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Introduction

Understanding CP violation in the bottom quark sector is one of the central problem
in high energy physics.

In the Standard Model (SM), CP violation in weak processes arises from a sin-

gle complex phase in the mixing matrix for quarks, the Cabibbo-Kobayashi-Maskawa,
(CKM) matrix. A quantitative knowledge of the values of CKM matrix elements is
important both in itself, and for the purpose of detecting possible phenomena beyond
the SM by comparing determinations of the same quantities from different observable
physical processes. Intense experimental efforts are underway in the b quark sector (B-
physics) to determine these parameters. An often-adopted convention for discussing
CP violation in the context of the SM is to relate the possible CP-violating observables
to the angles (a, § and ) of a triangle formed by an equation stating the unitarity of
the CKM matrix (“Unitarity Triangle”).
The v angle is the most difficult to determine, due to the smallness of the branching
ratios involved in the processes sensitive to this parameter, and to the frequent presence
of amplitudes beyond the tree level and other theoretical uncertainties that complicate
the interpretation of the data.

A central role in this field is played by B — DK decays, where only tree—level
diagram enter, and theoretical uncertainties are small. Several of these modes are
currently being actively studied in dedicated B experiments at ete™ “B-factories”.

Similar measurements have also been planned some time ago at a pp collider by
the CDF experiment[1], where in addition to the nonstrange B modes, the By — DK
mode is also available. The success of this programs depends on the capability of the
experiment to keep alive the B-physics triggers based on online detection of secondary
decay vertexes (SVT trigger, Section 2.8) up to high luminosities [2]. The recent trigger
upgrades [3] [4] increase the probability of a successful program at CDF.

Several methods have been proposed for the 7 angle measurement by using the
B — DK decay modes, and they are described in Chapter 1 of this thesis.
BR(B*—D K+ [K+rn—]K+)
BR(B+—D'n+—[K+r—]r+)
with the CDF II detector at Fermilab, using an integrated luminosity of 360 pb~!.

This represents the first, mandatory step, of a program of DK measurements aimed
at the v angle, starting with the GLW (Gronau-London-Wyler) method (Section 1.5.1).
To perform this measurement I implemented an unbinned maximum likelihood fit

The subject of this thesis is the measurement of the ratio! R =

! Throughout this thesis, references to a specific charge state imply the charge-conjugate as well, unless
otherwise specified
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(Chapter 4), which combines the small kinematics differences between distinct decay
modes and the Particle IDentification information (Chapter 3) to distinguish between
different final states.

This fit technique, when applied to larger samples of data, is well-suited also for other
analyses allowing extraction of the v angle: the ADS (Atwood-Dunietz-Soni) method,

described in Section 1.5.2, that uses the BT — DK+ decay where DY — K+7~, and
the time-dependent analysis of B, — D; K+ — [¢p1 |K™T (Section 1.5).

As discussed in Section 1.5.1, the CDF experiment will move from the GLW method
to the other more efficient methods, after a complete test of the “analysis machinery”
on more abundant decay modes is performed.

The Particle IDentification (PID) is also a crucial ingredient of my analysis. In fact,
it is necessary to discriminate the BT — DK+ from the much larger background of
BT — 507#, falling in the nearby mass region.

As described in Chapter 3, I developed a tool that combines the information of two
PID methods: the Time Of Flight measurement (TOF) (Section 2.5) and the dE/dx
(specific ionization in the drift chamber) measurement. I studied the PID distributions
for many different particles and different momentum ranges for the whole data set of 1
fb~!, and parameterized them and their systematic uncertainties in a way that allows
to use them easily in a maximum Likelihood fit.

The correponding code has been adopted by the CDF II collaboration and it is widely
used in several analysis. Important examples are the flavor tagging in B mixing [5]
and the By, — k™'~ analysis [6] [7].

In the analysis that is described in this thesis, only the dE/dx information is used,
since the momentum range is currently restriced by a cut on the transverse momentum
of the track from B (p; > 2 GeV/c) (Section 4.4), and the contribution of the TOF to
K-7 separation at these transverse momenta is small in comparison to dE/dx.

To complete the GLW analysis, it is necessary to also measure

Ao — BR(B~ — DgpsK™) — BR(B* — Dgp, K)
“P* = BR(B- — DY, .K-)+ BR(B+ — DY, K+)

and
BR(B™ — Dgps K™) + BR(B* — Dgp, K)

BR(B~ — D'K~) + BR(B+ — D K*+)

. They can be performed by applying the same methods described here to the decays
Bt — D2p wt with Dgp, — [KTK ™, n77n7] (even state) and D¢ p_ — [K27°0, Kdw, KO
(odd state). From my results obtained using the Dgp, modes on 360 pb~! (Section
4.12), the sample of 360 pb~! is too small to provide significant measurements of Acp,
and Reopy. Is possible, however, to estimate the Acpy and Rep. resolutions expected
on 1 fb=! of data. I found o = 0.12 for Acp, and o = 0.28 for Rop,. These are
comparable to the resolutions currently achieved by BaBar and Belle experiments.

The analysis with the larger statistic is already in progress with the methods de-
scribed in this thesis, as is the extension to the pion transverse momentum range below
2 GeV/c.

Rep+ =



Chapter 1

Theoretical review

1.1 CP violation in the Standard Model.

In the Standard Model (SM) [8] the fundamental constituent of matter are quarks and
leptons. The interactions between particles are described by the exchange of gauge
bosons: the photons for the electromagnetic interaction; the bosons W+ and Z° for
the weak interaction and finally the gluons, which are neutral but carry the color
(strong charge), for the strong interaction.

Experimentally [9], there are three generations of these particles and the weak
interaction couples with their left-handed version. The left-handed quarks are arranged

d S/ b/

where the primes refer to the fact that the weak eigenstates of the down type
quarks are not necessarily equal to the mass eigenstates, denoted (d,s,b), but are a
linear superimposition of them. The matrix that transforms the mass eigenstates into
the weak ones is the Cabibbo-Kobayashi-Maskawa (CKM) matrix denoted Vg which
must be unitary (Vg Vorxaw = I) [10]:

d/ Vud Vus Vub d
s’ = Vi Voo Va s (1.1)
v o\ Ve Vie Ve )\ b/,

In the SM, CP violation effects in weak processes may originate from the charged-
current interactions of quarks arising from a single irremovable complex phase in the
mixing matrix for quarks: this is called the Cabibbo-Kobayashi-Maskawa (CKM) mech-
anism [11].

The condition of unitarity imposed on the CKM matrix, combined with the require-
ment that any phase must be no-trivial (i.e. cannot be set to zero with a redefinition
of the field), means that the CKM matrix can be completely determined by four quan-
tities, three real angles and one remaining non trivial-phase. The form of the CKM

3



4 CHAPTER 1. THEORETICAL REVIEW

matrix is shown in equation (1.2) where it is presented in the “standard parameteriza-
tion” [12].

—id

C12C13 S512€13 513€
_ i 10
Verm = —S12C23 — C12523513€" C12C23 — S12523513€" 523C13 (1-2)
19 19
$12823 — C12C23813€" —C12823 — $12C23813€" C23C13

where ¢;; = cos 0;; and s;; = sin0;;. 012, 023 and 0,3 are three real angles and ¢ is the
no-trivial phase, which is the only possible source of CP violation in the SM [10][11].
Experimental information on Vg s is obtained from the following processes [13]:

e Nuclear § decays and measurement of neutron lifetime = |V,4| = 0.97377 +
0.00027;

e Semileptonic kaon decays: K — wlv = |V, = 0.2257 £+ 0.0021;

e Semileptonic charm decays (D — Klv and D — wlr) and neutrino and antineu-
trino interactions = |V.4| = 0.230 £ 0.011,

e Semileptonic D or leptonic D decays (D} — [Tv, D — Klv and D — wlv) using
evaluated hadronic form factors = |V 5| = 0.957 &+ 0.017 £ 0.093;

e Exclusive and inclusive semileptonic decays of B mesons to charm (b — clv)
= V| = (416 £ 0.6) x 1073

e Exclusive and inclusive b — ulv decays = V3| = (4.31 £0.30) x 1073;

e Top decays (t — bip) for the direct determination of Vi, = Vi, > 0.78 at 95%
C.L,;

e B — B oscillations = |V,q/V;s| = 0.20879:9%8

We observe a resulting hierarchy of the strengths of the charged current quark-level
processes: transitions within the same generation are governed by CKM matrix ele-
ments of O(1), transitions between the first and the second generation are suppressed
by CKM factors of O(1071), transitions between second and third generation are sup-
pressed by O(1072), and the transition between the first and the third generation are
even suppressed by CKM factors of O(1073).

There are several parameterizations and approximations of the CKM matrix. An
useful parameterization that points out the hierarchy between the matrix elements is
the “Wolfenstein parameterization” [14]. This parameterization uses four real param-
eters to write the matrix elements, A\, A, p and 7:

11— ’\2—2 A AX(p—in)
Vorku = —A -2 AN? +O(X\") (1.3)
AN(1 — p—in) —A)\QQ 1



1.2. THE UNITARITY TRIANGLE 5

This parameterization is obtained by expanding in powers of the element \ = V,;*
and making the definitions V,;, = AX? and V., = AN?*(p —in), where A, p and 7 are all
O(1).

The quantities A and A (see equation (1.4)) are well determined experimentally
[13], measurements are dominated from the semileptonic decays of kaons and B-mesons
respectively, but p and 7 are not and hence their measurement it is one of the goals of
particle physics?.

A 0.2272 4 0.0010

A = 0.8183007

po= 0.2217505

Ul 0.3401 001 (1.4)

1.2 The unitarity triangle
The unitarity of the CKM matrix is described by:

Verm Ve = Vi Voru =1 (1.5)

where 1 is the identity matrix. Equation (1.5) leads to a set of twelve equations,
consisting of six normalization and six orthogonality relations. Let us now have a
closer look at the orthogonality equations:

VudVs +VeaVo, +ViaVi, =0 (1.6)
—— N N
o) o) O(X%)
VsV + Ves Vo + Vis Vi = 0 (L.7)
—— S~ N
oY) 0 002
VadVay, +VeaVy+ ViaViy =0 (1.8)
—_—— N — ——
(ptin)AN3 —AX3 (1—p—in)AX3
VJdV::d + VJSVCS + Jbvcb =0 (1'9)
—_— =~ =
oM oM o)
VeaVia + VeVis + Vg Vi = 0 (1.10)
—— N N~
oY) 02 002
ViVia + ViV + ViV =0 (1.11)
SN—— N—— =
(1—p—in) AX3 —AX3 (p+in)AN3

where we have also indicated the structures that arise if we apply the “Wolfenstein
parameterization”. Fach equation can be represented as a triangle in the complex plane

'\ is the sine of the Cabibbo angle: A = sin fc = 0.2265 £ 0.0020 [15]
25 and 7, within the 3% are equal to p and 77, and are obtained extending the ” Wolfenstein parameterization”
to O(A%)
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[16], but the only two non squashed triangles are those corresponding to equations (1.8)
and (1.11). In fact, all the addendum sides are of similar magnitude O(A*). However
the corresponding orthogonality relations agree with each other at the A* level, yielding

[(p+in) + (=1) + (1 — p— in)] AX> = 0. (1.12)

Consequently, equations (1.8) and (1.11) describe the same triangle, which is usually
referred to as the unitarity triangle of the CKM matrix. The first one of these trian-
gles (equation (1.8)) rescaled by is shown in Fig. 1.1 and takes the name of

1
|Vcd V2;,|
Normalized Unitarity Triangle.

(p-M)

(0,0) (1,0)

Figure 1.1: Graphic representation of the Normalized Unitarity Triangle in the complex (p,7)
plane.

The apex has coordinates p and 77, which are related to the original p and 7 in the
Wolfenstein parameterization through equations (1.13), which are calculated from an

extension of this parameterization to O(A\°). Since A = 0.22, p = p and 7 = 7 within
3%.

pzp(1—%v), ﬁzn<1—%v) (1.13)

The special relevance of the Unitarity Triangle is due to the fact that, in the sector
of B-physics, there are several B meson decays which are expected to have rates and
CP-violating effects that can be measured at B factories and at the collider experi-
ments, and from which we can gain information on the sides and on the angles of the
unitarity triangle. It is important that these measurements are made through as many
indipendent modes as possible in order to attempt to over-constrain the triangle and
to probe for contribution for physics beyond the SM. New physics contributions could,
for example, cause disagreement between measurements in different processes of what,
in the SM, should be the same angle.
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Information on the lenghts of the sides comes from [15]:

e the values of |V,;| and |V|, measured in inclusive or exclusive semileptonic B —
Xy lvy decays (I = e, pt), which constrain the radius R, of the circle centered in
(0,0) that passes through (p,7):

N2 1 [Vl

Ry=(1—- — )

(1.14)

e the values of Amgy and Amy, respectively the mass differences between the mass
cigenstates of the neutral By and B,, measured in the B? — B and B, — B,
oscillations [13]. These mass differences constrain the radius of the circle centered

in (1,0) Ry = ;- ¥ie. In fact 42 = 522—;% where £ = 1.210%3%7 [17]. The

recent measurement of Amg at CDF II [5] has been very important to provide a
more stringent constraint on R;. An additional constraint is the measured value
of the indirect CP violation parameter ex of the neutral kaon system.

Information on the angles o, # and « can be obtained from the measurement of
CP-violating B meson decays. In Section 1.5 we will describe the methods to measure
the v angle using B — DK decay modes.

In Fig. 1.2 one can see the constraints in the (p,7) plane, from the current mea-
surement of |V / V|, Amg, Amy, €, and the angles o, § and 7, together with the 3o
allowed region for the apex of the Unitarity Triangle obtained from a combined fit to
these constraints [15].

1.3 CP violation in B decays

There are three discrete symmetries in the Standard Model in addition to the continu-
ous Lorentz and gauge transformation. Parity (P) and Time-reversal (T) are space-time
transformations that respectively cause ¥ — —Z and t — —t. Both of these operators
have the effect of reversing the momentum vector leaving the spin unchanged. Charge
Conjugation does not affect space-time quantities but instead changes particles into
anti-particles by changing the internal quantum numbers of the particle. In a quantum
field theory constructed under very general assumptions, any Hamiltonian operator (H)
which is invariant under Lorentz transformation will be invariant under the combined
operation CPT [18].

Since CPT is conserved, CP violation also implies T violation. T transforms the e~
to e’£* and transforms the Hamiltonian H into its complex conjugate H*. If H # H*
then T and hence CP are violated. This is the reason for which the presence in Vogar
of complex elements is the potential source of CP violation.

Moreover, the fact that the matrix Vg is not real appears in the elements that
connect the first quark generation to the third one, the transitions t — d and b — w.
Since a bound state containing a quark top does not exist, it is evident that bound
states containing a quark bottom, B mesons and A, baryons, become very important.

1Bt
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1.5 T T T T ‘ T T T T I T T T T ‘ T T T T ‘ T T T T ‘ T T T T
excluded area has CL >0.95 §

sin 23

a
: sol. w/ cos 2B<0
-1 (excl. at CL >0.95) —
fitter Y
FPCP 06
_1.5 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 ‘ Il 1 1 I 1 1 1 1
-1 -0.5 0 0.5 1 15 2

P

Figure 1.2: Constraints (at 68% and 95% C.L.)on the position of the apex of the Unitarity
Triangle in the (5,77) plane from the measured value of [Vi|, |Vip|, Amg, Ams, ek, sin 2.
The combined 3o allowed contour is also shown.

CP violation was first observed in the KK system in 1964 [19]. Until 2001 this was
the only system in which CP violation was observed, then BABAR [20] and BELLE[21]

collaborations observed the effect in the B~ B" system. Even so, CP violation remains
one of the least well investigated areas of the SM.
In B decays, CP violation can occur in three different forms:

e CP violation in decay (“direct CP violation”): this effect occurs in both charged
and neutral decays, when the amplitude for a decay and its CP conjugate process
have different magnitudes.

e CP violation in mixing (“indirect CP violation”): this effect occurs when the two
neutral mass eigenstates cannot be chosen to be CP eigenstates.

e CP violation in the interference between decays with and without mixing (“CP
violation in the interference between mixing and decay”): this effect occurs in
decays into final state that are common to B and B neutral mesons.
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1.3.1 CP violation in decay

Direct CP violation occurs when the amplitude of a certain decay process and the
amplitude of its CP conjugate process are not equal. It has been observed in K [22]
and B decays [23].

Consider the decay B — f, where f is any final state, and its CP conjugate B — f.
The amplitudes of these decays can be written in the following way:

Ay = (f|H|B) = Z|A|e“¢] A; = (J|H|B) = Z|A|e 9 (L15)

where A;, §; and ¢; are respectively the amplitude, the strong (or CP conserving)
phase and the weak (or CP violating) phase of a contributing process. The condition
for CP violation is that [Af|* # [A|*. Tn order to satisfy this condition there must be
a contribution from at least two processes with different weak and strong phases. In
that case we have

Any rate asymmetry in charged B decays of the form:

DB~ — f)—D(BY —F) e~
DB = )T =)
f

dir
AC’P -

£0, (1.17)

would be a clear signature of direct CP violation.

Direct CP violation can also occur for neutral meson decays, where it competes with
the other two types of CP violation mechanisms described in the following subsection.
Direct CP violation can be searched in rate asymmetries of decays to final states f that

are self-tagging, i.e. are only accessible to either BY or EO, but not to both. Following
this method Babar, Belle and CDF II collaborations measured the rate asymmetry for
the B — K*n~ decay [23] [6] [7].

1.3.2 CP violation in Mixing

The CP violation in mixing interests the neutral B system.

An arbitrary linear combination of the neutral B-meson flavor eigenstates a| B%) +b|§0)
is governed by the time-dependent Schrédinger equation:

i%(%)zH(Z)E(M—%F)(Z) (1.18)

for which M and I' are 2 x 2 Hermitian matrices.
The light By, and heavy By mass eigenstates are given by:

|B) = p|B%) + q|§°>
|Bi) = p|B®) — q|B). (1.19)
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The complex coefficients p and ¢ obey the normalization condition |g|? + |p|?.
Invariance under CPT implies that H;; and Has are equal. Furthermore, CP asym-
metry requires that Hj, = Ha;, which implies that the mass eigenstates are also CP
eigenstates and |p| = [g]. Consequently if £ 5 1 there is CP violation in mixing.
When CP is conserved, the mass eigenstates must be CP eigenstates. In that case
the relative phase between M, and 1’15 vanishes.
Since:
My, — 510,
My — 5T

(1.20)

2
g
p

lg/p| # 1 implies the CP violation.
The only source of CP violation in charged current semileptonic decays is CP vi-
olation in mixing and it can be measured via the asymmetry of “wrong sign” decays

induced by oscillations, when BY mesons are produced in pairs (B EZ):

4
q

g —1
S 4 S (1.21)
+1

I"vx) — F(Eg(t) — [tvx)

D(BY(t) — I=vz) + T(B,(t) — l*va)

A%‘L(t) =

iSHUSY

The world average for this asymmetry is Agr, = —0.0030 + 0.0078 [24].

1.3.3 CP Violation in the interference between decays with and without
mixing
The last manifestation of CP violation arises from the interference between the mixing

and decay processes. This can be observed in decays of BY and B’ mesons to the
same final state, which must therefore be a CP eigenstate (f = f). Defining A; as the

amplitude for the decay B — f and A; as the amplitude for the decay B - f. the
quantity
A
Ap = 94
p Ay
must be equal to the unity if CP is conserved. Furthermore the time-dependent asym-
metry is found to be

(1.22)

LB — f)t) -T(B = f)()
L(B — f)(t)+T(B — f)(t)

_ (1= 2Im(Af) Y .
= (W) COS Ath — (W) Sim Ath (123)

Acp(t) =

The cosine term arises from direct CP violation and vanishes if |\¢| = 1, since together
with the fact that

interference between decays with and without mixing and vanishes if Im(As) = 0.

q

~ 1 it implies that A; = A;. The sine term is due to the
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1.4 Motivation for Measuring v

The measurement of the CKM matrix elements is one of the most stringent tests of
the Standard Model and for this reason it represents also a window for New Physics.
Intense experimental efforts are now underway in B-physics and for this program it is
crucial to determine experimentally the angles of the Unitarity Triangle.

The sin(23) measurement has reached a good level of precision. The world average
uses measurements from the decays B® — J/YK?, J/WK?, ¥(25)K?, xaK?, n.K?
and J/YK* (K* — K%7°) and gives:

sin(28) = 0.687 & 0.032[13]. (1.24)

The angle a can be measured from the study of charmless B decays such as 7w, pm
and pp. The world average is:

a = 9973%[13] (1.25)

in good agreement with the value predicted by the CKM fits to the Unitarity Triangle
constraints.

The angle v is by far the most difficult to measure. Several methods have been proposed
in the past for the measurement of v. We will describe these methods in the next
Section.

1.5 Methods for the measurement of the angle v

There are various strategies to measure the angle v. Some of them are theoretically
clean, some suffer from hadronic uncertainties, some use the charged B decays and
others use the By decays.

Using Bt — DK+ decays, v could be extracted by exploiting the interference
between the processes b — ¢u3, whose amplitude is proportional to V,; Vs and b — %cs,
whose amplitude is proportional to V,;V.s. In Fig. 1.3 the diagrams of these processes
are shown, on the left the BY — D K+ (b — cu3) and on the right the B¥ — DK+
(b — Tcs). v is the relative weak phase between the two diagrams, and in principle
can be probed by measuring CP-violating effects in B-decays where the two amplitudes
interfere.

Here we discuss the following methods:

e The GLW (Gronau-London-Wyler) method [25] [26], that uses the B* — DK=
decay with Dgp decay modes. The Dgp, modes are D° — 7w, KK while the
D2, modes are D° — K% K%, K.

e The ADS (Atwood-Dunietz-Soni) method [27] [28], that uses the B¥ — DK=
decay with D° reconstructed in the doubly cabibbo suppressed D% g — K7~
decay.
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Figure 1.3: Diagrams contributing to B* — DK®* and related modes. The diagram on the
left proceeds via V,; transition, while the diagram on the right proceeds via V,; transition

and is color suppressed.

e The GGSZ (Giri-Grossmann-Soffer-Zupan) method [28] [29], that uses the B* —
DK# decay with the D° and D’ reconstructed into three-body final states. For
example the D° — K977~ decay.

Also by using B, decays the v angle can be measured in a theoretically clean way:.
CP violation due to mixing can occur in the decay channels B,(B;) — DT K* due to
the interference between the mixed and unmixed paths of a decay to one of the final
states. In Fig. 1.4 the diagrams for B, decays are shown. Final states of both sign are
accessible by both B, mesons with similar size amplitudes (~ \3).

5 5

VHSHL VCSHI -
b .‘.“..‘ c b .'.‘...* u

F Vcb""" A lz D s.|, F VlleAl' 3 K.|.
F B 3 5

Figure 1.4: Diagrams relative to the B decays. On the left the B, — D K~ decay and on
the right the Bs — D7 KT decay.

The CP asymmetry Acp(DFK™)(t) may be constructed [30]:

(B, —» DfK~)(t) = (B, — DI K~)(t) (1.26)
D(B, — DI K-)(8) + T(B, — DIK)(t) |

Acp(DKT)(t)
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This has the following dependence:
Acp(DIK7)(t) =
B A% (B, — DI K ™) cos Amgt + A2 (B, — DF K~ ) sin Amt
cosh(AT'yt/2) — Aar, sinh(ATt/2)

B C, cos Amgt + S, sin Amt

 cosh(AT',t/2) — Aar, sinh(ATt/2)’
where Am, and Al', are the mass and lifetime differences between the heavy and light
B, eigenstates, which for the purpose of this discussion are assumed to be known. The
three observables (s, S, and Aar,, can then be fitted from data. By performing an
equivalent analysis for the D K final state three additional observables, Cy, Sy and

Aar,, can be obtained. The observables depend on the underlying physics parameters
in the following manner:

(1.27)

C.. (T = (1) (=2)

1+ 72

— 2rgsin(¢s + v + (—)ds

857(85): (1_’_7,2 ( ) )

_ 21, cos(ps + v+ (—)ds
Aar,, (Aar,) = — (¢1+:2 =) ) (1.28)

Here r, is the ratio of amplitudes between the interfering tree diagrams, d, is a possible
CP conserving strong phase difference between the diagrams and ¢, is the CP violating
weak phase associated with the BY — ES oscillations, believed to be very small in the
Standard Model. From the measurement of the six observables Cy, Oy, S,, S, Aar,
and Aar, the parameters 7, §, and v can be determined.

Since CDF II measured Am, [5], now it is also possible the measurement of v using
these decays [31]. We expected about 200 D,K events in 1 fb~! and since, up to now,

the B, — D K has not been observed, also the measurement of the branching ratio
BR(BY—D; K*)+BR(BY—D{ K~)
BR(BY—Dy nt)+BR(Bo—Din—)

alone will be an important new result.

1.5.1 The Gronau-London-Wyler method

This method uses the CP asymmetry in B* — Dgp+(_)Ki, where DgP+(_) is a CP-
even (odd) state. This state can be identified by its CP-even (odd) decay products.
For istance, the states K,m°, K,p, K,w, K¢ can identify a D& p_, while 7t7—, KT K~
represent a DY p,. The CP eigenstates |D&p,) of the neutral D meson system with
CP eigenvalues +1 are given by

1 —0

DY = D% + D), 1.29
|Depa) \/§(| )£ D7), (1.29)

so that the B¥ — D2 p, K* transition amplitudes can be expressed as [26]
V2A(B* — DYp K¥) = A(B* — D'K*) + A(B* - D'K*) (1.30)

V2A(B~ = D%, K™) = A(B~ — D'K~) + A(B~ — D°K"). (1.31)
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These relations, which are exact, can be represented as two triangles in the complex
plane shown in Fig.1.5.

A(B* = D°K*)

/A Dg, K°)

/

A(B- — D°K")

\2AB* = D., K*)

A(B* = D°K*)=A(B — DK")

Figure 1.5: Triangle relations among the B* — DK®* decay amplitudes.

_ Taking into account that the B¥ — DK™ decays originate from b — ucs and
b — cus quark-level transitions (see Fig. 1.3) we have:

A(B* — D°K*) = €7A|Viy| Rplan|e™® = e A(B~ — D' K") (1.32)
A(B* = D K+ = A|Viy|| Anle™®n = A(B~ — DK ), (1.33)
where Rp = 17’/\\2/ 2 “%’: measures one side of the unitarity triangle. The quantities |ay|,

|Ap| are the magnitudes of the hadronic matrix elements of current-current operators,
and A,, , Ay, denote the corresponding CP-conserving strong phase. Assuming v # 0,
one finds

A(B* = Dp K*)| # |A(B~ — Dlp, K| (1.34)

Combining all these considerations, the triangle relations (1.30) and (1.31) can be used
to extract v by measuring only the rates of the six processes.

This approach is theoretically clean and suffers from no hadronic uncertainties. Un-
fortunately the amplitude triangles are expected to be squashed since B* — DK is

color-suppressed with respect to BT — DK+ (32]:
|A(B* — D°K*)| |V Vii| as

rp = — ~ = =~ 0.1, (1.35)
IA(B+ — D'K+)|  VaVila

where Z—j ~ (.26 is a color suppression factor estimated from the measured branching

fractions of color-suppressed B decays and % =0.4+0.1.

This estimation for rp is confirmed by recent experimental determinations published



1.5. METHODS FOR THE MEASUREMENT OF THE ANGLE ~ 15

by the BABAR and BELLE experiments:

rp=0124009 BABAR [33]
rp=0214009 BELLE [34].

The observables are the two direct CP asymmetries:

A = 1.36
o BR(B~ — DgpyK~) + BR(B* — Dgp, K) (1-38)
and the two ratios of charge averaged branching fractions:
BR(B~—D%,, K~ )+BR(B*—D%, K")
BR(B——D n=)+BR(B+—D%, nt
Ry = 0BT Dopen ) HBN px™") (1.37)
BR(B~—DYK~)+BR(B+*—D K+)
BR(B——D%t—)+BR(B+—D"x+)

They are expressed in terms of v, rg and ég = A, — A4 that is the strong phase
difference between the V,; and the V,; mediated amplitudes, through the relations:

BR(B™ — D2p,K™)+ BR(B" — D2p K™)
BR(B- — D'K-) + BR(B+ — D K+)
=1+7f £ 2rgcosdpcosy (1.38)

Ry~ Rops =

+2rp sin dp siny

Acpi = (139)

Reops
The approximate equality Rops ~ Ry follows from the exact cancellation of D°r
phase-space factors in the double ratio Ry and from the approximation A(Bt —
DYp )~ A(B~ — Dp ) & %A(B* — D7), where a term 73X |V, Vea /Vaa Ves|
is neglected.

As we can see from equations (1.38) and (1.39), however large the data sample, the
sensitivity to 7y is essentially proportional to the value of rg and is therefore limited by
the small value of rpg.

The current results of Babar and Belle experiments, regarding Acp+, and Ropy are
summarized in Table 1.1 and 1.2 respectively.

Measurement Acp+ Acp_
Babar [35] 0.35+0.134+0.04 —0.064+0.13+0.04
Belle [36] 0.06 +£0.14 £0.05 —0.12£0.14 +0.05

Table 1.1: Babar and Belle results regarding Acp+.
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Measurement Repy Rep_
Babar [35] 0.90 +£0.12+0.04 0.86+0.10 £ 0.05
Belle [36] 1.13+0.16 £0.08 1.174+0.14£0.14

Table 1.2: Babar and Belle results regarding Rop.

1.5.2 The Atwood-Dunietz-Soni method

The Atwood-Dunietz-Soni (ADS) method is based on the reconstruction of charged
B-decays to D°K where the DY decays to a doubly-Cabibbo-suppressed (DCS) final
state f, like for istance f = K*x~. In this case a large interference is expected between
the B~ — DK, D' — K*r— amplitude, which proceeds through the color-allowed

b — c transition followed by the DCS D° decay, and the B~ — EOK*, D = Ktr
amplitude, where the color-suppressed b — w transition is followed by a Cabibbo-

allowed EO decay:
|A(B~ — D°K ,D" — K*rn)
=|A(B™ — D°K™)| x |A(D
IA(B~ = D'K~, D" — Ktr7)| =
= 1A(B™ = DK )| < JA(D" = K)o [VaVil 2 % [VeaVi

| =
DY — K*a7)] o [V Vi | x [V Vs

Using the expression (1.35) for 75 the ratio between the two amphtudes becomes:

|A(B~ — D'k, D’ — K+ )]

|A(B~ = DK, D0 — K+ )|

‘/cs Vud
B Vus V;d

Accordingly, the (direct) CP asymmetries, in these decays, are potentially large, up to
40%, and the sensitivity to v, which, like in the previous method, is proportional to the
interference term, should be enhanced. Unfurtunately, on the other hand, considering
doubly-cabibbo-suppressed D" decays instead of singly-Cabibbo-suppressed decays to
CP eigenstates reduces the overall branching fractions by a factor ~ A\? and a signif-
icantly larger statistics is needed to perform the measurement. With the same data
sample, the sensitivities of this and of the previous methods are probably comparable.

To extract v from these decays one needs to measure their branching fractions and
CP asymmetries, which are related to v through the relations:

BR(B™ — [K*n7|poK~) + BR(BT — [K 7" |poK™)

~ Tl A 2. (1.40)

Raps(f = Km) = BR(B- — [K 7t|poK~) + BR(Bt* — [Ktn |poK) =
=713 +r5 4 2rprp cosycos(0p + 0p) (1.41)

A _ BR(B™ — [K*17|poK~) = BR(B* — [K~nt|poK*)

APS = BR(B- — [K nt|poK ) + BR(B* — [K*n |poK*)

2rprp sinysin(dp + dp)

= 1.42
r% 4 1% + 2rgrp cosy cos(dg + dp) ( )
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where dp is the strong phase difference between the V,,;, and the V,; mediated amplitude
and dp is the strong phase in the D° decay. rp is the magnitude of the ratio of
amplitudes of the DY Cabibbo-suppressed with respect to the D° Cabibbo allowed
decay:

_AD" - K%
" TADY = K o))

The current measurements of Raps(K ) allow to put an upper limit on the value of

= 0.060 + 0.002 [24]. (1.43)

rp.

rp <023 (90%C.L.)  BABAR [37]
rp <0.18 (90%C.L.)  BELLE [38].

but do not allow a direct measurement of 4. In fact the number of unknowns (3)
is greater than the number of observables (2). The unknown parameters rg, v are
in common with the GLW method, while in this case we have the unknown extra-
parameter 6 = dp + dp. In any case the analysis can provide useful information once
the results are combined with other v related measurements.

1.5.3 The Giri-Grossmann-Soffer-Zupan method

The Giri-Grossmann-Soffer-Zupan (GGSZ) method is based on the reconstruction of

B — DK and B — D'K decays with the D° and D’ reconstructed into three-body
(or multi-body) self-conjugate final states. We consider here, as an example, the decay
D° — Kortm—.

Let us denote with m? and m? the squared invariant masses of the K7~ and K97+
combinations respectively, and

A(D — KOt rm) = f(m? m2) = [ f(m? m3 e’ )

—

the amplitude of the D — K?r*n~ decay to the point (m2,m?) of the Dalitz plot.

Neglecting CP violation in D° decays, the amplitude A(ﬁ0 — K%7777) to the same
point of the Dalitz plot is

AD’ — K0ntn™) = f(m2 m2) = | f(m%,m? )| A 0me),

The total B~ and BT amplitudes for the process B — [Kn "7~ ] po K, denoted with
A_ and A, are:

A_(m2,m}) = A(B~ — D°K")[f(m?,m%) + rpe'®® =7 f(m3, m? )]
Ay (m2,m%) = A(B* — D'KY)[f(m2, m2) + rpe’® ) f(m? , m2)].

The resulting bi-dimensional Dalitz (m?,m?) distributions for negative and positive
B candidates, modulo reconstruction efficiency variations, are proportional to

[A-(mZ mi)|* = [A%] x [|f (mZ, m3)]* + vl f(mi,m2)[* +

2rp| f(mZ,m3)||f(m3,m2)|cos(6p — v + dp(m%, m?))] (1.44)
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and

Ay (m?,mP)I* = [A%] x [If (i, m2)]* + rp|f(m?,mP)]* +

2rp|f(mi, m2)||f(m2,m)|cos(dp + v — dp(mZ, m2))] (1.45)
where |A| = |A(B- — D°K~)| = |A(B* — D'K™*)| and

is the strong phase difference between the D’ and D° amplitudes at the point (m?,m2)
of the K77~ Dalitz plot.

If the Dalitz structure of the D° — Kntn~ decay is known, i.e. f(m?,m?) is
known (for istance from charm factories), then the Dalitz distribution of the K97+~
candidates originating from BT and B~ decays to DK can be fitted to extract rpz, dp
and 7.

The main advantage of this method is that the D° decays that are considered are

Cabibbo-allowed, therefore the branching fractions are about one order of magnitudes
higher than in the GLW case.
On the other hand, the Dalitz plot (mQ_,mi) of the selected B candidates must
be sufficiently populated to perform the fit, which requires a significant number of
B — K7t 77| poK decays to be reconstructed, and the D° — K77~ amplitude
f(m2,m?2) must be known.

Using this method Belle [39] and Babar [40] obtained v = 687{5 + 13 £ 11° and
v =67+ 28 £ 13 + 11°, respectively, where the last uncertainty is due to the D decay
modeling.

Combining the GLW, ADS and Dalitz analyses [13] 7 is constrained as v = (63713)°.

We start with the measurements connected to the GLW method (BR and Acp
measurements for B — DK decays) because in this way we also put the basis for the
v measurement using the By — DK — [¢r| K.



Chapter 2

The Tevatron collider and the
CDF-11I Detector

Until the startup of Large Hadron Collider (LHC) at CERN, the Fermilab Tevatron
Collider is the high energy frontier in particle physics and the source of the highest
energy proton-antiproton (pp) collisions. The collisions occur at two points on an
underground ring, which has a radius of about 1 km. At these collision points there
are two detectors: the Collider Detector at Fermilab (CDF II) and DO.

Between 1997 and 2001, both the accelerator complex and the collider detectors
underwent major upgrades, mainly aimed at increasing the instantaneous luminosity
of the accelerator. The upgraded machine accelerates 36 x 36 bunches of protons and
antiprotons, whereas the previous version of the accelerator operated with only 6 x 6
bunches. Consequently, the time between two consecutive bunch crossings has been
decreased from 3.5 ps for the previous version to 396 ns for the current collider.

By the fall of 2005, the anti-protons production chain has been improved introducing
the electron cooling [41] in the Recycler (Section 2.1). In the year 2006 the 2 x 10
em ™2 57! peak luminosity has been reached. Then, starting in the year 2007 and until
the end of the Tevatron operations, the peak luminosity is expected to be 3 x 1032
em™2 s71, with an expected total integrated luminosity of 4 fb~! at the end of 2007
(Fig. 2.1).

Thanks to the Tevatron high luminosity and to the new SVT trigger (Section 2.8),
large samples of b and ¢ hadrons decays have been collected by the CDF II detector
and are now available for the analysis.

The data sample used in this Thesis has been collected by the CDF II detector between
March 2002 and February 2006, and it corresponds to an integrated luminosity of 1.3
fb~! on tape!.

The new accelerator configuration required significant upgrades of the CDF II detec-
tor to ensure a maximuim response time shorter than the time between two consecutive
beam crossings. In the following pages, we will describe how the protons and antipro-
tons beams are produced, accelerated to the final energy of 980 GeV and collided. We

!The analysis described has been made with 360 pb~! of data. The update of the analysis to 1 fb~ ! of
data is in progress at the time of the writing.

19
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Figure 2.1: Left: Peak luminosity as a function of time, measured using the store number.
Right: Integrated luminosity as a function of time, measured using the store number.

will then describe the CDF II components used to identify and measure the properties
of the particles produced in the collision focusing on the detector components most
relevant for this analysis.

2.1 pp acceleration and collisions

In order to create the particle beams Fermilab uses a series of accelerators. Fig. 2.2
shows the paths taken by protons and antiprotons from the initial acceleration to
collision in the Tevatron.

The Cockeroft-Walton [42] pre-accelerator provides the first stage of the accelera-
tion. Inside this device, hydrogen gas is ionized to create H™ ions, which are accelerated
to 750 keV of kinetic energy. Next, the H™ ions enter a linear accelerator (Linac) [43],
approximately 150 m long, where they are accelerated to 400 MeV. The acceleration
in the Linac is done by a series of "kicks” from Radio Frequency (RF) cavities. The
oscillating electric field of the RF cavities groups the ions into bunches.

The 400 MeV H~ ions are then injected into the Booster, a circular synchrotron
[43] with a diameter of 7.45 m. A carbon foil strips the electrons from the H™ ions
at injection, leaving bare protons. The intensity of the protons beam is increased by
injecting new protons into the same orbit as the circulating ones. The protons are
accelerated from 400 MeV to 8 GeV by a series of "kicks” applied by RF cavities.
Each turn around the Booster, the protons accrue about 500 keV of kinetic energy.

Protons are extracted from the Booster into the Main Injector [44], which operates
at 53 MHz. The Main Injector accelerates protons from 8 GeV to 150 GeV before
injection into the Tevatron, it produces the 120 GeV protons used for antiprotons
production, it receives antiprotons from the Antiproton Source and accelerates them to
150 GeV for injection into the Tevatron, and finally, it injects protons and antiprotons
in the Tevatron.
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Figure 2.2: Layout of the Fermilab accelerator complex. The protons (black arrow) are ac-
celerated at the Cockcroft-Walton, Linac, Booster, Main Injector and finally at the Tevatron.
The anti-protons (grey arrow) from the anti-proton source are first accelerated by the Main
Injector and then by the Tevatron.

The Main Injector replaced the Main Ring accelerator which was situated in the
Tevatron tunnel. The Main Injector is capable of containing larger proton currents than
its predecessor, which results in a higher rate of antiprotons production. The Main
Injector tunnel also houses the Antiproton Recycler. Not all antiprotons in a given
store are used for the collisions. Recycling the unused antiprotons and reusing them
in the next store significantly reduces the stacking time. The task of the Antiproton
Recycler is to receive antiprotons from a Tevatron store, cool them and re-integrate
them into the stack, so that they can be used in the next store.

To produce antiprotons, 120 GeV protons from the Main Injector are directed into
a nichel target. In the collisions, about 20 antiprotons are produced per one million
protons, with a mean kinetic energy of 8 GeV. The antiprotons are focused by a lithium
lens and separated from other particle species by a pulsed magnet.

The antiprotons are stored in the Accumulator ring. Once a sufficient number of
antiprotons have been produced, they are sent to the Main Injector and accelerated to
150 GeV. Finally both, the protons and antiprotons, are injected into the Tevatron.

The Tevatron is the last stage of the Fermilab accelerator chain, It receives 150 GeV

protons and antiprotons from the Main Injector and accelerates them to 980 GeV. The
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protons and antiprotons travel around the Tevatron in opposite directions. In the in-
teraction points, where CDF II and DO are located, the two beams are focused by
quadrupole magnets that reduce the beam size increasing the luminosity. The instan-
taneous luminosity, to which the number of collisions per unit of time is proportional
is approximately given by:

_ fNBN,N;

- 2n(02 + 02) 2.1)

where f is the revolution frequency, Np is the number of bunches, N,g) is the
number of protons (antiprotons) per bunch, and o) is the proton (antiproton) RMS
beam size at the interaction point. The instantaneous luminosity degrades over the
time as particles are lost and beams begin to heat up, mostly due to the long range
beam-beam interaction.

2.2 The CDF II Detector

The Collider Detector at Fermilab (CDF) is a general purpose, azimuthally and forward-
backward symmetric apparatus, designed to study pp collisions at the Tevatron. Fig.
2.3 shows the detector and the different sub-systems in a solid cutaway view. The pro-
tons and antiprotons beams travel towards each other along the horizontal axis (beam
line or beam axis). Any plane perpendicular to the beam line is called a transverse
plane, and the intersection point between the beam line and the transverse plane is
referred to as beam spot.

CDF 1I consists of five main subdetector systems: tracking, particle identification,
calorimetry, muon identification and luminosity detector.

The innermost system is the integrated tracking system: a silicon microstrip de-
tector and an open-cell wire drift chamber, the Central Outer Tracker (COT) that
surrounds the silicon detector.

The tracking system is surrounded by the Time Of Flight system, designed to pro-
vide particle identification for low-momentum charged particles (momentum below to
2 GeV/c).

Both the tracking and the Time Of Flight detector are placed inside the supeconduct-
ing coil, which generates a 1.4 T uniform horizontal magnetic field along the z axis
inside the tracking volume. The trajectories of the charged particles inside the track-
ing volume are helixes.

The tracking system is designed to measure the momentum and the trajectory of the
charged particles. Multiple-track reconstruction allows to identify the vertices where
either the pp interaction took place (primary vertex) or the decay of a long-lived par-
ticle took place (secondary or displaced vertex).

The solenoid coil is surrounded by the calorimeters, which measure the energy of par-
ticles that shower when interacting with matter. The calorimeters are surrounded by
the muon detectors. Muons are "minimally ionizing particles”, they only deposit small
amounts of ionization energy in the material. Therefore, they are able to penetrate
both the tracking and calorimeter systems. The integrated material of the tracking



2.3. STANDARD DEFINITIONS IN CDF 23

Central Wuon Central Calorimeter {E.H)

[ ] ",I Time of Flight

| | Central Outer Tracker

| Silicon Vertex Detector
Intermediate Silicon

Figure 2.3: The CDF II detector with a quadrant cut to expose the different subdetectors.

system, of the TOF detector, of the solenoid and of the calorimeter serves as a particle
filter. Particles which penetrate through all that material are mostly muons, and they
are detected by the tracks in the muon chambers, located outside the calorimeter.

At the extreme forward region of the CDF II detector two modules of Cherenkov Lu-
minosity Counters (CLC) [45] are placed. They point to the center of the interaction
region to record the number of pp interactions and determine the instantaneous lumi-
nosity.

The most important parts of the detector for this analysis are the tracking system,
the particle identification detectors and the trigger, and these will be described in detail
in the following section. The description of the remaining systems will be brief. More
detailed information on all these systems can be found in the Technical Design Report

of the CDF II Detector [46] [47].

2.3 Standard Definitions in CDF

Because of its barrel-like shape, the CDF II Detector uses a cylindrical coordinate
system (r, ¢, z) with the origin at the center of the detector and the z-axis along
the nominal direction of the protons beam. r is the radial distance from the origin
and ¢ the azimuthal angle. The r — ¢ plane is called the transverse plane, since is
perpendicular to the beam line. The polar angle, 6, is the angle relative to the z-axis.
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An alternative way of expressing 6 is the pseudorapidity n?, defined as:

n = —Intan (g) (2.2)

The coverage of each CDF II detector sub-system will be described using combinations
of n, r, ¢ and z.

Charged particles moving through a homogeneous solenoidal magnetic field along
the z direction follow helical trajectories. To uniquely parameterize a helix in three
dimensions, five parameters are needed: C, cot 0, dy, ¢y and zy. The projection of the
helix on the r—¢ plane is a circle. C'is the signed curvature of the circle, defined as C' =
Si%é@, where p is the radius of the circle and the charge of the particle (Q) determines
the sign of C. Positive charged tracks curve counterclockwise in the r — ¢ plane
when looking along the z direction and negative charged tracks bend clockwise. The
transverse momentum, pr, depends on the curvature C, on the magnetic field (Byagnet).
and on the charge of the particle through the following formula: p; = Q- B%Cg,””. Since
0 is the angle between the z axis and the particle momentum, cot 6 = 5—;, where p, is
the z component of the particle momentum.

The last three parameters, dy, ¢y and zg, are the r, ¢ and z coordinates of the point of
closest approach of the helix to the beam line. See Fig.2.4 for the definition of dy and

®p. dy is a signed variable:
do= Q- (/a3 +v8 - p). (2:3)

where (g, o) is the center of the helix circle in the r — ¢ plane.
Fig.2.5 shows the definition of dy sign.
For decaying particles, we define the displacement Ly,

Ty - pr
|pT| ,

Lay = (2.4)

where vy is the the decay length in the transverse plane. In the following we will call
L,, "transverse decay length”.

2Tt is convenient because it is a purely geometrical quantity related to the polar angle, and, at the same
time, it is a Lorentz invariant under a boost in z direction in ultra-relativistic limit. Since a lot of the physics
at CDF is approximately ultra-relativistic this variable is useful for describing the geometry of the decay.
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Figure 2.4: Definition of the dy and ¢g coordinates.
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Figure 2.5: Tracks of particles with positive/negative charge and positive/negative impact
parameters.
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2.4 The CDF II Tracking System

The tracking system is immersed in a 1.4 T solenoidal magnetic field for the measure-
ment of charged particles momenta. We will describe this system, shown in Fig.2.6,
starting from the device closest to the beam and moving outwards. The innermost
tracking device is a silicon detector, which consists of three subdetectors that cover the
region |n| < 2 and 27 of azimuthal angle. The first layer of silicon sensors, called Layer
00 (L00) [48], is installed directly onto the beryllium beam pipe, with the sensors at
radii 1.35 and 1.62 cm from the beam. The beam pipe is made of beryllium because
this metal has the best mechanical qualities with the lowest nuclear interaction cross
section.

The LOO is followed by SVX II [49], made of five concentric layers of silicon sensors
located at radii between 2.45 and 10.6 cm. The Intemediate Silicon Layers (ISL) [50]
are the outermost silicon detectors, with one layer of sensors at a radius of 22 cm in the
central region and two layers at radii 20 and 28 cm in the forward region. Surrounding
the silicon detectors is the Central Outer Tracker (COT) [51], a 3.1 m long cylindrical
open-cell drift chamber covering the volume between 43.4 cm and 132.3 c¢m of radius
and |n| < 1.
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Figure 2.6: Longitudinal section of one quadrant of the CDF II tracking system and part of
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2.4.1 The Silicon Detectors

The silicon strip detectors [52] at CDF II provide a precise determination of the particle
trajectory close to the beam line.

The impact parameter resolution measured in the transverse plane is of 27 pm.

A silicon detector is fundamentally a reverse-biased p-n junction. When a charged
particle passes through the detector material, it causes ionization. For a semiconductor,
this means that electron-hole pairs are produced. Electrons drift towards the anode,
and holes drift towards the cathode, where the charge is gathered. The amount of
charge is, to first order, proportional to the path length traversed in the detector
material by the charged particle.

By segmenting the p or n side of the junction into ”strips” and reading out the
charge deposition separately on every strip, we obtain sensitivity to the position of
the charged particle. All the CDF II silicon detectors are implemented as microstrip
detectors. The typical distance between two strips is about 60 um. Charge deposition
from a single particle passing through the silicon sensor can be read out on one or more
strips. This charge deposition is used to determine the hit position in the direction
perpendicular to the strips.

There are two types of microstrip detectors: single and double-sided. In single-sided
detectors only one (p) side of the junction is segmented into strips. Double-sided
detectors have both sides of the junction segmented into strips. The benefit of double-
sided detectors is that while one (p) side has strips parallel to the z direction, providing
r — ¢ position measurements, the (n) side can have strips at an angle (stereo angle)
with respect to the z direction, and can provide z position information.

For SVX II, made of double sided silicon sensor, four silicon sensors are assembled
into a "ladder” structure which is 29 cm long. The readout electronics are mounted
directly to the surface of the silicon sensor at each end of the ladder. The ladders are
organized in an approximately cylindrical configuration, creating "barrels”. A SVX
IT barrel is segmented into 12 wedges, each covering approximately 30° in ¢, for each
wedge there are five layers. Each layer provides one axial measurement on one side
and a measurement at the stereo angle on the other side (see table 2.1). The resolution
on the single hit is 12 gm. There are three SVX II barrels, mounted adjacent to each
other along the z-axis, as shown in Fig.2.7, covering the nominal interaction region at
the center of the CDF II Detector. The coverage of the silicon detector subsystem is
shown in Fig. 2.8.

The innermost layer, L0O0, is made of single-sided silicon sensors which provide only
r — ¢ measurements, but also, being only at 1.5 cm from the interaction point, provides
the best resolution on the transverse impact parameter.

The ISL is made of double-sided silicon sensors and it provides up to two additional
tracking layers depending on pseudorapidity (Fig. 2.8). In particular ISL provides
a higher tracking efficiency by connecting tracks in SVX with the ones in COT and
allows to extend tracking beyond the COT limit (|n| < 1), and up to |n| < 2.

All the silicon detectors are used in the Offline track reconstruction algorithm.
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Property Layer 0 Layer 1 Layer 2 Layer 3 Layer 4
number of ¢ strips 256 384 640 768 869
number of z strips 256 576 640 512 869

stereo angle 90° 90° +1.2° 90° —1.2°
¢ strip pitch [um] 60 62 60 60 65
z strip pitch [pum] 141 125.5 60 141 65

active width [mm|  15.30 23.75 38.34 46.02 58.18
active length [mm]  72.43 72.43 72.38 72.43 72.43

Table 2.1: Relevant parameters for the layout of the sensors of the five SVX-1I layers.

Figure 2.7: Isometric view of three SVX II barrels.
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2.4.2 The Central Outer Tracker

The COT drift chamber provides the tracking of charged particles at large radii in the
pseudorapidity region |n| < 1, giving an accurate information in the r — ¢ plane for the
measurement of the transverse momentum, and substantially less accurate information
in the » — 2z plane for the measurement of the z component, p,. The COT contains
96 sense wire layers, which are radially grouped into eight "superlayers”. This can be
seen from the end plate section shown in Fig. 2.9.
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Figure 2.9: Layout of the wire planes on a COT endplate.

Each superlayer is divided into cells, and each cell contains 12 sense wires. The
maximum drift distance is approximately the same for all superlayers. Therefore,
the number of cells in a given superlayer scales approximately with the radius of the
superlayer. The entire COT contains 30,240 sense wires spanning the entire length of
the detector in z. Approximately half the wires run along z direction ("axial”). The
other half are strung at a small angle (2°) with respect to the z direction (”stereo”).
This allows to perform track reconstruction in the r — z plane. The active volume of
the COT begins at a radius of 43.4 cm from the beamline and extends out to a radius
of 132.3 cm. The chamber is 310 cm long. Particles originating from the interaction
point with |n| < 1 pass through all the 8 superlayers of the COT.

The cell layout, shown in Fig. 2.10 for superlayer 2, consists of a wire plane con-
taining sense and potential wires (for field shaping) and a field (or cathode) sheet on
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either side of the cell. Both the sense and potential wires are 40 ym diameter gold
plated tungsten wires. The field sheet is 6.35 pm thick mylar with vapor-deposited
gold on both sides. Each field sheet is shared with the neighboring cell.

+ Potential wires
Sensewires

X Shaper wires
BareMylar

— Gold on Mylar (Field Panel)

\ \ \ \ \ \ \ \
52 54 56 58 60 62

% R (o

Figure 2.10: Layout of the wires in a COT cell.

The COT is filled with an Argon-Ethane gas mixture and Isopropyl alcohol (49.5:49.5:1).
The gas mixture is chosen to have a constant drift velocity across the cell width. When
a charged particle passes through the detector volume, the gas is ionized. Electrons
drift towards the nearest sense wire. The electric field in a cylindrical system grows
exponentially with decreasing radius. As a consequence, an avalanche multiplication
of charge happens inside the high electric field region, in the vicinity of the wire, due
to electron-atom collisions. The resulting charge reaches the wire and this so-called
"hit” is read out by electronics. The avalanche discharge provides a gain of ~ 10%. The
maximum electron drift is approximately 100 ns. Due to the magnetic field electrons
drift at a Lorentz angle of ~ 35° with respect to the radius. The cell is tilted by ~ 35°
with respect to the radial direction to compensate for this effect.

Signals on the sense wires are processed by the ASDQ (Amplifier, Shaper, Discrimi-
nator with charge encoding) chip, which provides input projection, amplification, pulse
shaping, baseline restoration, discrimination and charge measurement [53]. The pulse
is sent through ~ 11 m of micro-coaxial cable, via repeater cards to Time to Digital
Converter (TDC) boards in the collision hall.

The pulse leading edge gives the arrival time information and the pulse width, in
nanosecond, is related to the amount of charge collected by the wire. After calibrating
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the width variations due to the COT geometry , to the path length of the associated
track, to the gas gain differences for the 96 wires, the Landau associated to the track
is determined, using the amount of the charge collected (in nanosecond) for each hit
along the track path length. From the Landau the energy loss is measured and used
for particle identification. A detailed description of the calibration is found in [54] [55].
The TDC boards contain also the buffer where the data are stored while waiting for
the events to be accepted by the trigger. The TDC auxiliary card catch hits for the
eXtremely Fast Tracker (XFT) track trigger processor (Section 2.8.1). Hit times are
later processed by pattern recognition (tracking) software to form helical tracks. The
hit resolution of the COT is about 140 pm. The transverse momentum resolution has
been measured using cosmic ray events to be:

o
L —=0.0017 [GeV/c| (2.5)
by

The tracking algorithms reconstruct particle trajectories (helixes) that best correspond

to the observed hits. Reconstructed trajectories are referred to as “tracks”.

The tracks with available COT information are important for several reasons:

e they are fundamental for the trigger based on charged tracks and for the special
level 2 trigger optimized for B-physics (Section 2.8) used to collect data analysed
in this thesis;

e they form the basis of the TOF reconstruction to provide particle identification
information for track parent particle;

e they can be used in the silicon reconstruction to match the hits in the SVX
detector to the COT track trajectory;

e they, themselves, contain information about particle velocity through the mea-
surement of the energy loss.

All the tracks that we use in the following are required to have the COT and the SVX
IT information.

2.4.3 Pattern Recognition Algorithms

As explained in the previous sections, charged particles leave small charge depositions
as they pass through the tracking system. By following, or “tracking”, these depo-
sitions, pattern recognition algorithms can reconstruct the charged particle original
trajectory.

There are several algorithms used to reconstruct tracks in the CDF II tracking
system. Most tracks are reconstructed using “Outside-In” algorithms which will be
described here. The name of this group of algorithms suggests that the track is followed
from the outside of the tracking system inwards.

The track is first reconstructed using only COT information. The COT electronics
reports hit time and integrated charge for every hit wire in an event. The hit time
corresponds to the time when an avalanche occurred on a sense wire. The hit time can
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be interpreted as the drift time of the charge in the gas, when it has been corrected
for the particle time of flight. The hit time resolution is of the order of a few ns; this
roughly corresponds to the average spread of the collision times. It is assumed that the
collision time always happens at the same time in a cycle during a store. An average
of collision times is done for many previous events and it is used as the event collision
time. Hit times corrected for the collision time are interpreted as drift times and are
used for pattern recognition. To perform the final track fit, an additional time of flight
correction is performed assuming massless particles.

The helical track, when projected onto the r — ¢ plane, is a circle. This simpli-
fies pattern recognition, so the first step of pattern recognition in the COT looks for
circular paths in the radial superlayers of the COT. Cells in the radial superlayers
are searched for sets of 4 or more hits that can be fit to a straight line. These sets
are called “segments”. A straight-line fit of a segment gives sufficient information to
extrapolate rough measurements of curvature and ¢y. Once segments are found, there
are two approaches to track finding. One approach is to link together the segments for
which the measurements of curvature and ¢, are consistent. The other approach is to
improve the curvature and ¢y measurement of a segment reconstructed in superlayer
8 by constraining its circular fit to the beamline, and then adding hits consistent with
this path. Once a circular path is found in the r — ¢ plane, segments and hits in the
stereo superlayers are added by their proximity to the circular fit. This results in a
three-dimensional track fit. Typically, if one algorithm fails to reconstruct a track, the
other algorithm will not. This results in a high track reconstruction efficiency (~ 95%)
in the COT for tracks which pass through all 8 superlayers (Pr > 400 MeV/c). The
track reconstruction efficiency mostly depends on how many tracks are reconstructed
in the event. If there are many tracks close to each other, hits from one track can
shadow hits from the other track, resulting in efficiency losses.

Once a track is reconstructed in the COT, it is extrapolated inward to the SVX-II.
Based on the estimated errors on the track parameters, a three dimensional “road” is
formed around the extrapolated track. Starting from the outermost layer, and working
inwards, silicon clusters found inside the road are added to the track. As a cluster
gets added, the road gets narrowed according to the knowledge of the updated track
parameters. Reducing the width of the road reduces the chance of adding a wrong hit
to the track, and also reduces the computation time. In the first pass of this algorithm,
r — ¢ clusters are added. In the second pass, clusters with stereo information are added
to the track.

2.5 The Time Of Flight Detector

The Time Of Flight detector (TOF) [56] is the primary system used for K/m particle
separation at low momenta. The TOF detector measures the time taken by the particle
to travel from the collision point to the TOF system. Combining this information with
the quantities measured by the COT (flight lenght L and particle momentum p) one
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can estimate the particle mass as

m:%’ (%)2—1. (2.6)

The TOF detector consists of 216 bars of scintillator of dimensions 4 x 4 x 279 cm?
forming a thin cylinder in the space available between the COT detector and the
solenoid cryostat, as shown in Fig. 2.6. Bars are located at roughly equal distances in
¢ at the radius of 140 cm and the full system covers the region || < 1 and the entire
region in ¢.

Interaction of a charged particle with the detector material is called a hit. When
a charged particle traverses the scintillator material, photons are emitted, and these
photons propagate towards the ends of the scintillator bar. The photo-multiplier tubes
(PMTs) installed at the both ends of the bar collect the light and the front-end elec-
tronics measures the arrival time of the PMT pulse and the amount of charge collected
(which is related to the number of photons produced). The physical location of the
bar where the hit was registered provides the ¢ location of the hit. By comparing the
arrival times of the pulses at the two ends of the bar it is possible to determine the z
position of the hit. The COT tracks are then extrapolated to the TOF system location
to find the matches between the track trajectories and the hits in the TOF system.
This associates the timing information from the TOF with the tracking information
from the COT.

Fig. 2.11 shows the overview of the electronics read-out system for one TOF chan-
nel. It starts with the photo-multiplier tube where the light is collected and converted
to a charge pulse. The pre-amplifier receives a nearly differential pulse from the PMT
base and drives it to the discriminator. The pre-amplifier is designed to have a bilin-
ear gain, the gain is reduced for bigger pulses which increases the dynamic range and
makes it possible to measure the charges from very large pulses produced by heavy slow
particles. The discriminator, which has an adjustable threshold, selects the signals to
be processed by effectively filtering out the noise. After the discriminator the signal
path is split and the signal is sent to the time and charge measurement circuits.

The discriminator provides a start signal to the Time-to-Amplitude Converter, or
TAC, which is later stopped by the CDF common stop signal. The TAC read-out is
converted into a digitized time reading by a 12-bit Analog-to-Digital Converter chip
(ADC). The digitized time is buffered in the VME module called an ADMEM for the
ultimate read-out by the data acquisition system. The charge measurement circuit
converts the received signal into a current that is passed to a charge sensitive ADC
that is also located on the ADMEM module. The primary purpose of measuring the
pulse charge is to perform the correction for the variation in the timing measurement
of the pulses with varying amplitudes (so called time-slewing correction).

The TOF electronics also provides the operations for configuration, monitoring,
calibration and testing of the system. A more comprehensive description of the TOF
front-end electronics can be found in [57]. The timing resolution of the electronic read-
out itself is 20 ps and contributes very little to the overall timing resolution of the TOF
detector.
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Figure 2.11: Electronic read-out chain of one TOF channel.

The TOF electronics measures the time of the PMT pulse with respect to the CDF

common stop signal. In order to calculate the actual flight time of the particle, the
direct measurement has to be corrected by the time it takes the photons to reach the
PMTs, by the time-slewing correction, by the time it takes the signals to travel the
length of the cables in the data acquisition system, and so on. The main contributions
to the TOF timing resolution include physics effects such as the random variations
in the number of photoelectrons in the photo-multipliers and the variations in the
electron transit time inside the PMT. In addition, the variations in the shapes of the
PMT pulses make impossible a precise determination of the pulse arrival time based
on a threshold crossing time. The situations where more than one particle produces
a hit in the scintillator bar cannot always be detected and contribute significantly to
the TOF resolution. Extrapolation of the measured particle trajectories to the TOF
detector is itself imprecise and also makes a contribution to the timing uncertainty. In
the end, we achieve an overall time of flight timing resolution of 100-150 ps for most
particles.
The expected separation power® for the various particle species that is achievable with
TOF alone, assuming 100 ps for the time of flight resolution, as a function of momentum
is shown in Fig. 2.12. For comparison, the expected K/m separation from the COT
dE/dx measurement is also shown to illustrate the complementary power of COT with
respect to the TOF particle identification.

Measuring the arrival times of the charged particles with respect to the CDF com-
mon stop signal is not sufficient to deduce particle masses because the time of the
pp interaction t; with respect to the common stop signal can vary significantly from
event to event?. However the combined TOF timing measurements for all the particles

9TOF c
expected time of flight of the i particle of mass m; and momentum p. oror is the time of flight resolution.

4This is mostly due to the relatively large size of the protons and antiprotons bunches resulting in a long

. — . m2C2 .
3The expected separation power is defined as w, where TOF;(p) = A;/ =+ 1 is the
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Figure 2.12: Expected separation power of the TOF particle identification. The dashed line
is relative to the K- separation power obtained with the COT dE/dx.

in the event can be used to estimate the value of ¢y by assuming that these particles
consist of known mixture of pions, kaons and protons and estimating the value of ¢
that is most consistent with all the observed particles. In most events the ¢y can be
determined with a resolution of roughly 50 ps which is significantly smaller than the
intrinsic timing resolution of the TOF measurement. In conclusion, the combination
of the particle identification information deriving from the COT and TOF detectors
allows to separate the particles based on their mass in almost all the momentum range
relevant for B-physics at CDF.

2.6 The Calorimeters

Outside the solenoid, the scintillator-based calorimetry covers the region |n| < 3 with
separate electromagnetic and hadronic measurements. The CDF calorimeters have an
important role in the physics program by measuring electron an photon energies, jet
energies and net transverse energy flow.

Since this analysis does not use calorimetry information, this system will be describe
briefly. A detailed description can be found in the CDF II Technical Design Report
[47].

The CDF II calorimeter has a ”projective tower” geometry. This means that it is
segmented in 17 and ¢ "towers” pointing to the interaction region. The coverage of the
calorimetry system is 27 in ¢ and |n| < 3 in pseudorapidity.

The calorimeter consists of an electromagnetic (EM) section followed by a hadronic
section. In both sections the active elements are scintillator tiles read out by wavelength

time window during which a pp interaction can occur.
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shifting (WLS) fibers embedded in the scintillator. The WLS fibers are spliced to clear
fibers, which carry the light out to photomultiplier tubes (PMT) located on the back
plane of each endplug.

The EM calorimeter is a lead/scintillator sampling device with a unit layer composed
of 4.5 mm lead and 4 mm scintillator. There are 23 layers in depth for a total thickness
of about 21 X, (radiation lengths) at normal incidence. The energy resolution of the
EM section is approximately 16%/vE with a 1% constant term.

The hadron calorimeter is a 23 layer iron and scintillator sampling device with a unit
layer composed of 2 inch iron and 6 mm scintillator.

2.7 The Muon detector

Muons are particles which interact with matter only by ionization. For the energies
typical of this experiment, they do not cause showers in the electromagnetic or hadronic
calorimeters. As a result, if a muon is produced and it has enough momentum, it
will pass through the calorimeter with minimal interaction with the internal material.
Therefore, the calorimeter can be considered as a filter which retains particles that
shower when interacting with matter. Muon detection systems are therefore placed
outside the calorimeters.

The CDF II Detector has four independent muon systems: the Central Muon Detec-
tor (CMU), the Central Muon Upgrade Detector (CMP), the Central Muon Extension
Detector (CMX) and the Intermediate Muon Detector (IMU) [58]. The CMU and the
CMP detectors are made of drift cells, and the CMX detector is made of drift cells and
scintillation counters, used to reject background based on timing information. Using
the timing information from the drift cells of the muon systems, short tracks (called
"stubs”) are reconstructed. Tracks reconstructed in the COT are extrapolated to the
muon systems. Based on the track trajectory extrapolated to the muon system, the
estimated errors on the tracking parameters and the position of the muon stub, a x?
value of the track-stub match is computed. To ensure good muon quality, an upper
limit is placed on the value of X?ﬂ the x? of the track-stub match in the ¢ coordinate.

Most particles passing through the calorimenter without showering are muons, but
this is also possible for pions or kaons. These particles can then fake muon signals in
the muon chambers. Typically, these fake rates are at the percent level.

2.8 The Trigger

The trigger plays an important role in a detector at a pp collider, as the Tevatron, for
two main reasons. First, the collision rate is about 2.5 MHz, which is much higher than
the rate at which CDF data can be stored on tape, 100 Hz. Second, the total hadronic
cross section (including the elastic, inelastic, and diffractive processes) is about 100 mb
while interesting physics signals have a much lower cross-section. The bb cross-section,
as an example, is about 1000 times smaller, 0.1 mb. Even if the bandwidth to write on
tape would be much larger, extracting online the most interesting physics events from
the large number of normal events would be require to reduce the cost and the time
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necessary to reconstruct data.
This is achieved by the pipelined data acquisition system and the three level trigger of
CDF II that is shown in Fig. 2.13.
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l L1 trigger l : Y pip

42 Clock 99 5544ns latency
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L1 Accept

] l Y Level 2:
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L2 Buffers:

4 Events 300 Hz Accept Rate

L2 Accept
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DAQ Buffers

L3 Farm

Mass
Storage PIW 10/28/96

Figure 2.13: Diagram of the CDF Il trigger architecture.

With this architecture the global trigger decision is performed in several steps. Each
level provides a rate reduction sufficient to allow processing in the next level. Each level
performs selection reconstructing physics quantities with increasing resolution than the
preceding. The typical rates of events accepted by each trigger level are reported in
Table 2.25.

The Level 1 trigger (L1) is organized as a synchronous pipeline that processes events
at the bunch crossing rate and takes trigger decision within a latency of 5.5 us. For
every event all the detectors store the data in a 42 stage pipeline and send them to
the L1. After 42 Bunch Crossings the L1 takes the decision on the event. Upon a L1
trigger accept, the data on each front-end card are transferred to one of four local Level
2 (L2) buffers. The L2 performs a more accurate analysis of the event in few tens of

5The table is relative to the rate at the moment of the collection of the first 360 pb~! of data. With recent
upgrades we obtain a Level 1 Accept of 30 kHz, and a Level 2 Accept of 900 Hz.
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Level 1 Accept 25 kHz
Level 2 Accept 350 Hz
Event Builder 75 MB/s
Level 3 Accept 80 Hz
Rate of Storage 20 MB/s

Table 2.2: Rate of events accepted by each trigger level. The bandwidth accepted by the
Event Builder and the Data-Logging systems are also reported.

microseconds.

Data relative to events that satisfy L2 requirements, are read out by the EVent
Builder (EVB) [59] system and are stored in the DAQ buffers. There, the event frag-
ments obtained from different subsystem are organized into a properly ordered se-
quence, flagged with the event number and fed to the computing farm which performs
the Level 3 functions. The EVB is able to process 75 MB/s of data.

Fig. 2.14 shows the block diagram of the CDF II trigger system with the Level 1
and Level 2 subsystem along with their interconnections. The structure of both L1
and L2 are similar. Physical objects are reconstructed by the subprocessors, which
feed data to the global decision hardware, ehich combines this information and takes
the trigger decision. The eXtremely Fast Tracker (XFT), at Level 1, and the Silicon
Vertex Tracker (SVT), at Level 2, provide tracking information fundamental to reject
background events.

The third trigger level (1.3) [59] is a farm of parallel processors, each fully analyzing
a single event running off-line reconstruction code on it. The L3 uses the full detec-
tor resolution to reconstruct the whole event. The L3 performs a three dimensional
reconstruction of all the tracks and vertices. Events are selected by repeating the L2
selections on the better reconstructed quantities.

Events accepted by the L3 are sent by the Data-Logging to mass storage and to
online monitoring processes to verify that the detector, trigger and data acquisition
systems are functioning correctly. The output rate of the third level is approximately
80 Hz.

A detailed description of the CDF trigger system can be found in [60]. In the
following we will describe the three trigger levels.

2.8.1 Level 1 trigger

The Level 1 consists of three parallel synchronous processing streams. The first stream
finds calorimeter based objects, the second one finds muons, while the third one finds
tracks in the COT. Up to 64 different triggers can be formed using simple ANDs and
ORs of objects from these streams.

The eXtremely Fast Tracker (XFT) identifies tracks with pr of the order of 1.5
GeV/c in the r — ¢ view using the information provided by four axial superlayers of
the COT. As mentioned earlier, the supelayers are arranged in cells of 12 wires each,
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Figure 2.14: Functional block diagram of the CDF II first and second level triggers.

oriented at an angle of ~ 35° relative to the radial direction. There are a total of 16,128
axial wires, and the hits on each wire are classified as prompt or delayed, for a total
of 32,256 bits of information. A charged track passing through an axial superlayer will
generate a maximum of 12 "hits” of prompt or delayed hits. The definition of a prompt
or a delayed hit will depend upon the maximum drift time in the COT. For a bunch
spacing of 396 ns, the maximum drift time is ~ 121 ns, and so a prompt hit occurs
whenever there is a hit in the time window 0-44 ns, and a delayed hit is defined as a
hit falling the in the window 44-121 ns.

Track identification is accomplished in two processes by the Finder and the Linker
boards. The Finder searches for high pp track segments in each of the four axial
superlayers of the Central Tracker. The Linker searches for a four-out-of-four match
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among segments in the 4 layers, consistent with a prompt high-pr track. If no track
is found, the Linker searches for a three-out-of-three match among segments in the
innermost 3 layers.

Using this algorithm the track py and ¢ are measured with a resolution of 0.0174
p2 GeV/c and 6 mrad, respectively.

Transition modules drive found track information from the Linker modules to the
XTRP (eXTRaPolation unit) system, which extrapolate the tracks to the calorimeter
and the muon chambers, applies trigger momentum thresholds and distributes the track
data to the Level 1 and Level 2 trigger system.

2.8.2 Level 2 trigger

The Level 2 trigger consists of several asynchronous subsystems which provide input
data to the Global Level 2 crate that evaluates whether any of the L2 triggers is
satisfied.

Processing for a L2 trigger decision starts after the event is written into one of
the four L2 buffers on all front-end and trigger modules by a .1 accept. While 1.2 is
analyzing the event that buffer cannot be used to store additional L1 accepts.

Data are collected from the L2 buffers of the Level 1 trigger systems (XFT and L1
MUON) and from the calorimeter shower maximum detector (XCES). Simultaneously
a hardware cluster finder (L2CAL) processes the calorimeter data and SVT (Silicon
Vertex Tracker) [61] [62], described in the next Section, finds tracks in SVX-II.

Once the objects are available, the Global Level 2 processes the data and takes the
decision.

The Online Silicon Vertex Tracker (SVT)

The Online Silicon Vertex Tracker (SVT) is part of the Level 2 trigger. It receives
the list of the COT tracks reconstructed by the XFT processor (for each track the
curvature C' and the azimuthal angle ¢ are measured) and the digitized pulse heights
on the silicon layers (10° channels). The SVT links the XFT tracks to the silicon hits
and reconstructs tracks with offline-like quality. The resolution of the SVT is d¢ ~ 1
mrad, dpy ~ 0.003-p2 GeV/c and dd ~ 35 pum, where d is the track impact parameter,
the distance of closest approach of the particle trajectory helix to the z-axis of the CDF
reference system.

By providing a precise measurement of the impact parameter of charged particle
tracks, SVT allows triggering on events containing long lived particles. B hadrons in
particular have a decay lenght of the order of 500 pm and tracks which come out of
the B decay vertices have an impact parameter on average grater than 100 gum. The
opportunity offered by the SVT of triggering directly on B hadron decay vertices is
available for the first time at an hadron collider.

The SVT has a widely parallelized design: it is made of 12 identical slices (" wedges”)
working in parallel. Each wedge receives and processes data only from tracks in the
plane perpendicular to the beamline (stereo info from SVX II is dropped) and only
with pr above 2 GeV/c.
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The tracking process is performed in two steps:

e Pattern recognition: candidate tracks are searched among a list of precalculated
low resolution patterns ("roads”);

e Track fitting: a full resolution fit of the hit coordinates found within each road is
performed using a linearized algorithm.

The pattern recognition step is performed in a completely parallel way by the Asso-
ciative Memory (AM) system which uses full custom VLSI chips (AMchips [63]). The
AM system compares all the silicon clusters and XFT tracks with the set of precalcu-
lated patterns. A pattern is defined as a combination of six bins (”SuperStrips”): five
SuperStrips correspond to the position coordinates of the particle trajectory on five
silicon layers, which can be chosen among the five SVX II layers, the sixth SuperStrip
corresponds to the azimuthal angle of the particle trajectory at a distance of 12 cm
from the beam line. The output of AM system is the list of patterns ("roads”) for
which at least one hit has been found on each SuperStrip. Each SVT wedge uses 32K
patterns which cover more than 95% of the phase space for pr > 2 GeV/c.

The track fitting method is based on linear approximations and principal compo-
nents analysis [64].

Figure 2.15 shows the SV'T track impact parameter resolution for tracks with pp > 2
GeV/c. The width of the Gaussian fit for the distribution in Fig. 2.15 is 55 pm. This
is a combination of the intrinsic SVT impact parameter resolution, and the transverse
size of the beam line: o4y = o5y @ Opeam, Where opeqp, is about 30 pm. Therefore, the
intrinsic SVT resolution is about 35 pm.
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Figure 2.15: Impact parameter resolution of the SVT track.

For the first time at an Hadron Collider, thanks to SVT, it is possible to trigger
directly on hadronic B decay vertices.
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2.8.3 Level 3 trigger

The third level of the CDF trigger is implemented on a PC farm. Every CPU in the
farm provides a processing slot for one event. With roughly 300 CPUs, and an input
rate of ~ 300 Hz, this allocates approximately 1 second to perform event reconstruction
and take a trigger decision.

Fig. 2.16 shows the implementation of the Level 3 farm. The detector readout from
the Level 2 buffers is received via an Asynchronous Transfer Mode (ATM) switch and
distributed to 16 “converter” node PCs, shown in Fig. 2.16 in light blue. The main
task of these nodes is to assemble all the pieces of the same event as they are delivered
from different subdetectors through the ATM switch. The event is then passed via an
ethernet connection to a “processor” node. There are about 150 nodes in the farm
as shown in Fig. 2.16. Each processor node is a separate dual-processor PC. Each of
the two CPUs on the node processes a single event at a time. The Level 3 decision is
based on near-final quality reconstruction performed by a “filter” executable. If the
executable decides to accept an event, it is then passed to the “output” nodes of the
farm. These nodes send the event onward to the Consumer Server/Data Logger (CSL)
system for storage first on disk, and later on tape.

CDF Data Acquisition System: Engineering Run

Front End
Crates

AV RATAYR/AVEAYARY

Event Builder
Switch SCRAMNet
Ring

Level-3
PC-Farm

ou ou ou ou
Consumer Server Data Logger
Data Logger Disks

Figure 2.16: Principle of Event Building and Level 3 Filtering. Data from the front end
crates is prepared by Scanner CPUs (SCPU) and fed into the ATM switch. On the other
side of the switch, converter nodes (CV) assemble events and pass them to processor nodes
(PR). Accepted events are passed to output nodes (OU) which send them to the Consumer
Server and Data Logging system (CS/DL).
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2.8.4 Organization of a Trigger Table

The trigger system described above is able to use the information of quite any detector
subsystem. Combining all the measurements of the various subsystems it is possible
to efficiently record, at the same time, events characterized by different signatures.
Indeed the data collected by CDF II can be used to study the properties of the top
quark and weak bosons as well as the decays of b and ¢ hadrons, or to search evidence
of physics beyond the Standard Model.

Each signature requires certain selections at each trigger level, to efficiently collect
the data. The combination of these selections define a Trigger Path.

All the Trigger Paths are listed in the Trigger Table. The Trigger Table is organized
in such a way that the rates at each level don’t exceed the limits listed in table 2.2.

2.8.5 The Two Track Trigger Path (TTT)

In the following we will describe the TTT trigger path used for the analysis described
in this Thesis. The term Two Track Trigger (TTT) is used within CDF to indicate
two kind of triggers that require at least two charged tracks in the event, with some
kinematical constraint that we are going to describe in the following. These triggers
are able to extract fully hadronic decays from a large background of tracks, just using
the tracks reconstructed by SVT. The two triggers differ by the fact that one is meant
to collect two-body decays, like BY — h™h'~ (B_PIPI), while the other is sensitive to

multi-body decays, like B*D n+ — [K+r |7+ (BL.CHARM).

2.8.6 The Two Track Trigger selection
Level 1

The Level 1 selections are common to the B.CHARM and B_PIPI trigger paths. At
least two XF'T tracks with opposite charge are required in the event. The minimum
transverse momenta of the tracks have to be higher than 2.04 GeV/c and their scalar
sum has to be greater than 5.5 GeV/c. Finally the azimuthal opening angle between
them, calculated at the radial distance of the COT superlayer 6 (R = 105.575 c¢m),
A must be 0 < Agg < 135°.

Level 2

At Level 2 the B_PIPI and B.CHARM are splitted. Both trigger paths require two
SVT tracks with opposite charge. Then the kinematical cuts are different because for
the B.CHARM path, the events are not fully reconstructed by the trigger. The cuts
relative to the two trigger path are reported in table 2.3.

The impact parameter (dcy) and transverse decay length (L,,) of the B candidate
vertex are calculated starting from the parameters of the two SV'T tracks using the

86 is the azimuthal angle of the tracks measured at the COT superlayer 6. It is related to ¢o by the
relation: ¢g = ¢o + sin~*(r - C), where r = 105.575 and C is the track’s curvature.
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Cuts B_PIPI B_CHARM

Min(pr) > 2 GeV/c 2 GeV/c
pri+pr2> 5.5 GeV/e 5.5 GeV/e

Agy > 20° 2°
Ao < 135° 90°
|do| > 100 pm 120 pm
|do| < 1 mm 1 mm
|Lyy| > 200 pm -
Lyy > - 200 pm
|[dov| < 140 pm -

Table 2.3: Level 2 cuts applied by the B_.PIPI and B.CHARM triggers. dy is the impact
parameter of the track. dcy and L, are respectively the impact parameter and transverse
decay length of the candidate vertex. They are calculated starting from the quantities mea-
sured by SVT as described in the text.

following equations:
Pa = P11 COS Q1 + Pro COS g Py = Pr1Sin @1 + prosin @y (2.7)

so, the flight direction of the B candidate vertex is given by:

cos ¢y = Pr sin ¢y = p—y, (2.8)
pr pr

pr = /P + D} (2.9)

and the coordinates of the B candidate vertex are

where

dy oS g — dy cOs ¢y dy sin ¢ — dy sin ¢
Ty = - - Yy = - - (2.10)
COS (1 SIN g — COS P9 SiN Py COS (1 SIN 9 — COs P9 Sin Py
therefore N
Ly, = L L i dcy = xy sin ¢y — yy cos oy . (2.11)
pr
Level 3

The third trigger level performs selection on tracks that are reconstructed using the
offline algorithm and matched to SVT tracks. The matching is done in ¢ and curvature.
The tolerances are respectively 15 mrad and 1.5 x 10~* em~!. The same cuts as in
Level 2 are performed on hybrid tracks. The cut on the impact parameter requires
the knowledge of the exact beam position. Within CDF the most accurate online
measurement of the beam position, in each barrel, is provided by SVT. The Level 3
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calculates the impact parameter transverse to the three dimensional beam position,
which is calculated starting from the SVT measurement.

Level 3 applies a fiducial geometric cut on the tracks pseudo-rapidity: |n; o < 1.2.
In the B_PIPT a cut on the reconstructed invariant mass of the track pairs assigning
the ™ mass to both tracks is applied as well: 4 GeV/c? < M, < 7 GeV/c?. There is
not an analogous cut for B.CHARM because the events are not fully reconstructed by
the trigger.

2.9 Standard data processing

The events accepted by the trigger and stored to tape are not optimal for physics
analysis because the up-to-date calibrations of the detectors are usually not available for
online event reconstruction. CDF uses a standard software package called ” Production”
for final quality reconstruction of the data. The Production gives the highest precision
measurement of physical quantities (based on the best available detector calibrations,
beam-line position measurements and so on) and separates the data into different
datasets based on the different trigger-paths that accepted events. In our case, for
example, we have two different datasets, one for the events that passed the B.CHARM
trigger and one for the events that passed the B_PIPI trigger. Each dataset can have
more secondary datasets corresponding to different data periods.

2.10 Luminosity Measurement

At hadron collider experiments the beam luminosity can be measured using the inelastic
pp scattering. It has a large cross section, o;, ~ 60 mb. The rate of inelastic pp
interactions is given by:

o foe = 0in - L, (2.12)

where L is the instantaneous luminosity, fp. is the rate of bunch crossings in the
Tevatron and g is the average number of pp interactions per bunch crossing.

To detect inelastic pp events efficiently a dedicated detector at small angles, oper-
ating at high rate and occupancy, is required. The Cherenkov Luminosity Counters
(CLC) have been designed to measure p accurately (within a few percent) all the way
up to the high luminosity regime L ~ 3 x 10*2cm 2s!. The CLC modules and the
luminosity measurement method are described in detail in [45].

There are two CLC modules in the CDF detector, installed at small angles in the
proton (East) and antiproton (West) directions with pseudorapidity coverage between
3.75 and 4.75. Each module consists of 48 thin, long, gas-filled, Cherenkov counters.
The counters are arranged around the beam pipe in three concentric layers, with 16
counters each, and pointing to the center of the interaction region. The cones in the
two outer layers are about 180 c¢m long and the inner layer counters (closer to the
beam pipe) have a length of 110 cm. The Cherenkov light is detected with fast, 2.5
cm diameter, photomultiplier tubes. The tubes have a concave-convex, 1 mm thick,
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quartz window for efficient collection of the ultraviolet part of Cherenkov spectrum
and operate at a gain of 2 - 10°.

The counters are mounted inside a thin pressure vessel made of aluminum and filled
with isobutane. The Cherenkov angle is 3.1° and the momentum threshold for light
emission is 9.3 MeV /c for electrons and 2.6 GeV/c for pions.

The number of pp interactions in a bunch crossing follows a Poisson distribution with
mean /i, where the probability of empty crossing is given by Py(p) = e™*. An empty
crossing is observed when there are fewer than two tubes with signal above threshold in
either module of the CLC. The measured fraction of empty bunch crossings is corrected
for the CLC acceptance and the value of p is calculated. The measured value of p is
combined with the inelastic pp cross section to determine the instantaneous luminosity
using (2.12).

The CLC has been one of the upgrades of the CDF II Detector. It provides an im-
proved measurement of the luminosity with respect to the Run I device. The luminosity
measured by the CLC is used to monitor the Tevatron performance.
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Chapter 3

Combined Particle Identification

The CDF II detector provides two indipendent measurements used for charged particle
identification. The first one is the dE/dx measurement performed by the central outer
tracker (COT); the second one is the measurement of the time of flight with the TOF
detector.

In this chapter we describe how to combine TOF and dE/dx measurements in a
single optimized quantity, used to determine, in a statistical approach, the ID (where
ID can be proton, kaon, pion, muon or electron) of one ore more charged tracks in the
same event.

The Particle IDentification (PID) tools have been developed in two different cases:

1. Single track case (Section 3.5.1). Useful when the user wants distinguish a particle
(signal) from others different particles (background). For example, muons from a
background of pions and kaons.

2. Two or more tracks case (Section 3.5.3). Useful when the user wants distinguish a
decay into n-charged particles with defined masses from a background of n-tracks
with different masses, in the same event. As example of track pairs case, the
¢ — KTK~ decay from a background of n7, 7K, mp, pK and pp.

The performance of a PID tool are characterize by:

e the experimental separation power, that is the capability to distinguish a particle
from another particle, for example a pion from a kaon, this is mainly related to
detector performance;

e the ability, in the “multiple track” case, to correctly take into account the PID-
correlations between particles in the same event. This item is very important
because, neglecting these correlations, it can produce a bias in the result of a
Likelihood fit, making use of PID information.

In Fig. 2.12 of Section 2.5 was shown the expected separation power K-7 separately

for TOF and dE/dx assuming known values of TOF resolution (oror ~ 100 ps) and

dE/dx resolution (0qg/dx ~ 1.5 ns). In this chapter (Section 3.5.1), we describe the
measurement of the experimental separation power K-m and p-m, combining the PID

49
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measurements (dE/dx and TOF) in a single optimized quantity. In particular, we
measured a very good separation in all the momentum range, reaching a 7-K separation
of at least 1.5 o and a p-m separation of at least 2.4 o for track momenta up to 5 GeV,
with larger values in the lower momentum range.

In Fig. 3.1 the K-7! separation power as a function of the momentum of the particle
is shown. The black curve represents the TOF separation, the red one the dE/dx
separation and the blue one represents the combined PID (TOF+dE/dx) separation.
The procedure used to obtain this plot is described in Section 3.5.1.

] CDF Run Il Preliminary \

g Extrapolated | Measured .
g 10— v byMC on data v Combined
S F oev e TOF
T o n
3 o 3 = dE/dx
o  §
g "%
L ]
| "
3y
.:vv
- Colvvvyiigsnnguniy
E|lm ®®
.I
1 ™ °

= - °

C - LI

- | | o ° .

® o
B u e ® g 0
! Il Il ‘ Il ‘ Il ‘ Il Il I
1 2 3 4 5

P [GeV/c]

Figure 3.1: K-m separation power vs momentum. Black: TOF separation. Red: dE/dx
separation. Blue: combined PID (TOF+dE/dx) separation.

In this chapter we also describe:
e the data sample used for the PID parameterization (Section 3.1);

e the parameterization of the TOF and dE/dx distributions: particle residuals and
correlation distributions (Section 3.3);

e the treatment of the systematic uncertainty on a measurement making use of PID
(Section 3.4).

We implemented a public code for CDF II users containing all the PID functions
[65]: Likelihoods for single track and track pairs, for TOF, dE/dx and Combined PID,
that can be used to make cuts or to perform Likelihood fits to distinguish particles or
decay modes. In the code is also implemented the treatment of systematics.

Finally, in Section 3.6, the most important CDF II analysis that use the Combined
Particle IDentification are briefly described.

!The achievable experimental separation power K-m is the fundamental ingredient for the measurement
described in this thesis.
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3.1 Data sample used for PID studies

In this section, the selection of a pure samples of D — K~7" and of A — pr~ decays
is described.

We reconstructed a signal of D** — Drf — [K~7t|r} (and charge conjugate)
decays. This sample has been collected by the B.CHARM trigger path described
in Section 2.8.5. The good run requirements are applied. The excluded runs were
marked bad by the CDF data Quality Monitoring Group, for either known detectors
problems (i.e. SVX, COT) or trigger problems (XFT, SVT). This data correspond to
an integrated luminosity of 360 pb~1.

Two tracks DY candidates are picked requiring the combinations to be neutral in
charge. The trigger confirmation has been performed by requiring K and 7 from the
D candidate to match the SVT track. This means that K and 7 have transverse
momentum higher than 2 GeV/c and impact parameter such as 120 pm < |dp| < 1
mm, as described in Section 2.8.2. The reconstructed D° candidates are then combined
with a third soft pion track to reconstruct the final D** — D% candidate. The sign
of the soft pion 7, tags the flavor of the D° and hence the identity of its decay products.
Some cuts have been applied in order to purify the D° signal [66]:

e Difference between the mass of D** and D% M (Knn,)—M(K7) < 0.147 GeV /c?;

DO decay lenght: L, (D°) > 300 um;

D° transverse momentum: pr(D°) > 5.5 GeV/c;

D° impact parameter: [.P.(D°) < 140 pm;

product between the impact parameters of the D° daughters: dy(K) x do(7) < 0

pm?,

As shown in Fig. 3.2, where the difference between the invariant mass of D**
and D° (M(Knm,) — M(Kn)) is reported, a lot of background is removed requiring
M(Krmy) — M(Kn) < 0.147 GeV /2.

In Fig. 3.3 the D° invariant mass distribution of the selected sample is reported.
We obtained ~ 760,000 D° with a £ ~ 64.

We also reconstructed a signal of A — pr~ (and charge conjugate) decays in 360
pb~L. This sample has been collected by the B_PIPI trigger path described in Section
2.8.5 and the good run requirements are applied.

Track pairs which make the A candidate must pass the following cuts:

e Sum of transverse momenta: |Py| + |Ppo| > 1.1 GeV/c;
e Difference between the two z coordinates: |zg1 — zp2| < 2 cm;
e Bidimensional vertex quality x?: x? vertexyp < 10;

e A decay lenght: L,, > 0.5 cm;
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Figure 3.2: Difference between the D** mass and the D° mass (M (Knrs) — M(KT)).
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Figure 3.3: DY — 7t K~ invariant mass distribution. We obtained ~ 760,000 D°, with
S

2 ~ 64.

B

e 0.1 GeV/c? < M, < 1.5 GeV/c? (M, is the invariant mass of the track pair
assuming that both tracks are pions).

In addition to purify the signal some additional cuts, obtained through an opti-
mization procedure [67], are applied:

e A harder cut on the A decay lenght: L,,(A) > 0.85 cm;
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e A impact parameter: |I.P.(A)] < 0.007 cm;

e A cut on a variable (win) relative to the correlation between the proton and the
pion impact parameters: win < 0.0051 c¢m;

In Fig. 3.4 the A — pr~ invariant mass distribution of the selected sample is
reported. We obtained ~ 120,000 A with a £ ~ 9.

35000

30000

25000

20000

15000

10000

5000

TP’Hl\H\‘HH‘HH‘HH‘HH‘HH'HH

|

1.09 11

Figure 3.4: A — pr~ invariant mass distributions. We obtained ~ 120,000 A, with % ~ 9.

3.2 Method to combine PID: ingredients and recipes

Before describing the used method to combine PID measurements, we need to define
some quantities that will be largely used in this Chapter.

First of all, the dE/dx and TOF residuals.
The dE/dx and TOF residuals of a particle ("part” can be m, K, p, e, ) are defined
respectively as:

dE part dE dE part
o 2 e (3.1)
dT Res dX measured dx expected

TOFE = TOFcasurea — TOF e 10 (3.2)

part . . . . .
The C(ii_fewpecte 4 1s known from the experimental determination of the Universal curve

(dE/dx as a function of #v?). In Fig. 3.5 [68] is shown the experimental dE/dx as a
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function of B~ for positive (on the left) and negative (on the right) tracks, obtained us-
ing very pure samples of electrons from + conversion, muons from J/¥ — ppu, kaons and
pions from D*t — Dt with D° — K~ 7F, and protons from A — pr— decays. The
fit on the experimental data (continuous line in Fig. 3.5) gives the Universal expected
curve for positive and negative tracks. Making a change of variable (Gym.+ = p), we
obtain the expected dE/dx of each particle (of mass m) as a function of the momentum.
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Figure 3.5: Experimental dE/dx as a function of 8 with superimposed the fitting function
(continuous line). Left: positive tracks. Right: negative tracks. The electrons are red, the
muons green, the kaons yellow, the pions blue and the protons magenta.

The TOF?*" L [p?+m2,..c, where L is the flight path of the charged track,

expected = p_c
p and My are respectively the momentum and the mass of the particle.
The TOF and dE/dx residuals are affected by common-mode fluctuations, respon-
sible of PID correlations between particles in the same event. The origins of common-
mode fluctuations are different for dE/dx and TOF.

e Common-mode fluctuations of the dE/dx response.
In this case, common-mode fluctuations are due to a certain number of factors,
as an example COT gain and pressure variations. As a consequence of that, the
residual measured for a specific particle (mass hypothesis "part”) is:

dE dEPert dFE dEPrert

AT measured dx expected dX measured ideal dx expected

where 42 s the response in absence of common mode fluctuations and
dx measured ideal R i R

Agg)d. is the common mode fluctuations for dE/dx. Agp/4, is a function of run

and event number.

The last equation (3.3) can be written:

dE part dE part

= AdE/da 3.4
dz Res dx Res ideal * dB/d ( )

e Common mode fluctuations of the TOF response.
In this case the common mode fluctuations are due to the ¢, (collision time)
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resolution distribution. As before, the residual measured in mass hypothesis
"part” is:
part _ part
TOFmeasured - TOFeccpected - TOFmeasured ideal + ATOF - TOFezpected (35)
where TOF,, casured idear 18 the response in absence of common mode fluctuations

and Aror is the common mode fluctuation due to the tg resolution distribution.
The last equation (3.5) can be written:

TOFg! = TOFR you + Dror (3.6)

Notice that both, Agg/4, and Az, are the same for all the tracks in the same event.
So, the residuals of two track in the same event are correlated. From here we will use
the terms ”correlation” and ”common mode fluctuations” to indicate the same thing:
APID (PID:TOF or dE/dX)

The method used to combine dE/dx and TOF information can be applied in both
case of single track and of multiple tracks. The method makes use of Likelihoods
respectively for one or more charged tracks. The Likelihood are constructed using the
measured dE/dx and TOF residuals and they take into account the PID-correlation
(due to the common-mode fluctuations) between particles in the same event.

We need to combine the Likelihood which uses TOF with the Likelihood which uses
dE/dx. First of all, we have to define those Likelihoods.

In the single track case, the Likelihood for a single track in the mass hypothesis
"part” can be written:

Lprp(PIDges, part) = p(PIDpges|part) (3.7)

where PIDpg.s is the dE/dx (PID = dE/dx) or TOF (PID = TOF) measured resid-
ual and p(PIDpges|part) is the probability density function (pdf) obtained fitting the
residuals distribution in the mass hypothesis "part”.

Then, we can combine the dE/dx and the TOF Likelihood obtaining the combined
Likelihood for a single track.

The combined PID Likelihood is:

dE dE

Lcombined PID(%RES, TOFges, part) = LdE/dm(%ReS;part) - Lrop(T'OFRes, part).
(3.8)

We defined the Likelihood function as the product of the dE/dx and TOF Likelihoods,
assuming no correlation between dE/dx and TOF residuals. This assumption is jus-
tified by the scatter plot of the TOF residual vs the dE/dx one (Fig. 3.6) for a pure
sample of kaons (Section 3.1). In this plot the two measurements appear completely
uncorrelated. Similar plots have been obtained for protons and pions.

In case of two or more tracks in the same event, it is very important to consider
the correlation between particles, because, neglecting the correlations, we can have a
large bias in the result of a Likelihood fit which makes use of PID measurements. We
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Figure 3.6: TOF residual distribution vs dE/dx residual distribution. It seems that there is
no correlation between the two distributions.

can make an example with two tracks.
The Likelihood for track pairs assumes the following form:

Lg?gc paiTS(PIDl, PIDs, party, parts) = p(PID]l%es, P]D?%es |party, party) =

/p(PID]lZee ideal’ P[DIQZes ideal APID |part1,partg)dAp1D -
/p(PIDIl%es ideal> P[D?%es ideal|AP1D7part17part2) ' p<AP1D)dAPID =

/p(PID}%es ideatl AP1D, party, party) - p(PIDR, sueu| Apin, party, parts) - p(Apip)dAprp
(3.9)

where p(Ap;p) is the pdf of App.
As in the case of single track, the combined Likelihood for track pairs is:

rack pairs dEl dE2
Lf:omllfiSed PID(%R&; %Res, TOFI%@S? TOF}Q%eypartla part?) =
dE'  dE?

_ Lt'rack paim(

. Ltrack pairs
dE/dx

,party, party) - Libr (TOF},,, TOF3, ., party, party).

(3.10)

dx Res, dx Res es’

After the description of almost all the ingredients of PID entering in the expression
of the combined Likelihood for one or more track, we notice that we must determine the

unknown distributions p(%Res st POTtis Aap i), P(TOFRes ideat; parti, Aror), p(Aag/dz)

and p(ATOF) .
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In the Section 3.3 we will make use of the measured residual distributions p(2E T resr K,
P(TOFpges, K), p(‘fl—f reer ™) and p(TOFpe,, m) using a pure sample of kaons and pions

from D° — K~—m" decays, to determine the distributions of ideal residuals of kaons and
pions and the distribution of Ap;p. Then in the same way, we will use the measured
residual distributions p(‘é—f rest D) and p(TOFgeg,p), using a pure sample of protons
from A — pr— decays, to obtain the proton ideal residual distribution.

3.3 Parameterization of Particle IDentification distributions

To determine the necessary unknown distributions for kaons, pions and protons, we
used the pure sample of D° — K~7t and of A — pr~ decays described in Section 3.1.
The unknown distribution are p(Aprp), where Apyp can be the dE/dx or TOF common-
mode fluctuations, p(<E |part) and p(T'OFges igea|part), where "part” can be
kaon, pion or proton.

To determine these distributions we used the SUM and the DIFFERENCE of residuals
distribution. we defined:

dx Res ideal

. dET de K dET dE K
[ ] dE/dX case: SUMdE/dw = ‘dz Res + dz Res’ D[FFdE/da; = ‘dz Res  dz Res

o TOF case: SUMypor =TOFF,, + TOFIIZ{QS, DIFFrop =TOFE,, — TOnges
where from Section 3.2:

dEpa'rt dE part

- Aup s
dx Res dx Res ideal + dE/d
TOFII;Z? = TOchebgtzdeal + ATOF

The SUM and the DIFFERENCE can also be written in the following way:

SUMPID - PID?%esideal+PID§esideal+2AP1D
D[FFPID - P]D;r%esideal _PIDllgesideal‘

where we observe the presence of the ideal residual PIDg.s jqea: and of the correlation
Aprp, whose distributions are unknown.

Deﬁmng pFTP(z) the distribution of the unknown ideal residuals of particle i (i = 7, K),
using d (PID—@) or TOF (PID=TOF), the SUMp;p and the DI F Fprp distributions
are given by:

p(SUMprp) = / / PID (1) pEI(y — ) - papys (SUMprn — y)/2)dxdy

p(DIFFpip) = / pPP(z) - pRP(DIF Fprp + x)dx (3.11)

From equations (3.11), the SUMp;p distribution p(SUMpyp) is the convolution of
pPIP(z), pRIP(x) and pa,,,(2z), and the DIF Fprp distribution p(DIF Fprp) is the
convolution of p£'P(z) and pt!P(—x).
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We parameterized the ideal residuals (pF?P(z)) of pions and kaons as sums of Gaus-
sian functions:

prD($ = P]D;r%es ideal) = f/(x) + g/(x) + h/(x) (312)
p§1D<‘r = PIlegeé ideal) = f”(CC) + g”(.flf) + h”(.flf). (313)

In a similar way we parameterized the correlation distribution as:
Papp(Apip = ) = c1(z) + co(x). (3.14)

where c; and ¢y are two gaussian functions.

With the above parameterization we can write the distributions of the residuals, of
the SUMp;p (PID},, + PIDX. ) and of the DIFFprp (PID%, — PIDE ):

P(PIDg, =x) = (f'(z) +¢'(x) + 1 (2)) * (cr(2) + c2(2))

P(PIDp,, =) = (f'(z)+g¢"(x) +1'(2)) * (c1(z) + e2())

p(SUMprp =) = (f'(z) +g'(x) + h'(z ))*(f’( ) +9"(x) + h'(x)) * (2(22) + ¢2(22))
pP(DIFFpip =) = (f'(x) +4'(x) + W (x)) « (f'(=2) + ¢"(=2) + h"(-2)) (3.15)

where the symbol * indicates the convolution operation.

To obtain the ideal residuals distributions and the correlation distribution we used
an iterative procedure. First we fit the residuals, then we go through the fit of SUMp;p
distribution to come back to the residual. The DI F Fp;p distribution is used as a test
of convergence of the algorithm: if it does not describe the data well enough, a new
iteration is performed.

So we can divide the procedure of the parameterization in steps:

1. Fit of the residuals distributions using:

P(PIDR, =) = (f'(z)+9'(x) + 1(2)) * Gu=o.0.0=05(7)
P(PIDp, =x) = (f"(2)+¢"(x) + 1'(2)) * Guco0o=05(x)  (3.16)

where at the first iteration the correlation p(Ap;p) is fixed to be a single Gaussian
centered in the origin and with o = 0.5.

2. Fit of the SUMp;p distribution using:

p(SUMPID) :p(PIDEes + PIDges) -

= (f'(x) + ¢'(x) + W(2)) % (f"(x) + ¢"(x) + 1" (2)) * (c1(27) + c2(27))
(3.17)

where the f'(z), ¢'(z), W(x), f"(x), ¢"(x) and h"(x) parameters are fixed from
the previous fit (step 1). In this way, we obtained the parameters of the two
Gaussians describing the correlation distribution.
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3. Fit of the residuals distributions using:

p(PIDg,, ==z) = (f'(z)+g'(x) + I (2)) x (cr(z) + c2())
p(PIDp =1) = (f'(2)+4"(x) + h"(2)) * (c1(z) + c2())  (3.18)

where the ci(x) and co(x) distributions are fixed from the previous fit (step 2).
In this way, we obtained the parameters of f'(x), ¢'(x), h'(z), f"(z), ¢"(z) and
h"(x) that describe the ideal residuals.

4. Crosscheck on the p(DIF Fprp). We superimposed the function (f'(z) + ¢'(x) +
B'(z)) * (f"(—x) + ¢"(—z) + h"(—x)), as it has been determined in step 3, to
the experimental difference distributions of data. From equation (3.15), if the
parameterization is good there must be a good agreement between the data and
the function.

We determined the parameterization using pions and kaons from DY (trigger tracks)
and we used the soft pions from D** to check that the extracted PID functions describe
also the soft tracks (P < 2 GeV/c).

In the dE/dx case we adopted a different parameterization for each particle type
and charge. As an example, Fig. 3.7 (residuals for positive charges) and Fig. 3.8
(residuals for negative charges) show that the pion residuals (in red) are significantly
different from the kaon residuals (in black).
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Figure 3.7: dE/dx residuals. Black: K+ from D°. Red: 7% from D°. The two residuals are
different so we adopted a different parameterization for each particle type.

We have extracted residuals distributions for protons and antiprotons by using the
AN — pr~ sample described in Section 3.1.
The protons from A are not required to confirm the B_PIPI trigger (are not required
to be "trigger tracks”) and protons momentum range is extended down to 1.5 GeV/ec.
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Figure 3.8: dE/dx residuals. Black: K~ from D°. Red: 7~ from D. The two residuals are
different so we adopted a different parameterization for each particle type.

In the TOF case, instead, we extract an unique parameterization for all the particle
types and charges.

3.3.1 dE/dx parameterization

In this Section we describe the steps of the parameterization procedure for the dE/dx
case.

Fig. 3.9 and Fig. 3.10 show the resulting curve fitting, on the sample D° — K—n+,
the residuals for positive pions and negative kaons respectively using the first step fit
functions of the iterative procedure (equations (3.16)). From these fits, we obtained
the parameters of the ideal residuals that we used in the fit of the sum distribution

(Cfl—f:;s + z—fgps) with the function (3.17) (second step). In Fig. 3.11 the fit of the
SUM g dz distribution is shown. The correlation distribution (p(Agz Jdz)) Darameters,
obtained from the fit of the SUMyg/,4, distribution, are summarized in Table 3.1 where
for each Gaussians is indicated: A the relative weight, u the mean value and o the
standard deviation.

The correlation distribution for dE/dx (p(Adg/d.)) is shown in Fig. 3.12. We
verified that, repeating the iterative procedure for negative pions and positive kaons,
instead of positive pions and negative kaons, we obtained the same p(Agg/q,) param-
eters within the errors.

Then we fitted the residuals distributions for positive and negative pions and kaons
with the functions (3.18)(third step). Fig. 3.13 shows the fit of the pion residuals (on
the top we reported positive pions and on the bottom negative pions) and Fig. 3.14
the fit of the kaon residuals (on the top we reported positive kaons and on the bottom
negative kaons). The ideal residual parameters are summarized in Table 3.2 and Table
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Parameters  Value Error

A, 0.248  0.102
e, 0.125  0.05

O, 0.877  0.098
A, 0.752  0.102
Lic, -0.0436  0.0096
O, 0.272  0.083

Table 3.1: Correlation distribution (p(AdE/dz)) parameters.

3.3 for pions and kaons respectively.

Positive pions Negative pions
Parameters Value FError Parameters Value FError
Ay 0.64 0.12 Ay 0.726 0.1
fr -0.339 0.038 fr -0.377  0.041
oy 1.206  0.035 oy 1.275  0.026
Ay 0.34 0.14 Ay 0.2563 0.0098
T 0.523 0.283 Iy 0.79 0.38
oy 1.53 0.07 oy 1.583  0.072
Ay 0.024 0.031 Ay 0.017  0.024
Ny, 2.03 2.05 h 2.495  1.889
o 2.182  0.488 o 2.093 0.412

Table 3.2: Ideal residuals parameters for positive (left) and negative (right) pions.

Positive kaons Negative kaons
Parameters Value FError Parameters Value Error
Apn 0.70 0.12 Apn 0.69 0.12
% -0.327  0.058 % -0.337  0.053
o 1.133 0.015 o 1.166  0.019
Agn 0.27 0.12 Agn 0.28 0.12
fhgr 0.84 0.37 Lyt 0.88 0.40
ogn 1.279  0.097 ogn 1.364  0.104
Apn 0.029 0.018 Apn 0.0297 0.0178
Ny 2.547 0.825 Ny 2.553 0.784
opn 1.745  0.199 opn 1.85 0.19

Table 3.3: Ideal residuals parameters for positive (left) and negative (right) kaons.
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+ —
dET dEK
dx Res dx Res) ) and

ot
compare it to data (fourth step). In Fig. 3.15 we superimposed the functions p(% Res

%ges) = (f'(z) + ¢'(z) + W (z)) * (f"(—z) + ¢"(—z) + h'(—x)) in blue, on data in
black. There is a good agreement between the function, extracted from residuals
parameterization, and data, the corresponding x? is x* = 169/160.

In order to verify that the parameterization of the correlation is valid also for the
other charges we checked that the curves obtained from the parameterization of the
SUMgg 4, and the DIFFyg 4, distributions of the negative pions residuals and of
the positive kaons residuals are in good agreement with the data. In Fig. 3.16 we

dET

+
reported, in black the =+ %g@s from data and in blue the curve obtained from

the parameterization, the corresponding x? is x? = 181/160. In Fig. 3.17 instead we
reported, in black the 2—5263 — fl—fg; from data and in blue the curve obtained from
the parameterization, the corresponding x? is x* = 201/160.

Using the sample of A — pn~ decay, we obtained also the parameters of the ideal
residuals of protons and antiprotons. In Fig. 3.18, the fit of protons residual on the
top and of antiprotons residual on the botton are shown. The correlation distribution
P(Adg/de) Was set to the function found from kaons and pions from DY decay (see
the discussion on the “next event” correlation in the next section). The ideal residual

parameters for protons and anti-protons are summarized in Table 3.4.

At this point, we can evaluate the difference distribution (p(

Protons Anti-Protons
Parameters Value FError Parameters Value FError
Agpn 0.85 0.06 Agpn 0.736  0.077
g -0.066 0.076 g -0.012  0.12
o 1.206  0.028 o 1.206  0.048
Agr 0.09 0.08 Agr 0.19 0.05
[y 1.986  0.407 Ly 1.64 0.33
og 1.004 0.297 oy 1.712  0.093
Apn 0.053 0.087 Apn 0.067  0.067
LRt 2.814  2.502 LRt -1.582 0.399
o 1.826  0.682 opr 0.85 0.19

Table 3.4: Ideal residuals parameters for protons (left) and anti-protons (right).
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xZ 1 ndf 137.9/ 131
Prob 0.3225
F p0O 0.05365 + 0.00745
- M pl -0.3709 + 0.0346
0.025— p2 1.146 + 0.030
- p3 0.04365 + 0.00840
- p4 0.3497 +0.1078
0.02— p5 1.539 £+ 0.054
C p6 0.002659 + 0.003536
n p7 2.046 +2.044
0.015— 2.138+0.464
0.01f
0.005—
o - - _
| Il ‘ L1 1 ‘ Ll Il ‘ Il Il Il ‘ Ll Il ‘ Il Il Il ‘ Ll Il ‘ Il Il Il ‘ Il Ll ‘ Il Il Il
-1 -8 -6 -4 -2 0 2 4 6 8 10

Figure 3.9: Fit of the 7T residual using the function (f'(z) + ¢'(z) + #'(2)) * G=0.0,0=0.5(2)
(first step). The parameters of f', ¢’ and I/ are left free to vary in the fit.

X2/ ndf 138.1/128
Prob 0.2555
0.03= po 0.05164 = 0.00859
o e p1 -0.3767 + 0.0480
o p2 1.099 + 0.032
0.025 — p3 0.04494 + 0.00759
- pa 0.4551+ 0.1403
o p5 1.453  0.043
0.02— p6 0.003367 + 0.002108
- p7 2.398 +0.782
0.015F 1.891+0.185
0.01—
0.005[—
O Lol \ \ \ \ \ \ \
-1 -8 -6 -4 -2 0 2 4 6 8 10

Figure 3.10: Fit of the K~ residual using the function (f”(z)+g"(z)+h"(z))*Gu=0.0,0=0.5()
(first step). The parameters of f”, ¢" and h” are left free to vary in the fit.
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XZ 7 ndf 176.3 7154

Prob 0.1051

po 2.485 +1.022

; pl 0.2509 + 0.1004
p2 1.754 +0.197

p3 7.515 +1.023

p4 -0.08717 + 0.01928

0.5446 + 0.1664

ot -
Figure 3.11: Fit of SUMyp/4, distribution %Res + %ges using the function (f'(x)+ ¢'(x) +
R (z)) * (f"(z) + ¢"(x) + h"(x)) * (c1(2z) + c2(2x)) (second step). The parameters of ¢; and
co are left free to vary in the fit, while all others are fixed.
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Figure 3.12: Correlation distribution, ci(x) + ca(x).
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X2/ ndf 137.9/131
— Prob 0.3226
C L p0 0.06366 + 0.01202
0.025— pl -0.3395 + 0.0384
- p2 1.206 + 0.035
002l p3 0.03391:+ 0.01387
C pa 0.5231+ 0.2827
C p5 1.529 £ 0.070
0.015[— p6  0.002387 £ 0.003068
- p7 2.03£2.05
0.01 2.182+0.488
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X2/ ndf 121.1/131
F Prob 0.7218
L po 0.07261+ 0.01001
0.025—
L pl -0.3774 +0.0409
B p2 1.275+0.026
0.02— p3 0.02563 + 0.00977
B p4 0.7873+0.3792
L p5 1583 +0.072
0.015—
L pé 0.001722 + 0.002396
B p7 2,495 +1.889
0.01— p8 2.093 +0.412
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Figure 3.13: Fit of the pion residuals using the function (f/(z)+¢'(z)+h'(z)) * (c1(z) +co(x))

(third step). On the top positive pions and on the bottom negative pions.
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xZ 1 ndf 13477129
0.03C ’ Prob 0.3473
- d po 0.07039+ 0.01178
C pl -0.3267 £ 0.0576
0.025— p2 1.133+0.015
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0.02F- p4 0.8406 + 0.3756
C p5 1.279+ 0.097
r p6 0.002876 £+ 0.001809
0.015— p7 2.547 £ 0.825
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x2 / ndf 138.3/128
Prob 0.2527
0.03F= N po 0.06881+ 0.01206
- p1 -0.3368 + 0.0527
0.025— p2 1.166+ 0.019
C p3 0.02817 + 0.01213
- p4 0.8813 + 0.4020
0.02 - p5 1.364 + 0.104
C p6 0.002969 + 0.001785
0.015|— p7 2.553+0.784
- p8 1.85+0.19
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o
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Figure 3.14: Fit of the kaon residuals using the function (f”(x)+g¢"(x)+h"(x))*(c1(x)+co(x))
(third step). On the top positive kaons and on the bottom negative kaons.
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Figure 3.15: Parameterization crosscheck. Black: difference distribution (data)
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v Res+ Blue: curve obtained from residuals and p(Agp,q,) parameterization. x? = 169/160.
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Figure 3.16: Parameterization crosscheck. Black: sum distribution (data) ‘;—f;es + (Zl_]:f Res

Blue: curve obtained from residuals and p(Agg/4,) parameterization. Y2 = 181/160.
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. Blue: curve obtained from residuals and p(A;g/4,) parameterization. x? = 201/160.

Figure 3.17: Parameterization crosscheck. Black: difference distribution (data)
dE K"
dx Res
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X2 / ndf 150.4 /127
Prob 0.07704
0.03
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Figure 3.18: Fit of the proton residuals with (f/(z) + ¢'(z) + k'(z)) * (c1(x) + ca(z)). On the

top protons and on the bottom antiprotons.
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“Next-event” correlation

In order to test our understanding of the correlation between tracks belonging to the
same event, we looked also at the same distributions for an artificial “next-event”
sample, where we paired a kaon from one event with a pion from the previous one.
Using this artificial sample, we extracted the correlation distribution with the same
method used for tracks in the same event described above. In Fig. 3.19 the fit of the
sum distribution with the function (f'(x) + ¢'(z) + h'(z)) * (f"(x) + ¢"(z) + h"(z)) *
(c1(22) + c2(2x)) is shown. The parameters of ¢; and ¢y are left free to vary in the
fit, while all the other parameters are fixed from the residual fits in the “same event”
sample. This is due to the fact that the ideal residuals are the same in the “next-
event” and in the “same-event” sample. In this way we obtained an alternative set of
correlation parameters (“next-event set”) summarized in Table 3.5.

Parameters Value FError

A, 0.39 0.2
e, 0.011  0.037
e, 0.588  0.146
A, 0.61  0.22
ey -0.007 0.017
oo, 0.14  0.30

Table 3.5: “Next-event” correlation distribution parameters.

In Fig. 3.20 we reported p(Agg/d.) for "next-event” sample (in blue) and p(Agg/dx)
for ”same-event” sample (in red). As expected the “next-event” correlation is narrower
than the one we found for tracks in the same event.

We have checked that this difference in correlation is not due to different kinematics
of “same-avent” and “next-event”.

To do that, we reweighted the An and the A¢ distributions of “next-event” sample in
a way to make them similar to the distributions of the “same-event”.

In Fig. 3.21 the An (on the left) and A¢ (on the right) distributions for the “same-
event” sample are shown; the same distributions for the “next-event” sample are shown
in Fig. 3.22.

We compared the “next-event” SUMgyg 4, distribution with An and A¢ of the
“next-event” sample and the “next-event” SUMyg/q, distribution reweighted in ac-
cording to An and A¢ of “same-event” sample.

In Fig. 3.23, the “next-event” sum distribution (in black) and the “next-event” sum
distribution reweighted (in red) are shown. They show no significant differences.

So we can conclude that the correlation doesn’t depend on Arn and A¢ distributions,
and we can use the correlation calculated for the D° also for other decays where the
tracks have a different opening angle.

For example we used the p(Ayg/q,) obtained with D® — K =7 decay, in the fit of the
protons residuals from A — pr~.
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Figure 3.19: Fit of the “next-event” SUM,g /4, distribution using the function (f'(x)+g'(z)+
R (x))« (f"(z) + ¢"(z) + k' (z)) * (c1(2x) + c2(2x)). The parameters of f’, ¢’, b, ", ¢ and
R are fixed from the residual fit in the “same event” sample. We obtained the “next-event”
correlation distribution parameters (the parameters of ¢; and ¢s).
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Figure 3.20: In blue the “next-event” p(Agg/4,). In red the “same-event” p(Ayp/g,). The
next event correlation is narrower than the one we found for tracks in the same event.
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Figure 3.21: Left: An distribution for the “same-event”

the “same-event” sample.
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Figure 3.22: Left: An distribution for the

the “next-event” sample.
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Figure 3.23: In black the “next-event” SUMg g 4, distribution. In red the “next-event”
SUM g4, distribution reweighted with “same-event” An and A¢ distributions. They show
no significant differences.
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dE/dx residuals for soft pion

In the previous Section, we described the dE/dx parameterization considering pions
and kaons from D° decay, that are trigger tracks (pr > 2 GeV/c). To check that the
parameterization is suitable also for the tracks with lower momenta we looked at soft
pions from D*t decay.

Fig. 3.24 shows the residuals of positive soft pions (in black) in momentum bins of
0.1 GeV /e starting from 0.4 GeV /c. The parameterization obtained using the trigger
tracks is superimposed (in blue). We notice that there is a discrepancy for momentum
between 0.4 and 0.6 GeV/c.

Fig. 3.25 shows the same plots for negative pions. The discrepancy is larger and
survives up to 0.9 GeV/c.

In the public code for CDF II users we implemented two functions. One takes

into account the discrepancy in the systematic uncertainty, the other uses ad hoc
parameterization for this momentum range.
The parameters of the ad hoc parameterization are obtained by fitting the residuals in
this momentum range, assuming as correlation distribution the one obtained with the
trigger tracks from D decay. The fit of the positive pions residuals and of the negative
pions residuals are shown respectively in Fig. 3.26 and Fig. 3.27.

Res pip soft e Res pip soft .mn e e Res pip soft

10 8 6 -4 2 0 2 4 6 8 1 ‘0 8 6 4 2 0 2 4 6 8 A

Res pip soft o Res pip soft

108 6 4 2 0 2 4 6 8 A 10 8 6 -4 2 0 2 4 6 8 1 ‘0 8 6 -4 2 0 2 4 6 8 1

Figure 3.24: In black the positive soft pions residual in momentum bins. In blue the param-
eterization obtained with the trigger tracks. (Momentum bin = 0.1 GeV/c starting from 0.4
GeV/c).
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Figure 3.25: In black the negative soft pions residuals in momentum bins. In blue the
parameterization obtained with the trigger tracks. (Momentum bin = 0.1 GeV/c starting
from 0.4 GeV/c).
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Figure 3.26: Fit of the positive soft pions residuals in momentum bins. Left: (0.4 < p < 0.5)
GeV/c. Right: (0.5 < p < 0.6) GeV/c.
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Figure 3.27: Fit of the negative soft pions residuals in momentum bins. From the Top left:
(04 < p < 0.5) GeV/e, (0.5 < p < 0.6) GeV/e, (0.6 < p < 0.7) GeV/e, (0.7 < p < 0.8)
GeV/e, (0.8 <p < 0.9) GeV/c.
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3.3.2 TOF parameterization

In this Section we describe the steps of the parameterization procedure used in the
TOF case.

We found that, unlike the dE/dx case, a single gaussian is sufficient to describe the
time of flight correlation p(Aror). So p(Aror = x) = ¢(x) where ¢(z) is a gaussian.

In Fig. 3.28 and Fig. 3.29 we reported the fits of the residuals respectively for
negative pions and positive kaons performed using the fit functions (f'(z) + ¢'(z) +
h/(l')) * GH:0.070:0.0048(I) and (f”(l‘) + g”(ac) + h”(ﬂ?)) * Gu:0.0,0:0.0048(x) (ﬁI‘St step).
From these fits the parameters of the ideal residuals are determined to be used in the
fit of the SUMyop distribution (TOFf,, + TOFK!) using the function p(TOFE,, +
TOFED) = (f'(z) + ¢'(z) + W(2)) * (f"(x) + ¢"(z) + K"(z)) * ¢(2x). From the fit of
SUMror distribution we obtain p(Aror), the parameters are equivalent to a very
narrow Gaussian. This is not unexpected, as the TOF correlation is expected to be
limited. Then we tried to fit the data in the assumption that the correlation function
is a Dirac delta function, and found that this allows to describe the data very well as
we can see from Fig. 3.30 where the fit of the sum distribution is shown. In Table 3.6
the correlation distribution parameters are shown.

Parameters Value Error

A, 1.0 0.004
ey 0.0005 0.0003
oo, 0.0 0.0

Table 3.6: Correlation distribution (p(Aror)) parameters. It is a Dirac delta function.

In the TOF case, we use an universal residual parameterization for all particles,
in fact there are not differences between pions and kaons and between positive and
negative charges. So in the third step we fit only the negative pion residual (Fig. 3.31)
and we determine the parameters relative to the ideal TOF residual.

The ideal TOF residual parameters are summarized in Table 3.7.

As a crosscheck, we verified that the curve obtained from the parameterization is
in agreement with the difference distributions TOFE,, — TOFLK. (Fig. 3.32, x> =
160/100) and TOFg., — TOFE . (Fig. 3.33, x> = 158/100) and with the sum distri-
bution TOFE + TOFK . (Fig. 3.34, x> = 141/100).
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Parameters  Value Error

A; 0.75  0.015
i -0.0022  0.0005
of 0.0902  0.0009
A, 0.185  0.015
1ig 0.0218  0.0039
o 0.1812  0.0076
A 0.055  0.04

1 0.1874  0.0114
on 0431 0.012

Table 3.7: Ideal TOF residual parameters.

X2 7 ndf 128.77106

Prob 0.06612

1 pO 0.01477 + 0.00040

107 pl -0.001748 + 0.000479

E p2 0.0895 + 0.0010

B p3 0.003867 + 0.000337

5 p4 0.01959 + 0.00375

107 p5 0.1746 + 0.0077

E 0.001194 + 0.000087

C 0.176+0.011

10° B 0.4161+0.0112
” b I WW W

H
Qe

N (&)

S =TT

Figure 3.28: Fit of the 7~ residual with (f'(z)+¢/(z)+ 1/ (x)) * G=0.0,0=0.0048(x) (first step).
The parameters of f/, ¢’ and h' are left free to vary in the fit.
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Figure 3.29: Fit of the KT residual with (f”(z) + ¢"(z) + 1" (x)) * Gu=0.0,0=0.0048(z) (first
step). The parameters of f”, ¢ and h” are left free to vary in the fit.
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Figure 3.30: Fit of the SUMrop distribution TOFF__ —l—TOFé(;; with (f'(x)+4¢'(z)+h'(z)) *
(f"(z) + ¢"(x) + ' (x)) x ¢(2z) (second step). The parameters of ¢(2x) are left free to vary

in the fit, while all the others are fixed.
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Figure 3.31: Fit of the pion residuals with (f'(z) 4+ ¢'(x) + h'(z)) * ¢(x) (third step).
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Figure 3.32: Parameterization crosscheck. Black: difference distribution (data) TOFF, . —
TOF}{(;;. Blue: curve obtained from residuals and p(Aror) parameterization. x? = 160/100.
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Figure 3.33: Parameterization crosscheck. Black: difference distribution (data) TOF E:S —
TOF]é(e;. Blue: curve obtained from residuals and p(Aror) parameterization. 2 = 158/100.
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Figure 3.34: Parameterization crosscheck. Black: sum distribution (data) T OF]%:S +TOFE ..
Blue: curve obtained from residuals and p(Aror) parameterization. 2 = 141/100.
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TOF residuals for soft pions

Using the soft pions from the D** decay, we checked the validity of our parameterization
for tracks with low momenta. In Fig. 3.35 the soft pions residuals in momentum bins of
0.1 GeV/c starting from 0.4 GeV /c are shown. The curve is obtained with the algorithm
described above and there is a good agreement between data and parameterization.
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Figure 3.35: In black the soft pions residual distributions in momentum bins. (Momentum
bin = 0.1 GeV/c starting from 0.4 GeV/c). In blue the parameterization obtained from
trigger tracks.

3.4 Systematics treatment

Due to the large number of parameters used to describe the PID functions, the impor-
tant question of the systematic uncertainty on a measurement making use of PID may
be quite complicated to answer in practice.

We should vary the parameters of the PID functions in all the possible way. This
is hard to do due to the large number of parameters. So we decided to generate the
parameters shifts in a random way.

We take the multidimensional sphere, in the space of parameters, of radius no (num-
ber of standard deviation from the “default response”), and we randomly varied the
parameters in this sphere.

In order to statistically sample a sufficient number of “directions” in the large space
of systematic parameter shifts, we have to repeat the analysis for varius seed values.
For each seed value the PID functions change in a different way and we can obtain a
measurement of the effect of systematic uncertainties on the analysis results.

To generate randomly a list of parameter shifts we used the congruence method [69]
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(1 =0,1,...,npar where npar is the number of parameter of the function):
X[i+ 1] = (a * X[i] + ¢) mod m (3.19)

where a, ¢ and m are fixed by choosing one of the most used tern for the congruence
method, we had choosen a = 40, ¢ = 3641 and m = 729 [69]. X|[0] is the seed value.
The generated numbers are included in an interval [0,m — 1], so to have a number
between 0 and 1 we have to divide by m — 1.

We want to have shifts in all the directions, so we make a change of variables to have
a generated number between -1 and 1.

Indicating with S[i] the shift vector we have:

npar - X[i + 1] - no
vmodx

where X[i] is the vector of the random generated numbers and modx is its modulus.
So we shifted the PID functions parameters:

Sli+1] = (3.20)

P;= P, +err;- S[i+1]. (3.21)

The base uncertainties (err;) on each parameter are determined either by finite statis-
tics in the calibration sample (the errors in Tables 3.2, 3.3 and 3.4 for pions, kaons
and protons respectively), or by the systematic shifts between alternative parameteri-
zations.

For example, for dE/dx we have two alternative parameterizations. The one obtained
using the trigger tracks and the ad hoc parameterization for low momentum tracks

(Figs. 3.26 and 3.27). In this case the uncertainties are defined as err; = Pj/;—IQD{,

where P; and P/ are the parameters of the two different parameterizations respectively.
Considering these err; we take into account the difference between the parameteri-
zation obtained from trigger tracks and the residuals of low momenta tracks, in the
systematics.

In Fig. 3.36 the pion dE/dx residual (in black) is shown. The red curves are the
curves obtained using the systematics described above. We used 20 different seeds and
we obtained 20 different curves that produce a band around data and an uncertainty
of about 0.1-0.2 ns (Fig. 3.36).

The code for the CDF II users accepts two variables relative to the systematics:
the number of standard deviations from the “default” response (no), and a seed value
(X[0]). If the first value is set to zero the code returns the “default” or “central” PID
response. If a non-zero value is provided, the code generates the shifts of all parameters
starting from the provided seed.
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Figure 3.36: In black the pion dE/dx residual distribution. In red the 20 curves obtained
using the systematics given by different seed values.

3.5 Combined PID performance

In this Section we show the performance of the Combined PID for both single track
and track pairs case. For single track we measure the separation power K-7 and p-7
as a function of momentum.

For track pairs we apply Combined PID to select an optimized signal of ¢ — K+TK~
decay. Moreover we check the validity of the treatment of correlation between particles
in the same event.

In both case we use the Likelihood Ratio variable (LR) that is the optimal variable
to cut on to separate the signal from the background.

From the Neyman-Pearson test [70]:

in separating two classes of events, A and B, of perfectly known distributions,
applying a cut, the minimal contamination, for any value of the cut, is achieved by
cutting on the Likelihood Ratio (LR)

To use this method we must have a good knowledge of the properties of both signal
and background.

For example, to separate kaons (signal) from a background of protons and pions we
can cut on:

IR— L(signal) L(K)
~ L(background) — f,- L(p) + fr - L(7)

where f, and f; are the fractions of protons and of pions in the background, and the
Likelihood are defined in the Section 3.2.

(3.22)
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The LR is correctly evaluated only if we know very well the fraction of the particle in
the bacground; in the example we assumed a background of only protons and pions.

3.5.1 Single track

We used the Likelihood Ratio variable to give a statistical separation between protons
and pions and between pions and kaons. Kaons and pions come from D° — K7+
decay and protons from A — pm~ decay. These data samples are described in Section
3.1.

For the p-m separation the LR is

Lcombined PID(%RES: TOFRes; 7T) _ p(%ReJW) ' p(TOFRes|7r) (3 23)
Lcombined PID(%RES’ TOFResap) p(%Rer) ' p(TOFRes |p)

We calculated this Likelihood Ratio for both pions and protons obtaining two curves
shown in Fig.3.37, where the protons are in red and the pions are in black. These curves
are relative to momenta higher than 2 GeV/c and the separation power obtained is 2.3
0. The method to compute the separation is described in Section 3.5.2.
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Figure 3.37: Combined PID, —&2méined PID(gnges mes ™) caleulated for protons (in red) and
Lcombined PID(@RESuTOFRes:p)

for pions (in black). The separation power obtained is 2.3 o.

To check the validity of the LR method we also look at the dE/dx and at the TOF
separately. We used the dE/dx and the TOF residual distributions calculated in pion
hypothesis:

dE dE dE™
i - = s (3.24)
dx Res hyp w dx measured dx expected

TOFRes hypmw — TOFmea,sured - TOFg;pected (325)

Since we used the pion hypothesis, for the pions we obtained a curve centered in zero.
For the protons instead, a curve shifted with respect to zero. These curves are shown
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in Fig. 3.38, the dE/dx on the left and the TOF on the right, the protons in red and
the pions in black.

In the dE/dx case the protons are at the left of the pions, in fact from the Universal
Curve reported in Fig. 3.5, the dE/dx of the protons with momentum higher than
2 GeV/c (By > 1.8) is lower than the dE/dx of the pions with the same momentum
(By > 24).

In the TOF case instead the protons are at the right of the pions, in fact the protons
are heavier than pions and so they need more time to arrive at the TOF detector.
The separation power obtained using dE/dx is 1.7 o and using TOF is 1.25 o.
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Figure 3.38: Left: dE/dx residual in pion hypothesis calculated for protons (in red) and for
pions (in black). We obtained a separation of 1.7 o. Right: TOF residual in pion hypothesis
calculated for protons (in red) and for pions (in black). We obtained a separation of 1.25 o.

Fig. 3.39 shows the p-7 separation as a function of the momentum of the particle.
This plot was obtained computing the separation power in momentum bins. To do
that we made the same curves of Figs. 3.37 and 3.38, for pions and protons, of Com-

. . . . L bined PID ar JTOFRes,T . .
bined Likelihood Ratio =< ( dx Res il and of dE/dx and TOF residuals in
Leombined PID(HResvTOFRes 7p)

pion hypothesis, in momentum bins. For each bin we computed the separation power
between pions and protons.

The black curve is relative to the TOF, the red one is relative to the dE/dx and
the green one is relative to the combined PID (TOF+dE/dx). In blue we have the
theoretical curve obtained adding in quadrature the TOF and the dE/dx separation:

Cineo = \/ (TOF )2 + (AEd )2, (3.26)

The separation obtained with the combined PID, around 2.5 o, is very close to
the theoretical maximum. This confirms the validity of the LR method and also the
correctness of the parameterization of both TOF and dE/dx distributions, described
in Section 3.3, and the absence of spurious correlation between the two PIDs.

We used the LR method also for the K-7 separation. In this case the LR is defined:

Lcombined PID(((ii—fRes’ TOFRes: 7T) - p(%ReSh—) - p(TOFRes|7T)

Lcombined PID(%ResaTOFResaK) a p(%ReJK) p<TOFRes|K)

(3.27)
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Figure 3.39: p-m separation power vs momentum. Black: TOF separation. Red: dE/dx sepa-
ration. Green: combined separation obtained with the LR. Blue: \/(TOFjep)? + (dE/dxsep)?.

The K-7 separation power as a function of the momentum of the particle is reported
in Fig. 3.1 at the beginning of this Chapter.

For momentum greater than 2 GeV /c the time of flight is not very useful, it increases
the dE/dx separation of only 0.1-0.2 ¢ for momentum lower than 3 GeV/c and higher
than 2 GeV/c. We can see the TOF effect for lower momentum. The K-7 separation
at low momentum was obtained through a Toy MC, described in the following, using
the parameterization of dE/dx and TOF residuals obtained from data.

The black vertical line in Fig. 3.1 separates the value of separation power obtained
from data to the value obtained from Toy MC.

For momentum below 0.8 GeV /¢ we have a good separation both for TOF and dE/dx,
so we obtain a very good combined separation from 4 up to 10 o.

The importance of TOF at lower momentum will be also evidenced in the case of the
track pairs with the ¢ — KK~ decay (Section 3.5.3).

Toy MC for low momentum

This Toy MC was developed to have an idea of the PID separation (dE/dx, TOF and
Combined PID separation) for low momentum particles since the PID parameterization
was made using tracks with momentum higher than 2 GeV/c.

To calculate the separation between particles with momentum lower than 2 GeV/c
we need their measured dE/dx and TOF values.
We randomly generated dE/dx and TOF residual values using the residual parameter-
ization obtained from data (tracks with momentum higher than 2 GeV/c), described

in Section 3.3. We obtained %;es and TOF},,, i = K, .
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dE?
Eewpected
between 0.4 and 2 GeV/c using the Universal Curve, giving as input the momentum,

the mass and the charge of the particle. To calculate the expected TOF (T'O 6Ipected)

We calculated the expected dE/dx for pions and kaons ( ) with momentum

we used the formula t.,, = Z’ /1+ mpf, obtained inverting the eq. (2.6), where L is
the flight lenght, p is the particle momentum and m the particle mass.

The measured values of dE/dx and TOF, ‘é—fjmaswe = %;es+%2mpec g A TOF =
TOFp,, 4 TOF!, .cteq: of pions and kaons allow to have the Likelihood Ratio curve of

Combined PID, from which we can compute the separation.
The results of this Toy MC are the separation vs momentum curves for momentum
lower than 2 GeV/c of Fig. 3.1.

3.5.2 Separation compute

The separation depends on the variable used to measure it. Once chosen the variable
(x), for example the LR variable, one plots the distribution of such a variable for the
two classes of which the separation have to be estimated (i.e. K and 7 or p and 7 in
our case).

The probability distribution of x for our sample of two classes is:

Poot(z]f1) = f1-pa(z) + (1 = f1) - pa(2) (3.28)
where p;(x) is the pdf of x for events of type ¢ and f; is the fraction of events of type
1. Since the sum of the fractions of the different classes present in the sample must be
1 in order for the overall distribution to be correctly normalized, fo =1 — f;.

The most basic information one wishes to extract from the sample of data at hand is
the value of the fraction f;; we can therefore take the resolution in extracting f; as the
measure of the separating power of the observable x.

Instead of setting up a Maximum Likelihood fit and repeating it on a sufficient
number of pseudo-experiment, the Minimum Variance Bound (MVB) [70] estimates
rather quickly the upper bound of the achievable resolution o on the fraction f;. For
the simple case of two classes of events the MVB is written as:

(p1(x) — pa(2))? B
</f1 pl 1—f1) ( )dQC) (3.29)

where N is the total number of events. This is the quantity you want to minimize in
order to achieve the best possible statistical separation. In the limiting case the chosen
variable is distributed in the two classes as two Gaussians infinitely spaced apart (events
totally separated). The only uncertainty in assigning an event to one of the two classes
comes from the Binomial fluctuation due to finite sample size o, = fi1(1 — f1)/N.

It is particularly convenient [71] to use the ratio of the resolution (equation (3.29))
to the limit resolution oy, in order to quote the separation power of the observable x
as an adimensional quantity:

_ Obest . ) p2( )) .
= ol Jfl 0 [ G ) (830
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This estimate is independent of the sample size and tells us the power of x in separating
the samples, from 0 (no separation), to 1 (absolute maximum achievable with the given
sample). It is convenient to quote s, by convention, for f; = % Such a way to quote
separation has the advantage of being valid wathever the shape and the dimensionality
of the distribution involved. In addition, it is possible to quote the separation in the
convetional way (“n-o separation”) by converting analitically any value of “s” into an
“equivalent o separation” calculated as if the distribution of the considered variable x

were Gaussian.

3.5.3 Test of the combined Likelihood for track pairs: ¢ — KTK  decay

To test the combined Likelihood for track pairs and the correctly inclusion of the
correlation we used the ¢ — K™K~ decay from B_PIPI trigger path described in
Section 2.8.5.

In Fig. 3.40 the ¢ invariant mass distribution obtained with the following cuts is shown:

e A¢ between tracks < 0.1

e Both tracks have associated TOF measurement (TOF efficiency® = 28%, 53% for
each track)[65][67].

| CDF Run Il Preliminary |
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Figure 3.40: Invariant mass distribution of ¢ — KK, both tracks have the TOF informa-
tion.

We fitted the observed spectrum using for the signal shape the convolution of a breit
Wigner with a gaussian resolution function, and for the combinatorial background a
threshold function: a-(Mgr—2-M K)bec'(MKK —2MK) where a, b and ¢ are free parameters

3The TOF inefficiency is due to the high TOF occupancy, that is ~ 30%
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[72]. From the fit we obtained 35,382 ¢ — K*K~ with a signal over background
= 0.054.

At first we checked the inclusion of the correlation between particles in the same
event in the Likelihood. We considered the TOF Likelihood including correlation
L1or corr and the TOF Likelihood without correlation Ltop no core- In Fig. 3.41 the
rejection vs efficiency, varying the cut on LR, is shown, the red curve is relative to
a cut on LR that includes correlation and the green one is relative to a cut on LR
without the correlation.

The efficiency is defined as:

s _
B

Signal after cut

= 3.31
eff Signal before cut ( )
and the rejection as:
5 after cut
rej = 2———m—. (3.32)

% before cut

We observe that the rejection improves, as expected, with the inclusion of the correla-
tion.
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Figure 3.41: Red curve: rejection vs efficiency varying the cut on LR considering the corre-
lation. Green curve: rejection vs efficiency varying the cut on LR without the correlation.
The rejection improves with the inclusion of the correlation.

Including correlation we improve the rejection and moreover we remove the BIAS
in a fit making use of the PID information. As an example of the BIAS we can consider

the B?S) — hTR'~ analysis at CDF IT [6]. The result of £ % obtained using a

maximum Likelihood fit including the PID information, changes if the correlation was
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considered or not*:

e 1o correlation %% = 0.74 £ 0.20(stat) £ 0.22(sys);

o with correlation 4= ZEZ—ER) — 0.50 4 0.08(stat) + 0.09(sys).

We used the sz)?fllgiﬁigspm described in Section 3.2, to make a cut on Likelihood
Ratio (LR) and extract the ¢ — KTK~ decay from background. We have to define
the LR as the signal Likelihood over the background Likelihood. In this case the signal
is the pair KK and the background are the pairs that we can obtain combining protons,
pions and kaons. So the LR is defined as:

LR — Lsz’gn _ LKK
Lback foKLKK + fTI'fTI’LWTF + fpprpp + foTI’LKﬂ' + fopLKp + fwprwp

(3.33)

where we assumed that in the background the particle IDs are uncorrelated, so for

example frx = fx - fk-

We estimated, roughly, the background fractions fx fr and f, from the TOF residual

distributions in the sidebands of the ¢ invariant mass. The ¢ signal window is defined

as +2.50 around the reconstructed ¢ mass peak and the sidebands window is between

4 and 6.5 o from the mean value, (M - 6.50, M - 40)UM + 40, M + 6.50). We

obtained:

o f,=10%
o [ =T0%.

In Fig. 3.42 the invariant mass distribution of ¢ — K*K~ after a cut on the LR is
shown. The continuous line is the fit, we obtained 10,234 ¢ — K+ K™, corresponding
to an efficiency of 30%, and a signal over background of % = 1.1, corresponding to a
rejection of 20.

In Fig. 3.43 the rejection vs efficiency varying the LR cut, is shown. Three curves
are plotted, the blue one is relative to the combined PID, the red one to the dE/dx
and the black one to the TOF. This means that three different LR were used to cut
on:

. . track pair .
e blue curve: cut on the combined PID LR that uses Lo 2 ipn:

e red curve: cut on the dE/dx LR that uses LZ’E%;HHS;

e black curve: cut on the TOF LR that uses Lia P,

From the plot we observe that the combined PID permits to obtain a very good
rejection at high efficiency.
We can also see that the TOF contribution is higher than the dE/dx contribution, this
is due to the low momentum spectrum of kaons from ¢ — KK~ decay, shown in Fig.
3.44.

“The first result (without correlation) is relative to 65 pb~", the second one (with correlation) is relative
to 180 pb~t.
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Figure 3.42: Invariant mass distribution of ¢ — K+TK — after the cut on LR.
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Figure 3.43: Rejection vs efficiency varying the LR cut. Blue curve: cut on the combined

PID LR that uses ng?llgiﬁzgspm. Red curve: cut on the dE/dx LR that uses Lfg%:fairs. Black

curve: cut on the TOF LR that uses Lg%cll; Palss  The combined PID permits to obtain a very
good rejection at high efficiency.
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Figure 3.44: Momentum spectrum of kaons from ¢ — KT K~ decay.

3.6 Combined PID applications

The TOF, dE/dx and Combined (TOF+dE/dx) Likelihoods, for single track and for
track pairs, are implemented in a public code for CDF II users.
The code was used in several CDF analysis, the most relevants are:

o B?S) — hTh/~ analysis;
e B, mixing;

e BT — D'K* modes for the v angle measurement (argument of this thesis, see
next Chapter).

In the case of BOS) — h*h'~ analysis [6] the dE/dx Likelihood for track pairs is the
crucial ingredient o# the Unbinned Maximum Likelihood Fit used to distinguish all the
contributes present in the peak.

Thanks to PID the fit can distinguish between KK, 7K and 7w. In Fig. 3.45 the
B?s) — h*h/~ invariant mass distribution in 77 hypothesis, obtained using 360 pb~!,
is shown. The point are data, the black curve is the total fit projection and the color
areas are the various contributions (B® — Kr, B — KK, B — nr and B? — Kr)
to the experimental invariant mass spectrum.

In the case of B, mixing the Particle IDentification has been crucial to determine
the B, flavor at the production [5]. At the production the By is accompanied by a K;
using the combined PID Likelihood for single track it has been possible to identify the
Kaons associated with the By production. The PID is the fundamental ingredient of
the Same Side Kaon Tagging, that is the tagger with the largest effectiveness.
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Figure 3.45: B?S) — hth/~ peak using 360 pb—!. Point: data. Black curve: total fit projec-

tion. Color areas: various contributions to the experimental invariant mass spectrum.

The effectiveness QQ = eD? is quantified with an efficiency e, the fraction of signal
candidates with a flavor tag, and a dilution D = 1 — 2w, where w is the probability
that the tag is incorrect. For the Same Side Kaon Tagging the effectiveness pass from
Q ~ 2% without PID to @ ~ 3.5% using the Combined PID [5].

Regarding the BT — DK * in the next Chapter (Chapter 4) we will describe the
implementation of an Unbinned Maximum Likelihood Fit using PID information, to
separate statistically BT — DK+ from BY — D'n.

In order to demostrate the PID capability of CDF we show here an application of
the Combined PID at the B* — D K* decay.

We used the B+ — D 1+ candidates sample described in Section 4.1. In Fig. 3.46 this
sample selected without the use of a PID tool is shown. The signal of BT — D'K +,

-0
in light blue, is obtained from simulation assuming BRIBT=D KY) _ ),083 [13]. It is
BR(Bt—D =wt)

overlaid of background and cannot be distinguished from the BT — D'n.

We then apply a cut, to the track from B, on the Combined (TOF+dE/dx) LR

Lcombined PID(%ResvTOFReva) + 70 7+ . .
defined as to select kaons (BT — D K™) and reject pions

dE
Lcombined PID(HRESaTOFRes:W)

(BT — EOW“). In Fig. 3.47 the invariant mass distribution of Bt — DK+, after the
LR cut (LR > 0.6), is shown. A fit of the invariant mass spectrum making use of two

gaussians for the signal (one describing the Bt — DK+ signal shape and the other
describing the BT — Dlnt signal shape) and of an exponential plus a constant for the
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Figure 3.46: BT — D'+ invariant mass. In light blue the BT — DK *, obtained from
BRWB'=DKY) _ ) g3

simulation assuming that =
BR(B+—D"rt)

background, is done in the range of mass [5.2,5.8] GeV/c?.

The two signal yields are free to vary in the fit, while the means and the widths of
the gaussians that describe the B — DK+ (red curve) and B — D'rt (blue curve)
signals, are fixed by simulation. The background, in green, is an exponential plus a

constant. We obtained ~ 85 D K+ and ~ 245 D r+. We can see the powerfull of the
Combined PID that makes visible the two peaks.
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Chapter 4

BR(BT—D'K™)
BR(B+—>EO7T+>

Measurement of

As pointed out in Section 1.5 there are several methods to measure the angle 7. In
this Chapter we describe the first step of the GLW method, that is the measurement
of the ratio

_ BR(B* —D'K") BR(B* — [Ktr ]K™")
" BR(B+ — D'rt) BR(B* — [Ktr-|r*)’

R (4.1)

The CDF mass resolution and Particle IDentification capability do not allow an event-

by-event separation of the decay modes DK+ and EOW“, and a different approach,
aiming to obtain a statitical separation, is required.
We used an Unbinned M_agimum Likelih_oood Fit which combines the small kinematics
differences between the D 7" and the D" K* decay modes and the Particle IDentifi-
cation information provided by the specific ionization (dE/dx) in the drift chamber.
This tecnique was used, in CDF, also for the B?S) — hTh'~ analysis [6].

In the last part of the Chapter we will also describe the fit results on the DCP
modes (Bt — Depi KT — [KTK|Kt and Bt — Depi KT — [nFn7|KT).

4.1 Data sample

We want to reconstruct the decays of Bt — DOzt and of BT — DOK™*. The proper
decay length c7 of a BT is about 460 ym. The cr of D°, D*, Df and A} are about
120, 150, 300 and 60 pm. Long lived K? and A have much longer lifetime, 2-8 cm.
Therefore, a minimum requirement on the distance between the beamline (primary
vertex) and the secondary vertex reconstructed in the transverse plane (L,,), reduces
the contamination due to short lived charmed hadrons. Moreover, the particles pro-
duced in the B decay also tend to have a larger impact parameter in the transverse
plane (dy) than the tracks produced in the primary vertex, as illustrated in Fig. 4.1,
but smaller dy than the daughters particles of K? and A. Consequentely, a minimum
and a maximum cut on the track dy rejects the background from the primary tracks,
K, and A, or secondary tracks generated by the particle interaction with the material.

97



—=0
98 CHAPTER 4. MEASUREMENT OF BE(B"=D K*)
BR(B+—D'r+)

B+— D' t*

Figure 4.1: Example of a BT decay: nT from the BT decay has a larger impact parameter
do than that of the track produced at the primary vertex.

The data used for this analysis have been collected with the upgraded CDF II
detector, between April 2001 and August 2004 by the trigger path B.CHARM described
in Section 2.8.5. We used events collected in runs where the following systems were
declared good by the CDF Data Quality Monitoring Group: SVX, COT, CLC and all
the trigger levels. We excluded the runs when SVX was off and when there were a high
voltage problems in the COT. Moreover, requirements on the online and offline data
quality were applied. The final sample corresponds to an integrated luminosity of 360
pb L.

The B~ — D%~ decay with D° — K—7" (flavour eigenstate) and the B~ —
D¢p,m decay with D¢p, — ntn™ and Dp, — KK~ (CP-even eigenstate) were
reconstructed.

We begin the reconstruction of the B signals by identifying the D° candidates: D —
K-nt, Dep, = K"K~ and D2p, — 7.

We first cut on the raw mass of the charm candidate. The raw mass is calculated using
the track momentum at the point of closest approach to the beam line. We determined
the charmed candidate (tertiary) vertex by performing a vertex fit using the CTVMFT
algorithm [73]. This algorithm determines the decay vertex by varying the track pa-
rameters of the daughters particles within their errors, so that a x? between the track
trajectory and the points is minimized. We then applied a constraint of mass on the
charmed candidate mass determining the momenta of the daughters tracks.

The charmed candidate is then combined with an additional track to form the B can-
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didate (secondary vertex), using the same vertexing algorithm used to reconstruct the
D° — K~xt signal (CTVMFT). We required that two of the three tracks from the
reconstructed B hadron candidate each matches a SVT track. We confirm the trigger
by requiring the matched SVT tracks to pass the B.CHARM cuts listed in Section
2.8.5.

After applying the requirements discussed above we further require [74]:

e B decay lenght significance: UL& > 8;
Y

Lg

D decay lenght measured with respect to the B decay vertex: L,,(D)g > —0.0015

cm;

B impact parameter: |do(B)| < 0.008 cm;

transverse momentum of the track from B: pp > 1 GeV/c;

AR = \/A¢? + An? between the track from B and the D% AR < 2;

e tridimensional vertex quality x3,: X3, < 15;
e B isolation: Isol> 0.5.

The B isolation is defined as pT(p r(B) where the sum on the transverse momentum

B)+ ’
is extended to the tracks containe()i i%pff: cone with radius = 1 in the 1 - ¢ space around
the B meson flight direction, excluding the tracks from the B decays. The B isolation
cut has been optimized for B meson in [75], where is shown that b hadron prefers to
be produced quite isolated with respect to the background.

The cuts on the tridimensional vertex quality x3, and on the B isolation are very
important to suppress the combinatorial background.

The resulting invariant mass distributions, with pion mass assignment to the track
from B, were reported in Figs. 4.2, 4.3 and 4.4, respectively the invariant mass distri-
bution of B* — D'rt — [K*n~ 7", the one of BY — Dgp,nt — [KTK~|n" and
the one of BT — D¢p 7t — [nTn |nt.
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Figure 4.2: Invariant mass distribution of BT — D'zt with DO — K—xt (flavour eigen-
state).
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Figure 4.3: Invariant mass distribution of B* — D p, at with DYp, — K*K~ (CP-even
eigenstate).
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Figure 4.4: Invariant mass distribution of B* — D&, 7% with DYp, — 777~ (CP-even
eigenstate).

4.2 Monte Carlo Simulation

Monte Carlo simulations are an essential tool for data analysis. They represent a fast
and tuned interface between the predicted model and the collected data, allowing a
better understanding of the data.

A Monte Carlo simulation can be summarized in a three step procedure: particle gen-
eration, particle decay and detector simulation. The particle generation is based on
Bgenerator [76], a Monte Carlo program based on NLO calculations [77]. In fact Bgen-
erator, dedicated to B physics, is able to generate B or D mesons only, without care of
fragmentation products that naturally come from hadron collisions.

A b quark! is generated following the NDE input spectrum [77] and then it is frag-
mented into a B meson according to the Peterson fragmentation function [77] with
the Peterson fragmentation parameter set at its default value of e = 0.006. For our
analysis the generated quark was limited within the spatial region |n| < 1.3 and with a
minimum momentum greater than 5 GeV /c. These settings reflect the fact that the b
quarks can be generated within the fiducial volume of the detector and that a minimum
energy is needed in order to fire the trigger.

The mesons decay relies on EvtGen program [78], a decayer tool extensively tuned by
B factory experiments.

Then the geometry and the behavior of active volumes of the CDF II detector are
simulated using a dedicated software based on the third version of GEANT package
[79]. GEANT is a wide spread program able to simulate the response of High Energy

!For our simulation only a single quark was generated
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Physics detectors at hit level.

Finally, the trigger effects are simulated by TRGSim++, a software that implements

the details of the trigger logic used by CDF II. The TRGSim++ appends to each sim-

ulated event trigger banks and trigger bits as for data. A particular trigger path can

be selected by requiring the corresponding trigger bit.

Since the CDF II detector underwent several hardware and trigger modifications during

the data taking period, the actual dataset can be rather inhomogeneous. To properly

reflect the different running conditions that occurred, the Monte Carlo samples have

been generated for a set of representative runs weighted by their luminosity:.

We generated 6,000,000 of B events, requiring that D° — K~7*. In Fig. 4.5 the B*

invariant mass distribution from simulation is reported.

Our goal is to measure the relative yields of BT — DK+ to Bt — D’r+. Other

channels contribute to background as we can observe from Fig. 4.5: BT — E*OTF+,

B’ — D* nt, Bt — DK+ and other decays.

However, as we can see from Fig. 4.6 where a zoom of the MC invariant mass is shown,

the principal background contribution to the mass region of the DK+ signal is the
B* — D”r*. We choose as fit window the range of mass between 5.17 and 5.60
GeV/c?; in this region the only significant physical backgrounds are Bt — D't and
Bt — ﬁo*w+.

In this way we can avoid, in the mass part of the Likelihood fit, the two structures on
the left of Bt — D K+ particularly difficult to parameterize.
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Figure 4.5: BT MC. Black: BT — D’nt. Red: B* — D'K*. Blue: Bt — D"t

Magenta: B — D*~xt. Green: BT — DY K+ and in violet other decay.
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Figure 4.6: Zoom of the B+ MC. Black: B* — D'r+. Red: B* — D'K*+. Blue: BY —
D"t Magenta: B — D*~nt. Green: Bt — DY K+ and in violet other decay. The

principal background contribution to the mass region of the DK+ signal is the BT — Dt

4.3 Likelihood anatomy

We implemented a maximum Likelihood fit which combines Mpo,, the invariant mass
assigning the pion mass to the track from B, the momenta and the Particle IDentifi-
cation information.

We started out by writing B* masses with different particle assignments at the
track from BT, as function of a single mass (Mpo,) plus an appropriate kinematic
variable q.

The difference between the squared invariant masses reconstructed in the pion hy-
pothesis (that is the reference mass) and in particle "b” hypothesis is given by:

2 2
Mo, — M2, = (\/m%o +p2o + \/mg +p?r> —~ (\/mgo P20 + \/mg +p§T) (4.2)

where mpo, my, and m;, are respectively the D° mass, the mass of the particle b and
the pion mass; ppo and p,,. are respectively the D° momentum and the momentum of
the track from B.

If we expand this shift at the first order in (my/r/py)?, we obtain:

Moy, — Mpo ~ (my —mz) - (1+ y/mio + pho/per) = (my — m7) - (1 + Epo/pur)
(4.3)

where Epo = \/m2, + p%, is the D energy.
Defining @ = Epo/ps,. we can write the mass of the B in the kaon hyphotesis as:

M2(a) = M, + (my —m2) - (1 + a). (4.4)
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In Fig. 4.7 the B* invariant mass distribution as a function of a, using the simulation,
is shown. In black the Mpo, and in red the Mpog. In green the theoretical curve
obtained using the formula (4.4) is shown.
We observe a discrepancy between the red curve obtained from the simulation and the
theoretical one, in fact from a ~ 12 the green curve tend to move away from the red
one.

[92]
[}
5.3 ot
g - R e +"H‘*ﬂpﬂ#ﬂﬁ*ﬁ#ﬂt ﬂﬁ» ]
i) —
52
5.1f- o
5 T
- D’ mode T
49 B’ K*mode
E , e
- thoretical curve #”'i*’ﬁ .-
a8l
o | | Coy | |
0 5 10 15 20 25

Figure 4.7: B* mass vs «a using simulation of Bt — D'zt and of Bt — DYK*. Black:
Mpo,. Red: Mpog. Green: theoretical curve obtained using the formula (4.4) (expansion at
the first order in my /- /pir)-

To obtain a better agreement between the two curves we tried to go to a second-
order expansion. In Fig. 4.8 the BT invariant mass distribution as a function of « is
shown again. Now, the theoretical curve (green curve) is in a reasonable agreement
with the red one (obtained from the simulation). The theoretical curve, in this case,
goes over the red one remainig very close to it. The problem is that the mass is not

anymore function of o only, in the formula is also present the momentum of the track
from B™:

1
M*(@) = Mg+ + (mi =mz)(1+a — za - (mi +m7)/p;,) (4.5)

Since we need to use two kinematical variables to describe the invariant mass shift,
we decide to keep the full analytical formula without any approximation. We also
define the kinematical variables, the momentum balance a and the total momentum
Pyor, like in the BY) — h*R'~ analysis [6][7]:

o if p;, < Ppo a=1—=py/ppo >0

o if p, > Ppo a=—(1—ppo/py) <0
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Figure 4.8: B mass vs a using simulation of Bt — Dz and of BY — DOK*. Black:
Mpo,. Red: Mpoj. Green: theoretical curve obtained using the formula (4.5) (expansion at
the second order in my, /. /pyr).

® Pt = pir + ppo.

The expression of the B mass, in the kaon hypothesis, as function of these two kine-
matical variables is then:

eifa>0

M(, Pag) = M 410 — i + 2 2y + (Pur/ (2 — @) -

(V2 + Pull=0)/ 2= ) = \Jm + (Pl = 0) /2 = 2))?)

o ifa<O

(4.6)

M (0, Pog) = M +m2 = + 2 \fmy + (Pin(1 + 0)/(2 + )2

(VO P/ @+ )P = \Jmi + (P 2+ 0)?)

(4.7)

In Fig. 4.9 the Bt invariant mass distribution as a function of a is shown. Now we
observe a perfect agreement between the simulation (black curve) and the theoretical

curve (in red).

The expression of the Likelihood used for the Unbinned Maximum Likelihood Fit
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Figure 4.9: BT mass vs «a using simulation of Bt — Dzt and of BY — DYK*. Blue:
Mpo,. Black: Mpog. Red: theoretical curve obtained using the full analytical formula.

is:
Nevents
L= [] ((1=b)-(fx: Fe(e, Ptot. Mpor, ID) + (1 — fz) - Fi(cx, Ptot, Mpo,, ID)) +
k
+ b- (fD . BGD(OK, PtOt, MDOTI'7 [D) -+ (1 — fD) . BGcomb(a; PtOt, MDOW, ID)

(4.8)

where b is the fraction of background measured with respect to all the events (as a
consequence, the fraction of signal is 1 —b), f, the fraction of BT — D't with respect
to the total signal (as a consequence, the fraction of Bt — DK+ is fre=1—fr)

and fp the fraction of the physical background Bt — D¥rt with respect to the total
background (the fraction of combinatorial background is then fepmp =1 — fp).

F(a, Ptot, Mpo,, ID) and F(a, Ptot, Mpo,, [ D) are the signal probability density
function (pdf) respectively of BT — D'nt and Bt — DK+, The expression of these
pdf is given by:

Fi(aa Ptot; MD07r7 ]D) = G(MDO’IT - M(O[, Ptot))p(aa Ptot)p(ID) (49)

where G(Mpo, — M, Py )) is the part of the pdf that describes the mass, p(a, Piy) is
the 2-dimensional distribution that describes the kinematical variables a and P, and
p(ID) is the distribution of the particle identification variable ID that will be defined
in the Section 4.7.

BGp(a, Ptot, Mpo,, ID) and BG.omp(a, Ptot, Mpo,, ID) are the background pdf
respectively of the physical background (Bt — 50*7r+) and of the combinatorial back-
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ground. The expression of these pdf is given by:
BG;(a, Pyot, Mpot, ID) = BG(Mpo,)p(c, Piot)p(ID). (4.10)

In the following Sections we will consider the pdf piece by piece and we will describe
the parameterization used for the kinematical variables and for the PID variable.

4.4 Kinematics vs trigger

We reconstructed the Bt candidate by requiring that at least two tracks are trigger
tracks as we discussed in Section 4.1. This means that the two tracks have a transverse
momentum higher than 2 GeV/c and an impact parameter such as 120 pm < |dg| < 1
mm, as described in Section 2.8.2.

There are two possibilities:

1. The two tracks from D° are trigger tracks;

2. The track from B and one track from D° are trigger tracks.

In Fig. 4.10 the « distributions from BT — Dlnt simulation, for the two types of
trigger (on the left the track from B and one track from D° are trigger track, on the
right the two D° tracks are trigger tracks) are shown. For each trigger possibility the
kinematics is different: when the D tracks are trigger tracks the D° momentum is
almost always higher than the momentum of the track from B so a > 0 (right plot in
Fig. 4.10).
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Figure 4.10: « from BT — D't simulation. Left: the track from B and one track from
DY are trigger tracks. Right: the two tracks from D° are trigger tracks. For each trigger
possibility the kinematics is different and a different parameterization of p(a, Piyt) is needed.

The different kinematics is confirmed by the the 2-dimensional distributions p(a, Pyot)

obtained using the same BT — D’r+ simulation. Tn Fig. 4.11 p(a, Pi»t), for the total
sample (top-left), for the sample where the track from B and a D track are trigger
tracks (top-right), for the sample where the two tracks from DY are trigger tracks
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Figure 4.11: P,,; vs a from BT — D't simulation. Top-left: total sample. Top-right:
sample where the track from B and a DY track are trigger tracks. Bottom-left: sample where
the two tracks from DY are trigger tracks. Bottom-right: overlap sample where all the three
tracks are trigger tracks.

(bottom-left) and finally for the overlap sample where all the three tracks are trigger
tracks (bottom-right), are shown.

If we look at the total sample 2-dimensional distribution, we observe a notch in the
vicinity of a = 0.6, revealing the presence of two subsamples with different kinematics.
The sample where the track from B and a DY track are trigger tracks amounts to
~ T70% of the total sample, while the events where both D tracks are trigger tracks
make for ~ 40% of the sample. The two samples have an overlap of ~ 10%.

To make two different kinematical parameterizations of p(«, Pyy) we needed two sam-
ples without any overlap.
We decide to split the total sample in the two non-overlapping samples:

1. The track from B and a D° track are trigger tracks (~ 70% of the total sample).

2. The two tracks from D° tracks are trigger tracks and the track from B is not, it
has P; < 2 GeV/c (~ 10% of the total sample).

We concentrate our analysis only on the larger sample, all parameterization are
relative to the ~ 70% of the total sample where the track from B and a D track are
trigger tracks.
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4.5 Mass probability density function

4.5.1 Signal pdf

For each decay we need G(Mpo, — M(c, Piot)), present in the signal pdf (equation
(4.9)), that is the sum of three gaussians:

G-y (- (M)

The resolutions o; and the relative fractions A; are obtained by fitting the ”correct”

invariant mass distribution from BT — D a* and Bt — D'K* simulation. We
have defined the "correct mass” as My, = Mpo, — d(a, Piot), where 0(a, Py) =
M (a, Pyot) — Mp+ is the mass shift due to the incorrect mass assignment (M («, Pj)
is defined in the equations (4.6) and (4.6)). Clearly for BT — D'nt, d(cv, Pot) = 0.

In Fig. 4.12 the invariant mass distributions of the signal modes are shown, with a
superimposed fit of a three-gaussians model.
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Figure 4.12: BT Invariant mass distributions of signal decays. On the left the D't and on
the right the DK+. The continuous lines are the fit using a three-gaussians model.

In order to avoid relying on the absolute resolution predicted by the simulation, we
introduced a free scale parameter in our likelihood fit, multiplying the width of the
three gaussians. This parameter is fitted together with all the “physics parameters”.

4.5.2 Background pdf

For each source of background, the physical one and the combinatorial one, we need
the mass shape BG(Mpo,) to write the pdfs defined in equation (4.10).

Physical background pdf

As discussed in the section 4.2 we have defined a fit window that goes from 5.17 to 5.6
GeV/c? to have as physical background only the B — D7t In Fig. 4.13 we have
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BR(B+—D’r+)
reported the invariant mass distribution of D"t (log-scale), from simulation, fitted
in the window [5.06,5.6] GeV/c? with three gaussians plus an exponential. We made
the fit in a larger window than the one used in the maximum likelihood fit to be sure
to parameterize D™ r* in the right way.
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Figure 4.13: Invariant mass distributions of physical background DY 7+, The continuous line
is the fit using three gaussians plus an exponential.

Combinatorial background pdf

For the combinatorial background we determined the mass shape from data themselves.
We decided to use the events which pass the same selection (the selection cuts are
described in the Section 4.1), with the only difference of having L,,(B*) < —300 pm
instead of the requirement on the L,, significance. In this way we can have an idea
of the combinatorial background under the peak. We have verified that the shape
obtained using the negative L,, sample is in agreement with the one obtained with
the standard selection cuts in the right sideband (between 5.4 and 5.8 GeV/c?), as it
is shown in Fig.4.14, where the B invariant mass distribution between 5.4 and 5.8
GeV/c? is shown. The candidates with L,, > 0 are in black and the candidates with
L, <0 are in red.

In Fig. 4.15 the BT invariant mass distribution from data requiring L, (B,) < —300
pm is shown. The mass shape is described using an exponential. The parameters of
this exponential (slope and normalization) are left free to float in the main fit.



4.6. KINEMATICAL PARAMETERIZATION 111

B Mass

0.05[1
0.04[41]

0.03[

0.02

0.01

(=)
Jl\\\\‘\\\\t“‘{‘

55 5.6 5.7 5.8 5.9 6 6.1 6.2

Figure 4.14: BT Invariant mass distributions between 5.4 and 5.8 GeV/c?. In red the events
with L., < 0 and in black the events with L, > 0.
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Figure 4.15: B™ Invariant mass distributions requiring L, < —300 ym. The continuous line
is the fit using an exponential.

4.6 Kinematical parameterization

For each decay, we need the 2-dimensional function p(a, Py) that describes the 2-
dimensional distribution P,,; vs a. Starting from some considerations on the kinematics
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of the decay, we defined the kinematical domain of our fit.

When p;,, < ppo, a = 1 — %. Resolving o for ppo, we obtain ppo = =, Since
Piot = pr + ppo we have Piyy = piy + 5 = pr - z With py,. > 2 GeV/c we obtain
Piot > 2 i;

When py. > ppo, a = —(1 — 22%). Resolving a for p;,, we obtain p, = f%o In this

2+0‘ Since at least one D tracks is

2+a

case we have Py = py + ppo = 725 + ppo = ppo -
a trigger track we have ppo > 2 GeV/c. So, we obtaln Piot > 2+ 752,
There are other two conditions P, > 7 GeV/ cand a > —0.8 that we have extracted
directly from the P, vs a distribution.

The distribution of P, vs a is shown in Fig 4.16, where the colored curves represent
the kinematical domain, in red P,,; > 2 - ,in blue P, > 2 - 2+0‘ ,in green Py, > 7
and in magenta a > —0.8.

Summarizing, the kinematical domain for our fit is:

.Ptot>2‘2_—a
.Ptot>2'2+—a
® Py >7

e o> —0.8
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Figure 4.16: P,y vs « distribution for the Dzt mode obtained from simulation. The curves
indicate the kinematical domain of the fit. Red curve: P, > 2 . Blue curve: P, > 2- %ig
Green curve: Pj,; > 7. Magenta curve: o > —0.8



4.6. KINEMATICAL PARAMETERIZATION 113

4.6.1 Signal pdf

We parameterized p(a, P,,) for the signal decays using the simulated samples of BT —
D’n* and of BY — D K.
To make the 2-dimensional fit we use an interpolation technique. As an example

we describe the complete procedure for the D’xt mode.
First of all, we fitted the a distribution in slices of Py, (bin = 1 GeV/c) using a sixth
degree polynomial. In Fig. 4.17 the fits of these a distributions are shown.

ooas| ooz
003

ooz
o0 ooisfe
[ ooif
00y

ooosf
000s]
oozsf ooz
ooz 002
ous}

TRA

I
=
1
oo | oosf
o1 oot
) o0os =

|

ooz

oos

oo

ooos
oF

oasfE

oozsfe

ooosf \
ok

Figure 4.17: Fits of « distributions in slices of Py (bin = 1 GeV/c) using a sixth degree

polynomial (EOTF+ decay). The plot on the top left is the « distribution for 7 < Py < 8
GeV/c, the second plot on the top is the « distribution for 8 < P, < 9 GeV/c, and so on.

For each parameter of the sixth degree polynomial, we plotted the “parameter value”
vs P, and we fitted it with a polynomial. In Fig. 4.18 the seven plots (one for each
parameter of the sixth degree polynomial used to fit the a distribution) “parameter
value” vs P, are shown. In each plot the red curve is the fitting curve, for the
first parameter we used a fifth degree polynomial, for the second parameter a second
degree polynomial, for the third parameter a fourth degree polynomial, for the fourth
parameter a first degree polynomial, finally for the fifth, the sixth and the seventh
parameter we used a third degree polynomial.
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Figure 4.18: Plots of “parameter value” vs P, for Dzt candidates. One plot for each
parameter of the sixth degree polynomial used to fit the « distribution. The red curve is the
fitting curve obtained using a polynomial.

Then we fitted the P, distribution using a Chebyshev polynomial of second kind
[80] times an exponential. In particular the Chebyshev polynomials used are:

Uy =1

U, = 2z

Uy = 4a*—1
U; = 8z —4x

U, = 16z* —1222+1
Us = 322° —322° + 6z
Us = 642° —80z* + 242 — 1. (4.12)

In Fig.4.19 the fit result of the P, distribution for EOWL mode, is shown.
The 2-dimensional function describing p(a, Pio) is:

6 6

Z a;U;(Piot) - exp(ar Piot) - Z b;(Piot)tj (4.13)

i=0 7=0

where U; are the Chebyshev polynomial (equations (4.12)) and b;(P;,¢) are the poly-
nomials used to fit the plots “parameter value” vs P, (Fig. 4.18).

In Fig. 4.20, the 2-dimensional distribution P, vs a for simulated EOW+ (on the
left) and the 2-dimensional fit function (on the right) are shown. In Fig. 4.21 the
projections of the 2-dimensional fit function (black curve) on the a distribution in
slices of P,,; are shown. We observe a good agreement between the parameterization
and the simulation.

We used the same procedure for the simulated DK+ sample. In Fig. 4.22 the fit
result of P,y distribution with Chebyshev polynomial of second kind times an expo-
nential is shown. In Fig. 4.23, the 2-dimensional distribution P,,; vs a for a simulated
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Figure 4.19: Fit of the P,y distribution of the D7t mode using a Chebyshev polynomial of
second kind times an exponential.

ptot_vs_alfa

Figure 4.20: Left: 2-dimensional distribution P, vs a from Eoﬂ' simulation. Right: 2-
dimensional fit function.

DK+ sample (on the left) and the 2-dimensional fit function (on the right) are shown.
In Fig. 4.24 the projections of the 2-dimensional fit function (black curve) on the «
distribution in slices of P,,; are shown.
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Figure 4.21: Projections of the 2-dimensional fit function (black curve) on the a distribution
in slices of Pt (ﬁoﬁ mode).
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Figure 4.22: Fit of the P, distribution of the DK+ mode using a Chebyshev polynomial
of second kind time an exponential.
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Figure 4.24: Projections of the 2-dimensional fit function (black curve) on the a distribution
in slices of Py (EOK * mode).
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4.6.2 Physical background pdf

We used the interpolation technique also for the physical background. The only differ-
ence from the signal parameterization is the function used to fit the P, distribution.
In fact for the Dt mode we used a fifth degree polynomial times an exponential.
In Fig. 4.25 the fit of P, distribution is shown. In Fig. 4.26, the 2-dimensional dis-
tribution P, vs a from simulated D"t sample (on the left) and the 2-dimensional
fit function (on the right) are shown. In Fig. 4.27 the projections of the 2-dimensional
fit function (black curve) on the «a distribution in slices of P, are shown.

x2/ndf =81.53/55

Prob 0.01158

1000— p0 -3.047e+04 + 3391

B + pl 8834 + 1120.4

i p2 911.4+ 143.2

800— p3 46.38+9.02

B p4 -1.14 £ 0.27

B p5 0.01097 + 0.00304
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Figure 4.25: Fit of the P, distribution of the D™ 7+ mode using a fifth degree polynomial
times an exponential.
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Figure 4.26: Left: 2-dimensional distribution Pj,; vs « from EO*W+ simulation. Right: 2-
dimensional fit function.
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Figure 4.27: Projections of the 2-dimensional fit function (black curve) on the « distribution
. . —0x* +
in slices of Py (D™ 7" mode).

4.6.3 Combinatorial background pdf

To parameterize the combinatorial background we used the data of the right sideband
between 5.4 and 5.8 GeV/c?. We applied the interpolation technique and the function
used to fit the P, distribution was the Pearson Type IV function [81] defined as:

Pearson(z) = (1 + ((—x — p0)/p1)?)P? - exp(—p3 - arctan((—z — p0)/pl)) - p4. (4.14)

As it is shown in Fig. 4.28, where the fit of P, is reported, the Pearson function allows
to take in the right way the sharpened peak of the P, distribution.

In Fig. 4.29, the 2-dimensional distribution P, vs a from data (on the left) and
the 2-dimensional fit function (on the right) are shown. In Fig. 4.30 the projections of
the 2-dimensional fit function (black curve) on the a distribution in slices of P, are
shown. Due to the low statistics, the slices of a in P,,; are bigger, the bin width is equal
to 2 GeV/c instead of 1 GeV/c, that is the bin width for the signal parameterization.

As it is shown in Fig. 4.30 for a > 0.8 there is a peak in the function used to
parameterize the background. We have decided to remove this region to avoid possible
problems in the maximum likelihood fit. So, the fit range in « is [-0.8,0.8].
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Figure 4.28: Fit of the Py distribution of the combinatorial background using a Pearson
function.

Figure 4.29: Left: 2-dimensional distribution P, vs « from data (right sideband). Right:
2-dimensional fit function.
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Figure 4.30: Projections of the 2-dimensional fit function (black curve) on the « distribution
in slices of Py, (combinatorial background).

4.7 PID parameterization

We apply the particle identification to the track from B with the aim of distinguish
between BT — D K+ and B+ — D n* mode.
To represent the PID information we chosen a single observable called ”ID” defined as:

dE _ dET
1D — dx measured dx expected . (4 15)
dE K dET™

dx expected T dx expected

In particular < I'D >= 0 if the track is a pion and < ID >=1 if the track is a kaon.

We use only the dE/dx information because in the sample that we are considering
the track from B has P, > 2 GeV/c, as we discussed in Section 4.4. In a near future
we will consider also the other sample where the two tracks from D are trigger tracks
and the track from B has P, < 2 GeV/c. For this sample we will introduce the Time
Of Flight that will be very important due to the very good K-m separation at low
momenta.

As parameterization of the ID variable we used the functions of the combined PID
package, for single track, described in the previous chapter (Chapter 3) with a variable
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changing. In fact, the pdf of the Combined PID package describes the residual distri-
bution of dE/dx, but we need a pdf for the ID variable.

We have:
dE  dE dE™  dE dE™ (dE” dEWt) B
dx Res N dx meas dx exp N dx meas dx exp dx exrp dx exrp N
dE dET™ dEpart _ dEm™ e -
- dz meas Eexp B Eexp - Egg;p ) d_E _ d_E > o _ )
N ( @K _ dET @K __ dET™ > (dl‘emp dl‘e:rp _(]D <ID >) A
dx exp dx exp dx exp dx exp
(4.16)
where A = 4EX _ dET

dz exp dw exp”

‘dx Res dID
For the PID pdf of combinatorial background we have assumed that the background
is composed only of pions and kaons. The PID pdf has the form:

a-pdf+(ID) + (1 —a) - pdfx (ID) (4.17)

where a is the fraction of pions in the combinatorial background. This fraction is left
free to float in the maximum likelihood fit. pdf, and pdfy are the PID pdf of pions and
kaons respectively, obtained using the functions of the combined PID package [65].

dE
So the ID distribution is p(I D) = p(4£ ,_ (1D))| "k | = p(ID— < ID >)-A)-|A].

4.8 Fit implementation and test on toy MC

We implemented the fit using mass, kinematics and PID parameterizations described
above and we tested it on Toy MC. We generated 1000 pseudoexperiments of 10000
events each. The fractions used to generated these Toys MC are:

e Background fraction with respect to the total event: b = 0.26
o D'+ fraction with respect to the total signal: f, = 0.94

o D1+ fraction with respect to the total background: fp = 0.18

e Pion fraction in the combinatorial background: f, in combinatorial background =
0.8

The proof that the fit is working well is the pull distribution of each fraction (b, f;,
fp and f, in combinatorial background). The pull of each fraction is defined as the
ratio of the difference between the fitted value and the true value of the fraction, over
the uncertainty on the fitted value. In Fig. 4.31, the pull distributions are shown. On

the top left the pull relative to the Dt fraction, on the top right the one relative
to the fraction of pions in the combinatorial background, on the bottom left the one
relative to the D+ and finally on the bottom right the one relative to the background
fraction b. The pulls of the background fractions (b and fp) have a small bias, but
the important thing is that the pull of the D'nt fraction, that is the fraction used to

N(B*—D°K+) . .
—= "= is centered in zero.

calculate the ratio ——,
N(B+—D 7t)
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Figure 4.31: Pull distributions. Top left: D’nt fraction. Top right: fraction of pions in the
combinatorial background. Bottom left: D"+ fraction. Bottom right: background fraction.

4.9 Fit results

The fit is performed on the events of BT — E?clavﬂ+ with the requirement that the
track from Bt and a D° track are trigger tracks. The fit windows are [5.17,5.6] GeV /c?
in mass, [7,30] GeV/c in Py, [-0.8,0.8] in o and [-4,4] in ID.

We are interested in the measurement of

_ BR(B* = D'K* — [Ktr ]K™")

R — .
BR(Bt — D'nt — [K*m=|rt)

(4.18)

The raw fit results are summarized in the table 4.1. We label with “raw” the fit
output which has not yet been corrected for the relative efficiencies.

The background fraction, f(B* — EOW+) and f(Bt — E*OWJF) are respectively b,
f= and fp present in the Likelihood expression (4.8) described in the Section 4.3.
The parameter “pion fraction in the combinatorial background” was introduced to
express the particle identification pdf of combinatorial background as was described
in section 4.7. We assumed a combinatorial background composed only of pions and
kaons; the fraction of pions is left free to float in the main fit.
The parameter “scale” allows to correct the difference between data and MC about
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BR(B+—D'n+t)
Parameter Value

background fraction 0.187 4+ 0.009

f(B+ = D’n) 0.936 + 0.006
f(B+* = Dnt) 0.16 4 0.03
pion fraction in the combinatorial background  0.74 + 0.04
scale 1.06 £+ 0.02
Slope of the combinatorial background —-3.4+0.5

Table 4.1: Raw results from the maximum likelihood fit.

the width peak (section 4.5.1).
The last parameter is the slope of the combinatorial background mass shape that was
left free in the fit as discussed in section 4.5.2.

From these values we can extract other interesting information:

o f(B* > D'K+)=1— f(Bt = D'r*) = 0.064 % 0.006

Combinatorial background fraction = 0.84 £ 0.03

Number of BT — D at — 3265 + 38

Number of Bt — DU K+ = 294 4+ 92

Number of BT — D 'zt — 132 + 22

Finally we can extract the raw result of the ratio R:

N(B* — D'K™)
N(B+ — b%ﬁ) RAW

Rlpaw = — 0.069 = 0.007. (4.19)

-0
Comparing our result with the Belle result, BRIBT=D KD) _ 077 + 0.005(stat.) £
BR(B+*—D nt)

0.006(sys.) [82] obtained with 6000 events of BT — EOWJF, the statistical errors are very

similar, considering that we have 3300 Bt — D’nt. We cannot do a true comparison
with Babar result, because to calculate this ratio they used also the D — K- ntrtn~
and D° — K~7t7° obtaining more statistics and a smaller statistical error.

4.9.1 Efficiency corrections

In order to translate the raw result of the fit into measurement of the ratio R we need
to apply corrections for the relative efficiency. The raw fraction output by the fit is
corrected with an efficiency factor e:

€ = €trig * €reco * €cuts * CXFT (420)
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where €, is the trigger efficiency, €., is the reconstruction efficiency, €qus is
the analysis cut efficiency and Cxpgp is a correction that accounts for the fact that
simulation does not reproduce the difference of the XF'T efficiency between charged
kaons and pions observed in data.

The product €4ig%€peco*€cuts 18 the kinematical efficiency (ex;,,) that can be estimated
using MC signal samples. The XF'T correction factor C'x gy, instead, has been measured
on data [66].

Below we show how the efficiency corrections are applied to the raw result of the fit in
order to extract the final value of relative BR:

BR(B* — D'K*) N(B* —D'K*") erin(BY — D'nt)  Cxpr(BY — D'nt)
BR(B* — D'nt)  N(B+ — D'nt) RAW ¢ (B+ — D°K+) Cxpr(B+ — D K*+)
(4.21)

Using the simulation of BT — D't and of Bt — D' K+ we obtained:

ekin(B+ — EOW+)

erin(B+ — D K+)

= 0.919 & 0.006. (4.22)

Cxrr is the correction needed to account for the different XF'T efficiency between
charged kaons and pions, this is due to the different specific ionization in the COT
volume, in fact the charged pions tend to ionize more than charged kaons. The conse-
quence is a larger pulse width for pions compared to kaons and then a larger number
of hits in the COT chamber. Due to the requirements on the number of Axial COT
hits imposed by the XFT trigger (Section 2.8.1), this can reflect in a different efficiency
for kaons and pions. This effect, is not well reproduced in the simulation, and will not
cancels in the acceptance ratios estimates, resulting in a bias in the measurement of
the relative branching fractions. This different XF'T efficiency has been measured by
an accurate study using DT — K~ntnt decays [66].

The correction is:

CXFT(B+ — EOT+)
Cxrpr(Bt — D'K+)

— 1.02 £ 0.06 (4.23)

After applying the corrections we obtained the following result:

N(B* = D'K*) eun(B* — D'1*) Cxpr(BT — D'n%)
N(B+ — D'n+) eun(B+ — D'K+) Cxpr(B+ — D K+)

R=— = 0.06540.007(stat).

(4.24)

4.9.2 Fit projection

In order to visualize the agreement between the fit and the data we reported the plots
of fit projections. A projection of the generic probability density function pdf (z, 7/'|7)
on the observable x is the plot of the function fauj pdf(z,y |m)dy , which can be
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overlaid to the experimental data with the appropriate normalization.

In Fig. 4.32, 4.33, 4.34 and 4.35 the projections, respectively, on the mass, on the «a

variable, on P, and on the ID variable are shown.

The points are data and the solid line are the fit projections.

In particular in red we have the total projection, in green the projection relative to

the Bt — E%r*, in blue the one relative to the BT — EOK+, in magenta the one

relative to the B¥ — D" and finally in black the one relative to the combinatorial

background.

For each projection the plot of the difference between projection and data (second plot

from the top) and the corresponding residual distributions (third plot from the top)

are shown. The resulting x? are:

o 2= % for the mass distribution;
o x? =22 for the a distribution;
o = % for the P, distribution;

o x*> = & for the ID distribution.
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4.10 Systematics

In the following sections we will describe the main sources of systematic uncertainties:
e Mass resolution tails in D 7™ and D K™ decays;
e Value of the input mass B*;
e Systematics associated with % distribution;

e Combinatorial background systematics due to the mass model, to the kinematical
parameterization and to the PID assumptions;

—x0
e D 7 mass model;

e Montecarlo statistics and XF'T efficiency.

4.10.1 Mass resolution tails

In the simulation the invariant mass distribution of D 7+ and D' K+ samples present
some tails that we can parameterize adding a constant to the three gaussians. In Fig.
4.36 the invariant mass distributions and the new fitting curves are shown. On the left
the D 7" mass and on the right the D K+ one. We repeated the fit using these new
fitting curves and the resulting systematics is 0.001.

MDOpi - delta(alfa,ptot) e RO mpipRCoTH o MDOpi - delta(alfa,ptot) e MKpEGONH 7w
E Mean 5.278 E Mean 5.279

£ RMS 0.02132 E RMS 0.01919
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E Prob 0.001464 E Prob 0.9335
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r p2 0.01295 + 0.00011 r p2 0.05817  0.00461
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C pé 4;22 * ggg; C p6 121+89

L p7 5.266 % 0. L p7 5.279 + 0.000

L p8 0.05923 + 0.00262 L 8 0.01386 + 0.00029

10E 10 p
E ‘ ‘ p9 034695010510 E p9 0.2273 £ 0.0395
A1 ikt ST | Ty 1
| [ | | P O | |
8

PRV 1 e [ Y O
48 49 5 51 52 53 54 55 56 57 58 49 5 51 52 53 54 55 56 57 58

IN

Figure 4.36: BT Invariant mass distributions of signal decays. On the left the D'zt and on
the right the D'K+. The continuous lines are the fit using three gaussians plus a constant.

4.10.2 Input mass

The Bt mass is an input parameter to the fit through the analytic expression of
M(a,P,y) (equations (4.6) and (4.7)). As BT mass value we used 5279.10+0.41(stat.)+
0.36(sys.) MeV /c? measured with the CDF II detector [83]. We repeated the fit varying
the input mass of £1¢ and the resulting systematics is 0.001.
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4.10.3 dE/dx induced systematics

To evaluate the systematics associated with dE/dx measurement we repeated the fit
varying the parameters of the Likelihood functions randomly in a lo-radius multidi-
mensional sphere in the space of the parameters of dE/dx calibrations. This method
was described in Section 3.4. The resulting systematics is 0.0015.

4.10.4 Combinatorial background systematics
Mass model

The central fit assumes a mass-shape of the combinatorial background events dis-
tribuited as an exponential function. To evaluate the systematics we have changed the
mass shape, looking at the sample obtained requiring L,, < —300um. We repeated
the fit using as mass shape different polynomial functions of increasing degree, up to
the third. In Fig. 4.37 the fits of the mass-shape using the polynomial are shown:
on the top left a first degree polynomial was used, on the top right a second degree
polynomial and on the bottom a third degree polynomial. The resulting systematics
is 0.001.
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Figure 4.37: Fit of the combinatorial background mass using polynomial.
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Kinematical parameterization

To evaluate the systematics associated to the kinematical parameterization of the com-
binatorial background we repeated the fit using the p(«, P,y ) distributions of D'nt and
of D'K* for the background. The resulting systematics is 0.001.

Particle Identification

In the main fit we assumed that the fraction of pions in combinatorial background is
not mass dependent. To verify that, we fitted two distinct pions fractions, one in the
mass window [5.17-5.4] GeV/c? and one in the mass window [5.4,5.6] GeV/c¢? . We
obtained:

e fraction of pions in [5.17-5.4] GeV/c? = 0.76 + 0.05
e fraction of pions in [5.4-5.6] GeV /c?= 0.72 + 0.05

that are in agreement within the error.

Another assumption is relative to the composition of the combinatorial background.
We assumed a background of only pions and kaons. To evaluate the systematics asso-
ciated with ignoring protons and electrons we made 100 toy MC with also protons and
electrons in the background. The background composition of each toy is 70% of pions,
10% of protons, 2% of electrons and 18% of kaons. We fitted the toy MC with the
N(B+—D°K)
N(B+—D'r+)
between the fitted value and the true value) in Fig. 4.38, centered in zero, we confirm
that the fit is not sensitive to the electrons and protons contribution.

main fit and, observing the residual distribution of the ratio (difference

4.10.5 D’z* mass model

To evaluate this systematics we left free to float in the main fit some parameters of the

D7+ mass parameterization. We parameterized the D7+ mass with three gaussians
plus an exponential in the range of mass [5.06,5.6] GeV /c? as described in section 4.5.2.
N(B+*—D°K+)
N(B+—D'r+)
the main fit the parameters of the exponential or of the gaussian that falls in the fit
window [5.17,5.6] GeV/c?. We made some test:

The idea is to see how the result (the ratio ) change letting free to float in

o We left free to vary in the main fit the slope of the exponential and we obtained
NBEDED) _.069 + 0.007.

N(B+—D'x+)

—0
e We left free to vary the mean of the gaussian obtaining w = 0.066 £
0.007 N(B+—D'xt)

o We left free to vary, simultaneously, the slope of the exponential and the mean of

—0
the gaussian obtaining % = 0.066 %+ 0.007.
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value and the true value) obtained fitting with the main fit a toy MC where besides kaons
and pions are present protons and electrons. The residual is centered in zero, so the fit is not

sensitive to the electron and the proton contribution.

Figure 4.38: Residual distribution of the ratio (difference between the fitted

The resulting systematics is 0.003.
We also make the fit with another parameterization for the D*%7 mass (Fig. 4.39).
The resulting systematics is 0.001.
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Figure 4.39: Fit of the D7t mass with 2 gaussians plus an exponential in the mass range
[5.15,5.6] GeV/c2.
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4.10.6 Check of D7 mass model

To check the validity of treatment of the Dnt decay, we compare the result with the
simulation.

In Fig.4.40 data and prediction are overlaid. The points are data, the red curve
from 5.17 to 5.6 GeV/c? is the projection obtained from the main fit, the blue curve is
the sum of the MonteCarlo sample and of the combinatorial background. In magenta
and in green we can see the two components separately, respectively the MonteCarlo
sample and the combinatorial background.

The combinatorial background is normalized to the number of events of background
fitted in the window [5.17,5.6] GeV/c®. The MonteCarlo sample is normalized to the

number of D" 7+ fitted in the window [5.17,5.6] GeV/c?. From the plot, we observe
that the prediction is lower than the data.
Since the fit returns a fraction of D' 7+ with an uncertainty, we made the same

plot normalizing the MonteCarlo sample to the number of Dr+ fitted in the window
[5.17,5.6] GeV/c? plus 1o (we used fp + 10). We obtained the plot shown in Fig.4.41
where there is a good agreement between the prediction and the data.

Massa

600

500

400

300

i

200

100

Figure 4.40: Invariant mass of D't candidates. Prediction (continuous lines) superimposed
to data (points). The red curve is the projection obtained from the main fit. The blue curve
is the sum of the MonteCarlo sample (in magenta) and of the combinatorial background (in
green). We normalized the combinatorial background to the number of events of background
fitted in the window [5.17,5.6] GeV/c?. We normalized the MonteCarlo sample to the number

of D7+ fitted in the window [5.17,5.6] GeV/c?. The prediction is lower than the data.

We also attempt a fit in a wider mass window, from 5.11 to 5.6 GeV/c?. In this
fit window besides the D™’r+ there are other physical backgrounds to consider as we
observed in Fig.4.5 where the invariant mass spectrum of Bt — D’r+ from simulation
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Figure 4.41: Invariant mass of D7+ candidates. Prediction (continuous lines) superimposed
to data (points). The red curve is the projection obtained from the main fit. The blue curve
is the sum of the MonteCarlo sample (in magenta) and of the combinatorial background (in
green). We normalized the combinatorial background to the number of events of background
fitted in the window [5.17,5.6] GeV/c?. We normalized the MonteCarlo sample to the number
of D7+ fitted in the window [5.17,5.6] GeV/c? plus 1o (we used fp + 1o). The prediction
and the data are in agreement.

is shown.

To add these decays to the unbinned maximum likelihood fit we have to parameterize
their mass shape. We parameterized the mass shape of these other physical background,
the D**7—, the DK+ and “other decay” with a gaussian plus an exponential. In
Fig.4.42 the fits are shown. On the top left the D**7—, on the top right the DK+
and on the bottom ”other decay”. We need also a parameterization of the 2-dimensional
distrbution a vs Py. As p(a, Pyy) distribution we used the one of the D't for all the
three other physical background.

The result of the fit is 0.07240.007 (remind that the central fit value is 0.06940.007).
The two results differ of 0.003, that is of the same order of the systematics that we put
on the D7+ model.

In Fig.4.43 the fit projections are shown.

After all these checks we can conclude that the systematics on the Dnt is evalu-
ated in the correct way.
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Figure 4.42: Fit of the mass shapes of the other physical background using a gaussian plus

an exponential. On the top left the D*T7~, on the top right the DK+ and on the bottom
“other decay”.
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Figure 4.43: Projections of the fit in the window [5.11-5.6] GeV/c2. On the top left the mass
projection, on the top right the Py projection, on the bottom left the a projection and
finally on the bottom right the ID projection.
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4.10.7 Monte Carlo statistics and XFT efficiency

This is the uncertainty deriving from the limited statistics of the Monte Carlo samples
used to estimate the relative efficiencies and from the error on the XFT efficiency
(equation (4.23)) that dominates this systematics. The resulting systematics is 0.002.

4.10.8 Total systematic uncertainties

A summary of the all systematics is reported in table 4.2. The total systematic uncer-
tainty has been determined as the sum in quadrature of the single systematic uncer-
tainty.

Source Shift wrt central fit
Mass resolution tails 0.0006
Input mass 0.001
dE/dx 0.0015
combinatorial background model 0.001
D7 left free in the fit 0.003
changing D*97 mass model 0.001
MC statistics+XFT eff 0.002
Total(sum in quadrature) 0.004

Table 4.2: Systematics summary.

4.11 Final result
We measured the ratio

_ BR(B* — D'K* — [Ktr ] K™)

R —
BR(B* — D'nt — [K+r-]rt)

= 0.065 £ 0.007(stat) £ 0.004(sys). (4.25)

The world average for this ratio is 0.083 £ 0.0035. This result comes out from the
combined measurement of Belle (0.07740.005(stat.)£0.006(sys.) [82]), Babar (0.0831+
0.0035(stat.) & 0.002(sys.) [84]) and Cleo (0.09970015(stat.) 000 (sys.) [85]).

4.12 Fit of Bt — DYp 7" with Dp, - K- Kt a ot

We also make the Unbinned Maximum Likelihood Fit on the Dgp, 7 decays. We
separated the B* and B~ because we have to calculate the Acp, asymmetry defined
in equation (1.36).

The raw fit results for B — Dgp 7 with DYp, — KTK~ are summarized in the
table 4.3 both for B~ and B™. The parameter of scale, that multiply the widths of the
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Parameter B~ Bt
background fraction 0.61 £0.03 0.59 +0.03
f(B— Dp . m) 0.90 +0.04 0.89 + 0.04
f(B — D*97) 0.07£0.03 0.07+0.03
pion fraction in the combinatorial background 0.75 4+ 0.05 0.62 + 0.05
Slope of the combinatorial background —2.24+0.7 —-214+0.7

Table 4.3: Raw results from the maximum likelihood fit on the DCP sample (Dcpy —
KTK™).

gaussians that describe the mass resolution, to take in account the differences between
data and MC, is fixed by the fit on the flavor sample.
From these values we can extract other interesting information for B~:

o f(B-—=D2p,K7)=1—f(B~ — D2p,.m")=0.10+0.04
Combinatorial background fraction = 0.93 £ 0.03
Number of B~ — Dgp, m~ = 206 £ 16
Number of B~ — Dgp, K~ =224+9
Number of B~ — D*7~ = 24 £ 12
and for BT
o [(Bt > D2p,Kt)=1— f(Bt — D2p,. ") =0.114+0.04
Combinatorial background fraction = 0.93 £ 0.03
Number of B* — Dgp, nt = 210 £ 16
Number of B* — D2, K+ =25+ 10
Number of B¥ — D%zt =254+ 10

The raw fit results for B — Dgp 7 with Dgp, — 77~ are summarized in the
table 4.4 both for B~ and B*.

Parameter B~ Bt
background fraction 0.69 £0.04 0.76 +0.04
f(B— D%P+7r) 0.89 +0.06 0.92 4+ 0.07
f(B — D*r) 0.10+0.04 0.0 4 0.02
pion fraction in the combinatorial background 0.69 +0.06 0.68 4+ 0.06

Table 4.4: Raw results from the maximum likelihood fit on the DCP sample (Depy — 7).

From these values we can extract other interesting information for B~:
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o f(B-—= D%, K-)=1—f(B™ = D%p, ) = 0.11 £ 0.06

Combinatorial background fraction = 0.90 £ 0.04

Number of B~ — Dgp, m~ = 72+9

Number of B~ — Dp, K~ =9+£5
e Number of B~ — D97~ = 18 £6
and for Bt
o [(BY — D%p, K+)=1— f(B* — Dlp, m") = 0.08 %+ 0.07
e Combinatorial background fraction = 1.0 £ 0.02
e Number of B* — D, 7t = 61+ 10
e Number of Bt — Dgp . KT =545
e Number of BY — D0zt =145

In order to visualize the agreement between the fit and the data we reported the
plots of fit projections. In Fig. 4.44 and 4.45 the fit projections on mass (top-left), a
(top-right), Py (bottom-left) and ID (bottom-right), for D2 p, m with Dgp, — KTK~
modes, respectively for B~ and BT are shown. In Fig. 4.46 and 4.47 the fit projections
for D¢ p, m with D%p, — 7t~ modes, respectively for B~ and B* are shown. The
point are data and the solid line are the fit projections. In particular in red we have
the total projection, in green the projection relative to the B — D2, 47, in blue the
one relative to the B — D, K, in magenta the one relative to the B — D*r and
finally in black the one relative to the combinatorial background.

The available statistics is too low to obtain a measurement of Acpy (equation
(1.36)) and Repy (equation (1.38)). We describe an evaluation of the obtainable
resolution with larger samples in the following section.
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Figure 4.44: Fit projections for B~ — D%Pﬂr* — [KTK " |n~. Top left: projection on mass.
Top right: projection on a. Bottom left: projection on F;,:. Bottom right: projection on ID.



4.12. FIT OF Bt — D2p, at WITH D¢.p, — K K*, 7 a* 143

Massa Alpha
C 16—
50— 1
F 12
40— C
L \ ]‘ 10—
& i3
20 *F
10— r B
0;4 ‘# AR
515 52 €25 53 535 54" 5 4555 558 56 Q.
P_tot 1D
sf 35—
- 30
20—/ =
C 25—
15i 20
ol 5t
JJ{ \ k = k
‘ \ 10
| \. E
51 Q E {
18 i 5— J{
0;,‘7 P r,,\,TL ”“H i A’QEFQQEL*L 0: R e i1
10 15 30 g 2

Figure 4.45: Fit projections for BT — DCP+7T — [KT K |xT. Top left: projection on mass.
Top right: projection on a. Bottom left: projection on F;,:. Bottom right: projection on ID.
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Figure 4.46: Fit projections for B~ — D%Pﬂr* — [rT 7~ ]7—. Top left: projection on mass.
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4.12.1 Uncertainties achievable on Acp,., Rcpy

We have performed an initial evaluation of resolution by performing a em blind fit
with the full sample of 1fb~!. While the actual parameters need much more work to
be determined, a good indication of the achievable resolution can be obtained in this
way.

In this fit T performed a simultaneous determination of the flavor mode Dlrt —
[K*m~]nt and the DCP modes D p, nt — [K* K™, 7wt~ |, In this way we can use
all the statistic to fit the parameters that are the same for all the three decays.

Recalling the expression of the fit Likelihood:

Nevents

L= ] ((1=b)-(fx: Fe(o, Ptot. Mpor, ID) + (1 — f) - Fi (o, Ptot, Mpo, ID)) +
k
+b-(fp-BGp(a, Ptot, Mpo,,ID) + (1 — fp) - BGeomp(v, Ptot, Mpo,, D).

the parameters of the maximum Likelihood fit are:

e the background fraction (b);

the fraction of BT — D a+ (fr):

the fraction of physical background Bt — Dt (fp);

the fraction of pions in the combinatorial background;

the parameter “scale”, that multiply the width of gaussians that describe the
mass resolution, to take in account the differences between data and MC;

e the slope of the exponential that describe the combinatorial background.

In the simultaneously fit the parameter of scale is common to the three decays. The

fraction of BT — D 7" is common to both the DCP modes (BT — [K+TK~|x* and
Bt — [ntn™|n ™).
Performing the fit on 1 fb~! of integrated luminosity we obtained ~ 10,000 B* —
Dt — [K*7~]7", so we have tripled the statistics with respect to the 360 pb~! of
data. The resolutions on Acpy and Repy obtained from the fit on 1 fb~! of data are
0.12 and 0.28 respectively.



Conclusions and Prospects

In this thesis I have described the first measurement performed at an hadron collider
of the branching fraction of the Cabibbo-suppressed mode BT — DK+,

The analysis has been performed with 360 pb~! of data collected by the CDF II
detector. We measured the ratio

_ BR(B* — D'K* — [Ktr ] K™)

R —
BR(Bt — D't — [K+7m=]7T)

= 0.065 £ 0.007(stat) £ 0.004(sys).

in agreement with the world-average value of 0.083 4 0.0035.

This measurement was approved by the CDF Collaboration (”blessed”) in April
2006.

The methodology developed for this analysis is applicable to the measurement of
CKM angle v with the GLW and ADS methods. The GLW analysis on 1 fb~! of data
is underway, measuring

BR(B~ — Dgp K™) — BR(B* — D¢p. K™)
BR(B= — Dlpu K-) + BR(BF = Dip, K7)

ACP:I: =

and
BR(B~ — DgpyK™) + BR(B* — Dgp KT)

BR(B- — D'K-) + BR(B+ — D K+)

Reps =

A first test on data shows that the resolutions can be achieved with 1 fb~! are:
Oacp, = 0.12 and op.,, = 0.28.

We can compare these resolutions with the ones reached by Belle and Babar (see
Tables 1.1 and 1.2) that are 0.14 (Belle) and 0.13 (Babar) for Acp, and 0.16 (Belle)
and 0.12 (Babar) for Rop..

So the resolutions obtained on 1 fb~! are similar to the ones obtained from the
B-factories, and we can look forward to obtain good results from the large run II data
sample.
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