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ABSTRACT

We have analyzed the 90 pb~! of data from Runl1B at CDF in order to extract
the top/anti-top quark(¢t) production cross section. This analysis uses a set of kine-
matic variables to discriminate the ¢¢ signal from the W-boson + jets(WW + jets) back-
ground. Unlike C'DF’s previous top cross section measurements, tagging of b quarks
is not required here. Using a Artificial Neural Network(ANN) the kinematic variables
were combined into a single discrimination parameter. With this parameter we per-
formed a binned maximum likelihood fit of our data sample to Monte Carlo generated
background (W + jets) and signal (¢) distributions. Taking the minimum of the neg-
ative log-likelihood value, we determine the most probable number of signal events in
our sample, do a background subtraction and use this number (Nyz) to extract the ¢t

cross section, with a resulting total ¢ cross section of oz = 5.177% pb.
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Preface

The analysis presented in this thesis began as an extension of a topological measure-
ment utilizing Hy to determine the t¢ cross section (Hyp being the sum of the energy
transverse to the beamline). This work has been summarized in Appendix C, and
was presented at the Centennial meeting of the American Physical Society in 1999.
During the investigation of this early analysis it soon became clear that there were
many other kinematic variables which were potentially of interest in separating our

primary background (W+jets) from t¢ signal.

Once several different kinematic variables had been incorporated into the anal-
ysis it became evident that a conventional analysis would require a prohibitive amount
of work to be done in determining correlations of various kinematics. In order to han-
dle this issue it was decided to use an Artificial Neural Network (ANN). The use of
the ANN eliminated the necessity of examining the correlations between variables, as

this was now done by the ANN itself.

The ANN combines all the kinematic values feed into it into a single output
value providing the maximum possible separation between signal and background
events. Although the ANN played a crucial role in this analysis my continuing sus-
picion of their veracity resulted in a very simple structure to the neural network and
limited its application. Where other analyses have been very ambitious in applying
ANNs to the separation of all the significant backgrounds to their respective signals
we have limited the direct application of the ANN to the separation of the signal from
our primary background (W+jets).

Once the network was trained the selected data was past through the trained

network. The data output distribution was then compared to the output distributions

XX1



for background and signal events. This comparison of data to Monte Carlos (MC)
was done using a likelihood fit. The resulting fit yields a number of signal like events
(Ng). Some of the events which where identified as signal like are actually from
secondary backgrounds. This demanded the development of a new method for the

removal of secondary backgrounds.

In order to determine the proportion of secondary background events which
are identified as signal like it was necessary to utilize MC samples of each of the
secondary backgrounds. The samples of secondary backgrounds where put through
our ANN to get output distributions for each of these backgrounds. The outputs for
these backgrounds are then fit against the same MC distributions which the data was
fit against, this then yields the proportion of background events which are signal like.
Along with an estimate for the total amount of secondary backgrounds in our data
sample, we can use the proportion of signal like events to determine the amount of
background contamination in the previously measured Ng. Subtracting the secondary

background contamination from Ng yields the actual number of signal events (V).

With the N the ¢t cross section (o47) can be calculated.

XXil



Chapter 1
Introduction

“My studies in Speculative philosophy, metaphysics, and science are all
summed up in the image of a mouse called man running in and out of
every hole in the Cosmos hunting for the Absolute Cheese.”

~Benjamin De Casseres

1.1 The Standard Model

Of the four known fundamental forces of nature, all excepting gravity are described
by the interaction of matter particles, fermions, through the exchange of force parti-
cles known as gauge bosons. The theory which describe these processes is called the
standard model of particle physics. At the time of writing, no significant deviations
from the standard model have been observed. The possible exception to this is oscil-
lations in the neutrino sector and the non-zero mass of the neutrinos this oscillation

implies.

Matter € Force

The matter particles of the standard model are fermions, particles that obey

Fermi-Dirac statistics and having half-integer spins. Fermions come in two varieties:



quarks, and leptons. There are six known quarks and six known leptons. The quarks
and leptons are divided into three separate groupings or ‘generations’. This struc-
ture is summarized in Tables 1.1 , 1.2, 1.3. The particle of central interest in this
analysis is the top quark, a third generation quark. In its left-hand helicity state it
is the weak isospin partner of the bottom quark. This sixth quark was discovered
at Fermi National Accelerator Laboratory (FNAL) by the CDF and DO experiments
in 1995 [1] [2].

Quarks Q
u c t +2/3
, UR, dR < > yCR, SR < ) tr, bR < >
( d >L S )t b L —1/3
Leptons

(e () (0)m ()

Table 1.1: The fermions of the Standard Model. The left-handed particles reside in
weak-isospin doublets. The right-handed particles reside in weak-isospin singlets.

The force particles of the standard model are bosons, particles that obey Bose-
Einstein statistics having integer spins. These are called gauge bosons because of the
gauge field nature of the theories describing the forces of the standard model. The
electromagnetic force carrier is the photon (). The weak force is mediated by three
vector bosons ( W+, W=, Z° ). The strong force, color, is mediated by eight gauge
bosons called gluons(g). The SU(N) group theories have N2-1 associated gauge
bosons. Therefore, SU(2) has 3 gauge bosons (weak force) and SU(3) has 8 gauge



Force | Gauge Bosons | Strength(a) | Range(m) | Time Scale(s)

Electromagnetic Photon () a~ 1072 00 10=20 —10-16
Weak w+tw—,2° Gr=10713 | <107 %cm > 10712
Strong Gluon (g) ag ~ 1 <107 Bem > 1023
Gravity Graviton ? G~6x107% 00 00

Table 1.2: The ranges, strengths, and typical lifetimes associated with the three
Standard Model interactions, and with gravity. (« is dimensionless coupling constant)



bosons (strong force). The coupling constant of a given force is a measure of the

strength of that force. The gauge bosons are summarized in Tables 1.2 & 1.3. The

Higgs boson will be discussed in Section 1.1.3.

Generation | Particle Type Mass [32] (GeV /c?) Couplings
U quark 0.0015 to 0.005 a,Gy,as,G
1st d quark 0.003 to 0.009 a,Gg,as,G
Ve lepton <1078 G,.,G
e lepton 5.11 x 1074 a,Ge, G
c quark 1.1to 1.4 a,Ge,as,G
2cd s quark 0.06 to 0.17 a,Gs,as,G
vy lepton < 0.0002 Gy, G
1 lepton 0.106 a, Gy, G
t quark 175 £5.2 a, G, ag,G
3rd b quark 4.1 to 4.4 a, Gy, as,G
Vs lepton < 0.018 G,.,G
T lepton 1.78 x 1073 a, G, G
y gauge boson 0 Gr,G
W+, W~ | gauge boson 80.4 a,Gr, G
70 gauge boson 91.187 Gr,G
g gauge boson 0 Gr,as,G
H (Higgs) boson > 95.3 Gr,G

Table 1.3: The masses of the fermions & bosons of the Standard Model. The couplings
indicate the forces to which the forces which they couple to (the charges they carry).
The stated masses for the v, & v, assume v3 is the dominate mass eigenstate.

Particle Interactions

Fermions interact with one another through mediating fields as in the classical
theory of electromagnetism. However in relativistic quantum theory these fields are
quantum fields, and the forces arise as the virtual exchange of their quanta (the
gauge bosons described above). For example the interaction of two electrons via the
exchange of photons () as in Figure 1.1 is equivalent to the classical view of the
electron acting on an EM field which then acts on the second electron. The photon is
simply the quantum of that EM field. Such reactions are described by the well known
Quantum Electrodynamics(QED) and is associated with the gauge group U(1)gy.



Every gauge group has an associated gauge symmetry, this symmetry (if unbroken)
gives rise to a conserved quantity. In U(1)gay that conserved quantity is electric

charge.

Figure 1.1: Electron-electron scattering via the exchange of a photon(7y).

A typical weak interaction is the decay of a neutron into a proton. A particle
may decay weakly as in beta-decay where the initial particle the neutron decays into
a proton, or more specifically the down quark within the neutron decays into an up

quark, Figure 1.2.

p
—
udu
e
U, n—-pt+e+r,
111 d—>u+e+r,
W*
udd
n

Figure 1.2: Beta decay.

The W™ boson in this reaction is not a real W because the neutron does not have the



80 G'eV necessary to create a real W boson. The large mass of the WW-boson suppresses
the decay, therefore the decay time of the neutron is long (approximately 12 minutes).
Due to the high mass of the weak bosons the weak force is usually slow as shown in
Table 1.2. However if you start with a particle more massive than the W-boson then
a real W-boson may be produced by the weakly decaying massive particle. This is
precisely the case with a top quark, because the top is more massive than the W it can
decay weakly to a real W. This allows the reaction to take place very quickly. The
weak force in this case acts more quickly than the strong force- a top quark does not
live long enough to hadronize. This will be discussed further in Section 1.2. The weak
force is chiral- only particles which are in their left-handed helicity state and anti-
particles in their right-handed helicity state interact weakly. The electromagnetic and
weak forces together are best described by the electroweak theory first proposed by
Glashow, Salam, and Weinberg. This theory which incorporates both electromagnetic
and weak interactions is associated with the group SU(2), x U(1)y. The L indicates
that it is the left-handed weak isospin doublet which participates in the interaction

and Y stands for hypercharge. They are related to the electric charge @ by,

1

where T3 is the third component of the weak isospin. The quantum numbers of the

fermions in the first generation are,

T T; %Y Q

I I I 2
o ? ? ; }
o S S B
S B
er 3 —3 —3 —1
up 0 0 % %
dg 0 0 ~1 ~1
€R 0 0 —1 —1

these are the same for each of the next two generations of fermions (the weak bosons



also have electric charge). It is unknown whether the neutrino occurs in a right-

handed helicity state.

The strong force is well described by quantum chromodynamics (QCD). This
(like the weak theory) is a non-abelian gauge theory. This means that rotations of the
symmetry group, in this case SU(3)¢, are not commutative. This aspect of the theory
is a manifestation of the fact that gluons, the gauge bosons of the strong force, not
only mediate the force but also are carriers of the charge of the strong force (‘color’).
This is very different from photons, v, which mediate the electromagnetic force but

are not themselves charged particles.

Together these theories, along with the Higgs mechanism (Section 1.1.3), form
the Standard Model and characterize our best understanding of the three forces which

they attempt to describe.

1.1.1 Hadrons

Hadrons are composite states of quarks bound together by the strong force. Since
quarks and not leptons are carriers of strong charge, ‘color’, only quarks appear in
hadrons. This explains why atomic electrons are not bound inside the nucleus of

atoms as are protons and neutrons.’

Hadrons are classified into two groups: baryons, and mesons. Baryons are
hadrons with half-integer spins, and mesons are integer spin hadrons. Each quark in
the hadron has a spin of one-half therefore if the hadron contains an even number of
quarks the hadron will have integer spin and be a meson, otherwise it will have half
integer spin and be a baryon. The best known examples of baryons are the nucleons,
protons and neutrons. The proton contains two up quarks and one down quark. The

neutron contains one up quark and two down quarks.

!Though protons and neutrons (like all hadrons) are colorless bound states, their constituent
quarks and gluons are not colorless. Color interactions occur between hadrons via 7 exchange,
binding them within the nucleus.



p = (uud), n = (udd) (1.2)

Likewise, superpositions of up and down quark states make pions the most common

type of mesons,

(1.3)
1.1.2 Confinement & Jets

It was not until the 1970°, with evidence from deep inelastic scattering experiments,
that quarks began to be thought of as true physical particles and not just theoretical
constructs. This was due in large part to the fact that no isolated quark (or gluon)
has ever been observed. This phenomenon is known as confinement. Quarks and

gluons are believed to be bound into ‘colorless’ hadrons.

Unlike the well-known inverse square law of electromagnetism, where the force
goes as 1/r?, the strong force goes as r. As the distance between two quarks increases
the force between them increases. In this way the force becomes great enough, as the
quarks move apart, to pair produce quarks out of the vacuum which then bind to the
two initial quarks. This is illustrated in the Figure 1.3. Note that energy is clearly
conserved here so long as the energy required to ‘stretch’ the quarks apart is greater

than the mass of the two particles created out of the vacuum.

In this way many hadrons may be produced from a single initial quark pair. This pro-
cess, known as hadronization, results in a shower of hadrons. This shower of hadrons
is known as a ‘jet’. It is these jets that are observed in particle detectors, and through
these observations the originating quarks and gluons are inferred. The momentums of

these hadrons may be used to reconstruct the momentum of the originating parton.
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Figure 1.3: Schematic of the color lines of force between two partons, as described
in the Lund string model. a.) quark pair which is close to asymptotically free. b.)
quark pair which is being stretched as in a high energy collision. c¢.) quarks after a
two more quarks have been pair produced from the vacuum. [4]

1.1.3 Higgs Mechanism

The Higgs field couples to all elementary particles with mass. The mass of a particle
can be considered a measure of the strength of this coupling. The standard model has
at its base the gauge group SU(3)¢ x SU(2), x U(1)y. It accommodates electroweak
symmetry breaking by the introduction of a weak-isospin doublet of scalar fields &
with hypercharge, Y = +1. The introduction of these fields is the key to the Higgs
mechanism which is a vital part of the standard model, as it is currently constructed.
Experimental evidence for the Higgs does not exist but the search for it will be of

great experimental interest in the near future including Run II of CDF.

Without the Higgs mechanism the standard model has no means of accom-
modating the masses of the fermions or bosons which are experimentally seen. The

weak-isospin doublet of scalar fields is,

P = , (1.4)

where ¢t and ¢° are complex fields with the quantum numbers

A scalar potential is added by hand,

V=PSB =3, (15)
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where ) is the self-coupling of the scalar field. When p? is chosen to be negative
(u? < 0) a non-vanishing expectation value of |®|? appears in the physical vacuum
state. The appearance of a preferred direction in weak-isospin space spontaneously
breaks the symmetry of the theory [4]. Expanding the scalar field about its zero

expectation value yields,

2 .
v = ‘/TM = (GrV/2)7F ~ 245 GeV. (1.6)

This is known as the electroweak scale. The fact that the top mass (m; &~ 175 GeV') is
within a factor of two of this scale raises great interest in whether top physics might
cast light on the process of spontaneous symmetry breaking.[5] The spontaneous

breaking of electroweak symmetry gives mass (leading order) to the weak bosons,

My?=— 1% 1.7
and
My?
My? = . 1.8
Z cos2Oy, (1.8)

Where « is the fine structure constant, Gy is the Fermi weak coupling constant, and
Ow is the weak mixing angle. When the symmetry is broken (SU(2), x U(1)y —
SU(1)q) three generators are broken, the three Goldstone bosons are then interpreted
as longitudinal W3, Z; fields. The remaining unbroken generator is electric charge
(Q). In addition to the weak boson masses a physical scalar (spin-0) particle, the
Higgs boson, appears in the theory. Every fermion has its own Yukawa coupling(Gy)

to the Higgs field, and thereby acquires a mass,

10
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7 (1.9)

my

The search for the Higgs boson will be of primary importance in the next run of the
Tevatron at both CDF and D@. How #t production impacts these searches will be

discussed in Section 1.2.6.

1.2 The Top Quark

1.2.1 Why should the Top Quark Exist?

There was a short period of time prior to the discovery of the 7 lepton(by Martin
Perl) when nothing was known of a third generation of particles. However since this
discovery and certainly since the discovery of the first third generational quark, the
bottom quark [10], the search for the top quark was of considerable concern in the
particle physics community. It should be noted that before the discovery of the charm
quark M. Kobayashi and T. Maskawa pointed out that a third generation of quarks
would allow for C'P violation.[11] But why were these discoveries viewed by physicists

as such compelling evidence for the top quark?

Chiral Anomalies

The answer to this question is several fold. One early concern about a model
without a top quark had to do with the renormalizability of such a theory. There
are certain anomalies (‘chiral’ anomalies) which can arise when three gauge bosons
interact via a closed loop of fermions, even finite anomalies are forbidden. This is

illustrated in Figure 1.4 and is known as a triangle diagram.

11



A

Figure 1.4: An example of a standard model triangle diagram. These types of di-
agrams can give rise to chiral anomalies. Where at least one of the three must be
left-handed.

12



It turns out that if the charges of the left-handed fermions in each generation sum to

zero, 6]

S Qr=YQ + 33 Q=0 (1.10)

this anomaly is eliminated and the model is chiral free. Prior to the discovery of any
of the third generation fermions this was the situation. However given the b-quarks

charge another charge +2/3 fermion,

2

so-es[@e(H0

the top quark, is necessary to make this sum equal to zero. Therefore in order to
eliminate chiral anomalies and get a renormalizable theory it is necessary to intro-
duce the top. This is also circumstantial evidence for some higher symmetry (Grand

Unification).[12]

Forward-Backward Asymmetry

Another critical clue to the existence of the t-quark is the angular distribution
in bb production from ete~ collisions. There are two first order diagrams which

contribute to this Figure 1.5.

A symmetric distribution is obtained from the 7 portion of this process. However
when the diagram with the massive Z-boson is included a forward-backward asym-
metry arises. When the center of mass energy, /s, of the eTe™ collisions is at or
near the Z resonance this forward-background asymmetry in bb production becomes

significant.

By carefully measuring the asymmetry occurring at the Zbb vertex [4] a mea-

surement of the b-quark isospin can be made. The Z-boson couples to the bb through

13



Figure 1.5: Lowest order production of bb pairs in e*e~ collisions.

vector and axial vector couplings. The strength of these couplings (v, and ap) are

given by,
GrMz*
Y Yu(ve — ays) (1.12)
where v, & ay, are,
vy = 2[IF (D) + IF(D)] — deysin®Oy  and,  ay = 2[IX(b) + IF(b)] , (1.13)

the IX(b) and IF(b) are the third components of the isospin of the b-quark [6]. The
forward-backward asymmetry is sensitive to the relative size of these two couplings

of the Vbb vertex.

30V ApVp
(V62 + ae?)(ve? + ae?)

App = (1.14)

Measurements indicate that the third components of isospin for the b-quark are:

IE(b) = —0.49019015 IE(b) = —0.028 4+ 0.056. [7, §] (1.15)

14



This indicates that the right-handed b-quark is a singlet state, but with I3(b) ~ 1/2
the left-handed b-quark should be part of a isospin doublet. The partner in this
doublet is by definition the top quark.

b-quark: singlet or doublet

A bottom quark might decay weakly by a flavor changing current to a lighter
quark. The CKM matrix gives an indication, in elements V,;, & Vi, of the likelihood
of such decays to occur. The b — c¢W reaction is seen frequently enough that reason-
able measurements of the coupling factors have been made [9]. This flavor changing

charged current (FCCC) is shown in Figure 1.6 The process, b — ¢W, shown here

e

W

Yoo

Figure 1.6: An allowed standard model decay, if the b-quark is part of an isospin
doublet.

is a standard model process known to occur. This process can only happen if the
b-quark is part of an isospin doublet, or if the b-state mixes with the charm state.
However if this FCCC, (b <> s) — ¢W, happens then it would have to be possible for
the flavor changing neutral current (FCNC), (b <> s) — sZ, process to occur Figure
1.7.

15
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Figure 1.7: How a b-quark singlet state might mix with lighter quarks is shown. Where
the W-boson decays into leptons. a.) flavor changing charged current. b.) flavor
changing neutral current.
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Both the W & Z bosons may decay into quarks or leptons. When they decay
leptonically the W -bosons decay to a single detectable lepton and the Z-boson decays
to two detectable leptons. If both these processes were possible than it would be

expected that the ratio of the weak couplings would be,

(b — 111~ X)
F(b — lfl/lX)

~ 0.11 [9] (1.16)

Despite this expectation no [T/~ pairs have been observed in b-decays, as would be
expected if the b-quark were a isospin singlet, and therefore decayed to a Z-boson

part of the time.

For all these reasons the existence of the top quark was anticipated long before
any experimental evidence of its existence was found. And the large mass of the top

was indicated by B°-B° mixing.

1.2.2 Top Discovery

In the 1970s the search for the top quark began in earnest at e*e™ colliders, the first
important experiment to join the search was PETRA at DESY. PETRA set the first
confidence limit on the mass of the top, m; > 23 GeV [10]. A few years later the
TRISTAN experiment improved this limit to 30 GeV [13]. Then in 1984 the UAl
experiment at CERN SppS thought they had found the top quark [14]. This signal
was proved to be false within a year by the UA1 group itself. The backgrounds,
mostly the W + jets backgrounds, had been underestimated [15]. These experiments
eventually increased the mass limit to m; > 45.8 GeV [16]. However it would have
to wait for the development of pp colliders and the significantly higher energy realms

which they lay open to allow further work to be done on the top mass.

The UA1 and UA2 experiments ran through 1989 and produced mass limits of
my > 60 GeV and m; > 69 GeV respectively [17]. In its first year of running, 1988-89,
CDF raised the mass limit to m; > 91 GeV [18]. DO soon moved this limit up to
my > 128 GeV [19, 20]. In April 1994 the CDF collaboration claimed evidence for t¢

17



production [21]. With 19.3 pb~! of data and 12 candidates CDF set the production
cross section at o7 = 13.97$ipb and the mass at m, = 174 £ 107]3 GeV [1, 22].

D@ found nine candidate events setting o,z = 8.2 + 5.1pb and m,; &~ 180 GeV [2, 19].

Before the summer of 1995 both CDF & D@ experiments had announced
discovery of top [1, 2]. Twenty years after the PETRA’s earliest mass limit. Current
mass and o;; measurements are shown in Figures 1.9 , 1.10. Figure 1.8 shows one of

the first CDF candidate events.

1.2.3 Top Quark Production

Top quarks can be produced as single top quarks or in quark-antiquark pairs. Single
top production is more easily swamped by backgrounds is not expected to be seen in

the Run I data set. The theoretical single top cross section is oy, = 2.43 pb.[30] [77]

Single top Production

Single top production happens via two processes. Firstly by the creation of an
off mass shell W which decays to a quark-antiquark’ (¢q’) pair Figure 1.11. The prime
signifies that the second quark is of a different type than the first. Secondly a quark
and gluon can interact via a W and a secondary b-quark Figure 1.12. Producing
a top quark and an anti-bottom quark. This measurement has not been made but
will be made at Fermilab during Run II. This will provide a measurement of the Vy,

element of the CKM matrix,

18



Vud Vus Vub
V= Vea Ves Ve (1-17)
Vie Vis Vi

The values of the CKM matrix determine the amount of mixing that takes place
between the different quarks. This measurement could confirm three generational
unitarity, which would contra-indicate a 4'* generation of quarks, proving at least that

no mixing between a 4" generation and the known three generations is possible. [32]
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Figure 1.8: Very early ¢t candidate [ + jets event with SVX b-tags. The two jets
with displaced vertices, jets 1 & 4, indicate b-quarks. Such a displacement occurs
because the lifetime of the b-quark is relatively long. A typical Lorentz factor here is
v = E/my ~ 10. Therefore, the distance traveled by the B-meson is < d >=y-¢-7 =
10- (3 x 10" em/s) - 10712 5 = 0.3 cm.

20



18

[ee]
T

6L m  CDF combined
- e D@ combined

=" Berger et al.

\% .

= B — Laenenetd.

g ........ Catani €t al.

% 10

2 —— Bonciani et al.

O

o

(@)

|_

s w0 w0 w0 10 20
Top Quark Mass (GeV/cZ)

Figure 1.9: Mass of top and cross section of ¢¢ as compared with theory [29].
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Figure 1.10: Current combined CDF and DO ¢t production cross section numbers.

Figure 1.11: Lowest order processes for QCD single top production from ¢q annihila-

tion.
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Figure 1.12: Lowest order processes for QCD single top production from ¢g scattering.

tt Production

This analysis is concerned with ¢ production. Pair production also occurs via
two processes. One production mechanism is gluon fusion. In this process two gluons
fuse into one which then strongly decays into a tt pair. There are three production
diagrams for this process Figure 1.14. The other production mechanism is quark

annihilation. A quark anti-quark annihilate with each other producing a gluon which

Figure 1.13: Lowest order process for ¢t production from ¢g annihilation.

then pair produces a tt pair Figure 1.16. The relative probability of each of these

mechanisms is dependent on the center of mass energy (1/s) of the initial interaction.
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At the Tevatron /s the ¢ process is favored, 90% of the ¢t pairs are produced this

way.

g t 9 t
+ +

9 [ 9 [ 9 t

Figure 1.14: Lowest order processes for QCD single top production from gluon fusion.

1.2.4 Top Decay

The top quark decays weakly into a bottom quark and a real W-boson, Figure 1.15.
Although weak decays are usually rather slow (Table 1.2) this is not the case for the
top quark. In this case the weak force acts very quickly before the top has time to
hadronize. For the measured top mass, m; = 175 GeV, the decay theoretical width

is [yop ~ 1.8 GeV and its lifetime is #/Ty,, ~ 10~ seconds.

"y,

Figure 1.15: The top quark decays into a W boson and a bottom quark.

Neglecting terms of the order of %é, a%, and (%ri) %52‘1 the decay width is given by,[28]
t t
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This compares with hadronization timescales of ~ 1072 seconds. Therefore it is the

high top mass which is responsible for the top’s short lifetime.

1.2.5 Signature & Branching Ratios

The decay channels of ¢t pairs are classified by the varying decay modes of the W-
bosons produced in the process. The W can either decay into quarks or leptons,
Figure 1.16. If it decays into leptons that pair of leptons may be any one of the three
lepton generations: (e, v.), (f, ), or (7,v;). If it decays into quarks those quarks
will be one of two different flavor pairs, (u,d) & (¢, s), which conserve charge and are
kinematically allowed. Each flavor pair is triply degenerate coming in three different
color combinations. Therefore each quark flavor pair is three times as likely as a given

lepton pair Table 1.4.

One channel is both the W-bosons decaying to leptons, known as the dilepton
channel. If both Ws decay to quarks and thereby produce jets it is the all-hadronic
channel. And finally the channel of interest in this analysis the lepton + jets channel
is when one W decays leptonically and the other hadronically. The branching ratios
of each of these channels can easily be seen from the Table 1.4. Since 7 leptons
present special problems for detection most analyses do not attempt to include them
and sometimes have to contend with them as backgrounds. Therefore the effective
branching ratios are smaller if events with 7 leptons are not included, as is the case

in most analyses, this one included,
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Figure 1.16: Lowest order process for QCD tt production from ¢¢ annihilation. And
the tops decay, t — Wb, with the final W decay.

Br(WW — llvv) = 4/81 (dileptons)
Br(WW — lvqq') = 24/81  (lepton+jets)
Br(WW — qq'qq') = 36/81 (all hadronic) .

The all-hadronic channel has the largest branching ratio, however it also has the
largest backgrounds. The channel with the smallest branching ratio, the dilepton
channel, is also the cleanest having the fewest backgrounds with which to contend.
The lepton + jets channel (I + jets), used in this analysis, is a compromise between

branching ratios and backgrounds.

1.2.6 Why is Top Important?

Currently the foremost experimental goal in particle physics is to find the Higgs boson.
If this discovery is made all the standard model particles will have been measured,
Table 1.3. The top quark plays an important role in this search in at least two ways.
First the mass of the top has already, along with the W boson mass, given us a idea of

the mass range over which to expect to find the Higgs boson if it exists, Figure 1.17.

The dominant production mechanism for standard model Higgs production at
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¢s |3/81|3/81|3/81|9/81 |9/81

ud | 3/81 |3/81 | 3/81|9/81|9/81

W+

decay v, | 1/81 | 1/81|1/81 | 3/81 | 3/81

pv, | 1/81]1/81 | 1/81 | 3/81 | 3/81

eve | 1/81|1/81 | 1/81 | 3/81 | 3/81

eve pv, TV, ud S

W+
decay

Table 1.4: Standard Model branching ratios for t¢ W decays.

the Tevatron is by gluon fusion(gg — H). Because of the high QCD backgrounds in
this mode, it is believed that g — V* — VH — Vbb, where V is either a W or Z,
provides one of the best opportunity for discovery at CDF, Figure 1.18. [12]

Clearly for this process tt will pose a major background problem. The signature for

this process has the potential to appear top like.

Standard model processes are by no means the only processes for which ¢t
background will be a major concern. We have already discussed the importance of the
Higgs mechanism in the standard model as well as the way in which it is incorporated
as a scalar doublet with a single physical Higgs boson emerging in the theory. However
this picture is more complicated when one looks at the Minimal Supersymmetric
Standard Model (MSSM). In the MSSM five Higgs particles are predicted: two CP-
even scalars (h & H), one CP-odd pseudoscalar (A4), and two charged bosons (H*).
It is worth noting here that in the MSSM the bottom-Higgs Yukawa couplings are

enhanced making the b-sector of great interest in supersymmetric Higgs searches [39].
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Figure 1.17: The dependence of the Higgs mass on the top and W masses. Band
represent Higgs boson masses from 90 to 1000 GeV. The contours shown represent
one o confidence level. This figure taken from reference [33].

One example of such a search is pp — bbp — bbbb where ¢ = h, H, A [40]. To lowest
order these processes are shown in Figure 1.19 These four jet events would be strongly

masked by ¢t production.

Perhaps the best example of a SUSY search with high ¢# background is the
search for the supersymmetic top (stop(f) ) quark. A commonly predicted ¢ decay is
t—b+x7 and Xi — Wb+ X2 or Xi — bl+x? [41]. Where {? is the Lightest Super-
symmetric Particle (LSP). This decay is compared to the top decay in Figure 1.20.

The similarity of these events is self evident. They are especially similar given that
leptonic W decay modes make high missing energy normal in top decays. The X9,

being the LS P, is stable and therefore only observed in the detector as missing energy.

There are even a number of non-SUSY searches which are substantially im-
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Figure 1.18: Possible Higgs production at the Tevatron. Three weak bosons are shown
in the final state.

PSS

Figure 1.19: Lowest order process for QCD t¢ production from ¢g annihilation.

pacted by top backgrounds. For example in technicolor there are technimesons

pr — Wﬂ'T — WbB [36]

These are just a sampling of some of the searches for which ¢ production
will be a significant background. Clearly this is reason enough to study oy;, however
it should be remembered that top is of substantial interest on its own accord. One
reason for this, how single top impacts three generational unitarity, has been discussed
in Section 1.2.3. The best reason for studying top is, simply the examination of an
interesting area of physics, in this case physics that may greatly effect the electroweak

scale.[5]
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Figure 1.20: A comparison of top and stop quark decays. a.) stop decay. b.) top
decay.
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Chapter 2

Detector

2.1 The Tevatron

The Tevatron is a superconducting accelerator with a main ring radius of one kilo-
meter. It is a proton anti-proton collider with 6 bunches each of p’s and p’s each
at 900 GeV, for a center of mass energy (y/s) of 1.8TeV. Each of the p bunches
contains approximately 2 x 10 protons and each p bunch contains approximately

5.5 x 10'° anti-protons.

The production of protons for the Tevatron begins with a bottle of Hy gas.
Electrons are added to the hydrogen to create H~ ions. These ions are then accel-
erated to 750 kel using a Cockecroft-Walton electrostatic accelerator and sent into a
150 m linear accelerator (linac). The linac accelerates the ions to 400 MeV/c?. At
the end of the linac the ions are passed through a copper foil which strips them of
both of their electrons. The protons which emerge from the foil are then injected into
the Booster. The Booster is a 23 m radius synchrotron; it accelerates the protons to
8 GeV before injecting them into the Main Ring. The Main Ring is a 1 km radius
accelerator which generates magnetic fields of 0.7 T'esla. The protons are accelerated
by 0.5 MeV/c? per turn until they reach 150 GeV, they are coalesced into bunches
and the bunches are injected into the Tevatron. Superconducting magnets in the

Tevatron, which is directly below the Main Ring, generate fields of 0.66 T" to 4.4 T'.
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The p bunches are finally accelerated to 900 GeV in the Tevatron. This whole process

takes approximately one minute.

The process for anti-protons is the same up to the Main Ring, then 120 Gel
protons are shunted out of the Main Ring and fired at a tungsten target. From the
resultant shower residue p’s are selected and focused with a lithium lens. From there
they are sent into the Debuncher where they are “stocastically cooled”, resulting in
a phase space reduction of the beam (i.e., the energy spread of the beam is reduced).
From the debuncher the cooled p’s are sent into a concentric ring, the accumulator,
where they are “stacked” (stored and accumulated) until there are approximately
100 x 10'° p’s. Six bunches of p’s are then injected into the Tevatron and accelerated
to full energy (900 GeV'). Because the p’s stack at a rate of about 4 x 10'°per hour
the whole process for p’s takes about one day [42].

Once the p and p bunches are in the Tevatron and circulating in opposite direc-
tions around the ring the stacking procedure is continual. Because of this continued
operation of the Main Ring it is necessary for the Main Ring to be diverted above

the CDF detector to minimize contamination from particles coming off the ring.

Counter rotating beams are made to collide at two interaction points around
the Tevatron: DO and B0. BO is the point were the Collider Detector at Fermilab
(CDF ) resides. Circulating around the ring requires 21us, with 6 bunches collisions
take place at a rate of one crossing per 3.5us. Collisions continue until the luminosity

degrades too badly due to collisions, beam losses and beam-beam interactions.

2.2 The CDF Detector

The Tevatron is currently the highest energy collider in the world at a center of mass
energy of \/s = 1.8 TeV. The CDF detector is one of two detectors designed to
exploit this high interaction energy. It is designed to measure the various high en-
ergy particles which emerge from the pp interaction region. CDF has the capacity to

directly measure: electrons, muons, photons and jets. A jet is a shower of collimated
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hadrons. Jets are defined in the CDF detector to be the energy deposited inside a
“cone” (a predetermined solid angle) and which track back to a single interaction
point. There are three primary hardware components to the CDF detector: track-
ing chambers, calorimetry and muon chambers. Each of the hardware components
in addition to triggers and offline reconstruction will be described in the following

sections; for a more complete description, refer to the CDF “blue book” [43].

2.2.1 Tracking Systems

There are three distinct tracking systems which work in conjunction to make a pre-
cision measurement of a particle’s path through the detector. The three tracking
components in the CDF detector are the Silicon Vertex detector (SVX), the Vertex
Time Projection Chamber (VTX) and the Central Tracking Chamber (CTC).

Silicon Verter Detector

The SVX is a silicon microstrip detector which lies at the center of the CDF',
immediately outside the beamline. The SVX is divided into two barrels each 51 e¢m

in length, adjoining at z = 0. A schematic of one barrel is shown in Figure 2.4.

There are four layers of silicon varying from a radius of 2.9 em to 7.9 ¢m in each
barrel. Each layer consists of varying numbers mechanical/electrical units (ladders)
depending on the radius of the layer around the beamline and forming a cylinder of
microstrip sensors. A ladder has three single sided microstrip sensors bonded together
end to end running the length of the barrel. The strips on the sensors are 60um pitch

running axially.

One of primary values of the SVX detector has been its ability to find displaced
vertices. This has been of great interest for tagging b quarks from #¢ events in Run I
at the Tevatron, and was instrumental in the discovery of the top quark. Although
this part of the CDF detector has been central to past CDF top analyses it is of

somewhat less concern in this analysis because b-tagging is not used to identify top
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quarks. The efficiency on b-tagging is limited, and the independence from b-tagging

of this analysis is one of its primary benefits.

Vertex Detector

The VTX is a time projection chamber with sense wires running through the
chamber. The chamber is segmented azimuthly into eight pieces. The gas in the
chambers are approximately a 50/50 mix of argon and ethane. Sense wires run out-
ward from the beamline. Tracks through the gas yield tracking information allowing
the primary vertex in the event to be determined. The drift times to the sense wires
provides time of arrival information which is used to locate the event vertex’s z posi-
tion to within 1 mm. The VTX extends from the outside of the SVX out to a radius
of 22 cm.

Central Tracking Chamber

The primary purpose of the CTC is to measure charged particle momenta.
Lepton identification comes from coincidences between the CTC and the EM calorime-
try or muon chambers. The particle’s momentum is determined by it’s path in the
1.5 T magnetic field. There are sense wires running the length of the CTC (along
the beamline). There are nine “super-layers” with alternating “axial” and “stereo”
wires, Figure 2.5. The axial layers have wires running parallel to the beamline and
the stereo layers have wires running +3 deg from beamline parallel. The combination
of axial and stereo information give a full 3-dimensional track reconstruction. To
correct for the Lorentz angle produced by crossed E and B fields, the wires create
a 1350 V/cm drift field. The magnetic field in the CTC is provided by a solenoid
magnet just outside the CTC. The superconducting solenoid is liquid He cooled. Mo-
mentum resolution of the CTC is 6 Pr/Pr* = 0.002(GeV /c)~*, and the inclusion of

SVX information improves momentum resolution by a factor of two [43].
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2.2.2 Calorimetry

Particles with transverse momentum of greater the 350 MeV have the potential to
escape the solenoid which surrounds the CTC. Outside the tracking region of the
detector calorimeters are located. Precision energy resolution is obtained from two
categories of calorimetry: hadronic and electromagnetic. Hadronic calorimetry for the
measurement of strongly interacting particle energies and electromagnetic calorimetry

for the measurement of electromagnetically interacting particle energies, v, e.

The central region of the detector out to a pseudorapidity (|n]),

-l

of 1.1 is covered by the central hadronic(CHA) and the central electromagnetic(CEM)
calorimeters. They are divided azimuthly into 24 equal wedges (“projective towers”).
Every wedge is divided along 7 into towers, where each tower covers Anp = 0.1. The
electromagnetic calorimeters lie directly inside a corresponding hadronic calorimeter
in any given tower, this allows the electromagnetic and hadronic energies to be com-
pared. The region from (1.1 < |n| < 2.4) is considered to be the end plug region and
higher || is considered the forward region. The coverage of these towers is shown in

Figures 2.2, 2.3.

Electromagnetic Calorimeters

In the central region the electromagnetic shower counters use lead interspersed
with scintillator as the active medium. Outside the central region proportional tube
chambers with cathode pad readout are used. Proportional strip and wire chambers,
central shower counters(CES), at a shower maximum depth of six radiation lengths
provide spatial resolution of & 2 mm, Figure 2.6. In the end plug region three different
radiation depths are sampled (3.0, 3.8 and 14.2). The forward region samples at
two depths. The energy resolution for the electromagnetic calorimetry varies from
o/E = 2% at 50 GeV in the central region to o/E = 4% at 50 GeV in the end and

forward regions.
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Figure 2.1: Schematic view of the accelerator assembly.
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Figure 2.2: A cross section of one quadrant of the CDF detector. It is symmetric in
the other quadrants.
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Figure 2.6: Schematic view of one module of the central calorimeter [43].
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Figure 2.7: The segmentation in n — ¢ of the calorimeters. The shaded area in the
forward region is only covered by electromagnetic calorimeters. The blackened area
has no coverage [43].

Hadronic Calorimeters

The hadronic calorimeters in the central region consist of alternating steel
plates and plastic scintillator. The end and forward regions are proportional tube
chambers with cathode pad readouts. The central region of the hadronic calorimeter
is defined slightly differently from the electromagnetic with |n| < 1.3. The end &
forward regions are defined the same as for the electromagnetic calorimeters. The
energy resolution for the hadronic calorimetry is o/E = 11% at 50 GeV in the
central region to o/E =(14-20)% at 50 GeV in the end and forward regions.

2.2.3 Muon Detection

Due to their high mass (m, >> m,.) muons are essentially minimum ionizing in the

calorimeters. CDF has two systems in the central region for detecting muons which
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Figure 2.8: Schematic view of the CMU [43].

penetrate the calorimetry. Directly outside the central calorimeters is the central
muon detector (CMU). The CMU covers |n| < 0.65 and consists of four layers of
drift chambers, Figure 2.8. Momentum is determined by comparison of drift times
in the different layers. It is possible to measure the muons ¢ and z by time to
distance relation and charge division. The momentum resolution of the CMU is
oPr/Pr® = 0.002(GeV /c)~!. If the muon has a Pr > 1.4 GeV /c it will penetrate the
CMU.

Outside the CMU is a steel absorber 0.6 m thick and outside this is the central
muon detector upgrade(CMP). The CMP also has four layers. The position resolution
in ¢ is 250 um and in z is 1.2 mm. The system is essentially 100% efficient for fiducial
muons [43]. This dual muon system helps veto pions which might punch through the
CHA. CMU muons with confirmation in the CMP are ~ 95% pure.

The CMX provides additional coverage in the region of 0.65 < || < 1.0. All
three components(CMU,CMP and CMX) are shown in Figure 2.3.
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2.2.4 Beam-Beam Counters

A plane of scintillator counters are on the face of each of the forward and backward
shower counters, Figure 2.3. These scintillators are called beam-beam counters(BBC)
and provide a “minimum bias” trigger for the detector in addition to a luminosity
measure, Figure 2.10. The timing on these counters is o < 200 ps, which gives the
best time of interaction measurement. The timing difference also gives a £4cm vertex

measure.

It is crucial to know the total integrated luminosity of the data taken. In pp

reactions instantaneous luminosity is given by,

_ NpN,Ngf

4o?

L (2.1)

where N, & N; are the number of protons & anti-protons per bunch. In this formula
Np is the number of bunches of each type, f is the revolution frequency of the collider,
and the 4mo? is the cross sectional area per bunch. The integrated luminosity over Run
Iis shown in Figure 2.10. The total integrated luminosity in Run IB was 86.3 pb~! [93].

This is the data sample used in this analysis.

2.2.5 Data Taking

The CDF detector has approximately 150,000 electronic channels to be read out.
Beam crossings occur every 3.5 pus with one to three collisions per crossing, for an

event rate of ~ 50-75 kHz at the original design luminosity of 103e¢m=2s7!. The

2571, Not all these events can be

luminosity increased throughout Run 1 to 103'em™
written to tape, most events in any case are likely not to be of great interest. Because
of this several layers of selection (trigger levels) are applied prior to events being
written. C'DF utilizes a three level trigger system to bring the number of events down
to a manageable size. The sooner events are discarded the less deadtime there is, and

the more events which can be readout.
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Level 1

The level 1 trigger relies on fast output from preamplifiers to quickly make
the initial decision to keep or throw away an event. This decision is made before the
next beam crossing, in less than 3.5us, therefore operation of level 1 triggers are dead
timeless. Dead time is incurred if the trigger takes more time to analyze an event
than it has between beam crossings. Triggers at level 1 which are relevant to top
quark searches are calorimeter and central muon triggers. The calorimeter trigger
relies on the Fr, it is summed from all calorimeter towers which individually pass a
low(1 GeV') threshold cut were the sum must be over some high threshold. The three
muon triggers use fast outputs from the CMU,CMP, and CMX. At a luminosity of

10*tem 257! the trigger rate at level 1is ~ 1 kHz.

Level 2

Events passing level 1 triggers are sent to the level 2 triggers. During this
stage information is collected from the tracking, calorimetry, and muon systems. The
central fast tracker(CFT) using fast timing information from the CTC determines
if tracks are present in the CTC with an efficiency of =~ 94% for high Pr tracks
(Pr > 10 GeV /c). Dedicated hardware gathers information from the calorimeter
towers, this information is examined for clusters of towers containing events above
some threshold of energy which would tend to imply the presence of a jet, electron,
or photon. The CMU, CMP, and CMX provide information which can be matched
with CFT tracks to provide indication of the presence of muon candidates. How long
this level 2 process takes varies according to the complexity of the event. Simple
events typically take 20 to 30 us but more complex events, especially those with
a large number of tracks, can take hundreds of microseconds. At a luminosity of

10%%cm 257! the trigger rate of level 2 was 20 Hz with approximately 4% dead time.

Level 3
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The final trigger level, level 3, is entirely software based. Eight Silicon Graphics
multi-cpu PowerServers are used to run this software trigger. At this level a full event
reconstruction has been done on each event. At level 3 electrons and muons have
been fully reconstructed, the jets have been clustered, and the missing transverse
energy(Fr) has been calculated. Once again the majority of the time required at this
level is the reconstruction of tracks. At the final operating luminosity of 103'cm=2s7"

the trigger rate of 5 Hz with approximately 10% dead time. These events are written

to tape.
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Figure 2.9: The segmentation in 7 — ¢ of the central muon systems [43].
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Chapter 3

Neural Networks

3.1 The Brain

Until a century ago very little was known of the internal structure of the human
brain, although the central nervous system has been studied for centuries. In fact the
electrical nature of nervous impulses was first studied by Luigi Galvani in the 1780s.
The brain was first shown to be composed of individual “neural” cells (neurons ) in
1888 by Santiago Ramon y Cajal, using a technique developed by Camillo Golgi. The
two shared the 1906 Nobel prize in medicine for this work. Over the last half century
a great deal of work has been done on the structure of these neurons so that today

quite a bit is known about their structure and behavior.

A single neuron has a fairly well known physical structure. These neurons
have a central cell body known as the soma. From the soma many hair-like structures
project radially, these are the dendrites. Also coming from the soma is a single larger
fiber known as the azon, this tubular structure divides into branches at the other end
which terminate in end bulbs. These bulbs are in close proximity, typically 200 nm,
to the dendrites of other neurons. The gap between the dendrites and the bulbs is

called the synapse, Figure 3.1 shows the the basic structure of a neuron.

A neuron in the “resting state” has certain concentrations of ions both inside

and outside the cellular membrane. The most common ions involved in a cell are K,
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Figure 3.1: Schematic veiw of a neural cell.

Na*, and Cl~. In its rest state the axon of the neuron is neutral along its entire
length. Although the fluid, inside and outside the axon, is electrically neutral the
concentrations of various ions may be substantially different inside and outside the
axon. The Na™* concentration inside the axon is typically 15 mol/m?, the concen-
tration outside is typically 140 mol/m?3. This means that there exists great potential
for a diffusion response across the cellular membrane. In the rest state the cell mem-
brane is largely impermeable to the ions until the axon is stimulated. At the point
of stimulation the cell membrane of the axon becomes permeable and charged ions
flow across the cell membrane from neighboring parts of the axon. In this way the
neighboring point on the axon is stimulated and that region becomes permeable, in
this process a signal flows down the length of the cell body. This signal moves along

the axon at a speed of 30 m/s to 150 m/s.

Once a signal has reached the nerve endings it triggers a neuro-chemical re-
sponse at the synapses. These signals trigger a response in the dendrites of a neigh-
boring neuron, the post-synaptic cell. The signal is transmitted along the dendrites to
the soma. It is here at the soma that all the signals from the dendrites are combined
and if the signals coming in exceed some threshold value the neuron “fires” and a

signal is sent down the axon of this post-synaptic cell. Exactly how this combining
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of the signals from different dendrites takes place in the brain is not well understood,
especially how the timing of signals from various dendrites affect the process. Fortu-
nately the process for an Artificial Neural Network (ANN) will be much simpler to

describe.

The complexity of the human brain is not due to the intrinsic complexity of
the individual neurons in the brain but in the large numbers of neurons present.
A rodent the size of a human being would have a brain 1/30 the size of a human
brain [45]. This tends to indicate that it is the over-abundance of neurons that leads

to the greatly increased capacity of the human brain over that of the rodent.

The human brain has ~ 10'! neurons. Each neuron in the brain and spinal
cord has a few thousand synapses. Therefore the total number of synapses in the
human brain are of the order of 10'*. It is neuro-chemical changes that affect the
activity of synapses. These properties of the neurons reflect, at the cellular level,
memory. It is therefore synaptic responses in the brain which are the physiological

key to learning.

The efficiency of a particular synapse changes over time according to its ac-
tivity. Repeated stimulation of the pre-synaptic neuron will result in an increased
magnitude of the response in the post-synaptic neuron. This strengthens that path-
way and weakens surrounding pathways. This mechanism is known as Hebb’s rule

and is thought to play the dominate role in the physiology of learning.[46]

3.2 Artificial Neural Networks

The expression Artificial Neural Network refers to a broad class of mathematical
models which utilize a distributed architecture. Such architectures have multiple
parallel processing centers, nodes, instead of a single linear processing stream. These
models are similar, and inspired by, the neural model of the brain just described.
The term neural network (w/o the artificial) is usually reserved for an actual brain.

However unless specified the terms ANN, neural network, and network will all be used
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interchangeable with and in reference to an Artificial Neural Network.

Although there are many different types of ANNs they may be placed into two
broad categories, “supervised” and “unsupervised”. The first category, supervised
learning, takes place when relationships in data are determined by comparison to
some established “parameter domain”. This parameter domain is typically a data
set where the desired relationships are already known, using this information a net-
work may be “trained” to find these relationships in other similar data sets. By
contrast, unsupervised learning is when a network discovers “natural” groupings in
the data without any constraints. Both supervised and unsupervised learning takes
place through intrinsic relationships in the data and not by a predetermined set of

rules.

One example of supervised learning is given by a feed forward multi-layered
perceptron (MLP) network. The word perceptron is historical having to do with the
workings of the nodes in a network. Each grouping of nodes is referred to as a layer.
The term feed-forward indicates that each node in the network connects only to nodes
in other layers and not neighboring nodes in the same layer. The most important
consequence of this is to make recurring loops impossible. Although there are many
other types of supervised networks this is one of the most important types of networks

for high-energy particle physics and is the one used in this analysis.

3.3 Why use a Neural Network ?

A hardware ANN in a neural computer could contain billions of elements; but hun-
dreds of billions (10'") are in a human brain. The complexity of neural interconnec-
tions in the brain is beyond our current understanding, a single neuron in the human
brain may have well in excess of 1000 synaptic connections. The selection of synaptic
strengths is very crude in artificial neural models and much work on this learning
process is needed before it comes close to the subtlety of even the simplest brain.
Despite the crudeness of artificial neural networks they can be of considerable value

in simple pattern recognition.
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3.4 Neural Network Applications

Artificial Intelligence € Artificial Neural Networks

Artificial Intelligence (AT ) also known as expert systems are sometimes ap-
plied to similar situation as ANNs. Expert systems are very different from artificial
neural networks. Although expert systems have become chic especially in commercial
applications they are substantially different from ANNs in the way they deal with
problem solving. Expert systems essentially solve problems through a logical decon-
struction of the problem to be solved. In essence an expert system must know the
“rules” by which a problem is solved, this is certainly not the case for ANNs. A
neural network does not have a set of logical instructions on how to solve the problem
at hand, instead it learns how to recognize a broad class of inputs that would be

associated with a given output.

3.4.1 Biomedical

Although expert systems have been applied to medical diagnostics with limited suc-
cess, many problems in medicine appear to be more appropriate to a neural network
approach. Medicine and biology in general are not based on well established “simple”
rules which can be applied to a wide variety of problems, as is common in physics,
but on the observers ability to classify a complex system where the details of the
underlying dynamics may be poorly understood. In medicine the underlying biolog-
ical dynamics for a system may be far too complex to be qualified and even if those
dynamics can be well understood the complexity may lead to chaotic behavior which
renders this knowledge useless to a medical clinician. This situation would seem to

be ideally suited to the application of an artificial neural network.

Pap Smears

An interesting application to medicine is to the diagnostic testing for cervical
cancer, the Pap smear. A method of diagnosis involving microscopic screening of mu-

cus smears (developed by G. N. Papanicolaou), this valuable diagnostic tool involves
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the examination of a sample of ~ 10° cells which may have only a small percentage
of abnormal cells. A neural network (Papnet) has been developed by Neuromedi-
cal Systems Inc to automatically examine cells for possible malignancies. Papnet is
trained on a sample of inputs for healthy and malignant cells. Possibly malignant
cells are tagged for examination by a pathologist. This changes the problem for the
human examiner from a search for a few hundred abnormal cells in 100, 000 to a few
hundred abnormal cells in perhaps 1,000 thereby greatly reducing the probability of

producing a false negative result.

Nuclear Magnetic Resonance Imaging

One of the most important applications of ANNs in medicine is in one of its
most traditional roles, simple pattern recognition. Medical image processing is an area
in which neural networks have excelled. Nuclear Magnetic Resonance Imaging (MRI)
has become an invaluable tool in medical diagnostics. Interpretation of the images
created during a MRI have always been an issue of some difficulty. Neural networks
provide a relatively quick and accurate way to identify various abnormalities in such
images, in addition to simple classification of varying types of tissue. It has been
demonstrated that a neural network approach provides better delineation between
regions of different tissue than similar Bayesian approaches [45]. Neural networks can
also be applied to other types of image and signal processing situations like, x-ray
radiography, position emission tomography (PET), ultrasound, electro-cardiogram

(ECG), etc.

Neural networks have also been applied, with varying degrees of success, to
general medical decision making and diagnosis. Although most such tools currently
utilize a linear computing model, expert system, some attempts to apply ANNs have
been made [47, 48]. An ANN has the advantage over the Al approach in that med-
ical diagnostic decisions are frequently made with poor or little information and a
physician may have to suggest a course of treatment based on partial or vague symp-

toms. This is the type of situation in which a neural network can demonstrate its
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true strength, the ability to make good educated guesses. The neural network is not
deterred from making an assessment of probability based on partial information, the
operator must of course always take this into account. The diagnostic ANN has at
least one major advantage over a physician, an indifference to likelihoods. The ANN
will not discount a symptoms importance simply because flu is more likely than Hanta

virus.

3.4.2 Economics

There have been many attempts to apply neural networks and expert systems to
financial problems. Subjects as diverse as predicting when a company might go
bankrupt [49] to forecasting the GDP of Singapore [50] have been investigated us-
ing neural networks. Unfortunately an in-depth examination of the results of these
endeavors as a whole is made very difficult due to the proprietary nature of most of
this research. As is frequently the case with privately funded research, results of that
research is often not shared. The result of this is very much the same as happens so
often in biology; information that may be critical to the progress of other researchers

is unavailable, thereby stifling progress.

Despite the frigid intellectual environment which tends to permeate economic
research on such topics, it is clear that some substantial individual efforts have been
made to investigate the usefulness of neural networks in economic prediction. A good
example of this would be prediction of stock prices. One such study has been done by
Y. Yoon and G. Swales [51], utilizing information such as market valuation and stock
price appreciation in addition to qualitative information gathered from company pres-
idents annual letters to stockholders. This qualitative information involves examining
the letters content for themes like confidence, growth, anticipated losses/gains, new
products, etc.. The data was then set by the researchers to reflect these themes.
This kind of content analysis method is not uncommon in traditional social science
research. The network constructed is essentially a four layer feed forward network

with a buy/sell output. Their performance was 77.5 percent accurate as compared
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with 65 percent for a multiple discriminant analyses.

3.4.3 Pattern Recognition

Perhaps the most traditional application of neural networks is in pattern recognition.
Many other problems addressed by ANNs are in fact only a certain type of pattern
recognition problem. It could be argued that every neural network problem is simply
a pattern recognition problem. This may in fact apply to most human thought. The
analysis described in this thesis is one good example of a pattern recognition problem.
The prototypical problem in pattern recognition is automated reading, or handwriting

recognition. A symbol which might be easily recognized by a person like a script '3’

may be very difficult for a machine to read.
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Figure 3.2: Various examples of test patterns used in network training for handwriting

recognition. Figure taken from reference [52].
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As a result of the huge amount of information processed by machine a great
amount of effort has been put into automated reading technologies. ANNs have been
of great use in these systems (often hybrid) ANN & AIsystems. The postal services of
almost every developed country now uses automated sorting and pattern recognition
systems to facilitate quick delivery. A friend of mine on recently moving back to
Austria found that a third of his boxes had been sent to Australia, this he attributed
to the stupidity of someone working for the postal office. He was probably not quite
right. It is more likely due to the stupidity of something working at the post office

and not someone.

3.4.4 HEP Applications

Neural networks have been applied to a number of problems in High Energy Physics
(HEP). Artificial neural networks have been employed in HEP for applications as

diverse as simple triggering systems and complete offline double beta decay analyses.

Triggering

Artificial neural networks have been employed in preprocessing of data as a
trigger system for jets in a number of different experiments. In at least some of theses
cases efficiencies were improved [53]. A third level trigger has been investigated to

identify electrons & photons at CDF.[54]

Mass Reconstruction

A feed-forward network was employed to reconstruct the invariant mass of
the W-boson. Twenty-four variables are used as inputs to the ANN with substantial
preprocessing of data (“intelligent” variables). The performance of this network is

shown to be superior to conventional methods [55].

B-tagging
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B-tagging using neural networks in Z° decays has been examined at DEL-
PHI [56]. In this analysis very simple variables are used as inputs, as contrasted with
the use of intelligent variables in the mass reconstruction analysis. This analysis also
examined the multivariate methods so that that result may be compared with the
neural network approach. In order to compare the two approaches two quantities,
purity and efficiency are defined.

# of correctly tagged b — quarks
total of b— quarks

b—ef ficiency(ey,) =

# of correctly tagged b — quarks
total of tagged (correct & incorrect) b — quarks

[45] The neural network approach give consistently better results than the various

b — purity(py) =

multivariate methods, Figure 3.3.
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Figure 3.3: Comparison of neural network methods to various classical methods of
event tagging. Figure taken from reference [45].
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There has even been a tt production cross section measurement made in the
D@ Collaboration at FermilLab.[33] This measurement used few intelligent variables
in the ey dilepton channel. A simple multivariate comparison indicated that the
neural network cut used in that analysis was more efficient. Another measurement

at CDF was examined in the all-hadronic channel.[60]
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Chapter 4

Kinematics & Topology

4.1 Detector Definitions

In this chapter we describe the kinematic variables used as input parameters to our
ANN . These variables shall make up our input pattern and represent all the infor-
mation which the neural network will have about the events presented to it. Many
of the variables examined where selected for possible inclusion due to the studies of
Andy Beretvas and Morris Binkley [57] and/or due to DO studies [82]. A complete
list of the variables used is presented at the end of the chapter, Table 4.1.

Before we begin describing the variables, we first examine some basic defini-

tions relevant specifically to CDF and some of a more general nature.

e The coordinate system used at CDFis cylindrical. The 2’ coordinate is along
the beamline where positive 'z’ is is the direction traveled by the proton bunches.

The ’6’ is the usual polar angle and the '¢’ is the azimuthal angle.

e Due to the partonic structure of the proton it is convenient to define a quantity

——
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e A cone radius or general distance in n-¢ space is

AR = \/(An)? + (Ag)? .

The coordinates above make it easy to define transverse quantities. These are im-
portant because in hadronic collisions the center of mass of the underlying partonic
hard scattering process is randomly boosted along z, AR is invariant with regard to

boosts along z.

e The transverse momentum is the momentum perpendicular to the beam-line,
Pr = Psinf

where P is the total particle momenta. (6 = 0 would correspond to the beamline

in the proton direction.)

e The transverse energy is

Er = Esinf .

In practice the Py and Ep are very close to being equivalent when the energy

of the particle is much greater than the rest mass.

e The transverse missing energy, Kp, is simply the transverse energy not ac-

counted for when all known energies perpendicular to the beam are balanced.

e The longitudinal missing energy, £, , will also be used but is not directly mea-

sured and is complicated to determine, that discussion is left to Section 4.4.

4.2 “Simple” Variables

The use of Artificial Neural Networks for the study of heavy quark identification has
been extensively studied [59, 56]. Some of these analyses employed traditional “in-
telligent” variables (Ez: Aplanarity) and others utilized large numbers of “simple”
variables (Ez: Jet Pr). The top quark itself has been searched for using intelli-
gent variables as input pattern to an ANN by the DO Collaboration [82]. Many of
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the intelligent kinematic variables which may be of value in ¢t searches have been
carefully examined for their ability to separate ¢t from its primary background of
W + jets [57]. The detector definitions above are more than enough to determine

many of the variables used in this analysis. All the “simple” variables such as,
Pr(lepton), Pr(jet), Fp, <n*>,...,

can be understood with no further explanation.

4.3 “Intelligent” Variables

Variables like aplanarity (\A), sphericity (S) and thrust describe the shape of an event.
These variables were developed for ete™ collisions to study jet events. Much of the
information contained in these variables can be summarized in terms of a normalized

momentum tensor (7), _
SoNers Po(i) Py (1)
S|P (i) 2

where a,b run over three spacial dimensions and P(7) is the momentum of the i* par-

Tab =

b

ticle. Ty is a symmetric matrix and can therefore be diagonalized. These eigenvalues

are normalized to
Q1 +Q2+Q3=1,
where their ordering is
0<Q1 <Q2<Q3.
Two combinations of these eigenvalues are used in this analysis.

It is possible that a non-normalized matrix similar to 7, would be useful. We
did not investigate such a matrix here but a future analysis might consider the use

of such a matrix [60].
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Aplanarity

Aplanarity (A) is defined in terms of these eigenvectors and eigenvalues of
T,,- The eigenvectors 71, and 7i3 define the event plane and A is closely related to the
momentum out of this plane and the eigenvalue associated with the eigenvector out

of that plane 7i;,
3
A = 5@1 .

Usually this quantity will be normalized to lie between values of 0 and %, however
this normalization will be changed before being input into our network as described
in Section 4.5. If A is small the event is very coplanar (pancake shaped) or collinear
(cigar shaped). This is equivalent to a ratio of the total momentum out of the plane

of greatest momentum to the total momentum in that plane,[4]

A 3 X P*(out)
~ 2% P%(in plane)
The aplanarity uses the five highest Er jets passing low-threshold cuts and the 3-

momenta of the leptonic W.

Sphericity

The sphericity (S) is defined in terms of the first and second eigenvalues of

Taba
§= 2@+ Q).

Sphericity lies in a range of 0 to 1, though we scale it before being input into the ANN
according to the procedure described in Section 4.5. This is equivalent to a ratio of
the total transverse momentum (in plane) to longitudinal momentum (out of plane),
however in this case the plane is the plane of minimum momentum,[4]

_ 3% P (in plane)

s 2 > P?

As § — 1 the event becomes more spherical and events with & << 1 are cigar shaped.
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Summed Transverse Enerqgy

The total energy in a tf production event with m; = 175 GeV/c? tends to be
higher than background events. Even when all our cuts are applied the ¢t events will
tend to be significantly higher above the cut thresholds for total transverse energy

(Hr) therefore this quantity,
N
Hr = Pr(lepton) + Br + > _ jetsPr(i) ,

proves to provide good discrimination between signal and background.

Separation in n-¢ Space

Every pair of jets in a given event has some separation in n-¢ space (AR;;).
We find the minimum separation between jets in 1-¢ space (AR;-”jm), considering all

the jets passing low-threshold cuts. This quantity, AR;T’;.M, is used to define a variable,

ARm_zanm Pr(l) = JJ T
jj T / T( ) PT(lepton) )
where P is the Pr of the lower Py jet in the pair used in AR7Y".

It is not possible for two jets to be less than AR = 0.4 apart, two such jets
would be considered a single jet. If two jets are less than AR = 0.7 they will be
merged approximately half the time.[3]

Minimum Dijet Mass

The minimum dijet mass utilizes the leading four passing jets. For each of the

jet pairs the dijet mass is,
dijet mass = \/(p; + p;)?
= (B + E,)’ - (i + 1) .

The MinMass(jj) then is just the minimum dijet mass for the four jet system. Given

the harder nature of the jets in signal events the MinMass(jj) will tend to be higher

for these events.
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Longitudinal Momentum : Transverse Momentum

The ratio of the longitudinal momentum to the transverse momentum (3 P,/ Y- Pr)j
is constructed using the leptonic W and the four leading jets. The leptonic W is con-
structed by vector sum of the lepton and the reconstructed neutrino. Then the final
sum is a scalar sum of the W and the jets. The neutrino reconstruction is described

in the next section.

4.4 Reconstruction of the Leptonic W

Although the transverse and longitudinal components of the lepton and the jets are
measured in the CDF detector, reconstruction of the missing energy is only possible in
the transverse direction (£7). The problem with measuring the missing longitudinal
energy (£, ) is that the initial momentum in 'z’ is not well known due to the lack of
information about parton momentum fractions. If the %, is to be used it must be

reconstructed with some additional knowledge.

Fortunately we do have knowledge about the missing energy in a ¢t event. We
assume that most of the missing energy (£ ) in a tt event is due to the neutrino
from the leptonically decaying W boson decay. This effect may be mimicked by large
energy losses in detector cracks. In the lepton+jets channel only one neutrino (v) is
present from the leptonically decaying W, see Figure 1.16. Since only one neutrino is
present and we know the mass of the originating particle (W) the third component

of the neutrino momentum can be reconstructed by,
(Pi+ P,)* = My, (4.1)

where P, is the 4-momenta of the lepton, P, is the 4-momenta of the neutrino, and
My, is the known mass of the W-boson. This mass is given by the Particle Data

Book to be ~ 80.4 GeV/c? [32].
mi +m?2 + 2P,P, = M3,
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The mass of the neutrino is zero or approximately zero (m,). And at the W mass

scale the lepton mass is m? ~ 0 (My >> m;). Therefore,

2P,P, = 2(E,E, — P,- PB,) = M2, . (4.2)

The neutrino energy (E,) contains the ’z’ component of the neutrino (7,). Therefore

it is expanded,

—

B2=PB+ml=E, =P+ B +m (4.3)

Equation (4.2) may be included in Equation (4.3) to yield

12 M2 .
EZ(PT2+P22)/ :TW—FPT'}ZT-i-Psz-

Squaring and expanding this equation, and then collecting terms results in a quadratic

equation,

M2 5 M4 = >
(EZZ _ PZZ) Pz2_2 (TWPZ + Py - IZTPZ> Pz_<TW + Pr - ]ZTMI%V - EZQPTQ + (Pr - ﬁT)2> =0 ’I

therefore

~P. (2Pr - Pr+ M%) & \/415[2 (VTW + Pr- PrM2, — B2Py° + Pﬁp;)

Fo= 2 (P7—E7)

This gives two possible solutions for 2, and can be complex. If the values are not real
we set the value of the radical portion of the equation to zero. Once real solutions

are produced the smaller solution is chosen for the use in our kinematic variables.[57]
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By using ¢t Monte Carlo and examining generator level variables we can make
an association between the generator level neutrino and our reconstructed solutions.
In this way the proper solution of the two found can be identified. After comparing
the solution selected with generator level information we can say that the efficiency

on this procedure is ~ 64%.

The 'z’ component of the missing energy (%, ) appears in the following kine-

matics: Y P,/ Y. Pr, A, and S.

4.5 Summary

The kinematics discussed in this chapter are summarized in Table 4.1. Distributions
for each kinematic variable being considered are generated for both signal and back-
ground with selection criteria described in Section 6.2. These variables are shown,

scaled, in Figures 4.5, 4.5, 4.5, 4.5.

The input variables must be initially scaled to be consistent across the entire
input pattern. Our inputs have been scaled in a standard way, each input is shifted

to its mean and scaled by the standard deviation of the distribution [57, 83].

How particular variables were considered and prioritized for inclusion in the

input to our neural net is discussed in the next chapter.
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Variable

Definition

Py (lepton)
Er

Hy

MinMass(j7)

Y P/ Pr

AR

ARZ™ PR [ Pr(l)

Pr(1)/Hr
Njets
Pr(i)

Pr(i) + Pr(j)

The transverse momentum of the lepton.
The missing transverse energy.

The scalar sum of the transverse energy in the event
(Pr(lepton) + Er + Y Pr(jets)).

The aplanarity using the 5 highest Er jets passing low-
threshold cuts and the 3-momenta of the leptonic W. The

plane of greatest 3 P? is determined and then
A =23 P*(out)/ Y P*(in plane).

The sphericity is a measurement of how spherical, coplanar,
or collinear is a given event.

The minimum di-jet mass.

The sum of the linear momentum, |P,|, for the leptonic W
and the 4 leading jets in the event divided but the sum

of the transverse momentum, Pr, for the same objects.
The |P,| of the neutrino must be reconstructed by using
the W mass. The minimum |P,| neutrino solution is used.
The 7 of the highest 7 jet in the leading four jets.

The average n square of the leading four jets.

The minimum separation in n-¢ space.

The ARj;(min) times the Pr of the lower Pr jet of

the pair that make the ARj;(min) divided by the Pr of
the lepton.

The Pr of the leading jet divided by the Hrp.

The number of jets in the event passing low threshold cuts.

The Pr of the given jet (i = 1,4).

The sum of the two jets specified (7 = 1,3 and j = 2,4).

Table 4.1: The Kolmogorov-Smirnov Statistic (KS) for each kinematic variable con-
sidered for inclusion in this analysis may be found in Table 5.1. Although all of these
variables were examined only those in Figures 4.1, 4.2, 4.3, 4.4 were included in the

final ANN.
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Chapter 5

Neural Network Optimization

Every ANN has it’s own architecture. This architecture will be the key to the
efficiency of the input to output mapping created. We have studied appropriate
kinematics and neural architectures for the study of ¢ production in the lepton + jets
channel. The separating power of many different inputs were considered. In addition,
the large effective size of the network employed warranted significant investigation of

the general network architecture and network parameters to be employed.

5.1 Introduction

The use of Artificial Neural Networks (ANN) for the study of heavy quark iden-
tification has been extensively studied [59, 56]. Some of these analyses employed
traditional “intelligent” variables (Ez: Aplanarity) and others utilized large numbers
of “simple” variables (Fz: Jet Pr). The top quark itself has been searched for using
intelligent variables as input pattern to an ANN by the DO Collaboration [82]. Many
of the intelligent kinematic variables which may be of value in ¢t searches have been
carefully examined for their ability to separate ¢¢ from its primary background of
W+jets [57].

A feed-forward Multi-Layered Perceptron (MLP) network is used in this analy-

sis. This is certainly the most commonly employed type of neural network for particle
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physics applications. It is particularly effective in the case (tt) were a single signal
type is being separated from a single dominant background. A training sample is
put together using HERWIG generated tf signal and VECBOS generated, with HER-

PRT fragmentation, W + jets background.

An independent sample had to be generated for the testing and optimization of
the network. This sample was generated using the same generators and parameters as
the training sample. The quality of the input variables were examined for their overall
effect on the network performance, and the error on the signal returned in fitting the
ANN outputs. This was done to eliminate variables which were not contributing to
the overall discriminating power of the ANN. The internal layers were also tested to
determine the optimal number of internal layers and nodes for the discrimination of
tt from W+jets. This is essential in our case due to the large number of overall nodes
in the network. Minimizing the number of nodes used in the network decreases the
probability that convergence may fail, however over simplification is sure to result in
a degradation of the network performance. Additional adjustable network parameters
are examined for their effect on performance, which should always be done regardless

of the relative complexity of the network being used.

5.2 ANN Training

This analysis uses JETNET[83] which is a neural network package commonly used
in particle physics (see Appendix D). We use a feed-forward MLP network. The

activation function used is the standard, Figure 5.2

(5.1)

The nodes in the first layer (input layer) of a feed-forward MLP form an input vec-
tor (x1,xs,...,x,) or pattern. In our case each of these nodes, x,’s, represent one

kinematic value, and the input vector represents all the information used for a given
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Figure 5.1: This is the activation function used in our neural network.

event. Each of the input nodes connects to each of the nodes in the hidden layer,
(h1, ha, ..., hy), each of these connections has an associated weight (wj;). A node in
the hidden layer performs a weighted sum of these connecting weights, passing this

sum through a transfer function,
1
hj = g(? ijz-xz- + 9]) y (52)

where 6; is a bias weighting associated with each node, and the T' (temperature) is
a simple scaling effecting the steepness of g(z). The output layer then performs a

simple weighted sum of the inputs sent to it from the hidden layer,
[ =Y wiih;. (5.3)
J

The output layer corresponds to a vector (fi, fa, ..., fn) just as the input layer does.

In our case this output will be a single number (node) with a value between 0 and 1.

Every network has some number of free parameters, corresponding to the
number of network weights. The number of weights correspond to the number of
connections between nodes plus a bias (0) weight for each node in the input and

output layers,

Nweights - NI + Nn + ZNzNz—l (54)

=2

As an example there will be 166 weights in a 5-10-10-1 network. The network ar-
chitecture that will be used in this analysis 16-22-22-1 has 875 weights. The specific
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Figure 5.2: The x;, h; and fj (dots) represent the input, hidden, and output nodes in
the network. As shown here, a typical network has only one output node. In general

there can be multiple hidden nodes. The links represent the weights w;; whereby the

i'" node in the preceding layer influences the j* node of a given layer. In a feed-

forward network, nodes receive inputs only from the immediately preceding layer.

object of training the ANN is to set the network weights to values which will provide

the proper mapping, G, between the input and output vectors,

—

J=Gi. (5.5)

This mapping is “learned” by a procedure were the weights and thresholds are

then adjusted by minimizing an error function F,

E(w,0) = — 3 (f"(w,0) — )2 (5.6)

where #P are the known (or target) values of the p* training event (or pattern) and

N, is the total number of training events.

For a more thorough discussion of feed-forward MLP networks refer to Ap-

pendix D or to the Lund documentation of JETNET[83].
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5.3 Kinematic Variables

The kinematic variables used in the network are fully described in Chapter 4. Many
of the variables examined where selected for possible inclusion due to the studies of

Andy Beretvas and Morris Binkley [57] and/or due to DO studies [82].

Distributions for each kinematic variable being considered are generated for
both signal and background with selection criteria described in Section 5.4.3. The
input variables must be initially scaled to be consistent across the entire input pattern.
Our inputs have been scaled in a standard way, each input is shifted to its mean and

scaled by the standard deviation [57, 83].

The kinematic variables which were considered for inclusion in the network
input pattern were prioritized by the Kolmogorov-Smirnov (KS ) Statistic between

the signal and background distributions.

The KS statistic is a value which tests whether two samples are consistent with
being drawn from the same distribution. A number consistent with zero indicates that
the two samples may be drawn from the same sample, the larger the KS statistic the
less likely that hypothesis becomes. The usefulness of the K statistic arises from the

fact that a resulting non-zero value has a certain significance which is quantifiable.

Table 4.1 provides a listing and definitions for the kinematics considered for
inclusion in the neural network. Not all these variables were selected for inclusion.

The procedure by which some of these variables were chosen and others left out

is described in Section 5.5.1. Those kinematics that have been retained for inclusion

in this analysis all appear in Figures 4.1, 4.2, 4.3, 4.4 .

5.4 Event Generation & Selection

The signal events used in the training and testing of the network were generated
using HERWIG at m; = 175 GeV with QFL detector simulation. The background
events used were generated using VECBOS w/ HERPRT fragmentation and QFL. For a

complete description of event generation and selection refer to Chapter 6.
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The use of pseudo-experiments are common in HEP. Standard event distribu-
tions are constructed, usually by using event generators (Monte Carlo), see Chapter 6
These standard event distributions are randomly sampled in order to create artificial
(pseudo) experimental data sets. These pseudo-experiments may then be used to test
methods to be applied to the real data. These tests are valuable because the expected

outcome is known in advance, that is the type of events are known in advance.

5.4.1 Training Sample

Approximately 9000 events are used to train the network. Every training event has

a target value of 1 for a signal event or 0 for a background event.

5.4.2 Testing Sample

Pseudo-experiments used for testing the network are created from the samples of
tt and W+jets events already described but independent of the training sample.
Each pseudo-experiment contains approximately 50 signal events and 80 background
events. The number of signal and background events in each pseudo-experiment
are independently Poisson fluctuated; therefore the total number of events in each

pseudo-experiment is unconstrained.

5.4.3 Event Selection

A complete discussion of the event selection may be found in Chapter 6. The majority
of the selection cuts are those used in the standard top (lepton+jets) analysis [95].

These are as follows:

e A single high Py, greater than 20 GeV'/c , electron or muon which is isolated.
e Missing transverse energy, £, of at least 20 GeV , before jet correction.
e At least 3 “high-threshold” jets with uncorrected Ep > 15 GeV and |n| < 2.0.

e Events consistent with Z bosons or v or m° conversions are removed.
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e Events consistent with dileptons are removed.

In addition to these “standard” cuts there is one additional cut which events

are required to pass for this analysis.

e At least 1 additional jet which must pass “low-threshold” with uncorrected

Er > 8 GeV and |n| < 2.4.

The most important difference in selection between this and the standard

lepton+jets top analysis is that this analysis does not make use of b-tagging.

5.5 Network Optimization

In this section we discuss the variations possible in a network used to distinguish ¢¢
signal from W+jets background. The first element of interest is the input vector
itself, therefore we test to determine which if any of our possible input variables are
not of use in the network training. Once an optimal input pattern is determined,
proper architecture for the best possible mapping from that input to the desired
output is established. Network parameters are then examined to attempt to improve
performance. And finally, with an established ANN, the stability of the network is
examined to determine how many training cycles (epochs) will be needed for stable

results.

Clearly it is not possible to strictly follow this ordering. Some number of
epochs must be used initially in the testing of the architecture just as an architecture
must be selected in the determination of the usefulness of a given variable. Therefore
intermediate selections must be made and re-examined several times during the course

of the overall optimization procedure.

The determination of important optimization issues depend on the network
being employed. The complexity of this network, the large number of weights, warrant

careful examination of issues which may be less critical in a simpler network.
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5.5.1 Input Pattern Selection

In what order various variables will be examined for inclusion in the input vector of
the network is roughly determined by the value of the KS statistic between signal
and background distributions for that variable. In this way variables were added one
by one until the final set of variables was decided on. It might be argued that testing
in a more individual fashion instead of this cumulative one would be a better way
to judge the individual merits of a given kinematic variable. However, this reasoning
does not take into account that correlations with other variables in the network may

render any given variable useless to the overall discrimination power of the network.

Variable K S Statistic
Pr(lepton) 0.068 £0.034
Er 0.177 £ 0.026

Hyp 0.464 £ 0.041

A 0.233 4 0.029

S 0.175 £ 0.030
MinMass(jj) 0.377 £0.033
S P,/ Pr 0.235 £ 0.029
Nmaz 0.204 £ 0.030
<n?> 0.216 4+ 0.027
AR PR | Pro(l) 0.233 £ 0.026
Njets 0.158 4 0.026
Pr(1)/Hy 0.112 £ 0.038
Pr(1) 0.344 4+ 0.044
Pr(2) 0.440 £ 0.035
Pr(3) 0.451 4+ 0.034
Pr(4) 0.347 £ 0.028
Pr(1) 4+ Pr(2) 0.405 =+ 0.040
Pr(2) + Pr(3) 0.478 4 0.039
Pr(3) + Pr(4) 0.477 £+ 0.033
E, 0.016 & 0.078

Table 5.1: Kolmogorov-Smirnov Statistic (KS) for each kinematic variable considered
for inclusion in this analysis.

When a given variable shall be included in the input pattern is determined
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by the value of the KS statistic for the ¢t vs. W+jets distributions for that variable.
A higher KS statistic indicates greater difference between the two distributions, See

Table 5.1.

Starting out with three variables with relatively low correlation (Hr, A, MinMass(j7))}}
we examined the performance of the network. As more variables were added to the
input pattern this performance was re-examined to determine the kinematics which
were having an impact on the overall performance of the ANN, and those which were
not. Although some possible variables were dropped from consideration because they
did not improve the networks ability to discriminate signal from background, this
does not imply that those variables are not of general interest in the study of ¢f. A
good discriminator may be of little or no value to the ANN simply because all the
information contained in that variable has been extracted from other correlated vari-
ables which were included in the network earlier. Figure 5.3 gives some idea of how
the performance was enhanced as the sixteen inputs were gradually incorporated into

the network.

Further testing was done to see the effect of extracting individual variables
from the input vector. This was done because some of the variables incorporated
earlier might have become redundant with the building of the final set. Only one
of seventeen variables (Pr(1)/Hy) was eliminated in this fashion. Each time one of
the remaining sixteen variables was removed the performance of the network was, to

some degree, degraded.

5.5.2 Network Architecture

An input vector of sixteen nodes is large and will probably require a complex network
in order to map the correct output vector. As an ANN gets more complex the risk of
non-convergence and the probability of getting stuck in a local minimum increases.
Therefore it is reasonable to seek to minimize the size and complexity of the network.
However the oversimplification can degrade the performance and can also make a

proper mapping impossible to achieve.
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Figure 5.3: During optimization as nodes are added the uncertainty on the number
of signal events returned by the fitter diminishes. The bottom-right plot shows how

the uncertainty changes as nodes were added.

The significance,

Signi ficance

o 1
) ()

of various configurations was examined, where S,;, is the actual number of signal

events in a given pseudo-experiment and S is the number of signal events returned

from the fitter, and og is the uncertainty on that fit. Although it was not the only

factor examined during the testing of the network architectures, significance was

documented in all the architectures and parameters discussed.
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Number of Nodes & Layers

Networks with both one and two hidden layers were tested. Although any mapping
should be achievable with one hidden layer this configuration does not always pro-
vide the most efficient solution to a given mapping [56]. Some single hidden layer
performances and some double hidden layer performances are shown in Figure 5.4.

The 16-22-22-1 configuration was finally selected for our network, where this
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Figure 5.4: Significance of various architectures. All the networks have sixteen inputs
and one output but the number of hidden layers and nodes is varied. The middle
histogram includes all networks with 16-16-x-1 architectures where the second hidden
layer is varying. The bottom histogram has a 16-x-x-1 architecture where both hidden
layers have the same number of nodes. There are large bin-to-bin correlations due to
the fact that the same training samples are used in each case.
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corresponds to the nodes in the input-hidden-hidden-output layers. This gives a

network with 875 weights to adjust, see Equation 5.4.

Although it is possible to achieve the same performance level with a single
hidden layer that single layer must be so large that the resulting network is more

complex (has a greater number of weights) than our two layer architecture.

5.5.3 Network Parameters

There are a number of network parameters which can have considerable impact on
the performance of an ANN. These are studied to determine both whether the best
possible performance has been achieved and to prevent specific problems, such as the

error function finding only a local minima instead of the true function minimum.

Learning Rate (7))

The learning rate (n) is the factor that governs the incremental changes in the up-
dating of the network weights. This we varied from 0.001 to 0.2 the results of which
are shown in Figure 5.5. Once 7 exceeded 0.01 it remained stable and a value of 0.1

was selected for the network learning rate.

Momentum Parameter («)

The momentum parameter («) typically varies from 0 to 1. By adjusting « stability
can be enhanced and convergence facilitated. Throughout the range examined the
network performed acceptably except at @ = 1.0. At @ = 1.0 the network converged
but the significance was reduced by half, see Figure 5.5. An o = 0.5 was selected for

our ANN parameter.

Inverse Temperature (3)

The inverse temperature (5 = 1/T) is the determining factor in the steepness of the

transfer function g(z) shown in Equation 5.1. We examined £ in a range from 0.5 to
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Figure 5.5: Significance of various network input parameters: learning rate, momen-
tum parameter, inverse temperature, and initial weights. There are large bin-to-bin
correlations due to the fact that the same training samples are used in each case.

1.2 and again found it to provide consistent results across this range, see Figure 5.5.

We selected a value of 0.9 for the inverse temperature.

Initial Weights (w;)

All the weights in the network must be set to an initial value before training begins.

Frequently an ANN is insensitive to changes in these initial weights, however adjust-

ment of these values can be particularly useful in determining whether a network is

properly minimizing the error function, Equation 5.6. If instead of a global minimum
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Figure 5.6: Stability requires several thousand learning cycles (epochs). Each dot
represents the number of signal events (V) returned by the fitting of a pseudo-
experiment output to signal & background output distributions after the number of
epochs shown on the x-axis. This pseudo-experiment contains 468 signal events.

for the function the network is being trapped in some local minima then varying the
initial weights should have a significant effect on the ANN’s performance. Typically,
weights are varied either from 0 to 1 or from —1 to 1 depending on the error function
being used. We tested our network from 0 to 1 and except for w; = 1.0 it showed no
sign of having converged to an improper minimum. We selected 0.1 for the values of

our initial network weights.
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5.5.4 Number of Training Cycles

The number of training cycles necessary for stable performance increases with the
complexity of the network. We varied our training cycles, “epochs”, from 10 to
10,000 cycles. Network performance is stable after 4000 cycles. To eliminate the
effect of instabilities in training 6000 to 8000 cycles will be used in the balance of the

analysis. This stability can be seen in Figure 5.6.

5.6 Testing Selected ANN

All the optimization tests yielded individual parameters and architectures which were
deemed best or acceptable, depending on whether or not a given parameter was a
factor in performance. Once all these factors were set together the resulting ANN
was re-examined for performance. The result of this test was equal or increased
significance over any individual network tested during optimization. And it performed

better in terms of stability than most of the other networks tested.

5.7 Summary

Of the nineteen variables examined for possible inclusion in the network sixteen were
selected for inclusion based on the relative significance of the results after their in-
clusion. Of the eighteen network architectures shown in Figure 5.4 16-22-22-1 was
selected as a reasonable compromise between performance and complexity. Many net-
work parameters were varied to determine their impact on network performance, in-
cluding learning rate (1), momentum («), inverse temperature (/3), and initial weights
(w;), from these tests the following values were selected. The testing of these param-
eters indicated that the network was relatively insensitive to these parameters. These

result of course can not be easily generalized to other networks.

A thorough examination of the network to be employed is critical if the result is
to be trusted, especially for a large (and therefore complex) network where comparison

to a correlation matrix method is impractical. In the case of small network where the
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Parameter | Selected Value
epochs 4000 to 5000
Ui 0.1
o 0.5
I} 0.9

calculation of the all of the correlations is reasonable that should be done, in which
case a less thorough examination of some optimization issues should be acceptable.
However certain parts of the optimization must always be examined, notably the

network parameters. Other issues like the network architecture may be less critical.

Despite the difficulties inherent in the optimization of a large neural network,
it is precisely these large pattern recognition situations in which the neural network

approach is indispensable. It is complex input pattern situations in which no other

method of analysis is possible.

Output distributions for our signal and background training samples are shown

in Figure 5.7.
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Chapter 6

Event Simulation & Data Selection

6.1 Monte Carlos

The use of simulated events has become an indispensable tool in high energy physics
analysis. The ways in which these Monte Carlo events are used are many fold, but
the basic purpose is always to see how your detection process registers actual events.
This is true whether you are interested in detector acceptance, systematic errors or

any other type of event comparison.

The most central application of Monte Carlo (MC) in this analysis comes with
the testing and training of our neural network. Clearly training of the ANN must be
done with MC events given that the trained network is a prerequisite for discrimina-
tion of signal from background events. In our case the ANN implemented is trained
with a signal sample of t¢ generated using HERWIG [66], and a single type background
sample of W+jets generated using VECBOS [67]. Other background samples are also
generated for later background subtraction. The reason for this approach is two fold.
Firstly, our Non-W background samples have statistics which were too limited for
ANN training. Secondly, since the W+jets is a much more dominate background
than the other backgrounds it is not clear that inclusion of those small backgrounds
would have been appropriate mis-identification: would then have been difficult to

quantify.
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In this analysis, as with many others, the use of MC events was indispensable
for the determination of acceptances and systematics. However training and opti-
mization of the neural network was the most central function of these MC samples

as was described in Chapter 5.

Every event simulation used in this analysis has certain basic elements in
common. In all the Monte Carlos discussed here the events are generated first as a
QCD hard scattering using the production cross sections for a given process alone
with parton structure functions which model the internal parton dynamics according
to theoretical models of parton structure. Initial and Final State Radiation (ISR &
FSR) is incorporated, and hadronization of bare quarks takes place. It may then be
necessary to fragment jets depending on the particular MC being employed. This is

the basic procedure followed by each of the event generators used in this analysis.

Once events are generated one more essential step remains before those events
can be stripped and utilized in our analysis, this final step is detector simulation. The
detector simulation used in our analysis is QFL, it takes into account the eccentricities
inherent in the detector. Cracks in the detector, efficiencies, smearing effects, are all

simulated using QFL to make events look like real CDF' events.

After the events are generated and put through QFL they may be treated
exactly like detector data and be made subject to all the same selections. These

selections are discussed in some detail in Section 6.2.

6.1.1 The Right Monte Carlo

Every event simulator has its own advantages and disadvantages. The various strengthsj]
and weaknesses of a given MC may make one more suited to the simulation of a cer-
tain process than another, because of this several different types of MCs have been
employed to simulate different types of events though all of them have been subject

to the same detector simulation (QFL).
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6.1.2 HERWIG

The signal for this analysis is modeled using HERWIG. This is the generator most
commonly used to model ¢t events at CDF and at D). This ¢ sample is used to train
and test our ANN. In addition to this, HERWIG is used to model one of our secondary
backgrounds (QCD). This background is the largest of the non-W backgrounds and
is described in Chapter 7.

The top quark mass is taken to be m; = 175 GeV/c?. HERWIG includes initial
and final state radiation, the amount of this emission is determined by the () scale of
the hard scattering. It is the uncertainty in this emission that is the greatest HER-
WIG contribution to our systematic error. Due to this uncertainty PYTHIA samples
without initial and final state radiation will be generated to quantify this uncertainty,

Chapter 8.

The elementary hard sub-process can be calculated perturbatively to leading
order. This sub-process is (4 — g — ¢'¢’) in general, and (qg — g — tf) in our case.
The momentum transfer scale @), sets the limits on the ensuing initial and final state

parton showers.

Once these partons are calculated they must be converted to hadrons. The
momentum transfers in these processes are in general low and the strong coupling
is large, as with the b-quarks common in ¢ events. In this situation perturbative
calculations are not applicable and a phenomenological hadronization model must
be used for fragmentation of the partons. Clearly this is only the case after the top
quarks have decayed since they decay weakly but very quickly via a real W -boson in

a time much shorter than the hadronization timescale.

6.1.3 VECBOS

Vecbos is used to model the W + jets background which is the primary background
for this analysis. This is the generator most commonly used to model W+jets events

at CDF and at DO. A large sample was needed for both training and testing of
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the neural network. An additional sample was needed to measure the uncertainty

associated with the @) scale, this systematic uncertainty is discussed in Chapter 8.

In order to generate VECBOS events from an existing grid weighted events must
be generated first. A sampling from these weighted distributions is then performed
thereby producing unweighted events. And finally jets must be fragmented before the

events may be sent on to QFL.

Grids

Events are sampled from a Vegas integration grid.[68] Both large and small

grids were tried in the generating of VECBOS events.

Although it is normal to utilize a small grid in CDF VECBOS event generation it is
worth noting that the grid statistics seem to play a role in features which appear
in distributions of the generated samples, see for example the upper right figure in
Figure 6.2. The large grid requires considerably more time to generate than the
smaller grid. However this is a one time computational cost, the event generation
time itself is unaffected. This means that generating events from already existing

grids requires the same time regardless of the grid size.

The grids will be sampled at a rate of 1,000 points for each iteration. In
order to determine the proper number of iterations to employ during the creation of

weighted events the cross sections and x? are examined. The smaller grid has much
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Figure 6.1: Events generated from the large grid (red) are compared with events
generated from the small grid (black).
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Figure 6.2: Events generated from the large grid (red) are compared with events
generated from the small grid (black).
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Figure 6.3: Each iteration represents 1,000 additional samplings from the VEC-
BOS grid during the creation of the weighted events. Clearly the error on cross
section is much higher for the smaller grid.
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Figure 6.4: Each iteration represents 1,000 additional samplings from the VEC-
BOS grid during the creation of the weighted events. The stability of x*/dof is
closely related to the error on the cross section and therefore on the grid size.
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greater error on the cross section. It is not surprising then that the chi square is

correspondingly less stable, Figures 6.3, 6.4 .

Weighting

Each event is generated with an associated weight. This weight is related to
the probability of occurrence of the event. The sum of the weights of all the events
generated is the total cross section. Weighted events are first histogrammed by their

respective weights, and then
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Figure 6.5: The weighted events are shown in (red), the unweighted events are shown
in (black).
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Figure 6.6: The weighted events are shown in (red), the unweighted events are shown
in (black).

in order to unweight events the weighted event distributions are sampled. If the ratio
of the events weight (w;) to a maximum weight (wy,,,) is greater than a random

number (X,q,4) between 0 and 1,

wy

> Xrand )

wmaw

then the event is kept. Efficiency may be improved by setting w;,q, to a value of less
than the actual maximum weight as long as not too many of the generated events
are discarded [79]. In our case 1.9% of the total cross section of events have weights

which are greater than the selected maximum weight, Figure 6.7.
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Figure 6.7: The weights seem to drop off in very nearly the same way for both grids
the maximum weight is approximately the same. Again the large grid is shown in
(red), and the small one in (black).

Fragmentation

During the aforementioned generation W+3jet events are created. Although
it is possible to generate W+/jet events the computation time is far too great for that
kind of generation to be practical. In order to generate W+ >/jets it was necessary to
generate W+3jet events and fragment. This fragmentation of jets is done by putting

the events through HERPRT|66).
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6.1.4 ISAJET

The backgrounds not already mentioned are simulated using ISAJET. These include
diboson production and Drell-Yan event samples. Although there are other possible
backgrounds to our process, specifically Z° — 77 and W — 7v, the estimates on these
backgrounds are lower (less than 4/100)[89] and were not included in our background
removal. It should be remembered that only a fraction of the background events
present in our sample will appear signal like and the rest will be discounted as W+jets

like, see Chapter 7 for a discussion of background removal.

Due to our limited statistics [90] it was decided to combine several different
structure functions to create background samples. Both the input and output distri-
butions for different structure functions were compared, the KS statistic between the
output distributions for structure functions: GRVL0, CTEQ2L, and MRSD0 were
compared as well as being compared with data samples, Table 6.1. The distributions

used to make all these comparisons are shown in figures 6.8.

Distributions KS statistic
CTEQ2L vs. MRSD0 0.039 £+ 0.004
CTEQ2L vs. GRVLO 0.046 £ 0.004
GRVLO vs. MRSDO 0.022 £ 0.004
CTEQ2L vs. Data 0.240 £ 0.006

Table 6.1: Kolmogorov-Smirnov Statistic (K.S) comparing diboson background sam-
ples generated using different structure functions.

6.1.5 PYTHIA

Of the two MC generators used to simulate t¢ events HERWIG is used to model ¢t
for purposes of training and testing the ANN and thereby separate signal events
from background events. The primary uncertainty associated with our use of HER-
WIG is in its modeling of the initial and final state radiation, this is where the use of

PYTHIA becomes necessary. Initial and final state radiation cannot be turned off in
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Figure 6.8: The ANN output distributions for data is shown in the upper left. Each
of the other three distributions are diboson samples utilizing a different structure
function.

HERWIG and therefore the systematic must be determined using some other Monte

Carlo.

PYTHIA like HERWIG calculates leading-order ()C'D matrix elements for hard-
scattering processes. However unlike HERWIG, PYTHIA’s use of JETSET to model ISR

¢ FSR can be turned off [70].
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6.2 Data Selection

The channel and signature of the data sample used in this analysis have already been
discussed in Chapter 1. The lepton + jets channel for ¢t production is characterized
by a high Ey isolated lepton, significant £y, and several high Ey jets. A preliminary
data reduction is made by focusing on an inclusive lepton set. This will be further
reduced by requiring high missing transverse energy in the W-sample. And of the

W - samples only those with the appropriate number of jets will be considered.

6.2.1 Inclusive Electron Sample

An electron candidate must get through three trigger levels to be included in the
inclusive electron sample. The level 1 trigger requires only a CEM cluster of Er >
8 GeV'. The level 2 trigger requires a CEM cluster of E7 > 16 GeV and a matching
CFT track with Pr > 12 GeV/e. At level 3 various cuts are applied to improve the

signal to background efficiency for real electrons.

Events passing level 3 triggers are then put through slightly tighter versions of
the level 3 cuts to eliminate non-electrons, photon conversions, and electrons within
jets. The 16 GeV CEM cluster requirement is raised to 20 GeV'. If the level 2 cluster
in the electromagnetic calorimeter is a true match to the CFT track the ratio of
the energy in the CEM(E) to the momentum in the CEFT(P) should not be to great
(E/P < 1.8). A particle shower that is truly from an electron will deposit most
of its energy in the electromagnetic calorimetry, therefore we require the ratio of
hadronic calorimetry(FEjqq) to the electromagnetic calorimetry(E.,,) should be small
(Enad/Eem < 0.05). Electron tracks are required to match with hits in the CES.
Distances between the CES hits and tracks (Az & Ax(r — ¢)) must pass certain cuts.
Additionally the CES shower profile (x3,,;,) must be matched to testbeam profiles.
A sum over adjacent towers in the CEM(Lgp,) is used to indicate how well a CEM

energy profile matches a testbeam profile,

E{)bs - Epred
VOIVER + 02,

Loy = 0143
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Where E?* and E are the observed and predicted energy in tower i, 07 eq 1S the

red
uncertainty on the predicted energy, and 0.14\/E is the uncertainty on the measured
energy. In order to demonstrate that the electron comes from the primary vertex
the electrons z position (zee.) is compared to the event vertex as determined in the
VTX (2ptz). In addition, the event vertex must be within 60 ¢m of the center of
the detector. Finally, any energy clusters which are too close to detector boundaries

are discarded (fiducial cuts). These cuts are summarized in Table 6.2 and shown in

Figure 6.9.

Er > 20 GeV

E/P <138

Lispy

Track Strip/Wire Matching:
Az < 1.5 cm
Az < 3.0 cm
thrip <10

|zelec - zvtz| <5cm

|2ptz| < 60 cm

Fiducial Requirements

Table 6.2: Inclusive electron sample requirements.
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Figure 6.9: Selection cuts used to define the inclusive muon sample. This plot is
of the secondary electrons in a Z — ete™ candidate sample, additional selection for
explicit Z removal will be made. Arrows indicate cut values see Table 6.2. This figure
taken from reference [42].
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6.2.2 Inclusive Muon Sample

A muon candidate is identified via a different set of parameters than that used for
electrons. Muons are much more penetrating (essentially min. ionizing) due to their
large mass (m, >> m,). At CDF muon candidates are classified according to which
of the detector subsystem(s) in which they appear. A muon may be a CMX muon,
CMU-only muon, CMP-only muon, or a CMUP muon (both CMU & CMP hits).

A level 2 muon must have a CFT track with Pr > 12 GeV/c and lie within
5% of a level 1 muon stub in one of the muon subsystems. Due to very high event
rates several of the level 2 muon triggers are prescaled, meaning 1 of every n triggers
is kept. The value of n scales with luminosity. Combining the muon trigger with
a level 2 calorimetry cluster trigger keeps the efficiency for tt events high despite
the prescaling. Details of level 2 trigger requirements for various types of muons are

shown in Table 6.3.

Several of the inclusive level3 muon requirements are similar to those for elec-
trons, this can be seen in Table 6.4. However, as muons are minimum ionizing and
very little of the muons energy is deposited in the calorimetry. The total energy
deposited in the electromagnetic and hadronic calorimetry is less than 2 GeV and
6 GeV respectively. In addition to this the distance between tracks in the CF'T and
stubs in the muon components (Az) must be less than a certain amount. It should
be noted that the cut on Ax varies by detector component. The distance traversed
through various components is different, for example more material is traversed by a
CMP muon than a CMU muon because they are more deflected by multiple Coulomb

scattering. These cuts are shown in Figure 6.10 and summarized in Table 6.4.

6.2.3 The W sample

The W sample is drawn from the inclusive lepton samples. The only requirements
of the W sample is an isolated lepton and a significant amount of corrected Fr,

Appendix A. It should be noted that implicit in this selection is a 2/9 factor for the
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Triggers Prescaled

CMX Muons

1. E7 > 35 GeV and two jets w/ Er > 3 GeV No
2. CFT track w/ Pr > 12 GeV/c matching a CMX stub Yes
3. CFT track w/ Pr > 12 GeV/c matching a CMX stub

and one jet w/ Ep > 15 GeV Yes

CMU-only Muons

1. Fr > 35 GeV and two jets w/ Er > 3 GeV No
2. CFT track w/ Pr > 12 GeV/c matching a CMU stub Yes
3. CFT track w/ Pr > 12 GeV/c matching a CMU stub

and one jet w/ Er > 15 GeV No

CMP-only Muons

1. E7 > 35 GeV and two jets w/ Er > 3 GeV No
2. CFT track w/ Pr > 12 GeV/c matching a CMP stub Yes
3. CFT track w/ Pr > 12 GeV/c matching a CMP stub

and one jet w/ Ep > 15 GeV No

CMUP Muons

1. E7 > 35 GeV and two jets w/ Er > 3 GeV No
2. CFT track w/ Pr > 12 GeV/c matching a CMU and CMPstub Yes
3. CFT track w/ Pr > 12 GeV/c matching a CMU and

CMP stub and one jet w/ Ep > 15 GeV Yes

Table 6.3: Muon level2 trigger requirements.

W — lv (I = e, u) branching ratio (Br(W — lv) = 2/9), 2/3 will go into quarks.
Individual sets with different numbers of jets in addition to the W-boson are made. A
jet is required to have Er > 15 GeV to be included in these samples, since we require

3 jets this hard the only relevant data samples will be W + 3jets and W+ > 4jets.

The only additional lepton requirement not already discussed in the inclusive
lepton sample sections above is that the lepton should be isolated. In order to quantify
the isolation of a lepton we use a single parameter which is defined as the energy
difference between the lepton and the energy in a cone surrounding the lepton divided

by the lepton energy,
E%one o E%ZBC

E%lec ’

where E$7"¢ is the calorimetry energy contained within a cone of radius AR = 0.4

elec __
Iso -
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Pr > 20 GeV/e
E., <2GeV
FEpug <6 GeV
Track Stub Matching:
|Az|cpmu < 2.0 cm
or
|A(L‘|CMP < 5.0 cm
or
|A(L‘|CMX < 5.0 cm
Impact Parameter < 33 mm
|Zmuon - Zutm| <5 cm
|2ptz| < 60 cm
Fiducial Requirements

Table 6.4: Inclusive muon sample requirements.
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Figure 6.10: Selection cuts used to define the inclusive muon sample. This plot is
of the secondary muons in a Z — ptpu~ candidate sample, additional selection for
explicit Z removal will be made. Arrows indicate cut values see Table 6.4. This figure
taken from reference [42].
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around the lepton, and E¢ is the energy of the electron itself. An isolation of

I,, < 0.1 is required for primary lepton.

Leptonically decaying W-bosons emit a neutrino which naturally escapes the
detector and thereby creates a significant imbalance in the event energy. This “miss-
ing” energy, or more specifically missing transverse energy (£r) can be reconstructed
from known quantities in the interaction. The negative of a simple vector sum of the

transverse components of energy deposited in the calorimetry yields the raw K.

Events which are consistent with Z-boson decays are removed from the W sam-
ples. In order to identify these events a looser set of cuts are applied to a secondary
lepton in the event. The event is thrown out if the combined mass of the two leptons
is between 75 and 105 GeV. Additionally there is a removal of all runs which were

known to be “bad” runs for various reasons related to the detector performance.

6.2.4 Additional Stripping

In addition to those cuts already specific to our W subset of the inclusive lepton
samples we apply three further cuts. Firstly, only the W + 3jets and W+ > 4jets
samples are used, these require “high” threshold jets (Ep > 15 GeV and |n| < 2.0).
Secondly, all multiple leptonic events are discarded preventing contamination from
dileptonic ¢t — ¢q events (events where both 1W’s decay to leptons). And finally, we
require an additional fourth jet in our event passing looser quality cuts (Er > 8 GeV
and |n| < 2.4). It is worth noting again that unlike previous CDF ¢t measurements
this analysis does not require the tagging of one of the b-quarks. The lack of b-tagging
will have a positive effect on the overall acceptance and means that our data sample

will be partially independent of the previous measurements.
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6.3

Efficiencies

There are may efficiencies which need to be calculated in order to determine the total

acceptance of our data selections. Fortunately many of these efficiencies are the same

as efficiencies used in previous analyses [94]

€geom

€kin

€lepI D

€veto

€irig

6ta,g

This includes the efficiencies for the fiducial acceptance of the CDF detector.
The deficiencies, such as cracks must be taken into account. Also the efficiency

for being within the tracker(€|,y¢,) is included.

The kinematic efficiencies for the standard ¢f analysis must be determined in-

cluding: high K, high Pr lepton, and 3 high threshold jets.

In addition to the high Pr lepton requirement the lepton must also be isolated

as described in Section 6.2.3.

Certain types of events need to be specifically rejected. The removal of events
consistent with Z-bosons have an associated efficiency, as does the rejection of

dileptonic events (were both W’s in the event decay to leptons).

The triggers described in previous sections have certain acceptances associated

with them.

This efficiency is commonly seen and has to do with the efficiency for the tagging
of b-quarks in the events. This efficiency is excluded in our calculation because

we do not tag for bottom quarks.

All the above efficiencies except for €44 & €144 and our branching ratio are summarized

into a single acceptance Ay;. The €, will be included separately. One additional

efficiency must be included in our calculation and that is for our requirement of a

soft fourth jet (genje;). This value is calculated from the t¢ training sample. Of 5,007

events passing other cuts 3,928 pass the fourth jet requirement. The efficiency for

this cut is 0.78540.005. This compares with the b-tagging efficiencies in the previous
tt lepton—+jets analysis of egyx = 0.405 + 0.033 and €57 = 0.184 + 0.018.[94]
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These efficiencies are summarized in Table 6.5. The total efficiency for ¢t

events in this analysis is then,

€tr — Atf " €trig * €4thjep -

Efficiencies
Ay 0.1040 £ 0.0104
Etrig 0.9200 4 0.05
€4th jet 0.7845 4 0.005
Total Efficiency: e 0.0751 4+ 0.008

Table 6.5: Summary of analysis efficiencies. The acceptance (A7) includes the branch-
ing ratio for tt — [+jets.
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Chapter 7

Signal Extraction & Background

Removal

7.1 Fitting

Using our ANN we have created a data distribution which provides the maximum
possible separation between signal and background. There is more than one way to
extract from this distribution a characteristic number of signal events. One reasonable
approach would be to set a simple cut. By examining the signal and background
distributions one could find the optimal place to set such a cut, Figure 7.3. Once
that cut location is set it could be applied to the data sample and thereby determine
the number of signal events. Although this approach would be reasonable given the
good separation between signal and background it still would not take into account
shape information contained within the distributions. There is a standard method
which exploits this shape information to improve discrimination between signal and
background. This is by the use of a binned likelihood fit. Using distributions for
signal (¢¢) and background (W+jets), a binned maximum likelihood fit of the data

to the two MC distributions is performed. Our data sample is small with several
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Figure 7.1: The top shows the output from the ANN for a sample of HERWIG tf
events. The bottom shows the same for VECBOS W +jet events. The features in the
signal distribution are statistically significant and indicative of correlations in various
input kinematics. In each case 1000 different ANNs (training epochs) are run, the
normalized average values for those runs is shown.
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Figure 7.3: The signal content versus background content of bins is compared. Each
bin in the distributions in Figure 7.1 are compared. Note that the bottom two his-
tograms are on a logarithmic scale.

empty bins. In this case Poison statistics are normally assumed and the likelihood

function used is,[73]
N (oT; + BW;)ki
—aT;—BW;

£(aaﬁamaﬂ):]‘_{#€ * g )

1=

where « and f are fit parameters, /N is the number of bins in the distributions. The
k; is the number of data events in the i bin. T; and W; are the number of signal and
background events respectively in the i*" bin of each respective Monte Carlo. Instead

of trying to maximize this function the negative log of this function,
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N

i=1
is minimized. The factorial term is constant and can be dropped without affecting
the minimization. This function will then be minimized, which amounts to the same
thing as maximizing the previous function.
ON;
The CERN library package MINUIT is used to perform this minimization [74]. The

0.

fitting procedures used here have been tested using Monte Carlo pseudo-experiments
and the test results may be found in Appendix C. The number of signal like events

returned by the fitting procedure is
49.91 +8.17 .

This includes the statistical uncertainty only.

This N, would be the number of ¢¢ events in our data sample if we did not
already know that the data sample has non-IW background contamination. The ex-
traction of this non-W background contamination from N, will be the subject of the

remainder of this chapter.

7.2 Non-IW Background Removal

The removal of our primary background (W +jets) happens organically in the course
of the fitting of the data to the Monte Carlo distributions. The background distri-
bution used in the fitting above includes only the W+ jet events, other backgrounds,
though small by comparison, are not negligible, Table 7.3. There are two basic pro-
cedures used for the non-W background removals. Both methods for the subtraction
of the non-W backgrounds are relatively simple. The second method serves as a cross

check on the former.
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Figure 7.4: The top shows the output from the ANN for the passing data sample and
the number of “background like” events. The bottom shows the number of “signal
like” events and the statistical error on that number. In each case 1000 different
ANNs (training epochs) are averaged.

Any given background will contaminate in some measure the number of signal
events determined above. Although we can estimate the number of non-W back-
ground events in our data sample it is not trivial to then determine how many of
those events are designated by the fitting procedure to be signal events. Previous
kinematic ¢t analyses have neglected this because the backgrounds were more W+jets
like than ¢t like, but this can only be said to be the case in analyses where the vari-
ables’ inter-relationships are well understood. This need not necessarily be the case,

and is certainly not true in this analysis.

The procedure devised here for removing these backgrounds is fairly straight
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forward. Samples of each background are generated as was described in Chapter 6.
The sample will then be treated just as our data sample was in the previous section:
stripped, put through our ANN, and then fit against the W+ jets and tf distributions.
A number of background events consistent with signal like events is determined, this
number is then scaled down to make it consistent with the expected number of events
in the stripped data sample. This same procedure is followed with each of the non-W

backgrounds.

7.2.1 Dibosons

A sample of diboson events(WW, WZ, ZZ) were generated using ISAJET[69]. The

standard model cross sections for these processes are,[4]
olpp — WW) x~ 9.5 pb

olpp = WZ) ~ 2.5 pb

olpp— Z7Z) ~ 1.0 pb .

The luminosity of our data set is 86.3 pb~!. The efficiencies for these dibosons
can be determined by putting the full sets through our stripping cuts. From this
information the number of diboson events in our data sample may be determined. Of
the generated events 546 events pass selections, and are sent through the ANN and
the fitter. Of these 131, or 24%, are tagged as signal like, Figure 7.6. Therefore the
estimate for this background will be scaled by 0.24.

Determining the estimate for this background must be done carefully. There
are several factors which must be taken into account, the calculation inputs are sum-
marized in Table 7.1. The Next to Leading Order (NLO) correction factors can be
found in reference [75]. The justification for combining various structure functions
may be found in Chapter 6. Given the diboson background estimate of 9.61 events
in the stripped data set, the correction factors, and luminosity, it is possible to es-
timate the number of diboson events which contaminate the estimated number of

signal events (Ng) found in Section 7.1.
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Parton [ Ldt NLO

Distribution | Process | of MC | Passing Corr. PCor'r. ngt'f;))il
Function (pb~1) Factor assing o P
ww 2154 122 1.5 183 7.33
MRSDO wZ 5169 34 2.95 100.3 1.67
VA 6590 23 1.45 33.4 0.44

Total - 179 — — 9.44+1.51
wWw 2343 138 1.5 207 7.62
CTEQ2L WZzZ 5819 30 2.95 88.5 1.31
Z7 6843 19 1.45 27.6 0.35
Total - 187 - - 9.28
Ww 2373 132 1.54+0.3 198 7.20
GRVLO wZ 5696 31 2.95 £0.59 91.5 1.39
47 7149 17 1.45+0.29 24.7 0.30
Total — 180 — — 8.89

Combined — — 546 — — 9.20 £0.91

Table 7.1: Combined diboson sample, consisting of three processes and three structure
functions. The Next to Leading Order(NLO) correction factors can be found in
Ref.[75]. The source of the uncertainty on the final value is the uncertainty on the
ISAJET correction factors. The statistical uncertainty on the samples is taken into
account later.

The 546 diboson events are then put through the same ANN used for the data,
yielding the output distribution shown in Figure 7.5. The output distribution is fit
against the same samples that the data was fit against, Figure 7.1. By following this
procedure once again a number of signal like events is determined. The ratio of signal
like to background like events may then be multiplied by the number of expected

dibosons, Figure 7.6.
Ngont cont
N (7.1)

cont =~ " €xp
Ntotal

Ncont =

The N&™ is the number of signal like events returned by the fitter. The
NEo is the total number of diboson events fit to, 546 for dibosons. Of the 546 total

tota

diboson events 136.1 & 14.8 are signal like. And the NS is the number of expected

diboson events in the data sample (9.20 + 0.91). Therefore the number of dibosons

contaminating the previously determined Ny is

Ndiboson — 9 99 4 ().34 .

cont
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7.2.2 Drell-Yan

A Drell -Yan sample has been generated with ISAJET as discussed in Chapter 6.
Using the correction factors and luminosity information in Table 7.2 the estimated

number of Drell-Yan events in our data may be calculated.

Parton [ Ldt NLO Corr Est for
Distribution | Process | of MC | Passing | Corr. Passi i 86.3 ] b1
Function (pb~1) Factor assing <P
MRSDO DY v 431.8 7 2.19 15.33 3.07
DY z° 579.7 42 1.79 75.18 11.20
Total - 49 - - 14.25
CTEQ2L DY v 483.7 10 2.16 21.6 3.85
DY z° 620.3 o7 1.94 110.6 15.39
Total - 67 - - 19.24
GRVLO DY v 501.7 13 2.07 26.91 4.63
DY z° N/A - - - -
Total — 13 — — 4.63
Combined - - 129 - - 17.14 +£3.19

Table 7.2: Combined Drell-Yan sample, consisting of three processes and three struc-
ture functions. The Next to Leading Order(NLO) correction factors can be found in
Ref.[75]. The source of the uncertainty on the final value is the uncertainty on the
ISAJET correction factors. The statistical uncertainty on the samples is taken into
account later.

An output distribution of the Drell-Yan sample is generated by putting the
events through the same ANN as the data and diboson samples. This is once again

fit to get a number of “signal like” result for Drell-Yan, Figure 7.7.

This then provides the scaling for the number of Drell-Yan in the sample as in
Eq.7.1. Of the 129 diboson events 20+6.3 are signal like. The structure functions add
an additional 2% uncertainty to the number of signal like events. The total number

of signal like Drell-Yan events is then estimated to be,

NPY — 966+ 0.97 .

cont
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7.2.3 QCD Contamination

The procedure for our HERWIG generated (QCD events was the same as that for the
proceeding two cases. A sample with a total luminosity of 2107 pb~! was generated.
Of these events 253 passed our cuts. A HERWIG estimated number of 10.8 events
should be in our data set. The estimate from HERWIG is then corrected for the
known ratio of cross sections for HERWIG QQCD(2 — 2) versus the same value for the
Next-to-Leading Order (NLO) calculation giving a correction factor of 1.4340.43. [76]
This value is then compared to an estimate based on data alone done previously with
a subsample (67.3 pb~1). [92] The weighted mean of these two values yields a total
QCD estimate of 14.07 £ 3.05.

The QCD output distribution is then fit again against the same W + jets and
tt distributions, Figure 7.1. Of all the backgrounds QCD yield the highest rate of
signal contamination, this can be understood only in the context of comparing the
entire input pattern to the inputs used in training the neural network. The fit returns
225.8 + 15.8 signal like events, Figure 7.8. Using Eq.7.1 the contamination of Ng by
QCD events is estimated to be,

NECP = 1256 + 3.05 .

7.3 Summary: 1% Method of Background Removal

The summary of non-W background contamination is shown in Table 7.3. The errors
shown here include statistical errors due to limited sample sizes for each Monte Carlo

set. The total number of ¢t events is then this background subtracted quantity,
Ny =325 (7.2)

This Ny is the number of signal events in our data without systematic errors. The
final errors on the measurement of the backgrounds are shown in Table 7.3. This
non-W background total is subtracted from the Ng from Section 7.1 to get the Ny

above.
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Background Events Expected ‘ Events in N,

Dibosons (WW, WZ, Z7) 9.20 £0.97 2.29 £0.34
Drell-Yan 17.14 + 3.19 2.66 +0.97
QCD/Heavy Quark 14.07 £+ 3.27 12.56 + 3.05
Total 40.41 +4.67 17.51 +3.22

Table 7.3: Summary of backgrounds in the data sample and the contamination of
the N, for subtraction. The error will be shown in Chapter 8 as MC statistics and
corrections.

7.4 2" Method of Background Removal

In the first method of background removal the data was first fit. When Ng was
determined the amount of contamination was found and this contamination was the

subtracted. The second method essentially reverses the process.

As in the first case output distributions for the data and each of the three
non-W backgrounds are generated. The background distributions are scaled down to
the expectation value for their occurrence in our data sample, these values are shown
in Table 7.3. After scaling, the background distributions are subtracted from the
data distribution. The new output distribution (with backgrounds subtracted) is fit
against the same MC distributions used previously. The resulting number of signal
like events extracted during the fit is already background subtracted. Therefore the
Ng from this fit is equivalent to the Ny

Ny = 33.11 £ 6.68 (7.3)
This shows very good agreement with the previous method, Equation 7.2. The data

(136 passing events) is shown in Figure 7.9, and this is compared to the cumulitive

contributions, as determined by the fit, of signal and backgrounds.
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7.5 Three Component Fit

As described above we subtracted the secondary backgrounds from our data sample
before (or after) doing an unconstrained two component fit. The fit is then only to
tt signal and our primary background (W+jets). It is possible to do a multiple com-
ponent fit to other secondary backgrounds. Since QCD is the primary contaminating
background to our signal we attempt a three component fit of the data, minus di-
bosons & Drell-Yan, to the usual ¢t & W+jets distributions but also including a third
QCD distribution. This QCD component is Gaussian constrained to our background
estimate for QCD. The constraint on (QCD is necessary due to its similarity to the ¢
output distribution, Figure 7.10. The result of this three component method is,

32.91 £ 7.76 (stat.) ,

events are found to be tt. The increased statistical error with this method is to be

expected due to the similarity between the signal and QCD output distributions.

7.6 Cross Section Calculation

Once the number of signal events is determined, extracting the cross section becomes
a simple matter. The efficiencies (¢;) for our data selection are shown in Chapter 6.
The total integrated luminosity (/ £dt) in Run IB was discussed in Chapter 2 [93].

These can be combined to determine the total ¢t cross section,

Nig
f=——t 4
T e [ Ldt (74

The resulting cross section with statistical errors only is,

o = 5.1+ 1.0 (stat.only) pb .

The systematic uncertainties are the subject of the next chapter.

The figure above compares the contributions (as found by the 3 component

fit) to the overall selected data sample. Figure 7.11
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Figure 7.5: The outputs from the diboson sample and data sample are compared on
the left. The same distributions are compared in a cumulative fashion on the right.
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Figure 7.6: The top plot shows the number of “signal like” events in the diboson
sample according to the the fitter. The lower plot shows the statistical uncertainty
on the number of events. In each case 1000 different ANNs (training epochs) are
shown.
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Figure 7.7: The top plot shows the number of “signal like” events in the Drell-Yan
sample according to the the fitter. The lower plot shows the statistical uncertainty on
the number of events. In each case 1000 different ANNs (training epochs) are shown.
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Figure 7.8: The top plot shows the number of “signal like” events in the QCD sample
according to the the fitter. The lower plot shows the statistical uncertainty on the
number of events. In each case 1000 different ANNs (training epochs) are shown.
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Figure 7.9: The data output compared to determined signal and background compo-
nent contributions.
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Figure 7.10: Cumulative distributions for our data output, HERWIG ¢, VEC-
BOS W+jets, and HERWIG QC'D. are compared.
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Figure 7.11: The data output, with diboson and Drell-Yan subtracted, compared to
determined signal and background component contributions.
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Chapter 8

Systematics

Systematic errors have already been adjusted for in the selection and reconstruction
of the data samples. As an example of this the jet energies are known to be systemat-
ically mis-measured in the detector. The jets appearing in our events are “corrected”
to account for this systematic error. Although systematic errors are usually dealt
with in this fashion not all systematic effects can be eliminated in this way because
some effects are not completely understood (not certain). Therefore it is important to

quantify these systematic uncertainties in order to give relevance to the measurement.

No analysis can calculate every associated systematic uncertainty. However
this is not necessary, if the primary systematics are taken into account then re-
maining uncertainty may be considered negligible. This analysis has six dominate
uncertainties: (1) detector jet energy scale, (2) limited MC statistics & corrections,
(3) initial and final state radiation, (4) proper Q* scale, (5) integrated luminosity,
and (6) efficiencies(trigger, lepton id, etc...).

8.1 Method

It is not possible to outline a completely general method to deal with the systematics.
However most of the systematics will be dealt with in similar ways. Usually the

calculation of the systematic will involve comparing the results when a systematic
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parameter is shifted by 10 with the results when the parameter is unshifted. Because
other cross section measurements have been made with similar data sets some of these
uncertainties have been measured before and we will certainly take advantage of that

fact.

8.1.1 Efficiencies

The systematic on our efficiencies including: triggers, lepton identification, kinemat-
ics, etc... have been calculated previously as has been discussed in Chapter 6. These
uncertainties have already been shown in Table 6.5. These calculations are are based

on PYTHIA & HERWIG studies [94].

8.1.2 Integrated Luminosity

A substantial amount of work has been done to calculate the uncertainty on the
integrated luminosity. The uncertainty on the luminosity has two sources, the Beam-

Beam counters cross section (oppc) and the normalization (Npgc),

Nppc
L= ,
O0BBC

this may be compared to Equation 2.1. The total uncertainty on Run IB luminosity

is 4.1% [93).

7| interval | Relative Corr. Uncertainty

0.0-0.1 2%
0.1-1.0 0.2%
1.0-14 4%
1.4-22 0.2%
22-26 4%

Table 8.1: The percentage of the relative jet energy correction uncertainty for varying
nl.
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8.1.3 Jet Energy Scale

The jet energy scale uncertainty comes from the systematic corrections applied to the
jets in the samples of both data and Monte Carlo. These corrections are described in
detail in Appendix A. This uncertainty has several components related to the different
aspects of jet energy which must be corrected. The various jet correction uncertainties
are applied to the data in two different parts. The relative correction (the n dependent
correction) is applied to the data and then fit against the same distributions which the
data was fit against. The result of this fitting is then compared to data the difference
is taken as 1o. The +10 and —1o uncertainties will be applied separately. The fit

results of these two cases (+o0) are shown in Figure 8.1. The relative corrections

applied are summarized in Table 8.1.

Other jet correction uncertainties are dominated by the absolute energy scale
and soft gluon radiation. These two corrections are applied together to the data. The
values of theses corrections come from a parameterization of the Behrends curves[96].
Once again the correction uncertainties are applied in both the +10 and —1o direc-
tions. As with the relative uncertainty the adjusted data is fit against the usual signal

& background distributions. The fit results are shown in Figure 8.2.

8.1.4 Monte Carlo Statistics

There are two sources of Monte Carlo statistic uncertainties. The first comes from the
finite statistics of the non-W background distributions, these are shown in Table 7.3.
The other source is from the training samples themselves. In order to estimate this
systematic 1000 separate ANNs were trained and our data sample was then put
through these networks. The outputs of these networks are then fit, the data against
the MCs. The number of signal events (Ng) for these fits are plotted in Figure 8.3.
The width of this distribution we estimate to be the systematic uncertainty on the

network training.
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Figure 8.1: The top shows the fit of the data to the usual signal and background
distributions when the relative jet correction has been shifted by +10. The bottom
plot shows the same quantity when the shift is —1o. In each case 1000 different A NNs
(training epochs) are shown.

8.1.5 Initial & Final State Radiation (ISR & FSR)

There is substantial systematic uncertainty associated with the modeling of the ISR
¢ FSR in our HERWIG tt events. The tf events used in this analysis are generated
using HERWIG. In HERWIG ISR ¢ FSR can not be turned off. Therefore we use
PYTHIA to estimate this systematic uncertainty. Two independent PYTHIA t¢{ sam-
ples are generated, one with ISR & FSR the other without. These samples are then
used to create pseudo-experiments. Each pseudo-experiment used is a combination
of tt and VECBOS generated W + jets events. We then fit the data to the usual

MC samples. In this way we create two distributions of Ng and take the difference
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Figure 8.2: The top shows the fit of the data to the usual signal and background
distributions when the absolute and soft gluon radiation jet correction has been shifted
by +10. The bottom plot shows the same quantity when the shift is —1o. In each
case 1000 different ANNs (training epochs) are shown.

between these distributions to be half our range of error this is assumed to be a flat
distribution and therefore divided by /12, this is then taken as 1o uncertainty on

the ISR € FSR, Figure 8.4.
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Figure 8.3: This plot shows 1,000 pseudo-experiments. Each pseudo-experiment rep-
resents a different training of the ANN. Each pseudo-experiment is trained using the
same general network parameters and architecture.

8.1.6 Momentum Transfer Scale

There is a systematic uncertainty associated with the appropriate ) scale used in
the generation of VECBOS background events. Q% is the measure of the momentum
transfer in the collision of the original partons in the event. A @Q* of P? is used
in the samples used for ANN training. In order to determine the magnitude of the
uncertainty from the choice of Q? we set it to M3, and compare the results in that

case with the result for the P# case.

Independent Vecbos samples are generated where Q? is set to P? and M2

respectively. From these sets pseudo-experiments are generated and combined with
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signal events. These pseudo-experiments are put through our ANN and the output
distributions are then fit against the same signal & background distributions used to
fit the data, Figure 7.1. The fits produce results shown in Figure 8.5. The difference in
the amount of signal produced by each of the two sets yield the systematic uncertainty

on the Q? scale.

8.2 Summary of Uncertainties

The dominate systematic uncertainties of this analysis are summarized in Table 8.2.
Of these systematics there is no single systematic which seems to dominate the overall
uncertainty. The systematic uncertainties are summed in quadrature to get the total
systematic uncertainty. The resulting total systematic uncertainty on the number of
tt events is,

Ny = 33.1 £ 6.7 (stat) 33 (syst) . (8.1)

This naturally does not include the efficiency and luminosity uncertainties.

These uncertainties will be included in the cross section uncertainty in Chapter 9.
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Table 8.2: Summary of the systematic uncertainties on the measurement of the ¢t

cross section oy;.

Systematic

Value of Uncertainty

Jet Corr.:
relative +2.0% +0.3%
absolute +7.7% —11.3%
Total +8.0% —11.3%
ISR +6.2%
MC stat. & Corr.
non-W backgnds +9.7%
training +2.9%
Total +10.1%
Vecbos Q? scale +12.3%
Total syst. (Ny) +18.9% —20.5%
Efficiencies (e4) +10.7%
Luminosity (£) +4.1%
Total syst. (o) +22.1% —23.5%
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Figure 8.4: Each plot shows 1,000 pseudo-experiments. Each pseudo-experiment is a
combination of PYTHIA (¢f) and VECBOS (W + jets). The ¢ events used in the top
plot have ISR € FSR turned off. The tf events used in the bottom plot have ISR €
FSR turned on.
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Figure 8.5: Each plot shows 1,000 pseudo-experiments. Each pseudo-experiment is
a combination of HERWIG (tf) and VECBOS (W + jets). The W + jet events used
in the top plot where generated with Q> =< P2 >. The W + jet events used in the
bottom plot where generated with Q* = M3,.
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Chapter 9

Conclusion

We have performed a new measurement of the ¢f cross section for pp collisions at
/s = 1.8 TeV. This measurement was performed in the lepton+jets channel at
CDF on the Run IB data set (90 pb—!). Unlike previous measurements we employed
an artificial neural network to distinguish our signal, utilizing a large number of
kinematic variables in the process. Our lack of b-tagging has provided a significant

gain in acceptance over the earlier lepton+jets analyses performed at CDF.

In the 90 pb~! Run IB sample with 136 events passing our selection criteria
we have calculated
33.1791
events to be . When this value is put into Equation 7.4 the total cross section for

pp — tt is found to be
oy = 5.1772 pb. (9.1)

This is in very good agreement with published #¢ cross section measurements. In

addition, it matches the standard model predictions, Figure 9.1, 9.2.

The technique developed in this analysis will be useful in Run II for improving
the current values of o4. In the coming run an estimated 2 fb~! of data will be
taken at /s = 2.0 TeV. In addition to this 20+ fold improvement in statistics

there are detector systematics which are very likely to improve. The Monte Carlo
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systematics are more uncertain, but they too may be improved in future calculations.
Run 2 measurements are likely to yield uncertainties which are compatible with the
current theoretical uncertainties even without taking into account neural network
measurements. ANN measurements in this and other channels are likely to have
a significant effect on this measurement, and may result in uncertainties which are

significantly less than the theoretical values.

Clearly, these techniques are extendible to other measurements which were not
easily accessible at Run IB statistics. In fact for certain processes (Ex: single top
production) ANN techniques will probably be the most important techniques to be
employed.
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Figure 9.1: The measured ¢t cross sections in all channels at all experiments [97].

Our measurement is not shown, it is most similar in technique to the D topological
measurement in lepton-+jets.
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Figure 9.2: The measured tf cross sections in this (ANN) analysis is shown in red.
The combined measurements for all channels at CDF & D@ are shown in black &
blue respectively. Once again calculated cross section and masses are shown.
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Epilogue

There has already been some discussion of what may lie ahead in Run 2, but it is
probably worth relating some ideas on how this work might proceed and differ for

Run 1.

Now that this analysis is over there are several issues which, with hind-sight,
may be worth revisiting, these fall basically into two categories: network optimization
and input patterns. It is not clear whether more work on these issues will improve the
given results and re-examining them is only worthwhile in the context of the necessity

of repeating the analysis on Run 2 data.

The effects of re-optimization are hard to guess, but the first step in this process
would be the generation of larger and more varied Monte Carlo samples. Larger
MC samples would allow the investigation of many alternative network architectures.
The application of separate networks to distinguish various secondary backgrounds
is a possible option, it should be remembered that this may adversely impact the
systematic uncertainties. Generation with different MCs might be of value (Ex.-
PYTHIA tt). One possible change in the optimization which is particularly interesting
is to focus on certain systematics and optimize to reduce these. Unfortunately, there is
no single dominate systematic to focus on in an effort to drive the overall uncertainty

down by optimization.

The issue of input pattern may hold more promise than optimization in the
attempt at improving this measurement. The most obvious place to start as far as
inputs are concerned is a reduction in QCD background. The ANN as it now stands
not only removes the W+jets, but also removes over eighty percent of the diboson and
Drell-Yan backgrounds. Therefore, the trick in any effort to reduce QCD is to do so

without harming the current performance of the network, this may prove impossible.

147



The first step toward reducing the QCD background will be to identify kinematic
variables which discriminate QCD from ¢¢. Another systematic which could possibly
be reduced is jet corrections. Decreasing the ANN s dependence on jet energies
may have a positive effect on the jet systematic uncertainty. The jet systematic may
well be driven down in Run 2 through the efforts of other groups. The reduction of
the uncertainty on Q% scale may be possible by examining other event generators for

W +jet events, this however must be done in consultation with experts in this area.

Finally, it is worth noting that our current systematics are comparable to
our statistical errors. Working in Run 2 to keep the systematics competitive with
the statistics will be difficult, however the fact that several of our systematics are

competitive for dominance gives more opportunities to be successful at this effort.
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Appendix A

Jet Energy Corrections

Before jets are used to calculate the kinematic variables used by the ANN they are
put through certain jet corrections. The corrections take into account a wide vari-
ety of detector effects. These effects include things like absolute energy loss in the
calorimetry, underlying event effects, cracks in the detector, and energy loss outside

the jet “cone”.

Relative jet energy scale correction:(f,.;) The relative jet energy scale correction
corrects for the variation in detector response. The detector response varies with the

n value of the jet.

Underlying event correction:(UEM) This correction takes into account the extra
energy in events due to multiple interactions. For single interactions U E is applied

for the primary vertex.

Absolute jet energy correction:(f,,;) The absolute jet energy correction takes
into account the overall limitations on detector response in the calorimetry and frag-
mentation effects. Fragmentation effects account for the fact that the originating

particles are fragmenting in the calorimeter and are then observed as jets.

Outside of the jet cone correction:(OF) This correction corrects for the energy

lost outside of the acceptance cone of the jet (AR = 0.4). This is due to cone size
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and to soft gluon radiation (splash-out). This splash-out portion of the correction

dominates.

These corrections are applied to the jets in a prescribed way and are dependent on

cone size used. This analysis uses a cone size of 0.4.
P (R) = [P} (R) X frep — UEM(R)] X (R) fars(R) — UE(R) + OE(R)

The values P;”" and P;* are the corrected and raw Pr’s of the jet.

The missing transverse energy (£r) is corrected to take into account the these

jet corrections, as well as correction related to p mismeasurements.
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Appendix B

b-tagging Comparison

As a cross check to our ANN method of signal identification we examine the b-tagged
events in our sample. It is expected that these events will, if our network is doing
its job, appear more “top like” than the general event sample of 136 passing events.
Therefore outputs from the events with SVX and SLT tags are compared to the
output distribution for the whole sample, Figure B.1. The SVX and SLT tagging

procedures are well documented elsewhere [1].

A simple cut or an actual fit both return the same result, from the tagged
events in our sample 23 of 32 (72%) are “signal like”. This compares with 50 of 136
(37%) “signal like” events in the sample as a whole. This can be compared to the
conventional analysis, which utilizes b-tagging. In that analysis 37 b-tagged W+ >3-
jet events containing 27 SVX tags with 6.7 & 2.1 expected and 23 SLT tags with
15.4 4+ 2.0 expected. This comparison should be considered rough, the selection for

that analysis did not require a soft 4 jet.

The input distributions for tagged events are shown in Figure B.2. The nine
“background like” events are shaded. The mean values of the nine events are shown
compared to signal and background MC mean values in Table B.1. This tends to

indicate that the ANN is behaving as expected.
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Figure B.1: The output distribution from the ANN for the data is shown (solid line).
This is the full 136 passing events. The shaded distribution are the events with
SVX or SLT tags.

Kinematic Means
Data Signal MC Background MC
Pr(jetl) 63 GeV/c 96 GeV/c 75 GeV /¢

Hr 270 GeV 344 GeV 292 GeV
A 0.067 0.073 0.060
<n?> 0.84 0.81 1.07

Table B.1: The mean values for signal and background MC’s are contrasted with the
means for the 9 “background like” SVX or SLT tagged data events.
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Figure B.2: A selection of input distributions are shown for the tagged events (solid
line). This is the 32 SVX or SLT tagged events. The shaded distribution are the nine
events with SVX or SLT tags which the ANN determined to be “background like”.
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Appendix C

Kinematic Analysis - without ANN

The work presented here was done as an extension of a previous CDF analysis [89].
The analysis was done without the use of a neural network and the results are given
for individual kinematic variables. These results may be compared with the result in
Chapter 7 which shows a statistical error only value for the ANN analysis which is

the subject of this dissertation.

The event selection for the analysis of this appendix is the same as the ANN anal-Jj
ysis as presented in Chapter 6. The definitions of the kinematic variables used are

shown in Chapter 4.

The discriminating power of each variable is examined by generating a large
pure tt “data” sample. This sample contains the number of signal events expected
in 2 fb=! of actual data. This Monte Carlo generated pseudo experiment is used to
produce templates to fit against the signal and background MCs, Figure D.3, D.3.
The error on the Ny, A, then serves as a measure of the discriminating power of
each variable Table C.1. This rather crude measure of discriminating power was the
first used in the ANN analysis and was latter replaced by the more conventional KS

statistic. Cross section extraction from Ny has been described in Chapter 9.

The Ny; are derived by means of a likelihood fit as described in Chapter 7. The

various variables are consistent with each other. The N;; for the H variable (48 £ 12)
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Variable A Ny O
(pb)

H 37 48412 7.3
Pr(1)+ Pr(2) 12 42412 6.4

Pr(2)+ Pr(3) 34  44+11 6.8

Pr(1) 22 36+14 5.5
Pr(2) 3.5 40+12 6.1
Pr(3) 7.7 40411 6.1
Er 22 63432 9.6
A 7.2 6322 9.6
S 7.6 38427 5.8

Table C.1: The A, discriminating power, is the error on the number of tops in a fit
of a large pure t¢ “data” sample. The other two columns relate to the results for the
actual data sample with only statistical errors shown.

is consistent with the value for A (63 £ 22). These yield o7 = 7.3 £ 1.8 pb for H and
o = 9.6 & 3.3 pb for A, with statistical errors only as shown in Table C.2. Both of
these numbers are consistent with the measurement from the standard lepton + jets
o7 analysis at CDF which gives a value of 6.772% pb.[95] The data sample as a whole
may be compared with the SVX and SLT tagged events (b-tagged) in figs. D.3, D.3.

156



| # A

Nevents 135
Ny 48 +12 | 63 +£22
Luminosity 86.3
Efficiency 7.6
o(My = 175 GeV)(pb) 73 £1.8 | 9.6 £33

Table C.2: The H is the sum of the transverse momenta and A is aplanarity as
described in section 3. The errors shown are purely statistical.
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Figure C.1: The # distributions A) and B) are respectively the Vecbos W+ > 4jets
background template and the Herwig ¢ signal template. The H distribution for the
tt enriched data sample is shown in C).
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Figure C.3: The data points are our ¢t enriched data sample. The dashed line is a
linear combination at the best fit ratio of Vecbos W+ > 4jets and Herwig t¢ Monte
Carlos normalized to data sample size. The dotted line is the ¢ component alone.
The A distribution of the SVX and SLT tagged events in the sample are shaded.
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A more complete discussion of the analysis in this appendix may be found in
the CDF note issued at the time [71] and presented at the Centennial meeting of the
American Physical Society 1999.
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Appendix D

JETNET

This appendix draws on our CDFnote [64]. We study the ANN performance using toy
Gaussian data, utilizing JETNET version 3.4. [83] An event (or pattern) consists of
some number of variables that characterize the event as either signal or background.
The toy data consists of events with five random numbers selected from one of two
Gaussian distributions, one of which we take to be signal and the other background,

Figure D.2.

D.1 Learning with Back-propagation in ANN

The error back-propagation learning rule involves changing the weights in a network
in an iterative fashion to minimize the error function. This method is known as the
gradient descent method, because the changes induced trace the functions direction

of greatest descent.

The weights w and the thresholds # are changed by gradient descent, where
the change in weight is given by,

OF
Aw(t+1) = e + aAw(t),
and w(t) refers to the previous updating. [85]
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The learning weight parameter, 77, determines how the gradient effects the
change. The « term is known as the momentum term and is used to prevent oscillation
around a minimum and thereby interfere with convergence. Unfortunately there is
no general criteria on which to base the selection of these two quantities— they are

highly problem specific.

The frequency with which the network weights are changed is set by the user.
One epoch is a single training over all available events. The weights may be changed

as often as after each event or as rarely as the end of each epoch.

D.1.1 Saturation

Training will continue for as many epochs as the user has specified, ideally it will
be terminated after the error function F as reached its minimum. A “saturation”
parameter may be examined to determine when the proper termination point for the

learning process has been reached.

The saturation measure, s, provides a guide as to whether or not a set of
nodes have “made up their minds” for a given set of data. Saturation for layer [ (s')
is defined as a sum over all nodes in layer [ as,[84]

st=Y (1 —2n%)7,

J

where hé- are the nodes in layer /.

The saturation parameter allows us to know whether or not the network is
learning. When the network is initialized the weights are set randomly. After training
on all or part of the data the new weights determined during this first training period
are feed back into the network as initial weights, and the same or additional data
is trained on with these new weights used as the initialization. Training continues
in this iterative way for as long as is desired. All the data will be examined many
times; each iteration of which is referred to as an epoch. At some point the saturation
parameter will converge on its maximum value and stabilize, this is the point at which

the network is no longer learning.
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D.2 Testing Procedure

This section pertains to the results obtained using toy data in the type of ANN de-

scribed above.

D.2.1 Data Generation

As has been previously stated our events consist of toy data generated from one
of two Gaussians representing signal and background. The two Gaussians are of
different widths with separated peaks. As would be expected changing the separation
between the two Gaussians increases the networks ability to distinguish signal from
background, Figure D.9. An event is made up of five, uncorrelated samplings from
one of the two Gaussians. It was randomly determined whether any particular event

would be selected from the signal or background Gaussian, Figures D.2, D.3.

D.2.2 Event Axis

In our simple example the symmetry naturally leads to two simple variables that
distinguish signal and background. The event axes are defined as the axis through the
peaks of both Gaussian distributions, dy; and the perpendicular distance to this axis,
dy, Figure D.1. The selection of which Gaussian is signal is irrelevant to the outcome.
In our case the signal Gaussian is one sigma and the background is two sigma. The
region where the signal and background Gaussians overlap is the region where the
network begins to misidentify events, Figures D.4, D.5. These newly defined axes
provide the parameters on which cuts to distinguish signal from background would

be applied in a traditional analysis.

D.2.3 Training Process

During the first training epoch 5000 “test” events were run through the network. The
initial weights of the network are selected randomly. It was these random weights that

were first used as the network weights, the test events were put through the network
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G0

01

Figure D.1: Circles representing signal (o7) and background (o) distributions. Only
two of the five x; event variables are shown. Due to the high degree of symmetry, the
cylindrical variables dy and d; contain all the information available to separate the
two distributions.

after its first training (1 epoch) and the network output f for signal and background
events are histogrammed, Figures D.6, D.7. This may then be contrasted on the same
figure with the same background/signal events put through the completely trained
network (100 epochs). Clearly the training procedure is working to create a network
that can distinguish signal from background in the simply case of our Gaussians. By
the end of the training, the output value is sharply peaked at f = 0 and f = 1 for
background and signal events respectively. This shows that the majority of events

are well separated into signal and background.

D.2.4 Saturation

The saturation parameter’s behavior over epochs can be gauged by looking at the
set, of each layers nodes, and comparing it to a parameter we call the performance,
defined as the fraction of correctly identified (as either signal or background) events.

Saturation was examined as a function of epochs, and saturation is compared with
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performance, Figure D.8. The saturation converges to its peak quickly which may be
due to the simple nature of this case. The saturation has been shown to be consistent

with the minimization of the error function E, Figure D.10.

D.2.5 Modified Network Architecture

Much of the network architecture is set by the user before training begins. Here we

examine two elements of the architecture which the user must specify before training.

Additional Hidden Layer

Most HEP applications of ANNs can be performed with only one hidden layer in the
network. This is likely to be the case in our application of the network also; however
JETNET allows the introduction of more hidden layers. We have tested the effect of
additional hidden layers in the case of our two Gaussians. However in this case the

addition of the extra hidden layers has had no noticeable effect.

Additional Nodes

It is harder to guess what the effect might be of adding additional nodes to our hidden
layer. We have examined the performance of a network with varying numbers of nodes
in the hidden layer. The network does seems to perform better when the number of
hidden nodes exceeds some minimum number of nodes but this effect soon levels off.
Therefore adding too many nodes becomes counterproductive, the computational time

goes up with no corresponding improvement in performance, Figure D.11.

D.3 Summary

As would be expected from a traditional analysis, it is the region were the signal and
background Gaussians overlap were the network has difficulty distinguishing signal
from background. In our simple test case the saturation parameter converges to its

peak level quickly. This is not inconsistent with the performance or the behavior of
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the error function E. The output of the network appears insensitive, in this case, to
the number of hidden layers. However adding additional nodes does seem to have an
effect up to a number slightly greater than the number of nodes in the input layer. We
see that least in this simple test case, the JETNET code does a good job of training

the network and produces an output feature f with the correct behavior.
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Figure D.2: Profiles of the two Gaussian distributions.
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Figure D.3: Dots and crosses represent the data drawn from the signal and back-
ground Gaussians respectively.
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Figure D.6: The dotted line represents output for “signal” events after only one
epoch (training iteration). The solid line represents output for “signal” events after
one-hundred epochs (training iterations).
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Figure D.7: The dotted line represents output for “background” events after only one
epoch (training iteration). The solid line represents output for “background” events
after one-hundred epochs (training iterations).
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