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ABSTRACT

A Combined v, and v, Oscillation Search at MiniBooNE

Jocelyn Rebecca Monroe

MiniBooNE seeks to corroborate or refute the unconfirmed oscillation result from
the LSND experiment. If correct, the result implies that a new kind of massive
neutrino, with no weak interactions, participates in neutrino oscillations. MiniBooNE
searches for v, — v, oscillations with the Fermi National Accelerator Laboratory 8
GeV beam line, which produces a v, beam with an average energy of ~0.8 GeV and an
intrinsic v, content of 0.4%. The neutrino detector is a 6.1 m radius sphere filled with
C H,, viewed by 1540 photo-multiplier tubes, and located 541 m downstream from the
source. This work focuses on the estimation of systematic errors associated with the
neutrino flux and neutrino interaction cross section predictions, and in particular, on
constraining these uncertainties using in-situ MiniBooNE v, charged current quasi-
elastic (CCQE) scattering data. A data set with ~100,000 events is identified, with
91% CCQE purity. This data set is used to measure several parameters of the CCQE
cross section: the axial mass, the Fermi momentum, the binding energy, and the
functional dependence of the axial form factor on four-momentum transfer squared.
Constraints on the v, and v, fluxes are derived using the v, CCQE data set. A
Monte Carlo study of a combined v, disappearance and v, appearance oscillation fit
is presented, which improves the v, — v, oscillation sensitivity of MiniBooNE with

respect to a v, appearance-only fit by 1.2 - 1.50, depending on the value of Am?.
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right: number of K wvs. Ok (radians) at production. Figure from

reference [65]. . ...
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3.2

3.3

3.4

3.5

3.6

Top: Summary of modern experiments which measure p Be — X
i a region of interest to MiniBooNE. Bottom: Transverse momen-
tum (GeV) vs. Tpeynman for ™ production experiments, overlaid with
the MiniBooNE beam Monte Carlo prediction for mF-decay v in the

MiniBooNE detector acceptance. . . . . . . . . . . . . .. ... ...

HARP [78] experiment measured inclusive m production cross section
(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. ©+
momentum (GeV/c), at pproton = 8.9 GeV/c. Error bars include statis-

tics and systematics. . . . . . ... Lo

E910 [T7] experiment measured inclusive 7+ production cross section
(milli-barns/GeV /c/steradian) in proton-beryllium interactions vs. ©*+
momentum (GeV/c), at pyroton = 0.4 GeV/c. Error bars include statis-

tics and systematics. . . . . . . .. L

E910 [T7] experiment measured inclusive 7+ production cross section
(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. 7+
momentum (GeV/c), at pproton = 12.3 GeV/c. Error bars include

statistics and systematics. . . . . .. ..o

Left: best-fit Sanford-Wang inclusive 7% production cross section (milli-
barns/GeV/c/steradian) vs. © momentum (GeV/c) for various an-
gles, at pproton = 8.9 GeV/c. Right: best-fit Sanford-Wang inclusive
7t production cross section (milli-barns/GeV/c/steradian) vs. proton

momentum (GeV/c), evaluated at (pr,0,) = (1.8 GeV/c,5.4°).
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3.7

3.8

3.9

3.10

3.11

Top: Summary of experiments which measure pBe — KX in a region
of interest to MiniBooNE. Bottom: Transverse momentum (GeV) vs.
T Feynman Jor KT production experiments, overlaid with the MiniBooNE
beam Monte Carlo prediction for K*-decay v in the MiniBooNE detec-

tor acceptance. . . . . . . L Lo

Left: Aleshin [80] experiment measured inclusive K+ production cross
section (milli-barns/GeV /c/steradian) in proton-beryllium interactions
vs. KT momentum (GeV/c), at pproton = 9.5 GeV/c. Right: Vorontsov
[83] experiment measured inclusive K+ production cross section (milli-
barns/GeV/c/steradian) in proton-beryllium interactions vs. K+ mo-
mentum (GeV/c), at pproton = 10.1 GeV/c. Error bars include statis-

tics and systematics. . . . . . ... Lo

Abbott [79] experiment measured inclusive K™ production cross section
(milli-barns/GeV /c/steradian) in proton-beryllium interactions vs. K+
momentum (GeV/c), at ppoton = 14.6 GeV/c. Error bars include

statistics and systematics. . . . . .. ..o

Piroue [82] experiment measured inclusive K production cross section
(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. K+
momentum (GeV/c), at ppoton = 2.74 GeV/c. Error bars include

statistics and systematics. . . . . .. ..o

FEichten [81] experiment measured inclusive K+ production cross sec-
tion (milli-barns/GeV /c/steradian) in proton-beryllium interactions vs.
K+ momentum (GeV/c), at Dproton = 24.0 GeV/c. Error bars include

statistics and systematics. . . . . .. ..o
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3.12 Left: best-fit Sanford-Wang inclusive K+ production cross section (milli-

3.13

3.14

3.15

3.16

3.17

3.18

barns/GeV/c/steradian) vs. K+t momentum (GeV/c) for various an-
gles, at pproton = 8.9 GeV/c. Right: best-fit Sanford-Wang inclusive
K™ production cross section (milli-barns/GeV/c/steradian) vs. pro-

ton momentum (GeV/c), evaluated at (pk,0x) = (2.9 GeV/c,6.8°).

Left: inelastic p-Be cross section data (mb) vs. incident proton mo-
mentum (GeV/c). Right: inelastic m*-Be cross section data (mb) vs.
incident ™ momentum (GeV/c). The MiniBooNE beam Monte Carlo
fit and the GHEISHA hadronic interaction model curves are overlaid.

Figure from reference [90]. . . . . . .. ... .

Left: v, fluz prediction by parent vs. Monte Carlo generated v, energy
(GeV). Right: v, fluz prediction by parent vs. Monte Carlo generated

v, energy (GeV). ..o oL

Left: v, flux prediction by parent vs. Monte Carlo generated U, energy
(GeV). Right: U, flux prediction by parent vs. Monte Carlo generated
v, energy (GeV). .. oL

Charged current neutrino cross section measurements divided by neu-
trino energy vs. E, (GeV ); the curves are fit to the data to guide the

eye. Figure from reference [95]. . . . . . .. ..o,

NUANCE prediction compared with experimental data. v,n — p p
cross section (mb) vs. E, (GeV'). Figure courtesy of [46]. Predictions
assume my = 0.084 GeV/c* and ma = 1.032 GeV/c2. . . . .. . ..

Charged current quasi-elastic scattering diagrams. . . . . . . . . . ..
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3.19

3.20

3.21

3.22

3.23

Comparison of absolute numbers of events calculated using the Mini-
BooNE neutrino flux for bound (dashed) vs. free (solid) v, CCQE scat-
tering, for an arbitrary number of p.o.t.. Top left: number of events
vs. p, (GeV/c). Top right: number of events vs. 0, (degrees). Bottom
left: number of events vs. E, (GeV). Bottom right: number of events

vs. Q% (GeV?). ..

Final-state muon momentum smearing due to the Smith-Moniz bound
nucleon CCQE cross section model. Left: muon momentum (GeV/c)
for MiniBooNE CCQE events generated at the average (E,,Q*) =
(0.9 GeV, 0.3 GeV?) after event selection cuts for different values of
the Fermi momentum kr (GeV/c). The dashed line shows the free
nucleon cross section value. Right: quasi-elastic neutrino energy reso-
lution vs. true Monte Carlo neutrino energy (GeV). EQT is calculated

from 2-body kinematics using the generated p,,, cos(0,). . . . . . . ..

NUANCE prediction compared with experimental data. Left: v,p —
pwprT cross section (¢cm?) vs. E, (GeV). Right: v,n — p~nwt cross

section (cm?) vs. E, (GeV). Figure courtesy of [{6]. . . . . . . . ..

Left: number of tank hits for Michel electrons. Right: number of tank
hits for muons tagged by the external muon tracker and stopping in the
scintillator cube with T), ~ 0.8 GeV'. Data is shown by points, Monte

Carlo is the solid histogram. . . . . . . . . . .. ... . ... ...

Left: corrected angle for Michel electrons. Right: corrected time for
Michel electrons. Data is shown by points, Monte Carlo is the solid

histogram. . . . . ...
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3.24

3.25

3.26

3.27

4.1

Corrected time distributions of tank PMT hits for stopping muon events
in the siz deepest cubes. The event vertex and time are measured using
the cubes and muon tracker. Data is shown by points, Monte Carlo is

the solid histogram. . . . . . . . . ..

Corrected angle distributions of tank PMT hits for stopping muon events
in the siz deepest cubes. The event vertex and time are measured using
the cubes and muon tracker. Data is shown by points, Monte Carlo is

the solid histogram. . . . . . . . . . . .. .

Left: reconstruced Michel electron energy (MeV). Right: muon energy
as determined by the reconstruction vs. cube range energy calculated
from the muon path determined using the external muon tracker and
the scintillator cubes inside the tank. Data is shown by points, Monte

Carlo is the solid histogram. . . . . . . . . . . ... .. ... ...,

Left: angular resolution from the scintillator cube system, for T, =
0.770 GeV . Right: Enerqgy resolution from the scintillator cube system,
forT,, = 0.770 GeV. Data is shown by points, Monte Carlo is shown

by the solid histogram. . . . . . . . . . ...

Variables that are used in the v, CCQE selection “pre-cuts”. Left: the
number of sub-events; middle: the number of veto PMT hits in the first
sub-event; right: the number of veto PMT hits in the second sub-event.
Data with statistical errors (black points) are compared with the Monte
Carlo total (solid black line), Monte Carlo signal (dotted red line), and
Monte Carlo background (dotted blue line) predictions. Data and the

total Monte Carlo curves are normalized to unit area. No cuts are
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4.2

4.3

4.4

Variables that are used in the v, CCQE selection Michel distance “pre-
cut” for the first sub-event. Top left: the number of tank PMT hits;
top middle: the total charge in the first sub-event; top right: the re-
constructed muon energy (GeV). Bottom left: the reconstructed radius
of the track center (m); bottom middle: the reconstructed track direc-
tion; bottom right: the reconstructed Michel distance (m). Data with
statistical errors (black points) are compared with the Monte Carlo to-
tal (solid black line), Monte Carlo signal (dotted red line), and Monte
Carlo background (dotted blue line) predictions. Data and the total
Monte Carlo curves are normalized to unit area. The first four “pre-

cuts” are applied. . . . . . ..

Efficiencies of the v, CCQE selection “pre-cuts” vs. Monte Carlo neu-
trino enerqy (GeV). The first five panels from top left to bottom right
show the efficiency of each “pre-cut” individually. The bottom right
panel shows the efficiency of all “pre-cuts” combined. The efficiency
is shown for all Monte Carlo events (solid black line), Monte Carlo
signal (dotted red line), and Monte Carlo background (dotted blue line)

Predictions. . . . . . .. e

Variables that are used in the v, CCQE selection Fisher discriminant
cut. Top left: the Fisher discriminant output variable; all other pan-
els: Fisher discriminant input variables. Data with statistical errors
(black points) are compared with the Monte Carlo total (solid black
line), Monte Carlo signal (dotted red line), and Monte Carlo back-
ground (dotted blue line) predictions. Data and the total Monte Carlo

curves are normalized to unit area. The five “pre-cuts” are applied.
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4.5

4.6

4.7

4.8

Correlations of the Fisher discriminant input variables in Monte Carlo
for signal (red) and background (blue). Only unique combinations of

variables are shown. . . . . . . . . . . L

Optimaization of the Fisher discriminant cut. Left: Monte Carlo pre-
diction for the signal (black solid line) and background (red dashed line)
fractions remaining after a cut on the Fisher output variable > the ab-
cissa value. Right: Monte Carlo prediction for the signal (black solid
line) and background (red dashed line) cut efficiencies after a cut on

the Fisher output variable > the abcissa value. . . . . . . . . . . ..

Efficiency and resulting purity of the v, CCQE selection cuts vs. Monte
Carlo neutrino energy (GeV). Left: efficiency of the Fisher cut relative
to events that pass the “pre-cuts”; middle: efficiency of all v, CCQFE
selection cuts relative to no cuts; right: v, CCQE signal and back-
ground after all selection cuts. Distributions are shown for all Monte
Carlo events (solid black line), Monte Carlo signal (dotted red line),

and Monte Carlo background (dotted blue line) predictions. . . . . . .

v, CCQE selection cut efficiencies vs. reconstructed neutrino energy
(GeV) in data (black points with statistical errors) and Monte Carlo
(solid black line). Right: efficiency of the Michel distance cut relative
to events passing the first four “pre-cuts”. Left: efficiency of the Fisher

output variable cut relative to events passing all “pre-cuts”. . . . . . .
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4.9

4.10

Comparison of kinematic variables after the v, CCQE selection cuts.
Top left: reconstructed track angle with respect to the beam direction;
top right: reconstructed energy under a muon hypothesis (GeV); bottom
left: reconstructed neutrino enerqy assuming 2-body kinematics (GeV);
bottom right: reconstructed four-momentum transfer squared (GeV?).
Data with statistical errors (black points) are compared with the Monte
Carlo total (solid black line), Monte Carlo signal (dotted red line), and
Monte Carlo background (dotted blue line) predictions. Data and the

total Monte Carlo curves are normalized to unit area. . . . . . . . . .

Measurement resolution as a function of kinematic variables, for Monte
Carlo events passing the v, CCQE selection cuts. Top left: recon-
structed - generated difference vs. generated primary track angle with
respect to the beam direction; top right: (reconstructed - generated)
/ generated vs. generated muon energy (GeV); bottom left: (recon-
structed - generated) / generated vs. generated neutrino energy (GeV);
bottom right: (reconstructed - generated) / generated vs. generated
four-momentum transfer squared (GeV?). Error bars are the r.m.s. of

a gaussian fit to the residual distributions. . . . . . . . . . ... ...
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4.11

4.12

4.13

Comparison of kinematic variables after the v, CCQE selection cuts,
absolutely normalized to protons on target. Top left: reconstructed track
angle with respect to the beam direction; top right: reconstructed energy
under a muon hypothesis (GeV); bottom left: reconstructed neutrino
energy assuming 2-body kinematics (GeV); bottom right: reconstructed
four-momentum transfer squared (GeV?). Data with statistical errors
(black points) are compared with the Monte Carlo total (solid black
line), Monte Carlo signal (dotted red line), and Monte Carlo back-

ground (dotted blue line) predictions. . . . . . . . . . ... ... ...

Ratio of data to Monte Carlo after v, CCQE selection cuts as a func-
tion of kinematic variables, absolutely normalized to protons on target.
Top left: reconstructed track angle with respect to the beam direction;
top right: reconstructed energy under a muon hypothesis (GeV); bottom
left: reconstructed neutrino enerqy assuming 2-body kinematics (GeV);
bottom right: reconstructed four-momentum transfer squared (GeV?).

Error bars include data and Monte Carlo statistics only. . . . . . . .

Components of the calculation for propagating the errors on the Sanford-
Wang nt flux prediction parameters to the distribution of EMC for
events passing the v, CCQE selection cuts. Top left: distribution of
“unisims,” top middle: central value Monte Carlo number of events vs.
EMC with errors from the m* fluz prediction, top right: fractional er-
ror vs. EMC. Bottom eight panels show the rows of the first derivative

MATTIT. . . . .
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4.14

4.15

4.16

Unisim distributions for m* flux simulation uncertainties after the v,
CCQE selection cuts, absolutely normalized to protons on target. Top
left: reconstructed track direction cosine with respect to the beam direc-
tion; top right: reconstructed energy under a muon hypothesis (GeV);
bottom left: reconstructed neutrino energy assuming 2-body kinematics

(GeV); bottom right: reconstructed four-momentum transfer squared

(GeV2).

Unisim distributions for neutrino interaction cross section simulation
uncertainties after the v, CCQE selection cuts, absolutely normalized
to protons on target. Top left: reconstructed track direction cosine with
respect to the beam direction; top right: reconstructed energy under
a muon hypothesis (GeV); bottom left: reconstructed neutrino energy
assuming 2-body kinematics (GeV); bottom right: reconstructed four-

momentum transfer squared (GeV?). . . . . ... ... ... ...,

Unisim distributions for detector response simulation uncertainties af-
ter the v, CCQE selection cuts, absolutely normalized to protons on
target. Top left: reconstructed track direction cosine with respect to
the beam direction; top right: reconstructed energy under a muon hy-
pothesis (GeV); bottom left: reconstructed neutrino energy assuming

2-body kinematics (GeV); bottom right: reconstructed four-momentum

transfer squared (GeV?). . . . . . ...
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4.17

4.18

4.19

Uncertainty on the Monte Carlo prediction for the number of events
after the v, CCQE selection cuts, absolutely normalized to protons
on target, from the © fluz simulation and the neutrino interaction
cross section simulation. Top left: reconstructed track direction co-
sine with respect to the beam direction; top right: reconstructed energy
under a muon hypothesis (GeV); bottom left: reconstructed neutrino
energy assuming 2-body kinematics (GeV); bottom right: reconstructed
four-momentum transfer squared (GeV?). The data (black points) with

statistical errors is superimposed. . . . . . . . ... ...

Contribution to the fractional error on the Monte Carlo prediction for
the number of events after the v, CCQE selection cuts, absolutely nor-
malized to protons on target, from the © flux simulation, and the
neutrino interaction cross section simulation. Top left: reconstructed
track direction cosine with respect to the beam direction; top right: re-
constructed energy under a muon hypothesis (GeV); bottom left: recon-
structed neutrino enerqy assuming 2-body kinematics (GeV); bottom

right: reconstructed four-momentum transfer squared (GeV?).

Uncertainty on the Monte Carlo prediction for the fraction of events
after the v, CCQE selection cuts, normalized to unit-area, from the
7t flur simulation and the neutrino interaction cross section simula-
tion. Top left: reconstructed track direction cosine with respect to the
beam direction; top right: reconstructed energy under a muon hypothe-
sis (GeV); bottom left: reconstructed neutrino energy assuming 2-body
kinematics (GeV); bottom right: reconstructed four-momentum trans-
fer squared (GeV?). The data (black points) with statistical errors is

superimposed. . .. .. ..o e
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4.20 Contribution to the fractional error on the Monte Carlo prediction for

5.1

5.2

5.3

the fraction of events after the v, CCQE selection cuts, normalized
to unit-area, from the =% flux simulation and the neutrino interaction
cross section simulation. Top left: reconstructed track direction cosine
with respect to the beam direction; top right: reconstructed energy under
a muon hypothesis (GeV); bottom left: reconstructed neutrino energy
assuming 2-body kinematics (GeV); bottom right: reconstructed four-

momentum transfer squared (GeV?). . . . . .. ... ... ... ..

Left: E, (GeV)vs. Ex (GeV) forv, fromn* decay, in the MiniBooNE
detector acceptance. Reft: E, (GeV) vs. E. (GeV) for v, from u*
from 7" decay, in the MiniBooNE detector acceptance. A line with
slope 0.43 is super-imposed to indicate the maximum available energy

to the v, in a 2 body % decay. . . . .. ..o,

Left: number of events vs. reconstructed neutrino energy (GeV) for
events passing the v, CCQE selection cuts. Right: reweighted number
of events vs. reconstructed neutrino energy (GeV) for events passing
the v, CCQE selection cuts. Central value Monte Carlo is indicated
by the points, Sanford-Wang ©* prediction “unisim” Monte Carlo is

shown by the lines. . . . . . . . . ...

Left: generated Monte Carlo energy distributions. Right: reweighted
Monte Carlo energy distributions. Top: number of events vs. ©+ en-
ergy (GeV). Middle: number of events vs. u* energy (GeV). Bottom:

number of events vs. v, energy (GeV). . .. ...
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5.4

9.5

5.6

5.7

Ratio of Sanford-Wang ™+ prediction “unisims” to central value Monte
Carlo for events passing the v, CCQE selection cuts. Left: reweight-
ing functions vs. reconstructed v, energy (GeV). Right: reweighting

functions vs. generated ©* energy (GeV). . . . . . . ... ... ...

Ratio of Sanford-Wang w prediction “unisims” to original central
value Monte Carlo vs. EMC (GeV), with no selection cuts applied.
Left: predicted n*-decay v, energy spectra. Right: predicted p*-decay

Ve ENETQY SPECITA. . . . . . . . . o

Error on p*-decay ve EMC spectrum from Sanford-Wang 7+ predic-
tion uncertainties. Top eight panels: scaled first derivatives (defined in
equation 4.16) vs. EMY. Bottom left: predicted number of events vs.
EMC (GeV) with n+ prediction systematic errors for 2.2 x10% protons
on target. Bottom right: fractional error vs. EM® (GeV). Red solid

lines (black points) show the (un-) fit error calculation. . . . . . . ..

Error on u*-decay ve. EMC spectrum from “fake data”-reweighted San-
ford - Wang © prediction uncertainties. Top eight panels: scaled first
derivatives (defined in equation 4.16) vs. EMC. Bottom left: predicted
number of events vs. EMC (GeV) with ©+ prediction systematic er-
rors for 2.2 x10*' protons on target. Bottom right: fractional error
vs. EMC (GeV). Red solid lines (black points) show the (un-) fit error

calculation. . . . . . . L
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5.8

5.9

5.10

5.11

Error on pt-decay v, EMC spectrum from data-reweighted Sanford -
Wang 7t prediction uncertainties. Top eight panels: scaled first deriva-
tives (defined in equation 4.16) vs. EMC. Bottom left: predicted num-
ber of events vs. EMC (GeV) with nt prediction systematic errors for

2.2 x10?* protons on target. Bottom right: fractional error vs. EMC

(GeV'). Red solid lines (black points) show the (un-) fit error calculation.194

EMC

MC spectrum from Sanford-Wang © predic-

Error on 7t -decay v,
tion uncertainties. Top eight panels: scaled first derivatives (defined
in equation 4.16) vs. EMC. Bottom left: predicted number of events
vs. EMC (GeV) with ©* prediction systematic errors for 2.43 x10%

protons on target. Bottom right: fractional error vs. EMC (GeV). Red

solid lines (black points) show the (un-) fit error calculation. . . . . .

Error on " -decay v, EMC spectrum from "fake data”-reweighted Sanford-

Wang 7t prediction uncertainties. Top eight panels: scaled first deriva-
tives (defined in equation 4.16) vs. EMC. Bottom left: predicted num-
ber of events vs. EMC (GeV') with w* prediction systematic errors for

2.43 x10% protons on target. Bottom right: fractional error vs. EMC

(GeV). Red solid lines (black points) show the (un-) fit error calculation.198

Error on 7" -decay v, EMC spectrum from data-reweighted Sanford-
Wang 7" prediction uncertainties. Top eight panels: scaled first deriva-
tives (defined in equation 4.16) vs. EMC. Bottom left: predicted num-
ber of events vs. EMC (GeV) with ©* prediction systematic errors for

2.48 x10% protons on target. Bottom right: fractional error vs. EM¢

(GeV'). Red solid lines (black points) show the (un-) fit error calculation.199
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6.1

6.2

6.3

6.4

6.5

6.6

6.7

Measurements of ma from neutrino scattering (left) and pion electro-
production (right) experiments, assuming a dipole form for Fa(Q?).

This figure is from reference [102] . . . . . . . . ... ... ... ..

X2 function value vs. fit parameter value for a fit with statistically iden-
tical “fake data” and Monte Carlo samples. Left: x* vs. Eg (GeV).
Middle: x? vs. pp (GeV). Right: x* vs. ma (GeV/c?). . .. .. ...

Left: number of events before (dashed, red line) and after (solid, green
line) fitting “fake data” with Monte Carlo vs. reconstructed Q* (GeV?).
Right: x* value vs. reconstructed Q* (GeV?) at the best-fit point. . . .

Number of events vs. reconstructed Q* (GeV?) for oscillated (red,
dashed line) and un-oscillated (black, solid line) “fake data” with the
statistics of the data. Left: number of events absolutely normalized to

protons on target. Right: number of events normalized to the data. . .

Left: number of events vs. reconstructed Q* (GeV?) in “fake data”
for all neutrino interaction types (black, solid line), v, CCQE events
(red, dashed line), and backgound events (blue, dotted line). Right:
fraction of v, CCQE (red, dashed line) and background (blue, dotted

line) events vs. reconstructed Q* (GeV?). . . .. ... ... ...

x? function value vs. fit parameter value for a fit to data. Left: x? vs.

Ep (GeV). Middle: x* vs. pr (GeV). Right: x* vs. ma (GeV/c?). . .

Left: number of events before (dashed, red line) and after (solid, green
line) fitting data with Monte Carlo vs. reconstructed Q* (GeV?). Right:

X% value vs. reconstructed Q* (GeV'?) at the best-fit point. . . . . . . .
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6.8

6.9

6.10

6.11

6.12

6.13

Number of events vs. reconstructed neutrino energy (GeV) in each
reconstructed Q? bin before (red, dashed line) and after (green, solid
line) fitting for CCQE cross section parameters. The v, CCQE data

(black points) with statistical errors are superimposed. . . . . . . . . .

Number of events vs. reconstructed neutrino energy (GeV) in each
reconstructed Q* bin before (red, dashed line) and after (green, solid
line) fitting for CCQE cross section parameters. The v, CCQE data

(black points) with statistical errors are superimposed. . . . . . . . . .

Impact of CCQE parameter changes in Monte Carlo for events passing
the v, CCQE selection cuts. Left: number of events (top), fraction of
events (bottom) vs. reconstructed Q* (GeV?). Right: number of events

(top), fraction of events (bottom) vs. reconstructed ESY (GeV ). . . .

Left: measurements of Fa4 vs. Q% from neutrino scattering data di-
vided by the dipole assumption, with predictions from lattice gauge the-
ory (dashed line) and a duality-based model (solid line); figure from
reference [128]. Right: measurements of Fa vs. Q* from pion electro-

production data; figure from reference [102]. . . . . . . ... ... ..

Impact of changing the axial form factor functional dependence on Q?
in Monte Carlo for events passing the v, CCQE selection cuts. The
“dipole form” (black, solid line) and “alternative form” (red, dashed
line) are explained in the text. Both use (ma, Eg, pr) = (1.03 GeV/c?,
0.025 GeV', 0.220 GeV ). Left: number of events vs. reconstructed Q?

(GeV?). Right: number of events vs. reconstructed EYE (GeV'). . . .

x? function value vs. fit parameter value for a fit with statistically
identical “fake data” and Monte Carlo samples. Top left: x* vs. Ep
(GeV). Top right: x* vs. pr (GeV). Bottom: x* vs. Fa in Q* bins.
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6.14

6.15

6.16

6.17

6.18

6.19

6.20

Left: Fy4 before (red, open squares) and after (green, solid squares)
fitting “fake data” with Monte Carlo vs. Q* (GeV?). Right: x* value

vs. reconstructed Q* (GeV?) at the best-fit point. . . . . . . . . . ...

Number of events vs. reconstructed neutrino energy (GeV) in each
reconstructed Q* bin before (red, dashed line) and after (green, solid
line) fitting for CCQE cross section parameters. The v, CCQE “fake

data” (black points) with statistical errors are superimposed. . . . . .

Number of events vs. reconstructed neutrino energy (GeV) in each
reconstructed Q* bin before (red, dashed line) and after (green, solid

line) fitting for CCQE cross section parameters. The v, CCQE “fake

data” (black points) with statistical errors are superimposed. . . . . .

Number of Monte Carlo events vs. reconstructed E, (GeV') in each
Q% e bin for oscillated (red, dashed line) and un-oscillated (black, solid
line) “fake data” with the statistics of the data. The number of Monte

Carlo events is absolutely normalized to protons on target. . . . . . .

Number of Monte Carlo events vs. reconstructed E, (GeV') in each
Q% e bin for oscillated (red, dashed line) and un-oscillated (black, solid
line) “fake data” with the statistics of the data. The number of Monte

Carlo events is normalized to the “fake data.” . . . . . . . . . .. ..

Left: Fu before (red, open squares) and after (black, filled circles) fit-
ting data with Monte Carlo vs. Q* (GeV?). Right: x* value vs. recon-
structed Q* (GeV?) at the best-fit point. . . . . . . . ... ... ...

x? function value vs. fit parameter value for a fit to data. Top left: x*?

vs. Ep (GeV). Top right: x* vs. pr (GeV). Bottom: x? vs. Fy in Q*
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6.21

6.22

6.23

7.1

7.2

Number of events vs. reconstructed neutrino energy (GeV) in each
reconstructed Q? bin before (red, dashed line) and after (green, solid
line) fitting for CCQE cross section parameters. The v, CCQE data

(black points) with statistical errors are superimposed. . . . . . . . . .

Number of events vs. reconstructed neutrino energy (GeV) in each
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Chapter 1

Introduction

In the Standard Model of particle physics neutrinos are massless particles, however,
neutrino flavor oscillation data conclusively demonstrates the existence of neutrino
mass. As such, massive neutrinos are the only experimentally verified occurrence of

physics beyond the Standard Model at the present time.

Neutrinos are unique in the Standard Model for two reasons. First, they are the
only nearly-massless fermions, lighter than the next-lightest particle, the electron,
by at least 5 orders of magnitude. Second, only left-handed neutrinos have ever
been observed, via their participation in weak interactions, and since neutrinos are
now known to be massive, there must be right-handed neutrinos as well, if neutrinos
are Dirac particles like all other constituents of the Standard Model. These strange
properties of the neutrino sector raise a number of questions. Given that neutrinos do
have mass, how is that mass generated, and why is it so small? Are there right-handed

neutrinos, and if so, where are they?

The neutrino oscillation data pose these questions, and more, since all of the
positive signals cannot be accomodated with only three neutrinos. The MiniBooNE

experiment seeks to corroborate or refute the unconfirmed evidence that a new kind



of massive neutrino, which is “sterile”, participates in neutrino oscillations.

1.1 Field Theory of Neutrino Mass

The Dirac Lagrangian for a spinor field ¥ is of the form

L = i(hc)Uy"9,¥ — (mc*)WW. (1.1)

The Euler-Langrange equation, applied to ¥ gives
oL oL

— =0, —= = ihcy"9, ¥V — mc*V
0(0,Y) ov
which is the Dirac equation for a massive spinor

Vg

. VL

o, ¥ — (mc/h)¥ =0, V= (1.2)
(V)R
()L

The mass term for leptons in the Lagrangian density for the Standard Model, written

in terms of the left and right-handed projections, is of the form

following the notation of reference [1]. However, this is not the only Lorentz invariant
quantity that is quadratic in the fields, and therefore there can be other mass terms.
From the fermion fields W, Vg, (U€), (V) g and the adjoint fields, the unique and

non-vanishing combinations are
(\I/_L\I/R + h.C.), ((@)R\IJL + h.C.), ((@)L\PR + hC)

where h.c. is the hermitian conjugate, and W€ is the charge conjugate field. The most

general free-field Lagrangian density for the field ¥ is

_ . My — Mg, —
L =Ty,0"0+ MD[\I/L\I/R+h.c.]+TL[(‘IIC)R\PL+h.c.]+TR[(\IJC)L\I/R+h.c.] (1.4)



where the new constants Mp, My, and Mgz have dimensions of mass, and correspond

to the Dirac mass term, and the Majorana mass terms respectively.

In terms of the chiral fields f and F',

U U )¢ v Pgr)©
o Bt (W)t et (TR) (1.5)
V2 V2
the Lagrangian density becomes
L = f1,0.f+Fy.0,F + Mp(fF + Ff)+ Myff+ MgrFF (1.6)
_ _ _ | My Mp f
= F1u0uf + Fru0uF + |F,F]
Mp Mg F
The neutrino mass matrix M is real and symmetric in this basis,
M, M
M= (1.7)
Mp Mg

and has eigenvectors v/ and N. In terms of the eigenvector fields, the Lagrangian
density is

L = V0,V + Nv,0.N + M, V'V + MyNN, (1.8)

which is the free-field Lagrangian for not one, but two particles, v/ and N, which are

the mass eigenstates of the neutrino mass matrix.

The initial Dirac fermion field ¥ had four states: two spin states of a particle,
Ur and Uy, and two anti-particle spin states (U¢)g and (V°),. The defining char-
acteristic of a Majorana particle is that it is CPT self-conjugate, i.e. ¥, = (¥p)°
and Vp = (Vg)° [2]. To respect the number of degrees of freedom of the initial
Lagrangian, the mass eigenstates, / and N must each have only 2 spin states, and
are therefore Majorana fermions. Hence, the additional Majorana mass terms in the
Dirac Lagrangian split the four mass-degenerate states of the Dirac field ¥ into two

non-degenerate Majorana fermions v’ and N.



Standard Model: Massless Dirac Neutrinos

In the Standard Model, with massless Dirac neutrinos, the left-handed neutrino field
and lepton of the same family form an SU(2) doublet, while the right-handed lepton

is an isosinglet. The first generation fields are:

vy

€R er
In this case, the neutrino mass eigenstates are degenerate, and there is no difference
between the mass and flavor eigenstates, which are both are described by f in equa-
tion 1.5. Generalizing to three generations, an important consequence is that there
can be no mixing whatsoever between the lepton families. For a Lagrangian density
of the form £ = W~,0"¥, there is no mixing between left and right handed states
either, and so in addition to the mass and flavor eigenstates being identical, chirality
is preserved as well. Therefore, electron number, muon number, tau number, and
chirality are strictly conserved, separately, in weak interactions [3], and there can be

no neutrino oscillations.

From the experimental point of view, the Standard Model contains no right-
handed neutrino fields because neutrino mass had not been observed when the theory
was constructed. From the gauge theory point of view, the Standard Model neutrino
is massless because in the SU(2)xU(1) theory, there are no Lorentz invariant mass
terms to which the Higgs can couple. From either vantage point, neutrino mass has
now been observed, and must be accomodated in the theory. This can be done with

extensions of the Standard Model in either the lepton or the Higgs sectors.



Beyond the Standard Model: Massive Neutrinos

If the Standard Model lepton sector is extended by adding W, the fields of the first

generation SU(2) doublets are

Vg vy,
€R €L
For massive Dirac neutrinos, M; and Mg are zero in the neutrino mass matrix of

equation 1.6, and the Lagrangian density is

_ _ 10 Mp f
L = [90uf + Fy0.F +[f, F] - (1.9)

Mp 0 F
This Lagrangian density connects left and right handed components of the same fields
since f ~ (W4 (¥°)) and F' ~ (Vi + (¥°)R), and therefore the massive field terms
are ~ Mp(U W +h.c.). The Lagrangian density, in terms of the flavor states, can be
diagonalized with a change of basis to have mass eigenstates which are combinations

of left and right handed fields as in equation 1.5. In terms of the flavor eigenstates,

considering only the first two generations for simplicity, the mass term is [4]
L = My Vele + My, VVp + Moy, (Ve + Tpve) (1.10)
which can be diagonalized by the choice of bases
Ve = cosBvy + sinfuo; v, = —sinfuvy + cosfus. (1.11)

For 6 # 0, the mass eigenstates are not equal to the flavor eigenstates. Under this
change of basis, £ becomes the Lagrangian density for two particles, v; and v,. These

states evolve in time as
[Ve(t) > = cos e vy > +sinf e 2y > (1.12)

wu(t) > = —sind e Py > +cosh ey, >;



where B, = \/W, Ey, = \/W, and p is the neutrino momentum.
The ansatz is made that the momentum p of the mass eigenstates is the same, but
the energies are different; an identical result is arrived at for the converse assumption.
The original number of degrees of freedom in the Lagrangian have been preserved in
this transformation since there were initially two flavor states, and here there are two

mass eigenstates. Therefore, these are Dirac, not Majorana, neutrinos.

If m; # mso, then the electron neutrino and muon neutrino flavor eigenstates
propagate with different frequencies, which gives rise to the quantum mechanical
phenomenon of neutrino oscillations [4]. The probability of oscillation between flavor

states for a pure electron neutrino flavor state at time ¢ = 0 is

Ey, — Ey)t
Plv. —v,) = | <vylv(t) > |* = sin%@shﬂ(%) (1.13)
1 L
= sin20sin’ (7 Am* )
sin=20sin™( ZAm" 2= ).

with A = ¢ = 1, and the approximation that the energies of the propagating mass

eigenstates i are F; = \/p> +m? ~ p+

distance travelled by the neutrino between production and detection, and FE, is the

2
m; . .
5.+ The factor Am? is [m3 — m7|, L, is the

neutrino energy.

As a result, if the mass eigenstates are not equal to the flavor eigenstates, and
the mass eigenstates are not degenerate, then even with purely Dirac mass terms,
lepton flavor number is not individually conserved. The sum of the lepton numbers
Liota = Le + L, + L; is conserved, since no leptons are disappearing into thin air,
however, because neutrinos can oscillate between flavors, individual lepton number,
e.g. L., is no longer conserved. While this is a departure from the Standard Model,
is it not entirely unexpected, since there is no analogue of individual lepton number
conservation in the quark sector. Instead, there is the larger symmetry of baryon

number conservation.



Generalizing to three generations and assuming CP and CPT invariance, the
probability for neutrino oscillations is [5]:
n
P(vo — vg) = 6o —4Y  UajUs UailUsisin’e;; (1.14)
i>j
where « and [ index the weak eigenstates (e, i, 7), i and j index the mass eigenstates
(1, 2, 3), n is the number of generations, U is the neutrino mixing matrix, and x;; is
the oscillation frequency given in terms of experimental quantities (1.27Am§,iL,, /E.,),
where Am? is the difference of the squares of the masses for eigenstates j and i, L,
is the distance travelled by the neutrino between production and detection, F, is the
neutrino energy, and the 1.27 comes from including factors of A and c¢. The unitary
matrix U describes the mixing betwen the weak and mass eigenstates, which for three

generations is given by:

Uel Ue? UeS
U= |Un Usp Us |- (1.15)
UTl UT2 UT3

This matrix has six independent elements, which can be written in terms of mixing

angles and complex phases [5]

10 0 13 0 sp0e™ 12 S12 O
U= 10 c35 $23 0 10 —S12 ¢ 0| X (1.16)
0 —s23 ca23 —81’262'6 0 ¢ 0 0 1
€ 0 0
0 €% 0
0 0 1

where ¢; ; and s; ; are abbreviations for sinf; ; and cosf); ;, 0 are the mixing angles
between mass eigenstates i and j, and 9, a1, and ap are the matrix phases. If neutrinos

are Dirac particles, then the matrix can be written in terms of only one phase, 9.



The question of why the neutrino masses are so much smaller than other fermion
masses has not yet been addressed here, and purely Dirac mass terms in the La-
grangian density cannot solve this problem easily for the following reason. In a
minimal extension of the Standard Model, which includes a Wy field, the sponta-
neous symmetry breaking that leads to Dirac neutrino mass also leads to the fermion
masses. The Yukawa coupling for a Higgs field ® to the Dirac neutrino field W is of
the form Uz®¥ ;. One would expect that the Dirac mass Mp would be of the order
of the symmetry breaking scale, that is, the non-zero vacuum expectation value of
the Higgs field (®). When SU(2) is spontaneously broken in this way, the fermions
and weak gauge bosons acquire mass at this scale. If there are no non-zero Majorana
terms in the neutrino mass matrix, then neutrinos also acquire a mass at the scale of
the Dirac mass, which must be of the order of MeV'. Since no MeV-mass neutrinos
have been observed, there must be a mechanism for the suppression of fermion scale

neutrino mass by many orders of magnitude [6].

The canonical mechanism for the suppression of neutrino mass involves an exten-
sion of the Standard Model in both the lepton and Higgs sectors, which requires the
right-handed state Wi and non-zero Majorana mass terms. If two new Higgs fields
are introduced, Ag and Ay, in addition to the original field ®, then the mass terms

allowed by isospin invariance in the Dirac Lagrangian density are
Up @ W, (VL) 'AL¥r,  (Vr)Ar¥a

For the general free-field Lagrangian density of equation 1.4, when the SU(2) sym-
metry is spontaneously broken by non-zero vacuum expectation values of the Higgs
fields, the terms quadratic in the neutrino field have Mp ~ (®), M, ~ (Ar), and
Mg ~ (Apg). Constraints on the values of the additional Higgs fields’ expectation
values come from the ratio of the W boson mass to the Z mass, which effectively

restrict (Ap) and therefore My, to be zero [7]. A second consideration comes from



the coupling of the right-handed Higgs field Ag to the gauge bosons: since no Wr is
observed, the mass scale for the breaking of chiral symmetry must be much greater
than that of the electroweak symmetry breaking, and so there is a hierarchy of the
vacuum expectation values of the Higgs fields: (Ag) > (®). It is conventional to

take Mp > Mp. In this case, the neutrino mass matrix is of the form

0 Mp
M = (1.17)
Mp Mg
with eigenvalues
My ~ Mg, My ~ —Mb (1.18)
N ~ R, v~ MR .
and eigenvectors
Mp Mp
N~F+ — '~ f - —ZF. 1.19

This result leads to the see-saw relation [8], which connects the neutrino mass scale

to the Dirac mass scale of the quarks (Myuer = Mp):
M, My = M0 (1.20)

Therefore, with the addition of Higgs fields to generate the Majorana mass terms,
the very tiny size of the neutrino mass can be motivated by having a right-handed
neutral heavy lepton isosinglet. For example, if M, = 1 eV, and My = 200
MeV, then My must be 4 x 106 eV/.

With this potential solution to the problem of small neutrino mass, one might
ask whether the addition of Majorana mass terms to the Standard Model Lagrangian
density has any effect on the masses of other fermions. Fortunately, the answer is
no, because Majorana particles are self-conjugate under CPT transformations, and
therefore cannot carry electric charge. The quarks are charged, and so the addition
of Majorana mass terms to the Standard Model Lagrangian affects only the neutrino

sector.



10

If neutrinos are Majorana particles, then there are additional consequences be-
yond flavor oscillations in the neutrino sector. Rewriting the chiral states that can
participate in the weak interaction in terms of the Majorana mass eigenstates gives,

for example,
Mp

= V+VN; V = — 1.21
f v+ s MR’ ( )

which contains both the left- and right-handed mass eigenstates v and N of one
generation, where vy, ~ 1/ and vy ~ N, with V setting the degree of mixing. There
is, therefore, a small probability for the weakly interacting left-handed neutrino to

oscillate into a right-handed neutral heavy lepton of the same flavor, given by [1]

Mp* M,
P Ny ~ V? = = , 1.22
(v — Np) M7 My (1.22)
which for the previous numerical estimate gives V. = 2.5 x 1078, Oscillation from

vy, — Vg is equivalent to a matter - anti-matter oscillation, since for Majorana parti-
clesvg = — (v1)° This process violates lepton flavor number by 2 units, and so with
the addition of Majorana mass eigenstates, lepton number conservation is completely

violated, and not even the sum of the individual lepton numbers can be conserved.

In summary, the extension of the Standard Model to accommodate non-zero neu-
trino mass has a number of interesting implications that may be elucidated by testing
individual and total lepton number conservation laws. Neutrino flavor oscillations are
possible only if neutrinos have mass, the mass eigenstates have different masses, the
mixing between mass and flavor eigenstates is non-zero, and right-handed neutrinos
exist. Further, depending on whether the mass is Dirac or Majorana in nature, even
more exotic transformations are possible. If neutrinos are Majorana particles, they
may also oscillate between left-handed and right-handed, or matter and anti-matter

states.
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1.2 Experimental Evidence for Neutrino Mass

Conclusive evidence for neutrino mass was discovered in 1998 by the Super-Kamiokande
experiment’s observation of neutrino oscillations [9]. This phenomenon can only oc-
cur if neutrinos have mass, and their masses are different, as in equation 1.13. This
was the result that convinced the particle physics community at large that neutrinos

oscillate, and it inspired a generation of new experiments.

Neutrino oscillation experiments can use several different kinds of neutrino beams:
those produced in collisions of cosmic rays with the earth’s atmosphere, those pro-
duced in solar fusion processes, those produced in nuclear reactors, and those pro-
duced at accelerator facilities. The phenomenon of neutrino oscillations has been
observed in all of these types of experiments, however, the specific observations differ
sigificantly. Combining oscillation measurements can map out the neutrino mixing
matrix of equation 1.14, determine the neutrino mass hierarchy, and possibly even
discover new physics in the neutrino sector. However, neutrino oscillation searches
measure the mass difference Am?, rather than the neutrino mass itself, and so while
oscillation experiments provide evidence of mass they cannot measure the absolute

scale. Therefore, this type of experiment is an indirect search for neutrino mass.

Direct neutrino mass measurements are experimentally very difficult because neu-
trino masses are so small, of the order of eV or less. Direct searches have historically
tried to measure neutrino mass using conservation of energy and precision measure-
ments of the final state kinematics in weak decays. So far they have only set upper
limits on the values of the neutrino masses. Another class of direct mass searches seeks
to measure the Majorana mass term using the rate of neutrino-less double beta de-
cay (Ovf33). These measurements have also mostly resulted in upper limits, however,

there is one controversial signal which indicates a non-zero Majorana mass.
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Table 1.1: Direct neutrino mass measurement results in units of eV . Table from

reference [11]. References for each result are given in the text.

Vr ‘ i
< 18.2x10° | < 0.7-1.0

Ve ve Majorana | v,

<22 ‘ < 0.24 ‘ < 0.17x108

Recently, precision astrophysical data have also been used to set limits on the
sum of the neutrino masses. These measurements are in a sense both direct and
indirect because while they have sensitivity to the absolute scale of neutrino mass,
many theoretical assumptions about the evolution of the universe are necessary to

extract a limit.

One additional constraint on the neutrino sector that is very important for neu-
trino mass searches is the limit on the number of weakly-interacting, or “active”,
neutrinos. The LEP experiments in combination measure this from the lineshape of
the decay width of the Z-boson to be 2.92 + 0.07. [10]. This constraint plays a role in
combining measurements from oscillation experiments, and in model-building needed

to interpret astrophysical data.

Direct Searches

The best current direct neutrino mass measurement results are summarized in table
1.1. These include limits on the v, mass from (-decay, limits on the v, mass from
7w decay, limits on the v, mass from 7 decay, as well as searches for Majorana mass,

and astrophysical limits on the sum of the neutrino masses.

Direct searches for the mass of the v, use the 3 decay of tritium via >H — 3He e,

where the underlying process is n — p e~ T.. The electron kinetic energy spectrum
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can be predicted analytically,

dl’ G?
5 = N0t (O)MPF(E, Z+1) p(E +mee®) - (1.23)

S Py = Vi = B) - U\ (B — Vi = B)? = m2(v)e!
2

where N is the number of parent nuclei, G is the Fermi constant, ©, is the Cabibbo
angle, M is the nuclear decay matrix element, F(E,Z + 1) is the Fermi function,
p is the electron momentum, m, is the electron mass. P; is the probability to find
a final state with a daughter nucleus with excitation energy V;, and |U,;|* is the
probability to find a neutrino in mass eigenstate m(v;). Ej is the endpoint of the
electron spectrum in the case of m, = 0.0, which is the @) value of the decay minus
the energy of the daughter nucleus. By comparing the measured endpoint of the
electron kinetic energy spectrum with Fj, experiments extract an upper limit on the
7, mass. The best limit comes from the Mainz experiment, which measures m%e =
-1.6 4= 2540 £ 2.1y, eV?/c*, which is usually expressed as a limit my, < 2.2 eV
at 95% confidence level [12]. The planned KATRIN experiment is projected to have

sensitivity down to my, = 0.3 eV [18].

Direct mass searches for the v, and v, mass are based on a similar concept of
precisely measuring the final state kinematics of weak decays and comparing with the
predicted spectrum. The best v, mass limit comes from high precision measurements
of the ™ momentum in 7% — pv, decays from a stopped pion beam at the PSL.
The experimental result is mlz,u = —0.016 £0.023 MeV?, which is converted into an
upper limit of 0.17 MeV at 90% confidence level [14] !. The experimental precision

is limited by the muon momentum measurement accuracy. The v, mass searches use

the decays 7= — 27 7, and 7= — 37 27" (7%)v, at the ALEPH experiment. The

!This analysis assumed that the v, is created in a mass eigenstate, which is not strictly correct

now that neutrino oscillations have been conclusively established.
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experimental result is derived from fitting the visible energy distribution as a function
of invariant mass, with m,_ as a free parameter. The final state identification and
energy resolution of the detector are the limiting factors in the experimental precision.

The resulting limit is m,, < 18.2 MeV at 95% confidence level [15].

The Majorana or Dirac nature of the neutrino is probed by neutrino-less double
beta decay (0v(3(3) experiments, which seek to directly measure the Majorana mass
component of the v,. Double beta decay is a rare process predicted by the Standard
Model weak interaction in which a nucleus that is stable against single beta decay
can decay by a double weak interaction via A(Z, N) — A(Z+2,N —2)+2e” +27,.
Typical nuclei that posess this property are “°Ge, 1Mo, and ¥2Se. This process
changes the charge of nucleus by 2 units, and two neutrinos are emitted. Neutrino-less
double beta decay measurements search for interactions where no neutrinos emerge.
If neutrinos have non-zero Majorana mass, the emitted 7, from the first beta decay
can interact as a v, within the nucleus and instigate the second beta decay signature
via v,n — e~ p. This requires Majorana mass because for the neutrino to interact
as both 7, and v, it must be its own anti-particle. The Majorana mass experiments
measure the half-life for (0vG3) [T, 10/”2]_1, which depends on the “effective” Majorana

mass (m,) via
TV = GY(Ey, Z 2 MO — g4 2M0” 2 1.24
[ 1/2] (Eo, Z)[(mu)|7| f g arl (1.24)

where G%(Fy, Z) is related to the kinematic phase space for the decay, (%) are
the familar weak interaction axial and vector charges, and M})” and M2 are nuclear
decay matrix elements. The “effective” Majorana mass is really a sum over mass

eigenstates [5]:

m; (1.25)

(m) = Z |Uei

where ¢ indexes the (Majorana) mass eigenstates m, and U, ; are the neutrino mixing

matrix elements. These searches are quite difficult because very low noise conditions
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are necessary, a large amount of data is required, and the matrix elements have
large uncertainties of order 50%. The best limit is set by the Heidelberg-Moscow
experiment, (m) < 0.2 eV at 90% confidence level [19], however, a sub-set of this
experiment also reports a positive signal, 0.11 eV < (m) < 0.56 eV [20], which is
very controversial [21]. The sensitivity of future (Ov(/3) experiments is projected to

be (m) ~0.01 eV [22].

An interesting corollary is that Majorana mass terms in the neutrino mass matrix
also cause the appearance of a right-handed isosinglet partner of the left-handed
neutrino. Experimental searches for the neutral heavy lepton set an upper limit on
the mixing probability V between v and N, of ~ 107% at my = 5 GeV, however,
three anomalous events were observed in a 2 GeV - 10 GeV mass neutral heavy lepton

search at the NuTeV experiment [23].

The sum of the neutrino masses can be inferred from astrophysical data combined
with models for the evolution of cosmic matter density fluctuations. There are ~100
v/em? in free space, and therefore even a small neutrino mass would have a signif-
icant impact on the matter distribution in the universe. Precision measurements of
the matter density fluctuations are sensitive to the total mass of neutrinos because
neutrinos tend to suppress small-scale fluctuations [24]. The degree of suppression

depends on the mass of neutrinos as [25]

APy %
Py o QM

(1.26)

where Py, is the power spectrum of matter density fluctuations, €2, is the fraction of
the universe’s mass carried by neutrinos, and €2, is the total matter mass fraction.
The absence of small-scale fluctuation suppression is interpreted as an upper limit on
the sum of the neutrino masses. The current limit which is most model-independent

is > ,m; < 2.1 eV at 95% confidence level [16]. A more agressive limit can be
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derived by using data other than the small-scale power spectrum to constrain model

uncertainties, in this case the limit is ) . m; < 0.7 eV at 90% confidence level [17].

With the exception of Ov 33 searches, all of the direct neutrino mass measurements
are sensitive only to Dirac neutrinos that interact via the weak interaction, that is,
left-handed neutrinos that couple to the W and Z bosons. Neutrino oscillations and
Majorana mass raise the possibility of right-handed neutrinos that mix only with the
light, weakly interacting neutrinos. These hypothetical particles would be “sterile”
in the sense that they would not participate in the weak interaction. In contrast to
the direct neutrino mass measurements, oscillation searches are sensitive to “sterile”

neutrinos, and in fact, require them to accomodate all of the current oscillation results.

Indirect Searches

Neutrino oscillation experiments typically cast their results in terms of the neutrino
mass eigenstate difference Am? and the degree of mixing between a particular mass
and weak eigenstate, given by a mixing angle sin®20. These quantities are directly
related to the mass eigenstates if only two are involved, however, they may be “effec-
tive” parameters, that is, useful for describing an experiment’s observation but not
the physical quantities involved in oscillations, in cases where more than two mass
eigenstates participate. Different neutrino experiments are sensitive to different pa-
rameter combinations, due to the energy and composition of their neutrino beam,

and the distance of the detector from the neutrino source.

Oscillation searches can be categorized experimentally as “appearance” or “dis-
appearance:” in an “appearance” analysis one searches for the oscillation of one flavor
into another, e.g. v, — v,, while in a “disappearance” analysis the experimental ob-
servation is that the rate and/or energy spectrum of interactions of a particular flavor

is reduced with respect to the expectation, e.g. fewer v, are measured than expected.
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In contrast to direct mass searches, neutrino oscillations can produce very large ex-
perimental signals, of the order of 50% effects, depending on the underlying oscillation
parameters. The experimental constraints on the neutrino oscillation parameter space
are summarized in figure 1.1, which includes the results from atmospheric neutrinos,

solar neutrinos, reactor neutrinos, and accelerator neutrino experiments.

Atmospheric neutrinos typically travel a distance between production and detec-
tion of a few hundred km if coming from straight overhead (zenith angle of 0°) or
~10,000 km if travelling upwards through the earth (zenith angle of 180°), and have
energies ranging from sub-GeV to multi-GeV. Therefore, in the oscillatory term in
the oscillation probablity, sin%%), Am? must be of order 1072-1072 for
the term to be near a maximum. This roughly determines the oscillation parameter
sensitivity of atmospheric neutrino experiments. Neutrinos produced in the atmo-
sphere possess a very useful property for oscillation measurements, which is that the
predicted ratio of of v, to v, is well understood. When cosmic rays, which are mostly
protons, interact with the atmosphere, they produce the following chain of reactions:

+ (y_e)(u_:. This chain of interactions

(i) pN — 7X, (i) 7* — pF (1/_#), (iii) pu* — e
produces 2 v, flavor particles for each v, flavor. Therefore the accessible oscillation
channels are (I/;) disappearance, (y;) disappearance, and (V7,3—>(y7€) oscillations, however,
atmospheric neutrino detectors typically cannot distinguish v from 7. To reduce the
systematics associated with predicting the absolute rate of atmospheric neutrino pro-
duction, experiments typically measure the ratio of the observed to predicted v,:v.
ratio, or the ratio of ratios. In the absence of oscillations this should 1.0, however,
the Super-Kamiokande observation is that the ratio is 0.65-0.7. The conclusive piece
of evidence for atmospheric neutrino oscillations was the observation of zenith angle

dependence of the ratio of ratios consistent with the prediction of the oscillation hy-

pothesis [9]. The current best measurement of the atmospheric neutrino oscillation
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parameters is 1.5 x 107 < Am3; < 3.4 x 107%eV? and sin®20,5 > 0.92 at 90%
confidence level, from the Super-Kamiokande experiment [26]. The subscript (2, 3)
indicates that the oscillations observed by atmospheric neutrino experiments are pri-
marily due to the participation of neutrino mass eigenstates 2 and 3 and v, — v,

transitions.

Solar neutrinos travel much longer distances between production and detection,
L~ 10® km, and have very low energies ~10 MeV , consistent with fusion products.
The composition of solar neutrinos should be pure v, given the processes associated
with solar fusion, and the predicted rate of solar neutrino production has very small
errors because the visible luminosity, which is is strongly correlated with the fusion
rate, is well measured. A deficit of solar neutrinos with respect to the predicted
rate was first observed in the 1950s, and was termed the “solar anomaly” [27]. It
was not until recently when experiments observed an energy spectrum deformation
characteristic of oscillations that the “solar anomaly” was resolved. Historically, solar
neutrino oscillation experiments could only detect v, and search for oscillations via
v, disappearance, therefore they did not take advantage of the beam composition
information. However, the recent SNO experiment was designed to measure not
only the v, from the sun, but also search for solar v, and v, which could only be
produced by v, — v, ; oscillations. SNO observes a ~50% deficit of v, with an energy
spectrum consistent with the oscillation prediction, and a relative excess of v, and
v, events combined [28]. In combination with previous solar neutrino experiments,
this gives the best current measurement of the solar oscillation parameters, Ami2
= 6.5753eV? and tan?20,, = 0.45700% at 1o [29]. The subscript (1,2) indicates
that the oscillations observed by solar neutrino experiments are primarily due to the

participation of neutrino mass eigenstates 1 and 2 and v, — v, transitions.

Reactor neutrino beams are very similar in energy spectrum to solar neutrinos,
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because they are side-products of fission, with typical energies of a few Mel/. Unlike
solar neutrinos, reactor beams are composed exclusively of .. An attractive feature
of reactor neutrino beams is that the predicted energy spectrum has very small uncer-
tainties. Reactor neutrinos are radiated isotropically, therefore detectors are usually
sited within 1 &m of the source, which determines the sensitivity to oscillation pa-
rameters. The experimental channel for oscillation searches is 7, disappearance, and
until recently, reactor neutrino oscillation experiments had only set limits because
they didn’t see any signals. However, the KamLAND experiment, which was specifi-
cally designed to have sensitivity to the allowed solar oscillation parameter space and
has a baseline of ~180 km, observes a deficit with an energy spectrum consistent
with oscillations in agreement with the solar oscillation results [30]. The current best
oscillation parameter measurement from KamLAND in combination with the solar

neutrino data is Am?, = 8.070%eV? and tan?26, , = 0.457407 at 1o [29]

Accelerator neutrino experiments are unique in that they can control both the
energy of the neutrino beam and the distance of the detector from the source. In
principle this allows for more controlled experimental conditions. Accelerator neutrino
beams are composed of either v, or 7, from 7% decays, with small backgrounds from
(z;e). The accessible experimental channels are (1;,3 disappearance, (u;) appearance, and
possibly even v, appearance. Only one short-baseline accelerator neutrino oscillation
experiment has observed a signal: the LSND experiment, which searched for v, — 7,
in a 7, beam with 20 < E, < 60 MeV and an L, of 30 m, observes an excess
consistent with 0.2 < Am? < 10 eV? over a range of 0.003 < sin?20 values < 0.03.
The best-fit point is (Am?, sin?20) = (1.2 eV?, 0.003) [31], corresponding to an
oscillation probability of ~0.3%. Precisely which mass eigenstates are involved in the

oscillations observed by LSND is unknown. Other short-baseline accelerator neutrino

experiments did not observe signals and therefore set limits, none of which quite cover
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the same region of parameter space as the LSND result. Two long-baseline accelerator
neutrino experiments, both of which were designed specifically to have sensitivity to
the allowed atmospheric oscillation parameter space, have observed oscillation signals.
The MINOS experiment has an average F, of 7-10 GeV depending on the beamline
configuration and a baseline L, of 735 km. Their observation is Amj, = 3.050:%0
x1073eV? and sin?20,3 = 0.88701% at 1o [32], which agrees within the experimental
uncertainties with the atmospheric neutrino oscillation results. The K2K experiment
has an average F, of ~1.3 GeV and L, of 250 km, and observes an energy spectrum

distortion consistent with 1.9 x107% < Am3 4 < 3.5 x107%eV? at sin’20,5 = 1.0 at

90% confidence level [33].

The results of all of the oscillation experiments are shown in figure 1.1. The
regions of parameter space allowed by the positive signals are indicated by the en-
closed shaded regions, and the experiments which set limits rule out the parameter
space above and within the lines. With three neutrinos, there can only be 2 inde-
pendent values of the oscillation parameter Am?, since Am?, + Am3s = Am] ;.
At present, there are three irreconcileable values of Am? at ~ 107°, ~ 1072 and
~ 1 eV?, as figure 1.1 shows. One solution to this problem is that one of the ex-
perimental signals in incorrect. Both the solar and atmospheric signals have been
confirmed by multiple experiments, however, the LSND signal has not. The purpose
of the MiniBooNE experiment is to confirm or refute the LSND results. If Mini-
BooNE refutes LSND, then the neutrino oscillation picture is fairly well understood,
with (Am?,, sin®260;5) and (Am3, sin*26y3) measured by the solar/reactor and
atmospheric/long-baseline accelerator experiments respectively. The remaining un-
knowns are the value of sin?26; 3, which is limited to be <0.032 [35], the neutrino

mass hierarchy, and whether the phase of the neutrino mixing matrix is non-zero.

On the other hand, if MiniBooNE confirms LSND, the most straightforward
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Figure 1.1: Summary of neutrino oscillation results. Figure from reference [34].
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reference [36].
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solution to the Am? sum rule problem is to introduce a fourth or more neutrino
participants in oscillations, which would allow at least three independent values of
Am?. However, this neutrino would have to be “sterile” since the number of neutrinos
that participate in the weak interaction is strongly constrained to be three by the
precision electro-weak data from LEP [10]. These “sterile” neutrinos do not exist in
the Standard Model of particle physics, and therefore a MiniBooNE confirmation of

the LSND result would have profound implications.

In models with sterile neutrinos, the LSND observation is a product of two or

more transitions. For example, for models with 1 sterile neutrino v,
Prsnp(v, — ve) x P(v, — vs) X P(vs — ve). (1.27)

In this case, the measured sin®20;5yp and Am? ¢y are really effective parameters
describing the experimental observation, and do not correspond directly to two par-
ticipating mass eigenstates. The neutrino oscillation probability in equation 1.14 is
modified by changing n from 3 generations to 4, and the dimension of the mixing

matrix U changes from [3x3] to [4x4]:

Uel UeZ UeB Ue4

go— | U U U Ua) (1.28)
U’?’l U7'2 U’T3 UT4

Us 1 U52 Us3 Us4

Models that add one sterile neutrino are highly constrained by the short-baseline
accelerator experiment null results; the allowed regions for v, appearance and v,
disappearance are shown in figure 1.2. Models with more than one sterile neutrino

are much less constrained [36].
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1.3 The Search for Oscillations at MiniBooNE

MiniBooNE was designed to confirm or refute the LSND oscillation signal, with higher
statistics and different systematics. MiniBooNE is located at the Fermi National
Accelerator Laboratory, on the 8 GeV proton beam line, which produces a v, beam
with an average energy of ~0.8 GeV'. The neutrinos in the MiniBooNE beam come
from the decays of mesons produced in collisions between the 8 GeV primary proton
beam and a neutrino production target. The neutrino detector is located 541 m
downstream from the neutrino source. The detector is an open volume tank of mineral
oil, C'H,, viewed by photo-multiplier tubes, surrounded by an instrumented veto
region. Neutrino interactions are detected primarily via the Cherenkov radiation and
scintillation light creation by final-state particles. An overview of the experimental
apparatus, the neutrino interaction reconstruction, and the detector calibration is

given in chapter 2.

Two kinds of oscillation searches are possible at MiniBooNE: v, appearance, and
v, disappearance. These two analyses each have unique signals and backgrounds, and
therefore have different systematic errors. Depending on the underlying oscillation
physics, they may also be sensitive to different oscillation parameters. For exam-
ple, in models with one sterile neutrino, v, disappearance probes v, — v, while v,

appearance depends on the product of v, — vy and v, — v..

The appearance analysis is the flagship measurement of MiniBooNE because,
assuming CP conservation, v, — v, is the LSND signal channel. The analysis requires
predicting both the v, and v. components of the neutrino beam, then measuring the
V. interactions in the detector and searching for an excess of v, due to v, — 1,
oscillations above background. The oscillated v, spectrum would have the energy

distribution of the un-oscillated v, events, and the number of oscillation v, events
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would be determined by the size of the mixing angle sin?20. In a two neutrino
model where the participating states are v, and v,, the observed number of v, from

oscillations would be

NSSS(EV) = NVH(EV) X P(VM — Ve> (129)
1.297Am?L,
— N, (E,) x sin?20 sm2<E—m)

At MiniBooNE, where < E, > = 0.8 GeV and L, ~ 0.541 km, the first oscillation
maximum occurs at Am? = 1.83 eV2. An oscillation signal near this Am? would
have a characteristic neutrino energy dependence, and therefore good neutrino energy
resolution is important to the experimental oscillation sensitivity. For this reason,
ve charged current quasi-elastic (CCQE) interactions are selected for the analysis,
and good particle identification is important. For Am? values above ~10 eV?, the
oscillation frequency is too rapid for MiniBooNE to resolve the energy spectrum
distortions. In this case, the oscillation sensitivity depends on the observed rate only.
Overall, the appearance sensitivity at MiniBooNE depends approximately equally on

the v, rate and energy distribution measurements.

The background comes from both intrinsic v, in the neutrino beam, and mis-
identified v, interactions. The intrinsic v, content of the MiniBooNE beam is ~0.5%,
which comes from the meson decays K+ — et 7m0, K9 — efr¥ (V_e), and ut — et v,
in the neutrino beam line. The energy distribution of v, from kaon decays peaks at
~1.5 GeV and falls off to the kinematic limit, ~7 GeV. The energy distribution of
V. from muon decays is peaked at ~0.6 GeV, and, this source is the largest intrinsic
beam background to oscillation signal events. The neutrino interaction processes
that fake v, events in the detector mostly come from mis-identified neutral current 7°
production via v,n — v,nm’ and v,p — v,pr°, where the electromagnetic 7 decay,

7 — 7, fakes the signature of a single electron in the detector. Another important



26

source of neutrino interaction background is from radiative delta decays, A — N7,
where the final state photon gets mistaken for an electron. The event selection cuts
for the v, appearance analysis must both select v, CCQE events and get rid of mis-
identified backgrounds at a very high level since the size of an LSND-like signal would
comprise < 1% of the total neutrino interactions in MiniBooNE. Consequently the
event selection cuts for the appearance analysis are very harsh: the efficiencies are
~50% for the signal v, CCQE events, and ~1% for the background, in the fiducial

volume.

The most important sources of systematic error for the appearance analysis are
related to the v, background predictions. The errors associated with predicting the
intrisic beam v, rates and energy distributions come primarily from the uncertainties
on the meson production cross sections. Particle production at 8 GeV proton kinetic
energy historically is not well measured, and therefore the 77, KT, and K? production
have 10-30% uncertainties. The 7 uncertainty determines the ™ error because the
pt are produced via 7t — ptv,. However, as shown in chapter 5, the 7" rate can
be constrained to high precision by the observed v, events. The 7° and radiative A
decay background prediction errors come from the neutrino interaction cross section
uncertainties. Before MiniBooNE, there were no measurements of neutral current 7°
production on carbon below F, = 2 GeV', and the radiative A decay had never been
observed in neutrino-induced A production. Uncertainties on these processes derived
from extrapolating measurements from past experiments are at the 50-100% level.
Modelling the detector response is also an important component of the background
uncertainties due to its effect on particle identification. MiniBooNE employs a number
of in-situ calibration analyses to constrain the detector response prediction, which

result in uncertainties of 5-10%.

If LSND-type oscillations occur, the disappearance signal in MiniBooNE can be as
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large as ~10%, compared with ~1% effect in the appearance channel. This is because
much larger mixing angles are allowed for v, disappearance than v, appearance in
models with sterile neutrinos, as figure 1.2 shows. The disappearance analysis depends
on predicting the number of v, produced in the neutrino beam, and measuring the
number of v, interactions in the MiniBooNE detector. If oscillations are occuring,
then the number of observed v, interactions would be less than the number predicted,
and the energy spectrum may be modified. In a model with only two neutrinos, v,
and vg, the probability for v, disappearance is P(v, — vs), and the observed v,

spectrum in the detector depends on the survival probability as
NP(B,) = Ny (E)) x Py, —v) = Ny (Ey) x {1 — Py, — ys)] (1.30)

= N

Vi

(B,) x |1 — sin*20 sm%%j%)]
As for v, appearance, the first oscillation maximum occurs at Am? = 1.83 eV?2. For
values near to this Am?, oscillations would modify both the number and the energy
distribution of detected muon-flavor neutrinos, and therefore v, CCQE interactions
are selected for the analysis. However, at high Am?, the survival probability reduces
to P(v, — v,) = 1 — sin®20 x 3, and so the oscillation sensitivity in this region

comes entirely from the measured rate, since there would be no information contained

in the detected E, spectrum.

The MiniBooNE neutrino beam is composed almost entirely of v, type neutri-
nos, and v, charged current interactions produce a clear signature: a muon in the
MiniBooNE detector. Therefore, to first order, there are no backgrounds to the v,
disappearance analysis. However, the neutrino energy resolution affects the sensitiv-
ity to oscillations at low Am?, and therefore it is desireable to use only events where
the F, reconstruction resolution is good. For this reason, the disappearance analysis

uses charged-current quasi-elastic (CCQE) v, interactions to search for oscillations.
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Unfortunately, there is some background left after the v, CCQE selection cuts due to
charged current single pion (CClm) production, where the 7 is absorbed inside the
nucleus, or in the detector oil. These events fake the quasi-elastic final state, and
therefore pass the selection cuts, but degrade the E, resolution. A set of selection

criteria for v, CCQE events is developed in chapter 4 of this thesis.

The most important systematic errors for the disappearance analysis are those
related to predicting the v, CCQE spectrum. These include the 7+ production cross
section prediction, which has ~10% uncertainty, the v, CCQE and v, CClm cross
sections, which have 10-20% uncertainties, and the detector response model, which
has ~5% effect on the muon energy scale and therefore on the reconstructed FE,
distribution. The relevant neutrino cross sections have been measured by several
past experiments, but only for F, > 1 GeV. The uncertainty estimate is derived

from extrapolating these higher-energy past measurements.

It is useful to categorize the disappearance systematics as normalization or shape
contributions, since, unlike the appearance analysis, the disappearance sensitivity
comes primarily from the distortion of the shape of the E, spectrum due to oscil-
lations. The prediction for the overall rate of v, CCQE events has a much larger
uncertainty than the prediction for the shape of the E, distribution. In general this
is because it is more difficult experimentally to measure absolute production rates
than a bin-to-bin rate variation, and the v, spectrum prediction uncertainties are

mostly based on past cross section measurements.

In general, since MiniBooNE is an experiment with one detector, it relies on pre-
dicting the absolute flux, neutrino interaction cross sections, and detector response
using data external to the experiment combined with Monte Carlo methods. The
assumptions in the simulation of the experiment contribute most of the sources of

systematic error for MiniBooNE. For the flux prediction, MiniBooNE relies on global
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fits to data from past experiments to predict the 7+, 7=, K, and K? meson pro-
duction cross sections and to determine their uncertainties. A survey of the available
data and the global fitting analysis are described in chapter 3 of this thesis. For
the neutrino interaction cross section predictions, MiniBooNE uses a combination
of previous measurements and theoretical calculations. For the detector response, a
complete optical model for light propagation in the detector oil is employed, with free
parameters measured in external specialty tests and where possible with MiniBooNE
calibration data. These aspects of the simulation of the experiment are summarized

in chapter 3.

Given the dearth of measurements from previous experiments of the important
sources of systematic error for MiniBooNE, it is important to constrain the Monte
Carlo predictions and associated uncertainties with in-situ data wherever possible.
This project is the bulk of the work in this thesis. The overall strategy is to use the
copious v, data in MiniBooNE to check or tune the Monte Carlo predictions and
constrain the uncertainties. Care must be taken to determine the sensitivity of each
analysis to v, disappearance, which, if LSND is correct, may occur at a non-negligble
rate. The other major obstacle is the MiniBooNE blind analysis. In an effort to mini-
mize bias in simulation tuning for the appearance analysis, v, data is sequestered, and
therefore not available for constraining Monte Carlo predictions. Without reference
to v, data, in-situ constraints on the flux predictions can be measured for all contri-
butions to the neutrino flux with the exception of the K? production. Similarly, the
cross section predictions for the most important channels for the oscillation analyses
can all be constrained without v, data, with the exception of the radiative delta decay
branching ratio. Once the v, “box” is opened, the K? and A — N+ rates can be

measured.

The v, from muon decay rate and uncertainty can be extracted with high precision
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* — y,ut followed by pt —

from the v, data set, since the v, are produced via 7
etv.7,, and the 7-decay v, comprise the vast majority of the MiniBooNE neutrino
beam. This analysis uses the v, CCQE selection described in chapter 4, which results
in ~100,000 events after cuts, with 90% v, CCQE purity and 10% E, resolution at
1 GeV. The v, from p decay constraint analysis comprises chapter 5 of this thesis.

This analysis method is also used to extract a constraint on the v, flux uncertainty

for the appearance analysis.

The v, from K+ decay can be constrained using the high energy v, data, since
2-body K decays can produce neutrino energies much higher than those of 7 -decay
v, at MiniBooNE; Kt decay v, dominate over 7*-decay v, for energies above E, =~
2.25 GeV. MiniBooNE also has a beam line monitoring device that measures high
angle muons, which are much more likely to come from kaon decays than pion decays.
Both of these are primarily sensitive to the rate of kaon production, and therefore
external input to constrain the shape of the K spectrum at production is needed
as well. A global fit to combine these two in-situ measurements with the external

production data is described in appendix D.

The neutrino CCQE interaction cross section prediction comes from a theoretical
model for neutrino scattering from a bound nucleon, with a few free parameters
and form factors measured in electron-Carbon scattering data and/or light-target
neutrino scattering data. The parameter uncertainties are derived from the spread
in external measurements of the v, CCQE cross section. The resulting CCQE cross
section uncertainty is ~10%. Constraining the cross section prediction and associated
uncertainties using in-situ data is particularly important because CCQE interactions
are the signal channel for both the v, appearance and the v, disappearance oscillation
searches. The high-statistics MiniBooNE v, CCQE data set is used to measure the

bound-nucleon CCQE cross section parameters and their uncertainties, as well as the
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functional form of the axial form factor. This analysis is described in chapter 6. The
measured values are rather different from the world light-target averages, but, these
results are in good agreement with a recent Carbon-target measurement at F, = 1.2

GeV from the K2K experiment [37].

A number of other cross section measurements have been made at MiniBooNE to
constrain the predictions of the Monte Carlo. For the v, disappearance analysis, the
ratio of the inclusive cross section for the main background channel, resonant single
7t production, to CCQE has been measured as a function of neutrino energy [38].
For the v, appearance analysis, the v, neutral current 7° cross section has been
measured, as well as the ratio of resonant to coherent production channels [40]. Other
measurements in progress include deep inelastic scattering, v — e~ elastic scattering,

and v, neutral current elastic scattering cross sections.

Constraints derived from the v, data can be incorporated in oscillation analyses
in several ways. First, the MiniBooNE v, data can provide in-situ constraints on
the systematic errors associated with predicting the neutrino flux and interaction
cross sections. In most cases, these systematic errors are smaller than uncertainties
based on external data only. Second, fitting the v, and v, data sets together in a
simultaneous fit for v, appearance and v, disappearance adds a strong constraint on
the predicted systematic errors that are joint to the two analyses. These include the
uncertainties associated with predicting the 7+ and K fluxes and the neutrino CCQE
interaction cross section. The impact of both of these approaches on MiniBooNE’s

V. appearance and v, disappearance oscillation sensitivity is described in chapter 7.



Chapter 2

Overview of the Experiment

MiniBooNE is located at the Fermi National Accelerator Laboratory (FNAL) on the
8 GeV beam line, which transports protons from the Booster accelerator to a neutrino
production target. From August 2001 through December 2005 MiniBooNE amassed
6 x 10%° protons on target in neutrino beam configuration, corresponding to ~500,000
neutrino interaction candidate events contained in the MiniBooNE detector. From
January 2006 through the present, MiniBooNE has collected 3.7 x 10! protons on
target in anti-neutrino beam configuration, corresponding to ~8500 contained anti-
neutrino interaction candidates. The experiment will continue to run in this mode
for some time. The primary goal of MiniBooNE is to confirm or refute the LSND
oscillation result with different systematic errors and higher statistics. To change
the systematics, the MiniBooNE neutrino beam energy and baseline are an order of
magnitude larger than those of LSND. To achieve higher statistics, MiniBooNE has
amassed the world’s largest data set of neutrino interactions in the 1 GeV energy

range [41].

32
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450 m Detector
dirt

Figure 2.1: Schematic of the MiniBooNFE beam line, not to scale.

2.1 Neutrino Beam

The MiniBooNE neutrino beam is produced from 8.89 GeV//c protons incident on
a beryllium target located inside a magnetic focusing horn. A collimator and 50 m
air-filled decay region follow, which is terminated by an iron and concrete absorber.
The absorber and the neutrino detector are separated by a 450 m dirt berm. The
center of the detector is located 541 m from the target face. A schematic of the beam

line is shown in figure 2.1.

Typical proton beam operating conditions, determined by the FNAL Booster ac-
celerator performance, are 4 x 10'2 protons per pulse, at 3-5 Hz, with a beam uptime
of ~ 88%. The beam spill duration is 1.6 ps. The intensity of the proton pulse is
measured by two toroids in the MiniBooNE proton beam line. This measurement is
used to absolutely normalize neutrino events per proton, and is described in detail
in appendix A. Figure 2.2 shows the accumulation of protons incident on the Mini-
BooNE target as a function of time. The drop in the neutrino interaction rate by a

factor of ~6 after January 2006 is due to MiniBooNE’s change to 7 running mode.

The targeting efficiency, which describes the fraction of the proton beam that
transits the entire length of the target, is determined by the proton beam location
and angle of incidence at the face of the MiniBooNE target. The average position

and angle of the beam at the target face depend on the proton beam line dipole mag-
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Figure 2.2:  Accumulation of protons on target (top), horn pulses (middle), and

neutrino event candidates (bottom) since the start of the MiniBooNE neutrino run.

net currents, which are changed continuously by an automatic tuning program [42].
Therefore, these quantities are measured on a pulse-by-pulse basis using beam po-
sition monitors. The beam widths in the plane perpendicular to the direction of
motion depend on the quadrupole magnet currents, which are only changed during
manual tuning. The widths are measured in a special beam line configuration in
which multi-wire proportional chambers are inserted into the proton beam, which
occurs approximately once every few months. The commissioning of the MiniBooNE

proton beam line is described in detail in reference [43]. Typical beam parameters at

the target face are summarized in table 2.1.

The beryllium target is 71 ¢m long and 1 ¢m in radius. The MiniBooNE proton
beam line was designed such that all of the proton beam transits all of the target. In
practice, a data quality cut is applied such that the measured targeting efficiency is

>95%. The interaction length \; for protons in beryllium is 41.8 ¢m, therefore the

fraction of the beam that interacts is ~0.82, given by (1 — exp[—71/A;]). When
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Table 2.1: Typical proton beam parameters.

quantity z Yy

beam center position | 0.0 mm | 0.0 mm

beam r.m.s. width 1.51 mm | 0.75 mm
beam center angle 0.0 mr 0.0 mr
beam r.m.s. angle 0.66 mr | 0.40 mr

protons interact in the target, the dominant processes are inelastic 7+ and K produc-
tion. From Monte Carlo simulations, the average multiplicity of 7% (K™) produced
per event is ~0.7 (0.05). The small radius of the target is designed to minimize ab-
sorption of these secondary pions. The inelastic interaction length for 2 GeV pions
in beryllium is similar to that of protons, therefore a pion that transits the target

radially has a ~5% probabliity of being absorbed before escaping.

The target is situated inside an aluminum focusing horn, which produces a
toroidal magnetic field in the plane perpendicular to the proton beam direction, which
focuses secondary particles towards the beam axis. The inner conductor inner radius
is 2.54 c¢m in the region surrounding the target, and the inner radius of the outer
conductor is 30 cm. The horn is triggered to pulse with 170,000 A of current for
each proton spill, producing a magnetic field of ~1 T. The magnetic field was mea-
sured before installation, and found to follow the ideal radial field for a line current,
B(r) = pol/2mr where r is the radial distance from the longitudinal axis of the

horn, within the measurement precision of 10% [44].

The power supply for the horn can be set to either positive or negative polarity.
For neutrino running, the polarity is set such that the horn focuses positive sign

mesons, e.g. w, and defocuses the negative sign. For anti-neutrino running the
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polarity is reversed. From systematic runs with the horn off, MiniBooNE determines
that the horn (when on) increases the neutrino flux at the detector by a factor of ~5.
From Monte Carlo simulations of neutrino running, the horn acceptance includes
ranges of meson production momenta and angles from 1 < p, < 4 GeV/c and 0 <

0. < 0.2 radians respectively.

Mesons produced in the target and focused by the horn pass through a collimator
with a 30 em radius aperture, which is located ~2 m downstream of the end of the
horn, and decay in a 50 m long decay pipe with a radius of 90 ¢m. The collimator
is used to localize the radiation produced by secondary particles which are destined
to stop in the decay pipe walls. The limiting aperature for flux acceptance is the
detector cross sectional area, which, when viewed from the target, subtends 0.011
radians. For small angles, tan(d) ~ 6 = (6.10 m)/(541.00 m) = 0.011, where
6.10 m is the MiniBooNE detector radius, and 541.00 m is the distance from the
upstream target face to the detector center. Therefore, only the most forward meson
decays produce neutrinos that hit the MiniBooNE detector. The coordinates of a
neutrino when it arrives at the detector with respect to its origin are

0 0
r = 2%+ (Zaa— ) % (B), g = 4+ (Zaa— ) % (p—g) (2.1)
Pz Dz
r = AT

0 9% 29) are the coordinates of the neutrino at production in e¢m with

where (x
respect to the target face, Z4; = 541.00 m is the distance from the target face
to the detector center, and (p?, pg, pY) are the components of the neutrino’s three

momentum at production. The Monte Carlo detector acceptance cut requires
r < Rdet, (22)

where Rg; = 6.10 m is the radius of the cross sectional area of the detector, viewed

from the target.
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For two-body decays, there is a simple relationship between the energy of the
neutrino and the energy of the parent meson, if one assumes that the meson is on-

axis and that the decay angle with respect to the beam direction is zero:

EfAB - VmesonEgM(]- + 6meson) (23)

ELAB is the v energy in the lab frame, ESM is the v energy in the meson center

where
of mass frame, and v and [ are the usual relativistic factors for the parent meson.
For 7t (K), this relation gives a maximum v, energy of 0.43x E, (0.9x E). Thus,

for a given meson energy, two-body K ! decays can produce higher energy neutrinos

than 71 decays.

The 7" and K™ lifetimes are 26.03 and 12.37 ns respectively [45], and the fraction
of mesons that decay over a distance of 50 m is (1 — exp|—50.0/vGc7|) where 7 is
the meson lifetime. In the MiniBooNE beam line, the average energy of 7 (K™)
that decay to neutrinos in the MiniBooNE detector acceptance is 1.89 (2.66) GeV'.
Therefore 41.6% (92.1%) decay before the end of the 50 m long decay region. The most
relevant decay modes for MiniBooNE are 7+ — p*v,, KT — p*v,, which produce
99.4% of the neutrino beam, and K™ — wle*v,, u* — etv,v., K} — 7 e*v,, and
K% — mte v, which produce the remaining 0.4%. The resulting neutrino flux is
shown in figure 2.3, which has an average neutrino energy of 0.8 GeV. The Monte

Carlo simulation of the neutrino beam production is discussed in depth in chapter 3.

For the v, — v, oscillation analysis, the v, in the neutrino beam are usually
termed “intrinsic” backgrounds. The v, background from p decay can be constrained
by measuring the v, from 7 decay in the MiniBooNE detector. The v, from kaon
decays are more problematic, and are addressed in several ways: v, from two-body K
decays are measured in the detector, and, p from two-body K decays are measured
in a dedicated neutrino beam line detector, the “Little Muon Counter” (LMC). By

combining these measurements, MiniBooNE can constrain the overall rate of kaon
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Figure 2.3:  Predicted v,, and v, flux distributions as a function of neutrino energy

in MiniBooNE.

production, and use a Monte Carlo simulation of the neutrino beam line to predict
the v, background from K decays. Constraints on the intrinsic v, backgrounds based

on MiniBooNE data are described in detail in Chapter 5.

2.2 Neutrino Detector

The MiniBooNE neutrino detector is a steel sphere of radius 610 ¢m, located beneath
3 m of soil shielding. The detector is filled with mineral oil (C'Hy) which is both
the neutrino target and the detector medium. The detector is divided into an inner
sphere of radius 5.5 m, and an outer shell with outer radius 6.1 m. The two regions
are separated by an optical barrier, but share oil circulation. The inside of the optical
barrier is instrumented with 1280 inward-facing photo-multiplier tubes (PMTs) which
view the detector fiducial volume. The outside of the optical barrier supports 240

pair-mounted PMTs, which view the outer shell of oil. This outer shell region is
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MiniBooNE Detector

Signal Region

Veto Region

Figure 2.4:  Schematic of the MiniBooNFE detector, not to scale.

used to veto incoming particles, typically cosmic rays. A schematic of the detector is

shown in figure 2.4.

When neutrinos interact in the detector, they may scatter off of 6 bound neu-
trons, 6 bound protons, or 2 free protons in the C'Hs molecule, or they may scatter
coherently off the whole Carbon nucleus, or they may scatter off of the 6 electrons.
At MiniBooNE neutrino energies, roughly 60% of the total neutrino interaction cross
section is charged current neutrino-nucleon scattering, and 40% is neutral current neu-
trino nucleon scattering, shown in figure 2.5. In a v, (v.) charged current interaction,
the final state contains at least one p~ (e~) and some combination of neutrons, pro-
tons, and pions. In neutral current interactions, the final state contains the original
neutrino, with a different energy in the interaction was inelastic, as well as nucleons
and possibly pions. The existing cross section measurements in MiniBooNE’s energy
range are also superimposed in figure 2.5. The measurements that exist for exclusive

channels have large error bars, and inclusive measurements are particularly scarce,
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Figure 2.5:  Left: total charged and neutral current neutrino cross sections (GeV)
vs. neutrino energy (GeV). Right: components of the charged current neutrino cross
section divided by neutrino energy (pb/GeV) vs. neutrino energy (GeV). The solid
lines in both panels show the NUANCE cross section Monte Carlo prediction for v-Ds

scattering. This figure is from reference [46].

for example, there are no measurements of the total neutral current cross section
around E, ~ 1 GeV. A further difficulty with interpreting past data is that different

neutrino flux and nuclear target corrections are applied by different experiments.

For the v, appearance oscillation analysis, the signal channel is charged current
quasi-elastic (CCQE) scattering, v.n — e p, and the dominant background channel
is neutral current resonant single pion production v,n(p) — 7°n(p). For the v, disap-
pearance oscillation analysis, the signal channel is also CCQE scattering, v,n — ™ p,
while the most important background channel is charged current resonant single pion
production, v,n(p) — m~ ptp(n). The neutrino interaction cross section simulation is

discussed in detail in chapter 3. In general, neutrino interaction cross sections on nu-
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clear targets have large uncertainties around E, = 1 GeV due to poor statistics from
or a lack of previous measurements. MiniBooNE can measure the quasi-elastic and
resonance production channels with high statistics; constraints on the cross section

prediction using MiniBooNE data are described in chapter 6.

Given the dominant neutrino interaction cross sections, understanding the detec-
tor response to muons, electrons, pions, and nucleons in the E, < 1 GeV range is
most important for MiniBooNE. When charged particles travel through the oil, they
produce photons by Cherenkov and scintillation emission processes. Cherenkov emis-
sion occurs when a particle travels faster than the phase velocity of light in a material,
with relativistic § > (¢ = ¢/n where n is the index of refraction of the material
and c is the speed of light in vacuum. This condition produces a shock wave of pho-
tons, which are radiated in a cone with a characteristic opening angle with respect
to the particle track, cos(6c) = 1/(pn) [47]. Scintillation photons are a by-product
of ionization energy loss, in which particles electromagnetically interact with, and
excite, the molecules in the detector oil along their path. The amount of ionization
energy lost by a particle depends on the particle’s velocity and the specific properties
of the medium. This energy loss is transferred to molecules in the detector medium
along the particle’s trajectory, and at some later time, these molecules may isotrop-
ically emit de-excitation photons. The number of scintillation photons is related to
dE/dx by Birks’ law [48]. Neutral particle detection is more difficult: neutral pions

are detected via the electromagnetic interactions of their 7°

— 7y decay products,
and neutrons are detected via de-excitation photons resulting from neutron-nucleus

scattering.

As photons propagate from the emission point to detection at the PMT sphere,
they may be attenuated, and/or scattered. Attenuation decreases the number of pho-

tons as a function of distance x from the emission point as N(z) = Noexp|—x/A4],
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where Ny is the initial number of photons, and A4 is the attenuation length. With a 2
m long tester filled with the MiniBooNE detector oil, the transmission is measured to
rise from 0% at 240 nm to 95% at 320 nm. Transmission is defined in this experiment
to be the intensity of photons detected divided by the intensity of photons emitted,
for a source with a fixed emission wavelength. These transmission measurements as a
function of incident photon wavelength (\,) are used to extrapolate to Ay = 25.2 £
3.1 m at A, = 460 nm; the attenuation length wavelength dependence is determined
empirically to be an approximately linear function above threshold [49]. For photons
produced at A\, = 460 nm at the center of the MiniBooNE detector, approximately
19% are attenuated before reaching the PMT sphere. The total scattering length in
the MiniBooNE oil is measured with goniometry to be 51.7 £ 7 m and 114.5 £+ 15.4
m at A\, = 442 and 532 nm respectively [50]. In this measurement, the scattering
length is determined by measuring the number of photons detected at a non-zero
angle with respect to the beam direction divided by the number of photons detected
at 0°. For Atering Of 51.7 m, approximately 10% of photons produced at A, =
442 nm at the center of the MiniBooNE detector undergo a scattering interaction
before reaching the PMT sphere. In general, A\, ~ 450 nm is chosen as a reference
wavelength for comparing optical parameters because it is approximately where the

peak of the detection efficiency vs. wavelength is located.

Once the photons reach the PMT sphere, the detection probability depends on
the properties of the PMTs, which convert the number of incident photons into an
electric charge. PMTs employ several properties of the photo-electric effect [51]: (7)
when a photon strikes a metal, an electron may be instantaneously knocked loose (the
emitted electron is termed a photo-electron (p.e.)), (i7) this process can only occur if
the wavelength of the incident light is less than a threshold value, and (izi) for a given

incident photon wavelength, the number of emitted photo-electrons is proportional to
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the number of incident photons. PMTs amplify the current of photo-electrons using
a multi-stage dynode chain, which can provide many orders of magnitude of signal

gain.

MiniBooNE uses Hamamatsu PMTs with an 8” diameter surface which have a
~20% quantum efficiency for emitting a photo-electron given an incident photon with
Ay < Athreshold = 550 nm [52]. In practice the quantum efficiency is a smooth function
of wavelength that rises steeply from zero below 300 nm to the plateau value, and
falls steeply above 500 nm. The MiniBooNE PMTs are operated with ~-+2000 V'
on the dynode chain, resulting in a gain of 10®. The intrinsic time resolution of
the PMTs is ~1 ns, and the intrinsic charge resolution is ~15% at 1 p.e [53]. The
charge resolution is further smeared by the signal processing electronics, however, the

dominant contribution to the resolutions is from the intrinsic PMT properties.

Data Acquisition

MiniBooNE uses the LSND PMT electronics [54], which have one channel per PMT.
The time (¢) and charge (q) signals from each PMT are digitized by 8-bit ADCs
synchronously on a 10 M Hz clock. The t and ¢ ADC values are stored in a 2 kB
circular FIFO buffer, which stores 220 us of data, indexed by the GPS time stamp of
each clock tick. If a PMT registers ¢ > 2 mV, a discriminator fires, registering a hit.
The PMT base resistors are set such that 2 mV corresponds to ~0.1 photo-electrons
(p.e.). The number of hit PMTs is summed on each clock tick and broadcast to the
trigger. The PMT electronics consist of a series of op-amps, capacitors, and resistors
which integrate the PMT voltage with an RC' constant of ~1100-1400 ns, depending
on the channel. The digitized value of this voltage at each 10 M Hz clock tick is
used to reconstruct the total charge deposited. The ¢t channel circuit has a fixed time

ramp initiated by the discriminator, and a relatively fast return to baseline (~200
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Figure 2.6: FExzample of the MiniBooNE data acquisition electronics for a single PMT
hit.

ns). The delay before the discriminator for a given PMT can fire again is 200 ns.

This sequence is illustrated in figure 2.6.

In the data acquisition software, a PMT hit consists of the digitized ¢ and t ADC
values, recorded over four 100 ns clock ticks. The four ¢ and four ¢ values form a
data “quad”. Data are retrieved from the FIFO buffers only if a trigger condition is
satisfied. In this case the entire detector is read out for 19.2 us. The PMT data are

zero suppressed and assembled into “quads” as an event and written to disk.

The MiniBooNE trigger hardware has four external inputs for NIM signals, named
(E1), (E2), (E3), and (E4), and seven comparator settings which are used to decide

whether to read out the detector on a given clock tick. The trigger table is constructed



45

in software using combinations of the hardware triggers and trigger activity timing
information. When a trigger fires, PMT information is collected for 192 subsequent
clock ticks (19.2 ps) !. The trigger hardware external inputs are used for (in order of
precedence): (E1) the beam-on-target trigger, which is a logical AND of the Booster
accelerator 1D and 1F events, (E2) a 2.01 Hz strobe trigger (which is triggered
by a pulser), (E3) the calibration trigger, which has a different NIM pulse length
(CALIB_.LASER, CALIB_CUBE, or CALIB.TRACKER) depending on whether it
is a laser, cube, or tracker calibration event, and (F£4) a NIM hardware OR of the
previous three conditions. A hold-off is always applied after the beam trigger (E1)
such that 20 us pass before the trigger can register new activity. Only the E1 trigger
input is used for the beam events in the analysis described in this thesis, however,
a subset of the comparators are used for the analysis of electron calibration data.
These are: DET?2 (# of tank PMT hits > 24), DET4 (# of tank PMT hits > 200),
and VETO1 (# of veto PMT hits > 6). The relevant trigger table, listed in order
of precedence, is shown in table 2.2. The total trigger rate is typically 25-30 Hz, of

which up to 5 Hz is due to beam triggers.

PMT Calibration

The PMT ¢ and ¢t ADC values are converted into times in ns and charges in units of
photo-electrons (p.e.) by the MiniBooNE PMT calibration algorithm. The calibration
takes as inputs the raw ADC data for each hit (a “quad”), the trigger time stamp,
and the calibration constants (charge gain, time of fset, and time slew) for each

PMT. The calibration includes the following steps.

1. The charge calibration: for PMT ¢, the voltage vs. time function for the charge

integrator, Vq(t);, is fit to the four ¢ ADC values in a “quad” for the overall

'The lengths of the calibration triggers may differ.



Table 2.2: The MiniBooNFE trigger types and rates relevant for this analysis.

Trigger Name | Trigger Condition Rate (Hz)
Beam El 3-95
Strobe B2 2.01
Michel .not.Vetol.and. DET2.and. 1.23
3 us < time since (DET4.and.VETO1) < 15 pus
Laser E3.and. CALIB_LASER 3.33
Cube E3.and.CALIB_CUBE 1.19
Tracker E3.and. CALIB_.TRACKER 0.65
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normalization. The best-fit normalization, Raw(), is corrected by the PMT

gain to produce the calibrated hit charge = Raw@/gain in units of p.e..

The Raw( value is approximately the difference between the third and first ¢

ADC values.

2. The time calibration: for PMT ¢, the voltage vs. time function for the time

ramp Vt(t); is used to extrapolate back to the time when the discriminator

fired, RawT. A further of fset correction for the signal transit time from the

PMT face to the electronics is applied. Additionally, the start of the time ramp

with respect to the start of the PMT signal depends on Raw(). This is called

time slewing. The calibrated hit time T" = RawT + the of fset correction +

the slew correction in units of ns.

The calibration constants are extracted from laser calibration data. The laser

calibration system consists of a 397 nm laser attached to a switching box, which can

direct laser light down a set of optical fibers which are piped into four 10 em diameter
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spherical glass flasks filled with Ludox?. The flasks are located at the center of the
detector and various off-axis positions. The purpose of the Ludox is to scatter the
laser light such that it is emitted isotropically. The laser intensity, frequency, and
emission flask can be varied; for the purpose of the calibrations described here, the

laser is pulsed at 3.3 Hz, and light is emitted only from the central flask.

To extract the PMT gain constants, the laser is pulsed at low intensity such
that the average number of detector PMTS which record a hit is <10% of the total
(1280). The goal is to never have more than 1 photon incident on a PMT. For each
PMT, a distribution is formed of Raw(, and the mean of this distribution, after
zero-suppression, should correspond to the charge for 1 p.e.. The PMT gain is the
constant needed to scale the mean of the Raw(@ distribution such that it equals 1.0.

The calculated gain is adjusted for the Poisson probability of getting >1 p.e..

To extract the PMT time of fset constant, the laser is pulsed at low intensity,
and a distribution is formed for all PMTs of the RawT values with respect to the
laser trigger time. The time of fset for each PMT is the time difference between
the PMT time and the average time of the distribution of all PMTs. The time slew
correction is derived by pulsing the laser over the full range of intensities and binning
the of fset distribution in Raw(@). The slew tables for each PMT are set such that

the of fset is independent of Raw(@.

Data Reduction

To select neutrino candidate events, two important forms of data reduction are ap-

plied. These are: (i) data quality requirements and (iz) cosmic ray rejection.

The purpose of the data quality cuts is to ensure that the experiment appara-

tus is functioning properly. This includes both beam line and detector. The only

2Ludox is a colloid of silica crystals suspended in water.
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Table 2.3: Data quality cuts and fraction of total protons on target that fail each cut.
Toroid 875 measures the proton spill intensity 5 m upstream of the target face. Toroid

860 is located 150 m upstream of Toroid 875.

Cut Fail Fraction(%)
Detector DAQ .not.Latent 0.05
Toroid 875 > 0.1E12 protons per spill 0.00
2 x [zl L07
Horn Current > 165 kA 5.29
targeting efficiency > 95% 3.75
(Beam - Detector) GPS Time Stamp < 33 ms | 0.01

contribution to the data quality cut failure rate from the detector is latent events,
which occur when the circular PMT FIFO buffers have filled up, and hit information
requested by a trigger has been overwritten. The trigger flags these hits, and events
containing any latent hits are cut by the data quality analysis software. The most
important data quality cuts related to the beam line are: (i) horn current within 5
kA of the expected value, (i) 95% of the beam passes through the entire length of
the target, and (i7i) agreement between the toroids, which measure the number of
protons per spill, to better than 10%. The fraction of data cut by these data quality
requirements is ~ 10%, most of which occured early in the MiniBooNE run. The

data quality cuts and their individual efficiencies are summarized in table 2.3.

Once quality cuts have been applied, the largest source of background to beam-
induced neutrino events comes from cosmic rays, since the MiniBooNE detector is
located on the surface with only 3 m of dirt overburden. The through-going (stopping)

cosmic ray rate has been measured to be 10 (2) kHz [55]. However, the short spill
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length of the Booster accelerator (1.6 us), and the high efficiency of the MiniBooNE

detector veto region (> 99%), enable cosmic ray rejection of better than 1000:1.

The cosmic ray rejection cuts rely on basic event identification, which employs
only calibrated PMT hit times. Within the 19.2 us beam trigger window, a simple
cluster-finding algorithm groups calibrated hits in the detector by time. The algo-
rithm loops over all hits in the beam window, and at each iteration accumulates all
hits within a time window of width AT starting at time 7,,;,. On the first iteration
Trwin = 0.0. If the time between contiguous hits is less than 10 ns, the window AT
is extended to include the latest hit and the iteration continues on to examine the
next PMT hit. However, if the time between contiguous hits is greater than 10 ns,
then the cluster is finished and the time of the next hit becomes the new T,,;,. If a
cluster includes more than 10 hit PMTs, then the cluster is tagged as a ““sub-event”.

If multiple sub-events occur in an event, they are numbered in time order.

To remove cosmic rays, the following cuts are applied:

1. that there be at least one sub-event, and

2. that the average time of the PMT hits in the first sub-event be within the beam
spill window (4400 ns < average time < 6400 ns with respect to the beam

trigger start), and

3. that the first sub-event have fewer than 6 hit PMTs in the veto region of the

detector, and

4. that the first sub-event have greater than 200 hit PMTs in the main tank region

of the detector.

The first two cuts require detector activity in time with the beam spill. Environmental

backgrounds tend to have fewer than 10 hits contiguous in this time window. The
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Figure 2.7:  Number of hits in the MiniBooNE beam trigger window vs. time (ns)
since the trigger start, in the first sub-event. Top: events passing cosmic ray cut #1.
Middle: events passing cosmic ray cuts #1 and #2. Left: events passing cosmic ray

cuts #1, #2, and #3. See text for cut explanation.
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Figure 2.8:  Number of events per proton on target after data reduction cuts vs. time

for the MiniBooNFE v mode data set.

third cut eliminates charged particles entering the detector from outside the veto
region, however, electrons from stopped cosmic ray muon decays inside the detector
volume will still pass the third cut. On average these decay electrons produce ~100
PMT hits, and therefore the fourth cut eliminates this background. The data are
shown after each cut is applied, sequentially, in figure 2.7. The efficiency of these cuts
in beam data is approximately 0.3%, however it depends on the neutrino beam rate,
that is, the ratio of spills with to without neutrino-induced interactions.

After the data quality and cosmic ray cuts are applied, the remaining events are

)

termed ‘“neutrino candidates.” MiniBooNE measures ~ 1 neutrino candidate event
per 1 x 10' protons on target. The stability of the data acquisition, beamline, and
detector can be monitored with the rate of neutrino events per proton on target as

a function of time. This distribution, shown in figure 2.8, is consistent with being

flat, within errors. It has been verified that the variations are consistent with the
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expectation from Poisson statistics®.

Event Reconstruction

For each sub-event of a neutrino candidate event, the MiniBooNE reconstruction algo-
rithm calculates the event vertex, direction, and energy using a maximum likelihood
method, which is the procedure of finding the value of one or more parameters for a
given statistic which makes a known likelihood distribution a maximum. The recon-
struction algorithm contains a model of light emission, propagation, and detection
which is used to predict the ¢ and ¢ each PMT should observe in a given sub-event.
A MINUIT [56] minimization program is used to find the unknown particle vertex
and direction that maximize the charge and time likelihood functions. A conceptual

sketch is given here, more information may be found in reference [57].

The time likelihood function is a Gaussian, with mean p = 0.0 and r.m.s. ¢ =
1.8 ns = the time resolution of the PMTs measured with laser calibration data. For
PMT i located at (x;,y;, z;), the probability for measuring light at time ¢; which was

emitted at time t, and location (xg, yo, o) 1S

1 tl — 1ty — Ti/Cn 2
P(ti|x0ay07z07t0> = \/%O_el’p[_( 020.2 / ) (24)

where ¢, is the speed of light in material with refractive index n, and

r; = \/(% —x0)? + (i —y)? + (2 — 20)° (2.5)

For an ensemble of N = 1280 PMTSs, the probability to measure a set of times (¢;)
is the product of the likelihood functions for the individual PMTs,

1 (tz — to — T‘i/Cn)Q

exp|—
- V270 p[ 202

2

=

P((t:)|zo, Yo, 20, t0) =

3Poisson statistics are used because the number of events in any given run may be small.
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Subtleties that modify this simple Gaussian likelihood function include the presence of
PMT hits where more than one photon was observed, and the different time constants
of the Cherenkov and scintillation emission mechanisms. These tend to couple the

time likelihood function to the predicted charge.

The charge likelihood function is a Poisson distribution, where the predicted
charge p; at each PMT is modified by light attenuation, the solid angle subtended
by the PMT, and the PMT quantum efficiency. The probability to measure a set of
(n;) photo-electrons at an ensemble of N = 1280 PMTs is the product of the charge
likelihoods for each PMT,

P((n;)|zo, Yo 20, Po) H i exp—qu) (2.7)

where ®q is the flux of emitted photons, which are assumed to originate from a point

source. The predicted charge at each PMT is

fr(cosn;)
2

T

i = Do X & X F(cosh;) x el 7T/ Aers) x (2.8)

where ¢; is the quantum efficiency of PMT i, F'(cos#;) is the angular distribution of the
emitted light, e("/*fs) accounts for the attenuation of light with effective attenuation
length* A\ ss, and %ﬁfm) is the product of the PMT solid angle and its response as
a function of incident photon angle n;. Including the angular distribution of light
emission introduces dependence on the particle track direction into the likelihood
function. This picture is further complicated by the fact that all of the parameters

of the charge likelihood function depend on the photon emission mechanism.

The product of the time and charge likelihood functions are maximized iteratively
with respect to the original light emission vertex and time, and the particle track

direction. Once the best-fit parameters are found, the energy is estimated from the

4The attenuation length is an effective one since it is an average over all wavelengths of emitted

light.
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total predicted charge in the event, corrected for attenuation and quantum efficiency.
A subsequent fit is performed in which the event vertex, track direction, and energy
are fixed to their best-fit values, and the Cherenkov and scintillation components are

varied to find the best-fit emission flux composition.

Once the vertex and direction are found, one can calculate the corrected time and
angle for each PMT hit. These quantities are interesting because they characterize
the detected light at the emission point, rather than at the detection locations. The

corrected time 1., is defined as

VX + Y2+ 22
Tcorr - TPMT_ - (29)

where Tpyr is the calibrated PMT time of light detection, ¢, is the speed of light in

material with index of refraction n, and VX2 + Y2 + Z2 is the distance from the
PMT to the best-fit event vertex, e.g. X = (Xpyr — Xo) where Xy is the best-fit
vertex X coordinate and Xpy,r is the X coordinate of the PMT. The corrected angle
Ocorr 18 given by

corr T \/X2 T V2 L 22 .

where (UZy, UYy, UZy) are the best-fit track direction cosines.

The parameters of the likelihood functions are extracted from calibration data dis-
tributions of charge, corrected time, and corrected angle [58]. The list of parameters
to be determined is: (7) the PMT time resolution o, (ii) the relative PMT quantum
efficiencies ¢;, (ii7) the Cherenkov and scintillation emission time constants, (iv) the
Cherenkov and scintillation fluxes ®¢ and ®g, (v) the Cherenkov and scintillation
light emission angular distributions F'(cos 6;)¢ and F(cos 60;)s, (vi) the Cherenkov
and scintillation light effective attenuation lengths A\c and Ag, (vii) the PMT angular
response functions for Cherenkov and scintillation light fo(cos n;) and fs(cos n;), and

(viit) the conversion from Cherenkov and scintillation fluxes to energy. The first two
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are determined from laser calibration data, and the rest are extracted from electron

calibration data, which contains both Cherenkov and scintillation light.

Particle Calibration

MiniBooNE has an abundance of calibration particles from cosmic ray muons and
their decay electrons, called “Michel” electrons. The most important function of the
particle calibration data sets is to tune the Monte Carlo simulation of the experiment.
Many comparisons between particle calibration data and the Monte Carlo are shown

in chapter 3, section 3.3.

The cosmic ray muons useful for calibration span 200 < E, < 800 MeV, are
generally all pointed downwards, and are distributed as ~ cos*). The angular distri-
bution of incoming cosmic rays differs from cos?0 due to interactions and scattering
in the detector overburden. Michel electrons range over 0.511 < E, < %% MeV, are
pointed isotropically (for depolarized muon decays at rest in the detector), and are
produced uniformly in the z and z detector coordinates with a small asymmetry in
y. The Michel electron (and 7,,) energy distribution in p* decay is given by [59]

GEm?>
dl' = Loe?(3 —2 2.11

and the v, energy distribution is

GEm?>
Al = ——H£92¢%(6 — 2.12
Toays 2 (6= 6¢) (2.12)
where
FE, m
_ L B = 2.13
6 Ema:v’ 2 ( )

and G is Fermi’s constant, m,, is the muon mass.

Michel electrons possess a number of qualities useful for calibration purposes.

First, although the cosmic ray muons are polarized, the Michel electrons are effectively
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produced isotropically in the detector due to the distribution of cosmic ray arrival
directions, which is o< cos? 8.cpien, and the multiple scattering of muons in the soil berm
above the detector. Therefore a high statistics sample of Michel electrons will tend
to illuminate all of the PMTs. Second, Michel electrons produce both Cherenkov and
scintillation light, in a ratio of ~7:1, and therefore can be used to extract parameters
describing both emission processes for the reconstruction. Third, the Michel electron
energy endpoint, 52.8 MeV provides a “standard candle” calibration for the energy
scale and resolution of the detector. Additionally, the data set of Michel electrons is
virtually infinite, therefore the energy scale and resolution can be measured in bins of
radius, track direction, PMT corrected time, and PMT corrected 6, for the purpose

of tuning the Monte Carlo model of light propagation in the detector oil.

The energy resolution and scale at the Michel end-point are calculated by con-
volving the expected Michel electron energy distribution with a Gaussian, and fitting
to the Michel data set in a 500 ¢m radius fiducial volume. The energy resolution and
scale are extracted for the total light yield, and for the Cherenkov and scintillation
flux components separately. The energy resolution is measured to be ~13% for all
light, and ~13% (~11%) for Cherenkov (scintillation) light only [60]. The best-fit
mean energy is used to set the energy scale of the reconstruction. This is enforced
by the conversion from Cherenkov (scintillation) flux to energy, which is calculated
as the ratio of the theoretical value to the best-fit mean energy from the Cherenkov

(scintillation) flux fit.

The drawback of Michel electrons is that they provide a calibration at low energy,
while neutrino interactions in MiniBooNE may produce leptons up to ~1 GeV. To
verify the extrapolation from the Michel end-point to higher energies, MiniBooNE
uses a cosmic ray muon calibration system, which consists of a muon tracker ho-

doscope and seven scintillator cubes.
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The muon calibration system employs a hodoscope tracker, which is designed to
measure precisely the incoming direction of cosmic ray muons, and seven scintillator
cubes deployed inside the detector volume. The muon tracker has two sets of X and Y
planes, located 2 and 3.5 m above and parallel to the top of the MiniBooNE detector
sphere. The top (bottom) planes consists of 23 (28) scintillator strips which are 10 (6)
cm wide, with a PMT at each end. The X and Y planes are oriented perpendicular
to each other. The CALIB TRACKER trigger requires an OR of all strips in a
given plane, and an AND of the four planes. The trigger rate of 4-plane coincidences
is ~ 140 Hz, which is prescaled to 0.5 Hz. The scintillator cubes record the primary
muon and its decay electron when a cosmic ray muon stops in one of the cubes. In
combination with the tracker, the cubes provide a precise measurement of the muon
track length. The parameters of the cubes are described in table 2.4. Each cube is
attached to an optical fiber which carries the scintillation light to a PMT located
outside the detector volume. The CALIB CUBE trigger requires concidence of a
cube PMT above threshold and a CALIB_ T RACK ER trigger, which results in a 1.2
Hz trigger rate. This trigger condition can be satisfied by a muon passing through,
but not stopping in, a cube, and therefore further cuts on tank and veto PMT hits,
and cube PMT charge and time, are applied to select stopping cosmic rays. The

cubes are sensitive to muon kinetic energies ranging from ~0.95 to 0.770 GeV .

The measured range from the muon calibration system is used to calculate the

muon’s energy independently of the reconstruction, via [61]

Gy = 2maimecn. g [ln( e ij W ) PY; L 2% L (2.14)

where aq is the Bohr radius, c is the speed of light, I is the mean excitation potential
of the medium through which the particle travels, § and v are the usual relativistic
factors, Wi,q. is the maximum energy transfer possible in a single collision, and C' and

0 are empirical corrections for the nuclear energy shells and density respectively. A full
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Table 2.4: Scintillator cube calibration system description, including depths below the
detector optical barrier, positions with respect to the detector axis, muon range and

kinetic energy sensitivity, and intrinsic energy resolution.

cube depth | x Y z < Range > | 0Range | <T, > | 0T,
(cm) (em) | (em) | (cm) | (g/em?) (g/em?) | (MeV) | (MeV)
31.3 -60.76 | 540.70 | 15.12 | 27.6 0.9 95.9 2.2
60.3 15.55 | 511.70 | -57.62 | 54.1 1.0 155.9 2.2
100.5 57.89 | 471.50 | -13.54 | 88.6 1.2 229.1 2.6
200.8 -18.64 | 371.20 | 59.20 | 173.9 1.9 407.2 4.0
298.1 40.82 | 273.90 | 44.50 | 256.4 3.6 580.2 7.6
401.9 40.82 | 170.10 | 44.50 | 344.2 4.3 767.8 9.2

Bethe-Block range calculation for muons in mineral oil, including straggling, is used
to convert the muon calibration system range measurement into a muon energy [62].
The resulting uncertainty on the muon tracker range-energy measurement is ~1%,

due to range straggling.

The muon calibration system is used to measure the energy, vertex, and angle
resolution of the reconstruction. For muons with 0.7 GeV kinetic energy, the re-
construction energy resolution is measured to be ~6%, and the angular resolution is
measured to be ~6 degrees. The reconstruction’s vertex resolution and drive (po-
sition bias) in the direction perpedicular to the muon track are measured to be 6.5
em (11.7 ¢m), and 12.5 ¢m (9.8 em) for the parallel direction. The intrinsic energy,
angle, and vertex resolutions of the muon tracker system are ~1%, 2 degrees, and

(3.5 em, 3.5 em, 2.0 em) for (x, vy, z) [63].
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Particle Identification

Particle identification in the MiniBooNE detector relies on hit timing, hit charge,
and event topology. For the oscillation analyses, the most important particles for
MiniBooNE to distinguish are muons, electrons, and neutral pions. The primary
method for finding muons is via their decay electrons: ~ 90% of muons followed
by a decay electrons appear as two sub-events in the MiniBooNE detector. The
average length of a muon sub-event is ~50 ns, and so the probability of the decay
electron getting “masked” by the primary muon (and as a result not creating its own
sub-event) is 2%, and, 8% of p~ capture in Carbon, and therefore do not create a
second sub-event. To distinguish electrons from neutral pions, events are fit with a
1-ring and 2-ring hypothesis. While both particles produce one sub-event, cleanly
reconstructed 7° — v events have a better likelihood value for the 2-ring fit, as well
as a reconstructed invariant mass within ~50 MeV of the 7 mass. However, when
7¥s are not cleanly reconstructed, they are the largest source of events mis-identified
as electrons. Various sophisticated algorithms are trained to distinguish hard-to-

0

identify 7" events from electrons, which rely on comparing the likelihood values in

bins of corrected PMT time and angle [64].

To identify a particular interaction channel, for example, v,n — p~p, PMT
corrected time, corrected angle, and charge distributions are examined for consistency
with the expected final state, e.g., one muon-like ring. An example of this approach
is the v, charged current quasi-elastic event selection, which is described in detail in

chapter 4.



Chapter 3

Simulation of the Experiment

3.1 Flux Prediction

The processes that contribute to the MiniBooNE v, flux are 7" — ptv, and K —
ptv,; the processes that contribute to the intrinsic v, in the beam are u* — et 7,
K+ — n%*y,, and KY — m%eTv,. Therefore the important components of predict-
ing the MiniBooNE neutrino flux are understanding the 7 and K production cross
sections in the MiniBooNE target, and accurately modeling meson propagation and
decay. MiniBooNE predicts the meson production cross sections with global fits to
data from past experiments. Meson propagation and decay are modeled in a Geant4

Monte Carlo simulation of the MiniBooNE target and decay region.

3.1.1 Particle Production Cross Sections

Historically, the particle production cross sections of relevance for MiniBooNE were
not well known, and therefore are an important source of uncertainty for MiniBooNE.

There are no published measurements of inclusive m or K production in proton-

60
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beryllium interactions at 8.9 GeV/c incident proton momentum, although preliminary
results are available from the HARP experiment. The relevant cross sections are not
theoretically straightforward either, and as a result, different Monte Carlo hadron
production simulations make wildly varying predictions [65], shown in figure 3.1.
However, a number of past experiments measured the production cross sections in
part or all of the meson kinematic phase space relevant for MiniBooNE, although not
at the same incident proton beam momentum. Therefore, to obtain production cross
sections for MiniBooNE we fit a parameterization of the meson production differential
cross section, which is a function of incident proton momentum, meson momentum,
and meson angle, to the available data. The best-fit differential cross section is then
used to extrapolate to pproton = 8.9 GeV/c and to the range of (Pmeson, Gmeson) needed
by MiniBooNE.

The modern meson production cross section data comes from experiments which
typically have secondary proton beams incident on the production target, and scin-
tillator counters which identify and trigger on each proton. The target is situated
inside a time projection chamber, which is used to tag the secondary production ver-
tex. Various particle ID detectors and a magnetic spectrometer with large acceptance
identify mesons downstream and measure their momenta. The spectrometer accep-
tance, decay and absorption corrections, and track reconstruction and particle 1D
efficiency are determined from Monte Carlo simulations. The measured differential

cross section is given by [66]

A - (e % (e %
d’o,, B Niot NAptMijti,i’j’a’ [Ni’j’<T) - Ni’j’(E) (3.1)
dp;db; B Ap;Ab; :

where p;, 0; are the momentum and angle of particle type a (e.g. 77) at production,
Npoi is the number of incident protons on target, A is the atomic number, Ny is

Avogadro’s number, p is the target material density, ¢ is the linear thickness of the
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target, M;iz, 1o 18 an unfolding matrix that relates the measured momentum, angle,
and particle type to the true values, corrected for efficiency, acceptance, and absorp-
tion, N&'(T) is the measured number of particles identified as type o/ in (p,6) bins
(7', 7') with the target in place, N,f,“'(E ) is the same quantity with the target removed,
and Ap;Af; are the bin widths. Typical errors on a given data point are at the few
percent level, the dominant sources of uncertainty come from the unsmearing and

absorption corrections. Data is taken with the target removed to correct for noise

and environmental backgrounds.

Sanford & Wang Parameterization

The Sanford & Wang parameterization describes the non-invariant double differential
cross section in terms of the incident proton momentum (pyoton ), the out-going meson

momentum (Ppeson ), the out-going meson angle (0,,¢50n), and 9 free parameters ¢; [67]:

d’o P
c meson
= CiPmeson 2(1 - ) X (32)
dde Pproton — C9
—03pm650n64 0 csp
exrp cs — C6Umeson (pmeson - C7pp7"otoncoS meson)
pproton

The functional form comes from inspection of p Be — 7t X, p Be — K* X,
and p Be — p X data. The original fit parameters were tuned on the data of
Lundy et al. [68], Dekkers et al. [69], Baker et al. [70], and Fitch et al. [71], with the
normalization of [69]. This normalization condition assumes a total inelastic cross-
section of 227 mb [72], which is roughly 10% higher than the currently accepted value
208 mb [73].

The data used by Sanford & Wang have incident proton momenta between 10
and 70 GeV/c, slightly above the MiniBooNE incident proton momentum of 8.89
GeV/c. Further, the majority of the data are from the 33 GeV Bevatron, and the

only forward (0 degree) production data are from the Dekkers experiment. There
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are several more recent fits which primarily use the data of Cho et al. (1971) [74],
however, no published fit has extended the data to proton beam momenta below 10
GeV/c. We incorporate data at 3 and 6 GeV /c from the Piroue and E910 experiments
since it is preferable to interpolate between data sets above and below MiniBooNE’s

beam momentum, rather than extrapolate based on higher energy data alone.

The motivation for the pyroon dependence of the Sanford & Wang parameteriza-
tion is Feynman scaling [75], since the invariant cross section data vs. xp becomes
approximately independent of zr above the kinematic threshold for producing a given

meson, where

e < o >CM’ (3:3)

pmam
z
(p.)cn is the longitudinal momentum of the 7 in the center of mass in the reaction

max

mar ~ /s/2. The angular and momentum dependences of the

p Be — m X, and p
function, for forward production, are based on two other scaling relations [76]. By

dropping the term c; P,cos®0, in equation 3.2, one can show that

dzU(Pp/) — P_p/dQO-(PP) (3 4)
dpd() P, dpdQ ‘

where P, and P, are two different incident proton momenta. The second scaling law

describes the angular dependence of the pion production

P
g = 2y (3.5)
Pp'

at a fixed P, P,, and pion transverse momentum P, .

While these simple momentum scaling relations describe forward production data,
a more complex functional form is allowed for other angles. The Sanford & Wang
parametrization attempts to represent the data at different production angles by in-
troducing three additional free parameters, ¢6, ¢7, and ¢8. The remainder of the
parameters are related to either the change in cross-section with incident beam mo-

mentum, cl, ¢3, and ¢5, or to the variation with pion momentum, ¢2 and c4.
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Production Cross Section Fits

The parameters ¢; through cg are determined from fits of the data to the Sanford-
Wang parameterization. The production cross section fits minimize the following

function for an experiment j:

) [Z (N; x SW; — Datai)z] N (1— N;)?

2 2
p g; ON;

(3.6)

.. . d? consOmesons , .
Where iis the (Pm650n70meson> bln lndeX, SM/Z — < O’(pmeaon (;;Zagon Pproton Ck)) is the pa-

rameterization prediction evaluated at a given (pprotons @mesons Pmeson) and set of coeffi-
cients ¢, with k£ = (1,8), Data; is the measurement at a given (Pprotons @meson, Pmeson)s
o; is the data systematic error on measurement ¢, IV; is the normalization pull term
for experiment j, and oy; is the normalization uncertainty experiment j. The total

x? for external data sets is the sum of the individual s for each experiment:
X=X (3.7)
J

To account for coarse binning in the measured data, or for bins in which the
production cross section is changing rapidly, the data are bin center corrected at each
iteration of the fit'. The bin center correction is calculated from the average value of

the parameterization cross section in a data bin at a given iteration k, which is

(dQO—(pmesona emesona ppr‘otorw ck) > _ (3 8)
. .

dpdS2

Pmaz Omaz 2
1 y / / (d U(pmesoru emesorw Pproton Ck) ) dde

amin

where the data bin limits are Pmin < Pmeson < Pmaz and emm < emeson < emaxa

AD = Dimaz — Pmins D2 = Qae — Qmin, and ¢, are the values of the fit parameters

!The assumption is made that the data are reported at the center of the measurement bins.
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at iteration k. The bin center correction C(Pmeson, Omeson)x 18 the ratio of the average

parameterization value divided by the parameterization value at the center of the bin:
d?o

( dpdS2 > k

C(pmesony emeson)k’ = 2o
( dpd(2 ) k

This correction is applied multiplicatively to the data when calculating the x? func-

(3.9)

tion.

Pion Production Results

The external inclusive 7+ production data in the range of interest to MiniBooNE are
summarized in figure 3.2. Only modern experiments, as described in the previous
section, are shown. These include E910[77] and HARPI[78], which span a range of
production phase space: 6.4 < pproton < 12.3 GeV/e, 0 < p, < 6.5 GeV/c, and
0 < 6, < 330 mr. These data are all reported in bins of double differential cross

+

section vs. w7 momentum and angle. Older experiments are discussed in appendix

B.

To remove the effect of differing incident proton beam momenta, one can assume
Feynman scaling and can compare the production phase space in the center of mass

(T Feynman, Pr). These parameters are defined as

M

pr = \/(pa[;AB)Q + (péAB)Q; TFeynman — C’]\Z4 (310)
P max

Figure 3.2 shows pr vS. Tpeynman for the relevant experiments, superimposed upon

the MiniBooNE beam Monte Carlo prediction 7% that decay to neutrinos in the

MiniBooNE detector acceptance. The most important range for MiniBooNE is around

pr = 0.2 GeV/c and zp = 0.2, and the E910 and HARP experiments have good

coverage of the entire MiniBooNE phase space.
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experiment | Pproton (GeV/c) | pr (GeV/c) | b ‘ Npara | onorMm
E910 [77] 6.4, 12.3 1-55 0-20°| 101 5%
HARP [78] | 8.9 1-55 0-11° | 72 4%
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Figure 3.2: Top: Summary of modern experiments which measure p Be — w7 X
in a region of interest to MiniBooNE. Bottom: Transverse momentum (GeV) vs.
T Feynman JOT 7t production experiments, overlaid with the MiniBooNE beam Monte

Carlo prediction for m-decay v in the MiniBooNE detector acceptance.
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The HARP 8.9 GeV/c, E910 6.4 GeV /e, and E910 12.3 GeV/c data are fit by
minimizing the y? function of equation 3.6. The free parameters in the Sanford-
Wang fit include the eight function constants cl through ¢8, and the normalization
pull terms n;. However, each n; has an associated penalty term (the second term
in equation 3.6), and therefore does not change the number of degrees of freedom
in the fit: Npg, — 8. Different normalization pull terms are used for the E910 6.4
and 12.3 GeV/c data because the data sets were recorded with different experimental
settings [77]. Two x? values are reported here: a “shape x*”, which is the value of
the x? function with the normalization pull term penalty subtracted from the total,

Y

and a “total x2,” which includes the penalty. Comparing these two x? values tests

the normalization compatibility of the different experiments included in the fit.

The best-fit Sanford-Wang parameters are shown in table 3.1, assuming uncor-
related errors for all data points. The x?/ndf of the HARP and E910 experiments
individually are 1.10 and 1.21 respectively, while the combined fit x?/ndf is 1.52. In-
spection of the shape vs. total x? values and the data show that the tension between
the two experiments is due to shape rather than normalization, in particular for the
larger angles (if the 11° bin in HARP were dropped from the fit, the combined x?/ndf
would be 177/153 = 1.16).

The E910 data are reported with uncorrelated errors, however, the preliminary
HARP data are reported with correlated errors. The best-fit Sanford-Wang param-
eters using the correlated HARP errors are shown in table 3.22. The fit quality is
significantly worse than the uncorrelated result, although the best-fit cross section is

very similar. The x?/ndf of the HARP data, fit with correlated errors, is 3.26, and the

2Following the recommendation of the HARP collaboration, the HARP data with correlated
errors are fit using an average of the y? shown in equation 3.6 and the corresponding Pearson x?

function.
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Table 3.1: Best-fit Sanford-Wang © parameters, assuming uncorrelated errors for all
data sets. The “E910 + HARP” fit combines HARP 8.9 GeV/c, E910 6.4 GeV/c,
and E910 12.8 GeV /¢ data. The “E910 only” and “HARP only” fits are performed to
check the consistency of the individual experiments with the Sanford-Wang hypothesis.
Since HARP measures only one Dproton, value, the parameter c5 is fized in the Sanford-

Wang function for the “HARP only” fit. Probability refers to the total x*/ndf.

fit parameter | F910 + HARP | F910 only HARP only
cl 242.84+12.85 219.9 £38.40 460.9495.830
c2 1.069+0.148 0.927 £0.1391 | 1.782+0.2347
c3 2.838+0.929 5.324 £7.548 | 1.017£0.0685
c4 1.68440.142 3.000 £1.582 0.7422+0.0628
ch 1.52340.104 2.651 +£1.129 | 0.000£0.00

cb 5.479+0.690 5.067 £0.4915 | 5.757+0.6302
c’ 0.0833+£0.015 | 0.0877+0.0239 | 0.1808+0.0246
c8 9.483+4.240 10.55 £3.786 | 40.51+17.910
NHARP 1.0040.00 - 1.00£0.00
NEIL0 6.4 1.04£0.07 1.03£0.07 -

NE90 12.3 0.99+0.03 0.98+0.03 -

shape x?/ndf | 247/165 110/93 71/64

total x*/ndf | 250/165 113/93 71/64
probability 2.1x107° 0.078 0.26
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Table 3.2: Best-fit Sanford-Wang ©" parameters, using correlated errors for the
HARP data, and uncorrelated errors for the F910 data. The “E910 + HARP” fit
combines HARP 8.9 GeV/c, E910 6.4 GeV/e, and FE910 12.3 GeV/c data. The
“HARP only” fit is performed to check the consistency of the individual experiments
with the Sanford-Wang hypothesis. Since HARP measures only one pyroon value, the
parameter c5 is fized in the Sanford-Wang function for the “HARP only” fit. Proba-

bility refers to the total x*/ndf.

fit parameter | E910 + HARP | HARP only
cl 266.5+31.44 380.9£6.843
c2 1.04540.0512 1.433£0.1090
c3 1.8464+0.1566 | 0.576240.0160
cd 1.48240.1105 | 0.946940.0376
ch 1.17140.0281 0.000+£0.000
c6 5.026+£0.2938 | 4.846+0.2182
c7 0.078+0.0063 | 0.1190+0.0175
c8 10.1145.995 41.76+3.798
NHARP 1.0040.00 1.0040.00
NE910 6.4 1.0240.06 :

NE9L0 12.3 0.97+0.03 -

shape x?/ndf | 368/165 209/64

total x*/ndf | 371/165 209/64
probability 0.0 0.0
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combined fit x?/ndf is 2.25. The data are compared with the best-fit Sanford-Wang

cross section in figures 3.3 through 3.5.

The best-fit Sanford-Wang inclusive 7 production cross section is evaluated at
the MiniBooNE beam momentum and shown as a function of p, for different 6
values in the left-hand side of figure 3.6. The magnitude of the cross section falls
very steeply as a function of both angle and momentum from a maximum at (p,, 6,)
= (2 GeV/e,0°). The best-fit cross section is shown as a function of incident proton
momentum in the right-hand side of figure 3.6, evaluated at the average (p,,0,)
for 7+ that decay to neutrinos in the MiniBooNE detector acceptance. The Dproton
dependence of the best-fit Sanford-Wang cross section is approximately consistent

with the In(s) behavior predicted by Feynman scaling (where Ecy = /).

Similar fits are performed for 7~ production. These are described in appendix B,

section B.2.

The 7" production fit in table 3.2, labelled “E910 + HARP”, has been used
to generate all of the Monte Carlo in this thesis. As will be shown in chapter 4,

the energy distribution of the predicted v, flux agrees very well in shape with the

MiniBooNE data.

Kaon Production Results

Low-energy kaon production data in proton-beryllium interactions is even more sparse
than pion production data. The most relevant Kt production data in the (zpg, pr)
phase space of interest to MiniBooNE is summarized in figure 3.7. The most impor-
tant range for MiniBooNE is around py = 0.2 GeV/c and zr = 0.3. The experiments
which cover this phase space have very different lab frame measurement parameters:
Pproton Varies from 9.5 to 24.0, ppeson from 0.5 and 16 GeV/c, and 0,,e50n from 0 to

40 degrees.
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The data from all experiments except Vorontsov, Abbott, and Eichten are re-
ported in bins of double differential cross section vs. kaon momentum and angle.
For the purpose of this fit, the data from these experiments have been converted to
double differential cross section. The Vorontsov data are reported as invariant cross

section vs. kaon momentum and is converted to double differential cross section via

2 2 3
i = (2) <P

E—— 3.11
EK % d3p ( )

The Abbott data are reported as invariant cross section vs. transverse kinetic energy

(K7) in bins of rapidity, where

Ky = mpy—mg = \/mi +p2 — mg (3.12)

and

mp = mi+pr (3.13)

The conversion to double differential cross section vs. kaon momentum in bins of

kaon production angle uses

o d*c Pz
E = = tanh™' (= 3.14
dp mdyd(p2)’ Y a < E )’ (3.14)

m2 + 2
pz = | KX = K2+ omie, (3.15)

1 2
<tanh(y)) -1
DPtotal = \/p%+p227 0 = atan?(pTapZ)'

Unfortunately the Abbott data are reported in 7 rather large bins of rapidity (Ay =

and

0.2). The average rapidity in each bin is used to calculate pz, which introduces error
into the conversion. The data are subsequently sorted into 7 bins of equal solid angle
by requiring 0,,;, < 0 < 0,4 Where 0,,,;, and 0,,,, are the bin limits for a given bin in

d(cos(0)). In the first (last) bin 0, (Omaz) is arbitrarily set to a value smaller (larger)



experiment Dproton. (GeV/c) | px (GeV/c) | Ok Npara | oxnorm
Abbott [79] 14.6 2-8 20 - 30° | 43 10%
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Figure 3.7:  Top: Summary of experiments which measure pBe — KX in a region of

interest to MiniBooNE. Bottom: Transverse momentum (GeV) vs. X peynman for KT

production experiments, overlaid with the MiniBooNE beam Monte Carlo prediction

for K*-decay v in the MiniBooNE detector acceptance.
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than the smallest (largest) angle reported in the data. The Eichten data are reported
as invariant particle density vs. kaon momentum in bins of kaon production angle.
The conversion from invariant particle density to double differential cross section is
2

= w(pK,GK) X <2]sz> X Or (316)

d*c

dpd<Q

where w(pk, k) is the Lorentz invariant particle density, and o; is the inelastic

proton-beryllium cross section, assumed here to be 204.5 mb.

The Abbott, Aleshin, Eichten, Piroue, and Vorontsov data are fit by minimizing
the y? function of equation 3.6, however, the Sanford-Wang function is modified such
that the kinematic cutoff is a free parameter in the fit. The term (1 — ﬁ)
in equation 3.2 becomes (1 — %), where c¢g is the ninth free parameter in
the fit. The errors are assumed to be uncorrelated for all data points. The best-fit
parameters for the Sanford-Wang K production cross section are shown in table 3.3.
The x?/ndf of the combined fit is 3.61. The contribution to the total fit x* from each

individual experiment is shown in table 3.5.

This K fit differs from the 7 fit in that each angle of each experiment is assigned
a normalization pull term. In contrast, for the 7 fit, one normalization pull term is
used per experiment. The motivation for the difference is that in the K experiments,
the data at each angle were recorded with a different spectrometer location, unlike
the modern 7+ experiments, which use fixed spectrometers with large acceptances.

The best-fit pull term values are shown in table 3.4.

The data are compared with the best-fit Sanford-Wang K+ production cross
section in figures 3.8 through 3.11. By inspection one can see that there is tension in
the fit for the Vorontsov and Piroue data, and in the lowest-angle bin data from the

Eichten experiment.

The Vorontsov data are clearly incompatible with the shape of the Sanford-Wang



79

Table 3.3: Best-fit Sanford-Wang K+ parameters, assuming uncorrelated errors for

all data sets. Probability refers to the total x*/ndf.

fit parameter | best-fit value + error
cl 6.083 + 0.7136
c2 1.468 £ 0.06185
c3 10.04 4+ 2.887

cd 3.085 4+ 0.08379
ch 3.356 + 0.0278
c6 5.718 + 0.1523
c7 0.12744+ 0.008995
c8 10.36 + 1.662

c9 0.000 + 0.2116
shape x?/ndf | 426/121

total x2/ndf | 438/121
probability 0.0
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Table 3.4: Best-fit Sanford-Wang K* pull-term parameters, assuming uncorrelated

errors for all data sets.

fit parameter best-fit value + error
ny (Aleshin) 1.19+0.28

ny (Vorontsov) | 0.63+0.15

ny (Abbott) 1.003+ 0.2898
ns (Abbott) | 0.9958+ 0.2404
ns (Abbott) 1.152+ 0.2659
ny (Abbott) 0.9678=+ 0.2577
ns (Abbott) | 0.9271+ 0.2695
ng (Abbott) | 1.034% 0.3169
nr (Abbott) 0.9562+ 0.3694
ny (Piroue) 0.7798+0.2960
nsy (Piroue) 1.1464+0.4192
ni (Eichten) | 0.708140.2295
ny (Eichten) | 0.987740.2351
ns (Eichten) 1.084+£0.2058
ny (Eichten) | 1.04640.1890
ns (Eichten) 1.00140.1970
ng (Eichten) | 0.952540.2264
nr (Bichten) | 0.9078£0.2557
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Table 3.5: Compatibility of KT production experiments with best-fit Sanford-Wang

K™ production cross section prediction.

experiment thape X?otal ndf X%otal pro bablhty

Aleshin A7.47 | 49.08 | -4 | -

Vorontsov | 122.2 | 1244 | 4 0.000
Abbott 4251 | 43.96 | 34 | 0.117
Piroue 37.38 | 39.12 | 4 0.000
Eichten 176.7 | 181.4 | 47 | 0.000
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Figure 3.8: Left: Aleshin [80] experiment measured inclusive KT production cross
section (milli-barns/GeV /c/steradian) in proton-beryllium interactions vs. K+ mo-
mentum (GeV/c), at pproton = 9.5 GeV/c. Right: Vorontsov [83] experiment mea-
sured inclusive K production cross section (milli-barns/GeV /c/steradian) in proton-
beryllium interactions vs. K™ momentum (GeV/c), at pproton = 10.1 GeV/c. Error

bars include statistics and systematics.
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Figure 3.9: Abbott [79] experiment measured inclusive K production cross section
(milli-barns/GeV /c/steradian) in proton-beryllium interactions vs. K+ momentum

(GeV/c), at pproton = 14.6 GeV/c. Error bars include statistics and systematics.



83

18 13" Data 18 30°Data

16 16

14 14

12 12

N N\ —
NIRVARR U

06

~
——

o

8

: —go%00 o
/ i ? %

T
0 0.2 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

Figure 3.10: Piroue [82] experiment measured inclusive K production cross section
(milli-barns/GeV /c/steradian) in proton-beryllium interactions vs. K+ momentum

(GeV/e), at pproton = 2.74 GeV/c. Error bars include statistics and systematics.

prediction, and with Aleshin data. The Aleshin and Vorontsov measurements are
taken at the same production angle, similar production momenta, and similar incident
proton beam momentum. The fact that the cross section results are so different
between the two experiments may indicate an experimental problem. However, it
is unclear which experiment is wrong, therefore both are included in the fit. The
Piroue data are also incompatible in shape with the Sanford-Wang function, however,
since this is the only experiment with an incident proton beam momentum less than

MiniBooNE’s, it is worth including this data in global fit.

The Eichten low-angle data disagreement with the Sanford-Wang function sug-
gests a deficiency in the Sanford-Wang function extrapolation to low angles, however,
it is also possible that this is due to the lack of bin-center corrections. None of the
data in the combined KT fit is bin-center corrected, since the original bin limits are

unknown. The cross section changes rapidly near § = 0°, and therefore bin center
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Figure 3.11: Fichten [81] experiment measured inclusive K+ production cross section

milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. KT momentum
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(GeV/c), at pproton = 24.0 GeV/c. Error bars include statistics and systematics.
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Figure 3.12: Left: best-fit Sanford-Wang inclusive KT production cross section (milli-
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8.9 GeV/c. Right: best-fit Sanford-Wang inclusive K+ production cross section (milli-
barns/GeV/c/steradian) vs. proton momentum (GeV/c), evaluated at (pk,0x) =
(2.9 GeV/c,6.8°).

corrections may have a large effect here.

The KT production fit in table 3.3 has been used to generate all of the Monte
Carlo in this thesis. Because of the poor fit quality, several efforts to measure neutri-
nos from kaon decay in the MiniBooNE data are underway. One of these is discussed

in chapter 5.

3.1.2 MiniBooNE Beam Monte Carlo

A Geant4 [84] Monte Carlo simulation describes the MiniBooNE neutrino beam line,
starting from protons incident on the target, and ending with the flux incident on the
MiniBooNE neutrino detector. Only a brief summary is given here as this program

has been described in detail elsewhere [85]. After meson production, described in
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the previous sections, the most relevant processes to the MiniBooNE neutrino flux
prediction are hadronic interactions, deflection in the focusing horn magnetic field,

and meson decay.

The possible hadronic interactions can be categorized as elastic, quasi-elastic,
and inelastic. In elastic interactions the projectile scatters coherently off of the target
nucleus or nucleon, and only the direction of the projectile changes; its energy and
the energy of the struck particle remain the same. In quasi-elastic interactions the
projectile scatters incoherently off of the struck nucleon, and the total number of
particles is conserved. However, momentum and quantum numbers can be exchanged.
Examples of quasi-elastic interactions include target dissociation (pd — ppn), and
charge exchange (7~p — 7%n). In inelastic interactions new particles are created,
resulting in meson production. The kinematics of particles produced in inelastic

interactions are simulated according to the differential Sanford-Wang cross section

predictions described in the previous section.

Inelastic interactions are most important for producing the MiniBooNE neutrino
beam. Historically there is much variation among measurements of the inelastic cross
section on beryllium at MiniBooNE beam enerigies, which is in part responsible for
the normalization differences among older 7% production cross section measurements.
Fits to data from the Gachurin [86] and Bobchenko [87] experiments are used in the
MiniBooNE beam Monte Carlo to describe the inelastic cross section vs. pproton i
p-Be interactions. The 7t-Be (and 7~ -Be) inelastic cross section is based on a fit
to data from the Gachurin [86], Allardyce [88], and Ashery [89] experiments. The
resulting p-Be (77-Be) inelastic cross section is 212 mb (200 mb) at pyroton = 8.9
GeV/e (pr = 2.0 GeV/c). These p-Be and 71-Be inelastic cross section fits are shown
in figure 3.13. The p-Be and 7*-Be quasi-elastic and elastic cross section models in

the MiniBooNE beam Monte Carlo are based on Glauber model calculations [90].
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mentum (GeV/c). Right: inelastic " -Be cross section data (mb) vs. incident "
momentum (GeV/c). The MiniBooNE beam Monte Carlo fit and the GHEISHA

hadronic interaction model curves are overlaid. Figure from reference [90)].

From the Monte Carlo simulation, quasi-elastic interactions are responsible for ~5%
of the neutrino flux incident on the MiniBooNE detector, and elastic interactions

contribute <1%.

Each time a proton on target is simulated, its inelastic interaction probability is

determined by the interaction length A\;,ciastic,

Pinelastie - (1 - exp[[/target/)\inelastic]) (317>
and
1 NA Oinelastic
= . 3.18
)\inelastic ABe ( )

If the proton interacts, the number of secondary mesons is determined by throwing
against Poisson distributions with means equal to the average multiplicity for each

secondary particle type. The multiplicity is calculated from the differential cross
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sections via
d? dpd)dpdS
<Mt > = J (o /dpdQ)dp (3.19)

Oinelastic

for example, where (d%0,+ /dpdSQ) is the best-fit production cross section. If an event
with greater than zero mesons has occured, then the kinematics are drawn from the
meson production cross section tables, which are binned in py and pz. Neither energy
nor the total cross section are required to be conserved on an event by event basis
by this procedure, however, on average, energy is conserved, and the differential and
inelastic cross sections equal their input values. The following secondary particle
types are considered: 77, 7=, KT, K? n, and p. The differential cross sections for
the first four come from Sanford-Wang model fits, while the latter two come from
the MARS15 Monte Carlo. K~ production is not simulated since the probability of
getting a v in the detector from a K~ decay is a factor of 100 less than from a K.

The K7} fits are described in reference [91].

Once a secondary particle has been generated, it is tracked through the simulation
geometry, which contains a full description of the MiniBooNE neutrino beam line,
as well as physics models for electromagnetic interactions, ionization energy loss,
multiple coulomb scattering, and meson decay. On average, a w travels 82 cm
through the magnetic focusing horn field region, with a mean magnetic field of 0.71
Tesla. This changes the average momentum and angle of the 7™ beam from (2.2
GeV/e, 105 mr) before the horn to (2.1 GeV/c, 30 mr) afterwards, and increases
the number of v from 7" decay in the detector acceptance by a factor of ~5. The
mean distance travelled by a 7% through beam line material is 8.5 ¢m (5.9 ¢m) in
beryllium (aluminum), resulting in a 21.5 (22.3) MeV energy loss, and an average
multiple scattering angle of 1 (2) mr. The secondary mesons subsequently decay,
producing the MiniBooNE neutrino beam, which has an average energy of 0.72 GeV

(for neutrinos in the MiniBooNE detector acceptance). The most important decay



Table 3.6: MiniBooNE Geantj beam Monte Carlo meson decay parameters.

Particle | Lifetime (ns) | Decay mode | Branching ratio (%)

ot 26.03 W, 99.9877
e, 0.0123

K+ 12.37 why, 63.17
ntn0 21.2
Tttt 5.6
metr, 5.13
™uty, 3.2
nta0n0 1.7

K? 51.70 OO0 19.45
T ety, 20.4
Tte v, 20.27
Tty 13.55
T, 13.46
O to~ 12.87

T 2197.03 et v, 100.0
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modes and their Geant4 beam Monte Carlo simulation parameters are shown in table

3.6.

The predicted neutrino fluxes are shown as a function of neutrino energy in figures

3.14 through 3.15. According to the Monte Carlo, the neutrino beam composition

is 92.7% vy, 6.6% v,, 0.6% v., and 0.1% 7.. Of these, 86% come from decays of

mesons produced in primary inelastic interactions (e.g. p Be — n* — v,,), secondary

interactions (e.g. p Be — p Be — 7

+

— v,) comprise the remaining 14%. The v,
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Table 3.7: MiniBooNE Geant/ beam Monte Carlo neutrino fluxz production modes.

Neutrino Flavor | Process Fraction per Flavor (%)
Vy p—nt—u, 86.1
p—p—71t =, 7.3
p— K-y, 2.8
p—on—1t =y, 1.9
Other 1.9
v, p— T =y 55.0
p—op—T U, 16.6
p—onN—T =D, 12.0
Other 16.4
Ve p—7t—ut — 47.6
p— KT — 1, 32.7
p— K? -, 7.2
p—p—at—ut —wv, |50
Other 7.5
Ve p— K — 1, 65.5
p—=T — U — 9.8

Other

24.7
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flux is 86% from primary 7+ decay, and 3% from primary K* decay. The v, flux
from primary interactions is composed of 33% from K™ decay, 7% from K? decay,
and 48% from u* decay (via p Be — 77 — put — v,). The detailed meson parentage

history of the flux by neutrino flavor is summarized in table 3.7.

3.1.3 Flux Prediction Uncertainties

The sources of uncertainty in the flux prediction include: proton beam focusing,
hadronic cross sections, the differential Sanford-Wang meson production cross sec-
tions, the horn magnetic field, and the beam line geometry and interaction cross
sections for secondary particles. Additional sources of normalization uncertainty re-
lated to the proton beam line are proton beam targeting efficiency, and the accuracy
of the protons on target measurement. An estimate of the contribution of each of
these components to the flux prediction uncertainty is summarized in table 3.8, and

the production cross section uncertainty by meson type is shown in table 3.9.

The contribution to the neutrino flux uncertainty from proton beam focusing
and hadronic cross sections is estimated to be less than 4% [92]. The constituents
considered include perfect focusing and de-focusing, p-Be total, inelastic, and quasi-
elastic cross section variations, and elastic and quasi-elastic scattering parameter

variations.

The meson production cross section uncertainties come from the Sanford-Wang
fits. The fit parameter errors in tables 3.2 and 3.3 for 7 and K™ respectively
are combined with the parameter correlation matrix to calculate the predicted cross
section uncertainty at a given (Pprotons Pmesons Omeson) as follows. The change in the

Sanford-Wang predicted cross section function Af; due to a change in parameter ¢,



93

Table 3.8: Summary of sources of neutrino flux uncertainty. “Quasi-elastic” is abbre-

viated as “QF” below. The quadrature sum assumes the parameters are uncorrelated.

source MC parameter | default value | variation | AP, (%)
beam focusing [92] p(os, 0y) 0.0 +1 0.8
p-Be 0yotar [92] oror (mb) 285.5 15 0.8
p-Be Ginelastic [92] ornver (mb) 212.4 5 1.2
p-Be ogr [92] ogr (mb) 34.9 20 2.5
elastic scattering [92] | Br (GeV/c)™2 | -70 10 0.4
QE scattering [92] Bor (GeV/c)™ | -10 3 1.7
horn current horn current kA | 174 D 2.0
target position [93] Ziarget (€M) 3.5 4.0 4.0
horn length [93] Lporn (em) 180 8 3.7
N0+ measurement | accuracy (%) - 2.0 2.0
quadrature sum - - - 6.99

Table 3.9: Summary of meson production cross section uncertainty, for n*, 7=, KT,
and K9, evaluated at the average production parameters for mesons which decay to

neutrinos in the MiniBooNE detector acceptance. All numbers are reported in percent

(%).

source

Ao(rt) | Ao(r) | (i) | As())

Differential cross section ‘ 12.0 ‘ 12.0 ‘ 8.5 ‘ 25.0
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is calculated as

Afy = fler 401, ¢y 0) — fler, €2, .0 ¢p) (3.20)

where ¢; are the best-fit Sanford-Wang function parameters, dc; is the best-fit pa-
rameter error for ¢;, and i = 1,8 (or i = 1,9 for KT fits). Similarly, Af; are
calculated for the other Sanford-Wang parameters. The set of A f; are combined with

the parameter correlation matrix from the fit P, ; to form the error matrix M; ;,

7j

The correlated error on the predicted Sanford-Wang cross section, evaluated at a

glven (pprotona pmesona 077185071) 15

d20(p rotons Pmesons emeson) o
A( prot p ) _ ;Mw (3.22)

The error bars shown in figures 3.6 and 3.12 are calculated in this way. The 7" and
KT Sanford-Wang fit correlation matrices are given in appendix F. The 7~ and K9

differential production cross section uncertainties are also calculated in this way:.

The error on the predicted m cross section at the average phase space point for
7t that decay to neutrinos in the MiniBooNE detector acceptance, (Pproton, Prt, Or+)
= (8.9 GeV/c, 2.2 GeV/e, 0.105 mr), is 7.9%. One can take the fact that the x?/ndf
is not equal to 1.0 into account by scaling the fit parameter errors by J)@/Tdf ,
and repeating the calculation above. For the 7" fit, this results in a predicted 7+
cross section error of 12.0%. The predicted K cross section error at the average
phase space point for K that decay to v in the MiniBooNE detector acceptance,
(Pproton, Prc+, 0rc+) = (8.9 GeV/e, 2.9 GeV/e, 0.118 mr), is 4.4%, or 8.5% when scaled
by \/W for the K fit. These cross section errors are evaluated at one point

in the production phase space, while the MiniBooNE neutrino flux samples a range
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of production momenta and angles. Therefore, the meson production cross section

uncertainties do not necessarily translate linearly into neutrino flux uncertainties.

The horn magnetic field uncertainty is set by the measurement accuracy of the
horn current monitor, which is £5 kA. Varying the horn current with respect to the
central value by this amount, 174 + 5 kA, in the beam Monte Carlo produces a

change in the total neutrino flux of 2%.

The beam line geometry uncertainties can be assessed by individually varying
many parameters describing the elements of the beam line, two examples which af-
fect the meson production and focusing are given in table 3.8. Their effects on the
flux at the detector are estimated to be ~5.5% [93] using the ModelB fast beam line
simulation [94]. Uncertainties on the neutrino flux due to interactions of secondary
particles with the beam line geometry are related to the secondary interaction cross
sections assumed in the Monte Carlo. The HARP experiment provides a suite of mea-
surements that are being used to tune the MiniBooNE beam Monte Carlo secondary
interaction model. This process is ongoing, and therefore the systematic errors asso-
ciated with secondary interactions and the beam line geometry are not yet known.

These will be calculated once the tuning of the beam Monte Carlo is complete.

The effect of proton beam targeting on the flux prediction uncertainty is negligi-
ble, since data reduction cuts are applied to ensure that >99% of the proton beam
transits the entire length of the target. The uncertainty on the measurement of

protons on target is estimated to be 2%, discussed in detail in appendix A.

Only the uncertainties in table 3.9 are considered in this thesis, since the normal-
ization uncertainties given in table 3.8 are either negligible when compared with the

Sanford-Wang particle production uncertainties, or still under investigation.
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Figure 3.16: Charged current neutrino cross section measurements divided by neutrino
energy vs. E, (GeV); the curves are fit to the data to guide the eye. Figure from
reference [95].

3.2 Neutrino Cross Section Prediction

MiniBooNE operates in an interesting region for neutrino interaction cross sections,
E, ~ 1 GeV, which is shown in figure 3.16. First, there is a dearth of data on nu-
clear targets in this energy range. Second, this region is complex theoretically since
both charged current quasi-elastic (v,n — p~p) and resonance (e.g. v,n — pu pr")
scattering processes contribute in roughly equal proportions. Finally, in this energy
range deep-inelastic scattering interactions (e.g. v,n — p pr'7~) are turning on,
and therefore contribute non-negligibly to the total cross section for MiniBooNE’s
highest energy events. As a result, the simulation of neutrino interaction cross sec-
tions is a dominant source of uncertainty for MiniBooNE. However, MiniBooNE will
accumulate more than 1 x 10% neutrino interactions on a nuclear target (C'H,), and
can therefore make important contributions to constraining the cross section uncer-

tainties in this regime.
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3.2.1 MiniBooNE Cross Section Monte Carlo

MiniBooNE uses the NUANCE [96] Monte Carlo to simulate the neutrino interaction
cross sections and final state kinematics. At MiniBooNE neutrino energies, the cross
section has contributions from charged current quasi-elastic scattering (39% of the
total event rate), charged current resonance production (25%), neutral current elastic

scattering (16%), and neutral current 7° production (8%).

For the v, — v, oscillation analysis, the most important processes are charged
current quasi-elastic (CCQE) scattering, which affords a precise measurement of the
neutrino energy, and neutral current 7 production, which is a large background to a
v. CCQE signal. Neutral current 7° production at MiniBooNE has been described in
detail elsewhere [40], therefore it will not be discussed here. For the v, disappearance
oscillation analysis, the most important processes are v, CCQE scattering, and v,
charged current resonant single pion production (CClm), which comprises the largest
source of background after the v, CCQE event selection, which is described in detail

in chapter 4.

The free-nucleon theoretical inputs to the NUANCE Monte Carlo include the
LLewellyn-Smith quasi-elastic cross section [97], the Rein-Sehgal resonance cross sec-
tion model [98] for W? < 2 GeV, and the standard deep inelastic scattering formula
for W2 > 2 GeV, with the Bodek-Yang method for joining the resonance and deep
inelastic scattering regions [99], where W? is the square of the mass of the hadronic
system. Nuclear effects are included via the Smith-Moniz relativistic Fermi gas model
for quasi-elastic and resonance interactions [100], and the treatment of final state nu-
cleons. For final state mesons, NUANCE uses a 7 interaction model tuned on 7w

electro-production data [101].
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Figure 3.17: NUANCE prediction compared with experimental data. v,n — p~p cross
section (mb) vs. E, (GeV'). Figure courtesy of [46]. Predictions assume my = 0.08/
GeV/c* and ma = 1.032 GeV/c?.

Charged Current Quasi-Elastic Cross Section

Charged current quasi-elastic interactions (v,n — p~p) are fairly well measured in
the MiniBooNE energy range on light targets, however the cross section on heavy

targets is less well known. A summary of the existing data are shown in figure 3.17.

The Feynman diagram for CCQE scattering is shown in figure 3.18. The kine-

matics are defined by the four vectors
Q1 = (Euaﬁu)a G2 = (Eleptonaﬁepton); (323)

po= (M,0), p = (Ep),
where E, (Elepton) is the neutrino (lepton) energy, pi, (Diepton) is the neutrino (lepton)
three momentum, M is the mass of the struck nucleon, and (F, p) describe the
outgoing nucleon’s energy and three momentum. The CCQE cross section kinematics

depend on the four-momentum transfer squared, %, and the energy transfer, w.
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These are:

Q2 - —(Q1 - Q2)2 - _ml25 ton + 2EjIJ(Ewlepton - pleptoncos<9lepton)) (324>
P

where Ojcpion is the angle between the lepton and neutrino directions, and Q* > 0,
and,

w = B, — Eiepion. (3.25)

Charged current quasi-elastic scattering is the most important neutrino interac-
tion for MiniBooNE because its the most numerous, and, two-body kinematics enable
a precise determination of the neutrino energy. Neglecting corrections for the motion
of the target nucleon and the binding energy, the neutrino energy can be calculated

from the measured energy and angle of the final state lepton:
EQE _ 1 2MEl€pt0n - mIZepton

v
2 2 m2
- Elepton + (Elepton - lepton)cosele}?ton

where M is the recoil nucleon mass, Mycpron is the lepton mass, Ejepion is the lepton

(3.26)

energy, and Ojcpon is the lepton angle with respect to the beam direction. The energy

resolution achievable by MiniBooNE for CCQE interactions is ~10% at E, = 1 GeV'.
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The differential cross section for CCQE scattering off of a free nucleon is given
by [97]

(s —u)?

(s~ ) W) (3.27)

M2

do (MQG%Vfd> (i

2
dQ?dE, — \sa(hoe )\ B2 @y

) (4@ F B@)

The first factor contains the normalization, where M is the mass of the struck nucleon,
G is Fermi’s constant, V,4 is the Cabibbo angle, and (hc) is 2rx Planck’s constant
multiplied by the speed of light ¢. The sign convention for the second factor is positive
for 7 and negative for v scattering. The second factor contains the explicit neutrino
energy (FE,) dependence, and the neutrino energy also enters via the energy transfer

given in terms of the Mandelstam variables (s — u), where
s = (m+a) = (pt+@)? = M*+2ME,, (3.28)

u=(—p)? = p—q)? = M*+mi,,, — 2ME,.

The third factor contains the terms A, B, and C, which parameterize the structure

of the nucleon in terms of Q?,

(ml2epton + Q2)

AQY) = o [(1 Y2 (1= 2)F2 4 2(1— 2)F2 4 42FF,  (3.29)
mIerton 2 2 Q2 2
i ((F1 )2 4 (Fa+ 2Fp)? — <W v 4)FP>],
2
B(Q*) = %FA(FI + ), (3.30)
and

c(@Q* = i(fo + FE 4 2F3) (3.31)

where

Q2

= OE (3.32)

These functions are written in terms of the axial (Fy4), pseudoscalar (Fp), and vector
(Fy and Fy) form factors. The Fourier transforms of the axial and vector form fac-

tors describe the weak and electromagnetic charge distributions within the nucleon
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respectively. These are given by the following formulae under the dipole assumption®:

14+ 2(1+ pp — pin — ln

| = ( :U’p 2lu 2)’ F2 _ (Mp I )2 > (333)
(1+Z)<1+§f—2v) (1+z)<1+§f—2v)
gA 2M? 2
Fy= — . Fp= T Fa@
ey T mee
s

where 1, = 1.793pn and p, = —1.913 x5 are the anomalous magnetic moments of the

proton and neutron, g4 — 1.267 is the value of the axial form factor at Q? = 0 [45],
my = 0.84GeV/c? is the vector mass, and my = 1.03GeV/c? is the axial mass [102].
With the exception of m 4, all of these constants are measured very precisely and so

do not contribute to the uncertainty in the cross section predictions.

The dipole assumption has been checked in detail for the vector form factors,
which are extracted from high-statistics electron scattering data. For Q? values above
~ 0.2 GeV? the assumption is a good one, however, there are deviations at Q% > 1
GeV?. NUANCE uses the most recent non-dipole electromagnetic form factor fit
results [103]. The axial form factor is most precisely measured in v scattering data,
which has had prohibitively small statistics until recently. The axial mass and the
functional form of F4(Q?) are therefore the dominant uncertainties on MiniBooNE’s

free nucleon CCQE cross section prediction.

Since the MiniBooNE neutrino target is C'H,, which has 6 bound (and no free)
neutrons, the relevant experimental cross section for MiniBooNE is the bound nu-
cleon CCQE scattering cross section. MiniBooNE uses the Smith-Moniz formalism
to describe this process. This formalism parameterizes the nucleons inside a nucleus

as a Fermi gas, with binding energy and Fermi momentum. The differential bound

3The dipole form factor assumption corresponds to a spatial charge distribution o p(r) =

exp(—r).
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nucleon CCQE cross section is given by [100]:

d?c 27T<hCGFVud>2/M (plepton ) 2 2
= X cos 2) X 3.34
dpleptondCQS(elepton) (1 + QQ/mIQ/V)2 2m (X/ ) ( )
(w + 2wy +w (M>2mn2( /2) + (wp + ws) Miepton -
2T AT Wa Ty X " Y M EBiegroncos®(x/2)

w .
2(M8)tan(x/2)sec(x/2) X \/Q20032(X/2) +|Q|%sin?(x/2) + m?epton)
where Prepton, Eiepton, and cos(iepton) describe the outgoing muon. The scattering

kinematics are included via the four-momentum transfer squared 2, the magnitude

of the three momentum transfer |¢g|, and the factors

Elept(m + pleptoncos(elepton> Elepton - pleptoncos(elepton)

cos®(x/2) = 2 Ereryon , sin®(x/2) = 2 Eepton ’
(3.35)

N o V) e YN o V) SN Y S S

fanlX/) =\ sty X = ity XD =\ sty

The nuclear environment is described by the form factors w;,

a a a a
w, = a1t1 + (CLQ — CL3)t2/2, Wy = (a4 + 2&);5 + w2q—;’ —+ Q2 2 3) X t2 (336)

2 2 2

w, = (1. 5a3—a2/2)t2<]\j >+a1< >ta+2a6tb<

)
Myecoil mrecoilq>

wy = (mi\ioﬂ)(m—i-w%/q)tb—l— (Aj) <a5+<q>(1 5a3—a2/2)>t2,

M ag
wg = ( )(a7—|—w<—>xt8)
Myecoil q

The w; are written in terms of a set of functions ¢;, which depend on the free nucleon

vector and axial form factors, and a set of constants a; which depend on the lepton

kinematics and the Fermi gas model parameters.

The free nucleon form factors enter the Smith-Moniz cross section via the con-

stants t;, which are

2 2
t, = % (Fy +2MFy)? + (2M?* + Q—)FA, ty = 2M*(F} + Q*F} + F3), (3.37)
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M? to M? —t
ta = <Q2> 1_'_ + (2Q2><2MFA_Q2FP>27 by = —27

ts = 2M*Fu(F, + 2MF).

The binding energy of the nucleus, Ep, is included via effective kinematic param-
eters,

2 2 2 2 2
Weff = w_EBJ Qepr = 4 _weff+mrecoil_M : (338>

The a; are given by
ay = bo, a9 — bg — bo, (339)

o (522 (o ()

ot (Y (B

o (0 [ 00 () )

a :(_weff>b —l—(qgff)b ar =5 —%b
6 . 1 20 0, a7 1= %

where the functions by, by, and by implement the Fermi gas model via the implicit

limits of integration Fj,g, and Ejgy,

Enigh = £/ ki + M?, (3.40)

()« i) =1~ (o) ()
q 2qM q 2qM
max [M( 5 )
- ()
q

where kg is the Fermi momentum. The set of constants b; are given by

Elow - ) Ehigh - weff]

by — (M”) x (f(E,“-gh) - f(Elow)); F(E) = E + Eglog(E — E),  (3.41)

qdm?
= (—ig) % (FBun) = F(Bi))s () = B B (B + Eplog(E — By)).

(Mw

by = (———
2 q4m2M?

)% (F(Brign) = £ (Fi) )
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2

Por E
J(E) = = + Ep (- + EnE + Ejlog(E — Ey))

For C'H,, the default NUANCE values of the binding energy Ep and the Fermi
momentum kpr are 25 MeV and 220 MeV/c respectively [104]. These Fermi gas
model constants are the dominant contribution to the bound nucleon CCQE cross
section simulation uncertainty, and therefore MiniBooNE extracts effective values of
these parameters by fitting the CCQE data, described in chapter 6. This analysis

also provides Fermi gas model parameter errors and correlations.

When integrated over the MiniBooNE flux, the bound nucleon v, CCQE cross
section differs from the free nucleon prediction in both rate and kinematics of the final
state particles. Figure 3.19 shows the number of events at MiniBooNE calculated
with the free and bound nucleon CCQE cross sections. The total number of CCQE
interactions is ~20% lower, and while the reduction is approximately independent
of final-state lepton momentum, it is a strong function of Q2. This occurs because
the bound target nucleons are not at rest, and can impart up to kr of momentum
to the total initial state momentum of the system. This affects low Q? events more
than high Q? events because the fractional change (with respect to the free nucleon
case) is largest at low Q. The bound nucleon cross section also suppresses events
at low neutrino energy because for the reaction to occur, the energy transfer must
exceed the binding energy F. Finally, Pauli blocking requires that there must be an
unoccupied fermion state available to the recoil nucleon, which accounts for ~5% of

the total rate suppression, and affects only @ values less than ~ k%.

The Smith-Moniz relativistic Fermi gas model also has an important effect on
the neutrino energy reconstruction resolution for CCQE events. In the absence of
the Fermi motion of the target nucleon, the lepton momentum is completely specified
by E, and Q*. The effect of the Fermi gas model is to smear the final-state muon

momentum away from the value it would have if the target nucleon were at rest. The
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Figure 3.19: Comparison of absolute numbers of events calculated using the Mini-
BooNE neutrino flux for bound (dashed) vs. free (solid) v, CCQE scattering, for an
arbitrary number of p.o.t.. Top left: number of events vs. p, (GeV/c). Top right:
number of events vs. 0, (degrees). Bottom left: number of events vs. E, (GeV).

Bottom right: number of events vs. Q* (GeV?).
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Figure 3.20: Final-state muon momentum smearing due to the Smith-Moniz bound
nucleon CCQE cross section model. Left: muon momentum (GeV/c) for MiniBooNE
CCQE events generated at the average (E,,Q*) = (0.9 GeV, 0.3 GeV?) after event
selection cuts for different values of the Fermi momentum kr (GeV/c). The dashed
line shows the free nucleon cross section value. Right: quasi-elastic neutrino enerqgy
resolution vs. true Monte Carlo neutrino energy (GeV). ESE is calculated from 2-body

kinematics using the generated p,,, cos(8,).
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size of this effect as a function of kr is shown in the left panel of figure 3.20. This
muon momentum smearing sets a lower limit on the resolution of the quasi-elastic
neutrino energy calculation in equation 3.26. For CCQE events at MiniBooNE, this
minimum F, resolution is 7.8% at E, = 1 GeV, shown in the right panel of figure

3.20.

The largest source of background to v, CCQE interactions is from charged current
resonant single pion (CClz) production, since the pion may be absorbed inside the
nucleus. This occurs in ~20% of CClz interactions at MiniBooNE energies. In
this case, the final state particles that appear in the detector are one nucleon and
one lepton, which is exactly the same final state particle content as in a CCQE
interaction. These events are termed “CCQE-like.” The free parameters in the cross
section simulation related to this background are the axial mass in the free nucleon
resonant cross section, mY", and the pion absoption cross section. In principle, since
the axial mass describes the nucleus, m!J" and ng should be the same, however, the
data favor different values for the two constants and therefore they are usually treated
separately. Both m.™ and the pion absorption cross section have large experimental
errors, and therefore are important sources of uncertainty for the MiniBooNE cross

section model.

The dominant CClr reactions at MiniBooNE are v,n — p nn't, v,p — p pr™,
and the coherent charged current scattering process v,A — p~An*. The NUANCE
prediction for the resonant channels is shown with the low energy experimental data
in figure 3.21. Combined, these three channels account for 25% of the total events at
MiniBooNE, compared with 40% for CCQE. The underlying process is A production
(the A decays inside the nucleus), and 94% of the dominant CCl7 interactions come
from decays of the A 1232 (MeV). The CClm processes therefore have a higher

neutrino energy threshold than CCQE interactions. Because of their cross section,
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vs. E, (GeV). Figure courtesy of [46].

the average F, for these CClz interactions is 1.3 GeV, compared with 1.0 GeV for
CCQE events. The average CClm (CCQE) muon momentum is 0.61 (0.72) GeV,
the average final state nucleon momentum is 0.64 (0.61) GeV, and the average 7

momentum is 0.44 GeV .

3.2.2 Cross Section Prediction Uncertainties

The MiniBooNE cross section simulation input parameters and their 1o uncertain-
ties are summarized in table 3.10. The free nucleon cross section simulation input
parameters are the axial masses assumed for CCQE, CClz, and multi-pion scatter-
ing, the normalization of the CC and NC coherent scattering cross sections, and the
component of the strange spin As carried by the valence quarks in the NC cross
sections. The bound nucleon cross section simulation inputs are the Fermi gas model

parameters. While the bound and free nucleon cross sections affect the total predicted
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Table 3.10: Summary of sources of neutrino cross section uncertainty. The last col-

umn shows the change in the total number of neutrino interactions, integrated over the

MiniBooNE fluz. Modifications to final state particle interactions affect kinematics

rather than the total number of events. The quadrature sum assumes the parameters

are uncorrelated.

source MC parameter | default value | variation | AN, (%)
occor Ma mS¥ (GeV) | 1.25 1.49 10.0
binding energy Eg (GeV) 0.034 0.060 5.9
Fermi momentum kr (GeV/c) 0.246 0.423 194
coherent oncico normalization | 0.5 0.75 1.0
onc As As 0.0 0.10 0.2
Occie MA mi" (GeV) 1.10 1.32 6.4
TCONT A mi™ (GeV) 1.30 1.755 1.5
A — N~ normalization | 1.0 1.25 -

A decay width ['A (MeV) 120 125 -

7w absorption o normalization | 1.0 1.25 -

7 charge exchange o | normalization | 1.0 1.30 -
AN — NN normalization | 1.0 0.5 -
quadrature sum - - - 23.5
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number of events, there are also processes that affect the final state particle content or
kinematics, but not the overall normalization. These include the pion absorption and
charge exchange cross sections, the A re-scattering cross section (for AN — NN),

the decay width, the A — N+ branching ratio, and the nuclear de-excitation model.

The cross section model parameter uncertainties are generally derived from com-
paring the NUANCE event generator prediction with external data, as described in
reference [105]. The exceptions to this rule are the ng, pr, and FEp uncertainties.
These parameters are extracted from MiniBooNE data, which is described in detail
in chapter 6. The MiniBooNE measured values are 1-20 away from the world-average
parameters, which are (ma, pr, Eg) = (1.03 GeV/c?, 0.220 GeV, 0.025 GeV), as
discussed in the previous section. The uncertainties on my4, pr, and Ep in table
3.10 are designed to generously cover the difference, although, they are not far from
the uncertainties estimated from considering external data alone. The range of m4
measurements from light to heavy target data, not including MiniBooNE, spans 20%
of the world-average value of 1.03 GeV/c? [37], which is consistent with the parame-
ter variation given in table 3.10. The Fermi Gas model parameter uncertainties are
estimated from external data in reference [105] to have 100% and 13% uncertainties

for Ep and pp respectively. The assumed Ep uncertainty here is similar, although

the pp uncertainty is significantly larger.

An important piece of information that the MiniBooNE cross section parameter
extraction analysis provides is the correlations between m4, pr, and Eg. Without
correlations, the total cross section uncertainty is ~25%, as shown in table 3.10; with
correlations, the uncertainty is ~15%. The correlation matrix for the cross section

simulation input parameters in table 3.10 is given in appendix F.

The systematic errors calculated in chapter 6 on the MiniBooNE measurement

for my, pr, and Ep are smaller than those assumed in table 3.10. However, the error
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analysis in chapter 6 is not yet finalized, and therefore the MiniBooNE parameter
errors are not yet used when estimating the impact of cross section simulation input

parameter uncertainties on the oscillation search.

3.3 Neutrino Detector Simulation

The MiniBooNE detector simulation models the propagation of final state leptons,
mesons, and nucleons from v-C'Hs interactions through the detector volume. These
final state particles emit prompt Cherenkov light, or delayed scintillation light. The
subsequent photons may scatter, or get absorbed and potentially re-emitted, as they
travel to the edge of the detector volume. The detector is instrumented with 1280
inward-facing 8” photo-multipler tubes (PMTs) at a radius of 550 em for 10% photo-
cathode coverage. The important components of predicting the MiniBooNE detector
response are light emission by these low energy final state particles, the optical model
for photon propagation in C'H,, and the PMT response. The quality of the detector
simulation is determined by the level of agreement between the simulation and the

MiniBooNE detector calibration data.

3.3.1 MiniBooNE Detector Monte Carlo

MiniBooNE uses a Geant3-based [106] Monte Carlo to simulate particle propagation
in the detector. The input to this simulation is the output from the NUANCE
cross section Monte Carlo, which consists of the final state particles from neutrino
interactions in C'H,. The detector Monte Carlo tracks these particles, simulates
energy loss, multiple scattering, and decay, generates infrared, optical, and ultra-

violet wavelength photons, and propagates the photons to the PMT cathode.
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The geometry of the Geant3 simulation includes the oil-filled main tank, the
optical barrier and PMT support structure, the veto region, the evacuated PMT
volumes, the iron detector sphere, the detector vault and electronics room, the dirt
regions above and around the detector, and the calibration flasks, cubes, and the muon
tracker. The neutrino events generated by the NUANCE cross section Monte Carlo
are distributed throughout the detector volume by the detector Monte Carlo, which
chooses the vertex locations weighted by the local density?. This procedure results
in >96% of the neutrino events generated by NUANCE in the detector originating in

the detector oil.

Two other important classes of events are also simulated: events originating from
neutrino interactions in the dirt, and cosmic ray muons incident on the detector. For
every neutrino interaction in the detector volume, there are ~8 neutrino interactions
in the material (mostly dirt) upstream of the detector. Density weighting is used
to throw the dirt neutrino interaction vertices, using NUANCE events generated
assuming a C'H, target. The majority of events originating in the dirt that enter
the detector generate light in the veto region, and can therefore be eliminated with
a cut on the number of veto PMT hits. However, ~0.25% of dirt events entering the
detector can fake the signature of a final state particle from a beam neutrino-induced

interaction [107].

The cosmic ray background is simulated by mixing each Monte Carlo generated
neutrino event with real data from the CALIB_ST ROBE trigger. The strobe trigger
is identical to the beam trigger in every way except that it does not contain any beam
neutrino events. The uncalibrated hits from the strobe data and from the detector
Monte Carlo neutrino event are concatenated prior to PMT hit calibration and event

reconstruction. The resulting Monte Carlo sample contains beam-induced neutrino

4The detector Monte Carlo disregards the NUANCE generated event vertex.
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events and cosmic ray backgrounds (and uncorrelated PMT noise) in the correct
proportions for beam triggers with a neutrino interaction. However, this procedure
does not include the class of beam triggers in the data where no neutrino interaction

occured, or PMT noise correlated with a neutrino interaction.

MiniBooNE uses the standard Geant3 settings to simulate most physics processes,
with a few exceptions. These include a custom model for light propagation in the
detector oil, the GCALOR hadronic interaction model, and lowered tracking thresh-
holds for photons (0.1 MeV), electrons (0.1 MeV), neutrons (1.0 MeV'), hadrons
(1.0 MeV), muons (1.0 MeV'), and protons (1.0 MeV).

The MiniBooNE model for light propagation in the detector oil is referred to as
the “optical model”. It comprises photon emission via Cherenkov and scintillation
processes, and photon propagation, during which the photon may be absorbed and re-
emitted, attenuated, and/or scattered. The optical model describes the wavelength,

time, and angular dependence of all of these processes.

The number of Cherenkov photons emitted per unit path length in the detector

Monte Carlo simulation is given by [47]

>N 1 1

AR (—) (1 - 7) 3.42

dedx T2 32n2()) (342)
where a = 1},)—7, the wavelengths are measured in vacuum, and the second term

determines the Cherenkov emission angle,

sin(6c) = (1 - 627%;2@)) (3.43)

Cherenkov emission is prompt in time. In the wavelength acceptance of the Mini-
BooNE PMTs, 340 < A < 540 nm, the number of Cherenkov photons emitted is ~500
xsin®(0¢) [52]. The Cherenkov emission also depends on the wavelength dependence

of the index of refraction. This is measured to be np = n(A = 589.3 nm) = 1.4684 +
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Table 3.11: Cherenkov threshold momentum (MeV/c) for particles of interest in the
MiniBooNE detector oil, evaluated at np(A = 589.3 nm) = 1.46.

Dinreshold MeV/c | 872 | 874 | 98 ‘ 0.5 ‘ 128 ‘ 126

0.0002 at Ty = 20° C', and is empirically determined to have the following wavelength
dependence [108]:

1

n(\T) = [nD + B<F . %)} x [1 ~B(T —Tp) (3.44)

where A is the wavelength in air, A\p = 589.3 nm, T is the temperature, and from a
fit to the data, B = (4240 & 157)nm?, and § = (3.66 4+ 0.04)10~*(°C)~'. Using the
measured value np(A = 589.3 nm), the Cherenkov angle at threshhold is 47 degrees,

and the Cherenkov threshold momenta for some particles of interest is summarized

in table 3.11.

The number of scintillation photons produced per unit length in the detector
Monte Carlo is governed by Birk’s law, which relates the scintillation yield to the

energy loss via [48]

% - S<%> <1 n kB(ldE/dx)>' (3.45)

where S and kp parameterize the scintillation efficiency of the medium?®, and the
energy loss is given by equation 2.14. Scintillation light is produced isotropically.
The scintillation properties of the MiniBooNE oil have been measured with 180 MeV
kinetic energy protons at the Indiana University cyclotron [109]. The measured scin-

tillation light output is 4.7 £ 0.1 & 0.7 p.e./MeV ©. The time distribution of the

®MiniBooNE assumes kB = 0.0146gm/cm?/MeV, which is the measured value for anthracene.
6The first error is due to systematic error in the fit to determine the average number of photons

producedd, while the second error is due to systematic uncertainty on the energy loss and PMT
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scintillation light is exponential, with a time constant of 18.6 4+ 1.0 ns. In the Mini-
BooNE detector Monte Carlo the wavelength dependence of the scintillation produc-
tion is linearly proportional to the measured wavelength dependence of flourescence

emission [110].

As the Cherenkov and scintillation photons propagate, they may be attenuated
and/or scattered. Several exclusive processes have been measured in test samples
of the MiniBooNE oil to understand the details of the time, angle, and wavelength
dependence. The most important components are Rayleigh scattering, Raman scat-

tering, and flourescence.

Rayleigh scattering occurs when photons scatter off of density perturbations in the
oil, which changes the direction but not the wavelength of the interacting photon. This
process has a characteristic angular dependence for the scattered light of ~ (1+cos?0)
for L photon polarization, and isotropic for || polarization. In Raman scattering, the
photon interacts with an oil molecule, transferring some its energy into exciting a
vibrational or rotational mode, which increases the wavelength of the original photon.
The probability of both Raman and Rayleigh scattering depend on wavelength as
~ 1/\*, and occur promptly in time. The ratio of Raman to Rayleigh scattering

contributions is measured to be ~1:25 [50].

Flourescence occurs when the interacting photon excites the electronic levels of a
struck molecule, gets absorbed in the process, and is later re-emitted, isotropically, at
a different wavelength. This process can shift ultra-violet photons into the wavelength
acceptance of the MiniBooNE PMTs, and similarly, shift optical photons above A
= 540 nm. The excitation and emission wavelengths and the time constant of re-
emission are characteristic of the fluorescent molecule species. In the MiniBooNE oil,

the dominant flourophores have time constants of 12 and 17 ns, and the flourescence

solid angle in the test setup.
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Table 3.12: Wavelength dependence of several detector Monte Carlo optical model pa-

rameters. €’¢ /€™ is the PMT photo-cathode efficiency normalized to the maximum
value, €M™ = (0.231.
A €PC [ | Attenuation | yabsorption | \Rayleigh | \Raman | )flourescence
(nm) (cm) (cm) (cm) (em) (em)
250.0 | 0.000 5.6 7.2 280.1 4690.1 28.0
300.0 | 0.266 8.2 9.2 659.1 9725.3 90.0
350.0 | 0.924 622.7 1386.2 1320.1 18017.3 | 13988.5
400.0 | 0.982 1812.7 10281.2 | 2370.4 | 30736.8 | 99999.0
450.0 | 0.807 3577.8 199731.0 | 3934.2 | 49234.4 | 99999.0
500.0 | 0.541 5919.4 99999.0 | 6151.5 | 75041.0 | 99999.0
550.0 | 0.234 8837.5 99999.0 | 9179.3 | 109867.5 | 99999.0
600.0 | 0.061 12332.2 99999.0 | 13190.6 | 155605.0 | 99999.0

probability is maximal at A ~ 295nm [110]. At this wavelength,

strength is ~1/20 of the Rayleigh scattering strength [111].

the flourescence

The simulation of these physical processes in the MiniBooNE detector Monte

Carlo is described in detail in reference [112]. Some of the optical model simulation

parameter values are taken from external measurements, and the rest are tuned on

MiniBooNE calibration data. The detector Monte Carlo values for a set of parameters

which are important to photon attenuation as a function of wavelength are listed in

table 3.12. The detector Monte Carlo also models the PMT quantum efficiency, which

is angle and wavelength dependent. The angular dependence is measured externally

to vary by ~=£5% across the PMT face, and the wavelength dependence is taken

from the PMT specifications provided by the manufacturer [53]. The detector Monte
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Figure 3.22:  Left: number of tank hits for Michel electrons. Right: number of tank
hits for muons tagged by the external muon tracker and stopping in the scintillator

cube with T, ~ 0.8 GeV'. Data is shown by points, Monte Carlo is the solid histogram.

Carlo does not simulate the PMT dynode chain or the signal processing electronics,
however, smearing to account for these effects is included in the Monte Carlo analysis
chain before PMT hit calibration and event reconstruction. This is described in detail

in reference [113].

Particle calibration data is used to measure the performance of the detector re-
sponse simulation. This includes Michel electrons, which come from the Michel trig-
ger, and cosmic ray muons from from the CALIB CUBE trigger, which have a
detector entry point tagged by the muon tracker hodoscope, and a stopping point
tagged by one of the scintillator cubes. The most basic test of event-level agree-
ment between data and Monte Carlo is to compare the number of tank PMT hits.
This measurement does not involve event reconstruction, and so achieving agreement
means getting the total number of photo-electrons correct, but not necessarily the hit
charge, time or spatial distribution of the photons. Therefore, the number of tank

hits in the Monte Carlo depends primarily on the PMT threshhold and quantum
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Figure 3.23:  Left: corrected angle for Michel electrons. Right: corrected time for

Michel electrons. Data is shown by points, Monte Carlo is the solid histogram.

efficiency model, on the PMT noise, and on the photon attenuation simulation. The
left panel of figure 3.22 shows the distribution of tank hits in data and Monte Carlo
for Michel electron calibration events, which have T, ~ 0.05 GGeV. These events have
fewer than 200 tank PMTs registering hits, and show excellent agreement between
data and Monte Carlo above ~30 tank hits. Below 30 hits, effects that are not sim-
ulated in the Monte Carlo such as long-lived decays (e.g. '2B) and correlated PMT
noise become important. These events are used extensively to tune the detector sim-
ulation. The right panel of figure 3.22 shows the distribution of tank hits in data and
Monte Carlo for muon calibration events with kinetic energy ~0.8 GeV'; this sample

is not used to tune the Monte Carlo, and shows reasonable agreement.

A higher-level test of the detector simulation is to compare the corrected time
and angle distributions, defined in equations 2.9 and 2.10. These require the re-
constructed event vertex and position, which depend primarily on the time likelihood
minimization. Achieving agreement between data and Monte Carlo means simulating

the location and time of arrival of the optical photons correctly. Therefore, these dis-
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Figure 3.24:  Corrected time distributions of tank PMT hits for stopping muon events
in the six deepest cubes. The event vertex and time are measured using the cubes and

muon tracker. Data is shown by points, Monte Carlo is the solid histogram.
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Figure 3.25:  Corrected angle distributions of tank PMT hits for stopping muon events
in the six deepest cubes. The event vertex and time are measured using the cubes and

muon tracker. Data is shown by points, Monte Carlo is the solid histogram.
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Figure 3.26:  Left: reconstruced Michel electron energy (MeV). Right: muon energy
as determined by the reconstruction vs. cube range energy calculated from the muon
path determined using the external muon tracker and the scintillator cubes inside the

tank. Data is shown by points, Monte Carlo is the solid histogram.

tributions are also sensitive to the optical model of scintillation, photon scattering,
absorption, and re-emission. The reconstructed corrected time and angle distribu-
tions for Michel electron calibration events are shown in figure 3.23 for data and
Monte Carlo. The corrected time distribution shows good agreement between data
and Monte Carlo for the prompt Cherenkov peak and the subsequent 75 ns, over
which the number of hits drops by 3 orders of magnitude. However, before the peak
and for times later than 75 ns, data has many more hit PMTs. These differences
occur primarily because cosmic ray and PMT noise backgrounds are not simulated
for calibration events, however, there may also be a contribution from un-modeled
late light production via scintillation or flourescence. The corrected angle distribution
shows good agreement between data and Monte Carlo around the Cherenkov peak,
however, the late-time difference shows up at the <1% level in the flat, isotropic com-
ponent, as expected. The reconstructed corrected time and angle distributions for

muon calibration events are shown in data and Monte Carlo for each cube in figures
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Figure 3.27:  Left: angular resolution from the scintillator cube system, for T, =
0.770 GeV'. Right: Energy resolution from the scintillator cube system, for T, =

0.770 GeV'. Data is shown by points, Monte Carlo is shown by the solid histogram.

3.24 and 3.25. The muon data and Monte Carlo agree well for corrected times less

than ~75 ns, and the corrected muon angle distributions also show good agreement.

The most important test of the detector simulation for oscillation analyses is to
compare reconstructed energy distributions in data and Monte Carlo. Reconstructing
the lepton energy depends on both the time and charge likelihood minimizations.
Therefore achieving agreement between data and Monte Carlo here tests the PMT
charge response simulation and the whole optical model, since the Monte Carlo must
predict the correct number of p.e. detected by each phototube as a function of time.
The reconstructed energy for Michel electron calibration events is compared in data
and Monte Carlo in the left panel of figure 3.26. There is good agreement between
data and Monte Carlo over the full range of reconstructed Michel electron energies,
0 to 0.07 GeV. This distribution is used to measure the energy scale of the detector
and the reconstruction energy resolution for electrons at the Michel endpoint. The

reconstructed energy for muon calibration events is compared in data and Monte Carlo
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with the energy calculated from the muon range, independently of the reconstruction,
in the right panel of figure 3.26. There is good agreement between data and Monte

Carlo over the full range of muon energies, 0.1 to 0.8 GeV'.

The neutrino energy is inferred from the measured lepton energy and angle.
Therefore, modeling the measurement resolution correctly in Monte Carlo is impor-
tant. The muon tracker and cube callibration system can measure both the angular
and lepton energy resolutions of the recontruction. A comparison of these in data
and Monte Carlo is shown in figure 3.27, for muons with 7), ~0.8 GeV. Fitting the
angular resolution with a projection of a 2D Gaussian function gives an r.m.s. of
1.9 in data and 1.7° in Monte Carlo. Fitting the energy resolution with a Gaussian
function results in 5.4% in data, and 4.4% in Monte Carlo. This level of agreement
approaches the intrisic resolution of the muon tracker and cube calibration system,
shown in table 2.4, and demonstrates good reconstruction performance for typical v,

CCQE final-state muon energies.

3.3.2 Detector Response Simulation Uncertainties

The method for estimating the detector response simulation uncertainties is still under
development, however, at present, the systematic error sources include the parameters
of the optical model and the parameterization of the PMT response. The MiniBooNE
detector simulation parameters and their uncertainties are summarized in tables 3.13
and 3.14. The terminology is as follows: MiniBooNE models light production in the
detector response simulation with Cherenkov emission and scintillation excitation,
as well as additional excitation by Cherenkov photons with A > 250 nm (A < 250
nm) which is termed flourescence (UV-flourescence). An excited oil molecule can
radiate via four emission spectra, which are termed “sci 1-47, “flu 1-4”, and “uvf

1-4” depending on the excitation process, with time constants “tau 1-4”. In general,
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Table 3.13: Summary of sources of detector simulation uncertainty which are con-

strained by calibration data. The A{E,icher) column shows the change in the average

Michel electron energy. The last column shows the 1o error in the simulation param-

eter as a fraction of the variation.

source default value | variation | A(Eicher) lo
Birk’s Law kp 0.014 0.028 -0.3561x107! | 0.3771
Cherenkov Normalization 1.1064 1.0564 -0.3561x1071 | 0.1660
Extinction Length 40 m 45 m 0.4331x10~% | 0.1111
(at A=460 nm)
PMT Angular Response FWHM | 0.63365 0.71404 | -0.6679x1072 | 0.2591
Optical Barrier Reflection 0.95 0.925 0.1881x10~% | 0.0771
Scattering lengths 3.566 m 4279 m | -0.3564x10"* | 0.0771
(at A = 460 nm) 11.887 m 14.264 m
35.658 m 42.789 m
Sci2 v/ MeV 0.0 51.4 0.1637x10% | 0.2721
Sci3 v/ MeV 0.0 4.2 0.7072x107% | 0.2703
Scid v/MeV 31.64 22.15 -0.2888x 1071 | 0.1177
T4 34.0 ns 30.0 ns 0.2137x107% | 0.0076
UV extinction length 2.390 m 1.929 m | 0.1444x10~1 | 0.3164
(at A=320 nm)
UVF2 Normalization 0.0 0.328 0.4610x10~% | 0.1206
UVFE3 Normalization 0.0 0.0267 0.1991x107% | 0.1767
UVF4 Normalization 0.074 0.111 0.4982x10"1 | 0.0936
Flul 1 0 -0.2160x 1072 | 0.3180
Flu2 1 -0.2325%x1072 | 0.3069
Flu3 1 0 -0.7101x107% | 0.2531
Flu4 1 0 -0.1851x 107! | 0.0866
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Table 3.14: Summary of sources of detector simulation uncertainty which are not
constrained by calibration data. The A{Eicne) column shows the change in the av-
erage Michel electron energy. The last column shows the 1o error in the simulation
parameter as a fraction of the “variation” value. “Old” and “New” refer to the two

kinds of MiniBooNE PMTs.

source default value variation | A{Epicher) lo
Scattering ||, L lengths 3.566 m 4279 m | 0.9077x107% | 1.0
(at A=460 nm) 11.887 m 7.641 m
T 33.0 ns 29.0 ns -0.1477x1073 | 1.0
Ty 14.0 ns 5.0 ns 0.8212x1072 | 1.0
T3 1.0 ns 0.3 ns -0.3752x1073 | 1.0
PMT time response smearing | 0.0 ns (r.m.s.) | 0.5 ns -0.2781x1073 | 1.0
Veto albedo 0.905 0.955 0.8826x 1072 | 1.0
PMT discriminator thresholds | 0.1 p.e. 0.2 p.e. -0.6275%x107 | 1.0
Qlin (Old/New) 18/9 999/999 | -0.1727x1072 | 1.0
Qtcorr (Old/New) 0.08/0.08 0.0/0.0 | 0.6649x10°" | 1.0
Time slew (Old/Nexw) 6.51/0.93 3.00/1.12 | -0.7756% 1073 | 1.0
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variations in the optical model do not change the total number of neutrino inter-
actions. However, these parameters can have a large effect on the number of PMT
hits and the magnitude of PMT charges, and therefore on the detector energy scale.
Tables 3.13 and 3.14 show the change in the average energy of Michel electrons due
to each source of uncertainty. Further, varying the optical model parameters may
change the energy scale as a function of radius, direction, and/or time. As a result,
the detector simulation uncertainties can contribute a significant error on the total
number of events passing a set of selection cuts, if those cuts depend on any of the

above quantities. In practice, this is always the case.

The parameter variations in tables 3.13 and 3.14 do not always represent 1o errors,
since these are still under investigation. Some of the detector simulation uncertainties
are taken from external measurements, such as the flourescence time constants and
normalization, the PMT angular response full width at half max, and the PMT pre-
pulse amplitude. However, the majority of the uncertainties can be determined with

much greater precision from MiniBooNE’s own calibration data.

Parameter uncertainties and correlations are currently extracted from fits which
minimize the energy scale difference between Monte Carlo and data, binned in ra-
dius, track direction, and corrected time, with pull terms for each source of detector
simulation uncertainty. Timing and number of PMT hit distributions from neutrino
neutral current elastic scattering data, which contains low energy protons and neu-
trons, are also used. This approach yields 1o errors which are typically 10-50% of the
variations given in table 3.13. The resulting parameter correlation matrix is given
in appendix F. The limitation of this procedure is that it can only constrain the
uncertainties on the parameters which affect the calibration data included in the fit
in a non-degenerate way; table 3.14 lists the sources of uncertainty which are not cur-

rently constrained by calibration data. In this case, the 1 ¢ uncertainty is assumed to
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be the current size of the parameter variation. Work is ongoing to include additional

calibration data sets which are sensitive to the remaining unconstrained parameters.



Chapter 4

v, Charged Current Quasi-Elastic
Events in MiniBooNE

The v, charged current quasi-elastic (CCQE) fraction of all beam-induced v, inter-
actions in the MiniBooNE detector is approximately 40%. The goal of the v, CCQE
event selection is to maximize the number of v,n — p~p events accepted by the cuts,
while minimizing background contamination, with good neutrino energy resolution
for the accepted events. The motivation for studying this class of events is that they
are numerous, the cross section is relatively straightforward, the particle content of
the final state is limited, and the neutrino energy can be reconstructed by measuring
only the muon’s kinematics because it is a 2-body scattering interaction. Further,
several important experimental parameters can be determined using the MiniBooNE
v, CCQE data set: constraints on the neutrino flux prediction and its uncertainties
are described in chapter 5, and constraints on the CCQE cross section and its un-
certainties are described in chapter 6. Finally, the search for neutrino oscillations

described in chapter 7 employs the v, CCQE data set described here.

128
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4.1 Selection Cuts

There are two levels of v, CCQE event selection cuts. The first level consists of a
few cuts on quantities that do not require the reconstruction, to reduce the cosmic-
ray and non-v,-charged-current backgrounds, and a more sophisticated cut to select
events with a well-reconstructed muon decay. These cuts are referred to as “pre-cuts”
in the following. The second level imposes a simple particle identification algorithm

via a Fisher discriminant to eliminate non-v,-CCQE backgrounds.

With no cuts, the MiniBooNE data consists mostly of cosmic rays passing through
or stopping in the detector. At the most basic level, the MiniBooNE data are char-
acterized by the number of tank and veto PMTs that register a hit in a given beam
trigger event, which is 19.2 us long. The proton beam spill duration is 1.6 s, and it
begins 4.6 us after the beam trigger start, shown in figure 2.7. Clusters of tank PMT
hits that are contiguous in time, with less than 10 ns between hits, are referred to
as sub-events. The number of sub-events and veto PMT hits are shown in data and
Monte Carlo, with no cuts, in figure 4.1. The MiniBooNE detector simulation models
cosmic ray backgrounds for events in which there is a neutrino interaction, however, it
does not model the beam spills which have cosmic rays without neutrino interactions,
which occur at ~200x the neutrino interaction rate. These excess cosmic rays in the
data are clearly evident in figure 4.1; through-going cosmic rays typically have one
sub-event with between 30 and 60 veto PMT hits, and stopping cosmic rays have
between 10 and 30 veto PMT hits, which indicates a single veto penetration, and
two sub-events, where the second sub-event is due to the Michel electron from the

stopping cosmic ray muon’s decay.

The “pre-cuts” are designed to eliminate the cosmic-ray background, and to select

beam neutrino-induced charged current events that are contained in the detector
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Figure 4.1: Variables that are used in the v, CCQE selection “pre-cuts”. Left: the

number of sub-events; middle: the number of veto PMT hits in the first sub-event;

right: the number of veto PMT hits in the second sub-event. Data with statistical er-

rors (black points) are compared with the Monte Carlo total (solid black line), Monte

Carlo signal (dotted red line), and Monte Carlo background (dotted blue line) predic-

tions. Data and the total Monte Carlo curves are normalized to unit area. No cuts

are applied.

fiducial volume and well-reconstructed. The “pre-cuts” require:

1. that the 1st sub-event occur within the proton-spill time window: 4500 <

it(mk pur < 6200 ns,

2. that the number of veto hits in the 1st sub-event be less than 6,

3. that there be 2 sub-events,

4. that the number of veto hits in the 2nd sub-event be less than 6, and

5. that the distance AR between the muon (1st subevent) endpoint and the Michel

(2nd subevent) vertex be less than 100 cm.

The first and second cuts reject cosmic rays and Michel electrons from cosmic rays

which decayed before the beam trigger start. The veto inefficiency is measured to
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be <0.1% using strobe trigger data, which results in a rejection factor for cosmic-ray
muons from these two cuts of ~ 1.65/19.2us x 0.001 = 8.3 x 107°. The rejection
factor for Michel electrons is less, ~ 8.3 x 1072, since if the muon decay occurs inside
the detector fiducial volume, the Michel electron sub-event will pass the veto hits
cut. However, if the Michel electron is produced in the veto region, which comprises
roughly half of the detector oil volume, it will fail the veto hits cut. The third
cut selects events that have muons that decay in the fiducial volume in the 19.2 us
beam trigger window, which in combination with the first two cuts eliminates most
v, non-charged-current interactions. The fourth cut eliminates interactions where
the Michel electron is not contained in the fiducial volume, or non-charged-current
neutrino-induced events which have a coincident cosmic ray follower. The third and
fourth cuts together also reject secondaries produced in beam-neutrino interactions

outside of the detector, e.g. in the dirt upstream.

The fifth cut requires that the first and second sub-events have a reconstructed
spatial relationship consistent with a single muon decay. Poorly reconstructed v,
CCQE events will fail this cut, as will some of the background charged current inter-

actions !. The Michel distance variable AR is calculated as:

AR = /(X =X + (i — Vo) + (2 - Z)? (4.1)

where the electron track vertex, (Xs,Ys,Z3), is given by the reconstructed track-
center coordinates of the second sub-event (which makes the approximation that the
Michel electron track is a point), and the muon track endpoint coordinates are given
by

Range(EZ(l))> (4.2)

X, = X*(1) —|—UXR(1)><( )

'For example, in a v,p — p~prT interaction the p~ may be absorbed before decaying, and
therefore the second sub-event would be due to the e™ from the 7w*-decay u™. In this case, the

distance between the Michel electron vertex and the p~ endpoint may be large.
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and similarly for Y7 and Z;. X*(1) is the reconstructed track-center x coordinate for
the first sub-event, Range is calculated from a look-up table for polyethylene [114],
and Ei(l) is the reconstructed energy of the first sub-event assuming a muon hypoth-
esis. The variables that go into calculating AR are shown in data and Monte Carlo
after the first four “pre-cuts” in figure 4.2. At this point, data and Monte Carlo
agree very well, which indicates that the first four “pre-cuts” effectively eliminate the

non-neutrino-induced backgrounds.

The individual and combined efficiencies of the “pre-cuts” are shown as a function
of Monte Carlo generated neutrino energy in figure 4.3. Below ~0.2 GeV there are
very few events, and therefore the cutoff in efficiency below this point is artificial.
Above 0.2 GeV, the cuts on the number of veto hits and sub-events have the strongest
energy dependence, particularly the 1st sub-event veto hits cut. This is the case
because high energy charged current neutrino interactions tend to produce high energy
muons, and the probability that a muon will penetrate the veto region increases with
energy. Similarly, if the muon exits the detector fiducial volume the event will fail the
cut on the number of sub-events. In contrast, the efficiency of the cuts on the time

and Michel distance are nearly independent of energy.

The efficiencies of the “pre-cuts,” integrated over energy, are shown in table 4.1
for the Monte Carlo. The efficiency of the first four pre-cuts is 21.7% for all events,
and 33.7% for v, CCQE interactions. After these cuts the signal purity is 66.8%.
All of the “pre-cuts” together result in an efficiency of 16.8% (29.2%) for all (signal)
events, with a resulting v, CCQE purity of 74.6%. The majority of the non-v, CCQE
events remaining after the “pre-cuts” are due to charged current resonant single pion
production. Of the 25.4% background remaining after the “pre-cuts,” 17% comes
from charged current resonant pion production (13.4% from v,p — p=prt, 3.0%

from v,n — pnrt, 1.0% from v, A — p~ Ar", 3.5% from v,p — p pr?), and 3.0%
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Figure 4.2: Variables that are used in the v, CCQE selection Michel distance “pre-
cut” for the first sub-event. Top left: the number of tank PMT hits; top middle: the
total charge in the first sub-event; top right: the reconstructed muon energy (GeV).
Bottom left: the reconstructed radius of the track center (m); bottom middle: the
reconstructed track direction; bottom right: the reconstructed Michel distance (m).
Data with statistical errors (black points) are compared with the Monte Carlo total
(solid black line), Monte Carlo signal (dotted red line), and Monte Carlo background
(dotted blue line) predictions. Data and the total Monte Carlo curves are normalized

to unit area. The first four “pre-cuts” are applied.
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Figure 4.3: Efficiencies of the v, CCQE selection “pre-cuts” vs. Monte Carlo neutrino
energy (GeV). The first five panels from top left to bottom right show the efficiency of
each “pre-cut” individually. The bottom right panel shows the efficiency of all “pre-
cuts” combined. The efficiency is shown for all Monte Carlo events (solid black line),
Monte Carlo signal (dotted red line), and Monte Carlo background (dotted blue line)

predictions.
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Table 4.1: Monte Carlo v, CCQE selection cut efficiencies (¢) and signal purity.

Relative efficiency is defined to be the number of events passing a given cut divided

by the number passing the previous cut.

cut € relative € | signal € | signal purity
no cuts 1 1 1 0.429881
in-spill time 0.779931 | 0.779931 | 0.824764 | 0.454592
Veto(1) Hits < 6 | 0.505858 | 0.648593 | 0.48815 | 0.414832
2 sub-events 0.241842 | 0.478084 | 0.355188 | 0.631355
Veto(2) Hits < 6 | 0.217188 | 0.898058 | 0.337357 | 0.667729
AR < 100 em 0.168085 | 0.773911 | 0.291771 | 0.746213
Fisher > 0.425 0.081069 | 0.482312 | 0.17164 | 0.910143

comes from neutral current resonant 7+ production.

The second level of cuts employ a Fisher discriminant [115] to identify v, CCQE

interactions. The Fisher discriminant method produces an output variable (the Fisher

decision axis) which is a linear combination of input variables, where the coefficients

are chosen such that the difference between two classes of events (signal and back-

ground) is maximized in the output variable. For example, for a vector of 5 variables

Z; describing each event ¢, the mean i, for each class k is

Kok =

N
1 Z z
T k-
Ny, 4
=1

The scatter matrix between the classes is given by
K
= Z Nk(ﬁw,k - ﬁx)(ﬁm,k - ﬁm)T
k=1
and the scatter matrix within each class is

ZZ — fizk)(

k=1 i=1

N:v k>T

(4.3)
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where K is the total number of classes (here K = 2) and N is the total number of
events. The eigenvectors of the product SpSy' with the largest set of eigenvalues
w maximize the Fisher criterion for the transformation that produces the greatest

separation between classes,

det(WTSpW)
det(WT Sy W)

where W is the matrix of eigenvectors of Sg and Sy,. The Fisher discriminant output

J(@) =

(4.6)

variable y; is related to the input variables &; by

To produce an effective Fisher discriminant, the Fisher input variables Z should
have maximally different means for the signal and background distributions. After
the “pre-cuts”, the background is mostly CClm events, which differ from the signal
CCQE by having an extra m in the final state. The distinguishing characteristics
of these two classes of events that are used in this analysis include the following.
First, the extra 7 will produce more late, isotropic scintillation light integrated over
the duration of the event, while the CCQE final state will have a greater fraction
of prompt, Cherenkov light. Second, the Cherenkov emission from pions tends to
be less “ring-like” than for muons because the pion has a larger cross section for
scattering hadronically. Finally, a single muon will have a reconstructed track length
consistent with the muon range calculated from the reconstructed energy, which is
not necessarily the case for an event with an extra pion. Five Fisher input variables

are constructed with these characteristics in mind, which are:
1. the Michel distance AR, defined in equation 4.2,

2. the muon length hypothesis, (R — L)/E, where R is the muon range calculated
from the reconstructed muon energy F, and L is the reconstructed track length,

based on the reconstruction charge and time likelihoods,
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3. the fraction of PMT hits transverse to the track direction, defined by

> parr Pits]|cos(Overtex, prrr)| < 0.25]
> pur hits

where cos(Opertex, prrr) 1s the corrected angle defined in equation 2.10,

(4.8)

4. The fraction of very late PMT hits, where “very late” is defined to be corrected

time > 5 ns, and the corrected time is given by equation 2.9, and

5. the fraction of hits from Cherenkov vs. total light emission, where the Cherenkov

and total fluxes are determined by the reconstruction.

These variables are shown in data and Monte Carlo after the five “pre-cuts” in
figure 4.4, with Monte Carlo predictions for the v, CCQE signal and background
overlaid. The first two variables are related to the question of whether the event
has a track length consistent with the muon range. On average, the background
events tend to have larger distances between the reconstructed Michel electron vertex
and the muon endpoint, as expected if the Michel electron is uncorrelated with the
primary muon. The value of (R — L)/E is smaller for signal events, indicating that
the reconstructed track length for the CCQE final state is closer to the expectation
for the range of a single muon track. The third variable, the transverse fraction, is
related to the Cherenkov ring topology. It has been scaled up by a factor of ten
so that its numerical range is similar that of the other variables. The annulus with
lcosOppr| < 0.25 is located upstream of where the Cherenkov ring is expected to
be (cosOpyr > 0.5) with respect to the track direction. Therefore, this variable is
sensitive to the fraction of the PMT hits that are not located in the Cherenkov ring.
A lower bound on cosfpyr is chosen so that the variable depends less on the exact
details of photon scattering in the detector Monte Carlo optical model. The fourth

and fifth variables pertain to the scintillation vs. Cherenkov properties of signal and
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Figure 4.4: Variables that are used in the v, CCQE selection Fisher discriminant

cut. Top left: the Fisher discriminant output variable; all other panels: Fisher dis-

criminant input variables. Data with statistical errors (black points) are compared

with the Monte Carlo total (solid black line), Monte Carlo signal (dotted red line),

and Monte Carlo background (dotted blue line) predictions. Data and the total Monte

Carlo curves are normalized to unit area. The five “pre-cuts” are applied.
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background events, and show that signal events have a greater fraction of prompt

Cherenkov light than background.

The transverse fraction and the Michel distance do not show any dramatic sepa-
ration between signal and backgound, however, there are useful correlations between
variables that are exploited by the Fisher discriminant method. The correlations are
shown for the five Fisher input variables described above for signal and background
in the Monte Carlo in figure 4.5. Both the Michel distance and the transverse fraction
are correlated with the Cherenkov fraction in such a way that a “diagonal” cut on
a linear combination of these variables provides good separation between the signal

and background populations.

The Fisher discriminant coefficients w are determined with Monte Carlo training
samples of v, CCQE events and v, non-CCQE background events after the “pre-
cuts”. The resulting Fisher discriminant output variable is shown in the top left
panel of figure 4.4. The second level event selection cut is applied on this Fisher
output variable, and the position of the cut is optimized to maximize v, CCQE signal
and minimize background, while maintaining reasonable signal efficiency. The signal
purity and efficiency are shown as a function of the Fisher output variable cut value in
figure 4.6. The cut value is chosen to be > 0.425, which results in a v, CCQE purity
of ~90% and a signal efficiency of ~50% with respect to the number of events passing
the “pre-cuts”. In the Monte Carlo, the remaining background comes entirely from
charged current resonant single pion production events (5.5% from v,p — p pr™,

1.1% from v,n — g nrt, and 1.2% from v,p — p~ pr°).

The efficiency of the Fisher cut as a function of Monte Carlo generated energy
is shown in figure 4.7 relative to events passing the “pre-cuts”. Between 0.4 and 1.7
GeV, the efficiency is approximately independent of energy. The combination of the

“pre-cuts” and the Fisher cut will be called the CCQE selection cuts hereafter. The
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ciencies after a cut on the Fisher output variable > the abcissa value.

efficiency as a function of energy for the full CCQE selection relative to no cuts is
shown in the middle panel of figure 4.7. The energy dependence of this efficiency
comes primarily from the “pre-cuts” on the number of veto hits and sub-events. The
right panel shows the signal and background fractions as a function of energy after all
CCQE selection cuts. The neutrino energy threshold for CClm production is higher
than for CCQE because there must be enough energy in the center of mass to produce
the resonance, therefore, below ~0.6 GeV the events passing the CCQE selection cuts
are almost entirely v, CCQE interactions. At high energy, CC1m produce lower energy
p than a CCQE event with the same F,,, and therefore, for a fixed E,, a high energy
CClr event is more likely to pass the veto hit cut than a CCQE event.

The efficiency of the CCQE selection cuts in data is shown in table 4.2. The effi-

7

ciency of the first four “pre-cuts,” which primarily eliminate cosmic rays and non-v,-

charged-current interactions, is 1.6%. The efficiency of all of the “pre-cuts” together
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Figure 4.7: Efficiency and resulting purity of the v, CCQE selection cuts vs. Monte
Carlo neutrino energy (GeV). Left: efficiency of the Fisher cut relative to events that
pass the “pre-cuts”; middle: efficiency of all v, CCQE selection cuts relative to no
cuts; right: v, CCQE signal and background after all selection cuts. Distributions are
shown for all Monte Carlo events (solid black line), Monte Carlo signal (dotted red

line), and Monte Carlo background (dotted blue line) predictions.

is 1.2%, and the percentage of events in data passing all of the CCQE selection cuts
is 0.6%. These numbers are dramatically smaller than in the Monte Carlo because of
the 200:1 ratio of cosmic rays to beam v, induced events in data, while neutrino-less

events are not simulated in the Monte Carlo.

However, one can compare the relative efficiencies of each cut, that is, the number
of events that pass a given cut divided by the number that passed the previous cut.
The ratio of relative efficiencies in data to Monte Carlo is shown in the last column
of table 4.2. The first two cuts have very different relative efficiencies in data and
Monte Carlo, as expected given the cosmic ray backgrounds. After this point, the
relative cut efficiencies are similar in data and Monte Carlo, and in fact the product
of the last four relative efficiencies is 0.986. This product is equivalent to the ratio in
data to Monte Carlo of the number of events passing all cuts relative to the number
that pass the first two cuts. Therefore, after neutrino-less events are eliminated in

the data, the CCQE selection cut efficiency agrees between data and Monte Carlo to
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Table 4.2: Data v, CCQE selection cut efficiencies (€). Relative efficiency is defined
to be the number of events passing a given cut divided by the number passing the
previous cut. The denominator of the (data/MC) relative efficiency ratio is taken

from column 2 of table 4.1.

cut € relative € | (data/MC) relative e
no cuts 1 1 1
in-spill time 0.167475 0.167475 | 0.21473

Veto(1) Hits < 6 | 0.0385013 | 0.229893 | 0.354449
2 sub-events 0.0172044 | 0.446852 | 0.934674
Veto(2) Hits < 6 | 0.0156945 | 0.91224 | 1.01579
AR <100 em | 0.0116815 | 0.744304 | 0.961743
Fisher > 0.425 | 0.00607915 | 0.520408 | 1.07899

within 2%.

After cosmic rays are eliminated, one can also compare the efficiency as a function
of energy between data and Monte Carlo. Unfortunately the true neutrino energy is
not available in the data, therefore the abcissa must be the reconstructed neutrino
energy. The left panel of figure 4.8 shows the efficiency of the Michel distance cut
relative to events passing the first four “pre-cuts” in data and Monte Carlo. The right
panel shows the efficiency of the Fisher output variable cut relative to events passing

2

all of the “pre-cuts.” In general, the agreement between data and Monte Carlo is
good, which builds confidence that the CCQE selection cuts affect data and Monte

Carlo in the same way.

The event sample composition in the Monte Carlo after all of the v, CCQE se-

lection cuts have been applied is summarized in tables 4.3 through 4.5. The vast
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line). Right: efficiency of the Michel distance cut relative to events passing the first
four “pre-cuts”. Left: efficiency of the Fisher output variable cut relative to events

passing all “pre-cuts”.

majority, 97.2%, of the neutrinos passing the CCQE selection cuts come from 7"
decay, while 7= and KT decay contribute 1.7% and 0.9% of the neutrino flux re-
spectively. As a result, 98.2% of the flux is v, while only 1.8% is 7,,. Of the events
passing the CCQE cuts, 91% are signal v,n — p~p interactions, and most of the
background comes from charged current resonant single 7+ production. Of the back-
ground events, 38% have the same particle content in the final state as v, CCQE

interactions because the pion was absorbed inside of the nucleus.

The final state kinematics of the events passing cuts are very similar between
signal and background. The average Monte Carlo generated muon momentum is 0.66
(0.73) GeV for signal (background), and the average nucleon momentum is 0.51 (0.53)
GeV. For background events with a pion in the final state the average pion momentum
is 0.28 GeV'. In contrast, the generated neutrino energy is typically much higher for

background events, 1.24 GeV compared with 0.86 GeV for signal events, because the
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Table 4.3: Monte Carlo sample composition by neutrino interaction channel after

v, COQFE selection cuts. Only interactions that account for >0.005 of the total are

included.
v interaction type | fraction
vyn — [ p 0.9053
vup — o pmt 0.0576
vn — upmd 0.0126
vyn — pnrt 0.0116
vun — v,nm’ 0.0036
Up— ptn 0.0011
v, A— pntA 0.0058

background events come from higher-threshold resonance production processes.

4.2 CCQE Data Set

The v, CCQE selection cuts described in the previous section are applied to the
MiniBooNE data, and the resulting v, CCQE sample contains 98,381 events, cor-
responding to 4.23747x10% incident protons on target (p.o.t.), or 2.32169x10716
interactions in the detector per p.o.t.. The number of p.o.t. in the data is calculated
from the beam toroid measurement, corrected for events that do not pass the data
quality cuts described in chapter 2. The data taking time period spans runs 3539
to 12417, which were recorded between August 2002 and October 2005. The Monte
Carlo statistics after the v, CCQE selection cuts comprise 414,004 events, which

correspond to 2.346x10%' simulated p.o.t. 2. The number of p.o.t. is calculated as

2The May 2006 baseline Monte Carlo is used for all studies in this thesis.
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Table 4.4: Monte Carlo sample composition by parent meson type after v, CCQE
selection cuts. Fraction 1 is the fraction of the total events where the source meson is
produced in the primary proton-Be interaction. Fraction 2 is the fraction of the total
events where the source meson s the particle which decays to the neutrino, which is

not necessarily produced in the primary p — Be interaction.

meson type | fraction 1 | fraction 2
wut 0.0000 0.0012
o 0.0000 0.0001
Tt 0.9259 0.9723
T 0.0146 0.0167
K? 0.0007 0.0004
Kt 0.0096 0.0091
K~ 0.0002 0.0002
D 0.0092 0.0000
n 0.0396 0.0000

Table 4.5: Monte Carlo sample composition by neutrino type, after the v, CCQE

selection cuts.

Ve

14

Ve 1 1

fraction | 0.00002 ‘ 0.00000 ‘ 0.98168 | 0.01829
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t.MC — NMC

no cuts

NMC

oo Ceuts 18 the number of gen-

p.o. /(MC' events per p.o.t.), where
erated events considered, 8.0 x 10% and (MC events per p.o.t.) is the total cross
section, flux, and target nucleon weighted conversion of 2.19738x107'° events (of all
neutrino interaction types) per p.o.t. in the 610 c¢m radius detector volume. The
conversion factor (MC' events per p.o.t.) gets a multiplicative correction for density
weighting of event vertices in the detector Monte Carlo of 1.04. The number of events
NMC

o euts 2€ts a multiplicative correction of ~0.67 for the probability that a neutrino

will interact in the detector given the pathlength of detector material it traverses,
which is determined by its position and angle at production in the neutrino beam
line. When normalized to the same number of p.o.t. as the data, the Monte Carlo
comprises 74,546 events in the 610 c¢m radius detector volume, which corresponds to

1.75921x 10716 events after cuts per p.o.t..

Once a v, CCQE data set is isolated, one can compare the kinematics of v, CCQE
events in data and Monte Carlo to measure the level of agreement. The most inter-
esting kinematic distribution is the reconstructed neutrino energy, EY¥, since this is
used to search for oscillations. Two types of comparisons between data and Monte
Carlo are considered here: relatively normalized distributions, which test the level
of agreement in the predicted and observed shapes, and absolutely normalized rates.
Relatively normalized comparisons are most useful for the v, disappearance analy-
sis, where MiniBooNE’s sensitivity to oscillations comes primarily from the shape
distortion of the neutrino energy spectrum. However, for the v, appearance analy-
sis, normalization and the energy spectrum contribute to the oscillation sensitivity

in roughly equal proportions, therefore understanding the absolute normalization of

data relative to Monte Carlo is important as well.

The neutrino energy is reconstructed from the measured muon direction and

energy according to two body kinematics, with a few corrections derived from Monte
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Carlo to reduce bias and smearing. The neutrino energy reconstruction algorithm is
described in detail in reference [116], so only a brief summary is given here. Quasi-

elastic scattering is a two-body interaction, and therefore the kinematics are speficied

by:
1 2myE,—m?
E9F = A (4.9)
2my — E, + pucos(6,)

where E,, p,, and cos(f,,) are the reconstructed muon’s energy, momentum, and di-
rection cosine with respect to the neutrino beam direction, my is the target neutron
mass, and m, is the final state lepton mass, under a v, scattering hypothesis. A
v, scattering hypothesis would replace the muon mass with the electron mass. In a
CCQE interaction on carbon, as in the MiniBooNE detector, the target nucleon is
bound, and is changed into a proton by the charged current. Taking these consider-

ations into account modifies equation 4.9 via

Ror _ 12(my + Ep)E, — (AM? 4 2my B + E} +m?) (4.10)
v 2 (mn + Eg) — E, + pucos(0,,) '

where Ej is the binding energy of the target neutron, and AM? = m% — m?% where

mp is the proton mass. Reconstruction bias is corrected with a few calibrations
derived empirically from Monte Carlo. First, the measured muon kinetic energy, T,

s

is corrected towards the “true” Monte Carlo value via
TliOTT = Qa7 - TM —+ ag (411)

where (a1, az) = (0.8867, 0.0927) under a v, hypothesis, and (0.9942, 0.0113) under
a v, hypothesis. The corrected kinetic energy is used to calculate the momentum and
energy for use in equation 4.10 to calculate EYE, and the four-momentum transfer
squared,

QéE = 2E9FE,(1 — Beos(6,)) —m?. (4.12)

“w

The EQF value calculated using Ty and equation 4.10 is further corrected towards
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the “true” Monte Carlo generated neutrino energy by a polynomial in Qé B

(BZE)r = EZF — (b +b2Qp + ba(Qhp) + ba(Qh)')  (413)

The constants b; are (-0.0777, 0.1189, 0.1777, -0.0291) and (-0.1472, 0.2788, 0.0898,
-0.0196) under a v, and v, hypothesis respectively. The four-momentum transfer
squared is recalculated, substituting (E9¥) into equation 4.12. The form of this
EQF correction was determined empirically, however the fact that a Q?-dependent
correction works better than an E9-dependent correction is probably because the
dominant source of smearing in the neutrino energy reconstruction comes from nuclear
effects. As seen in chapter 3, the Fermi Gas nuclear model produces E9F smearing

of ~7%, and its effects have a much stronger dependence on Q? than on F,,.

Relatively normalized comparisons of the reconstructed direction, muon energy,
neutrino energy, and four-momentum transfer squared are shown in figure 4.9. The
shapes of the signal and background distributions from the Monte Carlo are also
overlaid. For the reconstructed muon and neutrino energies, the background and
signal shapes are very similar, however, the background is significantly more peaked
near cos(f) ~ 1 and Q* ~ 0. This is due to mis-reconstruction of background
events, rather than the true kinematics. In general the background events have higher

values of the true £, and @2, since a A resonance must be produced.

The measurement resolution for each of these kinematic quantities is calculated
by projecting a profile histogram of the difference between the Monte Carlo generated
and reconstructed variable into bins of the generated quantity, e.g. (EM¢ — E9F) vs.
EMCfor 0 < EMY < 100 MeV. The projection is fit with a gaussian function, and the
r.m.s. of the best fit gaussian divided by the bin center is taken to be the resolution
in that bin. For the oscillation analysis, the most important resolution is that of
the neutrino energy measurement, which is shown as a function of generated Monte

Carlo neutrino energy in figure 4.10. At E, = 1 GeV, the resolution is 10.6%. The
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Figure 4.9: Comparison of kinematic variables after the v, CCQE selection cuts.
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constructed enerqy under a muon hypothesis (GeV); bottom left: reconstructed neu-
trino energy assuming 2-body kinematics (GeV); bottom right: reconstructed four-
momentum transfer squared (GeV?). Data with statistical errors (black points) are
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red line), and Monte Carlo background (dotted blue line) predictions. Data and the

total Monte Carlo curves are normalized to unit area.
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Figure 4.12: Ratio of data to Monte Carlo after v, CCQFE selection cuts as a function
of kinematic variables, absolutely normalized to protons on target. Top left: recon-
structed track angle with respect to the beam direction; top right: reconstructed enerqgy
under a muon hypothesis (GeV); bottom left: reconstructed neutrino energy assum-
ing 2-body kinematics (GeV); bottom right: reconstructed four-momentum transfer

squared (GeV?). Error bars include data and Monte Carlo statistics only.
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background remaining after the CCQE selection cuts does not significantly degrade
the energy resolution; without background contamination the resolution is 10.4%,

according to the Monte Carlo.

The corresponding absolutely normalized kinematic distributions are shown in
figure 4.11. The absolutely normalized rates do not agree between data and Monte
Carlo: the ratio of the total number of events in data to Monte Carlo after the
v, CCQE selection cuts is 1.2840.006, with statistical errors only. The source of
this normalization discrepancy has been a subject of much study, and is not yet

understood [85].

The ratio of data to Monte Carlo for each of the four kinematic variables discussed
here is shown in figure 4.12. The ratio is fairly flat below E, ~ 1.5 GeV, however, it
does show a systematic variation at high u, (cosf, with respect to the neutrino beam
direction) and low Q2. Tt is unlikely that the source of the kinematic distribution shape
differences is the event reconstruction since the behavior of the ratio has persisted
through many reconstruction versions, and because the muon calibration system data
do not show the same effect. The Q? dependence strongly implies that the shape
difference is due to a simulation deficiency in the neutrino interaction cross section
Monte Carlo, most likely in the treatment of the nuclear environment. This hypothesis

is analyzed in detail in chapter 6.

4.3 Systematic Errors

The uncertainty on the Monte Carlo prediction for events passing the v, CCQE selec-
tion cuts is calculated by propagating the uncertainties on the underlying simulation
parameters, using the standard method for transforming an error matrix from one

basis to another [117]. The error propagation calculations described here use the
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simulation parameter uncertainties described in chapter 3, sections 3.1.3, 3.2.2, and

3.3.2, and the simulation parameter correlation matrices given in appendix F.

Any error matrix can be calculated in an arbitrary number of bins 7 of an output
variable O given an input covariance matrix with an arbitrary number j of input
parameters P. For example, the input parameters P; could be the Sanford-Wang ="
production cross section coefficients (3; = 8), with the output variable bins O; as
30 bins of the generated neutrino energy, EM¢, from 0 to 3 GeV (>, = 30). The
input parameter covariance matrix P, with dimension j X j, comes from the Sanford-
Wang fits. To propagate the Sanford-Wang parameter errors to an uncertainty on
the EMY distribution a matrix of first derivatives is employed. The first derivative
matrix F(0);; is computed as the change in the number of events in each bin i of
the output variable O with respect to each input parameter variation j:

(N(O)o — N(O);):

F(O)iy = C =T,

(4.14)

where (N(O);); is the number of events in bin ¢ of the generated energy distribution
from the Sanford-Wang beam Monte Carlo run where parameter j was varied by
lo. (N(O)p); is the number of events in bin ¢ of the generated energy distribution
from a Monte Carlo run where all parameters j are set to their central values. This
is referred to as “central value” Monte Carlo hereafter. The parameters C; and U;
are the values used to generate the central value and “unisim” Monte Carlo samples

respectively. The output variable error matrix M(O),,., is then given by the product

M(O) i = FO)L . Pis F(O)nr (4.15)

, m,j ,

where F(O)], ; is the transpose of the first derivative matrix. The output variable

error matrix M(O),,., has dimension i x i.

Several quantities are used in the following discussions to extract information

from the error matrix M(O).
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. Feeaed((0): the scaled first derivative measures the fractional change in the
number of events in a given energy bin with respect to the central value Monte
Carlo due to a 1o variation of an input parameter. The scaled first derivative

is defined to be
C.
Freled(0); = i X F(O), . (4.16)
T (N(O)o): !
. 0(0);: the square root of the diagonal elements of M(O) (the errors typically

displayed on an output variable distribution).

. 0(0): the average of the error bars on the output variable distribution. §(O)
samples only the diagonal elements of the error matrix but is sensitive to the
shape distortion as well as the total normalization change due to a given source
of uncertainty. This quantity includes correlations between simulation input

parameters, but not correlations between output variable bins.

5(0) = ZiU(O)? vV ZzM(O>Zl (4.18)

E@' N(O)i ; Zz N(O)i

where N(O); is the number of events in bin 7 of the output variable O distribu-

tion (where all input parameters j are set to their central values).

. OM: the fractional output variable error matrix, defined as

M(O);

N(0).N(0): (4.19)

IM(O);) =

. An(O): the error on the total number of events in the output variable O dis-
tribution, computed using the full fractional error matrix § M including corre-

lations between output variable bins and simulation input parameters.

Ax(0) — \/ZN(O% (3 MO NOW) =[S MO 420)
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The components of an example error calculation propagating the 7% flux simula-
tion input parameter uncertainties to error bars on an output variable distribution,
EMC for events passing the v, CCQE selection cuts, are shown in figure 4.13. First,
a set of 5 Monte Carlo distributions is produced where Sanford Wang 7+ production
cross section parameter j has been varied by +1 o. These are shown in the top left
panel of figure 4.13, and referred to as “unisims” hereafter. The “unisims” may be
produced either by reweighting the Monte Carlo event-by-event, or by generating a
new Monte Carlo sample with the desired simulation input parameter varied. The
“unisims” are used to calculate the first derivative matrix in equation 4.14. Each
row of the matrix comes from the variation of one Sanford-Wang 7 production cross
section parameter, and each column comes from one bin of the output variable. The
rows of the scaled first derivative matrix are shown in the bottom eight panels of fig-
ure 4.13. The first derivative matrix and the Sanford-Wang parameter error matrix
are combined as in equation 4.15 to produce an error matrix in bins of the output
variable EM¢. The square root of the diagonal elements of this matrix are shown as
the error bars on the central value Monte Carlo prediction in the top middle panel of
figure 4.13. These error bars include correlations between the Sanford-Wang param-
eters, and therefore may be either smaller or larger than the spread in the “unisims”.
The fractional uncertainty is shown in the top left panel of figure 4.13. In bins where
there are no events the fractional uncertainty is set to 1.0, and at the peak of the EM¢
distribution the fractional uncertainty is ~7%. The two error estimators discussed

above, §(0) and Ay (0O), are 5.5% and 1.8% respectively.

To estimate the flux simulation contribution to the uncertainty on the Monte
Carlo prediction for events passing the v, CCQE selection cuts, the 8 variations of
the Sanford-Wang parameters (one variation per parameter) for the 7% production

cross section are considered. The simulation parameter values and their excursions
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are summarized in the “E910+HARP” column of table 3.2. This error analysis does
not include every source of flux prediction uncertainty given in table 3.9 since it ne-
glects (i) 8 variations of the Sanford-Wang parameters for the 7~ flux prediction cross
section, (i7) 9 variations of the Sanford-Wang parameters for the K production cross
section, (4i7) 9 variations of the Sanford-Wang parameters for the K9 production cross
section, (iv) a set of variations for the hadronic interactions of secondary particles,
and (v) uncertainties related to the beam line geometry. The fraction of events after
cuts coming from the decay of mesons other than 7+ is estimated from Monte Carlo
to be ~2% from table 4.4, therefore the Sanford-Wang parameter variations for 7,
KT, and K? are neglected. The fraction of events after cuts produced by neutrinos
from secondary interactions is ~5% from table 4.4, and therefore this uncertainty
should perhaps be considered in a full error analysis. It is not included here be-
cause the uncertainty on the hadronic interactions of secondary particles is currently
not well understood. The scale of this uncertainty has been estimated by switching
hadronic interaction models from GFLUKA to GHEISHA in the MiniBooNE beam
Monte Carlo, which produces a ~5% change in the total number of events passing
the CCQE selection cuts. Measurements from the HARP experiment are expected to
set the uncertainties on the secondary interaction cross sections in the near future.
Uncertainties associated with the simulation geometry are correlated with the sec-
ondary interaction model, and will be investigated in detail when the beam Monte

Carlo tuning, using HARP results, is complete.

To estimate the neutrino interaction cross section simulation contribution to the
uncertainty on the Monte Carlo prediction for events passing the v, CCQE selection
cuts, the following simulation input parameter variations are considered: (i) the axial
masses for the CCQE, CClm, CC multi-7, and coherent neutrino-nucleon scattering

cross sections (mS”, m!T, m\™, m<"), (ii) the Fermi Gas model Fermi momentum p
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and binding energy Fp, (iii) the component of the nucleon spin carried by the strange
sea quarks As, which impacts the neutral current cross sections, and (iv) the radiative
A decay branching fractions, and (v) variations in the final state particle interaction
cross sections inside the nucleus, including the pion absoroption and change exchange
cross sections, and the probability for losing a final state pion due to A resonance
re-interaction. The values of the cross section parameter variations is given in table
3.10. The treatment of the final state pion interaction cross section uncertainties in
item (v) above is not handled consistently in the sense that these pion cross section
variations are not considered for interactions that occur outside of the nucleus, in
the detector oil. These should be considered in a full error analysis, and this task
is currently underway. The magnitude of this uncertainty is probably comparable to

the systematic error estimated using the simulation parameter variations in (v).

To estimate the detector simulation contribution to the uncertainty on the Monte
Carlo prediction for events passing the v, CCQE selection cuts, a subset of the sim-
ulation input parameters discussed in chapter 3, section 3.3.2 are varied. The list of
parameters considered here is given in table 4.8; their values and excursions are given
in table 3.13. As discussed in chapter 3, the values of and method for calculating
the detector response uncertainties is still under investigation. Further, not all of
the “unisim” Monte Carlo sets are currently available due to CPU limitations. As
a result, the impact of the simulation parameter variations that are not considered

here is unknown, and in this respect, the error analysis in this thesis is incomplete.

Reweighting is used to construct all of the flux “unisims”, and the first 9 neutrino
interaction cross section “unisims” listed in table 4.7 as well. The remainder of the
“unisims” are produced by re-running the Monte Carlo simulation with one input
parameter varied with respect to its nominal value. One advantage of producing the

“unisims” by reweighting is that the statistical error on the first derivatives comes only
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from the Monte Carlo statistics of the central value distribution, and while the error
on the first derivatives does not enter the error matrix calculation, the elements of the
error matrix can be unreliable where the first derivative errors are large. The statistics
of the Monte Carlo used for this analysis comprise (i) 8 x 10° central value Monte
Carlo events (which are also used to produce the flux and 9 neutrino interaction cross
section “unisims”) before cuts, (i7) 4 x 10° events before cuts in each of the 3 neutrino
interaction cross section simulated “unisims”, and (i) 1.6 X 10° events before cuts in
each of the 22 available detector response Monte Carlo simulated “unisims”. These
samples correspond to ~430,000, ~215,000, and ~86,000 events after the v, CCQE

selection cuts for (i), (i), and (#ii) respectively.

The distributions of “unisims” for events passing the v, CCQE selection cuts
in the reconstructed variables E,, cos(6,), EY¥, and Q* are shown for the 7+ flux,
neutrino interaction cross section, and detector response uncertainties in figures 4.14,
4.15, and 4.16. The fractional changes in the numbers of events passing the v, CCQE
selection cuts for each of the “unisims” are summarized in tables 4.6, 4.7, and 4.8
respectively. The 7 Sanford-Wang c1 parameter, the Fermi Gas Model neutrino
interaction cross section parameter variations (Ep and pg), and the detector response
parameters related to UV flourescence and late time scintillation cause the largest
changes in the output variable distribution normalizations for events passing the v,
CCQE selection cuts. However, recall that the “unisim” distributions do not reflect
the correlations between simulation input variables, which can be large, and therefore
the resulting correlated error may be either larger or smaller than the spread of the
“unisims”.

The error matrices M(O)g, M(O),, and M(O)getector are calculated separately
for each of the sources of uncertainty, then added together to construct the total

error matrix M (O)q- This procedure assumes that the various sources are uncor-
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Figure 4.14: Unisim distributions for n+ flur simulation uncertainties after the v,
CCQFE selection cuts, absolutely normalized to protons on target. Top left: recon-
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structed energy under a muon hypothesis (GeV); bottom left: reconstructed neu-
trino energy assuming 2-body kinematics (GeV); bottom right: reconstructed four-

momentum transfer squared (GeV?).
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uncertainties after the v, CCQE selection cuts, absolutely normalized to protons on
target. Top left: reconstructed track direction cosine with respect to the beam direc-
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Table 4.6: Fractional change in the total number of events passing the v,, CCQE selec-
tion cuts in each © prediction “unisim” Monte Carlo set, for kinematic distributions

of interest.

“unisim” E9F E, Q* cos(0,) | EMC

7T flux SW +cl | 0.1079 | 0.1044 | 0.1014 | 0.1082 | 0.1082

7t flux SW +¢2 | 0.0412 | 0.0214 | 0.0088 | 0.0474 | 0.0430
7t flux SW +c3 | -0.0455 | -0.0264 | -0.0170 | -0.0542 | -0.0473
7t flux SW +c4 | -0.0661 | -0.0285 | -0.0126 | -0.0866 | -0.0670
7t flux SW +¢5 | 0.0339 | 0.0196 | 0.0129 | 0.0407 | 0.0353
7t flux SW +c¢6 | -0.0345 | -0.0265 | -0.0207 | -0.0362 | -0.0351
7t flux SW +c¢7 | 0.0120 | 0.0255 | 0.0287 | 0.0182 | 0.0195

7t flux SW +¢8 | -0.0094 | -0.0186 | -0.0253 | -0.0075 | -0.0086

related. The square roots of the diagonal elements of M(O);p are shown for the
reconstructed kinematic distributions cos(6,), E,, EY, and Q?, in figure 4.17, with
the data superimposed. The contribution to the fractional error from each of the
sources is shown in figure 4.18. The two error estimators, 6(0O) and Ay (O), are sum-
marized for each uncertainty source in table 4.9. The total normalization uncertainty
is ~14%, with the domininant contribution coming from uncertainties in the neutrino
interaction cross sections. Therefore, the Monte Carlo prediction disagrees with the

data, as discussed above, by ~2¢.

Given the overall normalization difference between data and the Monte Carlo
prediction, it is desirable to do analyses where the Monte Carlo can be normalized
relatively to the data, rather than absolutely normalized to the number of incident

protons on target. In the relatively normalized case, the systematic errors, by def-
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Table 4.7: Fractional change in the total number of events passing the v, CCQE
selection cuts in each neutrino interaction cross section “unisim” Monte Carlo set,

for kinematic distributions of interest.

“unisim” E9F E, Q? cos(6,) | EMC

oy —i—ng 0.0184 | -0.0154 | -0.0406 | 0.0250 | 0.0211
oy +pF -0.0656 | -0.0663 | -0.0662 | -0.0655 | -0.0655
o, +Ep -0.2357 | -0.2955 | -0.3406 | -0.2253 | -0.2310
o, +As 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
o, +mir -0.0001 | 0.0000 | 0.0003 | 0.0000 | 0.0000
o, +mi™ 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
o, +mh 0.0058 | 0.0060 | 0.0060 | 0.0056 | 0.0058
o, +A — vy 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0y 40T rion 20.0031 | -0.0031 | -0.0031 | -0.0031 | -0.0031
00 +0 00 coonange | -0-0020 | -0.0028 | -0.0029 | -0.0028 | -0.0028
o, +AN — NN -0.0187 | -0.0187 | -0.0188 | -0.0187 | -0.0187
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Table 4.8: Fractional change in the total number of events passing the v,, CCQE selec-

tion cuts in detector response “unisim” Monte Carlo sets, for kinematic distributions

of interest.

“unisim” | EQE E, Q? cos(8,) | EMC
cher -0.0017 | -0.0017 | -0.0017 | -0.0017 | -0.0017
ext 0.0962 | 0.0962 | 0.0962 | 0.0962 | 0.0962
pmt 0.0437 | 0.0437 | 0.0437 | 0.0437 | 0.0437
ref 0.0565 | 0.0565 | 0.0566 | 0.0565 | 0.0565
scat -0.1143 | -0.1143 | -0.1141 | -0.1143 | -0.1143
taud 0.0829 | 0.0829 | 0.0829 | 0.0829 | 0.0829
uvext 0.0273 | 0.0273 | 0.0274 | 0.0273 | 0.0273
uvf2 0.1820 | 0.1820 | 0.1820 | 0.1820 | 0.1820
uvf3 0.1184 | 0.1184 | 0.1184 | 0.1184 | 0.1184
uvfd 0.1768 | 0.1768 | 0.1768 | 0.1768 | 0.1768
sci4 -0.2136 | -0.2136 | -0.2134 | -0.2136 | -0.2136
flul 0.0004 | 0.0004 | 0.0005 | 0.0004 | 0.0004
flu2 -0.0011 | -0.0011 | -0.0011 | -0.0011 | -0.0011
flu3 -0.0211 | -0.0211 | -0.0210 | -0.0211 | -0.0211
flud -0.0375 | -0.0375 | -0.0374 | -0.0375 | -0.0375
sci2 0.1283 | 0.1283 | 0.1283 | 0.1283 | 0.1283
scid 0.0751 | 0.0751 | 0.0751 | 0.0751 | 0.0751
birks -0.0562 | -0.0562 | -0.0560 | -0.0562 | -0.0562
tsm 0.0362 | 0.0362 | 0.0363 | 0.0362 | 0.0362
scatba 0.0015 | 0.0015 | 0.0017 | 0.0015 | 0.0015
tau?2 0.0113 | 0.0113 | 0.0114 | 0.0113 | 0.0113
tau3 0.0059 | 0.0059 | 0.0059 | 0.0059 | 0.0059
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Figure 4.17: Uncertainty on the Monte Carlo prediction for the number of events
after the v, CCQE selection cuts, absolutely normalized to protons on target, from
the ©+ flux simulation and the neutrino interaction cross section simulation. Top
left: reconstructed track direction cosine with respect to the beam direction; top right:
reconstructed energy under a muon hypothesis (GeV); bottom left: reconstructed neu-
trino energy assuming 2-body kinematics (GeV); bottom right: reconstructed four-
momentum transfer squared (GeV?). The data (black points) with statistical errors is

superimposed.



169

e L2 e e L2 e
e I i e I i
] L — total ] ] L — total ]
s T - m* flux N s I * flux
c [ ] c [ ]
9 : Vo : 9 : Vo :
3 0.8? -~ detector response B & 0-8? -~ detector response B
L | 1 o 1
0.6 — 0.6 —
0.4 i 0.4 N
0.2 . ] B ]
N N TR DT DU R s Bt P I e = s S B & N
-1 -08-06-04-02 -0 02 04 06 08 1 0 0.5 1 1.5 2 25 3
cos(eu) E}1 (GeV)
e L2 e e L2 e
e I ] e I ]
] [ — total ] ] [ — total ]
s I - 7 flux i s I - e flux ]
ey <
o L ve b o r Vo 4
& 0.8? -~ detector response ] & 0.8? -~ detector response .
T | 1 o 1
0.6/ . 0.6/~ =
0.4 ] 0.4/ ]
0.2 ] 0.2 ]
P I I S A I I ol e ]
0 05 1 15 2 25 3 0 05 1 15 2 25 3
E 2
EE (GeV) Q* (Gev)

Figure 4.18: Contribution to the fractional error on the Monte Carlo prediction for the
number of events after the v, CCQE selection cuts, absolutely normalized to protons
on target, from the 7 flux simulation, and the neutrino interaction cross section
simulation. Top left: reconstructed track direction cosine with respect to the beam
direction; top right: reconstructed energy under a muon hypothesis (GeV); bottom
left: reconstructed neutrino energy assuming 2-body kinematics (GeV); bottom right:

reconstructed four-momentum transfer squared (GeV?).
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Table 4.9: Correlated error contributions by source for events passing the v, CCQE

selection cuts, for kinematic distributions of interest.

EZF | E, Q° cos(6,,) | B¢
7t flux §(O) 0.0181 | 0.0249 | 0.0309 | 0.0101 | 0.0176
7t flux AN(O) 0.0570 | 0.0725 | 0.0777 | 0.0421 | 0.0551
g, 0(0) 0.0262 | 0.0281 | 0.0334 | 0.0269 | 0.0265
o, AN(O) 0.0974 | 0.0959 | 0.0887 | 0.0944 | 0.0974
detector response 6(O) 0.0187 | 0.0203 | 0.0193 | 0.0168 | 0.0177
detector response AN(O) | 0.0663 | 0.0652 | 0.0584 | 0.0692 | 0.0630
total 6(O) 0.0369 | 0.0427 | 0.0494 | 0.0333 | 0.0364
total AN(O) 0.1309 | 0.1368 | 0.1316 | 0.1244 | 0.1284

Table 4.10: Fractional change in the distribution mean for events passing the v,

CCQE selection cuts in each w* production “unisim” Monte Carlo set, for unit-area

normalized kinematic distributions of interest.

“unisim” EQF E, Q? cos(0,) | EMC

7 flux SW +cl | 0.0002 | 0.0012 | 0.0035 | 0.0005 | 0.0000
7 flux SW +¢2 | 0.0058 | 0.0106 | 0.0152 | 0.0086 | 0.0052
7 flux SW +¢3 | -0.0079 | -0.0010 | -0.0132 | -0.0104 | -0.0073
7 flux SW +c4 | -0.0182 | -0.0192 | -0.0239 | -0.0231 | -0.0171
7 flux SW +c¢5 | 0.0057 | 0.0071 | 0.0093 | 0.0073 | 0.0052
7T flux SW +c6 | -0.0018 | -0.0046 | -0.0070 | -0.0032 | -0.0015
7t flux SW +c¢7 | -0.0018 | -0.0031 | -0.0039 | -0.0027 | -0.0017
7 flux SW +¢8 | 0.0024 | 0.0056 | 0.0078 | 0.0040 | 0.0021
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Table 4.11: Fractional change in the distribution mean for events passing the v, CCQE
selection cuts in each neutrino interaction cross section “unisim” Monte Carlo set,

for unit-area normalized kinematic distributions of interest.

“unisim” E9F E, Q? cos(6,) | EMC

oy —i—ng 0.0077 | 0.0203 | 0.0300 | 0.0134 | 0.0065
oy +pF 0.0003 | 0.0004 | -0.0005 | 0.0006 | 0.0002
o, +Ep 0.0172 | 0.0510 | 0.0746 | 0.0323 | 0.0142
o, +As 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
o, +mir -0.0007 | -0.0006 | -0.0014 | 0.0001 | 0.0005
o, +mi™ 0.0004 | 0.0010 | 0.0010 | 0.0014 | 0.0009
o, +mh -0.0004 | -0.0024 | 0.0060 | -0.0063 | -0.0061
oy +A — vy 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0y 40T rion 200007 | -0.0006 | -0.0014 | 0.0001 | 0.0005
00 +0T 00 cocnange | 00004 | 0.0010 | 0.0010 | 0.0014 | 0.0009
o, +AN — NN -0.0004 | -0.0024 | 0.0059 | -0.0063 | -0.0061
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Table 4.12: Fractional change in the distribution mean for events passing the v,
CCQFE selection cuts in detector response “unisim” Monte Carlo sets, for unit-area

normalized kinematic distributions of interest.

“unmisim” | EQE E, Q? cos(8,) | EMC
cher -0.0221 | -0.0269 | -0.0434 | 0.0067 | 0.0021
ext 0.0517 | 0.0766 | 0.0464 | 0.0296 | 0.0097
pmt -0.0065 | -0.0088 | -0.0102 | 0.0004 | -0.0014
ref 0.0331 | 0.0504 | 0.0266 | 0.0234 | 0.0137
scat -0.0496 | -0.0746 | -0.0343 | -0.0321 | -0.0135
taud 0.0141 | 0.0282 | -0.0176 | 0.0301 | 0.0095
uvext 0.0153 | 0.0230 | 0.0127 | 0.0113 | 0.0033
uvf2 0.0626 | 0.0977 | 0.0332 | 0.0479 | 0.0242
uvf3 0.0327 | 0.0551 | 0.0025 | 0.0355 | 0.0129
uvfd 0.0619 | 0.0960 | 0.0381 | 0.0422 | 0.0190
sci4 -0.0733 | -0.1142 | -0.0347 | -0.0832 | -0.0232
flul -0.0018 | -0.0026 | -0.0014 | 0.0021 | -0.0007
flu2 -0.0015 | -0.0030 | 0.0016 | -0.0035 | 0.0000
flu3 -0.0069 | -0.0133 | 0.0065 | -0.0075 | -2.4929
flud -0.0246 | -0.0346 | -0.0271 | -0.0102 | -0.0068
sci2 0.0456 | 0.0756 | 0.0054 | 0.0603 | 0.0198
scid 0.0219 | 0.0385 | -0.0048 | 0.0371 | 0.0092
birks -0.0181 | -0.0291 | -0.0054 | -0.0231 | -0.0080
tsm 0.0041 | 0.0099 | -0.0129 | 0.0128 | 0.0044
scatba -0.0007 | -0.0015 | 0.0009 | 0.0000 | -0.0009
tau2 0.0004 | 0.0001 | 0.0024 | 0.0024 | 0.0013
tau3 0.0005 | 0.0002 | 0.0022 | -0.0001 | -0.0002
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Table 4.13: Correlated shape error contributions by source for events passing the v,

CCQE selection cuts, for unit-area normalized kinematic distributions of interest.

EZF L, Q° cos(6,,) | B}

7t flux 6(0) 0.0082 | 0.0043 | 0.0024 | 0.0120 | 0.0085
7t flux AN(O) 0.0310 | 0.0153 | 0.0085 | 0.0374 | 0.0317
o, 6(0) 0.0143 | 0.0143 | 0.0110 | 0.0111 | 0.0152
o, AN(O) 0.0552 | 0.0507 | 0.0300 | 0.0425 | 0.0571

detector response 6(O) 0.0100 | 0.0103 | 0.0090 | 0.0136 | 0.0088
detector response AN(O) | 0.0403 | 0.0393 | 0.0299 | 0.0542 | 0.0351

total 5(0) 0.0193 | 0.0181 | 0.0144 | 0.0213 | 0.0195

total AN(O) 0.0750 | 0.0660 | 0.0432 | 0.0784 | 0.0741

inition, affect only the shape of a Monte Carlo predicted distribution, and not the
normalization. To calculate the error matrix for relatively normalized Monte Carlo,
the “unisim” Monte Carlo sets are first normalized to have the same total number of

events as the central value Monte Carlo, via

(V(0),); = %(Momi (4.21)

where (N(O);); is the absolutely normalized number of events in bin 7 of the output
variable distribution O for “unisim” j, and (N(O)p); is the number of events in
bin ¢ of the central value Monte Carlo distribution. The relatively normalized first
derivative matrix is subsequently calculated from the difference between the relatively

normalized “unisim” and the central value Monte Carlo in each bin:

(N(O)o — N'(0);):

F(O);; = (4.22)

similarly to the absolutely normalized case in equation 4.14. The effect of a rela-

tively normalized “unisim” is to change the shape of a distribution with respect to
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the central value Monte Carlo prediction. The fractional changes in the means of
various kinematic distributions of interest are summarized for the 7+ flux, neutrino
interaction cross section, and detector response uncertainties in tables 4.10, 4.11, and

4.12 respectively.

The simulation input parameter errors are propagated to the relatively normalized

output variable error matrix as in equation 4.15, via

M (O)pmn = F'(O)1; Pike F(O)n- (4.23)
The relatively normalized error matrices M’'(O)g, M'(O),, and M(O)}ceror are

calculated separately for each of the sources of uncertainty, then are added together
to construct the total relatively normalized error matrix M’(O);ptq;. The square root
of the diagonal elements of the relatively normalized total error matrix M’(O)p1a
are shown for the reconstructed kinematic distributions cos(6,), £, E9F and Q?, in
figure 4.19, with the data superimposed. The contribution to the fractional relatively
normalized error from each source is shown in figure 4.20. The two error estimators,
d(0) and An(0O), are summarized for the relatively normalized distributions of each
uncertainty source in table 4.13. In general, the relatively normalized errors on the
output variable distributions are much smaller than the absolutely normalized errors,
and the three sources of uncertainty contribute in roughtly equal proportions. Given
these errors, data and Monte Carlo disagree in shape at the 1-2¢0 level in the lowest

@* and highest cos(6,,) bins; everywhere else, they agree very well.
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Figure 4.19: Uncertainty on the Monte Carlo prediction for the fraction of events af-
ter the v, CCQE selection cuts, normalized to unit-area, from the % flux simulation
and the neutrino interaction cross section simulation. Top left: reconstructed track
direction cosine with respect to the beam direction; top right: reconstructed enerqgy
under a muon hypothesis (GeV); bottom left: reconstructed neutrino energy assum-
ing 2-body kinematics (GeV); bottom right: reconstructed four-momentum transfer

squared (GeV?). The data (black points) with statistical errors is superimposed.
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Figure 4.20: Contribution to the fractional error on the Monte Carlo prediction for

the fraction of events after the v, CCQE selection cuts, normalized to unit-area,

from the ©% flux simulation and the neutrino interaction cross section simulation.

Top left: reconstructed track direction cosine with respect to the beam direction; top

right: reconstructed energy under a muon hypothesis (GeV); bottom left: reconstructed

neutrino energy assuming 2-body kinematics (GeV); bottom right: reconstructed four-

momentum transfer squared (GeV?).



Chapter 5

Constraining the Flux Predictions

with V), Data

The high statistics v, data set at MiniBooNE affords important constraints on the
neutrino flux prediction. The measured v, spectrum is used to constrain the predicted
rate and energy distribution of v, events from p* decay, and v, events from 7" decay,
in the MiniBooNE beam line. For the v, appearance analysis, u*-decay v, events
comprise ~1/2 of the intrinsic beam v, background, and therefore the uncertainty
on the prediction of this background source is an important factor in the oscillation
sensitivity of MiniBooNE. Nearly all of the v, from p+ decay come from the production
chain p Be — 7t X, nt — putv,, ut — etv. v,. Therefore, the uncertainty on the
prediction of the p*-decay v, flux comes primarily from the 7" production cross
section. Fortunately, since the p* come from 7t — p*v, decay, the MiniBooNE
v, data provide a strong constraint on the 7% spectrum and therefore also on the
pt-decay v.. The MiniBooNE v, CCQE data set described in chapter 4 is employed
for this analysis; it comprises ~100,000 events after cuts, with a v, CCQE purity of
~92%.
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5.1 Method

The pt-decay v, analysis uses the measured ratio of data to Monte Carlo v, events,
after the v, CCQE selection cuts, to adjust the Monte Carlo predicted spectrum such
that the v, agree in data and Monte Carlo. The reweighting function is

_— Ng}};TACCQE C’U,tS(EVQE>

N]c\z/{éer CCQFE cutS(ESQE)

(5.1)

which can be written in terms of the constituent factors

(I)Data(Ey) X UOCQE(EV) X ECCQE CUt8<E1/> X M(EV|E§E) X Ntargets X Np.o.t.
(I)Mc(E,,) X UOCQE(E,/) X GCCQE CUtS(EV> X M(EI/’ES?E) X Ntargets X Np.o.t.

where @ is the neutrino flux in units of (v/em?/proton), o is the v, CCQE cross
section in units of em?, € is the efficiency of the CCQE selection cuts, M is a smearing
matrix that relates the “true” neutrino energy E, to the reconstructed energy E¢F,
Niargets 1s the number of target nucleons, and N, is the number of incident protons
on target. The ansatz of the analysis is that all predictions of the Monte Carlo
are correct, meaning identical to the data, except for the flux, and therefore the

reweighting function in equation 5.1 reduces to

q)Data(Ez/>

R = .
Qpe(Ey)

(5.2)

The uncertainty on the reweighting function is assessed by propagating the uncer-

tainties on the Monte Carlo assumptions.

The measured v, flux can be used to infer the 7" energy distribution because of
the strong correlation between the “parent” n* and the “daughter” v, in the Mini-
BooNE neutrino beam. This is the case because the MiniBooNE detector subtends
a very small angle, 11 mr, when viewed from the target, and since the angular diver-
gence of the pion beam is limited by the 90 e¢m radius of the decay pipe to be small.

Therefore, any 7 that decays to a v, which passes through the detector oil must
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have very little angle with respect to the beam direction at its decay vertex. In a two

body decay, the v, energy is related to the 7 energy via

ELAB — yESM(1 4 3 cos) (5.3)
where v = EEAB/m. 3 = ptAB/ELAB ¢ is the angle between the 7t and the v,
and ESM = (m2 —m2)/(2m,). Therefore,

BB — BEAB »(0.215 x (1 + 3 cos).

If one assumes that the 7 is relativistic, and pointed straight at the detector at its
decay vertex, and that the decay angle of the 7 with respect to the beam direction

is zero, then the v, energy in the lab frame is related to the 7" energy by a constant:
EEAB = 043 x EEAB (5.4)

In this analysis the particle kinematics from the Monte Carlo are used, with no
assumptions about divergence, etc. as in the formula above, however, the simple
relation in equation 5.4 is a fairly good description. The correlation in the MiniBooNE
beam Monte Carlo between the 7" and v, energies is shown in figure 5.1, with a line
of slope 0.43 superimposed. The majority of 7-decay v, events exhibit the maximum
possible correlation, and as a result, the measured v, spectrum can be used to infer

the 7 spectrum with good resolution.

The MiniBooNE beam Monte Carlo allows one to track the entire history of each
neutrino, and therefore on an event-by-event basis one can reweight a v, its parent
7, the 7*-decay u*, and the subsequent p*-decay v, all with the same weight. The
relation between the energy of a 71 and its subsequent p*-decay v, is shown in the
right panel of figure 5.1. This distribution is not cross section weighted, however,

after weighting by the v, CCQE cross section, the mean energy of u*-decay v, is ~
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Figure 5.1: Left: E, (GeV) vs. E, (GeV) for v, from ©* decay, in the MiniBooNE
detector acceptance. Reft: E, (GeV) vs. E. (GeV) for v, from p* from ©* decay,
in the MiniBooNE detector acceptance. A line with slope 0.43 is super-imposed to

indicate the maximum available energy to the v, in a 2 body ©% decay.

0.6 GeV. From the right panel of figure 5.1, for F, ~0.6 GeV, E,; ~1.5 GeV, with a

distribution that is tightly peaked about the mean.

This flux constraint analysis does two useful things: first, it fixes the normaliza-
tion and energy distribution of the p*-decay v, to be consistent with the observed
v, data; second, it reduces the flux uncertainty on p*-decay v, to be of the order of
the statistical error on the measured v, energy spectrum. The error reduction occurs
because uncertainties in the 7+ production prediction affect all 7-decay particles
identically. Therefore, using this method, the uncertainty on the p*-decay v, is given
by the relative uncertainty with respect to the 7*-decay v, rather than the absolute
7 prediction uncertainty. The relative uncertainty is of the order of the fluctuations
in the reweighting function, which are mostly due to statistical error on the mea-
sured v,. This argument about error reduction is valid in general for any source of

uncertainty that affects the 7*-decay v, and p*-decay v, in the same way.
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In practice, the reduction in error is calculated by replacing the denominator in
equation 5.2 with “fake data” (central value Monte Carlo), and the numerator with

“unisim” Monte Carlo, via

o Neflg£oer (o)
o Nafter CCQE cutS(EQE) ’
v

“unisim’’ MC

(5.5)

The function R;(EYF) depends on “unisim” j, and is a function of reconstructed
neutrino energy E9E. The “unisim” Monte Carlo is then modified by reweighting to
match the central value Monte Carlo using R;(E9¥) as the reweighting function, and
the set of modified “unisims” are used to calculate the error matrix for the p*-decay

Ve, as described in chapter 4.

This procedure is illustrated with “fake data” in figures 5.2 and 5.3 for the
Sanford-Wang 7« prediction “unisims” and the central value Monte Carlo. The
left panel of figure 5.2 shows the reconstructed energy distributions in “unisim” and
central value Monte Carlo for events passing the v, CCQE selection cuts. Each 7-
decay v, event from “unisim” j is assigned a weight based on its reconstructed E9¥,
given the reweighting function R;(EF). The reweighting function is binned in 0.1
GeV-wide reconstructed neutrino energy bins, and all events in a given E9F bin are
assigned the same weight. This weight applies to the v,-parent 7+ and all of the
7t descendents. The right panel shows the “unisim” distributions that have been
modified by the R reweighting for only v, from 7 decay, where the 7+ was pro-
duced in the primary p Be — 7" X interaction, compared with the central value
Monte Carlo for all events passing the v, CCQE selection cuts. The normalization
difference between the central value Monte Carlo and the set of modified “unisims”
is due to the ~8% of v, produced by secondary interactions, discussed in chapter 4
and summarized in table 4.4. The corresponding distributions for the v, “parent”
(and v, “grandparent”) 7t in Monte Carlo are shown in the top panels of figure 5.3.

The generated energy distributions of the p* “sister” and v, “niece” to the v, are
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Figure 5.2: Left: number of events vs. reconstructed neutrino energy (GeV) for
events passing the v, CCQE selection cuts. Right: reweighted number of events vs.
reconstructed neutrino energy (GeV) for events passing the v, CCQE selection cuts.
Central value Monte Carlo is indicated by the points, Sanford-Wang m* prediction

“unistm” Monte Carlo is shown by the lines.

shown before and after the reweighting modification in the middle and bottom panels

of figure 5.3 respectively.

By construction, the reweighting modification works perfectly for the EY dis-
tribution for 7*-decay v, events, that is, the spread in the “unisims” is zero after
reweighting. The finite 7 energy resolution can be seen by the fact that the reweight-
ing works well but not perfectly for the 7%, and therefore the u* and v, distributions.
The resolution degrades with increasing 7" energy because the E, -E; correlation
decreases, as can be seen in the left panel of figure 5.1. As the 7" energy increases,
7T with angles relative to the beam axis greater than zero at decay can still produce a
v, in the detector acceptance due to the greater available Lorentz boost, and therefore

. . . +
a larger range of v, energies is allowed for a given 7" energy.
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Figure 5.3: Left: generated Monte Carlo energy distributions. Right: reweighted
Monte Carlo energy distributions. Top: number of events vs. w" energy (GeV).

Middle: number of events vs. pu* energy (GeV). Bottom: number of events vs. v,

energy (GeV).



184

27 27
1.8; 1.8;
1.6; 1.6;
1-4; 1.4?—
l'zéu/ﬁfﬁjb:;: 2
: A |
he 1:4?\
08 [ 08 -
o.ef— o.af—
0-4; 0.4;
042; 0.2;
L T ¥ S T e N M S A
Vu(”) reweighting function vs. E QE (GeV) vu(n) reweighting function vs. E MC (GeV

Figure 5.4: Ratio of Sanford-Wang ©* prediction “unisims” to central value Monte
Carlo for events passing the v, CCQFE selection cuts. Left: reweighting functions vs.

reconstructed v, energy (GeV). Right: reweighting functions vs. generated m* energy

(GeV).

The reweighting function in equation 5.2 is calculated using events passing the v,
CCQE selection cuts because good neutrino energy measurement resolution is desired.
However, the efficiency of the selection cuts is not very high, and while generating a
large Monte Carlo set of m*-decay v, is easy, obtaining high statistics for p*-decay
v, is not. This is because the p* decays have 3-body kinematics and therefore the
probability that the v, is not pointed at the detector, which subtends only 11 mr at
the MiniBooNE target, is much larger than for the v, products of 2-body 7" decays.
Therefore, to increase the statistics of u-decay v, events, the reweighting procedure
is done in two steps, taking advantage of the fact that in Monte Carlo one knows both
the reconstructed E, and generated E, for every mt-decay v, event. First, the ratio
of data to Monte Carlo, R, is formed as a function of reconstructed E@¥| for events
passing the v, CCQE selection cuts. Ri(EY¥) is shown in the left panel of figure

5.4 for the Sanford-Wang 7+ “unisims”. R(E9F) is used event-by-event to reweight
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the generated EMC distribution for events passing the v, CCQE selection cuts. A
second ratio Ry is formed, which is the ratio of the reweighted to the original EM¢
distributions, for events passing the v, CCQE selection cuts. Ry(EMY) is shown
in the right panel of figure 5.4. Ro(EMY) is then used as a look-up table to find
the weight for any v, event with a 7% parent, or v, event with a 7% grandparent,
whether the neutrino passes the v, CCQE selection cuts or not. This works because
the v, CCQE selection cuts do not change the energy of a given 7+, which is all that
R, depends on. In this way, one can use all of the Monte Carlo 7 events to form
the associated pt-decay v, distributions, both before and after reweighting, instead
of only those with an associated v, that passes the v, CCQE selection cuts. The
transformation from R, which is a function of reconstructed E9E, to R,, which is
a function of generated EM¢ is necessary because not every event has a reasonable
EQF value. Only cleanly-reconstructed v, CCQE events can be expected to have
E%E values near the true EMC however, all 77-decay Monte Carlo events have the
correct EMC value. This two-step procedure was used to produce all of the reweighted
distributions in figures 5.2 through 5.4. This method passes the closure test, which is
that all of the reweighted “unisim” E9¥ distributions agree perfectly with the “fake

data” mF-decay v, spectrum, as is shown in the right panel of figure 5.2.

To achieve the simulation statistics for pt-decay v, shown in figure 5.4, two
enhancement schemes are employed in the MiniBooNE beam Monte Carlo [118]. First,
the p Be — mt X cross section is weighted according to an exponential function to
increase the statistics for high pz events. The primary motivation for this is to
decrease the statistical error on the prediction of the high energy v, flux. Second,
and more importantly for this analysis, every time a 7" decays, 20 identical copies
of the resulting pu* are produced and subsequently tracked through the beam Monte

Carlo. A new random number seed is chosen each time a muon decays, and therefore
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the 20 resulting pu"-decay v, are independent. Both of these techniques contribute
to the weight for each p'-decay v, event; the distribution of weights has a mean of
0.00637 and an r.m.s of 0.00864. The resulting beam Monte Carlo histogram for the
predicted flux of neutrinos from p Be — nt — ut — et v, 7, has 6.5x10° entries,

and the statistical error on the flux prediction is <1% in each EM¢ bin.

However, many fewer events are sampled from this distribution when neutrino
interactions are simulated. This is because the Monte Carlo is generated with all
components of the flux in their weighted proportions, shown in figure 3.14 and table
3.7. The total neutrino interaction Monte Carlo set, before any selection cuts, com-
prises 8x10° events, which is 5x10° events in the detector volume, and corresponds
to 2.2x10%! simulated protons on target. The vast majority of these events are 7 -
decay v, interactions, with only 12,658 from p*-decay v, interactions. These 12,658

events comprise the Monte Carlo p*-decay v, sample used for this analysis.

5.2 Results

The reweighting method described above may change the shape, normalization, and
uncertainty on the predicted p-decay v, distribution. To separate these different

effects, the p*-decay v, error matrix is calculated in bins of EM¢ for three cases:

1. with no reweighting modification (the reweighting function is taken to be 1.0 in
all energy bins), so the error matrix comes directly from the Sanford-Wang 7+

production cross section parameter errors with no reference to the data;

2. with reweighting modifications, where the numerator of the reweighting func-
tion is “fake data” (central value Monte Carlo), so this tests the effect of the

reweighting method on the uncertainties only;
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3. with reweighting modifications, where the numerator of the reweighting function

is the v, CCQE data set described in chapter 4.

The reweighting procedure is applied to the central value Monte Carlo, and to
each of the Sanford-Wang 7" flux “unisims” described in chapter 4, section 4.3. The
“unisims”, which have been modified by R in equation 5.5, are used to calculate
the first derivative matrices and propagate the simulation input parameter errors, as
described in chapter 4, to the uncertainties on the predicted EMC distribution for
pt-decay v, and 7" -decay v, events, with no selection cuts applied. The ratio of the
modified “unisims” to the original central value Monte Carlo for each of the three
cases is shown as a function of EM® in figure 5.5. For case 1, with no reweighting, the
spread in the (modified “unisim” / original central value) ratios is ~10% about a value
of 1.0 at £, = 1 GeV for both p*-decay v, and n*-decay v,. For case 2, where the
“unisims” have been modified via reweighting to match the “fake data,” the spread is
~2% about 1.0 at E, = 1 GeV. This reduction in the spread of the ratios translates
directly into a reduction in the predicted uncertainty on the E¢ distribution. For
case 3, the spread in the ratios is nearly identical to case 2, as expected, however, the
value of the ratio is ~1.3 at £, = 1 GeV. The 20% increase in the ratio in the 0.1
to 0.2 GeV bin relative to its value above 0.2 GeV is an artifact of low statistics; the
statistical error on the data to Monte Carlo ratio in this bin, shown in figure 4.12, is
~30%. The value of the ratio in case 3 is the same normalization difference between
the v, CCQE data set and the predicted Monte Carlo spectrum which was first
discussed in chapter 4, section 4.2. In this way, the case 3 reweighting procedure ties
the normalization and energy spectrum of the n*-decay v, and p*-decay v, spectra

to the observed rate in the data.

These modified “unisims” are used to propagate the simulation input parameter

uncertainties to the EM¢ distribution for y*-decay v, events. For case 1, the scaled
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Figure 5.5: Ratio of Sanford-Wang w" prediction “unisims” to original central value

Monte Carlo vs. EMC (GeV), with no selection cuts applied. Left: predicted n+-decay

v, energy spectra. Right: predicted p*-decay v. energy spectra.
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first derivatives are shown as a function of generated neutrino energy EM¢ for each
of the eight Sanford-Wang 7" flux prediction parameter variations in the top eight
panels of figure 5.6. The scaled first derivatives are defined in chapter 4, equation
4.16; they describe the fractional change in the number of events in a given bin with
respect to a 1o change in a simulation input parameter. The values of the scaled first
derivatives are typically fairly small, and the errors on the scaled first derivatives are
relatively large. In many bins the fractional error is greater than 100%. The error
on the first derivatives does not enter into the error matrix calculation, however,
statistical fluctuations on the first derivatives can increase (or decrease) particular

elements of the error matrix.

To address the issue of statistical fluctuations, the p*-decay v, scaled first deriva-
tive histograms are fit with a polynomial function f(E,) = a; + as- EMY + a3 -
(EMP)? shown superimposed on the scaled first derivatives in the top eight panels
of figure 5.6. Fitting the first derivatives to a function, and using that function value
in place of the first derivative in the error matrix calculation, does not on average
change the total error on the number of events, but serves to smooth statistical fluc-
tuations on a given element of the error matrix. In general, a polynomial function
is a good fit to the scaled first derivatives vs. EMC; the x?/ndf values of the fit are
all much less than 1.0 because of the large statistical errors on central value Monte
Carlo prediction '. The second degree polynomial fit, which is superimposed on the
un-fit derivatives, results in much smaller errors on the scaled first derivatives, shown
in figure 5.6. The fit error bars are calculated from the fit covariance matrix, and
by construction the fit error bars change smoothly as a function of E,. The fit co-

efficients for the pt-decay v, case 3 scaled first derivatives are summarized for each

IThe statistical errors on the scaled first derivatives effectively come only from the central value
Monte Carlo statistics, since the “unisims” are all produced by reweighting central value Monte

Carlo, and the variance of the weights in any EM¢ bin is less than 1.0.
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“unisim” in table 5.3.

The fit scaled first derivatives are used to calculate the output variable error
matrix M in bins of EM. The square roots of the diagonal elements of M are
shown as the error bars on the central value Monte Carlo predicted EM¢ distribution
for p*-decay v, events in the bottom left panel of figure 5.6. The fractional error as
a function of EM¢ is shown in the bottom right panel of figure 5.6. For comparison,
the error bars and fractional error vs. EM¢ calculated without fitting the scaled first
derivatives are also shown. The error bars produced with fitting can be either larger
or smaller than those calculated without fitting the scaled first derivatives, however,

the fitted fractional errors show a much smoother dependence on EMC.

For case 2, the scaled first derivatives are shown as a function of generated neu-
trino energy EMC for each of the eight Sanford-Wang 7" flux prediction parameter
variations in the top eight panels of figure 5.7. In this case the scaled first deriva-
tives are all close to zero because of the “unisims” have been modified by the (“fake
data” / “unisim”) reweighting function. The modified “unisims” are propagated to the
error matrix in bins of EM¢ and the square roots of the diagonal elements of M are
shown as the error bars on the central value Monte Carlo predicted EM¢ distribution
for p*-decay v, events in the bottom left panel of figure 5.7. The fractional error as
a function of EM® is shown in the bottom right panel of figure 5.7. Between ~0.2
and 2 GeV, the error bars are smaller in all EM¢ bins than in case 1, where the
“unisims” were not reweighted to match the central value Monte Carlo. The energy
range where the errors can be reduced using this method is not unlimited because the
reweighting modification is only effective where the v, CCQE data set has reasonable
statistics; above 2 GeV and below 0.2 GeV the selection cut efficiencies are very low,

as is shown in figure 4.7.
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Table 5.1: Summary of number of and uncertainty on u*-decay v, in the detector

acceptance for the three reweighting scenarios described in the text. The Monte Carlo

set corresponds to 2.2x10%' simulated protons on target.

Reweighting Ratio N (™) | AN (un-)fit value (%) | ON (un-)fit value (%)
1.0 12,658 | (4.455) 4.383 (1.158) 1.079
“fake data” / “unisim” | 12,658 | (1.438) 1.166 (0.320) 0.252
data / “unisim” 16,095 (1.595) 1.167 (0.353) 0.251

For case 3, the scaled first derivatives are shown as a function of generated neu-
trino energy EMY for each of the eight Sanford-Wang 7+ flux prediction parameter
variations in the top eight panels of figure 5.8. As in case 2, the scaled first derivatives
are all close to zero because of the reweighting procedure, but the total number of
events is increased by a factor of ~1.3, as can be seen by comparing the vertical scale
of the predicted number of events vs. EM® in the bottom left panel of figure 5.8
with that of figure 5.7. The fractional error as a function of EM¢ is shown in the

bottom right panel of figure 5.8, and is nearly identical to the case 2 fractional error

distribution, as expected.

To compare the three scenarios, the total number of predicted ™ -decay v, events
and the two error estimators 0 N and Ay, which are defined in equations 4.18 and 4.20,
are summarized in table 5.1. With the out-of-the-box Sanford-Wang 7" flux predic-
tion uncertainties, implemented as described in chapter 4, section 4.3, the p*-decay v,
flux error is estimated to be 4.4% without fitting the scaled first derivatives, and 3.6%
with fitting. The bulk of this error comes from normalization rather than shape un-
certainty; the fitted (un-fitted) shape uncertainty estimator 0 N is 0.9% (1.1%). With

the case 2 reweighting, where the “unisims” are reweighted to match the central value
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spectrum from data-reweighted Sanford - Wang

Top eight panels: scaled first derivatives (defined in

equation 4.16) vs. EMC. Bottom left: predicted number of events vs. EMC (GeV)

with m prediction systematic errors for 2.2 x10?* protons on target. Bottom right:

fractional error vs. EMC (GeV). Red solid lines (black points) show the (un-) fit

error calculation.
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Monte Carlo “fake data”, the fitted (un-fitted) normalization error is reduced to 0.9%
(1.9%), and the shape error is 0.2% (0.5%). For case 3, where the Monte Carlo is
reweighted to match the v, CCQE data set, the fitted (un-fitted) normalization error

is 0.9% (2.0%), and the shape error is 0.2% (0.5%).

This result can be used in the oscillation analysis in two ways. First, the pu™-
decay v, prediction for the background to the v, appearance analysis can be directly
tied to data using this method. When performing an oscillation search, one would
apply the case 3 ratio to the predicted p*-decay v, background spectrum. This
would effectively convert a background prediction, which relies on external data and
the Monte Carlo, into an indirect in-situ background measurement. Second, the flux
uncertainty associated with the p-decay v, background prediction is greatly reduced,
as table 5.1 shows, because the high statistics 7t-decay v, data set strongly constrains
the allowable variations in the simulation input parameters describing the 7-decay
flux production. To implement this error reduction in the oscillation analysis one
would use the error matrix calculated in case 3, instead of the case 0 matrix, to
parameterize the uncertainty on the p*-decay v, background coming from the 7
flux prediction. The one serious complication with using this result in the oscillation
fit is how to include the systematic errors on the flux and flux uncertainty constraint,
which come from the cross section and detector response assumptions discussed in

connection with equation 5.2. This question is addressed in detail in chapter 7.

This analysis can be used to constrain the n*-decay v, prediction in exactly the
same way as for the py*-decay v, flux. The ratio of the modified “unisims” to the
original central value Monte Carlo for each of the three cases discussed above is shown
as a function of EMC for t-decay v, events in the left-side panels of figure 5.5, with no
selection cuts applied. The modified “unisims” are used to propagate the simulation

input parameter uncertainties to the EM¢ distribution for 7*-decay v, events. The
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Table 5.2: Summary of number of and uncertainty on w"-decay v, in the detector
acceptance for the three reweighting scenarios described in the text. The Monte Carlo

set corresponds to 2.43x10%° simulated protons on target.

Reweighting Ratio | N v, (n%) | AN (un-)fit value (%) | N (un-)fit value (%)
1.0 552,493 | (5.658) 5.664 (1.462) 1.460
“Unisim” / OV MC | 552,493 | (2.556) 2.492 (0.714) 0.591
Data / CV MC 705,633 (2.508) 2.504 (0.618) 0.601

scaled first derivatives are shown as a function of generated neutrino energy E¢
for each of the eight Sanford-Wang 7+ flux prediction parameter variations in the
top eight panels of figures 5.9, 5.10, and 5.11 for cases 1, 2, and 3. The predicted
EMC distributions for mt-decay v, events with systematic errors from the 7 flux
prediction, and the fractional errors vs. EMY are shown in the bottom panels of
figures 5.9, 5.10, and 5.11. The fit coefficients for the 7" -decay v, case 3 scaled first

derivatives are summarized for each “unisim” in table 5.3.

To compare the three scenarios, the total number of predicted n*-decay v, events
and the two error estimators 0N and Ay, which are defined in equations 4.18 and
4.20, are summarized in table 5.2. With the out-of-the-box Sanford-Wang 7t flux
prediction uncertainties, the 7*-decay v, flux error is estimated to be 5.7%, both with
and without fitting the scaled first derivatives. As for the pt-decay v, flux, the bulk
of this error comes from normalization rather than shape uncertainty; the fitted (un-
fitted) shape uncertainty estimator o N is 1.46% (1.46%). With the case 2 reweighting,
where the “unisims” are modified by reweighting such that they match the central
value Monte Carlo “fake data”, the fitted (un-fitted) normalization error is reduced to

2.5% (2.6%), and the shape error is 0.6% (0.7%). For case 3, where the Monte Carlo



197

§ 8% 7‘" :—:--v'rTTT § 8% : _-—--'r'TTTT
Z°0 IF IS 0 d— ——"‘Iﬂgjf
8-0.1 + 1 8-01 i il
§_02 il I I | g'oz H I I I
0 1 2 3 0 1 2 3
EMC (GeV) E MC (GeV)
302 [ 302 F
< H < i
s 0.1 = s 01 %
S0 & S0
B01 ] E01 \“m
5'02 IR R B R R \_-.-TL"'IJ_I\I g'oz Hoo o L | |
0 1 2 3 0 1 2 3
E MC (GeV) E MC (GeV)
802 T T 802 T
> 01 i ==4010][| 5 0.1 1 T
3 0 e 3 O T —
8-01 I 8-01 I |
5'02 H R R §'02 H R R L
0 1 2 3 0 1 2 3
E MC (GeV) E MC (GeV)
'502 T 802 7
g Ho < B
5 O.% ™ :IITT 3 O'% Hr :_-:r'TTTT
8-01 I+ | 801 F L]
§'02 H I I | g'oz 0 I I [
0 1 2 3 0 1 2 3
E MC (GeV) E MC (GeV)

02

L

Number of Events
g
e
==
==
—
=
g B
Fractional Error

:

Lo el
20000 |- i

L om 0
10000 |- &

3%
[az] [35]
E3
r By L
0 = L L L L i == 0 L L L L L
0 05 1 15 2 25 3 0 05 1 15 2 25 3

EMC (GeV) EMC (GeV)

EMC

MC spectrum: from Sanford-Wang ©* prediction

Figure 5.9: Error on nt-decay v,
uncertainties. Top eight panels: scaled first derivatives (defined in equation 4.16) vs.
EMC " Bottom left: predicted number of events vs. EMC (GeV) with 7+ prediction

systematic errors for 2.43 x10% protons on target. Bottom right: fractional error vs.

EMC (GeV). Red solid lines (black points) show the (un-) fit error calculation.



202 F
% 01 1. Tl
801 B
g'oz = | Loy v by
0 1 2 3
EMC (GeV)
202 F
S01 i
g'o-z 57\ Lo oy oy
0 1 2 3
EMC (GeV)
802 F
201 |, =z
30 ==L
B8-0.1 ¢+
§-02 B [ I |
0 1 2 3
EMC (GeV)
's 0.2 F T
< H
z 0-% i —erT]
8-01 | L
§-02 %7\ [ I |
0 1 2 3
EMC (GeV)
g | -
W0 [ -
E e
£ 40000 =]
2 e
, B
30000? y .
20000 [ i
10000 |- i
C i
[ =
0 05 1 15 2 EVMZS(GEV?’)

Figure 5.10: Error on w"-decay v,

Scaled AN/Ac2

Scaled AN/Ac4
oo ©Oo

oo ©o
NP oORN

Scaled AN/Ac6

Scaled AN/Ac8

©co ©o
N OoRN

oo 0o
N ORN NRORN

Fractional Error

MC
El/

198

é’ __,..-.:rTTTT
i ==L
;\\\\\\\\\\\\\\_
0 1 2 3
EMC (GeV)
27 1 \\H%:mﬂ; Il Il
0 1 2 3
EMC (GeV)
= ]
;\ I I [
0 1 2 3
EMC (GeV)
| | | | ‘ | | ‘ | |
0 1 2 3
EMC (GeV)
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06 :1 )
0.04
0.02 .
0(;” 0.5‘H‘l‘.”‘1.5””‘2””2‘.5””3
EMC (GeV)
spectrum from “fake data”-reweighted

Sanford-Wang ©t prediction uncertainties. Top eight panels: scaled first derivatives

(defined in equation 4.16) vs. EMC. Bottom left: predicted number of events vs. EM¢

(GeV) with ©* prediction systematic errors for 2.43 x10%° protons on target. Bottom

right: fractional error vs. EMC (GeV). Red solid lines (black points) show the (un-)

fit error calculation.



202 F <02
S01 f 501
4 0 = == 2 0
8-0.1 # 8-0.1
g'oz E;\ TERT T N TR R IR NN S N R §'02

0 2 3

EMC (GeV)
802 F T 0.2
S01 01
3 0 #F 1 0
B-01 | =21 8-0.1
g_o-z i [ R R B §_0-2

0 2 3

EMC (GeV)
802 F €02
S01 | et 201
I 0 = =l 5 0
B8-0.1 ¢+ 8-0.1
g'o-z B T T | g'o-z

0 2 3

EMC (GeV)
'502 T 1802
% 0-% L _rT] % O.%
8-01 | Ul 801
g'oz ol T T L] 3'02

0 2 3

EMC (GeV)
o I
B 60000 L g
3 ) 2
E 50000 [ &8 ®
Z4OOOO* - }

» £
30000 — Eﬂ
10000 [ 28]
L ==
0 05 15 2 EVMZS (G ev?’)
Figure 5.11: Error on w*-decay v, EMC

199

_.__._J_J_J_ll

o N IR
4\ \'l__l T 1

2 3
EMC (GeV)

e

2 3
EMC (GeV)

7T ]

:“*lll

2 3
EMC (GeV)

_..-r-rTTT

0

2 3
E MC (GeV)

02

o b e b e by
15 2 25 3

E MC (GeV)

spectrum from data-reweighted Sanford-

Wang 7 prediction uncertainties. Top eight panels: scaled first derivatives (defined

in equation 4.16) vs. EMC. Bottom left: predicted number of events vs. EMC (GeV)

with 7+ prediction systematic errors for 2.43 x10%° protons on target. Bottom right:

fractional error vs. EMC (GeV). Red solid lines (black points) show the (un-) fit

error calculation.



200

Table 5.3: Summary of scaled first derivative fit coefficients for the data-reweighted
Sanford-Wang n+ prediction unisims. The fit function is aj +as - EMC +az- (EM©)2,

All coefficients have been multiplied by 102.

reweigted | v, () | v, () | v () | ve(p) | ve(pt) | ve(p™)

“unistim” aq a9 as aq a9 as

SW nt ¢l | 0.077 |-0.174 | 0.183 | 0.446 |-0.549 | 0.196
SW nt ¢2 | -1.788 | 1.924 | 0.086 |-2.182 |2.310 |-0.394
SW nt ¢3|-0.099 |3.058 |-2.967 |0.558 | 0.615 |-0.713
SW nt ¢4 | -2.186 | 0.121 | -9.579 |-0.009 | 3.644 |-2.433
SW nt ¢5 10333 | -2.797 | 2.399 |-0.314 |-0.576 | 0.550
SW nt ¢6 | 1.117 | -2.083 | 0.748 | 0.955 |-1.056 | 0.216
SW nt ¢7]0.689 |-0.855 | 0.112 |0.731 |-0.813 | 0.171
SW nt ¢8| -1.571 | 2.495 | -0.790 | -2.572 | 3.420 | -0.960

is reweighted to match the v, CCQE data set, the fitted (un-fitted) normalization
error is 2.5% (2.5%), and the shape error is 0.6% (0.7%). As before, reweighting the
Monte Carlo to match the data increases the total number of predicted events by a
factor of 1.28. In general, the 7"-decay v, errors tend to be larger than the py*-decay
v, errors because of the high E,ﬂ”c contribution; for £, < 1.5 GeV the fractional

errors are comparable 2.

One notable difference between the 7*-decay v, and p*-decay v, constraints is
that for the 7"-decay v, events, fitting the scaled first derivatives does not change

the error matrix appreciably with respect to the un-fit calculation. This is the case

2The Sanford-Wang 7+ production cross section uncertainty increases with EM¢ because a 1.5
GeV wF-decay v, comes from a 4.0 GeV 7", while a 1.5 GeV p*-decay v, comes from a 2.5 GeV

7w+, from figure 5.1, and the 7" production cross section uncertainty also grows py.
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because the majority of the neutrino-interaction Monte Carlo set is comprised of 7 -
decay v, events, and so the statistical fluctuations in the EM¢ distribution for these

events are negligible.

The applicability of the flux and flux uncertainty constraints derived here is
analysis-dependent. For the v, — v, oscillation search, the constraints in this chapter
can be used, since the appearance analysis compares the total number of v, events
to the background v, event expectation. Relating both signal and background to the
observed v, event rate, rather than just the signal component, reduces the systematic
errors significantly and builds confidence in the oscillation analysis. However, the v,
disappearance oscillation search compares an observed v, signal with a predicted v,
signal. Therefore, the prediction must come from information external to the observed

event rate in MiniBooNE, and so these constraints cannot be used.

Cross section measurements are another class of MiniBooNE analyses where the
constraints derived here can be applied in some situations but not in others. The neu-
trino interaction cross sections for all processes that contribute to the event sample
passing the v, CCQE selection cuts are assumed when deriving the flux constraint
here, and therefore this constraint cannot be used for a measurement of the contribut-
ing cross sections. However, for other neutrino interaction cross section measurements
the flux constraint derived here is applicable. For example, MiniBooNE’s first two
cross section measurements, of neutral current resonant 7° [40] and charged current
resonant 7t [119] production, are normalized to the v, CCQE data observed event

rate using the technique of this analysis.
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5.3 Extensions of this Analysis

The application of this analysis to constraining the uncertainties associated with
the MiniBooNE simulation predictions effectively uses the v, CCQE data set as a
calibration source. When viewed in this way, the v, CCQE data set could also
be applied to constraining any source of uncertainty it has in common with the v,
oscillation data set. As long as a source systematic uncertainty affects the v, and v,
data sets in similar ways, the high statistics of the v, CCQE data can provide a strong
constraint on the allowable variations of simulation parameters. The first candidate
for this treatment is the CCQE cross section prediction uncertainties, since these are
based on external data, and the MiniBooNE v, CCQE data set contains an order
of magnitude more CCQE events than all previous measurements in MiniBooNE’s
energy range combined. The application of the method described here to constraining

the cross section simulation uncertainties is described in appendix C.

Along the same lines, the observed high energy v, events can be used to provide
a constraint on the rate of charged kaon decays in the MiniBooNE beam line. Above
E, ~2.0 GeV, the majority of v, come from K*, rather than 7", decays, therefore a
measurement of the number of events in this region normalizes the K contribution
to the neutrino flux. The high energy v, measurement can be used to validate the
K™ production cross section fit result of chapter 3, in combination with the in-situ
constraint from the little muon counter (LMC) system in the neutrino beam line. A
sketch of a method for incorporating these data sets to produce a constraint on the

K™ flux prediction is given in appendix D.



Chapter 6

Constraining the Cross Section

Predictions with V), Data

Cross sections in the F, ~ 1 GeV range have sizable uncertainties from both theory
and experiment. The theoretical description of the nuclear environment is a simple
approximation in most neutrino interaction simulations [120], and the existing data
in MiniBooNE’s energy range comprises a total of ~10,000, events from all previous
experiments combined [41]. The high statistics MiniBooNE v, CCQE data set can
add significantly to the understanding of this important neutrino interaction, and
additionally constrain the simulation at MiniBooNE to match the observed v, data.
Two measurements are described here. First, the axial mass (m4), the Fermi mo-
mentum (pg), and the binding energy (Fp) are extracted simultaneously from fitting
the MiniBooNE v, CCQE data set assuming the Smith-Moniz bound nucleon CCQE
cross section formalism. The results provide constraints on the parameter values,
their uncertainties, and their correlations for the MiniBooNE neutrino interaction
simulation. Second, the functional dependence of the axial form factor on the four-

momentum transfer squared, F4(Q?), is measured in the MiniBooNE data, along

203
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with pr and Eg. This is the first measurement of its kind on Carbon in MiniBooNE’s

energy range.

6.1 CCQE Cross Section Parameter Measurement

Charged current quasi-elastic neutrino interactions are the signal channel for both
the v, — v, and v, disappearance oscillation searches, therefore it is desirable to
constrain the CCQE cross section prediction using MiniBooNE data. However, for
the oscillation analyses it is important that any constraints be derived in a flux-
independent way so as not to bias the result. Historically, this is how the majority
of CCQE cross section parameter measurements have been made, because accurate
predictions of neutrino fluxes have not been available [121, 122, 123, 124, 125] due to

the dearth of comprehensive meson production data in p-N collisions.

In the Smith-Moniz formalism [100] described in chapter 3, the free parameters
in the CCQE cross section are the Fermi gas model parameters pr and Epg, and the
form factor parameters m, Fa(Q?), my, and Fy(Q*). The vector parameters my
and Fy(Q?) are measured very precisely in electron scattering experiments [103], and
therefore contribute negligibly to the neutrino interaction cross section uncertainties
at MiniBooNE. However, of the axial parameters, only g4, the value of F,(Q* = 0),
has a small uncertainty [41]. The remaining CCQE cross section parameters are not
well constrained by past measurements, and therefore are an important contribution

to MiniBooNE’s CCQE cross section prediction uncertainty [105].

The axial form factor parameterizes the distribution of the weak charge within
the nucleus in neutrino scattering, and m,4 is sometimes called the “charge radius”.

This form factor is usually assumed to have a dipole form as a function of momentum
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Figure 6.1: Measurements of m4 from neutrino scattering (left) and pion electro-
production (right) experiments, assuming a dipole form for Fa(Q?). This figure is

from reference [102]

transfer squared (Q?):
FAQ) = — (6.1)

The Fourier transform of this functional form gives an exponential charge density dis-
tribution with radius m4. The dipole assumption historically comes from equating
the Q? dependence of the vector and axial form factors, which is equivalent to assum-
ing identical distributions of electromagnetic and weak charge within the nucleus. A
number of experiments have measured m 4 under the dipole assumption; their results

are summarized in figure 6.1.

In general, neutrino scattering experiments extract my4 by fitting the Q? dis-
tribution of v, CCQE events. The world-average value from neutrino scattering
experiments is 1.026 4+ 0.021 GeV/c? [102]. However, the average of the bubble-
chamber experiments which measure m, on Freon (Propane-Freon) is 0.84 £ 0.08

(0.88 £0.07) [102], which has a much larger uncertainty, ~10%. The discrepancy
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may be due to nuclear corrections to the CCQE cross section: since my is a pa-
rameter of the free nucleon cross section, heavy target experiments must include a
simulation of or correction for nuclear effects, which can be quite large and may be
treated differently in each experiment. For this reason, the most straightforward mea-
surements to interpret are those on deuterium, which have an average m 4 value of
1.05 + 0.03. The axial mass can also be measured in pion electro-production data,
using ep — epr’ and ep — enm™ at threshold, however this requires additional as-
sumptions beyond the dipole form for F,(Q?) to address radiative corrections and
the contributions of multiple resonances [126]. The electroproduction world-average

my value is 1.069 + 0.016 GeV/c* [102].

The parameters in the Smith-Moniz CCQE cross section formalism which include
the effects of the bound target nucleon are the Fermi gas model parameters Fg and
pr. The values of these parameters for a Carbon target can be extracted from electron
scattering data; the most recent published measurement dates from 1971, and is used
as input to the MiniBooNE simulation [104]. The Fermi gas model prediction agrees
with quasi-elastic neutrino scattering cross section measurements at the 10% level for
projectile energies above 1 GeV', however, it overpredicts the cross section below 1
GeV. Therefore, the external-data based uncertainties assumed by MiniBooNE on
Ep and pr are inflated with respect to past measurements such that the MiniBooNE
neutrino interaction Monte Carlo prediction covers the LSND measurement of the v,
CCQE cross section at F,, = 0.150 GeV within errors [105]. The resulting Fermi gas
model parameters are Fg = 0.025 + 0.025 GeV and pr = 0.220 £+ 0.030 GeV'.

In recent years there have been several surprises in CCQE cross section parameter
measurements. The K2K experiment, which is a neutrino oscillation experiment very
similar to MiniBooNE at E, ~1.2 GeV with a C H, target, measures a value of m 4

= 1.20 + 0.12 (GeV/c?) [37]. This is very interesting for MiniBooNE because the
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reconstructed Q? distribution disagreement between data and Monte Carlo at low Q?
is quite similar to the K2K observation [37, 120]. Another surprising development is
that the most recent measurements of the vector form factor reveal non-dipole depen-
dence on Q* [103]. Both of these results are in conflict with theoretical expectations,
and therefore motivate closer study of the parameters of the CCQE cross section and

their uncertainties.

6.1.1 Method

To measure the CCQE cross section parameters at MiniBooNE, a histogram of the
reconstructed @? distribution for data passing the v, CCQE event selection cuts is
fit with m4, pr, and Ep as free parameters in the fit, assuming the dipole form for
F4(Q%). The fit uses the MiniBooNE Monte Carlo to propagate the underlying CCQE
free nucleon cross section parameters to a histogram of events vs. reconstructed Q?,

which is subsequently compared with the data. The procedure is as follows:

1. the v, CCQE data set described in chapter 4 is histogrammed in reconstructed
(Q)? bins.

2. A file of Monte Carlo events is created which contains the generated and recon-
structed E, and Q?, the generated muon momentum p,, and angle cos(6,,), and

a weight for each event. The weight is a function of my, pr, and Ep.

3. The Monte Carlo weights are summed to histogram the Monte Carlo in Q%pq

bins, with the same histogram definition as the data.

4. The fit minimizes a x? formed between data and Monte Carlo with respect to

the parameters (ma, pr, Ep),

N i— N i\Ma, P B 2
Xg _ Z( DATA, Mc( A, PF B)) (6.2)

- /Npara,
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where i indexes Q% bins, Npar 4,i 1s the number of events in the data in bin 1,
\/m is the statistical error on the data, Nyc;(ma, pr, Ep) is the number
of Monte Carlo events in bin ¢ and is a function of (mu, pr, Eg) via the Monte
Carlo weights. The MINUIT program is employed to perform the minimization
with the MINOS error analysis option [56]. The initial values of the parameters
are the world-average values, Eg = 0.025 GeV, pr = 0.220 GeV, and my =

1.03 GeV/c?, and the parameters are unbounded in the fit.

The Monte Carlo weights are calculated from the Smith-Moniz relativistic Fermi
gas model CCQE cross section, which is given in chapter 3, equations 3.34 through
3.41, and implemented identically in the MiniBooNE neutrino interaction cross section
Monte Carlo. The initial weight of each event is set to the value of the Smith-Moniz
CCQE cross section under the dipole F4(Q?) assumption with the world-average
CCQE cross section parameter values, and the generated E,, p, and cos(6,) of the

event.

At each iteration in the fit, as m4, pr, and Ep are varied, the cross section is
recalculated and each event is given a weight equal to the current value of the cross
section divided by the initial value. One attractive feature of fitting for all three of
the free parameters in the Smith-Moniz CCQE cross section simultaneously is that
the fit returns a covariance matrix for the parameters. This matrix not only gives
the parameter errors, but also their correlations p. The p can be large, and should be
included when propagating errors from underlying simulation parameters to output

variable distributions such as E9E, used for oscillation analyses.

The events are re-binned at each iteration of the fit, and compared with the
data. Ideally, the @Q? bin widths would be as small as possible, however, the ?
reconstruction resolution and, to a lesser extent the statistical error, sets a lower limit

on the bin size. The reconstructed Q? bin widths are chosen to be approximately twice
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the Q? resolution in the lowest ? bin, which is the most restrictive, as figure 4.10
shows. Stated another way, the reconstructed ? bin widths are chosen such that
the average Monte Carlo generated % in each reconstructed Q% bin lies in the same
reconstructed Q% bin. This constraint results in 16 bins between 0.0 and 1.0 GeV?2.
The cutoff at 1.0 GeV? is chosen to minimize statistical error. This reconstructed Q?

range includes 96% of the events in the v, CCQE data set.

According to the Monte Carlo, 9.5% of the events that pass the v, CCQE selection
cuts are due to non-CCQE background interactions. Since the Smith-Moniz cross
section is valid only for CCQE events it cannot be used to calculate the weights
for background events. Therefore these weights are treated as independent of the fit
parameters, that is, the weight for background events is a constant equal to 1.0 at each
iteration in the fit. Fortunately, the reconstructed Q? distributions of background and
signal are quite different, as is shown in figure 4.9 in chapter 4. The background is
much more peaked at low reconstructed )%, and therefore one can test the impact of
the background events on the fit results by fitting above a minimum Q2 value. Above
Q? = 0.2 GeV?, the fraction of background events in any bin is < 1%, and the total

background fraction is reduced to 5%.

This kind of analysis can be done with either absolutely or relatively normalized
Q? distributions, since m, (and Ep and pr) affect both do/dQ? and the overall
normalization of the CCQE cross section. Given the disagreement between the data
and Monte Carlo predicted rates at MiniBooNE, the CCQE parameter extraction
analysis here uses only the shape of the data Q? distribution. This is accomplished
by normalizing the Monte Carlo such that the total number of events is equal to
the number in data. The relatively normalized total number of Monte Carlo events,

before any fitting, is given by

DATA
MC Zz Nz MC DATA
N = S NYC = N (6.3)
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where ¢ indexes events passing the v, CCQE selection cuts.

In practice this analysis is performed with weighted events to start with, since
the Monte Carlo was generated with different values of the CCQE cross section pa-
rameters from the world-averages. The events are reweighted by a factor

B UCCQE(EBprvaEz]/VICap;]yC?COS(HM)MC)
— ocoqe(El, pp, my|EMC pMC cos(0,)MC)

(6.4)

where occgp is the Smith-Moniz v, CCQE cross section, Eg, pr, and my4 are the
world-average values given above, and E, p/, and m/, are the original values used
when the Monte Carlo events were generated. The event kinematics are specified by
EMC, plf€, and cos(6,)MC. It has been verified that the (p)“, cos(,)"“) kinematic
phase space overlap between the world-average and original CCQE cross section pa-
rameter Monte Carlo sets is 99.98%, that is, the problem of trying to reweight events
that do not exist occurs for <0.02% of the events. The variance of the weights is
small relative to the sum of the weights: > (w; —w)?*/ >, w; < 1%, and therefore
the effect of Monte Carlo statistics will be small, however, the error on the number
of weighted events is a function of Q? and therefore it is included in the x? definition

via

(6.5)

9 Npara; — Nuci(ma, pr, Eg)\?
¢ =3 )
i \/ Nparai+ oy
where 03;¢; is the variance in bin 7 of the Monte Carlo weights, evaluated before the

fit changes the CCQE cross section parameters *

6.1.2 Results

The analysis method is first verified by several “fake data” studies, where “fake data”

is central value Monte Carlo. The “fake data” set in this case has the statistics of

'The variance is not updated during the fit to avoid having fit parameters in the denominator,

which causes well-known problems [127] with minimizers like MINUIT.
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Table 6.1: Fake data fit results with statistically identical “fake data” and Monte Carlo
sets; both have the statistics of the data. The fake data is generated with Eg = 0.025
GeV, pp = 0.220 GeV, and my = 1.03 GeV/c?.

NMC ‘ X2 Eg (GeV) ‘ pr (GeV) ’ ma (GeV/c?)

98,381 ‘ 0.0000 | 0.0250+0.0053 ‘ 0.220040.0056 ’ 1.030£0.0297

x10

10000
80000
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60000
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40000
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20000
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0r or
| | | | | | | . | | B . | | . |
0.02 0.022 0.024 0.026 0.028 0.03 0.214 0.216 0.218 0.22 0.222 0.224 0.226 10 1 101 1.02 103 104 105 106
2 Vs Eg(Gev) . %°vs. P (GeV) %*vs.m, (Gev/c)

Figure 6.2: x? function value vs. fit parameter value for a fit with statistically identical
“fake data” and Monte Carlo samples. Left: x* vs. Ep (GeV). Middle: x* vs. pp
(GeV). Right: x* vs. ma (GeV/c?).

the data, 98,381 events, and is statistically independent from the Monte Carlo used

in fitting, unless noted otherwise.

The first check of the method is that fitting statistically identical “fake data”
and Monte Carlo results in x?2 = 0.0 at the minimum, and returns the Monte Carlo
CCQE cross section parameters. The fit passes this test, and the best-fit parameters
and errors are shown in table 6.1. The errors on the fit parameters are determined
by the “fake data” and Monte Carlo statistics, which correspond here to ~2 x10°
Monte Carlo events before event selection cuts. The x? functions about the parameter
minima are shown in figure 6.2. These are one-dimensional scans in the sense that

while one parameter is varied by 1 ¢ the other two parameters are fixed to their
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Table 6.2: “Fake data” fit results as a function of the number of Monte Carlo events.
The “fake data” is central value Monte Carlo with the statistics of the data, 98,381
events, and is statistically independent from the Monte Carlo event samples. NM¢
is the number of Monte Carlo events after the v, CCQE event selection cuts and the

requirement that Q%pe < 1.0 GeV?.

Nooeuts | Nafior cus | X* ndf | Ep (GeV) | pr (GeV) | ma (GeV/c?)
1x105 | 46,969 596.8041 | 13 | 0.0248 0.2213 1.032
2x10° | 103,413 23.7028 | 13 | 0.0249 0.2200 1.031
3x10% | 150,252 23.7183 | 13 | 0.0250 0.2200 1.028
4x10% | 197,162 18.0740 | 13 | 0.0250 0.2200 1.030
5x10° | 244,047 16.6362 | 13 | 0.0250 0.2200 1.029
6x10% | 290,933 14.6538 | 13 | 0.0250 0.2200 1.029
7x10% | 337,657 12.0116 | 13 | 0.0250 0.2200 1.030
8x10° | 374,929 12.0167 | 13 | 0.0250 0.2204 1.029

best-fit values. These distributions show that while the x? function is very symmetric
about the minimum for my,, it is highly asymmetric about the minima for EFz and
pr°

In practice, one would like the Monte Carlo statistical error to be negligible, and
therefore the Monte Carlo statistics should be much larger than the data statistics.
One test for determining when the Monte Carlo statistics are sufficiently large is to
examine the value of the x? at the best-fit point for a “fake data” fit as a function of

the Monte Carlo statistics. When the value of the x? is equal to the number of degrees

2The values of the x? function for the points sampled above the best-fit pr value only appear
to be zero because of the scale of the figure; the coordinates of these points range from (pg, x?) =

(0.221, 0.452) to (0.226, 11.459).
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of freedom, and does not change with increasing Monte Carlo statistics, then the fit
result is stable and the Monte Carlo statistics are sufficient. The results of this test are
shown in table 6.2. The stable point occurs when the Monte Carlo statistics are ~4
times larger than the data statistics. Another interesting feature of this study is that
the best-fit parameter values are fairly independent of the number of Monte Carlo
events used, only the value of the x? function at the minimum changes significantly.
This builds confidence that the parameter determination is unbiased with respect to
Monte Carlo statistics. For all subsequent fits described here, the Monte Carlo set
with the maximum number of events shown in this table is used, which is 374,929
events after cuts, corresponding to 8x10° generated events. As discussed in chapter
4, approximately 1/3 of the generated events are thrown away due to the correlation
between neutrino direction and interaction length, therefore 8 x 10° generated events
corresponds to ~5.4 x10° events generated in the detector volume. After cuts, this

Monte Carlo set has 274,929 events, which is ~4x larger than the data statistics.

The reconstructed ? distribution is shown before and after the fit with the “fake
data” superimposed in the left panel of figure 6.3. The Monte Carlo sample is 8 x 10°
events before v, CCQE selection cuts. As expected, Monte Carlo and “fake data”
agree well, both before and after the fit. The contribution to the x? at the best-fit

point from each reconstructed Q? bin is shown in the right panel of figure 6.3.

It is important to verify that this analysis is insensitive to neutrino oscillations
since oscillations could bias the CCQE cross section parameter results, or, tuning the
Monte Carlo based on fits to data with an oscillation signal could bias the oscillation
analysis. To check the sensitivity of this method to oscillations, the maximum allowed
v, disappearance signal under a 341 model [36] is introduced into the “fake data” set,

which has the statistics of the data without oscillations 3. The parameters are (Am?,

3Since the efficiency of the v, CCQE selection cuts is neglible for v, events, the presence of
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Figure 6.3: Left: number of events before (dashed, red line) and after (solid, green
line) fitting “fake data” with Monte Carlo vs. reconstructed Q* (GeV?). Right: x?

value vs. reconstructed Q* (GeV?) at the best-fit point.
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s1in?20) = (1.eV?2, 0.2), and the oscillated spectrum is produced by weighting the

central value Monte Carlo (un-oscillated) events by the survival probability P (v, —

v,) = 1—sin*20sin? <1'27§;2?£:‘1/()km)>. The reconstructed Q? distribution is shown
in figure 6.4, compared with the no-oscillation case. The left panel shows the number
of events vs. %, and the effect of the oscillation signal is clearly visible. However,
this analysis normalizes the Monte Carlo to the data (or “fake data”), and therefore
the normalization component of the oscillation signal is lost. The right panel of
figure 6.4 shows the oscillated and un-oscillated “fake data” sets, normalized to the
same number of events. Here, the oscillation signal is much less apparent. A fit
to the oscillated “fake data” using the Monte Carlo sample from 8 x10° generated
events before cuts results in best-fit CCQE paramters that are very similar to the
un-oscillated “fake data” fit result. The best-fit parameter values are Eg = 0.0240
GeV, pr = 0.2286 GeV, and m = 1.037 GeV/c?; the x? value at the best-fit point
is 11.1, and the fit has 13 degrees of freedom. The comparable un-oscillated “fake
data” fit results are summarized in the last row of table 6.2. These two cases agree
within the systematic errors on the fit parameters, which are summarized in table
6.6. A lower Am? signal might produce more of a spectrum distortion, which would

have a larger affect the m 4 fit, however, regions with Am? < ~1.0 eV? are excluded

by the atmospheric data [36].

An important assumption of this analysis method is that the background can
be treated as noise in the sense that the background normalization does not change
during the fit. The Monte Carlo predicted distribution of the background as a function
of reconstruction @2 is shown in figure 6.5, and one can see that the relative signal
and background fractions change significantly as a function of Q2. To test the impact

of background on the fit results, one can restrict the range of Q% values used in

v, — V. oscillations at the LSND-predicted level would have no impact on this analysis.
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Figure 6.5: Left: number of events vs. reconstructed Q* (GeV?) in “fake data” for
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and backgound events (blue, dotted line). Right: fraction of v, CCQE (red, dashed

line) and background (blue, dotted line) events vs. reconstructed Q* (GeV?).

Table 6.3: “Fake data” fit results as a function of the minimum reconstructed Q* value

used in the fit.

The “fake data” is central value Monte Carlo with the statistics of

the data, 98,381 events, and is statistically independent from the Monte Carlo event

sample, which corresponds to 8x10° events before selection cuts.

2 (GeV?) | x? ndf | bgnd/total | Eg (GeV) | pr (GeV) | ma (GeV/c?)
0.0000 12.0167 | 13 | 0.1013 0.0250 0.2204 1.0290
0.0625 10.6889 | 12 | 0.0790 0.0250 0.2200 1.0251
0.1250 9.6668 | 11 | 0.0670 0.0250 0.2209 1.0239
0.1875 10.8390 | 10 | 0.0581 0.0251 0.2244 1.0288
0.2500 7.2560 |9 0.0512 0.0252 0.2316 1.0313
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Table 6.4: Data fit results. The Monte Carlo set corresponds to 8x10° events before
selection cuts, or ~4x the data statistics after cuts. The probability for x?/ndf =
3.67/13 is 99.4%.

X2 /ndf Ep (GeV) ‘pF (GeV) ma (GeV/c*)
98,381 ‘ 3.6712/13 | 0.0341+0.0013 ‘ 0.2830£0.0069 | 1.254240.0204

NData

the fit thereby changing the total fraction of background events. The Monte Carlo
is normalized to the total number of “fake data” events, with no Q? cuts, in all
cases. The results of this study are summarized in table 6.3. For each fit, a minimum
reconstructed Q2 cut is applied to “fake data” and the statistically independent Monte
Carlo sample corresponding to 8 x10° events before cuts. The resulting best-fit
parameters are all in good agreement with the default Q? > 0.0 case, which builds
confidence that the presence of background events at low % does not bias the fit
results under this analysis method. Note however that this study assumes that the
@Q? distribution of background events is known perfectly. A similar study can be done
with the data, and if the fit results depend on the minimum reconstructed Q? value, it

may indicate that the assumed Q? distribution of the background events is incorrect.

Having determined the necessary Monte Carlo statistics, verified that the analysis
is insensitive to oscillations, and checked that the presence of background does not
bias the fit results, one can apply this analysis to the actual v, CCQE data set.
The minimization converges successfully with MINUIT fit status parameter ISTAT
equal to 3.0. The resulting best-fit parameters and their fit errors are summarized in
table 6.4. The best-fit parameters are quite different from the world-average values:
the binding energy Ep is 0.034£0.0013 GeV compared with the world-average value
of 0.025 GeV, the Fermi momentum pp is 0.2831+0.0069 GeV compared with 0.220
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Figure 6.6: x? function value vs. fit parameter value for a fit to data. Left: x* vs.

Ep (GeV). Middle: x? vs. pr (GeV). Right: x* vs. ma (GeV/c?).

GeV, and the axial mass my is 1.2540.02 GeV/c* compared with 1.03 GeV/c?. The
correlations between parameters, from the fit covariance matrix, are p1o = pa1 =
-0.060, p13 = p31 = 0.500, and pa3 = p32 = 0.617, where parameter #1 is Ep, #2
is pp, and #3 is my4. The value of the y? as a function of the fit parameters about
their mimina is shown in figure 6.6. As in the “fake data” case, the x? is symmetric
about the best-fit m 4 value and asymetric about Eg 4. Here the y? is also symmetric

about the best-fit pp value.

The reconstructed Q2 distribution is shown before and after the fit with the data
points superimposed in the left panel of figure 6.7. Before the fit, data and Monte
Carlo disagree significantly for Q% < 0.2 GeV?; after the fit, the Monte Carlo
reproduces the data well. The contribution to the x? at the best-fit point from each

reconstructed Q2 bin is shown in the right panel of figure 6.7.

Given the large differences between the starting and ending values of the CCQE

cross section parameters, one might worry about how other kinematic distributions

4The values of the x? function for the points sampled below the best-fit Ep value only appear
to be zero because of the scale of the figure; the coordinates of these points range from (Eg, x?) =

(0.034, 3.695) to (0.0328, 5.801).
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line) fitting data with Monte Carlo vs. reconstructed Q* (GeV?). Right: x* value vs.

reconstructed Q* (GeV?) at the best-fit point.

are affected. Figures 6.8 and 6.9 show the reconstructed E@¥ distribution in each
Q%pc bin before and after the fit compared with the v, CCQE data set.  These
show that after the fit the Monte Carlo prediction agrees much better with the data,
even though these EY¥ distributions are not included in the fit, since only the total
number of events in each Q% bin is considered. It is also very encouraging that the
E9F distributions agree equally well for all E9F values, because this indicates that
the CCQE parameter fitting has not introduced a bias as a function of E9¥, which
is the important variable for the oscillation analyses. In general, figures 6.8 and 6.9
demonstrate excellent agreement between the Monte Carlo prediction after the fit
and the data over 0 < Q% < 1 GeV? and 0 < EYF < 3 GeV, which is nearly all

of the MiniBooNE (Q?, E9E) parameter space.

To check the background reconstructed Q? distribution assumption, the data have

been fit with a series of minimum reconstructed Q? cuts, ranging from 0.00 to 0.25
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Table 6.5: Data fit results as a function of the minimum reconstructed Q* value used

in the fit. The Monte Carlo event sample corresponds to 8x10° events before selection

cuts.
2. (GeV?) | x? ndf | Eg (GeV) | pr (GeV) | ma (GeV/c?)
0.0000 3.6712 | 13 | 0.0341 0.2830 1.2542
0.0625 3.5723 | 12 | 0.0321 0.2856 1.2493
0.1250 3.5827 | 11 | 0.0287 0.2903 1.2427
0.1875 3.4296 | 10 | 0.0317 0.2866 1.2487
0.2500 3.4868 | 9 0.0289 0.2916 1.2458

GeV?2. The results of this study are summarized in table 6.5. As with the “fake
data” study, the Monte Carlo is normalized to have the same total number of events
as the data with no Q? cuts, and so the normalization is identical in all cases. The
best-fit value of my4 varies by < 1% with respect to the @? > 0.0 fit result, which
agrees within statistical errors. However, pr and Ep have larger variations, 3% and

15% respectively. These parameter excursions are covered by the systematic errors,

2

which are summarized in table 6.6, however, they indicate that fits with ()7 ., cutoffs
may be less sensitive to the values of the Fermi Gas model parameters. This is not
a surprise since the effects of non-zero Ep and pp are largest at low 2, as discussed
in chapter 3, although this is interesting because the Fermi gas model parameters are
quite correlated with m 4, and previous measurements extract m, with fixed values

for pr and Ep.

The systematic errors on the fit parameters are evaluated by fitting “fake data”
with a “unisim” Monte Carlo sample, in which one underlying simulation parameter,

e.g. the Sanford-Wang 7+ production cross section parameter c;, has been varied by
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lo. The sources of systematic error discussed in chapter 4, section 4.3 are considered
here. These include: (i) the 7 flux prediction Sanford-Wang parameter uncertainties,
(#7) the neutrino interaction cross section uncertainties, and (ii7) a set of detector

response uncertainties.

A fit for (ma, pr, Ep) is done for each of j “unisims” where the “unisim” j is
used as the Monte Carlo in the fit, and the “fake data,” which is really central value
Monte Carlo, is used as the data. The difference between the best-fit parameters
p; = (ma, Ep,pr); and the central value parameters py is taken to be the systematic
error contribution to the uncertainty on the fit parameters from source j. In this case,
the “fake data” is generated with the full available central value Monte Carlo set,
which is 8 x 10° events with no cuts, rather than the statistics of the real data. The
reason for this is to eliminate statistical uncertainties in the determination of pj, since
including them in each of the j “unisim” fits, by having “fake data” with the data
statistics, would effectively count the statistical error j times. Instead, the statistical
error for each unisim is included via the variance of the weights, which is small, and
the contribution to the fit parameters is estimated using the central value Monte
Carlo fit to the real data, shown in table 6.4. This fit error, which comes dominantly
from the data statistics, is added in quadrature once with the j systematic errors. For
“unisims” produced via reweighting, the statistical error in the determination of pj is
negligible with this method. In contrast, the currently available simulated “unisim”
Monte Carlo sets, described in chapter 4, section 4.3, have roughly the same statistics

as the data, and therefore their statistical error is not negligible.

Because this is a measurement of the CCQE cross section parameters, the neu-
trino interaction cross section “unisims” must be handled with care. To estimate the
contribution from these cross section uncertainties, only the variation of the back-

ground in each of the CCQE parameter “unisims” is considered. Therefore, although
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Table 6.6: Systematic error contributions to CCQFE parameters. The ¢ are calculated
as the “unisim” best-fit parameters minus the central value Monte Carlo values, (Eg,
pr, ma) = (0.025 GeV, 0.220 GeV, 1.03 GeV/c*). Numbers in percent are quoted

with respect to the central value parameters.

source dEp (GeV) dpr (GeV) dma (GeV/c?)
SW 7t quadrature sum | 0.0011 (4.38%) | 0.0076 (3.45%) | 0.0072 (0.70%)
0, quadrature sum 0.0031 (12.48%) | 0.0087 (3.96%) | 0.0475 (4.61%)
detector response 0.0021 (8.27%) | 0.0150 (6.79%) | 0.0626 (6.08%)
total 0.0039 (15.60%) | 0.0189 (8.58%) | 0.0789 (7.66%)

the changes in the CCQE parameters are quite large in these “unisims,” as is dis-
cussed in chapter 4, their impact on this analysis is small because only the background

events, which comprise ~10% of the total, are affected.

The difference between the best-fit parameters for central value and each “unisim”
fit, Ap;, are shown in tables E.1, E.2, and E.3 in appendix E. The total systematic
error is calculated in the usual way by propagating the Ap; with the simulation
input parameter correlation matrix for each source, as described in chapter 4. In
this case, because the Ap; due to the 77 and CCQE parameter errors are negligible,
the Sanford-Wang 7 production and neutrino interaction cross section simulation
parameter correlations have been neglected. The detector response correlation matrix
given in appendix F is used to propagate the the detector response Ap;. The resulting
CCQE parameter systematic errors are summarized in table 6.6. As for the m4 fit,

the detector response uncertainties contribute the most to the m 4 systematic error.

The values for the CCQE parameter uncertainties assumed in the MiniBooNE

simulation, which are based on past, external data, are 20%, 76%, and 72% for m 4,
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Eg, and pp respectively, as discussed in chapter 3. The MiniBooNE measurement
uncertainties summarized in table 6.6 are significantly smaller than the assumed val-
ues, at 8%, 9%, and 16%. Although the error analysis here is not complete since
the detector response systematic errors are still under development, the MiniBooNE
measurement is very competitive and likely will remain so when a full error analysis

is included.

The best-fit values from the data fit described in table 6.4 have been used to
generate all of the Monte Carlo in this thesis, with the exception of the pp value,
where 0.246 GeV was used instead of 0.283 GeV 5. These changes to the CCQE
cross section parameters with respect to the world-average values are not small, and
they impact both the total number of predicted events, and their kinematics. Further,
the changes to m4 and the Fermi Gas model parameters (Ep, pr) have rather different
effects. Increasing m, from 1.03 GeV/c? to 1.25 GeV/c* changes the total number of
events passing the selection cuts by +15%, while changing (Eg, pr) from (0.025 GeV/,
0.220 GeV) to (0.034 GeV, 0.246 GeV') decreases the predicted rate by -7%. The
effects of these variations on the reconstructed Q* and E9F distributions are shown
in figure 6.10, both absolutely and relatively normalized. Increasing my4 tends to
steepen the roll-over at low Q? more than changing the Fermi Gas model parameters,
however, the trend is in the same direction, and for both, most of the change to the
Q? shape occurs below Q%o = 0.2 GeV?. None of the parameter changes have as
dramatic an impact on the EQF distribution, but the cumulative effect is to shift the

spectrum slightly towards higher energy.

5The difference in the pr values comes from a change in the treatment of fit parameter limits
that post-dates the Monte Carlo generation. A fit to the data with the Ez parameter limited to be
0.0 < Ep < 1.0 results in a best-fit pr value of 0.246 GeV with best-fit Eg = 0.034 GeV and m 4
= 1.25 GeV/c?. The fitting method was changed here to use unbounded parameters, which is the

recommended procedure and generally gives more reliable results [56].



226

16000 16000
& L & [
> [ > [
L';JAOOO - — (M, Pp Eg) = (1.25, 0,034, 0.246) L"O:I14000 - — (M, Pp, Eg) = (1.25, 0.034, 0.246)
o) b B == (My Pp Eg) = (1.03,0025,0.220) ) t - (My Py Eg) = (1,03, 0,025, 0.220)
] _ Q F
€ 12000 ..., (M, Pp. Eg) = (1.03, 0,034, 0.246) 12000 - (M, Pg. Eg) = (1,03, 0034, 0.246)
> = r
=z - (M, P Eg) = (1.25,0.025, 0.220) =z 8 - (M, Pp Eg) = (1.25,0.025, 0.220)
10000 10000
8oo - 8000 -
6000 6000 |-
4000 4000 [-
2000 |- 2000 [
0r‘HwHH\H‘wH‘wHH\H"\HH\HH\HHMT(T Oif‘”\””m”m”"ﬂ I
0 01 02 03 04 05 06 07 08 09 1 0 0.5 1 15 2 25 3
2 2
QPREC (Gev?) E,QE (GeV)
%) 0.16 2] 0.16
5] L 5] L
> [ > [
"LIEJ> 0.14 —  (My, P, Eg) = (1.25,0.034, 0.246) L‘; 0.14 — (M, Pr. Eg) = (1.25,0.034, 0.246)
5 t - (M Pp Eg) = (103, 0,025, 0.220) 5 t - (M P Eg) = (103, 0.025,0.220)
'§ 012 (M. P Eg) = (103, 0034, 0.246) "é 012 - (M P Eg) = (103, 0.034, 0.246)
L b - (M, Pe Eg) = (125, 0,025, 0.220) T s - (M Py Eg) = (1.25,0.025,0.220)
0.1 T 01
0.08 0.08
006 | 006 [-
004 004 -
o2t A 002 |
33 T N R S WS P N S B DU oL v L
0 01 02 03 04 05 06 07 08 09 1 0 0.5 1 15 2 25 3
2 2
QREC (GeV?) E,QE (GeV)

Figure 6.10: Impact of CCQFE parameter changes in Monte Carlo for events passing
the v, CCQE selection cuts. Left: number of events (top), fraction of events (bottom)
vs. reconstructed Q* (GeV?). Right: number of events (top), fraction of events

(bottom) vs. reconstructed ESE (GeV ).
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Table 6.7: Iteration test data fit results. The Monte Carlo set corresponds to 8x10°
events before selection cuts, or ~4x the data statistics after cuts, and is generated
with the best-fit CCQE parameters: my = 1.254 GeV/c?, Eg = 0.034 GeV, and pr
= 0.283 GeV. The probability for x*/ndf = 4.718/13 is 98.09%.

NData

X2 /ndf ‘ Ep (GeV) ‘pp (GeV) ‘ ma (GeV/c?)
98,381 ‘ 4.718/13 ‘ 0.0341+0.0029 ‘ 0.2879+0.0091 ‘ 1.222140.0140

Table 6.8: Summary of uncertainties on the CCQE parameter measurement. Statis-

tical errors are from table 6.7, and the systematic errors are from table 6.6.

source dEs (GeV) | dpr (GeV) | dma (GeV/c?)
statistical errors | 8.5% 2.4% 1.6%
systematic errors | 15.6% 8.6% 7.7%
total 17.8% 8.9% 7.9%

A final check of the validity of the analysis method is to iterate the measurement
using Monte Carlo that has been generated with the best-fit CCQE parameters. The
result of this study, using the same central value Monte Carlo statistics as before, is
summarized in table 6.7. The iteration test fit converges successfully with MINUIT fit
status parameter ISTAT equal to 3.0. The best-fit parameter values are very similar to
the previous result: the binding energy Fp is 0.0341£0.0029 GeV compared with the
previous best-fit value of 0.0341GeV, the Fermi momentum pp is 0.2884+0.009 GeV
compared with 0.283 GeV, and the axial mass my4 is 1.224:0.014 GeV/c* compared
with 1.25 GeV/c?. The correlations between parameters, from the fit covariance
matrix, are p1o = pa1 = -0.924, p13 = p31 = -0.205, and py3 = p32 = 0.430, where

parameter #1 is Eg, #2 is pr, and #3 is m4.
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To estimate the total uncertainty on the MiniBooNE measurement of the CCQE
cross section parameters, the statistical and systematic errors are added in quadra-
ture, which is summarized in table 6.8. Note that errors considered in this work are
preliminary, and the method for simulating the detector response uncertainties is still
under investigation. However, with the error analysis described here, the MiniBooNE
measurement is Fg = 0.034 £+ 0.0.006 GeV, which is 1.7¢ from the world-average
value of 0.025 GeV, pr = 0.288 £ 0.026 GeV, which is 2.60 from the world-average
value of 0.220 GeV, and my = 1.22 + 0.10 GeV/c?, which is 1.90 away from the

world-average value of 1.03 GeV/c?.

At this point it is worth noting that the difference with respect to the world-
average values may be due to nuclear effects. The world-average value for m4 comes
from light nuclear target data. On the other hand, this measurement agrees within
errors with the recent K2K my4 value of 1.20 + 0.12 GeV/c* [37], which was also
measured on a C'Hy target. This large and systematic difference between the modern
heavy-target measurements and the older light-target data suggests that there may

be an interesting, and as yet not understood, physical explanation.

6.2 CCQE Axial Form Factor Measurement

One component that previous analyses have in common is the dipole axial form factor
assumption, and as a result, the functional form of the axial form factor is not well
constrained by past experiments. Previous measurements of 4 vs. Q* are shown for
neutrino scattering and pion electroproduction experiments in figure 6.11. The uncer-
tainties on the neutrino scattering measurements are very large, and therefore provide
little information on the Q? dependence of the form factor, and the electroproduction

measurements are model-dependent. Also, there is scant electroproduction data be-
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Figure 6.11: Left: measurements of Fx vs. Q* from neutrino scattering data divided
by the dipole assumption, with predictions from lattice gauge theory (dashed line) and
a duality-based model (solid line); figure from reference [128]. Right: measurements

of Fy vs. Q* from pion electroproduction data; figure from reference [102].

low Q% = 0.1 GeV2. This is an important region for MiniBooNE because ~20% of the
events have Q% < 0.1 GeV?, and because both the MiniBooNE and K2K experiments

observe disagreement between data and Monte Carlo in this region [37, 120].

The functional form of F4(Q?) at low Q* can have a large effect on both the
normalization and the Q? dependence of the CCQE cross section. For example,
a shape that is a dipole above and flat below Q? of 0.25, with the same value of
F4(Q* = 0), results in 15% more CCQE events passing the v, CCQE selection cuts
when integrated over the MiniBooNE neutrino flux, and a 10% decrease of the number
of events below Q% = 0.1 GeV?2. The number of CCQE events passing the selection
cuts vs. reconstructed Q% and EYF are shown for this alternative form compared with
the usual dipole dependence in figure 6.12. This type of variation is not excluded by

past measurements, as figure 6.11 shows.
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6.2.1 Method

The analysis to extract Fi4(Q?) from the MiniBooNE data is very similar to the
my, measurement, however, when fitting, the free parameters in the Smith-Moniz
cross section calculation are the Fermi Gas model parameters EFg and pp, and the
value of F in each Q* bin. Fitting for the value of (F4); in each reconstructed
Q? bin i enables the determination of the functional form of F4 vs. @Q? with no
assumptions about the Q% dependence. This approach is completely independent of
the usual dipole form since it no longer appears in the CCQE cross section calculation.
Instead, the whole axial form factor is wrapped up as one free parameter in the fit,
e.g. Fa(Q*) = ga/ <1 + 2—2)2 is replaced by (F4); in the Smith-Moniz CCQE cross
section calculation. With 16 reconstructed Q2 bins, this procedure leads to 18 free
parameters in the fit, and therefore more data bins are required to constrain the fit
parameters than in the m 4 fit, which had 3 free parameters and 16 reconstructed ?
bins as the data points. The additional data points in this fit are the 24 reconstructed
E, bins, from 0 to 3 GeV/, in each of 16 reconstructed Q? bins from 0 to 1 GeV/c?,

as shown in figures 6.8 and 6.9.

The 2 for this fit is given by

Nparai; — Nucii(Fa)i, Eg,pr)\?
=3 J J ) (6.6)

r V/Npara,j

where i indexes reconstructed Q? bins, j indexes reconstructed neutrino energy bins,
Npara,jis the number of events in the data in bin (¢, j), \/m is the statistical
error on the data, Ny j((Fa)i, Ep, pr) is the number of Monte Carlo events in bin
(,5), and is a function of (Fl4);, Ep, and pp via the Monte Carlo weights. This
x? function is minimized with respect to (Fj); in each Q%g- bin, and the Fermi
Gas model parameters Ep and pp. The latter two are global parameters in the

sense that there is one value for all ? and E, bins. The mechanics of the fit, e.g.
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the Monte Carlo weight calculation, the Monte Carlo normalization, the treatment of
background, etc., are identical to the m 4 analysis. The initial values of the parameters
in the fit are the world-average Eg, 0.025 GeV, and pg, 0.220 GeV, values, and F4
evaluated at the average generated Q% in each reconstructed @Q? bin assuming the

dipole form with the world-average values for g4, 1.2671, and m4, 1.03 GeV/c2.

6.2.2 Results

As with the m,4 analysis, “fake data” studies are employed to verify the analysis
procedure. First, “fake data” is fit with statistically identical Monte Carlo, both with
the statistics of the v, CCQE data set after cuts, 98,371 events. The resulting best-fit
parameters and their fit errors are summarized in table 6.9. In all cases the best-fit
parameters are identical to the parameters the “fake data” was generated with, and
the value of the x? function at the minimum is 0.0, for 366 degrees of freedom. The
number of degrees of freedom is calculated as (16 Q? bins) x (24 E, bins) - (18 fit
parameters) = 366, however, unlike the my fit, not all £, g bins are occupied. Of
the 384 (Q%pc,Ev.rEc) bins, 251 are occupied and therefore contribute to the 2.
As a result, the expected number of degrees of freedom is more like (251 bins) - (18
fit parameters) = 233. The x? functions about the parameter minima are shown in
figure 6.13. These distributions look as expected from previous experience with the
m fits: for Bz and pr the x? function is highly asymmetric about the minima, and

for (F4); the x? function is very well behaved.

Smearing is somewhat more important here than for the m 4 measurement because
this analysis seeks to determine the functional form of F)4 vs. “true”, or un-smeared,
Q?. The effect of Q% smearing is that the average reconstructed Q? is different from the
average “true” Monte Carlo generated Q? for events in a Q%o bin. The second two

columns of table 6.10 compare these two quantities. In all of the following studies, the
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Table 6.9: Fake data fit results with statistically identical “fake data” and Monte Carlo

sets; both have the statistics of the data. The x? value at the minimum is 0.0000 for

366 degrees of freedom. “Fa(Q3%)” refers to the value of Fa in reconstructed Q* bin

#1.

parameter | MC value | best-fit value | fit error
Eg (GeV') | 0.0250 0.0250 0.0024

pr (GeV) | 0.2200 0.2200 0.0103

Fu(Q?%) -1.1371 -1.1371 0.05194
F4(Q%) -1.0289 -1.0289 0.03669
Fa(Q3) -0.9321 -0.9320 0.02442
Fa(Q%) -0.8456 -0.8456 0.01952
F4(Q%) -0.7747 -0.7747 0.01792
Fa(Q3) -0.7131 -0.7131 0.01857
Fa(Q%) -0.6614 -0.6614 0.01964
Fa(@Q%)  |-0.6104 | -0.6104 0.02024
Fa(Q2)  |-05715 | -0.5715 0.02124
Fa(Q3) -0.5354 -0.5354 0.02283
Fa(Q3) -0.5005 -0.5005 0.02403
Fa(Q3%,) -0.4726 -0.4726 0.02560
Fa(Q33) -0.4485 -0.4485 0.02842
Fa(Q3) -0.4243 -0.4243 0.02975
Fa(Q%) -0.4020 -0.4020 0.03154
Fa(Q3) -0.3794 -0.3794 0.03336
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Table 6.10: Effect of Q? reconstruction smearing after a “fake data” fit with statisti-

cally identical “fake data” and Monte Carlo sets; both have the statistics of the data.

Q%pc and Q% gy are the average reconstructed and generated Q* in each Q% pc bin
respectively. Fa(Q%gy) is the dipole-assumption value of Fy evaluated at the aver-
age Q4py i each Qhpe bin, and Fi(Q%gy) is the average of all of the Fa values,

calculated at the Q% py of each event, in a given Q%pe bin.

Qrpc bin # | Qkpe | Qépy | T-m.s. Qépy FA(%) Fa(QZgn) Zggizz?;;
1 0.031 | 0.060 | 0.085 -1.137 -1.145 1.009
2 0.094 | 0.121 | 0.076 -1.029 -1.028 1.007
3 0.156 | 0.181 | 0.068 -0.932 -0.932 1.008
4 0.219 | 0.243 | 0.080 -0.846 -0.847 1.010
5 0.281 | 0.300 | 0.090 -0.775 -0.779 1.012
6 0.344 | 0.357 | 0.097 -0.713 -0.718 1.013
7 0.406 | 0.411 | 0.108 -0.661 -0.668 1.015
8 0.469 | 0.471 | 0.118 -0.610 -0.618 1.016
9 0.531 | 0.522 | 0.124 -0.571 -0.579 1.017
10 0.594 | 0.573 | 0.134 -0.535 -0.544 1.019
11 0.656 | 0.629 | 0.139 -0.500 -0.509 1.019
12 0.719 | 0.678 | 0.151 -0.473 -0.482 1.021
13 0.781 | 0.724 | 0.149 -0.449 -0.457 1.020
14 0.844 | 0.773 | 0.168 -0.424 -0.434 1.024
15 0.906 | 0.824 | 0.161 -0.402 -0.410 1.021
16 0.969 | 0.878 | 0.168 -0.379 -0.388 1.021
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best-fit values of F4 are reported at the average generated Q2 in each reconstructed
@Q? bin. This quantity is calculated at each iteration of the fit, since the CCQE cross

section parameters which are varied in the course of minimization can affect dN/dQ?.

Both event reconstruction and nuclear interactions contribute to the Q? smearing.
The event reconstruction smearing in angle and lepton energy can be measured in
data and compared with Monte Carlo using the muon tracker calibration system, as
shown in figure 3.27. Nuclear interactions contribute to the smearing because Fy is
part of the free-nucleon CCQE cross section, and therefore interactions of outgoing
particles within the nucleus may change the kinematics. This analysis provides a gross
check of the MiniBooNE nuclear model in that the x?/ndf measures the overall level
of agreement between the simulation and the data in terms of high-level reconstructed
quantities, however, there is no analogous calibration source to the muon tracker for
nuclear interactions. As a consequence, this F4(Q?) (and m,) measurement assumes
the MiniBooNE model for nuclear effects, and uses the MiniBooNE Monte Carlo to
calculate the mapping from the generated event kinematics to a reconstructed (2.
Fortunately, Q% smearing has a small impact on this measurement, as is shown by the
success of the fits to “fake data” in extracting the CCQE cross section parameters

used to generate the “fake data”.

Another worrysome possibility with smearing is that it may be asymetric, for
example, in the case of a steeply changing F4 distribution, smearing may push more
events into a bin than out of it. To quantify the importance of this effect, table
6.10 compares the value of Fi(Q?) evaluated at the average generated Q? (Q%y) in
each Q%o bin with Fu4(Q%y) averaged over all events in a given Q%p. bin. The
difference between these two is at the level of a few % for all Q% bins. Therefore,

this effect is neglected in the following.

The next closure test of the analysis method is to fit statistically independent
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Table 6.11: Statistically independent “fake data fit” results as a function of the number
of Monte Carlo events. “Fa(Q3%)” refers to the value of Fu in reconstructed Q* bin
#1; the “MC value” column lists the value of each parameter used to generate the
“fake data”; the “2M best-fit” column shows the best-fit parameter values for a Monte

Carlo set corresponding to 2 x 10° events with no cuts.

parameter | MC 2M 4M oM SM oscillated SM
name value best-fit | best-fit | best-fit | best-fit | best-fit
Ep (GeV) | 0.0250 | 0.0250 | 0.0250 | 0.0250 | 0.0251 | 0.0250
pr (GeV) | 0.2200 | 0.2200 | 0.2200 | 0.2200 | 0.2202 | 0.2200
F4(Q?) -1.1371 | -1.1057 | -1.1099 | -1.1159 | -1.1203 | -1.0926
Fx(Q3) -1.0289 | -1.0621 | -1.0650 | -1.0602 | -1.0519 | -1.0279
F4(Q%) -0.9321 | -0.9354 | -0.9298 | -0.9318 | -0.9352 | -0.9057
F4(Q%) -0.8456 | -0.8607 | -0.8682 | -0.8668 | -0.8632 | -0.8572
Fa(Q%) -0.7747 | -0.7592 | -0.7582 | -0.7573 | -0.7581 | -0.7534
F4(Q%) -0.7131 | -0.7150 | -0.7138 | -0.7172 | -0.7174 | -0.7123
F4(Q3) -0.6614 | -0.6515 | -0.6533 | -0.6551 | -0.6565 | -0.6573
Fa(Q%) -0.6104 | -0.5992 | -0.5944 | -0.5948 | -0.5977 | -0.6028
Fa4(Q%) -0.5715 | -0.5695 | -0.5669 | -0.5675 | -0.5690 | -0.5766
Fa4(Q%) -0.5354 | -0.5423 | -0.5387 | -0.5387 | -0.5447 | -0.5541
Fa(Q3%) -0.5005 | -0.5056 | -0.5074 | -0.5065 | -0.5017 | -0.5141
Fu(Q3,) -0.4726 | -0.4466 | -0.4569 | -0.4597 | -0.4657 | -0.4790
Fa(Q3%) -0.4485 | -0.4198 | -0.4318 | -0.4288 | -0.4295 | -0.4446
Fa(Q3) -0.4243 | -0.4531 | -0.4401 | -0.4412 | -0.4450 | -0.4603
Fa(Q3%) -0.4020 | -0.4056 | -0.3972 | -0.3980 | -0.4041 | -0.4202
Fa(Q%) -0.3794 | -0.3701 | -0.3800 | -0.3753 | -0.3742 | -0.3905
x> N/A 438 277 257 222 313



238

“fake data,” and to determine what number of Monte Carlo statistics are sufficient.
The results of this study are summarized in table 6.11. As with the m 4 analysis, the
Monte Carlo set corresponding to 8 x 10 events before cuts appears to have sufficient
statistics since the x?/ndf has approximately the expected value once the number of
Monte Carlo events exceeds 6 x 10°. The resulting best-fit parameters are in good
agreement with those used to generate the “fake data,” therefore one can conclude

that the closure test is successful and the analysis method is reasonably free of bias.

The best fit values of Fq vs. % obtained from fitting the 8 x 10° Monte
Carlo event set to statistically independent “fake data,” with the statistics of the
real data, are shown in the left panel of figure 6.14, compared with the Monte Carlo
input Fl4 vs. % values. The x?/ndf of the fit is 222/233, which has a probability
of 68.6%. Fitting the dipole form to the fake data best fit F)y vs. % results in
Fa(Q? = 0) = —1.2674 and m4 = 1.043 with a x?/ndf of 1.29/14. The total x? in
each Q% bin i, which is a sum of the x? contribution from each E, gpc bin j in
QQREC bin ¢, is shown in the right panel of figure 6.14. The E, rpc distributions in
each Q% bin, which are used in the fit x? function, are shown in figures 6.15 and
6.16 before and after the fit, compared with the v, CCQE “fake data” points with

statistical errors.

Since the F4 fits use the E, rpc distribution, it is especially important to deter-
mine the sensitivity of the analysis to an oscillation signal in the data. Further, the
F4 fit results are not used to tune the MiniBooNE Monte Carlo to avoid any possi-
bility of introducing bias to the oscillation analyses. This study is done in exactly
the same way as for the my4 analysis: the maximum allowed v, disappearance signal
is introduced into the “fake data,” which is fit with the high statistics central value
Monte Carlo set. The E, rgc distribution in each QQREC bin is shown in figure 6.17,

compared with the no-oscillation case, absolutely normalized. The effect of the oscil-
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(GeV'?) at the best-fit point.

lation signal is clearly visible, however, as for m 4, once the Monte Carlo is normalized
to the data (or “fake data”), the difference between the oscillated and un-oscillated
spectra is negligble. Figure 6.18 shows this comparison. The best-fit parameters for
the oscillated case are compared with the un-oscillated “fake data” result in the last
two columns of table 6.11. These two cases agree within the systematic errors on the
fit parameters, shown in table 6.14, and therefore the conclusion of this study is that

oscillations do not bias this analysis.

Finally, the v, CCQE data set is fit with the high statistics central value Monte
Carlo set. The resulting best-fit parameters and their fit errors are summarized
in the first two columns of table 6.12. The y? value at the minimum is 269, to
be compared with the 366 degrees of freedom, of which 233 contribute to the y?
function. The probability for x?/ndf = 269/233 is 0.053. The x? functions about

the parameter minima are shown in figure 6.20. These distributions are roughly
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Figure 6.18: Number of Monte Carlo events vs. reconstructed E, (GeV') in each

Q% pe bin for oscillated (red, dashed line) and un-oscillated (black, solid line) “fake

data” with the statistics of the data. The number of Monte Carlo events is normalized

to the “fake data.”
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parabolic for all parameters, which a good sign, however, the MINUIT fit convergence
status parameter ISTAT equals 2 for the data fit, rather than 3 which is the sign
of convergence with an accurate parameter covariance matrix. ISTAT equal to 2
indicates that the fit converged, however, the parameter covariance matrix at the
minimum has been forced to be positive-definite by the addition of a constant to
the diagonal elements. This often indicates that the fit errors may be unreliable due
to a non-quadratic dependence of the x? on the parameter errors at the minimum,
or, parameters which are 100% correlated. In this case, the problem is that the
correlation between Ep and pp is 99.9%. In a fit where Ep is fixed to the best-fit
value, 0.034 GeV, and the remaining 17 parameters are free in the fit, the resulting
fit status is 3 and the fit converges to the same minimum, as is shown in the third
column of table 6.12. The latter fit, with ISTAT equals 3, is used as the data result

in the following.
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Table 6.12: Data fit results with 8 x10% Monte Carlo events before cuts. Case 1 has

all parameters free in the fit, case 2 has Ep fized to the best-fit value from case 1.

“Ba(Q?)7 refers to the value of Fy in reconstructed Q* bin #1. The probability for

X2/ ndf = 269/233 is 0.053.

parameter

case 1 best-fit value

case 2 best-fit value

0.0342 £ 7.6522
0.2521 4 0.0003
-0.9856 + 1.5002x 1077
-0.9340 + 1.5073x107°
-0.9020 =+ 2.0358x107°
-0.8678 £ 3.4495%x107°
-0.8203 + 2.0989x10~°
-0.7771 £ 1.5090x10~°
-0.7484 £ 5.4379x107°
-0.7010 + 4.9480x107°
-0.6777 + 1.7115x107°
-0.6510 + 1.8061x10~°
-0.6125 # 1.5010x107°
-0.5803 + 1.6423x107°
-0.5631 + 2.2581x107°
-0.5563 + 1.5114x107°
-0.5156 + 1.6700x 107>
-0.5176 + 1.5138x107°
269

2

0.0341 + N/A
0.2518 = 0.0180
-0.9811 + 0.2173
-0.9320 + 0.1140
-0.9007 + 0.0706
-0.8667 % 0.0509
-0.8195 = 0.0431
-0.7765 £ 0.0452
-0.7478 =+ 0.0434
-0.7005 =+ 0.0492
-0.6772 =+ 0.0464
-0.6506 & 0.0480
-0.6121 + 0.0510
-0.5799 =+ 0.0544
-0.5628 =+ 0.0593
-0.5559 + 0.0638
-0.5153 =+ 0.0668
-0.5173 £ 0.0724
269

3
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The best fit values of Fy vs. % obtained from fitting the v, CCQE data are
shown in the left panel of figure 6.19, compared with the Monte Carlo input F4 vs.
% values. Fitting the dipole form to the fake data best fit Fy vs. % results
in Fu(Q* = 0) = —1.0942 and m4 = 1.3755 with a x?/ndf of 0.4379/14. The total
x? in each Q% bin 7, which is a sum of the x? contribution from each E, rpc bin
J in Q%pc bin i, is shown in the right panel of figure 6.19. The FE, ppc distributions
in each Q%o bin, which are used in the fit x* function, are shown in figures 6.21
and 6.22 before and after the fit, compared with the v, CCQE data with statistical

eIrors.

The normalization of the Monte Carlo in the fit is arbitrary, because at the start
it is scaled to have the same total number of events as the data. This makes the
overall normalization scale of the best-fit F)4 values arbitrary as well, because the
fit x? function is balancing two effects: (i) the initial normalization of the data and
Monte Carlo which is such that the xy? = 0 when m4 = 1.03 and g4 = -1.2671, and,
(77) the increase in the number of events in the Monte Carlo as the slope of F} is
decreased (which corresponds to m4 being increased) as the fit attempts to match
the data Q* distribution. Hence, as the slope of F4(Q?) is decreased the best-fit
Fa(Q? = 0) is increased to preserve the same total number of events in data and

Monte Carlo.

However, the normalization of Fy at Q% = 0.0 GeV? is very precisely measured in
neutron beta decay to be g4 = -1.2671 £ 0.0035 [45]. This constraint is not included
in the F4 fits here because of the Monte Carlo normalization condition, and therefore
the result in table 6.12 must be corrected by a scale factor to recover a physical value
for F4(Q? = 0). This issue does not similarly affect the m, fits because the value
of F4(Q* = 0) = —1.2671 is explicitly included via the dipole form factor and
ga. The ratio of the measured g4 to the best-fit Fa(Q* = 0) is -1.2671/-1.0942 =
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1.1580. The extrapolation to Q% = 0.0 uses the coefficients from the dipole fit to the
best-fit F4 vs. Q? described above. It is interesting that this constant, which is based
on a fit to the shapes of the kinematic distributions, goes in same direction as the
normalization difference between data and the MiniBooNE Monte Carlo prediction
discussed in chapter 4. The MiniBooNE F vs. Q? measurement in data is corrected

by this scale factor, 1.158, in the following.

The systematic errors on the fit parameters are evaluated by fitting “fake data”
with a “unisim” Monte Carlo sample, with a procedure identical to that of the m 4
analysis. The difference between the best-fit parameters for central value Monte Carlo
and each “unisim” fit are shown in tables E.4, E.5, and E.7 for the 7 flux, neutrino
interaction cross section, and detector response uncertainties respectively. These do
not include parameter correlations. The systematic errors are summarized by source
in table 6.13, as before including correlations between detector response simulation
parameters but neglecting 7% and neutrino interaction cross section parameter cor-
relations. The contributions of the 7 flux and neutrino interaction cross section
uncertainties, which come primarily from the pion final state interaction model vari-
ations, are of similar sizes, ~1-5%, and the detector response systematic error contri-
bution is a bit larger, ~5-10%. The total systematic error ranges from ~10-15%; for

comparison, the statistical errors contribute ~5-10%.

The MiniBooNE (Fl4); result, which has been scaled to have F4(Q? = 0) = g4,
is given in table 6.14. The total error is calculated by adding the systematic errors
from the variations of simulation input parameters in quadrature with the statistical
error from the data fit. The total Fy vs. Q% measurement uncertainty ranges from

~10-20%, which the largest uncertainties for the lowest and highest Q? values.

The implications of the measurements in this chapter are that the Smith-Moniz

CCQE cross section formalism, together with the dipole axial form factor and the



Table 6.13: Systematic error contributions by source to the CCQE cross section pa-

rameters that are varied in the (Fa(Q?), E, pr) fit. Errors are given as a percentage

of the Monte Carlo values, in parentheses.
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parameter | MC value | 7% flux o, detector response
Ep 0.02500 0.00397 (15.869) | 0.00667 (26.684) | 0.00685 (27.401)
PF 0.22000 0.00743 (3.378) | 0.02996 (13.617) | 0.03599 (16.359)
Fa(Q?) -1.13710 | 0.03215 (2.827) | 0.13709 (12.056) | 0.14371 (12.638)
Fa4(Q%) -1.02890 | 0.02438 (2.370) | 0.05337 (5.187) | 0.09690 (9.418)
F4(Q%) -0.93205 | 0.01561 (1.674) | 0.04418 (4.740) | 0.06894 (7.397)
Fa(Q3) -0.84561 | 0.01400 (1.656) | 0.00982 (1.161) | 0.06490 (7.675)
Fa4(Q3) -0.77466 | 0.01313 (1.695) | 0.01144 (1.477) | 0.04965 (6.410)
F4(Q3) -0.71310 | 0.01532 (2.148) | 0.01605 (2.250) | 0.05702 (7.996)
Fa(Q3?) -0.66141 | 0.01713 (2.590) | 0.02530 (3.825) | 0.04442 (6.716)
Fa(Q2) -0.61044 | 0.02410 (3.949) | 0.01699 (2.783) | 0.05422 (8.882)
F4(Q2) -0.57146 | 0.02306 (4.035) | 0.01932 (3.381) | 0.03364 (5.887)
Fa(Q3%) -0.53542 | 0.02627 (4.906) | 0.03093 (5.776) | 0.04769 (8.906)
Fa(Q%) -0.50046 | 0.02710 (5.415) | 0.02939 (5.873) | 0.03843 (7.679)
F4(Q3%) -0.47262 | 0.02821 (5.969) | 0.03961 (8.381) | 0.03608 (7.634)
F4(Q%) -0.44851 | 0.02540 (5.663) | 0.03066 (6.835) | 0.04547 (10.138)
Fa(Q3) -0.42434 | 0.02709 (6.384) | 0.03513 (8.279) | 0.05668 (13.358)
Fa(Q%) -0.40203 | 0.02739 (6.812) | 0.02784 (6.925) | 0.05398 (13.427)
F4(Q%) -0.37942 | 0.03092 (8.150) | 0.04978 (13.119) | 0.05430 (14.311)
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Table 6.14: Data fit results and error analysis summary for Eg, pr, and (Fa); mea-
surement. The data fit results Fa £ 6(Fa)iotar are normalized to ga = -1.2671. The

total error is the quadrature sum of the statistical and systematic errors.

parameter | Fa £ 6(F4)total stat. error (%) | sys. error (%) | total error (%)
Ep 0.0341 4+ 0.0141 | N/A 41.4086 41.4086
PR 0.2518 + 0.0572 | 7.1366 21.5511 22.7020
FA(Q%) -1.1361 4+ 0.2988 | 22.1486 14.1869 26.3026
Fa(Q2) | -1.0792 £ 0.1696 | 12.2317 0.8716 15.7182
Fa(Q%) -1.0430 + 0.1140 | 7.8383 7.6280 10.9373
Fa(Q?%) -1.0036 + 0.0988 | 5.8728 7.9094 9.8514
FA(Q%) -0.9489 + 0.0812 | 5.2593 6.7510 8.5578
FA(Q%) -0.8991 4+ 0.0923 | 5.8209 8.4653 10.2735
Fa(Q%) -0.8659 + 0.0824 | 5.8036 7.5454 9.5192
FA(Qg) -0.8111 + 0.0986 | 7.0235 9.9241 12.1580
Fa(Q3) -0.7841 + 0.0798 | 6.8517 7.5266 10.1782
Fa(Q2) | -0.7533 + 0.0964 | 7.3778 10.4631 12.8026
Fa(Q3) -0.7088 4+ 0.0907 | 8.3319 9.7169 12.8000
Fa(Q3%,) -0.6715 = 0.0922 | 9.3809 10.0301 13.7334
Fa(Q33) -0.6517 4+ 0.1048 | 10.5366 12.1597 16.0897
Fa(Q3)) -0.6437 + 0.1229 | 11.4768 15.2597 19.0939
Fa(Q%) | -0.5067 £ 0.1205 | 12.9633 15.4981 20.2049
Fa(Q%) | -0.5990 + 0.1307 | 13.9957 16.7426 21.8219
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Figure 6.23: Smith-Moniz CCQFE cross section calculated with the world-average pa-
rameters, compared with calculations using the two MiniBooNE measurements. No

uncertainties are shown.

Fermi Gas model, describes the MiniBooNE data well, although different parameters
from those measured with light-target data are preferred. The best-fit Fy vs. Q2
prefer a much shallower slope than the dipole form evaluated with the world-average
(ma, Ep, pr) values. A shallower slope corresponds to higher m 4 values, in agreement

with the trend of the m 4 fit results.

The Smith-Moniz CCQE cross section calculated using the world-average CCQE
parameters is compared in figure 6.23 with calculations using the two MiniBooNE
measurements: (¢) the best-fit (m4, Ep, pr) values, and (i7) the g4-normalized best-
fit ((Fa)i, Ep, pr) values. At the average MiniBooNE neutrino beam energy of 0.8
GeV, the cross sections calculated using the MiniBooNE measurements are in good
agreement, and are ~10% larger than the prediction using the world-average light-

target values for my, Fg, and ppg.



Chapter 7

Oscillation Search

Two kinds of oscillation searches are possible at MiniBooNE: v, disappearance, via
v, — VUV where x # pu, and v, appearance, via v, — v.. Theoretically, these two
channels may probe different oscillation transitions, as in 3+1 or 3+2 models, where
the LSND observation is posited to be a combination of v, — v, and v, — v, flavor
oscillations. In the 341 case, the v, appearance search probes the product of the
probabilities for these two processes, Pos. ~ |Ue|?|Uus|>. In contrast, the v, dis-
appearance analysis is sensitive to Ps. ~ |Uu|?, and therefore combining the two
can add information about the underlying oscillation parameters. Experimentally,
combining information from the v, data set with the v, appearance analysis provides
some reduction of the systematic errors for the v, search. As in chapter 5, the v, data
in MiniBooNE can be used to measure the v, flux and constrain the uncertainty on
the flux prediction for the intrinsic v, background. Similarly, the v, CCQE data set
can be used to extract information about the v, CCQE cross section, as in chapter
6. However, care must be taken to account for the possibility of v, disappearance. A
straightforward way to address this and incorporate the v, experimental constraints

on the systematic errors for the v, appearance search is to perform a combined oscil-
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lation fit for v, disappearance and v, appearance in MiniBooNE.

7.1 Method

The analysis described here focuses on the second aspect of the combined v, and v,
fit, which is to reduce the systematic errors associated with the v, appearance search.
For this purpose, a general two-neutrino model is employed, in which the v, — v,
and v, — v, oscillation parameters are completely independent and specified by four
experimental parameters, (Am?%, sin?20,.) and (Am3,, sin*26,,). For simplicity,
the subscript on Am? is dropped in the following. Because of these model assump-
tions, this analysis seeks to measure “effective” oscillation parameters which describe
the MiniBooNE data under this hypothesis, rather than the true, fundamental mass

splittings and mixing angles found in nature.

To search for oscillations, the neutrino energy distribution is compared in data
and Monte Carlo, where the Monte Carlo contains an oscillation hypothesis. In this
two-neutrino model, the number of detected v, events Nl‘f:t in Monte Carlo as a
function of true neutrino energy FE, depends on the oscillation parameters as

NEUE,) = N7UE,) x Py, — ) = N"UE,) x [1 = Py, —w)| (7.1)

2
1.2727 Lyﬂ

where NP"°4(E,) is the number of v, events that would be detected if the v, flux at

= NPYE,)) x [1 — 8in*20,,, sin2(

the detector were equal to the v, flux at production (before oscillations may occur),
L, is the distance traveled by the v, between production and detection in km, and £,
is the energy of the v, in GeV. For v, appearance, the number of detected v, Monte
Carlo events Njft as a function of neutrino energy FE, depends on the oscillation

parameters as

Nliet(Eu) — Nprod(EV) x P(v, — v) (7.2)
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1.27TAm?L,
= NP"UE,) x sin?20,,. sinZ(Tm)
The oscillation signal is at a maximum when
1.27TAm?L, s
vy = = 7.3
( E, > 2 (73)
which occurs when
E

Am2 = & ( v ) 4
me= 5 2 \12rL, (7:4)

For MiniBooNE, with (E,) ~ 0.8 GeV and (L,) ~ 0.54 km, this occurs at ~1.8 eV

Since the true neutrino energy is unknown in the data, the y* function must com-
pare the data and Monte Carlo as a function of reconstructed neutrino energy, E9F.
Finite energy resolution will diminish the oscillation sensitivity of the experiment be-
cause above some Am? value, the oscillation frequency is too high for the experiment
to resolve individual oscillation peaks in the detected neutrino energy spectrum. The

distance between oscillation maxima is

2nE,

A= TorAnE

(7.5)

For MiniBooNE, the neutrino energy resolution is ~10% at 1.0 GeV for signal events,
shown in figure 4.10, and therefore the experiment loses sensitivity to the energy
spectrum distortion due to oscillations when the distance between oscillation maxima
is less than 0.1 GeV, which occurs at Am? ~ 50 eV2. In practice, this threshold is

lower because there are systematic errors which affect the energy spectrum.

A basic oscillation fit minimizes this function:

) Z (NZ.D““I — NMC(Am?, 3in226)>2 (7.6)

- ag;
1

where i indexes E9F bins, NP is the number of events in the data in reconstructed

neutrino energy bin i, NMY(Am?, sin?20) is the number of events predicted in the
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Monte Carlo under an oscillation hypothesis with (Am?, sin?26), and o; is the un-
certainty on the predicted number of events with no oscillations. The uncertainty o;
is defined in this way to minimize the effects of Poisson statistics. In the sensitivity
calculations here, the data are really “fake data” with no oscillation signal, that is,

NPata — NP calculated in the Monte Carlo.

The limiting cases of high and low Am? can be used to verify oscillation sen-
sitivity fit results. This kind of calculation seeks to address the question of what
oscillation parameter space an experiment can exclude when no signal is present,
given its systematic and statistical uncertainties. Therefore, the data are assumed
to have no signal, and the experimental systematic errors are assesed on the Monte
Carlo prediction. In this case, the value of sin?20 at the best-fit point is 0.0, the
value of the y? function at the minimum equals 0.0, and the 1o limit value sin%20;m:
occurs when Ay? = y — x2,, = 1

NPY — Ndet(Am?, sin?20) \ 2
7 7 ( m 732n )) — 1 (77)

AX2:<

d
O_g)ro

At high Am?, the oscillatory term sin? (127%%) averages to %, and so the oscilla-

tion probability reduces to Py, ~ sin®20 x 1. At low Am?, the frequency term is very

2
small, and the Taylor expansion of sin? (%) ~ <%) . In this case, the

oscillation probability is P, ~ sin?20 x <M> .

E,

For v, disappearance, N is simply related to N¥7°¢ via N9t = NProdx (1—P,.).
This is because to first order there is no background to the v, disappearance analysis
since the beam is composed of 99.5% v, flavor neutrinos. Making this substitution,

and summing over all energy bins i:

A = - Xom==X" = (

Np'rod o Np'rod 1— Posc 2
adl ]) (7.8)

o-prod
The sum over all energy bins makes this a “counting-only” experiment, since no
)

information about the energy spectrum is used. Assuming a fractional normalization
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: prod . .
systematic error on NP4 of A frrod — %’ the uncertainty o?"°? is the quadrature

sum of the statistical and systematic errors,

(O_prod>2 — (\/W)2+ (Afprod % Nprod)2.

(Nprod o Nprod % [1 o Posc])z - (Nprod)Z (1 _ [1 _ Posc])2
Nprod + (Afprod X Np’rod)Q - (Nprod)Q (Nplmd + (Afprod)Q)

(7.9)

Making the approximation that the statistical error is much smaller than the system-

atic error, =g < (AfPret)2)

P )2
AY? = (L 7.10
X (Afprod)2 ( )
So, the limit value of sin?20 at high Am? occurs at

SiN*20msy = 2 X AP (7.11)

For example, a normalization uncertainty of 10% would result in a sin?20;;,,;; value of
0.2. The “counting” experiment sensitivity at high Am? is the true sensitivity, since
no energy spectrum deformation due to oscillations is present when the oscillation
probability averages to sin?260 x % At low Am? this is not the case, because energy
spectrum distortion adds information. For the “counting” experiment at low Am?,

2
. 2 . . .. .
P, ~ sin?20 x (127%7’”L”> , and so the “counting-only” experiment limit value is
v
Afprod
2
1.27Am2L,
E,

At Am? = 1.0 eV?2, which is allowed for 0.05 < sin?20 < 0.35 in the models with one

SIN* 20 = (7.12)

sterile neutrino shown in figure 1.2, the MiniBooNE limit value would be sin?260;;,,i =
0.14, for AfProd = 10% and E, = 0.8 GeV. So, with 10% normalization uncertainty,

a MiniBooNE disappearance search would have sensitivity to a part of this allowed



259

region, 0.14 < sin?20,, < 1.0. The minimum Am? value that a “counting” experi-
ment is sensitive to is determined by when sin?20y;,,;; approaches 1.0. Substituting

5in%20)mi = 1.0 and solving for Am?, the limit value is

E, \?
A}y, = \/Afp’“"dx (155) (7.13)

In the test case described above, Am?, . = 0.37 eV2 However, since the energy

spectrum at low Am? adds information to the fit, a “counting” 4+ “energy fit” analysis

2
can have a lower Amj, .. value.

For the case of v, appearance, N9 is a sum of the oscillation signal events and un-
oscillated background events. So, N% is related to N7 via N9t = NProdp 4 Nbond,

The expected number of events in the absence of oscillations, NP is just N%9"¢ and

so the error on the null expectation is ¢ = /Nbond + (A frrod x Nbgnd)2 - Making
these substitutions into the x? formula in equation 7.6, and summing over all energy

bins ¢ for a “counting-only” experiment:

A =y = ¢ = (IR R ROV 2
B (_Nprod « Posc)2 B (_Nprod)Z Po25c
Nbond 4 (A frrod x Nbgnd)2 (Nbgnd)2 thmd + (A frrod)2
When Ay? =1,
\/m + (Afprod)Q
Fose = (Nwrod /Nbgnd)
In the high Am? limit, P,,. = sin?20 x %, and so
) Jo
SN 20mie = 2 X (ool [N tand) (7.15)

As expected, the smaller N®"? and the error are, the better the sensitivity. For a
test case with A fPred = 10%, (N4 /NProd) = 1%, and N®" = 500 events, the limit

value would be sin?260;;,;; = 0.002. For the “counting” experiment at low Am?,

oy i /b + (B oy
s1m°2 limit — (1,27Am2Ly>2 X (Nprod/Nbgnd) (716)

E,
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which would be sin?20;;,:; = 0.008 at Am? = 0.4 eV2. This sensitivity would cover
the region of oscillation parameter space allowed by the LSND result. The minimum

accessible Am? in the v, appearance “counting” experiment is

PN

A 2
" 1.27L, (IVprod [ Nband)

min

(7.17)

which is 0.037 eV2. As for the v, disappearance, the smaller (E,/L,) is, the lower

Am?2 . can be.

min
In practice, the systematic errors are much more complicated than a simple nor-

malization uncertainty like A fP7°?. To include uncertainties that are correlated as a

function of energy, an error matrix M is introduced into the x? function:

=33 (NiD“t“ ~ NMC(Am?, sm229)>M;j1 (NJD‘”“ — NMO(Am?, sin229)>

C (7.18)
where ¢ and j index FE, bins. The error matrix M, ; is the total output variable
systematic error matrix calculated in chapter 4, where the term “output variable”
refers to the fact that the matrix is calculated in bins of neutrino energy rather than
simulation input parameters, such as the Sanford-Wang 7t prediction ¢;. If M, ; has
no off-diagonal elements correlating different energy bins, then the y? reduces to the
form in equation 7.6. Correlations between energy bins can either increase or decrease

the total systematic error, depending on the effect of each systematic source.

Both the v, appearance and v, disappearance analyses here use 30 reconstructed

neutrino energy bins from 0.0 to 3.0 GeV. When an “appearance-only” or “disappearance-

only” fit is described, the dimension of M, ; is 30x30 and the vector (NiD“m —
NMC(Am?, sm229)> has 30 elements. For the “combined” fit, the dimension of M, ;
is 60x60, and the first 30 elements of the vector (NiD“m — NMC(Am2, sin229)> are

the v, bins and the second 30 elements are the v, bins. The MINUIT [56] minimization
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program is used to perform the fits, with the MINOS error estimation option, and in

all cases normal convergence is required with status parameter ISTAT equal to 3.0.

7.2 Event Selection

The v, disappearance analysis here uses the event selection cuts described in chapter
4. The data set after cuts has ~90% v, CCQE purity according to the Monte Carlo,
and the background is composed almost entirely of v, resonant single 7+ production,
summarized in table 7.1. The efficiency of the selection cuts for signal v, CCQE
events is 17.16%, from table 4.1, for a fiducial volume of radius 610 ¢m, which is the
entire detector. For 5 x 10?2 protons on target, the number of Monte Carlo predicted
v, events after cuts in the presence of an oscillation signal with (Am?, sin?26,,) =
(1 eV?2,0.2) would be ~85,000, compared with ~92,000 in the absence of oscillations.
Example reconstructed neutrino energy distributions in Monte Carlo for all events
passing the selection cuts are shown with and without oscillations, for 0.1 < Am? <
7 eV? and sin*26,, = 0.2, in figure 7.1. The neutrino energy of events passing the v,
CCQE selection cuts is reconstructed under a muon hypothesis, assuming the muon

mass for the final state lepton.

The v, appearance analysis uses event selection cuts based on a particle iden-
tification algorithm described in reference [64]. The event selection development is
still in progress, and therefore the results given here are not final and may improve.
The composition of the background to a v, appearance signal after the oscillation v,
event selection cuts have been applied are summarized in table 7.2. The efficiency
of the selection cuts for signal v, CCQE events events is 24.50%, and the efficiency
for background is 0.07%, for a fiducial volume of radius 610 c¢m, which is the entire

detector. The largest sources of v, and v, background come from intrinsic beam
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Table 7.1: Fractional composition in Monte Carlo of background after oscillation v,
selection cuts, which are described in detail in chapter 4. The total number of events
predicted by the Monte Carlo after cuts, with no oscillations, for 5 x 10%° protons on

target, 1s ~91,000.

source all v, Vo vy, U,

total 1.000 | 0.000 | 0.000 | 0.981 | 0.019
7t parent 0.926 | 0.000 | 0.000 | 0.943 | 0.068
7~ parent 0.014 | 0.000 | 0.000 | 0.001 | 0.761
K? parent 0.001 | 0.000 | 0.000 | 0.001 | 0.013
K™ parent 0.010 | 0.000 | 0.000 | 0.010 | 0.002
K~ parent 0.000 | 0.000 | 0.000 | 0.000 | 0.009
p parent 0.010 | 0.000 | 0.000 | 0.008 | 0.057
n parent 0.039 | 0.000 | 0.000 | 0.038 | 0.085
CCQE 0.906 | 0.000 | 0.000 | 0.907 | 0.866
CClnr™ 0.068 | 0.000 | 0.000 | 0.070 | 0.000
CCl1m coherent | 0.000 | 0.000 | 0.000 | 0.000 | 0.019
CC1x® 0.012 | 0.000 | 0.000 | 0.012 | 0.000
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Figure 7.1: Ezample v, disappearance signal at MiniBooNE after event selection cuts,

for sin?20,,, = 0.2 and 5 x 10%° p.o.t.. Panels show the number of events vs. recon-

structed neutrino energy EF (GeV ) for Am? = (0.18, 0.22, 0.56, 0.59, 0.97, 1.58,

2.58, 4.24, 6.95) eV? (top left to bottom right) with (red, dashed line) and without

(black, solid line) oscillations.
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Figure 7.2: Ezample v, appearance signal at MiniBooNE after event selection cuts,
for sin?20,. = 0.002 and 5 x 10%* p.o.t.. Panels show the number of events vs.
reconstructed neutrino energy ESF (GeV) for Am? = (0.13, 0.22, 0.36, 0.59, 0.97,
1.58, 2.58, 4.24, 6.95) eV? (top left to bottom right) with (red, dashed line) and

without (black, solid line) oscillations, and signal only (blue, dotted line).
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Table 7.2: Fractional composition in Monte Carlo of background after oscillation v,
selection cuts, which are YBoost23_COMBINED > 7.1 and Stancu UZ < (.9. Note that
for ve from % decay, 95.2% come from the decay chain 7+ — ptv,, pt — etv o,
and 4.8% come from ©+ — eTv.. The total number of events predicted by the Monte

Carlo after cuts, with no oscillations, for 5 x 10?° protons on target, is ~800.

source all Ve A vy v,

total 1.000 | 0.606 | 0.035 | 0.355 | 0.005
7 parent 0.620 | 0.528 | 0.007 | 0.843 | 0.238
m~ parent 0.007 | 0.001 | 0.091 | 0.000 | 0.714
K? parent 0.077 | 0.081 | 0.796 | 0.000 | 0.000
K™ parent 0.248 | 0.332 | 0.000 | 0.131 | 0.000
K~ parent 0.001 | 0.000 | 0.028 | 0.000 | 0.000
p parent 0.011 | 0.012 | 0.042 | 0.006 | 0.048
n parent 0.036 | 0.046 | 0.035 | 0.020 | 0.000
CCQE 0.569 | 0.860 | 0.810 | 0.056 | 0.048
NC1xr° 0.179 | 0.000 | 0.000 | 0.502 | 0.000
A — vy 0.077 | 0.000 | 0.000 | 0.212 | 0.238
CCln™ 0.067 | 0.104 | 0.021 | 0.000 | 0.000
NCrY coherent | 0.023 | 0.000 | 0.000 | 0.062 | 0.190
CC1x® 0.017 | 0.020 | 0.000 | 0.014 | 0.000
ve elastic 0.016 | 0.000 | 0.000 | 0.042 | 0.000
NC DIS 0.010 | 0.000 | 0.000 | 0.028 | 0.028
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Figure 7.3: Exzample oscillation signals at MiniBooNFE after event selection cuts for 5x

1020 p.o.t.. Left: ratio of number of events for a predicted v, disappearance oscillation

signal to the number observed without oscillations vs. ESF (GeV) with sin?20,, =

0.2. Right: ratio of number of events for a predicted v, appearance oscillation signal

to the number observed without oscillations vs. ESF (GeV') with sin*20,,. = 0.002.
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ph-decay v. and mis-identified v, neutral current 7° interactions. The total Monte
Carlo predicted number of background and signal events in the presence of oscilla-

tions would be ~800 and ~160 for (Am?, sin?26,.) = (1 eV?, 0.002), for a data set

with 5 x 10?° protons on target. Example reconstructed neutrino energy distributions
in Monte Carlo for all events passing the selection cuts are shown with and without
oscillations, for 0.1 < Am? < 7 eV? and sin?26,,. = 0.002, in figure 7.2. The neutrino
energy of events passing the v, CCQE selection cuts is reconstructed under a electron

hypothesis, assuming the electron mass for the final state lepton.

The power of the oscillation fit comes from both the normalization and the distor-
tion of the reconstructed energy spectrum due to oscillations. Figure 7.3 illustrates
the dependence of the spectral distortion on Am? for both appearance and disap-
pearance searches. In the event of a positive signal, MiniBooNE’s ability to measure
the value of Am? comes from distinguishing the spectral distortions for different os-

cillation parameters.

7.3 Systematic Errors

In the following, the sources of systematic error considered include the 7+ and K+
flux predictions, and the neutrino interaction cross section predictions. This list is
incomplete because it does not include the neutrino cross section final state interaction
uncertainties or the detector response errors, and therefore, the studies in this chapter
only use “fake data,” that is, central value Monte Carlo with no oscillation signal.
Hereafter, the term data always refers to “fake data.” The Monte Carlo statistics are
currently insufficient to calculate error matrices with 30 energy bins for the systematic
sources that are not included here, however, both final state interaction cross sections

and detector response errors are expected to contribute at the <10% level each to the
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total systematic uncertainty.

The error matrix M, used for the oscillation fits is constructed via
Miotar = Mgt + Mg+ + Mg + Mg (7.19)

where M+, Mg+, M,, and M, are the 7™, K, neutrino interaction cross section,
and statistical error matrices respectively. The statistical error matrix is diagonal,
with elements equal to the number of events in each reconstructed neutrino energy
bin. The systematic error matrices are calculated as described in chapter 4, using
first derivative matrices to propagate the simulation input parameter errors and cor-
relations to the reconstructed neutrino energy distributions for events passing the
selection cuts. The first derivative matrices are calculated assuming no oscillations,
and the reconstructed neutrino energy uses a muon hypothesis, that is, assuming
the muon mass for the final state lepton, for the v, event sample, and an electron

hypothesis for the v, sample.

The 7 flux prediction errors come from the Sanford-Wang fit to external 7"
production data discussed in chapter 3, and are calculated as described in chapter 4,

section 4.3. To construct M+ for the v, disappearance fit,
(Mzi)i,j = (FVH)Z:IC(PW+)I€,Z<?V“)Z,]‘ (7.20)

where 4, j index reconstructed neutrino energy bins and k,[ index Sanford-Wang 7
parameters ¢; through cg. The dimensions of (M%), ;, (Pr+ )k and (F*#),; are (30 X
30), (8 x 8), and (8 x 30) respectively. The matrix (Pr+ )i, is the covariance matrix
of the Sanford-Wang 7+ prediction parameters from the external data fit, given in
appendix F. The matrix (F"#);; is the first derivative matrix that describes the
change in the number of events passing the v, CCQE selection cuts in reconstructed

neutrino energy bin j, under a v, hypothesis, given a +1o change in Sanford-Wang 7"
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parameter [. Similarly, for the v, appearance analysis, the error matrix is constructed

as
(M5)ig = (F)in(Prt ua(F )y (7.21)

where (F¥¢), ; is the matrix of first derivatives for events passing the v, selection cuts
as a function of reconstructed neutrino energy, under a v, hypothesis, given a +1o
change in Sanford-Wang 7+ parameter [. The dimensions of the matrices are identical

to the v, case. For the combined fit, the error matrix is calculated via

(7.22)

,

(ME)ig = (F) D (Pr D (FP )i

where (F¥"»), ; is an (8 x 60) matrix, where the first 30 elements in any row are the
v, derivatives, and the last 30 elements are the v, derivatives. To account for the fact
that the x?/ndf of the Sanford-Wang 7" fit to external data is not equal to 1.0, the
parameter errors, and therefore the first derivatives are scaled up by the \/W ,
which is v/2.2 = 1.5. As expected, the largest source of normalization uncertainty

comes from the error on the Sanford-Wang 7" ¢; parameter, shown in table F.1.

Like the 7+ systematic errors, the K flux prediction uncertainties come from
the Sanford-Wang K™ fit to external production data described in chapter 3. To

construct Mg+ for the v, disappearance fit,
(MPED)ig = (F™) e (Prs ia(F )y (7.23)

where 7, j index reconstructed neutrino energy bins and k, [ index Sanford-Wang K
parameters ¢; through ¢g. The dimensions of (M%,); ;, (Px+ )k, and (F*), ; are (30
% 30), (9 x 9), and (9 x 30) respectively. The matrix (Pg+ )y, is the covariance matrix
of the Sanford-Wang K™ prediction parameters from the external data fit, given in
appendix F. The matrix (F"*);; is the first derivative matrix that describes the

change in the number of events passing the v, CCQE selection cuts in reconstructed
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neutrino energy bin j, under a v, hypothesis, given a +1o change in Sanford-Wang K
parameter [. Similarly, for the v, appearance analysis, the error matrix is constructed

as
(M )ig = (F) e (Pres e (F7 ) (7.24)

where (F¥¢);; is the matrix of first derivatives for events passing the v, selection
cuts as a function of reconstructed neutrino energy, under a v, hypothesis, given a
+10 change in Sanford-Wang K parameter [. The dimensions of the matrices are

identical to the v, case. For the combined fit, the error matrix is calculated via
(ME)iy = (F) (P Jioa (Fe )i (7.25)

where (F¥<"#);; is a (9 x 60) matrix, where the first 30 elements in any row are the
v derivatives, and the last 30 elements are the v, derivatives. To account for the fact
that the x?/ndf of the Sanford-Wang K™ fits to external data is not equal to 1.0,
the first derivatives are scaled up by the \/W , which is v/3.6 = 1.9. As for the
7 flux, the largest source of normalization uncertainty comes from the error on the

Sanford-Wang K ¢; parameter, shown in table F.2.

The neutrino interaction cross section errors come from the estimates based on
past data described in chapter 3, and are calculated as described in chapter 4, section
4.3 with one important difference: only the neutrino interaction cross section uncer-
tainties are considered. The final state cross section errors, which comprise the last
three rows of table 4.7, are not included. With the exception of the CCQE parame-
ters, the neutrino interaction cross section sources systematic error are assumed to be
uncorrelated. The correlations between the axial mass for CCQE interactions, m 4,
and the Fermi Gas model parameters, EFp and pp, are taken from the m, analysis
of chapter 6. In the future, the relevant parameter errors will also use the Mini-

BooNE measurement, however, these are not used now because the contribution of
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the detector response uncertainties is still under investigation. Note that since the
CCQE cross section parameter analysis is flux-independent, these constraints derived
from MiniBooNE data can be applied to both the v, and v, oscillation analyses; if the
(ma, Ep, pr) parameter measurement were sensitive to variations of the neutrino flux
due to oscillations, then this constraint could only be applied to the v, appearance

analysis and not to the v, disappearance search.

To construct M, for the v, disappearance fit,
(Mg = (F)i(Po)ea(F )i (7.26)

where 7, j index reconstructed neutrino energy bins and k, [ index neutrino interaction
cross section sources of uncertainty. The sources considered here include the first 9
elements of table 3.10. Notable exceptions are the final state interaction parameters.
A complete analysis would include these, however, they are still under investigation
at this time. The dimensions of (M), ;, (Py)r; and (F*#),; are (30 x 30), (9 x
9), and (9 x 30) respectively. The matrix (P,)i, is the covariance matrix of the
neutrino interaction cross section prediction parameters, given in appendix F. The
matrix (F"*);; is the first derivative matrix that describes the change in the number
of events passing the v, CCQE selection cuts in reconstructed neutrino energy bin
J, under a v, hypothesis, given a +1c change in neutrino interaction cross section
parameter [. Similarly, for the v, appearance analysis, the error matrix is constructed
as

(M2)ig = (F) e (Po)ka(F )i (7.27)

where (F");; is the matrix of first derivatives for events passing the v, selection
cuts as a function of reconstructed neutrino energy, under a v, hypothesis, given a
+10 change in neutrino interaction cross section parameter [. The dimensions of

the matrices are identical to the v, case. For the combined fit, the error matrix is
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calculated via

(M) = (F) e (Po) g (FP )1 (7.28)

where (F¥<"#);; is a (9 x 60) matrix, where the first 30 elements in any row are the
v, derivatives, and the last 30 elements are the v, derivatives. The largest sources of
normalization uncertainty come from the errors on the Fermi Gas model parameters

and the value of m 4 for coherent pion production, shown in table F.3.

The contribution of each of the above sources to the normalization uncertainty
for the v, and v, event samples passing selection cuts is summarized in table 7.3.
The normalization uncertainty is calculated by summing over all elements of the
error matrix M, which takes into account correlations between energy bins. The
contributions to the normalization systematic errors for each constituent simulation

parameter are summarized in tables F.1 through F.4 in appendix F.

The difference in normalization between the Monte Carlo prediction and the mea-
sured rate in data, discussed in chapter 4, is not taken into account in the uncertainty
estimates here. A number of approaches to this problem are under investigation. One
way to handle the discrepancy is to choose a source and assign a larger systematic
error such that the normalization of Monte Carlo agrees with data within errors. Ex-
amples of this could include increasing the uncertainty on the Sanford-Wang 7% ¢;
parameter, which sets the overall normalization of the 7 production cross section, or,
increasing the uncertainty on the neutrino interaction CCQE cross section m 4 value.
Another way to deal with the discrepancy is to add parameters to the oscillation fit,
such that it would become a combined fit for Am?2, sin?20, n,, and nx, where the n

are normalization pull terms for the 7+ and K event rates respectively.

Of the analyses described previously in this thesis which seek to reduce the un-
certainties with respect to external data, only the cross section analysis results can

be applied to the v, disappearance search. However, the addition of the cross sec-
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Table 7.3: Summary of fractional normalization systematic errors Afr™*? for v, and

v. events after their respective event selection cuts, and for the combined data sets.

The constrained uncertainties use the reduction in systematic errors from the analysis

of chapter 5. The neutrino interaction cross section uncertainties with correlations

among CCQE parameters, pccor, come from chapter 6.

source vy, U, combined
statistics 0.0033 | 0.0354 | 0.0033
7 flux prediction 0.0738 | 0.0388 | 0.0735
K™ flux prediction 0.0023 | 0.0640 | 0.0028
o, predictions 0.2606 | 0.2692 | -

o, predictions + pocor 0.0799 | 0.0720 | 0.0796
constrained 7t prediction | N/A | 0.0016 | N/A
constrained o, predictions | N/A | 0.0563 | N/A
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tion parameter correlations has a big effect because the assumed CCQE simulation
parameter uncertainties are very large. Without correlations, AfP°? due to cross
sections is 26%, from table 7.3, and with the correlations taken from the final data

(ma, Ep, pr) fit in chapter 6, A fP7¢ is reduced to 8%.

In contrast, the constraints on the 7*-decay v, and p*-decay v, fluxes and the
cross section uncertainties from chapter 5 can be applied to the v, appearance search,
since these depend only on the observed v, distribution. In fact, the dependence
of these constraints on the measured v, spectrum is precisely why they cannot be
used in the v, disappearance analysis. The constrained 7" simulation parameter
errors, derived from the analysis in chapter 5, reduce the v, sample normalization
systematic error contribution of the 7" flux prediction uncertainty from 3.9% to
<1%. The reason the constraint is so effective is that ~30% of the total events
passing the v, selection cuts are pu*-decay v, and another ~30% are nt-decay v,
both of which are directly related to the v, data set. The constraints on the v,
neutrino interaction cross section simulation parameter uncertainties, from the same
analysis, reduce the normalization uncertainty contribution from 7.2% to 5.6%. This
reduction in uncertainty is somewhat smaller because the v, data set constrains only
the CCQE cross section simulation parameter uncertainties, which comprise 1/3 of
the systematic errors, and while ~60% of all events passing the v, selection cuts are
CCQE interactions, the cross section uncertainty has large contributions from other
interaction channels, such as single 7° production and radiative A decay, which are

not reduced by parameter correlations.
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7.4 v. Appearance and v, Disappearance Sensitiv-
ities

The MiniBooNE v, disappearance and v, appearance oscillation sensitivities are
shown for a variety of systematic error assumptions in figures 7.4 and 7.5. The
event selection criteria are described above, and the systematic error assumptions all
come from external data, with the exception of the CCQE cross section parameter
correlations, which are based on the measurement in chapter 6. In these figures,
the left panels show the 90% confidence level limit for v, disappearance, under a
two-neutrino (u, x) hypothesis, along with the allowed regions of (Am?, sin?26,,)
parameter space in models with one sterile neutrino [36], at 90% (light blue) and 99%
(dark blue) confidence level. The right panels in figures 7.4 and 7.5 show the 90%
confidence level limit for v, appearance in MiniBooNE, under a two-neutrino (u, e)
hypothesis, along with the allowed regions of (Am?, sin?26,.) reported by the LSND
experiment [31], at 90% (light blue) and 99% (dark blue) confidence level.

The systematic error assumptions shown in figures 7.4 and 7.5 include: (i) statis-
tical errors only, (i) statistical and 7" flux prediction errors only, (iii) statistical and
K™ flux prediction errors only, (iv) statistical and neutrino interaction cross section
errors only, and (v) all of the above combined. For both v, disappearance and v,
appearance the most restrictive source of systematic error comes from neutrino in-
teraction cross sections. Both are dominated by contributions from the CCQE cross
section simulation parameter uncertainties. Currently the errors on the Fermi Gas
Model parameters are quite large, of order 70% as discussed in chapter 3, and will
be reduced significantly by using the MiniBooNE measurement in chapter 6, which

is not used here to set the magnitudes of the simulation parameter uncertainties.

The next most important sources of uncertainty in limiting the MiniBooNE os-
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Figure 7.4: MiniBooNE oscillation sensitivity at 90% confidence level. Left: Am?
(eV?) vs. sin?20,,, with 5+1 allowed regions at 90% (light blue) and 99% (dark
blue) confidence level. Right: Am?* (eV?) vs. sin*20,., with LSND allowed regions at
90% (light blue) and 99% (dark blue) confidence level. Systematic error assumptions
include (i) statistical errors only (green, dotted line), (i) K* flur and statistical errors
only (yellow, solid line), (iii) ©* flur and statistical errors only (blue, dashed line),
(iv) o, and statistical errors only (red, dash-dotted line), and (v) all of the above

combined (black, solid line).
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Table 7.4: Comparison of expected and best-fit limit values of sin?20 at Am? = 100
eV2. Limits are stated at Ax*> = 1.0 (not 1.64 as in the plots with 90% confidence
level curves), and expected values are calculated from the errors given in table 7.3 and

equations 7.11 and 7.15 for v, disappearance and v, appearance respectively.

source v, expected | v, limit | v, expected v, limat
statistics 0.0066 0.0066 | 4.547x107* | 4.567x10~*
7t flux 0.1476 0.1477 | 6.741x107* | 6.773x1074
K™ flux 0.0080 0.0080 | 9.403x10™% | 9.434x10~*
oy + pccor | 0.1598 0.1597 | 10.306x10~* | 10.339x10~*
all 0.2176 0.2175 | 14.090x10~* | 14.145%x1074

cillation sensitivity are the 7 and K flux predictions, for the v, disappearance and
the v, appearance searches respectively. The number of neutrinos from K decay
is actually larger in the v, sample, ~1500 after the v, cuts compared with ~200
passing the v, cuts, however, the fraction of KT-decay neutrino induced events is
much smaller, ~2%, in the v, sample than in the v, set, ~25%. Therefore, the K+
uncertainty contributes almost nothing to the v, sample total systematic error, and

very significantly to the total v, systematic error.

The value of sin?260 at high Am?, where the sensitivity comes from the “counting
experiment” alone, can be compared with the simple limits derived in equations 7.11
and 7.15 to verify that the oscillation fit results are sensible. The expected and best-
fit sin?20,,, and sin*26,,. limits are compared in table 7.4 for v, disappearance and v,
appearance respectively. In general, the best-fit limit values are in excellent agreement
with the expected values, which builds confidence in the oscillation fit method and

implementation.
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The importance of the “counting” experiment is rather different in the v, and
v, searches. For v, appearance, the “counting” experiment is the dominant contri-
bution to the oscillation sensitivity, while for v, disappearance the distortion of the
reconstructed neutrino energy spectrum contains most of the useful information for
the oscillation fit. This is illustrated in figure 7.5, in which the top two panels show
the v, and v, oscillation sensitivities calculated using only the total number of events,
with no information about the reconstructed neutrino energy spectrum. The sensi-
tivities calculated using E9F distribution shape information only are shown in the
bottom panels of figure 7.5. To separate the shape and normalization components,
two different forms of the x? function are used. For normalization-only sensitivities,
the x? function in equations 7.8 and 7.14 are used for the v, disappearance and v,
appearance limit calculations respectively. For the shape-only sensitivity calculation,
the basic x? function is slightly modified such that the predicted total number of
events in the absence of oscillations is normalized to be the same as the observed

total number of events. The x? function is given by

X = Z Z (NiD“m—kNiMC(AmQ, 8@'71226’)) (M) (NJ-D““—k:NJMC(AmQ, sin229)>
v

(7.29)

where the constant k normalizes the total number of Monte Carlo events to be equal

to the number of data events, via

Zi NiDam

b= S NMC

(7.30)

where i indexes bins of E9¥. The error matrix M’ is calculated using first deriva-
tives similarly normalized such that only the differences in the E9® spectrum shape
contribute to the uncertainty; e.g. in E9¥ bin i for systematic source j, the element

of the first derivative matrix would be

2 NY N O
Fl _ ZzNz] v !
[

Ap;

(7.31)
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where N? is the number of events in bin i predicted by the central value Monte
Carlo, and Nij is the number of events in bin ¢ predicted by a Monte Carlo set in

which parameter j has been varied with respect to its nominal value by Ap;.

Experimentally, the fact that the v, and v, oscillation sensitivities depend rather
differently on the systematic errors is quite useful. The high statistics v, data set can
provide a normalization constraint on several of the important background sources
for the v, appearance search, and because the appearance sensitivity depends largely
on measuring a rate rather than shape difference, adding normalization information
from the v, data set has a big impact on the v, search. The converse is that adding
the v, data does not help the v, disappearance sensitivity significantly because the
v, statistics are relatively small, and do not provide a strong constraint on the v,
energy spectrum. The impact on the oscillation search of three kinds of constraints,
all derived from the v, CCQE data set of chapter 4, are described in the following:
(i) the CCQE cross section parameter measurement of chapter 6, (i7) the 7t flux
constraint method of chapter 5, and (i7i) a combined oscillation fit to the v, and v,

data sets.

The results of the CCQE cross section parameter measurement described in chap-
ter 6 can be applied to both the appearance and the disappearance search, because
the measurement is flux-independent. The CCQE (ma, pr, Ep) analysis produces
two kinds of information: (i) the correlations between the CCQE simulation param-
eters ma, Fp, and pp, and (77) the uncertainties on those parameters. The impact of
adding the correlations between m 4, Fp, and pp is illustrated in 7.6. The uncertain-
ties assumed on the CCQE parameters are large: 20% for my, 72% for pr, and 76%
for EFp. Conservatively, the CCQE parameter extraction in chapter 6 will measure
pr and Ep at least twice as well as this. The impact of adding both correlations and

reducing the pr and Ep simulation parameter uncertainties by 50% is also shown
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Figure 7.6: MiniBooNE 90% confidence level sensitivity with o, systematic errors,
from external sources (red, dotted line), with MiniBooNE-measured correlations (red,
dashed line), and with MiniBooNE-measured correlations and projected parameter
errors (red, solid line). Left: Am?* (eV?) vs. sin®20,,. Right: Am? (eV?) wvs.

$in*20 .. Allowed regions are described in figure 7.4.

in figure 7.6. Incorporating both of these results improves the oscillation sensitivity
for both v, disappearance and v, appearance by >1o at low Am?. However, since
detector response uncertainties are not yet included in the (mu, pr, Ep) measure-
ment, in the following, only the CCQE parameter correlations measured in chapter 6
are applied, and the large parameter uncertainties based on external data are used,

rather than MiniBooNE-measured values.

The method used to derive constraints on the simulation parameter uncertainties
in chapter 5 uses the measured v, rate, and therefore cannot be applied to the v,
disappearance analysis. However for the v, appearance it can be applied in two

ways: (i) by assuming the cross section predictions, and deriving constraints on the
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Figure 7.7: MiniBooNE 90% confidence level sensitivity with statistical errors (green,
dotted line), errors derived from external sources (dashed line), and errors constrained
by the v, data (dash-dotted line), as discussed in the text. Left: Am?* (eV?) vs.
$in?20,,, with systematic errors from ©* fluz prediction and statistical errors. Right:
Am? (eV?) vs. sin®20,,. with systematic errors from o, and statistical errors. Allowed

regions are described in figure 7.4.

uncertainties in the 71 flux simulation, as discussed in chapter 5, and (i7) by assuming
the flux prediction, and deriving constraints on the uncertainties in the neutrino
interaction cross section simulation, which is described in appendix C. The results of
these two approaches are shown in the left and right panels of figure 7.7 respectively.
The flux constraint, as expected, translates directly into a reduction of the 7% flux
prediction uncertainty on the 7-decay v, and p*-decay v, sources of background
after the v, selection cuts. In fact, the resulting uncertainties, summarized in tables
5.1 and 5.2, are smaller than the statistical error on the v, sample after selection cuts,

which is 3.5% on the total number of events and larger for individual EY bins. The
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cross section constraint is somewhat less effective, because only CCQE interactions
are constrained by the v, data set, however, it still represents an improvement of
~0.50 over the un-constrained case. Note that for the constrained cross section
sensitivity calculation here, only the 7t-decay neutrinos have had the CCQE cross
section uncertainty reduction applied. This is a conservative choice since, in principle,
the CCQE cross section constraints derived by this analysis are applicable to all

neutrinos.

A combined oscillation fit to the v, and v, data sets has the advantage of in-
corporating the constraints from the v, sample while solving several complexities
associated with using “off-line” v, information, like the constraints described above,
in a v, appearance fit. First, a combined fit avoids double counting of uncertainties,
which most likely affects any constraint derived from the v, sample. For example, us-
ing the m 4 error derived from the analysis in chapter 6, which includes contributions
from flux, background cross sections, and detector response errors, to determine the
V. cross section error matrix, and then additionally using a detector response error
matrix in the v, fit, probably double counts the contribution of any detector response
systematics that affect the v, and v, events similarly. Sorting out the correlations
would be messy and difficult. However, a combined fit simply uses the cross section
error matrix derived from external data together with the detector response error ma-
trix, and automatically deals with the correlations of all uncertainties when mapping
out the x? space. Second, the constraints on the flux and cross section derived using
the observed v, spectrum in chapter 5 assume no oscillations. However, if there is
v, disappearance, it can be as large as ~10%, which could lead to an under-estimate
of the number of pu-decay v,. This would happen because the analysis of chapter 5
would use the oscillated v, events to infer the 77 spectrum, and consequently infer

too few 7 and therefore predict few p*-decay v,. To first order, a disappearance
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signal would probably not affect the constraint on the simulation uncertainties, which
is how the chapter 5 results are used in the discussion above, however, if the anal-
ysis were used to set the normalization of the pu*-decay v, prediction in the fit, it
would be incorrect. Therefore, v, disappearance would be a source systematic error
in determining the 7" flux and CCQE cross section constraints in the analysis of
chapter 5. One might address this by iterating the v, fit with and without assuming
disappearance, however, the combined fit handles this kind of difficulty transparently
because it estimates the v, and v, oscillation parameter values and errors simultane-
ously, including their correlations. Finally, a combined fit is a straightforward way
to include the v, data in the v, appearance analysis, and is therefore much easier to

understand and explain.

The combined fit results are shown in figures 7.8 through 7.11 with statistical and
7+ flux errors, statistical and K+ flux errors, statistical and o, errors, and all of the
above respectively. A comparison of the 90% confidence level, 3o, and 50 sensitivity
curves is shown for the combined fit vs. the appearance-only or disappearance-only
fits using errors based on external data (with the CCQE parameter correlations from
MiniBooNE) in figure 7.12. In general, the combined fit represents an improvement
of 1-1.50 over the appearance-only fit with systematic errors estimates from external

data.

The combined fit result for v, appearance, with uncertainties from the 7+ flux
prediction, agrees very well with the result in figure 7.7 which used the 7" flux con-
straint method of chapter 5. This is shown in figure 7.8. The v, sensitivity with
7w errors is identical in the disappearance-only and combined fits. Similarly, for the
neutrino interaction cross section errors, the combined fit appearance sensitivity is
consistent with the sensitivity shown in figure 7.7, which uses the constrained CCQE

cross section errors derived in chapter 5. The combined fit v, result, shown in figure
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Figure 7.8: MiniBooNE 90% confidence level sensitivity with statistical errors (green,
dotted line), and ©* fluzr prediction systematic errors from external sources (blue,
dashed line), from the constrained w* errors in chapter 5 (blue, dash-dotted line),
and from the combined fit (blue, solid line). Left: Am?* (eV?) vs. sin®20,,. Right:

Am? (eV?) vs. sin®20,,.. Allowed regions are described in figure 7.4.

7.9, is slightly improved with respect to this limit at high Am?, where high energy
neutrinos from kaons are more important. This is likely because only 7-decay neu-
trinos were constrained in figure 7.7, while the error reduction is properly applicable
to all neutrinos with CCQE interactions. For v, disappearance, the sensitivity is
identical for all but Am? of 1.58 eV2, where the combined-fit result is slightly better
than the disappearance-only fit. This Am? is very close to the first oscillation maxi-
mum, and as figure 7.3 shows, the v, sample does contribute spectral information at
this point, that is, the energy spectrum exhibits deformation due to oscillations. The
MINUIT fit at this Am? shows every sign of normal convergence, and so this may be

a case where the v, data helps the v, fit.
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Figure 7.9: MiniBooNE 90% confidence level sensitivity with statistical errors (green,
dotted line), and o, prediction systematic errors from external sources (red, dashed
line), from the constrained o, errors in chapter 5 (red, dash-dotted line), and from
the combined fit (red, solid line). Left: Am?* (eV?) vs. sin®20,,,. Right: Am? (eV?)

vs. $in*20,. Allowed regions are described in figure 7.4.

For the 7+ and neutrino interaction cross section uncertainties, the combined fit
result can be compared with appearance-only fits using “off-line” constraints from
the v, data. The agreement between the combined fit results and the “off-line”
expectations build confidence in the combined fit procedure. For the KT errors, no
such “off-line” analysis is available here. The combined fit v. appearance and v,
disappearance sensitivities with statistical and KT errors are shown in figure 7.10.
The improvement in the v, sensitivity over the appearance-only fit is significant. It is
not surprising that the v, data set provides a strong constraint because there are ~8x
more K t-decay events after cuts in the v, sample than in the v, data set. However,

the combined-fit result for the disappearance sensitivity is slightly worse than the
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disappearance-only fit result. This is because although the number of K *-induced
events is larger in the v, sample, the number of K induced events in the v, sample is
of the same order of magnitude, and therefore has power in the fit. In fact, the total
correlated normalization error is actually increased in the combined fit, to 0.28%, with
respect to the disappearance-only fit, where the normalization error coming from K
systematics is 0.23%. For all other sources of systematic error considered here, the
combined-fit normalization error is approximately equal to the disappearance-only fit
value, as table 7.3 shows. The difference between the high Am? sin?26,,, limit values
in the disappearance-only and combined fits is 0.0007, which is roughly the expected
value, ~2 x (0.0028-0.0023), from equation 7.11. However, the relation in 7.11 is
not strictly valid for the combined fit because the oscillation parameters sin®26,,,
and sin?20,,. are slightly correlated by the common systematics. From the fit, the

correlation coefficient is p = 0.062.

Finally, the combined fit results for statistical, 7+ flux prediction, K flux predic-
tion, and neutrino interaction cross section errors combined are shown in figure 7.11.
For v, appearance, the sensitivity calculated using the “off-line” constraints for the 7"
and neutrino cross section uncertainties, together with the statistical and external K™
errors, is also shown. The combined fit is slightly improved with respect to this limit
due to the additional K error constraint, for which there is no “off-line” analogue
here. For v, disappearance, the combined-fit and disappearance-only sensitivities are
identical for all points other than Am? = 1.58 V2, where the improvement is due to

the marginal reduction in cross section uncertainties seen in figure 7.9.
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Figure 7.10: MiniBooNE 90% confidence level sensitivity with statistical errors (green,
dotted line), and K* prediction systematic errors from external sources (yellow,
dashed line), and from the combined fit (yellow, solid line). Left: Am? (eV?) wvs.

$in?20,,. Right: Am? (eV?) vs. sin?20,,.. Allowed regions are described in figure

7.
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Figure 7.11: MiniBooNE 90% confidence level sensitivity with statistical errors (green,
dotted line), and 7+, Kt, and o, prediction systematic errors from external sources
(black, dashed line), from the constrained errors in chapter 5 (black, dash-dotted line),
and from the combined fit (black, solid line). eft: Am? (eV?) vs. sin?20,,. Right:

Am? (eV?) vs. sin?20,,.. Allowed regions are described in figure 7.4.
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Figure 7.12: MiniBooNE sensitivity with statistics, =+, KT, and v cross section
prediction systematic errors at 90% confidence level (black), 30 (medium grey), and
50 (light grey) for the combined fit (solid lines) and appearance-only or disappearance-
only (dashed lines), using external systematic errors. Left: Am? (eV?) vs. sin?*20,,,.

Right: Am? (eV?) vs. sin*20,. Allowed regions are described in figure 7.4.

7.5 Conclusions

The v, data set in MiniBooNE provides a powerful constraint on several important
sources of systematic error for the v, appearance oscillation analysis, notably the 7+
flux prediction, the K+ flux prediction, and the neutrino interaction CCQE cross
section model. A variety of approaches to incorporating information from the v,
data into the 1, analysis have been pursued, and are found to be consistent with each

other.

The 90% confidence level, 3o, and 50 sensitivity curves are shown for v, appear-

ance and v,, disappearance in figure 7.12, comparing the combined-fit result with the
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appearance-only and disappearance-only fits including statistical and 7 flux predic-
tion, K flux prediction, and neutrino interaction cross section prediction systematic
errors. For v, appearance, the combined fit improves the experiment sensitivity by
1.2-1.5 ¢ depending on the value of Am?, relative to an appearance-only fit. For v,

disappearance, the combined fit sensitivity is similar to a disappearance-only fit.

The systematic errors considered in this work are not yet complete since they
do not include uncertainties on the detector response or final state interaction cross
sections, which will degrade the oscillation sensitivity. However, there are also sources
of systematic error which will be reduced by using MiniBooNE measurements to set
their uncertainties. Examples include the CCQE parameter errors, and the neutral
current 70 cross section uncertainties. Both of these will improve MiniBooNE’s reach
significantly since the neutrino interaction cross sections are currently the limiting
sources of systematic error. On balance, the MiniBooNE sensitivity will most likely

be somewhat improved with respect the analysis described here.

For both the v, disappearance and the v, appearance, the 90% confidence level
sensitivity curves calculated here cover interesting regions of oscillation parameter
space. For some limited (Am?, sin?26,,) combinations, with these systematic errors,
MiniBooNE has 30 coverage in v, disappearance. For the v, appearance search,
MiniBooNE has 3-50 discovery potential over most of the LSND (Am?, sin®26,,)

allowed region using the combined fit developed here.

Whether MiniBooNE confirms or rules out the LSND signal, the most important
criterion is that the result be unambiguous. The LSND signal raises many fascinating
possibilities, and for progress to be made in understanding what neutrino oscillations
tell us about the Standard Model, these questions must be resolved by a definitive
measurement. MiniBooNE is a difficult experiment because it operates in a proton

beam and neutrino interaction energy regime where few experiments have gone before.
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Therefore, constraining systematic errors and background predictions using in-situ
neutrino data is both interesting in its own right and a relevant part of making the
MiniBooNE measurement conclusive. This is what I have tried to accomplish and

describe in my thesis analysis.
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Appendix A

Protons on Target Measurement

The measurement of the number of protons on incident on the MiniBooNE target,
abbreviated as p.o.t. hereafter, comes from two toroids, located 5 and 50 m upstream
of the target respectively. The calibration of the toroids is the dominant contribution
to the systematic error, which is ~1%. The evolution of this analysis is described in

detail in [129], the current status is summarized here.

A.1 Hardware

Toroids provide the primary measure of the total charge per Booster proton beam
pulse in the MiniBooNE beam line. MiniBooNE uses two Pearson 3100 toroids, with a
3.5” aperture [130]. The toroids are essentially transformers, with the beam current
acting as a one turn primary winding. The signal is transmitted from the beam
enclosure to the MI10 service building where electronics condition and monitor the
signal. The toroid calibration system is also located in the same building. The toroids
each have two cable connections: one for signal pulse output, and one for calibration

pulse input. The calibration loop of the toroid is simply a wire that passes through

304



305

the toroid, to simulate a one turn primary winding. The signal cable is RG108, and
the calibration cable is 3/8” heliax. The calibration cable characteristics are such

that the input pulse charge loss is less than 0.01% [131].

Toroid TORS75 is located 5 meters upstream of the MiniBooNE target, and
toroid 860 is located 194.162 meters upstream of toroid 875 along the beam path [132].
Both are located quite far from the service building, and the time for the calibration
signal to make a round trip from the MI10 service building to TOR875 and back is
measured with an oscilloscope to be 1500 +- 250 ns [133] and calculated from time
delay reflectometry [134] measurements on nearby BPM cables to be 1671 +- 40 ns.

Schematics of the toroid locations and associated cables are shown in figure A.1.

Calculated Toroid 860 Measured Calculated Toroid 875 Measured
Round trip time for Electronics Round trip time for Round trip tfime for Electronics Round trip time for
Toroid 860 Toroid 860 Toroid 875 .
MILD MILD Toroid 875
~ 982 +/-40 nsec Relay Rack 10004/-250 nsec =~ 1671 +/- 40 nsec Relay Rack
MII0112 MIL0112 1500+/-250 nsec
Toroid Calibration Cable Tomid Sigal Ciila Toroid Calibration Cable Tocoid:S gnal Gatle
8" heliax (0.88c)* RGI08 (0.66¢)* 38" heliax (0.88c)* RG0S (0.66<)*
T ~ 421 nsec* T2 ~ 88166 x 421 nsec S T2 -~ 88/66 x 716 nsec
T2~ 561 nsec T2 ~ 955 nsec

* From Brian Fellenz

: * From Brian Fellenz =
Fermilsts Beams Toroid 860 Jocelyn Montoe and Danid Finley T Toroid 875 Jocelyn Monme an David Finley
Division Pearson 3100% MiniBooNE orerllD Beans Siviion Pearson 3100 MiniBoaNE

Februcy 1, 2008 Ryt Foiraay . 20 Febey 7. 303

Figure A.1: Left: toroid 860 location and cable transit time schematic. Right: toroid

875 location and cable transit time schematic.

The toroids work like transformers: the beam or calibration pulse acts as the pri-
mary turn, and induces current in the many secondary turns wound about a circular
ferrite core. When the proton beam passes through the toroid aperture, a voltage is
induced in the toroid windings proportional to the mutual inductance of the trans-
former, and the change in the beam current with time [135]. The output voltage is

integrated by an FNAL-built integrator, and the signal is digitized by an MADC.
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The ideal response of the toroid + integrator + MADC system is,

Vout At
Nppp. = 61; (A-l)
g

where N, is the number of protons per pulse passing through the toroid, V., is
the voltage output of the toroid, At is the length of the beam pulse in seconds, e is

the charge of a beam particle, and R, is the termination resistance.
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Figure A.2: Left: toroid 860 beam pulse output voltage (V) vs. time (s). Right: toroid

875 beam pulse output voltage (V) vs. time (s).

The toroids output 0.5 Volts per Ampere of beam current, when terminated into
50 €2. The voltage output of the toroid can be calculated using a simple transformer

model [136], where the output voltage is related to the beam voltage by

Ry,
‘/ou — ‘/z k——— A2
t X NR, ( )
M
v/ LiLs

where k is the coupling coefficient of the transformer (for and ideal transformer, k& = 1)

k:

(A.3)

in terms of the mutual inductance M and the inductances of the primary, L;, and
secondary, Lo, loops, Ry, is the load resistance of the transformer circuit, N is the

turns ratio, and R, is the termination resistance at the toroid, which is 50€. At
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MiniBooNE beam intensities, the typical V,,; is a few mV. The shorting mechanism
that starts and ends the integrator gate causes noise fluctuations of this scale, as
can be seen in figure A.2, however, since the toroid is electrically isolated from the
beam pipe, the noise level in the toroid circuit is much smaller within the integrator
gate [137]. Typical toroid signals are shown in figure A.2. As expected for a Booster
proton beam pulse, the width of the toroid output voltage pulse is 1.6us. Comparison
of TOR860 and TORS8T75 output voltage times shows that the TORS875 signal starts
later, which is due to both the difference in cable length and distance between the

two toroids.
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Figure A.3: Left: toroid 860 beam pulse integrated voltage (V) vs. time (s). Right:

toroid 875 beam pulse integrated voltage (V) vs. time (s).

The integrator gate width, 10us, is much longer than the Booster pulse length,
1.6us, to account for reflections in the signal cables [138]. The integrator signal is
shown for a Booster proton beam pulse in figure A.3. The integrators are triggered
approximately 2us before the beam transits the toroids, and the baseline of the in-
tegrators is non-zero, as can be seen from the time the integrator gate opens (¢t = 0
in figure A.3) to the time when the beam-induced voltage integration starts. The

non-zero baseline value of the integrators requires the calibration correction of the
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MADC pedestal. The integrator voltage level decays after the beam pulse has gone by,
which requires calibration of the MADC gain to recover the full beam pulse voltage.
Additionally, the decay constants are different between the TOR860 and TORS875
integrators, which necessitates careful timing of the integrator triggers with respect
to the beam arrival time at each of the toroids. At the end of the gate, 10us after
the start, there is a 2.5us sample-and-hold, when the integrator signal is digitized by

the MADC, after which the integrator resets.

The integrator trigger time with respect to the Booster proton beam arrival affects
the measured p.o.t. value because the integrators for TOR860 and TORS&75 have
different voltage decay constants. Additionally, since the toroids are separated by
~200 m, the time of arrival of the beam with respect to a common integrator gate
start time differs by ~1 us. Calibrations were done using a Hewlett Packard 8112A
pulse generator to send a 1 V', 1.6 us square pulse through the calibration loop of both
toroids, and the start time of the calibration pulse was varied from 1 to 9 us after
the start of the integrator gate (this time is referred to as the delay in the following),
preserving the toriod output pulse integrator time difference. Figure A.4 shows the
measured number of protons per pulse as a function of delay with respect to a common
start time of the integrator gate for the two toroids. The measured values differ by
a few percent for delays less than 5us, after which the ratio of TOR860/TOR875
changes rapidly as the delay approaches the end of the gate. The delay is currently
set to occur at 2 pus, and this difference in gain between the two toroids is corrected

for in the p.o.t. analysis.

In the initial beam line configuration, both integrators were triggered at the same

time, with respect to the injection of beam into the Booster from the Linac !. This

!Both integrators were triggered on the 1D event + 33.45 ms + 319.6 us. with respect to the 1D

accelerator event, which corresponds to injection of beam from the Linac into the Booster. The 1D
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Figure A.4: Left top: toroid 860 (Black) and 875 (Red) output (V) vs. delay after
integrator gate start (us). Left bottom: ratio of 860 / 875 output vs. delay after
integrator gate start. Right: ratio of toroid 875 to toroid 860 number of protons per
pulse vs. time, before and after the integrator trigger timing change described in the

text.

was problematic because the Booster extraction time with respect to injection can
vary by up to 1.6 ps, because the extraction is synchronized with a notch created in
the beam to minimize radiation due to particle losses at extraction. The placement
of the notch is asynchronous with the extraction signal, and so the extraction trigger
waits until the notch is in the appropriate location in the Booster. The length of
one Booster turn in time, at the extraction beam energy, is 1.6 ps. Therefore as a
result of triggering the integrators with respect to injection, rather than extraction,
the time of arrival of the beam within the integrator gate could vary by up to 1.6 us

at both toroids.

The integrator trigger was changed at 4 p.m. on February 26, 2003, such that the

event is the signal for beam to be injected into the Booster from the Linac, the acceleration time is
approximately 33 ms, and the transit time of beam to the MiniBooNE beam line is approximately

319 ps.
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Figure A.5: Left: ratio of toroid 875 to toroid 860 measured number of protons per
pulse vs. run number. Right: toroid 875 vs. toroid 860 measured number of protons

per pulse.

trigger times are now with respect to the Booster extraction event 2, which ensures
that there is no variation in the beam time of arrival with respect to the Booster
notch, and such that the beam arrives 2 us after the integrator gate start at TORS60,
and approximately 3 us after the integrator gate start at TOR875. The result of the
change is shown in the right panel of figure A.4. Before the trigger timing change,
the ratio of the two toroids varied by about + 2% since the integrator triggers were
set at 5 us, where a +1.6 ps variation in the beam time-of-arrival has a few percent
effect. After the trigger timing change one can see from figure A.4 that the variation

is less than 0.5%.

The best intrinsic measurement resolution of the Pearson 3100 toroids is approx-
imately 0.1% [139], however, this value is from benchtop measurements, and does
not include the response of the associated integrating electronics or cables. In situ,
the toroids are observed to have significant drift as a function of time [140]. This

phenomenon is widely observed at FNAL, and the cause is not understood. The

2The new integrator trigger is the 1F event + 318.5 s, for both toroids.
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working hypothesis is that the drift is due to changes in the terminating resistance
of the toroid, the integrator gain stages, and/or the MADC internal resistance [141].
Figure A.5 shows the ratio of the number of protons per pulse measured by TORS&60
to TOR8T75 as a function of MiniBooNE run number. There are clear steps, as large
as 1% in magnitude, where the relative calibration of the two toroids has changed 3.
However, it is not clear which of the toroids is drifting, and therefore calibration

information is required.

A.2 Calibration

Two kinds of calibrations are employed to address the issue of toroid drift. Absolute
calibrations are done approximately twice yearly by the FNAL Beams Division In-
strumentation Group to measure the absolute ratio of voltage input to voltage output.
The calibration of the two toroids relative to each other (called relative calibrations
hereafter) is measured at 5 Hz by a custom calibration module designed and built
at Nevis Laboratories. The relative calibration data is read out by the MiniBooNE

beam line data acquisition system, and applied in the p.o.t. analysis software.

Absolute Calibration

The absolute calibration of the toroids addresses the issues of integrator gain and

resistance changes. The absolute calibration employs a high precision wave form

3Since toroid 875 is considerably farther downstream in the beam line than toroid 860, one might
ask whether the difference between the two measurements can be due to beam loss. This possibility
has been ruled out by controlled loss measurements using a bayonet SWIC, in which a foil of a
known thickness is inserted into the beam, and the loss monitors are tracked. A loss of 1% of the
MiniBooNE beam would produce loss monitor readings approximately a factor of 10 higher than

the nominal operating values [142].
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generator, whose output voltage is calibrated to 0.6% [143]. It generates a series of 1.6
s long pulses (Aty re), which range from 0.0 to 4.0 V' (Viy g ), which are run through
the toroid calibration loop. The test pulse is timed to occur 2 us after the start of the
integrator gate. The wave form generator resistance, Ry p¢, is measured to be 50.54
). The absolute calibration of the toroid + integrator + MADC system gain and
pedestal is done by comparing the measured value of the toroid integrator output with

the predicted value, for each test pulse voltage. The ideal toroid integrator output is

Vivra X Atwra
N, = A4
PP ((Rtoroid + RWFG)/Z) xXe ( )

where N, ,,. is the number of protons per pulse, R4 is the load resistance of the
toroid + integrator system, and e is the charge of the proton. The gain is defined to
be the constant of proportionality between the measured and predicted N, ,,, and
the pedestal is defined to be the correction needed to make the measured N, = 0

when Viyrg = 0.

The gain and pedestal corrections are found by a linear regression on the measured
and predicted N, [143]. The ideal gain, Gigea, is 1.0, and the ideal pedestal, Pgeq

is 0.0. The gain correction is

Gideal

Gcm‘rec ion — A5
: Grsr (4-5)

where G gF is the 1st coefficient in the linear regression. The pedestal correction is

(Pideal - PLSF)
Pcorrec ion A6
! GLSF ( )

where Prgr is the 2nd coefficient in the linear regression. Typical values of the gain

and pedestal corrections are 0.85 and 0.0, respectively.

Absolute calibrations of the toroids have been done several times; table A.1 shows
the calibration date, gain, and percentage change. The pedestal corrections are not

shown as the correction is typically of order 0.001, and is usually neglected. The error
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Table A.1: Gains from absolute calibrations as a function of time.

Date 860 Gain | % Gain Change

875 Gain | % Gain Change

09.01.03 | 0.8300 -

02.06.03 | 0.8713 4.97
02.27.03 | 0.8198 -6.00
02.28.03 | 0.8263 0.79
03.07.03 | 0.8209 -0.66

11.29.04 | 0.8259 +0.60

0.8680
0.8574
0.8713
0.9354
0.8210
0.844

-1.24
1.62
7.36
-13.93

+2.61

Table A.2: Errors on absolute calibration constants. The calibration equipment errors

are propagated to find the uncertainty on the toroid gain.

Cause Error (%) | Gain Change (%)
Toroid Termination Resistance | 0.47 0.26
Calibration Voltage 0.6 0.87
Toroid Drift (before 02.27.03) * | 2.86 2.86
Toroid Drift (after 02.27.03) 1.45 1.45
Total Error (before 02.27.03) - 3.00
Total Error (after 02.27.03) - 1.71
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on the absolute calibration constants of the toroids is determined by the measured
uncertainties on the wave form generator output voltage, the measured termination
resistance of the toroid, and the drift of the toroid gains between calibrations. These

errors are summarized in table Appendices:::Protons::table:abscalerrs.

Relative Calibration

The calibration constants of the toroids change fairly often, as was seen in the previous
section, and the changes can be large. Also, the toroids drift as a function of time. For
these reasons, a un-used safety system, the E-Berm [144], has been modified such that
it can be used to measure the calibration constants of the toroids on each beam pulse.
The E-Berm consists of the two MiniBooNE toroids and a comparator module, used
in conjunction with two toroid calibration modules [145]. The comparator module is
designed to calculate the difference between the two toroids for each pulse, and for the
sum of the previous ten pulses. The instantaneous and integrated losses are designed
to be output to the radiation safety interlock system, which could automatically
inhibit the next beam pulse if the per-pulse losses are greater than 6%, or if the
average losses are greater than 2%. This system was never used for beam line safety,

and therefore was available as a calibration monitor.

The E-Berm trigger was modified to measure the relative toroid calibration at
5Hz. The calibration sequence consists of a series of 10 current pulses that are
sent through a toroid calibration loop and read back through an integrator. The
calibration occurs simultaneously for both toroids, over the full dynamic range (0.5E11
to 5E12 p.p.p.) of the beam intensity, which corresponds to an input voltage of 0.5
to 25 V. A linear regression is performed on the measured and ideal values of the
integrated toroid output in the calibration module hardware. Gain and pedestal

corrections are obtained for each toroid, and, for the purposes of monitoring the
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REPEAT ON EVENT 1D

Figure A.6: Left: E-Berm calibration sequence on toroid 860 (green) shown with the
Booster charge (red) vs. time (s). The calibration sequence starts 1 ms. after the 0C
event, and beam transits the toroids 330 us after Booster extraction. The constant
value of the toroid after Booster extraction is the measured beam intensity. Right: E-
Berm calibration constants vs. time. Green: TORS860 E-Berm gain, Blue: TORS875
E-Berm gain, Yellow: TORS860 E-Berm raw pedestal, Red: TORS875 E-Berm raw

pedestal.

relative calibration of the toroids on each pulse, the gain and pedestal corrections
are output to the MiniBooNE beam line data acquisition system. The calibration

sequence is shown in figure A.6.

The internal resistance of the toroid integrator is different from the design values
assumed when the Nevis calibration modules were made. As a result, the E-Berm
system is used as a relative rather than absolute calibration, and, the relative cali-
bration constant calculation is slightly different from that of the absolute calibration.

The relative calibration of the toroids is given by [146]

corrected *
N, = GE—Bm'm X Np.p.p + PE*BG’I"NL (A?)

p.p.p.

where N;_‘;f;?ded is the number of protons per pulse, corrected by the relative calibra-
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tion factor calculated by the E-Berm, G'r_perm, and N, is the number of protons
per pulse calculated using the absolute calibration constants discussed in the previous
section. The pedestal value calculated by the E-Berm, PEFAY s the raw MADC
pedestal, and so must be corrected according to the Acnet MADC scaling functions

to obtain the pedestal correction, Pp_ used to determine the number of protons

Berm)

per pulse.

RAW
* E—Berm

= - A.
E—Berm 3267.8 X G(E Berm X GAbs. Cal. ( 8)

where G aps. car. is the gain from the absolute calibration, and 3267.8 is the factor
needed to turn the raw MADC data into a voltage level. The noise level of the E-
Berm gain calculation appears to be at the level of 0.1 - 0.2%, which is consistent
with the best accuracy measured by the Beams division instrumentation group for
the Pearson 3100 toroid. The E-Berm calibration constants have changed by less than
0.5% since March 7, 2003, when the E-Berm calibration data entered the MiniBooNE
data stream. The calibration constants are shown as a function of time in the right

panel of figure A.6.

A.3 Data Acquisition

The beam line data is acquired as follows. Data from beam line devices is collected
by rack-mounted internet devices (IRMs), which time stamp the data when is arrives
at the IRM. The data collection trigger occurs once per Booster pulse. The time-
stamped and time-ordered data is read out of the IRMs by the AcnetDAQ software
package [147] once every 3 seconds. The AcnetDAQ assembles the data for each
event and concatenates the data from all events in a given detector (TankDAQ) run.
When the run ends, the AcnetDAQ data for that run is shipped to the central data

acquisition engine (UberDAQ), and subsequently merged by the NearLine program
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with all of the other MiniBooNE data streams, such as detector, resistive wall monitor,
and slow monitoring. The merging process merges events from all data streams which

have GPS time stamps within 13 ms of the TankDAQ beam trigger time.

Data acquisition does not contribute to the systematic error on the p.o.t. measure-
ment because events without p.o.t. information are eliminated by the analysis data
quality cuts. Therefore data loss due to failure of the data acquisition system affects
the efficiency of the data quality cuts. Historically, beam line data acquisition was
problematic during the initial few months of MiniBooNE operations, however since
March of 2003 the efficiency of the data quality cut that requires toroid information
has been >95%. A description of the beam line data acquisition system commisioning

can be found in reference [129].

A.4 Systematic Errors

Uncertainties on the p.o.t. measurement come from the calibration of the toroids and
the timing of the beam within the integrator gate. When calculating the systematic
error on the p.o.t. measurement, three distinct periods of toroid data taking are
considered: (1) pre-2/27/03, before E-Berm calibration information was available and
before the integrator trigger timing change, (2) 2/27/03 - 3/7/03 after the integrator
trigger timing change and before E-Berm calibration information was available, and
(3) post-3/7/03, when E-Berm data became available. The systematic errors for these
three periods, summarized in table A.3, are different due primarily to the measured

changes in the toroid gains.

The following systematic error sources are included:

e Toroid calibration constants: the systematic error on the toroid calibration

constants before the E-Berm data became available is estimated by taking the
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Table A.3: Summary of systematic errors (%) in the three periods of toroid data
taking: (1) pre-2/27/03, before E-Berm calibration information was available and
before the integrator trigger timing change, (2) 2/27/03 - 8/7/03 after the integrator
trigger timing change and before E-Berm calibration information was available, and

(3) post-3/7/03, when E-Berm data became available.

Cause Phase 1 | Phase 2 | Phase 3
Toroid Calibration Constants | 3.00 1.71 0.5
Toroid Pedestal 0.05 0.05 0.05
Integrator Gate Timing 2.00 0.5 0.5
Total 3.64 1.85 0.86

ratio of the measured gain on a given date to the previously measured value.
From table A.1, before February 27, 2003, the error is estimated to be 3.00%,
and between February 27 and March 7, the error is estimated to be 1.71%.
After March 7, when the E-Berm relative calibration measurements began, the

toroid gains have changed by less than 0.5%, shown in figure BLAH.

e Toroid pedestal: the pedestal value is not corrected for in the calibration, and
is not subtracted from the beam-on reading. The pedestal contributes approx-

imately -0.05% to the normalization of each beam pulse.

e Integrator gate timing: before the integrator trigger timing change on 2/26/03,
the systematic error due to the timing is estimated from the variation in the
toroid ratio shown in figure A.4, which is 2%. After the timing change, the

uncertainty is estimated in the same way to be 0.5%.

Added in quadrature, the total estimated error is 3.64% on the protons on target sum
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before February 27, 2003. Between February 27 and March 7, the total estimated error

is 1.85%, and since March 7, the total estimated error is 0.86%.



Appendix B

Particle Production Fits

B.1 7" Production Fit Result Compared with Past

Data

A number of experiments measured inclusive pion production in the phase space of
interest to MiniBooNE prior to 1990. These older experiments typically have scin-
tillator counters to trigger on the proton beam incidence on target, and a magnetic
spectrometer with small acceptance which sits at a specific angle with respect to the
incident proton beam. Therefore the meson yield is measured at a one production
angle, and the entire apparatus is moved to measure production at a different angle.
Cherenkov chambers are usually used for particle identification. The chambers are
calibrated with radioactive foils with an accuracy of about 5%, beam-off running is
done to subtract noise and background, and the spectrometer acceptance is deter-
mined geometrically. For these types of experiments, the measured cross section is
typically given by (e.g. [74])

d*o n X (correction factor)

dpdQ N (No/A)pLAQAp
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where n is the measured pion yield, the correction factor accounts for the efficiency
of the spectrometer as a function of pion momentum, N is the number of incident
protons, Ny is Avogadro’s number, A is the atomic number of the material, p is the
density of the material in g/cm?, L is the length of the target in ¢m, and AQ and
Ap are the acceptances of the spectrometer in sr. and GeV/c respectively. Typical
acceptances are 3.5%/(GeV/c) and 5.0 pusr, and the correction factor is usually folded
into the yield if it is published [74]. Another method employed by older experiments
without precise proton beam intensity or targeting efficiency monitors is to measure
a meson yield in angle and momentum bins, and covert it into a differential cross
section measurement by assuming a value for the total inelastic cross section, e.g.

Ao d’N
= O .
dpdS T dpd <

where o7 is the total inelastic cross section. The value of the inelastic proton-
beryllium cross section has varied somewhat as a function of time, which contributes
to the normalization discrepancy between older experiments. Typical reported er-
rors on a data point are ~5-10%, and the dominant sources of uncertainty come
from statistics, the repeatability of measurements, and corrections for absorption and

meson decay. Published normalization uncertainties are ~5-20%.

Figure B.1 shows pr vS. Treynman for these experiments, superimposed upon the
MiniBooNE beam Monte Carlo prediction for the phase space of #+ that decay to

neutrinos in the MiniBooNE detector acceptance. These data are reported in bins of

d*c
dpd$2

or E‘;i,—g vs. pion momentum and angle. The most relevant cross section mea-
surements are from the Cho[74] and Vorontsov[83] experiments, which are compared
with the best-fit Sanford-Wang cross section described in Chapter 3 section 6 in Fig-
ures B.2 through B.4. The x? between the older data in figure B.1 and the best-fit

Sanford-Wang 7" cross section prediction is shown in table B.1.
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experiment peEam (GeV/c) | p. (GeV/e) | 0, Npara | oNORM
Allaby[148] 19.2 6-10 0-7° 21 15%
Asbury[149] 12.4 3-5 12, 15° | 6 15%
Cho[74] 12.4 1-5 0-12° | 53 5-8%
Dekkers[69] 18.8,23.1 4-12 0,5° 30 (20%)
Marmer[150] 12.4 05-1 0-10° | 14 20%
Vorontsov 1983[83] | 10.1 1-45 3.5¢ 14 25%
Vorontsov 1988[83} 10.1 1-45 3.5° 14 25%
< L
% 1.4 - e Allaby Data(19.2 GeVic)
o r M Asbury Data(12.3 GeV/c)
~ - A ChoData(12.4 GeV/c) » N
& + Dekkers Data (18.8, 23.1 GeV/c)
1.2 — A Marmer Data(12.3 GeV/c)
- @ Vorontsov Data (10.1 GeV/c)
I O MiniBooNEMC:1:"withvindaet:toraceeptan@A ’
l -
08 - .
06 - SRR
i Wt
04 - A e
[ on oo e
: ..BDQ%EBD@EkBADDAD
0] Oooao @
0.2 B o [ Dmg‘g‘gﬁouf .
-0 JOooooe
: . Dﬁl E%%m DOgos « o«
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Figure B.1: Top: Summary of experiments which measure pBe — 7t X in a region of

interest to MiniBooNE. Bottom: Transverse momentum (GeV) vs. Xpeynman for ™

+

production experiments, overlaid with the MiniBooNE beam Monte Carlo prediction

for wt-decay v in the MiniBooNE detector acceptance.
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production cross section

(milli-barns/GeV /c/steradian) in proton-beryllium interactions vs. m momentum

(GeV/c), at pproton = 12.3 GeV/c. Error bars include statistics and systematics.
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Figure B.4: Vorontsov[83] experiment measured inclusive m production cross section

milli-barns/GeV /c/steradian) in proton-beryllium interactions vs. w momentum
( D y

(GeV/c), at pproton = 10.1 GeV/c. Error bars include statistics and systematics.
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Table B.1: Compatibility of older ©* production experiments with best-fit Sanford-

Wang ©+ production cross section prediction.

. 2 2
experiment Xshape | Xtotal ndf

Allaby 246 281 | 13
Asbury 95 99 -2
Cho 165 246 | 45
Dekkers 91 92 22
Marmer 83 116 | 6
Vorontsov | 19 21 6

B.2 7 Production Fit

Similar fits to those described in chapter 3 are performed for inclusive 7~ production
data from the E910 and HARP experiments. The results, assuming uncorrelated
errors, are summarized in table B.2. The data are compared with the best-fit Sanford-
Wang cross section in Figures B.6 through B.8. The x?/ndf of the combined fit is
1.30.

B.3 KT Production Fit Result Compared with Past

Data

Several older experiments which have measured pBe — KX are not included in
the Sanford-Wang K™ cross section fit described in chapter 3. These experiments
generally have worse coverage of the phase space of interest to MiniBooNE, shown in

figure B.9, or are missing necessary information such as the normalization uncertainty
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Table B.2: Best-fit Sanford-Wang ©~ parameters, assuming uncorrelated errors for
all data sets. The “E910 + HARP” fit combines HARP 8.9 GeV/c, E910 6.4 GeV/c,
and E910 12.3 GeV/c data. The “E910 only” and “HARP only” fits are performed to
check the consistency of the individual experiments with the Sanford-Wang hypothesis.
Since HARP measures only one pproton value, the parameter ¢ is fived in the Sanford-

Wang function for the “HARP only” fit.

fit parameter E910 + HARP | E910 only HARP only

cl 226.2 £35.72 235.0 +39.83 379.6+ 26.61
c2 0.872640.1355 | 1.005 £0.1878 | 1.398+ 0.3072
c3 6.096 £0.6343 | 3.199 £0.8616 | 1.1424+ 0.2193
c4 1.236 +0.1571 | 1.150 £0.2467 | 0.8453+ 0.0657
) 1.289 +0.0835 | 1.017 £0.1637 | 0.000% 0.000
c6 4.232 £0.6759 | 5.004 £1.103 | 3.796+ 0.2960
c’ 0.0661+£0.0185 | 0.063540.0154 | 0.1521+ 0.0751
c8 9.820 +10.13 6.182 +5.212 23.16+ 63.68
NHARP 1.00£0.00 -

NEYI0 6.4 1.00+£0.07 1.0040.07 -

NEI0 12.3 1.0040.03 1.0040.03 -

shape x?/ndf 174/135 117/93 10/34

total y2/ndf 175/135 117/93 10/34

total x?/ndf probability | 0.011 0.047 0.999
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Figure B.6: HARP/[78] experiment measured inclusive 7w~ production cross section
(milli-barns/GeV /c/steradian) in proton-beryllium interactions vs. m momentum

(GeV/c), at pproton = 8.9 GeV/c. Error bars include statistics and systematics.
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Table B.3: Compatibility of older K production experiments with best-fit Sanford-

Wang K™ production cross section prediction.

caperiment | e | Coaut | ndf
Allaby 664 681 | 42
Dekkers 161 179 | 11
Lundy 52 71 10
Marmer 67 83 0

(Dekkers and Lundy). Of these experiments, the most relevant are Allaby and Lundy,

which are compared with the best-fit Sanford-Wang K™ production cross section in

figures B.10 and B.11. The y? between the data in figure B.1 and the best-fit Sanford-

Wang K cross section prediction is shown in table B.3.
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experiment | pppam (GeV/c) | px (GeV/c) | Ok Npara | onNorRM
Allaby[148] | 19.2 6-16 0-7° |51 15%
Delkers[69] | 18.8, 23.1 412 0,5° |20 (20%)
Lundy[68] | 13.4 3.6 2,4,8° | 19 (20%)
Marmer[150] | 12.3 0.5-1 0,5,10° | 9 20%
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Figure B.9:  Top: Summary of experiments which measure p Be — KX in a
region of interest to MiniBooNE. Bottom: Transverse momentum (GeV) vs. T Feynman
for K production experiments, overlaid with the MiniBooNE beam Monte Carlo

prediction for K+ -decay v in the MiniBooNE detector acceptance.
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(GeV/c), at pproton = 19.2 GeV/c. Error bars include statistics and systematics.
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Appendix C

Chapter 5 Cross Section

Uncertainty Calculation

The method discussed in chapter 5 for constraining the simulation parameter uncer-
tainties using the MiniBooNE v, CCQE data set can be applied to the cross section
predictions as well. Here, the ansatz would be that the flux is known, and therefore

the ratio of data to Monte Carlo in equation 5.1 reduces to

after CCQE cuts CCQFE
R _ NDJZ;“A N ' (EIIQE) _ O-Danfz2 (EV) (C 1)
- after CCQE cuts EN T CCQE : :
NMé’ QO cut (El? ) UMCQ (E))

To use this ratio as a reweighting function for constaining the uncertainties on the
cross section simulation parameters, one would replace N&1r CC9OF uls( ROE) with
“fake data”, which is really central value Monte Carlo, and correspondingly replace
Nyber COQE culs(EQREY with “unisim” Monte Carlo, in which some cross section simu-
lation parameter has been varied. The cross section simulation parameter variations
considered here include the first 9 sources in table 4.7, which are (i) the axial masses
for the CCQE, CClnm, CC multi-w, and coherent neutrino-nucleon scattering cross

sections (mS”, miT, mA™ m<h), (ii) the Fermi Gas model Fermi momentum py and
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binding energy Eg, (iii) the component of the nucleon spin carried by the strange sea
quarks As, which impacts the neutral current cross sections, and (iv) the radiative
A decay branching fractions. The final state pion interaction cross section simula-
tion parameter variations are not included here because they cannot be produced by
reweighting central value Monte Carlo, and therefore the statistics of the pu*-decay

v, are insufficient for this analysis at present.

The reconstructed neutrino energy distributions before and after modification by
reweighting via equation C.1, for “fake data” and cross section “unisim” Monte Carlo
events passing the v, CCQE selection cuts, are shown in the figure C.1. Exactly the
same reweighting approach is employed as in chapter 5: the v, spectrum is used to

infer the 7, u*

, and v, energy distributions. This is not a particularly meaning-
ful way to relate the v, and v, predictions in the case of cross section simulation
parameter uncertainties, and in fact any sample of v, Monte Carlo could be used.
However, the put-decay v, energy spectrum is quite similar to that of a potential v,
oscillation signal. Therefore, using the p*-decay v, as the v, sample here provides
a useful measure of how well the v, CCQE calibration approach can work in the v,
appearance analysis. The inferred 77, u*, and v, distributions are shown before and
after modification by reweighting in figure C.2. As in the 7% case, by construction,
the reweighting modification works perfectly for the E9F distribution, and is only

applied to w*-decay v, events. In principle, all events passing the v, CCQE selection

cuts could be used, including the non-7*-decay v,.

The effectiveness of this method in constraining the cross section simulation un-

certainties is evaluated by comparing three cases:

1. with no reweighting modification (the reweighting function is taken to be 1.0
in all energy bins), so the error matrix comes directly from the assumptions in

chapter 3,



337

60000 60000

30000

20000 20000 ~

MR el P R R B, el
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3

07 P R R 07

Vu(”) After Cuts: E QE (GeV) Reweighted Vu(“) After Cuts: E,QE (GeV)

Figure C.1: Left: number of events vs. reconstructed neutrino energy (GeV) for
events passing the v, CCQE selection cuts. Right: reweighted number of events vs.
reconstructed neutrino energy (GeV) for events passing the v, CCQE selection cuts.
Central value Monte Carlo is indicated by the points, o, prediction “unisim” Monte

Carlo by the lines.
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2. with reweighting modifications, where the numerator of the reweighting func-
tion is “fake data” (central value Monte Carlo), which tests the effect of the

reweighting method on the uncertainties only;

3. with reweighting modifications, where the numerator of the reweighting function

is the v, CCQE data set described in chapter 4.

The reweighting modification procedure is applied to the central value Monte
Carlo, and to each of the first nine v interaction cross section “unisims” listed in
table 3.10. The modified “unisims” are used to calculate the first derivative matrices
and propagate the simulation input parameter errors, as described in chapter 4, to
the uncertainties on the predicted £ distribution for u*-decay v, and 7' -decay
v, events, with no selection cuts applied. The ratio of the modified “unisims” to the
original central value Monte Carlo for each of the three cases is shown as a function
of EM® in figure C.3. For case 1, with no modification, the spread in the (reweighted
“unisim” / original central value) ratios is ~20% about a value of 1.0 at £, = 1 GeV/
for both p*-decay v, and 7"-decay v,. This is dominated by the Fermi Gas model
parameter variations, which lower the predicted number of events by sim20-30%. For
case 2, where the “unisims” have been modified via reweighting to match the “fake
data,” the spread is ~5% about 1.0 at E,, = 1 GeV. This reduction in the spread of
the ratios comes almost entirely from the change in the Fermi Gas model parameter
“unisims”, the rest are hardly affected, which makes sense because the v, CCQE data
set should only constrain the error on the CCQE cross section and the Fermi Gas
model parameters. For case 3, the spread in the ratios is nearly identical to case 2,

as expected, and the value of the ratio is ~1.3 at £, = 1 GeV.

The modified “unisims” are used to construct the first derivative matrix, which in
combination with the cross section parameter correlation matrix, is used to propagate

the simulation input parameter uncertainties to the £ distribution for 7+-decay vy,
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Figure C.3: Ratio of o, prediction “unisims” to original central value Monte Carlo

vs. EMC (GeV), with no selection cuts applied. Left: predicted n+-decay v, spectra.

Right: predicted " -decay v, spectra.
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Table C.1: Summary of the uncertainty on u*-decay v, in the detector acceptance for
the three reweighting scenarios described in the text. The Monte Carlo set corresponds
to 2.2x10%" simulated protons on target.

Reweighting Ratio Nuv.(ut) | AN (%) | 6N (%)

1.0 12,658 9.527 2.085

“fake data” / “unisim” | 12,658 8.410 1.893
data / “unisim” 16,095 8.437 1.893

and pt-decay v, events. The cross section parameter correlation matrix is discussed
in detail in chapter 6 and given in Appendix F. Adding the parameter correlations
greatly reduces the uncertainties due to the Fermi Gas model parameters, which ac-
count for the two largest “unisim” excursions, because they are highly anti-correlated.
The central value Monte Carlo predicted EM¢ distribution for u*-decay v, events,
with no selection cuts applied, is shown with neutrino interaction cross section errors,
calculated for cases 1, 2, and 3, in the left-hand panels of figure C.4; the fractional
errors as a function of EM® are shown in the right-hand panels. The corresponding

distributions for 7"-decay v, events are shown in figure C.5.

To compare the three scenarios, the total number of predicted ™ -decay v, events
and the two error estimators 0N and Ay are summarized in table C.1. The error
estimators are defined in equations 4.18 and 4.20; they describe the fully correlated
normalization error and an estimate of the shape uncertainty respectively. Table C.1
contains the corresponding information for 7*-decay v, events. The total neutrino
interaction cross section uncertainty for the v, events is reduced from 9.5% to 8.4%,

and from 9.4% to 1.8% for the v, events.

The difference in the effectiveness of this method for constraining the neutrino
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Figure C.4: Error on u*-decay v, EMC spectrum from o, prediction uncertainties,
in reweighting cases 1 (top), 2 (middle), and 3 (bottom). Left: predicted number of
events vs. EMC (GeV) for 2.2 x10?! protons on target. Right: fractional error vs.

EMC (GeV).
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Table C.2: Summary of the uncertainty on ©*-decay v, in the detector acceptance for
the three reweighting scenarios described in the text. The Monte Carlo set corresponds
to 2.43x10%° simulated protons on target.

Reweighting Ratio | Nv,(n") | AN (%) | 6N (%)

1.0 552,493 | 9.426 2.353
“Unisim” / CV MC | 552,493 1.755 0.413
Data / CV MC 705,633 | 2.701 0.671

interaction cross section uncertainties for v, and v. events likely occurs because the
correlation between the v, and 7" energy is much tighter than the correlation between
the v, and 7 energy, as is shown in figure 5.1. For the pi* error reduction described
in chapter 5, the v, (or v,) and ancestor m are correlated on an event-by-event basis,
however, for the neutrino interaction cross section analysis, they are not. Therefore
the average correlation in each neutrino energy bin determines the effectiveness of the
constraint method described here, and so the larger the spread of neutrino energies

in each pion energy bin, the less effective the constraint will be.



Appendix D

Kaon Prediction Constraint

Method

The v, background from K decay comprises approximately 1/3 of the intrinsic beam
ve background to the v, — v, analysis, and therefore must be well understood. The
MiniBooNE prediction for K+ meson production in the target, described in chapter
3, comes from a fit to data from past experiments, termed “external” data in the
following. However, the fit requires extrapolation to the MiniBooNE proton beam
momentum, has large errors, and the fit quality is poor. Therefore it is critical to
check the prediction with “internal” data from MiniBooNE. The available in-situ
cross checks for the Kt production prediction include the little muon counter system
(LMC) and the MiniBooNE detector high energy v, data set (HE data). The LMC
and HE data (zp,pr) coverage of the MiniBooNE KT production phase space of

interest is shown in figure D.1; for comparison with the “external” data see figure 3.7.

The LMC is a muon spectrometer situated downstream of the MiniBooNE target
at an angle of 7° with respect to the decay pipe axis. The spectrometer accepts ~0.5

- 2.0 GeV muons, which come from K+ — p*v, decays in the MiniBooNE neutrino
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beam line decay pipe. Muons from 7 decay in this E,, range are produced at smaller
decay angles due to 2-body decay kinematics, and so do not contribute apprecia-
bly. However, there is a large background from secondary beam interactions in the
material surrounding the LMC detector, which is measured to fall off exponentially
with increasing muon momentum. At 7°, the average K*-decay put momentum is
1.8 GeV/c, compared with the average 7*-decay ™ momentum of 0.3 GeV/c. By
measuring the number of muons as a function of momentum, the LMC can be used
to infer the normalization of the K spectrum in the MiniBooNE decay pipe, and

potentially give some information on the shape as well.

The LMC analysis is still under development, and so only LMC “fake data”
(which is really Monte Carlo) is considered here, shown in table D.1. The total
number of events with K "-decay pu* detected by the LMC is expected to be ~45,000.
This includes the muon detection efficiency, which is assumed to be 60% within the
spectrometer momentum acceptance, and a cut at p, > 1 GeV/c to eliminate the p,

region dominated by background.

The HE data set is selected from neutrino interactions in the MiniBooNE de-
tector. The right panel of figure 3.14 shows that above E, ~2 GeV, the v, flux
comes dominantly from KT decays, therefore with a minimum £, cut MiniBooNE
can obtain an in-situ K -decay v, data set with good purity. The HE data event
selection and analysis is described in detail in reference [151], and comprises ~10,000
events. Of these, further cuts are applied to select four sub-sets: v, CCQE events
which are fully contained in the fiducial volume, v, CCQE events where the 7 exits,
v, CClm™ contained, and v, CClzn" exiting. These particular interaction channels
are selected to minimize the uncertainty associated with predicting the neutrino in-

1

teraction cross sections in this complex region *. The numbers of events and data

'For E, > 2 GeV, the cross section has non-negligible contributions from multi-pion production
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Table D.1: LMC “fake data” (Monte Carlo prediction) for the v, from K% decay

analysis. N/f(’LMC is the number of u* from K in the LMC, while

LMC
N,u,all

ncludes

wt from wt-decay and background events as well. This “fake data” set corresponds

to 1x10'7 protons on target.

bin | ppMC (GeV) | NESEMC | NEIE K™ fraction | (pr)(GeV/e) | (0k)(rad.)
1 0.125 0.0 120269.27 | 0.00 - -

2 0.375 4.28 62290.06 | 0.00 0.37 0.262

3 0.625 62.17 32319.09 | 0.00 0.69 0.188

4 0.875 561.40 17266.60 | 0.03 1.71 0.133

) 1.125 2301.97 | 10952.84 | 0.21 2.13 0.101

6 1.375 7470.59 | 11949.49 | 0.63 2.34 0.086

7 1.625 13847.90 | 16164.27 | 0.86 2.78 0.066

8 1.875 21088.28 | 22281.97 | 0.95 3.70 0.050
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Table D.2: High energy box data used for the v, from KT decay analysis. The Mini-
BooNE detector Monte Carlo is used to estimate the KT purity and production kine-

matics. o-channel fraction refers to, for example, the fraction of CCQE events in

CCQE Contained sub-set. This data set corresponds to 3.2 x10%° p.o.t.

HEBox CCQE CCQE | CCPI CCPI
Sample Contained | Exiting | Contained | Fxiting
data 1269 1719 53 455
MC KT fraction 0.27 0.72 0.55 0.80
MC (pk) (GeV/c) 2.81 3.82 3.15 3.96
MC (0k) (GeV/e) 0.085 0.063 0.077 0.061
MC o-channel fraction | 0.67 0.65 0.76 0.69

sub-set compositions after cuts are summarized in table D.2.

To combine the “internal” and “external” constraints, the LMC and HE in-situ
measurements and the external K production data are all included in a fit for the
K™ production cross section. The ansatz of the K*-decay v, analysis is that the
simulation of the entire experiment other than the K™ production cross section is
correct, and therefore one can fit the various data sets with the Sanford-Wang K™
production cross section parameters as the only degrees of freedom. The uncertainties
on the in-situ data sets therefore should include uncertainties for all of the experimen-
tal assumptions, specifically the neutrino interaction cross section predictions and the
detector response simulation. The analysis of the in-situ K data is still in progress,
and therefore a sketch of a method for validating the K production cross section

prediction is described here, without the final in-situ data sets or a full error anal-

and deep inelastic scattering.
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ysis. At this stage, the goal is to check the minimum criteria for verifying that the
p Be — K* X cross section prediction based on a fit to “external” data is consistent
with the MiniBooNE data. These are: (1) that the fit prediction agrees with the
in-situ K™ measurements within errors, and (2) that the “external” data fit predic-
tion agrees with the result of a combined fit to “external” and “internal” data within

eIrors.

As described in chapter 3, the K production cross section prediction is obtained
by fitting the Sanford-Wang parameterization to measurements of the double dif-
ferential pBe — K1X cross section from past experiments. The fit minimizes the

following function for an “external” experiment j:

) [Z (N; x SW; — Datai)z] N (1—N;)?

2
a;

(D.1)

i
where i is the (DPmesonsOmeson) bin index, SW; is the parameterization prediction eval-
uated at a given (Pproton, Omesons Pmeson), Data; is the measurement at a given (pproton.
O mesons Dmeson)s 0i 1S the data systematic error on measurement ¢, N; is the normaliza-
tion pull term for experiment j, and oy, is the normalization uncertainty experiment
j. The total y? for external data sets is the sum of the individual y2s for each

experiment:

V=D (D.2)

Similarly, one can form y? terms for internal data. For the LMC,

(N % (NPTedicted)i o (NObserved)i)2 (N o 1)2
Xime = [Z . o . } + 3 (D.3)

P i ON

where i is the LMC muon energy bin index, ( ; is the number of observed

N/?bserved) )
p* in LMC E, bin i, 0; is the error on each data point (for now, just /(N Pbserved);),
N is the LMC normalization pull term, oy is the LMC normalization error, which

; 1s the predicted number of muons

for now is assumed to be 10%, and (NV, 5 redicted)
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in LMC E, bin 7 given Sanford-Wang parameters ¢; ... cy. For now we use “fake
data” (Monte Carlo) for (N%*¢rve4); since we do not yet have LMC results, and no
systematic error is included in o;.

For each sub-set of the HE data, e.g. “CCQE Contained,”

(N % Nfredicted o NyObserved)? (N o 1)2

X%{EBO:I) = 2 + 2 (D4)
o oy
where (NObserved), is the number of observed v in the HE data sub-set, o is the

statistical error (y/N@bserved) gy is the HE data sub-set normalization uncertainty
which includes systematic errors from the event selection and reconstruction (assumed
to be 10% for now), and NZFredicted g the predicted number of v events in HE data

given Sanford-Wang parameters c¢; ... cy.

The prediction for the numbers of events in the LMC and the HE data relies on
reweighting Monte Carlo at each iteration of the fit. For simplicity the procedure
is illustrated with the LMC. The reweighting is done using a file of events from the
ModelB Monte Carlo [94] which has one line for each K event that decays to a u* in
the LMC acceptance. Each line contains pg, 0k, E,, weight, and SW (px, 0y, MOy,
The momentum and angle are evaluated at production, and SW (px, Ok, M%) is the
value of the Sanford-Wang function in the Monte Carlo that was used to generate
the event. The weight is equal to the N per proton on target for p* from K*

produced at (pg, k). The Monte Carlo predicted number of p* in LMC E, bin i is

Zevents wezghtevent :

The fit varies the Sanford-Wang coefficients ¢//T to minimize, e.g.,

(N X (NPredicted)i o (NObserved)i)Q (N o 1)2
Xime = [Z . e = + 2 (D.5)
7 N

i
where (N}Fredeted); depends on ¢ ' as follows. Each time the ¢/'" change (at each

iteration of the fit) Ni redicted jg recalculated by reweighting the Monte Carlo E,
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distribution by R for each event:

SW(pK, Ok, CFIT)

7

SW(pK,Gkacﬁwc)

Revent = (D6)

The constant R is the ratio of the current value of the Sanford-Wang K cross section
prediction, given the ¢/T to the original value of the Sanford-Wang function that
was used in generating the Monte Carlo event file. The reweighted events are summed

in each &, bin i to find the predicted number of events for the Sanford-Wang function

FIT

)

coefficients ¢

Ni;"edicted — Z weighteuent X Revent' (D7>

events

This procedure is done similarly for each HE data sub-set, with the substitution
of the reconstructed E, for the reconstructed £,. The Monte Carlo event files are
produced with the MiniBooNE detector Monte Carlo, and contain pg, O, F,, weight,

and SW (pr, Ox, cMC) for each event that passes the HE data sub-set selection cuts.

To combine “external” and “internal” data, the fit minimizes

X?otal = X;roduction data + X%MC‘ + X12Y{E7 (D8>

2 : « 9 + :
where Xz oquction data 15 @ sum over all of the “external” K™ production data sets

described in chapter 3, and x% is a sum over the four HE data sub-sets.

The most general cross-check is whether the fit to “external” K+ production
data only correctly predicts the HE data sub-sets. A comparison of the predicted
and measured numbers of events is shown in table D.3. The reweighting procedure
described above is used to make the prediction. The uncertainty on the measured
numbers of events is from statistics only, while the uncertainty on the predicted
number events in each HE data sub-set is assumed to be the Monte Carlo statistical
error added in quadrature with a 10% systematic error. Eventually the systematic

error will include the uncertainty from the 7 flux prediction, the v interaction cross
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Table D.3: Comparison of measured and predicted numbers of events in the Mini-
BooNE HE data sub-sets for 3.2 x10%° protons on target. The statistical error is
listed first for the predicted events, followed by the systematic error estimate. Statis-
tical errors only are shown for the data. The prediction comes from the Sanford-Wang

fits to external K+ data, described in chapter 3.

HEBozx v, CCQE | v, CCQFE v, CCIr* | v, CC1n*
Sample Contained | Fxiting Contained | Exiting
Predicted Total 73112473 | 1594+164+159 | 54+3+5 58610459
Data Total 1269+36 1719442 53+T 455+21
Data/Predicted Total | 1.74+£0.19 | 1.08+0.11 0.984+0.18 | 0.7840.09

section model, and the detector response simulation. The statistical error, ~2%, is

similar in data and Monte Carlo.

For the “v, CCQE contained” sub-set, the prediction is 3.9 ¢ away from the data,
for the “v, CCQE exiting” and “v, CCln" contained” event samples the prediction
is less than 1.0 o away from the data, and for the “v, CCln™ exiting” sub-set the
prediction is 2.4 ¢ away from the data. The compositions of the various sub-sets are
all different, and the “v, CCQE contained” sub-set has a much lower K fraction,
0.20, than the others, and therefore will not be considered further for a constraint
on the Kt flux prediction here. The background in the sub-sets consists of both
meson decay backgrounds and neutrino interaction backgrounds. The normalization
of the m*-decay v, background is taken from the v, CCQE (data / Monte Carlo)
measurement discussed in chapter 4. The neutrino interaction backgrounds come
primarily from resonant single pion production for the CCQE sub-sets, and from

CCQE and charged current deep inelastic scattering for the CClzx™ sub-sets.
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The error coming from the “external” data fit itself, which is 9% at the average
(px, Ox) for MiniBooNE, is not included in the prediction error in table D.3. This
fit error covers the difference between the predictions and the measurements at the
1-2 o level 2. Therefore, the conclusion at this stage is that the prediction for the
p Be — KT X production cross section based in “external” data alone is in fair

agreement with the in-situ MiniBooNE HE data, within the assumed uncertainties.

The second cross-check is whether the “external” data fit predicted K+ produc-
tion cross section agrees with the result of a combined fit to “internal” + “external”
data. This fit is performed with the “external” data described in chapter 3, and
the “v, CCQE exiting,” “v, CCln™ contained,” and “v, CClnt exiting” HE data
sub-sets. The results are summarized in table D.4. By comparing the total predicted
numbers of events in tables D.3 and D.4 one sees that the “internal” + “external”
data combined fit agrees with the “external”-only fit to 2%, which is well within the
“external” data fit uncertainty of 9%. This check verifies that including or exclud-
ing the in-situ data sets does not change the resulting best-fit Sanford-Wang K+

production cross section significantly.

The HE data verify the criteria discussed in the previous section for demonstrating
consistency between the “external” data fit and the MiniBooNE data, which builds
confidence in the K*-decay v, background prediction for the v, — v, oscillation
search. The logical next step is to try to constrain the K+ prediction uncertainty using
in-situ measurements. The result of adding the HE data to the K production fit is
an error on the best-fit cross section at the average (px, k) for MiniBooNE of 8.5%,
which is not appreciably smaller than the “external”-only result, 9%. This occurs

because the HE data has relatively large systematic errors, assumed to be 10% here,

2The error estimate from the “external” data fit has been scaled up by the \/x2/ndf to attempt

to account for the poor fit quality as discussed in chapter 3.
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Table D.4: Comparison of measured and predicted numbers of events in the Mini-
BooNE HE data sub-sets. The statistical error is listed first for the predicted events,
followed by the systematic error estimate. Statistical errors only are shown for the
data. The prediction comes from the combined Sanford-Wang fit to external K+ data

and the “CCQE FExiting” and both “CCPI” HE data sub-sets.

HEBox CCQE CCQE CCPI CCPI
Sample Contained | Exiting Contained | Exiting
Predicted Kt - 1119 28 458
Predicted Total - 15604254156 | 514+4+5 572410457
Data Total - 1719442 53+7 455421
Data/Predicted Total | - 1.1040.11 1.044+0.19 | 0.79£0.09

compared with the “external” production experiments, which did not have to contend

with neutrino interaction cross section or detector optical model uncertainties.

To reduce the KT production uncertainty with respect to the “external” data
fit, a more direct in-situ K measurement is needed. This is the purpose of the
LMC. Currently only “fake data” LMC studies have been done, in which LMC signal
Monte Carlo with the expected data statistics is generated assuming the best-fit K+
production cross section from the Sanford-Wang fits in chapter 3. A fit to this LMC
“fake data” alone, which has y? = 0.0 by construction, results in an error on the best-
fit cross section of 10%, while, for comparison, a fit to HE data sub-sets alone gives
18%. Note that this comparison is not very meaningful since the LMC fits include
no systematic errors, while the HE data fits do. That said, the LMC measurement
will not have uncertainties from neutrino interaction cross sections, and therefore the

systematic errors are expected to be less than 10%. Fitting the LMC “fake data” in
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combination with the “external” data results in a fit error at the average (pg, k)
for MiniBooNE of 4%; adding in the HE data as well does not further reduce the K*
production cross section fit error. This result is highly dependent on the systematic
error assumptions and the degree of agreement between the “external” fit prediction
and the LMC measurement, however, it demonstrates the potential of the LMC to

reduce the Kt flux prediction uncertainty.

Like the HE data set, the LMC can be used to measure the normalization of the
K*-decay v flux. An important difference is that the LMC measures the K *-decay
pt, not the v,, and therefore it can break the degeneracy between neutrino flux and
cross section that exists for an event rate measurement, which is only sensitive to
the product of the two. To demonstrate the normalization constraint potential of the
LMC, a “fake data” study is performed with both LMC and HE Monte Carlo sets
generated assuming the Kt production cross section from the Sanford-Wang fit to
“external” data only. The statistics of the HE “fake data” set corresponds to 5 x10%°
simulated p.o.t., and the LMC “fake data” set corresponds to 1 x10'7 p.o.t., which
is the total sample expected. Combinations of the “external” data, HE “fake data,”
and LMC “fake data” are fit for the Sanford-Wang K+ production parameters, and
an overall normalization factor is applied to the K “fake data” in either the HE
sample, the LMC sample, or both. The ability of each “fake data” set to change the
normalization of the best-fit K production cross section is evaluated by comparing

the best-fit cross section at the average (pg, 0 ) for MiniBooNE.

The results of this study are summarized in table D.5, which shows that if a
normalization factor of 1.6 is applied to either the HE sample or the LMC, and
the “fake data” are fit with the “external” data, the best-fit K+ cross section is

correspondingly increased 3. This demonstrates that both the HE box and the LMC

3The amount of the increase in the best-fit KT cross section at the average (px, fx) for Mini-
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have the ability to constrain the normalization of the K+ production cross section,
under the given systematic error assumptions. However, the LMC provides a stronger
constraint when both “fake data” sets are fit together with the “external” data and
have different normalization factors. In a fit to all three, when the LMC normalization
factor is increased but the HE normalization is not, the resulting best-fit K™ cross
section normalization reflects the LMC “fake data” rate. In contrast, when the HE
“fake data” normalization is increased and the LMC is not, the resulting cross section
still has the normalization of the LMC, although the incompatibility is reflected by

the increase in the x?/ndf of the fit.

As before, the conclusions depend on the assumptions made here, however, this
study shows that at the very least the MiniBooNE in-situ data can provide a valu-
able cross-check of the KT production prediction, and potentially can correct the

normalization if the prediction based on “external” data only is incorrect.

BooNE does not have to be the same as the “fake data” normalization increase. This is because the
acceptance of the HE and LMC samples are different, and integrated over a region of production

phase space, while the best-fit cross section is evaluated at one point.
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Table D.5: Normalization constraint study for “external” p Be — K+ X data (labelled

EzData below), HE “fake data,” and LMC' “fake data” under various normalization

scenarios. The normalization factor is only applied to the K -decay “fake data.”

The best-fit cross section o, and fit error 6o are evaluated at the average (px, O ) for

MiniBooNFE.
case normalization factor | o do | x*/ndf \/% X (%")
ExData N/A 5.63 | 0.28 | 3.62 9.46%
ExData & LMC 1.0 5.63 | 0.13 | 3.39 4.34%
ExData & LMC 1.6 8.08 | 0.16 | 3.64 3.76%
ExData & HE 1.0 5.85 | 0.26 | 3.66 8.66%
ExData & HE 1.6 7.3110.31 | 3.82 8.46%
ExData & HE & LMC | 1.0 & 1.0 5.66 | 0.13 | 3.38 4.34%
ExData & HE & LMC | 1.6 & 1.0 5.84 1 0.13 | 3.84 4.47%
ExData & HE & LMC | 1.0 & 1.6 8.04 | 0.16 | 3.64 3.74%
ExData & HE & LMC | 1.6 & 1.6 8.16 | 0.16 | 3.66 3.77%
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Table E.1: Systematic error contributions to CCQE parameters from n+ fluz predic-

tion simulation parameter uncertainties. The ¢ are calculated as the “unisim” best-fit

parameters minus the central value Monte Carlo values, (Eg, pr, ma) = (0.025 GeV,

0.220 GeV', 1.03 GeV/c*). Numbers in percent are quoted with respect to the central

value parameters.

source IEg (GeV) opr (GeV) dmy (GeV/c?)
SW 7t ¢ 0.2839x107° -0.4351x107° | -0.4333x1073
SW 7t ¢y 0.1667x107° -0.5990x 1075 | -0.3391x10~2
SW 7t ¢3 -0.4428x 1072 | 0.3095x10~2 0.2060x 1072
SW 7t ¢y -0.9874x107% | 0.6811x1072 0.4953x 1072
SW r+ ¢ 0.1820x1075 | -0.5722x107° | -0.2741x10~2
SW 7t ¢q -0.1336x107* | 0.1009x10~2 0.9012x1073
SW % ¢ -0.9949x107* | 0.6990x107% | 0.4516x107°
SW 7t g 0.1637x107° -0.6005x107° | -0.1556x 102

SW 7t quadrature sum

0.0011 (4.38%)

0.0076 (3.45%)

0.0072 (0.70%)
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Table E.2: Systematic error contributions to CCQE parameters from neutrino in-
teraction simulation parameter uncertainties. The & are calculated as the “unisim”
best-fit parameters minus the central value Monte Carlo values, (Eg, pr, ma) =
(0.025 GeV, 0.220 GeV, 1.03 GeV/c?). Numbers in percent are quoted with respect

to the central value parameters.

source dEp (GeV) dpr (GeV) dma (GeV/c?)
o, +m%F -0.9464x107° | 0.3120x10~* | 0.3898x10~*
o, +pr -0.2006x107* | -0.9775x107° | -0.3765x 1072
o, +Ep -0.2003x107% ] 0.9283x107° | -0.2053x 107"
o, +As -0.1524x107° | 0.3278x107% | -0.4530x107°
o, +ml 0.4319x107° -0.2265x107° | -0.4515%x 1072
o, +mi" 0.7277x1075 0.1833x1075 | -0.1228%x10~*
o, +mh 0.1676x1077 0.1490x10~7 | 0.1192x10°6
o, +DIS -0.3306x10™° | -0.2310x107° | -0.1395x10~*
o, +A — yy -0.2161x107° -0.2474x107° | -0.1132x10~*
Oy 40 sonption 0.2865x 1072 0.8066x1072 | -0.2107x10~"
Oy +0arge cachange | 0-0000 0.0000 0.0000

o, +AN — NN | 0.1220x1072 0.3262x1072 | -0.3679x 107"
0, quadrature sum | 0.0031 (12.48%) | 0.0087 (3.96%) | 0.0475 (4.61%)
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Table E.3: Systematic error contributions to CCQE parameters from detector response

simulation parameter uncertainties.

The 6 are calculated as the “unisim” best-fit

parameters minus the central value Monte Carlo values, (Eg, pr, ma) = (0.025

GeV, 0.220 GeV, 1.03 GeV/c?). Numbers in percent are quoted with respect to the

central value parameters.

source

6Ep (GeV)

Spp (GeV)

Sma (GeV/c?)

cher
ext
pmt
ref
scat
taud
uvext
uvf2
uvf3
uvfd
scid
flul
flu2
flu3
flud
sci2
sci3
birks
tsm
veto
scatba
tau2

taud

-0.3872x10~2
0.6405x 104
0.0000

0.1578x1073
0.5654x102
0.1035x102
0.1905x10~%
0.9656x 104
0.2599x10~%
0.1844x1073
0.3449x10~%
0.3152x1072
-0.7212x10~°
0.2326x1072
-0.2289x 1073
0.3491x107°
0.4486x10~%
0.1056x 102
0.0000

-0.5588x 107
0.5880x103
-0.3947x1073
0.8665x103

0.3171x107 1
-0.3725x10~°
0.0000
0.1522x10~3
0.1970x10~*
0.1306x10~*
0.6855x10
0.1532x10~%
0.5012x102
-0.1252x10°
0.2688x 104
0.8310x1072
0.7674x10~°
0.6058x 102
0.2168x10~*
-0.1922x10°
0.2237x10~ 4
0.8836x10 2
0.0000
-0.4470x10~7
0.1187x10 1
0.4994x102
0.2875x10 2

0.5255x 102
-0.6327x10 1
0.0000
-0.4431x 101
0.2736x10~ 1
-0.2167x10~1
-0.4289x 101
-0.6020x 101
-0.3914x 10~ 1
-0.9656x 10!
-0.2462x 10~ 1
-0.1712x10~1
-0.3967x10~ 1
-0.2964x 10!
-0.6941x 102
-0.8214x101
-0.3988x 10t
-0.2839x 10~ ¢
0.0000
-0.8122x10*
-0.1956x 10t
-0.3908x 10!
-0.3851x 10t

quadrature sum

0.0081 (32.46%)

0.0492 (22.35%)

0.2146 (20.84%)
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Chapter 7 Oscillation Sensitivity
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Table F.1: Fractional normalization uncertainty for each ©" simulation parameter,

for v, ve, and combined fits. Parameter correlations are not included.

source | v, U, combined
7tep 1 0.1661 | 0.1348 | 0.1658
ey 1 0.0637 | 0.0543 | 0.0636
wtes | -0.0705 | -0.0653 | -0.0704
wtey |-0.1029 | -0.1058 | -0.1029
wtes 1 0.0525 | 0.0493 | 0.0524
wteg | -0.0534 | -0.0427 | -0.0533
7ter | 0.0308 | 0.0238 | 0.0308
wreg | -0.0145 | -0.0131 | -0.0145

for v,, ve, and combined fits. Parameter correlations are not included.

source | v, U, combined
K*e¢p 10.0023 | 0.0552 | 0.0027
K*cy | 0.0007 |0.0227 | 0.0009
K*es | -0.0008 | -0.0270 | -0.0010
K*e¢y |-0.0011 | -0.0438 | -0.0015
K*ecy | 0.0006 | 0.0204 | 0.0008
K*eg | -0.0009 | -0.0213 | -0.0011
K*c; 1 0.0006 |0.0107 | 0.0007
K*eg | -0.0006 | -0.0076 | -0.0007
K*eo | 0.0000 | 0.0000 | 0.0000

Table F.2: Fractional normalization uncertainty for each K™ simulation parameter,
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Table F.3: Fractional normalization uncertainty for each neutrino interaction cross

section simulation parameter, for v,, ve, and combined fits. Parameter correlations

are not included.

source vy, v, combined
vo +mS? 0.0462 | 0.0415 | 0.0462
Vo +pr -0.1404 | -0.1707 | -0.1407
vo +FEp -0.2145 | -0.2000 | -0.2144
v o +As 0.0000 | -0.0228 | -0.0002
vo+mly 0.0013 | 0.0084 | 0.0014
vo +m)" 0.0000 | -0.0239 | -0.0002
v o +m 0.0057 | -0.0005 | 0.0058
v o +oprs 0.0000 | -0.0217 | -0.0002
v o 4+A =y | 0.0000 | 0.0004 | 0.0000

Table F.4: Fractional normalization uncertainty summary, for v,, v., and combined

fits.

source vy, Ve combined
uncorrelated total error | 0.3491 | 0.3483 | 0.3489
correlated total error 0.1088 | 0.1037 | 0.1084
total events 91611 | 799 92410
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