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Deutsche Zusammenfassung

Einleitung

Der Übergang neutraler Mesonen zwischen Teilchen- und Anti-Teilchen-Zustand wird
Oszillation (oder Mischung) genannt. Dieses Phänomen ist im Rahmen des Standard-
modells dadurch erklärt, dass die Eigenzustände der schwachen Wechselwirkung nicht
die Masseneigenzustände sind.
Die Mischung wurde 1955 für das K0-K̄0-System vorausgesagt und 1956 zum ersten
Mal beobachtet. Die Mischung von neutralen B-Mesonen wurde das erste Mal 1987
im B0

d-System nachgewiesen. Die Oszillationsfrequenz des B0
d-Mesons, ∆md, wurde

von verschiedenen Experimenten genau gemessen und der derzeitige Weltmittelwert
ist ∆md = 0.502 ± 0.007 ps−1.
Die Oszillation des B0

s -Systems wurde beobachtet, die Frequenz ∆ms aber noch nicht
bestimmt. Das Standardmodell sagt voraus, dass B0

s -Oszillationen sehr schnell sind,
und dass der Wert von ∆ms in der Größenordnung von 10 ps−1 liegt. Ein Wert größer
als 25 ps−1 kann nicht durch das Standardmodell erklärt werden und wäre ein Hinweis
für Neue Physik.
Eine untere Grenze für ∆ms wurde bisher von verschiedenen Experimenten
bestimmt. Die Kombination der Messungen ergibt eine Ausschlussgrenze von
∆ms > 14.4 ps−1 (mit 95% C.L.). Fehlende Statistik war bisher der limitierende Fak-
tor für alle Experimente, die eine B0

s -Oszillations-Analyse durchgeführt haben. Bis
zum Start des Large Hadron Colliders (LHC, Cern) Ende 2007 sind CDF1 und DØ die
einzigen Experimente, welche die Frequenz der B0

s -Oszillation messen können. Beide
Experimente liegen am Tevatron, einem p-p̄ Beschleuniger am Fermilab in Batavia
(Illinois, USA).
CDF hat in Run I (1985-1996) eine untere Grenze für ∆ms ermittelt. Der Betrieb vom
Tevatron wurde 2001 nach einer Verbesserung des Beschleunigers und der Detekto-
ren wieder aufgenommen (Run II). CDF und DØ haben bei den Winterkonferenzen
2005 die Resultate der ersten B0

s -Mischungsanalyse mit Run II Daten gezeigt. Die am
Tevatron bestimmte untere Ausschlussgrenze für ∆ms liegt derzeit unter dem Welt-

1Collider Detector at Fermilab
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mittelwert. CDF und DØ erwarten aber eine höhere Sensitivität bis zum Sommer
aufgrund mehrerer Verbesserungen der Analyse. Eine der Verbesserungen der CDF
Analyse wird in dieser Doktorarbeit beschrieben.
Diese Arbeit befasst sich mit der Entwicklung eines Algorithmus, der b- und b̄-Quarks
unterscheiden kann (b-Flavour Tagger). Dazu wird mit Hilfe eines neuronalen Netzes
eine Größe entwickelt, die anhand von Eigenschaften einer rekonstruierten Teilchen-
spur die Wahrscheinlichkeit dafür angibt, dass dieses Teilchen aus einem B-Hadron-
Zerfall stammt (B-Spurwahrscheinlichkeit). Diese Wahrscheinlichkeit wird dann in ei-
nem weiteren neuronalen Netz dazu benutzt, um die Wahrscheinlichkeit zu bestimmen,
dass ein Jet die Zerfallsprodukte eines B-Hadrons enthält (B-Jets). Der Algorithmus
des auf neuronalen Netzen basierenden Jet-Charge-Taggers (neuronaler Jet-Charge-
Tagger) wählt aus einem Ereignis den Jet mit der höchste Wahrscheinlichkeit aus. Er
berechnet die Jet-Ladung aus den Ladungen der Spuren im Jet gewichtet mit der jewei-
ligen B-Spurwahrscheinlichkeit. Die Leistungsfähigkeit des Taggers wurde auf Daten
gemessen und ist um 30% besser als die eines vergleichbaren Taggers, der Schnitte zur
Selektion der Tagging-Jets benutzt.
Für die Entwicklung eines neuronalen Netzes ist es wichtig, dass die simulierten bb̄-
Ereignisse die Daten genau beschreiben. Zu diesem Zweck wurden die verschiedenen
bb̄ Produktionsmechanismen in Monte-Carlo-Daten untersucht, und eine verbesserte
Simulation eingeführt, die die experimentellen Daten besser beschreibt.

Die B0
s-Mischungsanalyse

Um die B0
s -Oszillationsfrequenz zu bestimmen, muss die zeitabhängige Asymmetrie

zwischen der Anzahl von gemischten und ungemischten B0
s -Kandidaten gemessen

werden. Diese Analyse benötigt die Rekonstruktion des Signals in einem Flavour-
Eigenzustand, die Messung der Zerfallszeit und die Identifikation der Ladung des b-
Quarks, das das B0

s -Meson enthielt als es erzeugt wurde.
Die Signifikanz für ein B0

s -Oszillationssignal ist nährungsweise

Sig =

√

SεD2

2

√

S

S +B
e−

(∆msσt)
2

2 (1)

wobei S die Anzahl der rekonstruierten B0
s -Kandidaten, εD2 die Leistungsfähigkeit des

Taggers, B die Anzahl der Untergrundereignisse und σt die Auflösung der Messung
der Eigenzeit des B0

s -Mesons ist. Die Eigenzeitauflösung hängt von der Zerfallslängen-
und der Impulsauflösung ab. Die Signifikanz nimmt mit wachsendem ∆ms ab. Um
schnelle Oszillationen aufzulösen, benötigt man eine exzellente Zerfallslängen- und
Impulsauflösung, niedrige Fehltag-Raten und hohe B0

s -Rekonstruktionsreinheit.
Am Tevatron werden b-Quarks meist paarweise erzeugt und fragmentieren unabhängig
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voneinander in B-Hadronen. Das B0
s -Meson wird durch die Kombination seiner Zer-

fallsprodukte zu einem Vertex rekonstruiert. Die Eigenzeit wird aus dem Transversal-
impuls und der Zerfallslänge in der Transversalebene berechnet. Die Teilchenspuren
in der Umgebung des B0

s -Kandidaten definieren die Same-Side des Ereignisses. Die
übrigen Teilchenspuren gehören zur Opposite-Side und werden benutzt, um das zweite
B-Hadron des Ereignisses inklusiv zu rekonstruieren. Die Ladung des B0

s -Kandidaten
beim Zerfall wird aus den Zerfallsprodukten bestimmt. Die Ladung bei der Produktion
kann bestimmt werden durch Fragmentationspuren, die den Übergang b̄→ B0

s beglei-
ten, und Zerfallsprodukte und Fragmentationspuren, die sich auf der Opposite-Side
befinden.
Der Jet-Charge-Tagger ist ein Opposite-Side-Tagger, der die Ladungskorrelation zwi-
schen dem b-Quark und den Spuren in seiner Umgebung ausnutzt. Er zeichnet sich
durch eine große Effizienz aus. Eine Verbesserung der Reinheit führt deshalb zu einem
signifikanten Gewinn der Leistungsfähigkeit.

Der Monte-Carlo-Datensatz

Die bb̄-Ereignissimulation, die bisher für Tagginguntersuchungen benutzt wurde,
enthält nur Prozesse, in denen zwei schwere Quarks an der harten Streuung teil-
nehmen (Flavour-Creation, Abb. 1a und Abb. 1b). Es wurde festgestellt, dass diese
Simulation nicht ausreicht, um bb̄-Ereignisse in Daten zu beschreiben. Ein Monte-
Carlo-Datensatz, der Flavour-Erzeugung und zusätzliche Prozesse enthält, wird in
dieser Arbeit eingeführt. Die zusätzlichen Prozesse im Rahmen des Parton-Schauer-
Modells sind Flavour-Excitation (FE), bei dem nur ein b-Quark an der harten Streuung
teilnimmt (Abb. 1d), und Gluon-Splitting (GS), bei dem kein schweres Quark an der
harten Streuung teilnimmt (Abb. 1e und 1f). Die drei verschiedenen Prozesse entspre-
chen verschiedenen Korrelationen zwischen den schweren Quarks.
Der neuer Monte-Carlo-Datensatz beschreibt die Daten besser als die Simulation, die
nur Flavour-Creation-Prozesse enthält (Abb. 1, rechts). Außerdem unterscheidet sich
in den zwei Sätzen die Schätzung der Leistungsfähigkeit des Opposite-Side-Tagger.
Die Simulation, die auschießlich Flavour-Creation-Prozesse enthält, ergibt einen zu
optimistischen Wert.
Die verbesserte Simulation sagt voraus, dass in etwa 40% der Ereignisse, die durch
ein Lepton und eine verschobene Spur getriggert werden (`+SVT Sample), nur ein
b-Quark in dem Akzeptanzbereich des Detektors zu finden ist. Die Trennung von B-
Hadron-Spuren aus Fragmentationsspuren ist nur schwer durch Schnitte möglich. Mit
Hilfe der in dieser Arbeit eingeführten B-Spurwahrscheinlichkeit kann die Trennung
besser durchgeführt werden.
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Abbildung 1: Links: Feynmandiagramme der wichtigsten bb̄-Produktionsprozesse, (a), (b)
und (c) sind Flavour-Creation-Prozesse, (d) ist ein Flavour-Excitation-Diagramm, (e) und
(f) entsprechen Gluon-Splitting-Prozessen. Rechts: Vergleich von Daten und zwei Monte-
Carlo-Datensatz für die Verteilung der Anzahl von Spuren, die auf der Opposite-Side zu
finden sind. Der Datensatz mit zusätzlichen Prozessen beschreibt die Daten erheblich besser.

B-Spur- und B-Jet-Wahrscheinlichkeit

Anhand des Monte-Carlo-Datensatz wurden die B-Spur- und die B-Jet-Wahrschein-
lichkeit entwickelt. Die B-Spurwahrscheinlichkeit wird durch die Kombination von
Informationen, die spezifisch für B-Hadron-Zerfallsprodukte sind, mit Hilfe eines neu-
ronalen Netzes gebildet. Zu diesen Informationen gehören unter anderem der Abstand
oder die Richtung der Spur bezüglich der Jet-Achse. Die Wahrscheinlichkeitsvariable
trennt erfolgreich Teilchenspuren, die aus einem B-Hadron-Zerfall stammen, von dem
Untergrund sowohl in simulierten Ereignissen als auch in experimentellen Daten.
Aufbauend auf der B-Spurwahrscheinlichkeit werden mehrere Jet-Variablen definiert,
z.B. die Spur mit der höchsten B-Spurwahrscheinlichkeit im Jet oder die Sum-
me der Wahrscheinlichkeiten aller Spuren. Diese werden wiederum mit Hilfe ei-
nes neuronalen Netzes kombiniert und ergeben eine B-Jet-Wahrscheinlichkeit. Die-
se kann Jets, die aus einem b-Quark stammen, vom Untergrund sowohl in Daten
als auch im Monte-Carlo (Abb. 2, links) trennen. Die Separationsleistung der B-Jet-
Wahrscheinlichkeitsvariablen ist besser als die von einer zuvor benutzen Variablen, die
nur auf dem Abstand der Spuren zum Primärvertex basiert (Abb. 2, rechts).
Es werden drei Jet-Typen definiert: Jets mit einem rekonstruierten Sekundärvertex,
Jets ohne rekonstruierten Sekundärvertex und mit mindestens einer Spur, die ei-
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Abbildung 2: Verteilung der B-Jet-Wahrscheinlichkeit für alle rekonstruierten Jets (links)
und Vergleich der Separationseistung der B-Jet-Wahrscheinlichkeitsvariablen mit einer Va-
riable, die nur Informationen über den Abstand der Spur zum Primärvertex verwendet
(rechts).

ne B-Spurwarscheinlichkeit größer als 50% besitzt; Jets ohne rekonstruierten Se-
kundärvertex und ohne eine Spur mit einer Wahrscheinlichkeit größer als 50%. Als
Tagging-Jet für den neuronalen Jet-Charge-Tagger wird der Jet im Ereignis mit der
höchsten B-Jet-Wahrscheinlichkeit ausgewählt.

Neuronaler Jet-Charge-Tagger

Die Effizienz ε eines Taggers gibt an, für welchen Anteil der Ereignisse eine Aussage
über die Produktionsladung des b-Quarks gemacht werden kann. Die Dilution D misst,
wie wahscheinlich es ist, dem Ereignis die richtige Ladung zuzuordnen. Die Tagging-
leistung ist durch ε ·D2 gegeben.
Der neuronale Jet-Charge-Tagger verwendet die B-Jet-Wahrscheinlichkeit Pnn, um
einen B-Jet zu selektieren, und nutzt die B-Spurwahrscheinlichkeit als Gewicht für
die Berechnung der Jetladung Qjet. Die Leistungfähigkeit des Taggers wird mit dem
`+SVT Datensatz gemessen. Um eine größere Leistung zu erreichen, wird der Daten-
satz in Bereiche unterteilt, die unterschiedlichen Werte von |Qjet|·Pnn und unterschied-
lichen Jet-Typen entsprechen. Die Leistungsfähigkeit wird in jedem Bereich getrennt
gemessen, und die Summe ergibt die kombinierte Leistungsfähigkeit, die größer ist, als
die auf dem ungeteilten Datensatz.
Das Resultat für die kombinierte Leistungsfähigkeit ist

(0.917 ± 0.031)% für das e+SVT Datensatz
(0.938 ± 0.029)% für das µ+SVT Datensatz
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Die Leistung des neuronalen Jet-Charge-Taggers ist um 30% besser als die des schnitt-
basierten Taggers, der bei der B0

s -Oszillations-Analyse von CDF bisher benutzt wurde.
Die Dilution des Taggers wurde als Funktion von |Qjet|·Pnn und des Jet-Types parame-
triesiert, um die Bestimmung der Dilution für jedes Ereignis zu ermöglichen. Dadurch
werden Ereignisse, die eine potentiell höhere Dilution besitzen, stärker gewichtet. Da
so die Ereignisse, die mehr Information besitzen stärker berücksichtigt werden, erhöht
sich die Sensitivität der B0

s -Oszillationsanalyse. Der in dieser Arbeit vorgestellte Jet-
Charge-Tagger wird zur Bestimmung der unteren Grenze der B0

s -Mischungsfrequenz
der Analyse in diesem Sommer benutzt werden.
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Chapter 1

Introduction

The transition of neutral mesons between particle and anti-particle is called oscillation
(or mixing). This phenomenon is explained in the Standard Model of particle physics
as a consequence of the fact that the eigenstates of the weak interaction are not mass
eigenstates.
Mixing was predicted for the K0-K̄0 system in 1955 and observed in 1956. The mixing
of neutral b-mesons has been observed for the first time in 1987 for the B0

d system,
which is composed of a b̄- and d-quark. The frequency of the B0

d meson oscillation,
∆md, has been measured rather precisely by several experiments and the world aver-
age currently is ∆md = 0.502 ± 0.007 ps−1 [1].
The oscillation in the B0

s system, composed of b̄s, has been observed, but its frequency
∆ms is one of the few parameters of the Standard Model which have not yet been
measured. It is predicted that the B0

s oscillations are very fast, the value of ∆ms being
of the order of 10 ps−1. A measured value larger than 25 ps−1 cannot be explained by
the Standard Model and would therefore be an exciting indication of the existence of
New Physics.
Lower limits on ∆ms have been provided so far by different experiments, resulting in a
combined limit of (∆ms > 14.4 ps−1 at 95% C.L.) [1]. The statistics was the limiting
factor so far for all the experiments that performed a Bs-mixing analysis. Until the
start of the operation of the Large Hadron Collider (LHC) at the end of 2007, the only
experiments able to measure the frequency of the B0

s oscillation are CDF1 and DØ,
located a the Tevatron Collider for protons and anti-protons at Fermilab, in Batavia
(Illinois, USA).
A limit on ∆ms was set by CDF in the first phase of the Tevatron operation (Run I).
The Tevatron was shut down during an upgrade period which lasted 5 years. The op-
eration restarted at the end of 2001 (Run II). CDF and DØ have shown at the Winter
Conferences 2005 the results of the first search for B0

s oscillation with Run II data

1Collider Detector at Fermilab



6 Introduction

[2, 3]. The accessible range of values of ∆ms is below the world average as of now,
but both CDF and DØ expect a better sensitivity by the summer because of several
analysis improvements. One of the improvements for the CDF analysis is offered by
the work presented in this thesis.
An indirect measurement of ∆ms is given by the measurement of the width difference
between the heavy and light Bs eigenstates, ∆Γs. This quantity has been measured by
CDF in 2004 [4] and resulted, within the Standard Model, in ∆ms = 125+65

−55 ps−1. The
high value for ∆ms could already imply New Physics contributions. Higher statistics
is needed to rule out the possibility of a statistical fluctuation.

The measurement of the B0
s mixing frequency is a delicate issue which requires high

performance from the experiment, very good understanding of bb̄ event topology and
production mechanisms, good understanding of the detector and precise reconstruc-
tion.
In order to measure ∆ms, events in which a bb̄ pair was created need to be extracted
from the multitude of other events produced in the CDF detector. About 1.5 events
in 1000 contain a bb̄ pair. A smart solution to this problem was found by the CDF
experiment with the introduction of a hardware trigger, the Silicon Vertex Tracker
(SVT), which exploits the long lifetime of b-hadrons. The products of the decay of
b-hadrons are displaced with respect to the primary interaction point. The displace-
ment is measured at trigger level with high precision, thus allowing a clean selection
of bb̄ events. The SVT trigger is unique in a hadronic environment.
The B0

s meson is reconstructed by finding its decay products among the many par-
ticles produced in the pp̄ collision. The distance that the B0

s travels before decaying
is measured and the flavour of the B0

s is tagged at production and at decay time,
i.e. it is decided if the meson contained a b- or a b̄-quark when it was produced and
when it decayed. The experimental techniques which identify the b-quark flavour are
called b-flavour tagging. In particular the methods that tag the flavour of the B0

s by
exploiting the information relative to the other b-quark in the event are called opposite
side taggers.
The identification of the other b-hadron in the event presents several difficulties. Often
this is produced in the forward direction and its decay products cannot be detected.
A simulated bb̄ event in the CDF detector is shown in fig. 1.1. The final state particles
originating from the decay of the B̄0

s and B0
d mesons are indicated. The B̄0

s is fully
reconstructed, while not all the B0

d decay products are detected. The two b-hadrons
do not form back-to-back jets, on the contrary their decay products are quite spread in
the detector. This renders the identification of tracks from the opposite side b-hadron
complicated.
The identification at high efficiency of the decay products of the opposite side b-hadron
and their distinction from all the other tracks is a complex task. The purpose of the
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Figure 1.1: Display of a simulated bb̄ event in the r-φ view of the CDF detector. The
arrow indicates the direction of the missing momentum. In this example the b-quark forms
a B̄0

s meson, which decays via the following chain: B̄0
s → D+

s π−, D+
s → K0

SK+π+π−,
K0

S → π+π−. Its final state particle are indicated with bold black font. The opposite
side b̄-quark forms a B0

d meson. Its final decay products (bold green) are only partially
reconstructed in the detector. The other tracks (this blue lines) correspond to particles from
the fragmentation and the underlying event.

work presented in this thesis is to solve this problem and to apply the result to flavour
tagging. In order to achieve a high efficiency, as much information as possible on
the decay products of the b-hadron has been conveyed. The optimal combination of
variables has been provided by a Neural Network and the result yielded a powerful
variable which gives a probability that a track originated from the b-hadron decay.
The b-track probability has been employed to define jet-level variables, which have
also been combined with a Neural Network to construct a b-jet probability variable.
A similar approach has been adopted in the DELPHI experiment2 by means of the
BSAURUS package based on Neural Networks [5]. This is a comprehensive tagging
package that combines all possible information at the track level to provide a proba-
bility for the flavour of the B0

s candidate. BSAURUS has been conceived in Karlsruhe,
where a huge expertise on Neural Networks has consolidated over the past 10 years.
The Karlsruhe CDF B group is now in the process of transferring this technology
to CDF. The b-track and b-jet probability variables designed for CDF are the first

2DELPHI was one of the four experiments operating at LEP (Large Electron-Positron collider),
at CERN (Geneva, Switzerland) between 1989 and 2000.
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official Neural Network tools adopted by the CDF B group and constitute the first
step toward a combined Neural Network based tagging package for an experiment at a
hadron collider. The differences between the clean e+e− collider environment and the
crowded pp̄ collider environment make it very challenging for CDF to reach a similar
performance. Nevertheless the application of Neural Networks to CDF events proves
successful, as it is going to be demonstrated in this thesis.
The probability variables have been employed in an opposite side tagger, the Jet
Charge Tagger, to select the jet that is most likely to contain the decay products of
the opposite side b-hadron and to extract the b-quark flavour from the weighted sum
of the charge of the tracks in the jet. The new tagger proved to be more powerful than
the tagger currently in use at CDF and it is going to improve the CDF B0

s mixing
analysis, which will be updated for Summer 2005.

In Chapter 2 a brief theoretical overview on B0
s mixing is given. Its explanation in

the Standard Model in the framework of the CKM quark-mixing matrix is provided.
The measurement of ∆ms performed so far are summarised. The experimental setup
for the measurement of ∆ms is illustrated in Chapter 3, where the CDF detector is
described focusing on the elements relevant for the B0

s mixing analysis. Chapter 4
reports about the B0

s mixing analysis presented by CDF to the Winter Conferences
2005 and it explains the fundamental elements: signal reconstruction, proper time
measurement and flavour tagging.
Intense simulation studies have been carried on to understand the features of the op-
posite side of bb̄ events, with the aim of improving the existing cut based Jet Charge
Tagger. An important contribution brought by these studies to the CDF B group was
to point out that the simulation with the bb̄ production processes traditionally in use
is not sufficient to correctly represent the features of the opposite side. Additional
processes are needed to properly describe data, as it is illustrated in Chapter 5. The
simulation with additional processes has been employed to build the b-track and the
b-jet probability variables. These are presented in Chapter 6. The Neural Network
based Jet Charge Tagger, which profits from the probability variables, and its tagging
power measured on data are the subject of Chapter 7. Finally Chapter 8 draws the
conclusions.
The development of the Neural Network based Jet Charge Tagger involved the gen-
eration and simulation of Monte Carlo samples, the training of Neural Networks and
studies of methods alternative to Neural Networks for the combination of variables.
In addition, different setups were considered for the tagger, which did not prove more
powerful than the Jet Charge Tagger presented in Chapter 7. Technical details and
additional information are found in the Appendices.



Chapter 2

B0
s Oscillation − Theory Overview

The measurement of the frequency of B0
s oscillation motivates the work presented in

this thesis. The mixing of neutral B mesons is a phenomenon explained in the Stan-
dard Model of particle physics as a consequence of quark flavour mixing. Experimental
results have not yet confirmed or rejected the Standard Model prediction for ∆ms. In
this chapter the theoretical background of B0

s mixing is outlined.

2.1 The CKM Matrix

In the Standard Model the quark mass eigenstates (d, s, b) are different from the
flavour eigenstates (d′, s′, b′). The two bases are related through the 3 × 3 complex
Cabibbo-Kobayashi-Maskawa matrix VCKM





d′

s′

b′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d
s
b





The existence of only three generations of quarks implies the unitarity of the CKM
matrix. The unitarity condition

V †
CKMVCKM =

�
= VCKMV

†
CKM (2.1)

imposes relations among the elements, so that all of them can be expressed in terms
of three real parameters and one purely imaginary phase. The Wolfenstein parame-
terisation introduces the four real parameters λ, A, ρ and η:

VCKM '





1 − λ2/2 λ λ3A(ρ− iη)
−λ 1 − λ2/2 λ2A

λ3A(1 − ρ− iη) −λ2A 1



+O(λ4)
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The element |Vus| is well determined by the measurements of semileptonic kaon decays
and is known to an accuracy of better than 1% [1]. Semileptonic b-meson decays to
charmed mesons provided the measurement of |Vcb| with a precision better than 5%
[1]. Thus the Wolfenstein parameters λ and A are rather well determined:

λ = |Vus| = 0.2200 ± 0.0026 (2.2)

A =

∣

∣

∣

∣

Vcb

V 2
us

∣

∣

∣

∣

= 0.80 ± 0.04 (2.3)

The experimental uncertainties on ρ and η are at a level of 20%. The parameter η,
which is associated with the phase, causes differences in the description of processes
involving quarks and anti-quarks. In the Standard Model this phase is the only source
of CP violation.

2.2 The Unitarity Triangle

The relations among the CKM elements that follow from the unitarity condition
(eqn. 2.1) can be visualised by means of triangles in the complex plane. One of the
possible triangles is given by the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (2.4)

This triangle is called the Unitarity Triangle and it is preferred over the others, which
are very elongated and more difficult to measure. All triangles have the same area,
which is a measure of CP violation in the Standard Model. Figure 2.1 shows the Uni-
tarity Triangle in the complex plane. The sides have been scaled by the approximately
real number VcdV

∗
cb. The length of the side |VtdV

∗
tb/(VcdV

∗
cb)| can be determined from

the known values of Vtb ' 1, Vcd ' −λ and Vcb ' λ2A, and by measuring Vtd. The
determination of Vtd is an interesting test of the Standard Model since Vtd is sensible
to the phase iη, therefore to CP violation. The role played by the measurement of the
B0

s mixing in the determination of Vtd is explained in Section 2.3.

The current status of the experimental determination of the Unitarity Triangle [12] is
displayed in fig. 2.2.
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Figure 2.2: Current status of the determination of the Unitarity Triangle [12].

2.3 B0
s Mixing

The neutral meson system B0-B̄0 is composed by the flavour eigenstates

|B0
q 〉 = b̄q (2.5)

|B̄0
q 〉 = bq̄ (2.6)
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Figure 2.3: Feynman diagrams describing the B0
s mixing at the lowest order in the Standard

Model. The exchange of a c- or a u-quark instead of a t-quark is suppressed. B 0
d mixing

happens via the same processes involving a d-quark instead of a s-quark.

where q can be either a d- or an s-quark. The flavour eigenstates are superpositions
of heavy and light mass eigenstates BH and BL:

|B0
q 〉 =

1√
2

(|Bq,H〉 + |Bq,L〉) (2.7)

|B̄0
q 〉 =

1√
2

(|Bq,H〉 − |Bq,L〉) (2.8)

Due to the difference in mass1, BH and BL evolve differently as a function of time,
resulting in a time-dependent B0-B̄0 oscillation with frequency equal to the mass
difference ∆mq = mq,H −mq,L. As a consequence, an initially pure |B0

q 〉 state may be
found at a later time to decay as a |B0

q 〉, in which case it is unmixed, or as a |B̄0
q 〉, that

is mixed. The corresponding probability density is

P (B0
q → B0

q , t) =
Γq

2
e−Γqt (1 + cos ∆mqt) (2.9)

P (B0
q → B̄0

q , t) =
Γq

2
e−Γqt (1 − cos ∆mqt) (2.10)

where Γq = 1/τq and τq is the lifetime of the B0
q meson.

The oscillation frequency ∆mq can be computed at the lowest order with the box
diagram in fig. 2.3. The result of the calculation [7] is

∆mq =
G2

F

6π2
mBq

m2
t F

(

m2
t

m2
W

)

f 2
Bq
BBq

ηQCD|V ∗
tb Vtq|2 (2.11)

where GF is the Fermi constant, mBq
is the B0

q meson mass, mt is the top quark
mass, mW is the W boson mass, F is the Inami-Lim function which gives the elec-
troweak loop contribution of the top quark without QCD corrections [8], and ηQCD

1The Standard Model prediction for the decay width difference ∆Γq is very small and it allows us
to take Γq,L ' Γq,H ' Γq
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is a factor that takes into account QCD corrections to the box diagram [9]. The
parameter BBq

and the decay constant fBq
parameterise hadronic matrix elements

[10]. A measurement of the B0
s (B0

d) oscillation allows to determine the CKM matrix
element Vts (Vtd). The fairly precise measured value of the B0

d oscillation frequency
∆md = 0.502 ± 0.007 ps−1 [1] is not enough for the extraction of Vtd with eqn. 2.11
because of large theoretical uncertainties of the product fBq

√

BBq
, computed with

Lattice QCD techniques. Most theoretical uncertainties cancel out in the ratio be-
tween B0

s and B0
d oscillation frequencies [11]

∆ms

∆md
=
mBs

f 2
Bs
BBs

mBd
f 2

Bd
BBd

∣

∣

∣

∣

Vts

Vtd

∣

∣

∣

∣

2

(2.12)

|Vts|
|Vtd|

=
1.01

ξ

√

∆ms

∆md
(2.13)

where ξ =
fBs

√
BBs

fBd

√
BBd

' 1.24 is evaluated with Lattice calculations with an uncertainty

below 5% [6]. From eqn. 2.12 and the Wolfenstein parameterisation it is clear that B0
s

oscillations are much faster than B0
d oscillations

∆ms

∆md
' 1

λ2
' 20 (2.14)

Resolving these rapid oscillations thus poses a serious experimental challenge, an
overview of which is given in Chapter 4. The Standard Model does not favour ∆ms

values above 25 ps−1 [13]. Thus a high frequency would indicate New Physics con-
tributions, for example new particles in the box diagram in fig. 2.3. In this case the
independent determination of the angles and the sides of the Unitarity Triangle would
lead to an open triangle.

2.4 Status of B0
s Mixing Measurements

The first observation of B0-B̄0 mixing was published in 1987 by the UA1 and ARGUS
collaborations [14]. The two experiments performed a time-integrated analysis and
many experiments followed this path since then. Time-dependent analyses offer a
better sensitivity to the oscillation frequency. However, while ∆md has been measured
with good precision at LEP, at the B-Factories and at the Tevatron, the B0

s oscillation
frequency ∆ms has not been measured yet. LEP experiments [15], SLD [16] and CDF
Run I [17] have performed B0

s mixing analyses that set limits on the value of ∆ms.
The lack of statistics did not allow to establish an oscillation signal. The combined
result is

∆ms > 14.4 ps−1 (2.15)
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with 95% confidence level [1]. Before the startup of LHC experiments, which is foreseen
in 2007, ∆ms can only be measured by the CDF and DØ collaborations. This is
because the B-Factories BaBar and BELLE run at the Υ(4S) production threshold,
which is lower than the threshold for the production of B0

s B̄
0
s pairs. The Tevatron is

therefore the only operating collider where B0
s mesons are created.

CDF and DØ have shown the first result for B0
s oscillation with Run II data [2, 3] at

the Winter Conferences 2005. The sensitivity is below the current world average as
of now, but CDF expects a better sensitivity by the summer due to several analysis
improvements, among them the Jet Charge Tagger presented in this thesis, which is
introduced in Section 4.3.3 and described in Chapter 7.



Chapter 3

The CDF Experiment

The CDF experiment is located at the Tevatron collider at the Fermi National Labora-
tories (Fermilab), in Batavia/Illinois (USA), where protons and anti-protons circulate
in opposite directions in a ring with a diameter of 2 km. The Tevatron is the acceler-
ator with the highest centre of mass energy currently in operation. The first collisions
at a centre of mass energy of 1.8 TeV were initiated in 1985. The data collected until
1996 in the so called Run I phase amount to 90 pb−1 and delivered, among other
interesting results, the first experimental evidence of the top quark [18], followed by
the precise determination of its mass [19]. Starting in 1996, the accelerator complex
was upgraded to increase the centre of mass energy to 1.96 TeV and the instantaneous
luminosity. CDF and DØ, the second Tevatron experiment, were upgraded as well.
The Run II phase started at the end of 2001 and is scheduled until 2009. During
this time 4.4 to 8.5 fb−1 of data are expected to be collected. The physics programs
of CDF and DØ include Higgs searches, Top-Quark physics, rare processes and the
measurement of the frequency of the B0

s oscillation. In this chapter the experimental
setup of the CDF detector is presented with special focus on the facilities relevant to
the ∆ms measurement.

3.1 Fermilab Accelerator Complex

The Fermilab accelerator chain is shown in fig. 3.1. The production of protons starts
with negatively charged hydrogen ions that are accelerated to 750 keV in a Cockroft-
Walton pre-accelerator (not shown in the picture). The ions enter then the linear
accelerator (Linac) where their energy is increased up to 400 MeV. The electrons are
removed from the ions by means of a stripper foil before the injection in the Booster, a
synchrotron of 150 m in diameter. The protons are accelerated to 8 GeV in the Booster
and then transferred to the Main Injector, which is a multipurpose ring. Part of the
protons are delivered to a fixed target area (Switchyard), another part is employed
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Figure 3.1: Fermilab accelerator chain [20]

for the production of neutrinos by the NuMI and MiniBoone experiments. Some of
the protons are accelerated to 120 GeV and sent against a nickel target to produce
anti-protons, which are stored in the Accumulator Ring before they are injected into
the Recycler. The Recycler works at the fixed energy of 8 GeV and was designed to re-
use the anti-protons left over from a Tevatron store. It serves now as an intermediate
storage ring for the anti-protons and allows the build up of the p̄ stack while the
Tevatron is in collision mode. The Main Injector accelerates the protons and the
anti-protons from 8 GeV to 150 GeV and transfers them to the Tevatron, where they
are finally brought to an energy of 980 GeV, resulting in a centre of mass energy of√
s = 1.96 TeV. Protons and anti-protons circulate in the same beam pipe in opposite

directions separated by an electrostatic beam. The beams are divided in 3 trains of
12 bunches with a separation of 396 ns and collide in two regions, where the CDF
and DØ experiments are located (respectively the BØ and the DØ Tevatron access
points).
The integrated luminosity delivered and the amount of data stored by CDF since the
start of Run II are shown in fig. 3.2.
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Figure 3.2: Integrated luminosity delivered by the Tevatron (upper line) and stored to tape
by CDF (lower line) since the start of Run II (as of 07/05/2005) [21].

3.2 The CDF detector

The CDF Run II detector [23] is a multipurpose detector with cylindrical symmetry
with respect to the beam line and forward-backward symmetry with respect to the
centre of the detector, i.e. the nominal interaction point. The transverse profile of the
interaction region can be approximately described by a circular Gaussian distribution
with a typical RMS width of 30 µm. The longitudinal profile is also approximately
Gaussian with a typical RMS width of 30 cm. A view of half of the CDF detector is
shown in fig. 3.3.
The coordinate system we refer to in the description of the CDF sub-detectors and
in the follow up is a cylindrical system. The origin of the system is the centre of the
CDF detector. The polar angle θ is measured from the positive z-direction, i.e. the
proton direction, pointing eastward from the CDF detector. The azimuthal angle φ is
measured from the Tevatron plane. It is also convenient to define the pseudorapidity
η = − ln(tan(θ/2)), since in hadron-hadron collisions the same number of particles
is found in equal intervals of pseudorapidity. As usual in cylindrical coordinates, r
measures the distance from the origin measured in the plane perpendicular to the
z-direction.
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Figure 3.3: Elevation view of one half of the CDF detector [22].

3.2.1 Tracking System

The inner part of the CDF detector is dedicated to the reconstruction of the trajecto-
ries of charged particles and the measurement of their momenta. The tracking system
is contained in a superconducting solenoid which generates a homogeneous 1.4 T mag-
netic field parallel to the beam axis.
The silicon micro-strip detector [24] consists of 7-8 layers in a barrel geometry covering
the radial region from 1.5 cm to 28 cm. The layer closest to the interaction point is
Layer 00 (L00), a radiation-hard, single sided detector glued directly onto the beam
pipe. The remaining seven layers are double-sided detectors. The five layers after
L00 comprise the Silicon Vertex Detector of Run II (SVXII) which extends radially
from r1 = 2.5 cm to r2 = 10.7 cm. The SVXII measures the track coordinates in r-φ
and r-z view, thus allowing three-dimensional track reconstruction. The Intermediate
Silicon Layer (ISL) detector is constituted by one layer in the central region (|η| < 1)
and two layers in the forward region (1.0 < |η| < 2.0). It plays an important role in
linking the hits in the silicon detector with the tracks in the drift chamber.
The Central Outer Tracker [25] (COT), is a 3.1 m long open cell drift chamber which
covers the radial range from 40 cm to 137 cm. It provides 96 measurement layers,
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organised into alternating axial and ±2◦ stereo superlayers. The COT provides cov-
erage for |η| < 1 and measures the momenta of particles down to 0.4 GeV/c. The
energy loss dE/dx of charged particles can be measured as well and is used for particle
identification.
A Time-of-Flight (TOF) detector [26] is installed in a few centimetres clearance just
outside the COT. Its purpose is the measurement of the time-of-flight of particles. The
combination of this quantity with the momentum measurement in the COT yields a
mass measurement, thus allowing to distinguish among the different particle species.
Pions and kaons can be separated with at least one sigma confidence for momenta
p < 1.6 GeV. This feature is crucial for a clean reconstruction of b-hadron samples
and flavour tagging, i.e. in oscillation measurements.

3.2.2 Calorimeters

The solenoid is surrounded by the calorimeters for the detection of showers initiated
by photons or electrons (Electromagnetic Showers) or by hadrons (Hadronic Showers).
The calorimeters are segmented along the longitudinal direction to allow the distinc-
tion between electromagnetic and hadronic showers. They are sampling detectors,
constituted by alternated layers of absorber (lead or iron) and scintillator material.
The electromagnetic calorimeter resides in the inner part. It is subdivided into Central
Electromagnetic Calorimeter [27] (CEM), for the detection of showers in the pseudo-
rapidity range |η| < 1.1, and Plug Electromagnetic Calorimeter [28] (PEM), covering
the forward region (1.1 < |η| < 3.64).
To improve the position and direction measurement of the shower, layers of propor-
tional chambers are located between the solenoid and the CEM (Pre-Shower Detector,
CPR), for showers initiating in the magnet, and inside the calorimeter at the radial
distance where the showers reach the maximum transverse size (Shower Max Detector,
CES).
The hadronic showers are measured in the outer part of the calorimeter, which is
subdivided into a central (CHA) [29], a wall (WHA) and plug (PHA) calorimeter.
The first one covers the pseudorapidity region |η| < 0.9, the second one extends from
|η| = 0.7 to |η| = 1.3 and the third one detects showers in 1.1 < |η| < 3.64. All
particles, except for muons and neutrinos, lose all their energy and are stopped in the
calorimeter.

3.2.3 Muon System

The muon system is located outside of the calorimeters and consists of drift cham-
bers and steel absorbers. Since hadrons, photons and electrons are stopped in the
calorimeters, muons are the only particles able to reach the muon system. Conse-
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quently these detectors provide a clean identification for muons, which are often pro-
duced in the semileptonic decays of b-hadrons. The Central Muon Detector (CMU)
[30] and Central Muon Upgrade (CMP) chambers each provide coverage in the pseu-
dorapidity region |η| < 0.6. The Intermediate Muon Detector (IMU) extends in the
region 1.0 < |η| < 1.5. A minimum pT of 1.4 GeV/c is needed for a muon to reach
the muon system.

3.3 Trigger System and DAQ

The trigger and data acquisition systems are designed to accommodate the high rates
and large data volume of Run II. Based on preliminary information on tracking,
calorimetry and muon system, the output of the first level of the trigger, Level 1,
is used to limit the rate for accepted events to a maximum of 50 kHz. The next
trigger stage, Level 2, accesses more refined information and additional tracking infor-
mation from the silicon detector. The accept rate is reduced further to ∼300 Hz. At
the last trigger stage, Level 3, the full event reconstruction is performed on a Linux PC
farm. This allows the trigger decision to be based on the full event information. In the
last stage, the output rate is reduced to ∼75 Hz and the accepted events are written
to permanent storage divided in different datasets depending on the met L1/L2/L3
requirements (Trigger Paths). A scheme of the detector information accessed by L1
and L2 is shown in fig. 3.4 (left). Figure 3.4 (right) illustrates the event rate reduction
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as the events flow from the readout to the storage area.
CDF features triggers designed for B Physics, such as the Silicon Vertex Tracker [31]
(SVT) at L2. Due to its long lifetime, the b-hadron can travel several hundreds of
microns before it decays. The decay vertex is detached from the primary interaction
point and its tracks are characterised by a large impact parameter d0 with respect
to the interaction point. The correlation between large track impact parameters and
b-hadron lifetime is exploited by the SVT trigger. At L1 the Extremely Fast Track
Finder (XFT) [32], a trigger with hardware implementation finds tracks in the trans-
verse plane of the COT. Later the SVT, which is also a hardware trigger, matches r-φ
silicon hits to the XFT tracks, allowing the determination of the track parameters in
the r-φ plane with a resolution comparable to the offline reconstruction.
Two trigger paths that rely on the SVT decision and are relevant to this thesis are
the Two Track Trigger (TTT) and the Lepton and Displaced Track Trigger (`+SVT).

3.3.1 Two Track Trigger

The TTT requirements yield a sample enriched in B → h+h− decays. The conditions
to be satisfied are:

Level 1 at least two XFT tracks with pT > 2 GeV/c, pT,1 + pT,2 > 5.5 GeV/c and
with an angle in the transverse plane ∆φ1,2 < 135◦

Level 2 at least two SVT tracks with pT > 2 GeV/c and 100 µm < |d0| < 1 mm and
a good match to the XFT tracks (χ2

SV T < 25)

Level 3 match of the two SVT trigger tracks with those reconstructed in the COT,
confirmation of the L2 requirements on pT and d0; additional cut 2◦ < ∆φ1,2 <
90◦ and Lxy > 200 µm, where Lxy is the decay length in the r-φ plane projected
onto the direction of the added transverse momenta of the trigger tracks.

3.3.2 Lepton and Displaced Track Trigger

The `+SVT comprises a set of conditions that yield a sample enriched in semileptonic
b-hadron decays, i.e. B → `ν`hSV TX, where the lepton ` is either a muon or an
electron. The requirements to be satisfied are:

Level 1 a muon detected in the CMU and in the CMP, or an electron in the CEM with
ET > 4 GeV and ratio of the energies measured in the hadronic calorimeter and
in the electromagnetic calorimeter EHAD/EEM < 0.125. The lepton is matched
to a XFT track with pT > 2 GeV/c
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Level 2 at least one SVT track with pT > 2 GeV/c and 120 µm < |d0| < 1 mm
and χ2

SV T < 25. The transverse invariant mass MT (`, SV T ), computed using
only the sum of the transverse momenta of the lepton and of the SVT track, is
smaller than 5 GeV and 5◦ < ∆φ1,2 < 90◦. In addition the electron is required
to be matched to a shower in the CES with ET > 4 GeV

Level 3 confirmation of the L2 requirements.

3.4 Event Reconstruction

The reconstruction of an event in the CDF detector employs several algorithms and it
produces a large number of ”objects”, such as tracks, calorimeter jets, vertices, TOF-
track matches, etc. In this section the reconstruction of the event objects which are
relevant for this thesis is briefly described.

3.4.1 Tracking

Track reconstruction begins in the COT. Since the track density is lower far from
the interaction point, the pattern recognition first forms line segments from hits in
each superlayer. Line segments from the axial layers that are tangent to a common
circle are linked together to form a track candidate and the hit positions are fit to
a circle. Line segments in stereo layers are then linked to the 2-dimensional track
and a helix fit is performed (COT Standalone Tracking). A second algorithm based
on histogramming exists for the reconstruction of tracks in the COT [33]. The next
step is the extrapolation of each COT track into the silicon detector and the addition
of hits that are consistent with the track (Outside-In Tracking, OI) [34]. A window
around the track is established based on the errors on the COT track parameters. If
a hit in the outer SVXII layer lies within the window, it is added to the track. A
new track fit is then performed, resulting in a new error matrix and a new window.
This window is then used to add hits in the next SVXII layer, and the procedure is
repeated over all layers. If no hit is found within the search window, the algorithm
proceeds to the next layer. An OI track is formed only if at least three r-φ hits in the
SVXII are associated with the original COT track.
Due to the COT coverage, the OI algorithm reconstructs tracks in the region |η| < 1.
To recover forward tracks, Silicon Standalone Algorithm [35] (SISA) uses only hits
in the silicon detector. The tracks are formed by combining hits not used by the OI
algorithm. In order to reduce the number of hit combinations, a pre-tracking primary
vertex finder [36] is run to find the z-coordinate of the primary interaction point. The
combinations of hits resulting in tracks incompatible with these z-positions are not
pursued by the SISA tracking. This significantly reduces processing time and fake



3.4 Event Reconstruction 23

rate.
In order to recover the COT information for tracks that cross only the first three
superlayers, the Inside-Out Tracking (IO) has been recently introduced [37]. The
SISA tracks define a search road in the COT and the new track is fit constraining the
track impact parameter d0 and the z-coordinate at the point of closest approach to
the origin z0 to those of the SISA track. The silicon hits are then re-fitted using the
COT track as seed and the parameters of the new track define the IO track.

3.4.2 Primary Vertex

Many particles in a bb̄ event originate from the primary interaction point (Primary
Vertex, PV). Tracks produced in the decay of long lived particles are displaced with
respect to the PV. A good approximation of the PV position is the beam spot. A
better determination is provided by the VxPrim algorithm [38], an iterative vertex fit.
Loosely selected tracks with hits in the COT are combined to form a vertex and after
each fit iteration the track with the worst χ2 is eliminated. The procedure is repeated
until no track has a χ2 larger than a maximum allowed or when the number of tracks
in the vertex reaches the minimum allowed value. Although no strict requirement on
the track impact parameter is applied, tracks with large displacement are progressively
excluded from the vertex fit. Consequently the tracks in the PV in average have a
small d0.
In the follow up the beam spot is mostly used as the primary interaction point, except
for applications in which the result of the iterative fit offers valuable information on
the tracks (see Section 6.2).

3.4.3 Reconstruction and Tagging of Jets

In this Section we review software tools which are not part of the standard CDF
production. These tools are relevant for the work presented in this thesis and will be
often referred to in the next chapters.

Jets

The hadronisation of quarks produces several charged particles in form of jets. The
number of particles produced and the transverse size of the jet is correlated to the
energy of the quark. High energy jets detected in the calorimeters are widely used
in High-pT physics (top quark physics, Higgs searches). Jets produced in bb̄ events
typically have low energy and are reconstructed in the tracking system. Track-based
jets with fixed cone size are formed with a simple algorithm, Cone Clustering [39].
The cone angle ∆R between two directions is generally defined as the distance in η-φ
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space between the two directions

∆R =
√

∆η2 + ∆φ2 (3.1)

An isolation cone ∆Riso is defined with respect to a given direction, i.e. a reconstructed
b-hadron momentum. The tracks falling into the isolation cone are not considered for
the reconstruction of jets. At first the tracks with a minimum transverse momentum
pseed

T,min are used as seed clusters and pairs of clusters with cone angle smaller than ∆Rclm

are merged into a single cluster of momentum equal to the sum of the momenta of the
seeds. The merging is repeated until no more merges are possible. Jets are formed by
adding non-seed tracks with a minimum transverse momentum ptrack

T,min to an existing
cluster if they form a cone angle smaller than ∆Rjm with the cluster axis. Every time
a track is added to a cluster, the total momentum is recomputed to include the new
track. ∆Riso, ∆Rclm, ∆Rjm, pseed

T,min and ptrack
T,min are parameters of the algorithm.

b-jet Tagging

The tagging of b-jets is the main subject of this thesis. Some method devoted to b-jet
tagging already exist and are based on the long lifetime of b-hadrons.

Secondary Vertex The SecVtx algorithm [40] has been developed for High-pT

physics. It searches within a jet for tracks which form a secondary vertex. The algo-
rithm is run in two passes. First, well reconstructed tracks which satisfy a minimum
cut on the impact parameter divided by its error, d0/σ (Impact Parameter Signifi-
cance), are selected. A secondary vertex fit is attempted with at least three of these
tracks. If the fit is not successful, the cuts on the tracks are tightened and a vertex
with at least two tracks is fitted in the second pass. The secondary vertex is accepted
if its distance in the r-φ plane from the PV has large significance. The jet is then
tagged as b-jet.
A secondary vertex fit succeeds only for a small fraction of jets in bb̄ events. On
the other hand, the jets tagged by the SecVtx algorithm are very often true b-jets.
Further studies on the performance of this algorithm for bb̄ events are presented in
Section 5.6.1.

Jet Probability A second algorithm developed for High-pT physics to tag b-jets,
JetProb [41], does not explicitly search for a secondary vertex in the jet but evaluates
the probability that the jet might contain one by combining the probability for each
track to belong to the primary vertex. If a track belongs to a jet and it originating from
a secondary vertex within the jet, the sign of the impact parameter with respect to
the jet direction is expected to be positive (fig. 3.5). A probability, proportional to the
likelihood that the track originates from the primary vertex, can be constructed from
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Figure 3.5: Left: Track A and B have similar impact parameters with respect to the
primary vertex, |~d0|, but opposite signed impact parameters, dsigned

0 = |~d0| · sign(~d0 · ~pjet)
Right: Distribution of signed impact parameter significance for tracks from the primary
vertex (dashed line) and tracks from a secondary vertex (solid line).

the signed impact parameter significance. From a technical point of view it is equal
to the probability for a track in the primary vertex to have an impact parameter at
the measured value or larger. The probability distribution is flat for tracks originating
from the primary vertex and it peaks at zero for tracks produced in the decay of long
lived particles. The jet probability is given by

JP = P (N) ·
N
∑

n=1

(−logP (N))n

n!
(3.2)

P (N) =
N
∏

m=1

tm (3.3)

where N is the number of tracks in the jet and tm is the probability of the m-th
track. One of the developments presented in this thesis is a new method to compute
the track and jet probability based on Neural Networks (Chapter 6). The track and
jet probability provided by the JetProb algorithm serve as a benchmark for the new
method.





Chapter 4

Outline of B0
s Oscillation Analysis

From the experimental point of view, the analysis of the B0
s oscillation corresponds to

the study of the time dependent asymmetry between the number of events in which a
generated B0

s decays as a B0
s (unmixed events, Nunmixed) and those in which it decays

as a B̄0
s (mixed events, Nmixed)

1. Using eqn. 2.9 and 2.10, the asymmetry is a function
of the quantity we want to measure, ∆ms:

A(t) =
Nunmixed(t) −Nmixed(t)

Nunmixed(t) +Nmixed(t)
= cos ∆ms t (4.1)

Nunmixed(t) = N0 ·
e−t/τ

2τ
(1 + cos ∆ms t) (4.2)

Nmixed(t) = N0 ·
e−t/τ

2τ
(1 − cos ∆ms t) (4.3)

where τ = 1/Γ is the B0
s lifetime, t is the time in theB0

s rest frame andN0 is the number
of B0

s mesons at t = 0. A graph of Nunmixed(t), Nmixed(t) and A(t) in the absence of
detector effects is shown in fig. 4.1 for a Bd-like oscillation (∆md = 0.5 ps−1) and for
a Bs-like oscillation with a hypothetical ∆ms = 15 ps−1.
Studies of the time-dependent asymmetry require three ingredients:

• the reconstruction of the signal in a flavour eigenstate

• the determination of the B0
s decay time

• the identification of the flavour of the B0
s at production and at decay time

1Here and in the following the charge conjugate modes are implicitly included, unless explicitly
stated otherwise.
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Figure 4.1: Top: Number of mixed and unmixed events as a function of the decay time for
a Bd-like oscillation (left) and a faster Bs-like oscillation (right). Bottom: Asymmetry for a
Bd-like oscillation (left) and a Bs-like oscillation (right). The frequency ∆ms = 15 ps−1 is
hypothetical. Detector effects are not taken into account.

The significance for a B0
s oscillation signal can be approximated by the expression

Sig =

√

SεD2

2

√

S

S +B
e−

(∆msσt)
2

2 (4.4)

where S is the number of reconstructed B0
s candidates, εD2 is the tagging power (see

Section 4.3.1 for details), B is the number of background events and σt is the resolution
on the proper time measurement. The proper time resolution depends on the decay
length resolution and the momentum resolution. The significance decreases rapidly
when ∆ms increases due to the exponential factor, which also depends on the proper
time resolution. The ability to resolve rapid B0

s oscillations thus requires excellent
decay length and momentum resolution, and benefits from having a low mistag rate
and a high B0

s purity.
This chapter presents the building blocks needed for an oscillation analysis, referring
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in particular to the analysis implemented by CDF for the Winter Conferences 2005.
Figure 4.2 shows a sketch of a B0

s event at the Tevatron. The b-quarks are produced
in pairs2 and fragment independently into b-hadrons. The B0

s is reconstructed by
combining its decay products in a vertex (see Section 4.1). As already mentioned,
B decay vertices are displaced with respect to the primary vertex. Consequently dis-
placed tracks are a signature for a b-hadron decay. The proper decay time (Section 4.2)
is computed from the transverse momentum and the decay length in the transverse
plane, Lxy. The latter is defined as the projection of the distance between the primary
vertex and the decay vertex onto the B0

s transverse momentum. The tracks in the
vicinity of the B0

s define the same side of the event. The other tracks belong to the
opposite side and are employed to identify the second b-hadron produced in the event.
The B0

s flavour at decay time can be determined from the decay products. The flavour
at production time can be determined with particles accompanying the fragmentation
b̄ → B0

s (fragmentation tracks), or with the decay products and fragmentation tracks
from the opposite side b-hadron (Section 4.3). The work presented in this thesis focuses
on this particular step of the mixing analysis. The combination of the ingredients in a
maximum likelihood fit based on the mixing probability (eqn. 4.2 and 4.3) to extract
∆ms is described in Section 4.4, where the latest results from CDF are presented as
well.
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Figure 4.2: Schematic view of a B0
s event at the Tevatron summarising the elements needed

for the B0
s mixing analysis.

2More details about bb̄ production at the Tevatron are given in Section 5.1.
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4.1 Signal Reconstruction

The B0
s signal can be reconstructed by combining some or all the products of its

decay in a vertex. Various oscillation analyses differ mostly in the way the signal is
reconstructed, which in turn affects the quality of the decay flavour tag and the B0

s

purity. Some analyses perform an inclusive reconstruction, that identifies only part
of the B0

s decay products, and others reconstruct the signal exclusively, finding all
the particles generated in the B0

s decay. Inclusive methods have the advantage of
large statistics, but suffer from low purity and worse momentum resolution. Exclusive
methods yield small sample sizes but benefit from a much increased resolution on
momentum and decay length per event (eqn. 4.4). In the CDF mixing analyses [42,
43] the B0

s have been reconstructed in modes including a D−
s because the branching

fraction for
B0

s → D−
s X (4.5)

is (94 ± 30)% [1]. Therefore D−
s mesons appear frequently in B0

s events. The decay
channels considered for the D−

s are:

• D−
s → φ π− (3.6 ± 0.9 %), φ→ K+K− (49.1 ± 0.6 %)

• D−
s → K∗0 K− (3.3 ± 0.9 %), K∗0 → K±π∓ (∼ 100%)

• D−
s → π− π± π∓ (1.01 ± 0.28 %)

where the numbers in brackets indicate the branching ratio for the decay mode [1]. The
background component in each reconstructed channel has been estimated studying the
mass and lifetime distributions of possible sources of mis-reconstructed B0

s mesons in
simulated events. A fit to the B0

s mass and lifetime distribution has been performed
with a floating background fraction to determine the signal purity in data.

4.1.1 Semileptonic Channel

When the B0
s undergoes a semileptonic decay, i.e. it decays in

B0
s → `+ν`X

the neutrino escapes detection. Thus the B0
s can only be reconstructed inclusively.

Due to the missing ν energy, the B0
s mass peak is very broad.

CDF has performed a mixing analysis [42] on a sample of semileptonic decays

B0
s → D−

s `
+ ν` (4.6)

reconstructed in the `+SVT dataset (see Section 3.3.2). In order to identify the signal
and understand the sources of background involving real Ds mesons the charge cor-
relation between the lepton and the Ds has been used. The wrong sign combination
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(`−D−
s ) corresponds to background events. Combinatorial background has been stud-

ied by means of the D−
s sidebands. The selection for each channel has been optimised

in order to maximise S/
√
S +B, which is one of the factors that contributes to the

B0
s oscillation significance (eqn. 4.4). The Ds mass peak in the φπ channel is shown in

fig. 4.3 (left). This channel is particularly pure due to the clean φ signature. About
7500 B0

s candidates were found in total.

4.1.2 Hadronic Channel

When all the decay products enter the vertex reconstruction, the B0
s is reconstructed

exclusively. This is only possible when all the final state particles are charged hadrons.
A sharp B0

s mass peak is then observed and the events in the peak form a high purity
B0

s signal.
A mixing analysis [43] has been performed at CDF by reconstructing in the TTT
sample (see Section 3.3.1) B0

s mesons exclusively in the channel3

B0
s → D−

s π
+
B (4.7)

The events are triggered by two displaced tracks. As in the semileptonic channel, the
selection of the B0

s candidates is tuned to maximise S/
√
S +B. The mass peak for

the candidates in the φ π π channel is shown in fig. 4.3 (right). The total number of
B0

s candidates selected in the TTT sample is about 900.

4.2 Proper Time Reconstruction

The asymmetry in eqn. 4.1 depends on the time in the B0
s rest frame t, also called

proper time, which is calculated as follows for the instant at which the B0
s decays:

t =
Lxy(Bs) ·m(Bs)

c · pT (Bs)
(4.8)

where Lxy(Bs) is the decay length, m(Bs) is the mass of the b-hadron, pT (Bs) is the
transverse momentum of the b-hadron and c is the speed of light.
For an inclusively reconstructed B0

s , a correction factor is needed in eqn. 4.8 to take
into account that the pT and Lxy of the B0

s are estimated using only some of the decay
products. Such a correction, called k-factor, is evaluated by comparing the observed
momentum with the true pT of the B0

s in simulated events. For semileptonic decays,
e.g. B0

s → D−
s `

+ν`, the k -factor is

k =

〈

pT (`Ds)

pT (Bs)MC

Lxy(Bs)MC

Lxy(`Ds)

〉

(4.9)

3The notation πB is meant to distinguish the pion from the B0

s decay from those of the Ds decay.
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Figure 4.3: Left: D−
s mass peak in the φπ decay channel in the semileptonic sample [42].

The peak on the left corresponds to D− mesons in Cabibbo suppressed channels; the peak
on the right is centred at the D−

s mass. Right: a B0
s mass peak in the φπ π channel in the

hadronic sample [43]. The candidates in the low sideband are B0
s → D∗−

s π+
B , D∗−

s → D−
s X.

This definition yields a distribution rather than a single number, which depends on
the measured quantities. The proper time is then convoluted with the k-factor distri-
bution:

t =
Lxy(`DS) ·m(Bs)

c · pT (`Ds)
⊗ k (4.10)

The introduction of the k -factor causes a smearing of the proper time distribution
which affects the resolution σt.
Trigger requirements or selection cuts may affect the proper decay time distribution
as well. This bias needs to be taken into account and can in general be described
by an appropriate ct-efficiency function. The SVT tracks have to pass a cut on the
impact parameter (Section 3.3). When these tracks are used to reconstruct the B0

s this
translates into a bias of the decay length of the vertex. To give a simple representation
of the effect of a lower and upper cut on Lxy, two step functions have been convoluted
with the distributions of Nunmixed(t) and Nmixed(t) in fig. 4.4 for a Bs-like oscillation.
Most of the B0

s candidates with early decay times are lost. The asymmetry graph is not
affected for small values of the decay time, although the first and the last oscillation
periods have to be evaluated with poorer statistics than in the ideal case (fig. 4.1)
and consequently have much larger errors. The effect on the Bd oscillation graph is
negligible and thus it is not shown.
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Figure 4.4: Effect on the asymmetry graphs of a lower and an upper cut on the decay length
for a Bs-like oscillation. The decay rate graph has been convoluted with a step function at
t = 0.1 ps and at t = 5ps, which corresponds to a cut 30µm < Lxy < 1.5mm for a B0

s with
transverse momentum of 5 GeV/c.

The proper time resolution is given by

σt =

√

σ2
vtx +

(

t · σp

p

)2

(4.11)

The first contribution, σvtx, gives a time-independent contribution and depends on
the resolution of Lxy, i.e. on the reconstruction of the primary and secondary vertex.
The second one, σp/p, is mainly determined by the k -factor for inclusive channels and
its contribution grows with t. The effect of the proper time resolution is a damping
of the oscillation by a factor exp (−(∆msσt)

2/2) and is illustrated in fig. 4.5 for the
B0

s candidates reconstructed exclusively and inclusively. The asymmetry graph for Bd

is barely affected and it is not shown. The effect on the Bs-like asymmetry graph is
dramatic, especially for the inclusively reconstructed candidates. Clearly, the events
at low t dominate the asymmetry measurement, but due to the trigger bias and to the
selection cuts to ensure a low background fraction, they are unfortunately the most
difficult to identify.

The proper time distribution for the exclusive B0
s candidates in the φ π π channel

reconstructed on data is shown in fig. 4.6.

4.3 b-Flavour Tagging

b-Flavour Tagging is a collective term for several experimental techniques to find out
whether a hadron contains a b- or a b̄-quark. The techniques are mostly based on
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Figure 4.5: Effect of the proper time resolution σt on the asymmetry graphs for an exclusive
channel (left) and an inclusive channel (right) for a Bs-like oscillation. For the graph relative
to the exclusive channel the values σvtx = 30µm (100 fs) and σp/p = 0 have been used. The
graph representing the effect on the inclusively reconstructed channel has been produced
with the values σvtx = 50µm (167 fs) and σp/p = 15% (GeV/c)−1

charge correlation between the b-quark and tracks in the event. Thus the tagging of
the b-quark corresponds to the determination of its charge. There are different kinds
of taggers

Same Side Taggers use the products of the fragmentation of the reconstructed B

Opposite Side Taggers exploit the information from the other b-quark in the event
to determine the flavour of the reconstructed B

The tagging methods are reviewed in Sections 4.3.2 and 4.3.3.
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4.3.1 Tagging Power εD2

Assuming that the flavour of a b-hadron is known, a tagger gives a Right Sign Tag
(RS) if its decision agrees with the b-hadron flavour, and a Wrong Sign Tag (or mistag,
WS) if the decision disagrees. If the tagger is not able to give a decision, the b-hadron
is Non Tagged (NT).
The tagger efficiency is given by

ε =
NRS +NWS

NRS +NWS +NNT
(4.12)

where NRS is the number of the right sign tags, NWS is the number of the wrong sign
tags and NNT is the number of not tagged events in the sample.
The dilution of a tagger is defined as the asymmetry between right and wrong tags:

D =
NRS −NWS

NRS +NWS
(4.13)

The dilution is related to the probability for the tagger to give a right sign tag, PRS,
or a mistag, PWS:

PRS =
NRS

NRS +NWS
=

1 +D

2
(4.14)

PWS =
NWS

NRS +NWS
=

1 −D

2
(4.15)
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The name ”dilution” is therefore misleading, as good tagging algorithms have high
dilution and poor taggers have dilution close to zero. The use of dilution instead of
the probability measure for a correct tag is justified when the statistical power of the
flavour tag is examined. The relation between the true asymmetry in the data and
the measured asymmetry is

Atrue =
1

D
Ameas (4.16)

which is derived in Appendix A. The statistical uncertainty on Atrue is expressed by

σA =

√

1 −D2A2

εD2N
(4.17)

where N is the number of events before tagging. The uncertainty scales like 1/
√
εD2,

thus the statistical power of a tagger is quantified by εD2. Consequently, optimising
εD2 is the primary goal when developing a flavour tagger. The asymmetry amplitude
(fig. 4.5), as eqn. 4.16 indicates, is further reduced by a factor D, which has typical
values of few percent, thus the mistag rate adds another complication to the oscillation
analysis.

It proves helpful for mixing analyses to study the dependency of the tagger dilution on
event-shape variables. A parameterisation of D as a function of such variables allows
to compute the expected dilution in each event, which is then included as a weight in
the oscillation fit

Nunmixed(t)∝ e−t/τ (1 +D cos ∆ms t) (4.18)

Nmixed(t) ∝ e−t/τ (1 −D cos ∆ms t) (4.19)

As a result, events with clear indications of mixing are weighted more than events
for which no strong decision can be taken and this improves the significance of the
oscillation measurement.

The power of a tagger has to be measured on a calibration sample, i.e. a sample of
b-hadrons for which the flavour is known (e.g. charged b-hadrons or a sample not
enriched in neutral B-mesons). The extraction of the efficiency and the dilution, and
eventually the determination of a parameterisation of the dilution from the data, is
called Tagger Calibration. Each CDF tagger has an own calibration procedure. The
calibration of the Jet Charge Tagger presented in this thesis is described in detail in
Section 7.3.

4.3.2 Same Side Tagging

Kaon Tagging In the specific case of Bs mesons, kaons can usually be found among
the fragmentation products. When a B̄0

s meson is produced, a ss̄ pair is extracted
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Figure 4.7: Left: Diagram of the semileptonic decay of a B meson. The charge correlation
between the lepton and the heavy quark is the basis of the Soft Lepton Tagger. Right:
Production of a charged K− in association with a B̄0

s meson in the fragmentation of a
b-quark.

from the vacuum (fig. 4.7, right). The s̄ quark couples with the b-quark to form the
B̄0

s . The s quark can associate with other quarks and if it associates with a ū then a
K− is produced. Positively charged kaons can be produced together with B0

s mesons.
This correlation is exploited in the Same Side Kaon Tagger, which gives information
on the flavour of the Bs at production time. Similarly, B0

d mesons can be tagged
using fragmentation pions. In addition to the difficult selection of the right particle
among all of the fragmentation tracks, the correct identification of kaons is not trivial,
therefore this tagger has to rely on very good particle identification.
At CDF Same Side Kaon Tagging has been studied and it can be applied to Bs

in a mixing analysis. The measurement of the tagging power on data will only be
possible once the Bs oscillation frequency has been measured [44]. The development
of the Same Side Kaon Tagger and its use for setting a limit on the mixing frequency
requires good understanding of the fragmentation processes and reliable simulation.

4.3.3 Opposite Side Tagging

Kaon Tagging Due to the dominant quark-level decayb → c → s kaons can often be
found among the decay products of b-hadrons. Negatively (positively) charged kaons
are produced in the decays of b-hadrons containing the b- (b̄-) quark. The charge of
the kaon provides the tag of the b-hadron flavour. The tag is wrong when the opposite
side b-hadron is a mixed neutral b-meson. About 17% of the neutral b-mesons mix
before decaying [1].
At CDF Opposite Side Kaon Tagging is not feasible at the moment due to the difficult
inclusive selection of kaons from the b-hadron decay chain.
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Soft Lepton Tagging The Soft Lepton Tagger exploits the charge correlation
between the b-quark and the lepton produced in the semileptonic decay (fig. 4.7, left),
where the lepton is either an electron or a muon. The b- (b̄-) quark is associated with
a negatively (positively) charged lepton, thus the charge of the lepton gives directly
the flavour of the b-quark. About 20% of the b-hadrons decay semileptonically with
either an electron or a muon in the final state. The measurement of the b-flavour is
wrong when the lepton stems from the sub-sequential D-meson decay

b→ c → s `+ ν` (4.20)

Similarly to the Kaon Tagging case, mixed neutral b-mesons give a wrong tag as well.
The Soft Lepton Tagger achieves high purity but the efficiency is rather low due to
the relatively low fraction of semileptonic decays of the b-hadrons and the difficult
identification of leptons at low momentum.
At CDF the soft lepton tagging is performed by combining variables sensitive to lepton
identification in a likelihood ratio [45].

Jet Charge Tagger An empirical correlation between the charge of the tracks in
the vicinity of the b-quark and the b-quark flavour has been observed [46]. The flavour
information is carried by both, fragmentation tracks and the b-hadron decay products.
It can be extracted with a weighted sum of the tracks’ charge. Jets are reconstructed
on the opposite side to identify the opposite side b-hadron inclusively and the tracks in
the jet that is most likely to contain the b-hadron decay products are used to compute
the weighted jet charge.
For the CDF mixing analyses presented at the Winter Conferences 2005 [2] a cut
based Jet Charge Tagger has been used [47, 48]. This tagging algorithm searches for
a jet on the opposite side with a secondary vertex (see Section 3.4.3); if no jet with a
secondary vertex is found, a jet with low probability to come from the primary vertex
(see Section 3.4.3) is searched for; if neither a low probability jet is found, the jet with
the highest transverse momentum on the opposite side is selected.
In general, the Jet Charge Tagger is characterised by low purity and high efficiency.
The tagging power of the Soft Lepton Taggers and of the Jet Charge Tagger is listed
in table 4.1. The Jet Charge Tagger is as effective as the Soft Muon Tagger, but it has
a ten times larger efficiency. Consequently, a large tagging power gain can come from
its improvement.
The acceptance, i.e. the fraction of events in which both the b-quarks are in the η-
coverage of the detector, affects the dilution of this tagger. Moreover, bb̄ events in
the pT range observed at the Tevatron often do not display a clear jet structure. It
follows that the identification of the b-jet is the major issue for this tagger. The work
described in this thesis is mainly devoted to the understanding and the solution of the
problem of b-jet selection. Relevant features of bb̄ events are described in Chapter 5.
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Opposite Side Tagger ε, % εD2, %
Soft Electron ∼ 3 0.366 ± 0.031
Soft Muon ∼ 5 0.698 ± 0.042
Jet Charge ∼ 82 0.715 ± 0.027

Table 4.1: Tagger effectiveness for the opposite side taggers applied in the CDF mixing
analyses. The εD2 has been calibrated on the `+SVT sample.

The strategies considered for the identification of b-jets and the resulting Jet Charge
Tagger algorithm for CDF are described in Chapter 6 and in Chapter 7, respectively.

The flavour tagging in CDF mixing analyses has been performed with the Jet Charge
and the Soft Lepton Tagger. The Same Side Kaon Tagger has not been included for the
first iteration of the analysis, but is going to be considered for the next measurement.
The combination of several correlated taggers is supposed to be more powerful than a
single tagger. Nevertheless, the CDF mixing analysis applied the Jet Charge Tagger
and the Soft Lepton Tagger in an exclusive fashion, giving priority to the tagger with
the higher dilution with the aim of eliminating the correlations between the taggers.
Further studies of the correlation of taggers are needed to allow a meaningful combi-
nation. For the next update of the mixing analysis it is planned to use a combination
of Same Side Kaon Tagging and Opposite Side Taggers.

4.3.4 Remarks with Respect to B-Factories

The application of Soft Lepton and Jet Charge Tagger to the CDF B0
s mixing analysis

scores about 1.4% for εD2. This number is rather small, especially in comparison to
typical tagging powers at the B-Factories, which are of the order of 20 - 30% for Soft
Lepton Tagging. It is important to stress that b-flavour tagging at the Tevatron is
extremely challenging. The B-Factories produce the resonance Υ(4S), which decays
into B mesons. The decay products are quantum correlated, thus they evolve coher-
ently and conserve their flavour anti-correlation. As soon as one of them decays in
the instant t0, the other has the probability to mix given by eqn. 2.9 and 2.10 with the
substitution of t− t0 to t. The flavour at decay time t0 of one of them tags then au-
tomatically the flavour of the other at the instant t0. In addition, the neutral mesons
are produced pairwise in decays of the Υ(4S), so no other particles are present in the
detector besides the final state products of the B0 and B̄0. The situation is completely
different at the Tevatron, where the hadronic environment adds some complications:
beam remnants and fragmentation tracks populate the events together with tracks
from interesting decays, summing up to an average number of detected charged parti-
cles of the order of 50 for bb̄ events. Consequently, the extraction of the signal is not
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easy and the identification of a particular fragmentation particle is extremely difficult.
It is necessary to keep in mind the complexity of bb̄ events at the Tevatron, especially
when dealing with b-flavour tagging.

4.4 Extraction of ∆ms

The mixing frequency of B0
s -B̄

0
s mesons has not yet been measured, thus, unlike ∆md,

it is not possible to extract ∆ms directly from a fit of the asymmetry A(t) because
there is no sensible starting value for the frequency parameter in the fit. Instead the
range of possible ∆ms values is probed with the amplitude scan method [49]. An extra
parameter, the amplitude A, is included to the expression of the oscillation probability
(eqn. 4.2 and 4.3)

Nunmixed(t) ∝ e−t/τ (1 + A ·D cos ∆ms · t) (4.21)

Nmixed(t) ∝ e−t/τ (1 −A ·D cos ∆ms · t) (4.22)

The asymmetry in the data is fit for fixed frequency values. The amplitude is left free
to float during the fit. In the case of infinite statistics, optimal resolution and perfect
tagger parameterisation, A is expected to be unit for the true oscillation frequency and
zero for the remaining of the probed spectrum. In real life, the output of the procedure
is a list of fitted values (A, σA) for each ∆ms hypothesis. Such a ∆ms hypothesis is
excluded to a 95% confidence level in case the following relation is observed

A(∆ms) + 1.645 · σA(∆ms) < 1 (4.23)

The sensitivity at 95% confidence level is determined by the value of σA which satisfies
the relation

1.645 · σA(∆ms) = 1 (4.24)

In order to use the amplitude scan method, all the parameters in the fit except for A
have to be fixed.
A sample of B0

d and B+ candidates has been used to fine-tune the calibration of the
dilution of each tagger [50] (see Section 4.3.1). The kinematics of the events selected
for the B0

s mixing analysis might be different from the kinematics of the events in
the calibration sample. This might affect the dilution measurement, therefore a re-
calibration is needed. The B0

d sample is also a good test-bed for the overall fitting
procedure. Figure 4.8 shows the result of the amplitude scan on the B0

d sample. The
amplitude is compatible with zero over all the ∆md spectrum, except for an interval
in the vicinity of the true ∆md value.
The result of the CDF amplitude scan on the semileptonic Bs sample is shown in
fig. 4.9 (left). An analogous scan has been performed on the hadronic sample and the
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result is illustrated in fig. 4.9 (right). The combined sensitivity of the semileptonic and
the hadronic analysis is 8.4 ps−1 and the limit is

∆ms > 7.9 ps−1 (4.25)

with 95% confidence level [2]. This constitutes the first limit by CDF on ∆ms with
Run II data and it has been published for the Winter Conferences of 2005.
The combination of the CDF result with the ∆ms results of SLD and LEP experi-
ments is shown in fig. 4.10 and corresponds to the exclusion of ∆ms < 14.5 ps−1 and
a sensitivity of 18.6 ps−1 with 95% confidence level. The graph in fig. 4.11 shows the
amplitude for ∆ms = 15 ps−1 measured so far by different experiments, including the
latest CDF and DØ results. The precision achieved by CDF is better than the preci-
sion of the DØ measurement. The combined amplitude is compatible with zero within
two sigma confidence, therefore this value of ∆ms can be excluded.
The next update of the CDF oscillation analysis, which is going to be published at
the Summer Conferences 2005, will benefit from several improvements. Due to the
increased luminosity delivered by the Tevatron and to the higher number of recon-
structed decay modes, the size of the B0

s sample will be larger. At the same time work
is going on to improve the vertex reconstruction, and thus the resolution on the proper
time. The inclusion of the Same Side Kaon Tagger is foreseen in combination with
Opposite Side Taggers. The Neural Network based Jet Charge Tagger, which is part
of the work presented in this thesis, is going to substitute the cut based Jet Charge
Tagger and an improvement in the tagging power is demonstrated in this thesis.
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Chapter 5

Understanding bb̄ Events with

Simulation

In this chapter the features of events triggered by a lepton and a displaced track at
CDF are studied on data and on Monte Carlo. The definition of event sides, their
characteristics and their correlations are investigated.
The Monte Carlo generated with Pythia [54] used up to now in the CDF B group con-
tains only leading-order bb̄ pair production. It has turned out that this sample does
not describe the features of the opposite side accurately. Additional bb̄ pair creation
processes had to be taken into account to describe the data.
In this chapter an alternative sample composition, including more bb̄ creation pro-
cesses, is proposed and it is compared to the previous sample. It is demonstrated that
the alternative sample gives a better description of the data. It is therefore used in
the following to study the characteristics of the event which are relevant for a flavour
tagger, e.g. the correlation between the heavy quarks, the angular distribution of
tracks from the decay of the b-hadrons and fragmentation tracks, the relation between
the event sides. The results emphasise how difficult the task of tagging b-jet can be.
However they can help to find the best way to identify the decay products of the
opposite side b-hadron with jet clustering algorithms.
The study presented in this thesis is the first one within the CDF II B group which
has taken the advantage of a Monte Carlo sample with additional processes.

5.1 bb̄ Pair Production at Tevatron

The Monte Carlo simulation hence in use in the CDF B group contains bb̄ events
produced only via leading order processes and it does not reproduce bb̄ events as they
are seen in the CDF detector. Some studies [52, 53] show that, in order to predict
the right bb̄ production cross section at the Tevatron, additional processes have to
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Figure 5.1: Feynman diagrams of the most important bb̄ production processes. (a), (b)
and (c) show flavour creation processes. (d) is a flavour excitation diagram. (e) and (f)
correspond to gluon splitting processes [52].

be added to a leading order Monte Carlo. The Feynman graphs associated to these
production mechanisms are shown in fig. 5.1.
The leading order bb̄ production process is flavour creation (FC). It creates the heavy
quark pair through one of the processes illustrated by the diagrams in fig. 5.1a and
5.1b. The emission of a gluon by one of the heavy quarks (fig. 5.1c) does not affect
the cross section of the process. The additional processes in the framework of the
Parton Shower model are flavour excitation (FE) and gluon splitting (GS). Flavour
excitation happens when a virtual heavy quark from the parton distribution of one
incoming beam particle is put on mass shell by the momentum transferred through
the interaction with a parton in another beam particle (fig. 5.1d). In gluon splitting
processes the bb̄ pair is produced in a gluon shower either by a final or initial state gluon
(fig. 5.1e and 5.1f respectively). The above classification of bb̄ production processes is
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based on the number of heavy quarks in the final state of the hard scattering process
(two for flavour creation, one for flavour excitation and none for gluon splitting). The
three types of processes result in different correlations between the produced quarks.
The study in ref. [52] shows that the bb̄ production cross section by flavour excitation
processes is comparable to the cross section of flavour creation at 1.96 TeV centre
of mass energy. Gluon splitting plays a less important role but is nevertheless not
negligible. As we shall see, all three of these bb̄ production processes have to be
included in the generation of a Monte Carlo sample to obtain a reasonable description
of data.

5.2 Samples Description

A Monte Carlo sample containing bb̄ flavour creation-only processes and a Monte
Carlo sample containing additional bb̄ generation processes have been produced. The
generator used is Pythia [54], with the production of the additional processes has been
switched off for the first sample and on for the second sample, and the `+SVT trigger
has been simulated for both samples. The b-hadrons have not been forced to decay
in any particular channel, consequently the Monte Carlo samples include events in
which the trigger lepton comes from a decay b → c → `. More details about the
generation and simulation of the Monte Carlo sample are given in Appendix B. For
sample with only flavour creation processes, the events have been simulated in the
run range 138815 - 156487, corresponding to the data taken up to the shutdown in
Jan. 2003 and the sample contains about 140k events. The simulated run range for
sample with more processes is 138809 - 178785, which corresponds to the list of good
runs taken up to Feb. 2004, and the number of events is about 113k.
In the follow up the second sample is often indicated as ”all-processes” sample, or
”sample with all processes”, for conciseness.
The data sample used is a subset of the `+SVT dataset1 including runs until Feb. 04.

5.2.1 B Candidate Reconstruction

The `+SVT trigger requirements are confirmed in the offline analysis2. The signal
B-candidate is reconstructed in the same way for data and Monte Carlo samples by
combining the lepton and the SVT track.
The background subtraction with the signed impact parameter of the SVT track δSV T

0

is performed in the same way for data and Monte Carlo. The variable δSV T
0 is computed

1Data have been processed with version 5.1 of the reconstruction software. The dataset name is
jbel0c and jbmu0c.

2For this purpose the LeptonSvtSel module [55] is used.
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the trigger lepton momentum δSV T

0 for simulated events (left) and for data (right).
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in every event as3

δSV T
0 = |~dSV T

0 | · sign(~dSV T
0 · ~p`) (5.1)

The distribution of δSV T
0 is shown in fig. 5.2 for Monte Carlo (left) and for data (right).

The cuts at ±0.01 cm and ±0.1 cm correspond to the requirements at trigger level on
the SVT track. For every variable the distribution obtained with the cut δSV T

0 < 0 is

3This definition is the same as in fig. 3.5 (left), where the track considered is the displaced trigger
track and the trigger lepton momentum is substituted to the jet momentum ~pjet.
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subtracted from the complementary distribution, i.e. obtained with the cut δSV T
0 > 0.

This subtraction aims at rejecting the events in which the trigger lepton and the
displaced track do not come from the same vertex, e.g. QCD background, for which
the distribution of δSV T

0 is symmetric about zero. About 42% of the events are removed
in data. This fraction is only 17% for simulated events since QCD background is not
included in the Monte Carlo sample.
It has been seen that requiring the mass of the B candidate to be the range [2 GeV/c2,
4 GeV/c2] suppresses the background from cc̄ events [56]. The distribution obtained

in that study for the mass of the B-candidate in the µ+SVT sample is shown in fig. 5.3.
The candidates with mass larger than 4 GeV/c2 are mostly background. The peaks
corresponding to K0

S → π+π− (∼ 0.5 GeV/c2) and D0 → K−π+ (∼ 1.8 GeV/c2) are
visible in data. In these decays one of the final state hadrons produces a fake trigger
lepton. The J/ψ → µ+µ− peak is visible as well. The detector resolution has not been
simulated in the Monte Carlo sample used for the study in [56], as is evident from the
width of the J/ψ peak.
The procedure of cutting on the B-candidate mass and subtracting the background
with δSV T

0 has been approved by the CDFB group and is described in [56]. It is applied
to every distribution and measurement shown in the following. The composition of
the resulting sample is close to 100% bb̄ events with negligible cc̄ and light flavour
component.

5.3 Comparison of Monte Carlo Samples

The estimates for the power of taggers at CDF Run II have been based on simulation
containing only flavour creation processes. The result has proven to be too optimistic.
It has become evident that additional processes cannot be neglected. In this section
the differences between the samples and their comparison to data are illustrated. The
complications added to the development of an opposite side tagger are discussed.
The study presented here is the first one within the CDF B group performed for
tagging purposes on a Monte Carlo sample with additional bb̄ production processes.

5.3.1 Quark Correlation

In each simulated event the non-excited b-hadrons are identified by accessing the Monte
Carlo truth information. The b-hadron closest to the signal B-candidate direction is
called signal b-hadron (or true same side b-hadron) and the other b-hadron in the event
is the tagging b-hadron (or true opposite side b-hadron). The quarks that generated
the b-hadrons are accordingly called signal b-quark and tagging b-quark.
The correlation between the signal and the tagging quarks is illustrated in fig. 5.4
and 5.5. Cuts at the generation level require that the signal quark is in the tracking
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Figure 5.4: Correlation of signal and tagging b-quarks. Left: pseudorapidity difference
between the quarks. Right: angular difference in the transverse plane.
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Figure 5.5: Correlation of signal and tagging b-quarks. Left: cone angle between the quarks
Right: pT correlation.

detector coverage (|η| < 1.5) and has a minimum pT of 5 GeV/c. No cuts are applied
on the tagging quark. The distributions on the difference of pseudorapidity (∆η,
fig. 5.4, left), azimuthal angle (∆φ, fig. 5.4, right) and cone angle (∆R, fig. 5.5, left)
are normalised to a unit area.
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drawn for the two Monte Carlo samples.

In flavour creation processes the b-quarks are produced preferentially back to back
and the correlation between their momenta is strong. This does not hold for gluon
splitting and flavour excitation. In the latter two cases the quark momenta are less
correlated (fig. 5.5, right). In gluon splitting processes the quarks might be very close
in space, thus rendering the separation of the event in same and opposite hemisphere
impossible. In this case, it is difficult to properly flag a b-quark as signal and the other
as tagging quark and wrong assignments can happen. The trigger pT cut on the signal
side biases the transverse momentum of the signal quark to higher values. In case of
wrong assignments this bias is on the tagging side and this explains the rise at low
momentum that one observes in the pT correlation graph.
It is interesting to evaluate how often both b-quarks are in the detector coverage. The
fraction of events for which the tagging quark has |η| < ηcut is computed and shown
in fig. 5.6 for different values of ηcut. The flavour creation Monte Carlo (triangles)
overestimates the fraction by 6% to 11% with respect to the sample with all processes
(circles). For ηcut = 1.5 the fraction is 58% for the all-processes sample and 67% for
the flavour creation sample.

The comparison between the two Monte Carlo samples at generator level points out
some differences that play an important role when developing opposite side taggers.
According to the flavour creation Monte Carlo the heavy quarks are well separated in
space and are both in the detector for most of the triggered events. Once the signal
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Parameter Value
minimum pT for seed tracks pseed

T,min 1.0 GeV/c
minimum pT for non-seed tracks ptrack

T,min 0.4 GeV/c
isolation cone around B candidate ∆Riso 0.7
maximum cone to merge seeds ∆Rclm 1.5
maximum cone to merge non-seed tracks ∆Rjm 1.5

Table 5.1: Summary of the parameters for Cone Clustering optimised with respect to the
tagging power of the cut base Jet Charge Tagger [47].

b-hadron direction is reconstructed in the transverse plane, the tagging b-hadron is
likely to be found by looking in the opposite direction and its momentum is similar
to the signal hadron momentum. This picture is over-optimistic and leads to wrong
expectations for the performance of opposite side taggers.
The Monte Carlo with all processes depicts a more complex view. The tagging quark
is more often out of the detector acceptance and sometimes very close in space to
the signal quark. It is expected that the chance of defining the opposite hemisphere
correctly and identifying the tagging hadron is consequently smaller in this sample.

5.3.2 Comparison to Data

In the following section we compare real data to Monte Carlo distributions of some
opposite side related quantities. The opposite side is defined as the detector volume
outside a cone of 0.7 around the reconstructed B candidate direction. The tracks on
the opposite side have to satisfy requirements on the impact parameter (|d0| < 0.15
cm) and on z0 (|z0 − zB| < 1 cm, where zB = (z` + zSV T )/2), z` is the z-coordinate of
the trigger lepton and zSV T is the z-coordinated of the SVT track. These cuts reject
tracks originating in primary interaction points different from the B production vertex
[47]. Jets are reconstructed on the opposite side from the tracks remaining after the
cuts. The jets are found by the Cone Clustering algorithm (see Section 3.4.3) with
the tuned parameters used by the cut based Jet Charge Tagger (see Section 4.3.3
and ref. [47]), summarised in table 5.1. The jet selection of the cut based Jet Charge
Tagger has been applied to choose a tagging jet among those reconstructed on the
opposite side. All distributions shown in this section and in the following ones have
been normalised to a unit area.
The number of tracks reconstructed on the opposite side is shown in fig. 5.7 for Monte
Carlo and data. The distribution is better modelled in the Monte Carlo containing all
processes than by the flavour creation only Monte Carlo. While the average number
of opposite side tracks is very similar in the two Monte Carlo samples, the width of
the distribution is larger for the all-processes Monte Carlo sample. This suggests that
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Figure 5.7: Number of tracks in the event outside a cone of ∆R = 0.7 around the B
candidate direction. The data points are compared to the distributions obtained for flavour
creation only Monte Carlo (dashed line) and for all-processes Monte Carlo (solid line).

one of the two additional processes generates in average more particles than flavour
creation and the other process generates fewer particles.
The average number of reconstructed jets on the opposite side (fig. 5.8, left) is smaller
in the all-processes Monte Carlo than in the flavour creation only Monte Carlo. The
overall distribution for the first sample is closer to the data. The distribution of the
number of tracks in the jet tagged by the cut based Jet Charge Tagger (fig. 5.8, right)
for data is more compatible with the all-processes Monte Carlo distribution than with
the flavour creation only Monte Carlo. This is in agreement with the better description
of the distribution of the track multiplicity on the opposite side given by the all-
processes Monte Carlo. Finally, the distributions of ∆φ between the tagging jet and
the signal B candidate direction (fig. 5.9, left) and the cone angle ∆R between these
directions (fig. 5.9, right) clearly show that the all-processes Monte Carlo reproduces
the opposite side features of data events significantly better than the flavour creation
only Monte Carlo.
A Monte Carlo sample containing only bb̄ flavour creation processes does not correctly
describe the data. Such a Monte Carlo sample might lead to a too optimistic estimate
of the efficiency for the identification of the tagging b-hadron. Even without a fine
tuning of Pythia fragmentation modelling, the all-processes Monte Carlo produced
with default parameters describes data very well. In the following the flavour creation
only sample will be abandoned and all studies will be performed with the sample
containing all bb̄ production processes.
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Figure 5.8: Comparison of distributions of opposite side variables for data (dots), flavour
creation Monte Carlo (dashed line) and all-processes Monte Carlo (solid line). Left: Number
of reconstructed jets on the opposite side by the cone clustering algorithm optimised as in
[47]. Right: Number of tracks in the tagging jet as selected from the JetSelection algorithm,
as used in [47].
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Figure 5.9: Comparison of distributions of opposite side variables for data (dots), flavour
creation Monte Carlo (dashed line) and all-processes Monte Carlo (solid line). Left: angle in
the transverse plane between the tagging jet direction and reconstructed signal B candidate.
Right: cone angle ∆R between the tagging jet direction and the signal B candidate direction.
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Figure 5.10: Distributions of the number of COT hits per track for data and Monte Carlo.
Left: all hits. Centre: axial hits. Right: stereo hits.

5.4 Detector Description in Simulated Events

The accuracy of the detector description in the Monte Carlo sample is tested in this
section. In particular some quantities related to the tracking detectors are compared.
All tracks in the event with at least 10 stereo and 10 axial COT hits or with at least
two r-φ hits in the SVXII detector have been re-fitted using the prescription of [57]
for the energy loss correction for Monte Carlo and data.
The number of COT hits per track is shown in fig. 5.10. Obviously this quantity is
not correctly modelled in Monte Carlo. The distribution for data is more smeared and
the central value is smaller than in the simulation. Both axial and stereo hit numbers
are different for data and Monte Carlo. The simulation of the COT is currently under
development, so the discrepancy in the number of hits is expected to be reduced in
future software releases.
The plots in the top row of fig. 5.11 show the comparison between data and simulation
for the number of silicon hits per track. The Monte Carlo distributions are not in
perfect agreement with data and tracks in simulated events appear to have on average
more hits than in data. The impact parameter distributions corrected with respect to
the beam spot (fig. 5.11, bottom left) present a small discrepancy in the tail. The error
on the impact parameter corrected by the beam spot error (fig. 5.11, bottom centre)
shows a disagreement as well. Moreover the correlation between impact parameter and
its error is not perfectly modelled in the simulation: in the d0 range of 0.02 cm - 0.1 cm
the Monte Carlo resolution is better than the data resolution. Further investigation
showed that the disagreement is mostly given by tracks that have their innermost φ
hit in the layer closest to the beam line. In general the innermost hit and its error
dominate the measurement of the impact parameter of the track and its error. The
effect depends on the position of the hits of the track in the silicon detector and on
the errors associated to the hits. The position of the hits in the silicon barrels and
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Figure 5.11: Top row: Distribution of the number of hits per track for data and Monte
Carlo. Bottom row: Track impact parameter corrected with respect to the beam spot (left),
error on impact parameter corrected by the beam line error (center) and their correlation
(right).
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Figure 5.12: Hit position in the silicon detector barrels (left) and layers (centre), and hit
error distributions for data and Monte Carlo (right).

in the silicon layers (fig. 5.12, left and centre) in the Monte Carlo is compatible with
data. The error on the hit position (fig. 5.12, right) has a peak structure given by the
resolution of the silicon strips in each layer. The substructure in the peaks is given
by the number of strips that contribute to the hit. The error is in average bigger in
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data than in simulated events. The disagreement is similar for each layer of the silicon
detector. The Monte Carlo modelling of the hit error is wrong also in the innermost
layer, which explains the disagreement seen in d0 and σd0 distributions.

Since the hit content of tracks is not sufficiently well simulated, variables as the number
of hits on tracks should not be used to parameterise other track properties, e.g. in a
Neural Network, to avoid discrepancies in the results between data and simulation.

5.5 Event Shape Study

This section focuses on the kinematics of tracks on the same side, on the opposite side
of the event and their relation between the sides of the event. The studies presented
here are relevant to the development of opposite side taggers. The analysis of the
same side distributions indicates how the tracks correlated to the signal b-quark could
affect the tag of the b-flavour on the opposite side. The aim of the study of the
opposite side is to understand the inclusive identification of the tagging b-hadron,
e.g. with jet clustering algorithms. In the following ”B” indicates any non excited
b-hadron. This definition includes B0/B̄0 (∼40%), B+/B− (∼40%), Bs/B̄s (∼10%)
and Λb/Λ̄b (∼10%). ”B∗∗”4 will indicate any excited b-hadron. Plots regarding the
distributions of the tracks corresponding to particles coming from the B decay, from
the B∗∗ decays and from the fragmentation of the b-quark into hadrons are shown in
the following. These particles are identified with the Monte Carlo truth, excluding
the particles originating from interactions with the detector. The B decay tracks
include the daughters of intermediate-state particles originating from the B, such as
D-mesons, J/ψ, etc. and the track categories are mutually exclusive. The average
number of tracks of each type on the same and on the opposite side is shown in table
5.2. The number of reconstructed B decay tracks is on average lower on the opposite
side because, unlike the signal b-quark, the tagging b-quark is not required to be in the
tracking detector coverage. On both sides the fragmentation tracks are on average as
numerous as the reconstructed B decay products. There are fewer tracks originating
from B∗∗ decay due to the small production rate for excited b-hadrons.

5.5.1 Same Side

As already mentioned, the signal B is reconstructed as the combination of the trigger
lepton and the SVT track in each event. In order to understand the resolution on the
reconstructed signal B direction, it is useful to look at the angle ∆φ in the transverse

4This notation is used instead of ”B∗” because B∗ mesons decay dominantly into Bγ, therefore
no track from B∗ is reconstructed.
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track type Same Side Opposite Side

B decay 1.93 1.7
fragmentation 2.0 1.5
B∗∗ decay 0.003 0.051

Table 5.2: Average number of tracks of each type on the same side and on the opposite side
for simulated events.
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Figure 5.13: Angle in the r-φ plane between the true same side B and the B candidate
direction. The solid line represents a gaussian fit to the distribution.

plane between the reconstructed B direction and the true direction (fig. 5.13). A
gaussian fit of the angle distribution gives a width equal to 0.0789±0.0010 rad, which
can be interpreted as the resolution of the same side B direction in the transverse
plane. Although the signal B is reconstructed from two tracks only, its direction in
the transverse plane is determined rather precisely. The trigger tracks have relatively
high momentum5. These are often the tracks carrying the highest fraction of the B
momentum, so the sum of their momenta identifies the B direction well.
The properties of the tracks originating from the signal B decay are shown in fig. 5.14
and fig. 5.15. The transverse momentum distribution of tracks on the signal side
(fig. 5.14, left) shows that the B decay tracks are more energetic than the fragmentation
and B∗∗ tracks. One notices also that the trigger cuts on momentum applied to the
lepton and SVT tracks give a characteristic shape to the distribution of the pT of the
B decay tracks.
The tracks coming from the B decay and from the excited B decay are close to the

5The displaced track has a transverse momentum of at least 2 GeV/c and the lepton of at least
4 GeV/c (see Section 3.3.2).
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Figure 5.14: Left: Spectra of reconstructed transverse momentum spectra for tracks coming
from B decays, from B∗∗ decays and from fragmentation. Right: Cone angle of all tracks
with respect to the true signal B direction, of tracks originating from the signal B.
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Figure 5.15: Left: Cone angle of the furthest track from the true signal B direction. Right:
Dependency of the cone angle with respect to the true signal B direction of the furthest
track on signal B transverse momentum.

B direction (fig 5.14, right). The plot in fig. 5.15 (left) illustrates the distribution of
the cone angle of the track with the largest cone angle (furthest track) with respect
to the true signal B direction . It shows that the tracks produced in the decay of
B∗∗ are closer to the B direction than those produced in the B decay and it indicates
that the isolation cone of 0.7, already applied in the cut based Jet Charge Tagger,
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Figure 5.16: Left: Fraction of tracks related to the signal B that fail the isolation cut
(∆R = 0.7). Right: Transverse momentum of the tracks failing the isolation cone.

rejects the tracks from signal B decay with high efficiency. The fragmentation tracks
instead are be distributed uniformly in the detector. This behaviour does not depend
on the transverse momentum of the signal B: the plot in fig. 5.15 (right) shows that
for increasing transverse momentum of the true signal B, the B decay tracks become
more collimated around the mother direction, but the average maximum distance of
fragmentation tracks from the B direction does not vary significantly.
It is interesting to study the features of the signal and fragmentation tracks related
to the same side B which are not included in the isolation cone, since these tracks
are assigned to the opposite side and could affect flavour tagging. The fraction of
tracks that fail the isolation cut is shown in fig. 5.16. In average, if particles from B
or excited B decays are in the detector, ∼5% of their tracks fail the isolation cut. The
average fraction of fragmentation tracks falling outside the isolation cone is ∼74%. It is
not possible to completely isolate the fragmentation tracks and to define uncorrelated
sides of the event. A big portion of fragmentation tracks originating on the signal
side is always assigned to the opposite side. Since fragmentation tracks carry flavour
information, their presence on the opposite side might affect the computation of the
opposite side flavour. The pT distribution of tracks failing the isolation cut is shown
in fig. 5.16 (right). These tracks are in general soft, but about 20% of them has pT > 1
GeV/c, which is the minimum pT cut on seeds for the Cone Clustering algorithm (see
Table 5.1), consequently they might seed the reconstruction of a jet on the opposite
side.
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Figure 5.17: Distribution of the number of fragmentation tracks, B∗∗ and B decay products
reconstructed on the opposite side Left: no requirements on the opposite side b-quark Right:
the opposite side b-quark is required to be in the detector acceptance and to have transverse
momentum larger than 5 GeV/c.

5.5.2 Opposite Side

The distribution of the number of B decay products reconstructed on the opposite side
is shown in fig. 5.17 in comparison with the number of fragmentation and B∗∗ decay
tracks. When no requirements are applied to the opposite side b-quark (fig. 5.17, left),
no decay product from the tagging b-hadron can be detected in 32% of the events.
When the tagging b-quark is in the tracking detector η-coverage and it has pT > 5
GeV/c the fraction goes down to 13% (fig. 5.17, right). In these events, the direction
of the momentum of the tagging b-quark is often very close the direction of the signal
b-quark momentum, therefore its decay products fall inside the isolation cone. If in
addition one requires an angular separation ∆R > 0.7 between the momenta of the
quarks, the fraction of events without decay tracks from the tagging b-hadron on the
opposite side is 5%.
The true tagging b-quark does not have to satisfy any requirement at generator level in
the Monte Carlo sample, in particular no transverse momentum cut is applied. Conse-
quently the tagging B is on average less energetic than the signal B. The momentum
distribution of its decay products reflects this (fig. 5.18, left). While the tagging B
tracks are softer than the signal B tracks (compare to fig. 5.14, left) they all have a
higher momentum than the fragmentation tracks on average, although 58% of them
have pT smaller than 1 GeV/c.
The tracks coming from the tagging B decay are less collimated than the tracks from
the signal B decay. The furthest decay track might also be far away in angle from
the true tagging B direction, as the long tail in the ∆R distribution in fig. 5.19 (left)
indicates. A cone of 1.5 around the true tagging B direction collects most of the B
decay tracks and excited B decay tracks, but it includes also a considerable fraction
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Figure 5.18: Left: Spectra of the reconstructed transverse momentum for tracks coming
from B decay, from B∗∗ decay and from fragmentation. Right: Cone angle distribution of
tracks originating from the tagging B with respect to the true tagging B direction of all
tracks.

of fragmentation tracks.
The tracks from B and excited B decays get closer to the true B direction as the
heavy hadron transverse momentum grows (fig. 5.19, right). The maximum cone an-
gle of the fragmentation tracks does not depend on the pT of the B. Similarly to what
is observed for the same side, it is not possible to find a cone around the B direction
which could reject all fragmentation tracks.
In an ideal situation, as for example in the Monte Carlo with flavour creation only, the
most probable tagging B direction could be found as the opposite to the direction of
the signal B candidate. The tagging B transverse momentum could be estimated from
the signal B pT . A cone clustering algorithm could then use a cone size parameterised
with the tagging B pT . The parameterised cone size would allow the inclusion in the
jet of most of the B decay tracks. It is clear that fragmentation tracks cannot be
efficiently rejected by jet clustering. To reject fragmentation tracks impact parameter
cuts, or similarly, track probability cuts are employed.
The reconstruction of pure jets with a cone algorithm is more complicated in reality.
The Monte Carlo sample with all processes suggests that the signal and the tagging
B directions are weakly correlated. Only in few cases the heavy hadrons fly back to
back, consequently the signal B candidate cannot be used to estimate the tagging B
candidate direction. The correlation between the transverse momenta of the heavy
quarks is also weak, therefore the b-hadrons can have very different pT . The tagging
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Figure 5.19: Left: Cone angle of the furthest track from the true tagging B direction. Right:
Dependency of the cone angle with respect to the true tagging B direction of the furthest
track on tagging B transverse momentum.

B pT should then be estimated via an exclusive or an inclusive reconstruction method
on the opposite side. The exclusive reconstruction though, would be successful only in
a small fraction of events. The scenario suggested by the all-processes Monte Carlo is
far from being ideal. The use of Cone Clustering to reconstruct jets containing most of
the B decay products and the least of fragmentation tracks proves to be a challenging
task.
A different approach in jet reconstruction is offered by Mass Clustering, described in
Section 5.6.2. The invariant mass of all tracks on the opposite side is distributed as in
fig 5.20 (left). The most probable value for the mass is rather high, around 15 GeV/c2.
The invariant mass of the tracks coming from the B decay is shown in fig. 5.20 (right).
The mass is always smaller than 5 GeV/c2 and it peaks evidently at the pion mass
when there is only one charged particle from tagging B decay in the detector. The
mass of a jet containing a very high fraction of B decay products should not have an
invariant mass higher than the nominal B mass of ∼5 GeV/c2.

5.6 Jet Clustering Algorithm Evaluation

In this Section the composition of jets reconstructed with Cone and Mass Clustering
algorithms and with different jet sizes is studied. To judge the jet composition the
purity and the efficiency are evaluated. The purity of a jet estimates the ability of the
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Figure 5.20: Invariant mass computed with the reconstructed momentum of tracks and with
a pion particle hypothesis. Left: Invariant mass distribution of all tracks on the opposite
side, including signal side fragmentation, B∗∗ and B decays tracks that fail the isolation
cone cut. Right: invariant mass of tracks coming from tagging B decay and/or from the
fragmentation of the tagging b-quark, and comparison to the invariant mass of all tracks on
the opposite side.

algorithm to include in a jet more B decay products (or fragmentation tracks) than
other tracks and is defined as the number of tracks from B decay (or fragmentation)
in the jet divided by the total number of tracks in the jet. The efficiency of a jet
estimates how good the algorithm is in including the B decay products which are
on the opposite side for a given event and is defined as the number of tracks from
B decay (fragmentation tracks) in the jet divided by the number of B decay tracks
(fragmentation tracks) on the opposite side.
The signal jet in the event is the reconstructed jet that contains the highest number
of tracks from the tagging B decay. If there are two jets with numbers of B decay
tracks that differ at most by one, the signal jet is the one closest to the true tagging
b-hadron direction. In events in which all B decay products are outside the tracking
detector, there is no signal jet. The efficiency and purity for a given algorithm are the
average efficiency and the average purity of the signal jets that are reconstructed by
the algorithm.

5.6.1 Cone Clustering

In order to understand which is an optimal value for the cone size used by the Cone
Clustering algorithm and how the jet is composed, a scan of the cone angle parameter
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Parameter Value
minimum pT for seed tracks pseed

T 1 GeV/c
minimum pT for non-seed tracks ptrack

T,min 0.4 GeV/c
isolation cone around B candidate ∆Riso 0.7

Table 5.3: Summary of the parameters used for Mass Clustering.

∆Rclm is performed. The cone angle values used for this test are 0.4, 0.7, 1 and 1.5.
The cone size for the merging of jets and non-seed tracks, ∆Rjm, is set equal to ∆Rclm.
The other parameters are set to the optimised values listed in table 5.1. Plots of the
performance of the Cone Clustering algorithm for different cone angle values can be
seen in fig. 5.21 (open dots). As expected, the highest efficiency for collecting B decay
tracks is given by the largest cone, the highest purity is given by the smallest cone
(fig. 5.21, left). The reconstructed jets with ∆R = 0.4 consist mostly of one track,
so, although they are rather pure jets, they are not a good choice for tagging with
Jet Charge. As the cone size grows larger, more fragmentation tracks are included in
the jet (fig. 5.21, right). The growth of fragmentation track purity indicates that, by
increasing the cone size, more fragmentation tracks constitute the jet, but not more
tracks from B decay.
A hint on the tagging B direction resolution of the algorithm is given by the angle
in the transverse plane between the best reconstructed jet and the true tagging B
direction. A distribution of this quantity for each cone size is shown in fig. 5.22 (left).
Only events in which the tagging B is in the detector acceptance (|η| < 1.5) and has a
transverse momentum larger than 5 GeV/c are used to produce the residual plot. The
distributions are very similar to each other, however the smallest width is obtained
with the cone size ∆Rclm = 1. Thus this cone size gives a better resolution on the
tagging B direction. This conclusion agrees with the plot in fig. 5.18 (left), which
indicates that in a cone ∆Rclm = 1 around the true B direction there are ∼90% of the
B decay tracks and ∼30% of the fragmentation tracks correlated with the opposite
side b-hadron.

In the following jets will be reconstructed with a cone size of 1.5 in order to be able to
use the SecVtx algorithm, which has been optimised on jets with ∆Rclm = 1.5, within
the Jet Charge Tagger.

5.6.2 Mass Clustering

A clustering algorithm that reconstructs jets on the basis of the invariant mass of pairs
of tracks has been developed for the JADE experiment [58] and has been used at LEP.
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Figure 5.21: Evaluation of efficiency and purity for cone (open points) and mass algorithms
(full points) for different cone values and xmin values.

CDF adopted it in Run I for the sin2β analysis [59].
The track pre-selection cuts are the same used for Cone Clustering (see Sections 5.3.2).
The tracks seeding the algorithm have to have a transverse momentum larger than
pseed

T , which is a parameter of the algorithm. Clusters are constructed from each seed
with each cluster corresponding to a single seed track, and the invariant mass of each
pair of seeds is computed. Pairs that have invariant mass-squared m2 smaller than a
cutoff xmin are merged into a single cluster, starting with the pair with lowest mass.
The merging procedure is repeated until no cluster pair has m2 smaller than xmin.
Non-seed tracks are added to the clusters with a similar procedure: m2 is computed
for every track-cluster pair, the tracks are included in the clusters if m2 is smaller
than xmin, starting with the lowest mass pairs. The merging stops when there is no
track-cluster pair left with m2 < xmin.
The result of the reconstruction of the jet with a cutoff on the minimum invariant mass
is rather close to that of a cone based reconstruction. High pT jets have a smaller cone
size and lower pT jets are broader. Figure 5.19 (left) suggests that this result is the
ideal one. The algorithm could be tuned to give jets containing mostly B decay tracks.
A simple scan of the invariant mass cutoff xmin is performed to evaluate the efficiency
and purity of the Mass Clustering algorithm. The chosen values are 9 (GeV/c2)2,
16 (GeV/c2)2, 25 (GeV/c2)2 and 36 (GeV/c2)2. The minimum jet mass is the only
parameter varied, all the other parameters are taken with their default values, listed
in table 5.3.
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Figure 5.22: Angle in the transverse plane between the true tagging B direction and the
signal jet reconstructed by the cone clustering algorithm (left) and by the mass clustering
algorithm (right) in events in which the tagging B is in the detector acceptance.

The performance of the algorithm for different xmin values is shown in fig. 5.21 (full
points). On average the mass algorithm is less pure than the cone algorithm. Less
than half of the tracks in the signal jet are B decay tracks. Jets reconstructed with
high xmin are as effective as jets with cone ∆R = 1.5 in collecting B decay tracks. The
fraction of fragmentation tracks included in the jet increases as the jet size becomes
larger (fig. 5.21, right), although the purity and the efficiency vary only slightly.
The plot on the right in fig. 5.22 shows the angle in the transverse plane between the
true tagging B direction and the signal jet reconstructed by the Mass Clustering al-
gorithm. A cut is applied to select events in which the tagging B is in the acceptance
and has a transverse momentum larger than 5 GeV/c. The distributions correspond-
ing to different xmin cuts do not show significant differences, therefore xmin is not
a parameter of primary importance in the tuning of the Mass Clustering algorithm.
Other parameters, like the minimum transverse momentum of the seed tracks, might
have a more significant effect on the resolution of the algorithm. The power of a Jet
Charge Tagger with jets reconstructed by the Mass Clustering algorithm has been
shown to be larger for lower values of pseed

T [60]. The dependency of the jet purity on
this parameter has not been studied yet.
It should be noticed that the resolution of the Mass Clustering algorithm is worse
than the resolution obtained by the Cone Clustering algorithm using the cone size
∆R = 1. Although the Mass Clustering algorithm has a stronger physical motivation
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than the Cone Clustering algorithm, due to the cone size depending on the jet pT , its
performance with the default set of parameters is not better.
In Run I, jets reconstructed by Mass Clustering have been used in a Jet Charge Tagger
for low pT events [59]. Jets with fixed cone size have been utilised so far in Run II
for opposite side tagging [47]. In the next chapters the possibility of employing jets
reconstructed by both algorithms to identify the decay products and to tag the flavour
of the opposite side b-hadron will be examined.

5.7 Summary

Before developing a b-flavour tagger for the opposite side, several features of bb̄ events
have to be understood. In this chapter many of these have been studied by means
of simulated events. First of all it is legitimate to ask if the simulation traditionally
employed for tagger studies, which includes only processes with two b-quarks taking
part in the hard scattering (flavour creation), is adequate. A Monte Carlo sample
comprising flavour creation and additional processes has been introduced and com-
pared to data. The new sample reproduces the features of the data events better than
the sample with flavour creation only processes. Moreover, the estimate of the power
of an opposite side tagger is different in the two Monte Carlo samples, with the sam-
ple with flavour creation only processes giving a too optimistic estimation. Therefore
tagging studies have to be performed on the Monte Carlo sample with the additional
processes.
The questions relevant for a tagger and the answers found in this chapter are

• How precise is the reconstruction of the signal B candidate?

The signal B-candidate is reconstructed inclusively as the combination of the
trigger lepton and the displaced track. It has been found that this combination
gives a satisfactory estimate of the true signal b-hadron direction, since a reso-
lution of 0.0789 rad in the transverse plane was measured in the Monte Carlo
sample.

• How often is it possible to find both b-quarks in the detector accep-

tance?

The simulation indicated that the tagging b-quark is on the opposite side only
for ∼60% of the events, which means that only for these events the definition of
event sides is meaningful and the measurement of the b-flavour on the opposite
side is possible.

• Is the measurement of the b-flavour on the opposite side affected by

the tracks that carry information about the flavour on the same side?

It has been found that the event sides are correlated: about 5% of the tracks
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originating from the decay of the signal b-hadron falls out of the ∆R = 0.7 cone
and could be included in jets reconstructed on the opposite side. These tracks
should be eliminated to avoid that they influence the measurement of the tagging
power.
The fragmentation tracks are distributed isotropically in the event, rendering it
impossible to isolate them with a cone cut. About 74% of fragmentation tracks
correlated to the signal b-quark are found on the opposite side. They affect the
measurement of the tagging power as well.

• How many b-decay products can be found on the opposite side?

The opposite side contains on average ∼20 tracks. The average number of tracks
originating from the decay of the tagging b-hadron is 1.7 and they are mostly
low pT tracks.

• Is it possible to distinguish easily fragmentation tracks from b-decay

products?

The fragmentation tracks are on average as numerous as the b-decay products
on the opposite side and cannot be separated with a simple cone cut. Therefore
a track probability variable, which exploits the displacement information, is
going to be employed to distinguish B decay tracks from the products of the
fragmentation.

• Assuming that the opposite side b-quark reconstruction is performed

inclusively with jets, is there a preference for the jet clustering algo-

rithm to use?

Two algorithms have been considered: Cone Clustering, which builds jets with a
fixed cone size, and Mass Clustering, which produces jets with cone size variable
as a function of the jet momentum. Concerning the resolution on the opposite
side b-hadron direction, no significant differences have been found between the
two algorithms, although there is an indication that jets with a fixed cone size
equal to one yield jets with higher resolution. The composition of the jets recon-
structed by each algorithm has been examined. The Cone Clustering algorithm
produces jets with on average fewer fragmentation tracks than the jets recon-
structed by the Mass Clustering algorithm. The average number of B decay
tracks included in jets is similar for the two algorithms. In the next chapters the
usage of jets reconstructed by each algorithm is going to be investigated with
respect to b-tagging and b-flavour tagging.

The results presented in this chapter show that the development of a powerful opposite
side b-flavour tagger is a complex task. The problem is approached in the next chapter
by combining the available information on b-decay products with a versatile tool that
allows to exploit all available information in an optimal way: a Neural Network.





Chapter 6

b-jet Neural Network

The work presented in this chapter is based on the Monte Carlo studies described
in Chapter 5. The main aim of this thesis is to develop, with the help of simulated
events, a Jet Charge Tagger more powerful than the cut based algorithm [48] and
with the ultimate goal of measuring the frequency of the B0

s oscillation. The strategy
adopted is to provide a pure and efficient selection of the b-jet on the opposite side.
At first a track probability variable based on Neural Networks is introduced to define
a track-level b-tag. The track probability is exploited to develop a b-jet probability
variable. The result is then applied to tag the opposite side b-quark flavour in the Jet
Charge Tagger described in Chapter 7.
The track and jet probability presented here are a breakthrough since such an ad-
vanced analysis tool as a Neural Network had not yet been adopted by the CDF B
group. Besides empowering the Jet Charge Tagger, the welcoming of Neural Network
methods in the CDF B group opens the way to a combined tagger including particle
ID information. This tool would effectively substitute all the opposite side taggers.

6.1 Sample Description

The data samples used for the studies presented here are the electron+SVT and the
muon+SVT datasets1. The list of good runs recommended for analyses in the CDF
B group has been used [61]. The sample includes data taken until August 2004 and
does not contain the COT compromised and recovery run ranges, amounting to a total
integrated luminosity of 355 pb−1.
The Monte Carlo sample extensively used for this study has been described in Section
5.2 and B.2. It consists of bb̄ events produced by leading-order and additional processes

1The name of the datasets are xbel0d and xbmu0d. Data have been processed with the offline
software release 5.3.1
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Figure 6.1: Invariant mass of the lepton and the SVT track for the electron (left) and the
muon sample (right). The component corresponding to δSV T

0 < 0 (dashed line) has to be
subtracted from the δSV T

0 > 0 component (solid line).

and fully simulated. The number of events in this sample is about 113k. The simulated
run range corresponds to the list of good runs taken up to Feb. 2004.

6.1.1 Event Pre-Selection

The signal B candidate is reconstructed as the sum of the momenta of the trigger
lepton and displaced track, as described in Section 5.2.1. Only one B candidate per
event is considered, i.e. the one with the highest transverse momentum in case more
than one is found. Similarly to Section 5.2.1, the candidates with mass outside of the
interval [2 GeV/c2, 4 GeV/c2] are rejected and the background subtraction with the
signed impact parameter of the displaced track (δSV T

0 ) is performed (see Section 5.2.1).
The number of events remaining after the mass cut and the background subtraction
amounts to 1.36·106 in data and 4.5·104 in the Monte Carlo sample.
The B candidate mass for the data sample is shown in fig. 6.1 separately for δSV T

0 > 0
and δSV T

0 < 0. The same distribution after the background subtraction is shown in
fig. 6.2 in a comparison to the Monte Carlo distribution. The J/ψ → `+`− is visible
at 3.1 GeV/c2 and it is better resolved for the muon channel because of the smaller
radiative tail. The peak at ∼3.7 GeV/c2 corresponds to the decay ψ(2S) → `+`−, not
visible in the electron channel. The description of the mass spectrum in the Monte
Carlo is satisfactory.
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Figure 6.2: Invariant mass of the lepton and the SVT track for the Monte Carlo (solid line)
and the `+SVT data sample (dots) after background subtraction.

The tracks in the event are re-fitted and have L00 hits associated to them following
the prescription of the CDF Tracking group [62]. A L00 hit is searched for only for
tracks that have at least 3 hits in three different layers of SVXII to ensure a well
defined search road for L00 hits2.

6.1.2 Same Side B-Daughters Removal

Since the B candidate on the same side is partially reconstructed, the same side B
daughters that leak out of the isolation cone might be included in the reconstructed
jets on the opposite side (see Section 5.5.1). These tracks are correlated to the flavour
of the same side B, thus they can affect the flavour measured on the opposite side. In
the Monte Carlo sample 0.51% of the tracks on the opposite side come from the decay
of the same side B. The fraction of same side B daughters in the sample is very small,
nevertheless it should be further reduced.
Same side B daughters on the opposite side can be rejected by requiring that the
invariant mass of one of these tracks with the same side B candidate is smaller than
the B mass, about 5 GeV/c2, and that their cone angle ∆R with the B candidate
direction is small.
For each track on the opposite side the invariant mass with the lepton and the SVT
track is computed using a pion hypothesis for each track. The invariant mass is

2L00 has been included very recently in the Jet Charge Tagger since it is expected to improve the
tagging performance significantly. The development of the tagger has been carried on mostly without
the use of L00.
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Figure 6.3: Invariant mass of tracks on the opposite side with the B candidate (lepton and
SVT track) plotted versus the cone angle ∆R with the B candidate in simulated events.
Left: all tracks on the opposite side Centre: Tracks originating from the opposite side B
decay. Right: Same side B daughters.

shown in fig. 6.3 plotted versus the cone angle between the track and the B candidate.
Monte Carlo truth matching identifies the tracks coming from the true b-hadrons in
the event, as explained in Section 5.5. As clearly indicated in fig. 6.3 (right) the same
side B daughters cluster at low invariant mass and low cone angle values.
The cases in which the invariant mass of same side B daughters is much higher than 5
GeV/c2 are due to a fake lepton and/or a fake SVT track, i.e. events with the lepton
and the SVT track coming from different vertices. These cases are mostly rejected
with the background subtraction with δSV T

0 . It is estimated that the fraction of events
in which this happens in the Monte Carlo sample is 12.3% before the background
subtraction. The number is reduced to 1.1% after subtracting the background. Indeed
the number of tracks for which the invariant mass with the lepton and the SVT track
is higher than 10 GeV/c2 is negligible (∼0.02%).
Some of the opposite side B daughters also populate the invariant mass/∆R region
where the same side B tracks concentrate. Most of the same side B daughters should
be removed with a combined cut on the invariant mass and the cone angle without
overly reducing the number of opposite side B products.
A mass/∆R cut scan was performed on the Monte Carlo sample in order to find the
combination that maximises RSS · εOS value, where RSS is the fraction of same side B
tracks rejected by the cut and εOS is the fraction of opposite side B tracks surviving
the cut. The mass cut was varied in the interval [4.9 GeV/c2, 5.8 GeV/c2] and the
∆R cut in the interval [1, 1.9]. The optimal cut found corresponds to rejecting all
tracks that have invariant mass smaller than 5.3 GeV/c2 and ∆R smaller than 1.6.
This combination rejects 92.8% of same side B daughters and keeps 92.2% opposite
side B daughters. After the cut the fraction of tracks on the opposite side that are
same side B daughters is 0.03%. The invariant mass and cone angle distributions for
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Figure 6.4: Comparison between data and Monte Carlo for the invariant mass of opposite
side tracks with the B candidate (left) and for the cone angle between tracks and B candidate
(right). The arrows point out the position of the optimised cut for the same side B daughters
rejection (mass(track+lepton+SVT)<5.3 GeV/c2 and ∆R < 1.6)

Parameter Value
cone definition for SecVtx tracks 1.5
minimum pT cut for pass1 tracks 0.4 GeV/c
minimum pT cut for pass2 tracks 0.4 GeV/c
maximum d0/σ w.r.t. new vertex 3.0
d0/σ for pass1 tracks 2.0
d0/σ for pass2 tracks 1.0
minimum highest pT for pass1 tracks 1.2 GeV/c
minimum highest pT for pass2 tracks 2.0 GeV/c
minimum |Lxy/σLxy

| for secondary vertex 3.0
move some pass1 tracks to pass2 false
use 3D vertex false

Table 6.1: Summary of the optimised parameters for SecVtx [47]. The SecVtx algo-
rithm has been introduced in Section 3.4.3.

data and Monte Carlo are shown in fig.6.4, where the arrows indicate the position of
the optimised cut.

6.1.3 Jet Reconstruction

The tracks on the opposite side that pass the mass/∆R cut have to pass additional
cuts on the impact parameter (|d0| < 0.15 cm) and on z0 (|z0 − zB| < 1 cm), already
mentioned in Section 5.3.2. Jets are reconstructed on the opposite side with the tracks
remaining after the cuts.
The jets are found by the Cone Clustering algorithm with the parameters summarised
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in table 5.1. The reconstructed jets are processed by the SecVtx algorithm (Section
3.4.3) to check for the presence of a displaced vertex. The parameters used for SecVtx-
Alg are the same as those used by the cut based Jet Charge Tagger and are listed
in table 6.1. Although in Section 5.6.1 it was shown that the jets with a cone size
of 1.5 have a lower resolution than jets with cone equal to 1, the large cone size is
kept due to the use of SecVtx. The steering parameters for SecVtx have been opti-
mised for a cone size of 1.5 with the aim of maximising the power of the cut based
Jet Charge Tagger. A re-optimisation in terms of jet purity could result in potential
improvements although these are expected to be small. Therefore the parameters for
the Cone Clustering algorithm are not re-optimised.

6.2 Neural Network based Track Probability

A high tagging dilution can be achieved by identifying the jet in the event that con-
tains the highest possible number of opposite side B tracks.
The impact parameter (IP) based track probability described in Section 3.4.3 has been
used by the cut based Jet Charge Tagger. Although the introduction of the IP proba-
bility has improved the tagging performance, there are some caveats related to its use.
The probability has been calibrated on a high pT data sample, with harder tracks than
those in bb̄ events in the `+SVT dataset. The calibration has been performed using an
earlier software release (4.11.X). Later releases brought reconstruction improvements
from which also the IP probability could have profited. Currently the calibration is
in the process of being updated with a later software release and the new version is
not yet available. Finally, stringent hit requirements are applied to tracks before a
meaningful probability value can be computed3. The opposite side tracks considered
here do not have to pass any cut on the number of hits. It follows that not all the
tracks assigned to jets can have an associated probability value.
To overcome these limitations a probability calibrated on a `+SVT Monte Carlo sam-
ple with the latest reconstruction version and defined for every track associated to a
jet is introduced here. This variable, instead of giving the probability that the track
comes from the primary vertex, estimates how likely it is that the track is a B decay
product. The signed impact parameter is combined with other information about the
track and the jet to which the track is assigned. Jet variables are computed out of the
tracks in the jet, so the available variables are correlated to some extent. A likelihood
ratio does not offer the optimal combination because it does not take correlated inputs
into account. A Neural Network can handle the correlations among the input variables
and it is therefore potentially a more efficient tool.

3A track has to have at least 20 axial and 17 stereo hits in the COT and 3 to 5 r-φ hits in the
SVXII detector.
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6.2.1 Choice of Input Variables

The track probability Neural Network (trackNet, see Appendix C) is designed to tag
whether a track comes from the B decay chain or not. At this point there is no
distinction between same side and opposite side B tracks.
The signal tracks are defined to be all the B daughters, including the decay products
of unstable B daughters. The background tracks are defined to be all the other tracks
in the event. Each track is flagged on the basis of matching to the generator-level
information.
With this definition of signal and background, the optimisation of the trackNet is
performed on Monte Carlo. The result of the training is going to be applied to data,
so it is important that the input variables and the correlation among them are correctly
modelled by the simulation. The agreement of data and Monte Carlo is one of the
criteria for selecting input variables in conjunction with the power to discriminate
between whether the track was created at the primary or at a secondary vertex.
The set of input variables chosen for the trackNet is:

• track impact parameter with respect to the beam spot, |d0|

• signed impact parameter significance dsigned
0 /σd0 , where dsigned

0 = |d0| · sign(~d0 · ~pjet)
(fig. 3.5)

• track transverse momentum pT

• track was used for VxPrim vertex fit (Section 3.4.2). The flag is equal to 0 if
the track was not used, 1 if the track was used, 2 if the primary vertex was not
found in the event.

• ∆R of track with respect to the B candidate

• jet transverse momentum pjet
T

• rapidity with respect to the jet axis y = 1
2
ln E+pL

E−pL
, where pL is the longitudinal

component of the track with respect to the jet axis, pL =
~ptrack·~pjet

|~pjet|

The impact parameter appears twice in the input list: in the magnitude of the track
displacement, |d0|, and in the significance of the displacement signed with respect to
the jet. The first variable gives information only about the track; the second variable
carries information about the track and the jet to which the track is assigned. The
signed impact parameter should have a bigger discriminating power than the impact
parameter alone, but the sign might be wrong due to an incorrect estimation of the
B direction from the jet axis and to errors in the reconstruction of the track. In case
of incorrect assignment the network learns that the signed d0 significance is not useful
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to characterise the signal, but the displacement information can still be used. The
rapidity of the track with respect to the jet axis should be higher for signal tracks than
for background tracks. The same trend is expected for the transverse momentum of
the track.
The power to distinguish signal and background for some variables might depend on
the event topology, for example on how back-to-back the b-jets are in the event, on
the number of tracks in the event or on the B momentum. These variables are called
quality variables because they do not themselves separate signal and background but
provide the network with information on how reliable the discrimination of the other
variables is likely to be. The ∆R and pjet

T variables are quality variables for the track-
Net because they express how jet-like the event structure is.
The resolution of |d0| and dsigned

0 /σd0 is influenced by the presence of a hit in the inner-
most silicon detector layer on the track. This effect is taken into account by optimising
the trackNet separately for tracks with and without L00 hits. The category of tracks
without L00 hits includes tracks with hits only in the COT, outside-in tracks, inside-
out tracks and silicon standalone tracks (see Section 3.4.1) with less than 3 hits in 3
different SVXII layers and tracks that have at least 3 hits in different SVXII layers but
did not have a L00 hit assigned. Figures 6.5 - 6.11 show the distributions of the input
variables separately for tracks with/without L00 hits. The separation is meaningful
only for the variables related to the impact parameter, the separated distributions
for the other variables are shown for completeness. A comparison between data and
Monte Carlo samples is shown as well. The data/Monte Carlo agreement is in general
good.
The distribution of ∆R at small values is shaped by the same side B daughters re-
jection cut. The pT distribution shows a peak at 1 GeV/c because the minimum
pT requirement for jet seeds enhances the sample of tracks in jets with tracks above
1 GeV/c.
Appendix C provides the details about the optimisation of the trackNet. The tracks
with hits only in the COT have a worse impact parameter resolution than the tracks
with hits in the silicon detector. For this reason, an alternative training of the track-
Net has been performed on three subsamples, namely tracks with L00 hits, tracks
without L00 hits but with at least a hit in the silicon detector and tracks with hits in
the COT only. Since the tracks in the last category are very few in the sample, the
training on the three subsamples has not proven to be necessary (the details are given
in Appendix G.1). Therefore two subsamples have been used to achieve the results
shown in the following.
Background tracks are expected to have output values close to 0 and signal tracks to
have output values close to 1. The output can be interpreted as a probability that a
given track is a B daughter (see appendix C.1). A distribution of the trackNet prob-
ability is shown in fig.6.12 for data and Monte Carlo. Tracks with a L00 hit have a
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Figure 6.5: Distributions of impact parameter d0. Left : Tracks with a L00 hit attached to
them. Right: Tracks without L00 hits.
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Figure 6.6: Distributions of the signed impact parameter significance dsigned
0 /σd0 . Left :

Tracks with a L00 hit attached to them. Right: Tracks without L00 hits.
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Figure 6.7: Distributions of jet transverse momentum. Left : Tracks with a L00 hit attached
to them. Right: Tracks without L00 hits.
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Figure 6.8: Distributions of the cone angle of tracks with respect to the B candidate ∆R.
Left : Tracks with a L00 hit attached to them. Right: Tracks without L00 hits.

track belongs to P.V.
0 1 2 3

fr
ac

ti
o

n
 o

f 
tr

ac
ks

0

0.1

0.2

0.3

0.4

0.5

0.6 Tracks with L00 hits

lepton+SVT data

lepton+SVT MC

signal

background

CDF Run II Preliminary -1
355pb≈L

track belongs to P.V.
0 1 2 3

fr
ac

ti
o

n
 o

f 
tr

ac
ks

0

0.1

0.2

0.3

0.4

0.5

0.6 Tracks without L00 hits

lepton+SVT data

lepton+SVT MC

signal

background

CDF Run II Preliminary -1
355pb≈L

Figure 6.9: Distributions of the fraction of tracks used to fit VxPrim vertex. Left : Tracks
with a L00 hit attached to them. Right: Tracks without L00 hits.
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Figure 6.10: Distributions of the rapidity of the track with respect to the jet axis. Left :
Tracks with a L00 hit attached to them. Right: Tracks without L00 hits.
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Figure 6.11: Distributions of the track pT . Left : Tracks with a L00 hit attached to them.
Right: Tracks without L00 hits.
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Figure 6.12: Track probability for the tracks with L00 hits (left) and without (right).

larger spread of trackNet outputs, due mainly to the higher resolution on d0. The fact
that the output for tracks without L00 hits is below 0.8 means that a purity higher
than 80% in selecting these tracks cannot be reached because of the poorer resolution
on the most powerful input variables, e.g. d0.
It is important to notice that variables related to particle ID and to secondary ver-
tices have been excluded from the input list to avoid correlations of the trackNet to
other opposite side taggers. This choice was made so that a tagger could be developed
that could be integrated into existing CDF B0

s -oscillation analyses. The addition of
particle ID would boost the performance of the trackNet and is advisable as a further
development of the Neural Network based track probability.
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6.2.2 Performance

The interpretation of the Neural Network output as a probability allows one to easily
select a track sample with the preferred purity. To judge network performance, it is
useful to form the efficiency for signal selection at a given cut on the trackNet output.
Figure 6.13 shows the relation between purity of the sample and efficiency in selecting
the signal for different cuts:

purity =
N signal

tracks(output > cut)

N signal
tracks(output > cut) +N background

tracks (output > cut)
(6.1)

efficiency =
N signal

tracks(output > cut)

N signal
tracks

(6.2)

Each point corresponds to a cut, and the cut increases when going from the right to
the left side of the graph. The area under the curve gives an estimate of the trackNet
performance. The performance of the trackNet for tracks with and without L00 hits
is evaluated separately.
Figure 6.13 (right) compares the performance of the trackNet cut to that of the IP
based track probability. It has already been mentioned that the IP track probability
applies strict pre-selection cuts on the tracks and does not give a probability value
for tracks that do not pass the pre-selection. The failing tracks are included in the
denominator of the efficiency. The numerator of the efficiency includes all tracks with
probability passing a given cut and having a meaningful value. Because of this the
highest efficiency reached by the IP track probability is only about 45%.
Unlike the IP track probability, the trackNet is able to give a meaningful answer
for each track in the jet. The trackNet output can be used to construct several jet
variables that help in selecting b-jets. In this sense the trackNet is the building block of
jet selection and is used for the jet Neural Network. In what follows, track probability
denotes the trackNet output.

6.3 b-jet Selection Neural Network Variable

The potential of jets reconstructed on the opposite side of a bb̄ event to be tagged as a
b-jet can depend on many factors: the presence of the opposite side B in the detector
acceptance, the momentum and the decay length of the opposite side B, the number
of fragmentation tracks, etc. To approach b-jet selection in the most optimal way, the
jet sample was split into three categories:

Class 1 Jets tagged by SecVtx algorithm (see Section 3.4.3) and with decay length
significance of the secondary vertex Lxy/σLxy

greater than 3
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Figure 6.13: Left: Performance graph for the trackNet for tracks with and without L00 hits.
Each point in the graph corresponds to a cut on the trackNet output. The performance is
better for tracks with L00 hits thanks to the higher resolution on |d0| and dsigned

0 /σd0 . Right:
comparison between the performance of a cut on the trackNet output and a cut on the IP
track probability. Tracks with and without L00 hits are not distinguished in this case,
meaning that the solid line is equivalent to a weighted sum of the curves in the left graph.

Class 2 Jets not in Class 1 and with at least one track with probability greater than
50%

Class 3 Jets not in Class 1 and with no tracks with probability greater than 50%

The classes are mutually exclusive. The fraction of jets in Class 1 that do not have
tracks with probability greater than 50%, and would then be assigned to Class 3 if
they had not been tagged by SecVtx, is 22% in the data sample and 15% in simulated
events.
Of all the jets reconstructed in the data and in the Monte Carlo samples, ∼5% of them
belongs to Class 1, ∼15% belongs to Class 2 and ∼80% is in Class 3. The partition
of jets into the three classes is charted in table 6.2.
A jet is a signal jet when it contains the highest number of tracks from the tagging B
decay. In case two jets have numbers of B decay tracks that differ at most by one, the
jet closest to the true tagging b-hadron direction is the signal one4. All the jets that
are not signal are background jets. The fraction of signal jets in each class, estimated
from the Monte Carlo sample, is also indicated in table 6.2. As expected, Class 1
is enriched in signal, thanks to the presence of an identified secondary vertex. The

4This definition of signal jet is the same given in Section 5.6
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Class 1 Class 2 Class 3 Total

e+SVT data
N jets found 78000 243000 1269000 1590000
fraction 4.9% 15.3% 79.8% 100%
µ+SVT data
N jets found 103000 330700 1714000 2147700
fraction 4.8% 15.4% 79.8% 100%
Monte Carlo
N jets found 4450 11800 61700 77950
fraction 5.7% 15.1% 79.1% 100%
signal fraction 87.3% 65.2% 17.4% 28.6%

Table 6.2: Number of jets and fraction of jet type found for data and Monte Carlo. The
purity for each subsample in the Monte Carlo is given.

sample of jets of Class 2 contains a similar amount of signal and background. Class 3
jets are the most numerous and are mostly background jets.
The classification of jets is a first rough b-jet tag which is refined by combining jet
variables with a Neural Network. The advantage over a likelihood combination is the
correct treatment of correlations. The knowledge of the jet class is not needed before
computing the input variables because the training is performed for all jets with the
same set of input variables. Although the training is not separate for the different jet
classes, the information on which the jet classification is based is fed to the jet Neural
Network: the secondary vertex tag (via the secondary vertex related variables) and
the number of tracks with probability greater than 50%. The distribution of the jet
Neural Network output is expected to depend on the jet quality.

6.3.1 Choice of Input Variables

Several variables that could distinguish signal and background have been considered as
input for the b-jet Neural Network, bJetNet. Some of these are related to the secondary
vertex properties, like the secondary vertex fit χ2 probability, the momentum fraction
and the number of tracks in the secondary vertex. Many variables are computed using
the track probability information (weighted number of tracks, number of tracks with
probability > 50%, . . . ) and other variables are related to the kinematics and the
shape of the jet (pT , invariant mass, jet spread, . . . ). The bJetNet is trained on a
variable that flags if the jet is signal or not.
The list of input variables for the bJetNet is:

• number of tracks with probability greater than 50%, N50



6.3 b-jet Selection Neural Network Variable 85

• jet pT

• Secondary vertex fit χ2 probability, P (χ2
SV )

• number of tracks in the secondary vertex, NSV

• weighted number of tracks in jet
∑

i ti, where the index i runs over all the tracks
in the jet and ti is the trackNet output for track i

• Jet probability JP , where the jet probability is computed as in eqn. 3.2

• log of JpT

P , where JpT

P is computed as in 3.2 and only tracks with pT > 1 GeV/c
are considered5

• highest probability for the tracks in jet, tmax

• Angular difference in the transverse plane between the jet and the B candidate,
∆φ(jet, B)

• transverse momentum of the track with the maximum momentum in the jet pmax
T

• ∑i p
rel
T,i, where prel

T,i is the magnitude of the track momentum component perpen-
dicular to the jet axis

•
∑

i pL,i, where pL,i is the projection of the track momentum along the jet axis

• track probability tag based on invariant mass, Tnn

• number of tracks, Ntracks

• jet invariant mass, mjet

• jet spread,
P

i cosαi

Ntracks
, where cosαi =

~pi·~pjet

|~pi|·|~pjet|

The invariant mass variable Tnn is computed as follows: The invariant mass of the
tracks with the highest trackNet output is computed and the tracks are progressively
summed up until the invariant mass becomes larger than the D0 mass. The tag
variable is then the trackNet output of the track that pushes the invariant mass value
above the D0 mass. b-jets are expected to have a certain number of displaced tracks
that might come from the decay of a D meson. These tracks have on average high
trackNet output and the D meson can be reconstructed inclusively by adding them
together. It follows that the trackNet output for the last track added is large for jets

5Due to the minimum pT requirement of 1 GeV/c for seed tracks, each jet has at least one of
these tracks.
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Figure 6.14: Input variables for the bJetNet: number of tracks with probability >50% (left)
and jet transverse momentum (right).

including D mesons decay products.
The comparison of data and Monte Carlo for each variable is illustrated in figs. 6.14 -
6.21. The distributions are relative to all jets reconstructed in data and Monte Carlo
events.
The input variables have been chosen at an earlier stage of the Tagger development,
when L00 was not yet included. It was noticed that, after the addition of L00 hits
to tracks, the data/Monte Carlo agreement became worse for some variables (highest
trackNet output, weighted number of tracks, maximum track pT ). The distributions
for one of these variables before the inclusion of L00 is shown in fig. 6.22 as a proof.
The effect could be caused by a different efficiency in associating L00 hits to tracks
in data and in Monte Carlo. As a consequence, the content of tracks with/without
L00 is different for jets in data and simulation, leading to different contribution from
the two track types in the computation of the jet variables. Since the inclusion of
L00 improves the performance of the trackNet and bJetNet greatly, its use is still
pursued. The power of the tagger based on the trackNet and bJetNet is later going
to be measured on data, therefore the data/Monte Carlo agreement is of secondary
importance at this point.
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Figure 6.15: Input variables for the bJetNet: probability of the χ2 of SecVtx fit (left)
and number of tracks in the secondary vertex (right). For the first variable the fraction of
background events is lower than the fraction of signal events because the χ2 probability is
defined only for Class 1 jets.
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Figure 6.16: Input variables for the bJetNet: weighted number of tracks (left) and JP

(right).
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Figure 6.17: Input variables for the bJetNet: J pT

P (left) and highest track probability (right).
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Figure 6.18: Input variables for the bJetNet: angle in the transverse plane between the jet
and the B candidate (left) and pT of the track with the maximum transverse momentum in
the jet (right).
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Figure 6.19: Input variables for the bJetNet:
∑

prel
T (left) and

∑

pL (right).
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Figure 6.20: Input variables for the bJetNet: Tnn (left) and number of tracks in the jet
(right).
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Figure 6.21: Input variables for the bJetNet: jet invariant mass (left) and jet spread (right).
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Figure 6.22: Distributions of the jet probability J pT

P . L00 has not been used. The
data/Monte Carlo agreement is better than in the case in which L00 hits are added to

the tracks (fig. 6.17, left). The computation of the χ2 as
∑

i

(

(fdata
i − fMC

i )/σdata
i

)2
, where

the sum is over the bins, fi is the content of the bin i and σdata
i is the error for the bin i,

yielded χ2 = 1.6 · 104 for the distributions of data and Monte Carlo shown in this figure and
χ2 = 5.6 · 104 for the distributions in fig. 6.17 (left).
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Figure 6.23: Distributions of jet probability for all reconstructed jets (top left, for Class 1
jets (top right), Class 2 jets (bottom left) and Class 3 jets (bottom right). The contribution
of signal and background jets for Monte Carlo is shown. The data distribution and the
inclusive Monte Carlo distribution are normalised to a unit area for each plot.

6.3.2 Performance

The result of the application of the bJetNet to data and Monte Carlo is illustrated
in fig. 6.23. Every reconstructed jet has an output value and the bJetNet output
distribution for jets in different classes follows the hierarchy of the jet quality, thus
suggesting a straightforward jet selection criterion.
The performance of the bJetNet output is compared in fig. 6.24 (left) to that of the
IP jet probability introduced in Section 3.4.3. The definitions of efficiency and purity
are

purity =
N signal

jets (output > cut)

N signal
jets (output > cut) +N background

jets (output > cut)
(6.3)

efficiency =
N signal

jets (output > cut)

N signal
jets

(6.4)

The bJetNet curve is above the IP jet probability curve, therefore for a given efficiency
in selecting signal jets it achieves a higher purity. As a cross check of the separation
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Figure 6.24: Left: Performance graph for a cut on the bJetNet output (solid line) in
simulated events. The comparison with the IP jet probability is shown (dashed line). Right:
bJetNet performance (solid line) compared to likelihood (dashed line) for the three different
classes of jets.

power of the b-jet Neural Network, a b-jet selection likelihood variable was developed
using mainly the same input variables of the bJetNet. The correlated variables were
excluded and different input sets were defined according to the jet class. The Prob-
ability Density Functions have been extracted from the Monte Carlo for signal and
background jets. A detailed description of the likelihood method can be found in
Appendix E. The jet sample is split into subsamples corresponding to the jet classes
and the efficiency and purity of the bJetNet are compared to those of the likelihood
variable. Efficiency and purity for class j are defined as

purityj =
N j

signal(output > cut)

N j
signal(output > cut) +N j

background(output > cut)
(6.5)

efficiencyj =
N j

signal(output > cut)

N j
signal

(6.6)

The comparison (fig. 6.24, right) shows that the bJetNet provides better results than
the likelihood combination. The improvement comes mostly from the inclusion of
correlated variables in the input set.
In the follow up the term jet probability will refer to the bJetNet output.
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Figure 6.25: Distributions of number of reconstructed jets in the event, jet pT , number
of tracks (data) and cone size for jets (simulation) reconstructed by Cone Clustering (solid
line) and by Mass Clustering algorithm (dashed line).

6.4 b-Jet Probability with Mass Clustering

A study [60] has shown that, when the clustering algorithm based on invariant mass
(Section 5.6.2) replaces the Cone Clustering in the cut based Jet Charge Tagger, the
highest tagging power is about 7% higher than the power achieved with fixed cone jets
and is given when the algorithm is run with the parameters listed in table 5.3 and

pseed
T = 0.75 GeV/c

xmin = 49 (GeV/c2)2

It is interesting then to evaluate the result of the trackNet and the bJetNet with jets
reconstructed by the Mass Clustering algorithm. Seed tracks are softer than Cone
Clustering seeds (pseed

T = 1 GeV/c). Consequently the fraction of events in which at
least one jet is reconstructed on the opposite side is larger for Mass Clustering than
for Cone Clustering. There tend to be less jets reconstructed by Mass Clustering per
event and they contain more tracks than those based on a fixed cone. A comparison
between the jets reconstructed by the two algorithms is shown in fig. 6.25. Table 6.3
summarises some jet properties.
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Mass Clustering Cone Clustering

average number of reconstructed jets 2.2 2.8
average number of tracks in jets 5.2 4.8

average jet pT 5.4 GeV/c 5.1 GeV/c
fraction of events with 0 jets 2% 5%

Table 6.3: Summary of some properties of jets reconstructed by Cone and by Mass Clus-
tering algorithm.
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Figure 6.26: Distributions of the rapidity of the track with respect to the jet axis and of
the track pT for tracks with a L00 hit attached to them. Mass Clustering has been used to
reconstruct jets.

Since the properties of the jets reconstructed by the two algorithms are different, the
variables used for the trackNet and for the bJetNet have different distributions than
for the fixed cone case. The training for jets reconstructed with Cone Clustering is
then not optimal for jets reconstructed by Mass Clustering. The Neural Networks
have been re-trained to suit the new jet distributions. The input variable sets have
been left unchanged as well as the setup of the Neural Networks.
The distributions of the input variables which are significantly different with respect
to the fixed cone jets are shown in fig. 6.26. Since these variables are not related to
the impact parameter information, their distributions for tracks with and without L00
hits are the same, consequently only distributions for tracks with L00 hits are shown.
The distribution of the output (fig. 6.27) and the trackNet performance (fig. 6.28) are
similar to the results of the trackNet with fixed cone jets (fig. 6.12 and fig. 6.13).
The parameters used for SecVtx in conjunction with Mass Clustering are the same
as those of Cone Clustering (table 6.1), except for the cone angle in which SecVtx is
allowed to search for tracks to fit in the secondary vertex. This parameter is set to
1000.0 to take into account the broadness of these jets (fig. 6.25, lower right).
The number of jets found in each class is reported in table 6.4. The fraction of jets
tagged by SecVtx is the same as for fixed cone jets (see table 6.2). The fraction of
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Figure 6.27: Neural Network output for the tracks with L00 hits (left) and without (right)
for the Mass Clustering case.
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Figure 6.28: Performance graph for the trackNet corresponding to the training with tracks
in jets reconstructed by Mass Clustering algorithm.

Class 2 jets is about 2.5% higher. The purity of Class 1 and Class 2 jets is lower.The
purity the the whole jet sample is 7.5% higher than the purity of the sample of jets
reconstructed by the Cone Clustering algorithm. This is due to the smaller number
of jets reconstructed by the Mass Clustering algorithm, since the two algorithms have
run on the same Monte Carlo sample.
The distribution of the input variables for the bJetNet which changed with respect
to the Cone Clustering case are shown in fig. 6.29. The result of the training and
the bJetNet performance graph are shown, respectively, in fig. 6.30 and in fig. 6.31.
The distribution of the output is very similar to the distribution in fig. 6.23. The
performance graph is compared to that of the bJetNet with Cone Clustering jets to



6.5 Summary 95

Class 1 Class 2 Class 3 Total

e+SVT data
N jets found 74100 271700 1193000 1538800
fraction 4.8% 17.7% 77.5% 100%
µ+SVT data
N jets found 96900 366800 1606000 2069700
fraction 4.7% 17.7% 77.6% 100%
Monte Carlo
N jets found 4270 13320 57650 75240
fraction 5.7% 17.7% 76.6% 100%
signal fraction 86.0% 63.0% 22.5% 36.0%

Table 6.4: Number of jets and fraction of each type of jets found for each type of jets for
data and Monte Carlo. The jets are reconstructed with the invariant mass based clustering
algorithm. The purity for each subsample in the Monte Carlo is given.

highlight that the new bJetNet performs better only in the efficiency range [0.9,1] and
for efficiency lower than 90% it achieves ∼5% lower purity.

In the next chapter the bJetNet trained on jets found by Mass Clustering and the
bJetNet trained on jets found by Cone Clustering are incorporated into a Jet Charge
Tagger to test the effect of the different jet reconstruction algorithms on b-flavour
tagging.

6.5 Summary

A b-track probability variable has been constructed by combining in a Neural Network
information sensitive to B decay tracks, e.g. the impact parameter and the rapidity
with respect to the jet axis. To take advantage of the higher resolution on the im-
pact parameter for tracks with hits in the innermost layer of the silicon detector, L00,
the training of the track probability network has been performed separately on tracks
with/without hits in L00. The track probability variable successfully distinguishes B
decay tracks from the background in Monte Carlo and in data.
The b-track probability has been employed to define several jet-level variables, which
are combined with a Neural Network, resulting in a b-jet probability variable. This
has been developed separately for jets with a fixed cone size and for jets with variable
cone size. The performance is better on jets with fixed cone size.
The b-jet probability variable is more powerful than a probability based only on the
track displacement information and it is going to serve as a b-jet selection criterion in
the Jet Charge Tagger.
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Figure 6.29: Input variables for the bJetNet: weighted number of tracks, pT of the track
with the maximum transverse momentum in the jet,

∑

prel
T ,

∑

pL and jet spread. The
distributions are relative to all jets reconstructed in data and Monte Carlo events with Mass
Clustering.
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Figure 6.30: Distributions of bJetNet output for all jets (top left), for Class 1 (top right),
Class 2 (bottom left) and Class 3 (bottom right) jets. The data distribution and the inclu-
sive Monte Carlo distribution are normalised to an area of 1 for each plot. The jets are
reconstructed with Mass Clustering.
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Figure 6.31: Performance graph for a cut on the bJetNet output for jets in simulated
events reconstructed using the Mass Clustering algorithm. The curve is compared to the
performance of the bJetNet trained with jets reconstructed by the Cone Clustering algorithm.





Chapter 7

Neural Network Based Jet Charge

Tagger

The b-jet selection Neural Network variable introduced in the previous chapter is
the central tool of the Neural Network based Jet Charge Tagger (“NNJQT”). The
correlation of the jet probability to the jet purity is first exploited to select the tagging
jet in the event and then to parameterise the tagging power of NNJQT.

7.1 Tagger Setup

The event pre-selection described in Section 6.1 is applied to the data sample; the B
candidate is identified as the sum of the momenta of lepton and the SVT track and
the tracks on the opposite side are filtered, removing the same side B daughters. The
filtered tracks are used to reconstruct jets with the Cone Clustering algorithm.
The flavour on the same side is identified by the charge of the trigger lepton. The
Jet Charge Tagger selects a jet on the opposite side with which the flavour of the B
candidate can be tagged. In the data sample a jet of Class 2 is preferred to a jet of
Class 1 in 1.4% of the events tagged by Class 2 jets. A jet of Class 3 is selected despite
of the presence of a Class 2 jet in the event in 2% of the cases and it happens rarely
that it has a higher probability than a Class 1 jet (0.2% of the cases).
The tagging jet does not have to satisfy any additional requirement. In particular no
cut on the angle in the transverse plane ∆φ between the jet and the B candidate is
applied. A cut on ∆φ has been used in the cut based Jet Charge Tagger [48] for jets
with small IP probability and jets with high pT to remove jets contaminated by the
decay products of the same side B. Due to the rejection cut against the same side B
decay tracks, the fraction of tagging jets containing of these tracks is very small (see
table 7.1), therefore the ∆φ cut can be dropped.
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Jet type n tagging jets n jets with SS B tracks fraction
Class 1 4335 8 0.18 %
Class 2 10433 19 0.18 %
Class 3 22886 21 0.09%

Table 7.1: Fraction of tagging jets including one or more same side B daughters in the
Monte Carlo sample. The contamination is negligible due to the removal of the same side B
daughters performed before jet clustering (Section 6.1.2).

7.2 Qjet Computation

The opposite side flavour is given by the sign of the Jet Charge computed for the
tagging jet as:

Qjet =

∑

iQi · pT,i · (1 + ti)
∑

i pT,i · (1 + ti)
(7.1)

where the index i runs over all the tracks in the jet, Qi is the track charge, pT,i is
the track transverse momentum and ti is the track probability. The formula 7.1 is
equivalent to the one used for the cut based Jet Charge Tagger, with the substitution
of the Neural Network probability to the IP probability. The weighting with the track
transverse momentum enhances the contribution of the B decay product over the
fragmentation tracks.
The distributions of Qjet for positive and negative signed trigger leptons and for the
different jet classes are shown in fig. 7.1. The peaks at ±1 correspond to jets comprising
a single track. As expected, the distributions are shifted toward positive (negative)
values for negative (positive) signed trigger leptons and the shift is larger for high
quality jets.

7.3 Measurement of the Tagging Power T
The NNJQT gives a right sign tag (RS) when Qjet and the trigger lepton charge have
the opposite sign, otherwise the tag is wrong (WS). If the tagging jet is not found, the
event is not tagged (NT). Since no cuts are applied to the tagging jets, the only events
that do not have a tag are those in which the clustering algorithm did not find any jet
on the opposite side, i.e. the events in which no track with a transverse momentum
larger than 1 GeV/c was found on the opposite side.
The background subtraction with δSV T

0 (Section 5.2.1) is performed on the number of
RS, WS and NT events. The procedure to compute the error on the efficiency and
the dilution taking into account the background subtraction is described in ref. [63].



7.3 Measurement of the Tagging Power T 101

jet
Q

-1 -0.5 0 0.5 1

n
 e

ve
n

ts

0

200

400

600

800

1000

1200

1400

1600 e+SVT Data

Class 1 Jets

 + SVT+e

 + SVT-e

CDF Run II Preliminary -1355pb≈L

jet
Q

-1 -0.5 0 0.5 1

n
 e

ve
n

ts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200 +SVT Dataµ
Class 1 Jets

CDF Run II Preliminary -1355pb≈L

 + SVT+µ
 + SVT-µ

jet
Q

-1 -0.5 0 0.5 1

n
 e

ve
n

ts

0

1000

2000

3000

4000

5000

6000

7000 e+SVT Data
Class 2 Jets

CDF Run II Preliminary -1355pb≈L

 + SVT+e

 + SVT-e

jet
Q

-1 -0.5 0 0.5 1

n
 e

ve
n

ts

0

2000

4000

6000

8000

10000

+SVT Dataµ

Class 2 Jets

CDF Run II Preliminary -1355pb≈L

 + SVT+µ
 + SVT-µ

jet
Q

-1 -0.5 0 0.5 1

n
 e

ve
n

ts

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000 e+SVT Data

Class 3 Jets

CDF Run II Preliminary -1355pb≈L

 + SVT+e

 + SVT-e

jet
Q

-1 -0.5 0 0.5 1

n
 e

ve
n

ts

0

5000

10000

15000

20000

25000 +SVT Dataµ
Class 3 Jets

CDF Run II Preliminary -1355pb≈L

 + SVT+µ
 + SVT-µ

Figure 7.1: Distribution of Qjet for the three jet classes (tagging jets only), for the e+SVT
and the µ+SVT sample.
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Figure 7.2: Sequential semileptonic decay b → c → `. Right: this graph is a particular
sequential decay in which a c- and a c̄-quark are produced. The lepton originating from the
decay of the c̄-quark has the right sign correlation with the opposite side flavour.

7.3.1 Draw and Dtrue

The dilution computed according to the formula

D =
NRS −NWS

NRS +NWS

(7.2)

is called Raw Dilution (Draw). The True Dilution (Dtrue) is obtained by scaling Draw

Dtrue =
Draw

s
(7.3)

to account for the wrong sign correlation on the same side due to mixing1 and to
sequential semileptonic decays. The scaling factor was computed in ref. [56] based on
simulation studies and it is s =0.6412.
In the Monte Carlo sample used for the studies presented in this thesis in 6.1% of
the events the trigger lepton is generated in the decay b → c → ` (fig. 7.2). Not all
of these leptons have the wrong sign, because of mixing and decays of b-hadrons to
double charm (fig. 7.2, right), which could give a lepton of the right sign. The fraction
of events with a wrong sign lepton coming from a sequential decay is 5.0%.

7.3.2 Binned Dilution

In the section the Neural Network based Jet Charge Tagger is calibrated on the `+SVT
data sample.
The sample of tagging jets is split in subsamples, the true efficiency and the dilution
are measured and the partial tagging power is computed for each subsample as the

1The fraction of neutral B mesons on the same side is ∼50% and about 17% of them oscillate
before decaying [1].
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product of the efficiency and the dilution squared. It is reminded that the name
”dilution” is misleading, being this a quantity related to the ability of the tagger to
give right sign tags. A high dilution value leads to a high tagging power, which is the
quantity to maximise. In order to achieve a high tagging power, this is measured on
subsamples and summed up to give the combined tagging power T . In fact, if the
efficiency is ε and the dilution is D on the total sample and if two subsamples can
be defined so that one has a higher dilution than the other, simple calculations show
that the tagging power measured on the undivided sample Tave is lower than the sum
of the tagging power values measured on each subsample2

Tave = εD2 (7.5)

T = ε1D
2
1 + ε2D

2
2 (7.6)

Tave < T (7.7)

It follows that splitting the calibration sample in subsamples yields a gain in tagging
power. Another advantage of this method is that the dilution can be parameterised
as a function of the variable used to split the sample, which allows the prediction of
the dilution on an event by event basis in a mixing analysis.
For the cut based Jet Charge tagger [47] the sample is split in bins of |Qjet| and jet
type. The dilution is expected to be high for a sample of events with charged b-hadrons
on the opposite side because they do not mix and the |Qjet| of the corresponding jets
is on average larger that the charge of a jet containing a neutral b-meson. Therefore
the dilution should depend on |Qjet|.
An additional quality information on the tagging jet, i.e. the jet probability variable,
is available for the Neural Network based tagger and it is independent from |Qjet|
(fig. 7.3). A cut on jet probability rejects events in which the tagging jet is background.
Even if a cut might bring a higher dilution, it reduces the efficiency due to the higher
number of non-tagged events. A better use of the jet probability variable is to combine
it with |Qjet| and split the sample according to the combined variable3.
The tagging jet sample is divided in 10 bins of |Qjet| ·Pnn plus a bin for jets containing
a single track, for which |Qjet| = 1. These jets are kept apart because the flavour
information that they give does not come from a weighted average but from a single
track charge. The sample splitting is performed separately for different classes of jets,

2Given that ε = ε1 + ε2, it is easy to see that D = (ε1D1 + ε2D2) /ε. Taking this relation into
account and performing simple algebra, one can find that

εD2 − ε1D
2

1 − ε2D
2

2 = −ε1 · ε2
ε

(D1 − D2)
2

(7.4)

Since the efficiency and the dilution are positive numbers, the left-hand side of the equation is a
negative number if D1 6= D2 and zero otherwise. Therefore εD2 < ε1D

2
1 + ε2D

2
2 if D1 6= D2.

3Due to limited statistics, a two-dimensional binning is not possible.
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Figure 7.3: Scatter plot of the jet probability Pnn and |Qjet|. The entries at |Qjet = 1| are
due to jets constituted by a single track. The profile of the scatter plot is superimposed.

so in the end there are 33 bins.
The number of RS, WS and NT events and dilution are computed for each bin. Given
a jet class c, for each bin k one computes

εc,k =
N c

RS,k +N c
WS,k

NRS +NWS +NNT

(7.8)

where N c
RS,k is the number of right sign tags and N c

WS,k is the number of wrong sign
tag for jet type c and bin k. The dilution in the bin, Dc,k, is measured as

Dc,k =
N c

RS,k −N c
WS,k

N c
RS,k +N c

WS,k

(7.9)

The dilution is parameterised as a function of |Qjet|Pnn. The jet purity grows for
increasing values of the jet probability Pnn (see fig. 6.23), thus affecting the dilution
in the same direction. The dilution has a linear dependency on |Qjet|, as it has been
observed by previous Jet Charge related studies at CDF [48, 64], but the dependency
of D on |Qjet|Pnn cannot be trivially predicted. The parameterisation of D(|Qjet|Pnn)
is found to be linear (fig. 7.4) and the function D = a · |Qjet|Pnn is fitted to the data
points. The results of the linear fit for the different jet types, for the e+SVT and the
µ+SVT data samples, are listed in table 7.2. As expected, the parameter a depends
on the jet type and it reaches the highest values for Class 1 jets, for which a secondary
vertex has been identified.
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Figure 7.4: Dilution dependency on |Qjet|Pnn for tagging jets.
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7.3.3 Effective Dilution

In order to quantify the tagger performance with only three figures, instead of a value
of Ti for each bin, the tagging power in the different bins of jet class and |Qjet|Pnn is
summed up. The total efficiency (εtot), the effective dilution (Deff) and the combined
tagging power are computed as follows. The expected dilution in each bin Dc,k is given
by D = a · |Qjet|Pnn, except for the last bin (|Qjet| = 1), for which the measured value
is taken. The error on Dc,k is the error on the expected value, give by the linear fit.
The partial tagging power in the bin is Tc,k = εc,k(Dc,k)

2. The jet type tagging power
is given by the sum over all the bins of the partial tagging power

Tc =

11
∑

k=1

Tc,k (7.10)

The jet type efficiency is

εc =
11
∑

k=1

εc,k (7.11)

and the effective dilution for the jet type is

Dc,eff =

√

Tc

εc
(7.12)

The combined tagging power is

T =
3
∑

c=1

Tc (7.13)

a D(|Qjet| = 1), %

e +SVT
Class 1 0.567 ± 0.029 32.6 ± 5.0
Class 2 0.373 ± 0.024 14.2 ± 1.4
Class 3 0.345 ± 0.045 3.95 ± 0.84
µ +SVT
Class 1 0.538 ± 0.027 22.5 ± 4.1
Class 2 0.399 ± 0.024 14.3 ± 1.1
Class 3 0.357 ± 0.042 6.71 ± 0.67

Table 7.2: Result of the fit of the function D = a · |Qjet|Pnn to data. The measured value
of D for single track jets is also given (see fig. 7.4).
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Jet type ε % effective D % tagging power %

e+SVT data
Class 1 10.56 ± 0.05 19.75 ± 0.43 0.412 ± 0.018
Class 2 28.20 ± 0.08 11.60 ± 0.33 0.380 ± 0.021
Class 3 56.72 ± 0.11 4.70 ± 0.29 0.125 ± 0.015
combined 95.48 ± 0.15 9.80 ± 0.16 0.917 ± 0.031
µ+SVT data
Class 1 10.51 ± 0.04 18.35 ± 0.37 0.354 ± 0.014
Class 2 28.76 ± 0.07 12.18 ± 0.29 0.426 ± 0.020
Class 3 56.45 ± 0.09 5.29 ± 0.26 0.158 ± 0.016
combined 95.72 ± 0.12 9.90 ± 0.15 0.938 ± 0.029

Table 7.3: Tagging power of the Neural Network based Jet Charge Tagger. The errors are
purely statistical.

and accordingly

εtot =

3
∑

c=1

εc (7.14)

Deff =

√

T
εtot

(7.15)

are the total tagging efficiency and the effective dilution.

7.3.4 Results

The tagging power measured on the calibration sample is shown in table 7.3. The
measured T is

(0.917 ± 0.031)% for the e+SVT data sample
(0.938 ± 0.029)% for the µ+SVT data sample

The cut based Jet Charge Tagger measures T = (0.715±0.027)% so the overall relative
improvement brought by the NNJQT is 29%.
The very high tagging efficiency of NNJQT, about 95%, is due to the absence of cuts
on the tagging jet. When the dilution is binned only with |Qjet| the measured T
for NNJQT is 11% lower than the measurement which has just been presented. It
is interesting to point out that the tagging power of NNJQT is 12% lower if L00 is
not included, because of the lower power of the b-track and b-jet probability variables.
The result with dilution binning only in |Qjet| and the result without L00 are listed
in table 7.4.
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Tagger setup T on e+SVT sample T on µ+SVT sample

NNJQT + Cone 0.917 ± 0.031 % 0.938 ± 0.029 %
NNJQT + Cone, D(|Qjet|) 0.848 ± 0.031 % 0.796 ± 0.026 %
NNJQT + Cone, no L00 0.834 ± 0.031 % 0.785 ± 0.027 %

Table 7.4: Comparison of T of NNJQT+Cone with the case in which the dilution is binned
only in |Qjet| and with the case in which L00 is not used. The errors are purely statistical.

As an example of the large gain brought by the splitting of the data sample, the tagging
power measured on the e+SVT data sample is only (0.579 ± 0.037)% if the sample is
split only according to the jet type and (0.416 ± 0.033)% if the sample is undivided.
Therefore the splitting procedure brings about a factor two of improvement for the
tagging power.

7.4 Exclusion of Events Tagged by the Soft Lepton

Taggers

The tagging power of NNJQT has been measured on the data sample with the ex-
clusion of the events tagged by the Likelihood based Soft Electron Tagger (SET) or
by the Likelihood based Soft Muon Tagger (SMT) [45]. A minimum cut of 0.05 has
been applied to the lepton likelihood, similarly to mixing analyses using these taggers.
NNJQT can tag every event in which there is at least one track with pT > 1 GeV/c
on the opposite side. The lepton selection cuts applied by SET and SMT are stricter,
therefore NNJQT tags every event for which SET and SMT have a decision and the
overlap of NNJQT with the Soft Lepton Taggers is total.
The measurement of T on events not tagged by SET or SMT is shown in table 7.5.
The efficiency denominator includes all the events in the calibration sample. The di-
lution fit parameters obtained in this case are charted in table 7.6. The tagging power
of NNJQT is lower but is still good and comparable to the power of the best of the
two Soft Lepton Taggers (see table 4.1).
The efficiency and the dilution of NNJQT have been evaluated on the overlap sample
as well. In this case no binning has been used for NNJQT, nor cuts on Qjet or Pnn have
been applied due to the limited statistics. The cut on likelihood has been used. The
results for the µ+SVT data sample are summarised in table 7.7 and in table 7.8 for
e+SVT. These numbers are relevant for the CDF mixing analysis, since the different
opposite side taggers are not combined but used in sequence, giving priority to the
tagger with the highest dilution.
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Jet type ε % effective D % tagging power %

e+SVT data
Class 1 8.75 ± 0.04 17.09 ± 0.44 0.255 ± 0.013
Class 2 25.54 ± 0.08 9.84 ± 0.33 0.247 ± 0.017
Class 3 53.96 ± 0.11 3.76 ± 0.27 0.076 ± 0.011
combined 88.25 ± 0.14 8.10 ± 0.17 0.579 ± 0.024
µ+SVT data
Class 1 8.67 ± 0.04 15.16 ± 0.37 0.199 ± 0.010
Class 2 25.99 ± 0.06 10.19 ± 0.29 0.270 ± 0.015
Class 3 53.61 ± 0.09 4.16 ± 0.23 0.093 ± 0.010
combined 88.28 ± 0.11 7.98 ± 0.15 0.562 ± 0.021

Table 7.5: Summary of efficiency, dilution and tagging power measured on data for the Jet
Charge Tagger based on Neural Network jet selection with the exclusion of events tagged by
the Soft Lepton Tagger. The errors are purely statistical.

a D(|Qjet| = 1), %

e +SVT
Class 1 0.498 ± 0.030 20.6 ± 4.4
Class 2 0.314 ± 0.024 13.3 ± 1.2
Class 3 0.280 ± 0.043 5.83 ± 0.68
µ +SVT
Class 1 0.448 ± 0.027 26.6 ± 5.5
Class 2 0.330 ± 0.022 12.9 ± 1.5
Class 3 0.271 ± 0.034 3.10 ± 0.85

Table 7.6: Result of the fit of the function D = a · |Qjet|Pnn to data when events tagged by
the Soft Lepton Taggers are excluded.
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Subsample ε % D % tagging power %

NNJQT with SMT
overlap 4.41 ± 0.03 24.11 ± 0.93 0.256± 0.020
decisions agree 3.17 ± 0.02 37.2 ± 1.1 0.440± 0.025
decisions disagree 1.24 ± 0.01 9.7 ± 1.8 0.012± 0.004
NNJQT with SET
overlap 3.23 ± 0.02 19.2 ± 1.1 0.119± 0.014
decisions agree 2.23 ± 0.02 28.0 ± 1.3 0.175± 0.016
decisions disagree 1.00 ± 0.01 0.5 ± 2.1 −
NNJQT with SMT or SET
overlap 7.45 ± 0.03 22.20 ± 0.72 0.367± 0.024
decisions agree 5.47 ± 0.03 32.81 ± 0.83 0.589± 0.030
decisions disagree 1.97 ± 0.02 7.2 ± 1.4 0.010± 0.004

Table 7.7: Measurement of ε and D of NNJQT on the µ+SVT data sample only for events
that were tagged also by the Soft Lepton Tagger. For the computation of D no binning has
been used. The efficiency is normalised to the total number of events in the sample, as in
table 7.3.

Subsample ε % D % tagging power %

NNJQT with SMT
overlap 4.21 ± 0.03 23.5 ± 1.1 0.233 ± 0.016
decisions agree 3.02 ± 0.03 37.8 ± 1.3 0.431 ± 0.030
decisions disagree 1.19 ± 0.02 12.6 ± 2.2 0.019 ± 0.007
NNJQT with SET
overlap 3.19 ± 0.03 19.4 ± 1.38 0.119 ± 0.017
decisions agree 2.25 ± 0.02 28.2 ± 1.6 0.179 ± 0.020
decisions disagree 0.93 ± 0.02 2.0 ± 2.7 −
NNJQT with SMT or SET
overlap 7.23 ± 0.04 21.75 ± 0.89 0.342 ± 0.028
decisions agree 5.34 ± 0.03 32.6 ± 1.0 0.569 ± 0.035
decisions disagree 1.89 ± 0.02 8.9 ± 1.8 0.015 ± 0.006

Table 7.8: Measurement of ε and D of NNJQT on the e+SVT data sample only for events
that were tagged also by the Soft Lepton Tagger. For the computation of D no binning has
been used. The efficiency is normalised to the total number of events in the sample, as in
table 7.3.



7.5 Further Studies 111

0 0.5 1 1.5 2 2.5 3

ef
fe

ct
iv

e 
d

ilu
ti

o
n

 (
%

)
−100

−80

−60

−40

−20

0

20

40

Class 1 jets

0 0.5 1 1.5 2 2.5 3

ef
fe

ct
iv

e 
d

ilu
ti

o
n

 (
%

)

−4
−2
0
2
4
6
8

10
12
14
16
18

Class 3 jets

lepton+SVT Monte Carlo
+B
0B

 no mixing0B

0 0.5 1 1.5 2 2.5 3

ef
fe

ct
iv

e 
d

ilu
ti

o
n

 (
%

)

−10

0

10

20

30

40

50

Class 2 jets

∆φ(jet,l+SVT), rad∆φ(jet,l+SVT), rad

∆φ(jet,l+SVT), rad

Figure 7.5: Effective dilution in bins of the angle in the transverse plane between the tagging
jet and the B candidate for NNJQT with Cone Clustering in simulated events. Monte Carlo
truth is used to identify the flavour of the same side B.

7.5 Further Studies

7.5.1 D(B0) and D(B+)

One of the major improvements with respect to the cut based Jet Charge Tagger
comes from the elimination of the cut on the ∆φ angle between the tagging jet and
the B candidate. By dropping this cut it is possible that the leading fragmentation
track on the same side is included more often in the tagging jet on the opposite side.
The study in Section 5.5.1 indicates that the tracks originating from the fragmentation
of a B cannot be enclosed in a cone and excluded in a simple manner. The charge
correlation of the leading fragmentation track to the same side B flavour is opposite
for B0 and B+, so if the tagging jets include these tracks, the measured dilution of
the Jet Charge Tagger should be different depending on whether the same side B is a
charged or a neutral meson.
The flavour of the same side B has been identified with the Monte Carlo truth, there-
fore no correction factor for the raw dilution has been applied. The dilution is mea-
sured in bins of ∆φ separately for B+, for all B0 and for unmixed B0. The tagger
setup is NNJQT with Cone Clustering. The result is shown in fig. 7.5. The dilution
is slightly lower for B0 because of mixing on the same side, for which no correction is
applied. It is interesting to compare B+ and unmixed B0 distributions, since, if the
same side fragmentation tracks do not affect the opposite side, the measured dilution
should be the same in the two cases. For Class 1 and Class 2 jets the dilution of
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unmixed B0 is lower in the first ∆φ bin than in the other bins. The errors are rather
large and make it a difficult task to understand the size of the bias, if there is any sig-
nificant one. A test with higher statistics would be needed for further understanding.
In addition, the fragmentation model in the Monte Carlo is not tuned, therefore the
study should be repeated with events simulated with the fragmentation function that
fits the data best.
It has to be noted that the dilution measured on simulated events is larger than the
dilution measured on data. The simulation gives a good description of the opposite
side of the event, but the flavour information does not completely match to the flavour
observed in data. Further investigation is needed to explain this difference.

7.5.2 Alternative Jet Charge Tagger Setup

The results shown so far have been obtained using the track probability optimised
separately on tracks with/without hits in L00. The tagging power has also been
evaluated in conjunction with the trackNet trained on three subsamples (tracks with
L00 hits, tracks with hits in the silicon detector but not in L00, tracks with COT
hits only). The measurement yielded a tagging power ∼ 1.5% larger, which is not
significant. The results are given in Appendix G.2.
The possibility of selecting the tagging jet with the likelihood variable (Appendix E)
has been considered and a Jet Charge Tagger based on the likelihood variable has
been developed (Appendix F). The measured tagging power of the likelihood based
Jet Charge Tagger has been found to be on average on the data samples ∼10% lower
than the power of the Neural Network based Jet Charge Tagger. The reason is that
the b-jet likelihood variable is not as powerful as the bJetNet in separating signal and
background jets.
An additional setup considered for the Jet Charge Tagger included the use of Mass
Clustering. Also in this case the measured tagging power is lower, about ∼11% on
average. The setup and the results are discussed in the next section.

7.5.3 Jet Charge Tagger with Mass Clustering

The performance of the Jet Charge Tagger has been evaluated when the opposite side
jets are reconstructed with Mass Clustering with the optimised values for pseed

T and
xmin (see Section 6.4).
The Jet Charge Tagger has been run on events in which jets have been reconstructed
on the opposite side by Mass Clustering algorithm. For this purpose the trackNet
and bJetNet trained with these jets have been employed. The tagger performance has
been evaluated with the method described as in Section 7.3.
The fraction of jets selected with the jet probability variable and contaminated by
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Jet type n tagging jets n jets with SS B tracks fraction
Class 1 4139 2 0.04%
Class 2 11211 25 0.22%
Class 3 24126 37 0.15%

Table 7.9: Fraction of tagging jets including one or more same side B daughters falling on
the opposite side in the Monte Carlo sample.

Jet type ε,% effective D, % tagging power %

e+SVT data
Class 1 9.92± 0.05 20.24± 0.51 0.406± 0.021
Class 2 29.80± 0.09 10.69± 0.33 0.341± 0.021
Class 3 58.36± 0.11 4.37± 0.28 0.112± 0.015

combined 98.08± 0.15 9.36± 0.18 0.859± 0.033
µ+SVT data

Class 1 9.87± 0.04 18.24± 0.44 0.328± 0.016
Class 2 30.27± 0.07 10.48± 0.28 0.332± 0.018
Class 3 58.09± 0.09 4.41± 0.23 0.113± 0.012

combined 98.23± 0.12 8.86± 0.15 0.774± 0.027

Table 7.10: Summary of efficiency, dilution and tagging power measured on data for the
Jet Charge Tagger based on Mass Clustering and Neural Network jet selection.

same side B decay products (table 7.9). There is no significant difference from the
numbers obtained for Cone Clustering (table 7.1).
Table 7.10 shows the tagging power of NNJQT with Mass Clustering. The measured
T is 6% to 17% lower than NNJQT with Cone Clustering (table 7.3) and the loss is
mainly due to a ∼1% lower effective dilution for Class 2 and Class 3 jets. Class 1
jets have a lower efficiency which is compensated by a slightly higher dilution. The
combined tagging efficiency is ∼2.5% higher than NNJQT with Cone Clustering. The
improvement is explained by the higher efficiency in jet reconstruction of Mass Clus-
tering due to the lower pT cut on seed tracks. The jet type with the highest relative
efficiency improvements is Class 2.

The use of jets produced by the Mass Clustering algorithm does not bring an improve-
ment in the tagging power. In Run I a Jet Charge Tagger based on Mass Clustering
proved to be more powerful than a Tagger based on Cone Clustering when applied to
events with low pT of the B-candidate [59]. In order to understand if the superiority
of Cone Clustering in this case is caused by the higher pT of the B candidate, a test
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is performed on the Monte Carlo sample. The simulated events are split in a low and
in a high bin of true B candidate transverse momentum4. The reason for the usage of
simulated events and of the true momentum of the B-candidate is that in the analy-
sis in Run I the B candidates were reconstructed in exclusive channels. The tagging
power is measured in the two pT -bins for NNJQT+Cone and NNJQT+Mass. The
flavour of the B candidate is taken from the Monte Carlo truth to determine the true
dilution. The Monte Carlo predicts that the performance of NNJQT+Mass is 0.7%
worse in the high pT -bin than in the low pT -bin, so there is no significant variation.
NNJQT+Cone has a tagging power 15% larger in the high pT -bin than in the low
pT -bin. The significance for the effect is only ∼1σ.

7.6 Summary

The Neural Network based Jet Charge Tagger has been presented in this chapter. It
uses the b-jet probability Pnn to select the tagging jet on the opposite side and the
b-track probability as a weight for the computation of the jet charge Qjet. The tagging
power has been measured on the `+SVT data sample, which has been split is several
subsamples corresponding to bins of the quantity |Qjet|Pnn and jet types. The partial
tagging power has been measured in each subsample and the sum over the subsamples
gave the combined tagging power T , which is larger than the tagging power measured
on the undivided sample. The final result is

T = (0.917 ± 0.031)% for the e+SVT data sample
T = (0.938 ± 0.029)% for the µ+SVT data sample

The tagging power measured with alternative setups, e.g. with a likelihood based b-jet
selection or with jets reconstructed by the Mass Clustering algorithm, has been proven
to be worse.
The performance of the Neural Network based Jet Charge Tagger was found to be
about 30% better than the performance of the cut based Jet Charge Tagger.
A parameterisation has been provided for the evaluation of the tagger dilution on an
event-by-event basis in B0

s oscillation analyses.

4Events with B candidate pT < 14 GeV/c and events with B candidate pT > 14 GeV/c. The cut
is chosen to ensure the same statistics in the two bins.
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Conclusion and Outlook

A Jet Charge Tagger algorithm for b-flavour tagging for the measurement of ∆ms at
CDF has been presented. The tagger is based on a b-track probability variable and a
b-jet probability variable, both obtained by combining the information available in bb̄
events with a Neural Network.
The tagging power measured on data is

0.917 ± 0.031% e+SVT sample
0.938 ± 0.029% µ+SVT sample

which is ∼30% larger than the cut based Jet Charge Tagger employed for the B0
s

mixing analysis presented by CDF at the Winter Conferences 2005. The improved
power of the tagger is due to the selection of the b-jet with a Neural Network variable,
which uses correlated jet variables in an optimal way.
The development of the track and jet probability has profited from studies performed
on simulated events, which allowed to understand better the features of bb̄ events.
For the first time in the CDF B group a Monte Carlo sample comprising flavour
creation and additional bb̄ production processes has been examined and compared to
Run II data. It has been demonstrated that a Monte Carlo sample with only flavour
creation bb̄ production processes is not sufficient to describe bb̄ data collected at CDF.
The sample with additional processes introduced in this thesis is thus essential for tag-
ging studies. Although the event description is satisfactory, the flavour information
in the Monte Carlo sample differs with respect to data. This difference needs to be
clarified by further studies.
In addition, the track and the jet probabilities are the first official tools based on
Neural Networks for B-Physics at CDF. They have proven that the simulation is un-
derstood to such an advanced level that Neural Networks can be employed. Further
work is going on in this direction: a Soft Electron and a Soft Muon Tagger based on
Neural Networks are under development as of now.
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Several possible tagger setups have been studied and the Jet Charge Tagger reached
a high level of optimisation. A further improvement of the tagging power can be
achieved by combining the opposite side taggers in a single one, i.e. including particle
identification in the track probability. A change of perspective might bring tagging
at CDF to a higher performance: the traditional jet clustering could be abandoned in
favour of a track-based tag on the opposite side. This approach was successfully pur-
sued in the DELPHI experiment with the BSAURUS project [5]. A similar strategy is
currently under investigation for the CDF experiment. The first studies on simulation
are encouraging [65].
The presented Jet Charge Tagger marks the advent of new flavour tagging techniques
at CDF and it is going to greatly enhance the ongoing ∆ms analysis.



Appendix A

True Asymmetry and Measured

Asymmetry

Consider the measurement of an asymmetry which uses a tagger with efficiency ε and
dilution D to make a binary decision: the event is either of type a or of type b. The
measured asymmetry is defined as

Ameas =
Na −Nb

Na +Nb
(A.1)

where Na (Nb) is the number of events tagged as type a (b). The true asymmetry in
the data is given by

Atrue =
N0

a −N0
b

N0
a +N0

b

(A.2)

where N0
a (N0

b ) is the number of true events of type a (b) in the sample. The efficiency
of the flavour tag is given by

ε =
Na +Nb

N0
a +N0

b

(A.3)

which is the numbers of tagged events over the number of events before the tagging.
The number of tagged events of each type is

N ′
a = εN0

a (A.4)

N ′
b = εN0

b (A.5)

The events tagged as type a are either correctly tagged true a-type events or wrongly
tagged b-type events, and similarly for the events tagged as type b. Consequently one
can use the probability for the tagger to give a right sign, PRS (eqn. 4.14), or a wrong
sign tag, PWS (eqn. 4.15), to write:

Na = N ′
aPRS +N ′

bPWS (A.6)
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Nb = N ′
bPRS +N ′

aPWS (A.7)

and substituting in eqn.A.1 one obtains

Ameas =
N ′

aPRS +N ′
bPWS −N ′

bPRS −N ′
aPWS

Na +Nb
(A.8)

and using Na +Nb = ε(N0
a +N0

b ) from eqn.

Ameas =
(N ′

a −N ′
b)(PRS − PWS)

ε(N0
a +N0

b )
=
ε(N0

a −N0
b )(PRS − PWS)

ε(N0
a +N0

b )
(A.9)

The factor ε cancels out and from eqn. 4.14 and 4.15 it follows

PRS − PWS = D (A.10)

Ameas = D
N0

a −N0
b

N0
a +N0

b

= D · Atrue (A.11)

which leads to eqn. 4.16.
The form 4.17 for the statistical uncertainty on Atrue is computed by propagating
the errors σ2

Na
= Na and σ2

Nb
= Nb, considering that Na and Nb are not independent

numbers since N = N 0
a +N0

b , thus N is fixed, and the relation Na +Nb = ε ·N holds.



Appendix B

Production of the Monte Carlo

Samples

B.1 Flavour Creation Sample

The Monte Carlo sample with flavour creation only has been generated, simulated and
reconstructed at the GridKa computing facility [66].
The sample has been generated with Pythia v6.2 with the option msel set 5, that is
bb̄ flavour creation, with non-zero b-quark mass in the leading order matrix elements.
The Bowler fragmentation model has been used, which is the default for Pythia. The
decay package used is QQ [67].
The version of CDF software used to produce this sample is 5.3.0. The cdfSim

executable was a custom version based on 5.3.0 and including the latest version
of ToF reconstruction available at the time of the generation (end of April 2004).
The set of steering parameters is the default available for 5.3.0 release. The flag
cdfSim SI Matching has been set to 1 in the cdfSim steering file in order to keep all
the data banks needed for track matching to Monte Carlo particles.

B.2 All bb̄ Production Processes Sample

The Monte Carlo sample containing all the bb̄ production processes has been produced
on the Fermilab CAF by using the nbot90 dataset [68]. The latter consists of 25M
events containing only the four vector quantities of the generated particles. The events
have been generated with Pythia v6.2 with the option msel set 1, i.e. the production
of QCD processes at high transverse momentum. The fragmentation function used
is the default, i.e. the Bowler fragmentation function. A filter has been applied to
select only events containing at least a b- or a b̄-quark with transverse momentum
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pT > 4 GeV/c and pseudorapidity |η| < 1.5. The four vector events have been pro-
cessed by EvtGen [69] and simulated.
The `+SVT trigger has been simulated and the events surviving after the filter have
been reconstructed. Since the trigger filter drastically reduces the initial number of
events, the nbot90 sample has been processed by the decay package and simulated for
several iterations. The probability that the same initial event fires the trigger twice
is very small. The duplicated events, which amount to a 1% of the total number of
simulated events, have been tabulated so that it is possible to exclude them in the
DHInput module.
The version of CDF software used to produce this sample is 5.3.3. The cdfSim exe-
cutable has been compiled in order to include the latest version of ToF reconstruction
available (toftag2). The default parameters of the 5.3.3 release have been used for
simulation and reconstruction. Also for this sample the flag cdfSim SI Matching has
been set to 1 in the cdfSim steering file.



Appendix C

Optimisation of the Track

Probability

The NeuroBayesr package [70] has been used for every Neural Network described in
this thesis. The setup of the Neural Network consists of three layers (see fig.C.1):

• input layer: each node in this layer corresponds to an input variable.

• hidden layer: contains the intermediate nodes that correspond to linear combi-
nations of the input nodes

• output layer: the output nodes correspond to the answer given by the Network.
In case the decision is of the type yes/no there is only one node in the output
layer

In general the aim is to teach the Network to learn the correlation between the input
variables and a variable called target (e.g. the Monte Carlo truth), and to find the
combination of input variables that has the highest correlation to the target.
The training is the procedure that assigns a weight to each connection between an
intermediate node and an input node and each connection between an intermediate
node and an output node and finds the set of weights that gives the smallest difference
between the Network output and the target. When the optimal set of weight has been
found, the training is complete. The set of weights, called expertise, is later used to
extract the output given a set of input variables.
The Neural Network output for a binary decision is a float distributed between −1
and +1, where -1 means that answer is ”no” without any doubt and 1 means that
the answer is certainly ”yes”. When the Network is properly trained the purity of
the signal is proportional to the Neural Network output scaled to the interval (0., 1.).
This allows one to interpret the Neural Network output as a probability.
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Figure C.1: Scheme of the three layers of a Neural Network and the connections among the
nodes in the different layers [71].

target dsigned
0 /σ track pT |d0| PV ∆R pjet

T y

3 2 1 4 5 6 7 sorting
100.0 22.7 15.1 40.7 -20.3 5.2 1.1 10.6 target

100.0 3.6 14.7 -7.1 2.2 3.3 2.0 dsigned
0 /σ

100.0 -9.4 22.6 -0.3 16.0 49.9 track pT

100.0 -25.5 2.9 -0.8 -2.1 |d0|
100.0 -0.2 -7.5 9.3 PV

100.0 25.8 7.3 ∆R

100.0 -15.8 pjet
T

100.0 y

Table C.1: Correlation matrix of input variables after preprocessing for tracks with a L00
hit. The numbers given are in %.

C.1 Network Training

The trackNet setup has 8 nodes in the input layer (7 input variables plus a bias node,
which is needed for technical reasons), 6 nodes in the intermediate layer and one out-
put node.
The training sample consists of 37k signal tracks and 203k background tracks for the
tracks with L00 hits and 21k signal tracks and 126k background tracks for the tracks
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target dsigned
0 /σ track pT |d0| PV ∆R pjet

T y

3 2 1 4 5 6 7 sorting
100.0 14.6 14.9 17.0 -11.7 4.4 1.4 10.2 target

100.0 3.1 6.4 -4.3 1.6 3.0 1.7 dsigned
0 /σ

100.0 -18.0 24.9 2.0 18.6 50.4 track pT

100.0 -28.8 1.3 -3.3 -9.0 |d0|
100.0 0.3 -7.0 9.8 PV

100.0 26.5 9.7 ∆R

100.0 -11.4 pjet
T

100.0 y

Table C.2: Correlation matrix of input variables after preprocessing for tracks without L00
hits. The numbers given are in %.

without L00 hits, equivalent to all of the `+SVT Monte Carlo sample.
The signal to background ratio used for the training is the natural mix found in sim-
ulated events. Every track in a jet is used to train the trackNet.
NeuroBayesr processes the input variables, computes the correlation matrix and sorts
the variables in order of importance. The importance of a variable is proportional to
the information loss when the variable is removed from the set of input nodes.
The correlation matrices for the sample of tracks with L00 hits is shown in table C.1
and for tracks without L00 hits in table C.2. The numbers in the row after the name
of the variables indicate the importance of the variable in the corresponding column.
The following row shows the correlation of each input variable to the signal. The neg-
ative numbers indicate anti-correlation of the variable to the signal. The correlation of
each variable to the signal is relatively small, being the maximum 40% for |d0| in the
case of tracks with L00 hits. It would not be possible to obtain a powerful separation
of signal and background by using only one of the variables.
As an example on how to read the correlation matrices, consider the correlation be-
tween the primary vertex flag, PV, and the impact parameter, |d0|. The PV flag is
1 if the track has been used by VxPrim to fit the primary vertex and it is 0 if the
track has not been used. If the primary vertex in the event has not been found then
the flag is equal to 2. VxPrim applies a very loose cut on |d0| to select tracks and fits
the primary vertex with an iterative procedure that removes the tracks that gives the
highest contribution to the fit χ2. The tracks that are more likely to be excluded are
those with a large displacement, so at the end of the fit procedure the tracks in the
primary vertex, which is flagged with 1, have an average |d0| smaller than the tracks
excluded from the primary vertex fit, flagged with 0. In this sense the PV and the
|d0| variables are anti-correlated.
The track impact parameter is the most sensitive variable to the track coming from
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Figure C.2: Result of the training of the trackNet for tracks with L00 hits (left) and without
(right). Top: trackNet output for signal and background tracks. Bottom: dependence of
sample purity on the trackNet output.

the primary or the secondary vertex. The signed impact parameter significance and
the magnitude of the impact parameter are correlated and the information about the
sign seems to be secondary to the information about the displacement magnitude.
The cone angle between the track and the B candidate, ∆R, has a weak correlation
to the target, as expected for a quality variable, nevertheless its removal causes a loss
of information of 4σ.
Figure C.2 shows the outcome of the training performed separately for tracks with
and without L00 hits. The upper plots illustrates the trackNet output for signal and
for background tracks (eqn. 6.1). An excess of signal tracks at high output values is
observed and an excess of background tracks is present at low output values.
The lower plots shows the purity of the signal as a function of the output, i.e. the
number of signal tracks divided by the number of signal and background tracks in each
bin of trackNet output. The purity is distributed along the plot diagonal, indicating a
linear dependence on the output. In fact, for a subsample of the tracks in a given bin
the purity is p and this means that if a random track is picked from the subsample
there is a probability p that the track is signal. In this sense the trackNet output can
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signal dsigned
0 /σ track pT |d0| PV ∆R pjet

T y

3 2 1 4 6 7 5 sorting
100.0 13.2 13.5 15.1 -4.8 3.0 3.2 5.9 signal

100.0 2.8 6.7 -2.0 1.1 2.9 1.0 dsigned
0 /σ

100.0 -23.5 20.1 0.5 15.7 47.0 track pT

100.0 -32.8 3.9 -4.7 -4.8 |d0|
100.0 -7.9 3.6 -8.1 PV

100.0 21.2 13.5 ∆R

100.0 -22.3 pjet
T

100.0 y

Table C.3: Correlation matrix of input variables after preprocessing for tracks with hits in
the silicon detector but no L00 hit. The numbers given are in %.

signal dsigned
0 /σ track pT |d0| PV ∆R pjet

T y

4 1 7 5 3 2 6 sorting
100.0 3.6 14.6 -2.0 7.2 5.0 -1.1 8.9 signal

100.0 1.4 0.2 0.0 0.6 1.6 1.5 dsigned
0 /σ

100.0 -17.3 23.9 4.9 25.7 52.1 track pT

100.0 -5.9 1.5 -7.2 -6.6 |d0|
100.0 2.9 -10.3 13.5 PV

100.0 28.5 7.0 ∆R

100.0 -12.2 pjet
T

100.0 y

Table C.4: Correlation matrix of input variables after preprocessing for tracks without
silicon hits. The numbers given are in %.

be mapped into the interval [0, 1] and treated as a track probability.

C.2 Separate Training for COT only Tracks

The trackNet for the tagger described in Appendix G has been trained separately for
tracks with L00 hits, tracks with hits in the silicon detector but not in L00 and tracks
with COT hits only. The training on the first sample has been already described. The
training on the second sample has been executed with 23k signal and 161k background
tracks; for the third training 1.8k signal and 8.7k background tracks were used, corre-
sponding to all of the tracks with COT hits only assigned to jets in the Monte Carlo
sample. The trackNet setup and the input variables have not been changed.
The matrix of correlation between each pair of variables is shown in table C.3 for tracks
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with silicon hits and in table C.4 for COT only tracks. Table C.3 is very similar to
table C.2, which is relative to all tracks that do not have L00 hits, either COT only or
silicon tracks. The order of importance of the variables is essentially the same reported
in table C.2, only the last three variables swap places. The importance of variables for
the tracks with hits only in the drift chamber is different than in the previous cases:
the impact parameter, which used to be the most discriminating variable, is now the
least important and the biggest power in separating signal and background is brought
by the track pT , followed by the jet pT . The resolution on the track displacement for
this track is not as good as for the tracks with hits in the silicon detector, consequently
the trackNet decision has to rely more on the momentum information.
The result of the training of the trackNet for COT only tracks is shown in fig C.3. It
is not possible to reach a sample purity higher than 50% due to the low discrimination
power of the input variables. Because of the limited number of tracks available for the
training the purity graph shows large fluctuations about the diagonal line.
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Figure C.3: Result of the training of the trackNet for tracks with hits only in the COT.
Top: trackNet output for signal and background tracks. Bottom: dependence of sample
purity on the trackNet output.
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Optimisation of the Jet Probability

The bJetNet has 17 input nodes (16 input variables plus the bias node), 8 nodes in
the intermediate layer and one output node. A sample of 25k signal jets and 67k
background jets has been used for the training. The sample corresponds to all the jets
reconstructed by the Cone Clustering algorithm in the `+SVT Monte Carlo sample.
The correlation matrix for the input variables is shown in table D.1. The most impor-
tant variable is the highest track probability for the tracks in the jet tmax, followed by
the sum of the longitudinal momentum of tracks with respect to the jet axis

∑

i pL and
by the pT of the jet. The least important variable contributes with a significance of
0.5. Some variables do not bring a very high separation power but during the training
NeuroBayesr takes care of killing the intermediate nodes that get a too low weight.
The bJetNet output with the breakdown for signal and background and the purity
versus output plot are shown in fig. D.1. The same considerations made for the track-
Net are valid here, so the bJetNet output scaled to the interval [0, 1] can be interpreted
as a probability that the jet is a b-jet.



128 Optimisation of the Jet Probability

jetNet output
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

ev
en

ts

1

10

210

310

410

All Jets
Signal
Background

jetNet output
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

p
u

ri
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure D.1: Result of the training of the bJetNet for jets reconstructed by the Cone Clus-
tering algorithm in the Monte Carlo sample. Top: bJetNet output for signal and background
jets. Bottom: dependence of sample purity on the bJetNet output.
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Table D.1: Correlation matrix for the bJetNet input variables. The numbers given are in %





Appendix E

B-jet Selection Likelihood Variable

A second b-jet selection variable has been developed by combining jet variables with a
likelihood ratio method. The input is a subset of the variables used for the jet Neural
Network, with the exclusion of the correlated ones. The jets are classified according to
the criteria listed in Section 6.3 and signal and background jet are defined in the same
way as in Section 6.3. A slightly different approach has been used for the likelihood
combination: three input sets have been chosen according to the jet classification and
the combination is separate for each set. Some variables have discrimiation power only
for a given jet quality or are defined only for a certain class of jets.

E.1 Choice of Input Variables

For each class of jets, an input set has been chosen on the basis of discrimination
power between signal and background jets, low correlation among the variables and
fairly good data/Monte Carlo agreement. The chosen sets are:

• Class 1

– jet pT

– Secondary vertex fit χ2 probability

– number of tracks in the secondary vertex

– weighted number of tracks in jet
∑

i ti, where the index i runs over all the
tracks in the jet and ti is the trackNet output for track i

– momentum fraction in the secondary vertex |
∑

i
~P SV

i |/|~Pjet|
– log of jet probability JP , defined as in 3.2
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• Class 2

– jet pT

– highest trackNet output of tracks in jet

– ∆φ(jet, B)

– weighted number of tracks in jet

– log of JpT

P

– momentum of the track with the maximum momentum in the jet pmax
T

– momentum fraction in the “secondary vertex” |∑i
~P SV

i |/|~Pjet|, where the
sum is over the tracks that have ti > 50%

• Class 3

– jet pT

–
∑

i p
rel
T,i/p

jet
T , where prel

T,i is the magnitude of the track momentum component
perpendicular to the jet axis

– ∆φ(jet, B)

– weighted number of tracks in jet

– log of JpT

P

Some variables are common to all classes (jet pT , weighted number of tracks), other
are defined only for some classes. Other variables, although defined for every class,
have discriminating power only for one jet type (

∑

prel
T /pjet

T ). The jet probability JP is
computed out of all tracks for Class 1 jets and only with tracks having pT > 1 GeV/c
for the other classes because of data/Monte Carlo agreement reasons. For jets of Class
1 the secondary vertex variables are provided by the SecVtx algorithm. For Class 2
jets these variables are computed using the tracks in the jet that have probability
greater than 50%. A secondary vertex fit is not attempted in this case, so the χ2

probability of the fit cannot be computed. For jets in Class 3 the secondary vertex
variables cannot be computed.
The correlation between each pair of variables in each set is visualised in figs. E.1 - E.3.
These plots have to be looked at like symmetric matrices: each column corresponds
to a variable, the n-th column and the n-th row correspond to the same variable.
The plots on the diagonal show the fraction of signal in each bin of the variable; the
off-diagonal plot in row m and column j is the scatter plot of variable j versus variable
m. The off-diagonal plots do not show evident structures, thus indicating that the
input variables in each set are weakly correlated with each other.
The comparison of data and Monte Carlo for each variable is shown in figs. E.4 -
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Figure E.1: Correlation plots for variables used for Class 1 jets. Each column (row) corre-
sponds to a variable. The order is the following: jet pT , secondary vertex fit χ2 probability,
number of tracks in the secondary vertex, weighted number of tracks in jet, log of jet prob-
ability, momentum fraction in the secondary vertex. The plots on the diagonal are relative
to the signal purity in different bins of the corresponding variable. The off-diagonal plots
show the correlation between pairs of variables for signal and background together.

E.6. As already mentioned for the jet Neural Network, the distributions for simulated
events do not completely match with the data because of different L00 efficiency in
data and in Monte Carlo. An example is given in fig. E.7 of the data/Monte Carlo
agreement for some variables when L00 is not included. The use of L00 brings a big
improvement to the Jet Charge Tagger although its simulation is not realistic enough.
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Figure E.2: Correlation plots for variables used for Class 2 jets. The variables for each
column/row are: jet pT , highest probability of tracks in jet, ∆φ(jet, B), weighted number of
tracks in jet, log of Jpt

P , pmax
T of tracks in jet, momentum fraction of tracks with probability

greater than 50%.
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Figure E.3: Correlation plots for variables used for Class 3 jets. The variables corresponding
to the columns/rows are respectively: jet pT ,

∑

prel
T /pjet

T , ∆φ(jet, B), weighted number of
tracks in jet, log of JpT

P .
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Figure E.4: Input variables for Class 1 jets: jet transverse momentum, JP , number of tracks
in the secondary vertex, probability of SecVtx χ2 fit, fraction of the jet momentum in the
secondary vertex, weighted number of tracks.
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Figure E.5: Input variables for Class 2 jets: jet pT , highest probability of tracks in jet,
∆φ(jet, B), weighted number of tracks in jet, log of J pt

P , pmax
T of tracks in jet, momentum

fraction of tracks with probability greater than 50%.
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Figure E.6: Input variables for Class 3 jets:
∑

prel
T /pjet

T , ∆φ(jet, B), weighted number of
tracks in jet, log of JpT

P

E.2 Likelihood Ratio

For each input variable in each set, the Probability Density Function (PDF) for the
signal, fS, and for the background, fB, is extracted from the `+SVT Monte Carlo.
For a variable that takes the value x, fS(x) is the probability that the jet is signal
and fB(x) is the probability that the jet is background.
The jet likelihood variable is computed by combining the input variables for the subset
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Figure E.7: Distributions of the weighted number of tracks and the highest trackNet output
for Class 2 jets when the L00 is not used. The data/Monte Carlo agreement is significantly
better than in the case in which L00 hits are added to the tracks.

corresponding to the jet class with the formula

L = − ln

(

∏

i

fB
i (xi)

fS
i (xi)

)

(E.1)

where the index i runs over the variables in the subset. Possible correlations among
variables are not taken into account in eqn. E.1.
For a signal jet the background probability should be lower than the signal probability
for some or all of the variables. The probability ratio should be then smaller than 1
and the negative log in formula E.1 gives a positive likelihood. The likelihood value
is expected to be negative for a background jet.
The development of a multi-dimensional likelihood variable has not been considered,
due to lack of statistics, especially for Class 1 jets.

E.3 Performance

The distribution of the likelihood ratio for data and simulated events is shown in
fig. E.8. It is shifted towards higher likelihood values for signal jets and towards low
likelihood values for background jets.
The intervals in which the likelihood is distributed are not the same for the three classes
because of the different number of variables that are combined for each set, therefore
the likelihood of jets in different classes cannot be directly compared. This has to be
taken into account when the jet selection is based upon the likelihood variable.
The performance of the likelihood variable for the three classes of jets is shown in
fig. 6.24 (right) in comparison with the bJetNet output. The sample purity increases
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Figure E.8: Likelihood for Class 1 (left), Class 2 (center) and Class 3 jets (right) for Monte
Carlo events. The signal and background component are shown (respectively dotted and
dashed line) as well as the distribution for the data (dots).

as the cut becomes larger. The growth varies according to the jet class. For Class 1
jets the purity reaches a plateau after removing jets with the lowest likelihood. Class
2 shows an almost linear dependence of purity on the likelihood cut. A pure sample
of Class 3 jets is selected only with a hard cut. As already mentioned in Section 6.3.2,
the likelihood does not perform as well as the Neural Network because the correlated
variables, which bring additional power, have been excluded from the input set.



Appendix F

Likelihood based Jet Charge

Tagger

An alternative Jet Charge Tagger basically identical to the one described in Chapter 7
except for the jet selection variable was developed. The likelihood variable described
in Appendix E is exploited as a jet selection variable. The jet selection on the opposite
side is implemented in the following way:

• a Class 1 jet is chosen

• if no Class 1 jet exists in the event, a Class 2 jet is chosen. In case more than
one such jet exists, the one with the highest likelihood is selected

• if no Class 1 and Class 2 jets exist, the jet with highest likelihood in the event
is the tagging jet

The construction of the likelihood variable makes this apparently complicated selection
strategy necessary. Since the likelihood value of jets of different classes cannot be
directly compared, the higher purity of Class 1 and Class 2 jets helps in setting selection
priorities. The likelihood distribution for tagging jets is shown in fig. F.1. A shift
towards high values with respect to the likelihood distributions for tagging and non-
tagging jets (fig. E.8) is observed.
No requirements are applied to the tagging jet. The tagging power is computed
following the method described in Section 7.3. The jet sample is split in 10 bins
of |Qjet| · L, where L is the likelihood variable scaled to the interval [0, 1]. The result
of the evaluation is shown in table F.1. The measured efficiency is the same as of
NNJQT (table 7.3) because the sample of jets is the same in both cases and no cuts are
applied to the tagging jet. The effective dilution is ∼0.5% lower, averaging the result
on the e+SVT and the µ+SVT samples, because of the slightly worse performance of
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Jet type ε,% effective D, % εD2

e+SVT data
Class 1 11.05 ± 0.05 18.46 ± 0.45 0.377 ± 0.018
Class 2 28.92 ± 0.08 11.20 ± 0.32 0.363 ± 0.020
Class 3 55.50 ± 0.12 4.86 ± 0.21 0.131 ± 0.011
combined 95.48 ± 0.15 9.55 ± 0.16 0.870 ± 0.030
µ+SVT data
Class 1 11.04 ± 0.04 17.34 ± 0.39 0.332 ± 0.015
Class 2 29.52 ± 0.07 10.77 ± 0.27 0.343 ± 0.017
Class 3 55.17 ± 0.09 5.92 ± 0.19 0.134 ± 0.010
combined 95.72 ± 0.12 9.19 ± 0.14 0.808 ± 0.025

Table F.1: Summary of ε, D and εD2 measured on data for the Jet Charge Tagger based
on likelihood jet selection.

the likelihood variable (see fig. 6.24). The result is anyway remarkable since it is in
average ∼12% better than the cut based Jet Charge Tagger.
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Figure F.1: Likelihood for tagging jets in Class 1 (left), Class 2 (center) and Class 3
(right). The signal and background components are shown (respectively dotted and dashed
line). The dots represent the data distribution.





Appendix G

Further Development of the Jet

Charge Tagger

To take advantage of the better resolution on the impact parameter of tracks with L00
hits, the track probability has been trained separately on tracks with and without L00
hits. Since tracks without hits in the silicon detector have different impact parameter
resolution than tracks with silicon hits, a gain in the performance of the track proba-
bility Neural Network could come from a separate training on tracks with hits only in
the COT. Of all the tracks assigned to jets, only 2.7% do not have silicon hits. The
fraction of these tracks in the event before the jet reconstruction is performed is ∼14%
and it is reduced by the d0 and ∆z0 requirements on the tracks used for the clustering
(see Section 6.1.3). The distributions of d0 and ∆z0 for all tracks and for COT only
tracks are in fig.G.1, where the arrows indicate the position of the cuts applied before
jet clustering. The cuts were chosen after an optimisation on εD2 carried on at an
earlier stage of the cut based Jet Charge Tagger development and described in [47].
This Appendix describes the result obtained after training the trackNet for three track
samples: tracks with L00 hits, tracks with silicon hits but no L00 hits, tracks with
hits only in the COT. The result is propagated to the jet Neural Network and to the
Neural Network based Jet Charge Tagger.
An alternative solution to the splitting of the track sample into three samples would
be to introduce the number of silicon hits in the list of input variables for the trackNet.
As it has been shown in Section 5.4, the modelling of this variable in the Monte Carlo
is not satisfactory, therefore the alternative solution has been rejected.

G.1 Track Probability Optimisation

The training for tracks with L00 hits is the same described in Section 6.2. The details
about the trackNet training with tracks with silicon hits and without L00 hits, and
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Figure G.1: Distribution of d0 (left) and ∆z0 (right) for all tracks and for tracks with hits
only in the drift chamber. The arrows show the position of the cut that the tracks have to
satisfy to be accepted for jet clustering.

with COT only tracks are in Appendix C.2. The track probability for COT only tracks
obtained with this training is shown in fig.G.2. The performance of the separate
training is shown in fig G.3 (left). The purity reached by COT only tracks is about
half of the purity that tracks with hits in the silicon detector can achieve, because of
the discriminating power of variables like the impact parameter, which is higher in the
second case.
The improvement in the b-jet Neural Network performance caused by the new trackNet
training is illustrated in fig G.3 (right), where it is noticeable that the new bJetNet
(dashed line) performs slightly better than the standard (solid line) at high efficiency.

In order to understand how important the d0 information is in determining the track
probability for each class of tracks, the contribution to the network performance of |d0|
and d0/σ is shown in fig.G.4 for different training. The curves shown for |d0| and d0/σ
can be interpreted as the performance of a Neural Network that has only that variable
as input. When the track probability is trained with silicon and COT tracks together
(fig.G.4, bottom right) the power brought by the displacement information is basically
the same as when the COT tracks are removed (fig.G.4, top right). The COT only
tracks are not significantly diluting the power of |d0| and d0/σ in the inclusive sample,
as it is expected considering the small fraction of these tracks. Therefore the training
on three track samples is not necessary.
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Figure G.2: Distribution of the trackNet output for tracks without silicon hits.
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Jet type ε,% effective D, % εD2

e+SVT data
Class 1 10.77± 0.05 19.66± 0.41 0.416± 0.017
Class 2 28.24± 0.08 11.48± 0.34 0.390± 0.022
Class 3 58.47± 0.11 4.76± 0.35 0.128± 0.019

combined 95.48± 0.15 9.89± 0.17 0.934± 0.034
µ+SVT data

Class 1 10.73± 0.04 17.88± 0.35 0.343± 0.013
Class 2 28.81± 0.07 12.23± 0.30 0.431± 0.021
Class 3 56.19± 0.09 5.60± 0.32 0.176± 0.020

combined 95.72± 0.12 9.96± 0.15 0.950± 0.029

Table G.1: Tagging power of NNJQT measured on the `+SVT data sample. The track
probability Neural Network has been trained independently on three track samples (tracks
with L00 hits, tracks with hits in the silicon detector but no L00 hits, tracks with hits only
in the COT). The numbers listed here have to be compared to those in table 7.3.

G.2 Tagger Performance

The NNJQT has been run using the new track and jet probability. The setup has not
been changed with respect to the description given in Chapter 7. The performance has
been evaluated in the same way and the results are listed in table G.1. The tagging
power has increased of ∼1.5% with respect to the results shown in table 7.3. The
variation is smaller than the error on the measurement.
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Tagger Usage Instructions

Before compiling any code depending on the NeuroBayesr package [70], it is necessary
to setup the neurobayes product

setup neurobayes v1_0 -q KCC_4_0

The environmental variable NEUROBAYES DIR is set to point to the directory where the
libraries and licence are installed1. The product provides the Expert class, which is
the C++ interface to NeuroBayesr expertise files.

H.1 The TrackProbNN Class

The interface to call the track probability neural network is implemented in the Track-
ProbNN class, in BottomTaggers/BottomTaggers/TrackProbNN.hh and belongs to
the BottomTaggers package [72]. The track probability can be used with one, two or
three track categories:

1 category All tracks

2 categories • tracks with L00 hits

• tracks without L00 hits

3 categories • tracks with L00 hits

• tracks without L00 hits and with at least one hit in the silicon detector

• tracks with hits only in the COT

1The neurobayes product is available at Fermilab and at the Institut für Experimentelle Kern-
physik in Karlsruhe. In order to obtain a licence for the product it is necessary to contact <phi-t>
(licence@phi-t.de). More information about NeuroBayesr can be found on the web: http://www.phi-
t.de.
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by setting a different number of expertises with the methods

setExpert(Expert* net1)

setSecondExpert(Expert* net2)

setThirdExpert(Expert* net3)

By default two categories are used. The expertises prepared for the re-
sults shown in Section 6.2 are in the directory BottomTaggers/constants

and are pbnet cone sa all l00.nb for tracks with L00 hits and
pbnet cone sa all nol00.nb for tracks without L00.
The TrackProbNN constructor needs a pointer to the event. In order to get a mean-
ingful output for a track, it is necessary that besides the expertise(s) the direction of
the reconstructed b-hadron, the jet to which the track belongs and the beam line are
set. This is achieved by calling, respectively, the methods setTrigger(Hep3Vector

p), setJet(ProtoJet* jet) and setBeamline (Beamline beam).
The method getTrackProbability(const CdfTrack* track) computes the input
variables, calls the trackNet expertise(s) and returns a value between 0 and 1. The
return value is a dummy (999.) in case the beam line is invalid or the neurobayes
package is not installed on the node where the class is compiled.

H.1.1 How to Use TrackProbNN in AC++

In order to use the TrackProbNN class in an AC++ module, it is necessary that the
header of this class and of the Expert class are included:

#ifdef NEUROBAYES_DIR

#include "Expert.hh"

#endif

#include "BottomTaggers/TrackProbNN.hh"

The lines of code for the initialisation are

AbsEvent* event = AbsEnv::instance()->theEvent();

TrackProbNN* tProb = new TrackProbNN(event);

// set the direction of the reconstructed B

Hep3Vector bDirection = ...;

tProb->setTrigger(bDirection);

// set the beamline

Beamline beam = ...;

tProb->setBeamline(beamline);

// set the expertise(s)

#ifdef NEUROBAYES_DIR
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// load the expertises

Expert* trackNet = new Expert("pbnet_cone_sa_all_l00.nb");

Expert* trackNet2 = new Expert("pbnet_cone_sa_all_nol00.nb");

// set the expertises

tProb->setExpert(trackNet);

if (trackNet2!=0) tProb->setSecondExpert(trackNet2);

#endif

The path specified for the expertise files has to correspond to the location of the files
at running time. The probability for a single track is obtained with the following lines
of code:

CdfTrack_clnk theTrack = ...;

// set the jet to which the track belongs

ProtoJet* jet = ...;

tProb->setJet(jet);

// get the probability

#ifdef NEUROBAYES_DIR

double trackProbability = tProb->getTrackProbability(&*theTrack);

#endif

The objects declared as new should be properly deleted at the end of the program.

H.2 The NNJetQTagger Class

The Neural Network based Jet Charge Tagger is implemented in the
NNJetQTagger class, in the BottomTaggers package. The header file is
BottomTaggers/BottomTaggers/NNJetQTagger.hh. This class inherits from the ab-
stract class AbsTagger (BottomTaggers/BottomTaggers/AbsTagger.hh) and uses the
TrackProbNN class. The interface to the jet probability neural network is not a sep-
arate class but a method of the NNJetQTagger class.
The selection of tracks on the opposite side is performed in the fillNonBTracks()

method. The main method is tag(). At first the clustering algorithm is run. The
default choice is Cone Clustering, but Mass Clustering can be run by setting the ap-
propriate switch. Then the method JetSelectionAlg::selectBySvtx(SecVtxAlg*

extSecVtxAlg), which interfaces SecVtxAlg, is called to search for a secondary vertex
among the jets. The jet probability method bJetNetOutput() is called in a loop over
the jets to compute the jet variables and to call the expertise. The jet probability is a
double variable with values distributed between 0 and 1. If the code is not correctly
compiled with neurobayes, then the probability variable has a dummy value.



154 Tagger Usage Instructions

The expertise employed to produce the results in Section 7.3 can be found in
BottomTaggers/constants/jetnet cone sa all l00.nb.
The tagger decision can be accessed via the method getDecision(), which returns
the opposite of the sign of the Qjet variable. The expected dilution is computed
with the parameters in table 7.2 (no SLT exclusion) and is returned by the method
getWeight().

H.2.1 How to Use NNJetQTagger in AC++

The following lines have to be added to the header file of the module in which NNJetQ-
Tagger should be called

#include "BottomTaggers/NNJetQTagger.hh"

#include "TrackingSI/Utils/SiExpected.hh"

and among the module private data members these objects should be added

SiExpected _siExpected;

NNJetQTagger* _jqTagger;

The source file of the module needs to be modified as follows. In the beginJob()

method the lines

_jqTagger->setTrackNet("pbnet_cone_sa_all_l00.nb");

_jqTagger->setTrackNet2("pbnet_cone_sa_all_nol00.nb");

_jqTagger->setJetNetFile("jetnet_cone_sa_all_l00.nb");

_jqTagger->init();

have to be included. In the beginRun() method the silicon maps are loaded via the
command:

bool status = _siExpected.beginRun();

The tagging itself is executed in the event() (or fillHistogram()) method. Several
elements are needed for the tagger to work correctly

• an event pointer, which comes into the module which calls the tagger as an
argument of the event method. Below it is called ”anEvent”.

• the list of all tracks that should be used by the tagger, which will automatically
exclude tracks that belong to the signal B candidate and tracks in cone around
the signal B within ∆R = 0.7. It will also remove tracks with impact parameter
larger than 0.15 cm and those that fail the cuts on the same side B daughter
rejection. A possibility is to use the list of defTracks, or the list of tracks refitted
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by the user. All kind of tracks might be in the list, including SISA and IO. In
order to reproduce the blessed εD2 numbers, the tracks have to be refitted. The
refit should be performed adding L00 hits and using the blessed settings for the
covariance matrix scaling and energy loss corrections documented in [57]. An
object of the type CdfTrackView ch has to be passed to the tagger (below it is
called ”tracks”).

• the list of all tracks used to reconstruct the B-candidate in an object of type
CdfTrackView ch (”btracks”).

• a Hep3Vector holding the B-candidate direction (”bDirection”) and one holding
the position of the B-candidate decay vertex(”bDecayVertexPos”).

• a double variable (”zPrimaryVertex”) may be filled by the true primary vertex
z-coordinate, or just with the z-position of the B-candidate vertex, or with an
average of the z0 for all tracks used to reconstruct the B-candidate. In all cases
the precision will be about ∼1 mm, which is enough for Jet Charge tagging
purposes.

• the primary vertex is the beam line position at the z-coordinate of primary
vertex. This is not an accident. The NNJQT has been calibrated with the use
of the beam line r-φ position. The z-coordinate of the event-by-event primary
vertex might be used, but still the beam line in r-φ should be used as in the
example below to keep the predicted dilutions valid.

• the beam line has to be passed as well. An object of type SvxBeam should
be present in the module and properly loaded. Below this object is called
”svxBeam”.

All these objects are passed as follows

_jqTagger->clear();

// Fill information for the tagger to work with

_jqTagger->setEvent(Event);

_jqTagger->setZPrimaryVertex(zPrimaryVertex);

_jqTagger->setPrimaryVertex(svxBeam->position(zPrimaryVertex));

_jqTagger->setPrimaryVertexCov(svxBeam->cov3(zPrimaryVertex));

_jqTagger->setBeamline(svxBeam->getBeamline());

_jqTagger->setTracks(tracks);

_jqTagger->setBCandidate(btracks, bDirection, bDecayVertexPos);
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_jqTagger->setSiExpected(&_siExpected);

// Do the tagging

_jqTagger->tag();

The tagger decision and the expected dilution are retrieved as it is shown below:

double decision = _jqTagger->getDecision(); // 0 or -999 mean no tag

int jetType = _jqTagger->getTagType(); // Class1/2/3 NN jet

double Qjet = _jqTagger->getJetCharge();// -999 means no tagging jet

double Dpred = _jqTagger->getWeight(); // predicted true dilution

// Ntupling can be done here

...

H.3 How to Compile BottomTaggers

To compile and link the code in BottomTaggers correctly, and reproduce the blessed
results, several packages need to be checked out. Here it is assumed that the user is
working with the cdfsoft2 release 5.3.4.

addpkg -h BottomTaggers

addpkg -h JetUserObjects

addpkg -h BottomMods

addpkg BTagAlgs V00-00-19

addpkg BTagObjects V00-00-44

addpkg BTagMods V00-00-43

Three classes need to be patched

patch -R BTagAlgs/src/SecVtxTrackSelector.cc \

< BottomMods/PATCH/5.3.3_SecVtxTrackSelector.cc.diff

patch -R BTagAlgs/BTagAlgs/SecVtxAlg.hh \

< BottomMods/PATCH/5.3.4_SecVtxAlg.hh.diff

patch -R BTagAlgs/src/SecVtxAlg.cc \

< BottomMods/PATCH/5.3.4_SecVtxAlg.cc.diff

patch -R BTagObjects/BTagObjects/SecVtxParams.hh \

< BottomMods/PATCH/5.3.4_SecVtxParams.hh.diff

and after this action is taken, the BottomMods package can be removed

rmpkg BottomMods
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The libraries can be compiled after the neurobayes product has been set up

setup neurobayes v1_0 -q KCC_4_0

This command has to be executed before the setup of cdfsoft2 because neurobayes
might set a different root version than the one set by cdfsoft2.

gmake BottomTaggers.nobin

gmake JetUserObjects.nobin

gmake BTagAlgs.nobin

gmake BTagObjects.nobin

gmake BTagMods.nobin

The file test/GNUmakefile of the package to which the module belongs has to include
the dependency on BottomTaggers (e.g. YourPackageName). Before the list of LINK
entries, these lines should be present:

override LOADLIBES += -lYourPackageName -lBottomTaggers \

-lJetUserObjects

In the top section of the LINK list:

override LINK_BottomTaggers += YourPackageName

override LINK_JetUserObjects += YourPackageName

override LINK_BTagAlgs += YourPackageName

override LINK_BTagObjects += YourPackageName

override LINK_BTagMods += YourPackageName

and the following lines have to be at the end of the GNUmakefile:

ifneq ($(NEUROBAYES_DIR),)

override CXXFLAGS += -DNEUROBAYES_DIR --backend -gstabs+

override CPPFLAGS += -DNEUROBAYES_DIR

include SoftRelTools/arch_spec_cern.mk

include $(NEUROBAYES_DIR)/make_fragment/neurobayes.mk

include SoftRelTools/arch_spec_f77.mk

endif

These lines have to be added to YourPackageName/src/GNUmakefile as well.
It also needed that the VxPrim module is linked to the executable. In order to achieve
this, the following lines have to be included in the source build file for the executable:

#include "VertexMods/vxprim.hh"

...

aMod = new VxPrim();

add(aMod);

aMod->setEnabled(false);
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The VxPrim module has to be enabled in the steering file and it has to precede in the
path the module which calls the TrackProbNN class:

mod enable vxprim

# no talk-to for vxprim

...

path create fullPath ManagerSequence HepRootManager \

vxprim \

YourOtherModules

The executable is finally built in this way

gmake YourPackage.all

In order to run the executable, the expertise files have to be present in the directory
from which the executable is launched.

H.3.1 Caveat

It might happen that the executable which calls the NNJetQTagger or the Track-
ProbNN class gives a segmentation violations in the tagger or in the track probability
without any apparent reason. In this case one should make sure that BottomTaggers
and the user package have been built consistently with the neurobayes setup. In the
past crashes of these type where experienced and always been traced back to forget-
ting to set up the neural network package or to modify the file YourPackage/src/

GNUmakefile and YourPackage/test/GNUmakefile as in Section H.3. If in doubt, a
gmake.clean, the setup of neurobayes and the rebuilt of library and executable should
help.
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[60] I. Furić, ”Tuning of JQT with Mass Clustering”, Semileptonic Subgroup Meeting,
Aug. 3rd, 2004

[61] M. Herndon, ”Datasets and integrated luminosity”, BPAK Meeting, Sep. 24th,
2004

[62] http://www-cdf.fnal.gov/upgrades/computing/projects/reconstruction/tracking/
user-docs/l00.html

[63] B. Wicklund, ”Evaluation of Errors on ε, D, εD2”, CDF note 6716

[64] O. Long, ”A Proper Time Dependent Measurement of ∆md Using Jet Charge
and Soft Lepton Flavor Tagging”, CDF note 4680

[65] C. Gross, Diploma thesis in preparation.

[66] http://grid.fzk.de

[67] J. D. Lewis, P. Avery, ”CLEOMC: The CDF interface to the CLEO Monte Carlo
(QQ)”, CDF note 2724



BIBLIOGRAPHY 163

[68] http://www-cdf.fnal.gov/internal/physics/bottom/b-montecarlo/db/g020.txt

[69] W. Bell, J.P. Fernandez, L. Flores, F. Wuerthwein, R.J. Tesarek, ”User Guide
For EvtGen @ CDF”, CDF note 5618

[70] M. Feindt, ”A Neural Bayesian Estimator for Conditional Probability Densities”,
physics/0402093

[71] http://www.phi-t.de

[72] http://cdfkits.fnal.gov/CdfCode/source/BottomTaggers/





Acknowledgements

I would like to thank my supervisor, Prof. Dr. Michael Feindt, for accepting me in his
group and for his guidance during the years of my graduate studies.
I would like to thank Prof. Dr. Günter Quast for the co-supervision of this thesis.
I would also like to thank Prof. Dr. Thomas Müller and Prof. Dr. Michael Feindt for let-
ting me visit Fermilab in several occasions. Frau Edeltraud Haas and Herr Sven Fuchs
have always been very helpful with travel organisation.
My work was mostly supported by a scholarship of the Graduiertenkolleg “Hochen-
ergiephysik und Teilchenastrophysik”.
I express my gratitude towards Dr. Gary Barker for his continuous support and
Dr. Ilya Kravchenko for always being available to answer questions and to ask many. I
am glad for having worked closely to Dr. Stephanie Menzemer, who always had friendly
and positive encouragements. I am grateful to Dr. Kurt Rinnert for the “C++/CDF
Software Helpdesk”, which was precious in speeding up bug fixes and code develop-
ment.
I thank the CDF B Group for the interesting discussions during the blessing proce-
dure.
Several people contribute to my practical work. I would like to mention the Adminis-
trator Team of EKP and the people who helped me with the submission of CAF jobs
in crucial moments.
I am grateful to the people that read this thesis and commented on it: Dr. Stephanie
Menzemer, Dr. Markus Moch, Dr. Thomas Kuhr, Dr. Gary Barker, Dr. Kurt Rinnert,
Jurriaan van Buren. Joachim Heuser, Claudine Groß, Yves Kemp and Dr. Stephanie
Menzemer gave me valuable assistance in translating the summary to German.
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