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ABSTRACT

A Combined νμ and νe Oscillation Search at MiniBooNE

Jocelyn Rebecca Monroe

MiniBooNE seeks to corroborate or refute the unconfirmed oscillation result from

the LSND experiment. If correct, the result implies that a new kind of massive

neutrino, with no weak interactions, participates in neutrino oscillations. MiniBooNE

searches for νμ → νe oscillations with the Fermi National Accelerator Laboratory 8

GeV beam line, which produces a νμ beam with an average energy of ∼0.8 GeV and an

intrinsic νe content of 0.4%. The neutrino detector is a 6.1 m radius sphere filled with

CH2, viewed by 1540 photo-multiplier tubes, and located 541 m downstream from the

source. This work focuses on the estimation of systematic errors associated with the

neutrino flux and neutrino interaction cross section predictions, and in particular, on

constraining these uncertainties using in-situ MiniBooNE νμ charged current quasi-

elastic (CCQE) scattering data. A data set with ∼100,000 events is identified, with

91% CCQE purity. This data set is used to measure several parameters of the CCQE

cross section: the axial mass, the Fermi momentum, the binding energy, and the

functional dependence of the axial form factor on four-momentum transfer squared.

Constraints on the νμ and νe fluxes are derived using the νμ CCQE data set. A

Monte Carlo study of a combined νμ disappearance and νe appearance oscillation fit

is presented, which improves the νμ → νe oscillation sensitivity of MiniBooNE with

respect to a νe appearance-only fit by 1.2 - 1.5σ, depending on the value of Δm2.
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Chapter 1

Introduction

In the Standard Model of particle physics neutrinos are massless particles, however,

neutrino flavor oscillation data conclusively demonstrates the existence of neutrino

mass. As such, massive neutrinos are the only experimentally verified occurrence of

physics beyond the Standard Model at the present time.

Neutrinos are unique in the Standard Model for two reasons. First, they are the

only nearly-massless fermions, lighter than the next-lightest particle, the electron,

by at least 5 orders of magnitude. Second, only left-handed neutrinos have ever

been observed, via their participation in weak interactions, and since neutrinos are

now known to be massive, there must be right-handed neutrinos as well, if neutrinos

are Dirac particles like all other constituents of the Standard Model. These strange

properties of the neutrino sector raise a number of questions. Given that neutrinos do

have mass, how is that mass generated, and why is it so small? Are there right-handed

neutrinos, and if so, where are they?

The neutrino oscillation data pose these questions, and more, since all of the

positive signals cannot be accomodated with only three neutrinos. The MiniBooNE

experiment seeks to corroborate or refute the unconfirmed evidence that a new kind

1



2

of massive neutrino, which is “sterile”, participates in neutrino oscillations.

1.1 Field Theory of Neutrino Mass

The Dirac Lagrangian for a spinor field Ψ is of the form

L = i(�c)Ψγμ∂μΨ − (mc2)ΨΨ. (1.1)

The Euler-Langrange equation, applied to Ψ gives

∂L
∂(∂μΨ)

= 0,
∂L
∂Ψ

= i�cγμ∂μΨ − mc2Ψ

which is the Dirac equation for a massive spinor

iγμ∂μΨ − (mc/�)Ψ = 0, Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ΨR

ΨL

(Ψc)R

(Ψc)L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.2)

The mass term for leptons in the Lagrangian density for the Standard Model, written

in terms of the left and right-handed projections, is of the form

L = mΨΨ = m(ΨRΨL + ΨLΨR) (1.3)

following the notation of reference [1]. However, this is not the only Lorentz invariant

quantity that is quadratic in the fields, and therefore there can be other mass terms.

From the fermion fields ΨL, ΨR, (Ψc)L, (Ψc)R and the adjoint fields, the unique and

non-vanishing combinations are

(ΨLΨR + h.c.), ((Ψc)RΨL + h.c.), ((Ψc)LΨR + h.c.)

where h.c. is the hermitian conjugate, and Ψc is the charge conjugate field. The most

general free-field Lagrangian density for the field Ψ is

L = Ψγμ∂
μΨ+ MD[ΨLΨR +h.c.]+

ML

2
[(Ψc)RΨL +h.c.]+

MR

2
[(Ψc)LΨR +h.c.] (1.4)
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where the new constants MD,ML, and MR have dimensions of mass, and correspond

to the Dirac mass term, and the Majorana mass terms respectively.

In terms of the chiral fields f and F ,

f =
ΨL + (ΨL)c

√
2

F =
ΨR + (ΨR)c

√
2

, (1.5)

the Lagrangian density becomes

L = fγμ∂μf + Fγμ∂μF + MD(fF + Ff) + MLff + MRFF (1.6)

= fγμ∂μf + Fγμ∂μF +
[
f, F

]⎡
⎣ ML MD

MD MR

⎤
⎦

⎡
⎣ f

F

⎤
⎦ .

The neutrino mass matrix M is real and symmetric in this basis,

M =

⎡
⎣ ML MD

MD MR

⎤
⎦ (1.7)

and has eigenvectors ν ′ and N . In terms of the eigenvector fields, the Lagrangian

density is

L = ν ′γμ∂μν
′ + Nγμ∂μN + Mν′ν ′ν ′ + MNNN, (1.8)

which is the free-field Lagrangian for not one, but two particles, ν ′ and N , which are

the mass eigenstates of the neutrino mass matrix.

The initial Dirac fermion field Ψ had four states: two spin states of a particle,

ΨR and ΨL, and two anti-particle spin states (Ψc)R and (Ψc)L. The defining char-

acteristic of a Majorana particle is that it is CPT self-conjugate, i.e. ΨL = (ΨL)c

and ΨR = (ΨR)c [2]. To respect the number of degrees of freedom of the initial

Lagrangian, the mass eigenstates, ν ′ and N must each have only 2 spin states, and

are therefore Majorana fermions. Hence, the additional Majorana mass terms in the

Dirac Lagrangian split the four mass-degenerate states of the Dirac field Ψ into two

non-degenerate Majorana fermions ν ′ and N .
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Standard Model: Massless Dirac Neutrinos

In the Standard Model, with massless Dirac neutrinos, the left-handed neutrino field

and lepton of the same family form an SU(2) doublet, while the right-handed lepton

is an isosinglet. The first generation fields are:⎡
⎣

eR

⎤
⎦ ,

⎡
⎣ ΨL

eL

⎤
⎦ .

In this case, the neutrino mass eigenstates are degenerate, and there is no difference

between the mass and flavor eigenstates, which are both are described by f in equa-

tion 1.5. Generalizing to three generations, an important consequence is that there

can be no mixing whatsoever between the lepton families. For a Lagrangian density

of the form L = Ψγμ∂
μΨ, there is no mixing between left and right handed states

either, and so in addition to the mass and flavor eigenstates being identical, chirality

is preserved as well. Therefore, electron number, muon number, tau number, and

chirality are strictly conserved, separately, in weak interactions [3], and there can be

no neutrino oscillations.

From the experimental point of view, the Standard Model contains no right-

handed neutrino fields because neutrino mass had not been observed when the theory

was constructed. From the gauge theory point of view, the Standard Model neutrino

is massless because in the SU(2)×U(1) theory, there are no Lorentz invariant mass

terms to which the Higgs can couple. From either vantage point, neutrino mass has

now been observed, and must be accomodated in the theory. This can be done with

extensions of the Standard Model in either the lepton or the Higgs sectors.
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Beyond the Standard Model: Massive Neutrinos

If the Standard Model lepton sector is extended by adding ΨR, the fields of the first

generation SU(2) doublets are ⎡
⎣ ΨR

eR

⎤
⎦ ,

⎡
⎣ ΨL

eL

⎤
⎦ ,

For massive Dirac neutrinos, ML and MR are zero in the neutrino mass matrix of

equation 1.6, and the Lagrangian density is

L = fγμ∂μf + Fγμ∂μF + [f, F ]

⎡
⎣ 0 MD

MD 0

⎤
⎦

⎡
⎣ f

F

⎤
⎦ . (1.9)

This Lagrangian density connects left and right handed components of the same fields

since f ∼ (ΨL + (Ψc)L) and F ∼ (ΨR + (Ψc)R), and therefore the massive field terms

are ∼ MD(ΨLΨR +h.c.). The Lagrangian density, in terms of the flavor states, can be

diagonalized with a change of basis to have mass eigenstates which are combinations

of left and right handed fields as in equation 1.5. In terms of the flavor eigenstates,

considering only the first two generations for simplicity, the mass term is [4]

L = mνeνeνeνe + mνμνμνμνμ + mνeνμ(νeνμ + νμνe) (1.10)

which can be diagonalized by the choice of bases

νe = cosθν1 + sinθν2; νμ = −sinθν1 + cosθν2. (1.11)

For θ �= 0, the mass eigenstates are not equal to the flavor eigenstates. Under this

change of basis, L becomes the Lagrangian density for two particles, ν1 and ν2. These

states evolve in time as

|νe(t) > = cosθ e−iE1t|ν1 > +sinθ e−iE2t|ν2 > (1.12)

|νμ(t) > = −sinθ e−iE1t|ν1 > +cosθ eiE2t|νe >;
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where E1 =
√

m2
1c

2 + p2c2, E2 =
√

m2
2c

2 + p2c2, and p is the neutrino momentum.

The ansatz is made that the momentum p of the mass eigenstates is the same, but

the energies are different; an identical result is arrived at for the converse assumption.

The original number of degrees of freedom in the Lagrangian have been preserved in

this transformation since there were initially two flavor states, and here there are two

mass eigenstates. Therefore, these are Dirac, not Majorana, neutrinos.

If m1 �= m2, then the electron neutrino and muon neutrino flavor eigenstates

propagate with different frequencies, which gives rise to the quantum mechanical

phenomenon of neutrino oscillations [4]. The probability of oscillation between flavor

states for a pure electron neutrino flavor state at time t = 0 is

P (νe → νμ) = | < νμ|νe(t) > |2 = sin22θsin2
((E2 − E1)t

2

)
(1.13)

= sin22θsin2
(1

4
Δm2 Lν

Eν

)
,

with � = c = 1, and the approximation that the energies of the propagating mass

eigenstates i are Ei =
√

p2 + m2
i 	 p +

m2
i

2p
. The factor Δm2 is |m2

2 − m2
1|, Lν is the

distance travelled by the neutrino between production and detection, and Eν is the

neutrino energy.

As a result, if the mass eigenstates are not equal to the flavor eigenstates, and

the mass eigenstates are not degenerate, then even with purely Dirac mass terms,

lepton flavor number is not individually conserved. The sum of the lepton numbers

Ltotal = Le + Lμ + Lτ is conserved, since no leptons are disappearing into thin air,

however, because neutrinos can oscillate between flavors, individual lepton number,

e.g. Le, is no longer conserved. While this is a departure from the Standard Model,

is it not entirely unexpected, since there is no analogue of individual lepton number

conservation in the quark sector. Instead, there is the larger symmetry of baryon

number conservation.
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Generalizing to three generations and assuming CP and CPT invariance, the

probability for neutrino oscillations is [5]:

P (να → νβ) = δαβ − 4
n∑

i>j

Uα,jUβ,jUα,iUβ,isin
2xj,i (1.14)

where α and β index the weak eigenstates (e, μ, τ), i and j index the mass eigenstates

(1, 2, 3), n is the number of generations, U is the neutrino mixing matrix, and xj,i is

the oscillation frequency given in terms of experimental quantities (1.27Δm2
j,iLν/Eν),

where Δm2 is the difference of the squares of the masses for eigenstates j and i, Lν

is the distance travelled by the neutrino between production and detection, Eν is the

neutrino energy, and the 1.27 comes from including factors of � and c. The unitary

matrix U describes the mixing betwen the weak and mass eigenstates, which for three

generations is given by:

U =

⎡
⎢⎢⎢⎣

Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

⎤
⎥⎥⎥⎦ . (1.15)

This matrix has six independent elements, which can be written in terms of mixing

angles and complex phases [5]

U =

⎡
⎢⎢⎢⎣

1 0 0

0 c2,3 s2,3

0 −s2,3 c2,3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c1,3 0 s1,2e
−iδ

0 1 0

−s1,2e
iδ 0 c1,3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c1,2 s1,2 0

−s1,2 c1,2 0

0 0 1

⎤
⎥⎥⎥⎦ × (1.16)

⎡
⎢⎢⎢⎣

ei
α1
2 0 0

0 ei
α2
2 0

0 0 1

⎤
⎥⎥⎥⎦

where ci,j and si,j are abbreviations for sinθi,j and cosθi,j, θ are the mixing angles

between mass eigenstates i and j, and δ, α1, and α2 are the matrix phases. If neutrinos

are Dirac particles, then the matrix can be written in terms of only one phase, δ.
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The question of why the neutrino masses are so much smaller than other fermion

masses has not yet been addressed here, and purely Dirac mass terms in the La-

grangian density cannot solve this problem easily for the following reason. In a

minimal extension of the Standard Model, which includes a ΨR field, the sponta-

neous symmetry breaking that leads to Dirac neutrino mass also leads to the fermion

masses. The Yukawa coupling for a Higgs field Φ to the Dirac neutrino field Ψ is of

the form ΨRΦΨL. One would expect that the Dirac mass MD would be of the order

of the symmetry breaking scale, that is, the non-zero vacuum expectation value of

the Higgs field 〈Φ〉. When SU(2) is spontaneously broken in this way, the fermions

and weak gauge bosons acquire mass at this scale. If there are no non-zero Majorana

terms in the neutrino mass matrix, then neutrinos also acquire a mass at the scale of

the Dirac mass, which must be of the order of MeV . Since no MeV -mass neutrinos

have been observed, there must be a mechanism for the suppression of fermion scale

neutrino mass by many orders of magnitude [6].

The canonical mechanism for the suppression of neutrino mass involves an exten-

sion of the Standard Model in both the lepton and Higgs sectors, which requires the

right-handed state ΨR and non-zero Majorana mass terms. If two new Higgs fields

are introduced, ΔR and ΔL, in addition to the original field Φ, then the mass terms

allowed by isospin invariance in the Dirac Lagrangian density are

ΨR Φ ΨL, (ΨL)cΔLΨL, (ΨR)cΔRΨR.

For the general free-field Lagrangian density of equation 1.4, when the SU(2) sym-

metry is spontaneously broken by non-zero vacuum expectation values of the Higgs

fields, the terms quadratic in the neutrino field have MD ∼ 〈Φ〉,ML ∼ 〈ΔL〉, and

MR ∼ 〈ΔR〉. Constraints on the values of the additional Higgs fields’ expectation

values come from the ratio of the W boson mass to the Z mass, which effectively

restrict 〈ΔL〉 and therefore ML to be zero [7]. A second consideration comes from
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the coupling of the right-handed Higgs field ΔR to the gauge bosons: since no WR is

observed, the mass scale for the breaking of chiral symmetry must be much greater

than that of the electroweak symmetry breaking, and so there is a hierarchy of the

vacuum expectation values of the Higgs fields: 〈ΔR〉 
 〈Φ〉. It is conventional to

take MR 
 MD. In this case, the neutrino mass matrix is of the form

M =

⎡
⎣ 0 MD

MD MR

⎤
⎦ (1.17)

with eigenvalues

MN ≈ MR, Mν′ ≈ −M2
D

MR

(1.18)

and eigenvectors

N 	 F +
MD

MR

f, ν ′ 	 f − MD

MR

F. (1.19)

This result leads to the see-saw relation [8], which connects the neutrino mass scale

to the Dirac mass scale of the quarks (Mquark = MD):

MνMN = M2
quark. (1.20)

Therefore, with the addition of Higgs fields to generate the Majorana mass terms,

the very tiny size of the neutrino mass can be motivated by having a right-handed

neutral heavy lepton isosinglet. For example, if Mν = 1 eV , and Mquark = 200

MeV , then MN must be 4 × 1016 eV .

With this potential solution to the problem of small neutrino mass, one might

ask whether the addition of Majorana mass terms to the Standard Model Lagrangian

density has any effect on the masses of other fermions. Fortunately, the answer is

no, because Majorana particles are self-conjugate under CPT transformations, and

therefore cannot carry electric charge. The quarks are charged, and so the addition

of Majorana mass terms to the Standard Model Lagrangian affects only the neutrino

sector.
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If neutrinos are Majorana particles, then there are additional consequences be-

yond flavor oscillations in the neutrino sector. Rewriting the chiral states that can

participate in the weak interaction in terms of the Majorana mass eigenstates gives,

for example,

f = ν ′ + V N ; V =
MD

MR

, (1.21)

which contains both the left- and right-handed mass eigenstates ν and N of one

generation, where νL ∼ ν ′ and νR ∼ N , with V setting the degree of mixing. There

is, therefore, a small probability for the weakly interacting left-handed neutrino to

oscillate into a right-handed neutral heavy lepton of the same flavor, given by [1]

P (νL → NL) ≈ V 2 =
MD

2

MR
2 =

Mν

MN

, (1.22)

which for the previous numerical estimate gives V = 2.5 × 10−8. Oscillation from

νL → νR is equivalent to a matter - anti-matter oscillation, since for Majorana parti-

cles νR = − (νL)c. This process violates lepton flavor number by 2 units, and so with

the addition of Majorana mass eigenstates, lepton number conservation is completely

violated, and not even the sum of the individual lepton numbers can be conserved.

In summary, the extension of the Standard Model to accommodate non-zero neu-

trino mass has a number of interesting implications that may be elucidated by testing

individual and total lepton number conservation laws. Neutrino flavor oscillations are

possible only if neutrinos have mass, the mass eigenstates have different masses, the

mixing between mass and flavor eigenstates is non-zero, and right-handed neutrinos

exist. Further, depending on whether the mass is Dirac or Majorana in nature, even

more exotic transformations are possible. If neutrinos are Majorana particles, they

may also oscillate between left-handed and right-handed, or matter and anti-matter

states.
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1.2 Experimental Evidence for Neutrino Mass

Conclusive evidence for neutrino mass was discovered in 1998 by the Super-Kamiokande

experiment’s observation of neutrino oscillations [9]. This phenomenon can only oc-

cur if neutrinos have mass, and their masses are different, as in equation 1.13. This

was the result that convinced the particle physics community at large that neutrinos

oscillate, and it inspired a generation of new experiments.

Neutrino oscillation experiments can use several different kinds of neutrino beams:

those produced in collisions of cosmic rays with the earth’s atmosphere, those pro-

duced in solar fusion processes, those produced in nuclear reactors, and those pro-

duced at accelerator facilities. The phenomenon of neutrino oscillations has been

observed in all of these types of experiments, however, the specific observations differ

sigificantly. Combining oscillation measurements can map out the neutrino mixing

matrix of equation 1.14, determine the neutrino mass hierarchy, and possibly even

discover new physics in the neutrino sector. However, neutrino oscillation searches

measure the mass difference Δm2, rather than the neutrino mass itself, and so while

oscillation experiments provide evidence of mass they cannot measure the absolute

scale. Therefore, this type of experiment is an indirect search for neutrino mass.

Direct neutrino mass measurements are experimentally very difficult because neu-

trino masses are so small, of the order of eV or less. Direct searches have historically

tried to measure neutrino mass using conservation of energy and precision measure-

ments of the final state kinematics in weak decays. So far they have only set upper

limits on the values of the neutrino masses. Another class of direct mass searches seeks

to measure the Majorana mass term using the rate of neutrino-less double beta de-

cay (0νββ). These measurements have also mostly resulted in upper limits, however,

there is one controversial signal which indicates a non-zero Majorana mass.
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Table 1.1: Direct neutrino mass measurement results in units of eV . Table from

reference [11]. References for each result are given in the text.

νe νe Majorana νμ ντ

∑
i mi

< 2.2 < 0.24 < 0.17×106 < 18.2×106 < 0.7-1.0

Recently, precision astrophysical data have also been used to set limits on the

sum of the neutrino masses. These measurements are in a sense both direct and

indirect because while they have sensitivity to the absolute scale of neutrino mass,

many theoretical assumptions about the evolution of the universe are necessary to

extract a limit.

One additional constraint on the neutrino sector that is very important for neu-

trino mass searches is the limit on the number of weakly-interacting, or “active”,

neutrinos. The LEP experiments in combination measure this from the lineshape of

the decay width of the Z-boson to be 2.92 ± 0.07. [10]. This constraint plays a role in

combining measurements from oscillation experiments, and in model-building needed

to interpret astrophysical data.

Direct Searches

The best current direct neutrino mass measurement results are summarized in table

1.1. These include limits on the νe mass from β-decay, limits on the νμ mass from

π decay, limits on the ντ mass from τ decay, as well as searches for Majorana mass,

and astrophysical limits on the sum of the neutrino masses.

Direct searches for the mass of the νe use the β decay of tritium via 3H → 3He e−,

where the underlying process is n → p e− νe. The electron kinetic energy spectrum
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can be predicted analytically,

dΓ

dE
= N

G2
F

2π3�7c5
cos2(Θc)|M|2F (E,Z + 1) · p(E + mEc2) · (1.23)

∑
i,j

Pi(E0 − Vi − E) · |Ue,j|2
√

(E0 − Vi − E)2 − m2(νj)c4

where N is the number of parent nuclei, GF is the Fermi constant, Θc is the Cabibbo

angle, M is the nuclear decay matrix element, F (E,Z + 1) is the Fermi function,

p is the electron momentum, me is the electron mass. Pi is the probability to find

a final state with a daughter nucleus with excitation energy Vi, and |Ue,j|2 is the

probability to find a neutrino in mass eigenstate m(νj). E0 is the endpoint of the

electron spectrum in the case of mν = 0.0, which is the Q value of the decay minus

the energy of the daughter nucleus. By comparing the measured endpoint of the

electron kinetic energy spectrum with E0, experiments extract an upper limit on the

νe mass. The best limit comes from the Mainz experiment, which measures m2
νe

=

-1.6 ± 2.5stat. ± 2.1sys. eV 2/c4, which is usually expressed as a limit mνe < 2.2 eV

at 95% confidence level [12]. The planned KATRIN experiment is projected to have

sensitivity down to mνe = 0.3 eV [18].

Direct mass searches for the νμ and ντ mass are based on a similar concept of

precisely measuring the final state kinematics of weak decays and comparing with the

predicted spectrum. The best νμ mass limit comes from high precision measurements

of the μ+ momentum in π+ → μ+νμ decays from a stopped pion beam at the PSI.

The experimental result is m2
νμ

= −0.016± 0.023 MeV 2, which is converted into an

upper limit of 0.17 MeV at 90% confidence level [14] 1. The experimental precision

is limited by the muon momentum measurement accuracy. The ντ mass searches use

the decays τ− → 2π−π+ντ and τ− → 3π−2π+(π0)ντ at the ALEPH experiment. The

1This analysis assumed that the νμ is created in a mass eigenstate, which is not strictly correct

now that neutrino oscillations have been conclusively established.
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experimental result is derived from fitting the visible energy distribution as a function

of invariant mass, with mντ as a free parameter. The final state identification and

energy resolution of the detector are the limiting factors in the experimental precision.

The resulting limit is mντ < 18.2 MeV at 95% confidence level [15].

The Majorana or Dirac nature of the neutrino is probed by neutrino-less double

beta decay (0νββ) experiments, which seek to directly measure the Majorana mass

component of the νe. Double beta decay is a rare process predicted by the Standard

Model weak interaction in which a nucleus that is stable against single beta decay

can decay by a double weak interaction via A(Z,N) → A(Z +2, N − 2)+2e− +2νe.

Typical nuclei that posess this property are 76Ge, 100Mo, and 82Se. This process

changes the charge of nucleus by 2 units, and two neutrinos are emitted. Neutrino-less

double beta decay measurements search for interactions where no neutrinos emerge.

If neutrinos have non-zero Majorana mass, the emitted νe from the first beta decay

can interact as a νe within the nucleus and instigate the second beta decay signature

via νen → e−p. This requires Majorana mass because for the neutrino to interact

as both νe and νe it must be its own anti-particle. The Majorana mass experiments

measure the half-life for (0νββ) [T 0ν
1/2]

−1, which depends on the “effective” Majorana

mass 〈mν〉 via

[T 0ν
1/2]

−1 = G0ν(E0, Z)|〈mν〉|2|M0ν
f −

(gA

gV

)2

M0ν
GT |2 (1.24)

where G0ν(E0, Z) is related to the kinematic phase space for the decay,
(

gA

gV

)
are

the familar weak interaction axial and vector charges, and M0ν
f and M0ν

GT are nuclear

decay matrix elements. The “effective” Majorana mass is really a sum over mass

eigenstates [5]:

〈m〉 =
∑

i

|Ue,i|2mi (1.25)

where i indexes the (Majorana) mass eigenstates m, and Ue,i are the neutrino mixing

matrix elements. These searches are quite difficult because very low noise conditions
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are necessary, a large amount of data is required, and the matrix elements have

large uncertainties of order 50%. The best limit is set by the Heidelberg-Moscow

experiment, 〈m〉 < 0.2 eV at 90% confidence level [19], however, a sub-set of this

experiment also reports a positive signal, 0.11 eV < 〈m〉 < 0.56 eV [20], which is

very controversial [21]. The sensitivity of future (0νββ) experiments is projected to

be 〈m〉 ∼0.01 eV [22].

An interesting corollary is that Majorana mass terms in the neutrino mass matrix

also cause the appearance of a right-handed isosinglet partner of the left-handed

neutrino. Experimental searches for the neutral heavy lepton set an upper limit on

the mixing probability V between ν and N , of ∼ 10−6 at mN = 5 GeV, however,

three anomalous events were observed in a 2 GeV - 10 GeV mass neutral heavy lepton

search at the NuTeV experiment [23].

The sum of the neutrino masses can be inferred from astrophysical data combined

with models for the evolution of cosmic matter density fluctuations. There are ∼100

ν/cm3 in free space, and therefore even a small neutrino mass would have a signif-

icant impact on the matter distribution in the universe. Precision measurements of

the matter density fluctuations are sensitive to the total mass of neutrinos because

neutrinos tend to suppress small-scale fluctuations [24]. The degree of suppression

depends on the mass of neutrinos as [25]

ΔPM

PM

	 −8
Ων

ΩM

(1.26)

where PM is the power spectrum of matter density fluctuations, Ων is the fraction of

the universe’s mass carried by neutrinos, and ΩM is the total matter mass fraction.

The absence of small-scale fluctuation suppression is interpreted as an upper limit on

the sum of the neutrino masses. The current limit which is most model-independent

is
∑

i mi < 2.1 eV at 95% confidence level [16]. A more agressive limit can be
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derived by using data other than the small-scale power spectrum to constrain model

uncertainties, in this case the limit is
∑

i mi < 0.7 eV at 90% confidence level [17].

With the exception of 0νββ searches, all of the direct neutrino mass measurements

are sensitive only to Dirac neutrinos that interact via the weak interaction, that is,

left-handed neutrinos that couple to the W and Z bosons. Neutrino oscillations and

Majorana mass raise the possibility of right-handed neutrinos that mix only with the

light, weakly interacting neutrinos. These hypothetical particles would be “sterile”

in the sense that they would not participate in the weak interaction. In contrast to

the direct neutrino mass measurements, oscillation searches are sensitive to “sterile”

neutrinos, and in fact, require them to accomodate all of the current oscillation results.

Indirect Searches

Neutrino oscillation experiments typically cast their results in terms of the neutrino

mass eigenstate difference Δm2 and the degree of mixing between a particular mass

and weak eigenstate, given by a mixing angle sin2 2θ. These quantities are directly

related to the mass eigenstates if only two are involved, however, they may be “effec-

tive” parameters, that is, useful for describing an experiment’s observation but not

the physical quantities involved in oscillations, in cases where more than two mass

eigenstates participate. Different neutrino experiments are sensitive to different pa-

rameter combinations, due to the energy and composition of their neutrino beam,

and the distance of the detector from the neutrino source.

Oscillation searches can be categorized experimentally as “appearance” or “dis-

appearance:” in an “appearance” analysis one searches for the oscillation of one flavor

into another, e.g. νμ → νe, while in a “disappearance” analysis the experimental ob-

servation is that the rate and/or energy spectrum of interactions of a particular flavor

is reduced with respect to the expectation, e.g. fewer νμ are measured than expected.
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In contrast to direct mass searches, neutrino oscillations can produce very large ex-

perimental signals, of the order of 50% effects, depending on the underlying oscillation

parameters. The experimental constraints on the neutrino oscillation parameter space

are summarized in figure 1.1, which includes the results from atmospheric neutrinos,

solar neutrinos, reactor neutrinos, and accelerator neutrino experiments.

Atmospheric neutrinos typically travel a distance between production and detec-

tion of a few hundred km if coming from straight overhead (zenith angle of 0o) or

∼10,000 km if travelling upwards through the earth (zenith angle of 180o), and have

energies ranging from sub-GeV to multi-GeV . Therefore, in the oscillatory term in

the oscillation probablity, sin2
(

1.27Δm2Lν(km)
Eν(GeV )

)
, Δm2 must be of order 10−2-10−3 for

the term to be near a maximum. This roughly determines the oscillation parameter

sensitivity of atmospheric neutrino experiments. Neutrinos produced in the atmo-

sphere possess a very useful property for oscillation measurements, which is that the

predicted ratio of of νμ to νe is well understood. When cosmic rays, which are mostly

protons, interact with the atmosphere, they produce the following chain of reactions:

(i) pN → π±X, (ii) π± → μ± (−)
νμ , (iii) μ± → e±

(−)
νe

(−)
νμ . This chain of interactions

produces 2 νμ flavor particles for each νe flavor. Therefore the accessible oscillation

channels are
(−)
νμ disappearance,

(−)
νe disappearance, and

(−)
νμ→(−)

νe oscillations, however,

atmospheric neutrino detectors typically cannot distinguish ν from ν. To reduce the

systematics associated with predicting the absolute rate of atmospheric neutrino pro-

duction, experiments typically measure the ratio of the observed to predicted νμ:νe

ratio, or the ratio of ratios. In the absence of oscillations this should 1.0, however,

the Super-Kamiokande observation is that the ratio is 0.65-0.7. The conclusive piece

of evidence for atmospheric neutrino oscillations was the observation of zenith angle

dependence of the ratio of ratios consistent with the prediction of the oscillation hy-

pothesis [9]. The current best measurement of the atmospheric neutrino oscillation
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parameters is 1.5 × 10−3 < Δm2
2,3 < 3.4 × 10−3eV 2 and sin22θ2,3 > 0.92 at 90%

confidence level, from the Super-Kamiokande experiment [26]. The subscript (2, 3)

indicates that the oscillations observed by atmospheric neutrino experiments are pri-

marily due to the participation of neutrino mass eigenstates 2 and 3 and νμ → ντ

transitions.

Solar neutrinos travel much longer distances between production and detection,

L∼ 108 km, and have very low energies ∼10 MeV , consistent with fusion products.

The composition of solar neutrinos should be pure νe given the processes associated

with solar fusion, and the predicted rate of solar neutrino production has very small

errors because the visible luminosity, which is is strongly correlated with the fusion

rate, is well measured. A deficit of solar neutrinos with respect to the predicted

rate was first observed in the 1950s, and was termed the “solar anomaly” [27]. It

was not until recently when experiments observed an energy spectrum deformation

characteristic of oscillations that the “solar anomaly” was resolved. Historically, solar

neutrino oscillation experiments could only detect νe and search for oscillations via

νe disappearance, therefore they did not take advantage of the beam composition

information. However, the recent SNO experiment was designed to measure not

only the νe from the sun, but also search for solar νμ and ντ , which could only be

produced by νe → νμ,τ oscillations. SNO observes a ∼50% deficit of νe with an energy

spectrum consistent with the oscillation prediction, and a relative excess of νμ and

ντ events combined [28]. In combination with previous solar neutrino experiments,

this gives the best current measurement of the solar oscillation parameters, Δm2
1,2

= 6.5+4.4
−2.3eV

2 and tan22θ1,2 = 0.45+0.09
−0.08 at 1σ [29]. The subscript (1, 2) indicates

that the oscillations observed by solar neutrino experiments are primarily due to the

participation of neutrino mass eigenstates 1 and 2 and νe → νμ transitions.

Reactor neutrino beams are very similar in energy spectrum to solar neutrinos,
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because they are side-products of fission, with typical energies of a few MeV . Unlike

solar neutrinos, reactor beams are composed exclusively of νe. An attractive feature

of reactor neutrino beams is that the predicted energy spectrum has very small uncer-

tainties. Reactor neutrinos are radiated isotropically, therefore detectors are usually

sited within 1 km of the source, which determines the sensitivity to oscillation pa-

rameters. The experimental channel for oscillation searches is νe disappearance, and

until recently, reactor neutrino oscillation experiments had only set limits because

they didn’t see any signals. However, the KamLAND experiment, which was specifi-

cally designed to have sensitivity to the allowed solar oscillation parameter space and

has a baseline of ∼180 km, observes a deficit with an energy spectrum consistent

with oscillations in agreement with the solar oscillation results [30]. The current best

oscillation parameter measurement from KamLAND in combination with the solar

neutrino data is Δm2
1,2 = 8.0+0.6

−0.4eV
2 and tan22θ1,2 = 0.45+0.09

−0.07 at 1σ [29]

Accelerator neutrino experiments are unique in that they can control both the

energy of the neutrino beam and the distance of the detector from the source. In

principle this allows for more controlled experimental conditions. Accelerator neutrino

beams are composed of either νμ or νμ from π± decays, with small backgrounds from
(−)
νe . The accessible experimental channels are

(−)
νμ disappearance,

(−)
νe appearance, and

possibly even ντ appearance. Only one short-baseline accelerator neutrino oscillation

experiment has observed a signal: the LSND experiment, which searched for νμ → νe

in a νμ beam with 20 < Eν < 60 MeV and an Lν of 30 m, observes an excess

consistent with 0.2 < Δm2 < 10 eV 2 over a range of 0.003 < sin22θ values < 0.03.

The best-fit point is (Δm2, sin22θ) = (1.2 eV 2, 0.003) [31], corresponding to an

oscillation probability of ∼0.3%. Precisely which mass eigenstates are involved in the

oscillations observed by LSND is unknown. Other short-baseline accelerator neutrino

experiments did not observe signals and therefore set limits, none of which quite cover
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the same region of parameter space as the LSND result. Two long-baseline accelerator

neutrino experiments, both of which were designed specifically to have sensitivity to

the allowed atmospheric oscillation parameter space, have observed oscillation signals.

The MINOS experiment has an average Eν of 7-10 GeV depending on the beamline

configuration and a baseline Lν of 735 km. Their observation is Δm2
2,3 = 3.05+0.60

−0.55

×10−3eV 2 and sin22θ2,3 = 0.88+0.12
−0.15 at 1σ [32], which agrees within the experimental

uncertainties with the atmospheric neutrino oscillation results. The K2K experiment

has an average Eν of ∼1.3 GeV and Lν of 250 km, and observes an energy spectrum

distortion consistent with 1.9 ×10−3 < Δm2
2,3 < 3.5 ×10−3eV 2 at sin22θ2,3 = 1.0 at

90% confidence level [33].

The results of all of the oscillation experiments are shown in figure 1.1. The

regions of parameter space allowed by the positive signals are indicated by the en-

closed shaded regions, and the experiments which set limits rule out the parameter

space above and within the lines. With three neutrinos, there can only be 2 inde-

pendent values of the oscillation parameter Δm2, since Δm2
1,2 + Δm2

2,3 ≡ Δm2
1,3.

At present, there are three irreconcileable values of Δm2 at ∼ 10−5, ∼ 10−3 and

∼ 1 eV 2, as figure 1.1 shows. One solution to this problem is that one of the ex-

perimental signals in incorrect. Both the solar and atmospheric signals have been

confirmed by multiple experiments, however, the LSND signal has not. The purpose

of the MiniBooNE experiment is to confirm or refute the LSND results. If Mini-

BooNE refutes LSND, then the neutrino oscillation picture is fairly well understood,

with (Δm2
1,2, sin22θ1,2) and (Δm2

2,3, sin22θ2,3) measured by the solar/reactor and

atmospheric/long-baseline accelerator experiments respectively. The remaining un-

knowns are the value of sin22θ1,3, which is limited to be ≤0.032 [35], the neutrino

mass hierarchy, and whether the phase of the neutrino mixing matrix is non-zero.

On the other hand, if MiniBooNE confirms LSND, the most straightforward



21

νμ↔ντ

νe↔νX

100

10–3

Δm
2  [

eV
2 ]

10–12

10–9

10–6

10210010–210–4

tan2θ

CHOOZ

Bugey

CHORUS
NOMAD

CHORUS

K
A

R
M

E
N

2
PaloVerde

νe↔ντ

NOMAD

νe↔νμ

CDHSW

NOMAD

BNL E776

K2K

Cl 95%

Ga 95%

KamLAND
95%

SNO
95%

Super-K
95%

Super-K+SNO
+KamLAND 95%

LSND90/99%

SuperK 90/99%

All limits are at 90%CL
unless otherwise noted

Figure 1.1: Summary of neutrino oscillation results. Figure from reference [34].
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reference [36].
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solution to the Δm2 sum rule problem is to introduce a fourth or more neutrino

participants in oscillations, which would allow at least three independent values of

Δm2. However, this neutrino would have to be “sterile” since the number of neutrinos

that participate in the weak interaction is strongly constrained to be three by the

precision electro-weak data from LEP [10]. These “sterile” neutrinos do not exist in

the Standard Model of particle physics, and therefore a MiniBooNE confirmation of

the LSND result would have profound implications.

In models with sterile neutrinos, the LSND observation is a product of two or

more transitions. For example, for models with 1 sterile neutrino νs,

PLSND(νμ → νe) ∝ P (νμ → νs) × P (νs → νe). (1.27)

In this case, the measured sin22θLSND and Δm2
LSND are really effective parameters

describing the experimental observation, and do not correspond directly to two par-

ticipating mass eigenstates. The neutrino oscillation probability in equation 1.14 is

modified by changing n from 3 generations to 4, and the dimension of the mixing

matrix U changes from [3×3] to [4×4]:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ue1 Ue2 Ue3 Ue4

Uμ1 Uμ2 Uμ3 Uμ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1.28)

Models that add one sterile neutrino are highly constrained by the short-baseline

accelerator experiment null results; the allowed regions for νe appearance and νμ

disappearance are shown in figure 1.2. Models with more than one sterile neutrino

are much less constrained [36].
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1.3 The Search for Oscillations at MiniBooNE

MiniBooNE was designed to confirm or refute the LSND oscillation signal, with higher

statistics and different systematics. MiniBooNE is located at the Fermi National

Accelerator Laboratory, on the 8 GeV proton beam line, which produces a νμ beam

with an average energy of ∼0.8 GeV . The neutrinos in the MiniBooNE beam come

from the decays of mesons produced in collisions between the 8 GeV primary proton

beam and a neutrino production target. The neutrino detector is located 541 m

downstream from the neutrino source. The detector is an open volume tank of mineral

oil, CH2, viewed by photo-multiplier tubes, surrounded by an instrumented veto

region. Neutrino interactions are detected primarily via the Cherenkov radiation and

scintillation light creation by final-state particles. An overview of the experimental

apparatus, the neutrino interaction reconstruction, and the detector calibration is

given in chapter 2.

Two kinds of oscillation searches are possible at MiniBooNE: νe appearance, and

νμ disappearance. These two analyses each have unique signals and backgrounds, and

therefore have different systematic errors. Depending on the underlying oscillation

physics, they may also be sensitive to different oscillation parameters. For exam-

ple, in models with one sterile neutrino, νμ disappearance probes νμ → νs, while νe

appearance depends on the product of νμ → νs and νs → νe.

The appearance analysis is the flagship measurement of MiniBooNE because,

assuming CP conservation, νμ → νe is the LSND signal channel. The analysis requires

predicting both the νμ and νe components of the neutrino beam, then measuring the

νe interactions in the detector and searching for an excess of νe due to νμ → νe

oscillations above background. The oscillated νe spectrum would have the energy

distribution of the un-oscillated νμ events, and the number of oscillation νe events
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would be determined by the size of the mixing angle sin22θ. In a two neutrino

model where the participating states are νμ and νe, the observed number of νe from

oscillations would be

N obs
νe

(Eν) = Nνμ(Eν) × P (νμ → νe) (1.29)

= Nνμ(Eν) × sin22θ sin2
(1.27Δm2Lν

Eν

)
At MiniBooNE, where < Eν > = 0.8 GeV and Lν 	 0.541 km, the first oscillation

maximum occurs at Δm2 = 1.83 eV 2. An oscillation signal near this Δm2 would

have a characteristic neutrino energy dependence, and therefore good neutrino energy

resolution is important to the experimental oscillation sensitivity. For this reason,

νe charged current quasi-elastic (CCQE) interactions are selected for the analysis,

and good particle identification is important. For Δm2 values above ∼10 eV 2, the

oscillation frequency is too rapid for MiniBooNE to resolve the energy spectrum

distortions. In this case, the oscillation sensitivity depends on the observed rate only.

Overall, the appearance sensitivity at MiniBooNE depends approximately equally on

the νe rate and energy distribution measurements.

The background comes from both intrinsic νe in the neutrino beam, and mis-

identified νμ interactions. The intrinsic νe content of the MiniBooNE beam is ∼0.5%,

which comes from the meson decays K+ → e+νeπ
0, K0

L → e±π∓ (−)
νe , and μ+ → e+νeνμ

in the neutrino beam line. The energy distribution of νe from kaon decays peaks at

∼1.5 GeV and falls off to the kinematic limit, ∼7 GeV . The energy distribution of

νe from muon decays is peaked at ∼0.6 GeV , and, this source is the largest intrinsic

beam background to oscillation signal events. The neutrino interaction processes

that fake νe events in the detector mostly come from mis-identified neutral current π0

production via νμn → νμnπ0 and νμp → νμpπ
0, where the electromagnetic π0 decay,

π0 → γγ, fakes the signature of a single electron in the detector. Another important
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source of neutrino interaction background is from radiative delta decays, Δ → Nγ,

where the final state photon gets mistaken for an electron. The event selection cuts

for the νe appearance analysis must both select νe CCQE events and get rid of mis-

identified backgrounds at a very high level since the size of an LSND-like signal would

comprise < 1% of the total neutrino interactions in MiniBooNE. Consequently the

event selection cuts for the appearance analysis are very harsh: the efficiencies are

∼50% for the signal νe CCQE events, and ∼1% for the background, in the fiducial

volume.

The most important sources of systematic error for the appearance analysis are

related to the νe background predictions. The errors associated with predicting the

intrisic beam νe rates and energy distributions come primarily from the uncertainties

on the meson production cross sections. Particle production at 8 GeV proton kinetic

energy historically is not well measured, and therefore the π+, K+, and K0
L production

have 10-30% uncertainties. The π+ uncertainty determines the μ+ error because the

μ+ are produced via π+ → μ+νμ. However, as shown in chapter 5, the π+ rate can

be constrained to high precision by the observed νμ events. The π0 and radiative Δ

decay background prediction errors come from the neutrino interaction cross section

uncertainties. Before MiniBooNE, there were no measurements of neutral current π0

production on carbon below Eν = 2 GeV , and the radiative Δ decay had never been

observed in neutrino-induced Δ production. Uncertainties on these processes derived

from extrapolating measurements from past experiments are at the 50-100% level.

Modelling the detector response is also an important component of the background

uncertainties due to its effect on particle identification. MiniBooNE employs a number

of in-situ calibration analyses to constrain the detector response prediction, which

result in uncertainties of 5-10%.

If LSND-type oscillations occur, the disappearance signal in MiniBooNE can be as
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large as ∼10%, compared with ∼1% effect in the appearance channel. This is because

much larger mixing angles are allowed for νμ disappearance than νe appearance in

models with sterile neutrinos, as figure 1.2 shows. The disappearance analysis depends

on predicting the number of νμ produced in the neutrino beam, and measuring the

number of νμ interactions in the MiniBooNE detector. If oscillations are occuring,

then the number of observed νμ interactions would be less than the number predicted,

and the energy spectrum may be modified. In a model with only two neutrinos, νμ

and νs, the probability for νμ disappearance is P (νμ → νs), and the observed νμ

spectrum in the detector depends on the survival probability as

N obs
νμ

(Eν) = Nνμ(Eν) × P (νμ → νμ) = Nνμ(Eν) ×
[
1 − P (νμ → νs)

]
(1.30)

= Nνμ(Eν) ×
[
1 − sin22θ sin2

(1.27Δm2Lν

Eν

)]
As for νe appearance, the first oscillation maximum occurs at Δm2 = 1.83 eV 2. For

values near to this Δm2, oscillations would modify both the number and the energy

distribution of detected muon-flavor neutrinos, and therefore νμ CCQE interactions

are selected for the analysis. However, at high Δm2, the survival probability reduces

to P (νμ → νμ) = 1 − sin22θ × 1
2
, and so the oscillation sensitivity in this region

comes entirely from the measured rate, since there would be no information contained

in the detected Eν spectrum.

The MiniBooNE neutrino beam is composed almost entirely of νμ type neutri-

nos, and νμ charged current interactions produce a clear signature: a muon in the

MiniBooNE detector. Therefore, to first order, there are no backgrounds to the νμ

disappearance analysis. However, the neutrino energy resolution affects the sensitiv-

ity to oscillations at low Δm2, and therefore it is desireable to use only events where

the Eν reconstruction resolution is good. For this reason, the disappearance analysis

uses charged-current quasi-elastic (CCQE) νμ interactions to search for oscillations.
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Unfortunately, there is some background left after the νμ CCQE selection cuts due to

charged current single pion (CC1π) production, where the π is absorbed inside the

nucleus, or in the detector oil. These events fake the quasi-elastic final state, and

therefore pass the selection cuts, but degrade the Eν resolution. A set of selection

criteria for νμ CCQE events is developed in chapter 4 of this thesis.

The most important systematic errors for the disappearance analysis are those

related to predicting the νμ CCQE spectrum. These include the π+ production cross

section prediction, which has ∼10% uncertainty, the νμ CCQE and νμ CC1π cross

sections, which have 10-20% uncertainties, and the detector response model, which

has ∼5% effect on the muon energy scale and therefore on the reconstructed Eν

distribution. The relevant neutrino cross sections have been measured by several

past experiments, but only for Eν > 1 GeV . The uncertainty estimate is derived

from extrapolating these higher-energy past measurements.

It is useful to categorize the disappearance systematics as normalization or shape

contributions, since, unlike the appearance analysis, the disappearance sensitivity

comes primarily from the distortion of the shape of the Eν spectrum due to oscil-

lations. The prediction for the overall rate of νμ CCQE events has a much larger

uncertainty than the prediction for the shape of the Eν distribution. In general this

is because it is more difficult experimentally to measure absolute production rates

than a bin-to-bin rate variation, and the νμ spectrum prediction uncertainties are

mostly based on past cross section measurements.

In general, since MiniBooNE is an experiment with one detector, it relies on pre-

dicting the absolute flux, neutrino interaction cross sections, and detector response

using data external to the experiment combined with Monte Carlo methods. The

assumptions in the simulation of the experiment contribute most of the sources of

systematic error for MiniBooNE. For the flux prediction, MiniBooNE relies on global
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fits to data from past experiments to predict the π+, π−, K+, and K0
L meson pro-

duction cross sections and to determine their uncertainties. A survey of the available

data and the global fitting analysis are described in chapter 3 of this thesis. For

the neutrino interaction cross section predictions, MiniBooNE uses a combination

of previous measurements and theoretical calculations. For the detector response, a

complete optical model for light propagation in the detector oil is employed, with free

parameters measured in external specialty tests and where possible with MiniBooNE

calibration data. These aspects of the simulation of the experiment are summarized

in chapter 3.

Given the dearth of measurements from previous experiments of the important

sources of systematic error for MiniBooNE, it is important to constrain the Monte

Carlo predictions and associated uncertainties with in-situ data wherever possible.

This project is the bulk of the work in this thesis. The overall strategy is to use the

copious νμ data in MiniBooNE to check or tune the Monte Carlo predictions and

constrain the uncertainties. Care must be taken to determine the sensitivity of each

analysis to νμ disappearance, which, if LSND is correct, may occur at a non-negligble

rate. The other major obstacle is the MiniBooNE blind analysis. In an effort to mini-

mize bias in simulation tuning for the appearance analysis, νe data is sequestered, and

therefore not available for constraining Monte Carlo predictions. Without reference

to νe data, in-situ constraints on the flux predictions can be measured for all contri-

butions to the neutrino flux with the exception of the K0
L production. Similarly, the

cross section predictions for the most important channels for the oscillation analyses

can all be constrained without νe data, with the exception of the radiative delta decay

branching ratio. Once the νe “box” is opened, the K0
L and Δ → Nγ rates can be

measured.

The νe from muon decay rate and uncertainty can be extracted with high precision
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from the νμ data set, since the νe are produced via π+ → νμμ
+ followed by μ+ →

e+νeνμ, and the π+-decay νμ comprise the vast majority of the MiniBooNE neutrino

beam. This analysis uses the νμ CCQE selection described in chapter 4, which results

in ∼100,000 events after cuts, with 90% νμ CCQE purity and 10% Eν resolution at

1 GeV . The νe from μ decay constraint analysis comprises chapter 5 of this thesis.

This analysis method is also used to extract a constraint on the νμ flux uncertainty

for the appearance analysis.

The νe from K+ decay can be constrained using the high energy νμ data, since

2-body K+ decays can produce neutrino energies much higher than those of π+-decay

νμ at MiniBooNE; K+ decay νμ dominate over π+-decay νμ for energies above Eν 	
2.25 GeV . MiniBooNE also has a beam line monitoring device that measures high

angle muons, which are much more likely to come from kaon decays than pion decays.

Both of these are primarily sensitive to the rate of kaon production, and therefore

external input to constrain the shape of the K+ spectrum at production is needed

as well. A global fit to combine these two in-situ measurements with the external

production data is described in appendix D.

The neutrino CCQE interaction cross section prediction comes from a theoretical

model for neutrino scattering from a bound nucleon, with a few free parameters

and form factors measured in electron-Carbon scattering data and/or light-target

neutrino scattering data. The parameter uncertainties are derived from the spread

in external measurements of the νμ CCQE cross section. The resulting CCQE cross

section uncertainty is ∼10%. Constraining the cross section prediction and associated

uncertainties using in-situ data is particularly important because CCQE interactions

are the signal channel for both the νe appearance and the νμ disappearance oscillation

searches. The high-statistics MiniBooNE νμ CCQE data set is used to measure the

bound-nucleon CCQE cross section parameters and their uncertainties, as well as the
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functional form of the axial form factor. This analysis is described in chapter 6. The

measured values are rather different from the world light-target averages, but, these

results are in good agreement with a recent Carbon-target measurement at Eν = 1.2

GeV from the K2K experiment [37].

A number of other cross section measurements have been made at MiniBooNE to

constrain the predictions of the Monte Carlo. For the νμ disappearance analysis, the

ratio of the inclusive cross section for the main background channel, resonant single

π+ production, to CCQE has been measured as a function of neutrino energy [38].

For the νe appearance analysis, the νμ neutral current π0 cross section has been

measured, as well as the ratio of resonant to coherent production channels [40]. Other

measurements in progress include deep inelastic scattering, ν − e− elastic scattering,

and νμ neutral current elastic scattering cross sections.

Constraints derived from the νμ data can be incorporated in oscillation analyses

in several ways. First, the MiniBooNE νμ data can provide in-situ constraints on

the systematic errors associated with predicting the neutrino flux and interaction

cross sections. In most cases, these systematic errors are smaller than uncertainties

based on external data only. Second, fitting the νμ and νe data sets together in a

simultaneous fit for νe appearance and νμ disappearance adds a strong constraint on

the predicted systematic errors that are joint to the two analyses. These include the

uncertainties associated with predicting the π+ and K+ fluxes and the neutrino CCQE

interaction cross section. The impact of both of these approaches on MiniBooNE’s

νe appearance and νμ disappearance oscillation sensitivity is described in chapter 7.



Chapter 2

Overview of the Experiment

MiniBooNE is located at the Fermi National Accelerator Laboratory (FNAL) on the

8 GeV beam line, which transports protons from the Booster accelerator to a neutrino

production target. From August 2001 through December 2005 MiniBooNE amassed

6×1020 protons on target in neutrino beam configuration, corresponding to ∼500,000

neutrino interaction candidate events contained in the MiniBooNE detector. From

January 2006 through the present, MiniBooNE has collected 3.7 × 1019 protons on

target in anti-neutrino beam configuration, corresponding to ∼8500 contained anti-

neutrino interaction candidates. The experiment will continue to run in this mode

for some time. The primary goal of MiniBooNE is to confirm or refute the LSND

oscillation result with different systematic errors and higher statistics. To change

the systematics, the MiniBooNE neutrino beam energy and baseline are an order of

magnitude larger than those of LSND. To achieve higher statistics, MiniBooNE has

amassed the world’s largest data set of neutrino interactions in the 1 GeV energy

range [41].

32
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Figure 2.1: Schematic of the MiniBooNE beam line, not to scale.

2.1 Neutrino Beam

The MiniBooNE neutrino beam is produced from 8.89 GeV/c protons incident on

a beryllium target located inside a magnetic focusing horn. A collimator and 50 m

air-filled decay region follow, which is terminated by an iron and concrete absorber.

The absorber and the neutrino detector are separated by a 450 m dirt berm. The

center of the detector is located 541 m from the target face. A schematic of the beam

line is shown in figure 2.1.

Typical proton beam operating conditions, determined by the FNAL Booster ac-

celerator performance, are 4×1012 protons per pulse, at 3-5 Hz, with a beam uptime

of ∼ 88%. The beam spill duration is 1.6 μs. The intensity of the proton pulse is

measured by two toroids in the MiniBooNE proton beam line. This measurement is

used to absolutely normalize neutrino events per proton, and is described in detail

in appendix A. Figure 2.2 shows the accumulation of protons incident on the Mini-

BooNE target as a function of time. The drop in the neutrino interaction rate by a

factor of ∼6 after January 2006 is due to MiniBooNE’s change to ν running mode.

The targeting efficiency, which describes the fraction of the proton beam that

transits the entire length of the target, is determined by the proton beam location

and angle of incidence at the face of the MiniBooNE target. The average position

and angle of the beam at the target face depend on the proton beam line dipole mag-
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Figure 2.2: Accumulation of protons on target (top), horn pulses (middle), and

neutrino event candidates (bottom) since the start of the MiniBooNE neutrino run.

net currents, which are changed continuously by an automatic tuning program [42].

Therefore, these quantities are measured on a pulse-by-pulse basis using beam po-

sition monitors. The beam widths in the plane perpendicular to the direction of

motion depend on the quadrupole magnet currents, which are only changed during

manual tuning. The widths are measured in a special beam line configuration in

which multi-wire proportional chambers are inserted into the proton beam, which

occurs approximately once every few months. The commissioning of the MiniBooNE

proton beam line is described in detail in reference [43]. Typical beam parameters at

the target face are summarized in table 2.1.

The beryllium target is 71 cm long and 1 cm in radius. The MiniBooNE proton

beam line was designed such that all of the proton beam transits all of the target. In

practice, a data quality cut is applied such that the measured targeting efficiency is

≥95%. The interaction length λI for protons in beryllium is 41.8 cm, therefore the

fraction of the beam that interacts is ∼0.82, given by (1 − exp[−71/λI ]). When
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Table 2.1: Typical proton beam parameters.

quantity x y

beam center position 0.0 mm 0.0 mm

beam r.m.s. width 1.51 mm 0.75 mm

beam center angle 0.0 mr 0.0 mr

beam r.m.s. angle 0.66 mr 0.40 mr

protons interact in the target, the dominant processes are inelastic π+ and K+ produc-

tion. From Monte Carlo simulations, the average multiplicity of π+ (K+) produced

per event is ∼0.7 (0.05). The small radius of the target is designed to minimize ab-

sorption of these secondary pions. The inelastic interaction length for 2 GeV pions

in beryllium is similar to that of protons, therefore a pion that transits the target

radially has a ∼5% probabliity of being absorbed before escaping.

The target is situated inside an aluminum focusing horn, which produces a

toroidal magnetic field in the plane perpendicular to the proton beam direction, which

focuses secondary particles towards the beam axis. The inner conductor inner radius

is 2.54 cm in the region surrounding the target, and the inner radius of the outer

conductor is 30 cm. The horn is triggered to pulse with 170,000 A of current for

each proton spill, producing a magnetic field of ∼1 T . The magnetic field was mea-

sured before installation, and found to follow the ideal radial field for a line current,

B(r) = μ0I/2πr where r is the radial distance from the longitudinal axis of the

horn, within the measurement precision of 10% [44].

The power supply for the horn can be set to either positive or negative polarity.

For neutrino running, the polarity is set such that the horn focuses positive sign

mesons, e.g. π+, and defocuses the negative sign. For anti-neutrino running the
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polarity is reversed. From systematic runs with the horn off, MiniBooNE determines

that the horn (when on) increases the neutrino flux at the detector by a factor of ∼5.

From Monte Carlo simulations of neutrino running, the horn acceptance includes

ranges of meson production momenta and angles from 1 < pπ < 4 GeV/c and 0 <

θπ < 0.2 radians respectively.

Mesons produced in the target and focused by the horn pass through a collimator

with a 30 cm radius aperture, which is located ∼2 m downstream of the end of the

horn, and decay in a 50 m long decay pipe with a radius of 90 cm. The collimator

is used to localize the radiation produced by secondary particles which are destined

to stop in the decay pipe walls. The limiting aperature for flux acceptance is the

detector cross sectional area, which, when viewed from the target, subtends 0.011

radians. For small angles, tan(θ) 	 θ = (6.10 m)/(541.00 m) = 0.011, where

6.10 m is the MiniBooNE detector radius, and 541.00 m is the distance from the

upstream target face to the detector center. Therefore, only the most forward meson

decays produce neutrinos that hit the MiniBooNE detector. The coordinates of a

neutrino when it arrives at the detector with respect to its origin are

x = x0 + (Zdet − z0) ×
(p0

x

p0
z

)
, y = y0 + (Zdet − z0) ×

(p0
y

p0
z

)
(2.1)

r =
√

x2 + y2

where (x0, y0, z0) are the coordinates of the neutrino at production in cm with

respect to the target face, Zdet = 541.00 m is the distance from the target face

to the detector center, and (p0
x, p0

y, p0
z) are the components of the neutrino’s three

momentum at production. The Monte Carlo detector acceptance cut requires

r < Rdet, (2.2)

where Rdet = 6.10 m is the radius of the cross sectional area of the detector, viewed

from the target.
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For two-body decays, there is a simple relationship between the energy of the

neutrino and the energy of the parent meson, if one assumes that the meson is on-

axis and that the decay angle with respect to the beam direction is zero:

ELAB
ν = γmesonE

CM
ν (1 + βmeson) (2.3)

where ELAB
ν is the ν energy in the lab frame, ECM

ν is the ν energy in the meson center

of mass frame, and γ and β are the usual relativistic factors for the parent meson.

For π+ (K+), this relation gives a maximum νμ energy of 0.43×Eπ (0.9×EK). Thus,

for a given meson energy, two-body K+! decays can produce higher energy neutrinos

than π+ decays.

The π+ and K+ lifetimes are 26.03 and 12.37 ns respectively [45], and the fraction

of mesons that decay over a distance of 50 m is (1 − exp[−50.0/γβcτ ]) where τ is

the meson lifetime. In the MiniBooNE beam line, the average energy of π+ (K+)

that decay to neutrinos in the MiniBooNE detector acceptance is 1.89 (2.66) GeV .

Therefore 41.6% (92.1%) decay before the end of the 50 m long decay region. The most

relevant decay modes for MiniBooNE are π+ → μ+νμ, K+ → μ+νμ, which produce

99.4% of the neutrino beam, and K+ → π0e+νe, μ+ → e+νμνe, K0
L → π−e+νe, and

K0
L → π+e−νe, which produce the remaining 0.4%. The resulting neutrino flux is

shown in figure 2.3, which has an average neutrino energy of 0.8 GeV . The Monte

Carlo simulation of the neutrino beam production is discussed in depth in chapter 3.

For the νμ → νe oscillation analysis, the νe in the neutrino beam are usually

termed “intrinsic” backgrounds. The νe background from μ decay can be constrained

by measuring the νμ from π decay in the MiniBooNE detector. The νe from kaon

decays are more problematic, and are addressed in several ways: νμ from two-body K

decays are measured in the detector, and, μ from two-body K decays are measured

in a dedicated neutrino beam line detector, the “Little Muon Counter” (LMC). By

combining these measurements, MiniBooNE can constrain the overall rate of kaon
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Figure 2.3: Predicted νμ and νe flux distributions as a function of neutrino energy

in MiniBooNE.

production, and use a Monte Carlo simulation of the neutrino beam line to predict

the νe background from K decays. Constraints on the intrinsic νe backgrounds based

on MiniBooNE data are described in detail in Chapter 5.

2.2 Neutrino Detector

The MiniBooNE neutrino detector is a steel sphere of radius 610 cm, located beneath

3 m of soil shielding. The detector is filled with mineral oil (CH2) which is both

the neutrino target and the detector medium. The detector is divided into an inner

sphere of radius 5.5 m, and an outer shell with outer radius 6.1 m. The two regions

are separated by an optical barrier, but share oil circulation. The inside of the optical

barrier is instrumented with 1280 inward-facing photo-multiplier tubes (PMTs) which

view the detector fiducial volume. The outside of the optical barrier supports 240

pair-mounted PMTs, which view the outer shell of oil. This outer shell region is
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Figure 2.4: Schematic of the MiniBooNE detector, not to scale.

used to veto incoming particles, typically cosmic rays. A schematic of the detector is

shown in figure 2.4.

When neutrinos interact in the detector, they may scatter off of 6 bound neu-

trons, 6 bound protons, or 2 free protons in the CH2 molecule, or they may scatter

coherently off the whole Carbon nucleus, or they may scatter off of the 6 electrons.

At MiniBooNE neutrino energies, roughly 60% of the total neutrino interaction cross

section is charged current neutrino-nucleon scattering, and 40% is neutral current neu-

trino nucleon scattering, shown in figure 2.5. In a νμ (νe) charged current interaction,

the final state contains at least one μ− (e−) and some combination of neutrons, pro-

tons, and pions. In neutral current interactions, the final state contains the original

neutrino, with a different energy in the interaction was inelastic, as well as nucleons

and possibly pions. The existing cross section measurements in MiniBooNE’s energy

range are also superimposed in figure 2.5. The measurements that exist for exclusive

channels have large error bars, and inclusive measurements are particularly scarce,



40

Baker 1982 PRD 25, 617 (D2 target)

CC total (CH2 prediction)

NC total (CH2 prediction)

Eν (GeV)

ν μ 
σ 

(p
b)

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 2.5: Left: total charged and neutral current neutrino cross sections (GeV)

vs. neutrino energy (GeV). Right: components of the charged current neutrino cross

section divided by neutrino energy (pb/GeV) vs. neutrino energy (GeV). The solid

lines in both panels show the NUANCE cross section Monte Carlo prediction for ν-D2

scattering. This figure is from reference [46].

for example, there are no measurements of the total neutral current cross section

around Eν ∼ 1 GeV . A further difficulty with interpreting past data is that different

neutrino flux and nuclear target corrections are applied by different experiments.

For the νe appearance oscillation analysis, the signal channel is charged current

quasi-elastic (CCQE) scattering, νen → e−p, and the dominant background channel

is neutral current resonant single pion production νμn(p) → π0n(p). For the νμ disap-

pearance oscillation analysis, the signal channel is also CCQE scattering, νμn → μ−p,

while the most important background channel is charged current resonant single pion

production, νμn(p) → π−μ+p(n). The neutrino interaction cross section simulation is

discussed in detail in chapter 3. In general, neutrino interaction cross sections on nu-
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clear targets have large uncertainties around Eν = 1 GeV due to poor statistics from

or a lack of previous measurements. MiniBooNE can measure the quasi-elastic and

resonance production channels with high statistics; constraints on the cross section

prediction using MiniBooNE data are described in chapter 6.

Given the dominant neutrino interaction cross sections, understanding the detec-

tor response to muons, electrons, pions, and nucleons in the Eν < 1 GeV range is

most important for MiniBooNE. When charged particles travel through the oil, they

produce photons by Cherenkov and scintillation emission processes. Cherenkov emis-

sion occurs when a particle travels faster than the phase velocity of light in a material,

with relativistic β > βC = c/n where n is the index of refraction of the material

and c is the speed of light in vacuum. This condition produces a shock wave of pho-

tons, which are radiated in a cone with a characteristic opening angle with respect

to the particle track, cos(θC) = 1/(βn) [47]. Scintillation photons are a by-product

of ionization energy loss, in which particles electromagnetically interact with, and

excite, the molecules in the detector oil along their path. The amount of ionization

energy lost by a particle depends on the particle’s velocity and the specific properties

of the medium. This energy loss is transferred to molecules in the detector medium

along the particle’s trajectory, and at some later time, these molecules may isotrop-

ically emit de-excitation photons. The number of scintillation photons is related to

dE/dx by Birks’ law [48]. Neutral particle detection is more difficult: neutral pions

are detected via the electromagnetic interactions of their π0 → γγ decay products,

and neutrons are detected via de-excitation photons resulting from neutron-nucleus

scattering.

As photons propagate from the emission point to detection at the PMT sphere,

they may be attenuated, and/or scattered. Attenuation decreases the number of pho-

tons as a function of distance x from the emission point as N(x) = N0exp[−x/λA],
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where N0 is the initial number of photons, and λA is the attenuation length. With a 2

m long tester filled with the MiniBooNE detector oil, the transmission is measured to

rise from 0% at 240 nm to 95% at 320 nm. Transmission is defined in this experiment

to be the intensity of photons detected divided by the intensity of photons emitted,

for a source with a fixed emission wavelength. These transmission measurements as a

function of incident photon wavelength (λγ) are used to extrapolate to λA = 25.2 ±
3.1 m at λγ = 460 nm; the attenuation length wavelength dependence is determined

empirically to be an approximately linear function above threshold [49]. For photons

produced at λγ = 460 nm at the center of the MiniBooNE detector, approximately

19% are attenuated before reaching the PMT sphere. The total scattering length in

the MiniBooNE oil is measured with goniometry to be 51.7 ± 7 m and 114.5 ± 15.4

m at λγ = 442 and 532 nm respectively [50]. In this measurement, the scattering

length is determined by measuring the number of photons detected at a non-zero

angle with respect to the beam direction divided by the number of photons detected

at 0o. For λscattering of 51.7 m, approximately 10% of photons produced at λγ =

442 nm at the center of the MiniBooNE detector undergo a scattering interaction

before reaching the PMT sphere. In general, λγ ∼ 450 nm is chosen as a reference

wavelength for comparing optical parameters because it is approximately where the

peak of the detection efficiency vs. wavelength is located.

Once the photons reach the PMT sphere, the detection probability depends on

the properties of the PMTs, which convert the number of incident photons into an

electric charge. PMTs employ several properties of the photo-electric effect [51]: (i)

when a photon strikes a metal, an electron may be instantaneously knocked loose (the

emitted electron is termed a photo-electron (p.e.)), (ii) this process can only occur if

the wavelength of the incident light is less than a threshold value, and (iii) for a given

incident photon wavelength, the number of emitted photo-electrons is proportional to
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the number of incident photons. PMTs amplify the current of photo-electrons using

a multi-stage dynode chain, which can provide many orders of magnitude of signal

gain.

MiniBooNE uses Hamamatsu PMTs with an 8” diameter surface which have a

∼20% quantum efficiency for emitting a photo-electron given an incident photon with

λγ < λthreshold = 550 nm [52]. In practice the quantum efficiency is a smooth function

of wavelength that rises steeply from zero below 300 nm to the plateau value, and

falls steeply above 500 nm. The MiniBooNE PMTs are operated with ∼+2000 V

on the dynode chain, resulting in a gain of 108. The intrinsic time resolution of

the PMTs is ∼1 ns, and the intrinsic charge resolution is ∼15% at 1 p.e [53]. The

charge resolution is further smeared by the signal processing electronics, however, the

dominant contribution to the resolutions is from the intrinsic PMT properties.

Data Acquisition

MiniBooNE uses the LSND PMT electronics [54], which have one channel per PMT.

The time (t) and charge (q) signals from each PMT are digitized by 8-bit ADCs

synchronously on a 10 MHz clock. The t and q ADC values are stored in a 2 kB

circular FIFO buffer, which stores 220 μs of data, indexed by the GPS time stamp of

each clock tick. If a PMT registers q > 2 mV , a discriminator fires, registering a hit.

The PMT base resistors are set such that 2 mV corresponds to ∼0.1 photo-electrons

(p.e.). The number of hit PMTs is summed on each clock tick and broadcast to the

trigger. The PMT electronics consist of a series of op-amps, capacitors, and resistors

which integrate the PMT voltage with an RC constant of ∼1100-1400 ns, depending

on the channel. The digitized value of this voltage at each 10 MHz clock tick is

used to reconstruct the total charge deposited. The t channel circuit has a fixed time

ramp initiated by the discriminator, and a relatively fast return to baseline (∼200
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Figure 2.6: Example of the MiniBooNE data acquisition electronics for a single PMT

hit.

ns). The delay before the discriminator for a given PMT can fire again is 200 ns.

This sequence is illustrated in figure 2.6.

In the data acquisition software, a PMT hit consists of the digitized q and t ADC

values, recorded over four 100 ns clock ticks. The four q and four t values form a

data “quad”. Data are retrieved from the FIFO buffers only if a trigger condition is

satisfied. In this case the entire detector is read out for 19.2 μs. The PMT data are

zero suppressed and assembled into “quads” as an event and written to disk.

The MiniBooNE trigger hardware has four external inputs for NIM signals, named

(E1), (E2), (E3), and (E4), and seven comparator settings which are used to decide

whether to read out the detector on a given clock tick. The trigger table is constructed
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in software using combinations of the hardware triggers and trigger activity timing

information. When a trigger fires, PMT information is collected for 192 subsequent

clock ticks (19.2 μs) 1. The trigger hardware external inputs are used for (in order of

precedence): (E1) the beam-on-target trigger, which is a logical AND of the Booster

accelerator 1D and 1F events, (E2) a 2.01 Hz strobe trigger (which is triggered

by a pulser), (E3) the calibration trigger, which has a different NIM pulse length

(CALIB LASER, CALIB CUBE, or CALIB TRACKER) depending on whether it

is a laser, cube, or tracker calibration event, and (E4) a NIM hardware OR of the

previous three conditions. A hold-off is always applied after the beam trigger (E1)

such that 20 μs pass before the trigger can register new activity. Only the E1 trigger

input is used for the beam events in the analysis described in this thesis, however,

a subset of the comparators are used for the analysis of electron calibration data.

These are: DET2 (# of tank PMT hits ≥ 24), DET4 (# of tank PMT hits ≥ 200),

and V ETO1 (# of veto PMT hits ≥ 6). The relevant trigger table, listed in order

of precedence, is shown in table 2.2. The total trigger rate is typically 25-30 Hz, of

which up to 5 Hz is due to beam triggers.

PMT Calibration

The PMT q and t ADC values are converted into times in ns and charges in units of

photo-electrons (p.e.) by the MiniBooNE PMT calibration algorithm. The calibration

takes as inputs the raw ADC data for each hit (a “quad”), the trigger time stamp,

and the calibration constants (charge gain, time offset, and time slew) for each

PMT. The calibration includes the following steps.

1. The charge calibration: for PMT i, the voltage vs. time function for the charge

integrator, V q(t)i, is fit to the four q ADC values in a “quad” for the overall

1The lengths of the calibration triggers may differ.
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Table 2.2: The MiniBooNE trigger types and rates relevant for this analysis.

Trigger Name Trigger Condition Rate (Hz)

Beam E1 3 - 5

Strobe E2 2.01

Michel .not.Veto1.and.DET2.and. 1.23

3 μs ≤ time since (DET4.and.VETO1) ≤ 15 μs

Laser E3.and.CALIB LASER 3.33

Cube E3.and.CALIB CUBE 1.19

Tracker E3.and.CALIB TRACKER 0.65

normalization. The best-fit normalization, RawQ, is corrected by the PMT

gain to produce the calibrated hit charge Q = RawQ/gain in units of p.e..

The RawQ value is approximately the difference between the third and first q

ADC values.

2. The time calibration: for PMT i, the voltage vs. time function for the time

ramp V t(t)i is used to extrapolate back to the time when the discriminator

fired, RawT . A further offset correction for the signal transit time from the

PMT face to the electronics is applied. Additionally, the start of the time ramp

with respect to the start of the PMT signal depends on RawQ. This is called

time slewing. The calibrated hit time T = RawT + the offset correction +

the slew correction in units of ns.

The calibration constants are extracted from laser calibration data. The laser

calibration system consists of a 397 nm laser attached to a switching box, which can

direct laser light down a set of optical fibers which are piped into four 10 cm diameter
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spherical glass flasks filled with Ludox2. The flasks are located at the center of the

detector and various off-axis positions. The purpose of the Ludox is to scatter the

laser light such that it is emitted isotropically. The laser intensity, frequency, and

emission flask can be varied; for the purpose of the calibrations described here, the

laser is pulsed at 3.3 Hz, and light is emitted only from the central flask.

To extract the PMT gain constants, the laser is pulsed at low intensity such

that the average number of detector PMTS which record a hit is <10% of the total

(1280). The goal is to never have more than 1 photon incident on a PMT. For each

PMT, a distribution is formed of RawQ, and the mean of this distribution, after

zero-suppression, should correspond to the charge for 1 p.e.. The PMT gain is the

constant needed to scale the mean of the RawQ distribution such that it equals 1.0.

The calculated gain is adjusted for the Poisson probability of getting >1 p.e..

To extract the PMT time offset constant, the laser is pulsed at low intensity,

and a distribution is formed for all PMTs of the RawT values with respect to the

laser trigger time. The time offset for each PMT is the time difference between

the PMT time and the average time of the distribution of all PMTs. The time slew

correction is derived by pulsing the laser over the full range of intensities and binning

the offset distribution in RawQ. The slew tables for each PMT are set such that

the offset is independent of RawQ.

Data Reduction

To select neutrino candidate events, two important forms of data reduction are ap-

plied. These are: (i) data quality requirements and (ii) cosmic ray rejection.

The purpose of the data quality cuts is to ensure that the experiment appara-

tus is functioning properly. This includes both beam line and detector. The only

2Ludox is a colloid of silica crystals suspended in water.
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Table 2.3: Data quality cuts and fraction of total protons on target that fail each cut.

Toroid 875 measures the proton spill intensity 5 m upstream of the target face. Toroid

860 is located 150 m upstream of Toroid 875.

Cut Fail Fraction(%)

Detector DAQ .not.Latent 0.05

Toroid 875 > 0.1E12 protons per spill 0.00

2 × |Toroid875−Toroid860|
(Toroid875+Toroid860)

< 10% 1.07

Horn Current > 165 kA 5.29

targeting efficiency > 95% 3.75

(Beam - Detector) GPS Time Stamp < 33 ms 0.01

contribution to the data quality cut failure rate from the detector is latent events,

which occur when the circular PMT FIFO buffers have filled up, and hit information

requested by a trigger has been overwritten. The trigger flags these hits, and events

containing any latent hits are cut by the data quality analysis software. The most

important data quality cuts related to the beam line are: (i) horn current within 5

kA of the expected value, (ii) 95% of the beam passes through the entire length of

the target, and (iii) agreement between the toroids, which measure the number of

protons per spill, to better than 10%. The fraction of data cut by these data quality

requirements is ∼ 10%, most of which occured early in the MiniBooNE run. The

data quality cuts and their individual efficiencies are summarized in table 2.3.

Once quality cuts have been applied, the largest source of background to beam-

induced neutrino events comes from cosmic rays, since the MiniBooNE detector is

located on the surface with only 3 m of dirt overburden. The through-going (stopping)

cosmic ray rate has been measured to be 10 (2) kHz [55]. However, the short spill
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length of the Booster accelerator (1.6 μs), and the high efficiency of the MiniBooNE

detector veto region (> 99%), enable cosmic ray rejection of better than 1000:1.

The cosmic ray rejection cuts rely on basic event identification, which employs

only calibrated PMT hit times. Within the 19.2 μs beam trigger window, a simple

cluster-finding algorithm groups calibrated hits in the detector by time. The algo-

rithm loops over all hits in the beam window, and at each iteration accumulates all

hits within a time window of width ΔT starting at time Tmin. On the first iteration

Tmin = 0.0. If the time between contiguous hits is less than 10 ns, the window ΔT

is extended to include the latest hit and the iteration continues on to examine the

next PMT hit. However, if the time between contiguous hits is greater than 10 ns,

then the cluster is finished and the time of the next hit becomes the new Tmin. If a

cluster includes more than 10 hit PMTs, then the cluster is tagged as a “‘sub-event”.

If multiple sub-events occur in an event, they are numbered in time order.

To remove cosmic rays, the following cuts are applied:

1. that there be at least one sub-event, and

2. that the average time of the PMT hits in the first sub-event be within the beam

spill window (4400 ns < average time < 6400 ns with respect to the beam

trigger start), and

3. that the first sub-event have fewer than 6 hit PMTs in the veto region of the

detector, and

4. that the first sub-event have greater than 200 hit PMTs in the main tank region

of the detector.

The first two cuts require detector activity in time with the beam spill. Environmental

backgrounds tend to have fewer than 10 hits contiguous in this time window. The
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Figure 2.7: Number of hits in the MiniBooNE beam trigger window vs. time (ns)

since the trigger start, in the first sub-event. Top: events passing cosmic ray cut #1.

Middle: events passing cosmic ray cuts #1 and #2. Left: events passing cosmic ray

cuts #1, #2, and #3. See text for cut explanation.
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Figure 2.8: Number of events per proton on target after data reduction cuts vs. time

for the MiniBooNE ν mode data set.

third cut eliminates charged particles entering the detector from outside the veto

region, however, electrons from stopped cosmic ray muon decays inside the detector

volume will still pass the third cut. On average these decay electrons produce ∼100

PMT hits, and therefore the fourth cut eliminates this background. The data are

shown after each cut is applied, sequentially, in figure 2.7. The efficiency of these cuts

in beam data is approximately 0.3%, however it depends on the neutrino beam rate,

that is, the ratio of spills with to without neutrino-induced interactions.

After the data quality and cosmic ray cuts are applied, the remaining events are

termed “neutrino candidates.” MiniBooNE measures ∼ 1 neutrino candidate event

per 1 × 1015 protons on target. The stability of the data acquisition, beamline, and

detector can be monitored with the rate of neutrino events per proton on target as

a function of time. This distribution, shown in figure 2.8, is consistent with being

flat, within errors. It has been verified that the variations are consistent with the
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expectation from Poisson statistics3.

Event Reconstruction

For each sub-event of a neutrino candidate event, the MiniBooNE reconstruction algo-

rithm calculates the event vertex, direction, and energy using a maximum likelihood

method, which is the procedure of finding the value of one or more parameters for a

given statistic which makes a known likelihood distribution a maximum. The recon-

struction algorithm contains a model of light emission, propagation, and detection

which is used to predict the q and t each PMT should observe in a given sub-event.

A MINUIT [56] minimization program is used to find the unknown particle vertex

and direction that maximize the charge and time likelihood functions. A conceptual

sketch is given here, more information may be found in reference [57].

The time likelihood function is a Gaussian, with mean μ = 0.0 and r.m.s. σ =

1.8 ns = the time resolution of the PMTs measured with laser calibration data. For

PMT i located at (xi, yi, zi), the probability for measuring light at time ti which was

emitted at time t0 and location (x0, y0, z0) is

P (ti|x0, y0, z0, t0) =
1√
2πσ

exp
[
−(ti − t0 − ri/cn)2

2σ2

]
(2.4)

where cn is the speed of light in material with refractive index n, and

ri =
√

(xi − x0)2 + (yi − y0)2 + (zi − z0)2. (2.5)

For an ensemble of N = 1280 PMTs, the probability to measure a set of times (ti)

is the product of the likelihood functions for the individual PMTs,

P ((ti)|x0, y0, z0, t0) =
N∏

i=1

1√
2πσ

exp
[
−(ti − t0 − ri/cn)2

2σ2

]
. (2.6)

3Poisson statistics are used because the number of events in any given run may be small.
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Subtleties that modify this simple Gaussian likelihood function include the presence of

PMT hits where more than one photon was observed, and the different time constants

of the Cherenkov and scintillation emission mechanisms. These tend to couple the

time likelihood function to the predicted charge.

The charge likelihood function is a Poisson distribution, where the predicted

charge μi at each PMT is modified by light attenuation, the solid angle subtended

by the PMT, and the PMT quantum efficiency. The probability to measure a set of

(ni) photo-electrons at an ensemble of N = 1280 PMTs is the product of the charge

likelihoods for each PMT,

P ((ni)|x0, y0, z0, Φ0) =
N∏

i=1

1

ni!
μni

i exp[−μi] (2.7)

where Φ0 is the flux of emitted photons, which are assumed to originate from a point

source. The predicted charge at each PMT is

μi = Φ0 × εi × F (cosθi) × e(−ri/λeff ) × fL(cosηi)

r2
i

(2.8)

where εi is the quantum efficiency of PMT i, F (cosθi) is the angular distribution of the

emitted light, e(ri/λeff ) accounts for the attenuation of light with effective attenuation

length4 λeff , and fL(cosηi)

r2
i

is the product of the PMT solid angle and its response as

a function of incident photon angle ηi. Including the angular distribution of light

emission introduces dependence on the particle track direction into the likelihood

function. This picture is further complicated by the fact that all of the parameters

of the charge likelihood function depend on the photon emission mechanism.

The product of the time and charge likelihood functions are maximized iteratively

with respect to the original light emission vertex and time, and the particle track

direction. Once the best-fit parameters are found, the energy is estimated from the

4The attenuation length is an effective one since it is an average over all wavelengths of emitted

light.
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total predicted charge in the event, corrected for attenuation and quantum efficiency.

A subsequent fit is performed in which the event vertex, track direction, and energy

are fixed to their best-fit values, and the Cherenkov and scintillation components are

varied to find the best-fit emission flux composition.

Once the vertex and direction are found, one can calculate the corrected time and

angle for each PMT hit. These quantities are interesting because they characterize

the detected light at the emission point, rather than at the detection locations. The

corrected time Tcorr is defined as

Tcorr = TPMT −
√

X2 + Y 2 + Z2

cn

(2.9)

where TPMT is the calibrated PMT time of light detection, cn is the speed of light in

material with index of refraction n, and
√

X2 + Y 2 + Z2 is the distance from the

PMT to the best-fit event vertex, e.g. X = (XPMT − X0) where X0 is the best-fit

vertex X coordinate and XPMT is the X coordinate of the PMT. The corrected angle

θcorr is given by

θcorr =
UX0 × X + UY0 × Y + UZ0 × Z√

X2 + Y 2 + Z2
(2.10)

where (UZ0, UY0, UZ0) are the best-fit track direction cosines.

The parameters of the likelihood functions are extracted from calibration data dis-

tributions of charge, corrected time, and corrected angle [58]. The list of parameters

to be determined is: (i) the PMT time resolution σ, (ii) the relative PMT quantum

efficiencies εi, (iii) the Cherenkov and scintillation emission time constants, (iv) the

Cherenkov and scintillation fluxes ΦC and ΦS, (v) the Cherenkov and scintillation

light emission angular distributions F (cos θi)C and F (cos θi)S, (vi) the Cherenkov

and scintillation light effective attenuation lengths λC and λS, (vii) the PMT angular

response functions for Cherenkov and scintillation light fC(cos ηi) and fS(cos ηi), and

(viii) the conversion from Cherenkov and scintillation fluxes to energy. The first two
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are determined from laser calibration data, and the rest are extracted from electron

calibration data, which contains both Cherenkov and scintillation light.

Particle Calibration

MiniBooNE has an abundance of calibration particles from cosmic ray muons and

their decay electrons, called “Michel” electrons. The most important function of the

particle calibration data sets is to tune the Monte Carlo simulation of the experiment.

Many comparisons between particle calibration data and the Monte Carlo are shown

in chapter 3, section 3.3.

The cosmic ray muons useful for calibration span 200 < Eμ < 800 MeV , are

generally all pointed downwards, and are distributed as ∼ cos3θ. The angular distri-

bution of incoming cosmic rays differs from cos2θ due to interactions and scattering

in the detector overburden. Michel electrons range over 0.511 < Ee < mμ

2
MeV , are

pointed isotropically (for depolarized muon decays at rest in the detector), and are

produced uniformly in the x and z detector coordinates with a small asymmetry in

y. The Michel electron (and νμ) energy distribution in μ+ decay is given by [59]

dΓ =
G2

F m5
μ

192π3
2ε2(3 − 2ε) (2.11)

and the νe energy distribution is

dΓ =
G2

F m5
μ

192π3
2ε2(6 − 6ε) (2.12)

where

ε =
Ee

Emax

, Emax =
mμ

2
. (2.13)

and GF is Fermi’s constant, mμ is the muon mass.

Michel electrons possess a number of qualities useful for calibration purposes.

First, although the cosmic ray muons are polarized, the Michel electrons are effectively
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produced isotropically in the detector due to the distribution of cosmic ray arrival

directions, which is ∝ cos2 θzenith, and the multiple scattering of muons in the soil berm

above the detector. Therefore a high statistics sample of Michel electrons will tend

to illuminate all of the PMTs. Second, Michel electrons produce both Cherenkov and

scintillation light, in a ratio of ∼7:1, and therefore can be used to extract parameters

describing both emission processes for the reconstruction. Third, the Michel electron

energy endpoint, 52.8 MeV provides a “standard candle” calibration for the energy

scale and resolution of the detector. Additionally, the data set of Michel electrons is

virtually infinite, therefore the energy scale and resolution can be measured in bins of

radius, track direction, PMT corrected time, and PMT corrected θ, for the purpose

of tuning the Monte Carlo model of light propagation in the detector oil.

The energy resolution and scale at the Michel end-point are calculated by con-

volving the expected Michel electron energy distribution with a Gaussian, and fitting

to the Michel data set in a 500 cm radius fiducial volume. The energy resolution and

scale are extracted for the total light yield, and for the Cherenkov and scintillation

flux components separately. The energy resolution is measured to be ∼13% for all

light, and ∼13% (∼11%) for Cherenkov (scintillation) light only [60]. The best-fit

mean energy is used to set the energy scale of the reconstruction. This is enforced

by the conversion from Cherenkov (scintillation) flux to energy, which is calculated

as the ratio of the theoretical value to the best-fit mean energy from the Cherenkov

(scintillation) flux fit.

The drawback of Michel electrons is that they provide a calibration at low energy,

while neutrino interactions in MiniBooNE may produce leptons up to ∼1 GeV . To

verify the extrapolation from the Michel end-point to higher energies, MiniBooNE

uses a cosmic ray muon calibration system, which consists of a muon tracker ho-

doscope and seven scintillator cubes.
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The muon calibration system employs a hodoscope tracker, which is designed to

measure precisely the incoming direction of cosmic ray muons, and seven scintillator

cubes deployed inside the detector volume. The muon tracker has two sets of X and Y

planes, located 2 and 3.5 m above and parallel to the top of the MiniBooNE detector

sphere. The top (bottom) planes consists of 23 (28) scintillator strips which are 10 (6)

cm wide, with a PMT at each end. The X and Y planes are oriented perpendicular

to each other. The CALIB TRACKER trigger requires an OR of all strips in a

given plane, and an AND of the four planes. The trigger rate of 4-plane coincidences

is ∼ 140 Hz, which is prescaled to 0.5 Hz. The scintillator cubes record the primary

muon and its decay electron when a cosmic ray muon stops in one of the cubes. In

combination with the tracker, the cubes provide a precise measurement of the muon

track length. The parameters of the cubes are described in table 2.4. Each cube is

attached to an optical fiber which carries the scintillation light to a PMT located

outside the detector volume. The CALIB CUBE trigger requires concidence of a

cube PMT above threshold and a CALIB TRACKER trigger, which results in a 1.2

Hz trigger rate. This trigger condition can be satisfied by a muon passing through,

but not stopping in, a cube, and therefore further cuts on tank and veto PMT hits,

and cube PMT charge and time, are applied to select stopping cosmic rays. The

cubes are sensitive to muon kinetic energies ranging from ∼0.95 to 0.770 GeV .

The measured range from the muon calibration system is used to calculate the

muon’s energy independently of the reconstruction, via [61]

− dT

dx
= 2πa2

0mec
2ne

Z2

β2

[
ln

(2mec
2γ2β2Wmax

I2

)
− 2β2 − δ − 2

C

Z

]
. (2.14)

where a0 is the Bohr radius, c is the speed of light, I is the mean excitation potential

of the medium through which the particle travels, β and γ are the usual relativistic

factors, Wmax is the maximum energy transfer possible in a single collision, and C and

δ are empirical corrections for the nuclear energy shells and density respectively. A full
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Table 2.4: Scintillator cube calibration system description, including depths below the

detector optical barrier, positions with respect to the detector axis, muon range and

kinetic energy sensitivity, and intrinsic energy resolution.

cube depth x y z < Range > δRange < Tμ > δTμ

(cm) (cm) (cm) (cm) (g/cm2) (g/cm2) (MeV ) (MeV )

31.3 -60.76 540.70 15.12 27.6 0.9 95.9 2.2

60.3 15.55 511.70 -57.62 54.1 1.0 155.9 2.2

100.5 57.89 471.50 -13.54 88.6 1.2 229.1 2.6

200.8 -18.64 371.20 59.20 173.9 1.9 407.2 4.0

298.1 40.82 273.90 44.50 256.4 3.6 580.2 7.6

401.9 40.82 170.10 44.50 344.2 4.3 767.8 9.2

Bethe-Block range calculation for muons in mineral oil, including straggling, is used

to convert the muon calibration system range measurement into a muon energy [62].

The resulting uncertainty on the muon tracker range-energy measurement is ∼1%,

due to range straggling.

The muon calibration system is used to measure the energy, vertex, and angle

resolution of the reconstruction. For muons with 0.7 GeV kinetic energy, the re-

construction energy resolution is measured to be ∼6%, and the angular resolution is

measured to be ∼6 degrees. The reconstruction’s vertex resolution and drive (po-

sition bias) in the direction perpedicular to the muon track are measured to be 6.5

cm (11.7 cm), and 12.5 cm (9.8 cm) for the parallel direction. The intrinsic energy,

angle, and vertex resolutions of the muon tracker system are ∼1%, 2 degrees, and

(3.5 cm, 3.5 cm, 2.0 cm) for (x, y, z) [63].
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Particle Identification

Particle identification in the MiniBooNE detector relies on hit timing, hit charge,

and event topology. For the oscillation analyses, the most important particles for

MiniBooNE to distinguish are muons, electrons, and neutral pions. The primary

method for finding muons is via their decay electrons: ∼ 90% of muons followed

by a decay electrons appear as two sub-events in the MiniBooNE detector. The

average length of a muon sub-event is ∼50 ns, and so the probability of the decay

electron getting “masked” by the primary muon (and as a result not creating its own

sub-event) is 2%, and, 8% of μ− capture in Carbon, and therefore do not create a

second sub-event. To distinguish electrons from neutral pions, events are fit with a

1-ring and 2-ring hypothesis. While both particles produce one sub-event, cleanly

reconstructed π0 → γγ events have a better likelihood value for the 2-ring fit, as well

as a reconstructed invariant mass within ∼50 MeV of the π0 mass. However, when

π0s are not cleanly reconstructed, they are the largest source of events mis-identified

as electrons. Various sophisticated algorithms are trained to distinguish hard-to-

identify π0 events from electrons, which rely on comparing the likelihood values in

bins of corrected PMT time and angle [64].

To identify a particular interaction channel, for example, νμn → μ−p, PMT

corrected time, corrected angle, and charge distributions are examined for consistency

with the expected final state, e.g., one muon-like ring. An example of this approach

is the νμ charged current quasi-elastic event selection, which is described in detail in

chapter 4.



Chapter 3

Simulation of the Experiment

3.1 Flux Prediction

The processes that contribute to the MiniBooNE νμ flux are π+ → μ+νμ and K+ →
μ+νμ; the processes that contribute to the intrinsic νe in the beam are μ+ → e+νeνμ,

K+ → π0e+νe, and K0
L → π±e∓νe. Therefore the important components of predict-

ing the MiniBooNE neutrino flux are understanding the π and K production cross

sections in the MiniBooNE target, and accurately modeling meson propagation and

decay. MiniBooNE predicts the meson production cross sections with global fits to

data from past experiments. Meson propagation and decay are modeled in a Geant4

Monte Carlo simulation of the MiniBooNE target and decay region.

3.1.1 Particle Production Cross Sections

Historically, the particle production cross sections of relevance for MiniBooNE were

not well known, and therefore are an important source of uncertainty for MiniBooNE.

There are no published measurements of inclusive π or K production in proton-

60
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beryllium interactions at 8.9 GeV/c incident proton momentum, although preliminary

results are available from the HARP experiment. The relevant cross sections are not

theoretically straightforward either, and as a result, different Monte Carlo hadron

production simulations make wildly varying predictions [65], shown in figure 3.1.

However, a number of past experiments measured the production cross sections in

part or all of the meson kinematic phase space relevant for MiniBooNE, although not

at the same incident proton beam momentum. Therefore, to obtain production cross

sections for MiniBooNE we fit a parameterization of the meson production differential

cross section, which is a function of incident proton momentum, meson momentum,

and meson angle, to the available data. The best-fit differential cross section is then

used to extrapolate to pproton = 8.9 GeV/c and to the range of (pmeson, θmeson) needed

by MiniBooNE.

The modern meson production cross section data comes from experiments which

typically have secondary proton beams incident on the production target, and scin-

tillator counters which identify and trigger on each proton. The target is situated

inside a time projection chamber, which is used to tag the secondary production ver-

tex. Various particle ID detectors and a magnetic spectrometer with large acceptance

identify mesons downstream and measure their momenta. The spectrometer accep-

tance, decay and absorption corrections, and track reconstruction and particle ID

efficiency are determined from Monte Carlo simulations. The measured differential

cross section is given by [66]

d2σα

dpidθj

=

1
Npot

A
NAρt

M−1
ijα,i′j′α′

˙[
Nα′

i′j′(T ) − Nα′
i′j′(E)

]
ΔpiΔθj

(3.1)

where pi, θj are the momentum and angle of particle type α (e.g. π+) at production,

Npot is the number of incident protons on target, A is the atomic number, NA is

Avogadro’s number, ρ is the target material density, t is the linear thickness of the



62

p (GeV/c)
0 0.5 1 1.5 2 2.5 3

 / 
10

0 
M

eV
 / 

p
.o

.t
.

+ π

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

S-W
MARS
Gheisha
Bertini
Binary Cascade

 (rad)θ
0 0.1 0.2 0.3 0.4 0.5 0.6

 / 
0.

02
 r

ad
 / 

p
.o

.t
.

+ π

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

S-W
MARS
Gheisha
Bertini
Binary Cascade

p (GeV/c)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 / 
10

0 
M

eV
 / 

p
.o

.t
.

+
K

0

0.0005

0.001

0.0015

0.002

0.0025

S-W
MARS
Gheisha
Bertini
Binary Cascade

 (rad)θ
0 0.1 0.2 0.3 0.4 0.5 0.6

 / 
0.

02
 r

ad
 / 

p
.o

.t
.

+
K

0

0.0005

0.001

0.0015

0.002

0.0025

S-W
MARS
Gheisha
Bertini
Binary Cascade

Figure 3.1: Comparison of inclusive meson production normalization and kinematics

in hadron production models from various Monte Carlo event generators. The same

number of incident protons on target is simulated for each production model. Top

left: number of π+ vs. pπ (GeV/c) at production. Top right: number of π+ vs. θπ

(radians) at production. Bottom left: number of K+ vs. pK (GeV/c) at production.

Bottom right: number of K+ vs. θK (radians) at production. Figure from reference

[65].
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target, M−1
ijα,i′j′α′ is an unfolding matrix that relates the measured momentum, angle,

and particle type to the true values, corrected for efficiency, acceptance, and absorp-

tion, Nα′
i′ (T ) is the measured number of particles identified as type α′ in (p, θ) bins

(i′, j′) with the target in place, Nα′
i′ (E) is the same quantity with the target removed,

and ΔpiΔθj are the bin widths. Typical errors on a given data point are at the few

percent level, the dominant sources of uncertainty come from the unsmearing and

absorption corrections. Data is taken with the target removed to correct for noise

and environmental backgrounds.

Sanford & Wang Parameterization

The Sanford & Wang parameterization describes the non-invariant double differential

cross section in terms of the incident proton momentum (pproton), the out-going meson

momentum (pmeson), the out-going meson angle (θmeson), and 9 free parameters ci [67]:

d2σ

dpdΩ
= c1pmeson

c2(1 − pmeson

pproton − c9

) × (3.2)

exp
[−c3pmeson

c4

pproton
c5

− c6θmeson(pmeson − c7pprotoncos
c8θmeson)

]
The functional form comes from inspection of p Be → π± X, p Be → K± X,

and p Be → p X data. The original fit parameters were tuned on the data of

Lundy et al. [68], Dekkers et al. [69], Baker et al. [70], and Fitch et al. [71], with the

normalization of [69]. This normalization condition assumes a total inelastic cross-

section of 227 mb [72], which is roughly 10% higher than the currently accepted value

208 mb [73].

The data used by Sanford & Wang have incident proton momenta between 10

and 70 GeV/c, slightly above the MiniBooNE incident proton momentum of 8.89

GeV/c. Further, the majority of the data are from the 33 GeV Bevatron, and the

only forward (0 degree) production data are from the Dekkers experiment. There
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are several more recent fits which primarily use the data of Cho et al. (1971) [74],

however, no published fit has extended the data to proton beam momenta below 10

GeV/c. We incorporate data at 3 and 6 GeV/c from the Piroue and E910 experiments

since it is preferable to interpolate between data sets above and below MiniBooNE’s

beam momentum, rather than extrapolate based on higher energy data alone.

The motivation for the pproton dependence of the Sanford & Wang parameteriza-

tion is Feynman scaling [75], since the invariant cross section data vs. xF becomes

approximately independent of xF above the kinematic threshold for producing a given

meson, where

xF =
( pz

pmax
z

)
CM

, (3.3)

(pz)CM is the longitudinal momentum of the π in the center of mass in the reaction

p Be → π X, and pmax
z 	 √

s/2. The angular and momentum dependences of the

function, for forward production, are based on two other scaling relations [76]. By

dropping the term c7Ppcos
c8θπ in equation 3.2, one can show that

d2σ(Pp
′)

dpdΩ
=

√
Pp

′

Pp

d2σ(Pp)

dpdΩ
, (3.4)

where Pp
′ and Pp are two different incident proton momenta. The second scaling law

describes the angular dependence of the pion production

θ′ =
Pp

Pp
′ θ (3.5)

at a fixed Pπ, Pp, and pion transverse momentum P⊥.

While these simple momentum scaling relations describe forward production data,

a more complex functional form is allowed for other angles. The Sanford & Wang

parametrization attempts to represent the data at different production angles by in-

troducing three additional free parameters, c6, c7, and c8. The remainder of the

parameters are related to either the change in cross-section with incident beam mo-

mentum, c1, c3, and c5, or to the variation with pion momentum, c2 and c4.
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Production Cross Section Fits

The parameters c1 through c8 are determined from fits of the data to the Sanford-

Wang parameterization. The production cross section fits minimize the following

function for an experiment j:

χ2
j =

[∑
i

(Nj × SWi − Datai)
2

σ2
i

]
+

(1 − Nj)
2

σ2
Nj

(3.6)

where i is the (Pmeson,θmeson) bin index, SWi =
(

d2σ(pmeson,θmeson,pproton,ck)

dpdΩ

)
is the pa-

rameterization prediction evaluated at a given (pproton, θmeson, pmeson) and set of coeffi-

cients ck with k = (1, 8), Datai is the measurement at a given (pproton, θmeson, pmeson),

σi is the data systematic error on measurement i, Nj is the normalization pull term

for experiment j, and σNj
is the normalization uncertainty experiment j. The total

χ2 for external data sets is the sum of the individual χ2s for each experiment:

χ2 =
∑

j

χ2
j . (3.7)

To account for coarse binning in the measured data, or for bins in which the

production cross section is changing rapidly, the data are bin center corrected at each

iteration of the fit1. The bin center correction is calculated from the average value of

the parameterization cross section in a data bin at a given iteration k, which is

(d2σ(pmeson, θmeson, pproton, ck)

dpdΩ

)
k

= (3.8)

1

ΔpΔΩ
×

∫ pmax

pmin

∫ θmax

θmin

(d2σ(pmeson, θmeson, pproton, ck)

dpdΩ

)
dpdΩ

where the data bin limits are pmin < pmeson < pmax and θmin < θmeson < θmax,

Δp = pmax − pmin, ΔΩ = Ωmax −Ωmin, and ck are the values of the fit parameters

1The assumption is made that the data are reported at the center of the measurement bins.
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at iteration k. The bin center correction C(pmeson, θmeson)k is the ratio of the average

parameterization value divided by the parameterization value at the center of the bin:

C(pmeson, θmeson)k =

(
d2σ

dpdΩ

)
k(

d2σ
dpdΩ

)
k

(3.9)

This correction is applied multiplicatively to the data when calculating the χ2 func-

tion.

Pion Production Results

The external inclusive π+ production data in the range of interest to MiniBooNE are

summarized in figure 3.2. Only modern experiments, as described in the previous

section, are shown. These include E910[77] and HARP[78], which span a range of

production phase space: 6.4 < pproton < 12.3 GeV/c, 0 < pπ < 6.5 GeV/c, and

0 < θπ < 330 mr. These data are all reported in bins of double differential cross

section vs. π+ momentum and angle. Older experiments are discussed in appendix

B.

To remove the effect of differing incident proton beam momenta, one can assume

Feynman scaling and can compare the production phase space in the center of mass

(xFeynman, pT ). These parameters are defined as

pT =
√

(pLAB
x )2 + (pLAB

y )2; xFeynman =
pCM

z

pCM
z, MAX

(3.10)

Figure 3.2 shows pT vs. xFeynman for the relevant experiments, superimposed upon

the MiniBooNE beam Monte Carlo prediction π+ that decay to neutrinos in the

MiniBooNE detector acceptance. The most important range for MiniBooNE is around

pT = 0.2 GeV/c and xF = 0.2, and the E910 and HARP experiments have good

coverage of the entire MiniBooNE phase space.
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experiment pproton (GeV/c) pπ (GeV/c) θπ NDATA σNORM

E910 [77] 6.4, 12.3 1 - 5.5 0 - 20o 101 5%

HARP [78] 8.9 1 - 5.5 0 - 11o 72 4%

MiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptanceMiniBooNE MC: π+ with ν in detector acceptance

E910 Data (6.4, 12.3 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

E910 Data (6.4, 12.3 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

E910 Data (6.4, 12.3 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

E910 Data (6.4, 12.3 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

E910 Data (6.4, 12.3 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

E910 Data (6.4, 12.3 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

E910 Data (6.4, 12.3 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

E910 Data (6.4, 12.3 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

E910 Data (6.4, 12.3 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

E910 Data (6.4, 12.3 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

E910 Data (6.4, 12.3 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

E910 Data (6.4, 12.3 GeV/c)
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Figure 3.2: Top: Summary of modern experiments which measure p Be → π+X

in a region of interest to MiniBooNE. Bottom: Transverse momentum (GeV) vs.

xFeynman for π+ production experiments, overlaid with the MiniBooNE beam Monte

Carlo prediction for π+-decay ν in the MiniBooNE detector acceptance.



68

The HARP 8.9 GeV/c, E910 6.4 GeV/c, and E910 12.3 GeV/c data are fit by

minimizing the χ2 function of equation 3.6. The free parameters in the Sanford-

Wang fit include the eight function constants c1 through c8, and the normalization

pull terms ni. However, each ni has an associated penalty term (the second term

in equation 3.6), and therefore does not change the number of degrees of freedom

in the fit: NData − 8. Different normalization pull terms are used for the E910 6.4

and 12.3 GeV/c data because the data sets were recorded with different experimental

settings [77]. Two χ2 values are reported here: a “shape χ2”, which is the value of

the χ2 function with the normalization pull term penalty subtracted from the total,

and a “total χ2,” which includes the penalty. Comparing these two χ2 values tests

the normalization compatibility of the different experiments included in the fit.

The best-fit Sanford-Wang parameters are shown in table 3.1, assuming uncor-

related errors for all data points. The χ2/ndf of the HARP and E910 experiments

individually are 1.10 and 1.21 respectively, while the combined fit χ2/ndf is 1.52. In-

spection of the shape vs. total χ2 values and the data show that the tension between

the two experiments is due to shape rather than normalization, in particular for the

larger angles (if the 11o bin in HARP were dropped from the fit, the combined χ2/ndf

would be 177/153 = 1.16).

The E910 data are reported with uncorrelated errors, however, the preliminary

HARP data are reported with correlated errors. The best-fit Sanford-Wang param-

eters using the correlated HARP errors are shown in table 3.22. The fit quality is

significantly worse than the uncorrelated result, although the best-fit cross section is

very similar. The χ2/ndf of the HARP data, fit with correlated errors, is 3.26, and the

2Following the recommendation of the HARP collaboration, the HARP data with correlated

errors are fit using an average of the χ2 shown in equation 3.6 and the corresponding Pearson χ2

function.
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Table 3.1: Best-fit Sanford-Wang π+ parameters, assuming uncorrelated errors for all

data sets. The “E910 + HARP” fit combines HARP 8.9 GeV/c, E910 6.4 GeV/c,

and E910 12.3 GeV/c data. The “E910 only” and “HARP only” fits are performed to

check the consistency of the individual experiments with the Sanford-Wang hypothesis.

Since HARP measures only one pproton value, the parameter c5 is fixed in the Sanford-

Wang function for the “HARP only” fit. Probability refers to the total χ2/ndf .

fit parameter E910 + HARP E910 only HARP only

c1 242.8±12.85 219.9 ±38.40 460.9±95.830

c2 1.069±0.148 0.927 ±0.1391 1.782±0.2347

c3 2.838±0.929 5.324 ±7.548 1.017±0.0685

c4 1.684±0.142 3.000 ±1.582 0.7422±0.0628

c5 1.523±0.104 2.651 ±1.129 0.000±0.00

c6 5.479±0.690 5.067 ±0.4915 5.757±0.6302

c7 0.0833±0.015 0.0877±0.0239 0.1808±0.0246

c8 9.483±4.240 10.55 ±3.786 40.51±17.910

nHARP 1.00±0.00 - 1.00±0.00

nE910 6.4 1.04±0.07 1.03±0.07 -

nE910 12.3 0.99±0.03 0.98±0.03 -

shape χ2/ndf 247/165 110/93 71/64

total χ2/ndf 250/165 113/93 71/64

probability 2.1×10−5 0.078 0.26
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Table 3.2: Best-fit Sanford-Wang π+ parameters, using correlated errors for the

HARP data, and uncorrelated errors for the E910 data. The “E910 + HARP” fit

combines HARP 8.9 GeV/c, E910 6.4 GeV/c, and E910 12.3 GeV/c data. The

“HARP only” fit is performed to check the consistency of the individual experiments

with the Sanford-Wang hypothesis. Since HARP measures only one pproton value, the

parameter c5 is fixed in the Sanford-Wang function for the “HARP only” fit. Proba-

bility refers to the total χ2/ndf .

fit parameter E910 + HARP HARP only

c1 266.5±31.44 380.9±6.843

c2 1.045±0.0512 1.433±0.1090

c3 1.846±0.1566 0.5762±0.0160

c4 1.482±0.1105 0.9469±0.0376

c5 1.171±0.0281 0.000±0.000

c6 5.026±0.2938 4.846±0.2182

c7 0.078±0.0063 0.1190±0.0175

c8 10.11±5.995 41.76±3.798

nHARP 1.00±0.00 1.00±0.00

nE910 6.4 1.02±0.06 -

nE910 12.3 0.97±0.03 -

shape χ2/ndf 368/165 209/64

total χ2/ndf 371/165 209/64

probability 0.0 0.0
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combined fit χ2/ndf is 2.25. The data are compared with the best-fit Sanford-Wang

cross section in figures 3.3 through 3.5.

The best-fit Sanford-Wang inclusive π+ production cross section is evaluated at

the MiniBooNE beam momentum and shown as a function of pπ for different θπ

values in the left-hand side of figure 3.6. The magnitude of the cross section falls

very steeply as a function of both angle and momentum from a maximum at (pπ, θπ)

= (2 GeV/c, 0o). The best-fit cross section is shown as a function of incident proton

momentum in the right-hand side of figure 3.6, evaluated at the average (pπ, θπ)

for π+ that decay to neutrinos in the MiniBooNE detector acceptance. The pproton

dependence of the best-fit Sanford-Wang cross section is approximately consistent

with the ln(s) behavior predicted by Feynman scaling (where ECM =
√

s).

Similar fits are performed for π− production. These are described in appendix B,

section B.2.

The π+ production fit in table 3.2, labelled “E910 + HARP”, has been used

to generate all of the Monte Carlo in this thesis. As will be shown in chapter 4,

the energy distribution of the predicted νμ flux agrees very well in shape with the

MiniBooNE data.

Kaon Production Results

Low-energy kaon production data in proton-beryllium interactions is even more sparse

than pion production data. The most relevant K+ production data in the (xF , pT )

phase space of interest to MiniBooNE is summarized in figure 3.7. The most impor-

tant range for MiniBooNE is around pT = 0.2 GeV/c and xF = 0.3. The experiments

which cover this phase space have very different lab frame measurement parameters:

pproton varies from 9.5 to 24.0, pmeson from 0.5 and 16 GeV/c, and θmeson from 0 to

40 degrees.
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Figure 3.3: HARP [78] experiment measured inclusive π+ production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. π+ momentum

(GeV/c), at pproton = 8.9 GeV/c. Error bars include statistics and systematics.
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Figure 3.4: E910 [77] experiment measured inclusive π+ production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. π+ momentum

(GeV/c), at pproton = 6.4 GeV/c. Error bars include statistics and systematics.
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Figure 3.5: E910 [77] experiment measured inclusive π+ production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. π+ momentum

(GeV/c), at pproton = 12.3 GeV/c. Error bars include statistics and systematics.
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Figure 3.6: Left: best-fit Sanford-Wang inclusive π+ production cross section (milli-

barns/GeV/c/steradian) vs. π+ momentum (GeV/c) for various angles, at pproton

= 8.9 GeV/c. Right: best-fit Sanford-Wang inclusive π+ production cross sec-

tion (milli-barns/GeV/c/steradian) vs. proton momentum (GeV/c), evaluated at

(pπ, θπ) = (1.8 GeV/c, 5.4o).
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The data from all experiments except Vorontsov, Abbott, and Eichten are re-

ported in bins of double differential cross section vs. kaon momentum and angle.

For the purpose of this fit, the data from these experiments have been converted to

double differential cross section. The Vorontsov data are reported as invariant cross

section vs. kaon momentum and is converted to double differential cross section via

d2σ

dpdΩ
=

( p2
K

EK

)
× E

d3σ

d3p
(3.11)

The Abbott data are reported as invariant cross section vs. transverse kinetic energy

(KT ) in bins of rapidity, where

KT = mT − mK =
√

m2
K + p2

T − mK (3.12)

and

m2
T = m2

K + p2
T (3.13)

The conversion to double differential cross section vs. kaon momentum in bins of

kaon production angle uses

E
d3σ

d3p
=

d2σ

πdyd(p2
T )

, y = tanh−1
(pz

E

)
, (3.14)

pZ =

√√√√ m2
K + p2

T(
1

tanh(y)

)2

− 1

, pT =
√

K2
T + 2mKKT , (3.15)

and

ptotal =
√

p2
T + p2

Z , θ = atan2(pT , pZ).

Unfortunately the Abbott data are reported in 7 rather large bins of rapidity (Δy =

0.2). The average rapidity in each bin is used to calculate pZ , which introduces error

into the conversion. The data are subsequently sorted into 7 bins of equal solid angle

by requiring θmin < θ < θmax where θmin and θmax are the bin limits for a given bin in

d(cos(θ)). In the first (last) bin θmin (θmax) is arbitrarily set to a value smaller (larger)
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experiment pproton (GeV/c) pK (GeV/c) θK NDATA σNORM

Abbott [79] 14.6 2-8 20 - 30o 43 10%

Aleshin [80] 9.5 3-6.5 3.5o 5 10%

Eichten [81] 24.0 4-18 0-6o 56 20%

Piroue [82] 2.74 0.5-1 13,30o 13 20%

Vorontsov [83] 10.1 1-4.5 3.5o 13 25%
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MiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptance

Vorontsov Data (10.1 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Abbott Data (14.6 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Abbott Data (14.6 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Abbott Data (14.6 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Abbott Data (14.6 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Abbott Data (14.6 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Abbott Data (14.6 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Abbott Data (14.6 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptanceMiniBooNE MC: K+ with ν in detector acceptance

Piroue Data (2.74 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Piroue Data (2.74 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Eichten Data (24 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Eichten Data (24 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Eichten Data (24 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Eichten Data (24 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Eichten Data (24 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Eichten Data (24 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

Eichten Data (24 GeV/c)

MiniBooNE MC: K+ with ν in detector acceptance

xF

p T
 (

G
eV

/c
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 3.7: Top: Summary of experiments which measure pBe → K+X in a region of

interest to MiniBooNE. Bottom: Transverse momentum (GeV) vs. xFeynman for K+

production experiments, overlaid with the MiniBooNE beam Monte Carlo prediction

for K+-decay ν in the MiniBooNE detector acceptance.
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than the smallest (largest) angle reported in the data. The Eichten data are reported

as invariant particle density vs. kaon momentum in bins of kaon production angle.

The conversion from invariant particle density to double differential cross section is

d2σ

dpdΩ
= ω(pK , θK) ×

( p2
K

2EK

)
× σI (3.16)

where ω(pK , θK) is the Lorentz invariant particle density, and σI is the inelastic

proton-beryllium cross section, assumed here to be 204.5 mb.

The Abbott, Aleshin, Eichten, Piroue, and Vorontsov data are fit by minimizing

the χ2 function of equation 3.6, however, the Sanford-Wang function is modified such

that the kinematic cutoff is a free parameter in the fit. The term
(
1 − pmeson

pproton−1

)
in equation 3.2 becomes

(
1 − pmeson

pproton−c9

)
, where c9 is the ninth free parameter in

the fit. The errors are assumed to be uncorrelated for all data points. The best-fit

parameters for the Sanford-Wang K+ production cross section are shown in table 3.3.

The χ2/ndf of the combined fit is 3.61. The contribution to the total fit χ2 from each

individual experiment is shown in table 3.5.

This K+ fit differs from the π+ fit in that each angle of each experiment is assigned

a normalization pull term. In contrast, for the π+ fit, one normalization pull term is

used per experiment. The motivation for the difference is that in the K+ experiments,

the data at each angle were recorded with a different spectrometer location, unlike

the modern π+ experiments, which use fixed spectrometers with large acceptances.

The best-fit pull term values are shown in table 3.4.

The data are compared with the best-fit Sanford-Wang K+ production cross

section in figures 3.8 through 3.11. By inspection one can see that there is tension in

the fit for the Vorontsov and Piroue data, and in the lowest-angle bin data from the

Eichten experiment.

The Vorontsov data are clearly incompatible with the shape of the Sanford-Wang
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Table 3.3: Best-fit Sanford-Wang K+ parameters, assuming uncorrelated errors for

all data sets. Probability refers to the total χ2/ndf .

fit parameter best-fit value ± error

c1 6.083 ± 0.7136

c2 1.468 ± 0.06185

c3 10.04 ± 2.887

c4 3.085 ± 0.08379

c5 3.356 ± 0.0278

c6 5.718 ± 0.1523

c7 0.1274± 0.008995

c8 10.36 ± 1.662

c9 0.000 ± 0.2116

shape χ2/ndf 426/121

total χ2/ndf 438/121

probability 0.0



80

Table 3.4: Best-fit Sanford-Wang K+ pull-term parameters, assuming uncorrelated

errors for all data sets.

fit parameter best-fit value ± error

n1 (Aleshin) 1.19±0.28

n1 (Vorontsov) 0.63±0.15

n1 (Abbott) 1.003± 0.2898

n2 (Abbott) 0.9958± 0.2404

n3 (Abbott) 1.152± 0.2659

n4 (Abbott) 0.9678± 0.2577

n5 (Abbott) 0.9271± 0.2695

n6 (Abbott) 1.034± 0.3169

n7 (Abbott) 0.9562± 0.3694

n1 (Piroue) 0.7798±0.2960

n2 (Piroue) 1.146±0.4192

n1 (Eichten) 0.7081±0.2295

n2 (Eichten) 0.9877±0.2351

n3 (Eichten) 1.084±0.2058

n4 (Eichten) 1.046±0.1890

n5 (Eichten) 1.001±0.1970

n6 (Eichten) 0.9525±0.2264

n7 (Eichten) 0.9078±0.2557
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Table 3.5: Compatibility of K+ production experiments with best-fit Sanford-Wang

K+ production cross section prediction.

experiment χ2
shape χ2

total ndf χ2
total probability

Aleshin 47.47 49.08 -4 -

Vorontsov 122.2 124.4 4 0.000

Abbott 42.51 43.96 34 0.117

Piroue 37.38 39.12 4 0.000

Eichten 176.7 181.4 47 0.000
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Figure 3.8: Left: Aleshin [80] experiment measured inclusive K+ production cross

section (milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. K+ mo-

mentum (GeV/c), at pproton = 9.5 GeV/c. Right: Vorontsov [83] experiment mea-

sured inclusive K+ production cross section (milli-barns/GeV/c/steradian) in proton-

beryllium interactions vs. K+ momentum (GeV/c), at pproton = 10.1 GeV/c. Error

bars include statistics and systematics.
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Figure 3.9: Abbott [79] experiment measured inclusive K+ production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. K+ momentum

(GeV/c), at pproton = 14.6 GeV/c. Error bars include statistics and systematics.
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Figure 3.10: Piroue [82] experiment measured inclusive K+ production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. K+ momentum

(GeV/c), at pproton = 2.74 GeV/c. Error bars include statistics and systematics.

prediction, and with Aleshin data. The Aleshin and Vorontsov measurements are

taken at the same production angle, similar production momenta, and similar incident

proton beam momentum. The fact that the cross section results are so different

between the two experiments may indicate an experimental problem. However, it

is unclear which experiment is wrong, therefore both are included in the fit. The

Piroue data are also incompatible in shape with the Sanford-Wang function, however,

since this is the only experiment with an incident proton beam momentum less than

MiniBooNE’s, it is worth including this data in global fit.

The Eichten low-angle data disagreement with the Sanford-Wang function sug-

gests a deficiency in the Sanford-Wang function extrapolation to low angles, however,

it is also possible that this is due to the lack of bin-center corrections. None of the

data in the combined K+ fit is bin-center corrected, since the original bin limits are

unknown. The cross section changes rapidly near θ = 0o, and therefore bin center
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Figure 3.11: Eichten [81] experiment measured inclusive K+ production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. K+ momentum

(GeV/c), at pproton = 24.0 GeV/c. Error bars include statistics and systematics.
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Figure 3.12: Left: best-fit Sanford-Wang inclusive K+ production cross section (milli-

barns/GeV/c/steradian) vs. K+ momentum (GeV/c) for various angles, at pproton =

8.9 GeV/c. Right: best-fit Sanford-Wang inclusive K+ production cross section (milli-

barns/GeV/c/steradian) vs. proton momentum (GeV/c), evaluated at (pK , θK) =

(2.9 GeV/c, 6.8o).

corrections may have a large effect here.

The K+ production fit in table 3.3 has been used to generate all of the Monte

Carlo in this thesis. Because of the poor fit quality, several efforts to measure neutri-

nos from kaon decay in the MiniBooNE data are underway. One of these is discussed

in chapter 5.

3.1.2 MiniBooNE Beam Monte Carlo

A Geant4 [84] Monte Carlo simulation describes the MiniBooNE neutrino beam line,

starting from protons incident on the target, and ending with the flux incident on the

MiniBooNE neutrino detector. Only a brief summary is given here as this program

has been described in detail elsewhere [85]. After meson production, described in
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the previous sections, the most relevant processes to the MiniBooNE neutrino flux

prediction are hadronic interactions, deflection in the focusing horn magnetic field,

and meson decay.

The possible hadronic interactions can be categorized as elastic, quasi-elastic,

and inelastic. In elastic interactions the projectile scatters coherently off of the target

nucleus or nucleon, and only the direction of the projectile changes; its energy and

the energy of the struck particle remain the same. In quasi-elastic interactions the

projectile scatters incoherently off of the struck nucleon, and the total number of

particles is conserved. However, momentum and quantum numbers can be exchanged.

Examples of quasi-elastic interactions include target dissociation (pd → ppn), and

charge exchange (π−p → π0n). In inelastic interactions new particles are created,

resulting in meson production. The kinematics of particles produced in inelastic

interactions are simulated according to the differential Sanford-Wang cross section

predictions described in the previous section.

Inelastic interactions are most important for producing the MiniBooNE neutrino

beam. Historically there is much variation among measurements of the inelastic cross

section on beryllium at MiniBooNE beam enerigies, which is in part responsible for

the normalization differences among older π+ production cross section measurements.

Fits to data from the Gachurin [86] and Bobchenko [87] experiments are used in the

MiniBooNE beam Monte Carlo to describe the inelastic cross section vs. pproton in

p-Be interactions. The π+-Be (and π−-Be) inelastic cross section is based on a fit

to data from the Gachurin [86], Allardyce [88], and Ashery [89] experiments. The

resulting p-Be (π+-Be) inelastic cross section is 212 mb (200 mb) at pproton = 8.9

GeV/c (pπ = 2.0 GeV/c). These p-Be and π+-Be inelastic cross section fits are shown

in figure 3.13. The p-Be and π+-Be quasi-elastic and elastic cross section models in

the MiniBooNE beam Monte Carlo are based on Glauber model calculations [90].
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Figure 3.13: Left: inelastic p-Be cross section data (mb) vs. incident proton mo-

mentum (GeV/c). Right: inelastic π+-Be cross section data (mb) vs. incident π+

momentum (GeV/c). The MiniBooNE beam Monte Carlo fit and the GHEISHA

hadronic interaction model curves are overlaid. Figure from reference [90].

From the Monte Carlo simulation, quasi-elastic interactions are responsible for ∼5%

of the neutrino flux incident on the MiniBooNE detector, and elastic interactions

contribute <1%.

Each time a proton on target is simulated, its inelastic interaction probability is

determined by the interaction length λinelastic,

Pinelastic = (1 − exp[Ltarget/λinelastic]) (3.17)

and

1

λinelastic

=
NA σinelastic

ABe

. (3.18)

If the proton interacts, the number of secondary mesons is determined by throwing

against Poisson distributions with means equal to the average multiplicity for each

secondary particle type. The multiplicity is calculated from the differential cross
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sections via

< nπ+ > =

∫
(d2σπ+/dpdΩ)dpdΩ

σinelastic

(3.19)

for example, where (d2σπ+/dpdΩ) is the best-fit production cross section. If an event

with greater than zero mesons has occured, then the kinematics are drawn from the

meson production cross section tables, which are binned in pT and pZ . Neither energy

nor the total cross section are required to be conserved on an event by event basis

by this procedure, however, on average, energy is conserved, and the differential and

inelastic cross sections equal their input values. The following secondary particle

types are considered: π+, π−, K+, K0
L, n, and p. The differential cross sections for

the first four come from Sanford-Wang model fits, while the latter two come from

the MARS15 Monte Carlo. K− production is not simulated since the probability of

getting a ν in the detector from a K− decay is a factor of 100 less than from a K+.

The K0
L fits are described in reference [91].

Once a secondary particle has been generated, it is tracked through the simulation

geometry, which contains a full description of the MiniBooNE neutrino beam line,

as well as physics models for electromagnetic interactions, ionization energy loss,

multiple coulomb scattering, and meson decay. On average, a π+ travels 82 cm

through the magnetic focusing horn field region, with a mean magnetic field of 0.71

Tesla. This changes the average momentum and angle of the π+ beam from (2.2

GeV/c, 105 mr) before the horn to (2.1 GeV/c, 30 mr) afterwards, and increases

the number of ν from π+ decay in the detector acceptance by a factor of ∼5. The

mean distance travelled by a π+ through beam line material is 8.5 cm (5.9 cm) in

beryllium (aluminum), resulting in a 21.5 (22.3) MeV energy loss, and an average

multiple scattering angle of 1 (2) mr. The secondary mesons subsequently decay,

producing the MiniBooNE neutrino beam, which has an average energy of 0.72 GeV

(for neutrinos in the MiniBooNE detector acceptance). The most important decay
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Table 3.6: MiniBooNE Geant4 beam Monte Carlo meson decay parameters.

Particle Lifetime (ns) Decay mode Branching ratio (%)

π+ 26.03 μ+νμ 99.9877

e+νe 0.0123

K+ 12.37 μ+νμ 63.17

π+π0 21.2

π+π+π− 5.6

π0e+νe 5.13

π0μ+νμ 3.2

π+π0π0 1.7

K0
L 51.70 π0π0π0 19.45

π−e+νe 20.4

π+e−ν̄e 20.27

π−μ+νμ 13.55

π+μ−ν̄μ 13.46

π0π+π− 12.87

μ+ 2197.03 e+νeν̄μ 100.0

modes and their Geant4 beam Monte Carlo simulation parameters are shown in table

3.6.

The predicted neutrino fluxes are shown as a function of neutrino energy in figures

3.14 through 3.15. According to the Monte Carlo, the neutrino beam composition

is 92.7% νμ, 6.6% νμ, 0.6% νe, and 0.1% νe. Of these, 86% come from decays of

mesons produced in primary inelastic interactions (e.g. p Be → π+ → νμ), secondary

interactions (e.g. p Be → p Be → π+ → νμ) comprise the remaining 14%. The νμ
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Figure 3.14: Left: νe flux prediction by parent vs. Monte Carlo generated νe energy

(GeV). Right: νμ flux prediction by parent vs. Monte Carlo generated νμ energy

(GeV).
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Figure 3.15: Left: νe flux prediction by parent vs. Monte Carlo generated νe energy

(GeV). Right: νμ flux prediction by parent vs. Monte Carlo generated νμ energy

(GeV).
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Table 3.7: MiniBooNE Geant4 beam Monte Carlo neutrino flux production modes.

Neutrino Flavor Process Fraction per Flavor (%)

νμ p → π+ → νμ 86.1

p → p → π+ → νμ 7.3

p → K+ → νμ 2.8

p → n → π+ → νμ 1.9

Other 1.9

ν̄μ p → π− → ν̄μ 55.0

p → p → π− → ν̄μ 16.6

p → n → π− → ν̄μ 12.0

Other 16.4

νe p → π+ → μ+ → νe 47.6

p → K+ → νe 32.7

p → K0
L → νe 7.2

p → p → π+ → μ+ → νe 5.0

Other 7.5

ν̄e p → K0
L → ν̄e 65.5

p → π− → μ− → ν̄e 9.8

Other 24.7
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flux is 86% from primary π+ decay, and 3% from primary K+ decay. The νe flux

from primary interactions is composed of 33% from K+ decay, 7% from K0
L decay,

and 48% from μ+ decay (via p Be → π+ → μ+ → νe). The detailed meson parentage

history of the flux by neutrino flavor is summarized in table 3.7.

3.1.3 Flux Prediction Uncertainties

The sources of uncertainty in the flux prediction include: proton beam focusing,

hadronic cross sections, the differential Sanford-Wang meson production cross sec-

tions, the horn magnetic field, and the beam line geometry and interaction cross

sections for secondary particles. Additional sources of normalization uncertainty re-

lated to the proton beam line are proton beam targeting efficiency, and the accuracy

of the protons on target measurement. An estimate of the contribution of each of

these components to the flux prediction uncertainty is summarized in table 3.8, and

the production cross section uncertainty by meson type is shown in table 3.9.

The contribution to the neutrino flux uncertainty from proton beam focusing

and hadronic cross sections is estimated to be less than 4% [92]. The constituents

considered include perfect focusing and de-focusing, p-Be total, inelastic, and quasi-

elastic cross section variations, and elastic and quasi-elastic scattering parameter

variations.

The meson production cross section uncertainties come from the Sanford-Wang

fits. The fit parameter errors in tables 3.2 and 3.3 for π+ and K+ respectively

are combined with the parameter correlation matrix to calculate the predicted cross

section uncertainty at a given (pproton, pmeson, θmeson) as follows. The change in the

Sanford-Wang predicted cross section function Δf1 due to a change in parameter c1
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Table 3.8: Summary of sources of neutrino flux uncertainty. “Quasi-elastic” is abbre-

viated as “QE” below. The quadrature sum assumes the parameters are uncorrelated.

source MC parameter default value variation ΔΦν (%)

beam focusing [92] ρ(σx, σy) 0.0 ±1 0.8

p-Be σtotal [92] σTOT (mb) 285.5 15 0.8

p-Be σinelastic [92] σINEL (mb) 212.4 5 1.2

p-Be σQE [92] σQE (mb) 34.9 20 2.5

elastic scattering [92] βEL (GeV/c)−2 -70 10 0.4

QE scattering [92] βQE (GeV/c)−2 -10 3 1.7

horn current horn current kA 174 5 2.0

target position [93] ztarget (cm) 3.5 4.0 4.0

horn length [93] Lhorn (cm) 180 8 3.7

Np.o.t. measurement accuracy (%) - 2.0 2.0

quadrature sum - - - 6.99

Table 3.9: Summary of meson production cross section uncertainty, for π+, π−, K+,

and K0
L, evaluated at the average production parameters for mesons which decay to

neutrinos in the MiniBooNE detector acceptance. All numbers are reported in percent

(%).

source Δσ(π+) Δσ(π−) Δσ(K+) Δσ(K0
L)

Differential cross section 12.0 12.0 8.5 25.0
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is calculated as

Δf1 = f(c1 + δc1, c2, ..., cn) − f(c1, c2, ..., cn) (3.20)

where ci are the best-fit Sanford-Wang function parameters, δc1 is the best-fit pa-

rameter error for c1, and i = 1, 8 (or i = 1, 9 for K+ fits). Similarly, Δfi are

calculated for the other Sanford-Wang parameters. The set of Δfi are combined with

the parameter correlation matrix from the fit Pi,j to form the error matrix Mi,j,

Mi,j = Δfi Pi,j Δfj. (3.21)

The correlated error on the predicted Sanford-Wang cross section, evaluated at a

given (pproton, pmeson, θmeson) is

Δ
(d2σ(pproton, pmeson, θmeson)

dpdΩ

)
=

∑
i,j

Mi,j. (3.22)

The error bars shown in figures 3.6 and 3.12 are calculated in this way. The π+ and

K+ Sanford-Wang fit correlation matrices are given in appendix F. The π− and K0
L

differential production cross section uncertainties are also calculated in this way.

The error on the predicted π+ cross section at the average phase space point for

π+ that decay to neutrinos in the MiniBooNE detector acceptance, (pproton, pπ+ , θπ+)

= (8.9 GeV/c, 2.2 GeV/c, 0.105 mr), is 7.9%. One can take the fact that the χ2/ndf

is not equal to 1.0 into account by scaling the fit parameter errors by
√

χ2/ndf ,

and repeating the calculation above. For the π+ fit, this results in a predicted π+

cross section error of 12.0%. The predicted K+ cross section error at the average

phase space point for K+ that decay to ν in the MiniBooNE detector acceptance,

(pproton, pK+ , θK+) = (8.9 GeV/c, 2.9 GeV/c, 0.118 mr), is 4.4%, or 8.5% when scaled

by
√

χ2/ndf for the K+ fit. These cross section errors are evaluated at one point

in the production phase space, while the MiniBooNE neutrino flux samples a range
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of production momenta and angles. Therefore, the meson production cross section

uncertainties do not necessarily translate linearly into neutrino flux uncertainties.

The horn magnetic field uncertainty is set by the measurement accuracy of the

horn current monitor, which is ±5 kA. Varying the horn current with respect to the

central value by this amount, 174 ± 5 kA, in the beam Monte Carlo produces a

change in the total neutrino flux of 2%.

The beam line geometry uncertainties can be assessed by individually varying

many parameters describing the elements of the beam line, two examples which af-

fect the meson production and focusing are given in table 3.8. Their effects on the

flux at the detector are estimated to be ∼5.5% [93] using the ModelB fast beam line

simulation [94]. Uncertainties on the neutrino flux due to interactions of secondary

particles with the beam line geometry are related to the secondary interaction cross

sections assumed in the Monte Carlo. The HARP experiment provides a suite of mea-

surements that are being used to tune the MiniBooNE beam Monte Carlo secondary

interaction model. This process is ongoing, and therefore the systematic errors asso-

ciated with secondary interactions and the beam line geometry are not yet known.

These will be calculated once the tuning of the beam Monte Carlo is complete.

The effect of proton beam targeting on the flux prediction uncertainty is negligi-

ble, since data reduction cuts are applied to ensure that >99% of the proton beam

transits the entire length of the target. The uncertainty on the measurement of

protons on target is estimated to be 2%, discussed in detail in appendix A.

Only the uncertainties in table 3.9 are considered in this thesis, since the normal-

ization uncertainties given in table 3.8 are either negligible when compared with the

Sanford-Wang particle production uncertainties, or still under investigation.
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Figure 3.16: Charged current neutrino cross section measurements divided by neutrino

energy vs. Eν (GeV ); the curves are fit to the data to guide the eye. Figure from

reference [95].

3.2 Neutrino Cross Section Prediction

MiniBooNE operates in an interesting region for neutrino interaction cross sections,

Eν ∼ 1 GeV , which is shown in figure 3.16. First, there is a dearth of data on nu-

clear targets in this energy range. Second, this region is complex theoretically since

both charged current quasi-elastic (νμn → μ−p) and resonance (e.g. νμn → μ−pπ+)

scattering processes contribute in roughly equal proportions. Finally, in this energy

range deep-inelastic scattering interactions (e.g. νμn → μ−pπ+π−) are turning on,

and therefore contribute non-negligibly to the total cross section for MiniBooNE’s

highest energy events. As a result, the simulation of neutrino interaction cross sec-

tions is a dominant source of uncertainty for MiniBooNE. However, MiniBooNE will

accumulate more than 1 × 106 neutrino interactions on a nuclear target (CH2), and

can therefore make important contributions to constraining the cross section uncer-

tainties in this regime.
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3.2.1 MiniBooNE Cross Section Monte Carlo

MiniBooNE uses the NUANCE [96] Monte Carlo to simulate the neutrino interaction

cross sections and final state kinematics. At MiniBooNE neutrino energies, the cross

section has contributions from charged current quasi-elastic scattering (39% of the

total event rate), charged current resonance production (25%), neutral current elastic

scattering (16%), and neutral current π0 production (8%).

For the νμ → νe oscillation analysis, the most important processes are charged

current quasi-elastic (CCQE) scattering, which affords a precise measurement of the

neutrino energy, and neutral current π0 production, which is a large background to a

νe CCQE signal. Neutral current π0 production at MiniBooNE has been described in

detail elsewhere [40], therefore it will not be discussed here. For the νμ disappearance

oscillation analysis, the most important processes are νμ CCQE scattering, and νμ

charged current resonant single pion production (CC1π), which comprises the largest

source of background after the νμ CCQE event selection, which is described in detail

in chapter 4.

The free-nucleon theoretical inputs to the NUANCE Monte Carlo include the

LLewellyn-Smith quasi-elastic cross section [97], the Rein-Sehgal resonance cross sec-

tion model [98] for W 2 < 2 GeV , and the standard deep inelastic scattering formula

for W 2 > 2 GeV , with the Bodek-Yang method for joining the resonance and deep

inelastic scattering regions [99], where W 2 is the square of the mass of the hadronic

system. Nuclear effects are included via the Smith-Moniz relativistic Fermi gas model

for quasi-elastic and resonance interactions [100], and the treatment of final state nu-

cleons. For final state mesons, NUANCE uses a π interaction model tuned on π

electro-production data [101].
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Figure 3.17: NUANCE prediction compared with experimental data. νμn → μ−p cross

section (mb) vs. Eν (GeV ). Figure courtesy of [46]. Predictions assume mV = 0.084

GeV/c2 and mA = 1.032 GeV/c2.

Charged Current Quasi-Elastic Cross Section

Charged current quasi-elastic interactions (νμn → μ−p) are fairly well measured in

the MiniBooNE energy range on light targets, however the cross section on heavy

targets is less well known. A summary of the existing data are shown in figure 3.17.

The Feynman diagram for CCQE scattering is shown in figure 3.18. The kine-

matics are defined by the four vectors

q1 = (Eν , �pν), q2 = (Elepton, �plepton), (3.23)

p1 = (M, 0), p2 = (E, �p),

where Eν (Elepton) is the neutrino (lepton) energy, �pν (�plepton) is the neutrino (lepton)

three momentum, M is the mass of the struck nucleon, and (E, �p) describe the

outgoing nucleon’s energy and three momentum. The CCQE cross section kinematics

depend on the four-momentum transfer squared, Q2, and the energy transfer, ω.
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Figure 3.18: Charged current quasi-elastic scattering diagrams.

These are:

Q2 = −(q1 − q2)
2 = −m2

lepton + 2Eν(Elepton − pleptoncos(θlepton)) (3.24)

where θlepton is the angle between the lepton and neutrino directions, and Q2 > 0,

and,

ω = Eν − Elepton. (3.25)

Charged current quasi-elastic scattering is the most important neutrino interac-

tion for MiniBooNE because its the most numerous, and, two-body kinematics enable

a precise determination of the neutrino energy. Neglecting corrections for the motion

of the target nucleon and the binding energy, the neutrino energy can be calculated

from the measured energy and angle of the final state lepton:

EQE
ν =

1

2

2MElepton − m2
lepton

M − Elepton +
√

(E2
lepton − m2

lepton)cosθlepton

(3.26)

where M is the recoil nucleon mass, mlepton is the lepton mass, Elepton is the lepton

energy, and θlepton is the lepton angle with respect to the beam direction. The energy

resolution achievable by MiniBooNE for CCQE interactions is ∼10% at Eν = 1 GeV .
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The differential cross section for CCQE scattering off of a free nucleon is given

by [97]

dσ

dQ2dEν

=
(M2G2

F V 2
ud

8π(�c)2

)( 1

E2
ν

)(
A(Q2) ∓ B(Q2)

(s − u)

M2
+ C(Q2)

(s − u)2

M4

)
(3.27)

The first factor contains the normalization, where M is the mass of the struck nucleon,

GF is Fermi’s constant, Vud is the Cabibbo angle, and (�c) is 2π× Planck’s constant

multiplied by the speed of light c. The sign convention for the second factor is positive

for ν and negative for ν scattering. The second factor contains the explicit neutrino

energy (Eν) dependence, and the neutrino energy also enters via the energy transfer

given in terms of the Mandelstam variables (s − u), where

s = (p1 + q1)
2 = (p2 + q2)

2 = M2 + 2MEν , (3.28)

u = (q2 − p1)
2 = (p2 − q1)

2 = M2 + m2
lepton − 2MEν .

The third factor contains the terms A, B, and C, which parameterize the structure

of the nucleon in terms of Q2,

A(Q2) =
(m2

lepton + Q2)

M2

[
(1 + z)F 2

A − (1 − z)F 2
1 + z(1 − z)F 2

2 + 4zF1F2 (3.29)

−m2
lepton

4M2

(
(F1 + F2)

2 + (FA + 2FP )2 −
( Q2

M2
+ 4

)
F 2

P

)]
,

B(Q2) =
Q2

M2
FA(F1 + F2), (3.30)

and

C(Q2) =
1

4
(F 2

A + F 2
1 + zF 2

2 ) (3.31)

where

z =
Q2

4M2
. (3.32)

These functions are written in terms of the axial (FA), pseudoscalar (FP ), and vector

(F1 and F2) form factors. The Fourier transforms of the axial and vector form fac-

tors describe the weak and electromagnetic charge distributions within the nucleon
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respectively. These are given by the following formulae under the dipole assumption3:

F1 =
1 + z(1 + μp − μn)

(1 + z)
(
1 + Q2

m2
V

)2 , F2 =
(μp − μn)

(1 + z)
(
1 + Q2

m2
V

)2 (3.33)

FA =
gA(

1 + Q2

m2
A

)2 , FP =
2M2

m2
π + Q2

FA(Q2)

where μp = 1.793μN and μn = −1.913μN are the anomalous magnetic moments of the

proton and neutron, gA − 1.267 is the value of the axial form factor at Q2 = 0 [45],

mV = 0.84GeV/c2 is the vector mass, and mA = 1.03GeV/c2 is the axial mass [102].

With the exception of mA, all of these constants are measured very precisely and so

do not contribute to the uncertainty in the cross section predictions.

The dipole assumption has been checked in detail for the vector form factors,

which are extracted from high-statistics electron scattering data. For Q2 values above

∼ 0.2 GeV 2 the assumption is a good one, however, there are deviations at Q2 > 1

GeV 2. NUANCE uses the most recent non-dipole electromagnetic form factor fit

results [103]. The axial form factor is most precisely measured in ν scattering data,

which has had prohibitively small statistics until recently. The axial mass and the

functional form of FA(Q2) are therefore the dominant uncertainties on MiniBooNE’s

free nucleon CCQE cross section prediction.

Since the MiniBooNE neutrino target is CH2, which has 6 bound (and no free)

neutrons, the relevant experimental cross section for MiniBooNE is the bound nu-

cleon CCQE scattering cross section. MiniBooNE uses the Smith-Moniz formalism

to describe this process. This formalism parameterizes the nucleons inside a nucleus

as a Fermi gas, with binding energy and Fermi momentum. The differential bound

3The dipole form factor assumption corresponds to a spatial charge distribution ∝ ρ(r) =

exp(−r).
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nucleon CCQE cross section is given by [100]:

d2σ

dpleptondcos(θlepton)
=

2π(�cGF Vud)
2/M

(1 + Q2/m2
W )2

×
(plepton

2π

)2

cos2(χ/2) × (3.34)

(
w2 + 2w1 + wa

(mlepton

M

)2

tan2(χ/2) + (wb + w8)
m2

lepton

MEleptoncos2(χ/2)
−

2
(w8

M

)
tan(χ/2)sec(χ/2) ×

√
Q2cos2(χ/2) + |Q|2sin2(χ/2) + m2

lepton

)
.

where plepton, Elepton, and cos(θlepton) describe the outgoing muon. The scattering

kinematics are included via the four-momentum transfer squared Q2, the magnitude

of the three momentum transfer |q|, and the factors

cos2(χ/2) =
Elepton + pleptoncos(θlepton)

2Elepton

, sin2(χ/2) =
Elepton − pleptoncos(θlepton)

2Elepton

,

(3.35)

tan(χ/2) =

√
sin2(χ/2)

cos2(χ/2)
, tan2(χ/2) =

sin2(χ/2)

cos2(χ/2)
, sec(χ/2) =

√
1

cos2(χ/2)
.

The nuclear environment is described by the form factors wi,

w1 = a1t1 + (a2 − a3)t2/2, w2 = (a4 + 2ω
a5

q
+ ω2a3

q2
+ Q2 a2 − a3

2q2
) × t2 (3.36)

wa = (1.5a3 − a2/2)t2

(M2

q2

)
+ a1

( M

mrecoil

2)
ta + 2a6tb

( M2

mrecoilq

)
,

wb =
( M

mrecoil

)
(a7 + ωa6/q)tb +

(M

q

)
×

(
a5 +

(ω

q

)
(1.5a3 − a2/2)

)
t2,

w8 =
( M

mrecoil

)
(a7 + ω

(a6

q

)
× t8)

The wi are written in terms of a set of functions ti, which depend on the free nucleon

vector and axial form factors, and a set of constants ai which depend on the lepton

kinematics and the Fermi gas model parameters.

The free nucleon form factors enter the Smith-Moniz cross section via the con-

stants ti, which are

t1 =
Q2

2
(F1 + 2MF2)

2 + (2M2 +
Q2

2
)F 2

A, t2 = 2M2(F 2
1 + Q2F 2

2 + F 2
A), (3.37)
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ta = −
(M2

Q2

)
t1 +

t2
4

+
( M2

2Q2

)
(2MFA − Q2FP )2, tb =

−t2
2

,

t8 = 2M2FA(F1 + 2MF2).

The binding energy of the nucleus, EB, is included via effective kinematic param-

eters,

ωeff = ω − EB, q2
eff = q2 − ω2

eff + m2
recoil − M2. (3.38)

The ai are given by

a1 = b0, a2 = b2 − b0, (3.39)

a3 =
(−ωeff

q

)2

b2 + 2
(−ωeff

q

)( q2
eff

2qM

)
b1 +

( q2
eff

2qM

)2

b0

a4 = b2 −
(2EB

M

)
b1 +

(E2
B

M2

)
b0

a5 =
(−ωeff

q

)
b2 +

[ q2
eff

2qM
− EB

(−ωeff/q)

M

]
b1 − EB

( q2
eff

2qM

)( 1

M

)
b0

a6 =
(−ωeff

q

)
b1 +

( q2
eff

2qM

)
b0, a7 = b1 − EB

M
b0

where the functions b0, b1, and b2 implement the Fermi gas model via the implicit

limits of integration Ehigh and Elow,

Ehigh =
√

k2
F + M2, (3.40)

Elow = max
[
M

((
−ωeff

q

)
∗

(
q2
eff

2qM

)
+

√
1 −

(
−ωeff

q

)2

+
(

q2
eff

2qM

)2

1 −
(

−ωeff

q

)2

)
, Ehigh − ωeff

]

where kF is the Fermi momentum. The set of constants bi are given by

b0 =
( Mω

q4π2

)
×

(
f(Ehigh) − f(Elow)

)
; f(E) = E + EBlog(E − EB), (3.41)

b1 =
( Mω

q4π2M

)
×

(
f(Ehigh) − f(Elow)

)
; f(E) =

E2

2
+ EB

(
E + EBlog(E − EB)

)
,

b2 =
( Mω

q4π2M2

)
×

(
f(Ehigh) − f(Elow)

)
;
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f(E) =
E3

3
+ EB

(E2

2
+ EBE + E2

Blog(E − EB)
)

For CH2, the default NUANCE values of the binding energy EB and the Fermi

momentum kF are 25 MeV and 220 MeV/c respectively [104]. These Fermi gas

model constants are the dominant contribution to the bound nucleon CCQE cross

section simulation uncertainty, and therefore MiniBooNE extracts effective values of

these parameters by fitting the CCQE data, described in chapter 6. This analysis

also provides Fermi gas model parameter errors and correlations.

When integrated over the MiniBooNE flux, the bound nucleon νμ CCQE cross

section differs from the free nucleon prediction in both rate and kinematics of the final

state particles. Figure 3.19 shows the number of events at MiniBooNE calculated

with the free and bound nucleon CCQE cross sections. The total number of CCQE

interactions is ∼20% lower, and while the reduction is approximately independent

of final-state lepton momentum, it is a strong function of Q2. This occurs because

the bound target nucleons are not at rest, and can impart up to kF of momentum

to the total initial state momentum of the system. This affects low Q2 events more

than high Q2 events because the fractional change (with respect to the free nucleon

case) is largest at low Q2. The bound nucleon cross section also suppresses events

at low neutrino energy because for the reaction to occur, the energy transfer must

exceed the binding energy EB. Finally, Pauli blocking requires that there must be an

unoccupied fermion state available to the recoil nucleon, which accounts for ∼5% of

the total rate suppression, and affects only Q2 values less than ∼ k2
F .

The Smith-Moniz relativistic Fermi gas model also has an important effect on

the neutrino energy reconstruction resolution for CCQE events. In the absence of

the Fermi motion of the target nucleon, the lepton momentum is completely specified

by Eν and Q2. The effect of the Fermi gas model is to smear the final-state muon

momentum away from the value it would have if the target nucleon were at rest. The
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Figure 3.19: Comparison of absolute numbers of events calculated using the Mini-

BooNE neutrino flux for bound (dashed) vs. free (solid) νμ CCQE scattering, for an

arbitrary number of p.o.t.. Top left: number of events vs. pμ (GeV/c). Top right:

number of events vs. θμ (degrees). Bottom left: number of events vs. Eν (GeV).

Bottom right: number of events vs. Q2 (GeV 2).
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Figure 3.20: Final-state muon momentum smearing due to the Smith-Moniz bound

nucleon CCQE cross section model. Left: muon momentum (GeV/c) for MiniBooNE

CCQE events generated at the average (Eν , Q
2) = (0.9 GeV, 0.3 GeV 2) after event

selection cuts for different values of the Fermi momentum kF (GeV/c). The dashed

line shows the free nucleon cross section value. Right: quasi-elastic neutrino energy

resolution vs. true Monte Carlo neutrino energy (GeV). EQE
ν is calculated from 2-body

kinematics using the generated pμ, cos(θμ).
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size of this effect as a function of kF is shown in the left panel of figure 3.20. This

muon momentum smearing sets a lower limit on the resolution of the quasi-elastic

neutrino energy calculation in equation 3.26. For CCQE events at MiniBooNE, this

minimum Eν resolution is 7.8% at Eν = 1 GeV , shown in the right panel of figure

3.20.

The largest source of background to νμ CCQE interactions is from charged current

resonant single pion (CC1π) production, since the pion may be absorbed inside the

nucleus. This occurs in ∼20% of CC1π interactions at MiniBooNE energies. In

this case, the final state particles that appear in the detector are one nucleon and

one lepton, which is exactly the same final state particle content as in a CCQE

interaction. These events are termed “CCQE-like.” The free parameters in the cross

section simulation related to this background are the axial mass in the free nucleon

resonant cross section, m1π
A , and the pion absoption cross section. In principle, since

the axial mass describes the nucleus, m1π
A and mQE

A should be the same, however, the

data favor different values for the two constants and therefore they are usually treated

separately. Both m1π
A and the pion absorption cross section have large experimental

errors, and therefore are important sources of uncertainty for the MiniBooNE cross

section model.

The dominant CC1π reactions at MiniBooNE are νμn → μ−nπ+, νμp → μ−pπ+,

and the coherent charged current scattering process νμA → μ−Aπ+. The NUANCE

prediction for the resonant channels is shown with the low energy experimental data

in figure 3.21. Combined, these three channels account for 25% of the total events at

MiniBooNE, compared with 40% for CCQE. The underlying process is Δ production

(the Δ decays inside the nucleus), and 94% of the dominant CC1π interactions come

from decays of the Δ 1232 (MeV ). The CC1π processes therefore have a higher

neutrino energy threshold than CCQE interactions. Because of their cross section,
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Figure 3.21: NUANCE prediction compared with experimental data. Left: νμp →
μ−pπ+ cross section (cm2) vs. Eν (GeV ). Right: νμn → μ−nπ+ cross section (cm2)

vs. Eν (GeV ). Figure courtesy of [46].

the average Eν for these CC1π interactions is 1.3 GeV , compared with 1.0 GeV for

CCQE events. The average CC1π (CCQE) muon momentum is 0.61 (0.72) GeV ,

the average final state nucleon momentum is 0.64 (0.61) GeV , and the average π

momentum is 0.44 GeV .

3.2.2 Cross Section Prediction Uncertainties

The MiniBooNE cross section simulation input parameters and their 1σ uncertain-

ties are summarized in table 3.10. The free nucleon cross section simulation input

parameters are the axial masses assumed for CCQE, CC1π, and multi-pion scatter-

ing, the normalization of the CC and NC coherent scattering cross sections, and the

component of the strange spin Δs carried by the valence quarks in the NC cross

sections. The bound nucleon cross section simulation inputs are the Fermi gas model

parameters. While the bound and free nucleon cross sections affect the total predicted
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Table 3.10: Summary of sources of neutrino cross section uncertainty. The last col-

umn shows the change in the total number of neutrino interactions, integrated over the

MiniBooNE flux. Modifications to final state particle interactions affect kinematics

rather than the total number of events. The quadrature sum assumes the parameters

are uncorrelated.

source MC parameter default value variation ΔNν (%)

σCCQE mA mQE
A (GeV ) 1.25 1.49 10.0

binding energy EB (GeV ) 0.034 0.060 5.9

Fermi momentum kF (GeV/c) 0.246 0.423 19.4

coherent σNC+CC normalization 0.5 0.75 1.0

σNC Δs Δs 0.0 0.10 0.2

σCC1π mA m1π
A (GeV ) 1.10 1.32 6.4

σCCNπ mA mNπ
A (GeV ) 1.30 1.755 1.5

Δ → Nγ normalization 1.0 1.25 -

Δ decay width ΓΔ (MeV ) 120 125 -

π absorption σ normalization 1.0 1.25 -

π charge exchange σ normalization 1.0 1.30 -

ΔN → NN normalization 1.0 0.5 -

quadrature sum - - - 23.5
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number of events, there are also processes that affect the final state particle content or

kinematics, but not the overall normalization. These include the pion absorption and

charge exchange cross sections, the Δ re-scattering cross section (for ΔN → NN),

the decay width, the Δ → Nγ branching ratio, and the nuclear de-excitation model.

The cross section model parameter uncertainties are generally derived from com-

paring the NUANCE event generator prediction with external data, as described in

reference [105]. The exceptions to this rule are the mQE
A , pF , and EB uncertainties.

These parameters are extracted from MiniBooNE data, which is described in detail

in chapter 6. The MiniBooNE measured values are 1-2σ away from the world-average

parameters, which are (mA, pF , EB) = (1.03 GeV/c2, 0.220 GeV , 0.025 GeV ), as

discussed in the previous section. The uncertainties on mA, pF , and EB in table

3.10 are designed to generously cover the difference, although, they are not far from

the uncertainties estimated from considering external data alone. The range of mA

measurements from light to heavy target data, not including MiniBooNE, spans 20%

of the world-average value of 1.03 GeV/c2 [37], which is consistent with the parame-

ter variation given in table 3.10. The Fermi Gas model parameter uncertainties are

estimated from external data in reference [105] to have 100% and 13% uncertainties

for EB and pF respectively. The assumed EB uncertainty here is similar, although

the pF uncertainty is significantly larger.

An important piece of information that the MiniBooNE cross section parameter

extraction analysis provides is the correlations between mA, pF , and EB. Without

correlations, the total cross section uncertainty is ∼25%, as shown in table 3.10; with

correlations, the uncertainty is ∼15%. The correlation matrix for the cross section

simulation input parameters in table 3.10 is given in appendix F.

The systematic errors calculated in chapter 6 on the MiniBooNE measurement

for mA, pF , and EB are smaller than those assumed in table 3.10. However, the error
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analysis in chapter 6 is not yet finalized, and therefore the MiniBooNE parameter

errors are not yet used when estimating the impact of cross section simulation input

parameter uncertainties on the oscillation search.

3.3 Neutrino Detector Simulation

The MiniBooNE detector simulation models the propagation of final state leptons,

mesons, and nucleons from ν-CH2 interactions through the detector volume. These

final state particles emit prompt Cherenkov light, or delayed scintillation light. The

subsequent photons may scatter, or get absorbed and potentially re-emitted, as they

travel to the edge of the detector volume. The detector is instrumented with 1280

inward-facing 8” photo-multipler tubes (PMTs) at a radius of 550 cm for 10% photo-

cathode coverage. The important components of predicting the MiniBooNE detector

response are light emission by these low energy final state particles, the optical model

for photon propagation in CH2, and the PMT response. The quality of the detector

simulation is determined by the level of agreement between the simulation and the

MiniBooNE detector calibration data.

3.3.1 MiniBooNE Detector Monte Carlo

MiniBooNE uses a Geant3-based [106] Monte Carlo to simulate particle propagation

in the detector. The input to this simulation is the output from the NUANCE

cross section Monte Carlo, which consists of the final state particles from neutrino

interactions in CH2. The detector Monte Carlo tracks these particles, simulates

energy loss, multiple scattering, and decay, generates infrared, optical, and ultra-

violet wavelength photons, and propagates the photons to the PMT cathode.
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The geometry of the Geant3 simulation includes the oil-filled main tank, the

optical barrier and PMT support structure, the veto region, the evacuated PMT

volumes, the iron detector sphere, the detector vault and electronics room, the dirt

regions above and around the detector, and the calibration flasks, cubes, and the muon

tracker. The neutrino events generated by the NUANCE cross section Monte Carlo

are distributed throughout the detector volume by the detector Monte Carlo, which

chooses the vertex locations weighted by the local density4. This procedure results

in >96% of the neutrino events generated by NUANCE in the detector originating in

the detector oil.

Two other important classes of events are also simulated: events originating from

neutrino interactions in the dirt, and cosmic ray muons incident on the detector. For

every neutrino interaction in the detector volume, there are ∼8 neutrino interactions

in the material (mostly dirt) upstream of the detector. Density weighting is used

to throw the dirt neutrino interaction vertices, using NUANCE events generated

assuming a CH2 target. The majority of events originating in the dirt that enter

the detector generate light in the veto region, and can therefore be eliminated with

a cut on the number of veto PMT hits. However, ∼0.25% of dirt events entering the

detector can fake the signature of a final state particle from a beam neutrino-induced

interaction [107].

The cosmic ray background is simulated by mixing each Monte Carlo generated

neutrino event with real data from the CALIB STROBE trigger. The strobe trigger

is identical to the beam trigger in every way except that it does not contain any beam

neutrino events. The uncalibrated hits from the strobe data and from the detector

Monte Carlo neutrino event are concatenated prior to PMT hit calibration and event

reconstruction. The resulting Monte Carlo sample contains beam-induced neutrino

4The detector Monte Carlo disregards the NUANCE generated event vertex.
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events and cosmic ray backgrounds (and uncorrelated PMT noise) in the correct

proportions for beam triggers with a neutrino interaction. However, this procedure

does not include the class of beam triggers in the data where no neutrino interaction

occured, or PMT noise correlated with a neutrino interaction.

MiniBooNE uses the standard Geant3 settings to simulate most physics processes,

with a few exceptions. These include a custom model for light propagation in the

detector oil, the GCALOR hadronic interaction model, and lowered tracking thresh-

holds for photons (0.1 MeV ), electrons (0.1 MeV ), neutrons (1.0 MeV ), hadrons

(1.0 MeV ), muons (1.0 MeV ), and protons (1.0 MeV ).

The MiniBooNE model for light propagation in the detector oil is referred to as

the “optical model”. It comprises photon emission via Cherenkov and scintillation

processes, and photon propagation, during which the photon may be absorbed and re-

emitted, attenuated, and/or scattered. The optical model describes the wavelength,

time, and angular dependence of all of these processes.

The number of Cherenkov photons emitted per unit path length in the detector

Monte Carlo simulation is given by [47]

d2N

dxdλ
= 2πα

( 1

λ2

)(
1 − 1

β2n2(λ)

)
(3.42)

where α = 1
137

, the wavelengths are measured in vacuum, and the second term

determines the Cherenkov emission angle,

sin2(θC) =
(
1 − 1

β2n2(λ)

)
. (3.43)

Cherenkov emission is prompt in time. In the wavelength acceptance of the Mini-

BooNE PMTs, 340 < λ < 540 nm, the number of Cherenkov photons emitted is ∼500

×sin2(θC) [52]. The Cherenkov emission also depends on the wavelength dependence

of the index of refraction. This is measured to be nD = n(λ = 589.3 nm) = 1.4684 ±
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Table 3.11: Cherenkov threshold momentum (MeV/c) for particles of interest in the

MiniBooNE detector oil, evaluated at nD(λ = 589.3 nm) = 1.46.

p n μ± e± π± π0

pthreshold MeV/c 872 874 98 0.5 128 126

0.0002 at T0 = 20o C, and is empirically determined to have the following wavelength

dependence [108]:

n(λ, T ) =
[
nD + B

( 1

λ2
− 1

λ2
D

)]
×

[
1 − β(T − T0)

]
(3.44)

where λ is the wavelength in air, λD = 589.3 nm, T is the temperature, and from a

fit to the data, B = (4240 ± 157)nm2, and β = (3.66 ± 0.04)1̇0−4(oC)−1. Using the

measured value nD(λ = 589.3 nm), the Cherenkov angle at threshhold is 47 degrees,

and the Cherenkov threshold momenta for some particles of interest is summarized

in table 3.11.

The number of scintillation photons produced per unit length in the detector

Monte Carlo is governed by Birk’s law, which relates the scintillation yield to the

energy loss via [48]

dL

dx
= S

(dE

dx

)( 1

1 + kB(dE/dx)

)
. (3.45)

where S and kB parameterize the scintillation efficiency of the medium5, and the

energy loss is given by equation 2.14. Scintillation light is produced isotropically.

The scintillation properties of the MiniBooNE oil have been measured with 180 MeV

kinetic energy protons at the Indiana University cyclotron [109]. The measured scin-

tillation light output is 4.7 ± 0.1 ± 0.7 p.e./MeV 6. The time distribution of the

5MiniBooNE assumes kB = 0.0146gm/cm2/MeV , which is the measured value for anthracene.
6The first error is due to systematic error in the fit to determine the average number of photons

producedd, while the second error is due to systematic uncertainty on the energy loss and PMT
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scintillation light is exponential, with a time constant of 18.6 ± 1.0 ns. In the Mini-

BooNE detector Monte Carlo the wavelength dependence of the scintillation produc-

tion is linearly proportional to the measured wavelength dependence of flourescence

emission [110].

As the Cherenkov and scintillation photons propagate, they may be attenuated

and/or scattered. Several exclusive processes have been measured in test samples

of the MiniBooNE oil to understand the details of the time, angle, and wavelength

dependence. The most important components are Rayleigh scattering, Raman scat-

tering, and flourescence.

Rayleigh scattering occurs when photons scatter off of density perturbations in the

oil, which changes the direction but not the wavelength of the interacting photon. This

process has a characteristic angular dependence for the scattered light of ∼ (1+cos2θ)

for ⊥ photon polarization, and isotropic for ‖ polarization. In Raman scattering, the

photon interacts with an oil molecule, transferring some its energy into exciting a

vibrational or rotational mode, which increases the wavelength of the original photon.

The probability of both Raman and Rayleigh scattering depend on wavelength as

∼ 1/λ4, and occur promptly in time. The ratio of Raman to Rayleigh scattering

contributions is measured to be ∼1:25 [50].

Flourescence occurs when the interacting photon excites the electronic levels of a

struck molecule, gets absorbed in the process, and is later re-emitted, isotropically, at

a different wavelength. This process can shift ultra-violet photons into the wavelength

acceptance of the MiniBooNE PMTs, and similarly, shift optical photons above λ

= 540 nm. The excitation and emission wavelengths and the time constant of re-

emission are characteristic of the fluorescent molecule species. In the MiniBooNE oil,

the dominant flourophores have time constants of 12 and 17 ns, and the flourescence

solid angle in the test setup.



116

Table 3.12: Wavelength dependence of several detector Monte Carlo optical model pa-

rameters. εPC/εmax is the PMT photo-cathode efficiency normalized to the maximum

value, εmax = 0.231.

λ εPC/εmax λattenuation λabsorption λRayleigh λRaman λflourescence

(nm) (cm) (cm) (cm) (cm) (cm)

250.0 0.000 5.6 7.2 280.1 4690.1 28.0

300.0 0.266 8.2 9.2 659.1 9725.3 90.0

350.0 0.924 622.7 1386.2 1320.1 18017.3 13988.5

400.0 0.982 1812.7 10281.2 2370.4 30736.8 99999.0

450.0 0.807 3577.8 199731.0 3934.2 49234.4 99999.0

500.0 0.541 5919.4 99999.0 6151.5 75041.0 99999.0

550.0 0.234 8837.5 99999.0 9179.3 109867.5 99999.0

600.0 0.061 12332.2 99999.0 13190.6 155605.0 99999.0

probability is maximal at λ ∼ 295nm [110]. At this wavelength, the flourescence

strength is ∼1/20 of the Rayleigh scattering strength [111].

The simulation of these physical processes in the MiniBooNE detector Monte

Carlo is described in detail in reference [112]. Some of the optical model simulation

parameter values are taken from external measurements, and the rest are tuned on

MiniBooNE calibration data. The detector Monte Carlo values for a set of parameters

which are important to photon attenuation as a function of wavelength are listed in

table 3.12. The detector Monte Carlo also models the PMT quantum efficiency, which

is angle and wavelength dependent. The angular dependence is measured externally

to vary by ∼±5% across the PMT face, and the wavelength dependence is taken

from the PMT specifications provided by the manufacturer [53]. The detector Monte
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Figure 3.22: Left: number of tank hits for Michel electrons. Right: number of tank

hits for muons tagged by the external muon tracker and stopping in the scintillator

cube with Tμ ∼ 0.8 GeV . Data is shown by points, Monte Carlo is the solid histogram.

Carlo does not simulate the PMT dynode chain or the signal processing electronics,

however, smearing to account for these effects is included in the Monte Carlo analysis

chain before PMT hit calibration and event reconstruction. This is described in detail

in reference [113].

Particle calibration data is used to measure the performance of the detector re-

sponse simulation. This includes Michel electrons, which come from the Michel trig-

ger, and cosmic ray muons from from the CALIB CUBE trigger, which have a

detector entry point tagged by the muon tracker hodoscope, and a stopping point

tagged by one of the scintillator cubes. The most basic test of event-level agree-

ment between data and Monte Carlo is to compare the number of tank PMT hits.

This measurement does not involve event reconstruction, and so achieving agreement

means getting the total number of photo-electrons correct, but not necessarily the hit

charge, time or spatial distribution of the photons. Therefore, the number of tank

hits in the Monte Carlo depends primarily on the PMT threshhold and quantum
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Figure 3.23: Left: corrected angle for Michel electrons. Right: corrected time for

Michel electrons. Data is shown by points, Monte Carlo is the solid histogram.

efficiency model, on the PMT noise, and on the photon attenuation simulation. The

left panel of figure 3.22 shows the distribution of tank hits in data and Monte Carlo

for Michel electron calibration events, which have Te ∼ 0.05 GeV . These events have

fewer than 200 tank PMTs registering hits, and show excellent agreement between

data and Monte Carlo above ∼30 tank hits. Below 30 hits, effects that are not sim-

ulated in the Monte Carlo such as long-lived decays (e.g. 12B) and correlated PMT

noise become important. These events are used extensively to tune the detector sim-

ulation. The right panel of figure 3.22 shows the distribution of tank hits in data and

Monte Carlo for muon calibration events with kinetic energy ∼0.8 GeV ; this sample

is not used to tune the Monte Carlo, and shows reasonable agreement.

A higher-level test of the detector simulation is to compare the corrected time

and angle distributions, defined in equations 2.9 and 2.10. These require the re-

constructed event vertex and position, which depend primarily on the time likelihood

minimization. Achieving agreement between data and Monte Carlo means simulating

the location and time of arrival of the optical photons correctly. Therefore, these dis-
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Figure 3.24: Corrected time distributions of tank PMT hits for stopping muon events

in the six deepest cubes. The event vertex and time are measured using the cubes and

muon tracker. Data is shown by points, Monte Carlo is the solid histogram.
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Figure 3.25: Corrected angle distributions of tank PMT hits for stopping muon events

in the six deepest cubes. The event vertex and time are measured using the cubes and

muon tracker. Data is shown by points, Monte Carlo is the solid histogram.
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Figure 3.26: Left: reconstruced Michel electron energy (MeV). Right: muon energy

as determined by the reconstruction vs. cube range energy calculated from the muon

path determined using the external muon tracker and the scintillator cubes inside the

tank. Data is shown by points, Monte Carlo is the solid histogram.

tributions are also sensitive to the optical model of scintillation, photon scattering,

absorption, and re-emission. The reconstructed corrected time and angle distribu-

tions for Michel electron calibration events are shown in figure 3.23 for data and

Monte Carlo. The corrected time distribution shows good agreement between data

and Monte Carlo for the prompt Cherenkov peak and the subsequent 75 ns, over

which the number of hits drops by 3 orders of magnitude. However, before the peak

and for times later than 75 ns, data has many more hit PMTs. These differences

occur primarily because cosmic ray and PMT noise backgrounds are not simulated

for calibration events, however, there may also be a contribution from un-modeled

late light production via scintillation or flourescence. The corrected angle distribution

shows good agreement between data and Monte Carlo around the Cherenkov peak,

however, the late-time difference shows up at the <1% level in the flat, isotropic com-

ponent, as expected. The reconstructed corrected time and angle distributions for

muon calibration events are shown in data and Monte Carlo for each cube in figures
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Figure 3.27: Left: angular resolution from the scintillator cube system, for Tμ =

0.770 GeV . Right: Energy resolution from the scintillator cube system, for Tμ =

0.770 GeV . Data is shown by points, Monte Carlo is shown by the solid histogram.

3.24 and 3.25. The muon data and Monte Carlo agree well for corrected times less

than ∼75 ns, and the corrected muon angle distributions also show good agreement.

The most important test of the detector simulation for oscillation analyses is to

compare reconstructed energy distributions in data and Monte Carlo. Reconstructing

the lepton energy depends on both the time and charge likelihood minimizations.

Therefore achieving agreement between data and Monte Carlo here tests the PMT

charge response simulation and the whole optical model, since the Monte Carlo must

predict the correct number of p.e. detected by each phototube as a function of time.

The reconstructed energy for Michel electron calibration events is compared in data

and Monte Carlo in the left panel of figure 3.26. There is good agreement between

data and Monte Carlo over the full range of reconstructed Michel electron energies,

0 to 0.07 GeV . This distribution is used to measure the energy scale of the detector

and the reconstruction energy resolution for electrons at the Michel endpoint. The

reconstructed energy for muon calibration events is compared in data and Monte Carlo
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with the energy calculated from the muon range, independently of the reconstruction,

in the right panel of figure 3.26. There is good agreement between data and Monte

Carlo over the full range of muon energies, 0.1 to 0.8 GeV .

The neutrino energy is inferred from the measured lepton energy and angle.

Therefore, modeling the measurement resolution correctly in Monte Carlo is impor-

tant. The muon tracker and cube callibration system can measure both the angular

and lepton energy resolutions of the recontruction. A comparison of these in data

and Monte Carlo is shown in figure 3.27, for muons with Tμ ∼0.8 GeV . Fitting the

angular resolution with a projection of a 2D Gaussian function gives an r.m.s. of

1.9o in data and 1.7o in Monte Carlo. Fitting the energy resolution with a Gaussian

function results in 5.4% in data, and 4.4% in Monte Carlo. This level of agreement

approaches the intrisic resolution of the muon tracker and cube calibration system,

shown in table 2.4, and demonstrates good reconstruction performance for typical νμ

CCQE final-state muon energies.

3.3.2 Detector Response Simulation Uncertainties

The method for estimating the detector response simulation uncertainties is still under

development, however, at present, the systematic error sources include the parameters

of the optical model and the parameterization of the PMT response. The MiniBooNE

detector simulation parameters and their uncertainties are summarized in tables 3.13

and 3.14. The terminology is as follows: MiniBooNE models light production in the

detector response simulation with Cherenkov emission and scintillation excitation,

as well as additional excitation by Cherenkov photons with λ > 250 nm (λ < 250

nm) which is termed flourescence (UV-flourescence). An excited oil molecule can

radiate via four emission spectra, which are termed “sci 1-4”, “flu 1-4”, and “uvf

1-4” depending on the excitation process, with time constants “tau 1-4”. In general,
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Table 3.13: Summary of sources of detector simulation uncertainty which are con-

strained by calibration data. The Δ〈Emichel〉 column shows the change in the average

Michel electron energy. The last column shows the 1σ error in the simulation param-

eter as a fraction of the variation.

source default value variation Δ〈Emichel〉 1σ

Birk’s Law kB 0.014 0.028 -0.3561×10−1 0.3771

Cherenkov Normalization 1.1064 1.0564 -0.3561×10−1 0.1660

Extinction Length 40 m 45 m 0.4331×10−1 0.1111

(at λ=460 nm)

PMT Angular Response FWHM 0.63365 0.71404 -0.6679×10−2 0.2591

Optical Barrier Reflection 0.95 0.925 0.1881×10−1 0.0771

Scattering lengths 3.566 m 4.279 m -0.3564×10−1 0.0771

(at λ = 460 nm) 11.887 m 14.264 m

35.658 m 42.789 m

Sci2 γ/MeV 0.0 51.4 0.1637×10−1 0.2721

Sci3 γ/MeV 0.0 4.2 0.7072×10−2 0.2703

Sci4 γ/MeV 31.64 22.15 -0.2888×10−1 0.1177

τ4 34.0 ns 30.0 ns 0.2137×10−2 0.0076

UV extinction length 2.390 m 1.929 m 0.1444×10−1 0.3164

(at λ=320 nm)

UVF2 Normalization 0.0 0.328 0.4610×10−1 0.1206

UVF3 Normalization 0.0 0.0267 0.1991×10−1 0.1767

UVF4 Normalization 0.074 0.111 0.4982×10−1 0.0936

Flu1 1 0 -0.2160×10−2 0.3180

Flu2 1 0 -0.2325×10−2 0.3069

Flu3 1 0 -0.7101×10−2 0.2531

Flu4 1 0 -0.1851×10−1 0.0866
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Table 3.14: Summary of sources of detector simulation uncertainty which are not

constrained by calibration data. The Δ〈Emichel〉 column shows the change in the av-

erage Michel electron energy. The last column shows the 1σ error in the simulation

parameter as a fraction of the “variation” value. “Old” and “New” refer to the two

kinds of MiniBooNE PMTs.

source default value variation Δ〈Emichel〉 1σ

Scattering ‖, ⊥ lengths 3.566 m 4.279 m 0.9077×10−3 1.0

(at λ=460 nm) 11.887 m 7.641 m

τ1 33.0 ns 29.0 ns -0.1477×10−3 1.0

τ2 14.0 ns 5.0 ns 0.8212×10−3 1.0

τ3 1.0 ns 0.3 ns -0.3752×10−3 1.0

PMT time response smearing 0.0 ns (r.m.s.) 0.5 ns -0.2781×10−3 1.0

Veto albedo 0.905 0.955 0.8826×10−3 1.0

PMT discriminator thresholds 0.1 p.e. 0.2 p.e. -0.6275×10−1 1.0

Qlin (Old/New) 18/9 999/999 -0.1727×10−2 1.0

Qtcorr (Old/New) 0.08/0.08 0.0/0.0 0.6649×10−1 1.0

Time slew (Old/New) 6.51/0.93 3.00/1.12 -0.7756×10−3 1.0
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variations in the optical model do not change the total number of neutrino inter-

actions. However, these parameters can have a large effect on the number of PMT

hits and the magnitude of PMT charges, and therefore on the detector energy scale.

Tables 3.13 and 3.14 show the change in the average energy of Michel electrons due

to each source of uncertainty. Further, varying the optical model parameters may

change the energy scale as a function of radius, direction, and/or time. As a result,

the detector simulation uncertainties can contribute a significant error on the total

number of events passing a set of selection cuts, if those cuts depend on any of the

above quantities. In practice, this is always the case.

The parameter variations in tables 3.13 and 3.14 do not always represent 1σ errors,

since these are still under investigation. Some of the detector simulation uncertainties

are taken from external measurements, such as the flourescence time constants and

normalization, the PMT angular response full width at half max, and the PMT pre-

pulse amplitude. However, the majority of the uncertainties can be determined with

much greater precision from MiniBooNE’s own calibration data.

Parameter uncertainties and correlations are currently extracted from fits which

minimize the energy scale difference between Monte Carlo and data, binned in ra-

dius, track direction, and corrected time, with pull terms for each source of detector

simulation uncertainty. Timing and number of PMT hit distributions from neutrino

neutral current elastic scattering data, which contains low energy protons and neu-

trons, are also used. This approach yields 1σ errors which are typically 10-50% of the

variations given in table 3.13. The resulting parameter correlation matrix is given

in appendix F. The limitation of this procedure is that it can only constrain the

uncertainties on the parameters which affect the calibration data included in the fit

in a non-degenerate way; table 3.14 lists the sources of uncertainty which are not cur-

rently constrained by calibration data. In this case, the 1 σ uncertainty is assumed to
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be the current size of the parameter variation. Work is ongoing to include additional

calibration data sets which are sensitive to the remaining unconstrained parameters.



Chapter 4

νμ Charged Current Quasi-Elastic

Events in MiniBooNE

The νμ charged current quasi-elastic (CCQE) fraction of all beam-induced νμ inter-

actions in the MiniBooNE detector is approximately 40%. The goal of the νμ CCQE

event selection is to maximize the number of νμn → μ−p events accepted by the cuts,

while minimizing background contamination, with good neutrino energy resolution

for the accepted events. The motivation for studying this class of events is that they

are numerous, the cross section is relatively straightforward, the particle content of

the final state is limited, and the neutrino energy can be reconstructed by measuring

only the muon’s kinematics because it is a 2-body scattering interaction. Further,

several important experimental parameters can be determined using the MiniBooNE

νμ CCQE data set: constraints on the neutrino flux prediction and its uncertainties

are described in chapter 5, and constraints on the CCQE cross section and its un-

certainties are described in chapter 6. Finally, the search for neutrino oscillations

described in chapter 7 employs the νμ CCQE data set described here.

128
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4.1 Selection Cuts

There are two levels of νμ CCQE event selection cuts. The first level consists of a

few cuts on quantities that do not require the reconstruction, to reduce the cosmic-

ray and non-νμ-charged-current backgrounds, and a more sophisticated cut to select

events with a well-reconstructed muon decay. These cuts are referred to as “pre-cuts”

in the following. The second level imposes a simple particle identification algorithm

via a Fisher discriminant to eliminate non-νμ-CCQE backgrounds.

With no cuts, the MiniBooNE data consists mostly of cosmic rays passing through

or stopping in the detector. At the most basic level, the MiniBooNE data are char-

acterized by the number of tank and veto PMTs that register a hit in a given beam

trigger event, which is 19.2 μs long. The proton beam spill duration is 1.6 μs, and it

begins 4.6 μs after the beam trigger start, shown in figure 2.7. Clusters of tank PMT

hits that are contiguous in time, with less than 10 ns between hits, are referred to

as sub-events. The number of sub-events and veto PMT hits are shown in data and

Monte Carlo, with no cuts, in figure 4.1. The MiniBooNE detector simulation models

cosmic ray backgrounds for events in which there is a neutrino interaction, however, it

does not model the beam spills which have cosmic rays without neutrino interactions,

which occur at ∼200× the neutrino interaction rate. These excess cosmic rays in the

data are clearly evident in figure 4.1; through-going cosmic rays typically have one

sub-event with between 30 and 60 veto PMT hits, and stopping cosmic rays have

between 10 and 30 veto PMT hits, which indicates a single veto penetration, and

two sub-events, where the second sub-event is due to the Michel electron from the

stopping cosmic ray muon’s decay.

The “pre-cuts” are designed to eliminate the cosmic-ray background, and to select

beam neutrino-induced charged current events that are contained in the detector
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Figure 4.1: Variables that are used in the νμ CCQE selection “pre-cuts”. Left: the

number of sub-events; middle: the number of veto PMT hits in the first sub-event;

right: the number of veto PMT hits in the second sub-event. Data with statistical er-

rors (black points) are compared with the Monte Carlo total (solid black line), Monte

Carlo signal (dotted red line), and Monte Carlo background (dotted blue line) predic-

tions. Data and the total Monte Carlo curves are normalized to unit area. No cuts

are applied.

fiducial volume and well-reconstructed. The “pre-cuts” require:

1. that the 1st sub-event occur within the proton-spill time window: 4500 <

ttank PMT < 6200 ns,

2. that the number of veto hits in the 1st sub-event be less than 6,

3. that there be 2 sub-events,

4. that the number of veto hits in the 2nd sub-event be less than 6, and

5. that the distance ΔR between the muon (1st subevent) endpoint and the Michel

(2nd subevent) vertex be less than 100 cm.

The first and second cuts reject cosmic rays and Michel electrons from cosmic rays

which decayed before the beam trigger start. The veto inefficiency is measured to
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be <0.1% using strobe trigger data, which results in a rejection factor for cosmic-ray

muons from these two cuts of ∼ 1.6μs/19.2μs × 0.001 = 8.3 × 10−5. The rejection

factor for Michel electrons is less, ∼ 8.3× 10−2, since if the muon decay occurs inside

the detector fiducial volume, the Michel electron sub-event will pass the veto hits

cut. However, if the Michel electron is produced in the veto region, which comprises

roughly half of the detector oil volume, it will fail the veto hits cut. The third

cut selects events that have muons that decay in the fiducial volume in the 19.2 μs

beam trigger window, which in combination with the first two cuts eliminates most

νμ non-charged-current interactions. The fourth cut eliminates interactions where

the Michel electron is not contained in the fiducial volume, or non-charged-current

neutrino-induced events which have a coincident cosmic ray follower. The third and

fourth cuts together also reject secondaries produced in beam-neutrino interactions

outside of the detector, e.g. in the dirt upstream.

The fifth cut requires that the first and second sub-events have a reconstructed

spatial relationship consistent with a single muon decay. Poorly reconstructed νμ

CCQE events will fail this cut, as will some of the background charged current inter-

actions 1. The Michel distance variable ΔR is calculated as:

ΔR =
√

(X1 − X2)2 + (Y1 − Y2)2 + (Z1 − Z2)2 (4.1)

where the electron track vertex, (X2, Y2, Z2), is given by the reconstructed track-

center coordinates of the second sub-event (which makes the approximation that the

Michel electron track is a point), and the muon track endpoint coordinates are given

by

X1 = XR(1) + UXR(1)×
(Range(ERμ(1))

2

)
(4.2)

1For example, in a νμp → μ−pπ+ interaction the μ− may be absorbed before decaying, and

therefore the second sub-event would be due to the e+ from the π+-decay μ+. In this case, the

distance between the Michel electron vertex and the μ− endpoint may be large.
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and similarly for Y1 and Z1. XR(1) is the reconstructed track-center x coordinate for

the first sub-event, Range is calculated from a look-up table for polyethylene [114],

and ERμ(1) is the reconstructed energy of the first sub-event assuming a muon hypoth-

esis. The variables that go into calculating ΔR are shown in data and Monte Carlo

after the first four “pre-cuts” in figure 4.2. At this point, data and Monte Carlo

agree very well, which indicates that the first four “pre-cuts” effectively eliminate the

non-neutrino-induced backgrounds.

The individual and combined efficiencies of the “pre-cuts” are shown as a function

of Monte Carlo generated neutrino energy in figure 4.3. Below ∼0.2 GeV there are

very few events, and therefore the cutoff in efficiency below this point is artificial.

Above 0.2 GeV , the cuts on the number of veto hits and sub-events have the strongest

energy dependence, particularly the 1st sub-event veto hits cut. This is the case

because high energy charged current neutrino interactions tend to produce high energy

muons, and the probability that a muon will penetrate the veto region increases with

energy. Similarly, if the muon exits the detector fiducial volume the event will fail the

cut on the number of sub-events. In contrast, the efficiency of the cuts on the time

and Michel distance are nearly independent of energy.

The efficiencies of the “pre-cuts,” integrated over energy, are shown in table 4.1

for the Monte Carlo. The efficiency of the first four pre-cuts is 21.7% for all events,

and 33.7% for νμ CCQE interactions. After these cuts the signal purity is 66.8%.

All of the “pre-cuts” together result in an efficiency of 16.8% (29.2%) for all (signal)

events, with a resulting νμ CCQE purity of 74.6%. The majority of the non-νμ CCQE

events remaining after the “pre-cuts” are due to charged current resonant single pion

production. Of the 25.4% background remaining after the “pre-cuts,” 17% comes

from charged current resonant pion production (13.4% from νμp → μ−pπ+, 3.0%

from νμn → μ−nπ+, 1.0% from νμA → μ−Aπ+, 3.5% from νμp → μ−pπ0), and 3.0%
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Figure 4.2: Variables that are used in the νμ CCQE selection Michel distance “pre-

cut” for the first sub-event. Top left: the number of tank PMT hits; top middle: the

total charge in the first sub-event; top right: the reconstructed muon energy (GeV).

Bottom left: the reconstructed radius of the track center (m); bottom middle: the

reconstructed track direction; bottom right: the reconstructed Michel distance (m).

Data with statistical errors (black points) are compared with the Monte Carlo total

(solid black line), Monte Carlo signal (dotted red line), and Monte Carlo background

(dotted blue line) predictions. Data and the total Monte Carlo curves are normalized

to unit area. The first four “pre-cuts” are applied.
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Figure 4.3: Efficiencies of the νμ CCQE selection “pre-cuts” vs. Monte Carlo neutrino

energy (GeV). The first five panels from top left to bottom right show the efficiency of

each “pre-cut” individually. The bottom right panel shows the efficiency of all “pre-

cuts” combined. The efficiency is shown for all Monte Carlo events (solid black line),

Monte Carlo signal (dotted red line), and Monte Carlo background (dotted blue line)

predictions.
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Table 4.1: Monte Carlo νμ CCQE selection cut efficiencies (ε) and signal purity.

Relative efficiency is defined to be the number of events passing a given cut divided

by the number passing the previous cut.

cut ε relative ε signal ε signal purity

no cuts 1 1 1 0.429881

in-spill time 0.779931 0.779931 0.824764 0.454592

Veto(1) Hits < 6 0.505858 0.648593 0.48815 0.414832

2 sub-events 0.241842 0.478084 0.355188 0.631355

Veto(2) Hits < 6 0.217188 0.898058 0.337357 0.667729

ΔR < 100 cm 0.168085 0.773911 0.291771 0.746213

Fisher > 0.425 0.081069 0.482312 0.17164 0.910143

comes from neutral current resonant π+ production.

The second level of cuts employ a Fisher discriminant [115] to identify νμ CCQE

interactions. The Fisher discriminant method produces an output variable (the Fisher

decision axis) which is a linear combination of input variables, where the coefficients

are chosen such that the difference between two classes of events (signal and back-

ground) is maximized in the output variable. For example, for a vector of 5 variables

�xi describing each event i, the mean �μx for each class k is

�μx,k =
1

Nk

N∑
i=1

�xi,k. (4.3)

The scatter matrix between the classes is given by

SB =
K∑

k=1

Nk(�μx,k − �μx)(�μx,k − �μx)
T (4.4)

and the scatter matrix within each class is

SW =
K∑

k=1

N∑
i=1

(�xi − �μx,k)(�xi − �μx,k)
T (4.5)
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where K is the total number of classes (here K = 2) and N is the total number of

events. The eigenvectors of the product SBS−1
W with the largest set of eigenvalues

�w maximize the Fisher criterion for the transformation that produces the greatest

separation between classes,

J(�w) =
det(W T SBW )

det(W TSW W )
(4.6)

where W is the matrix of eigenvectors of SB and SW . The Fisher discriminant output

variable yi is related to the input variables �xi by

yi = �w · �xi. (4.7)

To produce an effective Fisher discriminant, the Fisher input variables �x should

have maximally different means for the signal and background distributions. After

the “pre-cuts”, the background is mostly CC1π events, which differ from the signal

CCQE by having an extra π in the final state. The distinguishing characteristics

of these two classes of events that are used in this analysis include the following.

First, the extra π will produce more late, isotropic scintillation light integrated over

the duration of the event, while the CCQE final state will have a greater fraction

of prompt, Cherenkov light. Second, the Cherenkov emission from pions tends to

be less “ring-like” than for muons because the pion has a larger cross section for

scattering hadronically. Finally, a single muon will have a reconstructed track length

consistent with the muon range calculated from the reconstructed energy, which is

not necessarily the case for an event with an extra pion. Five Fisher input variables

are constructed with these characteristics in mind, which are:

1. the Michel distance ΔR, defined in equation 4.2,

2. the muon length hypothesis, (R−L)/E, where R is the muon range calculated

from the reconstructed muon energy E, and L is the reconstructed track length,

based on the reconstruction charge and time likelihoods,
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3. the fraction of PMT hits transverse to the track direction, defined by

∑
PMT hits[|cos(θvertex,PMT )| < 0.25]∑

PMT hits
(4.8)

where cos(θvertex,PMT ) is the corrected angle defined in equation 2.10,

4. The fraction of very late PMT hits, where “very late” is defined to be corrected

time > 5 ns, and the corrected time is given by equation 2.9, and

5. the fraction of hits from Cherenkov vs. total light emission, where the Cherenkov

and total fluxes are determined by the reconstruction.

These variables are shown in data and Monte Carlo after the five “pre-cuts” in

figure 4.4, with Monte Carlo predictions for the νμ CCQE signal and background

overlaid. The first two variables are related to the question of whether the event

has a track length consistent with the muon range. On average, the background

events tend to have larger distances between the reconstructed Michel electron vertex

and the muon endpoint, as expected if the Michel electron is uncorrelated with the

primary muon. The value of (R − L)/E is smaller for signal events, indicating that

the reconstructed track length for the CCQE final state is closer to the expectation

for the range of a single muon track. The third variable, the transverse fraction, is

related to the Cherenkov ring topology. It has been scaled up by a factor of ten

so that its numerical range is similar that of the other variables. The annulus with

|cosθPMT | < 0.25 is located upstream of where the Cherenkov ring is expected to

be (cosθPMT > 0.5) with respect to the track direction. Therefore, this variable is

sensitive to the fraction of the PMT hits that are not located in the Cherenkov ring.

A lower bound on cosθPMT is chosen so that the variable depends less on the exact

details of photon scattering in the detector Monte Carlo optical model. The fourth

and fifth variables pertain to the scintillation vs. Cherenkov properties of signal and
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Figure 4.4: Variables that are used in the νμ CCQE selection Fisher discriminant

cut. Top left: the Fisher discriminant output variable; all other panels: Fisher dis-

criminant input variables. Data with statistical errors (black points) are compared

with the Monte Carlo total (solid black line), Monte Carlo signal (dotted red line),

and Monte Carlo background (dotted blue line) predictions. Data and the total Monte

Carlo curves are normalized to unit area. The five “pre-cuts” are applied.
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background events, and show that signal events have a greater fraction of prompt

Cherenkov light than background.

The transverse fraction and the Michel distance do not show any dramatic sepa-

ration between signal and backgound, however, there are useful correlations between

variables that are exploited by the Fisher discriminant method. The correlations are

shown for the five Fisher input variables described above for signal and background

in the Monte Carlo in figure 4.5. Both the Michel distance and the transverse fraction

are correlated with the Cherenkov fraction in such a way that a “diagonal” cut on

a linear combination of these variables provides good separation between the signal

and background populations.

The Fisher discriminant coefficients �w are determined with Monte Carlo training

samples of νμ CCQE events and νμ non-CCQE background events after the “pre-

cuts”. The resulting Fisher discriminant output variable is shown in the top left

panel of figure 4.4. The second level event selection cut is applied on this Fisher

output variable, and the position of the cut is optimized to maximize νμ CCQE signal

and minimize background, while maintaining reasonable signal efficiency. The signal

purity and efficiency are shown as a function of the Fisher output variable cut value in

figure 4.6. The cut value is chosen to be > 0.425, which results in a νμ CCQE purity

of ∼90% and a signal efficiency of ∼50% with respect to the number of events passing

the “pre-cuts”. In the Monte Carlo, the remaining background comes entirely from

charged current resonant single pion production events (5.5% from νμp → μ−pπ+,

1.1% from νμn → μ−nπ+, and 1.2% from νμp → μ−pπ0).

The efficiency of the Fisher cut as a function of Monte Carlo generated energy

is shown in figure 4.7 relative to events passing the “pre-cuts”. Between 0.4 and 1.7

GeV , the efficiency is approximately independent of energy. The combination of the

“pre-cuts” and the Fisher cut will be called the CCQE selection cuts hereafter. The
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Figure 4.5: Correlations of the Fisher discriminant input variables in Monte Carlo

for signal (red) and background (blue). Only unique combinations of variables are

shown.
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Figure 4.6: Optimization of the Fisher discriminant cut. Left: Monte Carlo prediction

for the signal (black solid line) and background (red dashed line) fractions remaining

after a cut on the Fisher output variable > the abcissa value. Right: Monte Carlo

prediction for the signal (black solid line) and background (red dashed line) cut effi-

ciencies after a cut on the Fisher output variable > the abcissa value.

efficiency as a function of energy for the full CCQE selection relative to no cuts is

shown in the middle panel of figure 4.7. The energy dependence of this efficiency

comes primarily from the “pre-cuts” on the number of veto hits and sub-events. The

right panel shows the signal and background fractions as a function of energy after all

CCQE selection cuts. The neutrino energy threshold for CC1π production is higher

than for CCQE because there must be enough energy in the center of mass to produce

the resonance, therefore, below ∼0.6 GeV the events passing the CCQE selection cuts

are almost entirely νμ CCQE interactions. At high energy, CC1π produce lower energy

μ than a CCQE event with the same Eν , and therefore, for a fixed Eν , a high energy

CC1π event is more likely to pass the veto hit cut than a CCQE event.

The efficiency of the CCQE selection cuts in data is shown in table 4.2. The effi-

ciency of the first four “pre-cuts,” which primarily eliminate cosmic rays and non-νμ-

charged-current interactions, is 1.6%. The efficiency of all of the “pre-cuts” together
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Figure 4.7: Efficiency and resulting purity of the νμ CCQE selection cuts vs. Monte

Carlo neutrino energy (GeV). Left: efficiency of the Fisher cut relative to events that

pass the “pre-cuts”; middle: efficiency of all νμ CCQE selection cuts relative to no

cuts; right: νμ CCQE signal and background after all selection cuts. Distributions are

shown for all Monte Carlo events (solid black line), Monte Carlo signal (dotted red

line), and Monte Carlo background (dotted blue line) predictions.

is 1.2%, and the percentage of events in data passing all of the CCQE selection cuts

is 0.6%. These numbers are dramatically smaller than in the Monte Carlo because of

the 200:1 ratio of cosmic rays to beam νμ induced events in data, while neutrino-less

events are not simulated in the Monte Carlo.

However, one can compare the relative efficiencies of each cut, that is, the number

of events that pass a given cut divided by the number that passed the previous cut.

The ratio of relative efficiencies in data to Monte Carlo is shown in the last column

of table 4.2. The first two cuts have very different relative efficiencies in data and

Monte Carlo, as expected given the cosmic ray backgrounds. After this point, the

relative cut efficiencies are similar in data and Monte Carlo, and in fact the product

of the last four relative efficiencies is 0.986. This product is equivalent to the ratio in

data to Monte Carlo of the number of events passing all cuts relative to the number

that pass the first two cuts. Therefore, after neutrino-less events are eliminated in

the data, the CCQE selection cut efficiency agrees between data and Monte Carlo to
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Table 4.2: Data νμ CCQE selection cut efficiencies (ε). Relative efficiency is defined

to be the number of events passing a given cut divided by the number passing the

previous cut. The denominator of the (data/MC) relative efficiency ratio is taken

from column 2 of table 4.1.

cut ε relative ε (data/MC) relative ε

no cuts 1 1 1

in-spill time 0.167475 0.167475 0.21473

Veto(1) Hits < 6 0.0385013 0.229893 0.354449

2 sub-events 0.0172044 0.446852 0.934674

Veto(2) Hits < 6 0.0156945 0.91224 1.01579

ΔR < 100 cm 0.0116815 0.744304 0.961743

Fisher > 0.425 0.00607915 0.520408 1.07899

within 2%.

After cosmic rays are eliminated, one can also compare the efficiency as a function

of energy between data and Monte Carlo. Unfortunately the true neutrino energy is

not available in the data, therefore the abcissa must be the reconstructed neutrino

energy. The left panel of figure 4.8 shows the efficiency of the Michel distance cut

relative to events passing the first four “pre-cuts” in data and Monte Carlo. The right

panel shows the efficiency of the Fisher output variable cut relative to events passing

all of the “pre-cuts.” In general, the agreement between data and Monte Carlo is

good, which builds confidence that the CCQE selection cuts affect data and Monte

Carlo in the same way.

The event sample composition in the Monte Carlo after all of the νμ CCQE se-

lection cuts have been applied is summarized in tables 4.3 through 4.5. The vast
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Figure 4.8: νμ CCQE selection cut efficiencies vs. reconstructed neutrino energy

(GeV) in data (black points with statistical errors) and Monte Carlo (solid black

line). Right: efficiency of the Michel distance cut relative to events passing the first

four “pre-cuts”. Left: efficiency of the Fisher output variable cut relative to events

passing all “pre-cuts”.

majority, 97.2%, of the neutrinos passing the CCQE selection cuts come from π+

decay, while π− and K+ decay contribute 1.7% and 0.9% of the neutrino flux re-

spectively. As a result, 98.2% of the flux is νμ while only 1.8% is νμ. Of the events

passing the CCQE cuts, 91% are signal νμn → μ−p interactions, and most of the

background comes from charged current resonant single π+ production. Of the back-

ground events, 38% have the same particle content in the final state as νμ CCQE

interactions because the pion was absorbed inside of the nucleus.

The final state kinematics of the events passing cuts are very similar between

signal and background. The average Monte Carlo generated muon momentum is 0.66

(0.73) GeV for signal (background), and the average nucleon momentum is 0.51 (0.53)

GeV . For background events with a pion in the final state the average pion momentum

is 0.28 GeV . In contrast, the generated neutrino energy is typically much higher for

background events, 1.24 GeV compared with 0.86 GeV for signal events, because the



145

Table 4.3: Monte Carlo sample composition by neutrino interaction channel after

νμ CCQE selection cuts. Only interactions that account for >0.005 of the total are

included.

ν interaction type fraction

νμn → μ−p 0.9053

νμp → μ−pπ+ 0.0576

νμn → μ−pπ0 0.0126

νμn → μ−nπ+ 0.0116

νμn → νμnπ0 0.0036

νμp → μ+n 0.0011

νμA → μ−π+A 0.0058

background events come from higher-threshold resonance production processes.

4.2 CCQE Data Set

The νμ CCQE selection cuts described in the previous section are applied to the

MiniBooNE data, and the resulting νμ CCQE sample contains 98,381 events, cor-

responding to 4.23747×1020 incident protons on target (p.o.t.), or 2.32169×10−16

interactions in the detector per p.o.t.. The number of p.o.t. in the data is calculated

from the beam toroid measurement, corrected for events that do not pass the data

quality cuts described in chapter 2. The data taking time period spans runs 3539

to 12417, which were recorded between August 2002 and October 2005. The Monte

Carlo statistics after the νμ CCQE selection cuts comprise 414,004 events, which

correspond to 2.346×1021 simulated p.o.t. 2. The number of p.o.t. is calculated as

2The May 2006 baseline Monte Carlo is used for all studies in this thesis.
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Table 4.4: Monte Carlo sample composition by parent meson type after νμ CCQE

selection cuts. Fraction 1 is the fraction of the total events where the source meson is

produced in the primary proton-Be interaction. Fraction 2 is the fraction of the total

events where the source meson is the particle which decays to the neutrino, which is

not necessarily produced in the primary p − Be interaction.

meson type fraction 1 fraction 2

μ+ 0.0000 0.0012

μ− 0.0000 0.0001

π+ 0.9259 0.9723

π− 0.0146 0.0167

K0
L 0.0007 0.0004

K+ 0.0096 0.0091

K− 0.0002 0.0002

p 0.0092 0.0000

n 0.0396 0.0000

Table 4.5: Monte Carlo sample composition by neutrino type, after the νμ CCQE

selection cuts.

νe νe νμ νμ

fraction 0.00002 0.00000 0.98168 0.01829
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p.o.t.MC = NMC
no cuts/(MC events per p.o.t.), where NMC

no cuts is the number of gen-

erated events considered, 8.0 × 106, and (MC events per p.o.t.) is the total cross

section, flux, and target nucleon weighted conversion of 2.19738×10−15 events (of all

neutrino interaction types) per p.o.t. in the 610 cm radius detector volume. The

conversion factor (MC events per p.o.t.) gets a multiplicative correction for density

weighting of event vertices in the detector Monte Carlo of 1.04. The number of events

NMC
no cuts gets a multiplicative correction of ∼0.67 for the probability that a neutrino

will interact in the detector given the pathlength of detector material it traverses,

which is determined by its position and angle at production in the neutrino beam

line. When normalized to the same number of p.o.t. as the data, the Monte Carlo

comprises 74,546 events in the 610 cm radius detector volume, which corresponds to

1.75921×10−16 events after cuts per p.o.t..

Once a νμ CCQE data set is isolated, one can compare the kinematics of νμ CCQE

events in data and Monte Carlo to measure the level of agreement. The most inter-

esting kinematic distribution is the reconstructed neutrino energy, EQE
ν , since this is

used to search for oscillations. Two types of comparisons between data and Monte

Carlo are considered here: relatively normalized distributions, which test the level

of agreement in the predicted and observed shapes, and absolutely normalized rates.

Relatively normalized comparisons are most useful for the νμ disappearance analy-

sis, where MiniBooNE’s sensitivity to oscillations comes primarily from the shape

distortion of the neutrino energy spectrum. However, for the νe appearance analy-

sis, normalization and the energy spectrum contribute to the oscillation sensitivity

in roughly equal proportions, therefore understanding the absolute normalization of

data relative to Monte Carlo is important as well.

The neutrino energy is reconstructed from the measured muon direction and

energy according to two body kinematics, with a few corrections derived from Monte
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Carlo to reduce bias and smearing. The neutrino energy reconstruction algorithm is

described in detail in reference [116], so only a brief summary is given here. Quasi-

elastic scattering is a two-body interaction, and therefore the kinematics are speficied

by:

EQE
ν =

1

2

2mNEμ − m2
μ

mN − Eμ + pμcos(θμ)
(4.9)

where Eμ, pμ, and cos(θμ) are the reconstructed muon’s energy, momentum, and di-

rection cosine with respect to the neutrino beam direction, mN is the target neutron

mass, and mμ is the final state lepton mass, under a νμ scattering hypothesis. A

νe scattering hypothesis would replace the muon mass with the electron mass. In a

CCQE interaction on carbon, as in the MiniBooNE detector, the target nucleon is

bound, and is changed into a proton by the charged current. Taking these consider-

ations into account modifies equation 4.9 via

EQE
ν =

1

2

2(mN + EB)Eμ − (ΔM2 + 2mNEB + E2
B + m2

μ)

(mN + EB) − Eμ + pμcos(θμ)
(4.10)

where EB is the binding energy of the target neutron, and ΔM2 = m2
N −m2

P where

mP is the proton mass. Reconstruction bias is corrected with a few calibrations

derived empirically from Monte Carlo. First, the measured muon kinetic energy, Tμ,

is corrected towards the “true” Monte Carlo value via

T corr
μ = a1 · Tμ + a2 (4.11)

where (a1, a2) = (0.8867, 0.0927) under a νμ hypothesis, and (0.9942, 0.0113) under

a νe hypothesis. The corrected kinetic energy is used to calculate the momentum and

energy for use in equation 4.10 to calculate EQE
ν , and the four-momentum transfer

squared,

Q2
QE = 2EQE

ν Eμ(1 − βcos(θμ)) − m2
μ. (4.12)

The EQE
ν value calculated using T corr

μ and equation 4.10 is further corrected towards



149

the “true” Monte Carlo generated neutrino energy by a polynomial in Q2
QE,

(EQE
ν )corr = EQE

ν −
(
b1 + b2Q

2
QE + b3(Q

2
QE)2 + b4(Q

2
QE)3

)
(4.13)

The constants bi are (-0.0777, 0.1189, 0.1777, -0.0291) and (-0.1472, 0.2788, 0.0898,

-0.0196) under a νμ and νe hypothesis respectively. The four-momentum transfer

squared is recalculated, substituting (EQE
ν )corr into equation 4.12. The form of this

EQE
ν correction was determined empirically, however the fact that a Q2-dependent

correction works better than an EQE
ν -dependent correction is probably because the

dominant source of smearing in the neutrino energy reconstruction comes from nuclear

effects. As seen in chapter 3, the Fermi Gas nuclear model produces EQE
ν smearing

of ∼7%, and its effects have a much stronger dependence on Q2 than on Eν .

Relatively normalized comparisons of the reconstructed direction, muon energy,

neutrino energy, and four-momentum transfer squared are shown in figure 4.9. The

shapes of the signal and background distributions from the Monte Carlo are also

overlaid. For the reconstructed muon and neutrino energies, the background and

signal shapes are very similar, however, the background is significantly more peaked

near cos(θ) ∼ 1 and Q2 ∼ 0. This is due to mis-reconstruction of background

events, rather than the true kinematics. In general the background events have higher

values of the true Eν and Q2, since a Δ resonance must be produced.

The measurement resolution for each of these kinematic quantities is calculated

by projecting a profile histogram of the difference between the Monte Carlo generated

and reconstructed variable into bins of the generated quantity, e.g. (EMC
ν −EQE

ν ) vs.

EMC
ν for 0 < EMC

ν < 100 MeV . The projection is fit with a gaussian function, and the

r.m.s. of the best fit gaussian divided by the bin center is taken to be the resolution

in that bin. For the oscillation analysis, the most important resolution is that of

the neutrino energy measurement, which is shown as a function of generated Monte

Carlo neutrino energy in figure 4.10. At Eν = 1 GeV , the resolution is 10.6%. The
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Figure 4.9: Comparison of kinematic variables after the νμ CCQE selection cuts.

Top left: reconstructed track angle with respect to the beam direction; top right: re-

constructed energy under a muon hypothesis (GeV); bottom left: reconstructed neu-

trino energy assuming 2-body kinematics (GeV); bottom right: reconstructed four-

momentum transfer squared (GeV2). Data with statistical errors (black points) are

compared with the Monte Carlo total (solid black line), Monte Carlo signal (dotted

red line), and Monte Carlo background (dotted blue line) predictions. Data and the

total Monte Carlo curves are normalized to unit area.
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Figure 4.10: Measurement resolution as a function of kinematic variables, for Monte

Carlo events passing the νμ CCQE selection cuts. Top left: reconstructed - generated

difference vs. generated primary track angle with respect to the beam direction; top

right: (reconstructed - generated) / generated vs. generated muon energy (GeV);

bottom left: (reconstructed - generated) / generated vs. generated neutrino energy

(GeV); bottom right: (reconstructed - generated) / generated vs. generated four-

momentum transfer squared (GeV2). Error bars are the r.m.s. of a gaussian fit to

the residual distributions.



152

ZReconstructed U
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

14000

 (GeV)μReconstructed E
0 0.5 1 1.5 2 2.5 3

0

2000

4000

6000

8000

10000

12000

14000

 (GeV)QE
νReconstructed E

0 0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000

10000

12000

)
2

 (GeV2Reconstructed Q
0 0.5 1 1.5 2 2.5 3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Figure 4.11: Comparison of kinematic variables after the νμ CCQE selection cuts,

absolutely normalized to protons on target. Top left: reconstructed track angle with

respect to the beam direction; top right: reconstructed energy under a muon hypoth-

esis (GeV); bottom left: reconstructed neutrino energy assuming 2-body kinematics

(GeV); bottom right: reconstructed four-momentum transfer squared (GeV2). Data

with statistical errors (black points) are compared with the Monte Carlo total (solid

black line), Monte Carlo signal (dotted red line), and Monte Carlo background (dotted

blue line) predictions.
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Figure 4.12: Ratio of data to Monte Carlo after νμ CCQE selection cuts as a function

of kinematic variables, absolutely normalized to protons on target. Top left: recon-

structed track angle with respect to the beam direction; top right: reconstructed energy

under a muon hypothesis (GeV); bottom left: reconstructed neutrino energy assum-

ing 2-body kinematics (GeV); bottom right: reconstructed four-momentum transfer

squared (GeV2). Error bars include data and Monte Carlo statistics only.
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background remaining after the CCQE selection cuts does not significantly degrade

the energy resolution; without background contamination the resolution is 10.4%,

according to the Monte Carlo.

The corresponding absolutely normalized kinematic distributions are shown in

figure 4.11. The absolutely normalized rates do not agree between data and Monte

Carlo: the ratio of the total number of events in data to Monte Carlo after the

νμ CCQE selection cuts is 1.28±0.006, with statistical errors only. The source of

this normalization discrepancy has been a subject of much study, and is not yet

understood [85].

The ratio of data to Monte Carlo for each of the four kinematic variables discussed

here is shown in figure 4.12. The ratio is fairly flat below Eν ∼ 1.5 GeV , however, it

does show a systematic variation at high uz (cosθμ with respect to the neutrino beam

direction) and low Q2. It is unlikely that the source of the kinematic distribution shape

differences is the event reconstruction since the behavior of the ratio has persisted

through many reconstruction versions, and because the muon calibration system data

do not show the same effect. The Q2 dependence strongly implies that the shape

difference is due to a simulation deficiency in the neutrino interaction cross section

Monte Carlo, most likely in the treatment of the nuclear environment. This hypothesis

is analyzed in detail in chapter 6.

4.3 Systematic Errors

The uncertainty on the Monte Carlo prediction for events passing the νμ CCQE selec-

tion cuts is calculated by propagating the uncertainties on the underlying simulation

parameters, using the standard method for transforming an error matrix from one

basis to another [117]. The error propagation calculations described here use the
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simulation parameter uncertainties described in chapter 3, sections 3.1.3, 3.2.2, and

3.3.2, and the simulation parameter correlation matrices given in appendix F.

Any error matrix can be calculated in an arbitrary number of bins i of an output

variable O given an input covariance matrix with an arbitrary number j of input

parameters P . For example, the input parameters Pj could be the Sanford-Wang π+

production cross section coefficients (
∑

j = 8), with the output variable bins Oi as

30 bins of the generated neutrino energy, EMC
ν , from 0 to 3 GeV (

∑
i = 30). The

input parameter covariance matrix P, with dimension j × j, comes from the Sanford-

Wang fits. To propagate the Sanford-Wang parameter errors to an uncertainty on

the EMC
ν distribution a matrix of first derivatives is employed. The first derivative

matrix F(O)i,j is computed as the change in the number of events in each bin i of

the output variable O with respect to each input parameter variation j:

F(O)i,j =
(N(O)0 − N(O)j)i

Cj − Uj

(4.14)

where (N(O)j)i is the number of events in bin i of the generated energy distribution

from the Sanford-Wang beam Monte Carlo run where parameter j was varied by

1σ. (N(O)0)i is the number of events in bin i of the generated energy distribution

from a Monte Carlo run where all parameters j are set to their central values. This

is referred to as “central value” Monte Carlo hereafter. The parameters Cj and Uj

are the values used to generate the central value and “unisim” Monte Carlo samples

respectively. The output variable error matrix M(O)m,n is then given by the product

M(O)m,n = F(O)T
m,j Pj,k F(O)n,k (4.15)

where F(O)T
m,j is the transpose of the first derivative matrix. The output variable

error matrix M(O)m,n has dimension i × i.

Several quantities are used in the following discussions to extract information

from the error matrix M(O).
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1. F scaled(O): the scaled first derivative measures the fractional change in the

number of events in a given energy bin with respect to the central value Monte

Carlo due to a 1σ variation of an input parameter. The scaled first derivative

is defined to be

F scaled(O)i,j =
Cj

(N(O)0)i

×F(O)i,j. (4.16)

2. σ(O)i: the square root of the diagonal elements of M(O) (the errors typically

displayed on an output variable distribution).

σ(O)i =
√
M(O)i,i (4.17)

3. δ(O): the average of the error bars on the output variable distribution. δ(O)

samples only the diagonal elements of the error matrix but is sensitive to the

shape distortion as well as the total normalization change due to a given source

of uncertainty. This quantity includes correlations between simulation input

parameters, but not correlations between output variable bins.

δ(O) =

√∑
i σ(O)2

i∑
i N(O)i

=

√∑
i M(O)i,i∑
i N(O)i

(4.18)

where N(O)i is the number of events in bin i of the output variable O distribu-

tion (where all input parameters j are set to their central values).

4. δM: the fractional output variable error matrix, defined as

δM(O)i,k =
M(O)i,k

N(O)iN(O)k

(4.19)

5. ΔN(O): the error on the total number of events in the output variable O dis-

tribution, computed using the full fractional error matrix δM including corre-

lations between output variable bins and simulation input parameters.

ΔN(O) =

√∑
i

N(O)i

(∑
k

δM(O)i,k N(O)k

)
=

√∑
i,k

M(O)i,k (4.20)
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The components of an example error calculation propagating the π+ flux simula-

tion input parameter uncertainties to error bars on an output variable distribution,

EMC
ν , for events passing the νμ CCQE selection cuts, are shown in figure 4.13. First,

a set of j Monte Carlo distributions is produced where Sanford Wang π+ production

cross section parameter j has been varied by +1 σ. These are shown in the top left

panel of figure 4.13, and referred to as “unisims” hereafter. The “unisims” may be

produced either by reweighting the Monte Carlo event-by-event, or by generating a

new Monte Carlo sample with the desired simulation input parameter varied. The

“unisims” are used to calculate the first derivative matrix in equation 4.14. Each

row of the matrix comes from the variation of one Sanford-Wang π+ production cross

section parameter, and each column comes from one bin of the output variable. The

rows of the scaled first derivative matrix are shown in the bottom eight panels of fig-

ure 4.13. The first derivative matrix and the Sanford-Wang parameter error matrix

are combined as in equation 4.15 to produce an error matrix in bins of the output

variable EMC
ν . The square root of the diagonal elements of this matrix are shown as

the error bars on the central value Monte Carlo prediction in the top middle panel of

figure 4.13. These error bars include correlations between the Sanford-Wang param-

eters, and therefore may be either smaller or larger than the spread in the “unisims”.

The fractional uncertainty is shown in the top left panel of figure 4.13. In bins where

there are no events the fractional uncertainty is set to 1.0, and at the peak of the EMC
ν

distribution the fractional uncertainty is ∼7%. The two error estimators discussed

above, δ(O) and ΔN(O), are 5.5% and 1.8% respectively.

To estimate the flux simulation contribution to the uncertainty on the Monte

Carlo prediction for events passing the νμ CCQE selection cuts, the 8 variations of

the Sanford-Wang parameters (one variation per parameter) for the π+ production

cross section are considered. The simulation parameter values and their excursions
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Figure 4.13: Components of the calculation for propagating the errors on the Sanford-

Wang π+ flux prediction parameters to the distribution of EMC
ν for events passing the

νμ CCQE selection cuts. Top left: distribution of “unisims,” top middle: central value

Monte Carlo number of events vs. EMC
ν with errors from the π+ flux prediction, top

right: fractional error vs. EMC
ν . Bottom eight panels show the rows of the first

derivative matrix.
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are summarized in the “E910+HARP” column of table 3.2. This error analysis does

not include every source of flux prediction uncertainty given in table 3.9 since it ne-

glects (i) 8 variations of the Sanford-Wang parameters for the π− flux prediction cross

section, (ii) 9 variations of the Sanford-Wang parameters for the K+ production cross

section, (iii) 9 variations of the Sanford-Wang parameters for the K0
L production cross

section, (iv) a set of variations for the hadronic interactions of secondary particles,

and (v) uncertainties related to the beam line geometry. The fraction of events after

cuts coming from the decay of mesons other than π+ is estimated from Monte Carlo

to be ∼2% from table 4.4, therefore the Sanford-Wang parameter variations for π−,

K+, and K0
L are neglected. The fraction of events after cuts produced by neutrinos

from secondary interactions is ∼5% from table 4.4, and therefore this uncertainty

should perhaps be considered in a full error analysis. It is not included here be-

cause the uncertainty on the hadronic interactions of secondary particles is currently

not well understood. The scale of this uncertainty has been estimated by switching

hadronic interaction models from GFLUKA to GHEISHA in the MiniBooNE beam

Monte Carlo, which produces a ∼5% change in the total number of events passing

the CCQE selection cuts. Measurements from the HARP experiment are expected to

set the uncertainties on the secondary interaction cross sections in the near future.

Uncertainties associated with the simulation geometry are correlated with the sec-

ondary interaction model, and will be investigated in detail when the beam Monte

Carlo tuning, using HARP results, is complete.

To estimate the neutrino interaction cross section simulation contribution to the

uncertainty on the Monte Carlo prediction for events passing the νμ CCQE selection

cuts, the following simulation input parameter variations are considered: (i) the axial

masses for the CCQE, CC1π, CC multi-π, and coherent neutrino-nucleon scattering

cross sections (mQE
A , m1π

A , mNπ
A , mcoh

A ), (ii) the Fermi Gas model Fermi momentum pF
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and binding energy EB, (iii) the component of the nucleon spin carried by the strange

sea quarks Δs, which impacts the neutral current cross sections, and (iv) the radiative

Δ decay branching fractions, and (v) variations in the final state particle interaction

cross sections inside the nucleus, including the pion absoroption and change exchange

cross sections, and the probability for losing a final state pion due to Δ resonance

re-interaction. The values of the cross section parameter variations is given in table

3.10. The treatment of the final state pion interaction cross section uncertainties in

item (v) above is not handled consistently in the sense that these pion cross section

variations are not considered for interactions that occur outside of the nucleus, in

the detector oil. These should be considered in a full error analysis, and this task

is currently underway. The magnitude of this uncertainty is probably comparable to

the systematic error estimated using the simulation parameter variations in (v).

To estimate the detector simulation contribution to the uncertainty on the Monte

Carlo prediction for events passing the νμ CCQE selection cuts, a subset of the sim-

ulation input parameters discussed in chapter 3, section 3.3.2 are varied. The list of

parameters considered here is given in table 4.8; their values and excursions are given

in table 3.13. As discussed in chapter 3, the values of and method for calculating

the detector response uncertainties is still under investigation. Further, not all of

the “unisim” Monte Carlo sets are currently available due to CPU limitations. As

a result, the impact of the simulation parameter variations that are not considered

here is unknown, and in this respect, the error analysis in this thesis is incomplete.

Reweighting is used to construct all of the flux “unisims”, and the first 9 neutrino

interaction cross section “unisims” listed in table 4.7 as well. The remainder of the

“unisims” are produced by re-running the Monte Carlo simulation with one input

parameter varied with respect to its nominal value. One advantage of producing the

“unisims” by reweighting is that the statistical error on the first derivatives comes only
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from the Monte Carlo statistics of the central value distribution, and while the error

on the first derivatives does not enter the error matrix calculation, the elements of the

error matrix can be unreliable where the first derivative errors are large. The statistics

of the Monte Carlo used for this analysis comprise (i) 8 × 106 central value Monte

Carlo events (which are also used to produce the flux and 9 neutrino interaction cross

section “unisims”) before cuts, (ii) 4×106 events before cuts in each of the 3 neutrino

interaction cross section simulated “unisims”, and (iii) 1.6×106 events before cuts in

each of the 22 available detector response Monte Carlo simulated “unisims”. These

samples correspond to ∼430,000, ∼215,000, and ∼86,000 events after the νμ CCQE

selection cuts for (i), (ii), and (iii) respectively.

The distributions of “unisims” for events passing the νμ CCQE selection cuts

in the reconstructed variables Eμ, cos(θμ), EQE
ν , and Q2 are shown for the π+ flux,

neutrino interaction cross section, and detector response uncertainties in figures 4.14,

4.15, and 4.16. The fractional changes in the numbers of events passing the νμ CCQE

selection cuts for each of the “unisims” are summarized in tables 4.6, 4.7, and 4.8

respectively. The π+ Sanford-Wang c1 parameter, the Fermi Gas Model neutrino

interaction cross section parameter variations (EB and pF ), and the detector response

parameters related to UV flourescence and late time scintillation cause the largest

changes in the output variable distribution normalizations for events passing the νμ

CCQE selection cuts. However, recall that the “unisim” distributions do not reflect

the correlations between simulation input variables, which can be large, and therefore

the resulting correlated error may be either larger or smaller than the spread of the

“unisims”.

The error matrices M(O)Φ, M(O)σ, and M(O)detector are calculated separately

for each of the sources of uncertainty, then added together to construct the total

error matrix M(O)total. This procedure assumes that the various sources are uncor-
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Figure 4.14: Unisim distributions for π+ flux simulation uncertainties after the νμ

CCQE selection cuts, absolutely normalized to protons on target. Top left: recon-

structed track direction cosine with respect to the beam direction; top right: recon-

structed energy under a muon hypothesis (GeV); bottom left: reconstructed neu-

trino energy assuming 2-body kinematics (GeV); bottom right: reconstructed four-

momentum transfer squared (GeV2).
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Figure 4.15: Unisim distributions for neutrino interaction cross section simulation

uncertainties after the νμ CCQE selection cuts, absolutely normalized to protons on

target. Top left: reconstructed track direction cosine with respect to the beam direc-

tion; top right: reconstructed energy under a muon hypothesis (GeV); bottom left:

reconstructed neutrino energy assuming 2-body kinematics (GeV); bottom right: re-

constructed four-momentum transfer squared (GeV2).
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Figure 4.16: Unisim distributions for detector response simulation uncertainties af-

ter the νμ CCQE selection cuts, absolutely normalized to protons on target. Top

left: reconstructed track direction cosine with respect to the beam direction; top right:

reconstructed energy under a muon hypothesis (GeV); bottom left: reconstructed neu-

trino energy assuming 2-body kinematics (GeV); bottom right: reconstructed four-

momentum transfer squared (GeV2).
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Table 4.6: Fractional change in the total number of events passing the νμ CCQE selec-

tion cuts in each π+ prediction “unisim” Monte Carlo set, for kinematic distributions

of interest.

“unisim” EQE
ν Eμ Q2 cos(θμ) EMC

ν

π+ flux SW +c1 0.1079 0.1044 0.1014 0.1082 0.1082

π+ flux SW +c2 0.0412 0.0214 0.0088 0.0474 0.0430

π+ flux SW +c3 -0.0455 -0.0264 -0.0170 -0.0542 -0.0473

π+ flux SW +c4 -0.0661 -0.0285 -0.0126 -0.0866 -0.0670

π+ flux SW +c5 0.0339 0.0196 0.0129 0.0407 0.0353

π+ flux SW +c6 -0.0345 -0.0265 -0.0207 -0.0362 -0.0351

π+ flux SW +c7 0.0120 0.0255 0.0287 0.0182 0.0195

π+ flux SW +c8 -0.0094 -0.0186 -0.0253 -0.0075 -0.0086

related. The square roots of the diagonal elements of M(O)total are shown for the

reconstructed kinematic distributions cos(θμ), Eμ, EQE
ν , and Q2, in figure 4.17, with

the data superimposed. The contribution to the fractional error from each of the

sources is shown in figure 4.18. The two error estimators, δ(O) and ΔN(O), are sum-

marized for each uncertainty source in table 4.9. The total normalization uncertainty

is ∼14%, with the domininant contribution coming from uncertainties in the neutrino

interaction cross sections. Therefore, the Monte Carlo prediction disagrees with the

data, as discussed above, by ∼2σ.

Given the overall normalization difference between data and the Monte Carlo

prediction, it is desirable to do analyses where the Monte Carlo can be normalized

relatively to the data, rather than absolutely normalized to the number of incident

protons on target. In the relatively normalized case, the systematic errors, by def-
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Table 4.7: Fractional change in the total number of events passing the νμ CCQE

selection cuts in each neutrino interaction cross section “unisim” Monte Carlo set,

for kinematic distributions of interest.

“unisim” EQE
ν Eμ Q2 cos(θμ) EMC

ν

σν +mQE
A 0.0184 -0.0154 -0.0406 0.0250 0.0211

σν +pF -0.0656 -0.0663 -0.0662 -0.0655 -0.0655

σν +EB -0.2357 -0.2955 -0.3406 -0.2253 -0.2310

σν +Δs 0.0000 0.0000 0.0000 0.0000 0.0000

σν +m1π
A -0.0001 0.0000 0.0003 0.0000 0.0000

σν +mNπ
A 0.0000 0.0000 0.0000 0.0000 0.0000

σν +mcoh
A 0.0058 0.0060 0.0060 0.0056 0.0058

σν +Δ → γγ 0.0000 0.0000 0.0000 0.0000 0.0000

σν +σπ
absorption -0.0031 -0.0031 -0.0031 -0.0031 -0.0031

σν +σπ
charge exchange -0.0029 -0.0028 -0.0029 -0.0028 -0.0028

σν +ΔN → NN -0.0187 -0.0187 -0.0188 -0.0187 -0.0187
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Table 4.8: Fractional change in the total number of events passing the νμ CCQE selec-

tion cuts in detector response “unisim” Monte Carlo sets, for kinematic distributions

of interest.

“unisim” EQE
ν Eμ Q2 cos(θμ) EMC

ν

cher -0.0017 -0.0017 -0.0017 -0.0017 -0.0017

ext 0.0962 0.0962 0.0962 0.0962 0.0962

pmt 0.0437 0.0437 0.0437 0.0437 0.0437

ref 0.0565 0.0565 0.0566 0.0565 0.0565

scat -0.1143 -0.1143 -0.1141 -0.1143 -0.1143

tau4 0.0829 0.0829 0.0829 0.0829 0.0829

uvext 0.0273 0.0273 0.0274 0.0273 0.0273

uvf2 0.1820 0.1820 0.1820 0.1820 0.1820

uvf3 0.1184 0.1184 0.1184 0.1184 0.1184

uvf4 0.1768 0.1768 0.1768 0.1768 0.1768

sci4 -0.2136 -0.2136 -0.2134 -0.2136 -0.2136

flu1 0.0004 0.0004 0.0005 0.0004 0.0004

flu2 -0.0011 -0.0011 -0.0011 -0.0011 -0.0011

flu3 -0.0211 -0.0211 -0.0210 -0.0211 -0.0211

flu4 -0.0375 -0.0375 -0.0374 -0.0375 -0.0375

sci2 0.1283 0.1283 0.1283 0.1283 0.1283

sci3 0.0751 0.0751 0.0751 0.0751 0.0751

birks -0.0562 -0.0562 -0.0560 -0.0562 -0.0562

tsm 0.0362 0.0362 0.0363 0.0362 0.0362

scatba 0.0015 0.0015 0.0017 0.0015 0.0015

tau2 0.0113 0.0113 0.0114 0.0113 0.0113

tau3 0.0059 0.0059 0.0059 0.0059 0.0059
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Figure 4.17: Uncertainty on the Monte Carlo prediction for the number of events

after the νμ CCQE selection cuts, absolutely normalized to protons on target, from

the π+ flux simulation and the neutrino interaction cross section simulation. Top

left: reconstructed track direction cosine with respect to the beam direction; top right:

reconstructed energy under a muon hypothesis (GeV); bottom left: reconstructed neu-

trino energy assuming 2-body kinematics (GeV); bottom right: reconstructed four-

momentum transfer squared (GeV2). The data (black points) with statistical errors is

superimposed.
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Figure 4.18: Contribution to the fractional error on the Monte Carlo prediction for the

number of events after the νμ CCQE selection cuts, absolutely normalized to protons

on target, from the π+ flux simulation, and the neutrino interaction cross section

simulation. Top left: reconstructed track direction cosine with respect to the beam

direction; top right: reconstructed energy under a muon hypothesis (GeV); bottom

left: reconstructed neutrino energy assuming 2-body kinematics (GeV); bottom right:

reconstructed four-momentum transfer squared (GeV2).
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Table 4.9: Correlated error contributions by source for events passing the νμ CCQE

selection cuts, for kinematic distributions of interest.

EQE
ν Eμ Q2 cos(θμ) EMC

ν

π+ flux δ(O) 0.0181 0.0249 0.0309 0.0101 0.0176

π+ flux ΔN(O) 0.0570 0.0725 0.0777 0.0421 0.0551

σν δ(O) 0.0262 0.0281 0.0334 0.0269 0.0265

σν ΔN(O) 0.0974 0.0959 0.0887 0.0944 0.0974

detector response δ(O) 0.0187 0.0203 0.0193 0.0168 0.0177

detector response ΔN(O) 0.0663 0.0652 0.0584 0.0692 0.0630

total δ(O) 0.0369 0.0427 0.0494 0.0333 0.0364

total ΔN(O) 0.1309 0.1368 0.1316 0.1244 0.1284

Table 4.10: Fractional change in the distribution mean for events passing the νμ

CCQE selection cuts in each π+ production “unisim” Monte Carlo set, for unit-area

normalized kinematic distributions of interest.

“unisim” EQE
ν Eμ Q2 cos(θμ) EMC

ν

π+ flux SW +c1 0.0002 0.0012 0.0035 0.0005 0.0000

π+ flux SW +c2 0.0058 0.0106 0.0152 0.0086 0.0052

π+ flux SW +c3 -0.0079 -0.0010 -0.0132 -0.0104 -0.0073

π+ flux SW +c4 -0.0182 -0.0192 -0.0239 -0.0231 -0.0171

π+ flux SW +c5 0.0057 0.0071 0.0093 0.0073 0.0052

π+ flux SW +c6 -0.0018 -0.0046 -0.0070 -0.0032 -0.0015

π+ flux SW +c7 -0.0018 -0.0031 -0.0039 -0.0027 -0.0017

π+ flux SW +c8 0.0024 0.0056 0.0078 0.0040 0.0021
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Table 4.11: Fractional change in the distribution mean for events passing the νμ CCQE

selection cuts in each neutrino interaction cross section “unisim” Monte Carlo set,

for unit-area normalized kinematic distributions of interest.

“unisim” EQE
ν Eμ Q2 cos(θμ) EMC

ν

σν +mQE
A 0.0077 0.0203 0.0300 0.0134 0.0065

σν +pF 0.0003 0.0004 -0.0005 0.0006 0.0002

σν +EB 0.0172 0.0510 0.0746 0.0323 0.0142

σν +Δs 0.0000 0.0000 0.0000 0.0000 0.0000

σν +m1π
A -0.0007 -0.0006 -0.0014 0.0001 0.0005

σν +mNπ
A 0.0004 0.0010 0.0010 0.0014 0.0009

σν +mcoh
A -0.0004 -0.0024 0.0060 -0.0063 -0.0061

σν +Δ → γγ 0.0000 0.0000 0.0000 0.0000 0.0000

σν +σπ
absorption -0.0007 -0.0006 -0.0014 0.0001 0.0005

σν +σπ
charge exchange 0.0004 0.0010 0.0010 0.0014 0.0009

σν +ΔN → NN -0.0004 -0.0024 0.0059 -0.0063 -0.0061
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Table 4.12: Fractional change in the distribution mean for events passing the νμ

CCQE selection cuts in detector response “unisim” Monte Carlo sets, for unit-area

normalized kinematic distributions of interest.

“unisim” EQE
ν Eμ Q2 cos(θμ) EMC

ν

cher -0.0221 -0.0269 -0.0434 0.0067 0.0021

ext 0.0517 0.0766 0.0464 0.0296 0.0097

pmt -0.0065 -0.0088 -0.0102 0.0004 -0.0014

ref 0.0331 0.0504 0.0266 0.0234 0.0137

scat -0.0496 -0.0746 -0.0343 -0.0321 -0.0135

tau4 0.0141 0.0282 -0.0176 0.0301 0.0095

uvext 0.0153 0.0230 0.0127 0.0113 0.0033

uvf2 0.0626 0.0977 0.0332 0.0479 0.0242

uvf3 0.0327 0.0551 0.0025 0.0355 0.0129

uvf4 0.0619 0.0960 0.0381 0.0422 0.0190

sci4 -0.0733 -0.1142 -0.0347 -0.0832 -0.0232

flu1 -0.0018 -0.0026 -0.0014 0.0021 -0.0007

flu2 -0.0015 -0.0030 0.0016 -0.0035 0.0000

flu3 -0.0069 -0.0133 0.0065 -0.0075 -2.4929

flu4 -0.0246 -0.0346 -0.0271 -0.0102 -0.0068

sci2 0.0456 0.0756 0.0054 0.0603 0.0198

sci3 0.0219 0.0385 -0.0048 0.0371 0.0092

birks -0.0181 -0.0291 -0.0054 -0.0231 -0.0080

tsm 0.0041 0.0099 -0.0129 0.0128 0.0044

scatba -0.0007 -0.0015 0.0009 0.0000 -0.0009

tau2 0.0004 0.0001 0.0024 0.0024 0.0013

tau3 0.0005 0.0002 0.0022 -0.0001 -0.0002



173

Table 4.13: Correlated shape error contributions by source for events passing the νμ

CCQE selection cuts, for unit-area normalized kinematic distributions of interest.

EQE
ν Eμ Q2 cos(θμ) EMC

ν

π+ flux δ(O) 0.0082 0.0043 0.0024 0.0120 0.0085

π+ flux ΔN(O) 0.0310 0.0153 0.0085 0.0374 0.0317

σν δ(O) 0.0143 0.0143 0.0110 0.0111 0.0152

σν ΔN(O) 0.0552 0.0507 0.0300 0.0425 0.0571

detector response δ(O) 0.0100 0.0103 0.0090 0.0136 0.0088

detector response ΔN(O) 0.0403 0.0393 0.0299 0.0542 0.0351

total δ(O) 0.0193 0.0181 0.0144 0.0213 0.0195

total ΔN(O) 0.0750 0.0660 0.0432 0.0784 0.0741

inition, affect only the shape of a Monte Carlo predicted distribution, and not the

normalization. To calculate the error matrix for relatively normalized Monte Carlo,

the “unisim” Monte Carlo sets are first normalized to have the same total number of

events as the central value Monte Carlo, via

(N ′(O)j)i =

∑
i(N(O)0)i∑
i(N(O)j)i

(N(O)j)i (4.21)

where (N(O)j)i is the absolutely normalized number of events in bin i of the output

variable distribution O for “unisim” j, and (N(O)0)i is the number of events in

bin i of the central value Monte Carlo distribution. The relatively normalized first

derivative matrix is subsequently calculated from the difference between the relatively

normalized “unisim” and the central value Monte Carlo in each bin:

F ′(O)i,j =
(N(O)0 − N ′(O)j)i

Cj − Uj

(4.22)

similarly to the absolutely normalized case in equation 4.14. The effect of a rela-

tively normalized “unisim” is to change the shape of a distribution with respect to
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the central value Monte Carlo prediction. The fractional changes in the means of

various kinematic distributions of interest are summarized for the π+ flux, neutrino

interaction cross section, and detector response uncertainties in tables 4.10, 4.11, and

4.12 respectively.

The simulation input parameter errors are propagated to the relatively normalized

output variable error matrix as in equation 4.15, via

M′(O)m,n = F ′(O)T
m,j Pj,k F ′(O)n,k. (4.23)

The relatively normalized error matrices M′(O)Φ, M′(O)σ, and M(O)′detector are

calculated separately for each of the sources of uncertainty, then are added together

to construct the total relatively normalized error matrix M′(O)total. The square root

of the diagonal elements of the relatively normalized total error matrix M′(O)total

are shown for the reconstructed kinematic distributions cos(θμ), Eμ, EQE
ν , and Q2, in

figure 4.19, with the data superimposed. The contribution to the fractional relatively

normalized error from each source is shown in figure 4.20. The two error estimators,

δ(O) and ΔN(O), are summarized for the relatively normalized distributions of each

uncertainty source in table 4.13. In general, the relatively normalized errors on the

output variable distributions are much smaller than the absolutely normalized errors,

and the three sources of uncertainty contribute in roughtly equal proportions. Given

these errors, data and Monte Carlo disagree in shape at the 1-2σ level in the lowest

Q2 and highest cos(θμ) bins; everywhere else, they agree very well.
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Figure 4.19: Uncertainty on the Monte Carlo prediction for the fraction of events af-

ter the νμ CCQE selection cuts, normalized to unit-area, from the π+ flux simulation

and the neutrino interaction cross section simulation. Top left: reconstructed track

direction cosine with respect to the beam direction; top right: reconstructed energy

under a muon hypothesis (GeV); bottom left: reconstructed neutrino energy assum-

ing 2-body kinematics (GeV); bottom right: reconstructed four-momentum transfer

squared (GeV2). The data (black points) with statistical errors is superimposed.
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Figure 4.20: Contribution to the fractional error on the Monte Carlo prediction for

the fraction of events after the νμ CCQE selection cuts, normalized to unit-area,

from the π+ flux simulation and the neutrino interaction cross section simulation.

Top left: reconstructed track direction cosine with respect to the beam direction; top

right: reconstructed energy under a muon hypothesis (GeV); bottom left: reconstructed

neutrino energy assuming 2-body kinematics (GeV); bottom right: reconstructed four-

momentum transfer squared (GeV2).



Chapter 5

Constraining the Flux Predictions

with νμ Data

The high statistics νμ data set at MiniBooNE affords important constraints on the

neutrino flux prediction. The measured νμ spectrum is used to constrain the predicted

rate and energy distribution of νe events from μ+ decay, and νμ events from π+ decay,

in the MiniBooNE beam line. For the νe appearance analysis, μ+-decay νe events

comprise ∼1/2 of the intrinsic beam νe background, and therefore the uncertainty

on the prediction of this background source is an important factor in the oscillation

sensitivity of MiniBooNE. Nearly all of the νe from μ+ decay come from the production

chain p Be → π+X, π+ → μ+νμ, μ+ → e+νe νμ. Therefore, the uncertainty on the

prediction of the μ+-decay νe flux comes primarily from the π+ production cross

section. Fortunately, since the μ+ come from π+ → μ+νμ decay, the MiniBooNE

νμ data provide a strong constraint on the π+ spectrum and therefore also on the

μ+-decay νe. The MiniBooNE νμ CCQE data set described in chapter 4 is employed

for this analysis; it comprises ∼100,000 events after cuts, with a νμ CCQE purity of

∼92%.

177
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5.1 Method

The μ+-decay νe analysis uses the measured ratio of data to Monte Carlo νμ events,

after the νμ CCQE selection cuts, to adjust the Monte Carlo predicted spectrum such

that the νμ agree in data and Monte Carlo. The reweighting function is

R =
Nafter CCQE cuts

DATA (EQE
ν )

Nafter CCQE cuts
MC (EQE

ν )
(5.1)

which can be written in terms of the constituent factors

R =
ΦData(Eν) × σCCQE(Eν) × εCCQE cuts(Eν) ×M(Eν |EQE

ν ) × Ntargets × Np.o.t.

ΦMC(Eν) × σCCQE(Eν) × εCCQE cuts(Eν) ×M(Eν |EQE
ν ) × Ntargets × Np.o.t.

where Φ is the neutrino flux in units of (ν/cm2/proton), σ is the νμ CCQE cross

section in units of cm2, ε is the efficiency of the CCQE selection cuts, M is a smearing

matrix that relates the “true” neutrino energy Eν to the reconstructed energy EQE
ν ,

Ntargets is the number of target nucleons, and Np.o.t. is the number of incident protons

on target. The ansatz of the analysis is that all predictions of the Monte Carlo

are correct, meaning identical to the data, except for the flux, and therefore the

reweighting function in equation 5.1 reduces to

R =
ΦData(Eν)

ΦMC(Eν)
. (5.2)

The uncertainty on the reweighting function is assessed by propagating the uncer-

tainties on the Monte Carlo assumptions.

The measured νμ flux can be used to infer the π+ energy distribution because of

the strong correlation between the “parent” π+ and the “daughter” νμ in the Mini-

BooNE neutrino beam. This is the case because the MiniBooNE detector subtends

a very small angle, 11 mr, when viewed from the target, and since the angular diver-

gence of the pion beam is limited by the 90 cm radius of the decay pipe to be small.

Therefore, any π+ that decays to a νμ which passes through the detector oil must
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have very little angle with respect to the beam direction at its decay vertex. In a two

body decay, the νμ energy is related to the π+ energy via

ELAB
ν = γECM

ν (1 + β cosθ) (5.3)

where γ = ELAB
π /mπ, β = pLAB

π /ELAB
π , θ is the angle between the π+ and the νμ,

and ECM
ν = (m2

π − m2
μ)/(2mπ). Therefore,

ELAB
ν = ELAB

π × 0.215 × (1 + β cosθ).

If one assumes that the π+ is relativistic, and pointed straight at the detector at its

decay vertex, and that the decay angle of the π+ with respect to the beam direction

is zero, then the νμ energy in the lab frame is related to the π+ energy by a constant:

ELAB
ν = 0.43 × ELAB

π . (5.4)

In this analysis the particle kinematics from the Monte Carlo are used, with no

assumptions about divergence, etc. as in the formula above, however, the simple

relation in equation 5.4 is a fairly good description. The correlation in the MiniBooNE

beam Monte Carlo between the π+ and νμ energies is shown in figure 5.1, with a line

of slope 0.43 superimposed. The majority of π+-decay νμ events exhibit the maximum

possible correlation, and as a result, the measured νμ spectrum can be used to infer

the π+ spectrum with good resolution.

The MiniBooNE beam Monte Carlo allows one to track the entire history of each

neutrino, and therefore on an event-by-event basis one can reweight a νμ, its parent

π+, the π+-decay μ+, and the subsequent μ+-decay νe, all with the same weight. The

relation between the energy of a π+ and its subsequent μ+-decay νe is shown in the

right panel of figure 5.1. This distribution is not cross section weighted, however,

after weighting by the νe CCQE cross section, the mean energy of μ+-decay νe is ∼
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Figure 5.1: Left: Eν (GeV) vs. Eπ (GeV) for νμ from π+ decay, in the MiniBooNE

detector acceptance. Reft: Eν (GeV) vs. Eπ (GeV) for νe from μ+ from π+ decay,

in the MiniBooNE detector acceptance. A line with slope 0.43 is super-imposed to

indicate the maximum available energy to the νμ in a 2 body π+ decay.

0.6 GeV. From the right panel of figure 5.1, for Eνe ∼0.6 GeV, Eπ ∼1.5 GeV, with a

distribution that is tightly peaked about the mean.

This flux constraint analysis does two useful things: first, it fixes the normaliza-

tion and energy distribution of the μ+-decay νe to be consistent with the observed

νμ data; second, it reduces the flux uncertainty on μ+-decay νe to be of the order of

the statistical error on the measured νμ energy spectrum. The error reduction occurs

because uncertainties in the π+ production prediction affect all π+-decay particles

identically. Therefore, using this method, the uncertainty on the μ+-decay νe is given

by the relative uncertainty with respect to the π+-decay νμ, rather than the absolute

π+ prediction uncertainty. The relative uncertainty is of the order of the fluctuations

in the reweighting function, which are mostly due to statistical error on the mea-

sured νμ. This argument about error reduction is valid in general for any source of

uncertainty that affects the π+-decay νμ and μ+-decay νe in the same way.
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In practice, the reduction in error is calculated by replacing the denominator in

equation 5.2 with “fake data” (central value Monte Carlo), and the numerator with

“unisim” Monte Carlo, via

R =
Nafter CCQE cuts

CV MC (EQE
ν )

Nafter CCQE cuts
“unisim′′ MC (EQE

ν )
. (5.5)

The function Rj(E
QE
ν ) depends on “unisim” j, and is a function of reconstructed

neutrino energy EQE
ν . The “unisim” Monte Carlo is then modified by reweighting to

match the central value Monte Carlo using Rj(E
QE
ν ) as the reweighting function, and

the set of modified “unisims” are used to calculate the error matrix for the μ+-decay

νe, as described in chapter 4.

This procedure is illustrated with “fake data” in figures 5.2 and 5.3 for the

Sanford-Wang π+ prediction “unisims” and the central value Monte Carlo. The

left panel of figure 5.2 shows the reconstructed energy distributions in “unisim” and

central value Monte Carlo for events passing the νμ CCQE selection cuts. Each π+-

decay νμ event from “unisim” j is assigned a weight based on its reconstructed EQE
ν ,

given the reweighting function Rj(E
QE
ν ). The reweighting function is binned in 0.1

GeV -wide reconstructed neutrino energy bins, and all events in a given EQE
ν bin are

assigned the same weight. This weight applies to the νμ-parent π+ and all of the

π+ descendents. The right panel shows the “unisim” distributions that have been

modified by the R reweighting for only νμ from π+ decay, where the π+ was pro-

duced in the primary p Be → π+ X interaction, compared with the central value

Monte Carlo for all events passing the νμ CCQE selection cuts. The normalization

difference between the central value Monte Carlo and the set of modified “unisims”

is due to the ∼8% of νμ produced by secondary interactions, discussed in chapter 4

and summarized in table 4.4. The corresponding distributions for the νμ “parent”

(and νe “grandparent”) π+ in Monte Carlo are shown in the top panels of figure 5.3.

The generated energy distributions of the μ+ “sister” and νe “niece” to the νμ are
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Figure 5.2: Left: number of events vs. reconstructed neutrino energy (GeV) for

events passing the νμ CCQE selection cuts. Right: reweighted number of events vs.

reconstructed neutrino energy (GeV) for events passing the νμ CCQE selection cuts.

Central value Monte Carlo is indicated by the points, Sanford-Wang π+ prediction

“unisim” Monte Carlo is shown by the lines.

shown before and after the reweighting modification in the middle and bottom panels

of figure 5.3 respectively.

By construction, the reweighting modification works perfectly for the EQE
ν dis-

tribution for π+-decay νμ events, that is, the spread in the “unisims” is zero after

reweighting. The finite π+ energy resolution can be seen by the fact that the reweight-

ing works well but not perfectly for the π+, and therefore the μ+ and νe distributions.

The resolution degrades with increasing π+ energy because the Eνμ-Eπ correlation

decreases, as can be seen in the left panel of figure 5.1. As the π+ energy increases,

π+ with angles relative to the beam axis greater than zero at decay can still produce a

νμ in the detector acceptance due to the greater available Lorentz boost, and therefore

a larger range of νμ energies is allowed for a given π+ energy.
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Figure 5.3: Left: generated Monte Carlo energy distributions. Right: reweighted

Monte Carlo energy distributions. Top: number of events vs. π+ energy (GeV).

Middle: number of events vs. μ+ energy (GeV). Bottom: number of events vs. νe

energy (GeV).
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νμ(π) reweighting function vs. Eν
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Figure 5.4: Ratio of Sanford-Wang π+ prediction “unisims” to central value Monte

Carlo for events passing the νμ CCQE selection cuts. Left: reweighting functions vs.

reconstructed νμ energy (GeV). Right: reweighting functions vs. generated π+ energy

(GeV).

The reweighting function in equation 5.2 is calculated using events passing the νμ

CCQE selection cuts because good neutrino energy measurement resolution is desired.

However, the efficiency of the selection cuts is not very high, and while generating a

large Monte Carlo set of π+-decay νμ is easy, obtaining high statistics for μ+-decay

νe is not. This is because the μ+ decays have 3-body kinematics and therefore the

probability that the νe is not pointed at the detector, which subtends only 11 mr at

the MiniBooNE target, is much larger than for the νμ products of 2-body π+ decays.

Therefore, to increase the statistics of μ+-decay νe events, the reweighting procedure

is done in two steps, taking advantage of the fact that in Monte Carlo one knows both

the reconstructed Eν and generated Eπ for every π+-decay νμ event. First, the ratio

of data to Monte Carlo, R1, is formed as a function of reconstructed EQE
ν , for events

passing the νμ CCQE selection cuts. R1(E
QE
ν ) is shown in the left panel of figure

5.4 for the Sanford-Wang π+ “unisims”. R1(E
QE
ν ) is used event-by-event to reweight
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the generated EMC
π distribution for events passing the νμ CCQE selection cuts. A

second ratio R2 is formed, which is the ratio of the reweighted to the original EMC
π

distributions, for events passing the νμ CCQE selection cuts. R2(E
MC
π ) is shown

in the right panel of figure 5.4. R2(E
MC
π ) is then used as a look-up table to find

the weight for any νμ event with a π+ parent, or νe event with a π+ grandparent,

whether the neutrino passes the νμ CCQE selection cuts or not. This works because

the νμ CCQE selection cuts do not change the energy of a given π+, which is all that

R2 depends on. In this way, one can use all of the Monte Carlo π+ events to form

the associated μ+-decay νe distributions, both before and after reweighting, instead

of only those with an associated νμ that passes the νμ CCQE selection cuts. The

transformation from R1, which is a function of reconstructed EQE
ν , to R2, which is

a function of generated EMC
π , is necessary because not every event has a reasonable

EQE
ν value. Only cleanly-reconstructed νμ CCQE events can be expected to have

EQE
ν values near the true EMC

ν , however, all π+-decay Monte Carlo events have the

correct EMC
π value. This two-step procedure was used to produce all of the reweighted

distributions in figures 5.2 through 5.4. This method passes the closure test, which is

that all of the reweighted “unisim” EQE
ν distributions agree perfectly with the “fake

data” π+-decay νμ spectrum, as is shown in the right panel of figure 5.2.

To achieve the simulation statistics for μ+-decay νe shown in figure 5.4, two

enhancement schemes are employed in the MiniBooNE beam Monte Carlo [118]. First,

the p Be → π+ X cross section is weighted according to an exponential function to

increase the statistics for high pZ events. The primary motivation for this is to

decrease the statistical error on the prediction of the high energy νμ flux. Second,

and more importantly for this analysis, every time a π+ decays, 20 identical copies

of the resulting μ+ are produced and subsequently tracked through the beam Monte

Carlo. A new random number seed is chosen each time a muon decays, and therefore
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the 20 resulting μ+-decay νe are independent. Both of these techniques contribute

to the weight for each μ+-decay νe event; the distribution of weights has a mean of

0.00637 and an r.m.s of 0.00864. The resulting beam Monte Carlo histogram for the

predicted flux of neutrinos from p Be → π+ → μ+ → e+ νe νμ has 6.5×106 entries,

and the statistical error on the flux prediction is <1% in each EMC
ν bin.

However, many fewer events are sampled from this distribution when neutrino

interactions are simulated. This is because the Monte Carlo is generated with all

components of the flux in their weighted proportions, shown in figure 3.14 and table

3.7. The total neutrino interaction Monte Carlo set, before any selection cuts, com-

prises 8×106 events, which is 5×106 events in the detector volume, and corresponds

to 2.2×1021 simulated protons on target. The vast majority of these events are π+-

decay νμ interactions, with only 12,658 from μ+-decay νe interactions. These 12,658

events comprise the Monte Carlo μ+-decay νe sample used for this analysis.

5.2 Results

The reweighting method described above may change the shape, normalization, and

uncertainty on the predicted μ+-decay νe distribution. To separate these different

effects, the μ+-decay νe error matrix is calculated in bins of EMC
ν for three cases:

1. with no reweighting modification (the reweighting function is taken to be 1.0 in

all energy bins), so the error matrix comes directly from the Sanford-Wang π+

production cross section parameter errors with no reference to the data;

2. with reweighting modifications, where the numerator of the reweighting func-

tion is “fake data” (central value Monte Carlo), so this tests the effect of the

reweighting method on the uncertainties only;
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3. with reweighting modifications, where the numerator of the reweighting function

is the νμ CCQE data set described in chapter 4.

The reweighting procedure is applied to the central value Monte Carlo, and to

each of the Sanford-Wang π+ flux “unisims” described in chapter 4, section 4.3. The

“unisims”, which have been modified by R in equation 5.5, are used to calculate

the first derivative matrices and propagate the simulation input parameter errors, as

described in chapter 4, to the uncertainties on the predicted EMC
ν distribution for

μ+-decay νe and π+-decay νμ events, with no selection cuts applied. The ratio of the

modified “unisims” to the original central value Monte Carlo for each of the three

cases is shown as a function of EMC
ν in figure 5.5. For case 1, with no reweighting, the

spread in the (modified “unisim” / original central value) ratios is ∼10% about a value

of 1.0 at Eν = 1 GeV for both μ+-decay νe and π+-decay νμ. For case 2, where the

“unisims” have been modified via reweighting to match the “fake data,” the spread is

∼2% about 1.0 at Eν = 1 GeV . This reduction in the spread of the ratios translates

directly into a reduction in the predicted uncertainty on the EMC
ν distribution. For

case 3, the spread in the ratios is nearly identical to case 2, as expected, however, the

value of the ratio is ∼1.3 at Eν = 1 GeV . The 20% increase in the ratio in the 0.1

to 0.2 GeV bin relative to its value above 0.2 GeV is an artifact of low statistics; the

statistical error on the data to Monte Carlo ratio in this bin, shown in figure 4.12, is

∼30%. The value of the ratio in case 3 is the same normalization difference between

the νμ CCQE data set and the predicted Monte Carlo spectrum which was first

discussed in chapter 4, section 4.2. In this way, the case 3 reweighting procedure ties

the normalization and energy spectrum of the π+-decay νμ and μ+-decay νe spectra

to the observed rate in the data.

These modified “unisims” are used to propagate the simulation input parameter

uncertainties to the EMC
ν distribution for μ+-decay νe events. For case 1, the scaled
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Figure 5.5: Ratio of Sanford-Wang π+ prediction “unisims” to original central value

Monte Carlo vs. EMC
ν (GeV), with no selection cuts applied. Left: predicted π+-decay

νμ energy spectra. Right: predicted μ+-decay νe energy spectra.
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first derivatives are shown as a function of generated neutrino energy EMC
ν for each

of the eight Sanford-Wang π+ flux prediction parameter variations in the top eight

panels of figure 5.6. The scaled first derivatives are defined in chapter 4, equation

4.16; they describe the fractional change in the number of events in a given bin with

respect to a 1σ change in a simulation input parameter. The values of the scaled first

derivatives are typically fairly small, and the errors on the scaled first derivatives are

relatively large. In many bins the fractional error is greater than 100%. The error

on the first derivatives does not enter into the error matrix calculation, however,

statistical fluctuations on the first derivatives can increase (or decrease) particular

elements of the error matrix.

To address the issue of statistical fluctuations, the μ+-decay νe scaled first deriva-

tive histograms are fit with a polynomial function f(Eν) = a1 + a2 · EMC
ν + a3 ·

(EMC
ν )2, shown superimposed on the scaled first derivatives in the top eight panels

of figure 5.6. Fitting the first derivatives to a function, and using that function value

in place of the first derivative in the error matrix calculation, does not on average

change the total error on the number of events, but serves to smooth statistical fluc-

tuations on a given element of the error matrix. In general, a polynomial function

is a good fit to the scaled first derivatives vs. EMC
ν ; the χ2/ndf values of the fit are

all much less than 1.0 because of the large statistical errors on central value Monte

Carlo prediction 1. The second degree polynomial fit, which is superimposed on the

un-fit derivatives, results in much smaller errors on the scaled first derivatives, shown

in figure 5.6. The fit error bars are calculated from the fit covariance matrix, and

by construction the fit error bars change smoothly as a function of Eν . The fit co-

efficients for the μ+-decay νe case 3 scaled first derivatives are summarized for each

1The statistical errors on the scaled first derivatives effectively come only from the central value

Monte Carlo statistics, since the “unisims” are all produced by reweighting central value Monte

Carlo, and the variance of the weights in any EMC
ν bin is less than 1.0.
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Figure 5.6: Error on μ+-decay νe EMC
ν spectrum from Sanford-Wang π+ prediction

uncertainties. Top eight panels: scaled first derivatives (defined in equation 4.16) vs.

EMC
ν . Bottom left: predicted number of events vs. EMC

ν (GeV ) with π+ prediction

systematic errors for 2.2 ×1021 protons on target. Bottom right: fractional error vs.

EMC
ν (GeV ). Red solid lines (black points) show the (un-) fit error calculation.
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“unisim” in table 5.3.

The fit scaled first derivatives are used to calculate the output variable error

matrix M in bins of EMC
ν . The square roots of the diagonal elements of M are

shown as the error bars on the central value Monte Carlo predicted EMC
ν distribution

for μ+-decay νe events in the bottom left panel of figure 5.6. The fractional error as

a function of EMC
ν is shown in the bottom right panel of figure 5.6. For comparison,

the error bars and fractional error vs. EMC
ν calculated without fitting the scaled first

derivatives are also shown. The error bars produced with fitting can be either larger

or smaller than those calculated without fitting the scaled first derivatives, however,

the fitted fractional errors show a much smoother dependence on EMC
ν .

For case 2, the scaled first derivatives are shown as a function of generated neu-

trino energy EMC
ν for each of the eight Sanford-Wang π+ flux prediction parameter

variations in the top eight panels of figure 5.7. In this case the scaled first deriva-

tives are all close to zero because of the “unisims” have been modified by the (“fake

data”/“unisim”) reweighting function. The modified “unisims” are propagated to the

error matrix in bins of EMC
ν , and the square roots of the diagonal elements of M are

shown as the error bars on the central value Monte Carlo predicted EMC
ν distribution

for μ+-decay νe events in the bottom left panel of figure 5.7. The fractional error as

a function of EMC
ν is shown in the bottom right panel of figure 5.7. Between ∼0.2

and 2 GeV , the error bars are smaller in all EMC
ν bins than in case 1, where the

“unisims” were not reweighted to match the central value Monte Carlo. The energy

range where the errors can be reduced using this method is not unlimited because the

reweighting modification is only effective where the νμ CCQE data set has reasonable

statistics; above 2 GeV and below 0.2 GeV the selection cut efficiencies are very low,

as is shown in figure 4.7.
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Figure 5.7: Error on μ+-decay νe EMC
ν spectrum from “fake data”-reweighted Sanford

- Wang π+ prediction uncertainties. Top eight panels: scaled first derivatives (defined

in equation 4.16) vs. EMC
ν . Bottom left: predicted number of events vs. EMC

ν (GeV )

with π+ prediction systematic errors for 2.2 ×1021 protons on target. Bottom right:

fractional error vs. EMC
ν (GeV ). Red solid lines (black points) show the (un-) fit

error calculation.
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Table 5.1: Summary of number of and uncertainty on μ+-decay νe in the detector

acceptance for the three reweighting scenarios described in the text. The Monte Carlo

set corresponds to 2.2×1021 simulated protons on target.

Reweighting Ratio N νe(μ
+) ΔN (un-)fit value (%) δN (un-)fit value (%)

1.0 12,658 (4.455) 4.383 (1.158) 1.079

“fake data” / “unisim” 12,658 (1.438) 1.166 (0.320) 0.252

data / “unisim” 16,095 (1.595) 1.167 (0.353) 0.251

For case 3, the scaled first derivatives are shown as a function of generated neu-

trino energy EMC
ν for each of the eight Sanford-Wang π+ flux prediction parameter

variations in the top eight panels of figure 5.8. As in case 2, the scaled first derivatives

are all close to zero because of the reweighting procedure, but the total number of

events is increased by a factor of ∼1.3, as can be seen by comparing the vertical scale

of the predicted number of events vs. EMC
ν in the bottom left panel of figure 5.8

with that of figure 5.7. The fractional error as a function of EMC
ν is shown in the

bottom right panel of figure 5.8, and is nearly identical to the case 2 fractional error

distribution, as expected.

To compare the three scenarios, the total number of predicted μ+-decay νe events

and the two error estimators δN and ΔN , which are defined in equations 4.18 and 4.20,

are summarized in table 5.1. With the out-of-the-box Sanford-Wang π+ flux predic-

tion uncertainties, implemented as described in chapter 4, section 4.3, the μ+-decay νe

flux error is estimated to be 4.4% without fitting the scaled first derivatives, and 3.6%

with fitting. The bulk of this error comes from normalization rather than shape un-

certainty; the fitted (un-fitted) shape uncertainty estimator δN is 0.9% (1.1%). With

the case 2 reweighting, where the “unisims” are reweighted to match the central value
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Figure 5.8: Error on μ+-decay νe EMC
ν spectrum from data-reweighted Sanford - Wang

π+ prediction uncertainties. Top eight panels: scaled first derivatives (defined in

equation 4.16) vs. EMC
ν . Bottom left: predicted number of events vs. EMC

ν (GeV )

with π+ prediction systematic errors for 2.2 ×1021 protons on target. Bottom right:

fractional error vs. EMC
ν (GeV ). Red solid lines (black points) show the (un-) fit

error calculation.
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Monte Carlo “fake data”, the fitted (un-fitted) normalization error is reduced to 0.9%

(1.9%), and the shape error is 0.2% (0.5%). For case 3, where the Monte Carlo is

reweighted to match the νμ CCQE data set, the fitted (un-fitted) normalization error

is 0.9% (2.0%), and the shape error is 0.2% (0.5%).

This result can be used in the oscillation analysis in two ways. First, the μ+-

decay νe prediction for the background to the νe appearance analysis can be directly

tied to data using this method. When performing an oscillation search, one would

apply the case 3 ratio to the predicted μ+-decay νe background spectrum. This

would effectively convert a background prediction, which relies on external data and

the Monte Carlo, into an indirect in-situ background measurement. Second, the flux

uncertainty associated with the μ+-decay νe background prediction is greatly reduced,

as table 5.1 shows, because the high statistics π+-decay νμ data set strongly constrains

the allowable variations in the simulation input parameters describing the π+-decay

flux production. To implement this error reduction in the oscillation analysis one

would use the error matrix calculated in case 3, instead of the case 0 matrix, to

parameterize the uncertainty on the μ+-decay νe background coming from the π+

flux prediction. The one serious complication with using this result in the oscillation

fit is how to include the systematic errors on the flux and flux uncertainty constraint,

which come from the cross section and detector response assumptions discussed in

connection with equation 5.2. This question is addressed in detail in chapter 7.

This analysis can be used to constrain the π+-decay νμ prediction in exactly the

same way as for the μ+-decay νe flux. The ratio of the modified “unisims” to the

original central value Monte Carlo for each of the three cases discussed above is shown

as a function of EMC
ν for π+-decay νμ events in the left-side panels of figure 5.5, with no

selection cuts applied. The modified “unisims” are used to propagate the simulation

input parameter uncertainties to the EMC
ν distribution for π+-decay νμ events. The
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Table 5.2: Summary of number of and uncertainty on π+-decay νμ in the detector

acceptance for the three reweighting scenarios described in the text. The Monte Carlo

set corresponds to 2.43×1020 simulated protons on target.

Reweighting Ratio N νμ(π+) ΔN (un-)fit value (%) δN (un-)fit value (%)

1.0 552,493 (5.658) 5.664 (1.462) 1.460

“Unisim” / CV MC 552,493 (2.556) 2.492 (0.714) 0.591

Data / CV MC 705,633 (2.508) 2.504 (0.618) 0.601

scaled first derivatives are shown as a function of generated neutrino energy EMC
ν

for each of the eight Sanford-Wang π+ flux prediction parameter variations in the

top eight panels of figures 5.9, 5.10, and 5.11 for cases 1, 2, and 3. The predicted

EMC
ν distributions for π+-decay νμ events with systematic errors from the π+ flux

prediction, and the fractional errors vs. EMC
ν , are shown in the bottom panels of

figures 5.9, 5.10, and 5.11. The fit coefficients for the π+-decay νμ case 3 scaled first

derivatives are summarized for each “unisim” in table 5.3.

To compare the three scenarios, the total number of predicted π+-decay νμ events

and the two error estimators δN and ΔN , which are defined in equations 4.18 and

4.20, are summarized in table 5.2. With the out-of-the-box Sanford-Wang π+ flux

prediction uncertainties, the π+-decay νμ flux error is estimated to be 5.7%, both with

and without fitting the scaled first derivatives. As for the μ+-decay νe flux, the bulk

of this error comes from normalization rather than shape uncertainty; the fitted (un-

fitted) shape uncertainty estimator δN is 1.46% (1.46%). With the case 2 reweighting,

where the “unisims” are modified by reweighting such that they match the central

value Monte Carlo “fake data”, the fitted (un-fitted) normalization error is reduced to

2.5% (2.6%), and the shape error is 0.6% (0.7%). For case 3, where the Monte Carlo
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Figure 5.9: Error on π+-decay νμ EMC
ν spectrum from Sanford-Wang π+ prediction

uncertainties. Top eight panels: scaled first derivatives (defined in equation 4.16) vs.

EMC
ν . Bottom left: predicted number of events vs. EMC

ν (GeV ) with π+ prediction

systematic errors for 2.43 ×1020 protons on target. Bottom right: fractional error vs.

EMC
ν (GeV ). Red solid lines (black points) show the (un-) fit error calculation.
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Figure 5.10: Error on π+-decay νμ EMC
ν spectrum from ”fake data”-reweighted

Sanford-Wang π+ prediction uncertainties. Top eight panels: scaled first derivatives

(defined in equation 4.16) vs. EMC
ν . Bottom left: predicted number of events vs. EMC

ν

(GeV ) with π+ prediction systematic errors for 2.43 ×1020 protons on target. Bottom

right: fractional error vs. EMC
ν (GeV ). Red solid lines (black points) show the (un-)

fit error calculation.
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Figure 5.11: Error on π+-decay νμ EMC
ν spectrum from data-reweighted Sanford-

Wang π+ prediction uncertainties. Top eight panels: scaled first derivatives (defined

in equation 4.16) vs. EMC
ν . Bottom left: predicted number of events vs. EMC

ν (GeV )

with π+ prediction systematic errors for 2.43 ×1020 protons on target. Bottom right:

fractional error vs. EMC
ν (GeV ). Red solid lines (black points) show the (un-) fit

error calculation.
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Table 5.3: Summary of scaled first derivative fit coefficients for the data-reweighted

Sanford-Wang π+ prediction unisims. The fit function is a1 +a2 ·EMC
ν +a3 · (EMC

ν )2.

All coefficients have been multiplied by 102.

reweigted νμ(π+) νμ(π+) νμ(π+) νe(μ
+) νe(μ

+) νe(μ
+)

“unisim” a1 a2 a3 a1 a2 a3

SW π+ c1 0.077 -0.174 0.183 0.446 -0.549 0.196

SW π+ c2 -1.788 1.924 0.086 -2.182 2.310 -0.394

SW π+ c3 -0.099 3.058 -2.967 0.558 0.615 -0.713

SW π+ c4 -2.186 0.121 -9.579 -0.009 3.644 -2.433

SW π+ c5 0.333 -2.797 2.399 -0.314 -0.576 0.550

SW π+ c6 1.117 -2.083 0.748 0.955 -1.056 0.216

SW π+ c7 0.689 -0.855 0.112 0.731 -0.813 0.171

SW π+ c8 -1.571 2.495 -0.790 -2.572 3.420 -0.960

is reweighted to match the νμ CCQE data set, the fitted (un-fitted) normalization

error is 2.5% (2.5%), and the shape error is 0.6% (0.7%). As before, reweighting the

Monte Carlo to match the data increases the total number of predicted events by a

factor of 1.28. In general, the π+-decay νμ errors tend to be larger than the μ+-decay

νe errors because of the high EMC
ν contribution; for Eν < 1.5 GeV the fractional

errors are comparable 2.

One notable difference between the π+-decay νμ and μ+-decay νe constraints is

that for the π+-decay νμ events, fitting the scaled first derivatives does not change

the error matrix appreciably with respect to the un-fit calculation. This is the case

2The Sanford-Wang π+ production cross section uncertainty increases with EMC
ν because a 1.5

GeV π+-decay νμ comes from a 4.0 GeV π+, while a 1.5 GeV μ+-decay νe comes from a 2.5 GeV

π+, from figure 5.1, and the π+ production cross section uncertainty also grows pπ.
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because the majority of the neutrino-interaction Monte Carlo set is comprised of π+-

decay νμ events, and so the statistical fluctuations in the EMC
ν distribution for these

events are negligible.

The applicability of the flux and flux uncertainty constraints derived here is

analysis-dependent. For the νμ → νe oscillation search, the constraints in this chapter

can be used, since the appearance analysis compares the total number of νe events

to the background νe event expectation. Relating both signal and background to the

observed νμ event rate, rather than just the signal component, reduces the systematic

errors significantly and builds confidence in the oscillation analysis. However, the νμ

disappearance oscillation search compares an observed νμ signal with a predicted νμ

signal. Therefore, the prediction must come from information external to the observed

event rate in MiniBooNE, and so these constraints cannot be used.

Cross section measurements are another class of MiniBooNE analyses where the

constraints derived here can be applied in some situations but not in others. The neu-

trino interaction cross sections for all processes that contribute to the event sample

passing the νμ CCQE selection cuts are assumed when deriving the flux constraint

here, and therefore this constraint cannot be used for a measurement of the contribut-

ing cross sections. However, for other neutrino interaction cross section measurements

the flux constraint derived here is applicable. For example, MiniBooNE’s first two

cross section measurements, of neutral current resonant π0 [40] and charged current

resonant π+ [119] production, are normalized to the νμ CCQE data observed event

rate using the technique of this analysis.



202

5.3 Extensions of this Analysis

The application of this analysis to constraining the uncertainties associated with

the MiniBooNE simulation predictions effectively uses the νμ CCQE data set as a

calibration source. When viewed in this way, the νμ CCQE data set could also

be applied to constraining any source of uncertainty it has in common with the νe

oscillation data set. As long as a source systematic uncertainty affects the νe and νμ

data sets in similar ways, the high statistics of the νμ CCQE data can provide a strong

constraint on the allowable variations of simulation parameters. The first candidate

for this treatment is the CCQE cross section prediction uncertainties, since these are

based on external data, and the MiniBooNE νμ CCQE data set contains an order

of magnitude more CCQE events than all previous measurements in MiniBooNE’s

energy range combined. The application of the method described here to constraining

the cross section simulation uncertainties is described in appendix C.

Along the same lines, the observed high energy νμ events can be used to provide

a constraint on the rate of charged kaon decays in the MiniBooNE beam line. Above

Eν ∼2.0 GeV , the majority of νμ come from K+, rather than π+, decays, therefore a

measurement of the number of events in this region normalizes the K+ contribution

to the neutrino flux. The high energy νμ measurement can be used to validate the

K+ production cross section fit result of chapter 3, in combination with the in-situ

constraint from the little muon counter (LMC) system in the neutrino beam line. A

sketch of a method for incorporating these data sets to produce a constraint on the

K+ flux prediction is given in appendix D.



Chapter 6

Constraining the Cross Section

Predictions with νμ Data

Cross sections in the Eν ∼ 1 GeV range have sizable uncertainties from both theory

and experiment. The theoretical description of the nuclear environment is a simple

approximation in most neutrino interaction simulations [120], and the existing data

in MiniBooNE’s energy range comprises a total of ∼10,000, events from all previous

experiments combined [41]. The high statistics MiniBooNE νμ CCQE data set can

add significantly to the understanding of this important neutrino interaction, and

additionally constrain the simulation at MiniBooNE to match the observed νμ data.

Two measurements are described here. First, the axial mass (mA), the Fermi mo-

mentum (pF ), and the binding energy (EB) are extracted simultaneously from fitting

the MiniBooNE νμ CCQE data set assuming the Smith-Moniz bound nucleon CCQE

cross section formalism. The results provide constraints on the parameter values,

their uncertainties, and their correlations for the MiniBooNE neutrino interaction

simulation. Second, the functional dependence of the axial form factor on the four-

momentum transfer squared, FA(Q2), is measured in the MiniBooNE data, along

203
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with pF and EB. This is the first measurement of its kind on Carbon in MiniBooNE’s

energy range.

6.1 CCQE Cross Section Parameter Measurement

Charged current quasi-elastic neutrino interactions are the signal channel for both

the νμ → νe and νμ disappearance oscillation searches, therefore it is desirable to

constrain the CCQE cross section prediction using MiniBooNE data. However, for

the oscillation analyses it is important that any constraints be derived in a flux-

independent way so as not to bias the result. Historically, this is how the majority

of CCQE cross section parameter measurements have been made, because accurate

predictions of neutrino fluxes have not been available [121, 122, 123, 124, 125] due to

the dearth of comprehensive meson production data in p-N collisions.

In the Smith-Moniz formalism [100] described in chapter 3, the free parameters

in the CCQE cross section are the Fermi gas model parameters pF and EB, and the

form factor parameters mA, FA(Q2), mV , and FV (Q2). The vector parameters mV

and FV (Q2) are measured very precisely in electron scattering experiments [103], and

therefore contribute negligibly to the neutrino interaction cross section uncertainties

at MiniBooNE. However, of the axial parameters, only gA, the value of FA(Q2 = 0),

has a small uncertainty [41]. The remaining CCQE cross section parameters are not

well constrained by past measurements, and therefore are an important contribution

to MiniBooNE’s CCQE cross section prediction uncertainty [105].

The axial form factor parameterizes the distribution of the weak charge within

the nucleus in neutrino scattering, and mA is sometimes called the “charge radius”.

This form factor is usually assumed to have a dipole form as a function of momentum
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Figure 6.1: Measurements of mA from neutrino scattering (left) and pion electro-

production (right) experiments, assuming a dipole form for FA(Q2). This figure is

from reference [102]

transfer squared (Q2):

FA(Q2) =
−gA(

1 + Q2

m2
A

)2 . (6.1)

The Fourier transform of this functional form gives an exponential charge density dis-

tribution with radius mA. The dipole assumption historically comes from equating

the Q2 dependence of the vector and axial form factors, which is equivalent to assum-

ing identical distributions of electromagnetic and weak charge within the nucleus. A

number of experiments have measured mA under the dipole assumption; their results

are summarized in figure 6.1.

In general, neutrino scattering experiments extract mA by fitting the Q2 dis-

tribution of νμ CCQE events. The world-average value from neutrino scattering

experiments is 1.026 ± 0.021 GeV/c2 [102]. However, the average of the bubble-

chamber experiments which measure mA on Freon (Propane-Freon) is 0.84 ± 0.08

(0.88 ±0.07) [102], which has a much larger uncertainty, ∼10%. The discrepancy
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may be due to nuclear corrections to the CCQE cross section: since mA is a pa-

rameter of the free nucleon cross section, heavy target experiments must include a

simulation of or correction for nuclear effects, which can be quite large and may be

treated differently in each experiment. For this reason, the most straightforward mea-

surements to interpret are those on deuterium, which have an average mA value of

1.05 ± 0.03. The axial mass can also be measured in pion electro-production data,

using ep → epπ0 and ep → enπ+ at threshold, however this requires additional as-

sumptions beyond the dipole form for FA(Q2) to address radiative corrections and

the contributions of multiple resonances [126]. The electroproduction world-average

mA value is 1.069 ± 0.016 GeV/c2 [102].

The parameters in the Smith-Moniz CCQE cross section formalism which include

the effects of the bound target nucleon are the Fermi gas model parameters EB and

pF . The values of these parameters for a Carbon target can be extracted from electron

scattering data; the most recent published measurement dates from 1971, and is used

as input to the MiniBooNE simulation [104]. The Fermi gas model prediction agrees

with quasi-elastic neutrino scattering cross section measurements at the 10% level for

projectile energies above 1 GeV , however, it overpredicts the cross section below 1

GeV . Therefore, the external-data based uncertainties assumed by MiniBooNE on

EB and pF are inflated with respect to past measurements such that the MiniBooNE

neutrino interaction Monte Carlo prediction covers the LSND measurement of the νμ

CCQE cross section at Eν = 0.150 GeV within errors [105]. The resulting Fermi gas

model parameters are EB = 0.025 ± 0.025 GeV and pF = 0.220 ± 0.030 GeV .

In recent years there have been several surprises in CCQE cross section parameter

measurements. The K2K experiment, which is a neutrino oscillation experiment very

similar to MiniBooNE at Eν ∼1.2 GeV with a CH2 target, measures a value of mA

= 1.20 ± 0.12 (GeV/c2) [37]. This is very interesting for MiniBooNE because the
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reconstructed Q2 distribution disagreement between data and Monte Carlo at low Q2

is quite similar to the K2K observation [37, 120]. Another surprising development is

that the most recent measurements of the vector form factor reveal non-dipole depen-

dence on Q2 [103]. Both of these results are in conflict with theoretical expectations,

and therefore motivate closer study of the parameters of the CCQE cross section and

their uncertainties.

6.1.1 Method

To measure the CCQE cross section parameters at MiniBooNE, a histogram of the

reconstructed Q2 distribution for data passing the νμ CCQE event selection cuts is

fit with mA, pF , and EB as free parameters in the fit, assuming the dipole form for

FA(Q2). The fit uses the MiniBooNE Monte Carlo to propagate the underlying CCQE

free nucleon cross section parameters to a histogram of events vs. reconstructed Q2,

which is subsequently compared with the data. The procedure is as follows:

1. the νμ CCQE data set described in chapter 4 is histogrammed in reconstructed

Q2 bins.

2. A file of Monte Carlo events is created which contains the generated and recon-

structed Eν and Q2, the generated muon momentum pμ and angle cos(θμ), and

a weight for each event. The weight is a function of mA, pF , and EB.

3. The Monte Carlo weights are summed to histogram the Monte Carlo in Q2
REC

bins, with the same histogram definition as the data.

4. The fit minimizes a χ2 formed between data and Monte Carlo with respect to

the parameters (mA, pF , EB),

χ2 =
∑

i

(NDATA,i − NMC,i(mA, pF , EB)√
NDATA,i

)2

(6.2)
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where i indexes Q2
REC bins, NDATA,i is the number of events in the data in bin i,√

NDATA,i is the statistical error on the data, NMC,i(mA, pF , EB) is the number

of Monte Carlo events in bin i and is a function of (mA, pF , EB) via the Monte

Carlo weights. The MINUIT program is employed to perform the minimization

with the MINOS error analysis option [56]. The initial values of the parameters

are the world-average values, EB = 0.025 GeV , pF = 0.220 GeV , and mA =

1.03 GeV/c2, and the parameters are unbounded in the fit.

The Monte Carlo weights are calculated from the Smith-Moniz relativistic Fermi

gas model CCQE cross section, which is given in chapter 3, equations 3.34 through

3.41, and implemented identically in the MiniBooNE neutrino interaction cross section

Monte Carlo. The initial weight of each event is set to the value of the Smith-Moniz

CCQE cross section under the dipole FA(Q2) assumption with the world-average

CCQE cross section parameter values, and the generated Eν , pμ and cos(θμ) of the

event.

At each iteration in the fit, as mA, pF , and EB are varied, the cross section is

recalculated and each event is given a weight equal to the current value of the cross

section divided by the initial value. One attractive feature of fitting for all three of

the free parameters in the Smith-Moniz CCQE cross section simultaneously is that

the fit returns a covariance matrix for the parameters. This matrix not only gives

the parameter errors, but also their correlations ρ. The ρ can be large, and should be

included when propagating errors from underlying simulation parameters to output

variable distributions such as EQE
ν , used for oscillation analyses.

The events are re-binned at each iteration of the fit, and compared with the

data. Ideally, the Q2 bin widths would be as small as possible, however, the Q2

reconstruction resolution and, to a lesser extent the statistical error, sets a lower limit

on the bin size. The reconstructed Q2 bin widths are chosen to be approximately twice
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the Q2 resolution in the lowest Q2 bin, which is the most restrictive, as figure 4.10

shows. Stated another way, the reconstructed Q2 bin widths are chosen such that

the average Monte Carlo generated Q2 in each reconstructed Q2 bin lies in the same

reconstructed Q2 bin. This constraint results in 16 bins between 0.0 and 1.0 GeV 2.

The cutoff at 1.0 GeV 2 is chosen to minimize statistical error. This reconstructed Q2

range includes 96% of the events in the νμ CCQE data set.

According to the Monte Carlo, 9.5% of the events that pass the νμ CCQE selection

cuts are due to non-CCQE background interactions. Since the Smith-Moniz cross

section is valid only for CCQE events it cannot be used to calculate the weights

for background events. Therefore these weights are treated as independent of the fit

parameters, that is, the weight for background events is a constant equal to 1.0 at each

iteration in the fit. Fortunately, the reconstructed Q2 distributions of background and

signal are quite different, as is shown in figure 4.9 in chapter 4. The background is

much more peaked at low reconstructed Q2, and therefore one can test the impact of

the background events on the fit results by fitting above a minimum Q2 value. Above

Q2 = 0.2 GeV 2, the fraction of background events in any bin is < 1%, and the total

background fraction is reduced to 5%.

This kind of analysis can be done with either absolutely or relatively normalized

Q2 distributions, since mA (and EB and pF ) affect both dσ/dQ2 and the overall

normalization of the CCQE cross section. Given the disagreement between the data

and Monte Carlo predicted rates at MiniBooNE, the CCQE parameter extraction

analysis here uses only the shape of the data Q2 distribution. This is accomplished

by normalizing the Monte Carlo such that the total number of events is equal to

the number in data. The relatively normalized total number of Monte Carlo events,

before any fitting, is given by

NMC
R =

∑
i N

DATA
i∑

i N
MC
i

NMC = NDATA (6.3)
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where i indexes events passing the νμ CCQE selection cuts.

In practice this analysis is performed with weighted events to start with, since

the Monte Carlo was generated with different values of the CCQE cross section pa-

rameters from the world-averages. The events are reweighted by a factor

w =
σCCQE(EB, pF ,mA|EMC

ν , pMC
μ , cos(θμ)MC)

σCCQE(E ′
B, p′F ,m′

A|EMC
ν , pMC

μ , cos(θμ)MC)
(6.4)

where σCCQE is the Smith-Moniz νμ CCQE cross section, EB, pF , and mA are the

world-average values given above, and E ′
B, p′F , and m′

A are the original values used

when the Monte Carlo events were generated. The event kinematics are specified by

EMC
ν , pMC

μ , and cos(θμ)MC . It has been verified that the (pMC
μ , cos(θμ)MC) kinematic

phase space overlap between the world-average and original CCQE cross section pa-

rameter Monte Carlo sets is 99.98%, that is, the problem of trying to reweight events

that do not exist occurs for <0.02% of the events. The variance of the weights is

small relative to the sum of the weights:
∑

i(wi − w)2/
∑

i wi < 1%, and therefore

the effect of Monte Carlo statistics will be small, however, the error on the number

of weighted events is a function of Q2 and therefore it is included in the χ2 definition

via

χ2 =
∑

i

(NDATA,i − NMC,i(mA, pF , EB)√
NDATA,i + σ2

MC,i

)2

(6.5)

where σ2
MC,i is the variance in bin i of the Monte Carlo weights, evaluated before the

fit changes the CCQE cross section parameters 1

6.1.2 Results

The analysis method is first verified by several “fake data” studies, where “fake data”

is central value Monte Carlo. The “fake data” set in this case has the statistics of
1The variance is not updated during the fit to avoid having fit parameters in the denominator,

which causes well-known problems [127] with minimizers like MINUIT.
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Table 6.1: Fake data fit results with statistically identical “fake data” and Monte Carlo

sets; both have the statistics of the data. The fake data is generated with EB = 0.025

GeV , pF = 0.220 GeV , and mA = 1.03 GeV/c2.

NMC χ2 EB (GeV ) pF (GeV ) mA (GeV/c2)

98,381 0.0000 0.0250±0.0053 0.2200±0.0056 1.030±0.0297
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Figure 6.2: χ2 function value vs. fit parameter value for a fit with statistically identical

“fake data” and Monte Carlo samples. Left: χ2 vs. EB (GeV). Middle: χ2 vs. pF

(GeV). Right: χ2 vs. mA (GeV/c2).

the data, 98,381 events, and is statistically independent from the Monte Carlo used

in fitting, unless noted otherwise.

The first check of the method is that fitting statistically identical “fake data”

and Monte Carlo results in χ2 = 0.0 at the minimum, and returns the Monte Carlo

CCQE cross section parameters. The fit passes this test, and the best-fit parameters

and errors are shown in table 6.1. The errors on the fit parameters are determined

by the “fake data” and Monte Carlo statistics, which correspond here to ∼2 ×106

Monte Carlo events before event selection cuts. The χ2 functions about the parameter

minima are shown in figure 6.2. These are one-dimensional scans in the sense that

while one parameter is varied by ±1 σ the other two parameters are fixed to their
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Table 6.2: “Fake data” fit results as a function of the number of Monte Carlo events.

The “fake data” is central value Monte Carlo with the statistics of the data, 98,381

events, and is statistically independent from the Monte Carlo event samples. NMC

is the number of Monte Carlo events after the νμ CCQE event selection cuts and the

requirement that Q2
REC < 1.0 GeV 2.

NMC
no cuts NMC

after cuts χ2 ndf EB (GeV ) pF (GeV ) mA (GeV/c2)

1×106 46,969 56.8041 13 0.0248 0.2213 1.032

2×106 103,413 23.7028 13 0.0249 0.2200 1.031

3×106 150,252 23.7183 13 0.0250 0.2200 1.028

4×106 197,162 18.0740 13 0.0250 0.2200 1.030

5×106 244,047 16.6362 13 0.0250 0.2200 1.029

6×106 290,933 14.6538 13 0.0250 0.2200 1.029

7×106 337,657 12.0116 13 0.0250 0.2200 1.030

8×106 374,929 12.0167 13 0.0250 0.2204 1.029

best-fit values. These distributions show that while the χ2 function is very symmetric

about the minimum for mA, it is highly asymmetric about the minima for EB and

pF
2

In practice, one would like the Monte Carlo statistical error to be negligible, and

therefore the Monte Carlo statistics should be much larger than the data statistics.

One test for determining when the Monte Carlo statistics are sufficiently large is to

examine the value of the χ2 at the best-fit point for a “fake data” fit as a function of

the Monte Carlo statistics. When the value of the χ2 is equal to the number of degrees

2The values of the χ2 function for the points sampled above the best-fit pF value only appear

to be zero because of the scale of the figure; the coordinates of these points range from (pF , χ2) =

(0.221, 0.452) to (0.226, 11.459).
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of freedom, and does not change with increasing Monte Carlo statistics, then the fit

result is stable and the Monte Carlo statistics are sufficient. The results of this test are

shown in table 6.2. The stable point occurs when the Monte Carlo statistics are ∼4

times larger than the data statistics. Another interesting feature of this study is that

the best-fit parameter values are fairly independent of the number of Monte Carlo

events used, only the value of the χ2 function at the minimum changes significantly.

This builds confidence that the parameter determination is unbiased with respect to

Monte Carlo statistics. For all subsequent fits described here, the Monte Carlo set

with the maximum number of events shown in this table is used, which is 374,929

events after cuts, corresponding to 8×106 generated events. As discussed in chapter

4, approximately 1/3 of the generated events are thrown away due to the correlation

between neutrino direction and interaction length, therefore 8× 106 generated events

corresponds to ∼5.4 ×106 events generated in the detector volume. After cuts, this

Monte Carlo set has 274,929 events, which is ∼4× larger than the data statistics.

The reconstructed Q2 distribution is shown before and after the fit with the “fake

data” superimposed in the left panel of figure 6.3. The Monte Carlo sample is 8 ×106

events before νμ CCQE selection cuts. As expected, Monte Carlo and “fake data”

agree well, both before and after the fit. The contribution to the χ2 at the best-fit

point from each reconstructed Q2 bin is shown in the right panel of figure 6.3.

It is important to verify that this analysis is insensitive to neutrino oscillations

since oscillations could bias the CCQE cross section parameter results, or, tuning the

Monte Carlo based on fits to data with an oscillation signal could bias the oscillation

analysis. To check the sensitivity of this method to oscillations, the maximum allowed

νμ disappearance signal under a 3+1 model [36] is introduced into the “fake data” set,

which has the statistics of the data without oscillations 3. The parameters are (Δm2,

3Since the efficiency of the νμ CCQE selection cuts is neglible for νe events, the presence of
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Figure 6.3: Left: number of events before (dashed, red line) and after (solid, green

line) fitting “fake data” with Monte Carlo vs. reconstructed Q2 (GeV 2). Right: χ2

value vs. reconstructed Q2 (GeV 2) at the best-fit point.
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Figure 6.4: Number of events vs. reconstructed Q2 (GeV 2) for oscillated (red, dashed

line) and un-oscillated (black, solid line) “fake data” with the statistics of the data.

Left: number of events absolutely normalized to protons on target. Right: number of

events normalized to the data.
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sin22θ) = (1.eV 2, 0.2), and the oscillated spectrum is produced by weighting the

central value Monte Carlo (un-oscillated) events by the survival probability P (νμ →
νμ) = 1− sin22θsin2

(
1.27Δm20.541(km)

EMC
ν (GeV )

)
. The reconstructed Q2 distribution is shown

in figure 6.4, compared with the no-oscillation case. The left panel shows the number

of events vs. Q2, and the effect of the oscillation signal is clearly visible. However,

this analysis normalizes the Monte Carlo to the data (or “fake data”), and therefore

the normalization component of the oscillation signal is lost. The right panel of

figure 6.4 shows the oscillated and un-oscillated “fake data” sets, normalized to the

same number of events. Here, the oscillation signal is much less apparent. A fit

to the oscillated “fake data” using the Monte Carlo sample from 8 ×106 generated

events before cuts results in best-fit CCQE paramters that are very similar to the

un-oscillated “fake data” fit result. The best-fit parameter values are EB = 0.0240

GeV , pF = 0.2286 GeV , and mA = 1.037 GeV/c2; the χ2 value at the best-fit point

is 11.1, and the fit has 13 degrees of freedom. The comparable un-oscillated “fake

data” fit results are summarized in the last row of table 6.2. These two cases agree

within the systematic errors on the fit parameters, which are summarized in table

6.6. A lower Δm2 signal might produce more of a spectrum distortion, which would

have a larger affect the mA fit, however, regions with Δm2 < ∼1.0 eV 2 are excluded

by the atmospheric data [36].

An important assumption of this analysis method is that the background can

be treated as noise in the sense that the background normalization does not change

during the fit. The Monte Carlo predicted distribution of the background as a function

of reconstruction Q2 is shown in figure 6.5, and one can see that the relative signal

and background fractions change significantly as a function of Q2. To test the impact

of background on the fit results, one can restrict the range of Q2 values used in

νμ → νe oscillations at the LSND-predicted level would have no impact on this analysis.
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Figure 6.5: Left: number of events vs. reconstructed Q2 (GeV 2) in “fake data” for

all neutrino interaction types (black, solid line), νμ CCQE events (red, dashed line),

and backgound events (blue, dotted line). Right: fraction of νμ CCQE (red, dashed

line) and background (blue, dotted line) events vs. reconstructed Q2 (GeV 2).

Table 6.3: “Fake data” fit results as a function of the minimum reconstructed Q2 value

used in the fit. The “fake data” is central value Monte Carlo with the statistics of

the data, 98,381 events, and is statistically independent from the Monte Carlo event

sample, which corresponds to 8×106 events before selection cuts.

Q2
min (GeV 2) χ2 ndf bgnd/total EB (GeV ) pF (GeV ) mA (GeV/c2)

0.0000 12.0167 13 0.1013 0.0250 0.2204 1.0290

0.0625 10.6889 12 0.0790 0.0250 0.2200 1.0251

0.1250 9.6668 11 0.0670 0.0250 0.2209 1.0239

0.1875 10.8390 10 0.0581 0.0251 0.2244 1.0288

0.2500 7.2560 9 0.0512 0.0252 0.2316 1.0313
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Table 6.4: Data fit results. The Monte Carlo set corresponds to 8×106 events before

selection cuts, or ∼4× the data statistics after cuts. The probability for χ2/ndf =

3.67/13 is 99.4%.

NData χ2/ndf EB (GeV ) pF (GeV ) mA (GeV/c2)

98,381 3.6712/13 0.0341±0.0013 0.2830±0.0069 1.2542±0.0204

the fit thereby changing the total fraction of background events. The Monte Carlo

is normalized to the total number of “fake data” events, with no Q2 cuts, in all

cases. The results of this study are summarized in table 6.3. For each fit, a minimum

reconstructed Q2 cut is applied to “fake data” and the statistically independent Monte

Carlo sample corresponding to 8 ×106 events before cuts. The resulting best-fit

parameters are all in good agreement with the default Q2 > 0.0 case, which builds

confidence that the presence of background events at low Q2 does not bias the fit

results under this analysis method. Note however that this study assumes that the

Q2 distribution of background events is known perfectly. A similar study can be done

with the data, and if the fit results depend on the minimum reconstructed Q2 value, it

may indicate that the assumed Q2 distribution of the background events is incorrect.

Having determined the necessary Monte Carlo statistics, verified that the analysis

is insensitive to oscillations, and checked that the presence of background does not

bias the fit results, one can apply this analysis to the actual νμ CCQE data set.

The minimization converges successfully with MINUIT fit status parameter ISTAT

equal to 3.0. The resulting best-fit parameters and their fit errors are summarized in

table 6.4. The best-fit parameters are quite different from the world-average values:

the binding energy EB is 0.034±0.0013 GeV compared with the world-average value

of 0.025 GeV , the Fermi momentum pF is 0.283±0.0069 GeV compared with 0.220
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Figure 6.6: χ2 function value vs. fit parameter value for a fit to data. Left: χ2 vs.

EB (GeV). Middle: χ2 vs. pF (GeV). Right: χ2 vs. mA (GeV/c2).

GeV , and the axial mass mA is 1.25±0.02 GeV/c2 compared with 1.03 GeV/c2. The

correlations between parameters, from the fit covariance matrix, are ρ1,2 = ρ2,1 =

-0.060, ρ1,3 = ρ3,1 = 0.500, and ρ2,3 = ρ3,2 = 0.617, where parameter #1 is EB, #2

is pF , and #3 is mA. The value of the χ2 as a function of the fit parameters about

their mimina is shown in figure 6.6. As in the “fake data” case, the χ2 is symmetric

about the best-fit mA value and asymetric about EB
4. Here the χ2 is also symmetric

about the best-fit pF value.

The reconstructed Q2 distribution is shown before and after the fit with the data

points superimposed in the left panel of figure 6.7. Before the fit, data and Monte

Carlo disagree significantly for Q2
REC < 0.2 GeV 2; after the fit, the Monte Carlo

reproduces the data well. The contribution to the χ2 at the best-fit point from each

reconstructed Q2 bin is shown in the right panel of figure 6.7.

Given the large differences between the starting and ending values of the CCQE

cross section parameters, one might worry about how other kinematic distributions

4The values of the χ2 function for the points sampled below the best-fit EB value only appear

to be zero because of the scale of the figure; the coordinates of these points range from (EB , χ2) =

(0.034, 3.695) to (0.0328, 5.801).
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Figure 6.7: Left: number of events before (dashed, red line) and after (solid, green

line) fitting data with Monte Carlo vs. reconstructed Q2 (GeV 2). Right: χ2 value vs.

reconstructed Q2 (GeV 2) at the best-fit point.

are affected. Figures 6.8 and 6.9 show the reconstructed EQE
ν distribution in each

Q2
REC bin before and after the fit compared with the νμ CCQE data set. These

show that after the fit the Monte Carlo prediction agrees much better with the data,

even though these EQE
ν distributions are not included in the fit, since only the total

number of events in each Q2
REC bin is considered. It is also very encouraging that the

EQE
ν distributions agree equally well for all EQE

ν values, because this indicates that

the CCQE parameter fitting has not introduced a bias as a function of EQE
ν , which

is the important variable for the oscillation analyses. In general, figures 6.8 and 6.9

demonstrate excellent agreement between the Monte Carlo prediction after the fit

and the data over 0 < Q2
REC < 1 GeV 2 and 0 < EQE

ν < 3 GeV , which is nearly all

of the MiniBooNE (Q2, EQE
ν ) parameter space.

To check the background reconstructed Q2 distribution assumption, the data have

been fit with a series of minimum reconstructed Q2 cuts, ranging from 0.00 to 0.25
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Figure 6.8: Number of events vs. reconstructed neutrino energy (GeV) in each recon-

structed Q2 bin before (red, dashed line) and after (green, solid line) fitting for CCQE

cross section parameters. The νμ CCQE data (black points) with statistical errors are

superimposed.
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Figure 6.9: Number of events vs. reconstructed neutrino energy (GeV) in each recon-

structed Q2 bin before (red, dashed line) and after (green, solid line) fitting for CCQE

cross section parameters. The νμ CCQE data (black points) with statistical errors are

superimposed.
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Table 6.5: Data fit results as a function of the minimum reconstructed Q2 value used

in the fit. The Monte Carlo event sample corresponds to 8×106 events before selection

cuts.

Q2
min (GeV 2) χ2 ndf EB (GeV ) pF (GeV ) mA (GeV/c2)

0.0000 3.6712 13 0.0341 0.2830 1.2542

0.0625 3.5723 12 0.0321 0.2856 1.2493

0.1250 3.5827 11 0.0287 0.2903 1.2427

0.1875 3.4296 10 0.0317 0.2866 1.2487

0.2500 3.4868 9 0.0289 0.2916 1.2458

GeV 2. The results of this study are summarized in table 6.5. As with the “fake

data” study, the Monte Carlo is normalized to have the same total number of events

as the data with no Q2 cuts, and so the normalization is identical in all cases. The

best-fit value of mA varies by < 1% with respect to the Q2 > 0.0 fit result, which

agrees within statistical errors. However, pF and EB have larger variations, 3% and

15% respectively. These parameter excursions are covered by the systematic errors,

which are summarized in table 6.6, however, they indicate that fits with Q2
min cutoffs

may be less sensitive to the values of the Fermi Gas model parameters. This is not

a surprise since the effects of non-zero EB and pF are largest at low Q2, as discussed

in chapter 3, although this is interesting because the Fermi gas model parameters are

quite correlated with mA, and previous measurements extract mA with fixed values

for pF and EB.

The systematic errors on the fit parameters are evaluated by fitting “fake data”

with a “unisim” Monte Carlo sample, in which one underlying simulation parameter,

e.g. the Sanford-Wang π+ production cross section parameter c1, has been varied by
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1σ. The sources of systematic error discussed in chapter 4, section 4.3 are considered

here. These include: (i) the π+ flux prediction Sanford-Wang parameter uncertainties,

(ii) the neutrino interaction cross section uncertainties, and (iii) a set of detector

response uncertainties.

A fit for (mA, pF , EB) is done for each of j “unisims” where the “unisim” j is

used as the Monte Carlo in the fit, and the “fake data,” which is really central value

Monte Carlo, is used as the data. The difference between the best-fit parameters

�pj = (mA, EB, pF )j and the central value parameters �p0 is taken to be the systematic

error contribution to the uncertainty on the fit parameters from source j. In this case,

the “fake data” is generated with the full available central value Monte Carlo set,

which is 8 × 106 events with no cuts, rather than the statistics of the real data. The

reason for this is to eliminate statistical uncertainties in the determination of �pj, since

including them in each of the j “unisim” fits, by having “fake data” with the data

statistics, would effectively count the statistical error j times. Instead, the statistical

error for each unisim is included via the variance of the weights, which is small, and

the contribution to the fit parameters is estimated using the central value Monte

Carlo fit to the real data, shown in table 6.4. This fit error, which comes dominantly

from the data statistics, is added in quadrature once with the j systematic errors. For

“unisims” produced via reweighting, the statistical error in the determination of �pj is

negligible with this method. In contrast, the currently available simulated “unisim”

Monte Carlo sets, described in chapter 4, section 4.3, have roughly the same statistics

as the data, and therefore their statistical error is not negligible.

Because this is a measurement of the CCQE cross section parameters, the neu-

trino interaction cross section “unisims” must be handled with care. To estimate the

contribution from these cross section uncertainties, only the variation of the back-

ground in each of the CCQE parameter “unisims” is considered. Therefore, although
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Table 6.6: Systematic error contributions to CCQE parameters. The δ are calculated

as the “unisim” best-fit parameters minus the central value Monte Carlo values, (EB,

pF , mA) = (0.025 GeV , 0.220 GeV , 1.03 GeV/c2). Numbers in percent are quoted

with respect to the central value parameters.

source δEB (GeV ) δpF (GeV ) δmA (GeV/c2)

SW π+ quadrature sum 0.0011 (4.38%) 0.0076 (3.45%) 0.0072 (0.70%)

σν quadrature sum 0.0031 (12.48%) 0.0087 (3.96%) 0.0475 (4.61%)

detector response 0.0021 (8.27%) 0.0150 (6.79%) 0.0626 (6.08%)

total 0.0039 (15.60%) 0.0189 (8.58%) 0.0789 (7.66%)

the changes in the CCQE parameters are quite large in these “unisims,” as is dis-

cussed in chapter 4, their impact on this analysis is small because only the background

events, which comprise ∼10% of the total, are affected.

The difference between the best-fit parameters for central value and each “unisim”

fit, Δ�pj, are shown in tables E.1, E.2, and E.3 in appendix E. The total systematic

error is calculated in the usual way by propagating the Δ�pj with the simulation

input parameter correlation matrix for each source, as described in chapter 4. In

this case, because the Δ�pj due to the π+ and CCQE parameter errors are negligible,

the Sanford-Wang π+ production and neutrino interaction cross section simulation

parameter correlations have been neglected. The detector response correlation matrix

given in appendix F is used to propagate the the detector response Δ�pj. The resulting

CCQE parameter systematic errors are summarized in table 6.6. As for the mA fit,

the detector response uncertainties contribute the most to the mA systematic error.

The values for the CCQE parameter uncertainties assumed in the MiniBooNE

simulation, which are based on past, external data, are 20%, 76%, and 72% for mA,
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EB, and pF respectively, as discussed in chapter 3. The MiniBooNE measurement

uncertainties summarized in table 6.6 are significantly smaller than the assumed val-

ues, at 8%, 9%, and 16%. Although the error analysis here is not complete since

the detector response systematic errors are still under development, the MiniBooNE

measurement is very competitive and likely will remain so when a full error analysis

is included.

The best-fit values from the data fit described in table 6.4 have been used to

generate all of the Monte Carlo in this thesis, with the exception of the pF value,

where 0.246 GeV was used instead of 0.283 GeV 5. These changes to the CCQE

cross section parameters with respect to the world-average values are not small, and

they impact both the total number of predicted events, and their kinematics. Further,

the changes to mA and the Fermi Gas model parameters (EB, pF ) have rather different

effects. Increasing mA from 1.03 GeV/c2 to 1.25 GeV/c2 changes the total number of

events passing the selection cuts by +15%, while changing (EB, pF ) from (0.025 GeV ,

0.220 GeV ) to (0.034 GeV , 0.246 GeV ) decreases the predicted rate by -7%. The

effects of these variations on the reconstructed Q2 and EQE
ν distributions are shown

in figure 6.10, both absolutely and relatively normalized. Increasing mA tends to

steepen the roll-over at low Q2 more than changing the Fermi Gas model parameters,

however, the trend is in the same direction, and for both, most of the change to the

Q2 shape occurs below Q2
REC = 0.2 GeV 2. None of the parameter changes have as

dramatic an impact on the EQE
ν distribution, but the cumulative effect is to shift the

spectrum slightly towards higher energy.

5The difference in the pF values comes from a change in the treatment of fit parameter limits

that post-dates the Monte Carlo generation. A fit to the data with the EB parameter limited to be

0.0 < EB < 1.0 results in a best-fit pF value of 0.246 GeV with best-fit EB = 0.034 GeV and mA

= 1.25 GeV/c2. The fitting method was changed here to use unbounded parameters, which is the

recommended procedure and generally gives more reliable results [56].
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Figure 6.10: Impact of CCQE parameter changes in Monte Carlo for events passing

the νμ CCQE selection cuts. Left: number of events (top), fraction of events (bottom)

vs. reconstructed Q2 (GeV 2). Right: number of events (top), fraction of events

(bottom) vs. reconstructed EQE
ν (GeV ).
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Table 6.7: Iteration test data fit results. The Monte Carlo set corresponds to 8×106

events before selection cuts, or ∼4× the data statistics after cuts, and is generated

with the best-fit CCQE parameters: mA = 1.254 GeV/c2, EB = 0.034 GeV , and pF

= 0.283 GeV . The probability for χ2/ndf = 4.718/13 is 98.09%.

NData χ2/ndf EB (GeV ) pF (GeV ) mA (GeV/c2)

98,381 4.718/13 0.0341±0.0029 0.2879±0.0091 1.2221±0.0140

Table 6.8: Summary of uncertainties on the CCQE parameter measurement. Statis-

tical errors are from table 6.7, and the systematic errors are from table 6.6.

source δEB (GeV ) δpF (GeV ) δmA (GeV/c2)

statistical errors 8.5% 2.4% 1.6%

systematic errors 15.6% 8.6% 7.7%

total 17.8% 8.9% 7.9%

A final check of the validity of the analysis method is to iterate the measurement

using Monte Carlo that has been generated with the best-fit CCQE parameters. The

result of this study, using the same central value Monte Carlo statistics as before, is

summarized in table 6.7. The iteration test fit converges successfully with MINUIT fit

status parameter ISTAT equal to 3.0. The best-fit parameter values are very similar to

the previous result: the binding energy EB is 0.0341±0.0029 GeV compared with the

previous best-fit value of 0.0341GeV , the Fermi momentum pF is 0.288±0.009 GeV

compared with 0.283 GeV , and the axial mass mA is 1.22±0.014 GeV/c2 compared

with 1.25 GeV/c2. The correlations between parameters, from the fit covariance

matrix, are ρ1,2 = ρ2,1 = -0.924, ρ1,3 = ρ3,1 = -0.205, and ρ2,3 = ρ3,2 = 0.430, where

parameter #1 is EB, #2 is pF , and #3 is mA.
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To estimate the total uncertainty on the MiniBooNE measurement of the CCQE

cross section parameters, the statistical and systematic errors are added in quadra-

ture, which is summarized in table 6.8. Note that errors considered in this work are

preliminary, and the method for simulating the detector response uncertainties is still

under investigation. However, with the error analysis described here, the MiniBooNE

measurement is EB = 0.034 ± 0.0.006 GeV , which is 1.7σ from the world-average

value of 0.025 GeV , pF = 0.288 ± 0.026 GeV , which is 2.6σ from the world-average

value of 0.220 GeV , and mA = 1.22 ± 0.10 GeV/c2, which is 1.9σ away from the

world-average value of 1.03 GeV/c2.

At this point it is worth noting that the difference with respect to the world-

average values may be due to nuclear effects. The world-average value for mA comes

from light nuclear target data. On the other hand, this measurement agrees within

errors with the recent K2K mA value of 1.20 ± 0.12 GeV/c2 [37], which was also

measured on a CH2 target. This large and systematic difference between the modern

heavy-target measurements and the older light-target data suggests that there may

be an interesting, and as yet not understood, physical explanation.

6.2 CCQE Axial Form Factor Measurement

One component that previous analyses have in common is the dipole axial form factor

assumption, and as a result, the functional form of the axial form factor is not well

constrained by past experiments. Previous measurements of FA vs. Q2 are shown for

neutrino scattering and pion electroproduction experiments in figure 6.11. The uncer-

tainties on the neutrino scattering measurements are very large, and therefore provide

little information on the Q2 dependence of the form factor, and the electroproduction

measurements are model-dependent. Also, there is scant electroproduction data be-
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Figure 6.11: Left: measurements of FA vs. Q2 from neutrino scattering data divided

by the dipole assumption, with predictions from lattice gauge theory (dashed line) and

a duality-based model (solid line); figure from reference [128]. Right: measurements

of FA vs. Q2 from pion electroproduction data; figure from reference [102].

low Q2 = 0.1 GeV 2. This is an important region for MiniBooNE because ∼20% of the

events have Q2 < 0.1 GeV 2, and because both the MiniBooNE and K2K experiments

observe disagreement between data and Monte Carlo in this region [37, 120].

The functional form of FA(Q2) at low Q2 can have a large effect on both the

normalization and the Q2 dependence of the CCQE cross section. For example,

a shape that is a dipole above and flat below Q2 of 0.25, with the same value of

FA(Q2 = 0), results in 15% more CCQE events passing the νμ CCQE selection cuts

when integrated over the MiniBooNE neutrino flux, and a 10% decrease of the number

of events below Q2 = 0.1 GeV 2. The number of CCQE events passing the selection

cuts vs. reconstructed Q2 and EQE
ν are shown for this alternative form compared with

the usual dipole dependence in figure 6.12. This type of variation is not excluded by

past measurements, as figure 6.11 shows.
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6.2.1 Method

The analysis to extract FA(Q2) from the MiniBooNE data is very similar to the

mA measurement, however, when fitting, the free parameters in the Smith-Moniz

cross section calculation are the Fermi Gas model parameters EB and pF , and the

value of FA in each Q2 bin. Fitting for the value of (FA)i in each reconstructed

Q2 bin i enables the determination of the functional form of FA vs. Q2 with no

assumptions about the Q2 dependence. This approach is completely independent of

the usual dipole form since it no longer appears in the CCQE cross section calculation.

Instead, the whole axial form factor is wrapped up as one free parameter in the fit,

e.g. FA(Q2) = gA/
(
1 +

m2
A

Q2

)2

is replaced by (FA)i in the Smith-Moniz CCQE cross

section calculation. With 16 reconstructed Q2 bins, this procedure leads to 18 free

parameters in the fit, and therefore more data bins are required to constrain the fit

parameters than in the mA fit, which had 3 free parameters and 16 reconstructed Q2

bins as the data points. The additional data points in this fit are the 24 reconstructed

Eν bins, from 0 to 3 GeV , in each of 16 reconstructed Q2 bins from 0 to 1 GeV/c2,

as shown in figures 6.8 and 6.9.

The χ2 for this fit is given by

χ2 =
∑

i

∑
j

(NDATA,i,j − NMC,i,j((FA)i, EB, pF )√
NDATA,i,j

)2

(6.6)

where i indexes reconstructed Q2 bins, j indexes reconstructed neutrino energy bins,

NDATA,i,j is the number of events in the data in bin (i, j),
√

NDATA,i,j is the statistical

error on the data, NMC,i,j((FA)i, EB, pF ) is the number of Monte Carlo events in bin

(i,j), and is a function of (FA)i, EB, and pF via the Monte Carlo weights. This

χ2 function is minimized with respect to (FA)i in each Q2
REC bin, and the Fermi

Gas model parameters EB and pF . The latter two are global parameters in the

sense that there is one value for all Q2 and Eν bins. The mechanics of the fit, e.g.
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Figure 6.12: Impact of changing the axial form factor functional dependence on Q2

in Monte Carlo for events passing the νμ CCQE selection cuts. The “dipole form”

(black, solid line) and “alternative form” (red, dashed line) are explained in the text.

Both use (mA, EB, pF ) = (1.03 GeV/c2, 0.025 GeV , 0.220 GeV ). Left: number of

events vs. reconstructed Q2 (GeV 2). Right: number of events vs. reconstructed EQE
ν

(GeV ).
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the Monte Carlo weight calculation, the Monte Carlo normalization, the treatment of

background, etc., are identical to the mA analysis. The initial values of the parameters

in the fit are the world-average EB, 0.025 GeV , and pF , 0.220 GeV , values, and FA

evaluated at the average generated Q2 in each reconstructed Q2 bin assuming the

dipole form with the world-average values for gA, 1.2671, and mA, 1.03 GeV/c2.

6.2.2 Results

As with the mA analysis, “fake data” studies are employed to verify the analysis

procedure. First, “fake data” is fit with statistically identical Monte Carlo, both with

the statistics of the νμ CCQE data set after cuts, 98,371 events. The resulting best-fit

parameters and their fit errors are summarized in table 6.9. In all cases the best-fit

parameters are identical to the parameters the “fake data” was generated with, and

the value of the χ2 function at the minimum is 0.0, for 366 degrees of freedom. The

number of degrees of freedom is calculated as (16 Q2 bins) × (24 Eν bins) - (18 fit

parameters) = 366, however, unlike the mA fit, not all Eν,REC bins are occupied. Of

the 384 (Q2
REC ,Eν,REC) bins, 251 are occupied and therefore contribute to the χ2.

As a result, the expected number of degrees of freedom is more like (251 bins) - (18

fit parameters) = 233. The χ2 functions about the parameter minima are shown in

figure 6.13. These distributions look as expected from previous experience with the

mA fits: for EB and pF the χ2 function is highly asymmetric about the minima, and

for (FA)i the χ2 function is very well behaved.

Smearing is somewhat more important here than for the mA measurement because

this analysis seeks to determine the functional form of FA vs. “true”, or un-smeared,

Q2. The effect of Q2 smearing is that the average reconstructed Q2 is different from the

average “true” Monte Carlo generated Q2 for events in a Q2
REC bin. The second two

columns of table 6.10 compare these two quantities. In all of the following studies, the
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Table 6.9: Fake data fit results with statistically identical “fake data” and Monte Carlo

sets; both have the statistics of the data. The χ2 value at the minimum is 0.0000 for

366 degrees of freedom. “FA(Q2
1)” refers to the value of FA in reconstructed Q2 bin

#1.

parameter MC value best-fit value fit error

EB (GeV ) 0.0250 0.0250 0.0024

pF (GeV ) 0.2200 0.2200 0.0103

FA(Q2
1) -1.1371 -1.1371 0.05194

FA(Q2
2) -1.0289 -1.0289 0.03669

FA(Q2
3) -0.9321 -0.9320 0.02442

FA(Q2
4) -0.8456 -0.8456 0.01952

FA(Q2
5) -0.7747 -0.7747 0.01792

FA(Q2
6) -0.7131 -0.7131 0.01857

FA(Q2
7) -0.6614 -0.6614 0.01964

FA(Q2
8) -0.6104 -0.6104 0.02024

FA(Q2
9) -0.5715 -0.5715 0.02124

FA(Q2
10) -0.5354 -0.5354 0.02283

FA(Q2
11) -0.5005 -0.5005 0.02403

FA(Q2
12) -0.4726 -0.4726 0.02560

FA(Q2
13) -0.4485 -0.4485 0.02842

FA(Q2
14) -0.4243 -0.4243 0.02975

FA(Q2
15) -0.4020 -0.4020 0.03154

FA(Q2
16) -0.3794 -0.3794 0.03336
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Figure 6.13: χ2 function value vs. fit parameter value for a fit with statistically

identical “fake data” and Monte Carlo samples. Top left: χ2 vs. EB (GeV). Top

right: χ2 vs. pF (GeV). Bottom: χ2 vs. FA in Q2 bins.
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Table 6.10: Effect of Q2 reconstruction smearing after a “fake data” fit with statisti-

cally identical “fake data” and Monte Carlo sets; both have the statistics of the data.

Q2
REC and Q2

GEN are the average reconstructed and generated Q2 in each Q2
REC bin

respectively. FA(Q2
GEN) is the dipole-assumption value of FA evaluated at the aver-

age Q2
GEN in each Q2

REC bin, and FA(Q2
GEN) is the average of all of the FA values,

calculated at the Q2
GEN of each event, in a given Q2

REC bin.

Q2
REC bin # Q2

REC Q2
GEN r.m.s. Q2

GEN FA(Q2
GEN) FA(Q2

GEN)
FA(Q2

GEN )

FA(Q2
GEN )

1 0.031 0.060 0.085 -1.137 -1.145 1.009

2 0.094 0.121 0.076 -1.029 -1.028 1.007

3 0.156 0.181 0.068 -0.932 -0.932 1.008

4 0.219 0.243 0.080 -0.846 -0.847 1.010

5 0.281 0.300 0.090 -0.775 -0.779 1.012

6 0.344 0.357 0.097 -0.713 -0.718 1.013

7 0.406 0.411 0.108 -0.661 -0.668 1.015

8 0.469 0.471 0.118 -0.610 -0.618 1.016

9 0.531 0.522 0.124 -0.571 -0.579 1.017

10 0.594 0.573 0.134 -0.535 -0.544 1.019

11 0.656 0.629 0.139 -0.500 -0.509 1.019

12 0.719 0.678 0.151 -0.473 -0.482 1.021

13 0.781 0.724 0.149 -0.449 -0.457 1.020

14 0.844 0.773 0.168 -0.424 -0.434 1.024

15 0.906 0.824 0.161 -0.402 -0.410 1.021

16 0.969 0.878 0.168 -0.379 -0.388 1.021
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best-fit values of FA are reported at the average generated Q2 in each reconstructed

Q2 bin. This quantity is calculated at each iteration of the fit, since the CCQE cross

section parameters which are varied in the course of minimization can affect dN/dQ2.

Both event reconstruction and nuclear interactions contribute to the Q2 smearing.

The event reconstruction smearing in angle and lepton energy can be measured in

data and compared with Monte Carlo using the muon tracker calibration system, as

shown in figure 3.27. Nuclear interactions contribute to the smearing because FA is

part of the free-nucleon CCQE cross section, and therefore interactions of outgoing

particles within the nucleus may change the kinematics. This analysis provides a gross

check of the MiniBooNE nuclear model in that the χ2/ndf measures the overall level

of agreement between the simulation and the data in terms of high-level reconstructed

quantities, however, there is no analogous calibration source to the muon tracker for

nuclear interactions. As a consequence, this FA(Q2) (and mA) measurement assumes

the MiniBooNE model for nuclear effects, and uses the MiniBooNE Monte Carlo to

calculate the mapping from the generated event kinematics to a reconstructed Q2.

Fortunately, Q2 smearing has a small impact on this measurement, as is shown by the

success of the fits to “fake data” in extracting the CCQE cross section parameters

used to generate the “fake data”.

Another worrysome possibility with smearing is that it may be asymetric, for

example, in the case of a steeply changing FA distribution, smearing may push more

events into a bin than out of it. To quantify the importance of this effect, table

6.10 compares the value of FA(Q2) evaluated at the average generated Q2 (Q2
GEN) in

each Q2
REC bin with FA(Q2

GEN) averaged over all events in a given Q2
REC bin. The

difference between these two is at the level of a few % for all Q2
REC bins. Therefore,

this effect is neglected in the following.

The next closure test of the analysis method is to fit statistically independent
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Table 6.11: Statistically independent “fake data fit” results as a function of the number

of Monte Carlo events. “FA(Q2
1)” refers to the value of FA in reconstructed Q2 bin

#1; the “MC value” column lists the value of each parameter used to generate the

“fake data”; the “2M best-fit” column shows the best-fit parameter values for a Monte

Carlo set corresponding to 2 × 106 events with no cuts.

parameter MC 2M 4M 6M 8M oscillated 8M

name value best-fit best-fit best-fit best-fit best-fit

EB (GeV ) 0.0250 0.0250 0.0250 0.0250 0.0251 0.0250

pF (GeV ) 0.2200 0.2200 0.2200 0.2200 0.2202 0.2200

FA(Q2
1) -1.1371 -1.1057 -1.1099 -1.1159 -1.1203 -1.0926

FA(Q2
2) -1.0289 -1.0621 -1.0650 -1.0602 -1.0519 -1.0279

FA(Q2
3) -0.9321 -0.9354 -0.9298 -0.9318 -0.9352 -0.9057

FA(Q2
4) -0.8456 -0.8607 -0.8682 -0.8668 -0.8632 -0.8572

FA(Q2
5) -0.7747 -0.7592 -0.7582 -0.7573 -0.7581 -0.7534

FA(Q2
6) -0.7131 -0.7150 -0.7138 -0.7172 -0.7174 -0.7123

FA(Q2
7) -0.6614 -0.6515 -0.6533 -0.6551 -0.6565 -0.6573

FA(Q2
8) -0.6104 -0.5992 -0.5944 -0.5948 -0.5977 -0.6028

FA(Q2
9) -0.5715 -0.5695 -0.5669 -0.5675 -0.5690 -0.5766

FA(Q2
10) -0.5354 -0.5423 -0.5387 -0.5387 -0.5447 -0.5541

FA(Q2
11) -0.5005 -0.5056 -0.5074 -0.5065 -0.5017 -0.5141

FA(Q2
12) -0.4726 -0.4466 -0.4569 -0.4597 -0.4657 -0.4790

FA(Q2
13) -0.4485 -0.4198 -0.4318 -0.4288 -0.4295 -0.4446

FA(Q2
14) -0.4243 -0.4531 -0.4401 -0.4412 -0.4450 -0.4603

FA(Q2
15) -0.4020 -0.4056 -0.3972 -0.3980 -0.4041 -0.4202

FA(Q2
16) -0.3794 -0.3701 -0.3800 -0.3753 -0.3742 -0.3905

χ2 N/A 438 277 257 222 313
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“fake data,” and to determine what number of Monte Carlo statistics are sufficient.

The results of this study are summarized in table 6.11. As with the mA analysis, the

Monte Carlo set corresponding to 8×106 events before cuts appears to have sufficient

statistics since the χ2/ndf has approximately the expected value once the number of

Monte Carlo events exceeds 6 × 106. The resulting best-fit parameters are in good

agreement with those used to generate the “fake data,” therefore one can conclude

that the closure test is successful and the analysis method is reasonably free of bias.

The best fit values of FA vs. Q2
GEN obtained from fitting the 8 × 106 Monte

Carlo event set to statistically independent “fake data,” with the statistics of the

real data, are shown in the left panel of figure 6.14, compared with the Monte Carlo

input FA vs. Q2
GEN values. The χ2/ndf of the fit is 222/233, which has a probability

of 68.6%. Fitting the dipole form to the fake data best fit FA vs. Q2
GEN results in

FA(Q2 = 0) = −1.2674 and mA = 1.043 with a χ2/ndf of 1.29/14. The total χ2 in

each Q2
REC bin i, which is a sum of the χ2 contribution from each Eν,REC bin j in

Q2
REC bin i, is shown in the right panel of figure 6.14. The Eν,REC distributions in

each Q2
REC bin, which are used in the fit χ2 function, are shown in figures 6.15 and

6.16 before and after the fit, compared with the νμ CCQE “fake data” points with

statistical errors.

Since the FA fits use the Eν,REC distribution, it is especially important to deter-

mine the sensitivity of the analysis to an oscillation signal in the data. Further, the

FA fit results are not used to tune the MiniBooNE Monte Carlo to avoid any possi-

bility of introducing bias to the oscillation analyses. This study is done in exactly

the same way as for the mA analysis: the maximum allowed νμ disappearance signal

is introduced into the “fake data,” which is fit with the high statistics central value

Monte Carlo set. The Eν,REC distribution in each Q2
REC bin is shown in figure 6.17,

compared with the no-oscillation case, absolutely normalized. The effect of the oscil-
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Fake Data Fit Result
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Figure 6.14: Left: FA before (red, open squares) and after (green, solid squares) fitting

“fake data” with Monte Carlo vs. Q2 (GeV 2). Right: χ2 value vs. reconstructed Q2

(GeV 2) at the best-fit point.

lation signal is clearly visible, however, as for mA, once the Monte Carlo is normalized

to the data (or “fake data”), the difference between the oscillated and un-oscillated

spectra is negligble. Figure 6.18 shows this comparison. The best-fit parameters for

the oscillated case are compared with the un-oscillated “fake data” result in the last

two columns of table 6.11. These two cases agree within the systematic errors on the

fit parameters, shown in table 6.14, and therefore the conclusion of this study is that

oscillations do not bias this analysis.

Finally, the νμ CCQE data set is fit with the high statistics central value Monte

Carlo set. The resulting best-fit parameters and their fit errors are summarized

in the first two columns of table 6.12. The χ2 value at the minimum is 269, to

be compared with the 366 degrees of freedom, of which 233 contribute to the χ2

function. The probability for χ2/ndf = 269/233 is 0.053. The χ2 functions about

the parameter minima are shown in figure 6.20. These distributions are roughly
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Figure 6.15: Number of events vs. reconstructed neutrino energy (GeV) in each recon-

structed Q2 bin before (red, dashed line) and after (green, solid line) fitting for CCQE

cross section parameters. The νμ CCQE “fake data” (black points) with statistical

errors are superimposed.
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Figure 6.16: Number of events vs. reconstructed neutrino energy (GeV) in each recon-

structed Q2 bin before (red, dashed line) and after (green, solid line) fitting for CCQE

cross section parameters. The νμ CCQE “fake data” (black points) with statistical

errors are superimposed.
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Figure 6.17: Number of Monte Carlo events vs. reconstructed Eν (GeV ) in each

Q2
REC bin for oscillated (red, dashed line) and un-oscillated (black, solid line) “fake

data” with the statistics of the data. The number of Monte Carlo events is absolutely

normalized to protons on target.
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Figure 6.18: Number of Monte Carlo events vs. reconstructed Eν (GeV ) in each

Q2
REC bin for oscillated (red, dashed line) and un-oscillated (black, solid line) “fake

data” with the statistics of the data. The number of Monte Carlo events is normalized

to the “fake data.”
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Figure 6.19: Left: FA before (red, open squares) and after (black, filled circles) fitting

data with Monte Carlo vs. Q2 (GeV 2). Right: χ2 value vs. reconstructed Q2 (GeV 2)

at the best-fit point.

parabolic for all parameters, which a good sign, however, the MINUIT fit convergence

status parameter ISTAT equals 2 for the data fit, rather than 3 which is the sign

of convergence with an accurate parameter covariance matrix. ISTAT equal to 2

indicates that the fit converged, however, the parameter covariance matrix at the

minimum has been forced to be positive-definite by the addition of a constant to

the diagonal elements. This often indicates that the fit errors may be unreliable due

to a non-quadratic dependence of the χ2 on the parameter errors at the minimum,

or, parameters which are 100% correlated. In this case, the problem is that the

correlation between EB and pF is 99.9%. In a fit where EB is fixed to the best-fit

value, 0.034 GeV , and the remaining 17 parameters are free in the fit, the resulting

fit status is 3 and the fit converges to the same minimum, as is shown in the third

column of table 6.12. The latter fit, with ISTAT equals 3, is used as the data result

in the following.
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Table 6.12: Data fit results with 8 ×106 Monte Carlo events before cuts. Case 1 has

all parameters free in the fit, case 2 has EB fixed to the best-fit value from case 1.

“FA(Q2
1)” refers to the value of FA in reconstructed Q2 bin #1. The probability for

χ2/ndf = 269/233 is 0.053.

parameter case 1 best-fit value case 2 best-fit value

EB 0.0342 ± 7.6522 0.0341 ± N/A

pF 0.2521 ± 0.0003 0.2518 ± 0.0180

FA(Q2
1) -0.9856 ± 1.5002×10−5 -0.9811 ± 0.2173

FA(Q2
2) -0.9340 ± 1.5073×10−5 -0.9320 ± 0.1140

FA(Q2
3) -0.9020 ± 2.0358×10−5 -0.9007 ± 0.0706

FA(Q2
4) -0.8678 ± 3.4495×10−5 -0.8667 ± 0.0509

FA(Q2
5) -0.8203 ± 2.0989×10−5 -0.8195 ± 0.0431

FA(Q2
6) -0.7771 ± 1.5090×10−5 -0.7765 ± 0.0452

FA(Q2
7) -0.7484 ± 5.4379×10−5 -0.7478 ± 0.0434

FA(Q2
8) -0.7010 ± 4.9480×10−5 -0.7005 ± 0.0492

FA(Q2
9) -0.6777 ± 1.7115×10−5 -0.6772 ± 0.0464

FA(Q2
10) -0.6510 ± 1.8061×10−5 -0.6506 ± 0.0480

FA(Q2
11) -0.6125 ± 1.5010×10−5 -0.6121 ± 0.0510

FA(Q2
12) -0.5803 ± 1.6423×10−5 -0.5799 ± 0.0544

FA(Q2
13) -0.5631 ± 2.2581×10−5 -0.5628 ± 0.0593

FA(Q2
14) -0.5563 ± 1.5114×10−5 -0.5559 ± 0.0638

FA(Q2
15) -0.5156 ± 1.6700×10−5 -0.5153 ± 0.0668

FA(Q2
16) -0.5176 ± 1.5138×10−5 -0.5173 ± 0.0724

χ2 269 269

ISTAT 2 3
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Figure 6.20: χ2 function value vs. fit parameter value for a fit to data. Top left: χ2

vs. EB (GeV). Top right: χ2 vs. pF (GeV). Bottom: χ2 vs. FA in Q2 bins.



247

The best fit values of FA vs. Q2
GEN obtained from fitting the νμ CCQE data are

shown in the left panel of figure 6.19, compared with the Monte Carlo input FA vs.

Q2
GEN values. Fitting the dipole form to the fake data best fit FA vs. Q2

GEN results

in FA(Q2 = 0) = −1.0942 and mA = 1.3755 with a χ2/ndf of 0.4379/14. The total

χ2 in each Q2
REC bin i, which is a sum of the χ2 contribution from each Eν,REC bin

j in Q2
REC bin i, is shown in the right panel of figure 6.19. The Eν,REC distributions

in each Q2
REC bin, which are used in the fit χ2 function, are shown in figures 6.21

and 6.22 before and after the fit, compared with the νμ CCQE data with statistical

errors.

The normalization of the Monte Carlo in the fit is arbitrary, because at the start

it is scaled to have the same total number of events as the data. This makes the

overall normalization scale of the best-fit FA values arbitrary as well, because the

fit χ2 function is balancing two effects: (i) the initial normalization of the data and

Monte Carlo which is such that the χ2 = 0 when mA = 1.03 and gA = -1.2671, and,

(ii) the increase in the number of events in the Monte Carlo as the slope of FA is

decreased (which corresponds to mA being increased) as the fit attempts to match

the data Q2 distribution. Hence, as the slope of FA(Q2) is decreased the best-fit

FA(Q2 = 0) is increased to preserve the same total number of events in data and

Monte Carlo.

However, the normalization of FA at Q2 = 0.0 GeV 2 is very precisely measured in

neutron beta decay to be gA = -1.2671 ± 0.0035 [45]. This constraint is not included

in the FA fits here because of the Monte Carlo normalization condition, and therefore

the result in table 6.12 must be corrected by a scale factor to recover a physical value

for FA(Q2 = 0). This issue does not similarly affect the mA fits because the value

of FA(Q2 = 0) = −1.2671 is explicitly included via the dipole form factor and

gA. The ratio of the measured gA to the best-fit FA(Q2 = 0) is -1.2671/-1.0942 =
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Figure 6.21: Number of events vs. reconstructed neutrino energy (GeV) in each

reconstructed Q2 bin before (red, dashed line) and after (green, solid line) fitting for

CCQE cross section parameters. The νμ CCQE data (black points) with statistical

errors are superimposed.
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Figure 6.22: Number of events vs. reconstructed neutrino energy (GeV) in each

reconstructed Q2 bin before (red, dashed line) and after (green, solid line) fitting for

CCQE cross section parameters. The νμ CCQE data (black points) with statistical

errors are superimposed.
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1.1580. The extrapolation to Q2 = 0.0 uses the coefficients from the dipole fit to the

best-fit FA vs. Q2 described above. It is interesting that this constant, which is based

on a fit to the shapes of the kinematic distributions, goes in same direction as the

normalization difference between data and the MiniBooNE Monte Carlo prediction

discussed in chapter 4. The MiniBooNE FA vs. Q2 measurement in data is corrected

by this scale factor, 1.158, in the following.

The systematic errors on the fit parameters are evaluated by fitting “fake data”

with a “unisim” Monte Carlo sample, with a procedure identical to that of the mA

analysis. The difference between the best-fit parameters for central value Monte Carlo

and each “unisim” fit are shown in tables E.4, E.5, and E.7 for the π+ flux, neutrino

interaction cross section, and detector response uncertainties respectively. These do

not include parameter correlations. The systematic errors are summarized by source

in table 6.13, as before including correlations between detector response simulation

parameters but neglecting π+ and neutrino interaction cross section parameter cor-

relations. The contributions of the π+ flux and neutrino interaction cross section

uncertainties, which come primarily from the pion final state interaction model vari-

ations, are of similar sizes, ∼1-5%, and the detector response systematic error contri-

bution is a bit larger, ∼5-10%. The total systematic error ranges from ∼10-15%; for

comparison, the statistical errors contribute ∼5-10%.

The MiniBooNE (FA)i result, which has been scaled to have FA(Q2 = 0) = gA,

is given in table 6.14. The total error is calculated by adding the systematic errors

from the variations of simulation input parameters in quadrature with the statistical

error from the data fit. The total FA vs. Q2 measurement uncertainty ranges from

∼10-20%, which the largest uncertainties for the lowest and highest Q2 values.

The implications of the measurements in this chapter are that the Smith-Moniz

CCQE cross section formalism, together with the dipole axial form factor and the
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Table 6.13: Systematic error contributions by source to the CCQE cross section pa-

rameters that are varied in the (FA(Q2), EB, pF ) fit. Errors are given as a percentage

of the Monte Carlo values, in parentheses.

parameter MC value π+ flux σν detector response

EB 0.02500 0.00397 (15.869) 0.00667 (26.684) 0.00685 (27.401)

pF 0.22000 0.00743 (3.378) 0.02996 (13.617) 0.03599 (16.359)

FA(Q2
1) -1.13710 0.03215 (2.827) 0.13709 (12.056) 0.14371 (12.638)

FA(Q2
2) -1.02890 0.02438 (2.370) 0.05337 (5.187) 0.09690 (9.418)

FA(Q2
3) -0.93205 0.01561 (1.674) 0.04418 (4.740) 0.06894 (7.397)

FA(Q2
4) -0.84561 0.01400 (1.656) 0.00982 (1.161) 0.06490 (7.675)

FA(Q2
5) -0.77466 0.01313 (1.695) 0.01144 (1.477) 0.04965 (6.410)

FA(Q2
6) -0.71310 0.01532 (2.148) 0.01605 (2.250) 0.05702 (7.996)

FA(Q2
7) -0.66141 0.01713 (2.590) 0.02530 (3.825) 0.04442 (6.716)

FA(Q2
8) -0.61044 0.02410 (3.949) 0.01699 (2.783) 0.05422 (8.882)

FA(Q2
9) -0.57146 0.02306 (4.035) 0.01932 (3.381) 0.03364 (5.887)

FA(Q2
10) -0.53542 0.02627 (4.906) 0.03093 (5.776) 0.04769 (8.906)

FA(Q2
11) -0.50046 0.02710 (5.415) 0.02939 (5.873) 0.03843 (7.679)

FA(Q2
12) -0.47262 0.02821 (5.969) 0.03961 (8.381) 0.03608 (7.634)

FA(Q2
13) -0.44851 0.02540 (5.663) 0.03066 (6.835) 0.04547 (10.138)

FA(Q2
14) -0.42434 0.02709 (6.384) 0.03513 (8.279) 0.05668 (13.358)

FA(Q2
15) -0.40203 0.02739 (6.812) 0.02784 (6.925) 0.05398 (13.427)

FA(Q2
16) -0.37942 0.03092 (8.150) 0.04978 (13.119) 0.05430 (14.311)
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Table 6.14: Data fit results and error analysis summary for EB, pF , and (FA)i mea-

surement. The data fit results FA ± δ(FA)total are normalized to gA = -1.2671. The

total error is the quadrature sum of the statistical and systematic errors.

parameter FA ± δ(FA)total stat. error (%) sys. error (%) total error (%)

EB 0.0341 ± 0.0141 N/A 41.4086 41.4086

pF 0.2518 ± 0.0572 7.1366 21.5511 22.7020

FA(Q2
1) -1.1361 ± 0.2988 22.1486 14.1869 26.3026

FA(Q2
2) -1.0792 ± 0.1696 12.2317 9.8716 15.7182

FA(Q2
3) -1.0430 ± 0.1140 7.8383 7.6280 10.9373

FA(Q2
4) -1.0036 ± 0.0988 5.8728 7.9094 9.8514

FA(Q2
5) -0.9489 ± 0.0812 5.2593 6.7510 8.5578

FA(Q2
6) -0.8991 ± 0.0923 5.8209 8.4653 10.2735

FA(Q2
7) -0.8659 ± 0.0824 5.8036 7.5454 9.5192

FA(Q2
8) -0.8111 ± 0.0986 7.0235 9.9241 12.1580

FA(Q2
9) -0.7841 ± 0.0798 6.8517 7.5266 10.1782

FA(Q2
10) -0.7533 ± 0.0964 7.3778 10.4631 12.8026

FA(Q2
11) -0.7088 ± 0.0907 8.3319 9.7169 12.8000

FA(Q2
12) -0.6715 ± 0.0922 9.3809 10.0301 13.7334

FA(Q2
13) -0.6517 ± 0.1048 10.5366 12.1597 16.0897

FA(Q2
14) -0.6437 ± 0.1229 11.4768 15.2597 19.0939

FA(Q2
15) -0.5967 ± 0.1205 12.9633 15.4981 20.2049

FA(Q2
16) -0.5990 ± 0.1307 13.9957 16.7426 21.8219
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Figure 6.23: Smith-Moniz CCQE cross section calculated with the world-average pa-

rameters, compared with calculations using the two MiniBooNE measurements. No

uncertainties are shown.

Fermi Gas model, describes the MiniBooNE data well, although different parameters

from those measured with light-target data are preferred. The best-fit FA vs. Q2

prefer a much shallower slope than the dipole form evaluated with the world-average

(mA, EB, pF ) values. A shallower slope corresponds to higher mA values, in agreement

with the trend of the mA fit results.

The Smith-Moniz CCQE cross section calculated using the world-average CCQE

parameters is compared in figure 6.23 with calculations using the two MiniBooNE

measurements: (i) the best-fit (mA, EB, pF ) values, and (ii) the gA-normalized best-

fit ((FA)i, EB, pF ) values. At the average MiniBooNE neutrino beam energy of 0.8

GeV , the cross sections calculated using the MiniBooNE measurements are in good

agreement, and are ∼10% larger than the prediction using the world-average light-

target values for mA, EB, and pF .



Chapter 7

Oscillation Search

Two kinds of oscillation searches are possible at MiniBooNE: νμ disappearance, via

νμ → νx where x �= μ, and νe appearance, via νμ → νe. Theoretically, these two

channels may probe different oscillation transitions, as in 3+1 or 3+2 models, where

the LSND observation is posited to be a combination of νμ → νs and νs → νe flavor

oscillations. In the 3+1 case, the νe appearance search probes the product of the

probabilities for these two processes, Posc ∼ |Ue4|2|Uμ4|2. In contrast, the νμ dis-

appearance analysis is sensitive to Posc ∼ |Uμ4|2, and therefore combining the two

can add information about the underlying oscillation parameters. Experimentally,

combining information from the νμ data set with the νe appearance analysis provides

some reduction of the systematic errors for the νe search. As in chapter 5, the νμ data

in MiniBooNE can be used to measure the νμ flux and constrain the uncertainty on

the flux prediction for the intrinsic νe background. Similarly, the νμ CCQE data set

can be used to extract information about the νe CCQE cross section, as in chapter

6. However, care must be taken to account for the possibility of νμ disappearance. A

straightforward way to address this and incorporate the νμ experimental constraints

on the systematic errors for the νe appearance search is to perform a combined oscil-
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lation fit for νμ disappearance and νe appearance in MiniBooNE.

7.1 Method

The analysis described here focuses on the second aspect of the combined νe and νμ

fit, which is to reduce the systematic errors associated with the νe appearance search.

For this purpose, a general two-neutrino model is employed, in which the νμ → νe

and νμ → νx oscillation parameters are completely independent and specified by four

experimental parameters, (Δm2
A, sin22θμe) and (Δm2

D, sin22θμx). For simplicity,

the subscript on Δm2 is dropped in the following. Because of these model assump-

tions, this analysis seeks to measure “effective” oscillation parameters which describe

the MiniBooNE data under this hypothesis, rather than the true, fundamental mass

splittings and mixing angles found in nature.

To search for oscillations, the neutrino energy distribution is compared in data

and Monte Carlo, where the Monte Carlo contains an oscillation hypothesis. In this

two-neutrino model, the number of detected νμ events Ndet
νμ

in Monte Carlo as a

function of true neutrino energy Eν depends on the oscillation parameters as

Ndet
νμ

(Eν) = Nprod(Eν) × P (νμ → νμ) = Nprod(Eν) ×
[
1 − P (νμ → νx)

]
(7.1)

= Nprod(Eν) ×
[
1 − sin22θμx sin2

(1.27Δm2Lν

Eν

)]
where Nprod(Eν) is the number of νμ events that would be detected if the νμ flux at

the detector were equal to the νμ flux at production (before oscillations may occur),

Lν is the distance traveled by the νμ between production and detection in km, and Eν

is the energy of the νμ in GeV . For νe appearance, the number of detected νe Monte

Carlo events Ndet
νe

as a function of neutrino energy Eν depends on the oscillation

parameters as

Ndet
νe

(Eν) = Nprod(Eν) × P (νμ → νe) (7.2)
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= Nprod(Eν) × sin22θμe sin2
(1.27Δm2Lν

Eν

)
.

The oscillation signal is at a maximum when

(1.27Δm2Lν

Eν

)
=

π

2
(7.3)

which occurs when

Δm2 =
π

2
×

( Eν

1.27Lν

)
. (7.4)

For MiniBooNE, with 〈Eν〉 ∼ 0.8 GeV and 〈Lν〉 ∼ 0.54 km, this occurs at ∼1.8 eV 2.

Since the true neutrino energy is unknown in the data, the χ2 function must com-

pare the data and Monte Carlo as a function of reconstructed neutrino energy, EQE
ν .

Finite energy resolution will diminish the oscillation sensitivity of the experiment be-

cause above some Δm2 value, the oscillation frequency is too high for the experiment

to resolve individual oscillation peaks in the detected neutrino energy spectrum. The

distance between oscillation maxima is

λ =
2πEν

1.27Δm2
. (7.5)

For MiniBooNE, the neutrino energy resolution is ∼10% at 1.0 GeV for signal events,

shown in figure 4.10, and therefore the experiment loses sensitivity to the energy

spectrum distortion due to oscillations when the distance between oscillation maxima

is less than 0.1 GeV , which occurs at Δm2 ∼ 50 eV 2. In practice, this threshold is

lower because there are systematic errors which affect the energy spectrum.

A basic oscillation fit minimizes this function:

χ2 =
∑

i

(NData
i − NMC

i (Δm2, sin22θ)

σi

)2

(7.6)

where i indexes EQE
ν bins, NData

i is the number of events in the data in reconstructed

neutrino energy bin i, NMC
i (Δm2, sin22θ) is the number of events predicted in the
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Monte Carlo under an oscillation hypothesis with (Δm2, sin22θ), and σi is the un-

certainty on the predicted number of events with no oscillations. The uncertainty σi

is defined in this way to minimize the effects of Poisson statistics. In the sensitivity

calculations here, the data are really “fake data” with no oscillation signal, that is,

NData
i = Nprod

i calculated in the Monte Carlo.

The limiting cases of high and low Δm2 can be used to verify oscillation sen-

sitivity fit results. This kind of calculation seeks to address the question of what

oscillation parameter space an experiment can exclude when no signal is present,

given its systematic and statistical uncertainties. Therefore, the data are assumed

to have no signal, and the experimental systematic errors are assesed on the Monte

Carlo prediction. In this case, the value of sin22θ at the best-fit point is 0.0, the

value of the χ2 function at the minimum equals 0.0, and the 1σ limit value sin22θlimit

occurs when Δχ2 = χ − χ2
min = 1:

Δχ2 =
(Nprod

i − Ndet
i (Δm2, sin22θ)

σprod
i

)2

= 1 (7.7)

At high Δm2, the oscillatory term sin2
(

1.27Δm2Lν

Eν

)
averages to 1

2
, and so the oscilla-

tion probability reduces to Posc 	 sin22θ× 1
2
. At low Δm2, the frequency term is very

small, and the Taylor expansion of sin2
(

1.27Δm2Lν

Eν

)
	

(
1.27Δm2Lν

Eν

)2

. In this case, the

oscillation probability is Posc 	 sin22θ ×
(

1.27Δm2Lν

Eν

)2

.

For νμ disappearance, Ndet is simply related to Nprod via Ndet = Nprod×(1−Posc).

This is because to first order there is no background to the νμ disappearance analysis

since the beam is composed of 99.5% νμ flavor neutrinos. Making this substitution,

and summing over all energy bins i:

Δχ2 = χ2 − χ2
min = = χ2 =

(Nprod − Nprod × [1 − Posc]

σprod

)2

(7.8)

The sum over all energy bins makes this a “counting-only” experiment, since no

information about the energy spectrum is used. Assuming a fractional normalization
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systematic error on Nprod of Δfprod = δNprod

Nprod , the uncertainty σprod is the quadrature

sum of the statistical and systematic errors,

(σprod)2 = (
√

Nprod)2 + (Δfprod × Nprod)2.

Now,

Δχ2 =
(Nprod − Nprod × [1 − Posc])

2

Nprod + (Δfprod × Nprod)2
=

(Nprod)2

(Nprod)2

(1 − [1 − Posc])
2

( 1
Nprod + (Δfprod)2)

(7.9)

Making the approximation that the statistical error is much smaller than the system-

atic error, 1
Nprod � (Δfprod)2,

Δχ2 =
(Posc)

2

(Δfprod)2
(7.10)

So, the limit value of sin22θ at high Δm2 occurs at

sin22θlimit = 2 × Δfprod, (7.11)

For example, a normalization uncertainty of 10% would result in a sin22θlimit value of

0.2. The “counting” experiment sensitivity at high Δm2 is the true sensitivity, since

no energy spectrum deformation due to oscillations is present when the oscillation

probability averages to sin22θ × 1
2
. At low Δm2 this is not the case, because energy

spectrum distortion adds information. For the “counting” experiment at low Δm2,

Posc ∼ sin22θ ×
(

1.27Δm2Lν

Eν

)2

, and so the “counting-only” experiment limit value is

sin22θlimit =
Δfprod(

1.27Δm2Lν

Eν

)2 (7.12)

At Δm2 = 1.0 eV 2, which is allowed for 0.05 < sin22θ < 0.35 in the models with one

sterile neutrino shown in figure 1.2, the MiniBooNE limit value would be sin22θlimit =

0.14, for Δfprod = 10% and Eν = 0.8 GeV . So, with 10% normalization uncertainty,

a MiniBooNE disappearance search would have sensitivity to a part of this allowed
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region, 0.14 < sin22θμx < 1.0. The minimum Δm2 value that a “counting” experi-

ment is sensitive to is determined by when sin22θlimit approaches 1.0. Substituting

sin22θlimit = 1.0 and solving for Δm2, the limit value is

Δm2
min =

√
Δfprod ×

( Eν

1.27Lν

)2

(7.13)

In the test case described above, Δm2
limit = 0.37 eV 2. However, since the energy

spectrum at low Δm2 adds information to the fit, a “counting” +“energy fit” analysis

can have a lower Δm2
limit value.

For the case of νe appearance, Ndet is a sum of the oscillation signal events and un-

oscillated background events. So, Ndet is related to Nprod via Ndet = NprodPosc+N bgnd.

The expected number of events in the absence of oscillations, NData, is just N bgnd, and

so the error on the null expectation is σ =
√

N bgnd + (Δfprod × N bgnd)2. Making

these substitutions into the χ2 formula in equation 7.6, and summing over all energy

bins i for a “counting-only” experiment:

Δχ2 = χ2 − χ2
min = χ2 =

(N bgnd − (Nprod × Posc + N bgnd)

σbgnd

)2

(7.14)

=
(−Nprod × Posc)

2

N bgnd + (Δfprod × N bgnd)2
=

(−Nprod)2

(N bgnd)2

P 2
osc

1
Nbgnd + (Δfprod)2

When Δχ2 = 1,

Posc =

√
1

Nbgnd + (Δfprod)2

(Nprod/N bgnd)

In the high Δm2 limit, Posc = sin22θ × 1
2
, and so

sin22θlimit = 2 ×
√

1
Nbgnd + (Δfprod)2

(Nprod/N bgnd)
(7.15)

As expected, the smaller N bgnd and the error are, the better the sensitivity. For a

test case with Δfprod = 10%, (N bgnd/Nprod) = 1%, and N bgnd = 500 events, the limit

value would be sin22θlimit = 0.002. For the “counting” experiment at low Δm2,

sin22θlimit =
1(

1.27Δm2Lν

Eν

)2 ×
√

1
Nbgnd + (Δfprod)2

(Nprod/N bgnd)
(7.16)
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which would be sin22θlimit = 0.008 at Δm2 = 0.4 eV 2. This sensitivity would cover

the region of oscillation parameter space allowed by the LSND result. The minimum

accessible Δm2 in the νe appearance “counting” experiment is

Δm2
min =

√√√√( Eν

1.27Lν

)2

×
√

1
Nbgnd + (Δfprod)2

(Nprod/N bgnd)
(7.17)

which is 0.037 eV 2. As for the νμ disappearance, the smaller (Eν/Lν) is, the lower

Δm2
min can be.

In practice, the systematic errors are much more complicated than a simple nor-

malization uncertainty like Δfprod. To include uncertainties that are correlated as a

function of energy, an error matrix M is introduced into the χ2 function:

χ2 =
∑

i

∑
j

(
NData

i − NMC
i (Δm2, sin22θ)

)
M−1

i,j

(
NData

j − NMC
j (Δm2, sin22θ)

)
(7.18)

where i and j index Eν bins. The error matrix Mi,j is the total output variable

systematic error matrix calculated in chapter 4, where the term “output variable”

refers to the fact that the matrix is calculated in bins of neutrino energy rather than

simulation input parameters, such as the Sanford-Wang π+ prediction ci. If Mi,j has

no off-diagonal elements correlating different energy bins, then the χ2 reduces to the

form in equation 7.6. Correlations between energy bins can either increase or decrease

the total systematic error, depending on the effect of each systematic source.

Both the νe appearance and νμ disappearance analyses here use 30 reconstructed

neutrino energy bins from 0.0 to 3.0 GeV . When an “appearance-only” or “disappearance-

only” fit is described, the dimension of Mi,j is 30×30 and the vector
(
NData

i −
NMC

i (Δm2, sin22θ)
)

has 30 elements. For the “combined” fit, the dimension of Mi,j

is 60×60, and the first 30 elements of the vector
(
NData

i − NMC
i (Δm2, sin22θ)

)
are

the νe bins and the second 30 elements are the νμ bins. The MINUIT [56] minimization
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program is used to perform the fits, with the MINOS error estimation option, and in

all cases normal convergence is required with status parameter ISTAT equal to 3.0.

7.2 Event Selection

The νμ disappearance analysis here uses the event selection cuts described in chapter

4. The data set after cuts has ∼90% νμ CCQE purity according to the Monte Carlo,

and the background is composed almost entirely of νμ resonant single π+ production,

summarized in table 7.1. The efficiency of the selection cuts for signal νμ CCQE

events is 17.16%, from table 4.1, for a fiducial volume of radius 610 cm, which is the

entire detector. For 5× 1020 protons on target, the number of Monte Carlo predicted

νμ events after cuts in the presence of an oscillation signal with (Δm2, sin22θμx) =

(1 eV 2, 0.2) would be ∼85,000, compared with ∼92,000 in the absence of oscillations.

Example reconstructed neutrino energy distributions in Monte Carlo for all events

passing the selection cuts are shown with and without oscillations, for 0.1 < Δm2 <

7 eV 2 and sin22θμx = 0.2, in figure 7.1. The neutrino energy of events passing the νμ

CCQE selection cuts is reconstructed under a muon hypothesis, assuming the muon

mass for the final state lepton.

The νe appearance analysis uses event selection cuts based on a particle iden-

tification algorithm described in reference [64]. The event selection development is

still in progress, and therefore the results given here are not final and may improve.

The composition of the background to a νe appearance signal after the oscillation νe

event selection cuts have been applied are summarized in table 7.2. The efficiency

of the selection cuts for signal νe CCQE events events is 24.50%, and the efficiency

for background is 0.07%, for a fiducial volume of radius 610 cm, which is the entire

detector. The largest sources of νe and νμ background come from intrinsic beam
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Table 7.1: Fractional composition in Monte Carlo of background after oscillation νμ

selection cuts, which are described in detail in chapter 4. The total number of events

predicted by the Monte Carlo after cuts, with no oscillations, for 5× 1020 protons on

target, is ∼91,000.

source all νe νe νμ νμ

total 1.000 0.000 0.000 0.981 0.019

π+ parent 0.926 0.000 0.000 0.943 0.068

π− parent 0.014 0.000 0.000 0.001 0.761

K0
L parent 0.001 0.000 0.000 0.001 0.013

K+ parent 0.010 0.000 0.000 0.010 0.002

K− parent 0.000 0.000 0.000 0.000 0.009

p parent 0.010 0.000 0.000 0.008 0.057

n parent 0.039 0.000 0.000 0.038 0.085

CCQE 0.906 0.000 0.000 0.907 0.866

CC1π+ 0.068 0.000 0.000 0.070 0.000

CC1π coherent 0.000 0.000 0.000 0.000 0.019

CC1π0 0.012 0.000 0.000 0.012 0.000
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Figure 7.1: Example νμ disappearance signal at MiniBooNE after event selection cuts,

for sin22θμ,x = 0.2 and 5 × 1020 p.o.t.. Panels show the number of events vs. recon-

structed neutrino energy EQE
ν (GeV ) for Δm2 = (0.13, 0.22, 0.36, 0.59, 0.97, 1.58,

2.58, 4.24, 6.95) eV 2 (top left to bottom right) with (red, dashed line) and without

(black, solid line) oscillations.
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Figure 7.2: Example νe appearance signal at MiniBooNE after event selection cuts,

for sin22θμ,e = 0.002 and 5 × 1020 p.o.t.. Panels show the number of events vs.

reconstructed neutrino energy EQE
ν (GeV ) for Δm2 = (0.13, 0.22, 0.36, 0.59, 0.97,

1.58, 2.58, 4.24, 6.95) eV 2 (top left to bottom right) with (red, dashed line) and

without (black, solid line) oscillations, and signal only (blue, dotted line).
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Table 7.2: Fractional composition in Monte Carlo of background after oscillation νe

selection cuts, which are YBoost23 COMBINED > 7.1 and Stancu UZ < 0.9. Note that

for νe from π+ decay, 95.2% come from the decay chain π+ → μ+νμ, μ+ → e+νeνμ,

and 4.8% come from π+ → e+νe. The total number of events predicted by the Monte

Carlo after cuts, with no oscillations, for 5 × 1020 protons on target, is ∼800.

source all νe νe νμ νμ

total 1.000 0.606 0.035 0.355 0.005

π+ parent 0.620 0.528 0.007 0.843 0.238

π− parent 0.007 0.001 0.091 0.000 0.714

K0
L parent 0.077 0.081 0.796 0.000 0.000

K+ parent 0.248 0.332 0.000 0.131 0.000

K− parent 0.001 0.000 0.028 0.000 0.000

p parent 0.011 0.012 0.042 0.006 0.048

n parent 0.036 0.046 0.035 0.020 0.000

CCQE 0.569 0.860 0.810 0.056 0.048

NC1π0 0.179 0.000 0.000 0.502 0.000

Δ → γγ 0.077 0.000 0.000 0.212 0.238

CC1π+ 0.067 0.104 0.021 0.000 0.000

NCπ0 coherent 0.023 0.000 0.000 0.062 0.190

CC1π0 0.017 0.020 0.000 0.014 0.000

νe elastic 0.016 0.000 0.000 0.042 0.000

NC DIS 0.010 0.000 0.000 0.028 0.028
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Figure 7.3: Example oscillation signals at MiniBooNE after event selection cuts for 5×
1020 p.o.t.. Left: ratio of number of events for a predicted νμ disappearance oscillation

signal to the number observed without oscillations vs. EQE
ν (GeV ) with sin22θμx =

0.2. Right: ratio of number of events for a predicted νe appearance oscillation signal

to the number observed without oscillations vs. EQE
ν (GeV ) with sin22θμe = 0.002.
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μ+-decay νe and mis-identified νμ neutral current π0 interactions. The total Monte

Carlo predicted number of background and signal events in the presence of oscilla-

tions would be ∼800 and ∼160 for (Δm2, sin22θμe) = (1 eV 2, 0.002), for a data set

with 5×1020 protons on target. Example reconstructed neutrino energy distributions

in Monte Carlo for all events passing the selection cuts are shown with and without

oscillations, for 0.1 < Δm2 < 7 eV 2 and sin22θμe = 0.002, in figure 7.2. The neutrino

energy of events passing the νe CCQE selection cuts is reconstructed under a electron

hypothesis, assuming the electron mass for the final state lepton.

The power of the oscillation fit comes from both the normalization and the distor-

tion of the reconstructed energy spectrum due to oscillations. Figure 7.3 illustrates

the dependence of the spectral distortion on Δm2 for both appearance and disap-

pearance searches. In the event of a positive signal, MiniBooNE’s ability to measure

the value of Δm2 comes from distinguishing the spectral distortions for different os-

cillation parameters.

7.3 Systematic Errors

In the following, the sources of systematic error considered include the π+ and K+

flux predictions, and the neutrino interaction cross section predictions. This list is

incomplete because it does not include the neutrino cross section final state interaction

uncertainties or the detector response errors, and therefore, the studies in this chapter

only use “fake data,” that is, central value Monte Carlo with no oscillation signal.

Hereafter, the term data always refers to “fake data.” The Monte Carlo statistics are

currently insufficient to calculate error matrices with 30 energy bins for the systematic

sources that are not included here, however, both final state interaction cross sections

and detector response errors are expected to contribute at the <10% level each to the
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total systematic uncertainty.

The error matrix Mtotal used for the oscillation fits is constructed via

Mtotal = Mπ+ + MK+ + Mσ + Mstat (7.19)

where Mπ+ , MK+ , Mσ, and Mstat are the π+, K+, neutrino interaction cross section,

and statistical error matrices respectively. The statistical error matrix is diagonal,

with elements equal to the number of events in each reconstructed neutrino energy

bin. The systematic error matrices are calculated as described in chapter 4, using

first derivative matrices to propagate the simulation input parameter errors and cor-

relations to the reconstructed neutrino energy distributions for events passing the

selection cuts. The first derivative matrices are calculated assuming no oscillations,

and the reconstructed neutrino energy uses a muon hypothesis, that is, assuming

the muon mass for the final state lepton, for the νμ event sample, and an electron

hypothesis for the νe sample.

The π+ flux prediction errors come from the Sanford-Wang fit to external π+

production data discussed in chapter 3, and are calculated as described in chapter 4,

section 4.3. To construct Mπ+ for the νμ disappearance fit,

(Mνμ

π+)i,j = (Fνμ)T
i,k(Pπ+)k,l(Fνμ)l,j (7.20)

where i, j index reconstructed neutrino energy bins and k, l index Sanford-Wang π+

parameters c1 through c8. The dimensions of (Mνμ

π+)i,j, (Pπ+)k,l and (Fνμ)l,j are (30 ×
30), (8 × 8), and (8 × 30) respectively. The matrix (Pπ+)k,l is the covariance matrix

of the Sanford-Wang π+ prediction parameters from the external data fit, given in

appendix F. The matrix (Fνμ)l,j is the first derivative matrix that describes the

change in the number of events passing the νμ CCQE selection cuts in reconstructed

neutrino energy bin j, under a νμ hypothesis, given a +1σ change in Sanford-Wang π+
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parameter l. Similarly, for the νe appearance analysis, the error matrix is constructed

as

(Mνe

π+)i,j = (Fνe)T
i,k(Pπ+)k,l(Fνe)l,j (7.21)

where (Fνe)l,j is the matrix of first derivatives for events passing the νe selection cuts

as a function of reconstructed neutrino energy, under a νe hypothesis, given a +1σ

change in Sanford-Wang π+ parameter l. The dimensions of the matrices are identical

to the νμ case. For the combined fit, the error matrix is calculated via

(Mνeνμ

π+ )i,j = (Fνeνμ)T
i,k(Pπ+)k,l(Fνeνμ)l,j (7.22)

where (Fνeνμ)l,j is an (8 × 60) matrix, where the first 30 elements in any row are the

νe derivatives, and the last 30 elements are the νμ derivatives. To account for the fact

that the χ2/ndf of the Sanford-Wang π+ fit to external data is not equal to 1.0, the

parameter errors, and therefore the first derivatives are scaled up by the
√

χ2/ndf ,

which is
√

2.2 = 1.5. As expected, the largest source of normalization uncertainty

comes from the error on the Sanford-Wang π+ c1 parameter, shown in table F.1.

Like the π+ systematic errors, the K+ flux prediction uncertainties come from

the Sanford-Wang K+ fit to external production data described in chapter 3. To

construct MK+ for the νμ disappearance fit,

(Mνμ

K+)i,j = (Fνμ)T
i,k(PK+)k,l(Fνμ)l,j (7.23)

where i, j index reconstructed neutrino energy bins and k, l index Sanford-Wang K+

parameters c1 through c9. The dimensions of (Mνμ

K+)i,j, (PK+)k,l and (Fνμ)l,j are (30

× 30), (9 × 9), and (9 × 30) respectively. The matrix (PK+)k,l is the covariance matrix

of the Sanford-Wang K+ prediction parameters from the external data fit, given in

appendix F. The matrix (Fνμ)l,j is the first derivative matrix that describes the

change in the number of events passing the νμ CCQE selection cuts in reconstructed
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neutrino energy bin j, under a νμ hypothesis, given a +1σ change in Sanford-Wang K+

parameter l. Similarly, for the νe appearance analysis, the error matrix is constructed

as

(Mνe

K+)i,j = (Fνe)T
i,k(PK+)k,l(Fνe)l,j (7.24)

where (Fνe)l,j is the matrix of first derivatives for events passing the νe selection

cuts as a function of reconstructed neutrino energy, under a νe hypothesis, given a

+1σ change in Sanford-Wang K+ parameter l. The dimensions of the matrices are

identical to the νμ case. For the combined fit, the error matrix is calculated via

(Mνeνμ

K+ )i,j = (Fνeνμ)T
i,k(PK+)k,l(Fνeνμ)l,j (7.25)

where (Fνeνμ)l,j is a (9 × 60) matrix, where the first 30 elements in any row are the

νe derivatives, and the last 30 elements are the νμ derivatives. To account for the fact

that the χ2/ndf of the Sanford-Wang K+ fits to external data is not equal to 1.0,

the first derivatives are scaled up by the
√

χ2/ndf , which is
√

3.6 = 1.9. As for the

π+ flux, the largest source of normalization uncertainty comes from the error on the

Sanford-Wang K+ c1 parameter, shown in table F.2.

The neutrino interaction cross section errors come from the estimates based on

past data described in chapter 3, and are calculated as described in chapter 4, section

4.3 with one important difference: only the neutrino interaction cross section uncer-

tainties are considered. The final state cross section errors, which comprise the last

three rows of table 4.7, are not included. With the exception of the CCQE parame-

ters, the neutrino interaction cross section sources systematic error are assumed to be

uncorrelated. The correlations between the axial mass for CCQE interactions, mA,

and the Fermi Gas model parameters, EB and pF , are taken from the mA analysis

of chapter 6. In the future, the relevant parameter errors will also use the Mini-

BooNE measurement, however, these are not used now because the contribution of
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the detector response uncertainties is still under investigation. Note that since the

CCQE cross section parameter analysis is flux-independent, these constraints derived

from MiniBooNE data can be applied to both the νe and νμ oscillation analyses; if the

(mA, EB, pF ) parameter measurement were sensitive to variations of the neutrino flux

due to oscillations, then this constraint could only be applied to the νe appearance

analysis and not to the νμ disappearance search.

To construct Mσ for the νμ disappearance fit,

(Mνμ
σ )i,j = (Fνμ)T

i,k(Pσ)k,l(Fνμ)l,j (7.26)

where i, j index reconstructed neutrino energy bins and k, l index neutrino interaction

cross section sources of uncertainty. The sources considered here include the first 9

elements of table 3.10. Notable exceptions are the final state interaction parameters.

A complete analysis would include these, however, they are still under investigation

at this time. The dimensions of (Mνμ
σ )i,j, (Pσ)k,l and (Fνμ)l,j are (30 × 30), (9 ×

9), and (9 × 30) respectively. The matrix (Pσ)k,l is the covariance matrix of the

neutrino interaction cross section prediction parameters, given in appendix F. The

matrix (Fνμ)l,j is the first derivative matrix that describes the change in the number

of events passing the νμ CCQE selection cuts in reconstructed neutrino energy bin

j, under a νμ hypothesis, given a +1σ change in neutrino interaction cross section

parameter l. Similarly, for the νe appearance analysis, the error matrix is constructed

as

(Mνe
σ )i,j = (Fνe)T

i,k(Pσ)k,l(Fνe)l,j (7.27)

where (Fνe)l,j is the matrix of first derivatives for events passing the νe selection

cuts as a function of reconstructed neutrino energy, under a νe hypothesis, given a

+1σ change in neutrino interaction cross section parameter l. The dimensions of

the matrices are identical to the νμ case. For the combined fit, the error matrix is
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calculated via

(Mνeνμ
σ )i,j = (Fνeνμ)T

i,k(Pσ)k,l(Fνeνμ)l,j (7.28)

where (Fνeνμ)l,j is a (9 × 60) matrix, where the first 30 elements in any row are the

νe derivatives, and the last 30 elements are the νμ derivatives. The largest sources of

normalization uncertainty come from the errors on the Fermi Gas model parameters

and the value of mA for coherent pion production, shown in table F.3.

The contribution of each of the above sources to the normalization uncertainty

for the νμ and νe event samples passing selection cuts is summarized in table 7.3.

The normalization uncertainty is calculated by summing over all elements of the

error matrix M, which takes into account correlations between energy bins. The

contributions to the normalization systematic errors for each constituent simulation

parameter are summarized in tables F.1 through F.4 in appendix F.

The difference in normalization between the Monte Carlo prediction and the mea-

sured rate in data, discussed in chapter 4, is not taken into account in the uncertainty

estimates here. A number of approaches to this problem are under investigation. One

way to handle the discrepancy is to choose a source and assign a larger systematic

error such that the normalization of Monte Carlo agrees with data within errors. Ex-

amples of this could include increasing the uncertainty on the Sanford-Wang π+ c1

parameter, which sets the overall normalization of the π+ production cross section, or,

increasing the uncertainty on the neutrino interaction CCQE cross section mA value.

Another way to deal with the discrepancy is to add parameters to the oscillation fit,

such that it would become a combined fit for Δm2, sin22θ, nπ, and nK , where the n

are normalization pull terms for the π+ and K+ event rates respectively.

Of the analyses described previously in this thesis which seek to reduce the un-

certainties with respect to external data, only the cross section analysis results can

be applied to the νμ disappearance search. However, the addition of the cross sec-



273

Table 7.3: Summary of fractional normalization systematic errors Δfprod for νμ and

νe events after their respective event selection cuts, and for the combined data sets.

The constrained uncertainties use the reduction in systematic errors from the analysis

of chapter 5. The neutrino interaction cross section uncertainties with correlations

among CCQE parameters, ρCCQE, come from chapter 6.

source νμ νe combined

statistics 0.0033 0.0354 0.0033

π+ flux prediction 0.0738 0.0388 0.0735

K+ flux prediction 0.0023 0.0640 0.0028

σν predictions 0.2606 0.2692 -

σν predictions + ρCCQE 0.0799 0.0720 0.0796

constrained π+ prediction N/A 0.0016 N/A

constrained σν predictions N/A 0.0563 N/A
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tion parameter correlations has a big effect because the assumed CCQE simulation

parameter uncertainties are very large. Without correlations, Δfprod due to cross

sections is 26%, from table 7.3, and with the correlations taken from the final data

(mA, EB, pF ) fit in chapter 6, Δfprod is reduced to 8%.

In contrast, the constraints on the π+-decay νμ and μ+-decay νe fluxes and the

cross section uncertainties from chapter 5 can be applied to the νe appearance search,

since these depend only on the observed νμ distribution. In fact, the dependence

of these constraints on the measured νμ spectrum is precisely why they cannot be

used in the νμ disappearance analysis. The constrained π+ simulation parameter

errors, derived from the analysis in chapter 5, reduce the νe sample normalization

systematic error contribution of the π+ flux prediction uncertainty from 3.9% to

<1%. The reason the constraint is so effective is that ∼30% of the total events

passing the νe selection cuts are μ+-decay νe, and another ∼30% are π+-decay νμ,

both of which are directly related to the νμ data set. The constraints on the νe

neutrino interaction cross section simulation parameter uncertainties, from the same

analysis, reduce the normalization uncertainty contribution from 7.2% to 5.6%. This

reduction in uncertainty is somewhat smaller because the νμ data set constrains only

the CCQE cross section simulation parameter uncertainties, which comprise 1/3 of

the systematic errors, and while ∼60% of all events passing the νe selection cuts are

CCQE interactions, the cross section uncertainty has large contributions from other

interaction channels, such as single π0 production and radiative Δ decay, which are

not reduced by parameter correlations.
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7.4 νe Appearance and νμ Disappearance Sensitiv-

ities

The MiniBooNE νμ disappearance and νe appearance oscillation sensitivities are

shown for a variety of systematic error assumptions in figures 7.4 and 7.5. The

event selection criteria are described above, and the systematic error assumptions all

come from external data, with the exception of the CCQE cross section parameter

correlations, which are based on the measurement in chapter 6. In these figures,

the left panels show the 90% confidence level limit for νμ disappearance, under a

two-neutrino (μ, x) hypothesis, along with the allowed regions of (Δm2, sin22θμx)

parameter space in models with one sterile neutrino [36], at 90% (light blue) and 99%

(dark blue) confidence level. The right panels in figures 7.4 and 7.5 show the 90%

confidence level limit for νe appearance in MiniBooNE, under a two-neutrino (μ, e)

hypothesis, along with the allowed regions of (Δm2, sin22θμe) reported by the LSND

experiment [31], at 90% (light blue) and 99% (dark blue) confidence level.

The systematic error assumptions shown in figures 7.4 and 7.5 include: (i) statis-

tical errors only, (ii) statistical and π+ flux prediction errors only, (iii) statistical and

K+ flux prediction errors only, (iv) statistical and neutrino interaction cross section

errors only, and (v) all of the above combined. For both νμ disappearance and νe

appearance the most restrictive source of systematic error comes from neutrino in-

teraction cross sections. Both are dominated by contributions from the CCQE cross

section simulation parameter uncertainties. Currently the errors on the Fermi Gas

Model parameters are quite large, of order 70% as discussed in chapter 3, and will

be reduced significantly by using the MiniBooNE measurement in chapter 6, which

is not used here to set the magnitudes of the simulation parameter uncertainties.

The next most important sources of uncertainty in limiting the MiniBooNE os-
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Figure 7.4: MiniBooNE oscillation sensitivity at 90% confidence level. Left: Δm2

(eV 2) vs. sin22θμx, with 3+1 allowed regions at 90% (light blue) and 99% (dark

blue) confidence level. Right: Δm2 (eV 2) vs. sin22θμe, with LSND allowed regions at

90% (light blue) and 99% (dark blue) confidence level. Systematic error assumptions

include (i) statistical errors only (green, dotted line), (ii) K+ flux and statistical errors

only (yellow, solid line), (iii) π+ flux and statistical errors only (blue, dashed line),

(iv) σν and statistical errors only (red, dash-dotted line), and (v) all of the above

combined (black, solid line).
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Table 7.4: Comparison of expected and best-fit limit values of sin22θ at Δm2 = 100

eV 2. Limits are stated at Δχ2 = 1.0 (not 1.64 as in the plots with 90% confidence

level curves), and expected values are calculated from the errors given in table 7.3 and

equations 7.11 and 7.15 for νμ disappearance and νe appearance respectively.

source νμ expected νμ limit νe expected νe limit

statistics 0.0066 0.0066 4.547×10−4 4.567×10−4

π+ flux 0.1476 0.1477 6.741×10−4 6.773×10−4

K+ flux 0.0080 0.0080 9.403×10−4 9.434×10−4

σν + ρCCQE 0.1598 0.1597 10.306×10−4 10.339×10−4

all 0.2176 0.2175 14.090×10−4 14.145×10−4

cillation sensitivity are the π+ and K+ flux predictions, for the νμ disappearance and

the νe appearance searches respectively. The number of neutrinos from K+ decay

is actually larger in the νμ sample, ∼1500 after the νμ cuts compared with ∼200

passing the νe cuts, however, the fraction of K+-decay neutrino induced events is

much smaller, ∼2%, in the νμ sample than in the νe set, ∼25%. Therefore, the K+

uncertainty contributes almost nothing to the νμ sample total systematic error, and

very significantly to the total νe systematic error.

The value of sin22θ at high Δm2, where the sensitivity comes from the “counting

experiment” alone, can be compared with the simple limits derived in equations 7.11

and 7.15 to verify that the oscillation fit results are sensible. The expected and best-

fit sin22θμx and sin22θμe limits are compared in table 7.4 for νμ disappearance and νe

appearance respectively. In general, the best-fit limit values are in excellent agreement

with the expected values, which builds confidence in the oscillation fit method and

implementation.
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Figure 7.5: MiniBooNE oscillation sensitivity at 90% confidence level from normal-

ization only (top) and EQE
ν shape only (bottom). Left: Δm2 (eV 2) vs. sin22θμx.

Right: Δm2 (eV 2) vs. sin22θμe. Systematic errors include (i) statistical (green, dot-

ted line), (ii) K+ flux (yellow, solid line), (iii) π+ flux (blue, dashed line), (iv) σν

(red, dash-dotted line), and (v) all of the above combined (black, solid line). Allowed

regions are described in figure 7.4.
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The importance of the “counting” experiment is rather different in the νe and

νμ searches. For νe appearance, the “counting” experiment is the dominant contri-

bution to the oscillation sensitivity, while for νμ disappearance the distortion of the

reconstructed neutrino energy spectrum contains most of the useful information for

the oscillation fit. This is illustrated in figure 7.5, in which the top two panels show

the νμ and νe oscillation sensitivities calculated using only the total number of events,

with no information about the reconstructed neutrino energy spectrum. The sensi-

tivities calculated using EQE
ν distribution shape information only are shown in the

bottom panels of figure 7.5. To separate the shape and normalization components,

two different forms of the χ2 function are used. For normalization-only sensitivities,

the χ2 function in equations 7.8 and 7.14 are used for the νμ disappearance and νe

appearance limit calculations respectively. For the shape-only sensitivity calculation,

the basic χ2 function is slightly modified such that the predicted total number of

events in the absence of oscillations is normalized to be the same as the observed

total number of events. The χ2 function is given by

χ2 =
∑

i

∑
j

(
NData

i −kNMC
i (Δm2, sin22θ)

)
(M′

i,j)
−1

(
NData

j −kNMC
j (Δm2, sin22θ)

)
(7.29)

where the constant k normalizes the total number of Monte Carlo events to be equal

to the number of data events, via

k =

∑
i N

Data
i∑

i N
MC
i

(7.30)

where i indexes bins of EQE
ν . The error matrix M′ is calculated using first deriva-

tives similarly normalized such that only the differences in the EQE
ν spectrum shape

contribute to the uncertainty; e.g. in EQE
ν bin i for systematic source j, the element

of the first derivative matrix would be

F ′
i,j =

∑
i N0

i∑
i Nj

i

N j
i − N0

i

Δpj

(7.31)
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where N0
i is the number of events in bin i predicted by the central value Monte

Carlo, and N j
i is the number of events in bin i predicted by a Monte Carlo set in

which parameter j has been varied with respect to its nominal value by Δpj.

Experimentally, the fact that the νμ and νe oscillation sensitivities depend rather

differently on the systematic errors is quite useful. The high statistics νμ data set can

provide a normalization constraint on several of the important background sources

for the νe appearance search, and because the appearance sensitivity depends largely

on measuring a rate rather than shape difference, adding normalization information

from the νμ data set has a big impact on the νe search. The converse is that adding

the νe data does not help the νμ disappearance sensitivity significantly because the

νe statistics are relatively small, and do not provide a strong constraint on the νμ

energy spectrum. The impact on the oscillation search of three kinds of constraints,

all derived from the νμ CCQE data set of chapter 4, are described in the following:

(i) the CCQE cross section parameter measurement of chapter 6, (ii) the π+ flux

constraint method of chapter 5, and (iii) a combined oscillation fit to the νμ and νe

data sets.

The results of the CCQE cross section parameter measurement described in chap-

ter 6 can be applied to both the appearance and the disappearance search, because

the measurement is flux-independent. The CCQE (mA, pF , EB) analysis produces

two kinds of information: (i) the correlations between the CCQE simulation param-

eters mA, EB, and pF , and (ii) the uncertainties on those parameters. The impact of

adding the correlations between mA, EB, and pF is illustrated in 7.6. The uncertain-

ties assumed on the CCQE parameters are large: 20% for mA, 72% for pF , and 76%

for EB. Conservatively, the CCQE parameter extraction in chapter 6 will measure

pF and EB at least twice as well as this. The impact of adding both correlations and

reducing the pF and EB simulation parameter uncertainties by 50% is also shown
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Figure 7.6: MiniBooNE 90% confidence level sensitivity with σν systematic errors,

from external sources (red, dotted line), with MiniBooNE-measured correlations (red,

dashed line), and with MiniBooNE-measured correlations and projected parameter

errors (red, solid line). Left: Δm2 (eV 2) vs. sin22θμx. Right: Δm2 (eV 2) vs.

sin22θμe. Allowed regions are described in figure 7.4.

in figure 7.6. Incorporating both of these results improves the oscillation sensitivity

for both νμ disappearance and νe appearance by >1σ at low Δm2. However, since

detector response uncertainties are not yet included in the (mA, pF , EB) measure-

ment, in the following, only the CCQE parameter correlations measured in chapter 6

are applied, and the large parameter uncertainties based on external data are used,

rather than MiniBooNE-measured values.

The method used to derive constraints on the simulation parameter uncertainties

in chapter 5 uses the measured νμ rate, and therefore cannot be applied to the νμ

disappearance analysis. However for the νe appearance it can be applied in two

ways: (i) by assuming the cross section predictions, and deriving constraints on the
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Figure 7.7: MiniBooNE 90% confidence level sensitivity with statistical errors (green,

dotted line), errors derived from external sources (dashed line), and errors constrained

by the νμ data (dash-dotted line), as discussed in the text. Left: Δm2 (eV 2) vs.

sin22θμx with systematic errors from π+ flux prediction and statistical errors. Right:

Δm2 (eV 2) vs. sin22θμe with systematic errors from σν and statistical errors. Allowed

regions are described in figure 7.4.

uncertainties in the π+ flux simulation, as discussed in chapter 5, and (ii) by assuming

the flux prediction, and deriving constraints on the uncertainties in the neutrino

interaction cross section simulation, which is described in appendix C. The results of

these two approaches are shown in the left and right panels of figure 7.7 respectively.

The flux constraint, as expected, translates directly into a reduction of the π+ flux

prediction uncertainty on the π+-decay νμ and μ+-decay νe sources of background

after the νe selection cuts. In fact, the resulting uncertainties, summarized in tables

5.1 and 5.2, are smaller than the statistical error on the νe sample after selection cuts,

which is 3.5% on the total number of events and larger for individual EQE
ν bins. The
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cross section constraint is somewhat less effective, because only CCQE interactions

are constrained by the νμ data set, however, it still represents an improvement of

∼0.5σ over the un-constrained case. Note that for the constrained cross section

sensitivity calculation here, only the π+-decay neutrinos have had the CCQE cross

section uncertainty reduction applied. This is a conservative choice since, in principle,

the CCQE cross section constraints derived by this analysis are applicable to all

neutrinos.

A combined oscillation fit to the νμ and νe data sets has the advantage of in-

corporating the constraints from the νμ sample while solving several complexities

associated with using “off-line” νμ information, like the constraints described above,

in a νe appearance fit. First, a combined fit avoids double counting of uncertainties,

which most likely affects any constraint derived from the νμ sample. For example, us-

ing the mA error derived from the analysis in chapter 6, which includes contributions

from flux, background cross sections, and detector response errors, to determine the

νe cross section error matrix, and then additionally using a detector response error

matrix in the νe fit, probably double counts the contribution of any detector response

systematics that affect the νe and νμ events similarly. Sorting out the correlations

would be messy and difficult. However, a combined fit simply uses the cross section

error matrix derived from external data together with the detector response error ma-

trix, and automatically deals with the correlations of all uncertainties when mapping

out the χ2 space. Second, the constraints on the flux and cross section derived using

the observed νμ spectrum in chapter 5 assume no oscillations. However, if there is

νμ disappearance, it can be as large as ∼10%, which could lead to an under-estimate

of the number of μ+-decay νe. This would happen because the analysis of chapter 5

would use the oscillated νμ events to infer the π+ spectrum, and consequently infer

too few π+ and therefore predict few μ+-decay νe. To first order, a disappearance
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signal would probably not affect the constraint on the simulation uncertainties, which

is how the chapter 5 results are used in the discussion above, however, if the anal-

ysis were used to set the normalization of the μ+-decay νe prediction in the fit, it

would be incorrect. Therefore, νμ disappearance would be a source systematic error

in determining the π+ flux and CCQE cross section constraints in the analysis of

chapter 5. One might address this by iterating the νe fit with and without assuming

disappearance, however, the combined fit handles this kind of difficulty transparently

because it estimates the νe and νμ oscillation parameter values and errors simultane-

ously, including their correlations. Finally, a combined fit is a straightforward way

to include the νμ data in the νe appearance analysis, and is therefore much easier to

understand and explain.

The combined fit results are shown in figures 7.8 through 7.11 with statistical and

π+ flux errors, statistical and K+ flux errors, statistical and σν errors, and all of the

above respectively. A comparison of the 90% confidence level, 3σ, and 5σ sensitivity

curves is shown for the combined fit vs. the appearance-only or disappearance-only

fits using errors based on external data (with the CCQE parameter correlations from

MiniBooNE) in figure 7.12. In general, the combined fit represents an improvement

of 1-1.5σ over the appearance-only fit with systematic errors estimates from external

data.

The combined fit result for νe appearance, with uncertainties from the π+ flux

prediction, agrees very well with the result in figure 7.7 which used the π+ flux con-

straint method of chapter 5. This is shown in figure 7.8. The νμ sensitivity with

π+ errors is identical in the disappearance-only and combined fits. Similarly, for the

neutrino interaction cross section errors, the combined fit appearance sensitivity is

consistent with the sensitivity shown in figure 7.7, which uses the constrained CCQE

cross section errors derived in chapter 5. The combined fit νe result, shown in figure
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Figure 7.8: MiniBooNE 90% confidence level sensitivity with statistical errors (green,

dotted line), and π+ flux prediction systematic errors from external sources (blue,

dashed line), from the constrained π+ errors in chapter 5 (blue, dash-dotted line),

and from the combined fit (blue, solid line). Left: Δm2 (eV 2) vs. sin22θμx. Right:

Δm2 (eV 2) vs. sin22θμe. Allowed regions are described in figure 7.4.

7.9, is slightly improved with respect to this limit at high Δm2, where high energy

neutrinos from kaons are more important. This is likely because only π+-decay neu-

trinos were constrained in figure 7.7, while the error reduction is properly applicable

to all neutrinos with CCQE interactions. For νμ disappearance, the sensitivity is

identical for all but Δm2 of 1.58 eV 2, where the combined-fit result is slightly better

than the disappearance-only fit. This Δm2 is very close to the first oscillation maxi-

mum, and as figure 7.3 shows, the νe sample does contribute spectral information at

this point, that is, the energy spectrum exhibits deformation due to oscillations. The

MINUIT fit at this Δm2 shows every sign of normal convergence, and so this may be

a case where the νe data helps the νμ fit.
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Figure 7.9: MiniBooNE 90% confidence level sensitivity with statistical errors (green,

dotted line), and σν prediction systematic errors from external sources (red, dashed

line), from the constrained σν errors in chapter 5 (red, dash-dotted line), and from

the combined fit (red, solid line). Left: Δm2 (eV 2) vs. sin22θμx. Right: Δm2 (eV 2)

vs. sin22θμe. Allowed regions are described in figure 7.4.

For the π+ and neutrino interaction cross section uncertainties, the combined fit

result can be compared with appearance-only fits using “off-line” constraints from

the νμ data. The agreement between the combined fit results and the “off-line”

expectations build confidence in the combined fit procedure. For the K+ errors, no

such “off-line” analysis is available here. The combined fit νe appearance and νμ

disappearance sensitivities with statistical and K+ errors are shown in figure 7.10.

The improvement in the νe sensitivity over the appearance-only fit is significant. It is

not surprising that the νμ data set provides a strong constraint because there are ∼8×
more K+-decay events after cuts in the νμ sample than in the νe data set. However,

the combined-fit result for the disappearance sensitivity is slightly worse than the
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disappearance-only fit result. This is because although the number of K+-induced

events is larger in the νμ sample, the number of K+ induced events in the νe sample is

of the same order of magnitude, and therefore has power in the fit. In fact, the total

correlated normalization error is actually increased in the combined fit, to 0.28%, with

respect to the disappearance-only fit, where the normalization error coming from K+

systematics is 0.23%. For all other sources of systematic error considered here, the

combined-fit normalization error is approximately equal to the disappearance-only fit

value, as table 7.3 shows. The difference between the high Δm2 sin22θμx limit values

in the disappearance-only and combined fits is 0.0007, which is roughly the expected

value, ∼2 × (0.0028-0.0023), from equation 7.11. However, the relation in 7.11 is

not strictly valid for the combined fit because the oscillation parameters sin22θμx

and sin22θμe are slightly correlated by the common systematics. From the fit, the

correlation coefficient is ρ = 0.062.

Finally, the combined fit results for statistical, π+ flux prediction, K+ flux predic-

tion, and neutrino interaction cross section errors combined are shown in figure 7.11.

For νe appearance, the sensitivity calculated using the “off-line” constraints for the π+

and neutrino cross section uncertainties, together with the statistical and external K+

errors, is also shown. The combined fit is slightly improved with respect to this limit

due to the additional K+ error constraint, for which there is no “off-line” analogue

here. For νμ disappearance, the combined-fit and disappearance-only sensitivities are

identical for all points other than Δm2 = 1.58 eV 2, where the improvement is due to

the marginal reduction in cross section uncertainties seen in figure 7.9.
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Figure 7.10: MiniBooNE 90% confidence level sensitivity with statistical errors (green,

dotted line), and K+ prediction systematic errors from external sources (yellow,

dashed line), and from the combined fit (yellow, solid line). Left: Δm2 (eV 2) vs.

sin22θμx. Right: Δm2 (eV 2) vs. sin22θμe. Allowed regions are described in figure

7.4.
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Figure 7.11: MiniBooNE 90% confidence level sensitivity with statistical errors (green,

dotted line), and π+, K+, and σν prediction systematic errors from external sources

(black, dashed line), from the constrained errors in chapter 5 (black, dash-dotted line),

and from the combined fit (black, solid line). eft: Δm2 (eV 2) vs. sin22θμx. Right:

Δm2 (eV 2) vs. sin22θμe. Allowed regions are described in figure 7.4.
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Figure 7.12: MiniBooNE sensitivity with statistics, π+, K+, and ν cross section

prediction systematic errors at 90% confidence level (black), 3σ (medium grey), and

5σ (light grey) for the combined fit (solid lines) and appearance-only or disappearance-

only (dashed lines), using external systematic errors. Left: Δm2 (eV 2) vs. sin22θμx.

Right: Δm2 (eV 2) vs. sin22θμe. Allowed regions are described in figure 7.4.

7.5 Conclusions

The νμ data set in MiniBooNE provides a powerful constraint on several important

sources of systematic error for the νe appearance oscillation analysis, notably the π+

flux prediction, the K+ flux prediction, and the neutrino interaction CCQE cross

section model. A variety of approaches to incorporating information from the νμ

data into the νe analysis have been pursued, and are found to be consistent with each

other.

The 90% confidence level, 3σ, and 5σ sensitivity curves are shown for νe appear-

ance and νμ disappearance in figure 7.12, comparing the combined-fit result with the
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appearance-only and disappearance-only fits including statistical and π+ flux predic-

tion, K+ flux prediction, and neutrino interaction cross section prediction systematic

errors. For νe appearance, the combined fit improves the experiment sensitivity by

1.2-1.5 σ depending on the value of Δm2, relative to an appearance-only fit. For νμ

disappearance, the combined fit sensitivity is similar to a disappearance-only fit.

The systematic errors considered in this work are not yet complete since they

do not include uncertainties on the detector response or final state interaction cross

sections, which will degrade the oscillation sensitivity. However, there are also sources

of systematic error which will be reduced by using MiniBooNE measurements to set

their uncertainties. Examples include the CCQE parameter errors, and the neutral

current π0 cross section uncertainties. Both of these will improve MiniBooNE’s reach

significantly since the neutrino interaction cross sections are currently the limiting

sources of systematic error. On balance, the MiniBooNE sensitivity will most likely

be somewhat improved with respect the analysis described here.

For both the νμ disappearance and the νe appearance, the 90% confidence level

sensitivity curves calculated here cover interesting regions of oscillation parameter

space. For some limited (Δm2, sin22θμx) combinations, with these systematic errors,

MiniBooNE has 3σ coverage in νμ disappearance. For the νe appearance search,

MiniBooNE has 3-5σ discovery potential over most of the LSND (Δm2, sin22θμe)

allowed region using the combined fit developed here.

Whether MiniBooNE confirms or rules out the LSND signal, the most important

criterion is that the result be unambiguous. The LSND signal raises many fascinating

possibilities, and for progress to be made in understanding what neutrino oscillations

tell us about the Standard Model, these questions must be resolved by a definitive

measurement. MiniBooNE is a difficult experiment because it operates in a proton

beam and neutrino interaction energy regime where few experiments have gone before.
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Therefore, constraining systematic errors and background predictions using in-situ

neutrino data is both interesting in its own right and a relevant part of making the

MiniBooNE measurement conclusive. This is what I have tried to accomplish and

describe in my thesis analysis.
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Appendix A

Protons on Target Measurement

The measurement of the number of protons on incident on the MiniBooNE target,

abbreviated as p.o.t. hereafter, comes from two toroids, located 5 and 50 m upstream

of the target respectively. The calibration of the toroids is the dominant contribution

to the systematic error, which is ∼1%. The evolution of this analysis is described in

detail in [129], the current status is summarized here.

A.1 Hardware

Toroids provide the primary measure of the total charge per Booster proton beam

pulse in the MiniBooNE beam line. MiniBooNE uses two Pearson 3100 toroids, with a

3.5” aperture [130]. The toroids are essentially transformers, with the beam current

acting as a one turn primary winding. The signal is transmitted from the beam

enclosure to the MI10 service building where electronics condition and monitor the

signal. The toroid calibration system is also located in the same building. The toroids

each have two cable connections: one for signal pulse output, and one for calibration

pulse input. The calibration loop of the toroid is simply a wire that passes through

304
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the toroid, to simulate a one turn primary winding. The signal cable is RG108, and

the calibration cable is 3/8” heliax. The calibration cable characteristics are such

that the input pulse charge loss is less than 0.01% [131].

Toroid TOR875 is located 5 meters upstream of the MiniBooNE target, and

toroid 860 is located 194.162 meters upstream of toroid 875 along the beam path [132].

Both are located quite far from the service building, and the time for the calibration

signal to make a round trip from the MI10 service building to TOR875 and back is

measured with an oscilloscope to be 1500 +- 250 ns [133] and calculated from time

delay reflectometry [134] measurements on nearby BPM cables to be 1671 +- 40 ns.

Schematics of the toroid locations and associated cables are shown in figure A.1.

Figure A.1: Left: toroid 860 location and cable transit time schematic. Right: toroid

875 location and cable transit time schematic.

The toroids work like transformers: the beam or calibration pulse acts as the pri-

mary turn, and induces current in the many secondary turns wound about a circular

ferrite core. When the proton beam passes through the toroid aperture, a voltage is

induced in the toroid windings proportional to the mutual inductance of the trans-

former, and the change in the beam current with time [135]. The output voltage is

integrated by an FNAL-built integrator, and the signal is digitized by an MADC.
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The ideal response of the toroid + integrator + MADC system is,

Np.p.p. =
VoutΔt

eRg

(A.1)

where Np.p.p. is the number of protons per pulse passing through the toroid, Vout is

the voltage output of the toroid, Δt is the length of the beam pulse in seconds, e is

the charge of a beam particle, and Rg is the termination resistance.

TOR860 Response (V) vs. Time (s)
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TOR875 Response (V) vs. Time (s)
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Figure A.2: Left: toroid 860 beam pulse output voltage (V) vs. time (s). Right: toroid

875 beam pulse output voltage (V) vs. time (s).

The toroids output 0.5 V olts per Ampere of beam current, when terminated into

50 Ω. The voltage output of the toroid can be calculated using a simple transformer

model [136], where the output voltage is related to the beam voltage by

Vout = Vin × k
RL

NRg

(A.2)

k =
M√
L1L2

(A.3)

where k is the coupling coefficient of the transformer (for and ideal transformer, k = 1)

in terms of the mutual inductance M and the inductances of the primary, L1, and

secondary, L2, loops, RL is the load resistance of the transformer circuit, N is the

turns ratio, and Rg is the termination resistance at the toroid, which is 50Ω. At
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MiniBooNE beam intensities, the typical Vout is a few mV . The shorting mechanism

that starts and ends the integrator gate causes noise fluctuations of this scale, as

can be seen in figure A.2, however, since the toroid is electrically isolated from the

beam pipe, the noise level in the toroid circuit is much smaller within the integrator

gate [137]. Typical toroid signals are shown in figure A.2. As expected for a Booster

proton beam pulse, the width of the toroid output voltage pulse is 1.6μs. Comparison

of TOR860 and TOR875 output voltage times shows that the TOR875 signal starts

later, which is due to both the difference in cable length and distance between the

two toroids.

TOR860 Integrator Voltage (V) vs. Time (s)
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TOR875 Integrator Voltage vs. Time (s)
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Figure A.3: Left: toroid 860 beam pulse integrated voltage (V) vs. time (s). Right:

toroid 875 beam pulse integrated voltage (V) vs. time (s).

The integrator gate width, 10μs, is much longer than the Booster pulse length,

1.6μs, to account for reflections in the signal cables [138]. The integrator signal is

shown for a Booster proton beam pulse in figure A.3. The integrators are triggered

approximately 2μs before the beam transits the toroids, and the baseline of the in-

tegrators is non-zero, as can be seen from the time the integrator gate opens (t = 0

in figure A.3) to the time when the beam-induced voltage integration starts. The

non-zero baseline value of the integrators requires the calibration correction of the
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MADC pedestal. The integrator voltage level decays after the beam pulse has gone by,

which requires calibration of the MADC gain to recover the full beam pulse voltage.

Additionally, the decay constants are different between the TOR860 and TOR875

integrators, which necessitates careful timing of the integrator triggers with respect

to the beam arrival time at each of the toroids. At the end of the gate, 10μs after

the start, there is a 2.5μs sample-and-hold, when the integrator signal is digitized by

the MADC, after which the integrator resets.

The integrator trigger time with respect to the Booster proton beam arrival affects

the measured p.o.t. value because the integrators for TOR860 and TOR875 have

different voltage decay constants. Additionally, since the toroids are separated by

∼200 m, the time of arrival of the beam with respect to a common integrator gate

start time differs by ∼1 μs. Calibrations were done using a Hewlett Packard 8112A

pulse generator to send a 1 V , 1.6 μs square pulse through the calibration loop of both

toroids, and the start time of the calibration pulse was varied from 1 to 9 μs after

the start of the integrator gate (this time is referred to as the delay in the following),

preserving the toriod output pulse integrator time difference. Figure A.4 shows the

measured number of protons per pulse as a function of delay with respect to a common

start time of the integrator gate for the two toroids. The measured values differ by

a few percent for delays less than 5μs, after which the ratio of TOR860/TOR875

changes rapidly as the delay approaches the end of the gate. The delay is currently

set to occur at 2 μs, and this difference in gain between the two toroids is corrected

for in the p.o.t. analysis.

In the initial beam line configuration, both integrators were triggered at the same

time, with respect to the injection of beam into the Booster from the Linac 1. This

1Both integrators were triggered on the 1D event + 33.45 ms + 319.6 μs. with respect to the 1D

accelerator event, which corresponds to injection of beam from the Linac into the Booster. The 1D
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Figure A.4: Left top: toroid 860 (Black) and 875 (Red) output (V) vs. delay after

integrator gate start (μs). Left bottom: ratio of 860 / 875 output vs. delay after

integrator gate start. Right: ratio of toroid 875 to toroid 860 number of protons per

pulse vs. time, before and after the integrator trigger timing change described in the

text.

was problematic because the Booster extraction time with respect to injection can

vary by up to 1.6 μs, because the extraction is synchronized with a notch created in

the beam to minimize radiation due to particle losses at extraction. The placement

of the notch is asynchronous with the extraction signal, and so the extraction trigger

waits until the notch is in the appropriate location in the Booster. The length of

one Booster turn in time, at the extraction beam energy, is 1.6 μs. Therefore as a

result of triggering the integrators with respect to injection, rather than extraction,

the time of arrival of the beam within the integrator gate could vary by up to 1.6 μs

at both toroids.

The integrator trigger was changed at 4 p.m. on February 26, 2003, such that the

event is the signal for beam to be injected into the Booster from the Linac, the acceleration time is

approximately 33 ms, and the transit time of beam to the MiniBooNE beam line is approximately

319 μs.
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Figure A.5: Left: ratio of toroid 875 to toroid 860 measured number of protons per

pulse vs. run number. Right: toroid 875 vs. toroid 860 measured number of protons

per pulse.

trigger times are now with respect to the Booster extraction event 2, which ensures

that there is no variation in the beam time of arrival with respect to the Booster

notch, and such that the beam arrives 2 μs after the integrator gate start at TOR860,

and approximately 3 μs after the integrator gate start at TOR875. The result of the

change is shown in the right panel of figure A.4. Before the trigger timing change,

the ratio of the two toroids varied by about ± 2% since the integrator triggers were

set at 5 μs, where a ±1.6 μs variation in the beam time-of-arrival has a few percent

effect. After the trigger timing change one can see from figure A.4 that the variation

is less than 0.5%.

The best intrinsic measurement resolution of the Pearson 3100 toroids is approx-

imately 0.1% [139], however, this value is from benchtop measurements, and does

not include the response of the associated integrating electronics or cables. In situ,

the toroids are observed to have significant drift as a function of time [140]. This

phenomenon is widely observed at FNAL, and the cause is not understood. The

2The new integrator trigger is the 1F event + 318.5 μs, for both toroids.
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working hypothesis is that the drift is due to changes in the terminating resistance

of the toroid, the integrator gain stages, and/or the MADC internal resistance [141].

Figure A.5 shows the ratio of the number of protons per pulse measured by TOR860

to TOR875 as a function of MiniBooNE run number. There are clear steps, as large

as 1% in magnitude, where the relative calibration of the two toroids has changed 3.

However, it is not clear which of the toroids is drifting, and therefore calibration

information is required.

A.2 Calibration

Two kinds of calibrations are employed to address the issue of toroid drift. Absolute

calibrations are done approximately twice yearly by the FNAL Beams Division In-

strumentation Group to measure the absolute ratio of voltage input to voltage output.

The calibration of the two toroids relative to each other (called relative calibrations

hereafter) is measured at 5 Hz by a custom calibration module designed and built

at Nevis Laboratories. The relative calibration data is read out by the MiniBooNE

beam line data acquisition system, and applied in the p.o.t. analysis software.

Absolute Calibration

The absolute calibration of the toroids addresses the issues of integrator gain and

resistance changes. The absolute calibration employs a high precision wave form

3Since toroid 875 is considerably farther downstream in the beam line than toroid 860, one might

ask whether the difference between the two measurements can be due to beam loss. This possibility

has been ruled out by controlled loss measurements using a bayonet SWIC, in which a foil of a

known thickness is inserted into the beam, and the loss monitors are tracked. A loss of 1% of the

MiniBooNE beam would produce loss monitor readings approximately a factor of 10 higher than

the nominal operating values [142].
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generator, whose output voltage is calibrated to 0.6% [143]. It generates a series of 1.6

μs long pulses (ΔtWFG), which range from 0.0 to 4.0 V (VWFG), which are run through

the toroid calibration loop. The test pulse is timed to occur 2 μs after the start of the

integrator gate. The wave form generator resistance, RWFG, is measured to be 50.54

Ω. The absolute calibration of the toroid + integrator + MADC system gain and

pedestal is done by comparing the measured value of the toroid integrator output with

the predicted value, for each test pulse voltage. The ideal toroid integrator output is

Np.p.p. =
VWFG × ΔtWFG

((Rtoroid + RWFG)/2) × e
(A.4)

where Np.p.p. is the number of protons per pulse, Rtoroid is the load resistance of the

toroid + integrator system, and e is the charge of the proton. The gain is defined to

be the constant of proportionality between the measured and predicted Np.p.p, and

the pedestal is defined to be the correction needed to make the measured Np.p.p. = 0

when VWFG = 0.

The gain and pedestal corrections are found by a linear regression on the measured

and predicted Np.p.p. [143]. The ideal gain, Gideal, is 1.0, and the ideal pedestal, Pideal

is 0.0. The gain correction is

Gcorrection =
Gideal

GLSF

(A.5)

where GLSF is the 1st coefficient in the linear regression. The pedestal correction is

Pcorrection =
(Pideal − PLSF )

GLSF

(A.6)

where PLSF is the 2nd coefficient in the linear regression. Typical values of the gain

and pedestal corrections are 0.85 and 0.0, respectively.

Absolute calibrations of the toroids have been done several times; table A.1 shows

the calibration date, gain, and percentage change. The pedestal corrections are not

shown as the correction is typically of order 0.001, and is usually neglected. The error
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Table A.1: Gains from absolute calibrations as a function of time.

Date 860 Gain % Gain Change 875 Gain % Gain Change

09.01.03 0.8300 - 0.8680 -

02.06.03 0.8713 4.97 0.8574 -1.24

02.27.03 0.8198 -6.00 0.8713 1.62

02.28.03 0.8263 0.79 0.9354 7.36

03.07.03 0.8209 -0.66 0.8210 -13.93

11.29.04 0.8259 +0.60 0.844 +2.61

Table A.2: Errors on absolute calibration constants. The calibration equipment errors

are propagated to find the uncertainty on the toroid gain.

Cause Error (%) Gain Change (%)

Toroid Termination Resistance 0.47 0.26

Calibration Voltage 0.6 0.87

Toroid Drift (before 02.27.03) 4 2.86 2.86

Toroid Drift (after 02.27.03) 1.45 1.45

Total Error (before 02.27.03) - 3.00

Total Error (after 02.27.03) - 1.71
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on the absolute calibration constants of the toroids is determined by the measured

uncertainties on the wave form generator output voltage, the measured termination

resistance of the toroid, and the drift of the toroid gains between calibrations. These

errors are summarized in table Appendices:::Protons::table:abscalerrs.

Relative Calibration

The calibration constants of the toroids change fairly often, as was seen in the previous

section, and the changes can be large. Also, the toroids drift as a function of time. For

these reasons, a un-used safety system, the E-Berm [144], has been modified such that

it can be used to measure the calibration constants of the toroids on each beam pulse.

The E-Berm consists of the two MiniBooNE toroids and a comparator module, used

in conjunction with two toroid calibration modules [145]. The comparator module is

designed to calculate the difference between the two toroids for each pulse, and for the

sum of the previous ten pulses. The instantaneous and integrated losses are designed

to be output to the radiation safety interlock system, which could automatically

inhibit the next beam pulse if the per-pulse losses are greater than 6%, or if the

average losses are greater than 2%. This system was never used for beam line safety,

and therefore was available as a calibration monitor.

The E-Berm trigger was modified to measure the relative toroid calibration at

5Hz. The calibration sequence consists of a series of 10 current pulses that are

sent through a toroid calibration loop and read back through an integrator. The

calibration occurs simultaneously for both toroids, over the full dynamic range (0.5E11

to 5E12 p.p.p.) of the beam intensity, which corresponds to an input voltage of 0.5

to 25 V . A linear regression is performed on the measured and ideal values of the

integrated toroid output in the calibration module hardware. Gain and pedestal

corrections are obtained for each toroid, and, for the purposes of monitoring the
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Figure A.6: Left: E-Berm calibration sequence on toroid 860 (green) shown with the

Booster charge (red) vs. time (s). The calibration sequence starts 1 ms. after the 0C

event, and beam transits the toroids 330 μs after Booster extraction. The constant

value of the toroid after Booster extraction is the measured beam intensity. Right: E-

Berm calibration constants vs. time. Green: TOR860 E-Berm gain, Blue: TOR875

E-Berm gain, Yellow: TOR860 E-Berm raw pedestal, Red: TOR875 E-Berm raw

pedestal.

relative calibration of the toroids on each pulse, the gain and pedestal corrections

are output to the MiniBooNE beam line data acquisition system. The calibration

sequence is shown in figure A.6.

The internal resistance of the toroid integrator is different from the design values

assumed when the Nevis calibration modules were made. As a result, the E-Berm

system is used as a relative rather than absolute calibration, and, the relative cali-

bration constant calculation is slightly different from that of the absolute calibration.

The relative calibration of the toroids is given by [146]

N corrected
p.p.p. = GE−Berm × Np.p.p + P ∗

E−Berm (A.7)

where N corrected
p.p.p. is the number of protons per pulse, corrected by the relative calibra-
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tion factor calculated by the E-Berm, GE−Berm, and Np.p.p. is the number of protons

per pulse calculated using the absolute calibration constants discussed in the previous

section. The pedestal value calculated by the E-Berm, PRAW
E−Berm, is the raw MADC

pedestal, and so must be corrected according to the Acnet MADC scaling functions

to obtain the pedestal correction, P ∗
E−Berm, used to determine the number of protons

per pulse.

P ∗
E−Berm =

PRAW
E−Berm

3267.8
× GE−Berm × GAbs. Cal. (A.8)

where GAbs. Cal. is the gain from the absolute calibration, and 3267.8 is the factor

needed to turn the raw MADC data into a voltage level. The noise level of the E-

Berm gain calculation appears to be at the level of 0.1 - 0.2%, which is consistent

with the best accuracy measured by the Beams division instrumentation group for

the Pearson 3100 toroid. The E-Berm calibration constants have changed by less than

0.5% since March 7, 2003, when the E-Berm calibration data entered the MiniBooNE

data stream. The calibration constants are shown as a function of time in the right

panel of figure A.6.

A.3 Data Acquisition

The beam line data is acquired as follows. Data from beam line devices is collected

by rack-mounted internet devices (IRMs), which time stamp the data when is arrives

at the IRM. The data collection trigger occurs once per Booster pulse. The time-

stamped and time-ordered data is read out of the IRMs by the AcnetDAQ software

package [147] once every 3 seconds. The AcnetDAQ assembles the data for each

event and concatenates the data from all events in a given detector (TankDAQ) run.

When the run ends, the AcnetDAQ data for that run is shipped to the central data

acquisition engine (UberDAQ), and subsequently merged by the NearLine program
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with all of the other MiniBooNE data streams, such as detector, resistive wall monitor,

and slow monitoring. The merging process merges events from all data streams which

have GPS time stamps within 13 ms of the TankDAQ beam trigger time.

Data acquisition does not contribute to the systematic error on the p.o.t. measure-

ment because events without p.o.t. information are eliminated by the analysis data

quality cuts. Therefore data loss due to failure of the data acquisition system affects

the efficiency of the data quality cuts. Historically, beam line data acquisition was

problematic during the initial few months of MiniBooNE operations, however since

March of 2003 the efficiency of the data quality cut that requires toroid information

has been >95%. A description of the beam line data acquisition system commisioning

can be found in reference [129].

A.4 Systematic Errors

Uncertainties on the p.o.t. measurement come from the calibration of the toroids and

the timing of the beam within the integrator gate. When calculating the systematic

error on the p.o.t. measurement, three distinct periods of toroid data taking are

considered: (1) pre-2/27/03, before E-Berm calibration information was available and

before the integrator trigger timing change, (2) 2/27/03 - 3/7/03 after the integrator

trigger timing change and before E-Berm calibration information was available, and

(3) post-3/7/03, when E-Berm data became available. The systematic errors for these

three periods, summarized in table A.3, are different due primarily to the measured

changes in the toroid gains.

The following systematic error sources are included:

• Toroid calibration constants: the systematic error on the toroid calibration

constants before the E-Berm data became available is estimated by taking the
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Table A.3: Summary of systematic errors (%) in the three periods of toroid data

taking: (1) pre-2/27/03, before E-Berm calibration information was available and

before the integrator trigger timing change, (2) 2/27/03 - 3/7/03 after the integrator

trigger timing change and before E-Berm calibration information was available, and

(3) post-3/7/03, when E-Berm data became available.

Cause Phase 1 Phase 2 Phase 3

Toroid Calibration Constants 3.00 1.71 0.5

Toroid Pedestal 0.05 0.05 0.05

Integrator Gate Timing 2.00 0.5 0.5

Total 3.64 1.85 0.86

ratio of the measured gain on a given date to the previously measured value.

From table A.1, before February 27, 2003, the error is estimated to be 3.00%,

and between February 27 and March 7, the error is estimated to be 1.71%.

After March 7, when the E-Berm relative calibration measurements began, the

toroid gains have changed by less than 0.5%, shown in figure BLAH.

• Toroid pedestal: the pedestal value is not corrected for in the calibration, and

is not subtracted from the beam-on reading. The pedestal contributes approx-

imately -0.05% to the normalization of each beam pulse.

• Integrator gate timing: before the integrator trigger timing change on 2/26/03,

the systematic error due to the timing is estimated from the variation in the

toroid ratio shown in figure A.4, which is 2%. After the timing change, the

uncertainty is estimated in the same way to be 0.5%.

Added in quadrature, the total estimated error is 3.64% on the protons on target sum
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before February 27, 2003. Between February 27 and March 7, the total estimated error

is 1.85%, and since March 7, the total estimated error is 0.86%.



Appendix B

Particle Production Fits

B.1 π+ Production Fit Result Compared with Past

Data

A number of experiments measured inclusive pion production in the phase space of

interest to MiniBooNE prior to 1990. These older experiments typically have scin-

tillator counters to trigger on the proton beam incidence on target, and a magnetic

spectrometer with small acceptance which sits at a specific angle with respect to the

incident proton beam. Therefore the meson yield is measured at a one production

angle, and the entire apparatus is moved to measure production at a different angle.

Cherenkov chambers are usually used for particle identification. The chambers are

calibrated with radioactive foils with an accuracy of about 5%, beam-off running is

done to subtract noise and background, and the spectrometer acceptance is deter-

mined geometrically. For these types of experiments, the measured cross section is

typically given by (e.g. [74])

d2σ

dpdΩ
=

n × (correction factor)

N(N0/A)ρLΔΩΔp

320
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where n is the measured pion yield, the correction factor accounts for the efficiency

of the spectrometer as a function of pion momentum, N is the number of incident

protons, N0 is Avogadro’s number, A is the atomic number of the material, ρ is the

density of the material in g/cm3, L is the length of the target in cm, and ΔΩ and

Δp are the acceptances of the spectrometer in sr. and GeV/c respectively. Typical

acceptances are 3.5%/(GeV/c) and 5.0 μsr, and the correction factor is usually folded

into the yield if it is published [74]. Another method employed by older experiments

without precise proton beam intensity or targeting efficiency monitors is to measure

a meson yield in angle and momentum bins, and covert it into a differential cross

section measurement by assuming a value for the total inelastic cross section, e.g.

d2σ

dpdΩ
= σT

d2N

dpdΩ
.

where σT is the total inelastic cross section. The value of the inelastic proton-

beryllium cross section has varied somewhat as a function of time, which contributes

to the normalization discrepancy between older experiments. Typical reported er-

rors on a data point are ∼5-10%, and the dominant sources of uncertainty come

from statistics, the repeatability of measurements, and corrections for absorption and

meson decay. Published normalization uncertainties are ∼5-20%.

Figure B.1 shows pT vs. xFeynman for these experiments, superimposed upon the

MiniBooNE beam Monte Carlo prediction for the phase space of π+ that decay to

neutrinos in the MiniBooNE detector acceptance. These data are reported in bins of

d2σ
dpdΩ

or E d3σ
d3p

vs. pion momentum and angle. The most relevant cross section mea-

surements are from the Cho[74] and Vorontsov[83] experiments, which are compared

with the best-fit Sanford-Wang cross section described in Chapter 3 section 6 in Fig-

ures B.2 through B.4. The χ2 between the older data in figure B.1 and the best-fit

Sanford-Wang π+ cross section prediction is shown in table B.1.
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experiment pBEAM (GeV/c) pπ (GeV/c) θπ NDATA σNORM

Allaby[148] 19.2 6 - 10 0 - 7o 21 15%

Asbury[149] 12.4 3 - 5 12, 15o 6 15%

Cho[74] 12.4 1 - 5 0 - 12o 53 5-8%

Dekkers[69] 18.8,23.1 4 - 12 0,5o 30 (20%)

Marmer[150] 12.4 0.5 - 1 0 - 10o 14 20%

Vorontsov 1983[83] 10.1 1 - 4.5 3.5o 14 25%

Vorontsov 1988[83] 10.1 1 - 4.5 3.5o 14 25%

Allaby Data (19.2 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

Allaby Data (19.2 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

Allaby Data (19.2 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

Allaby Data (19.2 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

Allaby Data (19.2 GeV/c)

MiniBooNE MC: π+ with ν in detector acceptance

Allaby Data (19.2 GeV/c)
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Figure B.1: Top: Summary of experiments which measure pBe → π+X in a region of

interest to MiniBooNE. Bottom: Transverse momentum (GeV) vs. xFeynman for π+

production experiments, overlaid with the MiniBooNE beam Monte Carlo prediction

for π+-decay ν in the MiniBooNE detector acceptance.
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Figure B.2: Cho[74] experiment measured inclusive π+ production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. π+ momentum

(GeV/c), at pproton = 12.3 GeV/c. Error bars include statistics and systematics.
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Figure B.3: Cho[74] experiment measured inclusive π+ production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. π+ momentum

(GeV/c), at pproton = 12.3 GeV/c. Error bars include statistics and systematics.
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Figure B.4: Vorontsov[83] experiment measured inclusive π+ production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. π+ momentum

(GeV/c), at pproton = 10.1 GeV/c. Error bars include statistics and systematics.
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Table B.1: Compatibility of older π+ production experiments with best-fit Sanford-

Wang π+ production cross section prediction.

experiment χ2
shape χ2

total ndf

Allaby 246 281 13

Asbury 95 99 -2

Cho 165 246 45

Dekkers 91 92 22

Marmer 83 116 6

Vorontsov 19 21 6

B.2 π− Production Fit

Similar fits to those described in chapter 3 are performed for inclusive π− production

data from the E910 and HARP experiments. The results, assuming uncorrelated

errors, are summarized in table B.2. The data are compared with the best-fit Sanford-

Wang cross section in Figures B.6 through B.8. The χ2/ndf of the combined fit is

1.30.

B.3 K+ Production Fit Result Compared with Past

Data

Several older experiments which have measured pBe → K+X are not included in

the Sanford-Wang K+ cross section fit described in chapter 3. These experiments

generally have worse coverage of the phase space of interest to MiniBooNE, shown in

figure B.9, or are missing necessary information such as the normalization uncertainty
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Figure B.5: Left: best-fit Sanford-Wang inclusive π− production cross section (milli-

barns/GeV/c/steradian) vs. π− momentum (GeV/c) for various angles, at pproton

= 8.9 GeV/c. Right: best-fit Sanford-Wang inclusive π− production cross sec-

tion (milli-barns/GeV/c/steradian) vs. proton momentum (GeV/c) at (pπ, θπ) =

(1.8 GeV/c, 5.4o).
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Table B.2: Best-fit Sanford-Wang π− parameters, assuming uncorrelated errors for

all data sets. The “E910 + HARP” fit combines HARP 8.9 GeV/c, E910 6.4 GeV/c,

and E910 12.3 GeV/c data. The “E910 only” and “HARP only” fits are performed to

check the consistency of the individual experiments with the Sanford-Wang hypothesis.

Since HARP measures only one pproton value, the parameter c5 is fixed in the Sanford-

Wang function for the “HARP only” fit.

fit parameter E910 + HARP E910 only HARP only

c1 226.2 ±35.72 235.0 ±39.83 379.6± 26.61

c2 0.8726±0.1355 1.005 ±0.1878 1.398± 0.3072

c3 6.096 ±0.6343 3.199 ±0.8616 1.142± 0.2193

c4 1.236 ±0.1571 1.150 ±0.2467 0.8453± 0.0657

c5 1.289 ±0.0835 1.017 ±0.1637 0.000± 0.000

c6 4.232 ±0.6759 5.004 ±1.103 3.796± 0.2960

c7 0.0661±0.0185 0.0635±0.0154 0.1521± 0.0751

c8 9.820 ±10.13 6.182 ±5.212 23.16± 63.68

nHARP 1.00±0.00 -

nE910 6.4 1.00±0.07 1.00±0.07 -

nE910 12.3 1.00±0.03 1.00±0.03 -

shape χ2/ndf 174/135 117/93 10/34

total χ2/ndf 175/135 117/93 10/34

total χ2/ndf probability 0.011 0.047 0.999



328

50

100

150

200

250

0 2 4 6

50

100

150

200

250

0 2 4 6

50

100

150

200

250

0 2 4 6

50

100

150

200

250

0 2 4 6

50

100

150

200

250

0 2 4 6

2.5o Data

Pπ (GeV/c)

d2 σ/
dp

/d
Ω

 (
m

b/
G

eV
/c

/s
r)

4o Data

Pπ (GeV/c)
d2 σ/

dp
/d

Ω
 (

m
b/

G
eV

/c
/s

r)

6o Data

Pπ (GeV/c)

d2 σ/
dp

/d
Ω

 (
m

b/
G

eV
/c

/s
r)

8o Data

Pπ (GeV/c)

d2 σ/
dp

/d
Ω

 (
m

b/
G

eV
/c

/s
r)

9o Data

Pπ (GeV/c)

d2 σ/
dp

/d
Ω

 (
m

b/
G

eV
/c

/s
r)

11o Data

Pπ (GeV/c)

d2 σ/
dp

/d
Ω

 (
m

b/
G

eV
/c

/s
r)

Pπ (GeV/c)

d2 σ/
dp

/d
Ω

 (
m

b/
G

eV
/c

/s
r)

50

100

150

200

250

0 2 4 6

Figure B.6: HARP[78] experiment measured inclusive π− production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. π− momentum

(GeV/c), at pproton = 8.9 GeV/c. Error bars include statistics and systematics.
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Figure B.7: E910[77] experiment measured inclusive π− production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. π− momentum

(GeV/c), at pproton = 6.4 GeV/c. Error bars include statistics and systematics.
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Figure B.8: E910[77] experiment measured inclusive π− production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. π− momentum

(GeV/c), at pproton = 12.3 GeV/c. Error bars include statistics and systematics.
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Table B.3: Compatibility of older K+ production experiments with best-fit Sanford-

Wang K+ production cross section prediction.

experiment χ2
shape χ2

total ndf

Allaby 664 681 42

Dekkers 161 179 11

Lundy 52 71 10

Marmer 67 83 0

(Dekkers and Lundy). Of these experiments, the most relevant are Allaby and Lundy,

which are compared with the best-fit Sanford-Wang K+ production cross section in

figures B.10 and B.11. The χ2 between the data in figure B.1 and the best-fit Sanford-

Wang K+ cross section prediction is shown in table B.3.
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experiment pBEAM (GeV/c) pK (GeV/c) θK NDATA σNORM

Allaby[148] 19.2 6-16 0 - 7o 51 15%

Dekkers[69] 18.8, 23.1 4-12 0,5o 20 (20%)

Lundy[68] 13.4 3-6 2,4,8o 19 (20%)

Marmer[150] 12.3 0.5-1 0,5,10o 9 20%
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Figure B.9: Top: Summary of experiments which measure p Be → K+X in a

region of interest to MiniBooNE. Bottom: Transverse momentum (GeV) vs. xFeynman

for K+ production experiments, overlaid with the MiniBooNE beam Monte Carlo

prediction for K+-decay ν in the MiniBooNE detector acceptance.
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Figure B.10: Allaby[148] experiment measured inclusive K+ production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. K+ momentum

(GeV/c), at pproton = 19.2 GeV/c. Error bars include statistics and systematics.
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Figure B.11: Lundy[68] experiment measured inclusive K+ production cross section

(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. K+ momentum

(GeV/c), at pproton = 13.4 GeV/c. Error bars include statistics and systematics.



Appendix C

Chapter 5 Cross Section

Uncertainty Calculation

The method discussed in chapter 5 for constraining the simulation parameter uncer-

tainties using the MiniBooNE νμ CCQE data set can be applied to the cross section

predictions as well. Here, the ansatz would be that the flux is known, and therefore

the ratio of data to Monte Carlo in equation 5.1 reduces to

R =
Nafter CCQE cuts

DATA (EQE
ν )

Nafter CCQE cuts
MC (EQE

ν )
=

σCCQE
Data (Eν)

σCCQE
MC (Eν)

. (C.1)

To use this ratio as a reweighting function for constaining the uncertainties on the

cross section simulation parameters, one would replace Nafter CCQE cuts
DATA (EQE

ν ) with

“fake data”, which is really central value Monte Carlo, and correspondingly replace

Nafter CCQE cuts
MC (EQE

ν ) with “unisim” Monte Carlo, in which some cross section simu-

lation parameter has been varied. The cross section simulation parameter variations

considered here include the first 9 sources in table 4.7, which are (i) the axial masses

for the CCQE, CC1π, CC multi-π, and coherent neutrino-nucleon scattering cross

sections (mQE
A , m1π

A , mNπ
A , mcoh

A ), (ii) the Fermi Gas model Fermi momentum pF and
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binding energy EB, (iii) the component of the nucleon spin carried by the strange sea

quarks Δs, which impacts the neutral current cross sections, and (iv) the radiative

Δ decay branching fractions. The final state pion interaction cross section simula-

tion parameter variations are not included here because they cannot be produced by

reweighting central value Monte Carlo, and therefore the statistics of the μ+-decay

νe are insufficient for this analysis at present.

The reconstructed neutrino energy distributions before and after modification by

reweighting via equation C.1, for “fake data” and cross section “unisim” Monte Carlo

events passing the νμ CCQE selection cuts, are shown in the figure C.1. Exactly the

same reweighting approach is employed as in chapter 5: the νμ spectrum is used to

infer the π+, μ+, and νe energy distributions. This is not a particularly meaning-

ful way to relate the νe and νμ predictions in the case of cross section simulation

parameter uncertainties, and in fact any sample of νe Monte Carlo could be used.

However, the μ+-decay νe energy spectrum is quite similar to that of a potential νe

oscillation signal. Therefore, using the μ+-decay νe as the νe sample here provides

a useful measure of how well the νμ CCQE calibration approach can work in the νe

appearance analysis. The inferred π+, μ+, and νe distributions are shown before and

after modification by reweighting in figure C.2. As in the π+ case, by construction,

the reweighting modification works perfectly for the EQE
ν distribution, and is only

applied to π+-decay νμ events. In principle, all events passing the νμ CCQE selection

cuts could be used, including the non-π+-decay νμ.

The effectiveness of this method in constraining the cross section simulation un-

certainties is evaluated by comparing three cases:

1. with no reweighting modification (the reweighting function is taken to be 1.0

in all energy bins), so the error matrix comes directly from the assumptions in

chapter 3,
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Figure C.1: Left: number of events vs. reconstructed neutrino energy (GeV) for

events passing the νμ CCQE selection cuts. Right: reweighted number of events vs.

reconstructed neutrino energy (GeV) for events passing the νμ CCQE selection cuts.

Central value Monte Carlo is indicated by the points, σν prediction “unisim” Monte

Carlo by the lines.
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Figure C.2: Left: generated Monte Carlo energy distributions. Right: reweighted

Monte Carlo energy distributions. Top: number of events vs. π+ energy (GeV).

Middle: number of events vs. μ+ energy (GeV). Bottom: number of events vs. νe

energy (GeV).
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2. with reweighting modifications, where the numerator of the reweighting func-

tion is “fake data” (central value Monte Carlo), which tests the effect of the

reweighting method on the uncertainties only;

3. with reweighting modifications, where the numerator of the reweighting function

is the νμ CCQE data set described in chapter 4.

The reweighting modification procedure is applied to the central value Monte

Carlo, and to each of the first nine ν interaction cross section “unisims” listed in

table 3.10. The modified “unisims” are used to calculate the first derivative matrices

and propagate the simulation input parameter errors, as described in chapter 4, to

the uncertainties on the predicted EMC
ν distribution for μ+-decay νe and π+-decay

νμ events, with no selection cuts applied. The ratio of the modified “unisims” to the

original central value Monte Carlo for each of the three cases is shown as a function

of EMC
ν in figure C.3. For case 1, with no modification, the spread in the (reweighted

“unisim” / original central value) ratios is ∼20% about a value of 1.0 at Eν = 1 GeV

for both μ+-decay νe and π+-decay νμ. This is dominated by the Fermi Gas model

parameter variations, which lower the predicted number of events by sim20-30%. For

case 2, where the “unisims” have been modified via reweighting to match the “fake

data,” the spread is ∼5% about 1.0 at Eν = 1 GeV . This reduction in the spread of

the ratios comes almost entirely from the change in the Fermi Gas model parameter

“unisims”, the rest are hardly affected, which makes sense because the νμ CCQE data

set should only constrain the error on the CCQE cross section and the Fermi Gas

model parameters. For case 3, the spread in the ratios is nearly identical to case 2,

as expected, and the value of the ratio is ∼1.3 at Eν = 1 GeV .

The modified “unisims” are used to construct the first derivative matrix, which in

combination with the cross section parameter correlation matrix, is used to propagate

the simulation input parameter uncertainties to the EMC
ν distribution for π+-decay νμ
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Figure C.3: Ratio of σν prediction “unisims” to original central value Monte Carlo

vs. EMC
ν (GeV), with no selection cuts applied. Left: predicted π+-decay νμ spectra.

Right: predicted μ+-decay νe spectra.
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Table C.1: Summary of the uncertainty on μ+-decay νe in the detector acceptance for

the three reweighting scenarios described in the text. The Monte Carlo set corresponds

to 2.2×1021 simulated protons on target.

Reweighting Ratio N νe(μ
+) ΔN (%) δN (%)

1.0 12,658 9.527 2.085

“fake data” / “unisim” 12,658 8.410 1.893

data / “unisim” 16,095 8.437 1.893

and μ+-decay νe events. The cross section parameter correlation matrix is discussed

in detail in chapter 6 and given in Appendix F. Adding the parameter correlations

greatly reduces the uncertainties due to the Fermi Gas model parameters, which ac-

count for the two largest “unisim” excursions, because they are highly anti-correlated.

The central value Monte Carlo predicted EMC
ν distribution for μ+-decay νe events,

with no selection cuts applied, is shown with neutrino interaction cross section errors,

calculated for cases 1, 2, and 3, in the left-hand panels of figure C.4; the fractional

errors as a function of EMC
ν are shown in the right-hand panels. The corresponding

distributions for π+-decay νμ events are shown in figure C.5.

To compare the three scenarios, the total number of predicted μ+-decay νe events

and the two error estimators δN and ΔN are summarized in table C.1. The error

estimators are defined in equations 4.18 and 4.20; they describe the fully correlated

normalization error and an estimate of the shape uncertainty respectively. Table C.1

contains the corresponding information for π+-decay νμ events. The total neutrino

interaction cross section uncertainty for the νe events is reduced from 9.5% to 8.4%,

and from 9.4% to 1.8% for the νμ events.

The difference in the effectiveness of this method for constraining the neutrino
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Figure C.4: Error on μ+-decay νe EMC
ν spectrum from σν prediction uncertainties,

in reweighting cases 1 (top), 2 (middle), and 3 (bottom). Left: predicted number of

events vs. EMC
ν (GeV ) for 2.2 ×1021 protons on target. Right: fractional error vs.

EMC
ν (GeV ).
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Figure C.5: Error on π+-decay νμ EMC
ν spectrum from σν prediction uncertainties,

in reweighting cases 1 (top), 2 (middle), and 3 (bottom). Left: predicted number of

events vs. EMC
ν (GeV ) for 0.243 ×1021 protons on target. Right: fractional error vs.

EMC
ν (GeV ).
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Table C.2: Summary of the uncertainty on π+-decay νμ in the detector acceptance for

the three reweighting scenarios described in the text. The Monte Carlo set corresponds

to 2.43×1020 simulated protons on target.

Reweighting Ratio N νμ(π+) ΔN (%) δN (%)

1.0 552,493 9.426 2.353

“Unisim” / CV MC 552,493 1.755 0.413

Data / CV MC 705,633 2.701 0.671

interaction cross section uncertainties for νμ and νe events likely occurs because the

correlation between the νμ and π+ energy is much tighter than the correlation between

the νe and π+ energy, as is shown in figure 5.1. For the pi+ error reduction described

in chapter 5, the νe (or νμ) and ancestor π are correlated on an event-by-event basis,

however, for the neutrino interaction cross section analysis, they are not. Therefore

the average correlation in each neutrino energy bin determines the effectiveness of the

constraint method described here, and so the larger the spread of neutrino energies

in each pion energy bin, the less effective the constraint will be.



Appendix D

Kaon Prediction Constraint

Method

The νe background from K+ decay comprises approximately 1/3 of the intrinsic beam

νe background to the νμ → νe analysis, and therefore must be well understood. The

MiniBooNE prediction for K+ meson production in the target, described in chapter

3, comes from a fit to data from past experiments, termed “external” data in the

following. However, the fit requires extrapolation to the MiniBooNE proton beam

momentum, has large errors, and the fit quality is poor. Therefore it is critical to

check the prediction with “internal” data from MiniBooNE. The available in-situ

cross checks for the K+ production prediction include the little muon counter system

(LMC) and the MiniBooNE detector high energy νμ data set (HE data). The LMC

and HE data (xF , pT ) coverage of the MiniBooNE K+ production phase space of

interest is shown in figure D.1; for comparison with the “external” data see figure 3.7.

The LMC is a muon spectrometer situated downstream of the MiniBooNE target

at an angle of 7o with respect to the decay pipe axis. The spectrometer accepts ∼0.5

- 2.0 GeV muons, which come from K+ → μ+νμ decays in the MiniBooNE neutrino
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MiniBooNE MC: K+ with ν in detector acceptance
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Figure D.1: Transverse momentum (GeV) vs. xFeynman for the HE data and the

LMC, overlaid with the MiniBooNE beam Monte Carlo prediction for K+-decay ν in

the MiniBooNE detector acceptance.
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beam line decay pipe. Muons from π+ decay in this Eμ range are produced at smaller

decay angles due to 2-body decay kinematics, and so do not contribute apprecia-

bly. However, there is a large background from secondary beam interactions in the

material surrounding the LMC detector, which is measured to fall off exponentially

with increasing muon momentum. At 7o, the average K+-decay μ+ momentum is

1.8 GeV/c, compared with the average π+-decay μ+ momentum of 0.3 GeV/c. By

measuring the number of muons as a function of momentum, the LMC can be used

to infer the normalization of the K+ spectrum in the MiniBooNE decay pipe, and

potentially give some information on the shape as well.

The LMC analysis is still under development, and so only LMC “fake data”

(which is really Monte Carlo) is considered here, shown in table D.1. The total

number of events with K+-decay μ+ detected by the LMC is expected to be ∼45,000.

This includes the muon detection efficiency, which is assumed to be 60% within the

spectrometer momentum acceptance, and a cut at pμ > 1 GeV/c to eliminate the pμ

region dominated by background.

The HE data set is selected from neutrino interactions in the MiniBooNE de-

tector. The right panel of figure 3.14 shows that above Eν ∼2 GeV , the νμ flux

comes dominantly from K+ decays, therefore with a minimum Eν cut MiniBooNE

can obtain an in-situ K+-decay νμ data set with good purity. The HE data event

selection and analysis is described in detail in reference [151], and comprises ∼10,000

events. Of these, further cuts are applied to select four sub-sets: νμ CCQE events

which are fully contained in the fiducial volume, νμ CCQE events where the μ+ exits,

νμ CC1π+ contained, and νμ CC1π+ exiting. These particular interaction channels

are selected to minimize the uncertainty associated with predicting the neutrino in-

teraction cross sections in this complex region 1. The numbers of events and data

1For Eν > 2 GeV , the cross section has non-negligible contributions from multi-pion production
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Table D.1: LMC “fake data” (Monte Carlo prediction) for the νμ from K+ decay

analysis. NK,LMC
μ is the number of μ+ from K in the LMC, while NLMC

μ,all includes

μ+ from π+-decay and background events as well. This “fake data” set corresponds

to 1×1017 protons on target.

bin pLMC
μ (GeV) NK,LMC

μ NLMC
μ,all K+ fraction 〈pK〉(GeV/c) 〈θK〉(rad.)

1 0.125 0.0 120269.27 0.00 - -

2 0.375 4.28 62290.06 0.00 0.37 0.262

3 0.625 62.17 32319.09 0.00 0.69 0.188

4 0.875 561.40 17266.60 0.03 1.71 0.133

5 1.125 2301.97 10952.84 0.21 2.13 0.101

6 1.375 7470.59 11949.49 0.63 2.34 0.086

7 1.625 13847.90 16164.27 0.86 2.78 0.066

8 1.875 21088.28 22281.97 0.95 3.70 0.050
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Table D.2: High energy box data used for the νμ from K+ decay analysis. The Mini-

BooNE detector Monte Carlo is used to estimate the K+ purity and production kine-

matics. σ-channel fraction refers to, for example, the fraction of CCQE events in

CCQE Contained sub-set. This data set corresponds to 3.2 ×1020 p.o.t.

HEBox CCQE CCQE CCPI CCPI

Sample Contained Exiting Contained Exiting

data 1269 1719 53 455

MC K+ fraction 0.27 0.72 0.55 0.80

MC 〈pK〉 (GeV/c) 2.81 3.82 3.15 3.96

MC 〈θK〉 (GeV/c) 0.085 0.063 0.077 0.061

MC σ-channel fraction 0.67 0.65 0.76 0.69

sub-set compositions after cuts are summarized in table D.2.

To combine the “internal” and “external” constraints, the LMC and HE in-situ

measurements and the external K+ production data are all included in a fit for the

K+ production cross section. The ansatz of the K+-decay νμ analysis is that the

simulation of the entire experiment other than the K+ production cross section is

correct, and therefore one can fit the various data sets with the Sanford-Wang K+

production cross section parameters as the only degrees of freedom. The uncertainties

on the in-situ data sets therefore should include uncertainties for all of the experimen-

tal assumptions, specifically the neutrino interaction cross section predictions and the

detector response simulation. The analysis of the in-situ K+ data is still in progress,

and therefore a sketch of a method for validating the K+ production cross section

prediction is described here, without the final in-situ data sets or a full error anal-

and deep inelastic scattering.
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ysis. At this stage, the goal is to check the minimum criteria for verifying that the

p Be → K+ X cross section prediction based on a fit to “external” data is consistent

with the MiniBooNE data. These are: (1) that the fit prediction agrees with the

in-situ K+ measurements within errors, and (2) that the “external” data fit predic-

tion agrees with the result of a combined fit to “external” and “internal” data within

errors.

As described in chapter 3, the K+ production cross section prediction is obtained

by fitting the Sanford-Wang parameterization to measurements of the double dif-

ferential pBe → K+X cross section from past experiments. The fit minimizes the

following function for an “external” experiment j:

χ2
j =

[∑
i

(Nj × SWi − Datai)
2

σ2
i

]
+

(1 − Nj)
2

σ2
Nj

(D.1)

where i is the (pmeson,θmeson) bin index, SWi is the parameterization prediction eval-

uated at a given (pproton, θmeson, pmeson), Datai is the measurement at a given (pproton,

θmeson, pmeson), σi is the data systematic error on measurement i, Nj is the normaliza-

tion pull term for experiment j, and σNj
is the normalization uncertainty experiment

j. The total χ2 for external data sets is the sum of the individual χ2s for each

experiment:

χ2 =
∑

j

χ2
j . (D.2)

Similarly, one can form χ2 terms for internal data. For the LMC,

χ2
LMC =

[∑
i

(N × (NPredicted
μ )i − (NObserved

μ )i)
2

σ2
i

]
+

(N − 1)2

σ2
N

(D.3)

where i is the LMC muon energy bin index, (NObserved
μ )i is the number of observed

μ+ in LMC Eμ bin i, σi is the error on each data point (for now, just
√

(NObserved
μ )i),

N is the LMC normalization pull term, σN is the LMC normalization error, which

for now is assumed to be 10%, and (NPredicted
μ )i is the predicted number of muons
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in LMC Eμ bin i given Sanford-Wang parameters c1 ... cN . For now we use “fake

data” (Monte Carlo) for (NObserved
μ )i since we do not yet have LMC results, and no

systematic error is included in σi.

For each sub-set of the HE data, e.g. “CCQE Contained,”

χ2
HEBox =

(N × NPredicted
ν − NObserved

ν )2

σ2
+

(N − 1)2

σ2
N

(D.4)

where (NObserved
ν )i is the number of observed ν in the HE data sub-set, σ is the

statistical error (
√

NObserved
ν ), σN is the HE data sub-set normalization uncertainty

which includes systematic errors from the event selection and reconstruction (assumed

to be 10% for now), and NPredicted
ν is the predicted number of ν events in HE data

given Sanford-Wang parameters c1 ... cN .

The prediction for the numbers of events in the LMC and the HE data relies on

reweighting Monte Carlo at each iteration of the fit. For simplicity the procedure

is illustrated with the LMC. The reweighting is done using a file of events from the

ModelB Monte Carlo [94] which has one line for each K+ event that decays to a μ+ in

the LMC acceptance. Each line contains pK , θK , Eμ, weight, and SW (pK , θk, c
MC
i ).

The momentum and angle are evaluated at production, and SW (pK , θK , cMC
i ) is the

value of the Sanford-Wang function in the Monte Carlo that was used to generate

the event. The weight is equal to the NLMC
μ per proton on target for μ+ from K+

produced at (pK , θK). The Monte Carlo predicted number of μ+ in LMC Eμ bin i is∑
events weightevent.

The fit varies the Sanford-Wang coefficients cFIT
i to minimize, e.g.,

χ2
LMC =

[∑
i

(N × (NPredicted
μ )i − (NObserved

μ )i)
2

σ2
i

]
+

(N − 1)2

σ2
N

(D.5)

where (NPredicted
μ )i depends on cFIT

i as follows. Each time the cFIT
i change (at each

iteration of the fit) NPredicted
μ,i is recalculated by reweighting the Monte Carlo Eμ
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distribution by R for each event:

Revent =
SW (pK , θK , cFIT

i )

SW (pK , θk, cMC
i )

(D.6)

The constant R is the ratio of the current value of the Sanford-Wang K+ cross section

prediction, given the cFIT
i , to the original value of the Sanford-Wang function that

was used in generating the Monte Carlo event file. The reweighted events are summed

in each Eμ bin i to find the predicted number of events for the Sanford-Wang function

coefficients cFIT
i

NPredicted
μ,i =

∑
events

weightevent × Revent. (D.7)

This procedure is done similarly for each HE data sub-set, with the substitution

of the reconstructed Eν for the reconstructed Eμ. The Monte Carlo event files are

produced with the MiniBooNE detector Monte Carlo, and contain pK , θK , Eμ, weight,

and SW (pK , θk, c
MC
i ) for each event that passes the HE data sub-set selection cuts.

To combine “external” and “internal” data, the fit minimizes

χ2
total = χ2

production data + χ2
LMC + χ2

HE, (D.8)

where χ2
production data is a sum over all of the “external” K+ production data sets

described in chapter 3, and χ2
HE is a sum over the four HE data sub-sets.

The most general cross-check is whether the fit to “external” K+ production

data only correctly predicts the HE data sub-sets. A comparison of the predicted

and measured numbers of events is shown in table D.3. The reweighting procedure

described above is used to make the prediction. The uncertainty on the measured

numbers of events is from statistics only, while the uncertainty on the predicted

number events in each HE data sub-set is assumed to be the Monte Carlo statistical

error added in quadrature with a 10% systematic error. Eventually the systematic

error will include the uncertainty from the π+ flux prediction, the ν interaction cross
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Table D.3: Comparison of measured and predicted numbers of events in the Mini-

BooNE HE data sub-sets for 3.2 ×1020 protons on target. The statistical error is

listed first for the predicted events, followed by the systematic error estimate. Statis-

tical errors only are shown for the data. The prediction comes from the Sanford-Wang

fits to external K+ data, described in chapter 3.

HEBox νμ CCQE νμ CCQE νμ CC1π+ νμ CC1π+

Sample Contained Exiting Contained Exiting

Predicted Total 731±12±73 1594±16±159 54±3±5 586±10±59

Data Total 1269±36 1719±42 53±7 455±21

Data/Predicted Total 1.74±0.19 1.08±0.11 0.98±0.18 0.78±0.09

section model, and the detector response simulation. The statistical error, ∼2%, is

similar in data and Monte Carlo.

For the “νμ CCQE contained” sub-set, the prediction is 3.9 σ away from the data,

for the “νμ CCQE exiting” and “νμ CC1π+ contained” event samples the prediction

is less than 1.0 σ away from the data, and for the “νμ CC1π+ exiting” sub-set the

prediction is 2.4 σ away from the data. The compositions of the various sub-sets are

all different, and the “νμ CCQE contained” sub-set has a much lower K+ fraction,

0.20, than the others, and therefore will not be considered further for a constraint

on the K+ flux prediction here. The background in the sub-sets consists of both

meson decay backgrounds and neutrino interaction backgrounds. The normalization

of the π+-decay νμ background is taken from the νμ CCQE (data / Monte Carlo)

measurement discussed in chapter 4. The neutrino interaction backgrounds come

primarily from resonant single pion production for the CCQE sub-sets, and from

CCQE and charged current deep inelastic scattering for the CC1π+ sub-sets.
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The error coming from the “external” data fit itself, which is 9% at the average

(pK , θK) for MiniBooNE, is not included in the prediction error in table D.3. This

fit error covers the difference between the predictions and the measurements at the

1-2 σ level 2. Therefore, the conclusion at this stage is that the prediction for the

p Be → K+ X production cross section based in “external” data alone is in fair

agreement with the in-situ MiniBooNE HE data, within the assumed uncertainties.

The second cross-check is whether the “external” data fit predicted K+ produc-

tion cross section agrees with the result of a combined fit to “internal” + “external”

data. This fit is performed with the “external” data described in chapter 3, and

the “νμ CCQE exiting,” “νμ CC1π+ contained,” and “νμ CC1π+ exiting” HE data

sub-sets. The results are summarized in table D.4. By comparing the total predicted

numbers of events in tables D.3 and D.4 one sees that the “internal” + “external”

data combined fit agrees with the “external”-only fit to 2%, which is well within the

“external” data fit uncertainty of 9%. This check verifies that including or exclud-

ing the in-situ data sets does not change the resulting best-fit Sanford-Wang K+

production cross section significantly.

The HE data verify the criteria discussed in the previous section for demonstrating

consistency between the “external” data fit and the MiniBooNE data, which builds

confidence in the K+-decay νe background prediction for the νμ → νe oscillation

search. The logical next step is to try to constrain the K+ prediction uncertainty using

in-situ measurements. The result of adding the HE data to the K+ production fit is

an error on the best-fit cross section at the average (pK , θK) for MiniBooNE of 8.5%,

which is not appreciably smaller than the “external”-only result, 9%. This occurs

because the HE data has relatively large systematic errors, assumed to be 10% here,

2The error estimate from the “external” data fit has been scaled up by the
√

χ2/ndf to attempt

to account for the poor fit quality as discussed in chapter 3.



355

Table D.4: Comparison of measured and predicted numbers of events in the Mini-

BooNE HE data sub-sets. The statistical error is listed first for the predicted events,

followed by the systematic error estimate. Statistical errors only are shown for the

data. The prediction comes from the combined Sanford-Wang fit to external K+ data

and the “CCQE Exiting” and both “CCPI” HE data sub-sets.

HEBox CCQE CCQE CCPI CCPI

Sample Contained Exiting Contained Exiting

Predicted K+ - 1119 28 458

Predicted Total - 1560±25±156 51±4±5 572±10±57

Data Total - 1719±42 53±7 455±21

Data/Predicted Total - 1.10±0.11 1.04±0.19 0.79±0.09

compared with the “external” production experiments, which did not have to contend

with neutrino interaction cross section or detector optical model uncertainties.

To reduce the K+ production uncertainty with respect to the “external” data

fit, a more direct in-situ K+ measurement is needed. This is the purpose of the

LMC. Currently only “fake data” LMC studies have been done, in which LMC signal

Monte Carlo with the expected data statistics is generated assuming the best-fit K+

production cross section from the Sanford-Wang fits in chapter 3. A fit to this LMC

“fake data” alone, which has χ2 = 0.0 by construction, results in an error on the best-

fit cross section of 10%, while, for comparison, a fit to HE data sub-sets alone gives

18%. Note that this comparison is not very meaningful since the LMC fits include

no systematic errors, while the HE data fits do. That said, the LMC measurement

will not have uncertainties from neutrino interaction cross sections, and therefore the

systematic errors are expected to be less than 10%. Fitting the LMC “fake data” in
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combination with the “external” data results in a fit error at the average (pK , θK)

for MiniBooNE of 4%; adding in the HE data as well does not further reduce the K+

production cross section fit error. This result is highly dependent on the systematic

error assumptions and the degree of agreement between the “external” fit prediction

and the LMC measurement, however, it demonstrates the potential of the LMC to

reduce the K+ flux prediction uncertainty.

Like the HE data set, the LMC can be used to measure the normalization of the

K+-decay ν flux. An important difference is that the LMC measures the K+-decay

μ+, not the νμ, and therefore it can break the degeneracy between neutrino flux and

cross section that exists for an event rate measurement, which is only sensitive to

the product of the two. To demonstrate the normalization constraint potential of the

LMC, a “fake data” study is performed with both LMC and HE Monte Carlo sets

generated assuming the K+ production cross section from the Sanford-Wang fit to

“external” data only. The statistics of the HE “fake data” set corresponds to 5 ×1020

simulated p.o.t., and the LMC “fake data” set corresponds to 1 ×1017 p.o.t., which

is the total sample expected. Combinations of the “external” data, HE “fake data,”

and LMC “fake data” are fit for the Sanford-Wang K+ production parameters, and

an overall normalization factor is applied to the K+ “fake data” in either the HE

sample, the LMC sample, or both. The ability of each “fake data” set to change the

normalization of the best-fit K+ production cross section is evaluated by comparing

the best-fit cross section at the average (pK , θK) for MiniBooNE.

The results of this study are summarized in table D.5, which shows that if a

normalization factor of 1.6 is applied to either the HE sample or the LMC, and

the “fake data” are fit with the “external” data, the best-fit K+ cross section is

correspondingly increased 3. This demonstrates that both the HE box and the LMC

3The amount of the increase in the best-fit K+ cross section at the average (pK , θK) for Mini-
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have the ability to constrain the normalization of the K+ production cross section,

under the given systematic error assumptions. However, the LMC provides a stronger

constraint when both “fake data” sets are fit together with the “external” data and

have different normalization factors. In a fit to all three, when the LMC normalization

factor is increased but the HE normalization is not, the resulting best-fit K+ cross

section normalization reflects the LMC “fake data” rate. In contrast, when the HE

“fake data” normalization is increased and the LMC is not, the resulting cross section

still has the normalization of the LMC, although the incompatibility is reflected by

the increase in the χ2/ndf of the fit.

As before, the conclusions depend on the assumptions made here, however, this

study shows that at the very least the MiniBooNE in-situ data can provide a valu-

able cross-check of the K+ production prediction, and potentially can correct the

normalization if the prediction based on “external” data only is incorrect.

BooNE does not have to be the same as the “fake data” normalization increase. This is because the

acceptance of the HE and LMC samples are different, and integrated over a region of production

phase space, while the best-fit cross section is evaluated at one point.
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Table D.5: Normalization constraint study for “external” p Be → K+ X data (labelled

ExData below), HE “fake data,” and LMC “fake data” under various normalization

scenarios. The normalization factor is only applied to the K+-decay “fake data.”

The best-fit cross section σ, and fit error δσ are evaluated at the average (pK, θK) for

MiniBooNE.

case normalization factor σ δσ χ2/ndf
√

χ2

ndf
×

(
δσ
σ

)
ExData N/A 5.63 0.28 3.62 9.46%

ExData & LMC 1.0 5.63 0.13 3.39 4.34%

ExData & LMC 1.6 8.08 0.16 3.64 3.76%

ExData & HE 1.0 5.85 0.26 3.66 8.66%

ExData & HE 1.6 7.31 0.31 3.82 8.46%

ExData & HE & LMC 1.0 & 1.0 5.66 0.13 3.38 4.34%

ExData & HE & LMC 1.6 & 1.0 5.84 0.13 3.84 4.47%

ExData & HE & LMC 1.0 & 1.6 8.04 0.16 3.64 3.74%

ExData & HE & LMC 1.6 & 1.6 8.16 0.16 3.66 3.77%
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Table E.1: Systematic error contributions to CCQE parameters from π+ flux predic-

tion simulation parameter uncertainties. The δ are calculated as the “unisim” best-fit

parameters minus the central value Monte Carlo values, (EB, pF , mA) = (0.025 GeV ,

0.220 GeV , 1.03 GeV/c2). Numbers in percent are quoted with respect to the central

value parameters.

source δEB (GeV ) δpF (GeV ) δmA (GeV/c2)

SW π+ c1 0.2839×10−5 -0.4351×10−5 -0.4333×10−3

SW π+ c2 0.1667×10−5 -0.5990×10−5 -0.3391×10−2

SW π+ c3 -0.4428×10−3 0.3095×10−2 0.2060×10−2

SW π+ c4 -0.9874×10−3 0.6811×10−2 0.4953×10−2

SW π+ c5 0.1820×10−5 -0.5722×10−5 -0.2741×10−2

SW π+ c6 -0.1336×10−3 0.1009×10−2 0.9012×10−3

SW π+ c7 -0.9949×10−4 0.6990×10−3 0.4516×10−3

SW π+ c8 0.1637×10−5 -0.6005×10−5 -0.1556×10−2

SW π+ quadrature sum 0.0011 (4.38%) 0.0076 (3.45%) 0.0072 (0.70%)
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Table E.2: Systematic error contributions to CCQE parameters from neutrino in-

teraction simulation parameter uncertainties. The δ are calculated as the “unisim”

best-fit parameters minus the central value Monte Carlo values, (EB, pF , mA) =

(0.025 GeV , 0.220 GeV , 1.03 GeV/c2). Numbers in percent are quoted with respect

to the central value parameters.

source δEB (GeV ) δpF (GeV ) δmA (GeV/c2)

σν +mQE
A -0.9464×10−5 0.3120×10−4 0.3898×10−4

σν +pF -0.2006×10−4 -0.9775×10−5 -0.3765×10−2

σν +EB -0.2003×10−3 0.9283×10−5 -0.2053×10−1

σν +Δs -0.1524×10−5 0.3278×10−6 -0.4530×10−5

σν +m1π
A 0.4319×10−5 -0.2265×10−5 -0.4515×10−2

σν +mNπ
A 0.7277×10−5 0.1833×10−5 -0.1228×10−4

σν +mcoh
A 0.1676×10−7 0.1490×10−7 0.1192×10−6

σν +DIS -0.3306×10−5 -0.2310×10−5 -0.1395×10−4

σν +Δ → γγ -0.2161×10−5 -0.2474×10−5 -0.1132×10−4

σν +σπ
absorption 0.2865×10−2 0.8066×10−2 -0.2107×10−1

σν +σπ
charge exchange 0.0000 0.0000 0.0000

σν +ΔN → NN 0.1220×10−2 0.3262×10−2 -0.3679×10−1

σν quadrature sum 0.0031 (12.48%) 0.0087 (3.96%) 0.0475 (4.61%)
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Table E.3: Systematic error contributions to CCQE parameters from detector response

simulation parameter uncertainties. The δ are calculated as the “unisim” best-fit

parameters minus the central value Monte Carlo values, (EB, pF , mA) = (0.025

GeV , 0.220 GeV , 1.03 GeV/c2). Numbers in percent are quoted with respect to the

central value parameters.

source δEB (GeV ) δpF (GeV ) δmA (GeV/c2)

cher -0.3872×10−2 0.3171×10−1 0.5255×10−2

ext 0.6405×10−4 -0.3725×10−6 -0.6327×10−1

pmt 0.0000 0.0000 0.0000

ref 0.1578×10−3 0.1522×10−3 -0.4431×10−1

scat 0.5654×10−2 0.1970×10−1 0.2736×10−1

tau4 0.1035×10−2 0.1306×10−1 -0.2167×10−1

uvext 0.1905×10−4 0.6855×10−6 -0.4289×10−1

uvf2 0.9656×10−4 0.1532×10−4 -0.6020×10−1

uvf3 0.2599×10−4 0.5012×10−2 -0.3914×10−1

uvf4 0.1844×10−3 -0.1252×10−5 -0.9656×10−1

sci4 0.3449×10−4 0.2688×10−4 -0.2462×10−1

flu1 0.3152×10−2 0.8310×10−2 -0.1712×10−1

flu2 -0.7212×10−5 0.7674×10−5 -0.3967×10−1

flu3 0.2326×10−2 0.6058×10−2 -0.2964×10−1

flu4 -0.2289×10−3 0.2168×10−1 -0.6941×10−2

sci2 0.3491×10−5 -0.1922×10−5 -0.8214×10−1

sci3 0.4486×10−4 0.2237×10−4 -0.3988×10−1

birks 0.1056×10−2 0.8836×10−2 -0.2839×10−1

tsm 0.0000 0.0000 0.0000

veto -0.5588×10−7 -0.4470×10−7 -0.8122×10−1

scatba 0.5880×10−3 0.1187×10−1 -0.1956×10−1

tau2 -0.3947×10−3 0.4994×10−2 -0.3908×10−1

tau3 0.8665×10−3 0.2875×10−2 -0.3851×10−1

quadrature sum 0.0081 (32.46%) 0.0492 (22.35%) 0.2146 (20.84%)
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Table F.1: Fractional normalization uncertainty for each π+ simulation parameter,

for νμ, νe, and combined fits. Parameter correlations are not included.

source νμ νe combined

π+c1 0.1661 0.1348 0.1658

π+c2 0.0637 0.0543 0.0636

π+c3 -0.0705 -0.0653 -0.0704

π+c4 -0.1029 -0.1058 -0.1029

π+c5 0.0525 0.0493 0.0524

π+c6 -0.0534 -0.0427 -0.0533

π+c7 0.0308 0.0238 0.0308

π+c8 -0.0145 -0.0131 -0.0145

Table F.2: Fractional normalization uncertainty for each K+ simulation parameter,

for νμ, νe, and combined fits. Parameter correlations are not included.

source νμ νe combined

K+c1 0.0023 0.0552 0.0027

K+c2 0.0007 0.0227 0.0009

K+c3 -0.0008 -0.0270 -0.0010

K+c4 -0.0011 -0.0438 -0.0015

K+c5 0.0006 0.0204 0.0008

K+c6 -0.0009 -0.0213 -0.0011

K+c7 0.0006 0.0107 0.0007

K+c8 -0.0006 -0.0076 -0.0007

K+c9 0.0000 0.0000 0.0000
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Table F.3: Fractional normalization uncertainty for each neutrino interaction cross

section simulation parameter, for νμ, νe, and combined fits. Parameter correlations

are not included.

source νμ νe combined

ν σ +mQE
A 0.0462 0.0415 0.0462

ν σ +pF -0.1404 -0.1707 -0.1407

ν σ +EB -0.2145 -0.2000 -0.2144

ν σ +Δs 0.0000 -0.0228 -0.0002

ν σ +m1π
A 0.0013 0.0084 0.0014

ν σ +mNπ
A 0.0000 -0.0239 -0.0002

ν σ +mcoh
A 0.0057 -0.0005 0.0058

ν σ +σDIS 0.0000 -0.0217 -0.0002

ν σ +Δ → γγ 0.0000 0.0004 0.0000

Table F.4: Fractional normalization uncertainty summary, for νμ, νe, and combined

fits.

source νμ νe combined

uncorrelated total error 0.3491 0.3483 0.3489

correlated total error 0.1088 0.1037 0.1084

total events 91611 799 92410
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