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Abstract

The properties of three-jet events in data of integrated luminosity 8644 pb~*
from CDF Run 1b and with total transverse energy greater than 175 GeV have been
analyzed and compared to predictions from a next-to-leading order perturbative QCD
calculation. Special emphasis has been placed on analysis of the Dalitz variables. The
average x2 between CDF data and the prediction is used to make the comparison.
The data are examined for the possibility to measure the strong coupling constant,
as, by means of a newly developed method. The Dalitz variables are not sufficiently
sensitive to changes in ag for a successful measurement at the statistical accuracy

obtained in this analysis.
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Chapter 1

Theoretical Introduction

1.1 Particle Physics

The goal of science in the history of humankind has been to describe and predict
observations in the universe that surrounds us. Before the 20" century, most scientific
contributions were restricted to a macroscopic scale, resulting in individual theories
for a large number of phenomena that seemingly had little in common.

Significant successes in connecting some observations to more complete theories
were achieved in the nineteenth century. Mendeleev ordered the chemical elements
into the Periodic Table [1], accounting for the pattern of similar chemical properties
for certain elements with different atomic weights; and Maxwell succeeded in writing
a set of equations that links electric and magnetic fields [2]. Understanding of physics
at an even more fundamental level, however, required the investigation of matter at
the microscopic scale.

The beginning of particle physics, the quest for the understanding of the phys-
ical world at the most fundamental level, can be associated with the discovery of the
electron by J.J. Thompson in 1897 [3]. Atoms, therefore, were found to be composite
objects; and E. Rutherford showed in 1911 that they consisted of a hard positively

charged core surrounded by a cloud of negatively charged electrons [4]. With the



discovery of the neutron by J. Chadwick in 1932 [5], the question of the structure of
matter seemed to have been solved.

Only one year later, the positron, an antiparticle which had been postulated
by P.A.M. Dirac in 1928 [6], was experimentally found by C.D. Anderson [7]. Further
efforts by experimental physicists then lead to the discovery of the muon [8], the
neutrino [9], and an ever increasing number of other particles, the hadrons.

An explanation for this abundance of different hadrons was found by M. Gell-
Mann [10] and G. Zweig [11] independently in 1964, when they proposed that hadrons
were composed of even more elementary particles, named quarks by Gell-Mann. Using
a method almost comparable to Mendeleev’s proposal for the Periodic Table of Ele-
ments, Gell-Mann and Zweig significantly simplified classification of the hadrons. The
inexplicably high number of hadrons reduced to combinations of only three quarks.
All hadrons known at the time could be categorized by these combinations. In sub-
sequent years, hadrons produced in interactions at higher energies required the ex-
tension of the model from three to six quarks. Including the six leptons, and the
antiparticles of quarks and leptons, the foundations for the Standard Model of parti-
cle physics were laid.

In the Standard Model, the fundamental interactions between particles, with
the exception of gravity, are described as the exchange of a class of particles called the
gauge bosons. The Standard Model is the most promising model of nature today. It
was strongly confirmed by the discoveries of the gauge bosons of the weak interaction
at CERN in 1983 [12, 13] and of the top quark at Fermilab in 1994 [14, 15]. Extensions
of the Standard Model, though mathematically appealing, have not been verified

experimentally to date.



1.2 The Standard Model

The Standard Model describes all interactions of particles, with the exception of
gravity. All particles in the Standard Model are considered to be elementary; spa-
tial structure is not observable in them. Classically speaking, they are point-like.
There are two distinct classes of elementary particles in nature, the half-integer-spin
fermions, leptons and quarks, and the integer-spin bosons. While the fermions make
up matter in the universe, the bosons mediate the interactions between particles.
The Standard Model is based on group theory. The interactions are described
as transformations within a group. Group symmetries give rise to conservation laws;
every interaction has an associated conserved quantity, the conserved current in the

interaction.

1.2.1 The Fermions

There are two kinds of fermions in the Standard Model, the quarks and the leptons.
These are the fundamental constituents of matter.

The quarks are subject to all four forces of the Standard Model: the strong,
the electromagnetic, and the weak forces, and gravity. The leptons, however, do not
interact strongly. They are subject only to the electromagnetic and the weak forces,
as well as gravity.

Six quarks, six leptons, their respective antiparticles, and the Higgs bosons
which are needed to explain the masses of the fermions are described by the Standard
Model. All quarks carry fractional electric charges of +Z|e| and —3i|el; the leptons
are either neutral or carry one unit of electric charge, —|e|. The quantum number
that distinguishes the six quarks is called flavor; the six flavors are: up, down, charm,
strange, top, and bottom (u, d, ¢, s, t, and b). The leptons are the electron (e), the
muon (x), the tau (), and their respective neutrinos, v, v,, and v,. The Standard

Model divides quarks and leptons into three generations, each generation containing



both a quark and a lepton doublet. Only the masses of the members of one generation
distinguish it from the others; apart from that, the three generations appear to be the
same. Table 1.1 lists the fermions of the Standard Model and shows their classification
into three generations. The masses of the Standard Model fermions are shown in

Table 1.2, illustrating their increase from one generation to the next.

Generation Quarks Electric Leptons Electric
Charge (|e]) Charge (Je|)
1 up u 2/3 electron-neutrino v, 0
down d -1/3 electron e -1
2 charm ¢ 2/3 muon-neutrino vy 0
strange s -1/3 muon 1 -1
3 top t 2/3 tau-neutrino vr 0
bottom b -1/3 tau T -1

Table 1.1: The fermions of the Standard Model.

Generation | Quarks Mass Leptons Mass
(GeV/c?) (GeV/c?)
1 u 0.0015 to 0.005 Ve <1x1078
d 0.003 to 0.009 e 5.11x107*+2 x 10719
2 c 1.1to 14 vy < 0.0002
s 0.06 to 0.17 m 0.10643 x 1078
3 t 173.845.2 vy < 0.02
b 4.1 to 4.4 T 1777143 x 104

Table 1.2: The masses of the fermions of the Standard Model.

Fermions are half-integer-spin particles (%h, %h, ...); as such they obey Fermi-

Dirac statistics. If a wavefunction ¥ describes two identical particles under inter-
change, then the square of the wavefunction, |¥|?, which gives the probability of the
first particle at one coordinate and the second particle at another, will be unaltered

by that interchange. Thus, for the particle interchange 1 <+ 2,

WP e, (L.1)



which implies

U2 4 (1.2)

The positive solution describes the interchange of identical bosons, while identical
fermion interchange is described by the negative eigenvalue. The wavefunction is
symmetric for boson interchange and antisymmetric for fermion interchange.

A well-known application of the antisymmetry of the wavefunction of two iden-
tical fermions under interchange is the Pauli Exclusion Principle. Any two-particle
wavefunction can be written as the product of symmetric or antisymmetric combi-
nations of the quantum numbers (i.e., spatial coordinates, spin) of the two particles.
Suppose two identical particles are in the same quantum mechanical state. The wave-
function for that state is necessarily symmetric, since all factors in ¥ are identical,
making it impossible to find an antisymmetric combination of any part. This violates
the observation that two identical fermions need to have an antisymmetric ¥ under
interchange. Hence they cannot exist in the same quantum state. The Pauli Principle
does not apply to bosons, as their ¥ is symmetric under interchange of two identical
particles; there is no restriction on the number of identical bosons that can exist in
the same quantum mechanical state.

Fermions and antifermions can only be created or destroyed in pairs. Mathe-
matically, this can be expressed as a conservation law. If leptons and antileptons are
assigned a lepton number of +1 and -1, respectively, then this lepton number is a
conserved quantity in any interaction. Similarly, the baryon number is conserved, if
quarks and antiquarks are assigned a baryon number of 4+1/3 and -1/3, respectively.

The theory of the interquark forces, quantum chromodynamics (QCD), de-
scribed in the Standard Model, accounts for the fact that to date quarks and anti-
quarks have not been observed by themselves in nature. Only two kinds of quark-
antiquark combinations occur. From these, all strongly interacting particles, the
hadrons, are built. Mesons and baryons are the two different classes of hadrons.

A meson is a bound state of a quark-antiquark (¢g) pair. They have a total



spin of 0 or 1, and therefore are bosons. The discovery of two mesons, the pion ()
and the kaon (K), in cosmic rays in 1947 marked the onset of the discovery of an
abundance of hadrons that led to the quark-parton model proposed by Gell-Mann
and Zweig. An example of a meson is the positively charged pion, 7+, which consists
of a combination of a u quark and a d antiquark.

A baryon is a combination of three quarks (gqq), or three antiquarks (qqq).
They carry a total spin of 1/2 or 3/2 and are fermions. Nuclear matter, protons
(uud) and neutrons (udd), is built from baryons. The baryon numbers assigned to
the quarks combine for baryons and antibaryons, which have a baryon number of +1

and -1, respectively.

1.2.2 The Bosons

Classical physics describes interactions at a distance in terms of potentials or fields
due to one particle acting on another. In quantum physics, interactions, or forces,
between particles are described as the exchange of quanta of the fields, the gauge
bosons. Each interaction has its specific set of gauge bosons, which carry momentum
and energy among other things (also L, color, etc.). They carry integral spin of
1. The interactions conserve energy and momentum, but for a time limited by the
Heisenberg Uncertainty Principle, that is, AE - At < &, the bosons can be off mass-
shell, violating the conservation laws. Transient field quanta that do not conserve
energy and momentum are called virtual.

Two particles exerting a force on each other continuously emit and absorb
gauge bosons, carrying momentum q. This change in momentum results in the force,
F, through

F

2|5

(1.3)

Unlike the fermions which carry half-integer spin, the bosons are integer-spin
particles. The Pauli Exclusion Principle does not apply to bosons, so any number of

identical bosons can occupy the same quantum mechanical state. This gives rise to



macroscopic manifestations, i.e., coherent light as it is generated by a laser.

The most familiar field quanta are the bosons responsible for the electromag-
netic interaction, the photons (). The strong interaction is mediated by the gluons
(g9), and the weak interaction gauge bosons are the W7, the W, and the Z°. For
the electromagnetic interaction, q = qf, where q is the magnitude of q and T is the
unit vector in the radial direction away from a charged particle. From the Heisenberg
Uncertainty Principle, qr ~ h. Momentum is transferred by a virtual photon over a
time period t = r/¢, ¢ being the speed of light. The force between two charges then
becomes F = fic/r?>. The number of photons exchanged is assumed to be proportional
to the product of the two charges such that the classical Coulomb law, F = Q;Q,/r?,
is obtained.

The Standard Model gauge bosons can also be observed as real particles, rather
than solely as virtual exchange quanta. They then acquire definite mass, and energy
and momentum are conserved in their production. Table 1.3 summarizes the gauge

bosons for the Standard Model interactions. It also lists the masses of the real bosons.

Interaction Acting on Gauge Boson Mass Electric Charge
(GeV/c?)
W+ 80.4 +1
Weak Quarks, Leptons %/ 80.4 -1
Z0 91.187 0
Electromagnetic | Quarks, charged Leptons | Photon (7) 0 0
Strong Quarks, Gluons 8 Gluons (g) 0 0

Table 1.3: The bosons of the Standard Model.

The range of the forces is determined by the mass of the mediating gauge
bosons. A minimum of energy is necessary to create a virtual massive gauge boson,
such that only a limited lifetime, 7, can be expected for this virtual gauge boson by
Heisenberg’s Uncertainty Principle. An upper limit on the lifetime of the gauge boson
restricts the range of the force, as information cannot be mediated beyond a distance

¢+ Tyirt, Where c is the speed of light and 7., is the lifetime of the virtual gauge



boson. The gluons mediating the strong force are massless, yet its range is finite.
This is due to a mechanism, called confinement, which is explained in detail in later
sections. Table 1.4 summarizes the ranges of the three Standard Model interactions

and of gravity and shows typical lifetimes for particles coupled by these forces.

| Interaction | Coupling Constant | Range (m) | Typical Lifetime (s) | Strength |

Strong as ~10-15 1023 01
Electromagnetic a 00 107291016 -

Weak Gr < 10718 > 10712 1x107°

Gravity G 00 00 6x10739

Table 1.4: The ranges, strengths, and typical lifetimes associated with the three
Standard Model interactions, and with gravity.

The forces can by classified according to the strength of the coupling between
the gauge bosons and the interacting fermions. This coupling is measured by the
coupling constant associated with each force. Table 1.4 lists the coupling constants
for the three Standard Model interactions and for gravity. The strong interaction is
the strongest force, followed by the electromagnetic and the weak interaction. New-
ton’s gravitational constant, G, is several orders of magnitude smaller than any of
the Standard Model coupling constants. The effects of gravity can be neglected in
the study of particle interactions at energies obtainable in modern particle physics

experiments.

1.3 Gauge Field Theories

The three fundamental interactions described by the Standard Model, the electro-
magnetic, the weak and the strong interactions, belong to a class of theories known
as gauge field theories. Construction of a field theory begins by examining classical
Lagrangian formalism and the variational principle in the context of a relativistic

quantum theory. The Lagrangian density, £, is a functional of the field ¢(z) and its



four-gradient 0,¢(x) = 0¢(x)/0z*,

L= L(¢(x), 0up(x)). (1.4)

The spatial integral of £ takes part of the classical Lagrangian, L,

LE/d3x£(¢,8u¢), (1.5)

such that the action, S, can be written as

sz/t” t [ 4% L(6,0,0). (1.6)

According to Hamilton’s principle of least action, the variation

58 =& /” Az £(6, 0,0) = 0, (1.7)

subject to the constraint that the variations in the fields at the endpoints, t; and to,
vanish. This requirement of least action is satisfied by the Euler-Lagrange equations

for L,

oL _, oL
06(x) P O0ud(x))’

From these, explicit equations of motion for the fields can be obtained. In the case of

(1.8)

several fields, ¢;, the variational principle is applied separately to each field, leading
to a set of equations of motion.

In gauge field theories, invariance of the Lagrangian of an interaction under
local gauge transformations is required in order to account for conservation laws and
constants of the motion observed in experiments. These experimental observations
are imposed as symmetries of the Lagrangian, thereby restricting and defining its
functional form. The theoretical basis for the equivalence of a conservation law and
a symmetry of the Lagrangian is found in Noether’s theorem [16]. In order for the
Lagrangian to be invariant under local gauge transformations, the 4-potential of the
interaction has to transform appropriately, such that changes in the 4-potential com-

pensate for local gauge changes.



General physical considerations and experimental observations (e.g., conser-
vation of energy and momentum, conservation of angular momentum, etc.) lead to
additional requirements upon the total Lagrangian of an interaction. In the end, lo-
cal gauge invariance, Lorentz invariance, invariance under spatial inversion and time
reversal, and renormalizability define an interaction Lagrangian. In quantum field
theories, unphysical infinite contributions often arise in the calculations. In a renor-

malizable theory, these infinities can be consistently eliminated.

1.3.1 The Interactions of the Standard Model

The Standard Model describes with the most fundamental building blocks in nature.
Therefore, it inherently requires quantum mechanical treatment. The discussion of
gauge field theories has, so far, been classical. The transition from a classical field
theory to a quantum field theory can be made if the classical fields are regarded as
operators. By imposing canonical commutation relations between these operators,
the field theory can be quantized [17].

After the quantization, the fields of a gauge theory can be associated with the
particles undergoing the interaction, and the 4-potential of the interaction becomes
the expression for the mediators of the force. These mediators are the spin-1 gauge
bosons. The interactions are modeled as a continuous exchange of gauge bosons
between the particles participating in the interactions. Examples of gauge boson
exchanges are shown in Figure 1.1.

If a symmetry is exact, then the gauge bosons that mediate the interaction
are necessarily massless. Only broken symmetries, symmetries that are not exact,
but approximate rather, allow for massive gauge bosons, such as the W* and Z°,
through the Higgs [18] or other mechanisms.

Exact symmetries observed in nature include symmetries of the Lagrangian
under translation in space and time and under rotation. These symmetries are con-

sidered geometrical symmetries because they involve coordinate transformations. The

10
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a) b) c)

Figure 1.1: Examples of gauge boson exchanges. a) Strong interaction: a gluon (g)
is exchanged; b) electromagnetic interaction: a photon () is exchanged; and c) weak
interaction: a W¥ or Z° is exchanged.

conservation laws associated with these symmetries are conservation of energy and
momentum and conservation of angular momentum.

Internal symmetries involve conservation of internal degrees of freedom in an
interaction, such as conservation of electric charge. The underlying symmetry in that
case is due to the gauge invariance of electrodynamics.

The mathematical basis for the treatment of symmetries is given by group the-
ory. The three interactions of the Standard Model are invariant under different group
transformations, depending on the nature of the underlying gauge symmetry. The
strong interaction is invariant under local SU(3) transformation, the electromagnetic
interaction under U(1), and the weak interaction under SU(2). The properties of the

gauge bosons can be determined by group-theoretical considerations.

The Electromagnetic Interaction

The earliest developed and most accurate quantum gauge theory is the theory of the
electromagnetic interaction, quantum electrodynamics (QED). Exact conservation of
electric charge implies the existence of a long-range field coupled to the charge. This
requires the photon to be massless.

Quantum electrodynamics is invariant under local U(1) transformations, mean-

ing the group of all one-dimensional unitary matrices. A unitary matrix, U, is defined

11



by:
UUt =UU =1, (1.9)

where I is the identity matrix and T denotes the Hermitian conjugate. In the one-
dimensional case of U(1), U is a single complex number. The covariant derivative,

D, is defined by the gauge transformation of the operator d,,
0, — D, = 0, +ieA,, (1.10)

where A, is the electromagnetic 4-potential and e is the electron charge. If the
covariant derivative replaces any term 0, in the Lagrangian, and A, is required to
transform as

A, — AL = A, + 9,A, (1.11)

then the fermion field, ¥, transforms as
U(z) — U'(z) = e @OW (1), (1.12)

and is locally invariant under the transformation. The arbitrary gauge variable, A,
introduced in Equations 1.11 and 1.12, transforms ¥ infinitesimally in the vector space
spanned by the generators of the group. Successive U(1) transformations commute,
so Quantum Electrodynamics is an Abelian gauge theory.

Quantum electrodynamics allows for extremely accurate predictions of many
experimental observations. Among these are the magnetic moments of the leptons and
the bound-state energy levels of hydrogen and other atoms, of muonium (" e™), and
of positronium (et e™). Its success spurred attempts to describe the other Standard

Model interactions in terms of gauge field theories.

The Weak Interaction

The weak interaction acts on all quarks and leptons; it is the only interaction in
the Standard Model that takes place between all its fundamental fermions. Since

neutrinos are electrically neutral, and since as leptons, they also do not interact
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strongly, they can only take part in the weak interaction. The charge the weak
interaction couples to is flavor.

Weak interaction cross sections are small compared to strong and electromag-
netic cross sections. Thus, the lifetimes for weak decays (~ 1071%) are typically longer
than for decays due to one of the other two interactions (strong decays typically limit
particle lifetimes to ~ 107235, electromagnetic decays to ~ 107'9s).

The weak interaction was first observed in nuclear $-decay, in which neutrons
decay into protons and leptons, or, equivalently, a d-quark decays into a u-quark, an
electron, and an antineutrino. It is the only known interaction that can change quark
flavors. On a cosmic scale, the weak interaction is important as it is responsible for
the synthesis of heavy elements in the early universe and for the first stage of energy
production in the hydrogen of a star’s core.

In most interactions, weak effects are swamped by the much stronger strong
or electromagnetic couplings. Only in circumstances where the faster strong or elec-
tromagnetic decays are forbidden by a conservation law can it be observed.

The mass of these bosons explains the short range of the interaction. It is
described by an SU(2) symmetry, the group of all two-dimensional special unitary

matrices. Special unitary matrices obey Equation 1.9 and have a unit determinant.

The Electroweak Model

Local gauge invariance in a gauge field theory requires massless gauge bosons for an
interaction. The short-range nature of the weak interaction, however, requires the
gauge bosons to be massive. The mechanism of spontaneous symmetry breaking,
for example the Higgs mechanism, is able to combine local gauge invariance and the
appearance of massive gauge bosons.

The electroweak model proposed by Glashow, Weinberg, and Salam [19] in the
1960’s makes use of the Higgs mechanism to explain the massiveness of the weak

gauge bosons and to unify the weak and electromagnetic theories. The symmetry
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group describing the electroweak model is SU(2) x U(1).
The fundamental bosons in this theory are the three massless bosons, W,
W, and W? for the SU(2) symmetry, and the massless B® for the U(1) symmetry.

The interaction Lagrangian can be written as
L=gJ - W+¢J"B (1.13)

where W = (W, W° W~), J and J are conserved currents in the interaction, and
g and ¢’ are the couplings to W and B, respectively. The couplings are analogous
to the charge e in the electromagnetic interaction (see Equations 1.10 and 1.12).
The Higgs mechanism gives mass to the components of W. The electrically
charged components can be identified as the W+ and the W~ of the weak interac-
tion. The two neutral gauge bosons observed in nature are the photon and the Z°. A
quantum mechanical superposition of the two neutral gauge boson states of the elec-
troweak interaction, the W9 and the BY, results in the two observable neutral bosons,
the photon and the Z°. The degree of mixing in this superposition is determined by
the electroweak mixing, or Weinberg, angle, fy,. The Weinberg angle is related to

the couplings through

g/g = tanfy, and (1.14)

e = gsinfy. (1.15)

The Higgs mechanism introduces at least one more gauge boson to the theory,
the Higgs boson. While the masses of the W=, the Z° and the photon can be
predicted in the electroweak model, the mass of the Higgs boson is a free parameter.
It has to be determined by experiment. The question of the existence and mass of
the Higgs boson is one of the most important unresolved experimental challenges in

physics today.
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The Strong Interaction

Similarly to the cases of the weak and the electromagnetic interactions, the strong
interaction can be described in terms of a symmetry group, SU(3). The gauge field
theory underlying this group-theoretical approach is known as quantum chromody-
namics (QCD). Quantum chromodynamics is a non-Abelian gauge theory; successive
gauge transformations do not commute.

The strong interaction acts on all quarks; the charge it couples to is an internal
quantum number, color. The gauge bosons of the strong interaction are eight massless
gluons, g.

As the analysis presented in this thesis compares experimental data to predic-
tions from quantum chromodynamics, the theory is of crucial importance and will be

discussed in more detail in the next section.

1.3.2 Quantum Chromodynamics

Quantum Chromodynamics is the gauge field theory of the strong interaction of
quarks and gluons, partons, the constituents of all hadrons. The non-Abelian na-
ture of its SU(3) symmetry group, and the fact that the strong interaction is strong,
lead to properties of the theory that significantly distinguish it from the other gauge
field theories of the Standard Model. The effect of color confinement at low ener-
gies and asymptotic freedom at high energies are described by it. One important
observation in strong interactions is the appearance of jets, well collimated streams
of hadrons emitted from a particle collision. Jets are a unique feature of the strong
interaction and are not observed in electroweak interactions. A main concern of this

analysis is the investigation of jet properties.
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The Static Quark Model

By the 1960’s, particle collider experiments had discovered a plethora of hadrons,
strongly interacting particles. Among others, the spin-3/2 At baryon was found.
The A*T is thought to consist of three u quarks and to be in its lowest mass state,
so that the quarks are assumed to be in a spatially symmetric ground state. To
account for the total spin of J=3/2, the three quark spins have to be parallel. At the
time of its discovery, the question arose as to how this system could exist without
violating the Pauli Exclusion Principle, since the three quarks appear to be in the
same quantum state.

To resolve this conflict, an additional degree of freedom for quarks was pro-
posed. This additional quantum number is called color. Every quark can exist in
one of three color states, red, blue, or green. It is proposed that experiments are not
able to observe color, so that all hadrons have to appear in color singlet states (they
have zero net color). Mesons are composed of a color-anticolor combination, with the
antiquark carrying the anticolor corresponding to the quark’s color, and each one of
the three quarks in a baryon carries a different color, such that the combination again
is colorless.

Analogously to positive and negative electric charges being the source of the
electromagnetic force, the three color charges are the source of the strong force. The
particles mediating the strong interaction are the eight massless gluons. Because
gluons carry color, they are also subject to strong interactions. The explanation
of this effect is given in detail below. Leptons and the other gauge bosons of the
Standard Model are colorless; equivalently, they do not interact strongly.

This static quark model is supported experimentally by several measurements.
The first experimental evidence of quark color was found in the measurement of the
ratio of cross sections, R, between e*e~™ — hadrons and ete™ — pu*u~. R can be

written as
o (ete™ — hadrons

R =
o(ete” — ptp)

oy ¢, (1.16)
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where q, is the charge of quark type a. At energies below the ¢ quark threshold,
R=11/9 if every quark can only exist in one color state, and R=11/3 if three color
states are possible. Experiments measure R = 4.17 + 0.09(stat.) £ 0.42(syst.) [20]. A
summary of the experimental data with references can be found in Reference [21].
An experimental indication for gluons is three-jet events in high energy particle
collisions. Three-jet events can be modeled as the production of a quark-antiquark
pair, one of which radiates a gluon, similar to bremsstrahlung in electromagnetic

interactions.

The Quark-Parton Model

Additional experimental data on the structure of nuclei lead to the development of
a dynamical, rather than static, model of the structure of hadrons. Deep inelastic
scattering of electrons, muons, and neutrinos shows that about 50% of a nucleon’s
momentum is carried by electrically neutral nucleon constituents [22]. Gluons are
thought to be these additional particles in the nucleon.

Mesons and baryons do not consist of only the two or three quarks that were
introduced in the static quark model, the valence quarks. A sea of virtual particles,
gluons and quark-antiquark pairs, the sea quarks, is also part of the hadron’s compo-
sition. The lifetimes of the virtual partons are limited by the Heisenberg Uncertainty
Principle. In the quark-parton model, the massless and point-like partons inside the
hadron move collinearly with it.

The probability, f;(z;), of finding a parton, i, with a momentum fraction, z;,
in a hadron is given by a parton distribution function (PDF). Parton distribution
functions are determined experimentally from deep inelastic scattering data. Analo-
gously to the Rutherford experiment by which the existence of a nucleus in the atom
was established, high energy scattering of leptons on a nucleon reveals the internal
distribution of partons. Several parameterizations for PDF’s are available. The data

analysis described in later chapters considers the differences in QCD predictions that
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use specific PDF parameterizations. Figure 1.2 [23] shows a typical parton distribu-
tion for u and d valence quarks, @ and s sea quarks, and for gluons, as a function of

momentum fraction, x.

Figure 1.2: A typical parton distribution function parameterization for u and d va-
lence quarks, @ and s sea quarks, and gluons inside a hadron. (Figure taken from
Reference [23].)

Quantum Chromodynamics, The Quantum Field Theory of the Strong

Force

The color symmetry underlying Quantum Chromodynamics is described by the group

SU(3). The Lagrangian of the interaction has the form

- 1
L=V D,—m)V¥— ETI'(FWF‘“’), (1.17)
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where W are the fermion fields, y* are the four Dirac y-matrices (see Reference [24]),
m is the fermion mass, D the covariant derivative, and F,, is the gauge field-strength

tensor. The gauge field-strength tensor is defined as
F, =0,B,—0,B,+:gB,,B,l (1.18)

Here g is the magnitude of the strong coupling and B, is a three-by-three matrix in
color space formed from the eight color gauge fields, bL, and the generators of the

SU(3) group, A'/2, the Gell-Mann matrices [25],
1 1
By = A by = 5Alloi, (1.19)

As with all gauge field theories, Quantum Chromodynamics is required to be

invariant under local gauge transformations
U — U = 3o g, (1.20)

where «(x) is an arbitrary parameter denoting the magnitude of the gauge transfor-

mation. Gauge invariance restricts the covariant derivative to
D, =0,+:1gB,. (1.21)

QCD is a non-Abelian gauge theory. The commutator [B,,B,] # 0 in the
expression for the gauge field-strength tensor, F,, (Equation 1.18). The Lagrangian
then depends on third- and fourth-order terms with B, in F,,F*”. This gives rise to
the possibility of three- and four-gauge-boson vertices, and with that to gluon-gluon
coupling in quantum chromodynamics. In this way QCD is significantly different
from the electroweak interaction, in which the gauge bosons do not carry charge and

cannot couple to each other.

Confinement, Asymptotic Freedom, and the Running Coupling

A familiar phenomenon in classical electrodynamics is the polarization of dielectric

media. If a test charge is placed in a dielectric, the surrounding medium will polarize
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as indicated in Figure 1.3. At any distance, r, from the test charge (if r is larger than
the molecular scale), the electric field in the medium is smaller than the electric field
of that charge in a vacuum. The proportionality factor between the electric field in a

vacuum and the electric field in the dielectric is €, the dielectric constant,

Emedium = Evacuum/67 (122)

with € > 1. Gauss’s Law determines the magnitude of the effective charge seen by an

observer outside a sphere of radius r,

Qeffective = Qcharge/e- (123)

The test charge is screened by the dielectric medium, as the effective charge is smaller
than the test charge in the medium. The smaller the distance to the test charge
becomes, the smaller is the screening effect. At distances smaller than the molecular
scale, screening cannot occur, and the effective charge is equal to the magnitude of
the test charge.

In quantum gauge theories, the vacuum behaves as a polarizable medium. All
carriers of charge (e.g., color charge, electric charge, flavor charge) polarize the sur-
rounding vacuum in which other (virtual) charges appear. Consequently, the effective
charge also depends on the distance scale.

All Standard Model interactions are modeled as continuous exchanges of gauge
bosons, the leading order versions of some of which are shown in Figure 1.1. For the
calculation of observables such as cross sections, higher accuracy requires inclusion
of higher-order vacuum polarization terms. These higher-order contributions to the
observable can be depicted graphically as in Figure 1.4, which shows second-order
corrections to strong interaction calculations. For every loop, a closed line in the
picture, the correction is higher by one order; second-order corrections are drawn
with one loop. Similar vacuum polarization corrections exist for electromagnetic or

weak observables.

20



Figure 1.3: Polarization of a dielectric medium by a charge. (Figure taken from
Reference [25].)

Calculations that include these higher-order terms lead to infinities in quan-
tum gauge theories when the contributions are integrated over all possible momentum
transfers. Physically meaningful, finite results can only be obtained if the theory is
renormalized, such that different divergences cancel exactly, leaving only finite resid-
uals. The Standard Model gauge theories are renormalizable [26]. The procedure for
renormalization includes the introduction of an arbitrary parameter, the renormaliza-
tion scale . Any observable has to be independent of y, a fact that can be expressed
mathematically in the Renormalization Group Equation. A dimensionless observable,
R, generally depends on the ratio Q?/u? of the energy scale of the interaction, Q2
and 42 and on the coupling constant of the strong interaction, ag. This implies a
Renormalization Group Equation of the form [27]

0 dag 0
2 2
ou? T ou? Odas

d
1 0 R(Q?/p?, as) = |u R=0. (1.24)
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Figure 1.4: Second-order corrections to strong interaction observables. a) a quark-
antiquark loop; and b) a gluon loop.

The solution to this equation is a differential equation for renormalizing ag as a
function of Q2, depending on the order in perturbation theory. In practice, observables
can only be calculated to a finite order of corrections, since the number of possible
diagrams and the complexity of the calculations involved rises significantly with the
order of the calculation. In all practical calculations, the series is truncated at a
particular order in perturbation; the calculational result then explicitly depends on .
This dependence on the renormalization scale is postulated to decrease with increasing
computed order of corrections. Figure 1.5 shows the decreasing p dependence in a
cross section calculation from a leading order (“Born”) to a next-to-leading order
(“Full”) calculation.

The non-Abelian nature of QCD results in gluon self-coupling which, in turn,
gives rise to anti-screening. Unlike the screening effect in Quantum Electrodynamics,
which always results in smaller effective charges, vacuum polarization in QCD results
in an increase of the effective charge for larger distances. The coupling strength of
an interaction depends on the magnitudes of the charges of the interacting particles.
The effect of vacuum polarization can be included in the gauge theory if the coupling
strength is allowed to vary with distance due to screening and anti-screening. The
coupling strength is not constant, but is exchanged for a running coupling instead. As

the negative square of the 4-momentum transfer in the interaction, Q?, is equivalent
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Figure 1.5: The deceasing p dependence in a cross section calculation from a leading
order (“Born”) to a next-to-leading order (“Full”) calculation. (Figure taken from
Reference [28].)

to a measurement of the distance between the interacting particles, it is convenient
to describe the running of the coupling in terms of Q2. Similar to the fine structure

constant in electromagnetism, a coupling for the strong force, ag, is defined as

as (1.25)

&
47’
where g is the magnitude of the coupling introduced in Equation 1.18 and replaces e

in electromagnetic interactions. The strong coupling to first-order in the perturbative
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expansion in p then is
127

Q@)= s o m (2)

: (1.26)

where f is the number of active quark flavors at Q% and A is an arbitrary cut-off at
which the perturbation expansion is assumed to diverge (generally between 0.1 and
0.5 GeV). Anti-screening is possible in Quantum Chromodynamics for energy regimes
with less than seventeen active quark flavors. For more than seventeen quark flavors,
Equation 1.26 changes sign; this marks the onset of screening. Accessible energies
have revealed only six quark flavors to date, and anti-screening has been observed for
strong interactions. Figure 1.6 shows the running of the strong coupling as a function
of of Q2.

The running of the strong coupling, and its functional form, account for the
phenomena that distinguish strong interactions from the other two interactions of the
Standard Model. At low energies, or equivalently large distances, ag is large, which
gives rise to color confinement. Experimentally, free color has not been observed: the
strength of the strong coupling does not permit separation larger than the nucleon
scale between colored objects. As Q2 increases, ag decreases. This is called asymptotic
freedom. A value for ag is usually quoted at Q* = MZ, the square of the mass of the

Z° boson. The current world average is [21]

as(Mz?) = 0.1185 + 0.0020. (1.27)

1.4 Jet Physics

Well-collimated streams of particles observed in a detector are called jets. The parti-
cles assigned to jets are mainly hadrons, which indicates that jet formation is a strong
interaction phenomenon. Jet formation is a consequence of the non-Abelian nature of
the gauge group through the running of the coupling constant and color confinement.

As color confinement is a phenomenon of the energy regime in which ag is large,
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Figure 1.6: The running of the strong coupling as a function of the 4-momentum
transfer, Q, for A = 0.1 GeV. (Figure taken from Reference [29].)

QCD models for low-energy, non-perturbative strong interactions are important for

jet physics.

1.4.1 Parton Density Evolution

Through the electromagnetic interaction, a charged particle when accelerated can
emit a photon, a process called bremsstrahlung. By a similar process, any color
charge carrier, a quark or a gluon, can radiate a gluon before or after an interaction.

Parton distribution functions acquire an explicit dependence on Q? through these
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gluon bremsstrahlung processes. A mathematical description of the PDF evolution
as a function of Q? is given by the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi) evolution equations [30]. As an example, if the quark distribution at Q* = Q2
is denoted by f(z,Q2), then at Q* > QZ it is modified by the radiation of a gluon.
The quark evolution can be written as

d 2 2y 1 d
fl(lig) = %2(7? )/x f(y, Q%) Poq (g) ;‘y (1.28)

A quark with momentum fraction x can be thought of as having originated from a
quark with momentum fraction y which radiated a gluon with momentum fraction
y — x. The probability for radiation to occur is proportional to ag, and the splitting
function, Pyq, describes the probability for a radiating quark to retain the momentum

fraction z = z/y. For the radiation of a vector boson by a fermion, Pqq has the form

Poq(z) = % (if) | (1.29)

Equation 1.28 is valid for the evolution of a valence quark. Sea quark evolution
is described by an analogous expression, but a term that accounts for the possibility

for the gluon to split into a ¢g pair has to be added [24].

1.4.2 Jets in High Energy Collisions

Jets were first observed in high energy e®e™ collisions, in which electron-positron
annihilation can result in the production of a ¢g pair [31]. As a direct result of color
confinement, the quark and the antiquark cannot exist by themselves, but rather
hadronize. Real quark-antiquark pairs emerge from the vacuum and clothe the bare
quarks through a non-perturbative process not yet fully understood, until only color-
less hadrons remain. The energy necessary for the creation of these ¢g pairs reduces
the kinetic energy of the original parton produced in the interaction. As the source
of the hadrons in a jet is a single quark or antiquark with large kinetic energy, they

move in a near-collinear fashion, resulting in the collimation of the jet. Quarks and
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gluons can be observed only indirectly, through jets. Jet studies, therefore, provide a
means to test QCD predictions.

The production of jets in hadron-hadron collisions involves the hard scatter-
ing of a single parton in one hadron with one parton inside the second hadron. The
remaining partons are considered to be spectators that do not participate in the inter-
action. The collision breaks up the hadrons; the non-interacting remnants generally
move along the beamline and may not be detected, while the partons involved in the
hard scattering often acquire significant momentum transverse to the beam. Decay of
heavy hadrons into lighter ones leads to jets which can be studied with the detector.

Hadronization, or jet fragmentation, is a process that occurs at energies of a few
GeV. Perturbative methods cannot be employed to describe it due to the magnitude of
the strong coupling in that regime. Instead, non-perturbative, semi-empirical models
serve to approximate the process. One model used to describe jet fragmentation is
the Lund string model [32]. Since it is part of a Monte Carlo event generator used to
study the hadronization of partons in this analysis, it is described here.

In the Lund string model, the potential between the quark and the antiquark

in a color-neutral pair is approximated by
V = kr, (1.30)

where £ is a constant with value k¥ ~ 1 GeV/fm and r is the distance between the
two partons. The constant k£ can be estimated from the size of hadrons. A typical
hadron has mass of about 1 GeV and a radius of approximately 1 fm. Because of the
strong self-interaction between gluons, the force field between ¢ and g is confined to
a narrow tube, or string. That string has a constant tension, k, independent of r. A
schematic picture of quark and string formation as quarks separate, according to the
Lund string model, is shown in Figure 1.7.

If two partons are separated, the potential energy between them rises linearly
with . When the potential energy in the string is large enough for the creation of

a new g pair, it breaks, and two additional partons emerge from the vacuum. This
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Figure 1.7: Schematic of the color lines of force between two partons, as described in
the Lund string model.

process is repeated until the available energy is not sufficient to produce another ¢g
pair. Figure 1.8 shows a schematic view of jet fragmentation by means of the Lund

string model.

Figure 1.8: Schematic view of jet fragmentation, as described by the Lund string
model.
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1.4.3 Three-jet Events

When hadrons are created in colliders, they predominantly appear in two-jet events
in the detector. The ¢g pair hadronizes to two jets with approximate momentum
balance. In the center-of-mass frame, they appear back-to-back.

In collisions with sufficient center-of-mass energy, some events display a third
jet.  Ome of the partons in the interaction radiates a gluon which subsequently
hadronizes similarly to the two quarks. When three-jet events were first observed [33],
they were viewed as experimental indications for the existence of gluons. Since the
third jet cannot be produced by the leptons in the collision, only gluon bremsstrahlung
can be responsible for an additional hadronizing color charge in the event.

Three-jet events are observed in hadron-hadron collisions. Unlike in ete~
collisions, where only the final state partons can radiate a gluon, the initial and
the final state partons can contribute the third jet in hadron collisions. Figure 1.9
shows a three-jet event observed in the CDF detector at the Tevatron (Fermi National
Laboratory, Batavia, Illinois).

If the center-of-mass energy in a collision is sufficiently high, four and more
jets can occur. Since the probability for gluon bremsstrahlung is proportional to ag,
these are observed less frequently than two- or three-jet events.

The analysis described in this thesis is a study of three-jet events at the Teva-
tron. Characteristics and kinematics of three-jet events are discussed in detail in later

sections.
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Figure 1.9: A three-jet event observed in the CDF detector at the Tevatron.
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Chapter 2

The CDF Detector at the Tevatron
Collider

The data used in this study were obtained at the Tevatron collider at the Fermi
National Accelerator Laboratory in Batavia, Illinois. Fermilab was founded in 1968
and is located about 65 km west of Chicago, Illinois. The site, of size approximately
28 km?, houses numerous particle physics experiments and, currently, the world’s
highest-energy particle accelerator, which are used and maintained by more than
2200 scientists from 20 countries. The Tevatron is a proton-antiproton, pp, collider
with a center-of-mass energy, /s, of 1.8 TeV.

At two interaction points, detectors are installed, allowing two independent
experiments to observe pp collisions. The two principal experiments at the Tevatron
are the Collider Detector at Fermilab (CDF) and DO0. Since this study uses data
recorded at CDF, the components of the detector are explained in more detail in this
chapter. The main focus is placed on the discussion of the system of calorimeters, as
it is most relevant to this study. The data were taken during Run 1b at the Tevatron,

from 1994 until 1995.
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2.1 The Accelerator

The Tevatron pp collider started operation in the fall of 1985. A synchrotron accel-
erator with a length of 6.3 km, it accelerates protons and antiprotons to energies of
900 GeV, resulting in a center-of-mass energy of /s = 1.8 TeV. The p and p beams
move in opposite directions in the synchrotron ring. In two interaction regions, the
areas where the two particle detectors, CDF and DO, are located, the beams cross.
The results of pp interactions are recorded by the detectors. The Tevatron tunnel has
an inner diameter of 3 m and is located 6 m underground.

Proton and antiproton acceleration at Fermilab requires several steps. Five
accelerators are used to achieve the final energies. The first acceleration stage is
the Cockroft-Walton accelerator, where negative hydrogen ions are accelerated to
an energy of 750 keV by a positive potential. After leaving the Cockroft-Walton,
the H™ ions enter a linear accelerator stage (LINAC). In the approximately 150 m
long tube, they are accelerated to 400 MeV by oscillating electric fields. Leaving the
LINAC, the H™ ions pass through a carbon foil. The electrons are stripped from the
ions, allowing only protons to enter the third stage, the Booster. Located about 6 m
underground, the booster is a synchrotron which accelerates the protons to 8 GeV.
It sends twelve proton bunches into the Main Ring, the next accelerator stage. The
Main Ring is another proton synchrotron, housed in the 6.3 km long circular Tevatron
tunnel. Conventional copper-coil magnets are used to bend and focus the beam, which
there reaches 150 GeV. The bunches are then injected into the Tevatron, the final
accelerating stage, a third synchrotron where the protons obtain their final energy of
900 GeV. The Tevatron is located directly below the Main Ring. Superconducting
magnets at an operating temperature of 5 K keep the beam in a circular orbit; liquid
helium cools the magnets to the required temperature. The superconducting magnets
produce a magnetic field of 4.4 T.

To produce the antiprotons, protons are accelerated in the Main Ring to

120 GeV, extracted, and guided to a target area. Collision with a nickel target
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produces a large number of hadrons, including antiprotons. These are focused using
a lithium lens. In the Debuncher, p bunches are reduced in size through stochastic
cooling [34]. Further cooling and storage is provided in the Accumulator. When a suf-
ficient number of antiprotons has accumulated, they are injected back into the Main
Ring, and later the Tevatron, where they are accelerated in the direction opposite to
the proton beam until they also reach 900 GeV. Figure 2.1 shows a schematic of the

Fermilab accelerator system.

o Fermilah
Accelerators

T-Antiproton
= Btorape Rings
E-TE'U& 7 e — 2-Booster

E-Fixed Target

Figure 2.1: Schematic of the accelerators.

In Run 1, six bunches of protons and antiprotons were accelerated simulta-
neously in the Tevatron. Proton bunches consist of about 2x10'" particles, while
antiproton bunches contain about 6x10' particles; the temporal spacing between
bunches is 3.5 ps. With these bunches, the Tevatron achieved instantaneous lumi-

nosities in excess of 2x10*'cm™2s~! [35].
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2.2 CDF, the Collider Detector at Fermilab

The CDF detector is a multi-purpose detector for studying hadronic collisions at the
Tevatron. A fraction of the pp collisions results in final state particles with significant
momentum transverse to the beam, prp. These are recorded in the detector and
subsequently examined in data analyses.

The size and complexity of today’s particle physics experiments, and the vast
number of pp interactions occurring at the Tevatron, made it necessary to conduct
the experiment in a large collaboration. The CDF collaboration includes more than
525 scientists from 52 institutions, universities, and laboratories in 11 countries. The
collaboration is divided into smaller groups that work on individual tasks. During
the design, development, and construction of the detector, some groups choose dif-
ferent components of the 5000 ton, 16 m high detector. Other groups focus on the
development and maintenance of software necessary to control, collect, and classify
the data during a run. Physics groups collaborate in the analysis of specific physics
topics.

A complete description of the CDF detector is given in Reference [36]. The
basic layout is discussed briefly here.

The 2000 t movable central detector includes tracking chambers, a 1.5 T
solenoid magnet, a steel yoke, electromagnetic shower counters, hadron calorime-
ters, and muon chambers. The two identical plug and forward detectors consist of
segmented time-of-flight counters, electromagnetic shower counters, hadron calorime-
ters, and muon toroidal spectrometers. The total length of the CDF detector is
26.2 m. A photograph of the CDF detector is presented in Figure 2.2. Its layout is
shown in Figure 2.3.

The steel yoke serves as support for the superconducting coil and the calorime-
terized end plugs. It forms a box that is 9.4 m high, 7.6 m wide, and 7.3 m long. The
superconducting coil has a diameter of 3 m and a length of 5 m. The central calorime-

ter consists of 48 wedge-shaped modules that are assembled into four self-supporting
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Figure 2.2: Photograph of the CDF detector at the Tevatron.

arches. These arches rest on the steel yoke and can be retracted for service of the
modules.

The polar angle, 6, is measured from the beamline. The right-handed coor-
dinate system in the detector is chosen such that the z-axis is in the direction of
the proton beam, the z-axis points radially outward in the Tevatron plane, and the
y-axis points up. The central detector, which includes the endplugs, covers the range
from 10° to 170° in 6. The endplugs form the pole pieces for the solenoid and cover
the angles 10° < § < 30° and 150° < 6 < 170°. Particles that leave the interaction
point at angles < 10° or > 170° exit a conical hole in the endplug and are detected in
the forward calorimeters. These calorimeters are followed by two toroidal magnets of
diameter 7.6 m which are used as muon spectrometers. Scintillation counters at the

faces of the forward electromagnetic shower counters serve as luminosity monitors and
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Figure 2.3: Schematic view of the CDF detector, showing the detector components.

are used as minimum bias triggers. When a scintillation counter registers particles

off the beamline, an interaction has occurred and data are recorded.

2.3 Detector Components

The main purpose of the CDF detector is to measure energy and momentum of
particles produced in the Tevatron collider. Where possible, particle identification
is done also. To achieve that goal, the CDF detector is built in layers of different
detector components surrounding the interaction region and is designed to cover as

large a fraction of the solid angle as possible. Closest to the interaction point is the
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tracking system, followed by the solenoid, the calorimeters, and the muon detectors.

A schematic side view of one quadrant of the CDF detector is shown in Figure 2.4.

CDF
Detector

Forward

e —— |
- =

.-I— Silicon Verter Distector
T =42

IMTERACTION POITT

Figure 2.4: A schematic side view of a quadrant of the CDF detector.

High energy hadron collisions are expected to result in a final state particle
distribution that is roughly uniform in pseudo-rapidity, n, and azimuth, ¢, where n

is defined as
6
n=—In (tan 5) : (2.1)
For that reason, the CDF detector was designed with approximate cylindrical sym-

metry, and the detector components are segmented uniformly in 7. In the discussion
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of the data analysis in later chapters, the event pseudo-rapidity and the detector
pseudo-rapidity will have to be distinguished. The 7 associated with a particle or jet
is the event pseudo-rapidity and takes as its origin the interaction vertex, while the
detector pseudo-rapidity, denoted as 7y, assumes a vertex of z = 0. If an interaction
occurs at z = 0, the two quantities are equal, but they differ by about +0.2 for a
vertex at z = +60 cm.

Brief descriptions of the detector components, starting closest to the interaction
point, follow. Emphasis is placed on the description of the central detector, including
the central, the end wall, and the endplug calorimeters, as these are most relevant to

the data analysis in this thesis.

2.3.1 The Tracking System

Closest to the interaction point is the tracking system, which consists of three com-
ponents, the silicon vertex detector, the vertex tracking chamber, and the central
tracking chamber. They are located within the magnetic field of the solenoid to per-
mit determination of momentum of charged particles from radius of curvature. Before
the start of Run 1b, the silicon vertex detector was replaced by the silicon microstrip
vertex detector, and the vertex tracking chamber was removed.

The beam pipe is surrounded by four layers of semiconductors, the silicon
microstrip vertex detector (SVX') [37]. The inner SVX' layer is mounted 2.9 cm from
the beamline and is followed by layers at distances of 4.2, 5.7, and 7.9 cm. The layers
are arranged as two cylindrical barrels that meet at z = 0; a barrel is 51 cm long.
Tracks are reconstructed from information recorded with axial and small-angle stereo
microstrips in the silicon. The single-hit reconstruction precision is 13 pym, and the
impact parameter resolution is 17 um [35].

The vertex drift chambers (VTX) provide the next stage of particle tracking.
The cylindrical VTX extends from just outside the last SVX' layer to a distance of

22 ¢m from the beam line. Track measurements by the VTX are used to reconstruct
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the pp interaction vertex with a precision of 1 mm in the z direction.

The SVX' and the VTX are surrounded by the central tracking chamber
(CTC). The 3.2 m long drift chamber covers angles 40° < 6 < 140°, or correspond-
ingly —1 < ny < 1. The outer radius of the CTC is 1.3 m. The chamber contains

”

84 layers of sense wires which are grouped into nine “superlayers.” The sense wires
are arranged parallel (axial) to the beamline in five of these superlayers; for the other
four superlayers, the sense wires are tilted by £3° relative to the beam direction. The
superlayers with tilted sense wires are called stereo layers. The axial layers provide
accurate tracking information in the r — ¢ plane. Together, the axial and the stereo
layers are used for tracking in the r — 2z plane. The spatial resolution of the CTC is

better than 200 pm in the r — ¢ plane and better than 6 mm in z. The two-track

resolution is 3.5 mm.

2.3.2 The Solenoid

The solenoid provides a uniform 1.5 T magnetic field for precision momentum mea-
surements for charged particles in the CTC. The magnetic field is oriented along the
beam line. It is produced by a superconducting solenoidal coil that is 5 m long and
has a diameter of 3 m. The coil is made of 1164 turns of a superconductor and cooled

by liquid helium.

2.3.3 The Calorimeters

Precision energy measurements are obtained with the calorimeters. The calorimeters
are divided into the central detector and the forward detectors. The central detector,
in turn, has three parts: the central, the endwall, and the endplug regions. The
calorimeters have two components: the electromagnetic (EM) calorimeters and the
hadronic calorimeters. While the EM calorimeters are used primarily to measure
leptonic energies, the hadronic calorimeters provide energy measurements for hadrons.

The ny coverage of the different parts of the central detector is shown in Table 2.1;
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the forward detectors cover 2.2 < |ng| < 4.2 in the case of the EM calorimeters, and
the hadronic calorimeters cover 2.3 < |ny| < 4.2. Full azimuthal coverage is provided
by all calorimeter components.

In pp collisions, final state hadronic jets are important for many physics analy-
ses. For that reason, a “tower” geometry was chosen for the calorimeters. A tower is
a stack of calorimeter modules oriented at constant 7, along a radius of the detector
from the interaction point. The towers are projective: they point at the interaction
region. Each tower covers 0.1 unit in 74. Segmentation in ¢ is 15° in the central region
and 5° in the plug and forward regions. Each tower consists of an electromagnetic
shower counter followed by the hadronic calorimeter. This allows for a detailed com-
parison between electromagnetic and hadronic energy on a tower-by-tower basis. The
physical tower sizes vary according to their position; they range from 24.1 cmx46.2 cm
in 7y and ¢, respectively, in the central region to 1.8 cm X 1.8 cm in the forward re-
gion. Table 2.1 summarizes the calorimeter properties for the central, the endwall,
and the endplug regions. The forward detectors are not included in detail, as the
data analysis presented in this thesis is restricted to energy information provided by
the central detector.

The hadronic section of the central calorimeter is directly outside the electro-
magnetic section. Figure 2.5 shows a schematic view of one module of the central
electromagnetic calorimeter and the space provided for the central hadronic section.

Lead sheets are interleaved with scintillators as the active detector medium in
the electromagnetic shower counters in the central region. In the endplug, and in the
forward detectors, the active media are proportional tube chambers with cathode pad
readout. The electromagnetic shower counters provide a spatial resolution of ~2 mm
over the complete solid angle. The central shower counter consists of a single sample
in depth; an additional measurement with high spatial resolution transverse to the
shower is provided by a proportional chamber. In the endplug shower counters, there

are three samples in depth, and the forward shower counters provide two samples in
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Central Endwall Endplug
EM | Hadron Hadron EM | Hadron
|na| coverage 0.0-1.1 0.0-0.9 0.7-13 | 1.1-24 1.3-24
Tower Size
(Ang x Ad) ~0.1x15° | ~0.1x15° | ~0.1x15° | ~0.09x5° ~0.09x5°
Active polysterene acrylic acrylic proportional tube chambers
Medium scintillator | scintillator | scintillator | with cathode pad readout
Scintillator Thickness,
or Proportional
Tube Size (cm) 0.5 1.0 1.0 0.7x0.7 1.4x0.8
Number of Layers 31 32 15 34 20
Absorber Pb Fe Fe Pb Fe
Absorber Thickness (cm) 0.32 2.5 5.1 0.27 5.1
Energy Resolution
(o/E) at 50 GeV (%) 2 11 14 4 20
Position Resolution
at 50 GeV (cm?) 0.2x0.2 10x5 10x5 0.2x0.2 2x2

Table 2.1: Summary of the CDF calorimeter properties.

depth. The wire planes in the endplug and the forward detectors are digitized by
quadrant, giving additional detailed information about the shower profile.

Instead of lead sheets, steel plates are alternated with the active detector ma-
terials in the hadronic calorimeter components. The active detectors in the central
and endwall regions are plastic scintillators, while gas proportional chambers are
used in the endplug and the forward detectors. Due to the geometry of the solenoid,
the hadronic calorimeters have slightly different sharing of the coverage in 7y (see
Table 2.1). The endwall part of the central detector is attached to the yoke. All
hadron calorimeters have only one depth sample, but the endplug and the forward
calorimeters digitize each wire plane in a quadrant for shower profile information.

The scintillator-based central calorimeter components are calibrated by 50 GeV
electrons and charged pions from a test beam and with cosmic ray muons. Long
term gain variations are monitored by '3”Cs radioactive sources which can be moved
through the module by remote control. Short term gain changes are monitored by
a Xe lamp system in the EM calorimeters and with a nitrogen laser in the hadron

calorimeters. With this system, gain changes can be tracked to an accuracy of better
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Figure 2.5: Schematic view of one module of the central electromagnetic calorimeter.
(Figure taken from Reference [35].)

than 2%.

The gain in the gas-based calorimeters changes with pressure, temperature,
and gas composition. Calibrated monitor tubes provide continuous information about
changes in the gain. Weather-induced gain changes of up to 25% have been measured,

but the tracking accuracy of the monitor tubes is about 2%.

The Central Electromagnetic Calorimeter

A detailed description of the central electromagnetic calorimeter is given in Refer-
ence [38]. The design and main features are briefly explained here.

The central electromagnetic calorimeter (CEM) covers a range of 0.0 < |n,] <
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1.1. Tt consists of 48 wedge-shaped modules; each module holds ten towers. The
CEM employs a hybrid design with scintillators alternating with absorbers for energy
measurements and an embedded strip chamber for position and longitudinal shower
development information. This hybrid design combines the energy resolution of the
scintillators with the spatial resolution capabilities of the gas strip chambers.

A CEM module has a 1.4 mm thick aluminum base plate as its innermost
part. This base plate is located 173 cm from the beamline. The 31 layers of 5 mm
thick SCSN-38 polystyrene scintillators are interleaved with 30 layers of 0.3 mm thick
lead. The individual scintillator pieces are wrapped in two layers of vellum drawing
paper, and the lead is clad on both sides with 0.4 mm thick aluminum. The pieces
are assembled into ten projective towers, each subtending a region of 0.1x15° in 74-¢
space. The two sides of each tower are covered by 1.9 mm thick steel plates. The gap
between the scintillator /absorber sandwiches and the steel cover plates is filled with
wavelength shifters that collect the light emitted by the scintillators. The calorimeter
signals are read out by two photomultiplier tubes per tower, one on each side.

The proportional strip chambers are inserted near the shower maximum, be-
tween the eighth lead layer and the ninth scintillator layer. The strips are on copper-
backed 1.6 mm PC boards; high voltage wires are strung orthogonally to the strips.
Charge deposition on the wires and strips gives shower position and transverse devel-
opment information.

The energy resolution achieved by the CEM was measured to be o/Er =
13.5%/vET @ 2%, where Er is transverse energy, Er = E sinf, and 0 is the angle
between the beam direction and the jet axis or outgoing particle direction. The spatial

resolution is 2 mm at 50 GeV.

The Central Hadronic Calorimeter

The central hadronic calorimeter (CHA) [39] covers 0.0 < |ng] < 0.9 and 27 in ¢.

It is a pure sampling calorimeter without strip chambers for shower development
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determination. Each CHA tower matches the corresponding central electromagnetic
calorimeter tower, also covering 0.1 unit in 74 and 15° in ¢. The towers consist
of 32 layers of 2.5 cm thick steel absorbers and 1 cm thick PMMA-based scintillator
material. Analogously to the CEM, the scintillator signals are collected by wavelength
shifters and read out by photomultiplier tubes.

The initial calibration of the CHA was done with a 50 GeV pion test beam.
For pions that were minimum ionizing in the CEM, the CHA response was linear in
the energy range between 10 and 150 GeV. The energy resolution for the CHA was
measured to be o/Er = 75%/vET @ 3%.

The Endwall Hadronic Calorimeter

The endwall hadronic calorimeter (WHA) [39] bridges the gap between the central
and the plug calorimeters in the region 0.7 < |n,| < 1.3. There is no electromagnetic
section; only the hadronic calorimeter exists, as the central and the endwall parts
form a single hadronic calorimeter. The WHA consists of two pieces, one in either
z direction from the interaction point. They plug into cavities in the magnetic yoke,
serving as part of the magnetic flux return path. Of the 24 modules in each 15° slice
in the central detector, 12 are totally in the central hadron calorimeter, 6 are totally
in the endwall hadron calorimeter, and 6 are shared between the two. Asin the CHA,
WHA towers are projective and cover a region of 0.1x15° in 74-¢ space.

The WHA towers consist of PMMA-based scintillators interleaved with steel
absorbers. The 15 layers have scintillator thicknesses of 1.0 cm and steel thicknesses
of 5 cm. Signal collection is similar to that in the CHA.

The CHA and the WHA modules are calibrated together. The energy res-
olution, larger by about a factor of v/2, is o/Er = 105%/vE1 @ 5%. This loss in
energy resolution is expected because of the lower sampling fraction due to the thicker

absorber plates.
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The Endplug Electromagnetic Calorimeter

Both ends of the 3 m diameter and 5 m long solenoid are covered by the endplug
electromagnetic calorimeter (PEM) [40]. The PEM is hermetic with the exception of
a concentric conical hole with an opening angle of 10° to the beam axis in either z
direction. Angular coverage ranges over 1.1 < |ny| < 2.4. Both PEM pieces occupy a
cylindrical volume with an outer diameter of 280 cm and are coaxial with the beam
line. Their longitudinal coverage is 173 cm < |z| < 226 cm.

Due to the large magnetic field in the endplug region, and due to mechanical
constraints that make it difficult to machine scintillators for projective geometry
towers, the active elements in the PEM are proportional gas chambers. These are read
out by cathode pads. The 16 projective towers cover 5° in ¢, and their segmentation
in 7y varies [35]. At 1y = 2.4, the first tower covers 0.09 units in 7,4. Each of the next
four towers spans only half that range; the remaining eleven towers have a size of 0.09
units in 7y again. Usually the four smaller towers are combined offline to form two
standard sets of towers.

Each of the two PEM modules consists of four quadrants, each spanning 90°
in ¢. In one quadrant, 34 layers of proportional tube arrays are interleaved with
2.7 mm thick lead absorber plates. The innermost layer of the PEM is a 1.3 cm
thick steel plate, the first electromagnetic absorber plate; the back is covered by a
4.5 cm thick steel plate which serves as the first absorber for the endplug hadron
calorimeter. The proportional tubes consist of gold plated tungsten wires centered in
resistive plastic tubes of 0.7x0.7 cm? cross section. The planes of tubes are assembled
into fan-shaped quadrants in azimuth, with all tubes in a plane perpendicular to the
beam axis. The tube planes are sandwiched between two 1.6 mm thick copper clad
G-10 panels. Schematic views of the proportional tubes and the fan-shaped quadrants
are provided in Figure 2.6. The tungsten wires in the center of the tubes serve as
anodes, while the copper clad panels are the cathodes. For the read-out, the panels are

subdivided into pads on one side, with readout traces to the edge of the quadrant on
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the opposite side. The tower signal is the sum of all longitudinal signal contributions.

-

RESISTIVE PLASTIC TUBE

b)

Figure 2.6: Schematic view of a) the PEM proportional tubes, plastic anodes, and
wire supports; b) one proportional layer which is sandwiched between copper clad
G-10 panels. (Figure taken from Reference [35].)

The gas used in the proportional tubes is a 50%-50% argon-ethane mixture. A
small amount of isopropyl alcohol has been added to quench discharge when a large
dose of radiation illuminates one spot.

Calibration of the PEM was achieved with a 100 GeV electron beam. The
PEM response to electrons was found to be linear within 3% over the range 20 to

200 GeV. The energy resolution was measured to be o/Et = 28%/vEr & 2%.
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The Endplug Hadronic Calorimeter

The endplug hadronic calorimeter (PHA) [35] covers the regions with 1.3 < |n,] < 2.4.
Twelve 30° sectors provide full azimuthal coverage. Individual towers span 0.09 x 5°
in 74-¢ space.

The 20 layers of proportional chambers are sandwiched between 21 5.1 cm
thick steel plates, except for the steel plate after the fourth proportional layer which
is 6.4 cm thick. The proportional tubes use gold plated tungsten wires centered in
resistive plastic tubes and have dimensions of 0.8x1.4 cm?. The tungsten wires act
as anodes, and the copper clad G-10 plates that hold the tubes serve as cathodes.
The inner sides of the G-10 plates hold 72 copper pads that are electrically connected
to the outer side. From there, copper traces provide signal transmission to amplifiers
outside the detector.

Calibration of the PHA by 200 GeV pions resulted in an energy resolution
measurement of o/Er = 90%/vEr @ 4%. In the range from 20 to 200 GeV, the

response to pions is linear.

The Forward Calorimeters

Information from the forward calorimeters is not used in the analysis presented in this
thesis. For completeness, a brief description is provided. More detailed discussion of
the forward calorimeters can be found in References [41] and [42].

The small angle regions 2.2 < |ny| < 4.2 of the detector are covered by the for-
ward calorimeters. The forward electromagnetic calorimeters, FEM, are box shaped
and located 6.5 m from the interaction point [41] in either z direction.

The forward electromagnetic calorimeters consist of 30 layers of proportional
tube chambers interleaved with lead absorber sheets. The FEM are divided into four
quadrants which can be removed individually for repairs. Each quadrant covers an
azimuth of 90°. Each projective tower in the calorimeters covers 0.1 unit in 7y and

5° in ¢. Signals are read out longitudinally.
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Consistent with the FEM, the forward (FHA) hadronic calorimeters cover a
region of 2.2 < |ng| < 4.2 [42]. Steel absorber plates and proportional chambers
are alternated in 27 layers. They are arranged into four quadrants, each with 90°

azimuthal coverage. The 20 projective towers each cover 0.1 unit in 7, and 5° in ¢.

Uninstrumented Regions in the Calorimeter

Mechanical constraints on the design and construction of the calorimeter result in
small uninstrumented regions, gaps. Particle or jet measurements have to be corrected
for energy deposited in these regions.

At 0 = 90° for z = 0, two CEM modules, each bounded by 2.5 cm thick steel
plates, connect with an air gap of about 0.5 cm. In addition, a 1.6 cm gap which
contains the support lines separates the scintillator/absorber sandwiches from the
steel endplate. The uninstrumented region due to these gaps is called the 90° crack.
The 5.1 cm gap that houses light guides, and that separates the 5.1 cm steel end plate
from the CEM wedges at 6 = 38°, is referred to as the 30° crack. The corrections

associated with these gaps are discussed in later sections.

2.3.4 The Muon Detectors

In the interaction with matter, relativistic electrons lose most of their energy by
bremsstrahlung. Muons have a much larger mass than electrons, which results in their
significantly smaller cross section for radiation. Muons, therefore, penetrate matter
to a higher degree than do electrons. For that reason, the muon detection system in
the CDF detector is located in the outer region, allowing the components closer to
the interaction point (the tracking system, the solenoid, and the calorimeters) to filter
out the majority of electrons and hadrons. CDF has two separate muon detection
systems.

The central muon detector (CMU) [43] consists of four layers of rectangular

drift cells on the outside of each central hadronic calorimeter wedge. The CMU has
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an inner radius of 3.47 m from the beamline and covers the region |ng| < 0.65. A
central muon upgrade detector (CMP) [44] was installed. It surrounds the central
region behind an additional shield of 630 t of steel which reduces the false muon
background associated with hadrons punching through the central calorimeter. The
CMP’s active elements are four planes of single-wire drift tubes. Additional coverage
for muon detection is provided by the central muon extension (CMX), which covers
the region 0.65 < |14 < 1.0. The CMX consists of 1536 proportional drift cells.

The forward muon detectors (FMU) [45] consist of muon spectrometers, large
magnetized steel toroids with drift chamber planes and scintillation counters. The
toroids have a diameter of 7.82 m and are 1 m thick; the inner diameter is 0.914 m.
The magnetic field decreases from 2.0 T at the inner radius to 1.6 T at the outer
radius and is created by four coils. Muon trajectories are measured by three layers
of drift chambers, and trigger information is provided by two layers of scintillation

counters. The FMU cover the regions 1.96 < |n,| < 3.64.

2.4 The Data Acquisition System

There are approximately 100,000 electronics channels in the CDF detector, provid-
ing signals from silicon strip detectors, photomultiplier tubes, wire, strip, and pad
chambers, and drift chambers. Most of these channels, about 60,000 of them, are
used by the calorimetry. A special crate-based analog front-end system, RABBIT,
was developed to manage the calorimeter information. The main challenge for the
RABBIT system comes from the large dynamic signal range required by the calorime-
ters, which provide information from a few tens of MeV to several hundreds of GeV.
To avoid pileup and common mode noise, RABBIT measures two voltage levels, one
before the expected interaction time, one immediately after. This is possible because
the beam bunches at the Tevatron cross at a regular time interval of 3.5 us. The first

measurement provides a reference voltage; the difference between the two voltage lev-
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els is proportional to the signal charge. This procedure is referred to as before-after
sampling. The RABBIT signals are digitized in the crates, read out by scanners, and
subsequently interfaced to a Fastbus data acquisition system.

The remaining electronics channels are mostly used by the drift chambers.
Their signals are shaped at the detector and transferred from the collision hall to the
counting room by commercial Fastbus TDC modules.

The Fastbus network comprises the data acquisition (DAQ) system. The nom-
inal event size is 100 kBytes. Events are passed from the initial hardware triggers to

higher levels of event selection and read out by the DAQ.

2.5 Trigger and Data Analysis Systems

Proton-antiproton bunch crossing during Run I at the Tevatron occurred every 3.5 us,
i.e., with a frequency of 286 kHz. Data at CDF can be written to tape at a maximum
rate of about 10 Hz. A trigger system that is capable of handling the full pp interaction
rate, and that selects interesting physics events with a reduction ratio of almost
30,000:1, was developed. The CDF trigger system uses three consecutive triggers.
Each trigger level reduces the amount of data transferred to the next higher level,
allowing additional time for more sophisticated event selection at that level.

The trigger system is designed to exploit the projective tower geometry of the
CDF detector. Trigger towers of size 0.2x15° in ny-¢ space are created by summing
hadronic and electromagnetic calorimeter tower energies. The signals are weighted by
sinf (where 6 is measured relative to the beam line) to provide the transverse energy,
Er, deposited in the towers. Dedicated trigger cables transfer the trigger signals to
the trigger electronics. The information is stored until a Level 1 decision is reached.
If the event is rejected at Level 1, a reset is sent in time for the next beam crossing,
so no deadtime is introduced at this level.

At Level 1, an individual trigger tower is required to have an energy of 8 GeV in
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the central electromagnetic calorimeter, 11 GeV in the central hadronic calorimeter,
11 GeV in the plug electromagnetic calorimeter, or 51 GeV in either the plug hadronic
calorimeter or in one of the forward calorimeters. The Level 1 acceptance rate for an

25! is approximately 1 kHz [46].

instantaneous luminosity of £ =5 x 103° cm™

If an event is accepted by Level 1, the Level 2 trigger starts. While the Level 1
trigger requires less than 3.5 us, the time between beam crossings, the Level 2 trigger
requires about 15 ps. The increased processing time allows simple calculations to be
performed, using the Level 1 information. A hardware cluster finder assigns trigger
towers to transverse energy clusters. A trigger tower whose transverse energy in any
single electromagnetic or hadronic calorimeter tower exceeds 3 GeV is identified as a
seed. The neighboring towers are then examined for transverse energy > 1 GeV, the
shoulder threshold. All contiguous towers above the shoulder threshold are included
in the cluster. The sum of the energies of all towers in a cluster gives the cluster
energy. A cluster list with information about electromagnetic and hadronic cluster
energies is kept. The clusters are matched to tracks in the CTC, along with muons
whose momenta are also included in the cluster list. The Level 2 trigger allows event
selection on muons, electrons, photons, jets, and missing Er, different combinations
of which can be programmed in parallel. Prescale factors for certain combinations
can also be included. The Level 2 acceptance rate for an instantaneous luminosity of
L =5x10% cm™2s7! is approximately 12 Hz [46]. All CDF channels are digitized
and read out by the DAQ if an event is accepted at Level 2. This information is
passed on to the Level 3 processor farm.

The Level 3 trigger is software-based, executing FORTRAN-77 filter algo-
rithms. It consists of a “computer farm” of 64 commercially available Silicon Graphics
processors capable of parallel processing of the events. At Level 3, the event rate is
reduced by a factor of two or three, depending on the instantaneous luminosity.

The “consumer server,” a process running on a dedicated Silicon Graphics

Challenge L machine, receives the events accepted by the Level 3 trigger. Diag-
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nostic applications are running, and information about the detector performance is
obtained. Accepted events are written onto local disks by data logger programs, and

subsequently they are stored on 8-mm tapes by a tape-staging program.
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Chapter 3

Comparison of Inclusive Three-jet
Data to a Next-to-leading Order

Calculation

Proton-antiproton collisions at the Fermilab Tevatron Collider, which operates at
a center-of-mass energy of 1.8 TeV, produce events that can be described within
the framework of perturbative QCD. During collider Run 1b, CDF recorded data
corresponding to an integrated luminosity of 8644 pb~!. Data presented in this thesis
were extracted from that run’s Stream 2 data banks for events with total transverse
energy (X E1) > 175 GeV. The transverse energy of a jet or particle is defined as
Er = E sinf, where 6 is the angle between the beam direction in the laboratory
frame (which is the z-axis in the CDF detector) and the jet axis or outgoing particle
direction.

In perturbative QCD, hard scattering of the constituent partons in the proton
and antiproton results in events with large > Er. The outgoing scattered partons
hadronize and so are detected as hadronic jets. Three-jet events can be produced
when a hard gluon is radiated from any of the initial, intermediate, or final state

partons in an event with two primary outgoing partons. The third jet can have a
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large component (Pr) of its momentum transverse to the beam direction; however,
the three-jet cross section is expected to be smaller than the two-jet cross section.

In this thesis we describe the analysis of the properties of three-jet events
from Run 1b. The results are compared to predictions from a next-to-leading order
(NLO) calculation [47] by calculating the difference between the number of data
events and the number of expected events in each bin, scaled by the expected number
of events. We also calculate the average x? between the data and the prediction.
Special emphasis has been placed on the analysis of the Dalitz variables.

This analysis is the first to test the NLO prediction against data. Due to its
more complex nature, an NLO calculation requires more CPU time than leading order
(LO) predictions, but its dependence on the renormalization scale, p, is expected to

be significantly reduced.

3.1 Three-jet Variables

We consider systems of three or more massless jets. The three-jet system in the
massless parton approximation can be uniquely defined by five independent variables.
The choice of parameters is described in Reference [48].

The three leading jets in the laboratory frame are used as a basis of trans-
formation into the three-jet rest frame. In the three-body rest frame, the incoming
partons are labeled partons 1 and 2. The highest energy jets in this frame have

energies labeled E3, E4, and E; and are ordered according to their energies, such that
E3 > E4 > E5. (31)

The outgoing partons associated with these jets are correspondingly labeled partons
3, 4, and 5. In this frame, P; is the momentum of parton i.
The five independent parameters we choose to describe the three-jet system

are:

1. The mass of the three-jet system, msj.

54



2. The cosine of the angle between the beam direction and parton 3 in the three-
jet rest frame, cosfj;. In this frame the incoming partons are not necessarily
collinear. We define cos 65 with respect to the average beam direction, Py, in

the three-body rest frame. Thus

Pav - Py
cosfi = ——— 3.2
5= [Pl [P (32)
where
PAV = Pl — PQ. (33)

3. The cosine of the angle between the plane containing the average beam direction
and parton 3 and the plane containing partons 3, 4, and 5, which is

(P3 X PA\/) . (P4 X P5)

COS¢ = |P3XPA\/||P4XP5| '

(3.4)

4. The Dalitz variable for the leading jet, X3. The Dalitz variables, X;, are defined
as:

2-E;
msyg

X; = , (i=3,4,5) (3.5)

and they are normalized such that:

> Xi=2. (3.6)

5. The Dalitz variable for the next-to-leading jet, X4. The Dalitz variables are used
because the density at any point in the Dalitz plane is related to the square of

the matrix element for the interaction.

Momentum conservation restricts the ranges of the Dalitz variables to

2
o SXBS 17
3
1
5 S X4 S 1, and (37)
0 < X5 < g
3

Figure 3.1 illustrates the definitions of the angles 65 and ™.
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1+2 — 3+4+5

Figure 3.1: Definitions of 65 and ¢* for the three-jet final state in the three-jet rest
frame. (Figure taken from Reference [48].)

3.2 Data Sample

The Y Er > 175 GeV trigger and the event selection requirements are described in

Reference [49] and reviewed briefly below.

3.2.1 Level 2 Trigger

The trigger hardware performs clustering in 1-¢ space, where the pseudorapidity, 7, is
defined as in Equation 2.1, and ¢ is the azimuthal angle. At Level 2, all uncorrected
calorimeter clusters with Et > 10 GeV in the central, plug, and forward calorime-
ters are summed for the high->" Er trigger. Clusters consist of a seed tower with
Er > 3 GeV and all contiguous towers in n and ¢ with Er > 1 GeV. To pass the

trigger, an event must have a Y Ep > 175 GeV.
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3.2.2 Level 3 Trigger

Inclusion in the > E1 Stream 2 data sample requires an event to have >~ E1 > 175 GeV,
where the sum is over all calorimeter clusters with Er > 10 GeV after reconstruc-

tion and the CDF jet clustering algorithm [50] is used. A cone size of R = 0.7 is

used in the jet clustering algorithm, where R = \/(An)2 + (A@)?, An =1ny —my, and
A¢p = ¢ — ¢1. The subscripts 1 and 2 correspond to the axis of the cone and the
tracks off that axis, respectively. Studies have shown that the effect of the choice of
@ on the theoretical jet cross section prediction is minimized for R = 0.7 [51]. Fig-
ure 3.2 plots the predicted jet cross section as a function of R. Transverse energies are
computed from calorimeter information under the assumption that the event vertex
was at z = 0.

Background due to high-energy cosmic rays tends to deposit energy either in
the electromagnetic calorimeter or in the hadronic calorimeter; this causes the fraction
of the total energy in the electromagnetic calorimeter to be small or close to one [52].

Large missing transverse energy, Fr, defined as

>

is also expected in these events. Er, is the vector that points from the interaction

Er = , (3.8)

point to calorimeter cell 4; its magnitude is equal to the transverse energy of that cell.

The missing transverse energy significance, S, is defined as [53]:

S= B/ (X Er)". (3.9)

Excluding events with S > 10 and a ratio of electromagnetic to total energy < 0.2

suppresses background due to cosmic rays.

3.2.3 Offline Selection

Offline cuts to further reject cosmic rays, beam halo, and calorimeter malfunctions

are imposed. Events are removed if:
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Figure 3.2: The predicted jet cross section as a function of the cone size, R. (Figure
taken from Reference [51].)

1. significant energy is deposited in the hadronic calorimeter out of time with the

proton-antiproton collision (the module HATFLT is used in the analysis),
2. the total energy of the event exceeds 2000 GeV, or
3. S >6.

To guarantee that the projective geometry of the calorimeter towers can be
used in the reconstruction, events are rejected if there is no reconstructed primary

vertex with |z| < 60 cm.
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The offline module BADRUN is used to remove events from runs in which any

of the calorimeter components or the tracking were not functional.

3.3 Jet Corrections and Offline Event Selection

The module JTC96 is used to correct the jet energies for errors in the absolute and
relative energy scales and for additional energy associated with the underlying event.
The theoretical calculation to which the data are compared treats partons but not jets
(see later sections); this means that energy contributions from underlying events are
excluded from the theoretical calculation. The data must consequently be corrected
to remove the contribution from the underlying event. Since partons that are radiated
out of the cone lead to the same losses in the theoretical calculation and in the data,
out-of-cone corrections are not applied.

Er depends on the position of the primary event vertex. VXPRIM is used
to find the vertex with the largest >, P; (where P; is the total momentum of each
particle i leaving the vertex in the event), since this vertex is assumed to correspond
to the hard scatter in the event. The jet variables are calculated using this vertex.

All jets in the data are required to have Ep > 20 GeV and |n| < 2.0. Events
with less than three jets are rejected. To avoid collinear instability in the iterative
jet algorithm [54], a cone overlap cut is imposed. Events are rejected if the distance
AR in n-¢ space between any two axes of the three leading jets is less than 1.0. This
particular choice for the cone overlap cut is motivated by measurements of the fraction
of two jets that are merged into a single jet as a function of the cone separation [50].
At a cone separation of AR = 1.0, no two jets are merged. Figure 3.3 shows the
fraction of two jets that are merged into a single jet as a function of AR. This cut
removes 7% of the data. Figure 3.4 shows the distribution of the events rejected by
this cut in the Dalitz plane.

Data for which the geometrical acceptance is less than about 95% are excluded.

29



T T T

]O "'...'.“ -

LOU 08+ + Fixed Cone -
G}
g
5 +
o6t .
o
—
3
@ 04}t { N
0.2F 07 * ]
th
0.0 ! 1
0.0 05 1.0 1.5 20

Figure 3.3: The fraction of two jets merged into a single jet as a function of AR.
(Figure taken from Reference [50].)

For a three-jet system, an approximation for the boundary of the region with full
acceptance can be found [55] by considering a two-jet system. If we define the mass
of the two-jet system, myj, to be the mass of the two leading jets in the three-jet
system, the region with full acceptance can be approximated by:

2
|cos 03] < \ll — (ZET> , (3.10)

may

where Y- Et is the minimum total transverse energy (175 GeV) of the event.
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Figure 3.4: The distribution of the Dalitz variables of events rejected by the require-
ment that AR > 1.0.
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3.4 Detection and Offline Cut Efficiencies

Since the data selection and the NLO calculation use the same set of cuts before
evaluation of the cross section, the efficiencies of all offline cuts are the same in data
and Monte Carlo. No correction is necessary for these.

The > Er > 175 GeV trigger efficiency measurement is described in Refer-
ence [56]. Full trigger efficiency is found for Y Er > 320 GeV, where the sum is
over all jets with corrected Er > 20 GeV. We require full trigger efficiency for this
analysis and use 3-ipree leading jets T > 320 GeV. The number of events passing all the
online and offline data quality cuts is 53,211.

The Y Et cut used for full trigger efficiency in this analysis provides a bias to-
wards multiple interactions in the event sample [52]. Especially data collected in runs
with high instantaneous luminosity have a large fraction of events with more than one
interaction per beam crossing [57]. The number of events as a function of instanta-
neous luminosity is shown in Figure 3.5. To minimize these contributions to the data,
we check the event sample for a second interaction reconstructed in the vertex track
detector (VITX). We define a second interaction to be present in the data if both ver-
tices have at least 10 associated VTX tracks, and if they are separated by more than
10 cm. This selection is classified as resolved multiple interactions and is removed from
the sample. Figure 3.6 shows the fraction of resolved multiple interactions in the data
sample as a function of instantaneous luminosity. Removing resolved multiple inter-
actions from the data sample reduces it by 29%. At high instantaneous luminosities
the fraction of resolved multiple interactions is underestimated, as it becomes more
likely for multiple interactions to be unresolved. To measure the contribution from
unresolved multiple interactions, the jet multiplicities in the samples with resolved
and unresolved multiple interactions are investigated. The average jet multiplicity
as a function of instantaneous luminosity is 3.30540.006 for the unresolved sample
and 3.35540.006 for the resolved sample. To calculate the contribution of the unre-

solved multiple interactions to the three-jet sample, the average jet multiplicities for
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both samples are extrapolated to zero instantaneous luminosity. The extrapolated
values are 3.28340.008 and 3.29240.014 for the unresolved and the resolved sample,
respectively. Additional contributions from two-jet events that are promoted into the
three-jet sample through unresolved multiple interactions are subtracted from these
value. Two-jet events contribute 32% of the events to the Y ;s Er > 320 GeV data
sample. After correction of CDF data by JTC96, 7% of the data are found to include
> 1 additional jets with Er > 20 GeV which are not attributed to the hard inter-
action [57]. The two-jet contribution to the three-jet sample is thus estimated to be
approximately 2%. The unresolved multiple interaction contribution to the three-jet
analysis can be estimated by the relative difference between the two extrapolated
and adjusted values. It amounts to 1.0+0.3% and is neglected in the remainder of
this analysis. The jet multiplicities as a function of instantaneous luminosity for the
samples with resolved and unresolved multiple interactions are shown in Figure 3.7.
Removing resolved multiple interactions from the data sample reduces the effective
total integrated luminosity. The effective total integrated luminosity is estimated by
extrapolating the expected total number of events after rejection of multiple inter-
actions as a function of instantaneous luminosity to zero instantaneous luminosity.
Figure 3.8 shows the expected total number of events after rejection of multiple in-
teractions as a function of instantaneous luminosity. The ratio of the expected total
number of events after rejection to the total number of events in the three-jet sample
prior to rejection of multiple interactions multiplies the total integrated luminosity
to yield the effective total integrated luminosity of 7744 pb~!. The change in the
number of vertices in the data due to the rejection of multiple interactions is shown
in Figure 3.9. After rejection of resolved multiple interactions 33,809 events are left
in the data sample.

Figures 3.10, 3.11, and 3.12 show the distributions of |cos #| versus mgy;, ©*
versus cos 03, and X4 versus X3 after application of all the event selection criteria to

the data.
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Figure 3.5: The number of events as a function of instantaneous luminosity.
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neous luminosity.
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Figure 3.8: The expected total number of events after rejection of multiple interactions
as a function of instantaneous luminosity.
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to the data.
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3.5 Monte Carlo Prediction

Unlike in previous analyses where only LO Monte Carlo predictions were available,
the data are compared to a NLO Monte Carlo event generator for hadronic three-
jet production [47] in this analysis. This program is the first to calculate all parton
sub-processes to NLO in perturbation theory. It has never before been used by
experimentalists and verified against data.

Due to the particular choices of renormalization and factorization scales, LO
Monte Carlo predictions have associated systematic uncertainties of the order of 50%.
This p dependence is expected to decrease significantly at next-to-leading order. One
of the LO event generators frequently used at CDF is HERWIG. It has been shown to
agree well with CDF data in several analyses, but as it only calculates 2 — 2 parton
processes, hadronization and jet fragmentation need to be simulated by empirical
models for events with more than two jets. At NLO, three jets are expected to be
predicted more accurately than at LO. In our analysis, HERWIG is used as a cross
check for the results obtained by the NLO prediction.

Other QCD event generators used in hadron collider experiments include the
LO routine NJETS, and the NLO routine JETRAD. While NJETS calculates LO
2 — n parton processes, JETRAD determines 2 — 2 parton processes to NLO in
perturbative QCD. In addition, another LO routine, PYTHIA, has also been used
for comparison with data. All these QCD calculations have been reported to give a
good first description of data [58]. However, for three-jet production, LO calculations
had to be used or phenomenological approaches to jet fragmentation had to be taken.
In this analysis, an NLO event generator is used in which three-jet production is
intrinsic, the renormalization scale is chosen such that u = Er.

The NLO calculation consists of two parts: the one-loop 2 — 3 parton virtual
processes and the tree-level 2 — 4 parton real emission processes. The parton sub-
processes calculated to one loop are g¢ — ¢gg, G¢ — ggg, Gg — QQg, and all

combinations obtained by crossing symmetry. The ones computed to tree level are
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99 — 9999, 3¢ — 9999, 7¢ — QQgg, Gg — QQQ'Q’, and all combinations obtained

by crossing symmetry. The quark-antiquark pairs Q@ may or may not have the same
flavors as the gg and Q'Q’ pairs.

As output the Monte Carlo generator provides binned cross sections for the
variables of interest. These cross sections are given in two parts which must be added
algebraically; the theoretical errors calculated for each of the two cross section terms
are associated with calculation statistics and are added in quadrature.

Construction of an NLO event generator requires careful handling of the can-
cellation of divergences between soft and collinear contributions and virtual correc-
tions [54]. The soft and collinear divergences are due to the fact that at NLO a parton
can only be defined through a resolution criterion. The NLO event generator in this

analysis, uses a simple invariant mass resolution criterion, s,,;,. The invariant mass,

M, of two partons, 1 and 2, is defined as M = \/(E1 + E9)?2 — (p1 + p2)?, where E
and p are the energies and the momenta of the partons, respectively. Two partons
are considered to be unresolvable and treated as a single parton if M is smaller than
Smin- The unresolved soft and collinear regions of phase space are isolated from the
resolved bremsstrahlung phase space. With that, both the resolved contributions and
the combination of the unresolved soft and collinear contributions with the virtual
corrections are finite [59].

With this method, the soft and collinear contributions can be calculated. The
resolved partonic cross sections are then put together in order to make the NLO jet

event generator. The three methods in this step are in increasing order of complexity:

1. The “slicing method,” in which both matrix element and phase space are ap-

proximated in the soft and collinear regions.

2. The “subtraction method,” in which the phase space is approximated in the soft
and collinear regions, but the matrix element is exact. The correction factor is

added into the matrix element numerically.
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3. The “exact method,” in which both the correction factors for the phase space

and the matrix element are added in numerically.

The most attractive method is to calculate the matrix element and the phase space
with no approximations. All terms in s,,;, are included in the calculation, and any
results are independent of the size of the resolution parameter. As the exact method
is difficult to implement, the event generator discussed in this thesis calculates the
NLO cross sections using the slicing method.

Only the exact method to generate NLO events is independent of s,,;,, the slic-
ing method and the subtraction method exhibit explicit dependence on the resolution
parameter. The cone overlap cut implemented into our analysis (see Section 3.3) sig-
nificantly reduces this s,,;, dependence in the calculated cross sections by removing
infrared instabilities. The iterative cone algorithm used by CDF is an infrared safe
jet algorithm if it is augmented with a jet separation cut.

As the slicing method is implemented in the NLO generator used for this
analysis, its mathematical basis is outlined briefly here. The virtual, V', and real, R,

contributions to the NLO cross section can be schematically written as [60]:

<@> = i5(1—1:), and
dz ), 2e

do 1
. — 3.11
(d:v)R 1—2x’ ( )

where the parameter € is introduced through dimensional regularization with a change

of the dimensionality of space-time to d = 4 — 2¢, and where 1 — z represents the
energy radiated by a parton. When x = 1 no radiation is emitted, while for x = 0
the parton radiates a maximum amount of energy. If the average value < F' > of a

function F'(z) denotes a physical observable, then < F' > at NLO is calculated as:

< F>xo = /01 dx (le—(;)v F(J;)—l—/o1 dx (1 — x) * (%)R F(z)
= QLE/OIdx(S(l—:r)F(x)—l—/Uld:r(l—:r)_l_ZEF(:r)
1

= SF()+<F>p. (3.12)
€
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Performing the computation in d dimensions in order to regulate the divergences in-
troduces the factor (1 — x)72¢ in the real cross section contribution. As the virtual
part can be integrated analytically, the difficult task of the problem lies in the com-
putation of the real contribution. The real integral is divergent as e — 0, where the
pole in 1/€ exactly cancels the divergent factor in the virtual contribution.

The slicing and the subtraction method use different approaches to calculate

the divergent integral in < F' >p. In the slicing method, < F' >y is rewritten as:

0 F(z) ! F(z)
F >p= / ) @)
SE R e (1—z)l+2 i dx(l — x)t+2e’

(3.13)
where ¢ is an arbitrary parameter, 0 < 6 < 1. The first integral in this expression
is free of divergences. The term is integrated numerically after setting ¢ = 0. The
second integral is expanded in a Taylor series in powers of €. Only terms that do not

vanish as € — 0 are retained, and terms of O(d) are neglected. One is then left with

the finite result for the NLO cross section:

- 1§ F
< F >3ioe= ; d:vl(—x) + F(1) logd. (3.14)

Since a physical result should not depend on the arbitrary parameter 9, it has to be
chosen to be small in order for the Taylor expansion and the subsequent approximation
to remain valid.

In the subtraction method, no such approximation is used; the final expression
for the NLO cross section is independent of 4. In turn, however, the integral for the
first term in Equation 3.13 becomes more cumbersome to compute.

To optimize computational performance of the NLO calculation, integrals are
evaluated using an adaptive Monte Carlo algorithm, called VEGAS, which is widely
used in elementary particle physics for multidimensional integration. The VEGAS
routine employs a method, called importance sampling. The integrands are predomi-
nantly sampled from active regions in the integral space. Regions where the integrands
are relatively constant are evaluated less frequently. Large values of the integrands

imply an increased sampling rate.
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In addition to importance sampling, VEGAS also uses stratified sampling to
further reduce the amount of computation. The integral space is divided into sub-
regions where the sampling frequency in each region is chosen such that the variance
of the integrands is minimized.

Finally, VEGAS is used in an adaptive mode. Several statistically indepen-
dent iterations are performed to evaluate the desired integrals. These iterations assist
each other, since each one is used to refine the sampling grid of the following one.
First, the integrals are evaluated with a small number of calls to the random number
generator. In the next step, more integrations are performed, but the sampling grid
is already improved by accounting for the results from the previous iteration. Per-
forming several steps with increasingly refined sampling grid and increasing numbers
of samples optimizes the use of the computational resources available. The results of

all iterations are combined into a single best answer in the end.

3.6 Comparison of Data to Predictions from the

Next-To-Leading Order Calculation

The data and the NLO calculation Data and Monte Carlo predictions are separately
binned in X3-X, space. The binned cross sections provided by the calculation are
multiplied by the total integrated luminosity associated with the data set to predict
the number of events in each bin.

Comparison between the data and the NLO predictions is achieved by calcu-
lating the difference between the number of events in each bin from the unsmeared
data and the NLO calculation. This difference is scaled by the predicted number of
events.

To further compare the prediction to the data, we calculate the x? between
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the data and the Monte Carlo predictions:

=Y ( (e, = o, )” > , (3.15)

2 2
i Ostat.; + O—theor.i

where ny;c, is the number of scaled Monte Carlo events in bin 4, np, is the number of
data entries in bin 4, and oy, and oiheor,, are the statistical and theoretical errors,

respectively, on the number of entries in bin 4.

3.7 Measurement of the Strong Coupling Constant

The strong coupling constant, as, provides the measure of the strength of the strong
interaction. Its numerical value is of fundamental importance for our description of
nature. Only a large number of independent measurements of ag at various values
of Q? for better understanding of the running will allow for increasingly accurate
theoretical models. For that reason, many different methods to measure ag have
been approached by experimentalists.

The wide variety of experiments that measure the strong coupling include
deep inelastic scattering (DIS), 7 lepton decay measurements, lattice gauge theory
considerations, ete™ annihilation, and hadronic collider experiments. Table 3.1 shows
a summary of ag measurements, the momentum transfer Q at which ag is measured,
as(Q?), ag extrapolated to M%, and the order of the theoretical prediction used in
the measurement.

Polarized lepton-nucleon scattering is used to extract a value of ag from higher-
order corrections to the Bjorken sum rule [61], and a similar measurement is based
on the Gross-Llewellyn Smith (GLS) sum rule [62] for deep inelastic neutrino-nucleon
scattering. As perturbative corrections for these cases have been calculated to next-
to-next-to-leading order (NNLO), and since power corrections to deep inelastic scat-
tering are relatively well understood, both measurements are very attractive for de-
termination of ag, even though Q? is low. Due to the low value of Q?, the theoretical

uncertainty in these methods is dominated by power corrections.
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‘ Process | Q (GeV) |  as(Q*) | as(Mz®) | Theory |
DIS (BjSR) 1.58 0.37570 057 | 0.1227005 | NNLO
DIS (GLS) 1.73 0.261905 | 0.10875-008 | NNLO

DIS (v) 5.0 0.19373-01% | 0.111£0.006 | NLO
DIS () 7.1 0.18040.014 | 0.11340.005 | NLO
DIS (jets) 22.1 | 0.148+0.016 | 0.11840.009 | NLO

7 (Rhad) 1.77 0.3340.03 | 0.118+0.004 | NNLO
QQ 3.6 0.21940.007 | 0.115+£0.002 | LGT

QQ 5.0 0.190*3:91 1 0.11240.004 | LGT

QQ 10.0 0.1671091 | 0.113F3:997 | NLO
ete” (Ohad) 31.6 | 0.163+0.022 | 0.133+0.015 | NNLO
ete™ (shapes) 10.5 | 0.16540.018 | 0.11340.006 | NLO
ete” (shapes) 35.0 0.14040.020 | 0.119£0.014 | NLO
ete™ (shapes) 58.0 | 0.130+0.008 | 0.1224+0.007 | NLO
ete” (shapes) 58.0 0.13240.008 | 0.12440.007 | resum.
ete™ (frag.) 22-91 0.126+0.009 | NLO
Z° (T haa) 91.2 | 0.12340.005 | 0.123+0.005 | NNLO
Z° (shapes) 91.2 | 0.118+0.006 | 0.118+0.006 | NLO
Z° (shapes) 91.2 0.12240.005 | 0.12240.005 | resum.
ete” (shapes) 133 0.1074+0.008 | 0.1134+0.009 | resum.
pp—y+X | 40 0.20670:045 | 0.112*5:312 | NLO
pp — bbX 20.0 0.14570018 1 0.113+£0.011 | NLO
pp— W +jets | 80.6 | 0.12340.025 | 0.121+0.024 | NNLO

Table 3.1: Summary of ag measurements. (Table taken from Reference [27].)

Violation of Bjorken scaling in deep inelastic structure functions provides the
most reliable measurements of ag at intermediate scales Q2. Calculations have been
performed to NLO, but the power corrections appear well under control. Muon and
neutrino scattering experiments have been used to measure ag by Bjorken scaling
violations.

Jet production rates in deep inelastic scattering allow for as measurements at
intermediate to high scales. Unlike in ete~ annihilation, Q? can be varied over a
wide range in a single deep inelastic scattering experiment at a single beam energy,
such that the running of ag can be mapped more closely. A major contribution to the
systematic uncertainty comes from the jet rate dependence on the parton distribution

function for a given value of ag. This dependence is also important in our analysis,
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as we are studying hadronic collisions at CDF.

A very carefully studied method to determine ag is based on the hadronic
decay of the 7 lepton. The basic observable measured in this method is the ratio
of the hadronic to leptonic decay widths. This determination of ag shows some of
the smallest theoretical uncertainties, assuming small non-perturbative corrections
to the calculations. Larger corrections due to confinement effects would significantly
increase the theoretical uncertainty in this method.

Non-perturbative calculations of matrix elements are performed in the lattice
gauge formulation of QCD. Matching these non-perturbative results to perturbation
theory provides a potentially highly accurate determination of ag. Small enough
lattice spacing for perturbative behavior to be seen at short distances and well con-
trolled systematic uncertainties in the calculated hadron masses are necessary for
lattice gauge theory considerations.

The original measurements of ag in e*e~ annihilation use the total hadronic
production cross section. Results based on the hadronic width of the Z° boson are
more recent.

Determinations of ag are also possible from ete™ event shape and jet rate
distributions. Theoretical models for these methods are calculated to NLO in asg.
Hadronization corrections necessary to provide a connection between perturbative
predictions of event shapes and the corresponding quantities derived from experimen-
tally observed hadrons are important contributors to the systematic uncertainties on
the measurements.

Scaling violations in jet fragmentation can be used to determine ag in ete™ an-
nihilation. The systematic uncertainties associated with these methods are generally
larger than in DIS.

Some results from hadron-hadron collider experiments have been used to de-
termine ag. Direct photon, heavy quark, and W boson plus jet cross sections are

compared to data to extract a value for ag, as predictions for these final states are
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available to NLO.

So far, the precision achieved for measurements of ag in hadron-hadron colliders
has been less than in the other methods. The main experimental and theoretical
uncertainties are due to the uncertainties in the incoming and outgoing hadrons. The
effects of different parton distribution functions and contributions to the final states
from spectator partons are important sources of systematic uncertainties.

Ratios of pure jet production rates could potentially reduce these systematic
uncertainties by cancellation of some of the contributions. Direct measurements of
jet production cross sections have not been possible until now, as only LO predictions
were available.

With completion of the new NLO three-jet event generator such measurements
can be attempted. Rather than calculating the three- to two-jet production cross
section ratio, we attempt to extract a value for ag by a new method. This method is
closely related to the production cross section ratio, as we are investigating the Dalitz
variables which strongly depend on the jet multiplicity in an event. We plot the >
between data and NLO prediction, as defined in Equation 3.15, as a function of ag.

The minimum y? in this plot is the desired strong coupling constant.
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Chapter 4

Unsmearing the Data

At CDF, particle energies are measured in the electromagnetic and hadronic calorime-
ters. Both have cylindrical symmetry relative to the beam line. The electromagnetic
calorimeter measures energy associated with the electromagnetic showers of electri-
cally charged particles. The hadronic calorimeter measures hadron energies by col-
lecting electromagnetic radiation from nuclear de-excitations that follow interaction
of the hadrons with the calorimeter material.

The resolution of the detector is finite and the calorimeter is not hermetic.
This results in a smearing of the jet energies, which in turn leads to a shift of the jet
variables that are functions of the jet energies. The magnitude and the direction of the
shift depend on the detector resolution and the shape of the parton-level distribution.
There are two effects that determine the amount of smearing. In most data analyses,
the total number of events is binned as a function of the observables of interest.
Due to the detector resolution, events are counted in bins other than the one that is
associated with the true jet observable. The binned distribution of the observable of
interest is not necessarily symmetric about the true bin, more entries are then passed
into adjacent bins in one direction than are received in return. If the parton-level
distribution changes rapidly between adjacent bins, the passing of a certain fraction

of entries from the bin with the larger number of events to the one with the lower
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number also affects the shape of the observed distribution more than the reverse
process.

This chapter treats the unsmearing of the Dalitz variables, X3 and X,, for CDF
Run 1b data. This unsmearing is necessary in order to be able to directly compare the
data to parton-level Monte Carlo calculations since these detector resolution effects

are not included in the predictions.

4.1 True and Measured Values of an Observable

In the analysis of the unsmearing correction factors, we carefully distinguish between
the true and the measured spectrum of a generic observable, X, that depends on
the detector energy measurement. The way we find both spectra is described in
Reference [35] and is summarized briefly here. We generate Monte Carlo events with
the HERWIG Monte Carlo program. Any other suitable parton-level event generator
could also be used. A cone size of R = 0.7 is used in the clustering of all final state
particles into jets. The true value of X is a function of the total energies in these
clusters. This clustering is done at the parton level, before any detector simulation is
applied to the HERWIG output. To compute the measured value of X, the detector
simulation QFL is applied to the Monte Carlo events, the same clustering algorithm
is used, and the energies of the tracks in the same reconstruction cones serve as the

basis to calculate X™¢?3s,

4.2 True Level Clustering

The clustering at the parton, or “true,” level is a crucial part of the unsmearing
procedure. It has been shown in Reference [35] that the module PYTTOW performs
well in the true level clustering. It is used in the unsmearing studies of the Dalitz

variables.
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PYTTOW uses the GENP information from HERWIG and creates TOWE
banks, simulating an “ideal calorimeter.” The standard jet algorithm, JETCLU, can
be applied to the TOWE banks. JETCLU produces the JETS banks which contain
the relevant jet information for jets in a cone of user-specified cone size. It uses
the iterative cone algorithm described in Reference [54] to compute the jet axis and

associate calorimeter tower information within the cone to the jet.

4.3 The Monte Carlo Unsmearing Procedure

For our analysis of the unsmearing of the Dalitz variables, we use a total of 439,313
HERWIG events. The values of X" and X™®* are calculated for all these Monte
Carlo events. The Dalitz plane is divided into bins of size 0.02 x 0.02.

The unsmearing factor in the Dalitz plane is computed by defining:

Kme — number of events in bin 7 of the smeared distribution (4.1)
© 7 number of events in bin i of the true distribution '

This method to calculate K in every bin is called Monte Carlo approach. Figure 4.1
shows K for each bin in the Dalitz plane. The projections of K, as computed by the
Monte Carlo method, onto X3 and X, are shown in Figures 4.2 and 4.3. The size of
K obtained by the Monte Carlo approach is shown in Figure 4.4.

The Monte Carlo generator, HERWIG, used to calculate the smearing correc-
tion factor has a large set of input parameters that can be set by the user. One such
input parameter, the minimum pr of the two outgoing partons, effects the jet Er
distributions of the HERWIG sample (see detailed discussion in Chapter 6 below.)
The effect of this input parameter on the smearing correction factor is investigated.
The smearing correction factor in all the bins used in this analysis is found to be con-
sistent, for different settings of the minimum pr in HERWIG. This is expected since
the smearing of the Dalitz variables is due to the detector response to a signal and
the shape of the Dalitz distribution. The detector response is a function of the energy

of the jets, regardless of the specifics of the jet Et distribution. At the same time,
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Figure 4.1: The smearing correction factor
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the distribution of the Dalitz variables is not too steep, so that bin-to-bin migration
effectively is low. Both these reasons together account for the negligible influence of
the minimum pr on the smearing correction factor. Figure 4.5 shows the smearing
correction factor for bins of size 0.02 in X3 and X4, as calculated with the Monte
Carlo method for a minimum pr of 60 GeV and 150 GeV.

The internal consistency of the unsmearing procedure is checked by an indepen-
dent HERWIG sample, containing 72,990 events. The fractional difference between
the unsmeared measured spectrum and the true spectrum provides a measure of the
internal consistency of the procedure. This fractional difference in the Dalitz plane
is tabulated in Tables A.1 through A.14 in the Appendix A. The projections of this
fractional difference onto the X3 and X, axes are shown in Figures 4.6 and 4.7. The
internal consistency of the method is also demonstrated in Figures 4.8 and 4.9 where
the difference between the unsmeared measured and the true Dalitz distributions,
scaled by its uncertainty, is shown.

The Monte Carlo approach yields internally consistent smearing correction
factors. The smearing correction factors obtained by this method are used in the
analysis of the Dalitz variables discussed in the following chapters. An alternative
approach, the analytical unsmearing method, which is not internally consistent for

this analysis is described in the Appendix B.

4.4 Unsmearing the Jet Transverse Energy

Information of particular interest in any high energy data analysis is the jet transverse
energy. Transverse energies are generally well modeled by theoretical predictions and
are often used in comparing data to models.

As Er is a function of the jet energy, it is also subject to smearing by the
detector. A smearing correction factor has to be calculated to correctly compare Er

information from data and prediction. The main emphasis in this thesis is on the
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analysis of the Dalitz variables. The Er information is only used for some checks on
the results. Unsmearing of the jet Er therefore only plays a subordinate role.

The smearing correction factors for the Dalitz variables are not consistent for
the analytical and the Monte Carlo method. However, the systematic uncertainty
in the Monte Carlo method is found to be small. It is the approach chosen for
computation of the E1 smearing correction factors.

Analogous to the unsmearing procedure for the Dalitz variables, HERWIG is
used for unsmearing Et. We use a total of 439,313 HERWIG events. The values of
Effe and ET® are calculated for the first three jets in these Monte Carlo events. The
jet Er distributions are binned in bins of 10 GeV increments. The smearing correction
factor is calculated by the ratio of the measured and the true Et distributions in every
bin. Theoretical assumptions in the generation of HERWIG jets do not contribute.
As smearing is solely due to detector effects, and since the CDF detector simulation,
QFL, is assumed to describe the detector well, the particular mode of generation of
a jet does not influence the magnitude of the smearing correction factor. The smear-
ing correction factors calculated for Er in this manner are tabulated in Tables C.1
through C.3 in Appendix C.

The internal consistency of the unsmearing procedure is checked by an indepen-
dent HERWIG sample, containing 72,990 events. The fractional difference between
the unsmeared measured spectrum and the true spectrum provides a measure of the
internal consistency of the procedure. This fractional difference in the E distribution
is shown in Figure 4.10. The internal consistency of the method is also demonstrated
in Figure 4.11 where the difference between the unsmeared measured and the true

E+r distributions, scaled by its uncertainty, is shown.
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Chapter 5

Systematic Uncertainties

Energy measurements in the CDF detector are subject to systematic uncertainties
associated with the detector response to particle beams used for calibration, detector
stability over time, and energy deposited in the detector due to spectator partons.
Uncertainties on trigger and measurement efficiencies and on corrections applied to
the data contribute to the total systematic measurement uncertainty.

This chapter treats the systematic uncertainties on the Dalitz variables for CDF
Run 1b data. The Dalitz variables and the other three-jet variables that uniquely
describe a three-jet system are defined in earlier chapters.

The systematic uncertainties considered in this chapter are associated with the
absolute and relative jet energy scales, the total integrated luminosity, the z-vertex cut
efficiency, and the systematic uncertainty on the smearing correction factor discussed

in the previous chapter.

5.1 Systematic Uncertainties on the Dalitz Vari-
ables

Five sources of systematic uncertainties on the Dalitz variables are discussed in this

chapter. Uncertainties on the absolute and relative (r-dependent) jet energy scales
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are due to uncertainties in jet energy measurements. They are the largest contributors
to the total systematic uncertainty. The uncertainties on the measurements of the
total integrated luminosity and the z-vertex cut efficiency are considered, and the

uncertainty on the smearing correction factor is included.

5.1.1 Absolute Jet Energy Scale

The absolute jet energy scale uncertainty consists of four components [35]:

1. The uncertainty on the calibration of the central calorimeter is asymmetrical.
The high-side uncertainty decreases from 1.8% to 1.7% as a function of jet

transverse energy, Er, while the low-side decreases from 1.6% to 1.3% [63].

2. The jet fragmentation uncertainty, which is also slightly asymmetrical, decreases

from 1.7% to 1.2% with increasing jet Et [63].

3. The stability of the calorimeter over time is estimated to have an uncertainty

of 1% on the jet Et [35].

4. The uncertainty on the underlying event correction in the jet energy correction,

JTCO96, is 1.16 GeV on the jet Er.

The estimate of the uncertainty on the underlying event correction has been obtained
by following the method outlined in Reference [57]. The average number of vertices
per event in CDF data is used as basis to calculate the underlying event correction.
For a cone size of 0.7, the underlying event correction is given by ((1.98/1.6) * 1.0 +
0.91 * (number of vertices per event — 1.0)) % 1.6. The relative uncertainty on the
underlying event correction is estimated to amount to 30%. The number of vertices
in the events is studied, as the cut on the resolved multiple interactions might have
changed the average number of vertices per event in the data sample. Investigation of
the data sample shows on average of 2.3 vertices per event, reduced from an average

number of 2.7 before removal of the resolved multiple interactions. If instantaneous
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luminosities > 15 x 103 cm ™2 s7! are neglected, the average number of vertices

per event is 2.2. Estimation of the uncertainty on the underlying event correction
yields values of 1.34 GeV, 1.16 GeV, and 1.12 GeV for the data samples before and
after the removal of resolved multiple interactions and after rejection of the highest
instantaneous luminosities, respectively. As, the cut on instantaneous luminosities
only reduces the uncertainty on the underlying event correction by 3.4% but reduces
the total number of events in the data sample at the same time, the cut is not
implemented in the analysis.

These upper, and lower, limits are added, or subtracted, from the four-momenta
of all jets in the data sample to obtain the systematic uncertainties on the Dalitz vari-
ables due to each component. Figures 5.1 to 5.8 show the systematic uncertainties
on the Dalitz variables as a function of X3 for every bin in Xy. The systematic uncer-
tainty due to the detector calibration is plotted in Figures 5.1 and 5.2. Figures 5.3
and 5.4 show the uncertainty on the Dalitz variables due to jet fragmentation, while
the uncertainty on the detector stability is shown in Figures 5.5 and 5.6. The effect of
the underlying event correction uncertainty on the Dalitz variables is plotted in Fig-
ures 5.7 and 5.8. Fluctuations between neighboring bins are largely due to statistical

fluctuations in the data.

5.1.2 Relative Jet Energy Scale

The systematic uncertainty due to the uncertainty in the relative jet energy scale is
calculated following the method described in Reference [35]. Three regions of the

detector with different contributions to the systematic uncertainty are identified:
1. the ninety degree crack, for which |n,| < 0.15,
2. the thirty degree crack, for which 0.9 < |n,| < 1.4, and

3. the Plug Calorimeter, for which |n,| > 1.4.
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Figure 5.6: The systematic uncertainty on the Dalitz variables due to the uncertainty
on the detector stability as a function of X3 for 0.50<X, <0.74.
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Figure 5.7: The systematic uncertainty on the Dalitz variables due to the uncertainty
on the underlying event correction as a function of X3 for 0.74<X, <0.98.
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Figure 5.8: The systematic uncertainty on the Dalitz variables due to the uncertainty
on the underlying event correction as a function of X3 for 0.50<X, <0.74.
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In all of these, 1y is the n relative to the fixed detector coordinate system as shown in
Figure 2.4. The uncertainties in the jet energy measurement for these three detector
regions are assigned according to Reference [35] and summarized in Table 5.1. They
are estimated using dijet balancing [64]. The uncertainties are quoted as a function

of dijet mass, M;;, which is defined as M;; = \/(E1 + Es)? — (p1 + p2)?, where E; and

p; are the energies and three-momenta of the two leading jets in the three-jet system.

| Mj; (GeV/c?) | na| <0.15 [ 0.9 < |nq| < 1.4 | |ng| > 1.4 |

< 517 3% 4% 2%
> 517 6% 4% 2%

Table 5.1: Uncertainty on the jet energy measurement in the three different detector
regions.

The systematic uncertainty due to the relative jet energy scale is measured by
separate investigation of the three detector regions. The four-momenta of jets in the
specific detector region are changed by the amount stated in Table 5.1. The change
in the event distribution in the Dalitz plane is recorded. The total contribution to
the systematic uncertainty on the Dalitz variables is the quadrature sum of the three
individual contributions. Figures 5.9 and 5.10 show the systematic uncertainty on
the Dalitz variables due to the relative jet energy scale uncertainty as a function of

X3 for all bins in Xj.

5.1.3 Total Integrated Luminosity and z-vertex Cut Efficiency

The uncertainty on the total integrated luminosity for Run 1b is 4.1% [65]. The multi-
jet analysis investigating the Dalitz variables rejects events with multiple interactions,
reducing the effective total integrated luminosity of the data sample by 104+0.5%. The
combined uncertainty on the effective total integrated luminosity is 4.2%.

The uncertainty on the z-vertex cut efficiency is calculated in Reference [66].

An uncertainty of 2% is assigned.
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Figure 5.9: The systematic uncertainty on the Dalitz variables due to the uncertainty
on the relative jet energy scale as a function of X3 for 0.74<X, <0.98.
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Given the size of the systematic uncertainty on the Dalitz variables due the
absolute and relative jet energy scales, the systematic uncertainties due to the uncer-
tainties on the total integrated luminosity and on the z-vertex cut efficiency are small.
Their contributions to the total systematic uncertainty are added in quadrature to

the factors obtained in the previous sections.

5.1.4 Smearing Correction Factor

The smearing correction factor is obtained by two methods, discussed in the previous
chapter. The methods result in comparable smearing correction factors. The uncer-
tainties on all bins used in the multi-jet analysis are < 5%. Regions in the Dalitz
plane where the statistical uncertainty on the smearing correction factor would be
larger are already excluded from the analysis by the set of cuts applied to the data.

The uncertainty on the smearing correction factor is small compared to the
systematic uncertainties due to the absolute and relative jet energy scales. It is

added to the other contributions in quadrature.

5.2 The Total Systematic Uncertainty on the Dalitz

Variables

The total systematic uncertainty on the Dalitz variables is calculated as the squared
sum of the individual contributions. Figures 5.11 and 5.12 show the total systematic
uncertainty on the Dalitz variables as a function of X3 for all bins in X,. Tables D.1
to D.24 in Appendix D summarize the total systematic uncertainties, and the main
contributions, on the Dalitz variables.

The distribution of the total systematic uncertainty on the Dalitz variables as
a function of X3 does not vary significantly in each bin in X,. Fluctuations are mainly
due to statistical uncertainties. The average total systematic uncertainty in every Xy

bin is representative of the values in that bin. It is tabulated in Table 5.2.
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| Xy | Average Total (%) | | X4 | Average Total (%) |

0.96-0.98 | +68.4 -59.2 0.72-0.74 | +44.1 -15.3
0.94-0.96 | +46.0 -30.6 0.70-0.72 | +48.5 -17.6
0.92-0.94 | +33.2 -20.0 0.68-0.70 | +48.5 -14.9
0.90-0.92 | +28.8 -16.2 0.66-0.68 | +57.0 -18.9
0.88-0.90 | +31.3 -12.4 0.64-0.66 | +51.4 -20.0
0.86-0.88 | +39.8 -10.6 0.62-0.64 | +55.2 -19.1
0.84-0.86 | +40.6 -14.7 0.60-0.62 | +60.5 -21.0
0.82-0.84 | +40.6 -13.8 0.58-0.60 | +62.5 -21.3
0.80-0.82 | +41.8 -12.0 0.56-0.58 | +58.1 -21.2
0.78-0.80 | +44.6 -14.7 0.54-0.56 | +54.8 -22.4
0.76-0.78 | +51.8 -15.2 0.52-0.54 | +90.7 -41.5
0.74-0.76 | +45.9 -15.2 0.50-0.52 | +113 -97.5

Table 5.2: The average total systematic uncertainty on the Dalitz variables in every
X4 bin.
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Chapter 6

Results

6.1 The Inclusive Three-jet Comparison

The transverse energy distributions of all three jets for unsmeared data and the NLO
predictions, using the CTEQ3 parton distribution function, are plotted in Figure 6.1
and compared to HERWIG. The HERWIG event sample has to be adjusted for sys-
tematic errors in the QFL energy scale (see Reference [35].) A minimum pr of 60 GeV
is used in the generation of the HERWIG sample. In the HERWIG data sample, the
third jet is calculated to be significantly more energetic than the corresponding dis-
tributions for the data and the NLO calculation. It is possible that this is due to
the fact that HERWIG does not correctly model the jet multiplicities, as shown in
Figure 6.2 where the total number of jets in each event is compared between the data
sample and HERWIG. For a given value of >~ Er in an event, the third jet is more
energetic if the total number of jets in the event is less than in the data sample or
in the NLO prediction. In Figure 6.3, the Y Er per event is shown for data and
HERWIG. Table 6.1 compares the jet multiplicities in the data and the HERWIG
sample, where HERWIG is scaled to the total number of jets in the data. The Er
distributions of the three jets are independent of changes in the cut on >~ E. This
is demonstrated in Figure 6.4. In this plot, the cut on } Er is changed in 10 GeV
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increments from 320 GeV to 340 GeV; the three jet distributions are normalized to

the same number of events to allow comparison of their shapes.

Number of Jets | Data HERWIG
(pt = 60 GeV)

3 25,272 26,571

4 7,265 6,230

5 1,130 927

6 121 75

7 16 4

8 1 0

9 1 0

10 1 0

Table 6.1: The jet multiplicities in the data and in HERWIG, using a minimum pr
of 60 GeV.

The distributions of the three-jet mass and the Dalitz variables, X3 and X4,
are shown for a different set of cuts, where ms; > 500 GeV and X3 < 0.9, in Fig-
ures 6.5, 6.6, and 6.7, respectively. Data and the HERWIG sample with pr = 60 GeV
are compared in these figures.

As an independent check on the data, the jet E| distributions obtained by a
different trigger are investigated. The main selection criterion for this trigger is at
least one jet in each event with Er > 100 GeV. It is called the Jet100 trigger. Data
obtained from the ) Er trigger and from the Jet100 trigger agree very well. The
jet Er distributions in both cases do not differ significantly. Figure 6.8 shows the
transverse energy distributions for the three jets in unsmeared data from the Jet100
trigger, the NLO prediction, and HERWIG with pt = 60 GeV.

In this study, emphasis is placed on the analysis of the Dalitz variables. Fig-
ures 6.9 through 6.12 show the Dalitz variable distributions as predicted by the NLO
calculation, using the CTEQ3 parton distribution function family, for ag = 0.1118
(Figure 6.9), as = 0.1133 (Figure 6.10), ag = 0.1160 (Figure 6.11), and ag = 0.1185
(Figure 6.12). The Dalitz variable distribution for the data is shown in Figure 6.13.

The data and the NLO prediction, using the CTEQ3 parton distribution func-
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Figure 6.1: The transverse energy distributions for the three jets in unsmeared data,
the NLO prediction, and HERWIG.
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pr = 60 GeV.

118



CDF: Preliminary

%)
- [ ]
2 5000 —
> I |
S I |
@ - — Doata ]
E 4000 - -
> I — HERWIG ]
3000 —
2000 — —
1000 —
0 i 1 ‘ 1 ‘ 1 ‘ 1 ‘ Il — L ‘;L ‘ Il |
300 350 400 450 500 550 600 650 700 750 800

2E; (GeV)

Figure 6.3: The Y Er per event after all the cuts have been applied to the data and
to HERWIG Monte Carlo with pr = 60 GeV.
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Figure 6.4: The Er distribution of the three leading jets in all data events as the cut
on > Er is varied.
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Figure 6.5: The three-jet mass distribution for data and HERWIG with pr = 60 GeV,
using a different set of cuts (msz; > 500 GeV and X3 < 0.9.)
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Figure 6.6: The X3 distribution for data and HERWIG with pr = 60 GeV, using a
different set of cuts (mg; > 500 GeV and X3 < 0.9.)
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Figure 6.8: The transverse energy distributions for the three jets in unsmeared data
from the Jet100 trigger, the NLO prediction, and HERWIG with pr = 60 GeV.
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Figure 6.9: The event density in the Dalitz plane as predicted by the NLO calculation
with ag = 0.1118.
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Figure 6.10: The event density in the Dalitz plane as predicted by the NLO calculation
with ag = 0.1133.
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Figure 6.11: The event density in the Dalitz plane as predicted by the NLO calculation
with ag = 0.1160.
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Figure 6.12: The event density in the Dalitz plane as predicted by the NLO calculation
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Figure 6.13: The event density in the Dalitz plane for the data.
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tion, are compared by computing the difference between the observed and predicted
number of events, scaled by the number of predicted events, in each bin. This frac-
tional difference is plotted in Figures 6.14 through 6.17 as a function of X3, span-
ning the entire range in X,. Figure 6.14 shows the region with 0.84<X, <0.94,
0.74<X, <0.84 in Figure 6.15, and Figures 6.16 and 6.17 span 0.64<X, <0.74 and
0.54<X, <0.64, respectively. Also shown in Figures 6.14 through 6.17 are the total
systematic uncertainties on the fractional difference due to systematic uncertainties
in the data (see Chapter 5). We limit the analysis to entry bins for which the error
on the NLO calculation is < 20% for every data set; this leaves 163 bins for the
comparison between the data and the calculation. The regions in X3-X, space that
are used in the comparison between the data and the NLO prediction, and which are
plotted in Figures 6.14 through 6.17, are shown in Figure 6.18. The lines enclosing
the final data set with an error on the NLO prediction < 0.2 in every data set follow
bin boundaries. The data and the NLO prediction are consistent, and the data are
stable with respect to the cuts introduced in this analysis. Small changes in cuts do
not result in significant changes in the Dalitz distributions. To show this, all cuts
are independently changed by +o. Specifically, the cone overlap cut is changed by
+0.05, the 1 cut by £0.075, the geometrical acceptance cut by £0.01 in |cos 5|, the
> Et cut by £10 GeV, the number of tracks for the definition of a resolved multiple
interaction by £1, and the distance between two resolved vertices by =1 cm. Only the
cut on jet Et is also changed by £5 GeV, which corresponds to approximately +5 0.
Variations in the cut on the NLO uncertainty are not shown explicitly, since varying
the cut between 0.15 and 0.25 does not result in changes of in the Dalitz variable
distribution. The stability of the Dalitz variables with respect to the cuts introduced
in the analysis is shown by calculating a x? between the data distribution and the
scaled distributions obtained after introduction of the cuts. This x? is defined in
analogy to Equation 3.15, only nyc, is replaced by npc,, the scaled number of events

in bin 4 after the introduction of the analysis cuts. Table 6.2 shows the x? per bin
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Figure 6.14: The fractional difference between unsmeared data and the NLO pre-
diction, using the CTEQ3 parton distribution function, as a function of X3 for
0.84<Xy <0.94.

calculated according to this definition. The Dalitz distributions after these variations
in the cut parameters are shown in Figures E.1 through E.14 in Appendix E.

Visual comparison of Figures 6.13 and 6.11 indicates a systematic width dif-
ference between the Dalitz distributions in the data and the NLO prediction. This
difference presents itself in an average fractional difference between data and pre-
diction which is smaller for bins with high X4 compared to bins with low X4. The
average fractional difference for the three-jet sample as a function of X, is shown in

Figure 6.19.
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Figure 6.15: The fractional difference between unsmeared data and the NLO pre-
diction, using the CTEQ3 parton distribution function, as a function of X3 for
0.74<X4 <0.84.
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Figure 6.16: The fractional difference between unsmeared data and the NLO pre-
diction, using the CTEQ3 parton distribution function, as a function of X3 for
0.64<X4 <0.74.
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Cut Parameter ‘ Cut Parameter Value ‘ X ‘ x? per bin ‘
cone overlap -0.05 1.47 6.58 x 1073
cone overlap +0.05 1.58 7.06 x 1073
n -0.075 1.58 7.07 x 1073
n +0.075 1.60 7.15 x 1073
Jet Ep -5 GeV 0.999 4.61 x 1073

Jet Ep +5 GeV 33.1 0.149

geometrical acceptance —0.01 in |cos 65| 1.59 711 x 1073
geometrical acceptance +0.01 in |cos 03] 1.60 7.15 x 1073
S Er -10 GeV 5.07 x 107* | 2.26 x 1076
S Er +10 GeV 1.53 x 1072 | 6.81 x 10°°
number of tracks -1 8.40 x 1072 | 3.75 x 107*
number of tracks +1 7.61 x 10°% | 3.40 x 1076
distance between vertices -1 cm 9.95 x 1073 | 4.44 x 1075
distance between vertices +1 cm 1.78 x 1072 | 7.93 x 107°
ONLO <0.14 8.29 x 1073 | 3.70 x 1075
ONLO <0.27 7.37x 1073 | 3.29 x 107°

Table 6.2: The x? between the data and the scaled Dalitz distributions after the
introduction of the various analysis cuts.

The x? between the unsmeared data and the NLO calculation is plotted in
Figure 6.20 for several different values of the strong coupling constant, ag, each
with the appropriate parton distribution function from the CTEQ3 family. Table 6.3
summarizes the results that are plotted in Figure 6.20. The error shown consists of
the contributions from the statistical uncertainty on the data and the error on the
theoretical calculation. The present statistics result from one 16 CPU-week run of
the theoretical calculation at each ag value. With this level of uncertainty, the x?
does not appear to be changing systematically with ag, so no measurement of ag can
be extracted. The sensitivity of the result to the cut on the NLO uncertainty is small.
The uncertainties in the bins rejected by this cut are significantly larger than 0.20.

A difference between the data and the theoretical calculation (for any assumed
value of ag) is a difference in the three-jet production cross section, which for the

data is defined as:
N

= [Ldt’ (6.1)

o
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Figure 6.20: x? between the data and the NLO calculation for different values of oz,
using appropriate parton distribution functions from the CTEQ3 family.
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‘ Qs ‘ x° ‘ x? per bin
0.0982 | 654451 | 4.01+£0.314
0.1008 | 632450 | 3.88+0.308
0.1030 | 567+48 | 3.48+0.292
0.1070 | 582+48 | 3.57+0.296
0.1087 | 676£52 | 4.15+0.319
0.1103 | 515445 | 3.16£0.279
0.1118 | 479444 | 2.94+0.268
0.1133 | 481444 | 2.95+0.269
0.1160 | 564448 | 3.46+£0.292
0.1185 | 543+47 | 3.33+0.286

Table 6.3: The x? between the data and the NLO calculation for different values of
as, using appropriate parton distribution functions from the CTEQ3 family.

where N is the total number of three-jet events after all cuts have been applied
(30,325 in our data sample), [L£dt is the effective total integrated luminosity, and
e = 0.93 + 0.02 [66] is the z-vertex cut efficiency. For the NLO calculation, the
predicted cross sections in all X3-X,4 bins are added. The result is given in units of

nb larea!.

Given the size of the bins in X3-X, space, the cross section calculated
in each bin is multiplied by a scale factor of 0.0004 to find the true three-jet pro-
duction cross section in all individual bins. Table 6.4 summarizes the cross section
predicted by the calculation for each ag. The cross section uncertainty quoted in this
table is statistical. The total three-jet production cross section, given the selection
criteria discussed in Chapters 3 and 6, in CDF Run 1b is 419+2(stat.) T} (syst.) pb.
This is consistent with an earlier CDF measurement of 62772% (syst.) pb, after the
efficiencies of additional cuts introduced in our analysis are considered. The total
multi-jet production cross section measured without these cuts in Reference [56] is
13407550 (syst.) pb. The cuts that are applied in this analysis in addition to the
work in Reference [56] are the rejection of two-jet events (efficiency about 0.68), the
> Er cut on the three leading jets (efficiency about 0.93), the cut on bins with NLO

uncertainties> 20% (efficiency about 0.90), the cone overlap cut (efficiency about

0.93), the geometrical acceptance cut (efficiency about 0.93), the rejection of runs
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with malfunctioning detector components (efficiency about 0.97), and the cut on the
jet pseudo-rapidity (efficiency about 0.98.) Uncertainties of approximately 1-2% are
assigned to these efficiency estimates. Statistical uncertainties in this earlier anal-
ysis are not reported because the result was obtained from a data set which also
included two-jet events, significantly increasing the sample size. For the three-jet
contribution, the statistical uncertainties are expected to be of the same magnitude
as the statistical uncertainties in our analysis. If we do not restrict our analysis to
bins with NLO uncertainties < 20%, the total three-jet production cross section is
4664-2(stat.) 2% (syst.) pb. This again is consistent with the earlier measurement
which found a total three-jet production cross section of 6977 (syst.) pb. The total
three-jet production cross section for the NLO calculation, using the CTEQ3 parton
distribution function with ag = 0.1160, is 402+3 pb when all bins in the Dalitz plane
are included. The cross section in each individual kinematically allowed bin in the
Dalitz plane in tabulated in Tables F.1 through F.14 in Appendix F. The total three-
jet production cross sections predicted by the NLO calculation as a function of ag

are compared to the data in Figure 6.21.

| as | Three-jet Production Cross Section (pb) |

0.0982 372£3
0.1008 367+3
0.1030 371£3
0.1070 38613
0.1087 39013
0.1103 387+4
0.1118 438+4
0.1133 39513
0.1160 373+3
0.1185 36613

Table 6.4: The three-jet production cross section of events in the NLO templates, for
different values of ag, using the appropriate parton distribution functions from the
CTEQS3 family. The uncertainties are statistical only.
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6.2 Discussion and Cross Checks

We have defined several related y? factors to cross-check the results. First, as a
final check on the unsmearing, we define a function called (}')?, in which np, of
Equation 3.15 is replaced by nggrwig,, the number of events generated by HERWIG
in bin i. A plot of (x')? versus ag is shown in Figure 6.22. HERWIG events that
have passed QFL and have been unsmeared using the correction factors described in
Chapter 4 are plotted as circles. Hadron-level HERWIG events are plotted as squares.
The points are consistent, confirming the validity of the unsmearing correction. The
behavior of (x')? as a function of ag in Figure 6.22 is similar to the y? behavior
in Figure 6.20. The error shown consists of the contributions from the statistical
uncertainty on the HERWIG data sample and the error on the theoretical calculation.
The self-consistency of the results is further checked by defining a (x”)? in
which the np, of Equation 3.15 is replaced by nyyo,, the number of events generated
by the NLO prediction with ag = 0.1160. A plot of (x”)? versus as is shown in Fig-
ure 6.23. The (x”)? in Figure 6.23 is constant for the whole range of ag, indicating
that the Dalitz variables are not sensitive to changes in ag at this level of accuracy.
A systematic change of (x”)? with changes in g is not apparent. Slight deviations of
(x")? from 1.0 are possibly due to real, non-systematic differences in the Dalitz dis-
tributions predicted by the NLO calculation, or due to an underestimate of the errors
in the prediction. The error shown due to the error on the theoretical calculation.
As a final cross check on the potential for a measurement of ag, Figures 6.20
and 6.23 are duplicated using the complete set of bins in the Dalitz plane where the
cut on the statistical uncertainty on the NLO calculation is not applied. Figures 6.24
and 6.25 show x? and (x")? for that case, respectively. As both plots are very similar to
Figures 6.20 and 6.23, they also indicate that with the computing resources currently
available to us, the CTEQ3 parton distribution function is not adequately sensitive
to the gluon distribution to measure ag by this method. The error shown consists of

the contributions from the statistical uncertainty on the data and the error on the
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theoretical calculation.
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Figure 6.21: The total three-jet production cross section predicted by the NLO cal-
culation as a function of ag compared to the data.
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Figure 6.22: The circles represent (x')? between the NLO calculation and events that
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Monte Carlo approach. The squares represent (y')?> between the NLO calculation
and hadron-level HERWIG events. The results are consistent, a confirmation of the
validity of the unsmearing procedure. The (x')? factor is defined in Section 6.2.
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calculation for other values of ag, using appropriate parton distribution functions
from the CTEQ3 family. The (x”)? factor is defined in Section 6.2.
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using appropriate parton distribution functions from the CTEQ3 family. The cut on
the statistical uncertainty on the NLO calculation is not applied.
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Chapter 7

Results from CTEQ4 Parton

Distribution Functions

To investigate the variability and validity of the results shown in the previous chapter,
the main analysis has been repeated using the CTEQ4 parton distribution function
family. Results and conclusions from this analysis are shown in this chapter. A
comparison of the CTEQ3 and CTEQ4 parton distribution functions is shown in
Figures 7.1 and 7.2 for the quarks and the gluons, respectively. The gluon distribution
function varies by a few per cent at x < 0.1; at larger x, the CTEQ3 and the CTEQ4

distribution functions for quarks and gluons look rather similar.

7.1 CTEQ4A Results

The transverse energy distributions of all three jets for unsmeared data and the
NLO predictions, using the CTEQ4M parton distribution function, are plotted in
Figure 7.3 and compared to HERWIG. The HERWIG event sample has to be adjusted
for systematic errors in the QFL energy scale (see Reference [35].) A minimum pr of
60 GeV is used in the generation of the HERWIG sample. The three jet distributions

are normalized to the same number of events to allow comparison of their shapes.
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Figure 7.1: Comparison between the CTEQ3 and CTEQ4 parton distribution func-
tions for the quarks (Figure taken from Reference [67].)
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Figure 7.2: Comparison between the CTEQ3 and CTEQ4 parton distribution func-
tions for the gluons (Figure taken from Reference [67].)
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To demonstrate the difference between the jet Er distributions obtained by using
the CTEQ3 and CTEQ4M parton distribution functions, the ratio of the two jet
Er distributions is shown in Figure 7.4. At the level of uncertainty achieved by the
NLO calculation at this time, deviations of this ratio from the value 1.0 in the Er
distributions using CTEQ3 and CTEQ4 could be attributed to systematic changes.
In the HERWIG data sample, the third jet is calculated to be significantly more
energetic than the corresponding distributions for the data and the NLO calculation.
It is possible that this is due to the fact that HERWIG does not correctly model the
jet multiplicities, as shown in Figure 6.2. For a given value of >~ Et in an event, the
third jet is more energetic if the total number of jets in the event is less than in the
data sample or in the NLO prediction.

As an independent check on the data, the jet Et distributions obtained by the
Jet100 trigger are investigated. Data obtained from the > Er trigger and from the
Jet100 trigger agree very well. The jet Er distributions in both cases do not differ
significantly. Figure 7.5 shows the transverse energy distributions for the three jets
in unsmeared data from the Jet100 trigger, the NLO prediction using the CTEQ4M
parton distribution function, and HERWIG with pr = 60 GeV.

For comparison with the NLO results from the CTEQ3 parton distribution
function family, the Dalitz variables are shown in Figures 7.6 through 7.10 for the
prediction using CTEQ4A1l (Figure 7.6), CTEQ4A2 (Figure 7.7), CTEQ4M (Fig-
ure 7.8), CTEQ4A4 (Figure 7.9), and CTEQ4A5 (Figure 7.10.)

The data and the NLO prediction, using the CTEQ4M parton distribution
function, are compared by computing the difference between the observed and pre-
dicted number of events, scaled by the number of predicted events, in each bin. This
fractional difference is plotted in Figures 7.11 through 7.14 as a function of X3, span-
ning the entire range in Xy. Figure 7.11 shows the region with 0.84<X, <0.94,
0.74<X, <0.84 in Figure 7.12, and Figures 7.13 and 7.14 span 0.64<X, <0.74 and
0.54<Xy <0.64, respectively. Also shown in Figures 7.11 through 7.14 are the total
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Figure 7.3: The transverse energy distributions for the three jets in unsmeared data,
the NLO prediction using the CTEQ4M parton distribution function, and HERWIG.
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Figure 7.5: The transverse energy distributions for the three jets in unsmeared data
from the Jet100 trigger, the NLO prediction using the CTEQ4M parton distribution
function, and HERWIG with pr = 60 GeV.
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Figure 7.6: The event density in the Dalitz plane as predicted by the NLO calculation
with CTEQ4A1.
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Figure 7.7: The event density in the Dalitz plane as predicted by the NLO calculation
with CTEQ4A2.
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Figure 7.8: The event density in the Dalitz plane as predicted by the NLO calculation
with CTEQ4M.
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Figure 7.9: The event density in the Dalitz plane as predicted by the NLO calculation
with CTEQ4A4.
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Figure 7.10: The event density in the Dalitz plane as predicted by the NLO calculation
with CTEQ4Ab5.
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Figure 7.11: The fractional difference between unsmeared data and the NLO pre-
diction, using the CTEQ4M parton distribution function, as a function of X3 for
0.84<Xy <0.94.

systematic uncertainties on the fractional difference due to systematic uncertainties
in the data (see Chapter 5). We limit the analysis to entry bins for which X3 < 0.98
to avoid event geometries that approach the singular case of two-jet events in the
theoretical calculation; this leaves 217 bins for the comparison between the data and
the calculation. The regions in X3-X4 space that are used in the comparison between
the data and the NLO prediction, and which are plotted in Figures 7.11 through 7.14,
are shown in Figure 7.15. The data and the NLO prediction are consistent.

The average fractional difference for the three-jet sample as a function of Xy
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Figure 7.12: The fractional difference between unsmeared data and the NLO pre-
diction, using the CTEQ4M parton distribution function, as a function of X3 for
0.74<X4 <0.84.
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Figure 7.13: The fractional difference between unsmeared data and the NLO pre-
diction, using the CTEQ4M parton distribution function, as a function of X3 for
0.64<X4 <0.74.

162



CDF: Preliminary
15~ T T 1T 1T T 1T 1T T "1

‘0
l_\J_ ‘HH‘HH‘\ ‘HH‘HH‘\ ‘HH‘HH‘\ ‘HH‘HH‘

-1.5
1.5

060<X4S062 B T e i

-1.5
15

(Data-NLO)/NLO

0.58 < X, < 0.60 e

-1.5
15

0.56 < X, < 0.58 Daravars

-1.5
1.5

0.54 < X4 <0.56 ————

TN T T EY Y Y F ENY N S B
055 0.6 065 0.7 075 0.8 0.8 09 0.95

-1.5

o

o
'U.Iﬂ‘rrv—v—v—rrv—rv—r\ 'HH'HH!\ !HH!HH'\ !HH!HH'\ 'HH!HH'

X
oS

Figure 7.14: The fractional difference between unsmeared data and the NLO pre-
diction, using the CTEQ4M parton distribution function, as a function of X3 for
0.54<Xy <0.64.
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in the analysis and plotted in Figures 7.11 through 7.14.
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is shown in Figure 7.16.

The x? between the unsmeared data and the NLO calculation is plotted in
Figure 7.17 for several different values of the strong coupling constant, ag, each
with the appropriate parton distribution function from the CTEQ4 family. Table 7.1
summarizes the results that are plotted in Figure 7.17. The x? does not appear to
be changing systematically with ag, so no measurement of ag can be extracted. The
error shown consists of the contributions from the statistical uncertainty on the data

and the error on the theoretical calculation.

‘ Qs ‘ x° ‘ x? per bin ‘
0.1097 | 744+£59 | 3.43+0.27
0.1126 | 73659 | 3.39+0.27
0.1155 | 731+£59 | 3.37+0.27
0.1184 | 727£59 | 3.35%+0.27
0.1214 | 723459 | 3.33+0.27

Table 7.1: The x? between the data and the NLO calculation for different values of
as, using appropriate parton distribution functions from the CTEQ4 family.

Table 7.2 summarizes the cross section predicted by the calculation for each ag.
The cross section uncertainty quoted in this table is statistical and theoretical, due to
the change of renormalization and factorization scales. To estimate the contribution of
these changes in scales, they were varied by factors of 2. If we use all data quality and
offline selection cuts described in Chapters 3 and 6, with the exception of the cut on
the NLO uncertainty, and restrict our analysis to bins with X3 < 0.98, the total three-
jet production cross section is 45642(stat.) 29°(syst.) pb. For this particular set of
cuts, this is consistent with the earlier measurement used for comparison in Chapter 6
where the total three-jet production cross section after the cut on X3 < 0.98 (efficiency
about 0.99) is 690772 pb. The total three-jet production cross section for the NLO
calculation, using the CTEQ4M parton distribution function with ag = 0.1155, is

4824-2(stat.) "3} (theor.) pb. The cross section in each individual kinematically allowed

bin in the Dalitz plane in tabulated in Tables F.1 through F.14 in Appendix F.
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Figure 7.16: The average fractional difference for the three-jet sample as a function
of X4.
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Figure 7.17: x? between the data and the NLO calculation for different values of oz,
using appropriate parton distribution functions from the CTEQ4 family.
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Parton Distribution Function | ag | Three-jet Production Cross Section (pb) |

CTEQ4A1 0.1097 453+2(stat.) 727 (theor.)
CTEQ4A2 0.1126 473+2(stat.) T29 (theor.)
CTEQ4M 0.1155 48242 (stat.) T3} (theor.)
CTEQ4A4 0.1184 493+3(stat.) 3¢ (theor.)
CTEQ4A5 0.1214 503+3(stat.) T3¢ (theor. )
CTEQ4H)J 0.1159 501+3(stat.) 2] (theor.)

Table 7.2: The three-jet production cross section of events in the NLO templates, for
different values of ag, using the appropriate parton distribution functions from the
CTEQ4 family. The uncertainties are statistical and theoretical, due to the changes
of the renormalization and factorization scales.

We calculate (x')? between HERWIG and the NLO calculation using the
CTEQ4 parton distribution functions. A plot of (}')? versus ag is shown in Fig-
ure 7.18. HERWIG events that have passed QFL and have been unsmeared using
the correction factors described in Chapter 4 are plotted as circles. Hadron-level
HERWIG events are plotted as squares. The behavior of (y')? as a function of ag
in Figure 7.18 is similar to the x? behavior in Figure 7.17. The numerical value
of (x')? in Figure 7.18 is larger than the one shown in Figure 6.22. This is due to
the significantly reduced statistical uncertainties in the NLO calculation using the
CTEQ4 parton distribution function family and a HERWIG data set with reduced
statistical uncertainties. The error shown consists of the contributions from the sta-
tistical uncertainty on the HERWIG data sample and the error on the theoretical
calculation. As the numerical value of (x')? increases from the analysis using CTEQ3
to the analysis with CTEQ4, the associated error also increases slightly. The smaller
individual error contributions are balanced against the larger absolute value of (y')?
for this slight increase in the error.

A plot of (x")? between the NLO result using CTEQ4M with ag = 0.1155 and
the other results from the CTEQ4A parton distribution function family versus ag is
shown in Figure 7.19. The (x")? in Figure 7.19 is constant for the whole range of

as, indicating that the Dalitz variables are not sensitive to changes in ag. The error
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Figure 7.18: The circles represent (x')? between the NLO calculation and events that
have been generated by HERWIG, passed through QFL, and then unsmeared by the
Monte Carlo approach. The squares represent (y')? between the NLO calculation and
hadron-level HERWIG events.

shown is due to the error on the theoretical calculation.

7.2 CTEQ4HJ Results

Similar analyses as for CTEQ4A have been performed for CTEQ4HJ. The transverse
energy distributions of all three jets for unsmeared data and the NLO predictions,
using the CTEQ4HJ parton distribution function, are plotted in Figure 7.20 and
compared to HERWIG. The HERWIG event sample has to be adjusted for systematic
errors in the QFL energy scale (see Reference [35].) A minimum pr of 60 GeV is used
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Figure 7.19: (x”)? between the NLO calculation with ag = 0.1155 and the NLO
calculation for other values of ag, using appropriate parton distribution functions
from the CTEQ4 family.
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in the generation of the HERWIG sample. The three jet distributions are normalized
to the same number of events to allow comparison of their shapes. To demonstrate
the difference between the jet Er distributions obtained by using the CTEQ3 and
CTEQ4HJ parton distribution functions, the ratio of the two jet Er distributions is
shown in Figure 7.21. At the level of uncertainty achieved by the NLO calculation
at this time, deviations of this ratio from the value 1.0 in the Er distributions using
CTEQ3 and CTEQ4 could be attributed to systematic changes. In the HERWIG
data sample, the third jet is calculated to be significantly more energetic than the
corresponding distributions for the data and the NLO calculation. This appears to
be due to the fact that HERWIG does not correctly model the jet multiplicities, as
shown in Figure6.2. For a given value of >~ Er in an event, the third jet is more
energetic if the total number of jets in the event is less than in the data sample or in
the NLO prediction.

As an independent check on the data, the jet Er distributions obtained by the
Jet100 trigger are investigated. Data obtained from the > Er trigger and from the
Jet100 trigger agree very well. The jet Er distributions in both cases do not differ
significantly. Figure 7.22 shows the transverse energy distributions for the three jets
in unsmeared data from the Jet100 trigger, the NLO prediction using the CTEQ4HJ
parton distribution function, and HERWIG with pr = 60 GeV.

The Dalitz variables obtained by the NLO calculation using CTEQ4HJ are
shown in Figure 7.23.

The data and the NLO prediction, using the CTEQ4HJ parton distribution
function, are compared by computing the difference between the observed and pre-
dicted number of events, scaled by the number of predicted events, in each bin. This
fractional difference is plotted in Figures 7.24 through 7.27 as a function of X3, span-
ning the entire range in Xy. Figure 7.24 shows the region with 0.84<X, <0.94,
0.74<X, <0.84 in Figure 7.25, and Figures 7.26 and 7.27 span 0.64<X, <0.74 and
0.54<Xy <0.64, respectively. Also shown in Figures 7.24 through 7.27 are the total
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Figure 7.20: The transverse energy distributions for the three jets in unsmeared data,
the NLO prediction using the CTEQ4HJ parton distribution function, and HERWIG.
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Figure 7.21: The ratio of the jet Et distributions obtained by using CTEQ3 and
CTEQ4HJ.
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Figure 7.22: The transverse energy distributions for the three jets in unsmeared data
from the Jet100 trigger, the NLO prediction using the CTEQ4HJ parton distribution
function, and HERWIG with pr = 60 GeV.
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Figure 7.24: The fractional difference between unsmeared data and the NLO pre-
diction, using the CTEQ4HJ parton distribution function, as a function of X3 for
0.84<Xy <0.94.

systematic uncertainties on the fractional difference due to systematic uncertainties
in the data (see Chapter 5).

The average fractional difference for the three-jet sample as a function of X4
is shown in Figure 7.28.

The x? between the unsmeared data and the NLO calculation using CTEQ4HJ
is 725459 and x? per bin is 3.344-0.27.

The total three-jet production cross section for the NLO calculation, using the

CTEQ4HJ parton distribution function, is 50143(stat.)*2%(theor.) pb.
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Figure 7.25: The fractional difference between unsmeared data and the NLO pre-
diction, using the CTEQ4HJ parton distribution function, as a function of X3 for
0.74<X4 <0.84.
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Figure 7.26: The fractional difference between unsmeared data and the NLO pre-
diction, using the CTEQ4HJ parton distribution function, as a function of X3 for
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Conclusions

We use the CDF Run 1b data sample with a total integrated luminosity of 8 pb~! to
compare multi-jet events to a prediction from a next-to-leading order QCD calcula-
tion. In the process, the data are corrected for calorimeter response and for detector
resolution effects. The two independent approaches to this unsmearing procedure
are not consistent; the procedure with the smaller systematic error, the Monte Carlo
approach, is used to find the smearing correction factors. The large systematic un-
certainties in the analytic unsmearing are due to our use of a piecewise-continuous
parameterization of the Dalitz distributions.

The total systematic uncertainties on the data are determined. Given these
uncertainties, the data and the NLO predictions are found to be consistent. Slight
differences in the E1 and Dalitz distributions are attributed to the neglect of higher
jet multiplicities in the NLO calculation. The data are found to be stable with respect
to the cuts introduced in this analysis. Small changes in the cut parameters do not
result in significant changes in the Dalitz distributions.

The total inclusive three-jet production cross section is measured. It is consis-
tent with the cross section predicted by the NLO calculation. A measurement of the
strong coupling constant, ag, is not possible. At the level of Monte Carlo statistics
achieved in this analysis, the method explored is not sufficiently sensitive to changes
of ag to extract a measurement.

Calculation of the NLO prediction requires extensive computing resources. Our

analysis uses 10 different NLO templates in order to investigate the proposed method
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to measure as. With the computing resources currently available to us, the parton
distribution functions do not constrain the gluon distribution sufficiently to allow a
measurement of ag. If large-scale computing was accessible, the method introduced
in this thesis could be explored further. As discussed in Chapter 3, only a limited
amount of measurements of g are available from hadron-hadron colliders. New
innovative methods to determine the strong coupling are important, especially if they
have the potential to reduce current systematic uncertainties. The availability of a
Monte Carlo generator to calculate three-jet events to NLO in perturbation theory
also allows for the first direct measurement of the ratio of the three-jet and two-jet
production cross sections. The results of the data analysis and the NLO Monte Carlo
data obtained in our study could serve as basis for that measurement.

In the next run at the Tevatron (Run 2), data of a total integrated luminosity
of 2 fb~! are expected. This increase in statistics by a factor of 20, compared to
Run 1b, will reduce the statistical uncertainties in the data significantly. Combined
with the attempt to reduce the systematic uncertainty due to detector effects in
Run 2, new data could allow further precision comparisons to predictions from QCD,
especially as theorists are already thinking about an extension of the current NLO
calculation to next-to-next-to-leading order (NNLO) [68]. Even though the reduction
of experimental and theoretical errors provides a challenging task, it is hoped that it

will lead to a deeper understanding of the strong interaction.
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Appendix A

The Smearing Correction Factor in All Kinemati-

cally Allowed Bins in the Dalitz Plane

In Chapter 4, the unsmearing of the data is discussed. For complete information,
the fractional difference between the unsmeared measured and the true Dalitz distri-
butions in all individual kinematically allowed bins in the Dalitz plane is tabulated
in this appendix. The unsmearing correction factor, K, and its uncertainty are also
shown. Bins that are not used in the analysis because the uncertainty on the NLO
calculation in every data set is > 0.2 are marked with an asterisk. The smearing

correction factors are obtained by the Monte Carlo method.
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| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onLo |

0.67 | 0.67 -0.024+0.19 -0.13 0.93+0.067 | 0.392 *
0.69 | 0.65 0.23+0.28 0.88 1.02+0.083 | 0.191 *
0.69 | 0.67 -0.0017+0.11 -0.016 0.91£0.037 | 0.106
0.69 | 0.69 0.13+0.18 0.73 0.94+0.053 | 0.255 *
0.71 | 0.65 -0.20%0.099 -1.9 0.94+0.044 | 0.108
0.71 | 0.67 -0.1440.094 -14 0.93£0.037 | 0.126
0.71 | 0.69 -0.18+0.089 -1.9 0.96+0.039 | 0.118
0.71 | 0.71 -0.065+0.14 -0.44 0.92+0.050 | 0.193 *
0.73 | 0.63 0.45+0.30 1.7 0.97£0.077 | 0.394 *
0.73 | 0.65 0.16+0.12 1.5 0.89+£0.035 | 0.225 *
0.73 | 0.67 -0.099+0.092 -1.0 0.98+0.038 | 0.148
0.73 | 0.69 0.013+£0.10 0.12 0.92+0.036 | 0.130
0.73 | 0.71 0.071+£0.11 0.68 0.944+0.036 | 0.123
0.73 | 0.73 -0.13£0.12 -1.0 0.88+0.045 | 0.171 *
0.75 | 0.63 0.20+0.14 1.5 0.95+£0.043 | 0.138
0.75 | 0.65 -0.124+0.088 -1.3 0.96+£0.037 | 0.141

Table A.1: The fractional difference between the unsmeared measured and the true
Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.

| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onLo |
0.75 | 0.67 0.144+0.11 1.3 0.87+0.033 | 0.117
0.75 | 0.69 0.254+0.12 2.2 0.87£0.033 | 0.135
0.75 | 0.71 0.13+0.11 1.2 0.91+0.034 | 0.118
0.75 | 0.73 -0.0093+0.097 -0.10 0.95+0.034 | 0.134
0.75 | 0.75 -0.058+0.13 -0.43 0.954+0.048 | 0.210 *
0.77 | 0.61 0.36+0.29 14 0.86+0.064 | 0.309 *
0.77 | 0.63 -0.042+0.097 -0.42 0.93+0.035 | 0.113
0.77 | 0.65 0.028+0.10 0.28 0.924+0.034 | 0.127
0.77 | 0.67 -0.0014+0.096 -0.015 0.92+0.035 | 0.119
0.77 | 0.69 0.097+£0.10 0.96 0.92+0.033 | 0.110
0.77 | 0.71 0.035+0.097 0.37 0.94+0.033 | 0.147
0.77 | 0.73 -0.16+0.083 -1.8 0.92+0.033 | 0.103
0.77 ] 0.75 0.042+0.096 0.44 0.944+0.032 | 0.145
0.77 | 0.77 -0.038£0.12 -0.32 0.974+0.045 | 0.209 *
0.79 | 0.61 -0.16+0.094 -1.5 0.99+0.041 | 0.139
0.79 | 0.63 -0.10+0.087 -1.1 0.91+0.033 | 0.143

Table A.2: The fractional difference between the unsmeared measured and the true
Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.
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| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K ONLO
0.79 | 0.65 -0.020+0.093 -0.22 0.92+0.033 | 0.136
0.79 | 0.67 0.03540.097 0.37 0.93+0.033 | 0.138
0.79 | 0.69 -0.017+0.088 -0.20 0.92+0.032 | 0.128
0.79 | 0.71 -0.052+0.088 -0.58 0.9940.034 | 0.144
0.79 | 0.73 -0.16+0.077 -1.9 1.00£0.034 | 0.104
0.79 | 0.75 -0.018+0.088 -0.20 0.954+0.032 | 0.104
0.79 | 0.77 0.1140.092 1.3 0.94+0.031 | 0.106
0.79 | 0.79 0.0124+0.12 0.10 0.99+0.044 | 0.184 *
0.81 | 0.59 -0.29+0.13 -1.9 0.9340.066 | 0.284 *
0.81 | 0.61 0.19+0.11 1.8 0.944+0.033 | 0.120
0.81 | 0.63 -0.042+0.086 -0.47 0.9640.034 | 0.0978
0.81 | 0.65 0.071+0.098 0.74 0.94+0.032 | 0.136
0.81 | 0.67 -0.081+0.083 -0.94 0.96+0.033 | 0.108
0.81 | 0.69 -0.012+0.088 -0.14 1.00+0.034 | 0.143
0.81 | 0.71 0.08740.098 0.92 0.9340.031 | 0.122
0.81 | 0.73 -0.031+0.084 -0.37 1.02+0.033 | 0.116

Table A.3: The fractional difference between the unsmeared measured and the true
Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.

| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onLo |
0.81 | 0.75 0.064+0.090 0.73 0.95+0.030 | 0.0636
0.81 | 0.77 0.036+0.085 0.42 0.95+0.030 | 0.116
0.81 | 0.79 0.053£0.086 0.64 0.92+0.028 | 0.0953
0.81 ] 0.81 0.025£0.11 0.23 1.004+0.042 | 0.109 *
0.83 | 0.59 0.081+0.11 0.73 0.924+0.037 | 0.134
0.83 | 0.61 -0.087£0.083 -1.0 0.96+0.033 | 0.122
0.83 | 0.63 -0.097£0.082 -1.1 0.93+0.032 | 0.139
0.83 | 0.65 -0.067+0.084 -0.77 0.984+0.033 | 0.134
0.83 | 0.67 0.066+0.095 0.71 0.89+0.030 | 0.129
0.83 | 0.69 -0.095%0.080 -1.1 0.96+0.032 | 0.129
0.83 | 0.71 0.070£0.093 0.77 0.93+£0.030 | 0.145
0.83 | 0.73 0.099£0.093 1.1 0.944+0.030 | 0.124
0.83 | 0.75 0.033+0.085 0.39 0.974+0.030 | 0.106
0.83 | 0.77 0.061£0.086 0.73 0.94+0.029 | 0.118
0.83 | 0.79 0.016+0.081 0.21 0.96+0.028 | 0.105
0.83 | 0.81 -0.0024+0.074 -0.033 0.96+0.028 | 0.112

Table A.4: The fractional difference between the unsmeared measured and the true
Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.
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| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onLo |

0.83 | 0.83 0.17£0.12 1.5 0.994+0.038 | 0.143 *
0.85 | 0.57 -0.055+0.17 -0.32 0.88+0.058 | 0.621 *
0.85 | 0.59 0.19£0.10 2.0 0.8940.030 | 0.149
0.85 | 0.61 0.028+0.088 0.33 0.96+0.031 | 0.132
0.85 | 0.63 0.055+0.093 0.60 0.9140.030 | 0.0950
0.85 | 0.65 0.16%0.10 1.7 0.97£0.032 | 0.104
0.85 | 0.67 0.022+0.088 0.25 0.944+0.031 | 0.113
0.85 | 0.69 -0.012+0.085 -0.14 0.95+0.030 | 0.117
0.85 | 0.71 -0.16+0.070 -2.1 1.00+0.031 | 0.120
0.85 | 0.73 -0.02540.080 -0.31 0.95+0.029 | 0.120
0.85 | 0.75 -0.17£0.066 -24 0.99+£0.030 | 0.107
0.85 | 0.77 0.044+0.081 0.55 0.97£0.029 | 0.125
0.85 | 0.79 0.054+0.079 0.70 0.9440.027 | 0.0937
0.85 | 0.81 -0.11£0.065 -1.6 1.03£0.028 | 0.0963
0.85 | 0.83 0.056£0.078 0.74 0.97£0.026 | 0.0996
0.85 | 0.85 -0.080+0.091 -0.84 1.014+0.037 | 0.151 *

Table A.5: The fractional difference between the unsmeared measured and the true
Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.

| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onvo |
0.87 | 0.57 -0.14+0.086 -1.5 0.98+0.036 | 0.137
0.87 | 0.59 -0.085£0.078 -1.1 0.96+0.030 | 0.122
0.87 | 0.61 -0.046+0.080 -0.57 0.944+0.030 | 0.124
0.87 | 0.63 -0.094+0.075 -1.2 0.944+0.030 | 0.123
0.87 | 0.65 -0.065+0.077 -0.83 1.01£0.032 | 0.127
0.87 | 0.67 0.114+0.091 1.3 0.944+0.029 | 0.104
0.87 | 0.69 0.068+0.086 0.81 0.984+0.029 | 0.128
0.87 | 0.71 0.082+0.086 0.98 0.96+0.028 | 0.124
0.87 | 0.73 0.18+0.090 2.1 0.88+0.026 | 0.117
0.87 | 0.75 0.038+0.080 0.48 0.97+0.028 | 0.104
0.87 | 0.77 0.059£0.080 0.76 0.97+£0.027 | 0.126
0.87 | 0.79 -0.055£0.069 -0.77 1.03+0.028 | 0.0978
0.87 | 0.81 -0.087+0.066 -1.3 0.98+0.026 | 0.123
0.87 | 0.83 -0.085£0.065 -1.3 0.994+0.026 | 0.110
0.87 | 0.85 -0.061£0.064 -0.92 1.014+0.026 | 0.0961
0.87 | 0.87 0.144+0.11 14 0.95+0.034 | 0.125

Table A.6: The fractional difference between the unsmeared measured and the true
Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.
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| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onLo |
0.89 | 0.55 -0.005740.15 -0.037 0.97+0.058 | 0.240 *
0.89 | 0.57 -0.01640.080 -0.20 0.96+0.029 | y0.146
0.89 | 0.59 -0.071+0.075 -0.93 0.97+0.029 | 0.118
0.89 | 0.61 -0.072+0.075 -0.94 0.98+0.029 | 0.122
0.89 | 0.62 0.048+0.082 0.59 0.96+0.028 0.112
0.89 | 0.65 -0.043+0.075 -0.56 0.92+0.027 | 0.111
0.89 | 0.67 -0.0394+0.074 -0.52 0.92+0.027 | 0.135
0.89 | 0.69 0.0174£0.078 0.22 0.944+0.027 | 0.113
0.89 | 0.71 0.031+0.078 0.41 0.94+0.027 | 0.127
0.89 | 0.73 -0.12+0.064 -1.7 0.96+0.027 | 0.104
0.89 | 0.75 -0.031+0.070 -0.44 0.96+0.026 | 0.106
0.89 | 0.77 -0.01340.068 -0.19 0.96+0.026 | 0.119
0.89 | 0.79 -0.053+0.065 -0.80 1.00£0.026 | 0.108
0.89 | 0.81 0.11+0.076 1.5 0.9940.026 | 0.103
0.89 | 0.83 0.093+0.074 1.3 0.95+0.024 | 0.104
0.89 | 0.85 -0.011+0.064 -0.17 1.03+£0.025 | 0.105
Table A.7: The fractional difference between the unsmeared measured and the true

Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.

| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onvo |
0.89 | 0.87 0.031+0.067 0.46 1.00+0.024 | 0.0992
0.89 | 0.89 -0.03140.088 -0.34 1.02+0.034 | 0.116
0.91 | 0.55 0.0071+0.086 0.083 0.95+0.031 | 0.131
0.91 | 0.57 0.040+0.076 0.53 0.96+0.027 | 0.115
0.91 | 0.59 0.124+0.084 1.5 0.98+0.028 | 0.126
0.91 | 0.61 -0.009240.073 -0.12 0.93+0.026 | 0.122
0.91 | 0.63 -0.144+0.063 -2.0 0.9940.027 | 0.105
0.91 | 0.65 -0.010+0.072 -0.14 0.97+0.026 | 0.117
0.91 | 0.67 0.18+0.083 2.3 0.96+0.026 | 0.124
0.91 | 0.69 0.10+0.078 1.4 0.91+0.024 | 0.110
0.91 | 0.71 0.032+0.072 0.45 0.974+0.026 | 0.105
0.91 | 0.73 0.0067£0.069 0.10 0.974+0.025 | 0.118
0.91 | 0.75 -0.081+0.064 -1.2 0.99+0.025 | 0.0945
091 | 0.77 -0.02040.065 -0.30 0.984+0.025 | 0.0822
0.91 | 0.79 0.058+0.071 0.84 0.93+0.023 | 0.0967
0.91 | 0.81 -0.013+0.064 -0.20 1.01+0.025 | 0.0917
Table A.8: The fractional difference between the unsmeared measured and the true

Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.
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| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onLo |

0.91 | 0.83 -0.10£0.058 -1.7 1.03£0.025 | 0.0930
0.91 | 0.85 0.048+0.068 0.72 1.03£0.025 | 0.0990
0.91 | 0.87 0.025+0.064 0.40 1.03£0.024 | 0.0865
0.91 | 0.89 -0.05140.060 -0.83 1.06+£0.025 | 0.120
0.91 | 091 -0.02540.086 -0.29 1.13+0.038 | 0.114
0.93 | 0.53 0.066+0.16 0.44 1.014+0.056 | 0.321 *
0.93 | 0.55 0.1240.080 1.5 0.90£0.025 | 0.149
0.93 | 0.57 -0.11+0.064 -1.6 1.01+£0.027 | 0.131
0.93 | 0.59 0.082+0.077 1.1 0.94+0.025 | 0.0996
0.93 | 0.61 0.021£0.071 0.30 0.94+0.025 | 0.107
0.93 | 0.63 -0.11+0.063 -1.7 1.024+0.027 | 0.142
0.93 | 0.65 -0.043+0.066 -0.64 0.96+0.025 | 0.0911
0.93 | 0.67 -0.050+0.062 -0.79 0.944+0.024 | 0.103
0.93 | 0.69 -0.0070+£0.064 -0.11 0.944+0.023 | 0.109
0.93 | 0.71 -0.060+0.061 -0.96 0.954+0.023 | 0.0910
0.93 | 0.73 0.10+£0.072 1.5 0.96+0.023 | 0.108

Table A.9: The fractional difference between the unsmeared measured and the true
Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.

| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onLo |
0.93 | 0.75 -0.10+£0.058 -1.6 0.99+0.024 | 0.0873
0.93 | 0.77 0.086+0.068 1.3 0.97+0.023 | 0.102
0.93 | 0.79 0.047+0.064 0.74 0.98+0.023 | 0.0899
0.93 | 0.81 -0.016+0.060 -0.26 1.024+0.023 | 0.0992
0.93 | 0.83 0.029+0.062 0.47 1.02+0.023 | 0.0935
0.93 | 0.85 -0.062+0.058 -1.0 1.024+0.023 | 0.0858
0.93 | 0.87 0.024+0.062 0.39 1.07+0.025 | 0.0863
0.93 | 0.89 0.12+0.070 1.8 1.12+0.026 | 0.0721
0.93 | 091 -0.0060+0.065 -0.092 1.13+£0.027 | 0.0790
0.93 | 0.93 0.037+0.093 0.40 1.13+£0.040 | 0.103
0.95 | 0.53 -0.0042+0.094 -0.045 1.04£0.037 | 0.202 *
0.95 | 0.55 0.028+0.084 0.34 1.03+£0.032 | 0.149
0.95 | 0.57 0.056+0.084 0.68 1.02+0.031 | 0.169 *
0.95 | 0.59 0.0094+0.081 0.12 1.04+0.031 | 0.158 *
0.95 | 0.61 -0.014+0.077 -0.18 1.03+0.030 | 0.126
0.95 | 0.63 -0.032+0.075 -0.42 1.07£0.031 | 0.149

Table A.10: The fractional difference between the unsmeared measured and the true
Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.
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| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onLo |

0.95 | 0.65 -0.056+0.071 -0.77 1.01+£0.028 | 0.129
0.95 | 0.67 -0.064+0.068 -0.91 1.02+0.028 | 0.130
0.95 | 0.69 0.027£0.072 0.37 1.05+£0.028 | 0.125
0.95 | 0.71 0.075£0.072 1.1 1.004+0.026 | 0.117
0.95 | 0.73 0.0053+0.066 0.081 1.02+0.025 | 0.121
0.95 | 0.75 -0.023+0.059 -0.39 1.014+0.024 | 0.109
0.95 | 0.77 0.038+0.062 0.61 1.00£0.023 | 0.0941
0.95 | 0.79 -0.0085£0.058 -0.15 1.03£0.023 | 0.0831
0.95 | 0.81 -0.0033+0.057 -0.057 1.03+0.023 | 0.0823
0.95 | 0.83 0.013+0.058 0.22 1.01+£0.022 | 0.0859
0.95 | 0.85 -0.029+0.057 -0.51 1.0840.024 | 0.0880
0.95 | 0.87 0.0023+0.059 0.039 1.08+0.025 | 0.0774
0.95 | 0.89 -0.055+0.058 -0.91 1.14+0.027 | 0.0920
0.95 | 0.91 0.017£0.066 0.26 1.20£0.030 | 0.0924
0.95 | 0.93 -0.080+0.064 -1.2 1.21+£0.033 | 0.0809
0.95 | 0.95 0.10£0.14 0.76 1.2840.059 | 0.214 *

Table A.11: The fractional difference between the unsmeared measured and the true

Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.

| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onLo |
0.97 | 0.51 -0.035£0.24 -0.14 1.04+0.10 1.82*
0.97 | 0.53 0.080+0.12 0.66 1.044+0.046 | 0.282 *
0.97 | 0.55 -0.072+0.11 -0.64 1.114+0.050 | 0.220 *
0.97 | 0.57 -0.15+0.10 -14 1.07+0.047 | 0.272 *
0.97 | 0.59 0.023+0.11 0.19 1.06£0.045 | 0.318 *
0.97 | 0.61 -0.031+0.10 -0.29 1.06£0.045 | 0.278 *
0.97 | 0.63 -0.0021+0.11 -0.019 1.01£0.040 | 0.302 *
0.97 | 0.65 -0.055%0.10 -0.53 1.03+£0.040 | 0.176 *
0.97 | 0.67 0.082+0.11 0.78 1.09+0.040 | 0.282 *
0.97 | 0.69 0.11+0.11 1.1 1.06+0.038 | 0.304 *
0.97 | 0.71 0.066+0.099 0.69 1.04+0.036 | 0.222 *
0.97 | 0.73 -0.13+0.076 -1.6 1.04£0.034 | 0.234 *
0.97 | 0.75 0.017+0.084 0.21 1.04+0.033 | 0.129 *
0.97 | 0.77 0.025%0.080 0.31 1.07£0.033 | 0.127
0.97 | 0.79 0.023+0.079 0.29 1.15+£0.033 | 0.149
0.97 | 0.81 -0.144+0.066 -1.9 1.12+£0.031 | 0.143

Table A.12: The fractional difference between the unsmeared measured and the true
Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.
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| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onLo |

0.97 | 0.83 0.034+0.072 0.49 1.14+0.030 | 0.117
0.97 | 0.85 -0.056+0.063 -0.86 1.16£0.029 | 0.0921
0.97 | 0.87 0.048+0.069 0.71 1.15£0.028 | 0.0911
0.97 | 0.89 -0.037+£0.063 -0.58 1.2240.030 | 0.0873
0.97 | 0.91 0.010£0.070 0.14 1.30+0.035 | 0.100
0.97 | 0.93 -0.052+0.079 -0.64 1.264+0.041 | 0.144
0.97 | 0.95 0.058+0.12 0.48 1.24+0.055 | 0.223 *
0.97 | 0.97 0.13+0.31 0.46 1.32+0.13 | 8.16 *
0.99 | 0.51 -0.16+0.36 -0.41 1.11+0.20 | 0.607 *
0.99 | 0.53 -0.086+0.33 -0.25 1.16+0.16 -
0.99 | 0.55 0.27£0.50 0.62 1.09+0.15 | 0.238 *
0.99 | 0.57 0.32+0.45 0.78 1.03+0.14 | 0.932 *
0.99 | 0.59 0.14£0.35 0.43 1.07£0.14 -
0.99 | 0.61 -0.33+0.20 -1.3 1.34+0.17 -
0.99 | 0.63 0.414+0.44 1.1 0.91+0.10 -
0.99 | 0.65 0.082+0.29 0.29 1.10+0.12 -

Table A.13: The fractional difference between the unsmeared measured and the true
Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.

| X5 | X4 | (Unsmeared-True)/True | (Unsmeared-True)/o | K | onLo |
0.99 | 0.67 0.32+0.33 1.1 1.17+£0.12 | 4.08 *
0.99 | 0.69 -0.060+0.23 -0.25 1.15+0.11 -
0.99 | 0.71 0.15+0.27 0.59 0.87+0.077 -
0.99 | 0.73 0.13+0.25 0.52 1.06+0.084 -
0.99 | 0.75 0.033+0.21 0.16 1.13+£0.087 | 1.36 *
0.99 | 0.77 0.14+0.23 0.62 1.08+0.077 | 0.432 *
0.99 | 0.79 -0.0042+0.19 -0.022 1.08+0.078 -
0.99 | 0.81 0.0029+0.18 0.016 1.01£0.069 | 0.325 *
0.99 | 0.83 0.035%0.18 0.20 1.18+0.074 | 0.385 *
0.99 | 0.85 -0.010£0.16 -0.063 1.11+0.067 | 0.497 *
0.99 | 0.87 -0.14+0.13 -0.96 1.25+£0.072 | 0.340 *
0.99 | 0.89 -0.066+0.13 -0.48 1.19+0.068 | 0.178 *
0.99 | 0.91 0.2940.20 1.6 1.27+0.073 | 0.368 *
0.99 | 0.93 -0.014+0.15 -0.088 1.30+0.081 | 0.470 *
0.99 | 0.95 -0.18+0.19 -0.85 1.49+0.13 -
0.99 | 0.97 -0.114+0.49 -021 1.44+0.32 -

Table A.14: The fractional difference between the unsmeared measured and the true
Dalitz distributions in every kinematically allowed bin in the Dalitz plane as a function
of X3 and X4.
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Appendix B

The Analytical Unsmearing Procedure

In this appendix, we describe the analytical method to unsmear the data. The de-
scription of the procedure involves the generic variable X which in our case stands for
either one of the Dalitz variables X35 and X4, but it can generally be replaced by any
variable that is a function of the jet energies.

Due to the smearing in the detector, the response to signals of one specific
energy is not at Delta-function. This measured distribution is called the detector
response function. The observed spectrum of the variable X can be described such

that the contents of each bin are given by

fbin C dXmeas

Obin =
bin width ’

(B.1)
where C is the convolution of the true spectrum and the detector response function,
C = / R(Xmeas, Xtrue, Y(Xmeas)) T(Xtrue, Z) dXtrue. (BQ)

OP" is the observed number of entries in an X bin. When we refer to the values of
the convolution in all bins, we call the resulting function O. R represents the detector
response function which depends on the measured value of X, X™ the true value
of X, X" and a set of parameters, Y. The true spectrum, T, depends on X" and
another set of parameters, Z, which are explained below.

The integration over X™®* and the division by the bin width account for the

fact that the events are distributed over the whole bin and do not simply assume the
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value at the center of the bin. It is performed over the data bin that corresponds to
OPin, Effectively, we are calculating the mean of C in that specific bin.

We perform the convolution over all possible values of X" in order to account
for the contributions from all X" to the number of observed events in a specific
data bin. In the case of the Dalitz variables, the boundaries of integration are the
intervals from % to 1 for X3 and from % to 1 for Xy, since any other values of X'ue
are kinematically forbidden (see the previous chapter). Parameterization of the true
spectrum does not make sense outside these ranges.

The data are unsmeared by using the procedure outlined in this appendix. A
detailed description of the individual steps of the procedure can be found below. This
method was adapted from Reference [35] and generalized to suit the analysis of the

generic variable X.

1. The jet energies for the X™®* distribution are corrected using JTC96. Cor-
rections for errors in the absolute and relative energy scales are applied, in
addition to adjustments that are necessary to account for the underlying event,

out-of-cone corrections are not used.

2. We choose a set of values of X" and find the corresponding distributions for
Xmeas These are the detector response distributions which we then normalize
to unit area since the detector only smears X, but it does not create or destroy

events.

3. We find the function R, depending on X'U¢ X™e and a set of parameters
Y, that best describes all detector response distributions, the detector response

function.

4. We define the x? between the detector response distributions and R, and call
it x7. By minimizing it, we obtain the values of the parameters Y. The fitting

program MINUIT is used for this task.
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. We parameterize the true spectrum, T.

. We fix the values of the parameters Y in R and define as x3 the y? between the
data distributions in X and the value of the convolution integral, O, in all bins.
We minimize x3 to find the parameters Z in the true spectrum, T. MINUIT is
used to perform this fit.

. With this particular choice of parameters Z and Y, we calculate the values of the
true spectrum and the convolution integral in each bin. The smeared spectrum
is given by the values of the convolution integral for the chosen set of parameters.

We expect the smeared spectrum to reproduce the data distribution.

. To quantify the factor that needs to be applied to the data to correct for the

smearing, we define a correction factor, K, for each bin:

smeared spectrum (X™es)

K (X™eas) = (B.3)

true spectrum (Xmeas)
The data are divided by K to give us the unsmeared, fully corrected, values:

data (X™)

corrected data (X™®) = W

(B.4)

The Detector Response Function

In order to parameterize the detector response, several HERWIG Monte Carlo samples

are generated. For our analysis of the unsmearing of the Dalitz variables, we used a

total of 439,313 HERWIG events. The values of X' and X™® are calculated for all

these Monte Carlo events. The internal consistency of the unsmearing procedure is

checked by an independent HERWIG sample, containing 72,990 events.

To find the detector response function for a given value of X", we begin

by selecting events with a well defined X'"®, Values of X"'® are chosen, ranging

over all values possible for that variable, such that the whole range of X™ can be

parameterized simultaneously. We call these X}“‘e. In the case of the Dalitz variables,
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X3 and Xy, Xj™* = 0.72, 0.75, 0.80, 0.85, 0.90, 0.93 and X}™"¢ = 0.53, 0.60, 0.67, 0.74,
0.81, 0.88, 0.95, respectively, spanning all of the kinematically allowed values. The
range of true values of X is £0.5% of the nominal value. The detector simulation,
QFL, is applied to these events to produce smeared distributions for X™¢ We next
fit several trial functions to the X™* distributions to find the best parameterization
for the detector response function. We define x3/d.o.f. to be the x?/d.o.f. between a
trial function and the X™** distribution. The x3/d.o.f. is computed for all functions
for each sample, and the lowest average x3/d.o.f. indicates the best parameterization.

An acceptable parameterization of the detector response for the study of the
Dalitz variables turns out to be the sum of three Gaussians:

R = Z \/_Ul exp<_(ui ;;.gmeas)Z)- (B.5)

2

Each individual Gaussian has to be normalized to unity and multiplied by a relative
weight, n;. The nine parameters, n;, o;, and p; (which were collectively called Y in
the earlier discussion), in turn are parameterized as functions of X"™¢ to provide some
adjustability in R when it is simultaneously fit to all samples. We parameterize them
by:
n, = ng (Xtrue)3 + ;o (Xtrue)Q + n;3 (Xtrue) + N4,
g, = O0j1 (Xtrue)3 + 02 (Xtrue)Q —+ 0,3 (Xtrue) —+ Oi4, and (B6)
i = Lt (Xtrue)3 4 Lio (Xtrue)Z 4 Lis (Xtrue) 4 Lid,
so a total of 36 parameters is used in the parameterization of R.
Figures B.1 and B.2 show the distributions of X™®* for the samples ranging
from % to 1 in X3 and from % to 1 in X4 at the nominal values of X", Also shown
in the plots are the fits of the parameterized detector response to the histograms.

The 36 parameters (n;;, 0;;, and j,;) are found by a simultaneous fit of R to

the sample X™¢ distributions. The x? to be minimized is given by:

=y B mk (B.7)
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Figure B.1: The measured X3 distributions for X}me = 0.72, 0.80, 0.85, 0.90, and
0.93, and the detector response function, R.
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Figure B.2: The measured X, distributions for X;“‘e = 0.53, 0.60, 0.67, 0.74, 0.81,
0.88, and 0.95, and the detector response function, R.
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where j indexes the number of samples with different X" (in our case N = 6 for
X3 and 7 for Xy), R; is R for a given value of X}“‘e, n; is the smeared distribution
of X!, and v; the number of events generated at X{™¢. xi = 1.2 and 2.0 for the
fits to the measured X3 and X, distributions, respectively. The higher x? for X, is
solely due to the shape of the response function X}“‘e = 0.53, close to the limit of
the kinematically allowed region. At this limit the response function is not a simple

analytic function that could be parameterized.

Parameterization of the X" Spectrum

The X' spectrum is parameterized by a function that minimizes the y? between T
and the true spectrum histogram. Several trial functions for T were examined. To
parameterize X3 and X4, the true distributions are divided into several regions. The

parameterizations in these regions are polynomials of varying degrees:

Zo (Xue)3 4 Zy (XUue)2 4 7, (X)) + 7, if 2 < Xy < 0.84
Txy =9 Zs (XP0)2 4 Zg (XUU€) + 7, if 0.84 < X3 < 0.94 , and(B.8)
7g (Xtrue)Q + Zg (Xtrue) + Zg if0.94<X3<1

(Xtrue)Z + Z2 (Xtrue) + Z3 if 0.50 S X4 S 0.56

A

Zy

Zor (Xtrue)t 4 7 (Xtrue)3 4 7o (Xtrue)2 4 7,0 (XPue) 47, if 0.68 < X, < 0.92
Ty (XITUe)3 4 7,0 (XPrue)2 4 7, (Xbrue) 4 7, if0.92<X, <1

The functions Tx, and T, are the parameterizations for the true X3 and X, dis-
tributions, respectively, and the Z; are the parameters 7Z in these cases. The X3
distribution can be described by 10 parameters, the X, by 15. Figures B.3 and B.4
show the true spectra for X3 and X4 and the functions Tx, and Tx, that parameterize

the distributions.
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Figure B.3: The X¥"¢ distribution and T, which is parameterized by polynomials of
varying degrees.
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Figure B.4: The X{"® distribution and T, which is parameterized by polynomials of
varying degrees.
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The Unsmearing Factor

To obtain the unsmearing factor, K, the parameters Z in the parameterization of
the true spectrum have to be determined, and the ratio of the (smeared) measured
distribution over the true distribution has to be computed for each bin in X.

The parameters in T are found by minimizing the x2 between the O™ integral

(Equation B.2) and the data X spectrum:

bin bin\2
2 _ (O™ —o™™)
X2 = Z T b (B.10)
bin
where 0" is the number of events in the data spectrum in the specific bin.

In principle, O is given by Equation B.1. When it is computed, the integration
limits for integral “C” change to the kinematically allowed region for the variable X.
The integral that has to be fitted to the data X spectrum then assumes the form:

bin Xupper

Obin o /
bin width Wldth Xiower

R(Xmees, XIe) T(XMe, Z) X dXme, - (B.11)

where Xjower and Xypper are the lower and the upper bounds of the kinematically
allowed region for X. Figures B.5 and B.6 show the data spectra for X3 and X,
respectively, and the convolution integral, O, fitted to the histograms. x2 = 1.6 and
1.4 for X3 and X4, respectively, in our analysis.

The smearing correction factor, K", in each bin of the measured spectrum is

found by computing %

Results of the Analytical Unsmearing Procedure

The results of the analytical unsmearing procedure are obtained by taking the ratio
between the predicted smeared and the true X spectra. The unsmearing factor, K,
calculated by this method is shown in Figures B.7 and B.8 for X3 and X4, respectively.
The error on K is estimated by computing the fractional difference between the true

and the unsmeared measured HERWIG X distributions.
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Figure B.5: The X3 data distribution and the convolution integral, O.
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Figure B.6: The X, data distribution and the convolution integral, O.
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Figure B.7: The smearing correction factor, K, for bins of size 0.02 in X3, as calculated
with the analytical approach.
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Figure B.8: The smearing correction factor, K, for bins of size 0.02 in X4, as calculated
with the analytical approach.
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The smearing correction factors for the first and the last two bins in both
distributions are obtained by extrapolation. The parameterization of R does not pre-
serve the normalization to unity in these bins, as R extends beyond the kinematically
allowed region. Thus, K computed by the analytical method in these bins is corrected
by extrapolation from bins where R fully preserves the normalization.

The procedure to unsmear data for detector resolution effects, provided the
variables under investigation are functions of jet energies, is completed. The correc-
tion factors by which the CDF data have to be adjusted are found to be of the order
of a few percent. The unsmearing factor is less than 1.00 in regions where X3 or X,

are low, and it is greater than 1.00 at high X3 or Xj.

Internal Consistency Check

To check the internal consistency of the analytical unsmearing procedure, we apply
the correction factors, K", to the measured spectrum of an independent sample of
Monte Carlo events for which we know both the true and the measured spectrum.
We expect the corrected spectrum to match the true Monte Carlo spectrum perfectly.

Figures B.9 and B.10 show the fractional differences between the unsmeared
measured and the true X3 and X, spectra, respectively. The analytical unsmearing
procedure is not internally consistent. Deviations from 0 in these plots that show sys-
tematic behavior are due mainly to the large systematic uncertainty associated with
this analytic unsmearing procedure which are caused by our choice of parameteriza-
tion. It was not possible to find single continuous analytic functions that describe
the true X3 and X, spectra. Instead, piecewise-continuous functions are used to pa-
rameterize them. During the computation of the convolution integrals, the functions
calculated by the fitting routine do not exactly match at the boundaries of the inter-
vals for the piecewise-continuous functions. The smearing correction factors become

discontinuous at these boundaries (see Figures B.7 and B.8), and large systematic

205



uncertainties have to be assigned to their numerical values. As a consequence, the
fractional differences between the measured unsmeared and the true spectra in Fig-
ures B.9 and B.10 appear to have systematic distributions about 0. The X3 and X4

distributions studied in this analysis do not allow continuous parameterizations.
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Figure B.9: The fractional difference between the number of Monte Carlo events
(which have been generated by HERWIG, propagated through QFL, then unsmeared)
and their true number, as calculated with the analytical approach, versus Xs.
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Appendix C

Summary of the Er Smearing Correction Factors

In Chapter 4, the smearing correction factor for the Er distributions of the three
leading jets in the analysis are discussed. For complete information on the smearing
correction factors which are obtained by the Monte Carlo method, they are tabulated

in this appendix.

| Er (GeV) | Unsmearing Correction Factor | Uncertainty |

25 1.48 0.00534
35 1.01 0.00323
45 0.99 0.00323
35 0.98 0.00337
65 0.99 0.00362
75 0.99 0.00384
85 1.05 0.00425
95 1.09 0.00445
105 1.18 0.00473
115 1.21 0.00458
125 1.16 0.00399
135 1.10 0.00333
145 1.01 0.00274
155 0.96 0.00244
165 0.92 0.00230
175 0.89 0.00232

Table C.1: The unsmearing correction factor for the Er distributions and their un-
certainties for 20 GeV < Er < 180 GeV.
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| Er (GeV) | Unsmearing Correction Factor | Uncertainty |

185 0.88 0.00254
195 0.89 0.00290
205 0.90 0.00341
215 0.91 0.00401
225 0.93 0.00487
235 0.92 0.00570
245 0.97 0.00711
255 0.98 0.00846
265 0.97 0.0100
275 1.00 0.0123
285 1.04 0.0150
295 1.01 0.0171
305 1.02 0.0206
315 1.16 0.0280
325 1.14 0.0321
335 1.08 0.0363

Table C.2: The unsmearing correction factor for the Er distributions and their un-
certainties for 180 GeV < Et < 340 GeV.

| Er (GeV) | Unsmearing Correction Factor | Uncertainty |

345 1.09 0.0432
355 1.15 0.0527
365 1.17 0.0653
375 1.08 0.0713
385 1.17 0.0926
395 1.48 0.134
405 1.22 0.131
415 0.88 0.115
425 0.98 0.141
435 1.11 0.202
445 1.51 0.297
455 1.67 0.460
465 1.95 0.512
475 0.95 0.304
485 3.00 1.15

495 3.33 2.19

Table C.3: The unsmearing correction factor for the Et distributions and their un-
certainties for 340 GeV < Et < 500 GeV.
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Appendix D

Summary of the Systematic Uncertainties on the

Dalitz Variables

In Chapter 5, the study of the systematic uncertainty on the Dalitz variables is dis-

cussed. To facilitate extraction of the information provided in Figures 5.1 through 5.12,

the total systematic uncertainties and their main contributions in every bin are tab-

ulated in this appendix.

X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.96-0.98 | +284 -16.3 | +18.3 -16.3 | +14.0 -11.6 | +51.2 -34.9 | +25.5 ~-12.1 | +68.9 -46.7
0.98-1.00 | +20.5 -20.0 | +11.9 -20.0 | +10.0 -0.0 | +50.0 -60.0 | +36.1 -24.5 | +679 -71.8

Table D.1: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.96<X, <0.98.

X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.94-0.96 | +185 -3.8 | +17.3 -46 | +10.7 -46 | +29.1 -16.1 | +11.6 -6.1 | +41.9 -19.2
0.96-0.98 | +22.5 -12.5 | +169 -12.5| +13.1 -7.1 | +39.1 -25.6 | +9.9 -11.9 | +51.1 -34.2
0.98-1.00 | +15.7 -13.9 | +8.8 -125| +6.9 -83 | +38.9 -30.6 | +10.9 -11.3 | +45.0 -38.7

Table D.2: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.94<X, <0.96.
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X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Se. (%)
0.92-0.94 | +15.8 -4.6 | +14.3 7.0 | +11.7 2.7 | +17.1 -7.7 1 +11.0 -6.6 | +31.8 -13.7
0.94-0.96 | +16.0 -5.8 | +15.8 -6.0 | +10.5 -3.6 | +17.3 -11.9 | +8.0 -2.5 | +31.4 -15.3
0.96-0.98 | +14.4 -9.3 | +11.1 -9.5 | +7.9 -6.6 | +23.6 -17.8 | +7.9 -5.9 | +32.0 -24.0
0.98-1.00 | +18.8 -9.9 | +11.7 -11.3 | +9.9 -9.2 | +27.5 -155| +7.6 -13.5 | +37.5 -27.1
Table D.3: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.92<X, <0.94.
X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
090092 | +134 52| +11.1 74| +85 48] +13.7 78| +15.1 32| +38.1 -134
0.92-0.94 | +14.3 6.7 | +12.8 7.2 | +9.7 4.8 | +142 65| 48.0 3.7 | +27.0 -134
0.94-0.96 | +12.3 -6.2 | +10.8 -7.5 | +94 -5.6 | +14.6 -99 | +8.6 -4.5 | +25.5 -15.7
0.96-0.98 | +15.6 -5.9 | +12.6 -84 | +10.2 -3.9 | +17.7 -11.8 | +5.2 -7.9 | +29.1 -18.1
0.981.00 | +11.1 -6.4 | +6.8 -5.7 | +6.4 -5.7 | +18.6 -15.0 | +6.6 -9.2 | +24.6 -20.5

Table D.4: The total systematic uncertainty, and the main
Dalitz variables for 0.90<X, <0.92.

contributions, on the

X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.88-0.90 | +18.7 -2.3 | +19.8 -0.5| +123 -4.1 | +169 -23 | +21.9 -99 | +40.7 -11.3
0.90-092 | +16.3 -48 | +13.6 -5.0| +11.9 -1.1 | +11.7 -3.6 | +123 -56 | +29.7 -98
0.92-0.94 | +15.3 -86 | +149 -9.1 | +9.8 -3.7 | +13.2 -10.5| +11.6 -5.5 | +29.3 -17.6
0.94-0.96 | +18.0 -80 | +164 -79 | +108 -3.8 | +13.8 -7.7| +11.9 -3.5 | +32.3 -14.6
0.96-0.98 | +11.5 -5.8 | +9.8 -5.0| +7.1 3.7 | +11.7 6.5 | +8.1 -49 | +22.0 -11.9
0.98-1.00 | +13.1 -39 | +66 -1.0| +9.7 -19 | +233 -39 | +169 -6.8| +33.7 -9.1
Table D.5: The total systematic uncertainty, and the main contributions, on the

Dalitz variables for 0.88<X, <0.90.
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X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)

0.86-0.88 | +20.6 -34 | +16.3 -46 | +149 -1.1 | +16.7 -46 | +183 -6.3 | +39.1 -9.9
0.88-0.90 | +22.7 -2.0 | +20.2 -3.7 | +16.2 -1.0 | +21.6 -2.2 | +20.3 -10.2 | +45.5 -114
0.90-0.92 | +154 -3.7 | +14.8 -3.7 | +11.3 -04 | +12.7 -3.7 | +104 -5.5 | +29.2 -8.6
0.92-0.94 | +22.5 -4.5| +187 -59 | +14.3 -2.0 | +185 -4.3 | +16.0 -5.4 | +40.7 -104
0.94-0.96 | +15.0 -6.5 | +11.5 -6.5 | +10.5 -2.8 | +14.1 -7.8 | +104 -3.0 | +27.8 -12.7
0.96-098 | +154 -5.1 | +13.0 -6.3 | +9.7 -3.1 | +144 -7.1 | +123 -4.7| +294 -12.2
0.98-1.00 | +31.2 -5.3 | +288 -2.7 | +187 -1.3 | +40.0 -2.7 | +276 -6.1 | +67.2 -9.1
Table D.6: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.86<X, <0.88.

X3 Det. Jet Cal. Und. Rel. En. Total (%)

Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)

0.84-086 | +37.5 5.1 | +356 20| +24.6 -3.6 | +254 -58 | +25.0 -16.0 | +67.5 -184
0.86-0.88 | +19.7 -1.4 | +189 -1.1 | +15.8 -0.6 | +18.7 -1.7 | +24.0 -8.6 | +43.8 -9.1
0.88-0.90 | +18.5 -6.2 | +149 6.5 | +12.3 -1.7 | +13.0 -43 | +139 -44 | +32.8 -11.0
0.90-0.92 | +18.8 -26 | +189 48 | +12.9 -1.0| +18.1 -2.1 | +21.1 -9.6 | +40.6 -11.3
0.92-0.94 | +17.4  -7.5 | +15.7 -7.5 | +12.7 -2.8 | +16.5 -3.9 | +14.3 46 | +344 -125
0.94-0.96 | +16.4 4.2 | +15.7 50| +94 -34 | +13.6 4.7 | +12.7 -7.1| +30.8 -11.3
0.96-0.98 | +16.5 -5.8 | +13.7 58 | +11.5 -3.2 | +156 -7.9 | +13.8 -29 | +32.0 -12.1
0.98-1.00 | +19.2 -12.5 | +17.6 -12.,5 | +14.1 -6.3 | +20.3 -20.3 | +23.9 -15.8 | +43.1 -31.8
Table D.7: The total systematic uncertainty, and the main contributions, on the

Dalitz variables for 0.84<X, <0.86.
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X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.82-0.84 | +22.1 -2.7 | +23.7 -0.7 | +149 -2.0 | +16.2 -54 | +179 -88 | +43.0 -10.8
0.84-0.86 | +20.7 -6.6 | +15.5 -7.0 | +174 -1.3 | +19.6 -7.6 | +27.2 -10.2 | +45.8 -16.0
0.86-0.88 | +24.3 -4.0 | +23.8 -64 | +19.0 -3.1 | +174 -2.8 | +25.5 -14.3 | +49.7 -16.7
0.88-0.90 | +21.6 -3.6 | +20.7 -3.6 | +189 -5.6 | +19.8 -7.5 | +23.5 -14.8 | +46.9 -18.2
0.90-0.92 | +19.7 -5.0 | +164 -6.2 | +12.2 -2.5 | +14.7 -5.5 | +16.7 -83 | +36.1 -13.0
0.92-0.94 | +21.1 -76 | +209 -78 | +156 -46 | +174 -6.1 | +143 43 | +404 -14.0
0.94-096 | +19.3 -69 | +17.0 -7.1 | +13.8 -3.5| +156 -3.1 | +17.0 -9.0 | +37.2 -14.2
0.96-0.98 | +14.2 -34 | +11.7 -48 | +93 -3.2 | +16.1 -6.1 | +134 -54 | +29.4 -10.5
0.98-1.00 | +136 -19| +94 -0.0 | +11.3 -0.0 | +15.1 -9.4 | +26.8 -4.6 | +36.7 -10.7
Table D.8: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.82<X, <0.84.
X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)

080082 | +268 44| +262 36| +14.6 36| +19.7 3.6 | +23.3 -129 | +504 -15.0
0.82-0.84 | +24.0 0.0 | +184 -1.8 | +17.1 -1.1 | +17.1 -1.1| +22.5 -10.7 | 4448 -11.0
0.84-0.86 | +19.1 -1.0 | +18.9 -3.0 | +14.6 -2.3 | +21.9 -2.3 | +151 -11.9 | +40.6 -12.8
0.86-0.88 | +22.4 -09 | +21.5 -1.9 | +15.7 -2.8 | +20.1 -0.9 | +18.2 -6.8 | +44.1 -7.8
0.88-0.90 | +20.8 -29 | +185 -2.2 | +12.7 -1.6| +16.2 -2.5| +20.1 -9.3 | +40.1 -104
0.90-0.92 | +22.8 -0.3 | +219 -1.1| +170 -2.1 | +199 -19| +21.9 -11.0| +46.5 -11.4
0.92-0.94 | +20.2 -3.7 | +180 -48 | +14.7 -1.1 | +179 -08 | +19.0 -10.7 | +40.3 -124
0.94-0.96 | +18.1 -7.0 | +153 -75 | +11.8 -3.2 | +154 -6.8 | +15.9 41| +34.6 -13.3
0.96-0.98 | +19.8 -09 | +164 -0.6 | +144 -03 | +193 -0.0| +19.6 -6.1 | +40.3 -6.3
0.98-1.00 | +19.1 -5.1 | +17.2 -85 | 4119 -0.0| +18.6 -10.2 | +11.4 -13.8 | +35.8 -19.8

Table D.9: The total systematic uncertainty, and the main

Dalitz variables for 0.80<X, <0.82.
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X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.78-0.80 | +134 -73 | +158 -98 | +13.0 -4.1 | 498 -1.6 | +11.8 -9.8 | +28.8 -16.3
0.80-0.82 | +24.9 -5.0 | +246 -2.7 | +168 -5.0 | +187 -23 | +31.0 -16.8 | +53.1 -185
0.82-0.84 | +17.7 -49 | +176 -4.5 | +10.7 -0.0 | +13.2 -1.2 | +15.3 -12.2 | +33.9 -14.0
0.84-0.86 | +21.8 -1.3 | +23.8 -0.8 | +188 -4.2 | 4209 -2.5| +25.2 -10.6 | +49.7 -11.8
0.86-0.88 | +23.5 -0.7 | +21.6 -3.8 | +189 -2.7| +21.6 -14| +25.2 -108 | +49.8 -11.9
0.88-0.90 | +20.3 -6.6 | +194 -7.5 | +129 -2.7| +129 -0.9 | +123 48 | +35.7 -114
0.90-0.92 | +24.1 -0.0 | +23.2 -03 | +176 -16 | +22.2 -0.5| +272 -158 | +51.6 -15.9
0.92-0.94 | +21.0 -2.5 | +19.8 -0.5 | +154  -2.5 | +17.1 -2.8 | +19.1 -89 | +41.5 -10.0
0.94-0.96 | +19.9 -4.1 | +16.5 -3.6 | +13.0 -0.2 | +16.5 -2.6 | +17.3 -8.0 | +37.5 -10.0
0.96-0.98 | +22.2 -39 | +187 -39 | +149 -14 | +178 -1.1 | +20.7 -11.3 | +42.6 -12.7
0.98-1.00 | +27.8 -3.0 | +294 -6.1 | +24.2 -12.1 | +33.3 -18.2 | +33.5 -17.4 | +66.8 -28.7
Table D.10: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.78<X, <0.80.
X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.76-0.78 | +19.2 -09 | +20.8 -09 | +179 -09 | +214 -49| +269 -83 | +480 -84
0.78-0.80 | +31.1 -34 | +31.8 -1.0 | +223 -7.3 | +26.2 -0.8 | +38.2 -22.6 | +68.0 -24.5
0.80-0.82 | +22.9 -24 | 4225 -1.6 | +17.7 -3.5| +15.0 -1.2 | 4234 -87 | +46.0 -9.8
0.82-0.84 | +22.0 -1.2 | 4224 -20 | +17.2 -0.0 | +188 -1.6 | +22.3 -5.7 | +46.2 -6.3
0.84-0.86 | +26.2 -1.2 | +19.5 -1.6 | +17.1 -4.3 | +16.7 -5.7 | +26.8 -20.3 | +48.6 -20.9
0.86-0.88 | +24.6 -6.0 | +25.5 -5.0 | +19.1 -7.1 | 4220 -1.2 | 427.0 -19.1 | +53.3 -22.5
0.88-0.90 | +22.0 -48 | +17.8 -69 | +16.7 -06 | +164 -0.0 | +14.5 -6.8 | +39.5 -10.9
0.90-0.92 | +244 -03 | +24.1 -1.7 | +185 -2.5 | +20.7 -1.2 | +22.5 -13.3 | +49.5 -13.6
0.92-0.94 | +236 -3.3 | +22.1 -26 | +168 -19 | +189 -0.7 | +20.3 -81 | +459 -94
0.94-0.96 | +22.3 -0.2 | +21.0 -24 | +16.5 -1.7 | +20.1 -0.0 | +23.1 -12.8 | +464 -13.2
0.96-0.98 | +24.0 -09 | 4225 -04 | +19.6 -0.9 | +249 -143 | +26.2 -12.0 | +52.7 -12.0
0.98-1.00 | +40.5 -5.7 | +33.7 -5.7 | +229 -29 | +286 -0.0 | +43.4 -26.2 | +774 -31.0

Table D.11: The
Dalitz variables for 0.76<X, <0.78.

total systematic uncertainty,
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and the main contributions, on the




X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.74-0.76 | +20.5 ~-1.1 | +24.3 -2.2 | +18.9 -1.1 | +23.3 -5.6 | +32.5 -5.7 | +54.5 -8.4
0.76-0.78 | +23.7 -1.0 | +21.9 -1.9 | +20.3 -1.9 | +19.3 -2.4 | +20.7 -14.0 | +47.5 -14.5
0.78-0.80 | +22.4 -7.1 | +22.0 -5.7 | +18.6 -6.2 | +21.0 -2.9 | +21.7 -20.7 | +47.3 -23.6
0.80-0.82 | +20.7 -6.8 | +16.4 -7.7 1 +12.6 4.1 | +11.3 -6.3 | +18.2 -6.7 | +36.3 -14.3
0.82-0.84 | +20.5 -3.3 | +16.1 -3.3 | +15.0 -1.7 | +20.8 -2.1 | +15.8 -10.1 | +39.8 -11.5
0.84-0.86 | +25.7 -5.9 | +26.1 -2.0 | +22.0 -5.5 | +24.0 -79 | +34.6 -18.1 | +60.0 -21.4
0.86-0.88 | +23.8 -4.2 | +23.3 -3.8 | +18.8 -24 | +17.1 -2.8 | 4229 -11.8 | +47.8 -13.6
0.88-0.90 | +149 -1.3 | +16.7 -2.5 | +12.2 -0.6 | +154 -3.1 | +19.2 -89 | +354 -9.9
0.90-0.92 | +21.3 -0.6 | +18.2 -0.3 | +15.9 4.1 | +17.1 -0.3 | +25.0 -15.7 | +44.3 -16.3
0.92-0.94 | +22.0 -0.6 | +21.8 -0.3 | +16.3 -5.2 | +183 -29 | +25.9 -14.0 | +47.3 -15.2
0.94-0.96 | +23.2 -1.3 | +20.9 -2.0 | +19.1 -1.3 | +204 -2.3 | 4279 -12.1 | +50.3 -12.7
0.96-0.98 | +25.6 -1.4 | +23.5 -14 | +214 -3.3 | +20.0 -5.6 | +26.8 -15.1 | +52.8 -16.5
0.98-1.00 | +19.9 -83 | +13.0 ~-11.1 | +8.3 -11.1 | 4194 -83 | +8.3 -3.9 | +32.9 -20.0
Table D.12: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.74<X, <0.76.
X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.72-0.74 | +20.2 -13.6 | +21.8 -8.6 | +14.8 -7.4 | +9.9 -4.9 | +21.9 -19.5 | +41.0 -26.8
0.74-0.76 | +20.1 -5.6 | +16.0 -5.1 | +15.0 -0.5 | +14.5 -2.3 | +20.9 -9.1 | +39.1 -12.1
0.76-0.78 | +25.8 -3.3 | +224 22| +17.0 -1.1 | +19.2 -1.6 | +23.5 -14.5 | +48.8 -15.2
0.78-0.80 | +18.8 7.7 | +184 -10.6 | +12.1 -2.9 | +14.0 -4.3 | +16.7 -5.2 | +36.3 -15.1
0.80-0.82 | +14.4 -1.0 | +17.0 -1.5 | +12.0 -1.0 | +13.0 -1.5 | +14.7 -5.0 | +32.0 -5.7
0.82-0.84 | +22.8 -4.9 | +23.2 -5.7 | +17.5 -0.8 | +17.9 -4.1 | +21.4 -10.7 | +46.3 -13.7
0.84-0.86 | +21.5 -6.9 | +21.5 8.0 | +14.5 -2.7 | +18.3 -1.1 | +19.7 -9.2 | +43.1 -14.3
0.86-0.88 | +19.0 4.1 | +174 4.5 | +12.7 -0.3 | +11.6 2.4 | +16.7 -10.5 | +35.2 -124
0.88-0.90 | +26.4 4.8 | +23.9 3.1 | +22.8 -5.9 | +23.2 3.5 | +27.6 -18.7 | +55.6 -20.7
0.90-0.92 | +24.8 -1.2 | +21.4 -0.9 | +16.0 -2.2 | +21.5 -1.5 | +18.7 -9.4 | +46.3 -9.9
0.92-0.94 | +18.4 -2.1 | +16.2 -4.6 | +12.6 -5.2 | +10.7 -0.8 | +12.8 -4.7 | +32.2 -7.1
0.94-0.96 | +21.6 -0.8 | +184 -0.6 | +139 -1.6 | +15.9 -0.0 | +24.7 -12.0 | +43.2 -12.1
0.96-0.98 | +21.9 -49 | +19.6 -6.0 | +15.9 -5.5 | +24.2 -9.9 | +29.2 -16.1 | +50.5 -21.2
0.98-1.00 | +30.5 -6.7 | +32.2 -6.7 | +26.7 -3.3 | +26.7 -10.0 | +34.3 -23.3 | +67.6 -27.3
Table D.13: The total systematic uncertainty, and the main contributions, on the

Dalitz variables for 0.72<X, <0.74.
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X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)

0.70-0.72 | +19.5 -1.2 | +23.5 3.6 | +14.3 -1.2 | +214 -3.6 | +19.5 -13.1 | +44.4 -14.1
0.72-0.74 | +25.6 -4.8 | +23.6 -0.6 | +204 -7.8 | +25.7 -6.6 | +25.5 -14.8 | +54.3 -18.6
0.74-0.76 | +18.9 -7.5 | +19.9 -10.0 | +11.4 -2.5| +10.9 -2.0 | +19.3 -89 | +37.1 -15.6
0.76-0.78 | +19.7 2.7 1 +20.7 -1.1 | +17.0 -4.9 | +17.0 4.9 | +28.7 9.0 | +47.1 -11.8
0.78-0.80 | +23.0 -2.8 | +20.8 -0.9 | +14.6 -4.7 | +15.0 23| +16.6 -14.9 | +41.0 -16.1
0.80-0.82 | +22.3 -3.3 | +22.3 -0.0 | +18.6 -4.4 | +23.5 4.9 | +29.0 -21.0 | +52.3 -22.2
0.82-0.84 | +26.7 -0.9 | +27.0 -0.4 | +19.6 -2.2 | +20.0 -3.1 ] +20.3 -15.5| +51.4 -16.0
0.84-0.86 | +22.6 -1.9 | +17.3 3.4 | +169 -34 | +139 -2.6 | +15.2 -7.3 | +38.9 -9.3
0.86-0.88 | +26.9 -6.1 | +25.3 -6.1 | +19.1 -6.9 | +22.8 73| +31.8 -16.9 | +57.1 -21.5
0.88-0.90 | +21.7 -1.7 | +19.5 4.5 | +13.7 -1.0| +17.1 -1.4 | +20.8 -10.8 | +42.0 -11.9
0.90-0.92 | +22.0 4.2 | +24.2 -0.7 | +19.2 -5.2 | +22.5 -1.0 | +21.8 -18.0 | +49.2 -19.3
0.92-0.94 | +25.4 -1.7 | +22.7 -0.9 | +17.8 -1.7 | +21.5 -3.2 | +22.3 -12.0 | +49.3 -12.7
0.94-0.96 | +26.5 -2.0 | +25.5 -4.0 | +19.1 -0.9 | +20.8 -0.6 | +22.8 -104 | +51.7 -11.4
0.96-0.98 | +27.1 -7.7 | +24.0 8.3 | +21.9 -83 | +21.9 -4.7 | +28.8 -14.7 | +55.7 -20.9
0.98-1.00 | +30.5 -13.3 | +25.4 3.3 | +20.0 -0.0 | +20.0 -10.0 | +28.3 -38.6 | +56.4 -42.2
Table D.14: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.70<X, <0.72.

X3 Det. Jet Cal. Und. Rel. En. Total (%)

Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)

0.68-0.70 | +30.2 -1.6 | +351 -3.1 | +234 -3.1 | +25.0 -1.6 | +22.0 -11.2 | +61.6 -12.2
0.70-0.72 | +20.2 -3.5| +16.5 -5.8 | +15.1 -2.3 | +15.7 -0.6 | +19.8 -9.5 | +394 -11.9
0.72-0.74 | +30.9 -7.0| +26.8 -7.6 | +209 -1.3 | +19.0 -0.6 | +23.7 -7.7 1 +55.1 -13.0
0.74-0.76 | +24.2 -1.1 | +26.4 -2.3 | +15.3 -1.7| +16.4 -0.6 | +18.9 -9.3 | +46.3 -9.8
0.76-0.78 | +22.2 -3.5| +19.1 -41 | +176 -4.1 | +159 -24 | +26.4 -179 | +46.0 -19.3
0.78-0.80 | +18.3 -54 | +18.7 -2.2 | +11.9 -0.5| +14.6 -0.5 | +20.0 -6.1 | +38.0 -6.6
0.80-0.82 | +25.7 -1.0 | +22.2 -1.5| +16.0 -3.1 | +19.6 -3.6 | +22.5 -10.6 | +47.9 -11.8
0.82-0.84 | +23.1 -3.8 | +21.8 -0.0 | +183 -24 | +16.8 -0.5 | +28.6 -20.4 | +49.4 -20.9
0.84-0.86 | +186 -0.0 | +19.8 -35 | +134 -09 | +16.9 -3.0 | +21.3 -10.6 | +40.7 -11.6
0.86-0.88 | +21.6 -4.0| +21.6 -4.8 | +183 -24 | +20.3 -24 | +19.8 -12.1 | +45.5 -14.1
0.88-0.90 | +30.6 -1.5| +286 -0.4 | +21.6 -4.8| +24.2 -45| +31.4 -181 | +61.5 -19.3
0.90-0.92 | +25.3 -0.0 | +23.0 -0.3 | +185 -0.7 | +19.6 -3.1 | +30.6 -18.0 | +53.3 -18.3
0.92-0.94 | +244 -0.6 | +22.2 -3.1 | +19.8 -1.6 | +23.6 -0.0 | +29.5 -13.5 | +53.9 -14.0
0.94-0.96 | +204 -24 | +196 -1.0| +15.2 -0.3 | +186 -0.3 | +17.8 -10.9 | +41.1 -11.3
0.96-0.98 | +209 -4.7 | +21.3 -4.1 | +181 -0.6 | +17.5 -0.6 | +24.5 -6.7 | +46.1 -9.2
0.981.00 | +29.1 -9.5 | +259 -9.5 | +14.3 -4.8 | +23.8 -48 | +14.3 -32.3 | +49.9 -35.6

Table D.15: The

total systematic uncertainty,

Dalitz variables for 0.68<X, <0.70.
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and the main contributions, on the




X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.66-0.68 | +20.0 2.4 | +26.5 -12.2 | +9.8 49 | +7.3 2.4 | 4394 -20.7 | +52.9 -24.8
0.68-0.70 | +30.5 -1.3 | +30.2 -0.7 | +22.0 -4.0 | +26.0 -2.0 | +19.0 -22.4 | +58.0 -22.9
0.70-0.72 | +17.5 -0.6 | +21.0 -3.8 | +17.1 -3.2 | +20.9 -5.1 | +22.9 -7.3 | +44.8 -10.2
0.72-0.74 | +25.8 -0.0 | +19.1 -1.9 | +17.7 -0.6 | +16.5 -1.3 | +11.7 -13.1 | +41.9 -13.3
0.74-0.76 | +26.6 -0.0 | +28.2 -1.4 | +18.1 -2.2 | +23.2 2.9 | +30.3 -23.9 | +57.3 -24.2
0.76-0.78 | +21.1 -6.5 | +17.3 -5.9 | +16.5 -1.2 | +15.9 -4.7 | +20.5 -6.4 | +41.0 -11.9
0.78-0.80 | +27.1 -4.6 | +25.8 -4.0 | +15.6 -0.6 | +19.1 3.5 | +27.2 -114 | +52.4 -13.4
0.80-0.82 | +18.3 -1.8 | +13.8 -2.8 | +14.7 -0.5 | +124 -3.7 | +19.6 -89 | +35.8 -10.2
0.82-0.84 | +31.4 -0.5 | +32.1 -1.6 | +23.0 -3.1 | +23.0 -5.2 | +28.0 -17.0 | +62.1 -18.1
0.84-0.86 | +20.0 3.5 | +18.1 3.9 | +16.1 -0.9 | +16.5 -1.7 | +23.2 8.3 | +42.4 -10.0
0.86-0.88 | +30.7 3.1 | +32.0 -0.9 | +23.6 -8.4 | +28.0 -6.7 | +374 -26.3 | +68.6 -28.6
0.88-0.90 | +35.0 -1.7 | +35.0 -2.5 | +22.0 -6.2 | +22.8 4.6 | +27.2 -16.3 | +64.8 -18.2
0.90-0.92 | +25.6 -1.9 | +25.3 -1.3 | +19.7 -4.5 | +21.6 4.2 | +29.1 -12.2 | +54.8 -13.8
0.92-0.94 | +23.6 -3.0 | +22.5 -3.0 | +15.7 -24 | +17.5 -0.0 | +21.9 -10.3 | +45.8 -114
0.94-0.96 | +26.4 2.4 | +23.6 -1.6 | +17.1 -2.8 | +19.5 -7.2 1 +29.7 -188 | +53.0 -20.5
0.96-0.98 | +27.9 -1.6 | +21.4 4.8 | +194 -0.0 | +15.3 24| 4275 -13.9 | +51.0 -15.0
0.98-1.00 | +65.6 -20.0 | +62.7 -20.0 | +50.0 -25.0 | +65.0 -20.0 | +74.4 -33.9 | +143 -54.5
Table D.16: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.66<X, <0.68.
X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.68-0.70 | +7.6 -19.0 | +7.2 214 | +4.7 -4.8 | +4.8 -16.7 | +25.6 -20.8 | +27.6 -39.4
0.70-0.72 | +26.0 -1.9 | +24.7 -2.8 | +17.9 -2.8 | +17.9 -1.9 | +24.8 -12.2 | +50.4 -13.1
0.72-0.74 | +22.8 -0.7 | +22.2 -0.7 | +17.3 2.2 | +12.2 2.2 | +23.8 -12.4 | +45.0 -12.8
0.74-0.76 | +21.4 -1.3 | +26.3 -2.6 | +16.3 -2.0 | +17.6 -2.0 | +26.2 -7.6 | +49.1 -8.6
0.76-0.78 | +25.2 -5.7 | +23.9 -6.3 | +16.7 -0.6 | +14.4 -4.0 | +18.2 -6.7 | +45.0 -11.6
0.78-0.80 | +21.1 -3.3 | +22.2 -6.5 | +17.4 -0.5 | +22.3 -2.2 | +15.7 -16.2 | +44.5 -18.0
0.80-0.82 | +21.9 -1.5 | +24.0 -5.0 | +13.4 -0.5 | +20.4 -1.5 | +22.0 -9.2 | +46.2 -10.7
0.82-0.84 | +16.0 -5.7 | +14.9 -6.2 | +11.4 -0.0 | +124 3.6 | +18.4 48 | +33.2 -10.3
0.84-0.86 | +19.5 -3.5 | +20.5 -7.0 | +12.0 -1.0 | +17.5 -0.5 | +21.7 -10.5 | +41.5 -13.2
0.86-0.88 | +23.6 -2.2 | +23.0 -26 | +214 4.4 | +21.8 -0.4 | +23.3 -11.6 | +50.6 -12.9
0.88-0.90 | +23.3 -8.2 | +24.5 -4.6 | +19.6 -7.3 | +20.1 -2.7 | +26.7 -20.5 | +51.4 -23.9
0.90-0.92 | +28.3 -6.3 | +27.2 -5.5 | +23.5 -10.2 | +25.5 -5.5 | +36.2 -22.8 | +63.7 -26.9
0.92-0.94 | +24.6 -5.1 | +23.5 -5.8 | +17.7 3.7 | +19.7 3.4 | +189 -11.1 | +47.1 -14.4
0.94-0.96 | +27.6 -0.4 | +24.6 -2.5 | +21.1 -2.9 | +19.6 -0.4 | 4278 -11.5 | +54.5 -12.1
0.96-0.98 | +32.6 -0.7 | +34.3 -1.5 | +27.6 -7.5 | +33.6 3.7 | 4419 -23.2 | +76.7 -24.7
0.98-1.00 | +31.3 7.7 +17.4 7.7 1 4231 -154 | +23.1 7.7 | +82.8 -63.9 | +96.0 -67.1

Table D.17: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.64<X, <0.66.
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X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.72-0.74 | +21.7 -9.1 | +20.2 -9.1 | +12.1 -6.1 | +30.3 -0.0 | +32.5 -174 | +54.8 -225
0.74-0.76 | +24.2 -34 | +276 -5.1 | +16.1 -0.8 | +144 -34 | +25.7 -11.4 | +49.7 -134
0.76-0.78 | +25.5 -1.2 | +19.1 -3.7 | +159 -1.8 | +128 -24 | +11.0 -7.1| +394 -8.6
0.78-0.80 | +28.6 -39 | +25.7 -39 | +163 -0.6 | +19.1 -0.0 | +23.1 -5.6 | +51.4 -7.9
0.80-0.82 | +196 -1.1| +145 -00 | +131 -16| +197 -7.7| +170 -7.0 | +38.0 -10.5
0.82-0.84 | +16.3 -0.5 | +17.3 -3.5| +129 -15| +139 -0.0 | +15.1 -10.7 | +33.9 -114
0.84-0.86 | +23.6 -45 | +21.6 -40| +186 -70| +151 -7.0| +21.1 -17.3 | +45.2 -20.9
0.86-0.88 | +30.6 -4.3 | +33.8 -3.8 | +22.0 -7.3 | +28.7 -7.7| +354 -25.0| +68.2 -27.8
0.88-0.90 | +26.1 -4.2 | +254 -46 | +19.1 -1.5| +183 -0.8 | +25.1 -12.5 | +51.5 -14.1
0.90-0.92 | +35.2 -6.6 | +33.8 -7.6 | +27.8 -12.2 | +29.5 -11.5 | +344 -23.2 | +72.2 -30.3
0.92-0.94 | +246 -48 | +25.2 -82 | +187 -14 | +19.7 -0.0 | +24.7 -150 | +50.9 -17.8
0.94-0.96 | +27.7 -84 | +269 -48 | +224 60| +224 -2.0| +259 -21.6 | +56.3 -24.5
0.96-0.98 | +31.5 -1.6 | +26.9 -0.0 | +178 -3.1 | +240 -39 | +30.3 -11.6 | +59.4 -12.7
0.98-1.00 | +35.8 -1.8 | +37.6 -59 | +353 -17.6 | +47.1 -11.8 | +65.8 -34.3 | +102 -444
Table D.18: The total systematic uncertainty, and the main contributions, on the

Dalitz variables for 0.62<X, <0.64.
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X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.76-0.78 | +18.0 -7.5 | +246 -7.5| +50 -0.0| +20.0 -10.0 | +48.8 -30.5 | +61.1 -33.8
0.78-0.80 | +23.0 -0.8 | +254 -3.3 | +19.2 -2.5| +19.2 -0.0 | +34.7 -7.7 | +55.8 -89
0.80-0.82 | +29.3 -0.5 | +27.1 -0.0 | +20.1 -54 | +174 -2.2 | +20.2 -16.8 | +52.0 -17.8
0.82-0.84 | +28.8 -38 | +26.6 -0.5 | +223 -76 | +25.5 -6.0| +30.9 -22.0| +60.3 -244
0.84-0.86 | +28.2 -45 | +29.3 -45 | +23.2 -73 | +226 -6.8| +34.8 -26.2 | +62.5 -288
0.86-0.88 | +27.4 -5.2 | +26.5 -4.7 | +20.7 -7.8 | +22.3 -6.2 | +32.8 -22.5 | +588 -25.5
0.88-0.90 | +26.5 -3.1 | +24.9 -1.6 | +21.7 -59 | +22.8 -4.7| +294 -188 | +56.3 -20.5
0.90-0.92 | +24.8 -1.4 | +22.0 -29 | 4196 -3.6 | +20.3 -2.5| +27.1 -153 | +51.3 -16.2
0.92-0.94 | +29.3 -1.5| +30.7 -1.5| +234 -4.7 | +270 -8.0| +35.0 -20.9 | +65.6 -23.0
0.94-096 | +29.3 -3.0 | +276 -08 | +21.2 -2.5| +229 -3.8| +31.8 -11.1 | +60.0 -124
0.96-0.98 | +34.7 -1.7| +32.1 -1.7 | 4239 -34 | +342 -43 | +40.2 -185 | +74.8 -19.5
0.98-1.00 | +35.5 -5.0 | +32.2 -5.0 | +25.0 -5.0 | +25.0 -10.0 | +32.8 -16.6 | +68.0 -21.2
Table D.19: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.60<X, <0.62.
X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
080082 | +19.1 4.7 | +1569 7.0 | +16.3 4.7 ] +9.3 0.0 | 4547 209 | +63.0 -23.0
0.82-0.84 | +32.2 42 | +348 33| +23.3 0.8 | +30.8 -2.5| +30.8 -13.7 | +68.5 -15.0
0.84-0.86 | +25.4 24 | +226 -1.9 | +182 2.9 | +17.7 -14 | 4255 9.8 | +49.5 -10.9
0.86-0.88 | +26.7 -4.9 | +254 -53 | +20.9 -0.0 | +204 -1.0 | +27.0 -18.9 | +54.2 -20.3
0.88-0.90 | +26.0 -1.4 | +28.1 -0.5| +20.2 -3.8 | 4264 -7.7 | +28.7 -25.1 | +58.2 -26.6
0.90-0.92 | +24.2 3.0 | +220 52| +17.8 2.6 | +14.8 -3.3 | +20.6 59 | +451 9.5
0.92:0.94 | +22.5 1.0 | +20.3 -1.4 | +183 24 | +16.9 -0.7 | +23.6 -14.6 | +45.8 -14.9
0.940.96 | +30.7 83 | +286 6.2 | +244 9.1 | 4248 74| +36.3 254 | +65.5 -20.8
0.96-0.98 | +30.9 -5.1 | +282 -3.6 | +254 -8.0 | 4254 -6.5 | +24.4 -16.0 | +60.3 -20.1
0.98-1.00 | +47.6 -11.8 | +43.6 -5.9 | +41.2 -5.9 | +41.2 -11.8 | +74.7 -39.5 | +115 -43.6
Table D.20: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.58<X, <0.60.
X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
084086 | +26.2 -17.1 | +308 86| +11.4 57| +25.7 200 | 4553 25.7 | +74.0 -38.2
0.86-0.88 | +29.9 1.9 | +29.7 3.1 | +238 5.0 | +23.1 -1.9 | +31.9 -13.3 | +62.4 -14.8
0.88-0.90 | +21.2 -0.8 | +17.6 -1.2 | +129 -3.1| +16.0 -5.1 | +18.8 -9.3 | +39.1 -11.2
0.90-0.92 | +26.8 -3.1 | +27.3 -0.8 | +21.7 -4.7 | 421.7 -4.3 | +31.7 -20.8 | +58.4 -22.0
0.92-0.94 | +22.6 -1.8 | +21.3 -2.9 | +18.6 -1.4 | 4225 -0.7 | +21.3 -11.0 | +47.7 -11.7
0.940.96 | +25.3 43| +269 3.0 | +17.5 51| +184 6.0 | +26.9 -13.4 | +52.3 -16.4
0.96-0.98 | +26.9 3.6 | +27.6 -3.6 | +22.7 -10.0 | +25.5 -5.5 | +43.8 284 | +67.6 -31.0
0.98-1.00 | +25.5 -0.0 | +27.1 -0.0 | +18.8 -0.0 | +18.8 -6.3 | +44.2 -234 | +63.6 -24.2

Table D.21: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.56<X, <0.58.
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X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.88-0.90 | +7.8 -1.5 | +6.2 -29 | +8.8 -1.5 | +10.3 44 | +24.2 -17.7 | 439.1 -18.7
0.90-0.92 | +274 -7.0 | +24.7 -7.0 | +19.9 -6.5 | +21.5 -6.5 | +27.1 -15.7 | +58.4 -20.8
0.92-0.94 | +24.8 -2.2 | +23.8 -04 | +21.0 -5.0 | +19.2 -1.1 | +26.4 -16.6 | +47.7 -17.8
0.94-0.96 | +20.1 -3.9 | +17.7 -4.8 | +17.0 -1.3 | +20.5 -1.3 | +28.9 -14.5 | +52.3 -16.0
0.96-0.98 | +34.5 -3.8 | +334 -1.9 | +28.3 -6.6 | +33.0 -85 | +31.8 -204 | +67.6 -23.4
0.98-1.00 | +47.2 -13.3 | +35.6 -13.3 | +33.3 -20.0 | +33.3 -13.3 | +42.7 -22.1 | +63.6 -37.7
Table D.22: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.54<X, <0.56.
X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.92-0.94 | +28.4 -3.3 | +25.0 -4.9 | +23.0 -1.6 | +19.7 -1.6 | +34.4 -32.2 | +59.5 -32.9
0.94-0.96 | +24.3 -0.0 | +22.0 -1.3 | +18.7 -5.2 | +18.1 -2.6 | +27.7 -17.2 | +50.3 -18.4
0.96-0.98 | +23.0 -3.9 | +23.6 -29 | +19.6 -88 | +18.6 -8.8 | +49.0 -25.8 | +65.0 -29.2
0.98-1.00 | +78.5 -22.2 | 469.5 -22.2 | +55.6 -22.2 | +77.8 -12.3 | +42.7 -729 | +188  -85.3
Table D.23: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.52<X, <0.54.
X3 Det. Jet Cal. Und. Rel. En. Total (%)
Cal. (%) Frag. (%) Stab. (%) Ev. (%) Sc. (%)
0.96-0.98 | +37.4 -31.6 | +285 -31.6 | +26.3 -21.1 | +36.8 -21.1 | +37.2 -51.0 | +75.7 -74.6
0.98-1.00 | +75.7 -12.5 | +78.0 -12.5 | +62.5 -12.5 | +50.0 -12.5 | 465.0 -30.6 | +150 -40.6

Table D.24: The total systematic uncertainty, and the main contributions, on the
Dalitz variables for 0.50<X, <0.52.
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Appendix E

The Dalitz Distributions After Variation of the Cut
Parameters

In Chapter 6, the stability of the data with respect to changes in the cut parameters
is discussed. For complete information, the Dalitz distributions after variation of the
cut parameters by o0 are shown in this appendix. Only the jet Er cut is varied by

approximately 5o.
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Figure E.1: The Dalitz distribution after variation of the cone overlap cut by —0.05.
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Figure E.2: The Dalitz distribution after variation of the cone overlap cut by +0.05.
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Figure E.3: The Dalitz distribution after variation of the n cut by —0.075.
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Figure E.4: The Dalitz distribution after variation of the n cut by +0.075.
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Figure E.5: The Dalitz distribution after variation of the jet Et cut by —5 GeV.

227



CDF: Preliminary

,,,,,i,,,,,,i,,,,,,i,,,,,,i,,,,,,i,,,,,,i,,,,,,i,,,,i
O O O O O o o o

n © WL O 1L O W
M M N N dHA

SJUSAT JO JaqUINN

Ry

095 1
085 09
08 0

0.7 0.75

0.5 o 065

0.6

0.7

I/IV

Figure E.6: The Dalitz distribution after variation of the jet Et cut by +5 GeV.
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Figure E.9: The Dalitz distribution after variation of the >~ E1 cut by —10 GeV.
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Figure E.10: The Dalitz distribution after variation of the }_ Et cut by +10 GeV.
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Figure E.11: The Dalitz distribution after variation of the number of tracks per vertex

by

—1.

233



CDF: Preliminary

:_.i,:_.i:,_.i:,_.i:;,:,_.i,,;,:,_.i:;,:;
O O O O O O O O O O

n o N O N O 1 o
< S 0O O NN - -

SJUSAJ JO JaquINN

1
0.9 0.95

Ra

0.8 0.85

0.7 0.75

0.5 o 0-65

Figure E.12: The Dalitz distribution after variation of the number of tracks per vertex

by +1.
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Figure E.13: The Dalitz distribution after variation of the distance between two
resolved vertices by —1 cm.
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Figure E.14: The Dalitz distribution after variation of the distance between two
resolved vertices by +1 cm.
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Appendix F

The Cross Section in All Kinematically Allowed Bins

in the Dalitz Plane

In Chapter 6, the three-jet production cross section is discussed. For complete in-
formation, the cross section in all individual kinematically allowed bins in the Dalitz
plane is tabulated in this appendix. To normalize the three-jet production cross sec-
tions calculated by the NLO calculation using CTEQ3 at ag = 0.1160 and CTEQ4M,
the numerical values stated in Columns 5 and 6 have to be multiplied by 1.16 and

0.946, respectively.
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X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.67 | 0.67 0.505 -0.125  40.267 0.1924+0.0753 0.421+0.0531
0.69 | 0.65 0.325 -0.128  4+0.090 0.3454+0.0658 0.260£0.0456
0.69 | 0.67 1.43 -0.327  40.827 1.44+0.152 1.51+0.105
0.69 | 0.69 0.661 -0.0807 +0.408 0.392+0.100 0.636+0.0661
0.71 | 0.65 1.03 -0.135  4+0.519 1.19+0.128 1.13+0.0898
0.71 | 0.67 1.29 -0.131 +0.579 1.19+0.150 1.29+0.102
0.71 | 0.69 1.55 -0.185  40.611 1.26+0.149 1.34+0.101
0.71 | 0.71 0.886 -0.125  4+0.394 0.560£0.108 0.75440.0738
0.73 | 0.63 0.230 -0.0517 +0.126 0.1724+0.0678 0.321+0.0444
0.73 | 0.65 1.32 -0.170  4+0.594 0.658+0.148 1.4740.108
0.73 | 0.67 141 -0.188  4+0.590 0.823+0.122 1.35+0.106
0.73 | 0.69 1.43 -0.185  4+0.785 1.21+0.157 1.56+0.104
0.73 | 0.71 1.48 -0.276 +0.805 1.2940.159 1.75+£0.118
0.73 | 0.73 0.730 -0.196  +0.300 0.654+0.112 0.594+0.0698
0.75 | 0.63 0.916 -0.123  40.456 0.967+0.133 1.054+0.0877
0.75 | 0.65 1.30 -0.111 +0.637 1.13+0.159 1.39+0.107

Table F.1: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.

X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.75 | 0.67 1.22 -0.296  +0.700 1.39+0.162 1.57+0.106
0.75 | 0.69 1.64 -0.160  40.757 1.21+0.163 1.4340.109
0.75 | 0.71 2.13 -0.332  40.789 1.41+0.166 1.58+0.114
0.75 | 0.73 2.00 -0.242  40.781 1.24+0.166 1.774+0.123
0.75 | 0.75 0.800 -0.067  4+0.436 0.558+0.117 1.03+0.0894
0.77 | 0.61 0.386 -0.130  +0.236 0.23440.0723 0.35540.0462
0.77 | 0.63 1.52 -0.130 +0.597 1.42+0.161 1.54+0.108
0.77 | 0.65 1.67 -0.193  40.750 1.25+0.159 1.7040.120
0.77 | 0.67 1.44 -0.171 +0.591 1.38+0.164 1.53%+0.110
0.77 | 0.69 1.64 -0.317 +0.754 1.56£0.171 1.43+0.106
0.77 | 0.71 1.53 -0.180  +0.720 1.14+0.168 1.53+0.113
0.77 | 0.73 1.49 -0.226  4+0.725 1.72+0.177 1.78+0.129
0.77 | 0.75 1.95 -0.282  40.924 1.30+0.188 1.824+0.118
0.77 | 0.77 1.05 -0.0885 40.504 0.608+0.127 0.948+0.0987
0.79 | 0.61 0.977 -0.0862 +0.545 0.720£0.100 1.134+0.0907
0.79 | 0.63 1.58 -0.125  40.811 0.968+0.168 1.63+0.120

Table F.2: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.
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X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.79 | 0.65 1.70 -0.305  4+0.756 1.24+0.169 1.40+0.109
0.79 | 0.67 1.49 -0.200  40.779 1.21+0.167 1.80+0.117
0.79 | 0.69 1.81 -0.119  40.686 1.3940.178 1.5040.116
0.79 | 0.71 1.81 -0.291 +0.743 1.244+0.178 1.67+0.124
0.79 | 0.73 1.67 -0.252  40.606 1.85+0.192 1.91+0.135
0.79 | 0.75 1.79 -0.423  4+0.849 1.81+0.188 2.024+0.138
0.79 | 0.77 1.81 -0.444 +1.23 1.86+£0.197 1.87+0.141
0.79 | 0.79 0.973 -0.158  +0.281 0.786+0.145 1.07£0.0966
0.81 | 0.59 0.405 -0.0933 +0.255 0.28040.0795 0.35040.0497
0.81 | 0.61 1.38 -0.246  40.719 1.39+0.167 1.724+0.113
0.81 | 0.63 1.60 -0.168  +0.608 1.86+0.182 1.7440.116
0.81 | 0.65 1.73 -0.185  40.801 1.32+0.180 1.70+0.122
0.81 | 0.67 1.99 -0.203  4+0.713 1.734+0.186 2.134+0.130
0.81 | 0.69 1.54 -0.181 +0.736 1.28+0.183 1.88+0.135
0.81 | 0.71 1.72 -0.383  40.900 1.58+0.192 1.69+0.130
0.81 | 0.73 1.74 -0.0983 +0.556 1.71+0.198 2.084+0.128

Table F.3: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.

X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.81 | 0.75 2.15 -0.308 +0.781 1.62+0.103 1.82+0.128
0.81 | 0.77 2.12 -0.209 +0.977 1.814+0.210 2.414+0.144
0.81 | 0.79 2.48 -0.459  +1.32 2.354+0.224 2.29+0.149
0.81 | 0.81 1.08 -0.162 +0.544 1.51+0.165 1.274+0.106
0.83 | 0.59 1.26 -0.189  +0.864 0.762+0.102 1.21+0.101
0.83 | 0.61 1.60 -0.390 +0.964 1.48+0.180 1.88+0.126
0.83 | 0.63 1.80 -0.205 +0.610 1.32+0.183 1.91+0.134
0.83 | 0.65 1.48 -0.153  +0.492 1.36+0.182 1.7840.121
0.83 | 0.67 1.63 -0.296  +1.01 1.51+0.195 1.95+0.132
0.83 | 0.69 1.77 -0.370  +0.875 1.48+0.191 2.154+0.136
0.83 | 0.71 2.12 -0.340 +1.09 1.39+£0.202 1.95+£0.140
0.83 | 0.73 2.12 -0.290 +0.980 1.65+£0.204 2.234+0.147
0.83 | 0.75 2.19 -0.251 +0.871 1.95+0.207 2.37+0.142
0.83 | 0.77 2.29 -0.143  +1.06 1.88+0.222 2.23+0.153
0.83 | 0.79 2.19 -0.306 +0.741 2.22+0.234 2.594+0.169
0.83 | 0.81 2.58 -0.283  +1.15 2.1940.245 2.63+0.166

Table F.4: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.
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X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.83 | 0.83 1.25 -0.136  +0.540 1.23+0.176 1.40+0.119
0.85 | 0.57 0.283 -0.108 +0.209 0.13740.0851 0.2754+0.0525
0.85 | 0.59 2.19 -0.236  +1.08 1.20+0.179 2.36+0.144
0.85 | 0.61 1.53 -0.439 +0.954 1.43+0.189 1.714+0.125
0.85 | 0.63 1.79 -0.374 +0.809 2.01+0.191 2.084+0.131
0.85 | 0.65 1.77 -0.232  +0.732 1.91+0.199 1.84+0.136
0.85 | 0.67 2.19 -0.219  +0.928 1.80+0.203 2.06+0.135
0.85 | 0.69 2.02 -0.234 +0.823 1.74+0.203 1.94+0.140
0.85 | 0.71 2.33 -0.217  +0.909 1.74+0.209 2.07+0.140
0.85 | 0.73 2.28 -0.326  +0.982 1.84+0.220 2.374+0.154
0.85 | 0.75 2.09 -0.447  +1.25 2.104+0.224 2.534+0.159
0.85 | 0.77 2.23 -0.465  +1.08 1.94+0.242 2.554+0.169
0.85 | 0.79 2.24 -0.265 +1.12 2.704+0.253 2.71+0.175
0.85 | 0.81 2.49 -0.319  +1.01 2.724+0.262 3.17+0.177
0.85 | 0.83 2.93 -0.470  +1.34 2.814+0.280 3.334+0.189
0.85 | 0.85 1.11 -0.206 +0.755 1.34+0.203 1.64+0.143

Table F.5: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.

X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.87 | 0.57 1.32 -0.196 +0.826 1.27+£0.174 1.50£0.126
0.87 | 0.59 1.96 -0.398  +1.06 1.71+0.209 2.044+0.138
0.87 | 0.61 1.75 -0.447  +1.03 1.68+0.208 1.94+0.139
0.87 | 0.63 1.95 -0.543  +1.33 1.73+0.212 2.044+0.138
0.87 | 0.65 1.82 -0.234 +0.921 1.64+0.209 2.154+0.151
0.87 | 0.67 1.87 -0.533  +1.28 2.084+0.216 2.264+0.154
0.87 | 0.69 2.13 -0.299 +0.969 1.70+0.218 2.454+0.157
0.87 | 0.71 2.20 -0.473  +1.26 1.76+0.219 2.32+0.148
0.87 | 0.73 2.60 -0.322  +0.916 2.04+0.238 2.4240.161
0.87 | 0.75 2.61 -0.355  +1.25 2.354+0.245 2.90+0.169
0.87 | 0.77 2.56 -0.577 +1.36 2.0740.261 2.75+0.178
0.87 | 0.79 2.52 -0.299  +1.26 2.744+0.268 2.88+0.176
0.87 | 0.81 2.89 -0.222 +1.28 2.244+0.275 3.86+0.218
0.87 | 0.83 3.03 -0.505  +1.51 2.714+0.298 3.87+0.211
0.87 | 0.85 3.21 -0.288  +1.41 3.33+0.320 3.45+0.208
0.87 | 0.87 1.48 -0.145 +0.579 1.85+0.232 2.124+0.163

Table F.6: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.
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X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.89 | 0.55 0.627 -0.117  +0.184 0.401+0.0962 0.4754+0.0637
0.89 | 0.57 2.23 -0.247  +0.871 1.47+0.214 2.164+0.150
0.89 | 0.59 1.78 -0.474  +1.04 1.86+0.219 2.29+0.160
0.89 | 0.61 2.28 -0.468  +1.28 1.79+0.219 1.984+0.147
0.89 | 0.63 2.44 -0.344  +1.26 1.97+0.220 2.354+0.159
0.89 | 0.65 2.13 -0.510  +1.10 2.074+0.229 2.53+0.167
0.89 | 0.67 2.18 -0.397 +1.41 1.71+£0.231 2.514+0.164
0.89 | 0.69 2.60 -0.501  +1.60 2.1440.242 2.66+0.163
0.89 | 0.71 2.73 -0.325  +1.15 1.914+0.243 2.4440.162
0.89 | 0.73 2.50 -0.519  +1.39 2.474+0.256 2.574+0.162
0.89 | 0.75 3.07 -0.303  +1.08 2.474+0.263 2.904+0.179
0.89 | 0.77 3.18 -0.346  +1.26 2.434+0.289 3.214+0.187
0.89 | 0.79 3.15 -0.360  +1.12 2.6740.289 3.31+0.197
0.89 | 0.81 3.03 -0.315  +1.22 2.98+0.307 3.71+0.215
0.89 | 0.83 3.24 -0.590  +1.52 3.13+0.327 3.98+0.224
0.89 | 0.85 3.53 -0.389  +1.16 3.20+0.336 4.20+0.255

Table F.7: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.

X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.89 | 0.87 3.41 -0.387  +1.55 3.65+0.362 5.2440.264
0.89 | 0.89 1.90 -0.214 +0.775 2.414+0.279 2.844+0.195
0.91 | 0.55 1.57 -0.325 +0.853 1.54+0.202 1.60+0.132
0.91 | 0.57 2.04 -0.448 +1.19 1.98+0.228 2.28+0.152
0.91 | 0.59 2.38 -0.223 +1.07 1.83+0.231 2.56+0.165
0.91 | 0.61 2.60 -0.422 +1.33 1.96+£0.239 2.484+0.158
0.91 | 0.63 2.40 -0.727  +1.73 2.354+0.247 2.38+0.155
0.91 | 0.65 2.35 -0.631  +1.49 2.09+0.244 2.41+0.153
0.91 | 0.67 2.62 -0.363 +1.44 2.034+0.252 2.76+0.173
0.91 | 0.69 2.47 -0.452 +1.32 2.384+0.262 2.96+0.193
0.91 ] 0.71 2.66 -0.513  +1.31 2.594+0.272 2.57+0.180
0.91 | 0.73 3.03 -0.300  +1.40 2.4040.283 3.30+0.199
0.91 | 0.75 2.93 -0.477  +1.30 3.28+0.300 3.68+0.214
0.91 | 0.77 3.52 -0.479  +1.74 3.60+0.296 3.594+0.217
0.91 | 0.79 3.57 -0.566  +1.84 3.354+0.324 3.974+0.227
0.91 | 0.81 3.31 -0.378  +1.54 3.8440.352 3.73+0.236

Table F.8: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.
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X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.91 | 0.83 3.31 -0.430  +1.19 3.72+0.346 4.304+0.241
0.91 | 0.85 3.75 -0.423  +1.52 3.84+0.380 5.58+0.279
0.91 | 0.87 4.53 -0.384  +1.33 4.88+0.422 5.5740.298
0.91 | 0.89 4.68 -0.453  +1.39 3.684+0.442 6.07+0.314
0.91 | 0.91 2.23 -0.296 +0.628 2.9240.332 3.124+0.227
0.93 | 0.53 0.580 -0.190 +0.345 0.3554+0.114 0.48940.0713
0.93 | 0.55 2.64 -0.468  +1.37 1.70£0.253 3.02+0.188
0.93 | 0.57 2.59 -0.299  +1.23 2.064+0.270 2.414+0.163
0.93 | 0.59 2.81 -0.719  +1.28 2.7240.271 2.49+0.177
0.93 | 0.61 2.72 -0.625  +1.78 2.474+0.265 2.61+0.170
0.93 | 0.63 2.56 -0.455  +1.30 1.854+0.263 2.66+0.170
0.93 | 0.65 2.60 -0.376  +1.23 3.05+0.278 2.57+0.177
0.93 | 0.67 2.98 -0.339 +1.37 2.814+0.289 3.114+0.198
0.93 | 0.69 2.94 -0.411  +1.59 2.704+0.294 3.30+0.221
0.93 | 0.71 3.42 -0.435  +1.69 3.33+0.303 3.57+0.213
0.93 | 0.73 3.39 -0.242  +1.09 2.97+0.320 3.92+0.218

Table F.9: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.

X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.93 | 0.75 3.29 -0.501  +1.56 3.86+0.337 3.65+0.218
0.93 | 0.77 3.82 -0.358  +1.75 3.63+0.371 4.1240.237
0.93 | 0.79 4.02 -0.402  +1.67 4.06£0.365 4.01+0.238
0.93 | 0.81 3.35 -0.415  +1.35 3.78+0.375 4.65+0.269
0.93 | 0.83 3.93 -0.548  +1.59 4.3240.404 5.6640.282
0.93 | 0.85 4.34 -0.543  +1.49 5.154+0.442 6.16+0.309
0.93 | 0.87 4.35 -0.450  +1.77 5.39+0.465 6.27+0.323
0.93 | 0.89 4.98 -0.878  +1.46 7.03+0.507 7.13+£0.350
0.93 | 0.91 4.85 -0.643  +1.31 6.90+0.545 8.61+0.415
0.93 | 0.93 2.74 -0.369 +0.868 4.314+0.445 3.5440.285
0.95 | 0.53 1.19 -0.217  +0.600 0.937+0.189 1.14+0.118
0.95 | 0.55 1.88 -0.299 +0.896 1.61+0.240 1.69+0.134
0.95 | 0.57 2.08 -0.340  +1.09 1.37+0.232 1.66+0.149
0.95 | 0.59 1.97 -0.587  +1.29 1.45+0.229 1.594+0.143
0.95 | 0.61 1.86 -0.230 +1.11 1.98+0.250 1.89+0.153
0.95 | 0.63 1.91 -0.467 +1.08 1.51£0.225 2.134+0.179

Table F.10: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.
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X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.95 | 0.65 2.27 -0.274 +1.24 2.114+0.272 1.96+0.164
0.95 | 0.67 2.20 -0.452 +1.17 2.08+0.270 2.514+0.186
0.95 | 0.69 2.45 -0.275  +1.01 2.324+0.289 2.954+0.201
0.95 | 0.71 3.11 -0.354  +1.61 2.63+0.309 2.834+0.205
0.95 | 0.73 3.24 -0.392  +1.40 2.86+0.346 3.61+0.224
0.95 | 0.75 3.66 -0.463 +1.84 3.014+0.358 4.344+0.261
0.95 | 0.77 3.81 -0.503  +1.77 4.08+0.384 4.234+0.257
0.95 | 0.79 3.96 -0.397  +1.48 5.09+0.423 5.8240.311
0.95 | 0.81 4.88 -0.651  +1.69 5.4240.446 6.084+0.299
0.95 | 0.83 5.40 -0.766  +2.01 5.53+0.475 6.62+0.336
0.95 | 0.85 5.01 -0.564  +1.54 5.65+0.497 6.95+0.347
0.95 | 0.87 5.72 -0.727  +1.59 6.94+0.537 8.35+0.405
0.95 | 0.89 5.45 -0.797  +1.76 6.41+0.590 8.87+0.400
0.95 | 0.91 5.31 -0.827  +1.35 7.07+0.653 9.15+0.435
0.95 | 0.93 5.09 -0.774  +1.59 8.05+0.651 7.874+0.442
0.95 | 0.95 1.90 -0.358 +0.794 1.91+0.408 2.184+0.255

Table F.11: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.

X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.97 | 0.51 0.161 -0.119 +0.121 0.027240.0496 0.163+0.0221
0.97 | 0.53 0.698 -0.203 +0.453 0.482+0.136 0.317+0.0813
0.97 | 0.55 0.854 -0.200 +0.616 0.61940.136 0.3761+0.0824
0.97 | 0.57 0.749 -0.232  +0.506 0.5084+0.138 0.39540.0892
0.97 | 0.59 1.04 -0.209 +0.629 0.472+0.150 0.28240.0837
0.97 | 0.61 0.855 -0.166  +0.640 0.544+0.151 0.365+0.0871
0.97 | 0.63 0.985 -0.125 +0.586 0.5394+0.163 0.970+0.101
0.97 | 0.65 1.06 -0.261 +0.811 1.06+0.187 0.70940.117
0.97 | 0.67 1.04 -0.155 +0.528 0.66440.187 0.889+0.143
0.97 | 0.69 1.37 -0.126  +0.631 0.65540.199 0.828+0.139
0.97 | 0.71 1.53 -0.319 +0.851 1.00+0.222 0.891+0.145
0.97 | 0.73 1.53 -0.324 +0.773 1.06+0.248 1.02+0.151
0.97 | 0.75 1.92 -0.317  +1.01 2.174+0.279 1.71+0.186
097 | 0.77 1.91 -0.230 +1.01 1.68+0.201 1.58+0.196
0.97 | 0.79 2.27 -0.289 +0.970 2.04+0.303 2.43+0.233
0.97 | 0.81 2.83 -0.175 +1.14 2.70+0.387 3.75+0.277

Table F.12: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.
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X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.97 | 0.83 3.14 -0.330 +0.923 3.68+0.432 4.514+0.292
0.97 | 0.85 3.84 -0.466 +1.23 5.67+0.522 5.114+0.352
0.97 | 0.87 4.31 -0.528 +1.27 6.42+0.585 7.2840.416
0.97 | 0.89 5.35 -0.629 +1.17 7.791+0.680 8.29+0.449
0.97 | 0.91 4.87 -0.876 +1.42 6.96+0.699 8.61+0.500
0.97 | 0.93 3.79 -0.906 +1.21 4.63+0.666 6.33+0.428
0.97 | 0.95 2.12 -0.723 +1.08 2.2240.496 3.38+0.347
0.97 | 0.97 0.262 -0.118 +0.178 0.0185+0.151 no data
0.99 | 0.51 0.0251 -0.00993 +0.0376 0.02754+0.0167 0.06114+0.00673
0.99 | 0.53 0.0360 -0.0308  +0.0676 no data no data
0.99 | 0.55 0.102 -0.0386  +0.0889 0.09574+0.0228 0.148+0.00900
0.99 | 0.57 0.0542 -0.0131  +0.0344 0.0280+0.0261 0.200+0.0117
0.99 | 0.59 0.0521 -0.0227  +0.0598 no data no data
0.99 | 0.61 0.0727 -0.0154  +0.0495 no data 0.133+0.0116
0.99 | 0.63 0.0911 -0.0405  +0.0933 no data 0.0416+0.0183
0.99 | 0.65 0.0879 -0.0896  +0.0843 no data 0.306+0.0173

Table F.13: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.

X3 X4 | Cross Section Uncertainty NLO Cross Section | NLO Cross Section
(pb) (pb) CTEQ3 (pb) CTEQ4M (pb)
0.99 | 0.67 0.106 -0.0580  +0.152 0.0109+0.0445 0.00608+0.0245
0.99 | 0.69 0.0961 -0.0342 +0.0480 no data no data
0.99 | 0.71 0.273 -0.115 +0.154 no data 0.338+0.0316
0.99 | 0.73 0.235 -0.0640  +0.159 no data 0.737+0.0331
0.99 | 0.75 0.247 -0.0494 +0.0812 0.0644+0.0879 no data
0.99 | 0.77 0.258 -0.0801 +0.200 0.243+0.105 1.35+0.0611
0.99 | 0.79 0.230 -0.0662  +0.154 no data no data
0.99 | 0.81 0.629 -0.124 +0.225 0.40040.130 0.511+0.0703
0.99 | 0.83 0.472 -0.0504  +0.173 0.39040.150 0.0123+0.0812
0.99 | 0.85 0.498 -0.158 +0.215 0.32040.159 0.270+0.102
0.99 | 0.87 0.613 -0.0554  +0.412 0.567+0.193 0.223+0.116
0.99 | 0.89 0.866 -0.0780  +0.292 1.32+0.235 0.488+0.146
0.99 | 0.91 1.11 -0.226 +0.271 0.82340.303 3.984+0.171
0.99 | 0.93 1.08 -0.293 +0.406 0.77040.362 0.863+0.189
0.99 | 0.95 0.519 -0.200 +0.232 no data 0.145+0.0155
0.99 | 0.97 0.0576 -0.0407 40.0844 no data no data

Table F.14: The three-jet production cross section in every kinematically allowed bin

in the Dalitz plane as a function of X3 and Xj.
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