
A Search for Fully Hadronic Decay Modes of the Bc

Meson at CDF

by

Douglas Corey Reher

A.B. (University of California, Berkeley) 1993

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Marjorie D. Shapiro, Chair

Professor Kam-Biu Luk

Professor Stephen Derenzo

Fall 2000

FERMILAB-THESIS-2000-39



UMI Number: 3002628

        ______________________________________________________________

UMI Microform 3002628
Copyright 2000 by Bell & Howell Information and Learning Company.

All rights reserved.  This microform edition is protected against
unauthorized copying under Title 17, United States Code.

        _______________________________________________________________

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, MI 48106-1346



The dissertation of Douglas Corey Reher is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2000



A Search for Fully Hadronic Decay Modes of the Bc

Meson at CDF

Coyright c 2000

by

Douglas Corey Reher

This work was supported by the Director, OÆce of Energy Research,

OÆce of High Energy and Nuclear Physics, Division of High Energy Physics,

of the U. S. Department of Energy under contract DE-AC03-76SF00098.

The United States Department of Energy has the right to use this

dissertation for any purpose whatsoever including the right to reproduce all

or any part thereof.



Abstract

A Search for Fully Hadronic Decay Modes of the Bc

Meson at CDF

by

Douglas Corey Reher

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Marjorie D. Shapiro, Chair

I present a search for the fully hadronic decays of the bottom-charm

meson Bc in the mass range 5:6 to 6:8 GeV. The decays B+
c
! J= �

+ and

B
+
c
! J= �

+
�
�
�
+ are reconstructed using a data sample corresponding to an

integrated luminosity of 109 pb�1 of pp collisions at
p
s = 1:8 TeV collected

with the Collider Detector at Fermilab. Upper limits on the cross section times

branching ratio for each decay mode relative to B+ ! J= K
+ are presented

as a function of the Bc mass.

Chair Date
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Chapter 1
Introduction

1 Introduction

The primary aim of high-energy physics is to better understand the way the

world works by studying the fundamental units of matter and energy and the

means by which they interact with one another. Our present understand-

ing of these phenomena is represented by the so-called \Standard Model" of

particle physics. The Standard Model has proven remarkably successful at

accommodating experimental results over the last several decades, although

it remains incomplete. The missing pieces will eventually come from two ex-

perimental fronts: very high energy accelerators to search for Higgs particles

and possibly supersymmetric multiplets of the garden-variety particles already

observed at existing colliders, as well as directly measuring the predicted tri-

boson electroweak vertex; and also at lower energies by studying CP violation

and measuring the fundamental parameters of the electroweak theory.

In order to realize such an ambitious physics program, it is �rst neces-

sary to obtain a reliable understanding of quark interactions at lower energies,

including e�ects caused by QCD dynamics. These e�ects are typically char-

acterized by a parameter �QCD=mQ, where �QCD is the quark con�nement

scale and mQ is the quark mass. If this parameter is small (as it is for the

heavy c-, b-, and t-quarks), then one can use a perturbative formulation of

the quantum mechanical theory to calculate observable e�ects. By studying

production and decay processes of particles containing heavy quarks, one can

extract the parameters necessary for evaluating nonperturbative QCD e�ects

in quark hadronization.

1



1.1 The Standard Model: Fundamental Forces and Par-

ticles

1.1.1 Gauge Bosons

Experimental evidence indicates that matter is composed of two types of fun-

damental1 particles called quarks and leptons. Both types are fermionic, hav-

ing spin 1=2, but di�er in how they interact via the four known types of bosonic

force carriers. The fundamental forces and the relevant properties of their me-

diating gauge bosons are summarized in Table 1. In the Standard Model, the

photon is the carrier of the electromagnetic force, the weak force is mediated

by the W and Z bosons, and the carrier of the strong force is the gluon. 2 The

theoretical framework for describing the electromagnetic and weak interactions

was laid down by Glashow, Weinberg, and Salam [1, 2, 3] in the 1960s, and the

combined theory is known as the electroweak model. The theory of the strong

interactions, known as quantum chromodynamics (or QCD), arose out of the

contributions of Gell-Mann and others around 1973. [4, 5, 6] The gravitational

force between fundamental particles is many orders of magnitude weaker than

the other forces at energy scales below the Planck scale (1019 GeV), so is

negligible for nearly all purposes. It is expected that all of the forces can be

described by one single �eld theory (Grand Uni�ed Theory, or GUT) as one

approaches the Planck mass, though such speculation lies somewhat outside

the scope of the present analysis.

1i.e., structureless and pointlike.
2There are actually 8 gluons, di�erentiated by the symmetry properties of their internal

quantum numbers. Just as there are two types of electric charge (+ and �), there are three

types of strong \color" (commonly denoted red, green, and blue). In group-theoretical

language, the gluons belong to an octet representation of the SU(3) of color (3
 3 = 8� 1).

2



Force Boson Symbol Charge Spin Mass Coupling Strength

E. M. photon  0 1 < 2� 10�16 eV 1=137

Weak W W
� �1 1 80:4 1:02� 10�5

Z Z
0 0 1 91:2

Strong gluon g 0 1 0 < 1, small r

Gravity graviton G 0 2 0 0:53� 10�38

Table 1: Fundamental forces and properties of mediating gauge bosons. Elec-

tric charge is given in units of the proton charge jej and mass in units of

GeV. [7, p. 21]

1.1.2 Quarks

Quarks are distinguished by the fact that they carry fractional electric charges.

There are three known \generations" of quarks, with each generation contain-

ing one quark with charge +2=3 and one with charge �1=3; each successive

generation corresponds to an increase in quark mass. Physically observable

particles are constructed of either three quarks (known as a \baryon") or a

quark-antiquark pair (known as a \meson"). Note that these combinations

ensure an integral charge for the observable states, although they are only two

out of an arbitrarily large number of combinations that do so. One of the

great successes of QCD is that it accounts for the fact that these two, and

only these two, combinations occur naturally. Extensions to the theory have

been proposed allowing for other physical states, such as six quarks, but there

has so far been no compelling physical evidence to support these non-Standard

Model theories. According to QCD, only \colorless" states are observable, i.e.,

only those states corresponding to SU(3) color singlets. Thus, a particle con-

sisting of a quark of a given color and an anti-quark with the same (anti-)color

3



can be observed, corresponding to the meson. The baryons consist of three

quarks, one of each color, which (if one takes the color metaphor literally)

is then \white," or colorless. Physically, the lack of visible lone quarks can

be explained by the properties of the strong �eld. As the distance between

two colored quarks increases, the �eld strength also increases (unlike the more

familiar electromagnetic and gravitational forces, which decrease with sepa-

ration), until there is enough energy accumulated in the gluon �eld to create

new quarks from the vacuum. In this way, one may never observe a quark

in isolation. Evidence for the existence of color comes from a number of in-

direct sources. Measuring the cross section for production of hadrons at an

e
+
e
� collider, relative to production of lepton pairs (which do not carry color),

must give a result proportional to the number of types of hadrons produced,

including the color degree of freedom. Experiments of this type give results

consistent with Nc = 3:0.

The charged weak boson couples most strongly those quarks within

a generation, but there does exist mixing between generations. In quantum

mechanical terms, the quark avor eigenstates, while eigenstates of the strong

interaction, are not eigenstates of the weak interaction. This mixing can be

conveniently expressed in terms of a 3� 3 unitary matrix determined by three

mixing angles and one nontrivial phase. The magnitudes of the elements of

this matrix, called the CKM [8] matrix, are given (at 90% C. L.) by [9]:

jMj =

0
BBBBB@

0:9745 to 0:9760 0:217 to 0:224 0:0018 to 0:0045

0:217 to 0:224 0:9737 to 0:9753 0:036 to 0:042

0:004 to 0:013 0:035 to 0:042 0:9991 to 0:9994

1
CCCCCA ;

4



where the charged weak current is then expressed in matrix form via

J
+
weak

= (u c t)M

0
BBBBB@
d

s

b

1
CCCCCA :

It is often convenient to de�ne a new rotated basis for the d-type quarks as:0
BBBBB@
d
0

s
0

b
0

1
CCCCCA =M

0
BBBBB@
d

s

b

1
CCCCCA ;

so that the weak interaction Lagrangian can be expressed in diagonal form.

Table 2 outlines the notation and physical properties of the quarks.

Quark Symbol Charge Mass

up u +2=3 1:5 to 5 MeV

down d �1=3 3 to 9 MeV

charm c +2=3 1:1 to 1:4 GeV

strange s �1=3 60 to 170 MeV

top t +2=3 174 GeV

bottom b �1=3 4:1 to 4:4 GeV

Table 2: Three generations of quarks. Electric charge is given in units of the

proton charge jej Light quark masses are estimates of \current-quark masses,"
c- and b-quark masses estimated from meson masses, and t-quark mass mea-

sured from direct observation of its decay products. [7, p. 26]

1.1.3 Leptons

Leptons carry integral charges. Following the same structure as the quarks,

there are three generations of leptons with each generation containing one

5



charged lepton and one light neutral lepton (called a \neutrino"). Each succes-

sive generation corresponds to an increase in charged lepton mass.3 Leptons

are unique in that they do not interact via the strong force. Also, there is

an inherent asymmetry exhibited by the neutrinos in their \handedness," or

the orientation of their spin relative to their momentum. Experimentally, only

\left-handed" neutrinos4 (and \right-handed" antineutrinos) are observed. [10]

This represents one of the more striking pieces of evidence that weak interac-

tions are not invariant under spatial inversion. Parity under inversion, prior

to 1956, was thought to be one of the solid conservation principles upon which

physics rested, akin to the conservation of momentum and energy. Since the

discovery of parity violation, [11] other conservation principles (notably CP,

which is shorthand for the compound operations of spatial inversion and charge

conjugation) have been proposed and found to be violated. [12] Currently, CPT

(which adds time reversal to CP) is thought to be an invariant of all physi-

cal interactions. This invariance is implicit in the Lagrangian formulation of

the Standard Model interactions. Table 3 outlines the notation and physical

properties of the leptons.

3Experimental evidence exists for mass splittings between the neutrino generations, which

implies a non-zero mass for at least one neutrino. I have made no attempt to assign mass

values in Table 3, only recent limits.
4Massive left-handed Dirac type neutrinos can be observed as right-handed via a suit-

able change of inertial reference frames. Though expected to exist if at least one neutrino

generation carries mass, these have not yet been observed.
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Lepton Symbol Charge Mass

electron e �1 0:511 MeV

e-neutrino �e 0 < 3 eV

muon � �1 106 MeV

�-neutrino �� 0 < 0:19 MeV;CL = 90%

tau � �1 1780 MeV

� -neutrino �� 0 < 18:2 MeV;CL = 95%

Table 3: Three generations of leptons. Electric charge is given in units of the

proton charge jej Electron neutrino mass is inconclusive due to beta decay

experiments giving signi�cant imaginary mass results. [7, p. 23-25]

1.2 Bc in the Standard Model

1.2.1 Overview

Of the possible mesons containing at least one heavy quark, (bc) is the last

remaining family to be studied in detail. The t-quark decays via a real W

boson before it can hadronize. Thus, the B+
c
, which is the bound state of

a b and a c-quark, is the only physically realizable combination remaining.5

It is the only meson consisting of two heavy quarks that carries net avor,

and therefore has unique production and decay mechanisms. The study of Bc

decays will extend our quantitative understanding of QCD dynamics.

The spectroscopy of heavy quarkonia can be very reliably calculated us-

ing non-relativistic potential models in a way exactly analagous to the positro-

nium or muonium systems, using a potential function motivated by QCD. It

can also be calculated in the framework of QCD sum rules, the parameters of

5Charge-conjugate states of all particles are implied unless otherwise stated explicitly

throughout this analysis.
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which are �xed by �tting to the spectroscopic data of the well-studied char-

monium (cc) and bottomonium (bb) systems. The Bc spectroscopic family is

the only system capable of testing the self-consistency between these potential

models and QCD sum rules. These tools are used extensively in other aspects

of heavy quark physics (e.g., in calculating matrix elements of mixings of heavy

quark weak charged currents and estimating contributions that interfere with

CP violating diagrams in heavy hadron decays). Since the Bc occupies an

intermediate regime between cc and bb, both in meson mass and inter-quark

distances, experimental measurement of the Bc spectrum would allow for a de-

termination of which theoretical tools are applicable at the scales of the heavy

quarkonia, rather than relying on purely theoretical motivations for choosing

a particular model.

Unlike cc and bb, the Bc cannot annihilate to photons or gluons; it must

decay weakly. Therefore, it is relatively long-lived and can be studied using

conventional techniques of measuring displaced decay vertices at hadron col-

liders, as these have already been developed for the study of other B mesons.

Although the production of Bc is suppressed relative to other B mesons due

to the heavy c-quark mass, there is a signi�cant (roughly a factor of 10) en-

hancement of detection through �nal-states containing a J= meson, due to

its initial charm content. Final-states containing a J= have a very clean ex-

perimental decay signature when the J= decays leptonically. Discovery of

the Bc has already been accomplished at CDF
6 via the leptonic decay channel

Bc !  l�. [13] Reconstruction of the J= l vertex allows for a determination of

the Bc lifetime, but the missing neutrino momentum prohibits a precise mass

measurement. Hadronic decays fully reconstructed in the detector allow for a

6CDF stands for \Collider Detector at Fermilab," the experimental apparatus upon which

this study is based.
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more precise measurement of both the Bc mass and its lifetime. In addition,

measurements of branching ratios into speci�c hadronic channels will provide

valuable information about both the QCD dynamics and weak interactions in

heavy quarkonia.

1.2.2 Production of Bc at the Tevatron

The simple picture presented in Section 1.1.2 of hadrons consisting solely of

two or three quarks is not complete. In forming a bound state, these \valence"

quarks interact with one another via the exchange of gluons. Moreover, these

gluons can briey produce virtual qq pairs of all light avors from the vacuum.

Experimentally, the quarks in a proton typically only carry about half [14] of

the proton's momentum, with the remainder carried by gluons. In considering

the collision of a proton with an anti-proton, one must take into account the

possibility of collisions between all constituent particles, including the \sea"

quarks and gluons as well as the valence quarks. Figure 1 illustrates the

internal structure of colliding protons and anti-protons. To produce heavy

particles such as the Bc, it is necessary to collide quarks and gluons with a

large center-of-mass energy. Only a fraction of the momentum of the (anti-

)protons is carried by each constituent parton. Thus, the distribution of parton

center-of-mass energies will be

p
ŝ =

p
xixjs;

where s is the proton-antiproton CM energy (1:8 TeV) and xi is the momentum

fraction of parton i.

At high energies, hadronic production of Bc is dominated by gluon

fusion subprocesses, with negligible contribution from qq processes. [15] The

production cross section can be calculated fully to order �4
s
in the framework of
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u
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u

Figure 1: Schematic illustration of pp collision. In this diagram, a hard scatter-

ing occurs between constituent gluons. The sea quark loops can contain any of

the light quark avors (u, d, or s). The �nal-state particles from the inelastic

scattering subprocess later hadronize into colorless objects. Quark loops and

internal gluon lines represent a fraction of the possible contributions to the

\sea" parton constituency. Additional higher-order processes also contribute.
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perturbative QCD7 by summing over 36 gluon-gluon scattering diagrams ob-

tained from the 13 shown in Figure 2 by permuting the initial gluon momenta

and the �nal quark avors.

The same perturbative calculations show that at high parton center-

of-mass energies and large transverse momentum, hadronic Bc production is

well-described by b-quark fragmentation. The production process can then

be factorized into the short-range (valid under perturbative QCD) regime of

bb production and long-range (nonperturbative) hadronization of one of the

b-quarks into a Bc. The fragmentation description

d�̂(Bc) = d�̂(bb)
D
b!Bcc

(z) (1.1)

can be used to estimate the production rate of Bc relative to other B mesons.

This calculation has been performed using both the HERWIG parton shower

Monte Carlo package [16] and using a perturbative calculation in the non-

relativistic bound state approximation. [17, 18] Both estimates agree on the

magnitude of the cross section ratio and give consistent values of

�(Bc)

�(bb)
' 10�3:

The cross section for the hadronic process pp! Bc+X is then obtained

by convolving the partonic cross section from these diagrams with the gluon

distribution functions describing the distributions of momenta of gluons inside

the (anti-)proton:

�(s) =
Z 1

0

dx1

Z 1

0

dx2g(x1; Q
2)g(x2; Q

2)�(x1x2s� 4M2
Bc
)�̂(ŝ = x1x2s); (1.2)

where �̂ is the partonic cross section evaluated at the parton center-of-mass

energy, and g(x;Q2)dx is the fraction of gluons which carry between x and

7
�s is the dimensionless coupling of gluons to the strong charges carried by quarks,

analogous to the electromagnetic coupling constant � (� 1=137).
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Figure 2: Feynman diagrams contributing to Bc production at the Tevatron.

Only 13 gluon fusion diagrams are shown here. The remaining 23 diagrams are

obtained by permuting the initial gluon momenta and the �nal quark avors.
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x+dx of the total (anti-)proton momentum, evaluated at a momentum transfer

scale, Q2. The �-function ensures that there is suÆcient center-of-mass energy

to produce a real Bc. The gluon distribution functions are primarily measured

by deep inelastic scattering of leptons o� nucleon targets. [19, 20, 21, 22, 23]

The calculation of Equation 1.2 has been performed by several parties [24, 25,

26] to obtain

�total(pp! BcX) ' 20 to 50 nb

at the Tevatron energy of 1:8 TeV.

At center-of-mass energies near threshold or for \small" transverse mo-

mentum of the Bc, PT (small relative to the meson mass), both b fragmentation

and bc recombination processes (which are not factorizable) can contribute,

and the predictions become much less reliable. Figure 3 shows the di�eren-

tial cross section d�=dPT for Bc production calculated at the Tevatron energy

using the MRS(A) [15] gluon distribution for two di�erent evolution scales.

1.2.3 Mass of the Bc Meson

The Bc mass can be estimated very simply by noting that, in solving the

Schr�odinger equation for a muonium-like system, the expression for the

ground-state mass is linear in the reduced mass of the system. Thus, to �rst

order, the mass of the Bc pseudoscalar ground-state is just the average of the

 (1S) and �(1S) masses:

M(Bc) ' M( (1S)) +M(�(1S))

2
=

3:097 + 9:460

2
GeV = 6:28 GeV: (1.3)

A more sophisticated approach would be to use the framework of phe-

nomenological potential models for non-relativistic heavy quarks. By choosing

a potential function with a suÆcient number of parameters, it is of course al-

ways possible to simultaneously �t the data for both the charmonium and

13



Figure 3: Di�erential production cross section of Bc, d�=dpT , using MRS(A)

gluon distribution functions. Dotted lines indicate cross sections at Tevatron

energy
p
s = 1:8 TeV, and solid lines are for LHC energy

p
s = 14 TeV. Upper

lines of each type use an evolution scale equivalent to the meson mass Q2 =

4M2
Bc

and lower lines use the parton center-of-mass evolution scale Q2 = ŝ. [15]
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bottomonium systems. There are a few standard forms favored by QCD the-

orists, however, and four of these have been used by Eichten et al. [27, 28]

to calculate the Bc mass. These are a simple power law exponential, a log-

arithmic potential, a Coulomb plus linear potential, and a QCD-motivated

potential proposed by Buchm�uller and Tye. [29]

The Schr�odinger equation is solved for each potential function to de-

termine the ground-state mass and the level splittings. The strong coupling

constant is �xed by �tting to the hyper�ne splitting in the charmonium spec-

trum: M(J= )�M(�c) = 117 MeV, where the splitting is determined by:

M(3S1)�M(1S0) =
32��sj	(0)j2

9m1m2

;

which neglects the variation of �s with momentum, and scales the splittings

of the bc and bb systems from the cc value. The values of the ground-state

Bc masses obtained from these potential models are consistent and lie in the

range:

6:194 GeV < M(Bc) < 6:292 GeV;

the mass of the �rst excited state is similarly determined to be:

6:284 GeV < M(B�
c
) < 6:357 GeV:

The measured value [13] of M(Bc) = 6:4� 0:39� 0:13 is consistent with these

theoretical predictions.8

The Bc mass spectrum calculated using a Buchm�uller-Tye QCD poten-

tial is shown in Figure 4.

8I do not include the OPAL [30] measurement of M(Bc) = 6:32 � 0:06, which is based

on 2 candidate B+
c
! J= �

+ events with an expected background of 0:63� 0:20.
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Figure 4: Theoretical Bc mass spectrum showing level splittings. Resonant cb

states above the dotted line rapidly decay to real B +D mesons. Below this

threshold, excited states cannot decay directly to light mesons unlike other

(unavored) quarkonia. Instead, they cascade via gluon or photon emission to

the pseudoscalar ground-state. [28]

16



Figure 5: Schematic diagrams illustrating the three lowest-order decay subpro-

cesses of the Bc. Figure (a) is c-quark spectator decay, (b) is b-quark spectator

decay, and (c) corresponds to annihilation.

1.2.4 Lifetime of the Bc Meson

The Bc can decay via three subprocesses: (a) the b decays with the c-quark

spectating, (b) the c-quark decays with the b spectating, and (c) via an anni-

hilation channel. These subprocesses are shown schematically in Figure 5.

The �rst is the same process that governs B+or B0 decays, with the b

decaying either semileptonically

b! c(u) + l
+
�l; (l = e; �; �)

or hadronically

b! c(u) + ud0(cs0):

The partial width of the Bc from the c spectator diagram should be simi-

lar to that of the corresponding diagram in B
0 decays. However, there is a
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contribution from the mode b ! c + cs0 which interferes destructively. The

indistinguishability of the �nal-state c-quarks gives the Bc a slightly smaller

partial width than that of the B0 due to Pauli interference.9

The partial width of the Bc from the b spectator diagram is similar to

that responsible for D0(or Ds) meson decays; it is either semileptonic

c! s
0 + l

+
�l

or hadronic

c! s
0 + d0:

Since the mass of the spectator quark in this case is larger than that of the

decaying c-quark, the Bc phase space available to the �nal-state Bc is di-

minished relative to the corresponding D meson decay, resulting in a smaller

partial width (by a factor of ' 0:6, according to one calculation). [31]

The third subprocess of weak annihilation, while negligible for light

mesons due to helicity suppression of the even lighter �nal-state particles, is

not a priori negligible for Bc. Rather, the Bc can decay to a heavy � lepton or

c-quark in the �nal-state, which would not su�er from helicity suppression. In

one potential model calculation, the contribution from Bc ! c+s0 is estimated

to be about 5% of the total width. [31, 33]

Combining all of these contributions gives an initial estimate for the Bc

lifetime:
1

�Bc

' 1

�B
+

0:6

�D0

+ �ann; (1.4)

9There is a similar interference in the B+ decay mode b ! c + ud0. Experimentally,

however, �B+ � �B0 , and the e�ect is not signi�cant. One expects the e�ect to be smaller

for B decays because there are two Cabibbo-allowed decay channels instead of one, thus

diluting the interference term (which is responsible for a lifetime di�erence of 3 standard

deviations in the D0{Ds system).
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or

�Bc ' 4:0� 10�13 s (120 �m): (1.5)

A lifetime measurement that di�ered signi�cantly from this estimate would

indicate a breakdown of the simple spectator model and provide additional

insight into initial- and �nal-state interactions in heavy-heavy mesons.

As Quigg [32] has pointed out, this may be too na��ve a model to provide

reliable predictions, however, since the b and c-quarks are tightly bound. In

this case, the spectator model should be modi�ed by expressing the decay

widths in terms of the e�ective quark masses, which are reduced by the binding

energy. This method results in somewhat longer lifetimes, depending on the

particular value assumed for the binding energy, up to a maximum of about

1:4 ps. The measured value of 0:46+0:18�0:16 � 0:03 ps [13] indicates that despite

the strong binding, the na��ve spectator model still gives a reasonable estimate

of the Bc lifetime.

1.2.5 Branching Ratios of the Bc

To precisely measure the Bc mass, the decay must be fully reconstructed via

hadronic decay modes. As mentioned earlier, modes containing a �nal-state

J= provide a unique decay signature and should have a signi�cant branching

fraction owing to the initial charm content and the large branching ratio of

b! c. The dominant such decay mode is

Bc ! J= �
+
:

This is also the easiest mode, experimentally, to identify since it contains only

one charged track in addition to the J= decay products.

Predictions of the decay width for a given channel are highly dependent

on the assumed theoretical model. Estimates of the B+
c
! J= �

+ decay width
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calculated in the framework of non-relativistic quark potential models have

been performed [33] and give consistent values of the branching ratio:

BNRQPM(B+
c
! J= �

+) ' 0:2%:

These potential models are expected to be most applicable for low PT (in theBc

rest frame) of the J= . One can also model the hard recoil of the J= from the

exchange of a hard gluon between the decaying quark and the spectator, which

is calculable in perturbative QCD, and factorize this hard gluon exchange

from the soft nonperturbative binding process. This calculation [34] gives a

branching ratio:

BHS(B+
c
! J= �

+) = (2:0� 0:5)%:

Such large variations in theoretical predictions are clearly indicative

that measurements of the hadronic branching fractions will provide important

insight into the energy scales at which the various theoretical tools for QCD

calculation involving heavy quarks are applicable.

Table 4 provides a tabulation of branching ratios into various decay

modes as calculated by Chang and Chen [35] in a typical potential model. In

addition to the B+
c
! J= �

+ decay mode, this analysis also searches for the

modeB+
c
! J= �

+
�
�
�
+, which is expected to have the next-largest branching

fraction. The diagrams leading to this decay mode are identical to the J= �+

mode, except that instead of a J= (1S) produced in the �nal-state, a J= (2S)

is produced instead with the subsequent decay

J= (2S)! J= (1S)�+��;

or with an a1(1260)
+ produced instead of a �nal-state �+, with the a1 decaying

via

a1(1260)
+ ! �

+
�
0; �0 ! �

+
�
�
;
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Semileptonic Decay Decay Rate

B
+
c
! J= + e

+
�e 34:4

B
+
c
! J= (2S) + e

+
�e 1:45

Hadronic Decay Decay Rate

B
+
c
! J= + �

+ 3:29

B
+
c
! J= + �

+ 9:45

B
+
c
! J= +K

+ 0:242

B
+
c
! J= +D

+ 0:382� 10�6

B
+
c
! J= (2S) + �

+ 0:398

Table 4: Bc exclusive branching ratios in a typical potential model. These are

theoretical values derived from one speci�c model and, as such, should be used

as guidelines only. Additional care should be taken in comparing semileptonic

to hadronic decays, as these are calculated independently and may use di�erent

constants. Decay rates are in 10�6 eV.

21



or alternatively, via non-resonant decay into J= (1S)�+���+.

As a comparison with known branching fractions of the B0, the PDG [7,

p. 40] values of B0 ! D
�
�
+ and B0 ! D

�
�
+
�
�
�
+ are, respectively, (3:0�

0:4)� 10�3 and (8:0� 2:5)� 10�3.

1.3 Previous CDF limit on B+
c
! J= �+

A search for B+
c
! J= �

+ in the Run I data at CDF has already been per-

formed which predates the CDF Bc discovery. [36] This analysis measured an

upper limit as a function of assumed Bc lifetime in order to cover the entire

theoretical range of lifetime values. The � �B10 for B+
c
! J= �

+ is normalized

to that of B+ ! J= K
+ in order to cancel theoretical uncertainties on the

production cross section of the b-quark, as well as systematic e�ects of the J= 

trigger and the track �nding eÆciency in the detector. The remaining di�er-

ences are due primarily to decay kinematics, which can be modeled by Monte

Carlo methods. To a lesser degree, they are also due to the b-quark hadroniza-

tion mechanism, which can be parameterized in terms of a small (usually one)

number of parameters and can therefore also be modeled. The current 95%

con�dence level limit on �(B
+
c )�B(B

+
c !J= �

+)

�(B
�
u )�B(B+!J= K+)

, as measured at CDF [36] varies

from 0:15 for an assumed Bc lifetime of 0:17 ps to 0:040 for a lifetime of 1:6 ps.

This represents the world's best limit on �(B
+
c !J= �+)

�total
�B(b! Bc), which varies

from 5:7� 10�5 to 1:5� 10�5 for 0:17 ps < �Bc < 1:6 ps. (Using the values of

B(b ! B
+) = 0:397+:018�:022 and B(B+ ! J= (1S)K+) = (9:9� 1:0)� 10�4.) [7,

p. 40] The lifetime measurement provided by the discovery paper greatly

10
� denotes the cross section for production of a speci�c particle, and B is the branching

ratio of that particle to a speci�ed decay mode. The quantity � � B then represents an

absolute measure of how often a decay process occurs for a given beam luminosity and

center-of-mass energy.
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reduces reliance on conservative upper limits necessary to cover the entire the-

oretical range of Bc lifetimes, so it may now be possible to obtain an improved

upper limit. The current best limit on �(J= (1S)�+���+)=�total�B(b ! Bc)

is < 5:7 � 10�4 at 90% C.L. from the DELPHI experiment. [37] It should be

possible to improve on this limit using CDF's advanced vertexing capabilities.

Table 5 and Figure 6 summarize the results of the previous CDF Bc hadronic

decay search.

Lifetime c� Cut �rel =
�(B

+
u )

�(B
+
c )

Ntot Nbkg 95% C. L.

0:17 ps 60 �m 2:50� 0:15 40 29:2� 2:6 0:15

0:33 ps 85 �m 2:10� 0:12 25 16:5� 2:1 0:10

0:50 ps 100 �m 1:84� 0:11 18 12:7� 1:7 0:070

0:80 ps 150 �m 1:80� 0:10 10 5:9� 1:2 0:053

1:0 ps 150 �m 1:61� 0:09 10 5:9� 1:2 0:046

1:3 ps 150 �m 1:43� 0:08 10 5:9� 1:2 0:042

1:6 ps 150 �m 1:35� 0:07 10 5:9� 1:2 0:040

Table 5: Results of previous CDF Bc hadronic decay search. Rows in this table

correspond to various choices of the assumed Bc lifetimes, the c� selection

criterion used for each choice, the relative eÆciency of the selection cuts, the

total number of data events in the largest four consecutive mass bins from 6:1

to 6:4 GeV, the number of background events in those four bins (including

statistical error), and the 95% C.L. limit for the � � B ratio.
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Figure 6: Previous CDF limit on B+
c
! J= �

+. [36] Circular points show 95%

C.L. limits on ratio of � � B for B+
c
! J= �

+ relative to B+ ! J= K
+ as a

function of Bc lifetime. The dotted curve represents a theoretical calculation

of the same ratio based on the assumptions that Bc is produced 1:5 � 10�3

times as often as all other B mesons and that �(B+
c
! J= �

+) = 4:2�109 s�1.
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Chapter 2
Experimental Apparatus

2.1 Introduction

The data used in this analysis were gathered by a general purpose experiment

for the studying pp collisions. The general features of the collider facility and

a description of the detector components are presented here.

2.2 Tevatron

2.2.1 Introduction

The Tevatron is a proton synchrotron located at the Fermi National Acceler-

ator Laboratory in Batavia, Illinois. Figure 7 shows a schematic layout of the

Tevatron and its main components. Protons and antiprotons are guided by

magnetic �elds to circulate in opposite directions around a ring 1 km in radius.

Currently the highest energy accelerator in the world, the Tevatron can be op-

erated in \�xed target" or \collider" modes. In the collider mode, the protons

and antiprotons are stored in six bunches each and collide at various points

around the ring every 3:5 �s with a center-of-mass energy of 1:8 TeV. Two of

the collision points are instrumented with detectors, known as D011 and CDF.

The analysis presented here is based on data collected by the CDF experiment.

The bunch sizes are typically Gaussian in shape with a longitudinal spread of

�z ' 30 cm and transverse radius �xy ' 40�m at the collision points. The

number of inelastic collisions is proportional to a quantity called \luminosity,"

11The collision points are designated A0, B0, C0, D0, E0, and F0. The D0 detector is,

appropriately, located at the D0 collision point.
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Figure 7: Schematic layout of Fermilab accelerator. Principal components are

labeled. Arrows indicate directions of particle ow.

26



which is a measure of how often a collision opportunity presents itself. The

proportionality factor is the \cross section" for the process. Luminosity is

calculated as follows:

L =
NbunchNpNpf

4��2
; (2.1)

where � ' 40 �m is the characteristic transverse beam size, Nbunch is the

number (6) of bunches, Np is the number of protons per bunch (typically

about 2� 1011), Np is the number of antiprotons per bunch (anywhere from 2

to 9 � 1010, depending on how long antiprotons are accumulated before each

store), and f is the frequency of circulation for each bunch (50 kHz). A small

beam size obtained by focusing the beam with quadrupole magnets is desirable

for maximum luminosity, but is limited by Coulomb repulsion of (anti-)protons

in the bunch. Accumulation of antiprotons is inherently more diÆcult than

production of protons, so Np is generally the limiting factor in the luminosity

equation. The average luminosity for Run Ib (1994-95)12, during which the

bulk of the data was taken, was 8 � 1030 cm�2 s�1. The cross section for

a \minimum-bias"13 event is about 50 mb, so there were approximately 1.4

inelastic collisions at each bunch crossing. The total number of events recorded

by CDF during all of run I corresponded to an integrated luminosity of roughlyR Ldt � 110 pb�1.

12The Tevatron operated in colliding-beammode during two principal data-taking periods,

designated Run Ia (1992-93) and Run Ib (1994-95). The CDF detector was upgraded during

the downtime between these runs. Two additional runs, Run �1 in 1987, and Run 0 in 1989,

did not implement the full set of analysis triggers and were used primarily for calibration

and parameterization of the detector performance.
13A minimum-bias event corresponds to a scattering event which produced hits in the

beam-beam counters, which lie just o� the collision axis.
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2.2.2 Operation of the Tevatron

Protons are injected into the collider by accelerating negatively charged hydro-

gen gas in a Cockroft-Walton accelerator to an initial energy of 750 keV, then

stripping the electrons and accelerating the protons to 200 MeV in a linear

accelerator. The bunches emerging from the linac are injected into a small

circular accelerator called the Booster Ring, which accelerates them to 8 GeV

before injection into the Main Ring, which lies above the Tevatron. The Main

Ring accelerates the bunches to 150 GeV and transfers them to the Tevatron,

where they are ramped up to 900 GeV.

The antiprotons are produced by accelerating protons in the Main Ring

to 120 GeV and colliding them with a �xed nickel target. A fraction of these

collisions will produce antiprotons with a broad range of energies and angles,

which are passed into a \debuncher" ring. Here, the beam is stochastically

cooled by monitoring the orbit of each antiproton and giving it a corrective

\kick" at a later point in its orbit. Eventually, the result is a substantial

number of antiprotons traversing a known trajectory with a narrow beam size.

These are sent into the accumulator for storage until a suÆcient quantity is

obtained to begin collisions with the protons.

2.3 CDF Detector

The CDF detector is a multipurpose solenoidal magnetic spectrometer sur-

rounded by complete azimuthal coverage of calorimetry and additional cham-

bers designed to detect muons. The design of CDF reects the desire to be

as sensitive as possible to a wide range of physics events. Figure 8 illustrates

a cross section of the CDF detector. Detector components relevant to this

analysis are described in further detail in the following sections.
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Figure 8: One quadrant of the CDF detector in cross section view (r-z plane),

showing relative dimensions and layout of detector elements. Detector is sym-

metric in z and has rotational symmetry in the x-y plane.
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2.3.1 CDF Coordinate System

The elements of the CDF detector have discrete azimuthal symmetry, and

exhibit forward-backward symmetry around the interaction region. The or-

thonormal coordinate system14 is de�ned such that ẑ points along the direc-

tion of the proton beam (east), ŷ points up, and x̂ points north (making it a

right-handed system). The origin of this coordinate system corresponds to the

center of the detector and the nominal pp interaction point.

In cylindrical coordinates, r is the distance from the z-axis and � is the

azimuthal angle, with � = 0 at x = r, y = 0. The polar angle � is de�ned

as r = z tan �. Since minimum-bias events are distributed roughly uniformly

in rapidity, it is sometimes useful to de�ne a quantity in the CDF coordinate

system that corresponds to the kinematic rapidity y = (2log(E+pz
E�pz

))�1 in the

limit of massless particles. This quantity is usually referred to as \pseudora-

pidity" and is de�ned by � = tanh�1(cos �
2
). Because particles are produced

approximately uniformly in pseudorapidity, the calorimetry is segmented in

units of � and the extent of various detector components is usually quoted in

units of �.

The path of a stable15 charged particle traversing a uniform magnetic

�eld is a helix. Thus, each track can be assigned �ve helix parameters, denoted

c; �0; z0; d0; and �, that completely describe its trajectory. The curvature, c,

is signed according to the helical orientation, such that a positively-charged

particle has a positive curvature. The angle �0 is the starting angle (in the x-y

14For clarity, I will rarely make speci�c reference to this coordinate system. Where possi-

bly I will refer to quantities using cylindrical coordinates, unless there is no harm in mixing

up the sign of a particular coordinate, e.g., PT =
q
p2x + p2y.

15By \stable," I mean on the timescale it takes to traverse the detector. Muons are not

stable, but have a very long lifetime and can travel hundreds of meters before decaying.
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plane) of the trajectory at its closest approach to the z-axis; the z-coordinate

at this point is z0, and d0 is the distance of closest approach in the transverse

plane. The distance d0 is signed such that the (x,y) coordinates of the point of

closest approach are (�d0 sin�0; d0 cos�0). The slope parameter, �, is de�ned
as � = pz

pT
= cot �. The d0 of a track is commonly referred to as the \impact

parameter."

2.3.2 Superconducting Solenoid

In order to measure a charged particle's momentum, one may equivalently

measure its curvature in a magnetic �eld. For a magnetic �eld in the ẑ di-

rection, the component of momentum transverse to the magnetic �eld (PT )

is determined by PT = 0:3B�; when B is measured in Tesla, � is the track

turning radius in m, and PT is measured in GeV. At CDF, the magnetic �eld

is produced by a superconducting solenoid located outside of the tracking re-

gion, but inside the calorimeters (r = 1:5 m; jzj < 2:4 m). The nominal �eld

strength is 1:4116 T, and is uniform to better than 0:1% within the tracking

volume. Nonuniformities in the magnetic �eld strength were measured dur-

ing construction and are part of a database used to properly �t tracks during

o�ine event reconstruction. During data taking periods, nuclear magnetic res-

onance probes monitor the �eld strength and adjust the database accordingly.

A �nal check of the magnetic �eld is performed by reconstructing J= events

and ensuring that the measured mass value agrees with the PDG value.

2.3.3 Silicon Vertex Detector (SVX')

The component of the detector closest to the beamline, through which tracks

�rst travel, is a four-layer silicon microstrip detector. The original detector,
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Figure 9: Schematic rendering of SVX' barrel, showing primary components

and arrangement of silicon ladders.

installed in 1990, was called \SVX" and was used during the Run Ia data-

taking period. For Run Ib, the SVX was upgraded with radiation-hard readout

chips to withstand the additional luminosity. The geometry of this newer

\SVX0" is almost identical to that of the original SVX.

The SVX' is composed of two cylindrical barrels with a total active

length of 51 cm, which provides acceptance for about 60% of the collision

vertices. Figure 9 shows a schematic drawing of one of the SVX' barrels. Each

barrel has four concentric layers of 300 �m thick silicon sensors divided into

60 �m strips (55 �m on the outer layer), segmented azimuthally. This �ne

segmentation allows for precise reconstruction of event vertices. It also allows

identi�cation of collision vertices and location of secondary vertices displaced

from the production vertex, which are indicative of long-lived particles such as
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B mesons. Such events can then be separated from so-called \prompt" events,

which have zero lifetime. The layers are located at r = 2:9 cm, r = 4:3 cm,

r = 5:7 cm, and at r = 7:9 cm; and they are subdivided into twelve 30o wedges

in azimuthal angle.

SVX' \hits" are formed by performing a pedestal subtraction of the

charge collected on each strip. Then the strips are clustered according to an

algorithm designed to reject spurious noise hits. This clustering algorithm

requires groups of contiguous strips with 4 times the noise level for 1-strip

clusters, 2:5 times the noise level for 2-strip clusters, and 2 times the noise

level for 3(or more)-strip clusters. The impact parameter resolution for tracks

with both CTC and SVX information combined can be described by16

�d = 10 �m+
40

PT
�m GeV: (2.2)

The position resolution for 1-strip clusters is determined to be 13 �m from �ts

using only SVX' tracking information, and 11 �m for 2-strip clusters.

Identi�cation of long-lived B mesons relies on the ability to measure

a secondary decay vertex displaced from the primary interaction vertex. The

SVX' is unique among the CDF detector components in its ability to pro-

vide precise impact parameter and decay length information, and therefore is

essential to the search for Bc mesons at CDF. The vertexing capabilities of

the SVX' also provide a means of measuring the run-averaged beam position,

which can vary due to the Tevatron operating conditions.

16Normally, errors would be combined in quadrature. Empirically, adding the terms

linearly gives a good �t to the d0 resolution.
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2.3.4 Vertex Tracking Chamber (VTX)

The VTX consists of 28 time projection chambers (TPC's), 9:4 cm in length

and segmented octagonally in azimuth. It is designed to measure the z-position

of interaction vertices, because the SVX provides virtually no z information.

The VTX is segmented to provide 24 z measurements between 6:5 cm < r <

21 cm for 85 cm < jzj < 132 cm and 16 z measurements between 11:5 cm <

r < 21 cm for jzj < 85 cm.17 The overall z vertex resolution is roughly 2 mm.

The z positions of primary vertices are used to guide the track reconstruction

in the CTC in the r � z plane, to match tracks with the appropriate vertex

when multiple production vertices are present, and to correct the x� y beam

position for the overall slope of the beamline.

2.3.5 Central Tracking Chamber (CTC)

The CTC is a cylindrical drift chamber which lies outside the VTX and extends

to 1:38 m in radius and covers 3:2 m in z. It is �lled with an argon-ethane

(50% � 50%) gas mixture, which is ionized by charged particles traversing

the detector. The electrons produced in the ionization drift to sense wires

arranged in alternating \superlayers" of �ve axial (with 12 wires each) and

four small-angle stereo (with 6 wires each, tilted at 2.5 degrees with respect

to z) layers. Each plane of sense wires is tilted 45o in azimuth, corresponding

to the Lorentz angle of electrons drifting at 51 �m=s in the 1:4 T magnetic

�eld. Figure 10 is a diagram of the CTC endplate. The diagram shows the

locations of both the sense wire planes and the �eld wire planes. The wires are

spaced such that the maximum drift time is less than 800 ns (40 mm). The

17The change in thickness corresponds to the physical location of the SVX', which would

otherwise overlap the VTX in r.

34



tilt angle of the drift cells allows for high-PT tracks to sample the full range of

drift times. This is of dual bene�t: it makes calibration of the drift time-to-

drift distance relationship simpler, and it guarantees that high-PT tracks will

contain some hits arriving early in the time window. This latter feature o�ers

the opportunity to trigger on high-PT tracks before all of the hit information is

collected. [38] The time development of signals on each sense wire is read out

with TDC's18 capable of storing multiple hits. Both the leading and trailing

edges of the incoming pulses are recorded in bins of 2 ns. The distribution of

pulse widths is such that multiple tracks may be resolved if their separation

is > 0:2 cm. The CTC track parameter resolutions are measured19 to be

�PT

P 2
T

= 0:10% GeV�1
; �d = 0:07 cm; �z = 1:0 cm:

The primary function of the CTC is to measure track momenta, and

therefore plays a central role in this analysis. Identifying muons originating

from a J= requires precise reconstruction of their invariant mass, calculated

from the track momenta. Likewise, additional tracks added to the J= vertex

must be well-measured in order to distinguish an excess of events in the B

meson mass spectrum.

2.3.6 Central Calorimeters

Outside of the tracking region and the solenoid lies the calorimetry. In the

central region, the electromagnetic and hadronic calorimeters form projec-

18Time to Digital Converters.
19Resolutions on the CTC track parameters are determined by performing an in situ cal-

ibration of the detector using actual tracks in the data. These particular values correspond

to calibrations performed on Run Ib data. Momentum resolution assumes that the track

momentum is large enough that the multiple scattering contribution can be neglected.
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Figure 10: (a) One quadrant of the CTC endplate, showing location of sense

and �eld wire planes as seen from the western end of the detector. For illus-

trative purposes, the dotted line represents a 1 GeV positively-charged track.

(b) Expanded view of one axial superlayer. Locations of wire types are in-

dicated. The presence of the potential wires, which are not instrumented,

provides for independent control of the gain on the sense wires (governed by

the �eld strength near the wire where the �nal \avalanche" of charge occurs)

and the �eld strength in the drift region.
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tive towers that are subdivided to cover 0:1 units of � and 15o in �. The

EM calorimeters use lead absorbers and doped polystyrene scintillator which

produces predominantly low-energy photons (blue light) when ionized. The

central EM calorimeter (CEM) provides electron and photon energy measure-

ments with a resolution of

�E

E
=

13:5%q
ET (GeV)

� 1:5%:

Beyond the CEM towers are the central hadronic calorimeter (CHA)

towers, which contain layers of iron absorber and plastic scintillator to measure

the energy of hadronic jets.

The calorimeter system is not used in this analysis except as an absorber

preventing hadronic particles from reaching the muon detectors.20

2.3.7 Central Muon Chambers

The Central Muon (CMU) chambers contain four layers of drift chambers

measuring 6 cm by 2:7 cm by 2:2 mm in thickness, each with a single 50 �m

stainless steel sense wire through the center along the z direction. It covers

about 84% of the solid angle for j�j < 0:6. After the hadrons have deposited

their energy in the calorimeters (except for a small \punch-through" fraction),

the only charged particles that can reach the CMU are muons with PT >

1:4 GeV.

In 1992, an additional 60 cm of steel and four more layers of drift

chambers for extra hadron absorption and greater muon detection were added.

This is called the Central Muon Upgrade (CMP). It covers about 63% of the

solid angle for j�j < 0:6.

20The pion and kaon punch-through fraction is � 0:2% for the central muon chambers.
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An additional set of free-standing conical arches, called the Central

Muon Extension (CMX), provides greater coverage of the central region. These

contain drift chambers layered between scintillator counters for coincidence

triggering. It covers about 71% of the solid angle for 0:6 < j�j < 1:0.

Figure 11 maps the �{� coverage of each muon system. Figure 12 shows

a schematic of the CMU drift chambers in cross section.

The decay of J= into two muons provides a distinctive experimental

signature for selecting data rich in B mesons, owing to their relatively large

branching fractions into �nal-states containing a J= . The central muon sys-

tem provides the sole means to trigger eÆciently on such events.

2.3.8 Beam-Beam Counter (BBC)

The BBC is a set of scintillating detectors located 5:8 m from z = 0 and

covering 0:32o to 4:47o in �. They are used for triggering of inelastic scattering

events and to provide an estimate of the instantaneous luminosity. Events

are only recorded if there is a coincidence between the BBC's within 15 ns.

This acts as a \Level 0" trigger. Luminosity is determined by the number of

collisions recorded during this 15 ns window.
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Figure 11: Schematic map showing coverage of the central muon chambers in

(�; �). The forward muon system not shown as it is not used in this analysis.

Where overlap occurs, drift chamber hits are used from all overlapping systems.

Muon selection criteria are described more fully in Section 3.2.5.
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Figure 12: Cross Section of CMU drift chambers. Muon track positions are

measured by sampling drift times in four layers. Evaluating track slope in the

CMU prior to full event reconstruction in the tracking volume provides for a

fast estimate of muon momentum for triggering purposes.
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Chapter 3
Data Handling and Monte Carlo
Simulation

3.1 Introduction

The collection of data at CDF involves a multi-stage triggering process and

a large software base for the reconstruction and simulation of physics events.

The aspects of this system relevant to the present analysis are described here.

3.2 Trigger Requirements

In the interaction region, the bunch-crossing rate is 286 kHz. With an av-

erage luminosity (during Run Ib) of 8 � 1030 cm�2 s�1 and a 50 mb cross

section for minimum-bias events, one observes an average of 1:4 interac-

tions at every bunch-crossing, or an average minimum-bias event rate of

1:4 � 286 kHz = 400 kHz. At this high rate, it would be impossible (and

wasteful) to read out all of the data (roughly 105 channels) for every inelastic

collision. Interesting events are selected through a three-level trigger system,

with increasing accuracy, speci�city, and readout time at each successive trig-

ger level. Events passing the level-3 trigger are written to tape for future

analysis. The trigger requirements leading to the selection of events contain-

ing a �nal-state J= ! �
+
�
� are described here. Other triggers are searched

concurrently during data-taking, such as events with large missing transverse

energy, and central electron and photon candidates for other physics analyses

which are not described here.
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3.2.1 Level-1 Trigger

The �rst trigger level is a hardware trigger that scans events at every bunch-

crossing. If there is a coincidence between the BBC's within a 15 ns window

around the collision time, the muon chambers are scanned for hits. A com-

bination of more than two hits in a given chamber is tentatively identi�ed as

a muon \stub." The slope of this muon stub provides an initial estimate of

the muon momentum. Figure 13 shows the eÆciency of the level-1 trigger as

a function of track PT . The rate of the level-1 trigger is about 1 kHz, for a

rejection factor of about 400. [39]

3.2.2 Level-2 Trigger

The level-2 dimuon trigger uses the algorithm alluded to in Section 2.3.5 to

rapidly process CTC information by using the prompt hits to sort tracks ac-

cording to their estimated PT . Tracks are also extrapolated into the muon

chambers to check for matching muon stubs. At this level, the PT assigned to

the muons via the CFT processor has a resolution of �PT
P 2
T

= 3:5% GeV�1. The

level-2 dimuon trigger requires at least two level-1 CMU stubs, or one CMU

and one CMX, or two CMX muon stubs. At least one of these must have a

matching track from the CFT with PT > 2:5 GeV. Table 6 outlines the various

combinations of muon chambers and matching CFT tracks considered. These

varying PT thresholds of these triggers are applied after level-3. The rate of

the level-2 dimuon trigger is about 15 Hz (a rejection factor of ' 70, relative

to level-1), and its eÆciency as a function of track PT is shown in Figure 14.

The longer decision time of level-2 (' 40 �s), combined with the level-1 trigger

rate of 1 kHz results in a 4% dead time during which events were not recorded.
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Figure 13: EÆciency of Level-1 muon trigger as a function of PT of the muon.
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Figure 14: EÆciency of Level-2 muon trigger as a function of PT of the muon.
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3.2.3 Level-3 Trigger

The level-3 dimuon trigger uses fully reconstructed tracks in the CTC to mea-

sure momentum. Matching requirements between the CTC and central muon

stubs are more stringent (tracks must match to within 4 standard deviations),

and the invariant mass of the dimuon pair must lie between 2:8 and 3:2 GeV

(the world-average J= mass is 3:09688� 0:00044 GeV. [7, p. 46]) Addition-

ally, the muon candidates must be separated by a calorimeter tower to remove

background from punch-through hadronic jets. Figure 15 shows the invariant

mass distribution for dimuons passing level-3. The trigger rate of dimuons for

level-3 prior to the mass cut is about 6 Hz, providing an additional rejection

factor of 2:5. The readout time for all the detector channels necessary for

complete event reconstruction is about 3 ms. With a level-2 rate of 15 Hz, this

corresponds to an additional 4:5% dead time. All events passing the level-3

triggers are written to tape.

3.2.4 O�ine Reconstruction

A certain fraction of events passing the level-3 triggers are cached on disk

for rapid processing by a cluster of UNIX machines. The dimuon triggers

described above are among this \Stream A" set of events. The o�ine re-

construction is substantially more thorough than the level-3 reconstruction.

It also computes higher-level quantities of interest to physicists (e.g., track

parameters, vertex positions, jet clusters, etc.) from the raw data using cal-

ibration constants derived in parallel from the data. It also includes proper

alignment corrections for the tracking components of the detector.
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Figure 15: Dimuon Invariant mass of J= candidates passing Level-3 muon

trigger. A Gaussian �t to the peak plus a linear �t to the background gives

345800� 600 J= events.
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3.2.5 Inclusive J= Data Set

Data that pass the dimuon triggers are collectively known as the inclusive J= 

data set. This data set resides on disk and is used extensively as a source of

events rich in B meson decays. Table 6 lists the speci�c triggers used in Runs

Ia and Ib and the muon PT cuts assigned to each. These cuts are designed to

be above the 50% eÆciency point of the trigger thresholds. In practice, higher

PT cuts will be imposed at a later stage of the analysis. As noted earlier,

the production of Bc mesons at low PT has large uncertainties associated with

non-perturbative soft gluon exchange. To reduce theoretical and experimental

uncertainties, the Bc branching ratio will be compared to a standard, well-

studied branching ratio of the more conventional charged B (B+ ! J= K
+).

Therefore, the same data set is chosen for consistency.

3.3 Simulation of Events by Monte Carlo

Simulated events are used to calculate the detection eÆciencies of the various

B meson decay channels examined in this analysis. The problem of sampling

random processes, such as the production and decay of mesons containing

heavy quarks, in a complex detector environment is made tractable by using

computational sampling and integration methods known as \Monte Carlo"

techniques. Following are descriptions of the various Monte Carlo packages

employed in this analysis, and the necessary input parameters and assump-

tions.

3.3.1 Generation of b-quarks.

As described in Section 1.2.2, by convolving the gluon distribution functions

with the parton-level cross section for producing bb, one may calculate the dif-
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Dimuon Trigger Name Muon PT Cuts

CMU_CMU_ONE_CFT_1A 2.8, 1.65

CMU_CMX_ONE_CFT_1A 2.8, 1.65

CMU_CMU_TWO_CFT_1B 1.9, 1.9

CMU_CMX_TWO_CFT_1B 1.9, 1.9

CMX_CMX_TWO_CFT_1B 1.9, 1.9

CMUP_CMX_TWO_CFT_1B 2.4, 1.9

CMU_CMU_ONE_CFT_1B 3.0, 1.65

CMU_CMX_ONE_CFT_1B 3.0, 1.65

CMUP_CMU_ONE_CFT_1B 3.0, 1.65

CMUP_CMX_ONE_CFT_1B 3.0, 1.65

CMU_CMU_SIX_TOW_1B 1.9, 1.9

CMU_CMUX_ONE_CFT_1B N.A.

CMUP_CMUX_ONE_CFT_1B N.A.

Table 6: List of triggers used in selecting J= candidate events in Runs Ia and

Ib, with associated muon PT cuts. Trigger names reect which muon chamber

combinations are allowed (compound names such as CMUP are muons that

leave hits in both the CMU and the CMP), how many level-2 CFT track

matches were required, and the run for which each trigger was used. CMUX

muons are not used, because there is no physical overlap between the CMU

and the CMX.
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ferential cross section for b-quark production d�(pp! bb)=dPTdy. Often, as is

true here, one is only interested in the single-particle di�erential cross section.

The �nal-state fragmentation fraction for a single b-quark to become a Bc is

on the order of 10�3 times that for the other B mesons. Correspondingly,

the probability for both the b and b (anti-) quarks to fragment to B+
c
B
�
c
is

suppressed by roughly six orders of magnitude relative to B+
B
� production.

Thus, we need only consider fragmentation, decay, and detector simulation of

one of the two b-quarks produced in a given event. For this purpose, physi-

cists at CDF have implemented the next-to-leading-order (O(�3
s
) calculation

of Nason, Dawson, and Ellis [40] for the single-particle inclusive di�erential

cross section in a FORTRAN routine called BGENERATOR21. The result of this

calculation depends on the choice of the parton distribution functions (PDF's)

used, as well as the quark masses and the fragmentation scale parameter.

The input to this generator package is a two-dimensional histogram

containing the cross section for producing a single b-quark as a function of

transverse momentum PT and rapidity y, including the correlation. Events

are generated according to this histogram and subjected to user-de�ned cuts

on both PT and y. To avoid generating too many events at low PT and y which

would subsequently be removed by cuts later in the analysis, only events with

PT (b) > 4:5 GeV and jy(b)j < 2:0 were accepted. The default PDF and

parameter values were chosen to be consistent with previous CDF Bc searches

and with the discovery paper. The MRSD0 [45] structure functions were used,

with mb = 4:75 GeV, mc = 1:5 GeV, and the default renormalization scale

� = �0 �
q
m

2
b
+ P

2
T
(b).

21There is an analogous calculation performed by Mangano, Nason, and Ridol� [41] to

calculate the full di�erential cross section for bb production.
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3.3.2 Fragmentation into Bc

To the extent that both the B+ and the B+
c
are produced via the same mech-

anism and that kinematic cuts are chosen so that the data events lie in a

region where non-perturbative e�ects can be neglected in producing the heavy

quarks, the ratio of � �B of one B meson species to another is insensitive to the

choice of PDF and fragmentation scale. However, the BGENERATOR treatment

of Bc necessarily di�ers from the B+ in fragmenting the b-quark to the �nal-

state mesons. In order to establish a reasonable approach to quantifying the

systematic uncertainty due to this essential di�erence, some understanding of

the fragmentation mechanism and the de�nition of quark masses is required

here.

After producing the bb pair, the quarks begin to separate (typically

back-to-back) until the strong color �eld stores enough energy to create a new

qq pair. For high-PT quarks, this process can occur multiple times until one

of the produced lighter quarks binds with the b-quarks into a hadron. This

fragmentation process is not describable in perturbation theory and therefore

can only be calculated in phenomenological models. This is, of course, one of

the reasons for studying heavy quark systems such as the Bc | it provides

insight into these non-perturbative models. A wide variety of functional forms

have been proposed, but the Peterson [46] parameterization has become widely

used due to its relative simplicity. This parameterization, as it was initially

formulated, was de�ned for a system of a heavy quark Q and a light quark

q as a function of one kinematic variable z and one free parameter �P . The
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variable z22 is de�ned as:

z =
(Em + p

jj
m
)

EQ + pQ
;

where the subscripts refer to the energy and momentum of the �nal-state me-

son or the heavy quark, and p
jj
m
is the component of the meson momentum

parallel to the heavy quark momentum. In physical terms, z roughly corre-

sponds to the fraction of energy that the meson takes from the heavy quark.

The functional form of the Peterson parameterization is:

dN

dz
=

1

z[1� (1=z)� �P=(1� z)]2
:

This form has been used with some degree of success in modeling the cross

sections for charm and bottom meson production at LEP. [47, 48] A com-

pilation [49] of these results indicates that �c ' 0:06 and �b ' 0:006. The

latter value is used in many B analyses at CDF. One may reasonably ques-

tion whether this parameterization is applicable to the Bc, which contains

two heavy quarks. According to Peterson, the parameter should roughly fol-

low a simple scaling law: �Q / m2
q

m2
Q

. This analysis follows the precedent set

by previous CDF Bc searches and the discovery paper in using an alternate

fragmentation parameterization based on a perturbative calculation of gluon

Bremsstrahlung o� the b-quark, with the gluon splitting to cc and one of the

c-quarks binding with the b. [50, 51] This is formulated as a function of z:

dN

dz
= 6 �18(1� 2R)z

+(21� 74R + 68R2)z2 (3.1)

�2(1�R)(6� 19R+ 18R2)z3

+3(1� R)2(1� 2R + 2R2)z6;

22In a later section, a new quantity z will be de�ned. For clarity, the current z will be

referred to as the \Peterson z."
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where the single parameter R = mc

mc+mb

.

The fragmentation parameterization described in 3.1 is implemented

in BGENERATOR and is used as the default for this analysis for historical com-

patibility. Figure 16 shows the parameterizations used in BGENERATOR and the

variations in shape resulting from changes in the parameter values. Aside from

the obvious question about whether one should place faith in a theoretical per-

turbative calculation of what is generally perceived to be a non-perturbative

hadronization process, this formulation carries an explicit dependence on the

quark masses. This introduces a systematic uncertainty into the Bc produc-

tion cross section through the uncertainties on mc and mb. The framework of

heavy quark e�ective theory (HQET) [52, 53, 54] allows one to de�ne a heavy

quark mass that is consistent even when non-perturbative e�ects are included

(unlike the pole mass de�nition). The HQET mass de�nition introduces an

additional parameter, �, which must be estimated using other means (e.g.,

QCD sum rules). According to the PDG, [7, p. 378] the HQET mass values

derived in this way are mb = 4:74 � 0:14 GeV and mc = 1:4 � 0:2 GeV, for

� = 0:57 � 0:07 GeV. [55] Assuming uncorrelated errors, the most signi�-

cant parametric dependence of R will be on mc due to its larger fractional

uncertainty and the appearance of mc in the numerator.23 To estimate the

systematic error due to the parameter in the fragmentation function, mc was

varied by one standard deviation in the default BGENERATOR Bc fragmenta-

tion function. The Peterson parameterization was also used, with a value of

�Bc = (mc=mb)
2 = 0:09 to test the systematic dependence on the form of the

fragmentation function.

23The error term in mb is suppressed by an additional factor of the b-quark mass.
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Figure 16: Parameterization of fragmentation functions as function of the kine-

matic variable z. Shown are the Peterson form for B+, the default Bc function

with R = 1:5 GeV

1:5+4:5 GeV
= 0:25, the Peterson form for Bc with � = (mc

mb

)2 = 0:09,

and the default Bc fragmentation function with mc = 1:1 GeV (R = 0:196).

The average values of these distributions are hzi = 0:83; 0:67; 0:64; and 0:70,

respectively.
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3.3.3 Simulation of Decay

After generating a B meson with a given mass and 4-momentum distributed

according to the PDF, the CLEOMC Monte Carlo package [56] is used to de-

cay the meson to its �nal-state. The input to the CLEOMC module is a table

of particle properties, including mass, lifetime, spin, and branching fractions

into allowed �nal-states. For the purposes of this analysis, the default life-

time of 0:46 ps was used for the Bc, and 1:65 ps for B+ decay. All decay

modes except the relevant ones being studied (B+ ! J= K
+; B+

c
! J= �

+;

B
+
c
! J= �

+
�
�
�
+) were turned o�. Additionally, the J= was required to

decay via J= ! �
+
�
� 100% of the time. The Monte Carlo creates a displaced

secondary vertex according to the input lifetime and handles the kinematics

of the decay, including spin e�ects and phase space considerations, in deter-

mining the 4-momentum distributions of the �nal-state particles. Since the

B; �; and K are all pseudoscalars and the J= is a vector meson, the �nal-state

J= and �=K will be in a state with angular momentum l = 1, with the J= 

spin transverse to its momentum vector in the B rest frame. This will a�ect

the relative angular distributions of the �nal-state muons from J= ! �
+
�
�.

The 4-body �nal-state from B
+
c
! J= �

+
�
�
�
+ is even more complex and

would be diÆcult to analyze without the features of the CLEOMC module.

To determine systematic uncertainties due to the Bc lifetime, samples

were also generated with c� = 0:46+0:18�0:16 � 0:03 ps.

3.3.4 Detector Simulation

The �nal-state particles from CLEOMC are used as input to a simulation of

the CDF detector known as QFL. [57] This simulation module uses paramet-

ric forms of the detector response to provide a fast calculation of acceptance
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rather than performing a full physics simulation of all detector channels. To

use a full physics simulation of the detector response would be prohibitively

slow for studies of large-statistics samples. Inputs to QFL relevant to this

analysis include alignment constants and resolution parameters appropriate

to the speci�ed run (Run IA/IB), beam size (transverse and longitudinal) for

simulation of primary vertices, a database of detector channel eÆciencies and

dead elements, and SVX clustering parameters and thresholds. In addition,

there is a covariance scaling parameter, which is taken to be 2:0 for Run Ib

in accord with other CDF analyses. In calculating track parameters in the

CTC, all elements of the covariance matrix are scaled by this amount to ac-

count for the fact that the hit resolutions alone do not account for the track

parameter resolutions observed in test data. The source of this discrepancy

remains unknown. The output of QFL is a set of banks containing high-level

analysis quantities rather than simulated raw detector data banks. This obvi-

ates the need to perform a full-scale event reconstruction on simulated events.

Although QFL provides the option to decay secondary particles (such as K and

�), for the purposes of this analysis, these secondaries are treated as stable.

Corrections for decay-in-ight of the secondaries are applied to the detection

eÆciencies in Section 5.5.

The dimuon trigger is modeled by a separate module called DIMUTG. [58,

59] This module uses a parameterization of the trigger turn-on to simulate

acceptance. In addition to the eÆciency plateau level, trigger turn-on momen-

tum values, and background level parameters for each of the dimuon triggers,

DIMUTG also includes e�ects due to dead towers and tower clustering.24

Monte Carlo events are generated using the parameters of both Runs

24Some triggers require a minimum separation between muon tower clusters at level-1.
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Ia and Ib. All Monte Carlo samples used in this analysis are scaled according

to the integrated luminosities of the Run Ia and Ib dimuon triggers so that

each sample is composed of 20 pb�1

(20+89) pb�1
= 18:3% Run Ia simulated events and

89 pb�1

(20+89) pb�1
= 81:7% Run Ib simulated events.
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Chapter 4
Analysis of the Data

4.1 Introduction

In order to identify those J= mesons that result from the decay of either

Bc or B
+, additional tracks in the event are combined with the muons. One

then removes track combinations which do not satisfy certain selection crite-

ria designed to di�erentiate the signature of real B mesons from sources of

background. This section describes the process necessary to extract a limit on

hadronic Bc decays from the CDF Run I data.

4.2 Reconstruction of Vertices

One of the primary characteristics that distinguishes a J= from B decay from

other sources is that the B is long-lived and travels a measurable distance from

its production vertex to its decay vertex. The primary vertex where the meson

is produced is determined primarily by the SVX.25 In any inelastic process that

produces a heavy meson with enough transverse momentum to be found in the

detector, there will also be a number of tracks from light, stable (or very long-

lived) particles produced in association with the B that point back to the

production vertex. The secondary (decay) vertex is also found by the SVX

in the same manner: by reconstructing tracks that intersect near a common

point, displaced from the primary vertex. Upon identi�cation of a common

25The beam positions used in this analysis are determined by averaging over individual

runs, not on an event-by-event basis. During a collider run, the beam position exhibits

long-term stability and the run-averaged position is less sensitive to measurement errors for

each event.
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decay vertex, measurement errors on quantities derived from the decay tracks

can be reduced by a process known as \kinematic �tting." The specialized

software routine for performing such a kinematic �t on CDF data is called

CTVMFT. [60] This routine applies user-speci�ed constraints on the invariant

mass of track combinations, pointing constraints that require combined track

momenta to point back to a speci�ed vertex, and a vertex constraint that

forces the tracks to coincide at a secondary vertex. For example, in the decay

B
+ ! J= K

+, the two muons and the kaon can be simultaneously constrained

to come from a decay vertex, the muons constrained to have the J= invariant

mass, and the combined momentum of the 3-track object (the B+) constrained

to point back to the primary vertex. The output would then be a new set of

track parameters for each of the three tracks, with their new error matrices,

the �tted primary and secondary vertices, and the �2 value of the �t. The

details of how the track parameters and vertices are modi�ed to satisfy the

constraints is somewhat beyond the scope of this analysis, but I will point out

a few relevant details.

The track parameters and vertices that result from the �t are chosen

by satisfying the constraints with a minimum deviation (as determined by the

�
2 from the original measured parameters). The �2 for the �t is de�ned as:

�
2 =

NtracksX
i=1

�
T

i
G�1
i
�i; (4.1)

where �i is the vector of track parameter residuals (di�erence between con-

strained and unconstrained parameters) for track i, and G is the 5� 5 covari-

ance matrix of the original measured parameters. Assuming the covariance

matrix faithfully reects the uncertainties on the measured track parameters,26

the �2 thus determined should behave according to an ordinary �2 distribution

26This is approximately true when scaled appropriately. Scale factor used by various
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for tracks satisfying the initial assumptions (i.e., J= and K from a real B).

Background can then be reduced by removing events that have a low proba-

bility for originating from a �2 distribution.27 A potential aw in this scheme

is that the CDF tracking system does not measure z0 of tracks with very well

known precision, and the z0 resolution depends on the luminosity, due to mul-

tiple interactions. In order to reduce dependence on the z0 measurements, one

may only consider the �2 contribution from the three track parameters that are

independent of z (curvature c, azimuthal angle �0, and impact parameter d0).

Figure 17 shows the �23d distribution and the probability that repeating the

measurement with a di�erent event would produce a larger �23d for a sample of

B
+ ! J= K

+ events found in CDF data, which contains real B+ mesons as

well as background. In selecting these events, a cut on the �t �2 < 40 is imple-

mented in order to obtain a manageable sample. Without such a preselection,

virtually every event in the dimuon trigger sample can be combined with at

least one extra track to form a vertex. Such a large sample consisting almost

entirely of background would make further analysis (speci�cally the cut opti-

mization procedure, which is computation-intensive) infeasible. Of the chan-

nels considered in this analysis, the kinematic �t of B+
c
! J= �

+
�
�
�
+ has the

highest number of degrees of freedom (10). The preselection on �2 < 40 corre-

sponds to a probability cut of P (40j10) > 1:7�10�5 on the B+
c
! J= �

+
�
�
�
+

events. Figure 18 is the same set of distributions for �22d. If these values origi-

nate from a genuine �2 distribution, the probability pro�le will be at. Cutting

authors is typically 1:5 - 2:5 for Run Ib; 2:0 is the value chosen for this analysis. The scale

factor for Run Ia is taken to be 1:4.
27The con�dence level is determined by integrating the �2 distribution (with a given

number of degrees of freedom) from 0 to the measured �
2 and subtracting from 1. The

interpretation of this \�2 probability" is that it represents the probability that a random

repeat of the experiment would observe a greater value of �2, assuming the model is correct.
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Figure 17: (a) �23d distribution for B+ ! J= K
+ candidate events found

in the data, including background. The number of degrees of freedom for a

kinematic �t to these events is 6. (b) �2 probability distribution for the same

set of events. The �rst bin is cropped and extends to 2812 events.
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Figure 18: (a) �22d distribution for B+ ! J= K
+ candidate events found

in the data, including background. The number of degrees of freedom for a

kinematic �t to these events is 3. (b) �2 probability distribution for the same

set of events. The �rst bin is cropped and extends to 2480 events.
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Figure 19: (a) Sideband-subtracted �
2
2d distribution (with error bars) for

B
+ ! J= K

+ data events compared to the Monte Carlo (dashed). The

number of degrees of freedom for a kinematic �t to these events is 3. (b) �2

probability distribution for the same set of events. Histograms are normalized

to equal area for shape comparison.

on prob(�2jndof ) > 1% will then only eliminate 1% of the real events, while

eliminating a much higher fraction of the background. The background events

do not, in general, satisfy the constraints. The �2 from �ts to a vertex con-

taining tracks from combinatoric background will be larger than that of a B

vertex. A fraction of the large peak at low probability also contains real B

mesons with mismeasured track parameters and underestimated errors. By

cutting on the 2-dimensional �2, one hopes that the eÆciency for retaining

these latter type of events is improved by reducing the dependence on the z

measurements.
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The slope of the �22d probability distribution, which is more visible

in the high-statistics Monte Carlo sample (compared to sideband-subtracted

B
+ ! J= K

+ data events) shown in Figure 19, merits further consideration.

Omitting the peak at small probability, a linear �t to the Monte Carlo distri-

bution gives a slope of (26 � 9)% per unit probability. The smaller statistics

of the data are consistent, within errors, with zero slope. The �22d, as cal-

culated above, does not strictly follow a true �2 distribution. The invariant

mass constraint necessarily incorporates the z component of the track mo-

menta (otherwise the constraint would apply to the transverse mass only).

Thus, there will be a residual dependence of the transverse track parameters

on the z0 and the polar angle cot(�) measurements. The result is that, for

those events where the opening angle between the muons occurs primarily in

� rather than in �, the �22d per degree of freedom will be decreased relative

to the corresponding �23d per degree of freedom. The probability distribution

for 2-d �
2 using a 3-d constraint behaves as a �2 with ndof = 3 � �, where

� 0:03.28 The �23d probability distribution in Figure 20 for the same Monte

Carlo sample exhibits a zero slope, within statistical uncertainties, because

the dimensionality of the constraints is commensurate with that of the track

residuals.

4.3 Track Quality Cut

For proper reconstruction of the B decay vertices, the track parameters must

be measured with high precision to reduce combinations of random tracks pro-

28The �
2 probability function can be generalized for non-integer values of the

number of degrees of freedom using the incomplete gamma function: P (�2j�) =

1
�(�=2)

R
1

�2=2
exp�t t�=2�1dt.
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Figure 20: Figure (a) shows the �23d distribution for B+ ! J= K
+ events

simulated by Monte Carlo. The number of degrees of freedom for a kinematic

�t to these events is 6. Figure (b) is the �2 probability distribution for the

same set of events.
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duced in association with a prompt29 J= from producing a fake B. Figure 21

represents the displacement of decay vertices30 of a sample of J= events from

CDF data as a function of the number of SVX hits required on each muon

leg. All of these histograms show a contribution from prompt J= and from

combinatorial background. Both background components are symmetric in

Lxy with clearly worsening resolution as the SVX requirements are loosened.

Only the histogram for both legs with � 3 SVX hits shows an identi�able

positive-lifetime tail. Therefore, all tracks considered as decay products of a

B will be required to have 3 or more hits in the SVX.

4.4 J= Selection

In addition to the cuts on muon SVX hits and 2-dimensional �2 probability

already considered, J= events considered for further analysis are selected by

requiring the reconstructed invariant mass (before constraints) to be within

50 MeV (3 standard deviations) of the PDG value: jM(�+��) � 3096:87j <
50 MeV. [7, p. 46] At the average instantaneous luminosity during Run Ib,

the number of reconstructed interaction vertices in each event is Poisson-

distributed with a mean of � 2:5. To avoid combining muons from di�erent

primary vertices, there is an additional cut requiring the z0 measurements to

lie within 5 cm of each other: jz�10 � z
�2

0 j < 5 cm: Figure 22 shows the mass

distribution of J= candidates. There are 193051� 807 (stat) events from a

29i.e., not coming from a long-lived parent, but produced at the primary vertex
30The measured displacement in the transverse plane is referred to at CDF as Lxy. This

can be converted into a \proper lifetime" c� by dividing by the velocity: c� = Lxy
M(B)

PT (B)
.

Both quantities are signed according to the dot product of the displacement and the mo-

mentum so that displaced vertices resulting from the decay of a particle have positive Lxy

and c� .
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Figure 21: Lxy distributions for J= events. (a) At least 3 SVX hits on each

muon leg. (b) 3 or more SVX hits on one muon leg, with the other leg

having < 3 SVX hits. (c) Fewer than 3 SVX hits on both muon legs. Note

distributions are plotted on a logarithmic scale, so positive lifetime component

visible in (a) has a linearly decreasing Lxy pro�le.
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�t to the peak. The mass resolution is determined by a �t to the peak and

gives �M (J= ) = 16 MeV. The contribution of background to the peak region

(�3 �) is found from a �t to the sidebands to be 12%.

4.5 Selection of B+ and Bc mesons

After preselecting a sample of J= events that pass the desired selection crite-

ria, additional tracks are combined with the J= to form B meson candidates.

For the three-track vertices (B+
c
! J= �

+ and B
+ ! J= K

+), individual

tracks in each event that pass the SVX quality cut and a minimal PT cut

(PT > 1 GeV)31 are combined one at a time with the J= via a kinematic

�t with the following constraints: the two muons are �xed to the J= mass,

all three tracks are forced to come from the same secondary vertex, and the

combined PB

T
vector must point back to the primary vertex. Of those combi-

nations that pass the �2 probability cut, the combination with the best �22d is

selected. Multiple B mesons in a single event would be exceedingly rare (by

a factor of � 10�3 relative to single B production), and are not considered.

At this stage, the principal source of background will be unassociated tracks

that pass close to a J= vertex in the transverse plane and fake the B decay

signature.

In the B+
c
! J= �

+
�
�
�
+ case, all combinations of three tracks that

pass the SVX and PT > 1 GeV cuts are considered. The kinematic �t requires

both muons and all three added tracks to come from the same secondary

vertex, with the combined PT vector pointing back to the primary, and the

31The momentum distribution of unassociated tracks is sharply peaked at 0 and falls o�

rapidly. Secondary particles from B decay are expected to carry a signi�cant fraction of

the B PT . We shall later require a more stringent cut on the track momentum for the �nal

event selection.
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Figure 22: Invariant mass distribution of J= events. A simultaneous �t to

the peak and sideband regions indicates 193051�807 events in the peak (taken
to be �3 �), with a background contribution of 12%.
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J= mass constraint as above. The combination in each event with the best

�
2
2d that passes the probability cut is chosen for further analysis.

4.5.1 Optimization of Final Event Selection

In order to select events with a minimum of experimenter bias, it is useful to

�rst outline the analysis procedure before examining the data. This eliminates

the possibility of selecting cuts designed to speci�cally emphasize a peak in a

given spectrum.

The optimization of cuts for the �nal event selection proceeds as follows:

(1) Identify a set of kinematic and geometric quantities that can be

used to discriminate data from background sources.

(2) Choose statistical quantities to maximize or minimize for a given

selection of cuts.

(3) Use a large sideband region in the mass distribution to estimate

background contribution.

(4) Use the measured � � B ratio from the Bc ! J= �� analysis to

estimate expected signal size of B+
c
! J= �

+.

(5) Generate Bc Monte Carlo events with a nominal mass of 6:2 GeV

and lifetime from trilepton analysis, � = 0:46 ps. Normalize Monte

Carlo events to the signal size predicted from step 4.

(6) Iterate over all combinations of cuts to �nd the optimum set for

the �gure of merit from step 2.

(7) Apply selected optimum set of cuts to J= events.
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4.5.2 Choice of Cut Variables

To determine the kinematic quantities to be considered as cut variables, one

can appeal to those physical properties that distinguish a real B signal from

background. The long lifetime of B+ and Bc mesons suggest that the lifetime,

c� , would be an obvious discriminating variable.32 Figure 23 shows the c�

distribution for B+
c
! J= �

+ candidate events from the data and for Monte

Carlo events generated with the nominal Bc lifetime 0:46 ps and with the

variation between the �1� (�0:16; +0:18 ps) uncertainties. Because no cuts
other than the basic track quality and goodness-of-�t have yet been applied,

the data sample is expected to be dominated by background. For this mini-

mal choice of cuts, the Monte Carlo lifetime distributions are almost entirely

uncorrelated with the choice of fragmentation functions.

The momentum spectrum of secondaries from heavy particles is signif-

icantly harder than that of random tracks not associated with the B. This

di�erence can be observed in Figure 24, which compares the distribution of

pion PT (P �

T
) in the tentatively-identi�ed B+

c
! J= �

+ data sample to that

of the Monte Carlo. The Monte Carlo P �

T
spectra peak near 1:5 GeV while the

data, which consists almost exclusively of background, displays a rapid mono-

tonic decline from P
�

T
= 0. The e�ects of the lifetime variation and choice of

fragmentation function on the Monte Carlo sample are compared in this plot as

32Strictly speaking, the mean lifetime is a �xed, measurable quantity intrinsic to each

particle species. The actual decay distance of an individual particle is treated here as a

variable quantity, distributed according to an exponential decay, with the decay constant

�xed to the species lifetime. When used as a selection criterion, the quantity c� hereafter

refers to the kinematic variable corresponding to the transverse decay length (the \proper

lifetime"), not the species lifetime.
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Figure 23: Distribution of c� for B+
c
! J= �

+ candidate events. (a) Solid

histogram is c� for B+
c
! J= �

+ candidate events that pass only track quality

and �2 cuts. Dashed and dotted histograms are Monte Carlo generated B+
c
!

J= �
+ events with the nominal lifetime, and �1 standard deviation in c� that

pass the same set of cuts. (b) Solid is the same c� histogram fromB
+
c
! J= �

+

data events. Dashed and dotted histograms show variation of Monte Carlo

with choice of fragmentation function. All histograms are normalized to the

same area and plotted on a logarithmic vertical scale for shape comparison.
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well. The pion momentum is independent of the lifetime assumption and the

fragmentation parameterization within the Monte Carlo statistics used here.

Likewise, the transverse momentum of the B itself, PB

T
, should be dis-

tributed over a broader momentum range than tracks combined with prompt

J= 's.33 Figure 25 illustrates the utility of this cut variable by comparing the

B
+
c
! J= �

+ sample to the Monte Carlo PB

T
distributions. The small varia-

tion of the Monte Carlo samples indicates that with this minimal cut selection,

P
B

T
has negligible correlation with either the assumed Bc lifetime or the choice

of fragmentation function.

An additional possibility for removing random track combinations from

the sample can be deduced from the geometry of these events. Particles that

are not the result of a long-lived B decay will generally originate from either

direct production at the primary vertex or from the strong or electromagnetic

decay of a very short-lived particle produced at the primary vertex. The

reconstructed tracks of these particles, therefore, will have a small impact

parameter with respect to the primary vertex. Secondaries from B decay

are produced at the secondary vertex and can not typically be extrapolated

back to the primary vertex; these tracks will have a much broader distribution

in d0. Figure 26 illustrates the distribution of the impact parameter from

these sources. This reasoning suggests that a cut on the impact parameter

signi�cance, d0

�(d0)
, might be an e�ective tool for reducing background. The

33The PB
T

cut may not be eÆcient for removing combinations of unassociated tracks and

a J= that does come from B decay, due to the signi�cant momentum contribution from

the J= itself. Such events will not produce a peak in the M(B) spectrum, however. In

any case, it is hoped that the choice of the best �2 combination will reduce such a source

of background.
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Figure 24: Distribution of P �

T
for B+

c
! J= �

+ candidate events. (a) Solid

histogram is P �

T
for B+

c
! J= �

+ candidate events that pass only track quality

and �2 cuts. Dashed and dotted histograms are Monte Carlo generated B+
c
!

J= �
+ events with the nominal lifetime, and �1 standard deviation in c� that

pass the same set of cuts. (b) Solid is same P �

T
histogram from B

+
c
! J= �

+

data events. Dashed and dotted histograms show variation of Monte Carlo

with choice of fragmentation function. All histograms are normalized to the

same area for comparison of shape.
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Figure 25: Distribution of PB

T
for B+

c
! J= �

+ candidate events. (a) Solid

histogram is PB

T
for B+

c
! J= �

+ candidate events that pass only track

quality and �2 cuts. Dashed and dotted histograms are Monte Carlo generated

B
+
c
! J= �

+ events with the nominal lifetime, and �1 standard deviation

in c� that pass the same set of cuts. (b) Solid is same PB

T
histogram from

B
+
c
! J= �

+ data events. Dashed and dotted histograms show variation

of Monte Carlo with choice of fragmentation function. All histograms are

normalized to the same area for comparison of shape.
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Figure 26: Illustration of impact parameter for (a) prompt tracks and (b)

tracks from B decay. For prompt tracks that pass near a displaced secondary

vertex formed by a J= , the reconstructed d0 will be small. For tracks that

come from B decay, extrapolation back to the primary vertex results in a d0

signi�cantly di�erent from zero.

eÆcacy of such a cut is somewhat diluted by the kinematic �t,34 and also by

the requirement of large track momentum.35 Figure 27 shows the distributions

of the impact parameter signi�cance for the B+
c
! J= �

+ data sample and

Monte Carlo with c� and fragmentation function variations. For smaller Bc

lifetime, the secondary vertex lies closer to the primary, and the reconstructed

d0 is smaller (the distribution is more sharply peaked at 0), making the impact

34The vertex constraint can pull random tracks into the secondary vertex and therefore

broaden d0, although at the expense of a larger �2.
35In the limit of large momentum, this track will carry most of the B PT , and will point

back to the primary vertex; its small curvature (1=PT ) will then give a small d0.
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Figure 27: Distribution of pion impact parameter for B+
c
! J= �

+ candidate

events. (a) Solid histogram is pion impact parameter signi�cance for B+
c
!

J= �
+ candidate events that pass only track quality and �

2 cuts. Dashed

and dotted histograms are Monte Carlo generated B+
c
! J= �

+ events with

the nominal lifetime, and �1 standard deviation in c� that pass the same

set of cuts. (b) Solid is the same histogram of impact parameter signi�cance

from B
+
c
! J= �

+ data events. Dashed and dotted histograms show the

variation of Monte Carlo events with the choice of fragmentation function. All

histograms are normalized to the same area for comparison of shape.
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parameter signi�cance cut somewhat less e�ective. No discernible correlation

with the fragmentation functions is observed with this minimal set of cuts.

4.5.3 Choice of Statistical Measures

The next step in the optimization procedure is to determine a statistical quan-

tity to serve as a measure of the desirability of a particular set of cuts. For

B
+ ! J= K

+there is a known and well-studied excess of signal events over

background, and one may unambiguously choose to maximize the signal signif-

icance,
q

S2

S+B
to determine the \best" set of cuts. The background estimate,

B, is determined by choosing a sideband region of �xed width in the J= K+

invariant mass distribution and interpolating into the mass peak region.36 The

distribution away from any real particle or resonance is expected to be approx-

imately at (or monotonically decreasing according to some �t function, here

taken to be linear). The signal size, S, can be obtained from a Gaussian �t to

the peak region.

For the B+
c
! J= �

+ channel, we expect a small signal (� 10�3�NB+)

and a background level of comparable size. It is not known in advance whether

the signal is statistically signi�cant or not. For small signal searches, the mean

value theorem no longer holds37 for the signal size, and the background be-

comes the dominant term in the uncertainty. Therefore,
q

S2

B
is a more rational

choice for the signal signi�cance. In fact, the number of background events

may be so small that it no longer satis�es the mean value theorem either,

36The peak region for B+ ! J= K
+ is de�ned as jMfit � 5:2789 GeVj < 50 MeV,

corresponding to �3 standard deviations. The sidebands are de�ned as 200 MeV < jMfit�

5:2789 GeVj < 400 MeV.
37The number of events corresponds more closely to Poisson, rather than Gaussian, statis-

tics. Hence the uncertainty is not proportional to
p
N .
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making a generalized form of
q

S2

S+B
that allows for a background contribution

distributed according to Poisson statistics desirable. One way to accomplish

this is by relating the cumulative Poisson probability to the cumulative Gaus-

sian to obtain a quantity that represents how many \standard deviations"

a particular Poisson-distributed signal lies above the measured background.

Thus, if �B is the mean background determined from a �t to the sideband

regions and nS is the number of signal events in a prede�ned peak region, the

equation:

1

�(�B + 2nS + 1)

Z 1

n=�B

exp�n n�B+2nS dn =
Z
xS

x=�1

1p
2�

exp�
x
2

2 dx; (4.2)

is solved for xS , which is the equivalent number of standard deviations away

from the Poisson mean �B+nS that the signal lies. Note that if for a particular

measurement the \signal" uctuates below the background level, xS may take

on a negative value. In the limit lim�B!1; xS = nSp
nS+�B

the identi�cation

with the
q

S2

S+B
statistic becomes exact.

4.5.4 Optimized Selection of B+ ! J= K
+ Events

As an initial test of the cut optimization procedure, a �nal sample of B+ !
J= K

+ events is obtained and is used as a normalization in the measurement

of the Bc branching fractions. Due to the large signal size and high purity of the

B
+ ! J= K

+ sample, an impact parameter cut is not used in selecting these

events. However, this cut is considered for the Bc selection where reducing the

background is of primary importance. To select the optimal set of cuts for the

B
+ ! J= K

+ events, I choose a range of acceptable cut values for PB

T
(5 to

15 GeV), PK

T
(1 to 6 GeV) and c� (0 to 200 �m)38 and subdivide each range

38The choice of a lower limit on PB
T
of 5 GeV is made to avoid the region of non-factorizable

fragmentation at low PT . If PB
T

is allowed to be less than the order of the b-quark mass,
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into ten equally spaced cut values. For each of these 103 combinations of cuts,

the signal signi�cance,
q

S2

S+B
, is calculated using a Gaussian �t to the B+ mass

peak for S, and a linear �t to the sideband regions for B. The set of cuts that

maximizes this quantity determines the �nal selection of B+ ! J= K
+ events.

This procedure would clearly be biased if the intent were to discover the B+ or

to measure its cross section. Since the B+ ! J= K
+ events are used only as

a normalization for the Bc decay channels, optimization of the B
+ ! J= K

+

signal does not introduce a bias to the Bc search. Figures 28, 29, and 30

represent slices through this 3-dimensional space of cut variables. The height

of the bins in these �gures corresponds to the value of
q

S2

S+B
for a given set of

cuts. The x- and y-axes are two of the kinematic cut values (with the third

cut held to an indicated constant value). There are, of course, 3 � 101 = 30

such plots one could make to give a complete depiction of the correlations

between these three cut variables. The three plots shown correspond to the

three orthogonal slices through the optimal set of cuts.

The main objective in examining these plots is to ensure that the op-

timization procedure outlined above does not give rise to any pathological

behavior before it is applied to the B+
c
! J= �

+ channel. In a sample con-

taining a statistically signi�cant signal such as B+ ! J= K
+, the variation in

the optimized quantity (
q

S2

S+B
) should be a smooth function of the cut vari-

ables. It should not be subject to large statistical uctuations. By examining

the shape of these 2-dimensional histograms, it is clear that the signal sig-

ni�cance is indeed a well-behaved function of the cut variables. The optimal

the fragmentation function used in the Monte Carlo becomes invalid and the eÆciency

calculation is rendered meaningless.
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Figure 28: Signal signi�cance
q

S2

S+B
for B+ ! J= K

+ events as a function of

P
B

T
and c� cuts. Hatched bin corresponds to optimized set of cuts. Shaded

bands represent � 2 standard deviation variations in
q

S2

S+B
. In this plot, PK

T

is held constant at the optimized value: PK

T
> 1:5 GeV.
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Figure 29: Signal signi�cance
q

S2

S+B
for B+ ! J= K

+ events as a function of

P
K

T
and c� cuts. Hatched bin corresponds to optimized set of cuts. Shaded

bands represent � 2 standard deviation variations in
q

S2

S+B
. In this plot, PB

T

is held constant at the optimized value: PB

T
> 5:0 GeV.

81



Figure 30: Signal signi�cance
q

S2

S+B
for B+ ! J= K

+ events as a function of

P
B

T
and PK

T
cuts. Hatched bin corresponds to optimized set of cuts. Shaded

bands represent � 2 standard deviation variations in
q

S2

S+B
. In this plot, c�

is held constant at the optimized value: c� > 140 �m.
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Figure 31: Invariant mass distribution of B+ ! J= K
+ events selected with

the optimized cuts. The arrows indicate the width of the peak region. N(B+)

and N(bg) are the number of signal events and background events in the peak

region, respectively.

choice determined by this method is:

P
K

T
> 1:5 GeV

P
B

T
> 5:0 GeV (4.3)

c� > 140 �m

The statistical signi�cance for this choice of cuts is
q

S2

S+B
= 19:6 and a Gaus-

sian �t to the mass peak plus a linear background gives 450�23 B+ ! J= K
+

events between M(J= K+) = 5:228 and 5:330 GeV. The mass resolution is

found to be 13:4� 0:7 MeV and the background is 83� 18 events in the peak
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NK �K Nbg

450� 23 (14:18� 0:13) % 83� 18

Table 7: Number of B+ ! J= K
+ events (NK) determined from a �t to

the invariant mass distribution, Monte Carlo eÆciency (�K), and estimated

background (Nbg) in peak region. Errors are statistical only. Cuts used are

those listed in Equation 4.3.

region. Figure 31 shows the invariant mass distribution of the B+ ! J= K
+

events selected with the optimized cuts. These numbers along with the eÆ-

ciency from the Monte Carlo sample are used later in calculating the ��B ratios

for the Bc hadronic decay modes. Table 7 summarizes these results. The selec-

tion of loose momentum cuts by the optimization procedure indicates that the

B lifetime is the most e�ective discriminator between background and data.

After applying an optimized c� cut, loose momentum cuts simply maximize

the acceptance.

Given this relatively clean sample of B+ ! J= K
+ events, it is pos-

sible to cross-check the Monte Carlo distributions to ensure that they can

be relied upon for analyzing the yet-unknown Bc decays. Figures 32, 33,

34, and 35 compare the Monte Carlo distributions for c� , PB

T
, PK

T
, and kaon

impact parameter signi�cance with the same distributions for the events in

the B+ ! J= K
+ mass peak, minus the background contributions interpo-

lated from the sideband regions. The error bars in these histograms reect

the statistics in the data only. The shape of all of the distributions for the

sideband-subtracted B
+ ! J= K

+ events are in good agreement with the

Monte Carlo distributions.
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Figure 32: c� distribution of B+ ! J= K
+ events selected with the optimized

cuts (except for c�). Error bars on the data are from statistics only. Dashed

histogram represents Monte Carlo events passing the same cuts. The arrow

indicates optimized c� cut selection. Histograms normalized to same area for

shape comparison.
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Figure 33: PB

T
distribution of B+ ! J= K

+ events selected with the opti-

mized cuts (except for PB

T
). Error bars are from data statistics only. Dashed

histogram represents Monte Carlo events passing the same cuts. The arrow

indicates optimized PB

T
cut selection. Histograms normalized to same area for

shape comparison.
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Figure 34: PK

T
distribution of B+ ! J= K

+ events selected with the opti-

mized cuts (except for PK

T
). Error bars are from data statistics only. Dashed

histogram represents Monte Carlo events passing the same cuts. The arrow

indicates optimized PK

T
cut selection. Histograms normalized to same area for

shape comparison.
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Figure 35: d0 signi�cance distribution of B+ ! J= K
+ events selected with

the optimized cuts. Error bars are from data statistics only. Dashed histogram

represents Monte Carlo events passing the same cuts. Arrow at 0 indicates

that no impact parameter cut was used in selecting these events. Histograms

normalized to same area for shape comparison.
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4.5.5 Background Estimation For Bc Decay Modes

The width of the Bc mass distribution can be estimated by scaling the B+

mass resolution by the ratio of the meson masses:39

�(MBc) ' �(MB+)
M(Bc)

M(B+)
= 13:4 MeV

6:2 GeV

5:28 GeV
= 16 MeV: (4.4)

By choosing a mass window of �3� (�50 MeV) around the nominal Bc mass

(taken to be 6:2 GeV from the theoretical predictions), the remainder of the

mass spectrum between 5:6 and 6:8 GeV40 can be �t to a parametric form (a

straight line or constant, depending on statistics) and interpolated into the

mass peak window to estimate the background. Even if the true Bc mass lies

in a di�erent region of the spectrum, by choosing a wide enough sideband

region (> 50 standard deviations) the background events will dominate what-

ever signal may be present in the sidebands. The � � B limit is determined

as a function of the assumed Bc mass by counting the events in each mass

window, interpolating the background from the sidebands to each window,

and calculating an upper limit based on these numbers. The selection cuts

used in this procedure are those optimized for Monte Carlo events generated

with the nominal mass valueM(Bc) = 6:2 GeV. The detection eÆciency from

Monte Carlo is similarly determined by generating a given number of events

at the center of each mass window. The eÆciency is de�ned as the ratio of

the number of events that pass the cuts to the number of events that pass the

trigger requirements alone.

39In principle, the Bc mass width could be obtained from Monte Carlo. However, the

Monte Carlo does not reproduce the detector resolutions with any great degree of accuracy.
40These limits on the range of the Bc mass are chosen to be compatible with the full range

of theoretical predictions and with the B+
c
! J= �

+
�� measurement by CDF.
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4.5.6 Estimation of B+
c
! J= �

+ Signal

In choosing the optimal cuts for selecting B+
c
! J= �

+ events, the data is used

only for estimating background, which cannot be obtained by Monte Carlo

alone. The signal events and eÆciency are determined by applying the cuts

to a \signal" comprised of Monte Carlo events in order to avoid selecting cuts

based solely on uctuations in the data. An estimate of the expected signal size

is necessary to normalize the Monte Carlo events. The cuts must be applicable

to a small sample of real events, yet must exhibit the smooth variations that

come from a large sample of generated events. The only data available on the

production cross section of Bc is the � �B ratio from the trilepton analysis. One

may obtain an estimate of cross section times branching ratio for B+
c
! J= �

+

by scaling this value with a ratio of hadronic-to-leptonic � � B from ordinary

B
+ decays:

�Bc �B(B+
c
! J= �

+) ' �B+ �B(B+ ! D
�
(2007)0�+)

�Bc � B(B+
c
! J= �

+
��)

�B+ � B(B+ ! D
�
(2007)0�+��)

:

(4.5)

The D
�
(2007)0 decay modes are chosen because the D

�
(2007)0 is a vector

meson, like the J= , so that the spin-dependent components of the decay

matrix elements are comparable.

Using the PDG values [7, p. 40] for these decay fractions41 and the � �B
ratio of B+

c
! J= �

+
�� from CDF [13] (

��B(B+
c !J= �+��)

��B(B+!J= K+)
= 0:132+0:041�0:037(stat:)�

0:031(syst:)+0:032�0:020(lifetime)), Equation 4.5 is simpli�ed to:

�Bc � B(B+
c
! J= �

+) ' �B+ � B(B+ ! J= K
+) � (1:15� 0:57)� 10�2: (4.6)

The cross section times branching ratio for each decay mode is related to the

41�(D
�

(2007)0�+)=�total = 0:0046� 0:0004. �(D
�

(2007)0�+��)=�total = 0:053� 0:008.
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number of observed events via the relations:

N(J= K+) = �K � �B+ � B(B+ ! J= K
+) �

Z
Ldt (4.7)

and

N(J= �+) = �� � �Bc � B(B+
c
! J= �

+) �
Z
Ldt: (4.8)

The integrated luminosity is imprecisely known, but is common to all decay

channels, so it can be factored out. The quantity � � B(J= K
+) is estimated

from Equation 4.7 using the results of Table 7 to obtain:

�B+ � B(B+ ! J= K
+) �

Z
Ldt ' (3:17� 0:16)� 103 events: (4.9)

Substituting into Equation 4.6 gives the estimated number of B+
c
! J= �

+

to which the Monte Carlo sample will be scaled:

N(J= �+)

��
' 36:3� 18:0 events: (4.10)

4.6 Optimized Selection of B+
c ! J= �+ Events

In the same way that cuts are chosen to maximize the
q

S2

S+B
signi�cance of

the B+ ! J= K
+ events, the generalized statistic xS is maximized over a

set of cuts. The signal events used in calculating xS are taken from Monte

Carlo with the expected normalization of Equation 4.10 and the background

is measured by averaging the number of events in a wide mass window around

the nominal Bc mass. The limits of the cut variation are the same as those for

the B+ ! J= K
+ optimization, with the following exceptions:

(1) The minimum P
�

T
considered is 1:5 GeV. Daughters from the

heavier Bc decay are expected to have a harder momentum dis-

tribution than those from B
+ decay. The optimized P

K

T
cut for
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B
+ ! J= K

+ is chosen as the minimum of the pion PT for Bc

decay.

(2) The impact parameter signi�cance cut of the pion is allowed to vary

from 0 to 10 standard deviations. While this cut was not used in

selecting B+ ! J= K
+ events because of the known existence of a

large signal, it may be useful in reducing combinatoric background

in searching for B+
c
! J= �

+events.

There are now six orthogonal 2-dimensional slices that can be made

through the 4-dimensional space of cut variables. Of the 6�102 = 600 possible

histograms that completely specify the variation of xS with all four cut vari-

ables, Figures 36 and 37 display those six planes that mutually pass through

the set of cuts chosen to maximize xS. The set of cuts that optimizes xS for

the B+
c
! J= �

+ channel is:

P
�

T
> 2:5 GeV

P
B

T
> 7:0 GeV (4.11)

c� > 120 �m

pion d0 sig: > 3�

The value of xS for this set of cuts is 1:54 (�). This corresponds to a scaled

Monte Carlo size of 3:56 events, with a background contribution in the Bc mass

peak region of 2:73 events. Figure 38 displays the B+
c
! J= �

+ data events

(used to calculate background), with the scaled Monte Carlo distribution for

the optimized xS cuts. Table 8 summarizes the size of the data sample after

optimization and the eÆciency calculated with the Monte Carlo. The eÆciency

is used in the � � B ratio determination.
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Figure 36: Statistical signi�cance xS for B+
c
! J= �

+ events as a function

of cut variables. Hatched bin corresponds to optimized set of cuts. Shaded

bands represent � 0:3 standard deviation variations in xS. Cut variables not

represented by each distribution are �xed to optimal values. Figure (a) shows

variation of xS with choices of P �

T
and P

B

T
cuts. Figure (b) shows variation

with P �

T
and pion d0 signi�cance. Figure (c) show variation with P �

T
and c�

cuts.

N� ��

32 (total) (3:13� 0:09) %

Table 8: Total number of B+
c
! J= �

+ candidate events in the mass range 5:6

{ 6:8 GeV and eÆciency determined with Monte Carlo. Errors are statistical

only. Cuts used are those listed in Equation 4.11.
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Figure 37: Statistical signi�cance xS for B+
c
! J= �

+ events as a function

of cut variables. Hatched bin corresponds to optimized set of cuts. Shaded

bands represent � 0:3 standard deviation variations in xS. Cut variables not

represented by each distribution are �xed to optimal values. Figure (a) shows

variation of xS with choices of c� and pion d0 signi�cance cuts. Figure (b)

shows variation with PB

T
and c� cuts. Figure (c) show variation with PB

T
and

pion d0 signi�cance cuts.
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Figure 38: Mass distribution of B+
c
! J= �

+ candidate events passing the

�nal selection of Equation 4.11. Monte Carlo sample normalized to the ex-

pected signal size is overlaid. Statistical signi�cance xS is 1:54 for this set of

cuts.
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Examination of the xS distributions indicates that both the proper

lifetime and the impact parameter signi�cance cuts are the most e�ective at

maximizing the signal signi�cance. The distributions are relatively at over a

large range in PB

T
. Use of the high-statistics Monte Carlo sample normalized to

a small number of events together with the xS signi�cance, which was designed

to provide a consistent generalization of
q

S2

S+B
valid over a wider range of

sample sizes, make the optimization procedure insensitive to uctuations in

the data. Figures 39 and 40 display the distributions of the relevant kinematic

and geometric variables of the data using the �nal event selection requirements.

The lack of a signi�cant excess of events in any region in Figure 38 yields only

an upper limit on the production cross section of the Bc times the branching

ratio of the Bc to J= �.

4.7 Selection of B+
c ! J= �+���+ Events

To search for the decay mode B+
c
! J= �

+
�
�
�
+, no additional optimization

of the cuts is necessary. Using the PDG value: [7, p.40]

�(B+ ! D
�
(2007)0�+���+)

�(B+ ! D
�
(2007)0�+)

=
(9:4� 2:6)� 10�3

(4:6� 0:4)� 10�3
(4.12)

and Equations 4.5 and 4.10, one obtains an estimate of

N(J= �+���+)

�3�
' 74:1� 40:4 events: (4.13)

This is roughly twice the number of scaled B
+
c
! J= �

+ events obtained

in the xS optimization for the single-pion case. Despite the larger expected

branching fraction, the cut eÆciencies are more than a factor of two smaller

than the corresponding single-pion eÆciencies due to the larger fraction of

combinatoric background. If no excess is observed in the B+
c
! J= �

+ chan-

nel, one should not expect to observe any B+
c
! J= �

+
�
�
�
+ events. There
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Figure 39: (a) P �

T
distribution for B+

c
! J= �

+ events passing optimized

cuts. (b) PB

T
distribution for same events. Dashed histograms are Monte Carlo

B
+
c
! J= �

+ events passing the same cuts. Arrows indicate cut selection.
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Figure 40: (a) c� distribution for B+
c
! J= �

+ events passing optimized cuts.

(b) pion d0 signi�cance distribution for same events. Dashed histograms are

Monte Carlo B+
c
! J= �

+ events passing the same cuts. The arrows indicate

cut selection.
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are also more pragmatic reasons for not optimizing the cuts for this channel.

The computation time necessary for sampling all of the possible combinations

of cuts grows exponentially with the number of cut variables. To optimize

the three-pion channel properly, one should allow for di�erent, looser cuts on

the second and third pions. Instead of four possible cut variables, one could

easily construct eight or more for the three-pion case. Even if one reduced the

granularity of the sampling procedure, the methodical nature of the FORTRAN

routines that access the data on disk and perform the necessary statistical

calculations translates into weeks of computer time for such a case. Addition-

ally, it is desirable to use similar cuts across the decay channels for internal

consistency in the analysis.

The cut selection used for this sample is:

at least one � with P �

T
> 2:5 GeV

P
B

T
> 7:0 GeV (4.14)

c� > 120 �m

at least one � with d0 sig: > 3�

The invariant mass distribution for B+
c
! J= �

+
�
�
�
+ events selected with

this set of cuts is shown in Figure 41. A Monte Carlo sample of B+
c
!

J= �
+
�
�
�
+ events normalized to the expected value given in Equation 4.13

is overlaid onto this plot. The total number of events in the data spectrum

is 41, and the normalized Monte Carlo sample contains 1:14 � 0:62 events.42

Table 9 summarizes the total number of B+
c
! J= �

+
�
�
�
+ events and the

detection eÆciency from Monte Carlo, which are used in the determination of

� � B for this decay channel. As with the B+
c
! J= �

+ channel, there is no

42The uncertainty on this number is due to the large uncertainty on the normalization

factor, not due to Monte Carlo statistics.
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Figure 41: Invariant mass distribution of B+
c
! J= �

+
�
�
�
+ events selected

with cuts optimized for B+
c
! J= �

+. Monte Carlo sample normalized to the

expected signal size is overlaid.
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statistically signi�cant excess of events over background in any region of the

invariant mass spectrum. Therefore, an upper limit will be set on the � � B for

B
+
c
! J= �

+
�
�
�
+.

N3� �3�

41 (total) (2:38� 0:10) %

Table 9: Total number of B+
c
! J= �

+
�
�
�
+ candidate events in the mass

range 5:6 { 6:8 GeV and detection eÆciency from Monte Carlo. Errors are

statistical only. Cuts used are those listed in Equation 4.14.

Figure 42 compares the proper lifetime and P
B

T
distributions of the

data with the Monte Carlo calculations. The c� plot with the impact pa-

rameter signi�cance cut applied clearly demonstrates the correlated nature of

the impact parameter with the B lifetime. Referring to Equation 2.2, for a

pion track with PT = 1 GeV (the minimum PT considered for any track), the

resolution of the impact parameter is � 50 �m. To pass the impact param-

eter signi�cance cut, such a track would need a reconstructed d0 > 150 �m.

For pions from a real B, which are produced with momenta primarily along

the direction of the parent meson, this condition is not generally satis�able

for small decay lengths. There is no such restriction on the background tracks

combined with a prompt J= . For a 3� cut on the impact parameter, it is clear

that a c� cut of � 100 �m or greater is necessary to reduce background. The

long positive lifetime distribution of the data that survive the d0 cut indicates

that some of the events are from real B mesons with unassociated background

tracks passing near the decay vertex. Figure 43 compares the P �

T
and pion d0

signi�cance distributions for the highest- and lowest-momentum pions. The

similarity of the shapes of these distributions further indicates that a sizable
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Figure 42: (a) PB

T
distribution for B+

c
! J= �

+
�
�
�
+ events compared with

Monte Carlo sample. (b) c� distribution for B+
c
! J= �

+
�
�
�
+ events com-

pared with Monte Carlo sample. No impact parameter signi�cance cut was

applied to this plot. (c) c� distribution for B+
c
! J= �

+
�
�
�
+ events com-

pared with Monte Carlo sample, including d0 signi�cance cut. Solid lines are

data, dashed are Monte Carlo. All histograms are normalized to the same area

for shape comparison. Cuts used are those of 4.14 except for the cut variable

displayed. Arrows indicate cut selection.

102



Figure 43: (a) Upper plot is P �

T
distribution for highest PT pion in B

+
c
!

J= �
+
�
�
�
+events. Lower plot is the same distribution for lowest PT pion.

(b) Pion d0 Distribution for B+
c
! J= �

+
�
�
�
+ events compared with Monte

Carlo. Solid lines are data, dashed are Monte Carlo. All histograms are

normalized to the same area for shape comparison. Cuts used are those of 4.14

except for the cut variable displayed Arrows indicate cut selection (only one

of the three added tracks need pass the cut).
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fraction of other B decays contribute to these events. One more observation

about the impact parameter distributions bears further consideration. A large

fraction of each distribution shifts by � 1:0� in opposite directions, depending

on the relative PT . The pion with the highest PT shifts downward in the d0

signi�cance, whereas the pion with the least PT shifts upward. This is a purely

geometric e�ect, as illustrated by Figure 44. It can be proven under rather

general assumptions43 that the average PT for unassociated tracks which hap-

pen to fall near the secondary vertex is larger for those events with negative

d0 and smaller for positive d0. Note that the diagrams in Figure 44 are only

a representative case. For a range of d0 angles about the primary vertex, it is

possible to construct a larger PT for the positively signed impact parameter

than the negative. When integrated uniformly over all angles, however, the

negatively signed d0 has a higher average PT .

43The �rst assumption is that the displacement of the secondary vertex is much larger than

d0, which is nearly always true. The second is that the impact parameter vector is symmetric

about the primary vertex. This latter assumption is true for random tracks coming from the

primary that pass near the J= vertex, but is not true for B daughters. Hence the Monte

Carlo distributions remain invariant under selection of relative pion momentum. (i.e., the

d0 distribution of the smallest PT pion is the same as that for the largest PT pion.)
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Figure 44: Figure (a) illustrates geometric construction of momentum, given

a positive d0 and a displaced vertex that the track helix must intersect. Fig-

ure (b) constructs the momentum from a negative d0 (of the same magnitude

and opposite direction) and the same displaced vertex. The cross indicates the

position of the primary vertex. Momentum is proportional to the turning ra-

dius of the helix. Track curvatures and distance scales are greatly exaggerated

for illustrative purposes.
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Chapter 5
EÆciency Corrections and Systematic
Uncertainties

5.1 Introduction

The Monte Carlo eÆciencies calculated to this point assume nominal values for

the Bc lifetime, mass, and choice of fragmentation function. These quantities

are based on the measurement of B+
c
! J= �

+
�� and on theoretical consider-

ations. The missing neutrino momentum in the B+
c
! J= �

+
�� measurement

prohibits a precise reconstruction of the mass and lifetime of the Bc, and the

theoretical assumptions that form the basis of the hadronization scheme are

not known to any great degree of accuracy. To determine the systematic un-

certainties on the eÆciencies, the mass, lifetime, and fragmentation models are

varied. Additionally, the Monte Carlo calculations assume that the daughter

pions and kaons from B decays are stable, and that the tracking eÆciency for

detecting a pion is the same as that for a kaon. These simpli�ed assumptions

need to be examined more closely to determine their validity.

5.2 Uncertainty of Bc Mass

In calculating the nominal eÆciencies for the Bc decay channels, I have used

Monte Carlo samples with a �xed value of MBc = 6:2 GeV. The uncertainty

on the Bc mass is large, however, so it is necessary to determine upper limits

of � � B over the entire range of possible mass values. Since a separate limit is

calculated for each 100 MeV mass bin, I generate twelve Monte Carlo samples

with MBc = 5:6; :::; 6:7 GeV. An independent calculation of the eÆciency
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is performed for each of the 100 MeV bins in mass. The variation is small,

but measurable with the Monte Carlo statistics.44 For the B+
c
! J= �

+

events, the eÆciency dropped from a maximum of (3:27� 0:09)% at 5:6 GeV

to (3:02 � 0:08)% at 6:8 GeV. These results are tabulated in Table 10. For

MBc GeV ��

5:6 (3:27� 0:09) %

5:7 (3:21� 0:09) %

5:8 (3:25� 0:09) %

5:9 (3:22� 0:09) %

6:0 (3:18� 0:09) %

6:1 (3:19� 0:09) %

6:2 (3:13� 0:09) %

6:3 (3:12� 0:09) %

6:4 (3:09� 0:08) %

6:5 (3:11� 0:09) %

6:6 (3:08� 0:08) %

6:7 (3:02� 0:08) %

Table 10: EÆciency of B+
c
! J= �

+ events with optimized cuts, as a function

of the assumed Bc mass. Errors are statistical only.

the B+
c
! J= �

+
�
�
�
+ channel, the eÆciency calculated with Monte Carlo

rose as a function of the Bc mass from (1:84� 0:08)% for MBc = 5:6 GeV to

(2:53� 0:11)% at 6:8 GeV. Table 11 enumerates these results.

44The Monte Carlo samples vary in size, depending on the relative accuracy desired. All

samples contain at least 1M generated events prior to event selection.
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MBc GeV �3�

5:6 (1:84� 0:08) %

5:7 (1:88� 0:08) %

5:8 (1:91� 0:09) %

5:9 (2:12� 0:09) %

6:0 (2:24� 0:10) %

6:1 (2:28� 0:10) %

6:2 (2:38� 0:10) %

6:3 (2:49� 0:11) %

6:4 (2:47� 0:10) %

6:5 (2:46� 0:10) %

6:6 (2:50� 0:11) %

6:7 (2:53� 0:11) %

Table 11: EÆciency of B+
c
! J= �

+
�
�
�
+ events with optimized cuts, as a

function of the assumed Bc mass. Errors are statistical only.
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5.3 Uncertainty of Bc Lifetime

In the previous CDF analysis of hadronic Bc decays, [36] only theoretical

predictions for the lifetime were available. Using the lifetime measurement,

� = (0:46+0:18�0:16)� 10�12 s, [13, 7, p. 45] the input lifetime to CLEOMC is varied

between 0:30 and 0:64 ps. The variation in the eÆciencies from the nomi-

nal value is then taken to be the systematic uncertainty. Tables 12 and 13

summarize these results.

�Bc ��

0:30 ps (2:06� 0:07) %

0:46 ps (3:13� 0:09) %

0:64 ps (4:23� 0:10) %

Table 12: EÆciency of B+
c
! J= �

+ events with optimized cuts, as a function

of the assumed Bc lifetime. Errors are statistical only.

�Bc �3�

0:30 ps (1:46� 0:08) %

0:46 ps (2:38� 0:10) %

0:64 ps (3:26� 0:11) %

Table 13: EÆciency of B+
c
! J= �

+ events with optimized cuts, as a function

of the assumed Bc lifetime. Errors are statistical only.

The eÆciency increases approximately exponentially with lifetime, as

expected.45 Selecting the largest variation, the systematic uncertainty on ��

is 1:10% and the systematic uncertainty on �3� is 0:92%.

45As the lifetime increases, the integral over the events with c� > 120�m increases expo-

nentially as well.
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5.4 Uncertainty of Fragmentation

In the absence of any experimental motivation for preferring one fragmentation

scheme over another, or one set of parameters over another, I vary the default

fragmentation function of Bc (Equation 3.1) by setting the c-quark mass 1

standard deviation below its nominal value. This is equivalent to varying the

input parameter R from its default value of 0:25 to 0:196. I also generate

another Monte Carlo sample with the Peterson fragmentation function. This

function is generally used for fragmenting the b-quarks to B mesons containing

a light quark. Using Peterson's scaling principle for the quark masses, I set

the parameter value to �P = (mc=mb)
2 = (1:4 GeV

4:7 GeV
)2 = 0:09.46 Tables 14 and 15

give the numerical results. The largest variation for B+
c
! J= �

+ is 0:12%

Fragmentation Function ��

Bc Frag. (R = 0:25) (3:13� 0:09) %

(default)

Bc Frag. (R = 0:196) (3:25� 0:09) %

Peterson (�P = 0:09) (3:16� 0:08) %

Table 14: EÆciency of B+
c
! J= �

+ events with optimized cuts, as a function

of fragmentation parameterization. Errors are statistical only.

and the largest variation for B+
c
! J= �

+
�
�
�
+ is 0:05%. Both of these are

completely negligible and consistent with the nominal eÆciency. Thus, no

systematic uncertainty is assigned for the fragmentation parameterization.

46Here I use the HQET quark masses instead of the conventional pole mass or running

mass.
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Fragmentation Function �3�

Bc Frag. (R = 0:25) (2:38� 0:10) %

(default)

Bc Frag. (R = 0:196) (2:43� 0:10) %

Peterson (�P = 0:09) (2:36� 0:09) %

Table 15: EÆciency of B+
c
! J= �

+
�
�
�
+ events with optimized cuts, as a

function of the fragmentation parameterization. Errors are statistical only.

5.5 Decay-in-Flight Correction

In the generated Monte Carlo samples, the daughter � and K mesons from

B decay are modeled as stable particles to provide an idealized set of events

from which the geometric and kinematic acceptances can be extracted. The

physical particles do have a �nite lifetime, however, and a fraction of the pions

and kaons from B decay will themselves decay within the tracking volume.

To estimate an upper bound on the e�ect that these \decays-in-ight" have

on the � � B ratio, one may conservatively assume that 100% of the particles

that decay before traversing the entire tracking volume will fail the pattern

recognition (or alternatively, that the components of the error matrix of the

track and the calculated residuals become so large that the event fails the �22d

probability cut.) The lifetime of the � meson is (2:6033� 0:0005)� 10�8s, [7,

p.27] and that of the K meson is (1:2386 � 0:0024) � 10�8s. [7, p. 32] The

fraction of mesons that remain undecayed after traversing the tracking volume

is

N�;k(undecayed)

N�;K(total)
= exp

 
�LCTCM�;K

PT c��;K

!
; (5.1)

where LCTC is the length (in the transverse plane) of the particle trajectory,

M is the pion or kaon mass in GeV, and c� is the velocity of light times the
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lifetime. For PT > 1 GeV, the helical path length di�ers from a straight line

by < 2 cm in the transverse plane, so that Equation 5.1 becomes

N�;k(undecayed)

N�;K(total)
� exp

 
�RCTC M�;K

PT c��;K

!
: (5.2)

The outer radius of the CTC is 1:32 m. Weighting the momentum distribu-

tion for pions and kaons from B decay by the inverse of Equation 5.2 pro-

vides an upper bound on the total number of events produced, of which only

the undecayed fraction is assumed to be observable. Figure 45 shows both

the weighted and unweighted PK

T
distributions for a Monte Carlo sample of

B
+ ! J= K

+ events which pass the cuts optimized for the statistical signi�-

cance of the B+ ! J= K
+ signal in the data. The weighted PK

T
distribution

contains (9:80� 0:23)% more events than the unweighted sample (error is due

to Monte Carlo statistics only). Figure 45 also compares the P �

T
distributions

for weighted and unweighted Monte Carlo B+
c
! J= �

+ events which pass

the cuts optimized for the signi�cance of the Monte Carlo B+
c
! J= �

+ sig-

nal with background determined from data (the \xS cuts.") The weighted P �

T

distribution contains (1:16� 0:13)% more events than the unweighted sample.

Clearly, the shorter K lifetime ensures that, to the extent that the PT distri-

butions are similar, a larger fraction of kaon daughters from B
+ will decay in

the tracking volume than pion daughters from Bc.

These numbers are upper bounds only on the size of the e�ect. Charged

particles that decay inside the CTC will be reconstructed with a �nite, non-

zero eÆciency which depends on the track momenta, the presence of additional

tracks in the event, and the distance that the particles travel before decay.

Since the Bc decay channels are normalized to the B+ ! J= K
+ decay, a

decrease in the B+ ! J= K
+ detection eÆciency of 9:8% would result in a

corresponding decrease in the upper limit of � � B. Conservatively, one should
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Figure 45: (a) Unweighted (solid) and weighted (dashed) PK

T
histograms

for Monte Carlo B
+ ! J= K

+ events passing optimized cuts. (b) Un-

weighted(solid) and weighted (dashed) P �

T
histograms for Monte Carlo B+

c
!

J= �
+ events passing optimized cuts. Weighted histograms indicate maximum

total number of events (decayed + undecayed), assuming that all particles that

decay within the tracking volume are undetected.
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neglect the kaon decays-in-ight and consider only the pion decays, which will

increase the limit. The true value for the single-pion eÆciency correction lies

somewhere between 0:0% and �1:16%. For the three-pion case, the maximum
correction is (1 � 0:0116)3 � 1 = 0:9656� 1 = �3:44% of the nominal three-

pion eÆciency. In calculating the �nal eÆciency for B+
c
! J= �

+, I apply

a correction of 0:994, with a systematic uncertainty of 0:006.47 For B+
c
!

J= �
+
�
�
�
+, the correction is 0:983 with a systematic uncertainty of 0:017.

The correction to the kaon eÆciency is conservatively taken to be 0%.

5.6 Tracking EÆciency Correction

In calculating the relative detection eÆciencies of B+
c
! J= �

+ and B
+ !

J= K
+ events using Monte Carlo samples, many common acceptance factors

cancel in the ratio. In the measurement of other ��B ratios ofB decays at CDF,

however, it has been observed [61] that there is a residual tracking eÆciency

which does not cancel when comparing decays involving pion tracks to decays

involving kaon tracks. While the origin of such a residual tracking eÆciency

is not well understood, there are a number of factors that contribute to the

degradation of the overall tracking performance during Run I. Most notably,

the instantaneous luminosity increased by roughly a factor of 10 in Run Ib.

Higher luminosity results in a larger number of primary vertices per event and

a larger track multiplicity in each event. Additionally, the gas quality in the

tracking volume degraded over time, becoming a more pronounced source of

tracking ineÆciency.

In Warburton's study, [61] Monte Carlo-generated pion tracks from

47This contribution is negligible when combined with other sources of uncertainty, such

as the Bc lifetime, but is nonetheless included in the calculation for completeness.
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the decay B
+ ! J= (2S)K+; J= (2S) ! �

+
�
� were embedded into the

B
+ ! J= K

+ candidate events from the raw data and reconstructed using

the full CDF tracking software to determine the necessary corrections to the

relative eÆciency of pattern recognition, as a function of track multiplicity,

instantaneous luminosity, and primary vertex multiplicity. It was determined

that the primary contributing factor to CTC tracking ineÆciency was the occu-

pancy, particularly of the inner superlayers, during periods of high luminosity.

He also concluded that pattern recognition eÆciencies of two-pion tracks in

an event were correlated, but that the correlation became insigni�cant when

systematic uncertainties were included. The relevant results of Warburton's

study which I apply to this analysis are the aggregate single-track eÆciency,

0:928� 0:020 (valid for PT (track) > 0:4 GeV), and the double-track eÆciency,

0:881 � 0:043 (PT > 0:4 GeV). For the B+
c
! J= �

+
�
�
�
+ channel, I note

that the correlation is in fact small. 48 By combining the single-track and

double-track eÆciencies (assuming no correlation) a \triple-track" eÆciency

of 0:818� 0:044 is derived. These corrections are applied to the corresponding

acceptance eÆciencies calculated via Monte Carlo. The uncertainties are used

in calculating the �nal limit on � � B as the systematic uncertainty due to the

tracking eÆciency.

48
p
0:881 = 0:939 is the same as the single-track eÆciency within the quoted uncertainty.
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Chapter 6
Results and Conclusions

6.1 Introduction

Given the number of observed events in each mass bin, the corrected Monte

Carlo eÆciencies with their associated uncertainties, and the distribution of

background events outside the bin, it is now possible to set an upper limit on

the cross section times branching fraction ratio for the Bc decay channels. The

framework currently endorsed by the PDG [7, p. 200-201] for constructing a

con�dence interval that obeys \coverage" properties is not compatible with the

general case of setting an upper limit on a small-signal (Poisson-distributed)

sample with known background and additional sources of uncertainty. The cal-

culation of upper limits used here is described in greater detail in Appendix A.

The basis of this method is that each term in the ratio: z =
NBc

N
B+

�
B+

�Bc

49 can

be considered to be distributed according to its own probability density func-

tion (pdf). Integrating an appropriate combination of these pdf's allows for a

limit to be determined on the combined ratio rather than on the number of

Bc events alone.

6.2 B+
c ! J= �+ Upper Limits

For this calculation, the pdf's for each of the � � B terms are as follows:

fB+(x) =
1p

2��N(B+)

exp

0
@�

 
x�N(B+)p

2�N(B+)

!2
1
A ;

49After cancellation of the integrated luminosity and common detector eÆciency factors,

this ratio is equivalent to the ratio
�(Bc)�B(B

+
c
!J= �

+)

�(B+)�B(B+
!J= K+)

.
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Figure 46: J= �
+ invariant mass distribution with the optimized selection

cuts.

fBc(n; x+B) =
1

n!
e
�(x+B)(x +B)n; (6.1)

EB+(x) =
1p

2���(B+)

exp

0
@�

 
x� �(B+)p
2��(B+)

!2
1
A ;

EBc(x) =
1p

2���(Bc)
exp

0
@�

 
x� �(Bc)p
2��(Bc)

!2
1
A :

The number of B+ ! J= K
+ events, N(B+), and its uncertainty

�N(B+) are 450 and 23 respectively (from Table 7). The background Nbg (taken

with negligible uncertainty due to the higher sideband statistics 50) and num-

ber of B+
c
! J= �

+ events N� are determined for each mass bin by the mass

plot reproduced in Figure 46. The B+ ! J= K
+ Monte Carlo eÆciency �B+

50Uncertainties on the background estimate could be included by performing an additional

integration via Equation A.11, the �nal upper limit calculation varies by less than 2% when

this is included. For clarity and simplicity, I have omitted this source of uncertainty.
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Figure 47: Calculation of the upper limit for the B+
c
! J= �

+ decay with

M(Bc) = 6:2 GeV. Horizontal axis indicates � � B ratio z and vertical axis

represents the value of the integral over the combined pdf of Equation A.14.

The arrow indicates 90% CL limit, corresponding to a limit on � � B of 0:057.

and uncertainty ��(B+) is 14:18� 0:13% (statistical uncertainty only) from Ta-

ble 7. The B+
c
! J= �

+ Monte Carlo eÆciency �� and its uncertainty ��(�)

are collected in Table 16. The eÆciencies include decay-in-ight and track-

ing corrections. The uncertainties are the Monte Carlo statistics combined

in quadrature with the decay-in-ight, tracking, and lifetime systematic un-

certainties in this table. The �nal column of Table 16 contains the upper

limit (at 90% con�dence level) on the ratio �(Bc)�B(B+
c !J= �+)

�(B+)�B(B+!J= K+)
calculated using

Equations A.14 and A.15 described in Appendix A. The lifetime systematic

dominates the uncertainty. Figure 47 displays a sample curve of the integra-

tion involved in calculating the upper limit for the B+
c
! J= �

+ decay with

an input mass of 6:2 GeV for Bc.
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MBc �� N� Nbg z (90% CL)

5:6 (3:02� 1:10) % 1 2:82 0:033

5:7 (2:96� 1:10) % 4 2:55 0:070

5:8 (3:00� 1:10) % 2 2:73 0:042

5:9 (2:97� 1:10) % 4 2:55 0:069

6:0 (2:93� 1:10) % 1 2:82 0:035

6:1 (2:94� 1:10) % 2 2:73 0:044

6:2 (2:89� 1:10) % 3 2:64 0:057

6:3 (2:88� 1:10) % 2 2:73 0:045

6:4 (2:85� 1:10) % 2 2:73 0:045

6:5 (2:87� 1:10) % 2 2:73 0:045

6:6 (2:84� 1:10) % 6 2:36 0:112

6:7 (2:79� 1:10) % 3 2:64 0:060

Table 16: Corrected Monte Carlo eÆciency �� with total uncertainty (statis-

tical and systematic), number of B+
c
! J= �

+ events in each bin N�, back-

ground (average of remaining bins) Nbg, and calculated upper limit at 90% CL

on z.
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Figure 48: J= �+���+ invariant mass distribution.

6.3 B+
c ! J= �+���+ Upper Limits

Proceeding in the same fashion for B+
c
! J= �

+
�
�
�
+, the pdf's for each of

the terms in z are identical to those of Equation 6.1.

The number of B+ ! J= K
+ events and Monte Carlo eÆciency are the

same as for the J= �+ sample. The background Nbg (taken with negligible un-

certainty) and number of J= �+���+events N3� are determined for each mass

bin from Figure 48. The Monte Carlo eÆciency �3� for B+
c
! J= �

+
�
�
�
+

and its uncertainty ��(3�) are collected in Table 17. The eÆciencies in-

clude decay-in-ight and tracking corrections. The uncertainties come from

the Monte Carlo statistics combined in quadrature with the decay-in-ight,

tracking, and lifetime systematic uncertainties in this table. The �nal col-

umn of Table 17 contains the upper limit at 90% con�dence level on the

ratio z = �(Bc)�B(B+
c !J= �+���+)

�(B+)�B(B+!J= K+)
calculated using the method described in Ap-

pendix A. The systematic in the lifetime dominates the uncertainty.
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MBc �3� N3� Nbg z (90% CL)

5:6 (1:48� 0:92) % 5 3:27 0:196

5:7 (1:51� 0:92) % 3 3:45 0:121

5:8 (1:54� 0:93) % 5 3:27 0:187

5:9 (1:70� 0:93) % 5 3:27 0:162

6:0 (1:80� 0:93) % 2 3:54 0:076

6:1 (1:83� 0:93) % 1 3:63 0:061

6:2 (1:91� 0:93) % 5 3:27 0:136

6:3 (2:00� 0:93) % 2 3:54 0:066

6:4 (1:99� 0:93) % 3 3:45 0:082

6:5 (1:98� 0:93) % 5 3:27 0:129

6:6 (2:01� 0:93) % 3 3:45 0:081

6:7 (2:03� 0:93) % 2 3:54 0:064

Table 17: Corrected Monte Carlo eÆciency �3� with total uncertainty (statis-

tical and systematic), number of B+
c
! J= �

+
�
�
�
+ events in each bin N3�,

background (average of remaining bins) Nbg, and calculated upper limit at

90% CL on z.

121



6.4 Conclusions

By reconstructing events containing a J= displaced from its production

vertex and additional tracks, I search for the decays B+
c
! J= �

+ and

B
+
c
! J= �

+
�
�
�
+ in the CDF experiment at Fermilab. No statistically sig-

ni�cant excess of events in the invariant mass spectrum is observed. An upper

limit on the cross section times branching fraction (relative to B+ ! J= K
+

decays) for these decays in pp collisions at 1:8 TeV is determined. This upper

limit is expressed as a function of the Bc mass, which is not yet determined.

The � � B ratio limits can be compared to the PDG limits by multiplying by

the b! B
+ and B+ ! J= K

+ branching fractions: [7, p. 44, 40]

B(b! B
+) = (38:9� 1:3)%; B(B+ ! J= K

+) = (10:0� 1:0)� 10�4: (6.2)

Applying these values to the bin in each mass distribution with the largest

limit gives the following maximum upper limits:

�(B+
c
! J= �

+)

�(Bc ! X)
� B(b! Bc) < 4:4� 10�5(90%CL) (6.3)

�(B+
c
! J= �

+
�
�
�
+)

�(Bc ! X)
� B(b! Bc) < 7:6� 10�5(90%CL): (6.4)

These can be compared with the current PDG limits:

�(B+
c
! J= �

+)

�(Bc ! X)
� B(b! Bc) < 8:2� 10�5(90%CL) (6.5)

�(B+
c
! J= �

+
�
�
�
+)

�(Bc ! X)
� B(b! Bc) < 5:7� 10�4(90%CL): (6.6)

In Run II of the Tevatron51, CDF should see an accumulation of 2 fb�1

of data (an increase of� 20 over the present statistics), observation of hadronic

decays of the Bc is assured. The upgraded silicon vertex detector and tracking

51slated to begin in March, 2001
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system will allow for a precise determination of the Bc mass and lifetime.

Measurement of the hadronic decay fractions of the Bc will open up a new tool

for understanding the QCD dynamics of heavy quark systems. Heavy quark

physics will play a critical role in the next generation high-energy physics

program as the Higgs boson is either discovered or the Standard Model is

modi�ed to accomodate its absence.
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Appendix A
Incorporation of Errors Into
Branching Ratio Limit

A.1 Introduction

The problem of determining an upper limit, with a speci�ed signi�cance level,

of a small number of events in a multi-channel spectrum is frequently encoun-

tered in the study of rare decays and in searches for new particles. In determin-

ing limits on compound quantities, such as the ratio z = �(Bc)B(Bc!J= X)

�(B
+
u )B(B

+
u!J= K+)

,

care must be taken not only to include the e�ects of background uncertainty

on the number of Bc candidate events observed in the data, but also to include

the uncertainty in the number of observed B
+ events (as well as systematic

uncertainties in the detection eÆciencies). The following is a method of mod-

ifying the probability distribution functions in such a way that allows the

calculation of an upper limit on the combined quantities, with their various

sources of uncertainty, that is valid under the same interpretation of con�dence

intervals as the more familiar small-signal particle searches. The traditional

method is to construct a likelihood function from the Poisson probability with

known background, smear it according to estimated uncertainties, and use the

convolved likelihood function to produce a con�dence interval. This method

is not generally consistent with the meaning of a con�dence interval as it is

usually applied to a system with negligible sources of uncertainty.

Many points of view regarding the appropriate mathematical and philo-

sophical frameworks that physicists should employ in solving problems of this

nature have been expressed. [63, 64, 65] In addition to the well-known sta-

tistical methods of Bayesian and frequentist con�dence intervals, the PDG
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currently favors a more baroque approach based on frequentism, but with an

emphasis on setting limits which cover the \true" value of a measured pa-

rameter. [66] There also exists a Bayesian analog of the same method. [67]

Such attempts to construct a statistically sound methodology free of the taint

of subjectivity52 invariably result in a numerical answer, the signi�cance of

which is not easily translated into human language; there is no simple inter-

pretation that one can understand without the bene�t of several paragraphs

of text describing the numerical result. An answer that is not readily appre-

hended is of dubious value to most researchers. In any event, upper limits

calculated using these optimum coverage methods have so far only been ap-

plied to cases involving precisely known backgrounds and no additional sources

of error. It is therefore desirable to develop a means of introducing error terms

into the conventional con�dence interval method for small signals with back-

ground. Where appropriate and signi�cant in the following sections, the mode

of reasoning (Bayes v. frequentist) will be explicitly stated.

Prior to 1997, the PDG [68] recommended a speci�c method for setting

an upper limit on a quantity distributed according to Poisson statistics with

a known background contribution:

1� � = 1� e
�(�B+N)

Pn0
n=0

(�B+N)n

n!

e��B
Pn0
n=0

�n
B

n!

; (A.1)

where � is the desired con�dence level, �B is the mean of the background

contribution, N is the number of peak events, and n0 is the number of events

52I would argue that pure objectivity is neither a practically realizable nor a desirable

goal for any scienti�c endeavor. Subjectivity is an intrinsic component of every analysis.

Indeed, the very term \con�dence interval" implies a quanti�able \degree of belief." I adopt

a hybrid view that combines frequentist methodology wth the intuitive understanding most

physicists have regarding Bayesian results.
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actually observed. It is useful and instructive at this point to examine the

derivation of this probability distribution in order to discern how it may be

generalized to include additional sources of error and additional multiplicative

terms that are themselves distributed according to sets of assumed probability

distributions.

A.2 Peak Area Probability Distribution

If there are N events in the peak of a distribution with B background events,

the Poisson probability of observing n events in the same region is:

P (n) =
e
�(B+N)(B +N)n

n!
: (A.2)

Here, N and B are taken to be the parameters of the probability function P (n)

determining the probability of �nding n events (n is a discrete variable here)

in a set of bins. This interpretation of the probability is correct if N and B are

the \true" values of the signal and background. We are interested, however,

in the inverse problem. Given B, the predicted number of background events

based on Monte Carlo or theory, and n, the total number of observed events

in the region of interest actually found by the experiment, we wish to know

the distribution of the number of peak events, N . In a Bayesian approach to

this problem, one assumes a prior probability distribution function53 of the

unknown parameter and then performs an experiment to update this prior

distribution. The choice of the prior pdf is based on information available

to the experimenter before the experiment is performed to avoid biasing the

53Referenced hereafter as \pdf," which should not be confused with the earlier introduced

abbreviation for \parton distribution function."
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interpretation of the results of the experiment.54 The updated distribution is

then known as the posterior pdf of the experiment and may be used to infer

the likelihood of the actual value of the unknown parameter. This process

of updating the pdf is accomplished via Bayes' Rule. If one assumes the

background is known precisely, the only unknown parameter is the signal rate,

N . Bayes' Rule can then be formulated as:

g(N ;n) =
f(n;N)g(N)R1

0 f(n;N 0)g(N 0)dN 0 ; (A.3)

where f(n;N) is the conditional probability to observe n events, given the

signal rate N , g(N) is the prior pdf, and g(N ;n) is the conditional posterior

pdf of N , given n observed events. The upper level estimate N� for con�dence

level � is then obtained by integrating this posterior pdf:

1� � =
Z
N�

0
g(N 0;n)dN 0

: (A.4)

The key element at this stage is the choice of the prior distribution. There

exists a variety of conicting opinions on what constitutes a valid prior pdf.

Faced with such a lack of consensus among statisticians and experimenters

alike, it is at this point that many choose to abandon the Bayesian approach

altogether and fall back on the classical frequentist approach. High-energy

physicists generally opt for a non-informative prior (i.e., one which does not

rely on results of previous experiments on the grounds that the experiment

can not thereafter be independent of those previous experiments and the re-

sults can not be combined). As the subject of this thesis is an independent

evaluation of limits and the �rst such experiment by this author, there is little

54Strict frequentists generally refer to this as the \subjective" prior, in the pejorative

sense. Priors are rarely chosen in a wholly arbitrary fashion, however, and should properly

reect one's knowledge of the allowed values of the parameter, or lack thereof.
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danger in following this precedent. I will also follow precedent established by

other new particle searches in assuming that the choice of a non-informative

prior should be a at distribution in N , ranging from 0 to 1. In this case,

substituting the Poisson probability for f(n;N)

f(n;N) = e
�(N+B) (N +B)n

n!
(A.5)

and applying Bayes' Rule produces a posterior which is comfortably familiar:

g(N) =
e
�(N+B)(N +B)n

n!
: (A.6)

It should be noted that the choice of a at distribution in N , while seemingly

innocuous, actually hides many dangers. One obvious objection is that if one

can choose a at distribution of an unknown parameter, then one can equally

choose a at distribution of any function of this unknown parameter. Since I

am setting a limit (at least for now) on N , the natural choice is to choose N

itself as the function assumed to be at. Others have argued somewhat more

rigorously that a valid non-informative prior pdf must obey certain transforma-

tional properties or be constructed so that the posterior distribution exhibits

certain limit properties. One popular choice of a non-informative prior for a

Poisson statistic is proportional to 1=N , despite the provable result that this

can lead to an upper limit on small signal searches that is well below the res-

olution of the detector. [65] While mindful of such arbitrariness in selecting

non-informative priors, I again defer to precedents set by other high-energy

physics analyses in the choice of a at distribution in N .

A.3 Poisson Signals With Background Contribution

In using the Poisson distribution for (N +B) in the preceding section, I have

omitted a subtle point, which becomes signi�cant for searches in a region
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where no peak is evident. I have assumed that the probability for observing n

events, given N average signal events and B background events, is the product

of the Poisson probabilities in N and B individually, and summed over all

combinations that add up to n: [69]

f(n;N +B) =
nX

nb=0

f(nb;B)f(n� nb;N); (A.7)

which reduces to equation A.5. This relation is inappropriate for calculating

a limit on N , however, as it allows for the possibility of a negative (hence

unphysical) limit on the true number of signal events. If we have measured n

events in the data and expect B background events, f(nb;B) must be renor-

malized to account for the fact that nb can not take on values larger than

n:

f
0(nb;B) =

f(nb;B)P
n

nb=0
f(nb;B)

: (A.8)

The product of the individual probablities then becomes

f
0(n;N +B) =

f(n;N +B)P
n

nb=0
f(nb;B)

: (A.9)

The � con�dence level upper limit on N can now be determined by repeatedly

integrating by parts to obtain the sum:

1� � = 1�
P
n

na=0
f(na;N� +B)P

n

nb=0
f(nb;B)

; (A.10)

which is the same form as the expression in Equation A.1. Errors on the

background estimate B can be incorporated by integrating over the assumed

background distribution g(b):

1� � = 1�
P
n

na=0

R1
0 g(b)f(na;N� + b)dbP

n

nb=0

R1
0 g(b)f(nb; b)db

: (A.11)
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A.4 Generalization of Upper Limit

So far, I have merely demonstrated the principles involved in one possible

derivation of the \old" PDG-prescribed method for calculating the upper limit

on a Poisson process with background. It is necessary now to generalize this

to encompass additional multiplicative terms (the selection eÆciencies and

number of observed B
+ ! J= K

+ events) with their own sources of error.

Suppose I have two distributions in two di�erent unknown variables, p(x)

and q(y). I wish to know the probability distribution r(z) of the combined

quantity z = xy. This can be accomplished for a given z by integrating over

all intermediate values of the arguments of p and q such that the product of

those arguments remains constant and equal to z:

r(z) =
Z +1

�1
p(x)q(z=x)

1

x
dx: (A.12)

Likewise, if z represents the ratio, rather than the product, of x and y, the

combined probability s(z) is:

s(z) =
Z +1

�1
p(xz)q(x)xdx: (A.13)

The factors 1

x
and x in these two equations are the Jacobian factors of the vari-

able transformations and maintain the normalization of the combined proba-

bility distributions.

A.5 Inclusion of Systematic Errors in Final Limit Cal-

culation

In calculating the preliminary upper limits on the � � B ratio in the cut opti-

mization procedure, the selection eÆciencies were taken to be known precisely.

If instead, one assumes that the eÆciency terms are distributed according to
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a Gaussian, with a mean given by the nominal value and width determined by

combining the systematic shifts in quadrature, Equations A.12 and A.13 can

be used to construct a new probability distribution function. The combined

pdf of the �nal ratio z =
NBc

N
B+

�
B+

�Bc
can then be expressed as:

g(n; z) =
Z 1

y=0

Z 1

x=0

Z 1

N 0=0
fBc(n;N

0
x+B)fB+(N 0)EB+(yz=x)EBc(y)

N
0
y

x
dN

0
dxdy;

(A.14)

where fBc(n;N
0
x + B) is the probability distribution for �nding n or fewer

events in the data with expected background contribution B and N 0
x Bc sig-

nal events, as given by Equation A.5; fB+(N 0) is a Gaussian distribution in

the number of observed B
+ events N 0 with mean and width determined by

a �t to the J= K+ mass spectrum; and Ei(q) is the eÆciency distribution

with the nominal mean eÆciency �i for each decay channel i and width deter-

mined by summing uncertainties in quadrature. I have also switched55 from

a Bayesian intrepretation of fBc(n;N
0
x + B) to a frequentist one in order to

make the number of signal events n an explicit variable instead of an implicit

one. By assuming that the systematic errors can be folded into the eÆciency

distributions and combined with the original pdf for the observed number of

events, I have in fact already shifted the interpretation to a frequentist view by

assuming that this is an estimation of the \true" value of z. The new interpre-

tation is that g(n; z) represents the probability of measuring the � � B ratio z,

given the number of observed events n in the Bc decay mode. The background

55�a la. [69] The PDG96 method for calculating upper limits on Poisson process with

background is only Bayesian on the surface. The underlying assumptions that allow one to

use Bayes' Rule to calculate con�dence intervals are essentially frequentist. If a constant

prior is used, one obtains results consistent with the frequentist approach if one blindly

follows the Bayesian prescription without being unduly rigorous about the interpretation of

the pdfs and the result.
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normalization term in Equation A.9 has been implicitly absorbed in taking the

positive integration path over N 0
x. Strictly speaking, there should be similar

renormalization terms in the denominator of Equation A.14 to prevent the ef-

�ciencies and number of B+ events from uctuating to non-physical negative

values. The means of these distributions are signi�cantly large (> 5 standard

deviations in all cases) that such correction factors contribute negligibly to

the integrals. The normalization of the truncated distributions is handled by

integration (the denominator in Equation A.15 below), which improves the

readability of the integral equation A.14.

The upper limit on the ratio z can now be obtained by integration:

1� � = 1�
R
z�

0 g(n; z)dzR1
0 g(n; z)dz

: (A.15)

The interpretation of the con�dence level limit obtained in this fashion is that

in the limit of an in�nite number of measurements of z, the frequency with

which one obtains a � � B ratio of no more than z� is �.

A.6 Numerical Methods and Evaluation of Accuracy

The multiple integrations in Equations A.14 and A.15 are carried out by re-

cursively calling a one-dimensional integration routine based on the method

of Gaussian quadratures. [70, 71, 72, pp. 147-156] This method was cho-

sen because it has faster convergence properties than other means of multi-

dimensional integration (e.g., Monte Carlo integration). The principle under-

lying Gaussian quadratures is that given prior knowledge about the functional

form of an integrand, one may �nd a set of weights and abscissas at which to

evaluate the integrand which greatly improves the accuracy of the integration

with a smaller number of function evaluations than other numerical methods.
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A remarkable feature of Gaussian quadrature is that the integral becomes ex-

act for classes of integrands that are polynomials times a functionW (x), where

the form of W (x) dictates how the abscissas and weights are to be calculated.

Given W (x) and an integer N (the number of function evaluations), the set of

abscissas xj and weights wj can be calculated such that the approximation:

Z
b

a

W (x)f(x)dx �
NX
j=1

wjf(xj) (A.16)

becomes exact if f(x) is a polynomial of order 2N�1 or less. In Equation A.14,
W (x) can be chosen to be Gaussian (W (x) = exp�x

2

) for the N 0 and y inte-

grations and W (x) = x
� exp�x for the N 0 integration.56 With these choices

for W (x), the weights are determined by

wj =
hpN�1jpN�1i

pN�1(xj)p
0
N
(xj)

; (A.17)

where p0
N
(xj) is the derivative of the orthogonal

57 polynomial pN evaluated at

its root xj and the scalar product hpnjpmi is de�ned as:

hf jgi =
Z
b

a

W (x)f(x)g(x)dx: (A.18)

For the Gaussian case with inde�nite limits, the pN are the Hermite polyno-

mials; for the Poisson integration, the pN are the Laguerre polynomials. In

calculating the con�dence limit by integrating over z,W (x) = 1 and the pN are

the Legendre polynomials. In all cases, the roots of the polynomials are found

by iteration via Newton's Method, [73] and derivatives are obtained analyti-

cally from recurrence relations involving lower-order polynomials to eliminate

56In fact, the integration over y is carried out analytically, but gives the same result as

the Gaussian quadrature integration of order N = 1, since f(x) is a constant (with an

appropriate change of variables).
57In the sense of scalar products de�ned by Equation A.18.
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sources of error due to numerical di�erentiation. The order of the orthogonal

polynomials in each integral is determined by starting at N = 1 and incre-

menting until the fractional di�erence between successive iterations is less than

the desired accuracy.

Solving Equation A.15 for z� requires a root-�nding algorithm in con-

junction with the integrating routine. For this purpose, I chose a method

developed by Brent [74] which guarantees at least linear convergence for func-

tions known to contain a root within the initially selected interval.

In order to test the implementation of these integration and root-�nding

methods, it is necessary to have an alternate calculation that does not depend

on the numerical methods. In the case of the quadruple integration carried out

in Equation A.15, there is no simpli�cation to an analytical solution except in

the case of trivial choices of the Gaussian widths.

As a test of both the root-�nding mechanism and the full quadruple-

integral in Equation A.15, I calculate a series of z� using �i ! 0. As the

widths of the Gaussian distributions in Equation A.14 vanish, the distributions

approach delta-functions, and Equation A.15 reproduces z� =
N�

N
B+

�
B+

�Bc
in the

limit (N� is the con�dence level limit on the number ofBc events determined by

Equation A.1). This is also precisely the limit in which the integration routines

would be expected to break down. Numerical integration methods work best

on smooth, well-behaved functions. As the widths approach zero, the value of

z� should approach the value of N� times the various nominal eÆciency factors

until the functions become so sharply peaked that the numerical integration

fails. In the implementation of the gaussian quadrature calculation, I have

also e�ected a change of variable so that the numerical integrations are always

over a Gaussian distribution with � = 1. This ensures adequate sampling of

the Gaussian lineshape where it contributes most to the integral. The tradeo�
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is that the lower cuto� of the Gaussians must be integrated over with a larger

degree of precision as the widths decrease from unity. For simplicity, I have

chosen to use the measured values of �i and scale them all uniformly:

�
0
i
= �iÆ; Æ ! 0:

Figure 49 shows the behavior of the numerical solution to Equation A.15 com-

pared to the value of z calculated using the default N� from Equation A.1. At

Æ = 0:75, the di�erence between the generalized con�dence limit and the PDG

value (which assumes no uncertainty contributions) is already < 1�10�4. This
is the same order as the accuracy limit speci�ed to the numerical integration

routine. No signi�cant deviation from the limit is observed for any reasonable

values of Æ.
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Figure 49: Generalized con�dence level limit of Equation A.15 is compared

with the simpli�ed con�dence level calculation with no uncertainties. These

calculations are peformed for the J= �+ mass bin of 6:2 Gev. The \X" points

represent a calculation of the quadruple integral. In the limit Æ ! 0, the

calculation converges to the ordinary single con�dence level limit integral for

a Poisson-distributed signal with �nite background contribution. The value at

Æ = 1 corresponds to the quoted upper limit for this mass bin.
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