge bosons would

lead to massless particles, so in order for the particles to ”acquire” mass the

spontaneous symmetry breaking mechanism was proposed. This adds an extra

spin 0 boson to the picture, the Higgs boson, by which all gauge bosons except one

(γ) acquire mass, and leptons can acquire mass simply by coupling to the scalar

Higgs field. Even though the massive bosons [2, 3, 4, 5] have been discovered at

CERN more than 20 years ago, the Higgs boson has not been discovered. It is also

possible that the mass problem is solved by some other mechanism.
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1.2.2 Quarks

There are six types of quarks and their antiparticles, commonly referred to

as the up (u), down (d), strange (s), charm (c), bottom(b) and top(t) quarks.

They carry fractional electrical charges and a new property called color, which is

responsible for the strong interactions of quarks. Each quark can carry one of three

colors, red, blue and green. The antiquarks carry anticolors, antired, antiblue and

antigreen. Quarks’ properties are summarized in Table 1–2.

Quarks also take part in electroweak processes and that led to some remarkable

predictions. It was found that in order to be able to renormalize the electroweak

theory an equal number of generations of quarks and leptons was needed, but when

these ideas appeared only three quarks were known, the u, d and s. Few years later

in 1974 the c quark was discovered, thus completing the second quark generation

as expected. Another three years later a third generation charged lepton was

discovered, τ , and in the same year a third generation quark was discovered, the

b. The interesting part is that the massive bosons themselves were not discovered

until 1983 ! The quest for the last missing pieces in the generation picture ended

with the top quark discovery in 1994 at Fermilab and the ντ discovery in 2000, also

at Fermilab.

Table 1–2: Properties of quarks. Additionally, each quark can also carry one of
three color charges.

Particle Spin Charge Mass
1st generation u 1/2 +2/3 1.5-4 MeV/c2

d 1/2 -1/3 4-8 MeV/c2

2nd generation c 1/2 +2/3 1.15-1.35 GeV/c2

s 1/2 -1/3 80-130 MeV/c2

3rd generation t 1/2 +2/3 178.0±4.3 GeV/c2

b 1/2 -1/3 4.1-4.4 GeV/c2

The strong interactions of quarks are mediated by eight massless gluons (g)

which carry double color charge, thus being able to interact among themselves. The
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theory of strong interactions is known as Quantum Chromodynamics (QCD) and

it is a gauge theory based on the SU(3) Lie group. It has two characteristics not

found in the electroweak theory, called color confinement and asymptotic freedom.

The interaction between colored particles is found to increase in strength with the

distance between them, therefore quarks do not appear as free particles. Instead

they form color singlet states either by combining three quarks with different

colors (barions) or combining a quark and an antiquark (mesons). This is “color

confinement”. Conversely, at smaller and smaller distances the interaction strength

decreases and the coupling constant αs becomes small enough for perturbative

methods to work. This feature is known as “asymptotic freedom.”

1.3 Beyond the Standard Model

The Standard Model has managed to explain very well a vast amount of

experimental data, however there are reasons to believe it is an incomplete theory :

• As mentioned earlier, gravity is left out altogether

• Possibly connected to the previous point, the observed masses of particles

are completely unexplained. The Higgs mechanism is just a way by which

particles would “acquire” mass, both bosons and fermions, but it does not

predict their values.

• The gauge anomaly of the electroweak theory is canceled only if we have

an equal number of quark and lepton generations, and the charges of the

particles within one generation obey a certain constraint equation. This

implies that there is some deeper connection between quark and leptons

which might also explain why we have only three generations.

• Besides particles’ masses, there are still quite many arbitrary parameters

in the Standard Model, like the relative strengths of the interactions, the

Weinberg angle sin θW , the elements of the Cabibbo-Kobayashi-Maskawa
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matrix which desctibe the strength of cross-generation direct coupling of

quarks via charged currents.

• There are significant indications that neutrinos oscillate.

• The amount of known matter in the Universe is less than what would be

necessary to produce a flat geometry as observed, and it is believed that

there must exist other types of matter, dark matter, besides a non-zero

cosmological constant or dark energy, which would explain the discrepancy.

But these conclusions rely on the validity of General Relativity in describing

the Universe as a whole, which is not quite obvious.

Many theories beyond the Standard Model have been proposed, like

Supersymmetry, String theories, Grand Unified Theories (GUTs), extra dimensions

theories, Technicolor, quark compositeness theories and others. Some are basically

impossible to test at current available energies, but most have a large parameter

space and it is difficult to rule them out completely. In this work we decided

to adopt a model independent approach to our search for Physics beyond the

Standard Model, at least as much as it is possible.



CHAPTER 2
NEW PHYSICS AND THE TOP QUARK

The top quark is so much heavier than the other quarks, including its 3rd

generation sibling the b quark, that it is natural to ask whether this fact is related

to its possible coupling to New Physics. This idea was explored in a theory called

“topcolor-assisted technicolor” [6, 7] which introduces new strong dynamics

coupling preferentially to the third generation, thus making the tt̄ and bb̄ final

states of particular interest. This theory introduces a topcolor heavy Z ′ and

“topgluons”, both decaying into tt̄ and bb̄ pairs.

There are other theoretical avenues for producing heavy resonances, like

Universal Extra Dimension models [8, 9, 10]. The simpler versions [8, 9] assume

only one extra dimension of size R, and lead to new particles via the Kaluza-Klein(KK)

mechanism. In the minimal UED model [9] only one more parameter is needed in

the theory, the cutoff scaleΛ. An interesting feature is the conservation of the KK

number at tree level, and in general the conservation of the KK parity defined as

(−1)n where n is the KK number. As a consequence the lightest KK partner at

level 1 has negative KK parity and it is stable, therefore possible candidates for our

search are level 2 KK partners. These can couple to Standard Model particles only

through loop diagrams, given the need to conserve KK parity.

Another UED model [10] assumes that all known particles propagate in

two small extra dimensions, also leading to new states viathe Kaluza-Klein

mechanism. Resonance states below 1 TeV are predicted in this model, and

they have significant couplings to tt̄ pairs.

From a purely experimental point of view the tt̄ production mechanism is an

interesting process in which to search for New Physics since the full compatibility

8
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of tt̄ candidate events with the Standard Model is not known with great precision

due to quite limited statistics. There is room to explore for possible non-Standard

Model sources within such an event sample.

In this dissertation we focus on the search for a heavy resonance produced in

pp̄ collisions at
√

s = 1.96 TeV which decays into tt̄ pairs. The basic idea is to

compute the tt̄ invariant mass spectrum and search for indications of unexpected

resonance peaks. We will implement the tools needed to set lower and upper

limits for the resonance production cross-section times branching ratio at any

given confidence level. A discovery would amount to a non-zero lower limit at a

significant confidence level.

A similar search was carried out at the Tevatron by the CDF [11] and D0 [12]

collaborations on the data gathered in “Run 1”, the period of operation between

1992-1995.

The tt̄ invariant mass as reconstructed by the CDF analysis in the “lepton plus

jets” channel is shown in Figure 2–1. There are only 63 events for the entire Run 1

dataset, which corresponds to an integrated luminosity of 110 pb−1. About half of

them were tt̄ events.

Based on this distribution the 95% confidence level upper limits on tt̄ resonant

production cross-section times branching ratio were computed, as a function of

resonance mass (Figure 2–2).

The main challenge of this analysis is the reconstruction of the tt̄ invariant

mass spectrum. In this analysis we use an innovative approach which includes

matrix element information to help with the reconstruction, as it will be explained

in later chapters.
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Figure 2–1: The CDF Run 1 tt̄ invariant mass spectrum.



11

Figure 2–2: The CDF Run 1 upper limits for resonance production cross-section
times branching ratio.



CHAPTER 3
EXPERIMENTAL APPARATUS

The Fermi National Accelerator Laboratory (FNAL, Fermilab) has been

a leading facility in experimental particle physics for the last 30 years. The

hadron collider, called the Tevatron, is the world’s most powerful accelerator

where proton-antiproton collisions are investigated. While many measurements

and searches have been carried out, probably the most famous results out of the

Tevatron program are the discovery of the bottom quark in 1977 and the discovery

of the top quark in 1994, during the 1992-1995 Tevatron operation period known as

“Run 1”.

At the moment of this writing we are in the middle of Run 2, the second

Tevatron operation period which started in the spring of 2001. Record instantaneous

luminosities ( ∼ 1.7 · 1032 cm−2s−1) have been achieved recently, which makes the

search for new particles including the last missing block of the Standard Model, the

Higgs boson, a lot more interesting.

The Collider Detector at Fermilab (CDF) and D0 are two general purpose

detectors built at almost opposite collision points along the accelerator. In

this analysis we use data collected by the CDF collaboration during the period

2002-2005. The center of mass energy in Run 2 is
√

s = 1.96 TeV, the highest

collision energy ever achieved.

3.1 Tevatron Overview

The Fermilab accelerator complex is shown on a schematic drawing in Fig.

3–1. In order to produce such high energy pp̄ collisions a sequence of five individual

accelerators is needed.

12
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Figure 3–1: Overview of the Fermilab accelerator complex. The pp̄ collisions at the
center-of-mass energy of 1.96 TeV are produced by a sequence of five individual
accelerators: the Cockroft-Walton, Linac, Booster, Main Injector, and Tevatron.

First, the Cockroft-Walton accelerator boosts negative hydrogen ions to

750 KeV energy. Then, the ions are directed to the second stage of the process

provided by the 145 m long linear accelerator (Linac) which further increases the

energy of ions up to about 400 MeV .

Before the next stage the ions are stripped of their electrons when they pass

through a carbon foil, leaving a pure proton beam. These protons move to the next

stage, the Booster, which is a synchrotron accelerator of about 150 m in diameter.

At the end of this stage the protons reach an energy of 8 GeV . Next, protons

are injected into another circular accelerator called the Main Injector. The Main

Injector serves two functions. It provides a source of 120 GeV protons needed to

produce anti-protons. It also boosts protons and anti-protons from 8 GeV up to

150 GeV before injecting them into the Tevatron.
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In order to produce anti-protons, 120 GeV protons are transported from

the Main Injector to a nickel target. From the interaction sprays of secondary

particles are produced, including anti-protons. Those anti-protons are selected and

stored into the Debuncher ring where they are stochastically cooled to reduce the

momentum spread. At the end of this process, the anti-protons are stored in the

Accumulator, until they are needed in the Tevatron.

The Tevatron is a proton-antiproton synchrotron collider situated in a 1 km

radius tunnel. It accelerates 150 GeV protons and anti-protons up to 980 GeV ,

leading to a pp̄ collision center-of-mass energy of 1.96 TeV.

Inside the Tevatron the beams are split into 36 “bunches” which are organized

in three groups of 12. Within each group the bunches are separated in time by

396 ns. Collisions take place bunch by bunch, when a proton bunch meets an

antiproton bunch at the interaction point. Just for clarity we should add that the

beams are injected bunch by bunch.

The collisions do not take place at the exact same location each time but are

spread in space, according to a Gaussian distribution with a sigma of about 28 cm

along the beam direction and also extending in the transverse plane with a circular

cross-section defined by a radius of about 25 µm

The instantaneous luminosity of the Tevatron is given by

Linst =
NpNp̄f

A (3-1)

where Np and Np̄ are the numbers of protons and anti-protons per bunch, f is the

frequency of bunch crossings and A is the effective area of the crossing beams.

A compact period of time during which collisions take place in the Tevatron

is called a “store” and it can last from few hours to over 24 hours. During a store

the instantaneous luminosity is decreasing exponentially due to collisions and

transverse spreading of the beams which leads to losses of protons and anti-protons.
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The instantaneous luminosity can drop one order of magnitude during one store.

Run 2 initial instantaneous luminosity ranged from about 5 · 1030 cm−2s−1 in 2002

to the record 1.7 · 1032 cm−2s−1 in 2006 and there are hopes for even higher values

in the future.

3.2 CDF Overview and Design

The Collider Detector at Fermilab (CDF) is a general purpose detector located

at one of the two beam collision points along the Tevatron known as “B0”.

The idea of a general purpose detector is to allow the study of a wide range of

processes occurring in pp̄ collisions. For that purpose CDF is designed such that it

can identify electrons, muons, photons and jets. It is indirectly sensitive to particles

which escape detection, like the neutrinos.

A schematic drawing of the CDF detector is shown in Fig. 3–2. It is

cylindrically symmetric about the beam direction with a radius of about 5 m

and a length of 27 m from end to end, and weighs over 5000 metric tons. The CDF

collaboration uses a right-handed Cartesian coordinate system with its origin in

the center of the detector, the positive z-axis along the proton beam direction,

the positive x-axis towards the center of the Tevatron ring and the positive y-axis

pointing upward. The azimuthal angle φ is defined counterclockwise around the

beam axis starting from the positive x-axis. The polar angle θ is defined with

respect to the positive z-axis. However, another quantity is widely used instead

of the polar angle. It is called pseudo-rapidity and it is defined by the formula

η=− ln(tan(θ/2)). The reason is that in the massless approximation, which is a

very good one at these energies, relativistic boosts along the z-axis are additive

in the pseudo-rapidity variable and this property is important, for instance in the

consistent definition of jet cones.

The pseudo-rapidity can also be defined with respect to the actual position of

the interaction vertex, in which case it is called event pseudo-rapidity.
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Figure 3–2: Drawing of the CDF detector. One quarter view.

The detector is composed by a series of subdetectors. Closest to the beam

is the silicon vertex detectors which are surrounded by charged particle tracking

chambers. The silicon vertex detectors are used to reconstruct the position of the

collision vertex and particle momenta. Next are the electromagnetic and hadronic

calorimeters used for energy measurements and at last the muon chambers. There

is also a time-of-flight system used for charged hadrons identification and the

Cherenkov Luminosity Counters (CLC) which measure luminosity.

For this analysis we use all major parts of the detector. The calorimetry

is necessary for jet reconstruction, energy measurements for electrons, muon

identification and also for the calculation of missing transverse energy. The

tracking system plays a major role in electron and muon identification and

in momentum measurement, and the muon chambers are important for muon

identification.
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In this section we will provide a general description of the major components

of the detector, mainly emphasizing the parts used for this analysis. A more

comprehensive description can be found in the published literature [13]

3.2.1 Calorimetry

The purpose of the calorimeters is to measure the energy depositions of

particles passing through them. However not all particles interact in the same

way. Neutrinos escape without any interaction at all, and high energy muons also

escape the calorimeters without losing much energy. Apart from that, the rest of

the particles leave their entire energy in the calorimeter with some exceptions in

the case on pions for instance which can travel, rarely, beyond the calorimeter.

Even though neutrinos do not interact with the calorimeter, by applying the

conservation of momentum in the transverse plane one can calculate the total

transverse momentum of the neutrinos. Since the calorimeter measures energy

this inferred quantity is known as missing transverse energy. In case the event

contained high energy muons it needs further corrections before it can be identified

as neutrino transverse momentum since, as mentioned before, the muons also do

not leave much energy in the calorimeter.

The electromagnetic calorimeter is designed such that it can measure well

the energy of photons and electrons (positrons). Electrons above 100 MeV lose

their energy mostly through bremsstrahlung or photon radiation. High energy

photons produce electron-positron pairs in the nuclear electromagnetic fields

of the material, thus restarting the cycle and leading to the development of an

electromagnetic shower of electrons, positrons and photons. At the last stage,

low energy photons unable to create electron-positron pairs lose their energy by

Compton scattering and photoelectric processes, while low energy electrons lose

their energy by ionization.
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For simplicity we will assume that the initial particle moves perpendicular to

the detector. Then as the shower develops in the calorimeter more and more energy

is deposited, but at different depths or in different layers of the detector. However

at some point the number of new shower particles starts to decrease and then later

no new particles will be created. After this point the energy deposited per layer

starts to decrease, exponentially. The depth of the maximum energy deposition

layer is called the shower maximum and can be used for particle identification.

Other charged particles like muons behave differently because the energy loss

via radiation starts to dominate energy loss via ionization at much higher energies,

higher by a factor of (m/me)
2, approximately. Given the energy scale at the

Tevatron, a typical muon leaves roughly 10% of its energy in the electromagnetic

calorimeter and thus it is not possible to identify and measure muon momenta

using the calorimeter.

Table 3–1: Summary of CDF calorimeters. X0 and λ0 refer to the radiation
length for the electromagnetic calorimeter and interaction length for the hadronic
calorimeter, respectively. Energy resolutions correspond to a single incident
particle.

Calorimeter subsystem η coverage Depth Energy resolution σ(E)/E
CEM |η| < 1.1 18 X0 13.5%/

√
ET ⊕ 2%

PEM 1.1 < |η| < 3.6 21 X0 16%/
√

ET ⊕ 1%
CHA |η| < 0.9 4.5 λ0 75%/

√
ET ⊕ 3%

WHA 0.7 < |η| < 1.3 4.5 λ0 75%/
√

ET ⊕ 3%
PHA 1.2 < |η| < 3.6 7 λ0 80%/

√
ET ⊕ 5%

The hadronic calorimeter functions on similar principles, it is designed to

interact strongly with hadrons, thus making it possible to measure their energy by

measuring the deposited energy. In this case the incoming particle interacts with

the nuclei of the material in the detector leading to a similar shower development.

The CDF calorimeter system covers the full azimuthal range and extends up

to 5.2 in |η|. Its components are the Central Electromagnetic Calorimeter (CEM)

and the Central Hadronic Calorimeter (CHA) which cover the central region as
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the name suggests; the Plug Electromagnetic Calorimeter (PEM) and the Plug

Hadronic Calorimeter (PHA), which extend the |η| coverage more; the Endwall

Hadronic Calorimeter (WHA), which is located in between the central and plug

regions; and finally the Miniplug (MNP), which is a forward electromagnetic

calorimeter which is not used in this analysis. Some technical details are listed in

Table 3–1.

Each calorimeter subsystem is divided in smaller units called towers and

has a projective geometry, which means that all towers point to the center of the

detector.

Central Calorimeter. Each tower of the central calorimeters covers 15◦ in ∆φ

and 0.11 in ∆η and it is composed of alternating layers of absorber and active

material. When a particle passes through the dense absorber material it produces a

shower of secondary particles which interact with the active material and produce

light. The light is collected and converted in a measurement of energy deposition.

The CEM is made of 0.5 cm thick polystyrene scintillator active layers which

are separated by 0.32 cm thick lead absorber layers.

The CEM extends from the radius of 173 cm up to 208 cm from the beam

line and the total thickness of the CEM material is about 18 radiation lengths. It

is divided into two identical pieces at η = 0 and both have an one inch thick iron

plate at η = 0. This kind of uninstrumented region is commonly referred to as a

“crack”.

An important parameter is the energy resolution. The CEM resolution for

electrons or photons between 10 and 100 GeV is given by

σ(E)

E
=

13.5%√
ET

⊕ 2% (CEM), (3-2)

where ET (in GeV ) is the transverse energy of the electron or photon and the

symbol ⊕ indicates that two independent terms are added in quadrature.



20

Inside the CEM, at a depth of about six radiation lengths or 184 cm away

from the beam line, there is the Central Electromagnetic Shower Maximum

detector (CES). Its position corresponds to the location of the maximum

development of the electromagnetic shower which was described earlier. The

CES determines the shower position and its transverse development using a set of

orthogonal strips and wires. Cathode strips are aligned in the azimuthal direction

providing z-view information and anode wires are arranged along the z direction

providing the r−φ view information. The position measurement using this detector

has a resolution of 0.2 cm for 50 GeV electrons.

The CHA is located right after the CEM and its pseudorapidity coverage is

|η| < 0.9 while WHA calorimeter extends this coverage up to |η| < 1.3. It has a

depth of about 4.5 interaction lengths and consists of 1 cm thick acrylic scintillator

layers interleaved with steel layers 2.5 cm thick. The end wall calorimeter uses 5

cm thick absorber layers.

The electromagnetic and hadronic calorimeters were calibrated using electron

and respectively pion test beams of 50 GeV . Their performance is described by the

energy resolution. For charged pions between 10 and 150 GeV it is given by

σ(E)

E
=

75%√
ET

⊕ 3% (CHA,WHA), (3-3)

Plug Calorimeter. The PEM and PHA calorimeters cover an |η| range between

1.1 and 3.6 and employ the same principles.The PEM is a lead/scintillator

calorimeter with 0.4 cm thick active layers and 0.45 cm thick lead layers. It

also includes a shower maximum detector at a depth of about 6 radiation lengths,

the PES, but it is not used in this analysis. The PHA contains 0.6 cm thick

scintillator layers and 5 cm think iron layers. An r − z cross section view of the
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Figure 3–3: The r − z view of the new Run II end plug calorimeter

CDF plug calorimeters is shown in 3–3. In this analysis the calorimeters were used

to determine the momentum and direction of electrons and jets.

3.2.2 Tracking System

The purpose of the tracking system is to reconstruct trajectories and momenta

of charged particles and find the location of the primary and secondary vertices.

A primary vertex is the location where a pp̄ interaction occurred. A secondary

vertex is the location where a decay took place. For instance charm and bottom

hadrons have a longer lifetime than light quarks hadrons, long enough that they

can travel and decay at a location experimentally discernible from the primary

vertex location. Such distances are of the order of hundreds of microns and this

feature is exploited in heavy flavor tagging algorithms.

The components of the tracking system are the following: superconducting

solenoid, silicon detectors and a large open-cell drift chamber known as Central

Outer Tracker (COT). A diagram is shown in Figure 3–4. As it can be seen, the
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Figure 3–4: Longitudinal view of the CDF II Tracking System.

COT isn’t very useful for |η| > 1 so CDF can rely only on the silicon detectors for

that region. But for the |η| < 1 range both silicon and COT information is used

and a full 3D track reconstruction is possible.

The Solenoid. This is a superconducting magnet which produces a 1.4 T

uniform magnetic field oriented along the z-axis. It is 5 m long and 3 m in

diameter and it allows for the determination of the momentum and sign of charged

particles.

Silicon Detectors. It is composed of three separate parts: Layer 00 (L00), the

Silicon Vertex Detector (SVX) and the Intermediate Silicon Layers (ISL).

Layer 00. This is the innermost part of the silicon detectors and is made up by

a single layer of radiation hard silicon attached to the beam pipe [14]. Its purpose

is to improve the impact parameter resolution for low momentum particles which

suffer multiple scattering in the materials and readout electronics found prior to

other tracking system components. Also it can help extend the lifetime of the
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tracking system in general, given that the inner layers of the SVX will degrade due

to radiation damage.

Silicon Vertex Detector. The SVX is segmented into three barrels along the

z-axis and has a total length of 96 cm. Each barrel is divided into 12 wedges in φ,

which contain five layers of silicon microstrip detectors. All layers are double-sided

(Figure 3–5).

Figure 3–5: Isometric view of the three barrel structure of the CDF Silicon Vertex
Detector.

It is located outside the L00 from 2.4 cm to 10.7 cm in radial coordinate. Both

r − z and r − φ coordinates are determined. This subsystem is used to trigger

on displaced vertices which are an indication of heavy flavor content and helps

with the track reconstruction. It is a complex system involving a total of 405,504
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channels and unfortunately it is impossible to present it in any detail without going

into too many technicalities.

Intermediate Silicon Layers. The ISL is composed of three layers of double-sided

silicon with axial and small-angle stereo sides and it is placed just outside the SVX.

The geometry is less intuitive but it can be seen in Figure 3–4: there is one layer in

the central region (|η| < 1), at a radius of 22 cm. In the plug region (1 < |η| < 2)

two layers of silicon are placed at radii of 20 and 28 cm, respectively.

The SVX and ISL are a single functional system which provides stand-alone

silicon tracking and heavy flavor tagging over the full region |η| < 2.0.

Central Outer Tracker. It is a large open-cell drift chamber which provides

tracking at relatively large radii, between 44 cm and 132 cm and it covers the

region |η| < 1.0. It consists of four axial and four small angle (±3◦) stereo

super-layers. The superlayers are divided in small cells φ and each cell contains 12

sense wires. The end-view of the COT detector is shown in Figure 3–6.

The cells are filled with a gas mixture of Ar-Et-CF4 in proportions 50:35:15.

The charged particles passing through the chamber ionize the gas and the produced

electrons are attracted to the sense wires. When they arrive in the vicinity of the

wire a process of avalanche ionization occurs and more electrons are produced and

then collected by the wire. The location of the initial electron can be calculated

based on the the sense wire which was hit and the drift velocity. This only

describes how one ’point’ of the trajectory is determined, but the process repeats

in other cells and based on the location of many such hits a track trajectory is

reconstructed. The important parameter to be reconstructed is the track curvature

from which particle momentum is obtained. The COT has a resolution of about

0.7 · 10−4cm−1, which leads to a momentum resolution of δpT /p2
T ∼ 0.3%(GeV/c)−1.

The typical drift velocity is about 100µm/ns.
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Figure 3–6: One sixth of the COT in end-view; odd superlayers are small-angle
stereo layers and even superlayers are axial.

The COT allows for the reconstruction of tracks of charged particles in the

r − φ and r − z planes.

3.2.3 The Muon System

The Muon System is positioned farthest from the beam line and it is composed

of four systems of scintillators and proportional chambers. They cover the region

up to |η| < 2. In this analysis we only muons detected by the three central muon

detectors known as the Central Muon Detector (CMU), Central Muon Upgrade
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(CMP) and Central Muon Extension (CMX). Since these systems are placed

behind the calorimeter and behind the return yoke of the magnet most other

particles are absorbed by them. However, an extra layer of 60 cm of steel is added

in front of the CMP for the same purpose of absorbing other particles. These three

systems cover the region |η| < 1.0. The 1.0 < |η| < 2.0 range is covered by the

Intermediate Muon System (IMU), but we don’t use it in this analysis.

3.2.4 The Trigger System

As mentioned earlier in Run II bunches of protons and antiprotons collide

every 396 ns. The average number of pp̄ collisions per bunch crossing depends on

the instantaneous luminosity but for typical luminosities in Run II we expect one

pp̄ collision or more per bunch crossing therefore if we were to record all events

we would need to save 1.7 million events per second. The typical event size is

about 250 kB so at such a rate we would need to save 435 GB of data per second.

However most pp̄ collisions are diffractive inelastic collisions in which the proton

or antiproton is broken into hadrons before the two are close enough such that a

“hard core” interaction between partons can occur. These type of collisions are not

of much interest and therefore there is no need to record them.

The purpose of the trigger system is to filter out these less interesting

events, categorize and save the remaining ones. This is achieved through a 3-tier

architecture shown in Fig. 3–7.

Level-1 (L1) and Level-2 (L2) trigger systems use only part of the entire event

to make a decision regarding the event. They use dedicated hardware to perform

a partial event reconstruction. At Level-1 all events are considered. They are

stored in a pipeline since the L1 logic needs 4 µs to reach a decision, much longer

than the 396 ns between two consecutive events. So while the decision making

algorithm is executed by the L1 hardware the event is pushed down the pipeline,

which serves the purpose of temporary memory. When the event reaches the end of
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L2 trigger
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Figure 3–7: CDF II Data flow.

the pipeline the decision is made and the event is either ignored or allowed to move

on to Level-2. It is important to bear in mind that the L1 trigger is a synchronous

pipeline, with decision making pipelined such that many events are present in the

L1 trigger logic simultaneously yet at different stages. Even though it takes 4 µs

to reach a decision and even though events come every 396 ns the trigger analyzes

them all, just not one at a time. The L1 trigger reduces the initial rate of about 1.7

MHz to below 20 kHz.
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The Level-2 trigger is an asynchronous system with an average decision time

of 20 µs. The events passing L1 are stored in one of the four L2 buffers waiting

for a L2 decision. If an event arrives from L1 and all the L2 buffers are full the

system incurs dead time and it is recorded during the run. The L2 trigger has a an

acceptance rate of about 300 Hz, another significant reduction.

An event that passed L2 is transferred to the data acquisition (DAQ)

buffers and then via a network switch to a Level-3 CPU node. L3 uses full event

reconstruction to make a decision whether to write the event on tape or not. It

consists of a “farm” of commercial CPUs, each processing one event at a time. If

the event passes this level as well it is sent for writing on tape. The maximum

output rate at L3 is 75 Hz, the main limitation being the data-logging rate with a

typical value of 18 MB/s.

Events are classified according to their characteristics and separated into

different trigger paths. Some of these classes of events are produced copiously

and in order to leave enough bandwidth for less abundant event types a prescale

mechanism is put in place. For example a prescale of 1:20 keeps only one event out

of 20 that passed the trigger requirements.



CHAPTER 4
EVENT RECONSTRUCTION

The raw data out of the many subdetectors contains a wealth of information

which is not always relevant from a physics analysis point of view. For instance,

in this analysis we need to know the momenta of electrons, among other things.

But what we do have in terms of raw data is a series of hits in the tracking system

and energy depositions in the electromagnetic and hadronic calorimeters, and

these readings could be caused by other particles, or may not be compatible with

the trajectory of an electron in the magnetic field of the detector. Therefore

detailed studies are necessary in order to find an efficient way of identifying raw

data patterns compatible with those produced by an electron passing through the

detector and at the same time reject as much fakes as possible.

In short the task of the event reconstruction is to identify the particles which

were present in the event and measure their 4-momenta as well as possible. We will

investigate this process in more detail for each kind of particle involved.

4.1 Quark and Gluons

Quarks and gluons produce a spray of particles via parton showering,

hadronization and decay. Therefore they do not interact with the detector directly

but appear as a more or less compact set of tracks and calorimeter towers in

which energy has been deposited. By “compact” we mean compact in the η − φ

plane. Such a detector pattern is called a jet and in this case the purpose of the

reconstruction is to identify jets consistent with quark or gluon origins and estimate

their overall energy and momentum.
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4.1.1 Jet Clustering Algorithm

There are a couple of algorithms to identify these jets and estimate their

energy. In this analysis we used an iterative “fixed cone” algorithm (JETCLU) for

jet identification [15].

The idea is to find something like the center of the jet and then assign all

towers within a given radius R in the η − φ plane around this center to that

jet. The algorithm begins by creating a list of all seed towers, or the towers with

transverse energy above some fixed threshold (1 GeV ). Then, for each of the seed

towers starting with the highest ET tower, a precluster is formed by all seed towers

within radius R of the seed tower. In this iterative process the seed towers already

assigned to a precluster are removed from the list of available seed towers.

For each precluster a new center is found by doing an ET weighted average

of the η − φ positions of the towers pertaining to the precluster. This is called

“centroid”. Now using the centroids as origin we can recluster the the towers,

this time allowing for the inclusion of towers with energy above a lower threshold

(100 MeV ). Again we compute the centroid and the process is repeated until it

converges, when the latest centroid is very close to the previous centroid.

In the iterative procedure it is possible to have one tower belonging to two

jets. But this would lead to inconsistencies because the total energy of the

jets would not be equal to the total energy of the towers. Therefore after the

iterative procedure is finished we have to resolve this double counting issue. One

way is to merge the clusters that share towers. This happens if the overlapping

towers’ energy is more than 75% of the energy of the smaller cluster. But if this

requirement is not satisfied each shared tower is assigned to the closest cluster.

In order to find the 4-momenta of the particles we assign a massless 4-momenta

for each electromagnetic and hadronic tower based on the measured energy in the

tower. The direction is given by the unit vector pointing from the event vertex to
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the center of the calorimeter tower at the depth that corresponds to the shower

maximum. The total jet 4-momenta is defined by summing over all towers in the

cluster in the following way:
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i ) (4-1)
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where Eem
i , Ehad

i , φem
i , φhad

i , θem
i , θhad

i are the electromagnetic and hadronic

tower energies, azimuthal and polar angles for the ith tower in the cluster.

The jet 4-momentum depends on the choice of R. For small values towers

pertaining to the original parton are not included in the cluster, while for large

values we risk merging jets pertaining to separate partons. A compromise used in

many CDF analysis is R = 0.4, and this is the value used here as well.

4.1.2 Jet Energy Corrections

The algorithm just presented returns an energy value that needs further

corrections in order to reflect, on average, the parton energy. The reasons for the

discrepancy are many, some instrumental and some due to underlying physical

processes.



32

A few important instrumental effects are listed below:

• Jets in regions less instrumented, like in between calorimeter wedges or in the

η = 0 region will naturally measure less energy.

• It is known that for low energy charged pions (ET < 10GeV ) the calorimeter

response is non-linear, while in the energy measurement procedure it is

assumed linear.

• Charged particles with transverse momenta below 0.5 GeV/c are bent by the

magnetic field and never get to the calorimeter.

• Fluctuations intrinsic to the calorimeter response.

Important physical effects are the following:

• The jet can contain muons which leave little energy in the calorimeter,

and neutrinos which escape undetected. Therefore the cluster energy

underestimates the parton energy.

• Choosing a radius R = 0.4 in the clustering algorithm we lose all towers

rightfully pertaining to the jet but laying outside that radius.

• Extra particles can hit the same towers, coming either from other interactions

present in the event or from the underlying event (the interaction of the

proton and antiproton remnants, i.e. the quarks that did not take part in the

hard process).

CDF developed a standard procedure [16] to correct for such effects. The user

can choose to correct only for certain effects using the standard corrections and

correct other effects with more analysis-specific corrections. This is also the case

for this analysis, so we are using the standard corrections only for the instrumental

effects. From there we use Monte Carlo simulations to map the correlation between

the parton energy and the (partially) corrected measured jet energy.
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4.2 Electrons

In this analysis we are using only electrons detected in the central calorimeter.

Most if not all of an electron’s energy is deposited in the electromagnetic

calorimeter, therefore the reconstruction algorithm starts by identifying the list

of seed towers, which are towers with electromagnetic energy greater than 2 GeV .

Then, towers adjacent to the seed towers are added to the cluster if they have

non-zero electromagnetic or hadronic energy and are located in the same φ wedge

and nearest in η direction. At the end only clusters with electromagnetic ET

greater than 2 GeV and electromagnetic to hadronic energy ratio smaller than

0.125 are kept. However this last requirement regarding the ratio is ignored for

very energetic electrons with energy greater than 100 GeV .

What has been described above is just an “electromagnetic object” candidate.

It serves as basis for identifying both electrons and photons. Further selection

criteria [17] are necessary to identify electrons and separate them from photons or

isolated charged hadrons, π0 mesons and jets faking leptons. These other criteria

are listed below:

• A quality COT track with a direction matching the location of the calorimeter

cluster must be present.

• The ratio of hadronic energy to calorimeter energy (HADEM) satisfies

HADEM < 0.055 + 0.00045 · E, where E is the energy.

• Compatibility between the lateral shower profile of the candidate with that of

test beam electrons.

• Compatibility between the CES shower profile and that of test beam

electrons.

• The associated track’s z position should be in the luminous region of the

beam, which is within 60 cm of the nominal interaction point.
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• The ratio of additional calorimeter transverse energy found in a cone of radius

R=0.4 to the transverse energy of the candidate electron is less than 0.1

(isolation requirement).

4.3 Muons

Muons leave little energy in the calorimeter but they can be identified by

extrapolating the COT tracks to the muon chambers and looking for matching

stubs there [18]. A stub is a collection of hits in the muon chambers that form

a track segment. The muon candidates are preselected by requiring rather loose

matching criteria between the COT track and the stubs. As for electrons, we apply

a set of identification cuts [17] to separate muons from cosmic rays and hadrons

penetrating the calorimeter:

• Energy deposition in the calorimeter consistent with a minimum ionizing

particle, usually hadronic energy less than 6 GeV and electromagnetic energy

less than 2 GeV . Small energy-dependent terms are added for very energetic

muons with track momentum greater than 100 GeV .

• The distance between the extrapolated track and the stub is small,

compatible with a muon trajectory. The actual value depends on the

particular muon detector involved (CMP, CMU, CMX) but it is around 5

cm.

• The distance of closest approach between the reconstructed track to the beam

line (d0) is less than 0.2 cm for tracks containing no silicon hits and less than

0.02 cm for tracks containing silicon hits (which provide better resolution).

• As for electrons, the associated track’s z position should be in the luminous

region of the beam, within 60 cm of the nominal interaction point.

• The ratio of additional transverse ET in a cone of radius R = 0.4 around the

track direction is less than 0.1
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4.4 Neutrinos

Neutrinos escape detection entirely but since the transverse momentum of the

event is zero, and that includes neutrinos, we can indirectly measure their total ~PT

by summing all the transverse energy (momentum) measured in the detector and

assigning any imbalance to neutrinos or other (undiscovered) long lived neutral

particles escaping detection. This quantity is called “missing transverse energy”

and it is defined
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where Ehad
i , Eem

i is the hadronic and respectively electromagnetic energy of the ith

caloritemeter tower, θi is the the polar angle of the line connecting the event vertex
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with φem
i , φhad

i weighted averages themselves but intratower.

In the calculation of 6 ~ET using the formulae above only towers with energy

above 0.1 GeV are used. This requirement is applied individually to hadronic and

electromagnetic components.

The magnitude 6ET is given by

6ET =
√

6E2
x+ 6E2

y (4-8)

Since muons do not leave much energy in the calorimeter and raw jet energy

measurements are systematically low it follows that the above quantity is only a

first order approximation for the neutrinos’ PT and needs further corrections.
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The first correction is directly related to jet corrections. If we scale the energy

of jets by some factor because that is a better match to parton energy then in

computing the total measured ~ET we should replace the raw jet energy measured

by the calorimeter with the corrected energy as given by the jet energy corrections.

These corrections are applied only to jets with ET above 8 GeV , and therefore all

calorimeter towers not included within such jets do not receive any correction.

The second correction is related to muons being minimum ionizing particles,

leaving little energy in the calorimeter. Therefore a better estimate of the total

~ET of the event is obtained by removing calorimeter towers associated with muons

from the above calculations and replacing their contribution with the measured ~PT

of the muons.

In this analysis we use the missing ET value only for event selection. It plays

no role in the reconstruction of the invariant mass and therefore more detailed

studies on missing ET resolution are not included here.



CHAPTER 5
EVENT SELECTION AND SAMPLE COMPOSITION

The top quark decays so quickly that it does not have time to form any top

hadrons and therefore a tt̄ final state appears under different signatures based on

the decay chain of the top quark:

t → W+b (5-1)

W+ → l+νl , W+ → qq̄′ (5-2)

where l stands for one of the charged lepton types e, µ or τ , q stands for u or

c and q′ for one of the “down” quarks d, s or b.

The top quark can also decay to either a d or a s quark instead of b but the

combined branching ratios for these two processes are below 1% and generally

ignored.

Based on these decay modes we can see that a tt̄ pair decay can appear under

three different experimental signatures:

• Six jets or sometimes more due to radiation, when both W bosons decay

hadronically. This is the “hadronic” channel.

• Four jets or more, a charged lepton and missing ~ET when only one W boson

decays hadronically. This is the “lepton+jets” channel.

• Two jets or more, two charged leptons of opposite sign and missing ~ET when

both W bosons decay leptonically. This is the “dilepton” channel.

The scheme is complicated a bit because the τ lepton also decays before

detection and it can either “transform” into a jet, if it decays hadronically, or

37
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produce an electron or a muon and more neutrinos, if it decays leptonically.

However, regardless of the τ decay mode, these events are difficult to identify and

we decided to develop an algorithm which should work well with non-τ events only.

The branching ratios are defined essentially by the W branching ratios and

lead to the following numbers:

Table 5–1: tt̄ decays

Category Branching Ratio

Dilepton (excluding τ) 5%
Dilepton (at least one τ) 6%

Lepton+Jets (excluding τ) 30%
τ+Jets 15%

Hadronic 44%

5.1 Choice of Decay Channel

The choice for the decay channel has to take into account two more factors,

the intrinsic Mtt̄ reconstruction resolution and the signal to background ratio

(S/B). The reconstruction resolution is worse when more information is missing.

Let us take a look at each channel individually:

• In the dilepton channel we measure well the lepton momenta, we have some

uncertainty on the two b quark momenta due to various effects described in

the previous chapter, and we don’t measure at all the momenta of the two

neutrinos (6 variables).

• In the lepton+jets channel we measure well the lepton momentum, we have

some uncertainty on the four quark momenta and we don’t measure at all the

neutrino momenta (3 variables).

• In the hadronic channel we have some uncertainty on the six quark momenta.

In each case we can reduce the number of unknown variables by applying

transverse momentum conservation, which yields two constraints, but since this is

the same across the channels we can just compare them based on the facts stated

above. If non-tt̄ backgrounds were absent we would certainly pick the hadronic
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channel since it has the highest branching ratio and least loss of information

because no neutrinos escape detection. However the S/B ratio for Standard Model

tt̄ in the hadronic channel, without any tagging requirement, is about 1:20 while

the S/B ratio for the lepton+jets channel is roughly 1:2 with a branching ratio

(2/3) comparable to the hadronic channel. Even though the resolution analysis

would also favor the hadronic channel, with such a large background it has, most

probably, less potential than the lepton+jets channel.

The dilepton channel has most unknown variables leading to poorest

reconstruction resolution and significantly lower branching ratio, even though

it enjoys the best S/B around 3:1.

This qualitative analysis led us to pick the lepton+jets channel as best

candidate for this analysis at the beginning of Run 2 when we expected less than

1 fb−1 of integrated luminosity available for this dissertation. The final dataset on

which this analysis is performed corresponds to 680 pb−1 of data.

5.2 Data Samples

The data used in this analysis was collected between February 2002 and

September 2005. A preselection of the data is carried out by the collaboration and

bad runs in which various components of the detector malfunctioned are removed.

The remaining good data corresponds to a total integrated luminosity of 680 pb−1.

Two distinct datasets were used, the high PT central electron dataset and

the high PT muon dataset. The electron dataset is selected by a trigger path that

requires a Level-3 electron candidate with CEM Eem
T > 18GeV , Ehad/Eem < 0.125

and a COT track with pT > 9GeV/c. The muon dataset is selected by a trigger

path that requires a Level-3 muon candidate with pT > 18GeV/c. We use only

CMX muons or muons with stubs in both CMU and CMP subdetectors.

Dilepton e − µ events can appear in both datasets and one has to be careful to

not double count them.
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5.3 Event Selection

In order to select tt̄ events in the lepton+jet channel we have to require that

each event contains at least four jets, an electron or a muon and 6ET consistent with

the presence of a neutrino, that is, a 6ET value well above the fluctuations around

the null measurement.

Certainly this leaves a lot of space of maneuver with respect to the η range

and the minimum ET threshold required for each object. An exhaustive study

for optimizing the cuts has not been done independently, however we adopted

the widely used cuts for Standard Model tt̄ selection in the lepton+jets channel

which can be found in most CDF top analyses. These cuts are the result of a

great amount of work throughout Run 1 and Run 2 and are doing a fine job

at separating signal (Standard Model tt̄ in this case) from backgrounds. There

could be better cuts that improve the resonant tt̄ S/B but further studies would

be necessary to understand the overall effect on sensitivity, and what would be

an optimum for a 400 GeV/c2 mass resonance may not be so for a 800 GeV/c2

resonance. The task of studying in detail the impact of selection criteria on

sensitivity will have to be addressed in a later version of the analysis. However we

did compare the sensitivity among three versions of jet selections and chose the

best, as it will be explained later.

Table 5–2: Event Selection

Object Requirements
Electron CEM, fiducial, not from a conversion

ET > 20 GeV + ID cuts
Muon CMX or (CMU and CMP) detectors, not cosmics

PT > 20 GeV + ID cuts
~6ET Corrected 6ET > 20 GeV

Tight Jets Corrected ET > 15 GeV, |η| < 2.0
at least four tight jets

Loose Jets Corrected ET > 8 GeV, |η| < 2.4
not used for selection per se, but counted as jets
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In table 5–2 we present in a succinct form the requirements [19] for the

selection of electrons, muons, jets and the 6ET cut used. Positrons and antimuons

follow the same selections, of course. By “fiduciality” of electrons it is meant that

they are located in well instrumented areas of the towers, not near tower edges for

instance. Conversion removal algorithms are used to remove electrons or positrons

that come from photons hitting the various materials found before the calorimeter

and producing e−e+ pairs. We are not interested in such electrons. The removal

per se is done by a standard CDF algorithm [20]. There is also an algorithm for

eliminating cosmic ray muons [21] and it is used to veto on such muons in our

selection. We also require one and only one lepton and that the distance between

the lepton’s track Z0 coordinate and the jets’ vertex position is less than 5 cm,

since consistency with tt̄ production requires that all our objects must come from

the same interaction point. The identification criteria complete the event selection

rules and were discussed in the previous chapter, together with the corrections for

~6ET and jets.

A simple study was performed in which we compared the sensitivities of three

jet selection criteria:

• exactly tight four jets

• four tight jets + extra jets (or none)

• three tight jets + extra jets (> 0).

The first option provided the best sensitivity and we adopted it for our selection.

5.4 Sample Composition

The leading Standard Model processes that can produce events passing these

selection criteria are the following:

• W production associated with jets ( W+jets). The W decays leptonically

producing a lepton and ~6ET .

• tt̄ events.
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• Multijet events where one jet fakes an electron. Will will refer to these

generically as QCD.

• Diboson events such as WW, WZ and ZZ.

The relative contribution of these processes can be derived if we know the

theoretical cross-section and the acceptance for each of them.

Table 5–3: Cross-sections and acceptances

Process cross-section Acceptance
SM tt̄ 6.7 pb 4.5%
WW 12.4 pb 0.14%
WZ 3.7 pb 0.08%
ZZ 1.4 pb 0.02%

W+jets ? 0.7%
QCD ? 0.7%

However the W+jets and QCD cross-sections are not known theoretically with

good precision, but in other CDF top analyses the number of events from these

processes is extracted from the data.

For this analysis we decided to use only the ratio of the expected number of

events as derived by these analyses and fit for the absolute normalization since

in those analyses no room was left for any non-Standard Model process, and that

could bias our search.

The constraint used is given below:

NQCD

NW

= 0.1 (5-3)

where N represents the expected number of events.

Resonant tt̄ acceptances are listed for comparison in Table 5–4.

The search algorithm finds the most likely values for NW and signal cross-section

as a function of resonance mass, and it is also able to compute the statistical
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Table 5–4: Signal acceptances

MX0 (GeV/c2) Acceptance
450 0.047
500 0.051
550 0.055
600 0.057
650 0.059
700 0.062
750 0.062
800 0.063
850 0.063
900 0.061

relevance of the most likely signal cross-section value. We will explore it in detail in

the next chapters.



CHAPTER 6
GENERAL OVERVIEW OF THE METHOD AND PRELIMINARY TESTS

This analysis contains two major pieces, one is the tt̄ invariant mass (Mtt̄ )

reconstruction and the second is the search for a non-Standard Model component

in that spectrum, in particular a resonance contribution.

The reconstruction is complicated because our parton level final state, after

the top decay chain, is composed of two b-quarks, two light quarks, a neutrino

and a charged lepton. Experimentally, we measure accurately only the lepton,

which makes the task of reconstructing the tt̄ invariant mass spectrum with good

precision non-trivial. There are a total of seven poorly measured or unmeasured

variables: four quark energies and three components of neutrino momenta. In

fact the jet direction is also smeared compared to the parton direction, but this

is considered a second order effect compared to the above mentioned effects.

Throughout the remaining of this dissertation we will always assume that the jet

direction is a good approximation for the parton direction.

In the CDF Run 1 analysis [11] a somewhat straightforward approach was used

to reconstruct the invariant mass spectrum. A χ2 fit was constructed based on jet

resolutions and the knowledge of W and t masses and it was used to weight the

unknown parton values. Minimizing the χ2 with respect to the free parameters (the

unknowns listed above) provided an estimate for their most probable values. Then

those values were used to compute the invariant mass of the system, Mtt̄ .

In this dissertation we use an innovative approach using matrix element

information to reconstruct the tt̄ invariant mass spectrum. The maximum

information about any given process is contained in its differential cross-section
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and it is therefore natural to think that by making use of more information in the

analysis one can improve resolution and therefore sensitivity.

Since we decided to pursue a model independent search we will not be able

to use any resonance matrix elements. We will use Standard Model tt̄ matrix

element to help with weighting the various possible parton level configurations and

extract an average value for the invariant mass, event by event. The invariant mass

distribution obtained in such a way follows closely the Standard Model tt̄ spectrum

at parton level and it is also a good estimator for the resonant tt̄ events as it will

be shown later.

In order to validate the matrix element machinery we performed a series of

tests by implementing a conceptually simpler matrix element analysis, which is

the top mass measurement using matrix elements. Our tests include only Monte

Carlo simulation studies but they played a crucial role in pushing this analysis

forward since our results were very similar to those of groups actually working on

the top mass measurement using matrix element information. The remainder of

this chapter will present these studies which will also familiarize to reader with the

technical details common to both analyses. In the next chapter we will show how

to extend the algorithm in order to reconstruct the Mtt̄ spectrum.

6.1 Top Mass Measurement Algorithm

The purpose of this algorithm is to build a top mass dependent likelihood for

each event using the differential cross-section for the SM tt̄ process. We will use

the leading order (LO) term in the Standard Model tt̄ cross-section formula. The

final state is made up of the 6 decay products of the tt̄ system. Let ~pi be their

3-momenta. We have the following equation representing the conservation of the

transverse momentum of the system:

~P T
6 =

6
∑

i=1

~pT
i = 0 (6-1)
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This is a constraint on the seven unknown variables mentioned in the previous

chapter and it will be used in all the top mass tests we will show in this chapter.

In reality we have initial and final state radiation (ISR and FSR) which leads

to a non-zero ~P T
6 value. Still, the average ~P T

6 is null so constraining it to 0 should

not bias the result for top mass but maybe only increase the statistical error. For

the resonance search analysis though we will use the ~P T
6 distribution from Monte

Carlo simulation and integrate over it since it helps narrow the reconstructed

resonance peak.

The probability of a given parton level final state configuration ~pi relative to

other configurations is given by:

dP (~pi|mtop) =
1

σ(mtop)

∫

dza

∫

dzbfk(za)fl(zb)dσkl(~pi|mtop, za
~P , zb

~̄P ) (6-2)

or in short

dP (~pi|mtop) = πpart(~pi|mtop)
∏

d3~pi (6-3)

Indices k, l cover the partons types in the proton and antiproton respectively.

Summation over both indices is implied. The parton distribution functions (PDFs)

are given by fk(z) and ~P , ~̄P designate the proton and antiproton momentum.

Plugging in the differential cross-section formula

dσkl(~pi|pk, pl) =
|Mkl|2

4EkEl|vk − vl|
(2π)4δ4(pk + pl − Σpi)

∏ d3~pi

(2π)32Ei

(6-4)

one can obtain an explicit form for πpart(~pi|mtop). The top mass (mtop) enters as a

parameter.

We combine the probability densities (π) of all events in the sample into a

joint likelihood which is a function of mtop:

L(mtop) = π1π2...πn (6-5)
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We expect that maximizing this likelihood with respect to the parameter

(mtop) yields its correct (input) value, as it should.

The algorithm presented above is only a first step, since it assumes we know

the parton level momenta which is not true experimentally. But the treatment

of more realistic situations in which we don’t measure the final state completely

or accurately enough follows the same line of thought, basically we compute the

probability density of observing a lepton+jet event:

πobs(~j1, ~j2, ~j3, ~j4, ~pl|mtop) =

=
∑

ρ

∫

πpart(~pρ(1), ~pρ(2), ~pρ(3), ~pρ(4), ~pl, ~pν |mtop)d
3~pν

4
∏

i=1

Ti(~jρ(i)|~pρ(i))d
3~pi (6-6)

In this formula we assume that the first two arguments of the parton density

(πpart) function represent the b-quark momenta, the jet 3-momenta are denoted

by ~ji and the parton 3-momenta by ~pi. Ti(~j|~p) is the probability density that a

parton with 3-momenta ~p is measured as a jet with 3 momenta ~j. These functions

are called parton-to-jet transfer functions. We use different transfer functions for b

quarks and lighter quarks, so we added an index to differentiate the two. With our

conventions T1 = T2 = Tb and T3 = T4 = Tlight. In practice we approximate the

parton direction with the jet direction, as mentioned earlier, which simplifies the

calculations a bit.

Even with b-tagging information available, there is no unique assignment of

jets to partons. This indistinguishability is addressed by summing over all allowed

permutations using the ρ ∈ S4 permutation variable. A permutation is allowed if it

doesn’t contradict available b-tagging information.

The procedure to extract the top mass is the same as in the idealized case of a

perfect measurement of the final state discussed before, that is, combine all events

in a joint likelihood and maximize it with respect to the parameter mtop.
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Figure 6–1: Main leading order contribution to tt̄ production in pp̄ collisions at√
s = 1.96 TeV

6.1.1 The Matrix Elements (ME)

The leading order matrix element for the process qq̄ → tt̄ → W+bW−b̄ →

qq̄bl ν̄b̄ (Fig. 6–1) is not easily calculable analytically without making any

approximation. We found it useful to compute the ME directly using explicit

spinors and Dirac matrices because this allows us to compute new, non-Standard

Model matrix elements very easily in case we wanted to incorporate them in the

algorithm later on. Dedicated searches for specific models (spin 0 resonance, spin

1 resonance, color octet resonance) would be interesting as well, but we will not

address them in this dissertation.

Ignoring numerical factors the quark annihilation diagram amplitude is given

by

Mqq̄ ≈ v̄(pq̄)γ
µu(pq) · ū(pu)γ

β(1 − γ5)v(pd̄) · ū(pl)γ
σ(1 − γ5)v(pν̄) ·

ū(pb)γ
α(1 − γ5)

6pt + mt

p2
t − m2

t + imtΓt

γν 6pt̄ + mt

p2
t̄
− m2

t + imtΓt

γρ(1 − γ5)v(pb̄) ·

gµν

(pq + pq̄)2
·

gαβ − PW+

α PW+

β /m2
W

P 2
W+ − m2

W + imW ΓW

·
gρσ − PW−

ρ PW−

σ /m2
W

P 2
W− − m2

W + imW ΓW

(6-7)
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If we consider the masses of the light quarks and leptons negligible we can

simplify the expression of the W propagators so the ME reads

Mqq̄ ≈ v̄(pq̄)γ
µu(pq)

(pq + pq̄)2
· ū(pu)γ

α(1 − γ5)v(pd̄)

P 2
W+ − m2

W + imW ΓW

· ū(pl)γ
σ(1 − γ5)v(pν̄)

P 2
W− − m2

W + imW ΓW

·

ū(pb)γα(1 − γ5)
6pt + mt

p2
t − m2

t + imtΓt

γµ

6pt̄ + mt

p2
t̄
− m2

t + imtΓt

γσ(1 − γ5)v(pb̄)(6-8)

We tested our numerical calculation using explicit Dirac matrices and spinors

with the analytical calculation for the squared amplitude by Barger [22] and we

found the two calculations in good agreement. That calculation uses the narrow

width approximation (NWA) in treating the top quark propagators and therefore

the two methods are not equivalent when one or both of the top masses are

off-shell.

We also tested our implementation on simpler QED matrix element calculations

and it produced results identical with their exact analytical expressions.

g
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g t
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g
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Figure 6–2: Gluon-gluon leading order contribution to tt̄ production in pp̄ collisions
at

√
s = 1.96 TeV

The gluon-gluon production mechanism is described by three diagrams in Fig.

6–2, in which the top decays have not been depicted explicitly.
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The matrix element needed in the cross-section formula for the gluon-gluon

production mechanism has the structure:

|Mgg|2 =
1

64

∑

color

|A1 + A2 + A3|2 (6-9)

where Ai are the amplitudes corresponding to the three diagrams. The

color sum covers all possible color configurations for the gluons and quarks. This

expression is not optimal with regard to CPU time if we were to do these sums as

they stand. We can rewrite it as

|Mgg|2 =
1

64

∑

color

(|A1|2 + |A2|2 + |A3|2 + 2 · Re{A1A∗
2} + 2 · Re{A1A∗

3} + 2 · Re{A2A∗
3})(6-10)

This form is very convenient, the color sums can be evaluated for each individual

term regardless of the kinematics because the amplitudes are factorized as A =

Akin · Acolor

We can write again

|Mgg|2 = f1 · |Akin
1 |2 + f2 · |Akin

2 |2 + f3 · |Akin
3 |2 +

Re{f12 · Akin
1 Akin∗

2 + f13 · Akin
1 Akin∗

3 + f23 · Akin
2 Akin∗

3 } (6-11)

All the color summing is encoded in the six constants fi, fij . We found these

to be 3/16, 1/12, 1/12, -3i/16, 3i/16 and -1/48 respectively. We cross-checked

against the analytical formula available for the 2 → 2 process described in the

diagrams above (ignoring the top decays) and found them in perfect agreement.

The procedure just presented works as well for the 2 → 6 process and this is

how we compute it.

6.1.2 Approximations: Change of Integration Variables

The method as presented involves seven integrals (three over neutrino

3-momentum and four over quark momenta) and summing over combinatorics.

If for instance we choose to set the tt̄ transverse momentum to zero that would
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amount to two constraints reducing the number of integrals by two. Or we could

choose to set the W or top on shell, depending on the level of precision and speed

desired. Even from a purely numerical point of view, it would be easier to integrate

only around the top and W mass poles rather than over the large range of the

original variables mentioned before.

For all these reasons a change of variable was performed. The new variables

are the tt̄ transverse momentum and the intermediate particle masses mW1, mW2,

mT1, mT2. This is a set of only six new variables, which means we need to keep one

of the initial variables unchanged (one of the light quarks’ energy).

The change of variable and the associated Jacobian calculations are detailed

in the Appendix. Since the calculations are a bit lengthy we wanted to make sure

no mistake was made so we used simulated events where all variables are available

and any change of variables can be readily checked. We found that the change of

variable implementation works very well.

In the implementation of the algorithm we always use these variables, both for

these preliminary top mass tests and for the Mtt̄ reconstruction.

6.2 Monte Carlo Generators

For some of the top mass tests we used CompHep 4.4 [23], which is a matrix

element based event generator. One can select explicitly which diagrams to

use for event generation. CompHep preserves all spin correlations and off-shell

contributions since it doesn’t attempt to simplify the diagrams in any way.

CompHep generates events separately for each diagram uū → tt̄ , dd̄ → tt̄ and

gg → tt̄ .

We also used Pythia [24] and Herwig [25] official CDF samples (“Gen5”) but

the first tests for top mass were done with parton level CompHep events and then

with Gaussian smeared partons. The Gaussian smearing of parton energies is

meant to simulate the relationship between the jet and parton energies.
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6.3 Basic Checks at Parton Level
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Figure 6–3: Reconstructed top mass from 250 pseudoexperiments of 20 events at
parton level with mt=175 GeV/c2. The left plot is derived using only the correct
combination, while the right plot uses all combinations

Finding the top mass when the final state is known or measured perfectly is

straightforward so we expect our method to produce the correct answer without

any bias. Using uū → tt̄ CompHep events, we performed 250 pseudoexperiments

of 20 events each. Which means that we extracted the top mass from a joint

likelihood of 20 events each time. We repeated this exercise for various generator

level top masses to make sure there is no mass dependent bias.

First, we used only the correct combination in the likelihood, that is, we not

only assumed to have measured the parton 3-momenta ideally, but also identified

the quark flavors.

For mt = 175 GeV the reconstructed mass is shown in the right plot of Figure

6–3. As it can be seen, we get back the exact input mass. Similarly good results

were obtained for other masses.

Next we let all 24 combinations contribute to the event likelihood by summing

over all permutations and repeated the same exercise. The reconstructed top mass
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is barely modified by the inclusion of all combinations, as shown in the second

plot of Figure 6–3. Again, tests on other samples with different top masses didn’t

produce any surprise. These results are summarized in Figure 6–4 showing the

output (reconstructed) mass vs input mass when using all combinations. The slope

is consistent with 1.0 and the intercept is consistent with 0, which proves that there

are no mass dependent effects, at least not in the mass range of interest. Perhaps

it would be useful to remind the reader that the purpose of these studies is to

establish the validity of the matrix element calculations and overall correctness of

implementation of a non-trivial algorithm. Otherwise they are quite simple.

We also looked at the rms of the pull distributions for each mass and it was

found to be 1.0 within errors, which is a more compelling indication that we are

modeling these events very well with our likelihood.
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Figure 6–4: Reconstructed top mass vs. true top mass from pseudoexperiments of
20 events using all 24 combinations, at parton level
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6.4 Tests on Smeared Partons

A more realistic test involves a rudimentary simulation of the calorimeter

response obtained by smearing the parton energies (the four final state quarks’

energies). Also, the neutrino 3-momentum information is ignored in reconstruction.

We used 20% Gaussian smearing, which is quite realistic when compared to

parton-to-jet transfer functions’ rms. The tt̄ transverse momentum was taken to be

zero and also the top quark was forced on shell, thus the number of integrals was

reduced to just three.

We used the same uū → tt̄ CompHep events for these tests but later we did

check with Herwig events and the results were similar.

The same pseudoexperiments of 20 events were performed and in Figure 6–5

we show the reconstructed mass vs the true mass for the right combination and for

all 24 combinations.
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We fit the pulls from pseudoexperiments with a Gaussian and the returned

width was 1.09 ± 0.07 for the 175 GeV sample, again consistent with 1. We

observed similar pulls for other masses as well.

The purpose of this set of tests was to validate the new additions to the

algorithm implementation: transfer functions, transformation of variables

and integration over unmeasured quantities. The success of this tests gives us

confidence that the more realistic version of the algorithm is well designed and well

implemented.

6.5 Tests on Simulated Events with Realistic Transfer Functions

6.5.1 Samples and Event Selection

We used CDF official tt̄ samples generated with Pythia and Herwig event

generators. We apply the event reconstruction and event selection described

in the previous chapters requiring for each event to contain one and only one

reconstructed charged lepton, at least four tight jets and missing ET > 20 GeV .

6.5.2 Transfer Functions

Transfer functions are necessary when we run over simulated events or data

in order to describe the relationship between final state quark momenta and jet

momenta. In this case we are interested in the probability distribution of the

jet energy given the parton energy. This distribution varies with the energy and

pseudorapidity of the parton, so we bin it with respect to these variables.

Since the detector is forward-backward symmetric we only need to bin in

absolute pseudorapidity. We have only three bins in absolute pseudorapidity, with

the boundaries at 0 , 0.7, 1.3 and 2.

The parton energy bins are determined based on the statistics available,

requiring minimum 3000 parton-jet pairs per energy bin. This allows for a rather

smooth function which can be fit well. For example the central region b-quark

energy bin boundaries are chosen to be 10 GeV , 37 GeV , 47 GeV , 57 GeV , 67
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GeV , 77 GeV , 87 GeV , 97 GeV , 107 GeV , 117 GeV , 128 GeV , 145 GeV , and 182

GeV . Anything above 182 GeV is considered part of one more bin. We should

perhaps emphasize that these are parton energy bins.

In order to derive the transfer functions we need to match jets to partons

first. For matching purposes we require that all four final state quarks are matched

uniquely to jets in a cone of 0.4, that is, the ∆R distance between the parton

direction and jet direction is less than 0.4. If this requirement is not met, we do

not use the event for deriving transfer functions.

The direction smearing is considered a second order effect and ignored,

which amounts to identifying the quark direction with the jet direction. This

approximation can be corrected to some degree by using “effective widths” for W

and top instead of theoretical values. In other words the smearing in direction

leads to a smearing of the mass peak even when there is no energy smearing. The

effect can be quantified based on simulation and a corresponding larger width can

be employed in the analysis. In fact we do use such a larger width (4 GeV ) for

the hadronic W mass in our resonance search analysis. Our studies showed that it

narrows the resonance peak a bit, but no such tests were performed for top mass.
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Figure 6–6: Light quarks transfer functions (x = 1 − Ejet

Eparton
), binned in three

absolute pseudorapidity regions [0, 0.7], [0.7, 1.3] and [1.3, 2.0]

In Figures 6–6 and 6–7 we show examples of transfer functions for both light

quarks and b-quarks, respectively. We fit the shape with a sum of three Gaussians,

which works fine. The variable plotted is 1 − Ejet/Eparton, since it varies less with
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Figure 6–7: b-quarks transfer functions (x = 1 − Ejet

Eparton
), binned in three absolute

pseudorapidity regions [0, 0.7], [0.7, 1.3] and [1.3, 2.0]

the parton energy. It is related to the distribution we introduced as “transfer

function” via a simple change of variable.

Our transfer functions are between parton energy and corrected jet energy, as

explained in chapter 4.

With these tools in place we ran similar pseudoexperiments on the Herwig

sample. The returned mtopvalue was 178.1 ± 0.4 GeV/c2 and the pulls’ width was

1.05 ± 0.09. The correct (generated) mass for this sample is 178 GeV/c2.

We did not run any other tests because the only change we made in the

algorithm at this stage was to plug in realistic transfer functions and run it over

fully simulated events. As such, the only new thing that needed testing was the

derivation of the realistic transfer functions based on Monte Carlo simulation.

This is by far a simpler business than the implementation of matrix elements

calculations and change of variables together with the rest of the machinery.

Based on the results presented above we concluded that our transfer functions’

implementation is fine and the algorithm as a whole works very well, is properly

constructed and implemented. Also, our top mass results on Monte Carlo were

very similar to those of analyses doing the top mass measurement using matrix

elements.

In the next chapter we will show how the top mass matrix element algorithm

can be extended to compute the tt̄ invariant mass, Mtt̄ .



CHAPTER 7
Mtt̄ RECONSTRUCTION

7.1 Standard Model tt̄ Reconstruction

All the tools developed for the top mass can be turned around to reconstruct

any kinematical variable of interest, in particular Mtt̄ . Let’s assume for simplicity

of presentation that we know which is the right combination, that is, we know how

to match jets to partons. In that case

P ({p}, {j}) = πpart({p}) · T ({j}|{p}) (7-1)

defines the probability that an event has the parton momenta {p} and is observed

with the jet momenta {j}. In our notation {p} and {j} refer to the set of all

parton and jet 3-momenta. Integrating on the parton variables, given the observed

jets, we obtain the probability used for the top mass measurement. However,

the expression provides a weight for any parton configuration once the jets are

measured. Any quantity that is a function of parton momenta can be assigned a

probability distribution based on the “master” distribution above, Mtt̄ included,

and this is our approach.

Technically this amounts to the following integration:

ρ(x|{j}) =

∫

πpart({p}) · T ({j}|{p}) · δ(x − Mtt̄({p})){dp} (7-2)

with ρ(x|{j}) being the Mtt̄ probability distribution given the observed jet

momenta. It should be noted that if we remove the delta function we retrieve the

event probability formula used for the top mass measurement method presented

before, and therefore all the validation tests presented before are as relevant for

Mtt̄ reconstruction. In terms of the modifications in the algorithm these are also

58
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minimal, there is nothing much to be added except histogramming Mtt̄ during

integration. In other words we obtain an invariant mass distribution per event. We

will use the mean of this Mtt̄ distribution as our event Mtt̄ value.

Before running on all events in our various samples and producing templates

we want to make sure the Mtt̄ reconstruction algorithm works well. We selected

events in which we could match uniquely partons to jets and which contained only

four tight jets. These are the circumstances that allow full consistency between the

reconstruction algorithm and the events reconstructed and that is a self-consistent

test of the method, which is what we intend to show here.
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Figure 7–1: Mtt̄ reconstruction for the correct combination and for events with
exactly four matched tight jets.

We ran the algorithm on these selected events and we were able to reconstruct

Mtt̄ back to the parton level as it can be seen in the left plot of Figure 7–1. Both

plots are produced after running on events selected from the CDF official Pythia

sample.

Since we use the Standard Model tt̄ matrix element we do expect to

reconstruct these events very well and that seems to be the case indeed, as it

is shown also in the right plot of Figure 7–1. There the difference between the
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reconstructed value and the true value is histogrammed in order to see the intrinsic

resolution and check for any bias. The results are very good and we consider the

testing and validation part of the analysis ended.
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Figure 7–2: Mtt̄ reconstruction including all events

Since in reality we don’t know which is the correct combination we adopt the

top mass method approach and sum over all allowed combinations in the formula

7-2. We expect the right combination to contribute more than the others as it

happens for the top mass analysis.

The Mtt̄ as reconstructed for all events, without any of the requirements

mentioned above, is shown in Figure 7–2. This is what we expect to be the

Standard Model contribution to the Mtt̄ spectrum in the data.

Some examples of event by event reconstruction are shown in Figure 7–3.

The 4th event is a dilepton event and the 8th is a tau+jets event. Interestingly
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Figure 7–3: Examples of Mtt̄ reconstruction, event by event.

they have larger widths than the others which are all lepton+jets events. Adding

combinations together can lead to double or multiple peaks.

The top mass used on data is mtop = 175 GeV. Therefore this is the value used

in our algorithm when producing Mtt̄ templates corresponding to various processes.

Figure 7–4 shows the actual template used for fitting the data, derived by fitting

5000 reconstructed events.

Certain approximations were made, since we cannot perform all integrals

which appear in the formal presentation because the CPU time involved would be
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Figure 7–4: Mtt̄ template for Standard Model tt̄ events.

astronomical, even using the computing farms commonly available to CDF users.

This is so because we need to model the Mtt̄ spectrum for 10 signal samples and

a couple of backgrounds, and then perform the systematics studies which require

recomputing the templates each time.

As it was mentioned in the previous chapter, the implementation uses a

different set of variables for integration, namely the masses of the two W bosons,

the masses of the two top quarks, the total transverse momentum of the tt̄ system

and one “W” quark energy. Studies showed that the best approach, given the

CPU time limitations, is to set the two top quarks’ masses on shell and also set on

shell the mass of the W which decays leptonically, leaving us with four integrals to
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perform. Even so, for systematics studies we needed about 100,000 CPU hours and

we used extensively the CDF computing farms.

7.2 Signal and other SM Backgrounds

The Monte Carlo samples for signal and all other Standard Model backgrounds

(besides tt̄) are run through the same algorithm, thus producing new distributions

corresponding to signal and backgrounds respectively. Even though the signal

is not 100% correctly modeled by the Standard Model tt̄ matrix element, we

expect the reconstruction to work quite well since a significant part of the matrix

element is concerned with the top and W decays and that won’t depend on the

specific tt̄ production mechanism. Especially in the case of a spin 1 resonance the

differences between the correct resonance matrix element and the Standard Model

matrix element are minimal, since the gluon is a spin 1 particle after all. Even

tough the methods presented in this dissertation can be applied to more general

cases, the actual limits we are deriving at the end are valid for vector resonances

because the Monte Carlo signal samples were generated with a vector resonance

model. We want to remind the reader that it was our initial decision to do a model

independent search anyway. The results are not completely model independent only

because of the Monte Carlo generators used to produce signal samples.

Applying the reconstruction to non-tt̄ events doesn’t produce any particularly

meaningful distributions, but they are backgrounds needed to model the data.

In what follows we briefly describe the results obtained when running this

reconstruction method on the various backgrounds needed in our analysis and

presented in a previous chapter.

• Signal samples

We generated signal samples with resonance masses from 450 GeV/c2 up to

900 GeV/c2, every 50 GeV/c2, using Pythia [24]. The reconstructed Mtt̄ for

all is shown in Figure 7–16. The peaks match very well the true value of
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Figure 7–5: Reconstructed invariant mass for a resonance with MX0 = 650 GeV.
The left plot shows all events passing event selection, while the right plot shows
only matched events

the resonance mass. In order to better understand the low mass shoulder

we split these events in three orthogonal subsamples: events with all four

jets matched to partons, mismatched events and fake lepton+jets events

(dilepton or hadronic events passing the lepton+jets event selection). The

method is expected to work well on matched events and indeed this is what

we see in Figures 7–5 and 7–6. The shoulder is given by the superposition of

mismatched events and fake lepton+jets events on top of the nice peak from

matched events.

The generated width for the resonance was 1.2% of the resonance mass. As

it can be seen the reconstructed resonance mass is much wider, due to the

relatively large uncertainties in jet measurements and non measuring the

neutrino z component at all. However the peak remains prominent enough

to be easily distinguished from the exponentially dropping Standard Model

processes.

• W+jet samples

We use the CDF official W + 4 partons ALPGEN [26] samples which are

then run through Herwig for parton showering. We looked at W + 2b + 2
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Figure 7–6: Reconstructed invariant mass for a resonance with MX0 = 650 GeV.
The left plot shows mismatched lepton+jets events and the right plot shows
non-lepton+jets events

partons also but decided not to include it explicitly since the shape is very,

very similar and the expected contribution at the level of 1-2% compared to

60% or more for the W + 4 partons. These can be seen in Figures 7–7, 7–11,

7–12 and a direct comparison of fit templates is shown in 7–15. So all W+jets

events are modeled by the W + 4 partons sample.

• QCD

For QCD we used the data to extract the shape. Multijet data is scanned for

jets with high electromagnetic fraction which are reinterpreted as electrons

based on the assumption that the jets that do fake an electron are very

similar to the ones just mentioned. With that said, the usual event selection

is applied and the events are reconstructed just like the others. This process

produces the template shown in Figure 7–9. The shape is not much different

from W + 4 partons, in fact they are quite close as assumed in the CDF Run

1 analysis when the QCD template was ignored altogether.

• Dibosons - WW, WZ and ZZ

The cross-sections for the WW, WZ and ZZ processes are 12.4 pb, 3.7 pb

and 1.4 pb. The acceptances follow the same trend with 0.14%, 0.08% and
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0.02% respectively. Moreover, the WZ and ZZ official samples have fewer

events left after event selection and the fits have larger errors. Given that

WW dominates anyway we decided to use only that template but increase

the acceptance such that the expected number of events will cover the small

WZ and ZZ contributions. Since overall the whole diboson part is almost

negligible this procedure isn’t expected to have any impact other than

simplifying the analysis. It can be added that the WW template which is

shown in Figure 7–10 is also very similar to the Standard Model tt̄ , W +

jets and QCD templates. We put all of them on top of each other for easy

comparison in Figure 7–14.

All these templates are used to fit the data and extract limits. The procedure

is explained in the next chapter.
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Figure 7–7: W+4p template (electron sample)
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Figure 7–8: W+4p template (muon sample)
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Figure 7–9: QCD template
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Figure 7–10: WW template
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Figure 7–11: W+2b+2p template (electron sample)
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Figure 7–12: W+2b+2p template (moun sample)
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Figure 7–13: W+4p template with alternative Q2 scale (electron sample)
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Figure 7–14: All Standard Model background templates used in the analysis
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Figure 7–15: W+2b+2p template vs W+4p template. W+2b+2p was ignored
since the expected contribution is at the level of 1-2% and the template is very
similar to the W+4p template
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Figure 7–16: Signal templates



CHAPTER 8
SENSITIVITY STUDIES

In this chapter we will present the algorithm used for establishing lower and

upper limits for signal cross-section times branching ratio at any desired confidence

level (CL).

We used a Bayesian approach which was shared with other CDF analyses. The

main idea and suggestions for the implementation can be found in [27, 28].

8.1 General Presentation of the Limit Setting Methodology

For generality we will assume that the observed data quantities are contained

in a vector n = (n1, n2, . . . , nnbins), which in our case would correspond to the bin

content of the Mtt̄ histogram. The modeling of the data contains one unknown

parameter and we want to be able to make a probabilistic statement about that

parameter once we look at the data. In other words we would like to obtain a

posterior probability distribution for the parameter. We will call this parameter

σ, because in our particular case it corresponds to the signal cross-section times

branching ratio.

It is often the case that other parameters are involved, and their values

are known with some uncertainty. We will assume their values are normally

distributed with the uncertainty being the standard deviation. We will denote

these parameters ν = (ν1, ν2, . . .) and call them nuisance parameters.

We will formalize our prior knowledge of the nuisance parameters and σ by

introducing the prior probability density π(σ,ν). In our case this can be factorized

as a product of Gaussians for the nuisance parameters and a flat distribution for σ.

77
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The Bayes theorem connects the likelihood of the measurement (prior

probability) to the posterior density of σ and ν after the measurement:

p(σ,ν|n) = L(n|σ,ν)π(σ,ν)/p(n) (8-1)

where p(n) is the marginal probability density of the data

p(n) =

∫

dν

∫

dσL(n|σ,ν)π(σ,ν) (8-2)

In these equations p(σ,ν|n) stands for the posterior density and L(n|σ,ν) stands

for the prior density.

We are not interested in the nuisance parameters so we integrate over them

p(σ|n) =

∫

dν p(σ,ν|n) (8-3)

to obtain the sought posterior probability density for the parameter of interest σ.

From this posterior p(σ|n) we can extract the information we need, like the

most probable value, upper and lower limits at any confidence level, etc.

8.2 Application to This Analysis

In our analysis the data n we observe is the binned Mtt̄ spectrum, the

parameter of interest σ is the resonant tt̄ production cross section times branching

ratio, σX0 · BR(X0 → tt̄), and the nuisance parameters are: the integrated

luminosity, acceptances, and cross-sections.

In order to build the likelihood (prior density) we need normalized Mtt̄ templates

for each process.

We will use the notation Tj with j ∈ {s, b} for the binned signal and

background templates, and Tj i for the ith bin of the jth template.
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Given the above definitions we can write the expected number of events in the

ith bin of the spectrum as

µi =

∫

Ldt ·
∑

j∈{s,b}

σjεjTj i = σsAsTsi +
∑

j∈{b}

NjTj i (8-4)

where we separated the signal contribution from the backgrounds and we defined

the auxiliary variables As =
∫

Ldt · εs (also called effective acceptance) and

Nj =
∫

Ldt · σjεj with j ∈ {b}, the total expected number of events for each

background, after event selection.

The prior likelihood can be written:

L(n|σ,ν) =
∏

i∈{nbins}

P(ni|µi) =
∏

i∈{nbins}

(σsAsTsi +
∑

NbjTj i)
ni

ni!
e−σsAsTsi−

∑

NbjTji

(8-5)

As we already pointed out, we may not know exactly As and the expected number

of events from background. It is customary to take as priors for these parameters a

truncated (to positive values) Gaussian to represent our prior knowledge1 . For the

signal cross section σs we use a flat prior.

8.2.1 Templates

As pointed out in Eq. 8-5, in order to build the likelihood function we need to

know the template distributions for the signal and for the backgrounds.

Given the limited statistics available for the samples we decided to fit them

and use the smoothed fit distributions as templates; this procedure removes

unphysical empty bins or bumps.

As already mention in Chapter 5, we consider as possible background

contributions the following processes:

1 Given that the total efficiency is often the product of several efficiencies, the
log-normal prior is often used too.
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• Standard Model tt̄

• W → eν̄ + 4 partons

• W → µν̄ + 4 partons

• W → eν̄ + 2 partons + 2 b

• W → µν̄ + 2 partons + 2 b

• Dibosons - WW, WZ, ZZ

• QCD (from data)
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Figure 8–1: Signal and background examples. The signal spectrum on the left
(MX0

= 600 GeV/c2) has been fit with a triple Gaussian. The background
spectrum from Standard Model tt̄ has been fit with the exponential-like function.
Fit range starts at 400GeV/c2.

The Mtt̄ histograms are fit with an exponential-like function f(x) = α · eβ·xγ

in the region above 400 GeV/c2. The signal histogram is fit with a double or

triple Gaussian, or a truncated double Gaussian and a truncated exponential

distribution2 . An example is shown in Fig 8–1. All templates can be found at the

end of the previous chapter.

2 This set of the fitting functions guarantees a fit with good χ2 probability.
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We discussed the backgrounds in Chapter 5, and we will remind the reader

that we decided it is safe to absorb the small W + 2 partons + 2 b contributions

into the W + 4 partons templates. Similarly, the WZ and ZZ contributions are

absorbed in the ZZ template by increasing by 20% the nominal WW cross section.

8.2.2 Template Weighting

Equation 8-4 shows that in order to build the likelihood we need to know the

number of background events Nj for each background type.

Table 8–1: Acceptances for background samples.

Sample Event Selection Reconstruction and 400GeV/c2 cut Total acceptance
SM tt̄ 0.045 0.72 0.032
WW 0.0014 0.60 0.0008

W(eν) 0.0076 0.66 0.0050
W(eµ) 0.0072 0.65 0.0047
QCD 0.0070 0.71 0.0050

In general we estimate the cross-section, acceptance and integrated luminosity

in order to get this number, but since the cross sections for the processes pp̄ →

W + nj and multijets (QCD) are not known with good precision we decided to

estimate the number of events from these backgrounds based on the total number

of events seen in the data:

NTOT
CDF =

∫

Ldt · (σsAs + σtt̄Att̄ + σWW AWW ) + NWe4p + NWµ4p + NQCD (8-6)

with the constraints

NWe4p/AWe4p = NWµ4p/AWµ4p, NWl4p = 10 · NQCD (8-7)

The relative weights for We4p, Wµ4p backgrounds have been set such that

they have the same number of events before the event selection and reconstruction

because the (unknown) cross sections are considered to be the same.
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The relative weight between QCD and W +4p has been set to 10% as discussed

in Chapter 5 and established in this analysis [29].

Acceptances used in calculations are listed in Tables 8–1 and 8–2. Cross-sections

are listed in section 5.4, Table 5–3.

Table 8–2: Acceptances for resonance samples.

MX0 (GeV/c2) Event Selection Reconstruction and 400 GeV/c2 cut Total
450 0.047 0.86 0.040
500 0.051 0.93 0.048
550 0.055 0.94 0.051
600 0.057 0.97 0.055
650 0.059 0.97 0.057
700 0.062 0.97 0.060
750 0.062 0.98 0.060
800 0.063 0.98 0.061
850 0.063 0.97 0.061
900 0.061 0.98 0.059

8.2.3 Implementation

After building the likelihood for a given observation n according to Eq. 8-5

we need to calculate the posterior density for σs according to Equations 8-1, 8-2

and 8-3. In practice we do not divide by p(n) in Eq. 8-1 since that is only a global

normalization factor we can apply at the end. In this way we do not need Eq. 8-2

any more and we can rewrite Eq. 8-1 in a simplified and more explicit form:

p(σs; As, Nb|n) = L(n|σs; As, Nb) π(σs; As, Nb) (8-8)

To obtain the posterior probability density for σs only we carry out the

integration on the nuisance parameters As and Nb using a Monte Carlo method.

Following the suggestions in [28] on page 20, we implement the “Sample &

Scan” method. We repeatedly (1000 times) sample the priors π(As) and πj(Nj),

which are truncated Gaussians with respective widths of δAs and δNj. Then we

scan (400 bins) the σs up to some value where the posterior is negligible. At each
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scan point we add to the corresponding bin in a histogram of σs a weight equal to

L(n|σs, As, Nb) · π(σs, As, Nb). This yields the posterior density for σs.

8.2.4 Cross Section Measurement and Limits Calculation

Having calculated the signal cross section posterior density we can extract

limits and “measure” the cross section. We define as our estimator for the

cross section and therefore as our measurement the most probable value of the

distribution. This choice is supported by many linearity tests we run both with

fake signal templates (simple Gaussians) and with real X0 templates.
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Figure 8–2: Linearity tests on fake (left) and real (right) templates. As test fake
signal templates we used Gaussians with 60 GeV/c2 widths and means of 800 and
900 GeV/c2. We used also real templates with masses from 450 to 900 GeV/c2.
The top plots show the input versus the reconstructed cross section after 1000
pseudoexperiments at integrated luminosity

∫

L = 1000 pb−1. Bottom plots show
the deviation from linearity in expanded scale, with red-dotted lines representing a
2% deviation

Figure 8–2 shows the results of the tests with fake Gaussian signal templates

of 800 and 900 GeV/c2 masses and 60 GeV/c2 width and with real Mtt̄ templates

for X0 masses from 450 to 900 GeV/c2 at an integrated luminosity equal to
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∫

L = 1000pb−1. The reconstructed cross section agrees very well with the input

value, showing only a small relative shift of about 2%.

However our measurement is meaningless as long as it is consistent with the

null hypothesis, being only a statistical fluctuation. Therefore the key quantities

to extract are the upper and lower limits (UL, LL) on the cross-section at a given

confidence level. This is done by finding an interval defined by limits LL and UL,

which satisfy:
∫ UL

LL
p(σ|n)

∫ ∞

0
p(σ|n)

= α (8-9)

and

p(LL|n) = p(UL|n) (8-10)

with α the desired confidence level, for example 0.95 for 95%.
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Figure 8–3: Example posterior probability function for the signal cross section for
a pseudoexperiment with input signal of 2 pb and resonance mass of 900 GeV/c2.
The most probable value estimates the cross section, and 95% confidence level
(CL) upper and lower limits are extracted. The red arrow and the quoted value
correspond to the 95% CL upper limit

In this way we can extract LL and UL for each pseudoexperiment or for data.

Figure 8–3 shows an example of posterior for a pseudoexperiment with input signal

of 2 pb, MX0 = 900 GeV/c2 and total integrated luminosity
∫

L = 1000 pb−1.
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Before looking at the data we need to know what are the expected limits

without any signal present and what are their fluctuations for certain integrated

luminosities.

For these purposes we ran many (1000) pseudoexperiments for each MX0 and

integrated luminosity and we filled histograms with the most likely value, LL and

UL from each pseudoexperiment.

The median of the UL histogram is considered the expected upper limit in the

absence of any signal. We also define 68% and 95% CL intervals around the central

value in order to get a feeling of the expected fluctuations in the upper limits.

We also ran similar series of pseudoexperiments with signal in order to

see what are our chances of observing a non-zero LL in a given scenario. More

specifically, we computed the probability of observing a non-zero LL for a given

resonance mass, integrated luminosity and signal cross-section. This quantity is

very useful in assessing the power of the algorithm and what signal cross-sections

are realistically possible to observe at any integrated luminosity.

8.2.5 Expected Sensitivity and Discovery Potential

Figure 8–4 shows the distribution of the expected upper limit (UL) at 95% CL

for various masses and two integrated luminosity scenarios,
∫

L = 319, 1000 pb−1.

Figure 8–5 shows the power of the algorithm in distinguishing signal from

background. On the x axis we have input signal cross-section and on the y axis

the fraction is the probability of observing a non-zero LL at 95% CL for
∫

L =

1000 pb−1.

This plots do not include shape systematics, or systematic effects that lead

to change in the shape of the templates. We will explore the treatment of shape

systematics in the next chapter.
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Figure 8–4: Upper limits at 95% CL. Only acceptance systematics are considered
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CHAPTER 9
SYSTEMATICS

We distinguish between two kinds of systematic uncertainties, acceptance and

cross-section systematics, and shape systematics. The first one does not affect the

shape of the templates and it is implicitly accounted for by the uncertainties in the

nuisance parameters.

Shape systematic uncertainties not only affect the acceptances but also the

template shapes, therefore they must be handled in a different way.

9.1 Shape Systematics

A change on Jet Energy Scale, initial and final state radiation, parton

distribution function, etc., modifies the signal and backgrounds acceptances as

well as their templates. To incorporate these systematics uncertainties we adopt

the same approach described in [30].

9.1.1 Jet Energy Scale

After applying the energy correction algorithm to jets we are left with some

residual uncertainty to the Jet Energy Scale (JES). The effect on the measured X 0

cross section is evaluated by applying a ±1σ shift on the JES and then running the

full reconstruction on signal and background samples; the resulting change in the

reconstructed, or measured, cross section as a function of the cross section itself is

then interpreted as the uncertainty on the X0 cross section.

The procedure consists in generating pseudoexperiments with “shifted”

templates and acceptances and analyzing them with correct templates and

87
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acceptances1 . The procedure is applied for two integrated luminosity scenarios
∫

L = 319, 1000 pb−1, for 17 signal cross sections σX0
= 0.125, 0.25, 0.375, 0.50, 0.75 . . . 3.75 pb−1

and five input signal masses MX0
= 450, 500 . . . 900 GeV/c2. The functional

dependence of the shift versus cross section is fit with a linear function δσX0
=

α0 + α1 · σX0
for each mass and for both positive and negative JES shifts. Results

of the fits for
∫

L = 1000 pb−1 are reported in Table 9–1.
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Figure 9–1: Cross section shift due to JES uncertainty for
∫

L = 1000 pb−1. The
shift represents the uncertainty on the cross section due to JES, as a function of
cross-section

9.1.2 Initial and Final State Radiation

To investigate the systematic effect of the initial and final state radiation

(ISR and FSR) uncertainties on the template shape we followed a similar method

to the one described in the previous section. We applied the Mtt̄ reconstruction

algorithm to official CDF samples with less or more radiation, corresponding to

a +σ or -σ change. Then we generated pseudoexperiments with shifted (new)

1 This to mimic the approach to analysis of the real data.
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Table 9–1: Linear fit parameters describing the uncertainty due to JES systematic;
JES- and JES+ labels designate a +σ or -σ variation in energy scale. The
uncertainty on cross-section is parametrized with δσX0

= α0 + α1 · σX0
.

MX0
αJES−

0 αJES−
1 αJES+

0 αJES+
1

450 0.044 0.048 -0.024 -0.057
500 0.009 0.065 -0.187 -0.076
600 0.024 0.057 -0.090 -0.067
700 0.030 0.047 -0.036 -0.048
800 0.018 0.049 0.002 -0.058
900 0.016 0.038 0.002 -0.050

templates and acceptances and just like before analyzed them using the unshifted

(original) templates and acceptances. The parametrizations of these uncertainties

are presented in Tables 9–2 and 9–3.
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Figure 9–2: Cross section shift due to ISR (left) and FSR (right) uncertainties for
∫

L = 1000 pb−1.

9.1.3 W-Q2 Scale

To account for the uncertainty on the correct Q2 scale for the W+jets

production we calculate the shift in the reconstructed cross section for a different
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Table 9–2: Linear fit parameters describing the uncertainty due to ISR modeling.
The uncertainty in cross section is parametrized with δσX0

= α0 + α1 · σX0
.

MX0
αISR−

0 αISR−
1 αISR+

0 αISR+
1

450 0.05 0.00 -0.18 0.03
500 0.18 -0.00 -0.11 -0.06
600 0.08 -0.02 -0.09 -0.05
700 0.02 0.02 -0.05 -0.04
800 0.01 0.00 -0.01 -0.01
900 0.02 0.01 -0.01 -0.00

Table 9–3: Linear fit parameters describing the uncertainty due to FSR modeling.
The uncertainty in cross section is parametrized with δσX0

= α0 + α1 · σX0
.

MX0
αFSR−

0 αFSR−
1 αFSR+

0 αFSR+
1

450 0.06 0.01 -0.15 -0.03
500 0.08 0.01 -0.14 0.03
600 0.04 -0.01 -0.02 0.00
700 0.00 0.02 -0.01 -0.01
800 0.01 0.00 -0.03 -0.02
900 -0.00 0.01 -0.01 -0.01

choice of Q2 scale using another CDF official systematic sample. The same

technique is used.

The shifts are shown in Figure 9–3 and the corresponding parametrizations of

these uncertainties are presented in Table 9–4.

Table 9–4: Linear fit parameters describing the uncertainty due to W-Q2 scale, The
uncertainty in cross section is parametrized with δσX0

= α0 + α1 · σX0
.

MX0
αWQ2

0 αWQ2
1

450 -0.20 0.02
500 -0.15 0.03
600 0.01 -0.00
700 0.03 -0.00
800 0.04 -0.01
900 0.03 -0.01
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Figure 9–3: Cross section shift due to W-Q2 scale uncertainty for
∫

L = 1000 pb−1

9.1.4 Parton Distribution Functions Uncertainty

One way to estimate the effect of uncertainties in the parton distribution

functions (PDF) is to reweight the events according to a new set of PDFs and

investigate the effect.

In this case we changed each of the 20 PDF eigenvalues up and down by

their errors and thus obtained 40 shifted templates for each unshifted template.

The overall acceptance variation is of the order of 1%, which is clearly covered

by the prior uncertainty on acceptance. The remaining effect if any is due to

template shape changes. However, we weren’t able to see any difference and a

Kolmogorov-Smirnoff test applied between the central template and the shifted

templates returned 1.0 in all cases, therefore we consider the PDF uncertainties to

be negligible for our search.

9.1.5 Overall Shape Systematic Uncertainties

Since we consider each shape systematic uncertainty as independent and

Gaussian-like, we can calculate the total shift due to all these effects by adding
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in quadrature the various shifts(δσX0
) for any given value of the assumed signal

cross-section (on the x axis).

Figure 9–4 shows the total shifts for all the signal masses MX0
= 450 . . . 900 GeV/c2

at an integrated luminosity of
∫

L = 1000 pb−1.
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Figure 9–4: Total shape systematic uncertainty versus signal cross section.

9.2 Effect of Shape Systematics

To incorporate the shape systematics into the Bayesian machinery we

considered the uncertainty on cross section δσX0
(σX0

) as a gaussian uncertainty on

each point of the posterior probability density function.

More explicitly we convolute the posterior obtained in the previous chapter

with this parametrization of the cross-section shifts due to shape systematics as a

function of signal cross-section itself:

PROBSY S(σX0) = PROB⊗δσX0 =

∫ ∞

0

G(σX0−σ′, δσX0(σ′)) PROB(σ′)·dσ′ (9-1)

In Eq. 9-1 G(x0, σ) stands for a truncated Gauss distribution of mean x0 and

standard deviation σ, because in performing the calculation we have to pay
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attention to the finite lower bound (zero) in the integration, that is, the resulting

convoluted function has to be zero for non-physical negative cross-sections. To

obtain such a result the convoluting function has to be a normalized truncated

Gaussian.

From a more intuitive point of view we can think that we apply this

convolution on the posterior iteratively for each shape systematic effect, however

the operation of convolution satisfies (f ⊗ g) ⊗ h = f ⊗ (g ⊗ h) which means we can

first combine all shape systematic effects in one function (which is done by adding

in quadrature the shifts) and then convoluting that combined shift function with

the posterior as obtained using the procedure described in the previous chapter.

Figure 9–5 shows the effect of smearing (convolution) on one posterior

distribution function obtained from a pseudoexperiment. The most probable

value moves a bit away from zero and the 95% CL on the cross section shifts to a

higher value, as expected (the sensitivity should depreciate due to systematics, so

we should see higher upper limits).
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Figure 9–5: Posterior probability function for the signal cross section. The smeared
(convoluted) probability in green, including shape systematics, shows a longer tail
than the original (black) distribution. As a consequence the UL quoted on the plot
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9.3 Expected Sensitivity with Shape Systematics

After applying the smearing procedure due to shape systematics we calculated

the expected sensitivity (upper limits) for various resonance masses and two

luminosity scenarios. These can be seen in Fig. 9–6 which shows the expected

sensitivity for the two integrated luminosity scenarios
∫

L = 319, 1000 pb−1.

Figure 9–7 shows the power of the algorithm, as defined in the previous

chapter, after applying the shape systematics.
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Figure 9–6: Upper limits at 95% CL. The plots show the results for two luminosity
scenarios, including or excluding the contribution from shape systematic
uncertainties
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CHAPTER 10
RESULTS

Wwe first looked at the data in the summer of 2005 when CDF had available

for analysis 320 pb−1 of data gathered since 2002. Just six months later another

360 pb−1 of data became available and it was added added to the analysis,

providing better limits.

10.1 First Results
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Figure 10–1: Reconstructed Mtt̄ in 320 pb−1 of CDF Run 2 data. The plot on the
right shows events with at least one SECVTX tag

In the first chunk of data we found 215 events passing our event selection.

We ran the Mtt̄ reconstruction algorithm and the resulting spectrum is shown in

the left plot of Figure 10–1. Three events were not reconstructed, which means

there were no available solutions satisfying the W and top mass constraints (the

algorithm forces the two top quarks on shell, together with the W that decays

leptonically).
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Table 10–1: Expected number of events assuming no signal. WW and QCD
numbers are derived based on the total number of events observed in the search
region above 400GeV/c2.

Sample expected # of events for 320 pb−1

SM tt̄ 65.9
WW 3.8

W(eν) 36.9
W(eµ) 34.1
QCD 7.3

The right plot in Figure 10–1 shows events with at least one b-tagged jet;

however we do not present results for this subsample. A more interesting plot

(Figure 10–2) shows the 148 events found in the search region above the 400

GeV/c2 cut, together with the Standard Model expectation. Even though we have
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Figure 10–2: Reconstructed Mtt̄ in 320 pb−1 of CDF Run 2 data, after the 400 GeV
cut

quite a good agreement between data and the Standard Model, there seem to be

few extra events in the 500 GeV/c2 region. But before addressing that issue in
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more detail we would like to present the “result” of our analysis which, together

with one possible theoretical interpretation, is shown in Figure 10–3. The bands

define 68% and 95% coverage intervals on the expected upper limit. In other words,

due to limited statistics our derived upper limits from 1000 pseudoexperiments

have non-negligible fluctuations. The central value is the median of the histogram

of upper limits from the 1000 pseudoexperiments, as mentioned before, and the

bands are defined by integrating half the interval on both sides - i.e. 34% of the

area on each side of the median in the case of the 68% band. In the absence of

any signal we expect the actual upper limits to be consistent with the expected

upper limits. For a resonance mass of 500 GeV/c2 the data doesn’t fit very well,

but the deviation is equivalent to a 2σ fluctuation which is not that unlikely.

This is consistent with the qualitative statement we made before regarding the

500 GeV/c2 region, based on the shape of the Mtt̄ spectrum. The black line
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Figure 10–3: Resonant production upper limits from 320 pb−1 of CDF Run 2 data

on the same plot represents the predicted signal cross-section according to the
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leptophobic topcolor-assisted technicolor theoretical model used in the Run 1

analysis. According to this model, we could exclude resonances with masses below

700 GeV/c2 at 95% confidence level.

Following the hypothesis that a small resonance contribution is present in the

data we performed an additional Kolmogorov-Smirnoff test on the Mtt̄ distribution

assuming first that there is no signal and then adding a 2 pb signal contribution

coming from a 500 GeV/c2 resonance. The particular signal cross-section was

chosen based on the most likely cross-section returned by our sensitivity machinery.

The results of the tests are shown in Figures 10–4 and 10–5. The data is consistent

with the Standard Model-only hypothesis at the 15% level and with the Standard

Model plus a 500 GeV/c2 resonance at the 70% level. The expected Mtt̄ shape with

such a signal present is shown in Figure 10–6.

10.2 Final Results

After observing quite in interesting Mtt̄ spectrum when the data was looked

at for the first time we eagerly waited to add more data and see whether the peak

around 500 GeV/c2 remains, is enhanced or diminished.

In January 2006 we added another 360 pb−1 of data and produced similar

plots: the Mtt̄ spectrum vs the Standard Model expectation, shown in Figure 10–7,

and the upper limits plot shown in Figure 10–8.

Table 10–2: Expected number of events assuming no signal. WW and QCD
numbers are derived based on the total number of events observed in the search
region above the 400GeV/c2.

Sample expected # of events for 680 pb−1

SM tt̄ 147.7
WW 8.1

W(eν) 69.0
W(eµ) 63.7
QCD 13.7
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Figure 10–4: Kolmogorov-Smirnoff (KS) test assuming only the Standard Model.
The KS distance distribution from pseudoexperiments is shown in the right
plot; the arrow indicates the KS distance between data and the Standard Model
template
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Figure 10–5: Kolmogorov-Smirnoff (KS) test assuming signal with a mass of
500 GeV/c2 and a cross-section equal to the most likely value from the posterior
probability. The KS distribution from pseudoexperiments is shown in the right
plot; the arrow indicates the KS distance between data and the Standard Model +
signal template.

As it can be seen in these plots the agreement between the Standard Model

and the data is again quite good, and the peak around 500 GeV/c2 is diminished

significantly. A new Kolmogorov-Smirnoff test performed between the data and
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Figure 10–6: Mtt̄ spectrum in data vs. Standard Model + 2 pb signal contribution
from a resonance with a mass of 500 GeV/c2

the expected Standard Model shape returned a less interesting probability of 56%

(Figure 10–9).

The upper limits based on the full dataset available are listed in Table 10–3.

For the same theoretical model mentioned before and according to Figure 10–8 we

can exclude resonance masses below 725 GeV/c2, thus considerably extending the

Run 1 CDF and D0 limits of 480 GeV/c2 and respectively 560 GeV/c2.

10.3 Conclusions

We have searched for resonance production of tt̄ pairs using a matrix element

based method to reconstruct the invariant mass distribution of tt̄ candidates.

The search was performed in a blind fashion; the data was looked at only

when the reconstruction and search algorithms were established, the treatment
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Figure 10–7: Reconstructed Mtt̄ in CDF Run 2 data, 680 pb−1
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expectation template

of systematics was understood and the expected limits for pure Standard Model

computed.

No indication of resonant production was found, and we set new, better

signal cross-section times branching ratio limits. Assuming resonance production

according to a leptophobic topcolor-assisted technicolor model we exclude

resonance masses below 725 GeV/c2. This is the best current limit in such searches.
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Table 10–3: Expected and observed upper limits on signal cross-section derived
from a dataset with an integrated luminosity of 680 pb−1.

Mass (GeV/c2) Expected UL (pb) Observed UL (pb)

450 2.7324 1.6652
500 1.8203 1.8236
550 1.1440 1.2640
600 0.7741 0.6913
650 0.5827 0.5801
700 0.4553 0.5851
750 0.3804 0.6099
800 0.3167 0.5602
850 0.2933 0.5357
900 0.2685 0.5171



105

 [pb]0X
σ

0 1 2 3 4 5 6 7

lik
el

ih
o

o
d

0

0.005

0.01

0.015

0.02

0.025

CDF Run 2 preliminary, L=682pb-1

 <  1.558 at 95% CLσ

 <  1.663 at 95% CLσ

 [pb]0X
σ

0 1 2 3 4 5 6 7 8

lik
el

ih
o

o
d

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

CDF Run 2 preliminary, L=682pb-1

 <  1.660 at 95% CLσ

 <  1.820 at 95% CLσ

 [pb]0X
σ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

lik
el

ih
o

o
d

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

CDF Run 2 preliminary, L=682pb-1

 <  1.138 at 95% CLσ

 <  1.263 at 95% CLσ

 [pb]0X
σ

0 0.5 1 1.5 2 2.5 3

lik
el

ih
o

o
d

0

0.005

0.01

0.015

0.02

0.025

CDF Run 2 preliminary, L=682pb-1

 <  0.615 at 95% CLσ

 <  0.690 at 95% CLσ

 [pb]0X
σ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lik
el

ih
o

o
d

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

CDF Run 2 preliminary, L=682pb-1

 <  0.530 at 95% CLσ

 <  0.580 at 95% CLσ

 [pb]0X
σ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lik
el

ih
o

o
d

0

0.002

0.004

0.006

0.008

0.01

0.012

CDF Run 2 preliminary, L=682pb-1

 <  0.550 at 95% CLσ

 <  0.585 at 95% CLσ

Figure 10–10: Posterior probability distributions for CDF data and masses
between 450 and 700 GeV.



106

 [pb]0X
σ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lik
el

ih
o

o
d

0

0.002

0.004

0.006

0.008

0.01

0.012

CDF Run 2 preliminary, L=682pb-1

 <  0.585 at 95% CLσ

 <  0.610 at 95% CLσ

 [pb]0X
σ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lik
el

ih
o

o
d

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

CDF Run 2 preliminary, L=682pb-1

 <  0.540 at 95% CLσ

 <  0.560 at 95% CLσ

 [pb]0X
σ

0 0.2 0.4 0.6 0.8 1 1.2 1.4

lik
el

ih
o

o
d

0

0.002

0.004

0.006

0.008

0.01

CDF Run 2 preliminary, L=682pb-1

 <  0.517 at 95% CLσ

 <  0.536 at 95% CLσ

 [pb]0X
σ

0 0.2 0.4 0.6 0.8 1 1.2 1.4

lik
el

ih
o

o
d

0

0.002

0.004

0.006

0.008

0.01

0.012
CDF Run 2 preliminary, L=682pb-1

 <  0.502 at 95% CLσ

 <  0.517 at 95% CLσ

Figure 10–11: Posterior probability distributions for CDF data and masses
between 750 and 900 GeV.



APPENDIX
CHANGE OF VARIABLES AND JACOBIAN CALCULATION SKETCH

We will work in the massless limit approximation for the 6 final state particles.

Let us denote by p1 and p2 the momenta of the two W daughter quarks and

by p3 and p4 the momenta of the two b quarks such that p1, p2 and p3 are the

decay products of one top quark. Then let pl be the momentum of the (charged)

lepton and pν the momentum of the neutrino. Similarly ~n1, ~n2, ~n3, ~n4, ~nl are the

corresponding unit vectors and we will also use px
ν , py

ν and pz
ν for the components of

the neutrino momentum.

The integration required is of the form
∫

dp1dp2dp3dp4d
3pν but we would

rather integrate over the new variables M 2
W1

, M2
W2

, M2
T1

, M2
T1

and ~P T
6 which are the

squares of the W and top masses and the 6 body transverse momentum.

The initial set contains 7 real variables while the new set contains only 6

variables so in fact we have to keep one of the initial variables and that will be p1.

The relation between the old and new variables is given below:

M2
W1

= 2p1p2(1 − ~n1 · ~n2) (1)

M2
W2

= 2(plpν − ~pl · ~pν) (2)

M2
T1

= M2
W1

+ 2p3p1(1 − ~n3 · ~n1) + 2p3p2(1 − ~n3 · ~n2) (3)

M2
T2

= M2
W2

+ 2p4pl(1 − ~n4 · ~nl) + 2p4(pν − ~n4 · ~pν) (4)

107



108

~P T
6 = p1~n

T
1 + p2~n

T
2 + p3~n

T
3 + p4~n

T
4 + pl~n

T
l + ~pT

ν (5)

We will compute the Jacobian of the transformation using the identity:

∫

dp1dp2dp3dp4d
3pν =

∫

[

∫

δ(M 2
W1

− 2p1p2(1 − ~n1 · ~n2)) · δ(M 2
W2

− 2(plpν − ~pl · ~pν)) ·

δ(M 2
T1

− M2
W1

− 2p3p1(1 − ~n3 · ~n1) − 2p3p2(1 − ~n3 · ~n2)) ·

δ(M 2
T2

− M2
W2

− 2p4pl(1 − ~n4 · ~nl) − 2p4(pν − ~n4 · ~pν)) ·

δ2(~P T
6 − p1~n

T
1 − p2~n

T
2 − p3~n

T
3 − p4~n

T
4 − pl~n

T
l − ~pT

ν ) ·

dM2
W1

dM2
W2

dM2
T1

dM2
T2

d2 ~P T
6 ]dp1dp2dp3dp4d

3pν (6)

and switching the order of the integrals, that is integrate over the old variables

first and use the property
∫

δ(f(x))dx =
∑

i
1

|f ′(xi
0)|

where xi
0 are all solutions for the

equation f(x) = 0.

First we do the p2 integral via the first delta function which yields a factor of

1

2p1(1 − ~n1 · ~n2)
(7)

and the solution

p2 =
M2

W1

2p1(1 − ~n1 · ~n2)
(8)

which is to be used in all subsequent calculations even though we won’t do it

explicitly here.

Next we do the p3 integral via the third delta function which yields another

factor of

1

2p1(1 − ~n3 · ~n1) + 2p2(1 − ~n3 · ~n2))
(9)

and the solution

p3 =
M2

T1
+ M2

W1

2p1(1 − ~n3 · ~n1) + 2p2(1 − ~n3 · ~n2))
(10)
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which again must be replaced in all subsequent calculations.

Next we do the d~pT
ν integrals using the fifth delta function. The factor is 1 and

the solution is

~pT
ν = ~P T

6 − p1~n
T
1 − p2~n

T
2 − p3~n

T
3 − p4~n

T
4 − pl~n

T
l (11)

which is less trivial than it looks since ~pT
ν depends on the yet to be integrated

variable p4 so it can’t be treated as a constant when we will do the integration over

p4.

Now we do the pz
ν integral using the second delta function in which ~pT

ν is

replaced with the expression above. The resulting factor is

pν

2|plpz
ν − pνpz

l |
(12)

We have two solutions for the pz
ν and these can be written in a compact form

as

pz
ν =

anz
l ±

√

a2 − (~nT
l )2(~pT

ν )2

(~nT
l )2

(13)

with

a =
M2

W2

2pl

+ ~nT
l · ~pT

ν (14)

Like for ~pT
ν , pz

ν also depends on p4 and now we will turn to this last integral

which is evaluated using the fourth delta function. But here we have to replace the

explicit expressions for ~pν as a function of p4. We can simplify the expressions if we

notice that from the leptonic W mass constraint we can express pν as

pν = a + nz
l p

z
ν (15)

and the expression inside the delta function can be rewritten as

M2
T2

− M2
W2

− 2p4(pl + a − ~n4 · ~pl − ~nT
4 · ~pT

ν + (nz
l − nz

4)p
z
ν) (16)
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Then the derivative with respect to p4 reads

− 2(pl + a − ~n4 · ~pl − ~nT
4 · ~pT

ν + (nz
l − nz

4)p
z
ν) − 2p4(−~nT

l · ~nT
4 + (nz

l − nz
4)

∂pz
ν

∂p4

+ (~nT
4 )2)(17)

where we used ∂~pT
ν

∂p4
= −~nT

4 which is used to evaluate ∂a
∂p4

as well. The last

step is finding ∂pz
ν

∂p4
. This follows from basic calculus since pz

ν = pz
ν(a, ~pT

ν ), but the

expressions become lengthy without adding anything new really so we will not list

them here.

The explicit, numerical calculation of the factor requires finding the solutions

for p4 given that the expression inside the delta function cancels. This leads to a

fourth order equation. Fourth order equations can be solved analytically. Once

the solutions are found all the factors are known and their product is equal to the

Jacobian.

In summary, we found the Jacobian for the change of variable defined above

without explicitly computing it, that is without computing the determinant of the

matrix of the first order derivatives of the old variables with respect to the new

ones. A sum over all solutions is implied, that is for a given set of new variables,

two or four sets of old variables exist, each with its own numerical value for the

Jacobian.
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