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ABSTRACT

SPIN PARITY MEASUREMENT OF CENTRALLY PRODUCED (r*x")
IN PROTON-PROTON COLLISIONS AT 800 GEV/C

FEBRUARY 1998

KYRIACOS MARKIANOS, B.A., ARISTOTELIAN UNIVERSITY OF
THESSALONIKI

M.A., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Edward P. Hartouni

Experiment E690 at Fermilab recorded 5.5 billion p + p — p+ X events using an 800
GeV/c proton beam and a liquid hydrogen target, during the 1991 fixed target run. We
use a 0.5 billion subset of this sample, to study the reaction p+ p — p,(rr"n:') p, for
dipion invariant mass between threshold and 2.3 GeV/c2. We perform a partial wave
analysis for dipion invariant mass between threshold and 1.5 GeV/c2. The assumption of
S-wave dominance near threshold is sufficient to determine a single, continuous solution
throughout the considered mass spectrum. Precision measurement of the production
amplitude aids the mapping the low lying meson spectrum. Other possible studies using
this data sample and analysis technique are: (1) the extension of the amplitude analysis
above the 1.5 GeV/c2 mass region using a the full event sample, and (2) the study of the

produced amplitudes as a function of the relative angle between the two proton planes.
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CHAPTER 1

INTRODUCTION

Experiment E690 at Fermilab recorded 5.5 billion p+ p — p + X events using an
800 GeV/c proton beam and a liquid hydrogen target during the 1991 fixed target run. A

subset of 0.5 billion events from this sample is used to perform amplitude analysis for the

reaction p+ p — p,(n:" rr') p, for dipion invariant masses between threshold and 2.3

GeV/c2. Here p, stands for slow or target proton, and p, for fast or beam proton. We

treat the reaction as a two-step process in which the interaction of the two protons produces
a meson which subsequently decays into two pions, independent of the final state protons

(see Figure 1.1).

The reaction is characterized by the distribution of the final state particles in terms of
their longitudinal momenta. For the great majority of events the two final state protons and
the dipion system are kinematically well separated (Figure 1.2). In the overall center of
mass system, the two final state protons have longitudinal momentum close to the
maximum allowed ( x, +1), where x, (Feynman x) is defined as the longitudinal
momentum of the particle divided by the maximum momentum the particle can have in this
reaction, while the dipion system distribution is confined in the central region ( x, close to
0). The longitudinal momentum disn*ibution of the dipion (meson) state is the reason that

such a reaction is referred to as "central production”.

The kinematics of central production suggest that the central meson is produced
through a double exchange process (Figure 1.1). This is the justification for analyzing the
interaction as a two-step process. The goal of this thesis is twofold: to measure the
quantum numbers of centrally produced mesons and to measure how the relative intensity

of the produced states changes as a function of the parameters describing the final state



protons (for example four-momentum transfer (t), or relative angle of proton planes). We
use the two pion momentum vectors to determine the mass and width of the produced
states. In addition, we use the angular distribution of the two final state pions to perform a

partial wave analysis and determine the spin and parity of the states produced.

One of the reasons for interest in central production is that this kind of interaction is
considered a rich production environment for exotic states [1]. When the dominant theory
of strong interactions (QCD) was proposed more than twenty years ago, one of the novel
and unexpected (from SU(3)) consequences of the theory was the prediction of states that
are neither baryons (gqqq) nor mesons (g7 ). These “extraordinary™ or exotic states are
referred to as glueballs (gluon-only bound states, gg), multi-quark states (four or six quark
states, gGqq . 99944949 ), or hybrids (quark gluon bound states, ggg ). After 20 years of

searching in numerous experiments, no conclusive evidence exists for an exotic state. [2]

Experimental searches for exotic states have concentrated mostly on attempts to
observe gluon-only states (gg). This is because of the expectation that such states will
have distinct signatures. Exotic states which contain valence quark constituents are
expected to be more difficult to distinguish from conventional states than glue only states.
The searches can be classified by the production mechanisms they use to produce the exotic
states. Experimenters have looked for reactions in which production of glue rich states
might be favored over production of conventional states. A reaction is considered gluon
rich if there is a restriction in the propagation of quarks from the initial state particles to the
particles of interest in the final state. Historically, the reactions considered fertile ground
for exotic states are [1]:

* J/¥ radiative decay
* pp annihilation.

* Central production



I will restrict the discussion to mesons since they are the states observable in our
apparatus, given the requirement that the two initial state protons survive the interaction. A
main reason that it is difficult to demonstrate conclusively that a given state is a glueball is
the absence of an undisputed criterion that distinguishes between conventional and exotic
mesons. Unfortunately exotic states do not come with flags revealing their identity.
Rather, the most reliable method to identify exotic states is by a process of elimination. If
more than one state occupies a position in a given SU(3) or SU(6) spin parity multiplet,
one of the extra states must be non-conventional. First, the spin parity multiplets of
conventional states must be filled with observed states from experiment. Extra states
observed experimentally to have the same assignments as states already in the spin parity
multiplet do not fit the quark constituent model. This is feasible for the low lying meson
multiplets, with members that have masses up to about 2 GeV/c2. It is much more difficult
for higher mass states because the states are much closer in terms of mass and much more
difficult to distinguish from each other. An additional source of confusion is the possible
existence of "molecular states”. Here the term "molecular state" refers to a short lived
bound state of two conventional mesons. In such a four valence quark configuration the
resulting state would be best described as the bound state of two distinct meson
wavefunctions. The grouping of the four quarks in two distinct pairs distinguishes such
states from the ggqg exotics mentioned above. For the ggqg exotics we expect all four
valence quarks to have a totally symmetric wave function with respect to the valence quark

constituents.

A current list of light meson assignments from the Particle Data Group [3] (PDQG) is
shown in Table 1.1. We can see from the table that there are muiltiplet positions that are not
assigned with experimentally observed states. There are also multiplet positions that are
controversial and have more than one candidate assignment. In addition to the states
mentioned in the table, there are states in the full listings of the PDG that have not been

clearly observed or have been observed by only one experiment. Conversely, there are



additional states not mentioned in the table which have been observed by more than one
experiment and their existence is not disputed. However, they are difficult to classify since
their positions are occupied in the multiplet assignments and exhibit properties that make
them likely but controversial glueball candidates. The states that belong to the last category
have received the most attention in recent years. Of this group, those considered the most

interesting are: f,(1420), f,(1500) and f,(1710). All three of the states are

predominantly observed in the "glue rich” production mechanisms mentioned earlier.

The f,(1420) has a puzzling history due to different spin parity (J"¢ where J is
the spin, P is the parity and C is charge conjugation quantum number) assignments given
to the state by experiments conducted in different production environments. It was
observed [4] in 7”p — KK*x*n with spin parity 1** and mass 1426 MeV/c2. Two years
later a report from J/W¥ — K"K~ n° observed [5] a state with spin parity 0~ and mass
1440 MeV. This led to the suggestion that two different states are produced, depending on
the production mechanism: a conventional meson, named E(1420) with J* C=1*" and a
possible glueball the 1(1440) with J°¢ =07*. The so called EA puzzle became more
complicated when neither of the states was observed in K~ induced reactions. The LASS
collaboration observed [6],in K~ p — KeK*m&* A, a resonance at 1530 MeV with spin
parity 1**. Since conventional meson s§ states are expected to be favored in K~ induced
reactions, the non-observation of the E(1420) by LASS cast doubt on the s5 content
hypothesis of this state. In central production, experiments WA-76 [7] at CERN and
FNAL E690 [8] both observed with high statistics a state at 1420 MeV with J°¢ =1** in

the reaction pp — p ,K;’K* 7 p,. Since central production is not a reaction that favors s5
production, these observations make it unlikely that f,(1420) is a conventional state. The

most likely candidate for the isosinglet 1** multiplet is the state observed by LASS, noted
as f,(1510) in the PDG table. Therefore the f,(1420) has currently no place in the

conventional gg spectrum, but its nature its still not resolved. The history of this state



underscores how important it is to observe a resonance in more than one production

environment.

The f,(1500) and f,(1710) have been observed in more than one production

environment. Although the spin of the f;(1710) is not resolved, its existence around {710

MeV/c2 is not disputed. Interest in both states is related to advances in the theoretical
understanding of the meson spectrum. A recently published theorem [9] on the mass of the
lowest lying glueball asserts that the lowest (in terms of mass) lying state should have

JF€ = 0**. This agrees with recent results from Lattice QCD calculations. There are two
Lattice QCD results that attempt to calculate the properties of low lying glueballs and
identify physical states that correspond to the calculation results. For the lowest lying state
the UKQCD [10] collaboration predicts mass M=1550+50 MeV/c2 and width [=245+50
MeV/c2 respectively, while the prediction from the IBM group [11,20] is M=1740+70.
The UKQCD collaboration identifies as the corresponding physical state the (currently
noted) f,(1500). At the time the study was published, the state was observed by the
GAMS collaboration [12] with mass 1590 MeV and with higher statistics by the Crystal
Barrel collaboration [13] in the process pp — nnz° with mass 1560+25 MeV/c2 and
width 245450 MeV/c2. Later, the Crystal Barrel collaboration performed a simultaneous
analysis of the final states 7°7°%°, 7°7°n and 7°nn. The new analysis [14] found the

mass and width of the state to be 1500=10 MeV/c2 and 154430 MeV/c2 respectively.

Hence the current notation f,(1500).

Proximity to the mass and width of a Lattice QCD calculation is not the only

argument that makes f,(1500) a good glueball candidate. The quantum numbers reported

by Crystal Barrel (J*€ =0*"), classify the state in a nonet with more observed physical

states than the ¢gg model can accommodate (see Table 1.1). Of course the same argument

can be used for other states in the nonet. In order to distinguish which state does not fit,

we need a classification scheme at least for the members of this nonet. [ will return to this



issue after presenting the arguments advanced by the IBM Lattice group. This group
favors the f,(1710) with spin assignment J° = 0** as the manifestation of the lowest
lying glueball. Over the years the assignment for the state has changed between J”¢ =0**

and JP¢ =2*".

The state has been clearly observed only in "gluon rich" production environments.
In J/¥ decays the state was observed by the MARK III collaboration in the reaction
JI'Y = yK*K~ and J/¥ — yK?K?. The spin parity determination [15] for the state was
2**. However, further analysis [16] revealed a significant spin O component for the state.
The state was observed clearly in central production by the Omega spectrometer at CERN
in the reactions pp — p,K*K  p, and pp — p,KJKp,. They used only the K* K~ sample
for spin parity analysis and found [17] J7¢ =2**. FNAL E690 has observed [18] the
same state in the reaction pp — p ,K}’K‘S’ p. and found that the state is compatible with both
assignments but the most likely assignment is J°¢ =0**. Although the state decays mostly
to kaons, indicating a probable s5 content, it is not observed in K~ p reactions. The LASS
collaboration studied the reaction K™ p — K’K°A°. They report [19] no signal in the
f,(1710) region, making unlikely the classification of the state as a predominantly s¥
meson. In addition to the observations about the f,(1710) the LASS collaboration finds in
the 1500 MeV region the well established f,{1525) and very small S-wave contribution,
therefore offering the same argument on s5 content for both the f,(1710) and f,(1500).

After their initial publication on the glueball spectrum, the IBM Lattice group published

another study [21] where they examine the possibility that neither state is a pure

quarkonium or a pure glueball. They find that f,(1500) is a mostly s5 state while

f,(1710) is mostly a glueball.

In the previous paragraph the statement that a meson can be mostly a glueball has to
do with the fact that states can interfere through final state interactions. In the previous

discussion we assumed the validity of the static quark model as a guide to meson



spectroscopy and a one to one correspondence between ideally mixed quark states and the
physical states observed in the laboratory. Although this picture works well for
pseudoscalar and vector mesons (where departure from the ideal SU(3) states is small), the

classification is not as clear for the scalar mesons.

In fact the QCD properties that lead to the search for exotic states dictate that the
meson picture should be much more complicated than the static quark model description.
Instead of "bare” quarks we have to deal with quark currents surrounded by a cloud of
gluons and a sea of gg pairs. The complexity introduced by the many body problem
makes QCD not yet calculable from first principles in the low energy regime (also known
as the confinement regime). This is a problem that afflicts also the Lattice QCD calculations
mentioned above. The lattice QCD groups make the computation manageable through a
technique known as "quenching”. In essence the effect of gg pair production is not
allowed to enter the calculation and is instead approximated with the use of observed
properties of the well established vector and pseudoscalar mesons. Since at the present
time there is no exact QCD solution to the low energy spectrum, we are forced to use either
the predictions of Lattice QCD or phenomenological models that use model dependent

assumptions to classify the spectrum.

Although these phenomenological models do not offer an exact solution they
provide valuable insight into the properties of the meson spectrum. There is a variety of
methods that have been used in the construction of phenomenological models. They range
from models that use a simplified version of the QCD Langrangian and introduce the full
Langrangian later as a symmetry breaking effect to models that use just quantum mechanics
and conservation laws to relate the results of several experiments. The large number of
models developed over the years presents too vast a topic to cover here. I will restrict the

discussion to two recent computations that try to classify the 0** nonet.



The first is a model developed by N. Tornqvist [22] and sheds light on the
significance of interactions in the mass, width and shape of the mesons that compose the
multiplet. The calculation starts with the "bare QCD" configuration which corresponds to
the static quark model. Here the ad hoc assumption is that we know the mass and
composition in terms of quark content of the states, assuming that no interactions are
present and the states are stable. With the introduction of interactions each state can be
written as an expansion of the "base state” plus the possible decay states given energy
conservation and the conservation of quanturn numbers in the decay process. The method
is applied for both the well established 1™~ multiplet and the 0"* multiplet whose states we
want to identify. For the 17~ states the result is the physical states observed in the
laboratory, not far from the initial assignments. The effect of interactions is much more
significant for the 0** mesons because unlike the 1™~ (vector) mesons the decay channeli to
two S-wave pseudoscalars is available (0" — 07707). The differences are dramatic. The
mass of the 0** multiplet members shifts by more than 400 MeV/c2, although the mass
hierarchy implied by the mass of the strange quark is preserved. Although it is a model
calculation, the model is valuable for the minimal set of assumptions it uses to demonstrate
the possible differences between "pure states” and the states observed in the laboratory. A
second model by Amsler and Close [23] attempts a similar calculation. The difference is
that instead of the nine g7 seeds used by Tomqvist they consider 10 seeds, nine g7 seeds
plus a glueball (gg) seed. Here the term seed implies the initial, unpertubed states used for
the calculation. They use perturbation theory to derive the mass and width of the observed
mesons. Among the final assignments they find, the f,(1500) is mostly a glueball while
the f;(1710) is mostly an s5 state.

A different attempt to extract information about the meson spectrum is the use of
conservation laws, and in particular universality of amplitudes and conservation of
probability (unitarity of S-matrix). This is a different approach because the starting point is

not an assumption about the constituents and their interactions that leads to the calculation



of "stable” bound states. Here the attempt is to calculate and relate the production
amplitudes in various reactions. The meson states and their mass and width are inferred
from the poles of the scattering matrix. This method allows one to relate experimental
measurements from a number of different production mechanisms such as central pp
production and heavy flavor meson decays (e.g. J/\¥ — ¢nr) using the universality of the

zr scattering amplitude.

A study using the S-matrix universality that is relevant to the measurement
presented here was performed by Au, Morgan and Pennington [24] (AMP). At the time of
publication the study relied mostly on data from the ISR Axial Field Spectrometer (AFS)
measurements [25]. This is the first high statistics measurement for double Pomeron
production of the pp — pr* ™ p final state. The conditions for the application of the Au,
Morgan and Pennington method are fairly severe. The only waves that are allowed to enter
the picture are isospin 0 and S=0 waves. This reduces the dimensions of the S-matrix and
makes use of the Unitarity constraint feasible. These conditions match the properties of
double Pomeron exchange at small four momentum transfer (¢). Furthermore, they restrict
the final states that enter the analysis to 7zt and KK by imposing an upper limit to the
mass spectrum under consideration at 1 GeV. With this limit, the only channel that is not
accounted for is the 4 final state. The cross section for this final state below 1 GeV is

sufficiently small that it can be ignored.

Using these restrictions they proceed to calculate the poles of the scattering matrix
and conclude that three 0** states exist with mass below | GeV. They tentatively name
them f,(991), f;(988) and f,(900). Since this is again the 0** multiplet with its
oversubscribed spectrum, they conclude that only two of the states have a place in the
multiplet classification of conventional mesons and one of them has to be an extra state.

The model draws its parameters from the "classic” pion scattering data [26] in

T p— w7 n,and the pp = pr*w p, pK* K™ p data from the AFS experiment mentioned



above. Application of the results to new data from Mark III and DM2 in charmed decays
(J/¥ — ¢nm, pK* K™) revealed inconsistencies that forced the authors to reevaluate their
claims [27,28]. They attribute the discrepancies to the sensitivity of the method to the
relative cross section for 77, KK production near kaon threshold. The method is most
sensitive to the measurement by the AFS collaboration. The AFS measurement is
performed at the ISR, where the central meson is produced almost stationary in the
laboratory. Therefore the decay products are not boosted in the laboratory and the resulting
inefficiencies require significant acceptance corrections. We note that these concerns will
not be a factor in the measurement reported in this thesis. Because the FNAL E690
measurement is performed in a fixed target environment the boost is significant ( ¥y = 20)
and detector acceptance varies slowly as a function of the analysis variables, the only
significant variation is the dependence of acceptance on the x distribution of the central
meson. Although the subsequent publications reevaluate the accuracy of the initial claims,
the authors insist that the method requires a narrow (50 MeV/cz) state at 1 GeV which they
note as f, (S ) and is responsible for the phase shift observed in #77p — 7*7™n and the
sharp drop at 1 GeV observed in the pion spectrum of central production. This is in
disagreement with an alternative parametrization by Zou and Bugg that claims a wider state
[29]. As proof for that claim, they offer a comparison of the predictions of the two models
for the pion spectrum in the decays J/W¥ — ¢nx, 9K*K~. They state that in terms of input
from the data the most important measurement remains a precise cross section ratio for

n* -, K"K~ final states close to 1 GeV in central pp reactions.

Other experiments that have measured the centrally produced 7"~ state are a series
of fixed target experiments performed at CERN using the OMEGA spectrometer (WA76,
WA91 and WA102) and another ISR experiment, the Split Field Magnet (SFM)
collaboration. Although the series of fixed target experiments at CERN has good
acceptance and adequate statistics, there are significant reservations about the use of this

data set in the study mentioned above. One of the problems is the use of the final state
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slow proton (target proton) as an on-line selection trigger. For double Pomeron (double
diffractive) interactions the slow proton has very small longitudinal momentum in the
laboratory and appears as a particle traveling perpendicular to the beam direction. In order
for the slow proton to "survive” multiple scattering and emerge from the target, minimum
p, requirements must be satisfied. For the target used by the OMEGA spectrometer the
minimum momentum is about 200 MeV/c. Since the four momentum transfer (¢) in the
kinematics region of the experiment is approximately equal to —p; the trigger requirement
dramatically reduces the number of events with small four momentum transfer (¢). The
result is departure from the low ¢ production regime where double Pomeron exchange is
expected to dominate. This is evident in the K"K~ spectrum [30] of the experiment where
a prominent ¢(1020) peak appears. Since ¢(1020) has J”© =17" the state cannot be the

product of the collision of two J”¢ =0** exchange particles (Pomerons).

The OMEGA spectrometer group performed a coupled channel analysis [30] on
their #*~, K"K~ data, using a scheme quite different from the AMP method. Instead of
using a unitarity constraint they require that resonances have the same mass and width in
the two channels but allow for independent, interfering "background” production in the two
final states. An interesting result from this analysis is that it attributes the sharp drop in the

'~ mass spectrum at 1500 MeV to a resonance present in both 7™, K"K~ channels

with mass 1472 MeV and width 195 MeV, remarkably close to the f,{(1500) reported by
the Crystal Barrel collaboration. In a later study [31] they compare the n*n”~, #*n x*n~
spectra and confirm the 1500 MeV state in the #* 7~ spectrum. They do not observe the
same state in the 47 final state. The two studies do not analyze the angular distribution of
the m* 7~ final state and are based exclusively on fits of the mass spectra observed.
Compared to the OMEGA spectrometer measurements the data sample to be presented in

this thesis has better statistics, higher center of mass energy and no restrictions for low ¢
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scattering but lacks a sensitive recoil detector in the vicinity of the hydrogen target for

background suppression.

In a different effort to identify exotic states, the Split Field Magnet collaboration
(SFM) at the ISR studies the dependence of the n* 7~ spectrum in low ¢, pp— pa*n™p
reactions to correlations in the final state protons [32]. In particular they study the
correlation of the 7"~ mass spectrum to the angle between the p, vectors of the two
diffractive protons. They find that there is a correlation, most prominent in the mass region
of f,(1270), a well established g7 meson. Another search for correlations in the final
state protons was reported later by the OMEGA spectrometer [33]. The investigation was
prompted by a puzzling change in the mass spectra observed by the experiment after an
upgrade to their detector. The addition of a second recoil detector for trigger on the slow
diffractive proton changed the ratio of events with protons scattering to the same side of the
detector over the number of events scattering in opposite directions. This ledtoa
classification of the sample in same side/opposite side triggers. The difference in the two
samples is a remarkable suppression of well established conventional mesons when the two
protons scatter in the same direction. In a follow up publication [34], they choose to
classify the sample as a function of a variable called difference in transverse momentum
dp, = m .where p, ,,, Dy, are the fast and slow final state proton transverse
momenta respectively. Although the variable lumps together events that have small four
momentum transfers ( ¢) with events that have significant momentum transfers but similar
transverse momentum for the final state protons, it offers a remarkable filter for the

suppression of conventional mesons and enhancement of glueball candidate states. In

particular, for low values of dp, in the 7"z~ sample, the p(770) and f,(1270) disappear
although they are quite prominent for data with high dp,. In a similar fashion in the K"K~

sample, the f;(1710) signal is enhanced for low dp,. Similar examples are offered for
other final states. In a publication titled "A Glueball- g7 filter in Central Hadron

Production”, F. E. Close and A. Kirk attempt to provide an explanation for the correlations
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observed by the OMEGA collaboration [35]. They cover plausible theoretical arguments
for the origin of the mass spectrum dependence on dp, but they admit no obvious or
rigorous theoretical explanation. Nevertheless they argue that the empirical observations
are so dramatic that they warrant further investigation and point to the possibility of using
the proton correlations as a filter for distinguishing between conventional and exotic
mesons. Here it is worth noting that the assumption that Pomeron-Pomeron production
dominates central pp reactions, important in the Au, Morgan and Pennington
parametrization of pion scattering, does not allow for the final state proton correlations
mentioned above. If the correlations are confirmed, one either has to allow for additional
physics, or has to limit observations to a kinematic regime in which these correlations
vanish. Again the data sample in this thesis offers the opportunity for such an

investigation.

In conclusion the work presented here is going to contribute in both the
measurement of relative cross sections of 7*7~,K* K™ near the K* K~ threshold and in the
study of correlations between final state protons and their impact on the observed #* 7~
spectrum. Because the statistics are much higher than any other experiment in this regime
and the acceptance varies very slowly as a function of the analysis variables, this
experiment has the opportunity to provide valuable and reliable information about the

centrally produced meson spectrum.
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Figure 1.1 Central production as a two-step process. Here the exchange
particles are noted as pomerons. In general any Reggion can be exchanged.

Central meson (X)

Ytaﬂet) proton /\ Fast (beam) 7
1 X 0 1

Figure 1.2 Central production, expected x, distribution.
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Table 1.1 Meson assignments from Particle Data Group.
N ¥, | Jfe ud ,uii,dd ud ,uit,dd Su,5d
I=1 I1=0 I=12

1'% {0 4 nn k
1’s, |1~ P o, ¢ K" (892)
1'P, 1" b,(1395) h(1170),h,(1380) K,
1Py | 0| a,(980)/a,(1450) | fo(400—1200)/ f,(980)/ f,(1370) | K;(1430)
1’p, | 1™ a,(1260) £,(1285), £,(1510) K,
1°p, | 2% a,(1320) £>(1270), £5(1525) K;(1430)
1'D, |27 r,(1670) K,(1770)
1°D, |1 p(1770) @(1600) K"(1680)
1°D, |27 K,(1820)
1°D, |3~ p,(1690) @,(1670), ¢,(1850) K;(1780)
LF, |4 a,(2040) £.(2050), £,(2220) K;(2045)
25, o~ (1300) n(1295) K(1460)
27, |1 p(1450) @(1420), $(1680) K*(1410)
2°p, | 2™ f-(1810), £,(2010) K;(1980)
3, |0 n(1770) n(1760) K(1830)
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CHAPTER 2
APPARATUS
2.1 Overview

The experiment was designed to study a subset of proton-proton interactions where
at least one of the interacting protons survives the reaction. For this experiment, 800
GeV/c protons interact with a 14.3 cm, 2% interaction length liquid hydrogen target. For
all events recorded we require that the beam proton survives the reaction and that it is

reconstructable.

The design of the experiment concentrated on the capability to fully reconstruct
charged final states at very high interaction rates. Except for the veto counters, which
provide very crude momentum and position measurements, there are no detector elements
capable of measuring neutral particles. Reconstruction of neutral particles is restricted to -
decays of neutrals to charged final states (e.g., neutral kaons to two charged pions) and

conversion of gamma rays in the target assembly.

During the design stage great care was taken to facilitate high rate operation of the
spectrometer. The rate of operation is set by the recovery time of the detector elements after
an interaction, and the readout time, the time it takes to digitize and readout an event. We
employ only two basic types of detectors: drift chambers, and phototubes for scintillation
or Cherenkov light collection. The phototubes have inherently fast recovery times, mached
by the scintillator decay times. The drift chambers used are of the "mini drift” type with
typical drift times of 35 ns and recovery times around 70 ns. To keep the readout time
short, the spectrometer is highly segmented and reads data out in parallel communication

streams. Also, the event triggers are arranged in a pipeline sequence, so that when an event
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fails a trigger test in the sequence, testing is interrupted and the detector becomes available

for another interaction.

Most of the detector elements and readout electronics for this experiment come from
experiment BNL766. Both BNL766 and FNAL690 study proton-proton interactions, but
the kinematic regions are very different. BNL766 uses a 28 GeV/c proton beam and
studies both diffractive and central production. For FNAL690 the beam energy is 800
GeV/c and due to kinematics and detector size, we study only diffractive production. We
require that the beam proton survives the interaction. Therefore the momentum scale of the
beam proton and the new particles produced are very different. This necessitates two very
different scales for the detector elements that measure the incoming/outgoing proton and the

products of the reaction (see Figure 2.1).

A) For the beam proton an unusually long beam spectrometer is used. The total
length of the spectrometer is 1/6 of a mile. It uses eight mini-drift chambers to reconstruct
the beam particle trajectory before and after interaction in the hydrogen target. The
outgoing beam proton travels through a string of magnets with a total field integral of 40
Tm (nominal momentum "kick"” 12 GeV/c). This allows measurement of the outgoing
beam momentum with a resolution of & < 500 MeV/c. The beam spectrometer accepts
tracks with momentum from 600 to 800 GeV/c and transverse momentum acceptance is
independent of longitudinal momentum for transverse momentum less than 1 GeV/c. For
most recorded events the outgoing proton has momentum lower than 750 GeV/c. Because
the cross section decreases exponentially as a function of transverse momentum squared,
the vast majority of events have a beam proton with transverse momentum well below 1

GeV/c. Therefore beam proton acceptance is very good for all events produced.

B) The products of the reactions are measured by a six chamber multiparticle
spectrometer. Five of the six chambers reside within a large aperture dipole magnet with

a nominal momentum "kick” of 0.35 GeV/c. The sixth chamber is mounted on the
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downstream end of the magnet. The multiparticle spectrometer is just 8 feet long and
capable of resolving high multiplicity events with track momenta between 0.15 and 30
GeV/c. Exclusive (fully reconstructed) events with more than fifteen tracks have been
reconstructed successfully. For tracks measured in all six chambers with momenta below

20 GeV/c the momentumn resolution is Ap/ p=40.002p.

In addition to the two drift chamber systems, a highly segmented Cherenkov

counter and a system of scintillation counters are employed for particle identification and

triggering. A picture of the magnet with the drift chamber system along with the target and

the direct particle identification detectors is shown in Figure 2.2.

The Cherenkov counter is positioned just after the multiparticle spectrometer. It has
96 toroidal mirrors pointing to an equal number of phototubes that provide pulse height and
timing information. The radiator is Freon 114 at atmospheric pressure and the threshold

momenta for pion/kaon/proton are 2.55/9/17 GeV/c.

The time-of-flight system (TOF) consists of 102 scintillation counters. The
majority of the counters are arranged in two clusters in the middle (Middle Hodoscope) and
the rear end of the detector (Rear Hodoscope). The system can distinguish protons from

pions for momenta up to 1.5 GeV/c and pions from kaons for momenta up to 1 GeV/c.

In addition to the hodoscopes, there are scintillators employed to trigger event
acquisition, and veto unwanted events. Most of these counters are deployed in the target
region. A small counter just upstream of the hydrogen target, called the target counter
(TC), is used to initiate the trigger sequence and serves as the time reference for all timing
measurements in an event. Four counters perpendicular to the beam line, just upstream of
the hydrogen target, cover the aperture of the spectrometer and are used to veto beam halo
(“the veto thing” or TVT). The hydrogen target is surrounded by 12 scintillation counters

(sandwiched with lead for neutral detection) used to veto events with particles that do not
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enter the spectrometer (veto box). A similar system of four counters covers the frame of
the first drift chamber (veto collar). We want to enhance the number of events with an
interacted beam proton that survives the interaction. To this end there is a system of
counters after the last beam chamber (forward hodoscope, FH) which is used as a trigger

on events with a proton that scattered out of the beam envelope.

Electronic signals from the detector elements are amplified, digitized, read out, and
written to tape by a set of electronics called the Transport System. Signals from the drift
chambers are amplified by electronics residing on the chamber frames and discriminated
(for noise rejection) by electronics next to the detector. From there the signals travel over
200’ long cables and the time of arrival is measured, digitized and stored by 400 cards
called TDC’s. The TDC’s read out only the channels that produce a signal during an event
gate, a method called “zero suppression”. Of the 15000 instrumented wires, typically less
than 300 are read out per event. The TOF and Cherenkov signals follow a similar path but
for these systems a pulse height measurement is also performed. Some of the TOF signals
are routed to the electronics through a second shorter, faster path. The early arriving
signals are used to make a decision whether an interaction of interest occurred and therefore

if the detector should be read out.

Events that pass trigger requirements are digitized and read out to a set of 12
intermediate storage buffers. From there they are routed to a multiplicity counting
hardware processor. If enough drift chamber hits are recorded, they are transferred to a

VME computer system and written to VHS tape.

The accelerator would deliver beam, at a constant rate, for 20 seconds every 60
seconds (one "spill"). Typical operation conditions for the detector were 5 X 106 to
10x 106 protons/sec beam rate and 104 events/sec surviving all trigger requirements.

Given that the average event size is just under 1 Kbyte, this event rate translates to a data
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rate of 10 MBytes/sec. The tape drive writing speed was smaller, 4 MBytes/sec, so we

accumulated data to solid state memory and continued writing "off spill".

Track reconstruction was performed by a special purpose hardware processor,

which consisted of 700 non-commercial electronic boards.

With the exception of the beam spectrometer and the VME computer system, all
major detector elements come from the predecessor of this experiment, BNL E766. The
detector hardware and the majority of the electronics mentioned above were designed and
constructed by members of the collaboration specifically for the two experiments. Detailed
descriptions of design, construction and performance can be found in various publications

[36-41] and theses [42-46].

2.2 Multiparticle Spectrometer and Magnet

Charged tracks from interactions in the hydrogen target propagate through and are
reconstructed in the multiparticle spectrometer. This spectrometer consists of six mini-drift
chambers placed in a 240 ton, large aperture, dipole magnet. The size of the magnet is 2.5
x 1.2 x 2.2 meters in x.y.z where the z coordinate is along the direction of the beam and y

is along the vertical.

Five of the six chambers lie within the magnet aperture. To reduce multiple
scattering in the space between the drift chambers, there is a rigid picture frame box filled
with helium preceding each chamber. The wire chambers and helium boxes are bolted on
an aluminum cart. The whole cart assembly can be moved out of the magnet aperture for
maintenance, on a set of rails fastened on the magnet. During data taking, the cart and
chamber assembly form a rigid body, and the cart itself is bolted (spring loaded) to the

magnet. Thus the geometry of the system is easily reproduced after a maintenance access.
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The sixth and largest chamber is mounted on the Cherenkov counter frame and during data
taking is positioned at the downstream end of the magnet. The chamber apertures vary
between 0.76 x 0.46 and 1.8 x 1.2 meters (horizontal x vertical). Detailed size and
operation parameters can be found in Table 2.1. Diagrams of the drift chamber system and

the magnet are shown in Figures 2.2 and 2.3.

Positioning the drift chambers inside the magnet aperture makes track
reconstruction more difficult, since curved tracks must be reconstructed. On the other
hand, measurements near the target system help resolve the pattern recognition problem.
Also proximity to the target provides large geometric acceptance, important for the complete
reconstruction of charged final states. The horizontal and vertical geometric angular
acceptance were +580 and *410 mrad respectively. An advantage of positioning the drift
chamber system very near the target is that the overall size, and therefore the cost, of the
detector was kept small despite the very large acceptance of the system. The disadvantage
of the limited length of the spectrometer is an inability to measure high momentum tracks
accurately. We accept and accurately measure particles with momenta between 0.15 GeV/c
and 20 GeV/c. Although we can resolve the trajectory of much higher momentum tracks

the momentum measurement resolution deteriorates rapidly for momenta above 20 GeV/c.

All six drift chambers have a similar construction. There are 11 wire planes per
chamber. Four anode planes of instrumented, sense wires alternate with five cathode
planes. There are two ground planes at the ends of the chamber. The ground planes
provide a clearing field and electrostatic stability. The wire orientations for the anode
(instrumented) planes are -21.6°,-7.63°,7.63°, and 21.6° with respect to the vertically
oriented magnetic field. The wires in the cathode and ground planes are vertical. Wires for
each plane are glued on a fiberglass (G-10) frame, which in tum is supported by the
aluminum frame of the chamber. The thickness of the G-10 frame controls the anode to

cathode distance, which is only 3.25 mm. The small spacing reduces the typical drift time
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to about 35 ns and the chamber memory time to around 70 ns, therefore allowing for
operation of the chambers at megacycle rates. However, small spacing does not allow
large multiplication of the ion trail. To compensate, we use very small diameter anode
wires and a gas that yields a large number of ion pairs per unit length of ionization. The
gas mixture is 71% argon, 25% isobutane, 4% methylal. The anode wires are gold plated
tungsten with a diameter of 20 or 25 i m, depending on the chamber. With this

configuration and 2 kV voltage we achieved gains of 10°.

High chamber efficiency is very important for the reconstruction of complex final
states and our chamber efficiency is well above 99% for every plane. The maximum
number of hits for a track that intersects all six chambers is (4 planes per chamber)x(6
chambers)=24. Therefore we define efficiency for a chamber plane as:

# of tracks with 24 chamber hits
Sum of tracks with 24 hits, plus tracks with 23 hits

where the hit is missing from the chamber plane for which we estimate efficiency.

We use the measured wire-hits to reconstruct particle trajectories. It is very difficult
to do so when there are a large number of tracks, since as the number of tracks increases
the number of the wire hits combinations that can produce a track grows very fast. The
reason is that wire hits do not provide a fixed space point where the track intersects the
chamber. Given a wire-hit, the track can lie anywhere along the wire. In addition, the drift
time measurement conveys information about the distance of the track trajectory from the
wire, but no information whether it passed to the left or right of the wire. For example
consider that we use only two anode planes (views) and we want to resolve space points on
an anode plane for the trajectory of two tracks. In this case there are four candidate space
points. If we allow for left-right assignment of drift times the number of candidate space

points is 16. To solve the problem we use a two step approach. First we solve the pattern
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recognition problem. We find the track trajectory using only the wire hit information.

After tracks are found, we assign the drift time so that the ¥ of the track is improved.

To resolve the pattern recognition problem, we employ multiple, redundant anode
planes (views). The orientation and number of anode planes (views) is unusual for a fixed
target experiment. Traditionally, one of the anode planes is oriented perpendicular to the
main component of the magnetic field. Since tracks bend perpendicular to the magnetic
field, wire hits from all chambers in this view lie (to a good approximation) on a straight
line. This simplifies the pattern recognition problem at least when only a few tracks are
measured (You need only two points to determine a straight line. For a curve you need at
least three). The measurement is augmented by one or two anode planes at small angles
with respect to the magnetic field. The approach in this experiment is different. Instead of
relying on a "no-bend" anode plane, we use 2 pairs of planes and take advantage of the
redundant measurements. The measurement precision is the same for both pairs.
Trajectories that form a track only in one of the two pairs are rejected. The small anode to
anode spacing (between 2 and 3.5 mm) allows us to solve the pattern recognition problem
without using the drift time. In addition, small wire spacing reduces the sharing of wire
hits among tracks. The six chambers employ a total of 11,264 instrumented (anode) wires.
Drift times are assigned after hit assignment to tracks to increase the precision of the

measurement.

A significant factor in the precision of momentum measurements is the effect of
multiple scattering on the track trajectory. The amount of material in the spectrometer was
kept low with the use of helium volumes between the chambers and careful selection of
materials for chamber construction. Each chamber, (including wires, windows and

ionization gas) contributed only 0.15% of a radiation length of material.

Precise position measurement, coupled with the very small amount of material in

the system and detailed knowledge of the magnetic field, provide excellent momentum
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measurements. For tracks measured in all six chambers the momentum resolution is

Ap/ p=+0.002p. The mass resolutions for A’ and K, are 1.75 and 4.5 MeV/c?

(FWHM) respectively.

More details about the construction and operation of the drift chamber system can

be found in reference [42].

2.3 Beam Spectrometer

We reconstruct the beam particle trajectory using eight small aperture mini drift
chambers (see Figure 2.1). The first three are placed before the multiparticle spectrometer.
They measure the slope of the incoming beam particle and are used to extrapolate its
trajectory through the hydrogen target. The remaining five chambers measure the trajectory
of the outgoing beam proton, and in conjunction with a string of small aperture magnets,
determine its momentum. Because the incoming beam is monochromatic, measurement of
the outgoing proton momentum yields the momentum transferred to the target system. To
achieve a high precision measurement, we place the chambers far away from the interaction
point and use a string of magnets with a high field integral: the distance between the first
and last chamber is 870 ft; the field integral is 12 GeV/c.

In addition to the momentum transfer measurement, we use the beam track
trajectory to constrain the position of the primary interaction vertex. The large distance
between beam chambers allows the determination of the primary vertex coordinates
perpendicular to the axis of the beam with a precision that is much higher than the one

achieved using tracks reconstructed in the multiparticle spectrometer.

The beam spectrometer was designed to operate efficiently with high beam rates.

The accelerator delivers beam with nearly uniform intensity, for 20 seconds out of every
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minute of operation (one beam spill). The beam intensity is controlled by a pinhole and a
typical intensity during the beam spill 5 MHz (10® protons per spill). The beam proton
momentum is 800 GeV/c with dispersion Ap/ p <1.5x10™. The beam line was
configured to deliver a 2 by 20 mm horizontal ribbon beam profile at the target. The

elements of the beam line are shown in Figure 2.4.

The size of the beam suggests the use of small aperture chambers. We use two
types of chambers. For the three incoming and first three outgoing chambers the aperture
is 4x6 inches. For the last two chambers the aperture is larger, due to scattering in the
hydrogen target and because the magnet string spreads the beam as a function of the
momentum transferred. The aperture for the last two chambers is 8x15 inches and the
anode to anode spacing is increased from .040 to .060 inches. Detailed size and operation

parameters can be found in Table 2.2.

The construction of the beam chambers is very similar to the construction of the
large aperture chambers used in the muitiparticle spectrometer. As is the case for the
multiparticle spectrometer chambers, there are four anode planes at -21.6°,-7.63°,7.63°,
and 21.6° with respect to the vertical. To form the five cathode and two ground planes,
hard temper aluminum foil is used, instead of wire planes. The anode to cathode distance
(.055 inches) is even smaller than in the multiparticle spectrometer, because the operation
rate is much higher. The incoming chambers are able to reset and produce a signal at a rate

equal to the beam rate, not just the interaction rate.

Signals from the anode wires are amplified by electronics mounted on the chamber
frames. The differential output is driven to leading edge discriminators. The time of arrival
of the discriminator output is digitized by TDC cards identical to the ones used for the
multiparticle spectrometer chambers. The long distance of several chambers from the
electronics room causes distortion and attenuation of the electronic pulses. Therefore

"repeater” electronics cards are used to regenerate the signal. The TDC's encode the time
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of arrival in 2.5 ns bins. For the average drift velocity of 40 um/ns in the chamber one

TDC bin corresponds to a distance of 100 um in the chamber.

We operate the small chambers under high pressure (30 psig) to improve efficiency
and space resolution. The large beam chambers were not designed to go much above
ambient pressure and were never operated above 7 psig. For the small chamber windows,
a 2 mil Kapton sheet is used as a gas seal. The pressure is contained by Kevlar cloth
clamped on the Kapton window. The cloth represents 1.35x 10~ radiation lengths of
material, which is less than the radiation length of the 2 mil Kapton window used as a gas
seal. For the two larger chamber windows, only a 10 mil Mylar sheet is used. For both
types of chambers we use a gas mixture consisting of 82% argon, 15% isobutane, 3%
methylal. With this gas mixture, and high voltages of 2.1 kV and 1.4 kV for the small and

large chambers respectively, the efficiency is well above 99%.

Since the target is only 2% of an interaction length, the majority of the beam
particles do not scatter in the hydrogen target. Therefore the majority of ionization from the
beam particle is concentrated in a small area, about 0.5 cm? for all chambers. The small
beamn spot implies that the majority of high voltage current is drawn by few wires in each
chamber. To minimize efficiency loss due to radiation damage effects, the incoming beam
chambers were moved twice during the run, so that no beam spot accumulated more than
an average charge of 0.36 C/cm. A small drop in efficiency for one of the outgoing small
chambers was corrected by increasing the high voltage from 2.0 to 2.1 kV. With the

measures mentioned above, the chambers were fully efficient for the duration of the run.

The r.m.s. error for position measurement is 90 pm for the small chambers and

125 pm for the large chambers. The momentum resolution for the overall system is o <
500 MeV/c. This is the resolution achieved without corrections for small changes to the

geometry during the run. For example the vertical position of the chambers would change
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as a function of day and night changes in temperature. A more detailed description of the

beam spectrometer operation and performance can be found elswhere [47].

It is worth mentioning that momentum is measured with respect to the uninteracted
beam tracks. A sample of uninteracted beam tracks, recorded with the hydrogen target
empty, defines the trajectory of the 800 GeV/c beam particle. For each event we use the
known geometry of the spectrometer, and the position and field strength of the magnets, to
assign the difference between the 800 GeV/c particle reference trajectory and the measured
trajectory to a momentum difference. In other words if the accelerator was delivering
protons with momentum of 799 Ge V/c instead of 800 GeV/c, we would not be able to tell

the difference. The absolute calibration of the beam energy is known to less than 1%.

2.4 Scintillation Counters and Time of Flight System

A large number of scintillation counters are used for particle identification and
triggering. Although the counters come in a variety of shapes and serve different purposes,
they share a common construction and readout design. For all counters, the scintillator is
Pilot-U and scintillation light is transported through a short Lucite light guide to an EMI
9954B photomultiplier. To insure stable output gain and minimize electron transit times,
only six stages of the 12-stage photomultipliers are used. A preamplifier at the base of each
photomultiplier produces three output signals, one analog and two digital. The analog
signal is used to measure the pulse area, which is proportional to the ionization deposited
by a particle. Of the two digital signals, one is used to measure the time of flight for the
ionizing particle, and the second is routed through a faster, shorter cable to the electronics
that form the trigger decision. The counters are clustered in three regions of the
spectrometer: the target, the multiparticle spectrometer and at the end of the beam

spectrometer. All counters participate in the formation of the trigger decision. Precise time
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of flight measurement is crucial only for the two hodoscope arrays in the multiparticle
spectrometer. The rest of the counters are used primarily for triggering, with the exception
of the veto counters that surround the hydrogen target which are also used as a crude recoil

detector.
2.4.1 Target Region

A small counter (51 mm x 51 mm x 2 mm) just upstream of the hydrogen target
signals the arrival of a beam proton (target counter or TC). The signal from this counter is
used as the reference time with respect to which all other time measurements are made.
Between the target counter and the hydrogen target there is a system of four counters used
to veto beam halo (The Veto Thing or TVT). The four counters are arranged so that they
form a 3.2 cm by 1.3 cm square opening to allow passage of the proton beam. The
hydrogen target is surrounded by 12 scintillation counters to flag events with particles that

'do not enter the spectrometer (veto counters). The counters form a truncated, four sided
pyramid around the hydrogen target. Every veto counter consists of five pieces of 3 mm
thick Scintillator, interleaved with four pieces of 3 mm thick lead for neutral detection. The
veto counter coverage is augmented by four similarly constructed counters that cover the
frame of the first chamber in the multiparticle spectrometer (Veto collar). We used the veto
counter signals for topology selection during data analysis, but we did not use them for on
line triggering with the exception of a small subset of the data set. In particular, we used
the veto counter system as a crude recoil detector in the analysis of centrally produced final

states.
2.4.2 Multiparticle Spectrometer

Most of the scintillation counters in the detector are located in the multiparticle
spectrometer region and are clustered in the middle (Middle Hodoscope) and the rear end of

the spectrometer (Rear Hodoscope). The 102 counter configuration forms the Time Of
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Flight (TOF) system for identification of non-relativistic particles. The time of flight
system uses time of arrival measured by a counter, in conjunction with the momentum
measurement from the drift chamber system, to determine the mass and therefore the
identity of a particle. For particles reaching the Rear Hodoscope, the system can
distinguish protons from pions for momenta up to 1.5 GeV/c and pions from kaons up to 1
GeV/c. For particles that reach only the Middle Hodoscope, the shorter flight path results

in proton-pion separation for momenta up to 0.9 GeV/c.

The Middle Hodoscope is located between chambers 4 and 5. The counters form a
picture frame (see Figure 2.5) that detects particles which intersect the first four chambers
but are unlikely to reach the Rear Hodoscope. The counters do not interfere with the
trajectory of particles that propagate through all six spectrometer chambers and therefore do
not introduce material in the path of these particles. Of the 30 scintillators used to form the
Middle Hodoscope, 12 are 762 mm x 51 mm x 13 mm and form the top and bottom of the
picture frame, while the remaining 18 are 298 mm x 79 mm x 13 mm and form the frame
sides. The side counters are positioned at a 45° angle in the X-Z plane around the vertical.
Although the Middle Hodoscope counters are positioned within the magnetic field, the
photomultipliers must be in a relatively field free region, since the magnetic field interferes
with electron transport in a photomultiplier. Hence, an opening was provided on each side

of the magnet to position the photomultipliers outside the magnetic field.

The rear hodoscope is mounted at the end of the spectrometer magnet, just upstream
of the last drift chamber (chamber 6). A total of 72 counters, arranged in two rows cover
completely the downstream aperture of the spectrometer. The large number of counters
reduces the probability that two or more particles share the same counter and therefore
reduces the probability for confusion in the time of flight assignment. All scintillators are

610 mm x 51 mm x 3 mm except for four counters in the middle of the array, which are 5
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cm shorter. The short counters create a 10 cm x 10 cm rectangular opening for the proton

beam.

Overall, the Time Of Flight system achieved a detection efficiency of more than
95%. The signals from the photomultiplier bases were digitized by custom-made electronic
cards with a time of flight bin size of 127 psec. The whole system, including scintillator
and readout electronics, achieved a =600 psec arrival time measurement, which translates
to proton-pion separation for momenta up to 1.5 GeV/c in the Rear Hodoscope and 0.9
GeV/c in the Middle hodoscope. The custom-made electronics for the photomultiplier base
amplifier-discriminator, along with the digitizing cards, are shared by all counters in the

system. They are described in detail elsewhere [38,43].
2.4.3 Beam Spectrometer

The last system of scintillators in the beam path is the Forward Hodoscope (FH). It
is located at the end of the beam line, after the last beam spectrometer drift chamber. A total
of eight 12.5 x 10 cm scintillators cover the entire aperture of the last beam chamber. Two
of the scintillators deviate from a rectangular shape so that they leave a 32 mm by 13 mm
rectangular opening for protons that do not scatter outside the beam envelope (see Figure
2.6). To reduce accidental triggers, the scintillators overlap and we require that at least two
counters are on for a scattered proton trigger. This information is used to form the third
level trigger in the data acquisition system. The inclusion of this third trigger level
significantly improves the number of interactions which can be recorded, because it
introduces a minimum momentum loss requirement for the beam particle. The use of the
forward hodoscope as part of the detector trigger was complicated by the long distance
between the location of the counters and the electronics room. The method we employed to

accommodate the late arrival of the signal is described in the trigger section.
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2.5 Cherenkov Counter

For the study described in this paper, we are interested in the central production of
mesons near the x.=0 region. Since the center of mass system after a proton-proton
collision in this experiment is moving rapidly in the laboratory ( ¥ =20), the momenta of
the meson decay products are usually too high for time of flight identification. For direct
particle identification in this study, an extremely important detector element is the
Cherenkov counter. It takes advantage of the Cherenkov radiation emitted by a charged
particle propagating in a medium where the speed of light is lower than the speed of the
particle. For this detector, filled with atmospheric pressure Freon 114, Cherenkov

radiation threshold momenta for #/K/p are 2.54/9/17 GeV/c.

The detector is positioned just downstream of the multiparticle spectrometer magnet
(Figures 2.2, 2.3) and covers the entire spectrometer aperture. Every particle propagating
through all six of the spectrometer chambers enters the active volume of the counter. In
fact, the last drift chamber is mounted on the aluminum box that houses the Cherenkov
counter, and has an aperture equal to the counter window. Cherenkov light is focused by
96 toroidal mirrors, each one pointing to a single photomultiplier. The mirrors are glued on
two support planes. The support planes have a 120° angle between them and a 30° angle
with respect to the vertical. A side view of the counter is shown in Figure 2.7. The
support structure is a lightweight honeycomb material (Dupont trademark "NOMEX") with
a density of 0.31 Ibs/ft2. The mirror positions and shapes are optimized to focus light from
relativistic particles originating at the hydrogen target and traveling in straight lines through
the spectrometer. This is a realistic approximation for a relativistic particle produced by an
interaction in the hydrogen target, but focusing is not as good for particles with significant
curvature, or for particles originating from secondary vertices downstream of the hydrogen
target. To collect more light from such particles, a reflective cone surrounds each

photomultiplier. Photomultipliers and their bases along with the associated readout cables
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are positioned on the top and bottom of the Cherenkov housing, and therefore away from

the path of any particle.

The radiator is Freon 114 (C,Cl,yFy) at atmospheric pressure, with an index of
refraction n=1.0015. This results in a threshold speed B, = 1/n =0.9985c. As can be
seen from Figure 2.7, the particle path length in the radiator varies between 50 cm and 100
cm. Therefore a fully relativistic particle has a light cone projection at the mirror position
with a diameter that varies between 5.5 cm and 11 cm [45]. Since the smallest mirrors we
use are 15.3 cm x 17.6 cm, a maximum of four mirrors can be illuminated by a single
particle. There are six mirror types, distinguished by size and curvature, but only three
mirror sizes [42]. The small mirrors (15.3 cm x 17.6 cm) are positioned close to the beam
particle trajectory, at the center of the detector. This is the area where the highest track
density is expected and where the light cone diameter at the mirror is smaller, due to the
shorter path in the radiator. The large mirrors occupy the edges of the detector (see Figures
2.3, 2.7). Overall the high segmentation of the Cherenkov counter readout (96 channels)
reduces confusion caused by sharing of the same readout channel by more than one
radiating particle. All events selected for this study required a beam proton in the beam
spectrometer. Thus there is always a fully relativistic beamn particle traveling through the
central region of the Cherenkov counter. The four central mirrors are always illuminated
by the Cherenkov light cone of that particle. The beam path in the radiator is short, and
produces a light cone with a diameter that is only 5.5 cm, much smaller than the
dimensions of the central mirrors (15.3 cm x 17.6 cm). Since every beam particle radiates,
other particles radiating in the four central cells cannot be properly identified. We attempted
to minimize this effect by masking the beam particle light cone with a 5.5 cm diameter
circular piece of black paper positioned at the center of the counter. The goal was to collect
only light radiated into the unmasked region of the central mirrors by particles other than
the beam proton. Unfortunately, masking was not complete and for every event there is a

photomultiplier signal above threshold for all four central cells. At this point of the analysis
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process we are not able to interpret information from the four central cells and therefore

they are not used for direct particle identification in this study.

Cherenkov light in Freon 114 has a spectrum which extends into the ultraviolet
region (Freon has a transmission cutoff is at 2200 A )- Since the photomultipliers have
maximum quantum efficiency at an optical wavelength of 4200 A , we coat the
photomutltiplier windows with p-terphenyl which converts ultra-violet light to 4600 A and
increases the amount of light available for detection. However, the light signal reaching the
Cherenkov photomultipliers is weaker than the signal in the scintillator counter system.
Hence we use one more photomuitiplier amplification stage, for a total of seven out of
twelve possible dynode stages. This provides sufficient sensitivity to separate
photomultiplier noise from the signal from a single photoelectron. A preamplifier at the
base of each photomultiplier produces two output signals, one analog and one digital. The
digital signal is used to measure time of arrival and helps us reduce out of time background
measurements. The analog signal is proportional to the amount of light collected by a

mirror and is the measurement used for particle identification.

The number of photons emitted by a relativistic particle can be expressed as

N p:
=1-Pa [
N = n

where the threshold momenta, p,, for 7/K/p are 2.54/9/17 GeV/c [48]. For electrons the
threshold is much lower, (0.0094 GeV/c) but electrons originating at the hydrogen target
must have momenta much higher than the threshold momentum in order to reach the
counter mirrors. Most particles with momenta lower than 0.5 GeV/c are swept out of the
spectrometer aperture by the magnetic field before they reach the Cherenkov counter.
Therefore all electrons transversing the counter are fully relativistic and radiate the
maximum number of photons. For a fully relativistic particle we observe on average,

depending on the mirror/photomultiplier pair, between 10 and 15 photoelectrons. The
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maximum number of photoelectrons depends on the average radiator path length for a given
mirror, the efficiency of the optics, and variations in the performance of photomultipliers
and associated electronics. The number of photoelectrons detected (#P.E.) from a particle

is calculated by summing over all photomultipliers with signals above noise:

#pE= Y ADC-pedastal b b for B =1 particle) @)
mirrors Galn
where the calibration is performed for each mirror independently. A “relevant”
photomultiplier is one of the four possible photomultipliers in which Cherenkov light could

be collected, based on the trajectory measured in the spectrometer.

Given the momentum measurement for a particle and its projection in the
Cherenkov counter we can use (1) to predict the number of photoelectrons we expect to
measure for a particular identity hypothesis ( p,, depends on the particle mass, and therefore
on the particle identity). We compare the number of photoelectrons predicted for this
hypothesis with the analog output of the Cherenkov counter, normalized to number of
photoelectrons by formula (2). There are two methods to do the comparison. The first
method treats the device as a threshold counter. An hypothesis is called inconsistent if the
number of photoelectrons predicted exceeds a limit and no signal is observed, or if we

observe some number of photoelectrons while none is predicted.

The second method uses a more sophisticated analysis and allows differentiation
between two particle types in a momentum region where both particle types are above the
Cherenkov radiation threshold. The difference in Cherenkov light intensity between two
particle types is greatest when the particle momentum is just higher than the threshold
momentum of the particle with the larger mass [46]. Since measurement of the number of
photoelectrons is a low statistics sampling (expected number of photoelectrons fora =1
particle is between 10 and 15, and for a particle that is not fully relativistic even less) we

employ Poisson statistics. We compare the number of photoelectrons expected to the
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number of photoelectrons observed and derive a confidence level for a particular
hypothesis. If the confidence level is below 0.001 the hypothesis is labeled inconsistent.
If the confidence level is above 0.1 the hypothesis is labeled as a good identification. For
this analysis a particle is labeled as compatible with any identification hypothesis with
confidence level above 0.001. If a particle misses the Cherenkov counter aperture it is

labeled compatible with any identity hypothesis.

2.6 Data Acquisition and Trigger

We want to use the available beam time efficiently to record as many events as possible
relevant to the physics topics we want to study. The event recording rate is determined by
three factors; (1) the recovery time for the detector elements; (2) the time to decide if an
interaction relevant to our physics goals occurred (trigger system); and (3) the time for the
electronics to digitize the measurements and transport them to the output tape drive
(Transport System). Beyond the need for efficient triggers and readout speed, the system
should be cost effective and reliable. The E690 trigger and data acquisition system was
designed to handle interaction rates greater than 10 MHz and event recording rates greater
than 12 KHz (about 12 MBytes/sec) from a detector with more than 15,000 channels.
Most of the electronics used are custom made boards designed and constructed by members
of this collaboration with emphasis on easy implementation, calibration and maintenance.

A diagram of the trigger and Transport System is shown in Figure 2.8.

2.6.1 Readout System Principles

For this experiment it is not easy to draw the boundary between the trigger and
Transport System, since we accomplish trigger efficiency by incrementally reading out the
detector. We arrange the trigger requirements in a pipeline. For three out of the four

pipeline stages, we interrupt the detector readout as soon as an interaction fails a trigger
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requirement. For the fourth trigger stage (processor multiplicity logic), the event is
completely digitized and the detector is available for the next event while the fourth trigger
requirement is examined. Therefore, I will describe the trigger and readout systems in
parallel. As will be made clear in the detailed description of the trigger stages, the tests to
determine if a trigger requirement has been satisfied become increasingly more complex
(and time consuming) as we progress down the pipeline. The additional complexity can be
afforded because as we progress down the pipeline, the number of events which require
testing is reduced. The readout system employs the highly parallel, pipelined, data-driven
architecture of the Nevis Transport System (NTS). The high parallelism of the architecture
manifests itself in the concurrent digitization of all detector channels and the readout of the
digitized information through several parallel data streams. An example of a pipelined
operation is the decoupling of the fourth trigger stage (multiplicity logic) from the detector
front end by data buffers. In addition to decoupling the fourth trigger stage, a number of
events can be stored in the pipeline that extends from the detector digitization electronics to
the tape drive . Extensive buffering allows us to smooth event readout and minimizes
delays due to event pile up. Finally, efficient operation of the trigger and Transport System
is accomplished with the use of a data driven architecture. Once the system is initialized by
a host computer, trigger, readout, and merging of the parallel data streams into a
contiguous event proceeds without the use of external commands. No external intervention
is required to route the data or reset electronic components between events or between beam
spills. The behavior of the electronic boards is determined by the data itself. This control
scheme allows concurrent operation of electronic boards under local control and the
elimination of delays associated with computer interrupts. The system provides, also under
local control and without a host computer intervention, "zero suppression”, readout limits
per drift chamber plane and high level digital signal processing for rejection of adjacent or

out of time drift chamber wire hits.

36



2.6.2 Trigger Pipeline

We take advantage of the detector ability to readout tens of thousands of events per
second and avoid restrictive triggers that isolate particular final states. The only firm
requirements are that a proton-proton interaction occurred, that the beam proton survived
the reaction, and that the beam proton is reconstructable in the beam spectrometer. We

accomplish this by arranging in a pipeline the following four triggers:

1) Trigger Gate Initial (TGI) requires the presence of a beam proton and the
production of at least one charged particle: a signal from the target counter in
coincidence with a signal from the Rear or Middle Hodoscope.

2) Trigger Gate 2 (TG2) requires the absence of beam halo (no signal from the
TVT) and a signal from at least one hodoscope counter.

3) Trigger Gate 3 (TG3) uses the Forward Hodoscope array to require that the
beam proton scattered outside the envelope of the unscattered beam.

4) After detector digitization and readout are completed, the hardware
processor multiplicity logic is used to count the number of wire chamber
hits in the multiparticle spectrometer and beam spectrometer. We require
enough wire hits to reconstruct at least one track in the beam spectrometer

and require at least one hit in the multiparticle spectrometer.
2.6.3 Signals Before Digitization

Before a detailed discussion on the trigger requirements, I will give a brief
description of the electronic signals we need to digitize and read out to tape. We employ
only two basic types of detectors: drift chambers, and photomultipliers for scintillation or

Cherenkov light detection.

For drift chambers, the anode wire signal is first amplified and shaped by
preamplifiers mounted on the chamber frames. The signal is further amplified and
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compared against a threshold level by discriminators residing close to the chambers. The
discriminator output is a standardized differential pulse at ECL levels that travels in 200
foot long cables to the Time to Digital Converters (TDC). The cable introduces a 300 ns
delay and serves as analog storage for the drift chamber signal until a trigger decision is
made. Each channel has its own preamplifier, discriminator and time to digital converter.

Therefore we process all channels in parallel and minimize the detector readout time.

For photomultiplier signals the readout path is more complicated. In addition to
time, we measure pulse height and some of the signals are used to form the trigger
decision. Every photomultiplier is attached to a base containing a voltage divider for the
photomultiplier, an amplifier and a discriminator. There are three output pulses available
from each base: an analog output from the amplifier and two "digital” outputs with standard
height and opposite polarity from the discriminator. The analog output is used for the pulse
height measurement. The two digital signals are used for: a) time of flight measurement
and b) trigger decisions in the Fast Trigger Logic system (FTL). We measure time of flight
for all photomultipliers (Cherenkov and scintillator counters) but only scintillator signals

are used for the trigger.

From the base, the analog signal goes directly through coaxial cable to the
digitization cards. One of the two digital signals (Digital plus) is used for the definition of
the Trigger Gate Initial (TGI). For the TGI we use only signals from the target counter and
the two Hodoscopes. The digital signal from each hodoscope counter is immediately
processed through logical OR gates with the output of other counters within a group (one-
half of the Middle Hodoscope counters or one-quarter of the Rear Hodoscope counters )
and the resulting signal (Fast OR or FOR) is transferred through relatively short foam core
cable to the TGI electronics. The second digital signal (Digital minus) is routed to eight
channel cards in the electronics room (Photomultiplier Discriminator Latch or PDL) that

standardize the signal. On the condition that a TGI gate is present, the PDL produces
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output pulses with a leading edge fixed with respect to the TGI gate and width proportional
to the arrival time of the digital signal, plus a minimum width of 12 ns. The fixed
minimum width facilitates logical operations. Each PDL card produces three outputs, used

for the second level trigger and the time of flight measurement:

1) All channels in a particular card that are active within the TGI gate are
processed through an OR gate and made available to the second level trigger
module (TG2).

2) The number of active channels within the TGI gate is summed and the result
is transferred to a module called the Majority Logic. The Majority Logic
sums all PDL inputs from the Middle and Rear Hodoscope and makes the
result available to the second level trigger module (TG2).

3) The standardized digital signal is routed though flat ribbon cable to the Time
to Digital Converters (TDC).

Because the second level trigger decision initiates the digitization of pulse height and time
of flight signals, we delay the arrival of the output used for time of flight with respect to the
other two outputs using cable delay. The PDL modules along with the associated cable
delays control the relative timing of signals used for the second level trigger (TG2) and the
time of flight measurement. Notice that the trigger sequence is initiated by the TGI output

(gate) and all timing is relative to this gate.
2.6.4 TGI

Now I can proceed to describe the trigger requirements in detail. A typical TGI

trigger required the following:

1) the presence of a signal from the target counter (TC).
2) the presence of a signal from at least one counter from either the middle or

the rear hodoscopes (Fast OR).
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3) the absence of a TGI signal in the previous 30 ns.
4) the absence of the Master Gate signal.

The target counter, positioned just in front of the hydrogen target, signals the presence of a
beam proton. Coincidence with the Fast OR from the Hodoscope counters, signals the
production of at least one secondary charged particle. Requirements (3) and (4) effectively
turn off the detector readout in cases that the interaction is not recordable. A 30 ns
minimum between TGI signals is required to minimize the residue from previous beam
protons. The Master Gate signal prevents detector readout if the detector is not ready for

data recording. The Master Gate signal is true if:

a) There is a beam gate. (i.e. the beam is present).
b) The drift chamber system high voltage is on.
c) The beam line magnets are on.

d) The manual gate switch is on.

The TGI requirements mentioned above were used throughout the data run except
for a small subset of the data where requirement (2) (Fast OR) is relaxed. We use this

sample for calibration purposes.
2.6.5TG2

A successful TGI activates the PDL and TG2 electronic modules. For a typical

TG2 trigger, the requirements were:

1) A TGI strobe.
2) Absence of a Halo Counter signal (TVT).

3) A Majority Logic signal that at least one counter from the middle or Rear

Hodoscope was on (GTO).



4) Absence of a self imposed hold signal due to an event that did not satisfy the
TG?2 trigger but left a lot of tracks in the drift chamber system.

5) Absence of a hold signal, due to the readout of a previous event.

The Halo Counter rejects TGI triggers due to beam halo. For a small subset of the data
sample, in addition to the Halo Counter (TVT), the absence of a signal from the Veto
Counters ( VETO) was required. The Veto Counters flag particles escaping the detector
aperture. For flexibility in the definition of the trigger requirements, conditions (2), (3) and
(4) are processed by a lookup memory table accessible through the host computer. For
condition (2) the input to the lookup table is the OR signal from the PDL. module that
handles the veto counters. For condition (3) the input comes from the Majority Logic
counter sum (GTO). Finally, for condition (4) we use the Majority Logic output that
asserts that more than four counters were on (GT3). In this case the TG2 remains inactive
for a minimum of 140 ns independent of the TG2 trigger decision. The final TG2
condition (5) is generated downstream of the TG2 module, by the electronic cards
responsible for event digitization and readout. A successful TG2 initiates digitization and
readout of the event. While the sequence is in progress, the readout control cards send a

hold signal that prevents further TG2 gate generation.
2.6.6 Prescales

Since a hold signal prevents second level trigger generation, not all TGI gates are
processed by the TG2 electronics. In such a case the TGI strobe is simply ignored. The
TG2 electronics record the number of TGI triggers the TG2 was able to process, and these
triggers are referred to as live TGI triggers. After a predetermined number of live TGI
triggers (typically 256 or 4096), an event is accepted without further requirements. Such
events are called prescale events and are tagged so that they can be identified and used for
calibration during the analysis. Further down the trigger pipeline prescalé events can be

rejected by subsequent trigger requirements, but there is always a fraction of prescale
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events designated to survive all triggers independent of trigger conditions. We distinguish
between prescale events subject to trigger selection and prescale events that survive
independent of trigger requirements, using the event number assigned to each event by the
TG2 electronics. A prescale event with event number which is a multiple of 215 survives

independent of trigger requirements.
2.6.7 TG3

A successful TG2 gates the third level trigger (TG3). The only additional
requirement for a successful TG3 is a coincidence between Forward Hodoscope counters.
The inclusion of this third trigger level significantly improves the number of interactions
which can be recorded, because it introduces a minimum momentum transfer requirement
for the beam particle. It rejects events for which the beam particle breaks up and is not

measured in the Beam Spectrometer.

The Forward Hodoscope coincidence is a requirement that would be easily handled
by the second level trigger electronics, if the signal could arrive in time to be considered
with the rest of the TG2 requirements. The distance between the FH and the electronics
room is too long for such an arrangement. The TG3 is a very simple module designed to
take advantage of the readout controller capability to reset the digitization electronics while
digitization is in progress. A successful TG2 output is used to gate the TG3 and to initiate
event digitization. The Forward Hodoscope signal, and therefore the TG3 trigger decision,
arrives after the start of digitization but before the readout sequence is in progress. If the
TG3 requirement is satisfied, digitization and readout proceed uninterrupted. Otherwise, a
reset signal is generated and the partially digitized event is eliminated before the start of the
readout sequence. The implementation of the TG3 depends on the fact that the digitization
time is constant, independent of event size, since digitization of the more than 15,000 drift

chamber and more than 200 scintillator channels is performed in parallel.
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2.6.8 Digitization Cards and Segmenters

Drift chambers TDC's measure the drift time in 2.5 ns bins. For photomultiplier
signals, the Pulse Height and Time system (PHT) digitizes the pulse area and time of
arrival in nominal bins of 0.31 pC and 0.125 ns respectively. The drift chamber, counter,
and fast trigger electronic cards reside in three different crate types with distinct physical
and electrical layouts. For all three systems there are dedicated readout cards called
Segmenters (one per physical crate). The Segmenters are responsible for the readout
sequence through the back-plane and the transfer of data to a single crate of intermediate
buffers. The intermediate buffers (Block Buffers) decouple the front end of the readout

system from the processor and tape drive systems.

The Segmenters for the scintillator and drift chamber systems invoke a priority
encoding scheme that allows readout only from channels that recorded information during
the TG2 gate (zero suppression). The drift time measurement is combined with the drift
chamber wire number, and the ADC/TDC measurement pair from the PHT system is
combined with the photomultiplier number. The Segmenters add to each word their own
identity since multiple crates are necessary to accommodate the large number of channels.
For the multiparticle spectrometer drift chambers, each drift chamber view is digitized in a
separate crate. Four Segmenters output the information recorded in the four chamber views
to a single data streamn (cable) that transfers the data to the Block Buffers. Because the
Beam Chambers have comparatively few instrumented wires, multiple Beam Chamber
views are processed per crate. A total of 10 data streams (cables) transfer the drift chamber
data to an equal number of Block Buffers, while a single cable is used for the scintillator
data. One more data stream (for a total of 12) with information from the Fast Trigger Logic

system completes the event readout.

Drift chamber TDC Segmenters are fairly complex boards and allow processing at

the readout level. They perform drift time to drift distance mapping and a readout sequence
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check. Because a drift chamber might have a cluster of wires turned on by a single track,
the Segmenters are capable of picking wires with short drift times and dropping wires with
larger drift times, based on a comparison of drift times from three adjacent wires. Wire
planes where wires were dropped or a readout sequence error was found were tagged for
later study. The Segmenters limit the number of hits that can be read to 31 wires per drift
chamber plane. Reconstrﬁction of events with more wires per plane is very unlikely due to
the complexity of such an event, therefore reading out more measurements does not
significantly increase the number of reconstructable events. The wire hit limit increases
readout speed and reduces the buffer memory size required for storage of at least one

complete event in each stage of the read-out pipeline.

The entire process of triggering, digitizing and reading out an event to Block
Buffers depends strongly on track multiplicity and takes from a few hundred nanoseconds

to a few microseconds. The average readout time was 4 us.

From the Block Buffers, the event is transferred to the Hardware processor. The
Hardware processor outputs the original data streams, along with the result of its own
calculation, to a second set of Block Buffers. At this point the parallel data streams are
merged to a single contiguous event. The Block Buffers sequentially read-out the
information through the crate back-plane to a single electronic board which transfers the
merged data stream to the host computer for recording on magnetic tape. The data driven
architecture allows us to zero suppress, tag measurements with detector element
identification information, and assemble the readout streams into a contiguous event,
without the use of external commands. The process is sometimes referred to as event
building. Concurrent, independent readout of the 12 parallel data streams provides fast and
efficient operation of the front end electronics. The pipeline created by the Segmenters,

Block Buffers, Processor and second set of Block Buffers can hold at least one event per



stage. Therefore we can concurrently operate on a separate event in each stage of the

pipeline without loss of read-out speed.
2.6.9 Multiplicity Logic

The fourth, and last, test in the trigger pipeline is the Multiplicity Logic algorithm
(MLOG). The calculation and event selection was performed by the hardware processor,
and it was used for the entire data run. Operation principles and technical details regarding
the Hardware processor can be found in Chapter 2.7 of this manuscript. The hardware
processor selects events based on the number of wire "clusters” in the drift chamber
system. A cluster is defined as a series of contiguous drift chamber wire numbers. The
number of clusters in one of the four chamber views is approximately equal to the number
of charged tracks intercepting a chamber. There are cases where the number of charged
tracks can be larger than the number of clusters, e.g., if more than one track shares the
same wire. Also, although more rare, the opposite can be true. If a wire hit is due to
noise, the number of tracks can be smaller than the number of clusters. Although cluster
counting is not as accurate as actually doing the reconstruction and counting the number of
reconstructed tracks, the algorithm offers a good approximation and is much faster than

track reconstruction.

In the hardware processor, cluster counting is performed by a single electronic
board type (multiplicity logic) designed for, and used only in this algorithm. For the
multiparticle spectrometer drift chambers, one multiplicity logic board is used per chamber.
It counts and orders the number of clusters in each of the four chamber views into four 5-
bit fields (counting range is O to 15 plus an overflow bit). Only three of the four cluster
counts are transferred to the output cable and used for triggering. The three 5-bit data fields
are organized into a single data word, with the cluster count from the least populated view

occupying the least significant bits. The next to least count follows in the next 5-bit data
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field and the next to highest count occupies the most significant bits. The count from the

view with the highest number of clusters is ignored.

For the beam spectrometer chambers, there are far fewer wires per view. In order
to reduce the amount of readout hardware, more than one view per chamber is combined
into a single data block and more than one drift chamber is transferred per data stream. We
use a multiplicity logic board per data stream. Since the multiplicity logic boards treat a
data block as a chamber view and a data stream as an individual drift chamber, merging
complicates the interpretation of the result. The multiplicity logic 15-bit output word may
contain 5-bit cluster counts from more than one drift chamber. Because more than one
view is combined to a single data block, the 5-bit count is the sum of clusters from two or
four views, depending on the chamber. The four data streams used for beam chamber
readout are:

1) Incoming chambers 1,2 & 3: four views per data block for a total of three blocks.

2) Outgoing chambers 1 & 2: two views per block for a total of four blocks.

3) Outgoing chamber 3: two views per block for a total of two blocks.

4) Outgoing chambers 4 & 5: same as the organization of 1 & 2.
We can see immediately how the interpretation of the result differs from the multiparticle
spectrometer case. In the 15-bit output word. we designate numbers 1, 2, and 3 for the
three output 5-bit fields. Number 1 refers to the field with the smallest count. For the three
incoming beam chambers only fields 2 and 3 are non zero since the cluster count from the
chamber with the maximum number of clusters is the ignored data field. Field 2 contains
the sum of clusters in all four views from the chamber with the least number of wire
clusters. Field 3 contains the sum of clusters from the chamber with the next-to-least

cluster count.

The ten multiplicity logic boards output the calculation result (one word per board)

to a single cable that transfers the result to an electronic board (Trigger Table) where the
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results are checked and a trigger decision is made. The Trigger Table compares a
predetermined subset of the 5-bit data fields to values stored in an internal memory table. If
any one of the 5-bit fields is outside the limits stored in the memory table, a "failed trigger”
bit is set and persists until the end of the test. Up to four such bits can be used for four
independent trigger requirements. After all multiplicity words are examined, the four
"failed trigger” bits are used to address another memory table. The output of this table is

the trigger decision.

Only one set of MLOG trigger requirements was used for the entire run. The limits
on the number of wire clusters per data block (5-bit field) are presented in Table 2.3. The
four columns represent the four independent triggers used. If the series of requirements in
any one of the four columns is satisfied, the event is transferred to the output Control
Buffer crate. Events that fail all four requirements are eliminated in the processor. As can
be seen in Table 2.3, very strict requirements were imposed on the beam spectrometer
chambers. For the study of proton-proton diffraction dissociation, a reconstructed beam
track is crucial. Events passing the MLOG requirements have at least one beam track with
an excellent chance to be reconstructed off-line. Columns [ and 2 in the table require a
number of clusters consistent with the reconstruction of a single beam track. The
requirements in columns 3 and 4 allow for a second (uninteracted) beam track. In this case
for all but the last three chambers, the number of clusters required is consistent with one or
two beam tracks. The last three chambers reside after the string of analyzing magnets,
where an interacted beam track scatters outside the beam envelope and can be distinguished
from an uninteracted track. Therefore the number of clusters is required to be consistent
with exactly two tracks, distinguishable in all three chambers. The MLOG requirements
for the multiparticle spectrometer chambers are minimal. Only the number of clusters in the
next to least populated view is examined. For a successful trigger at least one hit is

required for chamber 2 or chamber 3.
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The MLOG algorithm provides a fast and efficient selection of events, mainly
emphasizing the presence of a reconstructable beam track. Because the trigger is based on
local counting of wire clusters and avoids the generation of cluster pairs necessary for track
reconstruction, it can be accomplished at data transport speed. The only delay introduced
with respect to data transport is the readout of the ten multiplicity logic words through a
single cable to the Trigger Table module. This involves only 10 clock cycles, a small
fraction of the 100 clock cycles necessary to transfer an average event from one buffer tier
to the next. In addition to event selection, the MLOG processor performs a data integrity
test. It checks that for every one of the 12 data streams, the correct number of blocks are
present in every stream and that the words used to mark the end of a data block (completes)
have the expected Segmenter identification data field (name). Another data integrity test is
to verify that the data blocks transferred in parallel and used for multiplicity counting
belong to the same event. When several data streams are read in parallel, there is a
possibility that in one of the streams the event information is lost either due to a bad cable
connection or because of a board failure. In such a case the assembled event directed for
tape storage contains information from two events. Eleven of the twelve data streams
contain information from one event, while the information from the next event is stored in
the stream that failed. To check for such errors the processor uses information embedded
in the event by the front end electronics. The Segmenters embed to each word marking the
end of a data block (complete) a four bit number which is equal to the number of events
read out since initialization, modulo 16 (block count). The processor checks that all blocks
in an event have the same block count. If the processor detects an error in the sequence of

names or the block count, it enters an error state and event readout is interrupted.
2.6.10 Host Computer

Events that satisfy the MLOG requirements are transferred to the second set of

Block Buffers, where the parallel data streams are merged to a single contiguous event and
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transferred through a single cable to the memory of a VME-bus computer (FORCE CPU-
29). The computer controls a Honeywell VLDS tape drive that stores the data in standard
VHS video tape. The accelerator would deliver beam for 20 seconds every 60 seconds
(one "spill"). Because the speed at which the detector supplies data exceeded the speed of
the tape drive, data would be accumulated in a memory and writing would continue "off
spill”. A few "typical" detector readout values follow: The beam infensity was 5x 106 to
10x 106 protons/sec. The detector was read out 50 103 times per second and 1 in 5
events would satisfy the multiplicity requirements. This would result in 104 events/sec
directed for tape writing. The average event size was a little less than 1 KByte, so 10
MBytes/sec would be available for writing. The tape drive writing speed was 4
MBytes/sec. Thus we had to store the data in memory and continue writing "off spill”. It
took about 6x106 events and 40 minutes to fill a VLDS tape. Approximately 5.5x 109
events were recorded on 103 VLDS tapes during a 100-day period. We divided the data
sample in groups with the same trigger requirements and reconstruction constants. Table
2.4 lists the trigger requirements used for the data acquisition. Only 4.6 109 events are
listed. Events in groups earlier than group 4 were taken with a variety of different
requirements. During that period we experimented with very different trigger conditions in

order to determine an optimal set of trigger requirements.

2.7 Hardware Processor

The hardware processor functions as the last of the pipelined triggers in the data
acquisition system and is designed to apply complex requirements at very high event rates.
Event selection by the processor is performed in two stages. At the first stage, events are
selected using wire hit multiplicity in the drift chambers. It is required that there are enough
hits to reconstruct at least one beam track, and a non zero number of hits in the multiparticle

spectrometer. This stage is called the multiplicity logic. Events that survive the multiplicity
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cut enter the second stage of the processor, which performs track reconstruction. The
events of interest at this stage of the analysis are the all charged, completely reconstructed
final states. To enrich this sample we compare the longitudinal momentum lost by the
beam particle, to the sum of longitudinal momentum for tracks reconstructed in the
multiparticle spectrometer. Only the first stage of the processor was operational during data
taking. We performed the track reconstruction and the event selection based on momentum

balance off-line, after the end of the 1991 fixed target run.
2.7.1 Architecture and Design Principles

To achieve a high operation rate, the processor follows an architecture very
different from the architecture of conventional computers. Conventional (Von Neumann)
computers store data and instructions in memory. A central processing unit reads data and
instructions and performs one operation at a time. The result is returned to memory and the
process repeats until the task is completed. However, for a high rate application we want
to perform many operations per clock cycle. To this end we use a data driven architecture
that optimizes the operation speed versus the amount of hardware. Data "flows" through a
network of interconnected operation units along with information about the task to be
performed. The hardware processor system which we constructed performs more than 300
operations per clock cycle. As described below, that system consisted of more than 600
custom made circuit boards. The data driven architecture does not require central control of
the computation process. Most decisions and computing are "local”, so that there is no
need to have information about the whole event. Because control is provided by the flow
of data, many simple operations can be performed at once, within the same event. This
fine parallelism and pipelining of operations within an event is different from the
commercial approach of using several processors working concurrently on separate events.
Our approach provides much higher throughput and is better suited for triggering

applications.
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We achieve a large number of operations per clock cycle because we can efficiently
distribute the data to a large number of operation units. The data driven architecture allows
us to split, replicate and merge the data stream without the use of sophisticated handshake
protocols that establish point to point communications. Instead, board to board
communication is achieved using a simple protocol derived from the Nevis Transport
System (NTS) architecture. Every data word is transmitted along with information about
the identity of the word. In more detail, every word contains a data field, a name field that
allows modification of the operation, a control bit that specifies if it is a valid word (valid),
a control bit that signifies if it is the last word in a series of words (complete), a control bit
used to hold the data source if a destination is busy (hold), and a control bit used to abort
the calculation if necessary (block annihilate). This word structure is shown in Figure 2.9.
The use of control fields embedded in each data word allows the use of simple state
machines that control the input and output of electronic boards. There is no need to count if
the appropriate number of words were transmitted or received. Rather, data validation is
accomplished by a simple look-up of the control bits. The use of a valid bit is necessary
because sources always produce an output level on the cable whether there is data or not.
For example, when there is no beam and therefore no data, there are words flowing out of
the processor, but they are ignored. Also, it is common that during processing there are
clock cycles when a board cannot produce an output because it is busy completing a
calculation. The board still outputs a random data field but because of the absence of a
valid control bit the information is ignored by the boards that follow in the pipeline. Hold
signals propagate in a direction opposite to the data flow. A busy destination can set a hold
that stops the dataflow from the source. This communication scheme is very simple and
very efficient. It eliminates the need for central control of the event flow and all transfers
are controlled locally by simple state machines. As long as there is valid data in the input, a
board accepts and processes it. If there is no valid data available, the board continues to

function but it does not produce valid output. The fact that the arrival of valid data triggers
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and modifies the operation of electronic boards defines the data driven nature of the

architecture.

Connecting a large number of boards through local buses (cables) requires the use
of a chip technology with good bus properties. Throughout the processor we use ECL
chips. Advantages of the technology include: availability at the time of design, insensitivity
to noise, high clock rate and the ability to "wire or" the output of several boards to the same
bus (cable). Moreover the technology is inexpensive and no bus driver chips are
necessary. We are able to drive unshielded, tens of feet long cables at a clock rate of 20
MHz. Disadvantages of the technology include high power consumption and low gate
density. Higher gate density would be desirable because it allows the consolidation of
operations to a smaller number of boards. Nevertheless, the simple protocol allows a
board to read in a word, process another and output yet another one on the same clock

cycle, despite the use of very low cost, low gate density, double sided electronic boards.

Every board in the processor is designed to perform a specific operation. For
example, there is a board whose only function is to add two numbers from two input
streams (Arithmetic Operator), and a second to look-up if a predicted wire hit from track
reconstruction was actually recorded (Map). Overall, a simple algorithm like the
multiplicity logic requires only five board types. Because track reconstruction is a more

complicated algorithm, over forty different board types are used in the entire processor.

Since the number of different board types can become very large for complicated
algorithms, the design allowed for switches and wire connections that modify the behavior
of a board. An Arithmetic Operator can be configured to perform addition or subtraction,
or use only part of the data field for summation. In addition to physical configuration, we
can alter the behavior of boards loading control registers and memory look-up tables from a
conventional host computer. The latter approach does not require physical access and

configuration of hardware. Limited access to cable and hardware modules reduces the
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probability of altering a working part of the algorithm and makes modifications fast and
reliable. We download control and processing information from a host computer wherever
it is practical. In particular, we can download new reconstruction constants every time the
detector is accessed for maintenance, and we can change the trigger requirements without

access to the hardware.

Although downloading registers and memory look-up tables provides flexibility,
substantial modifications to the algorithm must be implemented in hardware. The speed
advantage of a special purpose machine over a conventional computer stems from
concurrent execution of operations distributed throughout the hardware. We achieve a
large number of concurrent operations by physically routing the data stream to the
appropriate operation modules. The network of electronic boards and interconnecting
cables can be though of as a "software program” in a conventional computer. To be more
specific, in a conventional computer, one can use an instruction that stores the result of an
addition to memory, so that it is available for a subsequent operation. In this processor, the

result of the addition is routed by a physical cable to the next electronic module.

From the example above it is clear that the computation and the resulting trigger
depends on the interconnection of boards and the physical configuration of these boards.
Every time the algorithm changes it is necessary physically to reconfigure and recable the
components. On the other hand, the elementary compoﬁents can be rearranged and used as
building blocks for a variety of algorithms. For example, the RD21 project at CERN
designed a silicon vertex detector trigger using only boards from this hardware processor
[49]. Also, there are modifications to an existing algorithm that can be easily
accomplished. The addition of new detector components and therefore new data streams
can easily be incorporated by adding a new data path in parallel with the existing algorithm.
This is the case for the transition from E766 to E690, when beam spectrometer drift

chambers were added to the detector.
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On a larger scale the processor is divided into sections (subprocessors or
subroutines). For example, there are separate sections for line finding, matching, fitting,
and duplicate track removal (Figure 2.10). They are arranged in a pipeline since they are
algorithms that have to be performed in sequence. In order to take advantage of the
available hardware, we arrange for one event to process in the fitting section while the next
event is at the matching section, and so on. This way there is an event at some stage of
processing at each processor section. We separate the various subprocessors with tiers of
buffers (Control Buffers). With the help of one controller board per buffer tier, Control
Buffers are intelligent enough to check that the parallel data streams belong to the same
event and allow only one event to process per section. Separation of subprocessors by
buffer tiers allows implementation and checking of the hardware in incremental steps.
Also, buffer tiers isolate the sub processors from each other, eliminating complex error
propagation from one subroutine to the next. The buffer tiers for the beam spectrometer

and the multiparticle spectrometer algorithms are shown in Figures 2.11 and 2.12.
2.7.2 Debugging Features

The implementation of a special purpose hardware processor presents challenges
that do not exist in off-line event selection by a conventional computer. On conventional
computers algorithms are implemented by writing programs in a high level computer
language. All computer languages come with debugging tools that allow following the
program flow for identification of erroneous code. With such tools two things are taken
for granted: no hardware problems exist, and the algorithm executes one step at a time.
Obviously, a novel special purpose hardware system does not come with ready-made
debugging tools. Therefore, parallel development of hardware boards and software tools is
necessary. Troubleshooting is further complicated by the concurrent execution of several
instructions per clock cycle throughout the hardware. Finally, we need to distinguish

between hardware failures and algorithm errors. In other words, a wrong result at the
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output of the processor does not allow us to point conclusively either to a specific board
that had a hardware failure, or to an algorithm error such as an improperly configured

board.

These potential problems led to two important design features. First, every
electronic board is connected to an independent, serial, low bandwidth debugging bus
(called control bus or cbus). The bus provides non-destructive readout of the processor
state. Second, the machine is synchronous and static and machine state evolution is
controlled by a single external clock. When the external clock stops, the machine preserves

its state and can be read and modified using the serial debugging bus.

The synchronous design makes the state evolution of the processor deterministic,
and eliminates complex timing behavior. In addition, synchronous operation allows us to
implement the simple communication protocol described in the previous section. The
debugging bus, along with the static design, allows monitoring the processor state on a
clock-by-clock basis. Although these design features provide the means to observe the
intermediate state of the processor, it is not easy to make sense out of the state evolution of
600 boards one clock cycle at a time. To automate the task, we control the processor clock
and the debugging bus through a conventional host computer. This host enables us to

develop high-level diagnostic and debugging tools.

Before describing the software tools developed for deployment and management of
the processor, it is worth presenting in more detail the method used to monitor the
processor state. All boards are made of simple building blocks: mainly parallel/shift
registers, static memory, counters and logic gates. Knowledge of the state of the
components determines the state of the machine completely. The debugging bus allows the
selection of a specific element (e.g., a register) on a single board in the system. In
debugging mode only the selected element, in this case a register, is clocked. The content

of the register is shifted out through the debugging bus one bit at a time. Once the contents

55



are completely read, the register returns to its initial condition. Since everything else is
isolated from the clock, the processor state remains unaltered. Obtaining the content of a
counter is more involved because the counters do not allow shift operations. To achieve
non-destructive counter readout, the counter is "rolled" for a number of clock cycles equal
to the full range of the counter. As this is done, the number of clocks necessary to reach
“"terminal count" is measured. It is possible not only to read, but also to write specific
values to registers and counters. Thus, it is possible to read and write static memory
controlled by register and counter chips. Therefore all elements that possess memory are
accessible through the debugging bus and the state of the processor is completely

determined.

Unfortunately, due to design exigencies, the last statement was not absolute for the
hardware processor used in this experiment. There are a couple of boards that use
"invisible" flip-flops in their state machines. In addition, most of boards use latches in
their output stage. The latches are not readable through the Cbus. Nevertheless, all boards
comply with the Cbus specification, and all boards use a visible input stage. So, in a worst
case scenario, an error cannot propagate without detection for more than one board.
Finally, connecting a large number of boards requires the use of a lot of cable connections.
Access to the hardware content allows us to test the cable connections and efficiently

eliminate a significant source of errors .
2.7.3 Software Tools

Conventional computers were used to develop software tools for debugging and
managing the processor. The programs were written in FORTRAN and run on the
processor host computer and other, independent machines. The general idea behind the
software effort is to describe the numerous processor details in a software model and to use
comparisons between model results and the hardware for debugging and maintenance. In

the processor modeling we use two distinct software packages with different levels of
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detail: the simulator and the emulator. The simulator models the arithmetic performed by
the processor and calculates the final result of subroutines in a format identical to the
processor result. The emulator is a far more detailed description of the hardware and
models all electronic boards at the register level. Whereas the simulator provides a fast
calculation of expected processor results, emulating at the register level is a very slow
process. We can use the simulator to process 10,000 events per hour on a VAX 3100
computer. In contrast, it takes two hours for the emulator to process a single event on a
Motorola 68030 microprocessor. Although the emulator may seem hopelessly slow, we
never use it to model the entire processor at once; rather we emulate just one subroutine at a
time. In the following I describe the procedures we used to compare the hardware to the

software models and give a more detailed description of their capabilities.

The emulator software was not available for the Brookhaven phase of the
experiment (BNL766), and was completed only during the FNAL690 run. The software is
structured so that subroutines represent electronic boards, while physical setup and cabling
are described in a configuration file. The emulator is a very detailed description of the
hardware and is capable of predicting the state of every hardware component (e.g. register)
on a clock by clock basis. The software is structured so that its components can be used
for any processor algorithm. Once the subroutines that represent electronic boards are
written and verified, we can specify any algorithm by simply editing a configuration file
that describes cable interconnections and the content of look-up tables. Therefore, there is
no need for new code development when we modify an existing algorithm, or introduce a

new one.

The model is run on the host computer with a software interface that accepts the
same command sequences as the hardware. Both hardware and software are initialized,
and we load a problem to the buffer tier immediately preceding the subroutine to be

checked. The host computer proceeds to clock the hardware and software model for one
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clock cycle. Then, the content of the hardware components is read out by the host through
the serial debugging bus. The result is automatically compared with the software
prediction. If there is no discrepancy, the procedure repeats until all data propagate through
the subroutine. If a discrepancy occurs (e.g., in a register), execution is interrupted, and
the register that shows a content different than expected in the software model is presented
to the user. This allows identification not only of the hardware board that failed, but also
of the position within the board where the failure occurred. Component failure is not the
only possible reason for a discrepancy. For many boards, switches and wire "patches"” are
used to specify the particu!ar behavior of the board. Although it might seem easy to take
the time and ensure that an individual board is configured properly, mistakes are to be
expected in a multi-board configuration. The comparison of software and hardware results
is an extremely powerful tool because making exactly the same mistake in both the software
and the hardware is very unlikely. I want to emphasize how difficult it is to follow the state
evolution of an event as it propagates through an algorithm without the aid of a software
model. For every register, and every clock cycle, one has to ask the question: is this what
the register content should be? To answer the question, one has to be familiar with the
hardware design and compute on the fly the hardware evolution. Repeating this
comparison for 300 clock cycles (a typical time for executing a subroutine) is a daunting
task, much better performed by a computer. Finally, if after the completion of a
subroutine, there are no software-hardware discrepancies and the result is still not the one
expected, it is safe to point to an algorithm error. It would be hard to have the same level
of confidence in the hardware, if comparisons relied on a "manual” calculation of the

processor operation.

The emulator software was used not only to aid the setup of algorithms, but also to
test individual boards before installation in the hardware processor. The host computer
runs a set of tests automatically, and in case of a discrepancy the software presents the

content of the failed component and the value predicted by the software. This is of
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significant convenience because it allows one to concentrate on a limited area of the
electronic board. In addition, collaborators not intimately familiar with details of the full

processor, were able to debug individual boards.

The use of the emulator is limited by the time it takes to emulate a large collection
of boards. We have to emulate every board in the system whether there is valid data in it or
not. So, when we emulate a single event propagating through the entire processor every
subroutine must be emulated for every clock cycle, despite the fact that the event cannot
process in more than one subroutine at a time. It is far more efficient to emulate individual
subroutines. To this end, we use the simulator intermediate results. Code was developed
that reads the simulator output and automatically loads an intermediate buffer tier (tiers are
shown in Figures 2.11, and 2.12). The event can then be processed through the
subroutine using the emulator. The time needed to emulate an event through a subroutine
is on the order of fifteen minutes. This process decouples the development of subroutines,
and in principal allows parallel development of processor sections. In addition, because
reading and writing intermediate results to buffer tiers is an autorated process, it is easy
and time efficient to check a single subroutine with a large sample of events. We use the
simulator precalculated results to load a subroutine input tier, then clock the processor
hardware only, and compare the result at the output tier with the simulator expectation,
within a fraction of a second. Typically, we would check with the emulator that three or
four events process correctly through a subroutine, and then use the simulator intermediate
results to check a few thousand events. If a particular event failed the test, we would run it

through the emulator to identify the problem.

The two software packages were complementary and helped us not only to set up
the processor but also to monitor and maintain it during operation. After the machine was
operational, we would periodically run 100,000 events through the hardware and check the

result against the simulator prediction. In the rare cases that a hardware failure occurred,
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we used the simulator to identify the faulty subroutine and the emulator to diagnose and

fix the problem within the faulty subroutine.

The simulator is used for reasons beyond the intermediate and final result
computation it offers. It is also used to generate the memory look-up tables that perform
most arithmetic operations in the hardware processor. A few details about the computation
are necessary. Floating point arithmetic is never performed in the hardware processor.
Only fixed precision integer arithmetic is used. Variables often have to be rescaled to avoid
arithmetic overflows. For most arithmetic operations, such as sum multiply, look-up tables
are used and are loaded to the hardware through the serial debugging bus. The standard
procedure is to specify a few reconstruction constants and to use them as input to the
simulator software. The software automatically generates all processor look-up tables and
saves them in a file that is used to download the hardware. When events are processed
through the simulator, the same look-up tables are used to perform the calculation. Using
this procedure, it is easy to produce intermediate results in a format identical to the one used

by the hardware.

In addition to the software described above, there are special routines that download
look-up tables, check the integrity of the debugging bus, and test the static memory of the
processor boards. After the completion of the last software components, we were able to
deploy the whole processor in a period of a few months and maintain the hardware with a
very small effort. Unfortunately, the whole process ended after the data taking period was
over and we were never able to use the entire processor on line. The software components
that took the longest time to complete were the emulator subroutines that represent the
electronic boards in the emulator. There is one subroutine for each one of the 40 different
board types, and the development of each subroutine along with the corresponding memory
testing and loading routines took a significant amount of time. In order to write an

emulator software component, the author has to be intimately familiar with processor
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principles and have a detailed knowledge of the electronic board. Emulator software
components could have been easily written by the designers of the electronic boards.
Unfortunately, the emulator software was not part of the initial processor plan and the
designers of many of the boards were not available. The need for detailed emulation of the
hardware components became apparent only after the first attempt to put together a large-
scale hardware processor. With a large number of boards and many board types, it is
difficult to follow the complex propagation of events through the hardware modules. The
software shields us from hardware details and allows us to distinguish between setup
errors and algorithm errors. The most intriguing aspect of the emulation software is the
opportunity it offers for the development of new algorithms without the use of hardware.
With the emulator one can specify a new algorithm and test feasibility and performance on
a conventional computer. Once potential problems are identified and resolved, it is easy to
implement the algorithm in hardware. This is to be contrasted with the initial mode of
operation, where problems were identified and solved with the use, and rearrangement, of

hardware modules.
2.7.4 Performance

There are two algorithms used for event rejection: measurement multiplicity in the
drift chamber system, and the comparison of the momentum lost by the beam particle to the
momentum of particles measured in the multiparticle spectrometer. The multiplicity
algorithm ran on-line throughout the 1991-92 fixed target run and provided a reduction of
the data stream by a factor of 5-10, depending on the trigger conditions. The multiplicity
algorithm requirement was designed to select events with a reconstructable beam track. In

particular the requirement was:

Enough hits in the beam spectrometer exist to reconstruct a beam track and

there is at least one hit in the multiparticle spectrometer.
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The multiplicity logic stage used only forty of the more that 600 boards of the entire

processor.

We selected events based on momentum balance off-line, six months after the end
of data taking. That algorithm is divided into two major parts: reconstruction of the beam
particle and track reconstruction in the multiparticle spectrometer (see Figure 2.10). The
first part was operational during data taking but was never implemented on-line because the
benefit is limited without the use of the multiparticle spectrometer result. Since the
multiplicity result was already recorded on tape, we removed the multiplicity processor and
used a system of three VME bus computers to send the recorded data to the processor and
to save the output. Of the three computer systems, one was used for sending data, and two
others for simultaneously recording the result in two separate output streams (see Figure
2.13). To one of the output streams we wrote all 5.5 x 109 events plus the reconstruction
result (1-1 sample). For the second stream the VME bus computer would look-up the
processor trigger words and record only events that satisfied the selection requirements:

1) # of veto counters on < 1

2) Minimum of | track found in the multiparticle spectrometer.

3) Minimum of | beam track found

4) | (Sum of Pl in multiparticle spectrometer ) - (momentum lost by beam)l < 3 GeV/c
+ ( momentum lost by beam)/8

5) the event goes to the selected sample independent of the cuts above if the number of
trailing zeroes in the event counter exceeds twelve (prescale). This was done so
that we have part of the unbiased sample available in the selected sample for

comparison.

This second sample, which we refer to as "processor skim"”, is 270 million events
or about 5% of the entire data sample. The goal of the selection is to produce a sample rich

in completely reconstructed all charged final states. Because in central production the slow
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proton carries a negligible amount of longitudinal momentum and there is no charge balance
requirement, the selection favors centrally produced charged final states. This is the reason
we allowed a maximum of one veto counter to be on. This veto counter can be turned on
by the missing slow proton. When the system became operational we were able to process
2500-3000 events per second. We finished processing the entire sample in a period of six
months. This is a period longer than the 100 days of data taking. It is due to problems
with the high speed tape drives and the fact that, unlike during the data recording period,
we did not operate on a 24-hour schedule. By the time reconstruction was finished we had
all the output events on VLDS tapes and the selected sample in Exabyte format. Although
we carefully monitored the processor for computational errors during off-line processing,
we failed to realize an algorithm error in the trigger output. The error was discovered a few
months after the end of off-line processing. It did not affect the reconstruction result.
Rather, after reconstruction we mapped the parameters of negative tracks to an erroneous
longitudinal momentum value. Specifically, the mapping made longitudinal momentum
proportional to curvature, instead of the correct, inversely proportional relation. The
simulator used exactly the same erroneous look-up table and produced exactly the same
error. The mistake limited the use of the selected data sample, but we were still able to use

the reconstruction results from the 1-1 sample for vertex reconstruction.

The computational capabilities of the processor are remarkable. We were able to
perform track reconstruction at a speed ten times higher than an 8 CPU Silicon Graphics
work station (or more than 2500 events per second versus 250 events per second). But
computational ability is not the most important advantage of the architecture. The processor
is first and foremost an on-line trigger device with the ability to transport and select vast
amounts of data. The modular design allows for expansion of the data in parallel streams,
as many as necessary to meet the read-out needs of the experiment. For example, we were
able to sustain data transfers to the input of the multiplicity logic processor at rates of 200

Mbytes/sec. If it were necessary to have a faster readout, we could double the number of

63



readout streams from 12 to 24 and double the data throughput. Because the trigger did not
require the generation of combinations of hits (as is the case of line finding algorithm) the
algorithm executed at data transport speed. The architecture is most suitable for simple
sequential triggers with an increasing level of complexity, while the amount of data is
reduced from stage to stage. Although the electronics industry is pushing hard for ever
more computationally powerful machines with multiple CPU configurations, there is no
commercial need for the high bandwidth necessary in high energy experiments. For this

kind of processing the data driven architecture employed in this experiment has no rivals.



Table 2.1 Multiparticle spectrometer (JGG) drift chamber parameters and operating

characteristics.

Drift Chamber
Number

Horizontal
Aperture (m)

0.762

0914

1.524

1.524

1.524

1.829

Vertical
Aperture (m)

0.457

0.610

1.016

1.016

1.016

1.219

Average Z
Coordinate (m)

-1.017

-0.839

-0.513

-0.138

0.456

1.229

Anode Wire
Diameter (4 m)

20

20

25

25

25

25

Cathode Wire
Diameter (4 m)

102

102

102

102

102

102

Ground Wire
Diameter ( £ m)

102

102

102

102

102

102

Anode to Anode
Wire Spacing (mm)

2.0

2.0

3.2

3.2

3.2

3.5

Cathode to Cathode
Wire Spacing (mm)

1.1

L.1

1.1

1.1

1.1

1.1

Ground to Ground
Wire Spacing (mm)

2.0

2.0

3.2

3.2

3.2

3.5

Anode to Cathode
Plane Spacing (mm)

3.2

3.2

3.2

3.2

3.2

3.2

Anode Wire Tension
(gram)

65

65

90

90

90

90

Number of
Instrumented Wires

1536

1920

1920

1920

1920

2048

Cathode
Voltage (kV)

-2.60

-2.60

-2.15

-2.10

-2.10

-2.05

Average
Efficiency (%)

>99

>99

>99

>99

>99

>99

Gas Mixture

Argon 71%, Isobutane 25%, Methylal 4%
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Table 2.2 Beam chamber parameters and operating characteristics.

Beam Chamber
Number 1,2,3,4,5,6 7.8
Horizontal
Aperture (m) 0.152 0.381
Vertical
Aperture (m) 0.102 0.203
AverageZ
Coordinate (m) -188, -62, -5, 21, 35, 56 71,78
Anode Wire
Diameter (£t m) 12 15

[3 4 m hard temper 13 um hard temper
Cathode Plane aluminum foil aluminum foil

13 4 m hard temper

25 ym hard temper

Ground Plane aluminum foil aluminum foil

Anode to Anode

Wire Spacing (mm) 1.0 1.5

Plane-Plane

Spacing (mm) 1.4 1.4

Anode Wire Tension

(gram) 20 35

Anode Wires

per Plane 160 256

Instrumented Wires

per Plane 64, 64, 64, 160, 160, 160 192, 256

Cathode

Voltage (kV) -2.1, -1.8, -2.2, -2.1, -2.1, -14, -1.4
2.1

Average

Efficiency (%) >99 >99

Material in

Radiation Lengths 0.24% 0.39%

Matenal in

Interaction Lengths 0.06% 0.12%

Gas Mixture Argon 82%, Isobutane 15%, Methylal 3%
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Table 2.3 Processor multiplicity trigger (MLOG). The four columns to the right contain
the number of clusters required (inclusive) for the four independent triggers. We accept an
event if the requirements in any one of the four columns are satisfied. The first column
specifies the data field examined. The notation is: drift chamber system-chamber number-
cluster count rank. We assign to the three ranked 5-bit data fields the numbers 1-least, 2~
next-to-least, 3-next-to-most

TRG_12
| 2 3 4
JIGG—2—2 [2, 31] — [3, 31] —
JIGG—3—2 — [2, 31] — [3, 31]
[BC—123—2 [3, 4] [3, 4] [3, 8] (3, 8]
[BC—123—3 [4, 5] [4, 5] [4, 9] (4, 9]
OBC—I12—I (1, 31] (1, 31] [2, 31] (2, 31]
OBC—12—3 [2, 31] [2, 31] (3, 31] (3, 31]
OBC—3—3 {1, 8] (1, 8] [3, 10] [3, 10]
OBC—45—1 [1, 8] (1, 8] (3, 10] [3, 10]
OBC—45—3 (1, 8] (1, 8] (3, 10] [3, 10]
Table 2.4 E690 run summary.

Group TGI TG2 TG3 MLOG Events

4—5 TC GT1eTVT — TRG_12 | 0.72x10°
6 TC GTOeTVT FH1eFH2| TRG_12 | 0.06x10°

7—12 | TCeFOR GTOeTVT FH1eFH2| TRG_12 | 2.96x10°
13 TCeFOR GTOeTVT FH1eFH2| TRG_12 | 0.54x10°
13 TCeFOR | GTQeTVT » VETO FHIOFHZI TRG_12 | 0.36x10°
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CHAPTER 3
EVENT RECONSTRUCTION AND SELECTION
3.1 Definitions

After data collection, there is data processing necessary for, and common among all
analysis efforts. It involves the reconstruction of charged tracks from drift chamber
measurements and the identification of charged track intersection points (vertices). The
processing is accomplished in two distinct steps we refer to as PASS1 and PASS2. The
first processing step (PASS1) is performed by the hardware processor and involves
reconstruction of beam and multiparticle spectrometer charged particle trajectories. The
second step (PASS2) is performed by conventional computers and finds the primary
collision vertex and secondary vertices from the decay of unstable particles into charged
final states. At the end of PASS2, the event topology and the momentum vectors and
origin of all charged tracks in the event is known and recorded. A more detailed account of

the processing steps follows.

3.2 Track Reconstruction (PASS1)

The main reason for the separation of track reconstruction and vertex finding into two
separate steps is the use of different hardware devices to accomplish the calculation. The
first step is performed by the hardware processor which reconstructs beam and
multiparticle spectrometer tracks much faster than any conventional computing device.
Although the hardware processor solves the pattern recognition problem and reconstructs
the majority of charged tracks, not all trajectories are resolved in the first step of

processing. Rather, we find a subset of the tracks present in the multiparticle spectrometer,
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tracks that span all six chambers of the Mulitiparticle Spectrometer, or the front four
chambers or the back four chambers of the spectrometer. These three classes of trajectories
represent the majority of reconstructed tracks. Wire chamber hits used for track
reconstruction are tagged during processing. The remaining wire hits are used to find

trajectories which are not members of one of these classes in a later reconstruction pass.

A block diagram of the algorithm used for track reconstruction is shown in Figure
2.10. There are separate hardware sections for the reconstruction of beam and multiparticle
spectrometer tracks. The reason for the separation is both speed and different computation
requirements. Since there are separate hardware sections we can increase the computation
speed by processing concurrently more than one event in different hardware sections. The
computation requirements are different because of the different parametrization used in the
two spectrometer sections. Beamn tracks can be reconstructed as two separate straight line
segments, one line segment in the three incoming beam chambers and one line segment in
the last three outgoing chambers. The multiparticle spectrometer lies within the magnetic

field of the dipole magnet and therefore curved tracks must be reconstructed.

Nevertheless, except for the particular parametrization, the reconstruction
algorithms are very similar. This is due to the identical configuration of anode planes in all
drift chambers. All drift chambers have four anode planes (referred to as views) with wires
oriented at -21.6°,-7.63°,7.63°, and 21.6° with respect to the vertical. The four planes
form two equivalent pairs (planes at -21.6° and 7.63° form one pair and the remaining two
the second). The redundancy of view pairs allows us ideally to find each trajectory twice,
independently, in each one of the two view pairs. This is useful in the case that one hit is
missing in any one of the four planes, because the track trajectory can be determined by the
pair with a complete set of hits. A more important benefit of the redundant measurements
is the simplification of the algorithm that rejects hit combinations that do not form a three

dimensional track.
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Before a detailed presentation of the advantages of redundant measurements, an
overview of the algorithm is presented. For both spectrometers (beam and multiparticle
spectrometer) the calculation is divided in four stages: line finding, matching, fitting and
duplicate rejection (see Figure 2.10). In the first stage (line finding) we combine hits from
a single view and determine if they form a line within a view. Since the search is confined
within a view, the number of combinations is limited. In other words we solve a two
dimensional problem since the lines we find are not constrained along the direction of the
wires that form the view. The lines found in each view are passed to the matcher stage
where two dimensional lines from a view pair are combined to define a three dimensional
trajectory. If we find n lines in one view and m lines in the second view the number of
combinations that form candidate tracks is n X m, while the number of real trajectories is
somewhere between n and m. At this point we use the advantage of having redundant
measurements to reduce the number of candidate trajectories with a very limited
computational effort. For every candidate track defined by a pair of views, we compute the
expected wire hits in the two remaining views. Then we compare the predicted wire hits
with the measurement. If no more than one hit is missing, the candidate track parameters
are passed to the fitter stage. This procedure eliminates most false candidates. Since the
computation is performed independently for both view pairs, in an ideal case every track is
parametrized and enters the fitter twice. In the fitter we use the wire numbers from all four
views to reparametrize the track candidate. Since we have more measurements than the
minimum necessary to define a trajectory, we use the initial parameters and the
measurements to perform least squares fitting that improves the track parametrization. For
both spectrometers (beam spectrometer and multiparticle spectrometer) we perform three
iterations of least square fitting using just the measured wire numbers. Next, for the
multiparticle spectrometer calculation only, the drift time measurements are used for a more
accurate calculation, and another three iterations of least square fitting are performed.

Finally the fitted parameters along with a ranking parameter representing the quality of the
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fit are passed to the duplicate removal section. The ranking parameter is equal to the sum
of the squares of the differences between predicted and measured wires plus a constant for
every missing wire. If a track has poor ranking it is immediately dropped. The limit for
track acceptance is set so that no more than one of all possible wire hits is missing for each
trajectory. For example, six chamber multiparticle spectrometer tracks must have at least
23 of the maximum 24 wire hits assigned to the trajectory. For the remaining tracks we
compare the fitted parameters to eliminate duplicates. If for two tracks the differences in all
parameters are within preset limits, only the track with a better ranking parameter is kept.
As stated before, in case of ideal chamber efficiency we expect each track to be fitted twice.

Therefore we expect to reject about half of the fitted tracks.

The algorithm stages described above are common to all classes of tracks found
during PASS1 processing. The algorithm takes advantage of the drift chamber design. In
fact the drift chambers were designed with this algorithm in mind. The most notable
characteristics of the chamber design are narrow wire spacing and redundant views per
chamber. The narrow wire spacing allows us to solve the pattern recognition problem
using just wire number information. Drift times are used only to improve the measurement
precision. Redundant views allow us quickly to reject false track candidates without

excessive computation.

Although we reconstruct all track trajectories using the four stages described above,
there are significant differences within each stage, related to the different reconstruction
requirements for different classes of tracks. A good example is the different line finding
algorithms used in the multiparticle and beam spectrometers. For six chamber tracks we
have to parametrize curved lines using six measurements per candidate line, while for beam
spectrometer line segments we reconstruct straight line segments that span just three
chambers. In the case of multiparticle spectrometer six chafnber lines we reduce the

number of combinations by solving the problem in two steps. First we find candidate lines
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that span chambers one to four, and then we combine every one of the successful
candidates with every hit in chamber six. In more detail, we first find all hit combinations
between chambers one and four and for every pair we calculate the intercept of a straight
line in chambers two and three. If there are hits in both chambers within a range of sixteen
wires (road), centered at the predicted wire, we save the wire hit pair. Every pair of hits in
chambers one and four that survives the test is combined with every hit in chamber six.
The three hits are used to define a curved, second order line. We use this parametrization
to predict and test for hits in a five wire road in chamber five. If hits are found, the same
test is performed for chambers two and three. Finally three hit combinations that satisfy all
tests are passed to the matcher stage. This line finding procedure is far more elaborate than
the procedure used to define line segments in the beam spectrometer. For a straight line
segment spanning only three chambers it is sufficient to perform only one test. We form all
combinations in the two endmost chambers and check if a straight line calculation predicts
hits in the middle chamber, within a five wire road. Algorithm differences, like the one

illustrated for the four plane line finder, exist in all four stages of track reconstruction.

One of the prominent features of the algorithm outlined in Figure 2.10, is a loop in
the multiparticle spectrometer data stream through the same hardware segments. This
allows us to use the same hardware for matching, fitting and cleanup, for different classes
of tracks. During the first pass, we find six chamber tracks and tag the hits that were used
for reconstruction. Next, the data is routed to the four plane line finder, where we search
for front four chamber (1,2,3, and 4) and back four chamber (3,4,5 and 6) lines. Both
classes of four chamber lines are transferred and processed by the next three stages of the
algorithm. In order to reduce the number of four chamber track candidates, wire numbers
tagged during six chamber track finding are ignored. We make an exception and allow
wire sharing only for the first of the four chambers used. This corresponds to Chamber 1
for front four and Chamber 3 for back four chamber tracks. We allow wire sharing

because Chamber 1 is very close to the target, where we expect the highest track density.
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The parameters used to define beam spectrometer three chamber line segments are
simply the x and y coordinates of the track, at the two endmost chambers. For the curved
tracks found in the multiparticle spectrométer we use four position and orientation
parameters defined at chamber three (x, y, dJ%lz'd)/dz ), plus a parameter that defines the
curvature of the track (sagitta). The four position and orientation parameters define a line
connecting the two endmost space points of the track. The sagitta is the x coordinate of the

distance between the track trajectory and the straight line defined by the other four
parameters, at the track mid-plane. Note that the sagitta is approximately equal to %,

where P represents the particle momentumn and g the particle charge. In addition to the
parameters mentioned above, for every track found we save a ranking parameter equal to
the least square sum found by the fit plus a constant for every missing wire hit. More
details about track reconstruction and parametrization can be found in [42]. Further details
about the performance of PASS1 processing using the hardware processor can be found in

Section 2.7 of this dissertation.

3.3 Vertex Reconstruction (PASS2)

The PASS1 output tapes contain all of the original detector information plus the parameters
defining the track trajectories found during the first phase of processing. These tapes are
used as input to the second analysis step (PASS2). The PASS2 phase of the analysis
completes track finding for classes of tracks that are not searched for during PASS |
processing, and finds the primary collision vertex and secondary vertices from the decay of

unstable particles into charged final states.

First, we use the two line segments found in the beam spectrometer to refit a single
beam track through all eight of the beam chambers. Then we use the track trajectory to tag

multiparticle spectrometer wire hits that lie on the beam track trajectory. The beam
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spectrometer has long lever arms that allow precise measurement of the trajectory and
therefore very good momentum resolution. In addition, we make a very precise
measurement of the beam track path through the hydrogen target. We use this information

to constraint the x and y coordinates of the primary collision vertex.

Next, we refit tracks already found in the multiparticle spectrometer. We use the
track parameters found during PASS 1 processing to propagate tracks through the drift
chambers and tag the hits associated with each track. Then we attempt to associate front
and back four chamber tracks that can form a single six chamber trajectory. Because low
momentum six chamber tracks have large curvature, they fail the narrow "road" test used
for six plane line finding. Such tracks are found during PASS1 processing as separate
front and back four chamber tracks. After redefining such track pairs as a single six
chamber track, we attempt to extend the remaining four chamber tracks beyond their
defining chambers. For example we check if there are unused chamber five hits that allow
a front four chamber track to span chambers one to five. Finally we use the remaining wire
hits to search for a class of tracks we do not consider during PASS1 processing: tracks
that span chambers two to five. For all the searches mentioned above, only unused wire
hits are considered, significantly reducing the number of combinations available for track

finding.

After we complete the search for track classes not addressed by the PASS|1
reconstruction algorithm, we look for track intersections (vertices). The order of
operations is very dependent on the final state (topology). For example, for the majority of
events there is at least one reconstructed multiparticle spectrometer track originating at the
primary collision vertex. Therefore it is reasonable to search first for the primary vertex
and then to look for secondary vertices from the decay of unstable particles into charged
final states. The problem with such an approach is that there are events for which such a

choice is not practical. For such cases an iterative approach is required. Take as an
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example the topology pp — p,..K{K; Py, With the target proton scattering outside the
multiparticle spectrometer volume. Since the K is neutral, we have to reconstruct its
trajectory from the trajectory of its charged decay products (Kg — #*7”). Only after
determining at least one of the "composite” neutral tracks can we search for and find the
primary vertex. This particular example illustrates the difficulty of constructing an

algorithm that deals with every topology recorded by the multiparticle spectrometer.

Therefore we have to use an algorithm that proceeds on a case by case basis. We
first check for intersection between the beam trajectory and any one of the multiparticle
spectrometer tracks. If we find an intersection, defined when the distance of closest
approach is smaller than a set limit, we save it as a vertex candidate. If more than one
intersection is found we tag as primary vertex the vertex with the most tracks assigned to it.
In the case that two vertices have the same number of tracks we tag the most upstream one

as the primary vertex. Of course there are events where no intersections are found. Such

is the case for the topology pp — p,,.KsK{p,,, mentioned above.

Whether a primary vertex is found or not, the next step is to search for secondary
vertices from the decay of unstable particles into charged final states. We use the list of
tracks that are not already assigned to a vertex (unassigned tracks) to form track pairs and
check their distance of closest approach. Because we restrict the search to parent particles
with charge -1,0, or +1, only tracks with opposite charge are considered. After the search
is complete, we check if any one of the remaining unassigned tracks can be assigned to an
existing vertex. We use the momentum vectors of particles assigned to a secondary vertex
to reconstruct the trajectory of the "parent" particle. Then we check if we can assign the
"composite” track to the primary vertex. If a primary does not already exist, we attempt to
define one by checking the distance of closest approach between the new "composite "

track and the beam track trajectory.
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This is only the first iteration of vertex searching. In the first iteration, we use tight
criteria of distance of closest approach to find only the best defined vertices. In subsequent
iterations we relax the requirements in an attempt to find less well defined vertices, which
occur because particles can suffer energy loss and multiple scattering in the detector

material.

We use the vertex positions to define an additional space point constraint for the
tracks assigned to a particular vertex. First we define the vertex position as the point in
space that minimizes the sum of the distances of closest approach squared. Then we use
the vertex position along with the drift chamber wire hits to refit the trajectories of each
track assigned to a vertex. This significantly improves the reconstruction precision. In
addition to improved resolution for track reconstruction, we use the primary vertex to
search for tracks that span only the first three spectrometer chambers. Since we reconstruct

curved tracks, a minimum of four space points is necessary for reconstruction.

The topology under consideration ( pp — p,, %" 7" p,,,) does not present many of

the difficulties the vertex finding algorithm tries to tackle. It is a topology that its is fairly
easy to identify because there are no secondary vertices and at least two of the multiparticle
spectrometer tracks originate from the primary vertex in the hydrogen target. Nevertheless
efficient vertex reconstruction of complicated final states is important for the identification

and selection of the final state of interest. It also allows meaningful comparison of relative

production rates between this and other final states (e.g. pp — P, KSKJ D, )-

3.4 Selection of Final State pp— p  7'7p,,,

The next step of the analysis effort is the selection of a subset of the data sample containing

only the reaction pp — p,, n"®"p,,,. Choosing the selection criteria we have to balance

two conflicting requirements. While we want a pure sample (only p,.,x*7 p,,, final
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states), we want to avoid very aggressive selection criteria that can bias the distribution of
the analysis variables. The choices made for the event selection are presented in this
section. I present the number of events selected in each step and the effects of the selection
on the distribution of the analysis variables. I also present the specific background

interactions each step intends to eliminate.

The selection of the final sample is based on the results of the vertex reconstruction
calculation. For this study we use only ~10% of the events recorded by the experiment
(0.46 x 109 out of a total of 5.5x 109 events). We use only a fraction of the total sample
because, as will be demonstrated in the analysis section, the measurement is not limited by
the statistical significance of the final sample. Rather, the most significant error source is

the estimation of systematic effects.

Interest in central production is due to the kinematics of the interaction. As
mentioned in the introduction, the final state protons are kinematically well separated from
the new particles produced, which supports the hypothesis that the reaction proceeds
through a double exchange mechanism. Therefore we treat the reaction as a two step
process where the interaction produces an intermediate meson which subsequently decays
via the strong interaction, for this study into two pions:

p+p—-pXp,
nin—

The longitudinal momentum of the intermediate meson state (X) is restricted to
within about 20% of the maximum longitudinal momentum. The detector acceptance is
very sensitive to the longitudinal momentum distributions. To illustrate this point the table
below presents the laboratory momenta in GeV/c for the two final state protons and the

intermediate meson (X) as a function of the intermediate meson x,. For this calculation the
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mass for (X) is set at 1 GeV and the perpendicular momentum ( p,) for the three final state

particles is set to zero.

X¢ p, X p, Puio JOr T | Pry, for @
0.2 0.214 2.533 797.253 -0.041 2.574
0.1 0.105 4.976 794.919 0.051 4.925
0.0 0.025 20.635 779.340 0.398 20.237
0.1 0.006 84.823 715.171 1.683 83.140

The assumption that p, =0 is a good approximation since in double diffraction
perpendicular momentum for the final state protons is very limited. From the table we see
immediately that the lab momentum of the slow (target) proton is very small in all cases and
it is unlikely to observe it as a trajectory in the multiparticle spectrometer. For the vast
majority of events the slow proton either stops in the target (the minimum momentum for a
proton to exit the target is approximately 100 MeV/c) or escapes the multiparticle
spectrometer volume as a wide angle track. Since we do not observe the slow proton we
deduce its momentum vector from energy-momentum conservation. Another property that
is evident from the table is the rapid increase of the lab momentum for the intermediate state
as a function of x.. Since the resolution of the multiparticle spectrometer deteriorates
rapidly for particle momenta above 20 GeV/c, the probability for accurate reconstruction of
events with x. > O for the central meson (X) is very small. The conclusions above do not
change significantly as a function of the invariant mass for the (X) system. The same table

for mass of the X system equal to 1.7 GeV follows.
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Xg P, X P, Pain fOr @ | py,. forrm
-0.2 0.221 7.295 792.484 -0.047 7.342
-0.1 0.116 13.209 786.675 0.036 13.173
0.0 0.042 35.080 764.878 0.218 34.862
0.1 0.016 92.884 707.100 0.623 92.262

This simple calculation justifies our choice to concentrate on events with only two tracks
observable in the multiparticle spectrometer. Next I will give a brief lfst of the selection
criteria used to define the final analysis sample. Not all of the selection criteria were used
to reduce the sample size. We want to study the effect of selection criteria on the physics
analysis, therefore only "soft" cuts were used to reduce the data sample to a manageable
size. We use this reduced data sample to apply different sets of final selection criteria.
Comparison of the results for different sets of final selection cuts allows us to distinguish
between physics and artifacts produced by the selection criteria. I describe the sequence of
steps used to isolate a reduced data sample and finally I give a detailed account of the

selection cuts used in this manuscript.
First a brief description of the selection criteria:

1) Track reconstruction requirements are at least one reconstructed track in the
beam spectrometer and exactly two reconstructed tracks with opposite
charge in the multiparticle spectrometer. There should be exactly one

primary vertex with all tracks assigned to it.

2) Particle identification in the Cherenkov counter requires that both particles
are pion compatible. This is a "soft" requirement that does not restrict the
momenta of the pion candidate tracks. Later we use alternative requirements

for better particle identification.
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3) Missing longitudinal momenturn (MPI), presumably the longitudinal

momentum of the missing particle in the [-1,1] GeV/c range.

4) The rapidity gap between the missing proton and any one of the
multiparticle spectrometer particles must be greater than 1.8 rapidity units.
The purpose of this cut is to remove events that proceed through single

diffractive processes, and the production of resonances, e.g. A™.

5) Restriction of the x, distribution for the central intermediate meson (X) to
-0.1 < x; <0.0, so that we can easily integrate over x, when we apply

Monte Carlo corrections.

6) Restriction of p} for final state protons. As will be demonstrated later, a

very effective cut for the rejection of events that do not correspond to the

final state p 7" 7" p,,, is the restriction p? <0.1 (GeV/c)2 for the slow
proton. This selection takes advantage of the steep p; distribution of the
final state protons in double diffractive events. When we restrict p? <0.1
for both final state protons we have a sample where we expect double

Pomeron exchange to dominate.

7) Missing mass cut (MM2). The value of the missing mass is calculated by
assigning the missing energy and missing momentum to the missing
particle. For correct topology identification we expect the resulting value to
be equal to the mass of the proton. This is a cut based on energy-
momentum conservation and is used both for background rejection for
estimation of the number of background events remaining after the
application of selection cuts. The presentation of the effects of this cut is

complicated by the earlier application of the missing longitudinal momentum
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cut (3). I will show that all events selected by this cut survive the missing

longitudinal momentum cut. Therefore the cuts can be applied in sequence.

For the reduction of the data sample to a manageable size we use only the first three
cuts. The remaining cuts are used only in the final analysis stage. We select from two
"source" samples. One is a sample of 100 million unbiased detector events processed by
PASS2 without the application of selection criteria. The other sample is a subset from 360
million unbiased detector events, selected during PASS2 processing. Selection during
PASS?2 processing is a standard procedure in this experiment, aimed at the reduction of the
amount of tape handling necessary for our analysis. For each of the physics topics pursued
by the collaboration, we define a set of selection criteria that isolate a subset of the data
sample necessary for the particular analysis. During PASS2 processing we write two
output samples. An unbiased output stream that contains all input events and a second
stream that contains events that satisfy the aforementioned selection criteria. The size of the
second stream contains about 20% of the initial events. The selection from the two
"source" samples was performed so that [ can compare the event yield in the two cases and

guard against mistakes during PASS2 selection.

From the two samples I produce a series of tapes that contain events which pass the
first two selection cuts and a generous missing longitudinal momentum cut [-3,3] GeV/c.
This is one of the selection requirements used for the second PASS2 output stream
mentioned earlier. Therefore from now on I do not need to make a distinction about the
"source” samples the events come from. The next step is to produce a series of tapes that
contain the same events with a more tighter longitudinal momentum cut [-1,1] GeV/c, since
this is the final cut used for analysis. The last data handling step is the "compression" of
the selected events into a single file for easy processing. The large number of events
available for analysis makes difficult the repetition of the analysis steps with small

variations in the selection criteria. This step reduces both the storage and processing
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requirements. We save only event variables necessary for the analysis and reduce the
necessity of reevaluating the analysis variables with each analysis step. Also, the storage

size of the final sample is reduced by a factor of 10.

As mentioned above, we use the missing mass distribution to estimate the number
of missidentified events in our data sample. Figure 3.1 shows how the missing mass
squared distribution changes as a function of the selection criteria. For the plots presented
here I do not use the entire data sample. For this study it is sufficient to use events from a
single VHS primary tape (tape #2774). The tape contains 6.518 x 106 unbiased detector
events. Application of the first two selection criteria (vertex and "soft" Cherenkov
identification) reduces the sample to 389,652 events. For this sample the missing mass

squared is shown in Figure 3.1.a. The next 5 figures in the same page show the effects of

the rapidity, x, and p; selection criteria. The rapidity and x, cuts do not have a
significant effect on the signal to background ratio (Figures 3.1.b and 3.1.c). For the p}
cut there are three plots. Figure 3.1.d shows the effect of restricting p? only for the fast
proton; Figure 3.1.e only for the slow (missing) proton and Figure 3.1.f for application of
both p] cuts. Although restricting p? for the fast proton has a significant effect, we see

dramatic background reduction only from application of the slow proton p? cut.

The same plots are presented for alternative Cherenkov cuts in Figures 3.2 and 3.3.
For Figure 3.2 we require that at least one of the two particles in the multiparticle
spectrometer is identified by the Cherenkov counter as "exactly pion". Since the counter
thresholds for pion/kaon/proton are 2.55/9/17 GeV/c, the positively identified particle has
to have momentum between 2.55 and 9 GeV/c and intersect the counter aperture. For
Figure 3.3 we require both particles to satisfy the "exactly pion" condition. The alternative
requirements reduce the background significantly, but they also introduce a longitudinal
momentum bias, and reduce the number of events available after the first two cuts, to

119,980 and 15,401 respectively. Note that the initial "soft" Cherenkov cut does not
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require that a particle produce light in the Cherenkov counter. A low momentum particle

that does not enter the counter aperture is considered pion compatible.

We fit the missing mass squared distribution using a Gaussian that represents the
signal expected for a missing proton, and a second order polynomial for the background.
We do not expect high quality fits because there are multiple background sources that can
result in a complex shape for the background distribution. In addition we expect the
background shape to change as a function of selection criteria. For example, we can have
cases where there is more than one missing particle. This background source is greatly
reduced when we restrict the missing transverse momentum. A second possibility is that
we observe the final state of interest (two protons and two charged pions) but the particle
momenta are such that the proton is measured in the multiparticle spectrometer and is
considered a pion, while the missing pion has low momentum and is considered a missing
proton. Such events are rejected by the rapidity and x, selection requirements. A third
possibility (for "soft" Cherenkov cuts) is a missing proton and two particles in the
multiparticle spectrometer that are K™K~ or pp. Therefore we select a simple polynomial
for the background distribution and we do not consider it a detailed description of the
background shape. For a missing proton we expect the Gaussian distribution to peak at the
square of the proton mass, 0.8 (GeV/c2)2. Because the calculation is very sensitive to the
calibration of the beam spectrometer we see a systematic shift of the peak to 0.3 (GeV/c2)2,

This shift does not affect our ability to select events using the missing mass distribution.

From Figures 3.1-3.3 we can see that the center and width of the Gaussian
describing the missing proton changes slightly as a function of the selection criteria used to
define the sample. As will be shown later, it also changes as a function of the invariant
mass for the intermediate meson (X). Since I use tight missing mass selection criteria and
the signal to background ratio does not change rapidly, I avoid using a different definition

for the Gaussian every time I use the missing mass cut, and use a standard center and width
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throughout this document. For the definition I use the fit in Figure 3.1f which has
mean=0.3 (GeV/c2)2 and 6=0.84 GeV/c2. Table 3.1 presents the ratio of integrals:
Signal/Background, estimated from the fits in Figures 3.1 to 3.3. The integration range is

[-0,0], centered at the peak of the Gaussian.

Absent from the selection criteria used for the missing mass plots, is the missing
longitudinal momentum cut (number (3) in the selection criteria outline). The reason is the
correlation between the two selection criteria. I will show that the MPI cut is "generous”
enough that it allows us to apply the MM2 cut as if the MP!I cut never happened. To
illustrate this, Figure 3.4.a shows the MM2 distribution before and after the application of
the MPI cut. The vertical lines mark a +0o distance from the peak of the Gaussian
distribution. We can immediately see that the MPI cut is roughly equivalent to 1.5 & cut
on the MM2 distribution. In subsequent Figures (3.4.b-3.4.f) we apply the rest of the
selection criteria outlined above. We see that by the time we apply the p?(slow) cut there
are practically no events left within +o. This is better seen if we use the number of events
left after application of the MPI cut to scale the plot (Figure 3.5). In this plot, it is easier to
see the number of events remaining after the application of the MPI selection. For Figures
3.4 and 3.5 we use "soft” Cherenkov identification selection. Figures 3.6 and 3.7 are the
same as Figure 3.5, except for the use of more restrictive Cherenkov identification

selection.

From the argument outlined above, it is clear that the MPI selection is redundant,
since the same events can be selected using just the MM2 cut. The only reason we use this
selection criterion is historical. Selection during PASS2 processing uses the MPI cut, so
the cut is kept for continuity. The MM2 selection is used later, usually as a [-G,6/2] cut.
The selection using either one of the cuts is rather aggressive, eliminating a significant part

of the signal. This is not a problem for this study, since the precision of the measurement
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is dominated more by the estimation of systematic effects than by the statistical significance

of the sample.

The x, distributions for the final state protons and the central meson (X) are shown
in Figures 3.8-3.10. As expected for central production the x, distributions are clearly
separated. Here it is important to note that the separations in x, distributions are also
forced by the acceptance of the spectrometer and the choice of the data sample. We select
events with a missing slow proton. Therefore we restrict the slow proton x. range. We
require two particles in the muitiparticle spectrometer and since the spectrometer acceptance
is limited to particles with momentum between 0.1 and 25 GeV/c, the spectrometer shapes
the x, distribution of the central meson. For the vast majority of events the central meson
has negative x.. Although the apparatus allows for events with a central meson that has a
large negative x, value, the majority of events are produced near the x.=0 region. The
beamn spectrometer accepts outgoing beam particles with momentum above 650 GeV/c,
which imposes one more restriction to the x, distribution. The effect of selection cuts on
x, distributions can be seen in Figure 3.8. For this Figure we use "soft" Cherenkov
identification. The MPI requirement restricts the fast proton x, because events with large
momentum transfers to the target system have high momentum, poorly reconstructed tracks

in the multiparticle spectrometer. The rapidity cut, as expected, further separates the slow

proton and central meson x distributions. The restriction of the central meson to
-0.1<x,<0.0 changes the slow proton x, distribution. It removes events close to x.=-1.
This is simply due to momentum conservation. The final two cuts, p? and missing mass,
do not have any significant effect on the x, distributions. The same observations apply to
Figures 3.9 and 3.10, where we use more restrictive Cherenkov identification
requiremnents. The only significant difference is the much more limited x, distribution for
the central meson. Since the counter thresholds for pion/Kaon/proton are 2.55/9/17 GeV/c,
the positively identified particle has a limited momentum range which restricts the

momentum distribution of the central meson.
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Figure 3.11.a shows the missing longitudinal momentum (MPI) distribution after
application of the first two selection cuts (vertex requirements and "soft” Cherenkov
identification). The vertical lines mark the third cut ([-1,1] GeV/c MPI limit), used to
define the data sample for this study. Figure 3.11.b (solid line) shows the MPI distribution
after application of rapidity, x, and p} cuts. Also shown is the MPI distribution after
application of the missing mass squared cut (dash). We can see that there is a small
calibration problem, since the MPI distribution is centered at about 200 MeV/c below zero.
The application of selection cuts makes the MPI distribution more narrow. This is partly
due to the reduction of background, but also due to the elimination of events that contain
poorly measured, high momentum particles, through the application of cuts that restrict the
central meson (X) lab momentum (e.g. x.). Figures 3.11.c-3.11.f present the same plots

for alternative Cherenkov identification selection criteria.

As mentioned earlier, the amount of background changes as a function of the
invariant mass. In Figures 3.12 to 3.17, the missing mass squared distribution for 0.25
GeV/c2 regions of the central meson (X) invariant mass is shown. In Figure 3.12 the
simplest of selection criteria are used, namely vertex requirements (1) and pion
compatibility in the Cherenkov counter (2). In Figure 3.13 we require in addition that
rapidity (4), x; (5) and p] (6) selection criteria are satisfied. This is the sample on which
we base most of our analysis. We see from this figure that the background is more
pronounced below 0.75 GeV/c. It is also a bit larger in the region of 1.0 to 1.25 GeV/c2.
As stated earlier, the fit of the signal with a Gaussian plus a second order polynomial
background shows a small dependency of the Gaussian peak on the mass region fitted. We
do not fit the last mass region (1.5 to 2.5 GeV/c2) because there are not enough events for
a reasonable fit. Figures 3.14 to 3.17 contain the same plots for more restrictive

Cherenkov identification requirements.
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So far we have judged the effects of the selection criteria by looking at the missing
mass squared distribution. An alternative is to look at the effects of the selection criteria on
the invariant mass distribution of the central meson (X). As can be seen in Figure 3.18, the
invariant mass distribution falls rapidly after 1 GeV/c2. Therefore, observation of the
selection effects in the mass region above 1 GeV/c2 requires better statistics than the single
VHS tape we used so far. For the invariant mass distributions I use the whole sample used
for this analysis (about 10% of all events recorded by the experiment). Figure 3.18 shows
how the mass distribution is shaped by the selection criteria outlined earlier (see legend for
cuts applied to each plot). In Figure 3.18.b we see the invariant mass after application of
selection criteria (1) to (4) (vertex, Cherenkov, missing p, and rapidity restrictions). In
the same plot we see that successive application of the x, selection cut does not alter
(except for a change in scale) the invariant mass distribution. Small peaks in the mass
distribution due to p(770) and f£,(1270) are clearly seen. As expected, application of p}
cuts increases the probability that the final state observed is S-wave. This suppresses the
higher spin resonances just mentioned. Further reducing the sample with the application of
the missing mass cut does not change the distribution significantly. For a more detailed
look at the high mass region, Figure 3.19 presents the effect of the same selection criteria in
the mass interval 1 to 2.6 GeV/c2. Here there are two prominent features: A drop of the
invariant mass distribution at 1.5 GeV/c2 almost as dramatic as the drop at | GeV/c2, and
the reduction of the signal presumably due to f,(1270) with the application of the p}
selection criteria. Note that the dramatic drop at 1500 MeV/c2 is exactly where the Crystal
Barrel collaboration reports the glueball candidate f,(1500) . Figures 3.20 to 3.23 contain
the same plots for more restrictive Cherenkov identification cuts. The main difference here
is the shape of the distribution near threshold. With application of "exactly pion"
requirements, events near threshold are dramatically suppressed. The main reason for this
suppression is not excessive background in the threshold region. Near threshold there is a

very small amount of kinetic energy for the final state pions. Therefore there is a small
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probability for any one of the pions to travel away from the beam proton trajectory. As
mentioned in the Cherenkov counter section, the four central cells of the Cherenkov counter
are not being used because the Cherenkov light from the beam proton keeps the mirrors
always on. Therefore the application of Cherenkov cuts that require positive particle
identification depletes the sample mostly near threshold. For the same reason "soft”

Cherenkov identification is least effective in the threshold region.

The last two families of plots in the data selection concern the transverse momentum
distribution of the final state protons. The distribution of the four momentum transfer (¢) is
very similar to the transverse momentum distribution because of the kinematics of the
interaction (small difference in initial and final state longitudinal momentum)*. The four
momentum transfer is a Lorentz invariant and is often used to characterize diffractive

reactions. For completeness both variables are plotted for various cases.

Although the two final state protons are identical, we see that there are differences
in the observed p] distributions due to detector acceptance. Figures 3.24 to 3.26 show the
transverse momentum distribution for the slow (target) proton as a function of selection
criteria, and Figures 3.27 to 3.29 show the same plots for the fast (beam) proton. Keep in

mind that the slow proton is not observed, therefore we assign to the missing particle the

* For both initial state protons initial transverse momentum is equal to zero. For any one of the final state
protons the four momentum transfer is:

£=(E~E, F,-F,)

For relativistic final state protons, we can use the approximation:

E=\F +m =P, 472
L.i

— - 1 m: + P}
— 2 2 1 - T
E, =P}, +P} +m} =P"f+2—__P
Lf
Then we can rewrite the four momentum transfer as:
2
AP 1 P? AP? AP AP
?*=-P}- —Lp} + - - L-m’ + ——L—Pim’ + | —+—m?
PL.[ 4PL.] PL.fPL.i PL.]'PL.i . ':..PL./PL..-

Given the X distributions we observe, the most significant term in the sum is P,z..

101



transverse momentum necessary to balance the event. As shown in the x, distribution
plots, there are differences in the longitudinal momentum distributions of the two protons.
The main reason for the differences between the p} distributions is the acceptance of the
beam spectrometer and the fact that the target proton is not observed by the apparatus.
Before commenting on the siopes of the distributions, it is worth mentioning some striking
differences between the slow and fast proton, visible in all selection stages. In the high p;
region there are many more events for the slow (target) proton than for the fast (beam)
proton. For all comments made here, keep in mind the logarithmic scale of the plots. The
number of events near 1 (GeV/c)2 is very small compared to the whole sample. One
reason for the discrepancy is the acceptance of the beam spectrometer as a function of p;.
There is a cutoff limit for transverse momentum a little above | (GeV/c)z. The limit of
transverse momentum is correlated to the longitudinal momentum loss of the beam proton
and is not a simple number. Nevertheless because the longitudinal momentum transfer of
the beam proton for the sample we study is very limited, there is effectively no acceptance
correction below 1 (GeV/c)z. The main reason for the different number of events is the
fact that we do not observe the slow (target) proton. In Figure 3.24 we can immediately
see that if we do not apply strict selection criteria, it is impossible to fit a single exponential
for the whole range between 0 and 1 (GeV/c)2. This is due to missidentified events with
more than one particle missing, or one missing particle that is not a proton. We expect
such events to have higher p; since the particles can be decay products of intermediate
states and have significant recoil momentum. This expectation is consistent with the effects
of the p; cut on the missing mass squared distribution. We see a dramatic drop in the
number of events with poor longitudinal momentum balance after application of the p]
selection cut. This can be easily attributed to an increase of the ratio of correctly identified

events to events with more than one missing particle.

Although the differences near p>=1 (GeV/c)2 are clearly visible in the logarithmic

plots, they involve a small number of events, at least after the application of strict selection
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cuts. A significant difference that involves a much larger number of events is a "dip" in the
fast proton p; distribution at p?=0. As can be seen from the plots, we lose events in the
first two bins of the beam proton distribution (0.01 (GeV/c)2 per bin). There are two
reasons for the observed inefficiency: the forward hodoscope trigger requirement and the

loss of efficiency the beam chambers suffer along the uninteracted beam trajectory.

The forward hodoscope trigger depends only on the position of the beam track at
the end of the beam line. Event digitization and readout is aborted in the absence of a
double coincidence for the forward hodoscope counters. As can be seen in Figure 2.6 a
small hole in the counter array allows for the uninteracted tracks to pass through the
forward hodoscope without hitting the counters. For small values of p} it is possible for a
beam track to pass through the counter hole and be rejected by the forward hodoscope
trigger. The other source of inefficiency is the strict requirements for reconstruction in the
beamn spectrometer. Since we use a 2.5% interaction target the vast majority of beam tracks
travel through the same path in the beam spectrometer drift chambers. The ionization from
the uninteracted beam tracks creates over time chemical deposits on the wires residing on
the "beam spot”. The deposits are localized at the "beam spot" and do not reduce detection
efficiency for the entire length of the wire. As was the case for the trigger inefficiencies,
beam tracks with low p’ and momentum transfer travel close to the beam trajectory and
have a higher probability to be affected by chamber inefficiencies. Since the requirement
for the reconstruction of a beam track is that no more than one wire hit is missing in the
outgoing beam chambers, small changes in the chamber efficiency can translate into

significant changes in the number of events accepted by the spectrometer.

Given the comments on inefficiency for beam track reconstruction near p} =0 and
the effect of background on the slow proton p? distribution for high values of p?, we do

not consider the observed distributions for p} as the production distributions. We expect

the observed and produced distributions to have similar slopes if we fit away from the
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"problem regions", and use samples for which strict selection cuts have been applied. The
fitting function we use is

I = normalization x exp{~slope X p}}
The range we fit is limited to bins 3 to 18. Since the bin size for all p} plots is 0.01
(GeV/c)2), the corresponding p? values are 0.025 to 0.195 (GeV/c)2. We limit the range
of p; used for fitting, because the problems mentioned above do not allow for a

meaningful comparison of the slopes of the two final state protons, especially for different

sets of selection criteria.

Figure 3.24 shows the slow proton p} distribution for soft Cherenkov

identification and six different sets of selection criteria. For Figures 3.24.a and 3.24.bitis

clear that the distribution cannot be fit by a single slope. This is due to significant

background in the high p? region. The nonlinear shape of the slope is not as pronounced
in Figure 3.24.c, where we apply the rapidity and x,. selection (cut numbers (4) and (5) in
the selection outline list). This is probably due to rejection of target dissociation events
with missing particles. In the next Figure (3.24.d) we enforce two different cuts for the

fast proton, so that we can check if there are correlations between the final state proton

distributions. The solid line (and fit shown) is the result of the cut p:'_ an <0.1 (GeV/c)2 and
the dotted line is the result of the stricter cut p; ,,<0.05 (GeV/c)2. The application of the

P} 4 Cuts changes the slope of the distribution from 9.5 to 10.2 and 10.6 respectively.

Therefore, although some correlation exists, it is not very significant. The last two plots in

Figure 3.24 show the effect of the missing mass squélred (MM2) cut. In 3.24.e we relax

the p; e <0-1 (GeV/c)2 requirement and apply two missing mass squared cuts: for the

solid line -6<MM2<0c and for the dotted line -c<MM2<6/2. In 3.24.f the same cuts are
applied, but in addition to the MM2 cut we require that p; ,,<0.1 (GeV/c)2 as in 3.24.d.

Except for small changes in the observed slope, the effects of the missing mass squared cut

on the p},, distributions are minimal. Comparing the slope in 3.24.c to the last two plots
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the change is from 9.5 t0 9.9 and 10.6 respectively. Looking at all six plots in Figure 3.24
we find that the fitted slope of the p; distribution changes very little as a function of
selection cuts, except for the application of the missing longitudinal momentum (MPI) cut.
This cut (3.24.b) changes the slope from 6.6 to 9.4 and removes all events with large
longitudinal momentum imbalance. After this selection step the slope varies only between

9.4 and 10.6.

The slopes are more consistent for the fast proton distribution where the identity of
the proton is not in doubt. In Figure 3.27 the same selection criteria are applied for the fast

proton with the exception that the selection p? ., <0.1 (GeV/c)2 is replaced by p7,,,<0.1

(GeV/c)2. Here the slopes vary between 8.8 and 11.9. For all six plots we do not see the
obvious change of slope as a function of p?, that is apparent in the slow proton
distributions. The difference is that there are no doubts about the identity of the fast
proton, while for the slow proton it is possible to assign as slow proton transverse

momentum due to missing particles.

Figures 3.25, 3.26 and 3.28, 3.29 show the slow and fast proton distributions for
the same cuts but for alternative Cherenkov identification criteria. There is a consistent
change in the slopes of both protons at all selection stages. The distributions are
consistently "broader” with slopes smaller in absolute value when compared with the
corresponding slopes for "soft" Cherenkov identification. The systematic favoring of
events with large p; for the final state protons is due to our inability to use the four central
cells of the Cherenkov counter for positive particle identification. Since the alternative
Cherenkov cuts demand one or both pions be positively identified, the requirement is
equivalent to demanding one or both pions have enough transverse momentum to move
outside the four central cells of the Cherenkov counter. This happens either because they
have enough transverse recoil momentum (high mass for the "parent" central meson), or

because the “parent” central meson is produced with high transverse momentum.
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Therefore strict Cherenkov identification favors events with higher transverse momentum
for the central meson which translates (due to momentum conservation) to high transverse
momentum for the final state protons. We expect this systematic effect to be more
significant for events near threshold, where recoil momentum is limited. We also expect
positive identification in the Cherenkov counter to generate a correlation in the relative

orientation of the final state protons.

For completeness the (¢) distributions are shown in Figures 3.30 to 3.35. The
above discussion about the p? distributions applies. The only thing to mention here is that
the poor resolution for the target proton longitudinal momentum makes it necessary to
apply energy-momentum conservation in order to calculate the four momentum transfer of

the target (slow) proton.
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Table 3.1. Ratio of integrals: __S_@ai_ estimated from the fits in
Background

Figures 3.1 to 3.3. The integration range is [-0,0], centered at the peak of the Gaussian.

Figure #| Signal+Background Background Signal

Background

3.1a 107261.90 21377.79 4.0
b 35948.14 7018.40 4.1

C 25788.21 4576.63 4.6

d 16608.80 2512.53 5.6

e 15396.56 1891.35 7.1

f 10452.20 1127.28 8.3
3.2a 28310.11 4963.84 4.7
b 18485.29 2913.46 5.3

c 14353.11 2108.61 5.8

d 8701.91 1091.35 7.0

e 7848.86 736.16 9.7

f 4912.42 365.72 12.4
3.3a 3819.43 539.50 6.1
b 3732.81 502.97 6.4

c 3324.43 451.38 6.4

d 1936.11 202.83 8.5

e 1660.36 131.04 11.7

f 1057.95 50.69 19.9
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Figure 3.1 Missing mass squared as a function of selection criteria. The fitting function is a

Gaussian plus a second order polynomial: f(x)= p, exp[(x -p,)/\2, p,]2 + p, + px + pex’
The dotted line represents the polynomial only. The selection cuts are:

(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle
spectrometer.

(b) Same as (a) and rapidity gap between the slow proton and any one of the two pions
greater than 1.8.

(c) Same as (b) and x, for the central meson (X) in the interval [-0.1,0.0].
(d) Same as (c) and p?<0.1 (GeV/c)2 for the fast (bearn) proton.
(e) Same as (c) and p,l<0.l (GeV/c)2 for the slow (target) proton.

(f) Same as (c) and p?<0.1 (GeV/c)2 for both protons.
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Figure 3.2 Missing mass squared as a function of selection criteria. The Cherenkov
requirement is at least one particle in multiparticle spectrometer "exactly pion”. Fitting
function: f(x) = p, exp[(x— P2)/V2p,]| + p, + psx + px*. The selection cuts are:

(a) Vertex requirements, two (Cherenkov) pion compatible tracks in multiparticle
spectrometer and at least one of them "exactly pion”.

(b) Same as (a) and rapidity gap between the slow proton and any one of the two pions
greater than 1.8.

(c) Same as (b) and x, for the central meson (X) in the interval [-0.1,0.0].

(d) Same as (c) and p,z<0.l (GeV/c)2 for the fast (beam) proton.
(e) Same as (c) and p,1<0.1 (GeV/c)2 for the slow (target) proton.
(F) Same as (c) and p?<0.1 (GeV/c)?2 for both protons.
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Figure 3.3 Missing mass squared as a function of selection criteria. The Cherenkov
requirement is both particles in multiparticle spectrometer are "exactly pion”. Fitting
function: f(x)=p, exp[(x =P )/ V2 1’3]z + p, + psx + pgx*. The selection cuts are:

(a) Vertex requirements and two "exactly pion" tracks in multiparticle spectrometer.
(b) Same as (a) and rapidity gap between the slow proton and any one of the two pions
greater than 1.8.

(c) Same as (b) and x,. for the central meson (X) in the interval [-0.1,0.0].
(d) Same as (¢) and p; 240.1 (GeV/c)2 for the fast (oeam) proton.

(e) Same as (c) and p?<0.1 (GeV/c)2 for the slow (target) proton.

(f) Same as (c) and p}<0.1 (GeV/c)2 for both protons.
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Figure 3.4 Missing mass squared (MM2) before (dash) and after (solid line) the application
of missing longitudinal momentum selection cut, for "soft" Cherenkov identification. The
vertical lines are drawn to within +o from the peak of the Gaussian representing the missing
proton signal. The selection cuts are:
(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle

spectrometer.

(b) Same as (a) and rapidity gap between the slow proton and any one of the two pions

greater than 1.8.

(c) Same as (b) and x, for the central meson (X) in the interval (-0.1,0.0].
(d) Same as (c) and p?<0.1 (GeV/c)2 for the fast (beam) proton.

(e) Same as (c) and p;<0.1 (GeV/c)2 for the slow (target) proton.

(f) Same as (c) and p?<0.1 (GeV/c)2 for both protons.
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Figure 3.5 Same as previous, with scale set by cut events. Missing mass squared (MM2)
before (dash) and after (solid line) the application of missing longitudinal momentum
selection cut, for "soft” Cherenkov identification. The vertical lines are drawn to within +o
from the peak of the Gaussian representing the missing proton signal. The selection cuts are:
(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle
spectrometer.
(b) Same as (a) and rapidity gap between the slow proton and any one of the two pions
greater than [.8.
(c) Same as (b) and x, for the central meson (X) in the interval [-0.1,0.0].
(d) Same as (c) and p?<0.1 (GeV/c)2 for the fast (beam) proton.
(e) Same as (c) and p?<0.1 (GeV/c)2 for the slow (target) proton.

(f) Same as (c) and p?<0.1 (GeV/c)2 for both protons.
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Figure 3.6 Missing mass squared (MM2) before (dash) and after (solid line) the application
of missing longitudinal momentum selection cut, for "at least one exactly pion" Cherenkov
identification. The vertical lines are drawn to within £ from the peak of the Gaussian
representing the missing proton signal. The selection cuts are:
(a) Vertex requirements, two (Cherenkov) pion compatible tracks in multiparticle
spectrometer and at least one of them "exactly pion".
(b) Same as (a) and rapidity gap between the slow proton and any one of the two pions
greater than 1.8.
(c) Same as (b) and x, for the central meson (X) in the interval [-0.1,0.0].

(d) Same as (c) and p]<0.1 (GeV/c)?2 for the fast (beam) proton.
(e) Same as (c) and p?<0.1 (GeV/c)2 for the slow (target) proton.
(f) Same as (c) and p?<0.1 (GeV/c)2 for both protons.
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Figure 3.7 Missing mass squared (MM2) before (dash) and after (solid line) the application
of missing longitudinal momentum selection cut, for "both exactly pion" Cherenkov

identification. The vertical lines are drawn to within ¢ from the peak of the Gaussian

representing the missing proton signal. The selection cuts are:

(a) Vertex requirements and two “exactly pion" tracks in multiparticle spectrometer.

(b) Same as (a) and rapidity gap between the slow proton and any one of the two pions
greater than 1.8.

(c) Same as (b) and x, for the central meson (X) in the interval [-0.1,0.0].
(d) Same as (c) and p’<0.1 (GeV/c)2 for the fast (beam) proton.

(e) Same as (c¢) and p,2<0.l (GeV/c)2 for the slow (target) proton.

(f) Same as (c) and p2<0.1 (GeV/c)2 for both protons.
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Figure 3.8 x, distributions for final state protons and intermediate meson (X) with "soft"

Cherenkov identification selection. The selection cuts are:

(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle
spectrometer.

(b) And missing longitudinal momentum within 1 GeV/c (-1<MPI<1 GeV/c)

(c) And rapidity gap between the slow proton and any one of the two pions greater
than 1.8.

(d) And x, for the central meson (X) in the interval (-0.1,0.0].

(e) And p?<0.1 (GeV/c)2 for both final state protons.

(f) And missing mass squared within [~5,6/2] (-0.56<MM2<0.70).
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Figure 3.9 x, distributions for final state protons and intermediate meson (X) with at least
one "exactly pion” Cherenkov identification selection. The selection cuts are:
(a) Vertex requirements, two (Cherenkov) pion compatible tracks in multiparticle
spectrometer and at least one of them "exactly pion".
(b) And missing longitudinal momentum within 1 GeV/c (-1<MPl<1 GeV/c)
(c) And rapidity gap between the slow proton and any one of the two pions greater

than 1.8

(d) And x, for the central meson (X) in the interval {-0.1,0.0].
() And p?<0.1 (GeV/c)2 for both final state protons.
(f) And missing mass squared within [~6,6/2] (-0.56<MM2<0.70).
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Figure 3.10 x, distributions for final state protons and intermediate meson (X) with two
"exactly pion" tracks in multiparticle spectrometer (Cherenkov identification). The selection

cuts are:

(a) Vertex requirements and two "exactly pion" tracks in multiparticle spectrometer.

(b) And missing longitudinal momentum within | GeV/c (-|<MPi<! GeV/c)

(c) And rapidity gap between the slow proton and any one of the two pions greater
than 1.8.

(d) And x; for the central meson (X) in the interval [-0.1,0.0].

(¢) And p?<0.1 (GeV/c)2 for both final state protons.

(F) And missing mass squared within [—0,6/2] (-0.56<MM2<0.70).
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Figure 3.11 Missing longitudinal momentum (MPI) as a function of selection criteria:

(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle
spectrometer. This is the series of selection criteria used to define the data sample.
The cut at [-1,1] GeV/c is marked by the vertical lines.

(b) Solid line: MPI after the following cuts: Rapidity gap between the slow proton and
any one of the two pions greater than 1.8. x, for the central meson (X) in the

interval [-0.1,0.0). p?<0.1 (GeV/c)2 for slow(target) proton.
Dashed line: in addition to previous cuts require the mmissing mass squared
selection -o<MM?2<c which corresponds to -0.56<MM2<1.12 (GeVIc2)2.

(c), (d) Same as (a), (b) except that for Cherenkov identification we require at least one
of the multiparticle spectrometer particles be identified as "exactly pion"”.

(e), (f) Same as (a), (b) except for strict Cherenkov identification. We require both
particles in multiparticle pectrometer be identified as "exactly pion".

118



# of events per (100 MeV/c2)2

# of events per (100 MeVic2)2

(@)

(%)

[ 7
Ente e «336 2
146"
1 562
Ao/ 626 7 s
P 1845
- Y ") 4442 3
13 Jez32 -
P 31T
"PS 24 8=
i T34

(RAARSRAARNRLRRY RRRRD RRLRS RARRN RRARN RARRY
e e——
-
S EEERT

3 T
3R

!

5 5

o] « = )R R

"L, TAFS LD Lo
[F] 7
Entres 2
Mesr 14
PSS 223

ey
s

‘l]l'll‘!lll'lllllllll"l

L YRR
B ,‘~‘
ol o

rrnee’,

290

[}

; LEE] [
— Entries ‘2410
- Meer - 328
- oS * 302
- P T T IET
- Ll T3ah
L P £.3359

P C.269
r Pa €1
o hPE anly
- rs.46

!

"l"

T
e ————— .

lll]‘l
«v‘%“‘

NG

|
';-
A
2.

Frirm e 2

»I]’

—

YAIIIIITIIIIIllll'llll]"
A o
.

»

e, M= 12

N . ] 9
U ~ D N U RV B N }
O w0 W

I
h

[}

o o 17
P Eatres 73769
- Nean ss12
L. s S 832
s ., V)
= xire' 4827 7/ 94
| M 166,
- =2 0 3668
—- =3 18641
I =24 25¢
i 25 41,20
[ =6 317
- \
C / i
- ¢ \v
- lf 5
oy ""M\
- PN
- 5 - -
L 7 R
l 1 1 L1 l 1
N =
IJ -
w2 <« =21 A
Mo es., Mx = D
[} v/
res 12265
Vean T &5
U3 2170

Figure 3.12 Missing mass squared for intervals of invariant mass of the X system. The X
system invariant mass intervals are stated below each plot. The selection cuts are:

Vertex requirements and two (Cherenkov) pion compatible tracks in

multiparticle spectrometer.
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Figure 3.13 Missing mass squared for intervals of invariant mass of the X system. The X
system invariant mass intervals are stated below each plot. The selection cuts are:
Vertex requirements and two (Cherenkov) pion compatible tracks in
multiparticle spectrometer.
Missing longitudinal momentum (MPI) within 1 GeV/c (-1<MPI<1 GeV/c)
Rapidity gap between the slow proton and any one of the two pions greater
than 1.8.

x, for the central meson (X) in the interval [-0.1,0.0].
p2<0.1 (GeV/c)?2 for both final state protons.
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Figure 3.14 Missing mass squared for intervals of invariant mass of the X system. The X
system invariant mass intervals are stated below each plot. The selection cuts are:
Vertex requirements, two (Cherenkov) pion compatible tracks in multiparticle
spectrometer and at least one of them “exactly pion”. .
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Figure 3.15 Missing mass squared for intervals of invariant mass of the X system. The X
system invariant mass intervals are stated below each plot. The selection cuts are:
Vertex requirements, two (Cherenkov) pion compatible tracks in multiparticle

spectrometer and at least one of them "exactly pion".

Missing longitudinal momentum (MPI) within 1 GeV/c (-1<MPl<1 GeV/c)
Rapidity gap between the slow proton and any one of the two pions greater

than 1.8.

x, for the central meson (X) in the interval [-0.1,0.0].
p,z<0.l (GeV/c)? for both final state protons.
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Figure 3.16 Missing mass squared for intervals of invariant mass of the X system.
Invariant mass intervals are stated below each plot. The selection cuts are:
Vertex requirements and two "exactly pion" tracks in multiparticle spectrometer.
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Figure 3.17 Missing mass squared for intervals of invariant mass of the X systemn. The X
systemn invariant mass intervals are stated below each plot. The selection cuts are:
Vertex requirements and two "exactly pion" tracks in multiparticle spectrometer.
Missing longitudinal momentum (MPl) within 1 GeV/c (-1<MPl<1 GeV/c)
Ra[tatilditylggp between the slow proton and any one of the two pions greater
an 1.o.

x; for the central meson (X) in the interval [-0.1,0.0].
p2<0.1 (GeV/c)2 for both final state protons.
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Figure 3.18 Invariant mass as a function of selection criteria, “soft" Cherenkov
identification. The selection cuts are:
(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle
spectrometer.
And missing longitudinal momentum within 1 GeV/c (-1<MPI<1 GeV/c)
(b) Solid: Same as (a) and rapidity gap between the slow proton and any one of the
two pions greater than 1.8.
Dash: and x, for the central meson (X) in the interval [-0.1,0.0].

(c) Solid: Same as (b) and p,z<0.l (GeV/c)2 for the slow (target) proton.
Dash: and p2<0.1 (GeV/c)2 for the fast (beam) proton.

(d) All previous cuts except for p?<0.1 (GeV/c)2 for the fast (beam) proton and

Solid: missing mass squared within [~0,6] (-0.56<MM2<1.12).
Dash: missing mass squared within [-0,6/2] (-0.56<MM2<0.70).
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Figure 3.19 Detail of invariant mass as a function of selection criteria, "soft" Cherenkov
identification. The selection cuts are:

(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle
spectrometer.
And missing longitudinal momentum within 1 GeV/c (-1<MPI<1 GeV/c)

(b) Solid: Same as (a) and rapidity gap between the slow proton and any one of the
two pions greater than 1.8.

Dash: and x, for the central meson (X) in the interval [-0.1,0.0].
(c) Solid: Same as (b) and p?<0.1 (GeV/c)? for the slow (target) proton.
Dash: and p2<0.1 (GeV/c)2 for the fast (bearn) proton.

(d) All previous cuts except for p;<O0.1 (GeV/c)2 for the fast (beam) proton and
Solid: missing mass squared within {~6,6] (-0.56<MM2<1.12).
Dash: missing mass squared within [-0,6/2] (-0.56<MM2<0.70).
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Figure 3.20 Invariant mass as a function of selection criteria, one "exactly pion" Cherenkov
identification. The selection cuts are:
(a) Vertex requirements, two (Cherenkov) pion compatible tracks in multiparticle
spectrometer and at least one of them "exactly pion".
And missing longitudinal momentum within 1 GeV/c (-1<MPI<1 GeV/c)
(b) Solid: Same as (a) and rapidity gap between the slow proton and any one of the
two pions greater than 1.8.
Dash: and x, for the central meson (X) in the interval [-0.1,0.0].

(c) Solid: Same as (b) and p,2 <0.1 (Ge:V/c)2 for the slow (target) proton.
Dash: and p?<0.1 (GeV/c)2 for the fast (beam) proton.
(d) All previous cuts except for p,2<0.l (GeV/c)2 for the fast (beam) proton and

Solid: missing mass squared within [-6,0]

(-0.56<MM2<1.12).

Dash: missing mass squared within [-0,6/2] (-0.56<MM2<0.70).
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Figure 3.21 Detail of invariant mass as a function of selection criteria, one "exactly pion”
Cherenkov identification. The selection cuts are:

(a) Vertex requirements, two (Cherenkov) pion compatible tracks in multiparticle
spectrometer and at least one of them "exactly pion".
And missing longitudinal momentum within 1 GeV/c (-1<MPl<1 GeV/c)
Solid: Same as (a) and rapidity gap between the slow proton and any one of the
two pions greater than 1.8.

Dash: and x, for the central meson (X) in the interval [-0.1,0.0].
(c) Solid: Same as (b) and p?<0.1 (GeV/c)2 for the slow (target) proton.
Dash: and p?<0.1 (GeV/c)2 for the fast (beam) proton.
(d) All previous cuts except for p?<0.1 (GeV/c)2 for the fast (beam) proton and

Solid: missing mass squared within [~0,0] (-0.56<MM2<1.12).
Dash: missing mass squared within [~06,672] (-0.56<MM2<0.70).

(b)
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Figure 3.22 Invariant mass as a function of selection criteria, two "exactly pion" Cherenkov

identification. The selection cuts are:

(a) Vertex requirements and two "exactly pion" tracks in multiparticle spectrometer.
And missing longitudinal momentum within 1 GeV/c (-1<MPl<1 GeV/c)

(b)
two pions greater than 1.8.

Solid: Same as (a) and rapidity gap between the slow proton and any one of the

Dash: and x, for the central meson (X) in the interval [-0.1,0.0].
(c) Solid: Same as (b) and pf<0.l (GeV/c)2 for the slow (target) proton.
Dash: and p?<0.1 (GeV/c)2 for the fast (beam) proton.
(d) All previous cuts except for p?<0.1 (GeV/c)2 for the fast (beam) proton and

Solid: missing mass squared within {—6,6]

(-0.56<MM2<1.12).

Dash: missing mass squared within [-0,6/2] (-0.56<MM2<0.70).
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Figure 3.23 Detail of invariant mass as a function of selection criteria, two "exactly pion”
Cherenkov identification. The selection cuts are:
(a) Vertex requirements and two "exactly pion" tracks in multiparticle spectrometer.
And missing longitudinal momentum within | GeV/c (-1<MPIl<1 GeV/c)
(b) Solid: Same as (a) and rapidity gap between the slow proton and any one of the
two pions greater than 1.8.

Dash: and x, for the central meson (X) in the interval [-0.1,0.0].
(c) Solid: Same as (b) and p><0.1 (GeV/c)? for the slow (target) proton.
Dash: and p?<0.1 (GeV/c)2 for the fast (beam) proton.
(d) All previous cuts except for p}<0.1 (GeV/c)2 for the fast (beam) proton and

Solid: missing mass squared within [-6,0] (-0.56<MM2<1.12).
Dash: missing mass squared within [-0,06/2] (-0.56<MM2<0.70).

130



= D 7
Entres 189632
£ . Mear 32394
IO E RMS 3.2152
~ E - ynat 105 7 €
i- C \ P 3 334
N - ~<p: -6.857
FREN = () TS
s F e
E g MR
— L PR o - !
Z sz J < A 13
Missing pt*
= 1o] i
Fi Encres 37338
i,qs Mear 21228
- RMS 31821
= wondt 17 . B
2 152 S P 5122
- -
£14 P2 -3.548
4 (c) A
H "'-Ir
g . Epd
<1C -"‘1"J|'
L L i} L 1 L | | -
z 2.z 0. e .3
Missing pt*
= 10 1 ]
1o 30 Enires CesIy
£V - M2 S 12C%S
£ = M RS PR
T .ol o Fonal | iz ¢ €
z 18- "‘:‘\«] p1 7723
: F ( S hes -9 596
= [ e) pLiSTEY
4, - vy N
1O — "ol __‘L- v -
POF S
- - : " ﬁ
-l i L1 1 1 l 1 1 ]
. 0.2 Q.4 . 2.8
Missing pt*

e 19 K]
107 Ertres 192063
Mear C "452
R\MS C.°65/
: - K/mct G941 1€
12= ~_ F1 3424
LE2 —3.355
(b) T~

=2 e P

- Uk_b-‘
b
. - P .
E a2 SIS De e 1
Missing pr*

= ) T
Ertres 23ss¢
Mear £1zz
RS C "Z39
/e 2267 1€
F1 rav
HE2 -18.22

Missing pt*

1D 11
Ertr es TSTas
Mear ¢ 372
RMS L "252
</ret C20R S 16
£1 357

£ 58

%7‘1&-: - ﬂ—l

Missing pr*

Figure 3.24 Missing p;, assigned to slow (target) proton, "soft" Cherenkov identification.

The selection cuts are:

(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle

spectrometer.

(b) Same as (a) and missing longitudinal momentum (MPI) within -1<MPI<1 GeV/c2
(c) Same as (b) and rapidity gap between the slow proton and any one of the two pions
greater than 1.8 and x, for the central meson (X) in the interval [-0.1,0.0].

(d) Solid: And p2<0.1 (GeV/c)2 for the fast (beam) proton. Dash: p?<0.05

(GeV/c)2

(e) Solid: same as (c) and missing mass squared within [-0,G]

Dash: same as (c) and missing mass squared within [-0,6/2] (-0.56<MM2<0.70).
(f) Solid. Dash: same as (e) and p,z<0.l (GeV/c)2 for the fast (beam) proton
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(-0.56<MM2<1.12).
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Figure 3.25 Missing p?, assigned to slow (target) proton, one exactly pion Cherenkov
identification. The selection cuts are:
(a) Vertex requirements and two (Cherenkov) pion compatibie tracks in multiparticle
spectrometer and at least one of them "exactly pion".
(b) Same as (a) and missing longitudinal momentum (MPI1) within -1<MPl<1 GeV/c2
(c) Same as (b) and rapidity gap between the slow proton and any one of the two pions
greater than 1.8 and x, for the central meson (X) in the interval [-0.1,0.0].

(d) Solid: And p?<0.1 (GeV/c)2 for the fast (beam) proton.

(GeV/c)2.

(e) Solid: same as (c¢) and missing mass squared within [-G,0]

Dash: p?<0.05

(-0.56<MM2<1.12).

Dash: same as (c) and missing mass squared within [-0,06/2] (-0.56<MM2<0.70).

®
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Solid, Dash: same as (e) and p,2<0.1 (GeV/c)2 for the fast (beam) proton
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Figure 3.26 Missing p}, assigned to slow (target) proton, two exactly pion Cherenkov

identification. The selection cuts are:

(a) Vertex requirements and two "exactly pion" tracks in multiparticle spectrometer.

(b) Same as (a) and missing longitudinal momentum (MP1) within -1<MPl<1 GeVi/c2

(c) Same as (b) and rapidity gap between the slow proton and any one of the two pions
greater than 1.8 and x, for the central meson (X) in the interval [-0.1,0.0].

(d) Solid: And p?<0.1 (GeV/c)2 for the fast (beam) proton. Dash: p?<0.05

(GeV/c)2.

(e) Solid: same as (c) and missing mass squared within [—G,6]

(-0.56<MM2<1.12).

Dash: same as (c) and missing mass squared within [-0,6/2] (-0.56<MM2<0.70).
(f) Solid, Dash: same as () and p?<0.1 (GeV/c)2 for the fast (bearn) proton
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(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle

spectrometer.

(b) Same as (a) and missing longitudinal momentum (MPI) within -1<MPl<1 GeV/c2
(c) Same as (b) and rapidity gap between the slow proton and any one of the two pions

greater than 1.8 and x, for the central meson (X)) in the interval [-0.1,0.0].

(d) Solid: And p?<0.1 (GeV/c)? for the fast (beam) proton.

(GeV/c)z.

(e) Solid: same as (c) and missing mass squared within [-G,0]
Dash: same as (c) and missing mass squared within [-0,0/2] (-0.56<MM2<0.70).

Dash: p?<0.05

(f) Solid. Dash: same as (e) and p,2<0.l (GeV/c)2 for the fast (beam) proton
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Figure 3.27 p? for fast (beam) proton, "soft" Cherenkov identification. The selection cuts
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(-0.56<MM2<1.12).
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Figure 3.28 p for fast (beam) proton, one exactly pion Cherenkov identification. The

selection cuts are:

(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle
spectrometer and at least one of them "exactly pion".

(b) Same as (a) and missing longitudinal momentum (MPI) within -1<MPI<1 GeV/c2
(c) Same as (b) and rapidity gap between the slow proton and any one of the two pions

greater than 1.8 and x. for the central meson (X) in the interval [-0.1,0.0].
(d) Solid: And p?<0.1 (GeV/c)2 for the fast (beam) proton. Dash: p?<0.05

(GeV/c)2.

(e) Solid: same as (c) and missing mass squared within [-0,0]

(-0.56<MM2<1.12).

Dash: same as (c) and missing mass squared within [-6,6/2] (-0.56<MM?2<0.70).
(f) Solid, Dash: same as (e) and p,z<0.l (G(:V/c)2 for the fast (beam) proton
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Figure 3.29 p; for fast (beam) proton, two exactly pion Cherenkov identification. The
selection cuts are:
(a) Vertex requirements and two "exactly pion" tracks in multiparticle spectrometer.

(b) Same as (a) and missing longitudinal momentum (MP!) within -1<MPI<1 GeV/c2
(c) Same as (b) and rapidity gap between the slow proton and any one of the two pions

greater than 1.8 and x, for the central meson (X) in the interval [-0.1,0.0].

(d) Solid: And p?<0.1 (GeV/c)2 for the fast (beam) proton. Dash: p><0.05
(GeV/c)2.

(e) Solid: same as (c) and missing mass squared within [-6,6] (-0.56<MM2<1.12).
Dash: same as (c) and missing mass squared within [-0,6/2] (-0.56<MM2<0.70).

(f) Solid, Dash: same as (e) and p; 240.1 (GeV/c)2 for the fast (beam) proton
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Figure 3.30 —r (4-momentum transfer) for slow (target) proton, "soft” Cherenkov

identification. The selection cuts are:

(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle

spectrometer.

(b) Same as (a) and missing longitudinal momentum (MP1) within -1<MPI<1 GeV/c
(c) Same as (b) and rapidity gap between the slow proton and any one of the two pions

greater than 1.8 and x, for the central meson (X) in the interval [-0.1,0.0].
(d) Solid: And p,z<0.1 (GeV/c)2 for the fast (beam) proton. Dash: p,z<0.05

(GeVic)2

(e) Solid: same as (c) and missing mass squared within [~G,G]

(-0.56<MM2<1.12).

Dash: same as (c) and missing mass squared within [-0,06/2] (-0.56<MM2<0.70).
(f) Solid, Dash: same as (e) and p,2 <0.1 (Gchc)2 for the fast (beam) proton
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Figure 3.31 -t (4-momentum transfer) for slow (target) proton, one exactly pion

Cherenkov identification. The selection cuts are:

(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle
spectrometer and at least one of them "exactly pion”.

(b) Same as (a) and missing longitudinal momentum (MPI) within -1<MPl<1 GeV/c

(c) Same as (b) and rapidity gap between the slow proton and any one of the two pions

greater than 1.8 and x for the central meson (X) in the interval [-0.1,0.0].
(d) Solid: And p,z<0.l (Gf:Vlc)2 for the fast (beam) proton. Dash: p,2<0.05

(GeVic)2.

(e) Solid: same as (c) and missing mass squared within [-0,0]

(-0.56<MM2<1.12).

Dash: same as (c) and missing mass squared within [-0,6/2] (-0.56<MM2<0.70).
(f) Salid, Dash: same as (e) and p,z<0.l (Ge:V/c)2 for the fast (beam) proton
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Figure 3.32 —t (4-momentum transfer) for slow (target) proton, two exactly pion

Cherenkov identification. The selection cuts are:

(a) Vertex requirements and two "exactly pion" tracks in multiparticle spectrometer.
(b) Same as (a) and missing longitudinal momentum (MPI) within -1<MPI<1 GeV/c
(c) Same as (b) and rapidity gap between the slow proton and any one of the two pions

greater than 1.8 and x, for the central meson (X) in the interval {-0.1,0.0].

(d) Solid: And p?<0.1 (GeV/c)? for the fast (beam) proton.

(GeV/c)2.

(e) Solid: same as (c) and missing mass squared within [~0,0]

Dash: p?<0.05

(-0.56<MM2<1.12).

Dash: same as (c) and missing mass squared within [-6,6/2] (-0.56<MM?2<0.70).
(f) Solid, Dash: same as (e) and p}<0.1 (GeV/c)2 for the fast (beam) proton
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Figure 3.33 —t (4-momentum transfer) for fast (beam) proton, "soft" Cherenkov
identification. The selection cuts are:

(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle

spectrometer.

(b) Same as (a) and missing longitudinal momentum (MPI) within - 1<MPI<1 GeV/c
(c) Same as (b) and rapidity gap between the slow proton and any one of the two pions
greater than 1.8 and x, for the central meson (X) in the interval [-0.1,0.0].

(d) Solid: And p?<0.1 (GeV/c)2 for the fast (beam) proton

(GeV/c)2.

(e) Solid: same as (c) and missing mass squared within [-5,6]

. Dash: p?<0.05

(-0.56<MM2<1.12).

Dash: same as (c) and missing mass squared within [—6,6/2] (-0.56<MM2<0.70).
(f) Solid, Dash: same as (e) and p?<0.1 (GeV/c)2 for the fast (beam) proton
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Figure 3.34 —t (4-momentum transfer) for fast (beam) proton, one exactly pion Cherenkov
identification. The selection cuts are:
(a) Vertex requirements and two (Cherenkov) pion compatible tracks in multiparticle
spectrometer and at least one of them "exactly pion".
(b) Same as (a) and missing longitudinal momentum (MP1) within -1<MPi<1 GeV/c
(c) Same as (b) and rapidity gap between the slow proton and any one of the two pions

greater than 1.8 and x, for the central meson (X) in the interval [-0.1,0.0].

(d) Solid: And p2<0.1 (GeV/c)2 for the fast (beam) proton. Dash: p?<0.05
(GeVic)2.

(e) Solid: same as (c) and missing mass squared within [-6,6] (-0.56<MM2<1.12).
Dash: same as (c) and missing mass squared within [—-0,6/2] (-0.56<MM2<0.70).

(F) Solid. Dash: same as (¢) and p<0.1 (GeV/c)?2 for the fast (beam) proton
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Figure 3.35 -t (4-momentum transfer) for fast (beam) proton, two exactly pion Cherenkov

identification. The selection cuts are:

(a) Vertex requirements and two "exactly pion" tracks in multiparticle spectrometer.

(b) Same as (a) and missing longitudinal momentum (MPI) within -1<MPI<]1 GeV/c

(c) Same as (b) and rapidity gap between the slow proton and any one of the two pions
greater than 1.8 and x, for the central meson (X) in the interval [-0.1,0.0].

(d) Solid: And p?<0.1 (GeV/c)2 for the fast (beam) proton. Dash: p?<0.05

(GeV/c)2.

(e) Solid: same as (c) and missing mass squared within [-0,0]

(-0.56<MM2<1.12).

Dash: same as (¢) and missing mass squared within [-0,6/2] (-0.56<MM2<0.70).
() Solid, Dash: same as () and p?<0.1 (GeV/c)2 for the fast (beam) proton
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CHAPTER 4
ANALYSIS
4.1 Outline

We want to identify the spin parity of the intermediate meson state (X) as a function
of mass and other production variables such as transverse momentum and relative
scattering angle for the final state protons. For spin parity determination it is necessary to
use the angular distribution of the final state pions. We proceed in two distinct steps. First
we express the observed distribution as an expansion of moments multiplied by the
corresponding spherical harmonics. We use the moments expansion and the detector
Monte Carlo simulation to find a new set of acceptance corrected moments, describing the
produced distribution. For the second step, the acceptance corrected moments are used to
find production amplitudes with definite spin parity, consistent with the acceptance

corrected distribution.

The presentation is organized in four sections. The first section describes the
Monte Carlo sample used for "acceptance correction” of the observed distributions. Here a
discussion of the possible sets of variables we can use for event description is included,
along with the choice of variables used for this analysis. The second section describes the
statistical analysis method used to find the acceptance corrected expansion coefficients
(acceptance corrected moments). In the third section we describe the procedure used to
extract amplitudes from the acceptance corrected moments. The ambiguities in the
determination of the production amplitudes lead to eight valid solutions for each analysis
bin. We discuss the method we use to select one of the eight as the most probable to
correspond to the production amplitudes and the procedure used for continuation of the

solutions across analysis bins. In the fourth and final section we investigate the
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dependence of the resulits on the final state variables. In particular we address recent
interest in the correlation between production amplitudes and the relative angle of the

scattering planes for the final state protons.
4.2 Monte Carlo Detector Simulation

As stated in the introduction, the kinematics of the reaction justify treating production of the
two pion system as a two step process (see Figure 1.1).

PP = P et (X) Pyt

(X)> '

Therefore we express the production and decay in terms of variables reflecting this
assumption. In our analysis decoupling between the production of the intermediate meson
and its final decay through the strong interaction is crucial. We do not consider any
correlations between the final state protons and the decay products of the intermediate

meson (X).

First we specify the variables necessary to define production. There are three
particles in the final state (two final state protons and the central meson). Therefore three
four-momentum vectors are necessary. The 3x4=12 variables can be reduced using four
energy momentum conservation constraints, and two constraints due to the known mass of
the final state protons. Therefore, 12-4-2=6 independent variables are necessary to define

production. We choose:

M, mass of the (X) system

X Feynman x of (X)

pt’ transverse momentum squared for p,,.,

@, the angle of the scattering plane in the overall center of mass
system for p,,,,

pt; transverse momentum squared for p,,

®, the angle of the scattering plane in the overall center of mass
system for p,,,
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Of the six variables we use for the description of the first step of the reaction, one is a

trivial rotation of the event around the beam axis. This becomes obvious if we substitute

the two angles that specify the proton scattering planes (@, & ¢,) with two new variables:
one specifying the relative angle between the scattering planes ( @ ) and one specifying the
overall orientation of the event in the detector. This second angle can be any one of the two
angles mentioned earlier (@, or @,). Although the physics is independent of overall
rotations and the production properties can be expressed using just five variables, detector
acceptance is not independent of overall rotations and all six variables must be used for

detector corrections.

For the decay of the intermediate particle we have 2x4=8 independent variables and
application of energy momentum conservation along with the known mass of the final state
pions leaves 8-4-2=2 independent variables. The mass of the intermediate meson is an
independent variable for production and is considered known here. The variables we

choose are the angles that specify the orientation of the &":

cos(60) polar angle

7] azimuthal angle

We define the two angles in the Gottfried-Jackson frame because it is a convenient
coordinate system for the application of the helicity formalism [51,52]. The coordinate
system is defined at the center of mass of the intermediate meson and the axis orientation is

determined by:

Z axis The direction of the momentum transfer of the beam or target
proton.

Y axis The normal to the plane defined by the momentum transfers at
the overall center of mass frame.

X axis the cross product ¥ =y X 2
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The set of variables chosen to specify the production and decay processes is not
unique. One of the alternative choices would be to substitute the transverse momentum of
the final state protons with their four momentum transfer (¢). The choice of variables is
somewhat arbitrary. In this particular case we prefer the transverse momentum since it is

directly measured.

We can express the differential cross section (therefore the observed intensity) in
terms of the variables just specified. We start with the Lorentz invariant cross section for
four particles in the final state (two protons and two pions). The Lorentz invariant cross

section is:

(2m)* )
do= LA SIM[ Jao.(Pir,.p..p..0)

where the summation is performed over the four possible helicity final states for the final

state protons. We express the Lorentz invariant phase space as a product of production and

decay phase space:
d¢4(P:p,,p+,p.,p,)=5"( ZP.)LI——”F;'—J( F-m)=
=5(P-(p +q+p,))£[:é;£)'s-5 m;)
x8(q - p, — p_)(27)’ (‘;”)" 8(a* - M3 )bt
x TT-2255(p - m) =

m(27)’

=&'(P-(p, +qa+p.) [1 ——’“—5( m?)

l=f:X

x54(q—p+—p-)1:[(‘; ) (p?-m}) (2m)’dM} =

=d®,(P:p,.q.p,)d®,(q: p..p.) (27)'2M dM,

We introduce the four momentum vector of the intermediate meson (X) that obeys the

equalities:
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q=p, +p. q’ =My
We integrate the phase space factors to eliminate the delta functions. It is convenient to
integrate the production phase space in the overall center of mass frame and the decay phase
space in the center of mass of the intermediate meson. After elimination of the delta

functions:

Vs dp}.de,dp! de.dx;
40,(Pip14.p) = i E e —E |
sz f [z

x

O
d®,(q;p,.p.)= l 2 d(cos8)de.

T 2*(2n)° M,

If we omit constants absorbed in the normalization the overall cross section becomes:

2 1 MY
d*o = M : ( ") —-m> dp® do.dp’do.dx.dM, d(cos@)d
(;I Al ) Ex E’p:.l _ E,p:"‘_ 2 X pl.f ¢f pl.-\' ¢J‘ F X ( ) (p

After defining the invariant cross section formally, we can proceed to specify the
Monte Carlo sample generated for detector acceptance corrections. We see from the
discussion above that a total number of 8 variables is needed for the specification of an
event. For detector acceptance corrections we would like to bin the data and Monte Carlo
sample into bins of all eight variables. This way, provided that acceptance does not change
rapidly from one analysis bin to the next and that there are no bins with zero acceptance, we
would be able to correct the sample for acceptance inefficiencies without assumptions about
the distribution of the produced event sample. In practice, the large number of variables
necessary for event definition makes such an approach unfeasible. Binning in all eight
variables rapidly reduces the number of events per bin and diminishes the statistical
significance of the measurement. Therefore we have to integrate the event distribution in
some of the variables. The variables we choose to integrate over are the ones for which the

detector acceptance is good and we have confidence in the measurement of the distribution
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directly from the data. For the Monte Carlo we generate 107 events with production

distributions:
M, mass of the (X) system Flat between [0.28, 2.30] Ge V/c2
x; Feynman x of (X) Flat between {-0.2,0.1]

pt; transverse momentum squared for p,,, | According to exp{—7 P:Z.:}

@, the angle of the scattering plane in the

Flat fi hole range
overall center of mass system for p,,, at for whole rang

pt; transverse momentum squared for p,, | According to exp{-7 pr}

¢, theangle of the scattering plane in the

Flat for whole range
overall center of mass system for p,,,

cos(@) | Azimuthal and polar angles for Flat

@ (+) pion in Gottfried Jackson frame.| Flat

The remaining variables are calculated from energy and momentum conservation. We
match the data for the transverse momentum distributions of the final state protons. The
invariant mass of the intermediate meson ( M,) and its decay angles (cos(8), @) are
generated flat because we use narrow bins for acceptance corrections of all three variables.
For the final state proton angles we observe a flat distribution in the data, and the Monte
Carlo sample shows weak acceptance dependencies as a function of these angles. The
situation for the last of the generated variables ( x, ) is more complicated. The acceptance of
the detector and the production distribution vary rapidly as a function of x.. Because it is
difficult to generate reliably a Monte Carlo sample that matches the produced data in the
whole x. range, we choose to perform the analysis in a small range of x, where we expect
an almost flat distribution for the produced data sample. This is the x. range [-0.1,0.0].

This reduces the Monte Carlo sample used to 3.3 x 106 events.
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We generate the production variables of each event in the overall center of
momentum reference frame, and the decay variables in the Gottfried-Jackson frame. We
use these variables to calculate the momentum vectors of the four final state particles (two
protons and two pions) in the laboratory reference frame. The momentum vectors are
written to output tapes in a standard format used for all E766/E690 Monte Carlo studies.
The generator output is used as input to the detector simulation code. This is code
specifically written for the simulation of this detector. Details about detector simulation can
be found elsewhere [46,50]. Generated particles are propagated through the simulated
detector, and the resulting "measurements” are written to output tape in a format identical
to the output format of the detector acquisition system. From this point on the analysis of
the data and Monte Carlo samples is identical. We process the Monte Carlo events with the
same track reconstruction (processor simulation) and vertex reconstruction (PASS2) code.
The analysis code used to process and select the data is also used for the Monte Carlo
sample. There is only one significant difference between the PASS2 output of the Monte
Carlo and detector data samples: each Monte Carlo event is accompanied by a data block
containing the momentum vectors produced by the generator. We use this information to
compare the generated and reconstructed momentum vectors for detector resolution studies
and to check for errors in the reconstruction routines. The generator data block is also used

for acceptance studies and for verification of the generated event distribution.

We now proceed to present some of the acceptance properties of the detector and
compare the Monte Carlo and observed data samples. The comparison can be used as
justification for the choices we made generating the Monte Carlo events. The data sample
contains topologies other than the topology of interest, while the Monte Carlo sample
contains just one topology. Thus, comparisons between the two samples make sense only

after the application of topology selection requirements.
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We show in Figure 4.1 the detector acceptance as a function of mass for a series of
selection criteria. There are six plots in this figure, two plots for each set of Cherenkov
identification requirements. In Figures 4.1.a and 4.2.b we apply only "soft" Cherenkov
selection criteria. We require that the multiparticle spectrometer particles are compatible

‘with pion identification but not necessarily incompatible with other assignments. The first
distribution in Figure 4.1.a (solid line) is the invariant mass of the generated events in the
x, interval [-0.1,0.0]. The next line (hardly distinguishable from the previous one)
corresponds to the reconstructed mass distribution for Monte Carlo events that satisfy the
vertex and "soft" Cherenkov identification requirements. Subsequent lines in Figures 4.1.a
and 4.1.b show the reconstructed invariant mass distribution with the application of
additional selection criteria. The additional selection cut that distinguishes each line from
the previous is shown in the figure. For all selection criteria, although a significant part of
the signal is rejected, we do not observe sharp changes in the mass distribution.
Acceptance as a function of mass changes much slower than the "features” observed in the
data. For more restrictive Cherenkov identification criteria, the acceptance changes
significantly as a function of mass. But the acceptance varies only slowly when compared
with the observed data sample invariant mass distribution. In Figures 4.1.c and 4.1.d we
show the effect of the selection criteria used in Figures 4.1.a and 4.1.b when we require
that at least one of the multiparticle spectrometer particles is compatible only with pion
identity in the Cherenkov counter. The strict Cherenkov requirement applied to both
multiparticle spectrometer tracks produces Figures 4.1.e and 4.1.f. Even more important
than the smooth variation of the acceptance as a function of mass is the fact that there are no
regions with zero acceptance. This means that given enough Monte Carlo statistics, we can
correct any region of the data for any combination of the selection criteria presented above.
Nevertheless we have a higher confidence in our results when the size of the correction we
need to apply is small. A case where large corrections are necessary can be seen in Figure

4._1.f, for invariant masses above 1.8 GeV/c2.
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In the following presentation we will be showing the data distributions of a variable
after integration over all other variables that describe the data set. Therefore it is important
to keep in mind the comparable distributions. For example, we cannot integrate over
invariant mass, since in this case the distributions for data and Monte Carlo are different.

In this case we have to integrate for different regions of invariant mass. This is the case for
Figure 4.2, where we compare the x, distributions for Monte Carlo and data samples.
There are three columns and three rows of figures. The three columns correspond to three
different regions of mass with boundaries: threshold, 0.6, 1.0, 1.5 GeV/c2. The three
columns correspond to the three different Cherenkov requirements mentioned earlier. For
Figure 4.2 all distributions are normalized to have an integral equal to unity. Although the
generated distribution is flat while the data distribution is expected to peak around x.=0,
we see a very good matching between Monte Carlo and Data distributions. This testifies to
the rapidly changing acceptance as a function of x.. More careful examination shows that
the Monte Carlo distribution exceeds the data distribution for values of x, away from
x.=0 while the reverse is true at x.=0. This is expected because the data distribution as a
function of x, indeed is not flat. It falls away from x.=0. Nevertheless it is varying slow
enough in the region where we perform the analysis ( x € [-0.1,0.0]) to make a flat
distribution a good approximation. Also notice that in the x, region where we perform the

analysis there are no bins with zero acceptance.

Acceptance as a function of the remaining production variables is shown in Figures
4.3 to 4.6. The first three figures present the acceptance of the Monte Carlo sample as a

function of the transverse momentum for the final state protons, while Figure 4.6 shows

the acceptance as a function of the relative angle (@, ) of the final state protons. For all

four figures there is no significant dependence of detector acceptance as a function of the
production variables. A more detailed look reveals some small dependencies not significant

in the present analysis.
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Figure 4.3 shows the slope of the generated and reconstructed Monte Carlo p?
distributions for the two final state protons. For all reconstructed data distributions in this
page, we use "soft” Cherenkov identification criteria. Figures 4.4 and 4.5 contain the same

distributions for alternative Cherenkov identification cuts. The reasons for weak
acceptance dependence in terms of the final state proton p; were presented in the
description of the p? distributions for the detector data sample. As was the case for the
detector data, we see a small loss of events for high values of beam track p} s (Figure
4.3.d), but it appears only for high values of p; r and involves a small number of events.
A significant difference between the data and Monte Carlo samples can be seen in the

p; ;=0 region of the fast (beam) proton distribution. In the data sample we observe a "dip"
in the p,z_ ;=0 region. The "dip” is due to the minimum momentum transfer requirements
imposed by the third level of the on-line trigger (TG3). At the time of completion of this
study we did not have a reliable model of the effect of the TG3 on the data sample,
therefore the effect of the TG3 was omitted in the Monte Carlo detector simulation. This is

a problem, since we do not correct for a class of events lost due to trigger inefficiency, but

again it involves a small number of events. For this analysis we use bins of p? much

wider than the small region affected by trigger inefficiency which further dilutes the effect.

Since acceptance dependencies as a function of p} are very small, the use of the Monte

Carlo for acceptance corrections has the net effect of simply muitiplying the sample by a

normalization constant, independent of the generated p; distribution. Figure 4.6 shows

the distribution of the relative angle between the transverse momentum vectors of the two

final state protons (@, ). After application of all data selection cuts we do not observe any

dependence of detector acceptance on this variable.
4.3 Moments Analysis

Here I describe the method used to apply detector acceptance corrections to the observed

data sample and express the produced distribution as a moments expansion. The base
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functions used are the spherical harmonics (Y, (€2)). Before describing the "moments

method" I express the observed distribution as an expansion of production and decay
amplitudes for the intermediate meson X. The form of the amplitude expansion is used to
illustrate the advantages of the moments method. Starting from the definition of the

invariant cross section:

d®c = (phase space)(ZlMl |2 )dp,% do dp}.do dx.dM, d(cos@)de
A

we can write the produced intensity as:
[ =(phase space)(ZlU f |2)
A

For the decay of a state with definite spin, we can write the amplitude for the

angular dependence of the decay particles using the appropriate D! . function. Here [,m

is the spin and helicity projection of the initial state (the intermediate meson X) and m’ is
the sum of helicities of the final state particles. For the whole process (production and
subsequent decay of the intermediate meson X), the amplitude is the product of the

production amplitude for a state with definite spin parity times the appropriate Df, .

function. In this study the final state particles (pions) have spin zero, therefore m’ =0 and

the D, , reduce to the spherical harmonics Y, (Q). Thus we can write the produced
intensity as:

I(x,Q) = (phase space)|U[’ =
= (phase space) Y, Y;,(Q)a;, (x)0, ()Y, (Q)
Lr

’
m.m

where the production amplitudes «,,(x) depend on all production variables

(x> M,,p’,.p;..x;0,) and the dependence on the decay variables (Q — cos 6, p) is

known. Summation over helicity states has been omitted in the last formula.

153



The goal of the study is the determination of the production amplitudes. Therefore
the first step is to recover the produced intensity distribution from the observed data

distribution. The relation between the two intensities can be written as:

L,.(xQ)=A(x,Q)L,.,(x.Q)

where A(x,Q) is the detector acceptance. We divide the sample in bins of the production
variables and integrate the production variables within this bin. For a particular analysis
bin:

L., (Q) = A(Q)L,,,(Q)

We perform the integration in bins where acceptance changes very slowly and can be
considered a constant. To this end we either integrate using small bins of a production
variable (e.g. M,) or large bins of a production variable for which the acceptance does not

change rapidly (e.g. p}).

We express the produced distribution as an expansion in spherical harmonics:

I pmd(g) = z T,.Y,.(Q)= Ztlm Re{Ylm (Q)}

m20

The advantages are twofold: First, the spherical harmonics form a complete basis for the
description of any angular distribution. Second, and most important, limited spin
assignments lead to limited terms in the series that expresses the angular dependence. This

is why we started this section expressing the produced intensity as a function of production
and decay amplitudes. If the maximum spin value in the sample is [, the maximum non-

zero expansion coefficient (moment) is £, ,,_ . Notice that we write the expansion twice,
once using the full Y, (Q) and once using only the real part of Y, (2) with terms limited

to m 2 0. The reasons for the simplification are:

T,_.=(-1)"T,, because I, (Q) is real.

154



T, =(-1)"T, because parity is conserved in the strong interaction.

Therefore the T, are real and the imaginary part of the Y, () cancels out. It is easy to

prove the relationship:

=T, form=0 and 1 =2T, form#0

In the following we simply write Y,,(2) as a shorthand for Re{Y,m (Q)} and we represent

the pair of indices /,m with a single Greek index (e.g. A <> [,m). We can rewrite the

relationship between produced and observed distributions as:

A
and operating on both sides with IdQ Y, (Q)

Jday,@)1,.()= >{fay, @A@Y, (@)}, =

v

b" = ; Aul. L

We refer to the integrals of the accepted distribution as experimental moments, b,. The

expansion coefficients for the produced distribution we call acceptance corrected

moments , t, . In practice the quantity b” is a function of the observed events and can be

obtained from (see Appendix C):

b, = NZ*Yn(Qi)

i=l
The acceptance correlations A, depend on the detector acceptance only. They can be

calculated using the Monte Carlo sample:

1 e
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Given the experimental moments {bu} and the computed A,, we want to find the best set

of coefficients {tl} that minimize the difference :

du = b“ —;Aﬂt‘.

We can limit the number of acceptance corrected moments {t,_} to A, and the number of

differences {dﬂ} to U, If A <l Wehave an over constrained problem. We find

the best set of coefficients {¢, } by minimizing the x*:

Y= %;d“[E(b)" ], 4

2

where E(b) is the error matrix of the experimental moments. Requiring that 33): =0 for
p s

all allowed expansion coefficients in {r, }, we get a system of 4, equations with 4,

unknowns that can be solved using standard matrix inversion.

Details about the statistical method we use to solve the problem are described in

appendices A to C. In A we describe the statistical method and the system of equations

used for the determination of the {r, }. In B we justify the form of the error matrices for

the experimental moments E(b), and acceptance corrected moments E(t):

E(b),, = E:Y” (Q)Y,.(Q) E(t)= A"E(b)A"

Here A stands for the acceptance correlations matrix A , . The last of the three appendices

(C) comments on the computation of the integrals mentioned earlier using the discrete data

and Monte Carlo samples.

I close the presentation of the statistical method with a note about the normalization
used for the moments expansion. The expansion of the intensities for observed and

produced distributions are (see Appendix A):
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I (x.Q)= Zt,m(x,.) Re{Y,m(Q)}
1 m=0
Y2 m#0

l
g(m)

Iab:(xi’Q) = lzblm (xi)

m20

Re{Y,,,, (Q)} where g(m) = {

Here x; notes the production variable bin i. For the definition of the spherical harmonics I
omit a factor %_ - With this normalization Y,(Q)=1. Thus the values of the
experimental ( by,) and accepted corrected ( #,,) moments with Im =00 are: by, = N,,_ and

f =N, respectively. This follows from:
Npps = [1,,,(Q)dQ = Y4, [Re{Y, (@}dQ = 1,
{

m20

Ny, = [1,(Q)dQ = Y b, [Re{Y, (Q)}dQ = by

m20

Therefore plotting the value of ¢, as a function of mass corresponds to plotting the

acceptance corrected mass spectrum.

4.4 Application of Method of Moments

Before I present the acceptance corrected moments for the selected data, [ use the
Monte Carlo events to verify the validity of the method. I divide the 10X 106 Monte Carlo
events into two samples. The first 2 x 100 events are used as the "data” sample, and the
remaining 8 x 106 as the usual Monte Carlo sample. Here, the produced distribution
corresponds to the generated Monte Carlo distribution. This is the distribution we expect to

recover after acceptance corrections to the "data“. We present the results of this exercise

using the experimental ( b,,) and acceptance corrected moments (¢,,). For this sample, it is

very easy to interpret the b,, and ¢, plots because the distributions are very simple. For
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the Monte Carlo sample we generated events "flat" in cos(6) and ¢@. The produced and

observed intensities as a function of the moments are:

I,..(x.Q)= th,m (x,)Re{Y ..(Q)}

.20

1 =0
L, (x.Q) = le,m(x,.)E(IF)Re{Y,,,,(Q)} where g(m) = {1/2 : £0

m20

Therefore, after applying acceptance corrections to the "data” sample, we should find for

the acceptance corrected coefficients:

4

. = N, for Im=00
=10 for Im#00

The equation above ignores statistical fluctuations. The values stated are the expected
values in the limit of infinite statistics. For this sample, if the detector has perfect
acceptance, and the selection criteria do not reject any of the "recorded” events, we expect
the experimental moments {b,m} to be equal to the acceptance corrected moments {t,,,,}. In
the case that acceptance is not perfect, or the selection cuts reject part of the signal, but both

detector acceptance and selection cuts leave the final state angular distribution unaltered, we

still expect b, =0 for Im # 00.

Therefore, for this test sample, it is easy to recognize if the detector alters the
cos(@), @ distributions. We just look for deviations of experimental moments with
Im # 00 from the nominal value b, _,, =0. Figure 4.7 (spans two pages) presents the
values of the experimental moments as a function of invariant mass for the intermediate
meson (X). We use all allowed values of [,m up to [, ,m_ . =88. Since 0 <m <! there
are (I, + 1)(Luax +2)/2 = 45 experimental moments for this figure. We use a "standard”
set of selection criteria, described in the figure legend. For by, we see the accepted mass
spectrum, which is the same as Figure 4.1.b. With the exception of b, _,, and b,,_,, all

b

«00 are very close to the nominal value for the entire mass spectrum.
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Since the detector acceptance and the selection criteria we use cause some of the
moments to deviate from their nominal value, we can check if the method of moments

allows us to recover the expected values for the acceptance corrected moments (¢,,). The

results of the method are shown in Figures 4.8 and 4.9. In the first case (Figure 4.8) we

allow the maximum possible number of coefficients (/__m_,, =88). We use the same

max

number of experimental and acceptance corrected moments. Therefore we find an exact
solution and we do not have an over-constrained problem. In the second case (Figure 4.9),
we limit the number of allowed acceptance corrected moments to [, =4, m,__=2. The
reason for the particular choices of upper limits will become apparent in the presentation of
the amplitude analysis for the real data sample. We can see from Figures 4.8 and 4.9 that

(within statistical errors) we restore the number of events produced, and the original

angular distributions. In both cases ¢, as a function of mass is consistent with a constant

while all ¢, _,, are consistent with zero.

We can quantify the "consistent with zero" statement using a formal y* calculation.

We use the plots of the acceptance corrected moments ( £,,) as a function of mass to

perform a fit to a straight line. The slope is fixed to be equal to zero. Therefore we

perform a fit to a constant and calculate the average value (t,m) and the y” associated with

the fit. The y* is defined as:

2 1 le(tlm(i)—(tlm))-

Kir Ny =135 0, (i)
Where (i) notes the mass bin used. The average and y* values are presented in Table 4.1.
Although we are interested in the y” of the acceptance corrected moments (2,,) the table
includes the same calculation for the experimental moments (b,,). This allows us to

compare how acceptance modifies the experimental moments from their nominal value.

Note that the acceptance corrected ¢, is close to twice the value of b, which corresponds

to detector acceptance close to 50%.
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After demonstrating the validity of the method with the Monte Carlo sample, we can
proceed to present the experimental and acceptance corrected moments for the detector data

sample. We apply the same method and same selection cuts as in the case of the Monte

Carlo example. We fit two sets of acceptance corrected moments (#,,). The first set
includes all possible 7, up to Im =88 (45 total). The second set is restricted to moments

with [ <4, m<2 (12 total). In both cases we limit the experimental moments to

[ _.m__ =88. The results of the two fits are presented in Figures 4.12 and 4.13. The

max’ " “max

experimental moments ( b,,), common for the two fits, are shown in Figure 4.11.

We use a limited set of coefficients for the experimental ( b,,), and acceptance
corrected ( £, ), moments expansions. The number of coefficients has to be limited,
because it is not practical to work with very large sets of moments. To set the appropriate
limits, we use the method with different sets of coefficients. We look at the resulting
experimental and acceptance corrected moments, for cases where the moments are
consistently equal to zero, throughout the mass spectrum. If both experimental and
acceptance corrected moments are consistently equal to zero above a certain [ or m value,
we can set this value as the limit for both expansions. We can set separate limits for
experimental and acceptance corrected moments. For the latter, it is sufficient to find that
above certain values of [, or m, the acceptance corrected moments are consistently equal to
zero. This is the case for the acceptance corrected moments plotted in Figure 4.12. We see
that all moment with [ >4 or m > 2 are consistently zero. Therefore we are justified to use

a limited set of acceptance corrected moments for the fit presented in Figure 4.13.

Unlike the Monte Carlo sample, the data sample is not uniformly distributed as a
function of invariant mass. Because the number of events changes rapidly as a function of
mass, it is difficult to see the relative values of the acceptance corrected moments. We

remedy this problem in Figures 4.14 and 4.15, where we normalize the moments presented

in Figures 4.12 and 4.13 with respect to #,,. For every mass bin we divide every ¢,, with
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the value of #,,. The errors are scaled the same way. Instead of plotting the error bar O

. we plot 0, /t,,. For the analysis of the angular distributions we are mostly interested in

the relative values of the acceptance corrected moments. The relative values of the
moments allow us to measure the relative intensities of states with different spin parity
assignments. Our ability to measure relative values of acceptance corrected moments is

limited by the statistical significance of the sample in the high invariant mass region. As

can be seen from the values of by, and ¢,,, the number of observed and produced events
with mass above 1.5 GeV/c2? is very small. From the "normalized to z,," plots, we see that

the errors in this region are very large. Therefore we do not have confidence in the values

of t,, for M,>1.5 GeV/c2. Furthermore, the small statistics do not allow one to apply the

amplitude analysis successfully above 1.5 GeV/c2.

A note on the relative statistics of the Monte Carlo "data" used for the example and
the actual data used for the analysis. Although we use 2x 106 generated events for this
example, the statistics are much smaller than the statistics for the data sample. For the
example, we generate events "flat” in the x, region [-0.2,0.1]. The selection requirements
restrict the x, to [-0.1,0.0]. This requirement alone rejects 2/3 of the events. After the
"standard" selection cuts 99 x 103 events survive and are used for the computation of
experimental and acceptance corrected moments shown in the figures. The statistics is
much better for the real data sample. For this calculation 635x 103 events are used in the
particular production bin. The small number of Monte Carlo events is not due to poor
detector acceptance. Most events are rejected because they were not generated within the
production bin we study. The ratio of the number of events used to the number of events

produced for the particular production bin is 0.502, therefore the acceptance is about 50%.
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4.5 Amplitudes Analysis for a Single Production Bin

The acceptance corrected moments provide a description of the produced event distribution.
We use this distribution to determine the production amplitudes. As stated earlier, the

produced distribution can be expresses as:

I pmd(x, Q) =(phase space)Z|U,,|2
h

The summation over the four helicity states of the final state protons is an external variable
and final states of different helicity do not interfere. The incoherency of the different
helicity terms makes the general problem unsolvable, because of the large number of
degrees of freedom generated by four, in principle, independent sets of production

amplitudes. We make a crucial assumption when we analyze the amplitudes:

Either the production amplitude is independent of the final state proton
helicities, or just one of the helicity states dominates in the production

region where the interaction is studied.

In either case we have a single coherent term and we can write:

L. Q) =[U] =Y Y.(Qe; (), (0)Y,,(Q)
L
where in the last step we let the phase space factors be absorbed in the amplitude
expression. If we compare the last expression with the intensity distribution as a function
of the acceptance corrected moments:

1,.,(Q)=Y 1, Re{Y,.(Q)}

m20

we see that we need to build a system of equations relating amplitudes to moments.
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The first step in this procedure is to take advantage of parity conservation in the
strong interaction and simplify the expression that defines the intensity distribution as a
function of production amplitudes. For this analysis I follow an article by Chung and

Trueman [52, 53, 54]. We define the production amplitudes using base states that are

eigenstates of the reflectivity operator, instead of the usual spin operator |[/m) base. The
choice of the reflectivity basis is appropriate for this analysis, because it uses the parity
conservation constraint to simplify the form of the density matrix. I should emphasize
again that the base kets are defined in the Gottfried Jackson frame. The Jacob and Wick
[51] helicity formalism used by Chung and Trueman is valid only in a coordinate system
with the Y-axis perpendicular to the production plane. The operator is defined as the
product of the parity operator and a rotation along the Y-axis:
I, = Pe™™

For a coordinate system where particle momenta lie in the X-Z plane (i.e. production
plane), I, commutes with Lorentz transformations in the X-Z plane and rotations about
the Y-axis. In such a coordinate system a particle with momentum p, spin J, parity 7,
and spin projection along the momentum axis (helicity) A is transformed by the reflectivity
operator as:

I,|5.J(n).A) = n(-1)""*|p.J(n).-A)
The procedure that relates states with definite helicity and states that are described by the
usual spin operators and are at rest in the coordinate system ( p = 0) is given by Jacob and
Wick. In our case, the state at rest is the intermediate meson (X). For the intermediate
meson the reflectivity operator results in the transformation:

I1,0,J(n).m) = n(-1)"""|0,J(n),—m)
From now on we drop the p =0 momentum quantum number in the ket notation. We can

define eigenstates of the reflectivity operator as:
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l/\/_2_, O<m

|£,J (Tl),m) = 19(m)[|£,l(n),m) - 811(—1)1-""8, J(n),—m)] where ©®(m)=4{ 1/2 m=0
0 m<0

In our case, since we study decay into two pseudoscalar states, the parity quantum number

is restricted to 11=(~1)". Therefore we can simplify the definition:

l/\/i, O<m
|€lm)=z9(m)[|lm) - e(-l)"'ll—-m)] where d(m)=4{ 1/2 m=0
0 m<0

For bosons, the eigenvalues of the reflectivity operator are £ =+1. So instead of base
functions (ordinary base, quantization along Z-axis):

|im), where —-I<m<lI
we use base functions (reflectivity base):

|elm), where e=+,— and 0<m<!

The new base functions introduce a new quantum number, the reflectivity € = +,—,
and restrict O <m <[ to positive values only. As expected, the number of base states is the
same for the ordinary and reflectivity bases. Instead of letting the spin projection quantum
number span negative and positive values we have always m 20, and the additional
reflectivity quantum number gives the expected number of states. The m =0 states are

identical in both bases, and have reflectivity € = — in the reflectivity base.
The result is the separation of the production intensity into two incoherent terms,
one for each reflectivity quantum number.
2 2 2
Lo Q)=[U[| =|A] +|A]
Where the reflectivity amplitudes are:

A= Y ()Y, (Q)

0sms|
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The definition of the €Y, (Q2) is analogous to the definition of the reflectivity states:

1/ N2, 0<m
Vn(Q)=0(m)| ¥,(Q) — &(-1)" ¥_,(Q)] where (m)={ 12 m=0
0 m<0

Here I repeat that use of the spherical harmonics instead of the general spin functions is due

to the fact that the intermediate meson decays into two spinless particles.

The reason for the simplification can be best expressed in terms of the density

matrix formalism. The parity conservation constraint restricts the density matrix:
P = mlp|l!,m"y=(-1)"" p!* . forordinary base |im), —I<m<l
“pil =(e.l,mlple’. l',m") =8, = p!l. forreflectivity base [elm), €=+~ & 0<m<I

Therefore, in the reflectivity base, parity conservation diagonalizes the density matrix with

respect to the reflectivity quantum number:

. (-} 0
(%)
0 p

Thus there are no interference terms between states of different reflectivity. Proof of the

relations outlined above can be found in Chung and Trueman [52].

Before outlining the method used for the determination of amplitudes, we state the
number of parameters that need to be determined. It is obvious that we cannot solve the
problem for an unlimited number of amplitudes. We use the observed acceptance corrected
moments to limit the maximum number of amplitudes, therefore the number of acceptance
corrected moments, that are allowed to enter the calculation. I will first present a simple
counting of the number of parameters that must be determined, given a maximum spin
value for the resonances observed in our sample. Then I will present the number of

acceptance corrected moments necessary for the determination. To avoid confusion, in the
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following I use different symbols for the indices of amplitudes and acceptance corrected

moments. For amplitudes I use the lower case indices [,m (i.e. “a,,), and for acceptance

corrected moments upper case indices LM (i.e. r,,,).

The nuraber of amplitudes allowed, given a maximum spin quantum number /.,
is (Loux + l)z. Because the amplitude is a complex number, the number of real parameters
is 2L, + l)z. From the form of the intensity formula, there are two arbitrary parameters
that we cannot measure: the overall phases for the (—) and (+) reflectivity amplitudes.
Therefore the number of measurable amplitude parameters is 2(I,,, +1)’ —2: There is an

exception to the last formula, the trivial case /[, =0 for which only one arbitrary phase

exists.

If we allow a maximum spin value [, , the maximum index for the acceptance
corrected moments is L =2/ . The last relation follows from the expansions of the
intensity distribution /(€2), as a function of amplitudes and acceptance corrected moments.

The amplitude expansion involves products of Y,,, while the moments expansion is linear

Im *

in ¥;,,. We have seen already that parity conservation restricts 0 <M < L. Thus the

number of moments necessary to describe the sample is
(Liax + ) Lax +2)/2 = (2l e + Ylax +1).-

Given a maximum spin value (/,,, ), the table below presents the number of real

parameters needed to determine all amplitudes and the number of independent acceptance

corrected moments measured:

maximum spin value (/. ) 0 1 2 3 4

# of real amplitude parameters (2(,,, + 1)2 -2) 1 6 16 30 48

# of moments (21, +1)(l.. +1) 1 6 15 |28 las

166



Thus using an upper limit for the number of spin states allows us to restrict the values of

the amplitudes, but does not allow us to determine all amplitude parameters.

It is possible to restrict the number of amplitudes we consider by restricting m to

values smaller than the m <[ constraint. Again, the relation between the amplitude and

moments indices is M, =2m,_, . Looking at the acceptance corrected moments in Figure
4.12 we see that we can set M, =2, which corresponds to m_, =1. Now the number
of amplitudes is reduced to 1+ 3/, and the number of real parameters we can determine
to 2(1+31,,,)—2 =6/, . The number of moments is equal to 1+2+3(L, —1)=

=3L.., =6l,.,. The exception mentioned earlier for the trivial case [, =0 is valid for the

formulas presented here also. Now the table of parameters becomes:

maximum spin value (I _ ) 0 1 2 3 4
# of real amplitude parameters (6/,,,) 1 6 12 18 24
# of moments (6/,,, ) 1 6 12 18 24

For the determination of the appropriate limits of L and M we look at the
acceptance corrected moments distributions. In Figure 4.12 we allow all possible L and
M upto LM =88. We see thatall ¢,,, with L >4 are consistent with zero. There are

deviations near threshold, but they are very small when compared to the value of ¢,. In
addition, for all values of L, all ¢,,, with M > | are consistent with zero. So we proceed

with the second significant assumption in our study :
We restrict the amplitudes to /<2 and m<1.

All amplitudes that do not satisfy the limits above are assumed to be exactly zero. The
staterent above is just an approximation. We do not measure with infinite precision,
therefore we cannot rule out the presence of amplitudes outside the limits we just defined.

The plots of the acceptance corrected moments assure us that if such amplitudes exist, they
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are sufficiently small that they do not alter the determination the dominant amplitudes. The
above limits are driven by the data set and apply for particular region of the production
variables for which the acceptance corrected moments were computed. Thus if the
kinematic region of the analysis changes, a new determination of the L, M range is

required.

With this restriction in mind we can proceed to define the method we use to
determine the amplitudes from the acceptance corrected moments. The amplitudes we are
going to determine (including the spectroscopic notation) are:

- + +

A G Gy a4y, a, a,

For this analysis I use a method developed by S.U. Chung [53,54]. We first write

the dependence of amplitudes and acceptance corrected moments in terms of the angle ¢.

In terms of the experimental moments the intensity can be written as:

L (Q)= D 1, Re{Y, (Q)} = £,(8) + 2£(8)cos @ +2 f,(8)cos 29
g2

in terms of the amplitudes:

L. @) =|A] +|A] = |ny(6) +v2h_(6)cosg| +W2h, (6)sing|
Comparing the two expressions:

£7(8)=|r(O) +/_(O) +n.(O)

£(8)=~Z Re{h,(0):(6)}

£0)= {6 -0}

The functions £,(8), £,(8), £,(8) are the sum of well defined products of the

acceptance corrected moments and Legendre polynomials. The functions

hy(8), h_(B), h,(O) are the sum of products of Legendre polynomials and the amplitudes we

seek to determine. We can eliminate dependence on the A, (6) amplitude sum:
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£.6) = £(6)+2£(8) = (O) +N2h (o)
£(8)=  2£(6) =2Re{h (8021 (6)}

The next step is to define the complex function:
|

80) =—7={m(6)+2n.(6)}
|

8(-6)=—7={%(6) - v2h(6)}

The relation between g(0) and g(—0) owes to the symmetry properties of the Legendre
polynomials that result in: h,(—0) = 1,(0), h,(—8)=—h,(0). It is easy to show that the
function g(6) has the property:
- (0) =g (O) +|g(~0) 2
f( ) !g( )L Ig( )lz} = zlg(e)l - f,,(9)+f,,(6)
£,(8)=[g(6) —|s(-0)
With the last relation it becomes clear why g(8) was defined. We use expressions

of the acceptance corrected moments functions ( f — functions), and the amplitude
functions (h — functions), in terms of g(0). Notice that the complex polynomial g(@)
relates to acceptance corrected moments ( f — functions) as a modulo squared, while it has
a linear relationship to the amplitudes (h — functions). We proceed to determine g(0)
through the acceptance corrected moments, and use it to build a system of linear equations
for the amplitudes we seek to determine. In addition, we use g(8) to identify the
ambiguities (number of different, consistent solutions) in the problem. After g(8) and

hy(6), h_(0) are determined we can find A, () from:
1 2 2 2 2
£@)={l6F -rOF} = O =6 -2£(©)
First I am going to present the explicit formalism used for the determination of the
negative reflectivity amplitudes. After the explicit relations give us a feeling for the

method, I present the ambiguities of the problem and the number of consistent solutions we

can find. In order to examine the ambiguities in the problem, it is necessary to express all
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functions as polynomials in a single variable. We accomplish this with a change of
variable:

u=tang- = cosG:l_u: and sin@= 2",
2 1—u l—w

With the change in variable (@ — u) it is convenient to replace the Y,,,(Q2) dependence on
the functions df;,(8) with a new set of functions ey, (6):

6Y* 6 1
d,.,(6) = (cos-z—) e:,.M(tan-i-) = ———¢/., (1)

(l +u )
Then we can express the f — functions in terms of acceptance corrected moments using:

1 m=0

(1+u7) A fulw)= SN2+ Tty (1+0%)™ efro(u)  where 8("‘)={1/2 m#0

(M) Zou

The functions ef;,(«) can be found in the S.U. Chung preprint [54]. Here I note that the

ey, (1) are polynomials of order L — M’. Therefore the product (l +u’ )4 fM)- Sfulu) is

a polynomial in u# of order 2L =8. We can construct the polynomial G(«):

G(u) =(1 +u2)2«/5g(u) =au’-au’ +au’ —au +a,

from the complex roots of the polynomial:

|G(u)|2 = (l + uz)4 2|g(u)|2 = (1 +u’ )4 {f;(u) + f;(u)} =
= (1 +u2)4fo(u) + (l -i-uz)"2fl (e) + (l +ul)42f.:,.(u)

The explicit dependence on the acceptance corrected moments is:

(+?) f)={ g V3o +V3hy -7,  +3t, 0
+{a1, 231, 251, +8Tr, —48t,u’
+{6ty ~6/5t +108t,, Ju*
+ {4[00 +2-3t, -2-5t, -8VTt, —48t, }u2
+{ te V3 B, T, +31,)

170



(1+a?) 2, (w)={ -6, +/30n, -2421s,, +6451, |4
+{-3v6, +/30,, +4421r, 36451, }u’
+{-3V61, 30, +421r, +36V5t, ju’
+ { - 61, —\/36:2, 2421, -65t,, }u

(1+u2) 2f,(w)={ V30, —21I0, +94/10t, ju®
+{2+/30t,, —24+T0t,, Jur*
+ { J30t, +/21 N10t, +94/10¢,, }u2

Assuming that we can construct the polynomial G(u) from the values of the acceptance

corrected moments, we can use:

Glu) = (1 +u)’ V2g(u) = (1+*) {hy(6) + V2h_(6)}

to find a set of linear equations relating the coefficients of G(u) and the production
amplitudes. As was the case for the f — functions, we can express the h — functions in
terms of e, 4(0):

ZV2I+ 1 "a, (1 +u2)H ego1)
ho(u) = 1=02

(l +uz)2
Y V2l+1 g, (1 +u2)2—‘ e, (1)
h_(u) === (l+u2)z
Z«/Z!+l *a, (l+u"')2-l elo(4)
h+(u) - =12 - 5
(1 +u )

The result (in spectroscopic notation) is:

(l -i-'uz)zho(u) = So(l + uz)2 + \/53,(1 —u") + JgDo(l — 4t +u‘)
VZ(1+u?) h(u) = 2+3P.(u+u*) — 2415D_(u —s’)
V2(1+ u2)2h+(u) = -23P,(u+u’)- 215D, (u - u?)
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Expressing G(u) as a function of the amplitudes we find:

a; =S, — 3B, +5D,) 6S, =2a, +a, +2a,
a, =2+/3P. - 2/15D. 2V3B, =a, —a,

a, =28, -4J§Do o= 6J§D° =a,—a,t+a,
a, =23P. +2415D_ 43P =qa +aq,
ao=So+«/§E,+\/§DOJ - 415D_=a, -a,

After the negative reflectivity amplitudes are determined we can follow the same procedure

for the determination of the two positive reflectivity amplitudes P,, D, .

Although in the solution outlined above it looks as if we find definite phases for the
five negativity amplitudes, this is not true. There is an arbitrary phase in the determination

of the polynomial G(u«). This will become clear as we proceed to present the multiple

amplitude solutions we can find, given a set of acceptance corrected moments.

In order to count the number of consistent solutions we start with the order of the

polynomial:

G =(1+6)' {f(w) + 2£(w) + 2£,}= T (-1)'alu

k=0.21L,,,

The fact that: IG(u)I2 is a polynomial in « of order 2L__, =8 is guaranteed by the form of
the f — functions. There is no guarantee that for an arbitrary set of acceptance corrected

moments the polynomial can be written as a modulo squared of a complex polynomial of
order L _,,. For now we assume this to be the case, and write the polynomial:

Gu)=(1+ uz)L"“ J2g(u) = coﬁ(u -u)= 2(—1)“ ajut

k=1

where ¢, is a complex constant and «, are the complex roots of the polynomial. These are

the so called "Barrelet zeros”". From [G(u)]' = Y (~1)"aju* we find eight roots. If our
k=021,

hypothesis is correct, we find pairs of roots, where if «, is a root «; is a root also. We use
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L_,. unique roots to construct the polynomial G(u) = E(—l)"atu" . For our case
k=1

(L_.=4), the explicit construction is:

a, =jay

ay =a,(u, +u, +u, +u,)

@y = (U sy + w1y + U+ gty + o+ g, )
a, = a,(u iy + g + uug g, )

@y = a iy,

We can immediately see the arbitrary choices that can give multiple solutions. First, there
is an arbitrary phase in the definition of a,. This will result in an arbitrary overall phase
for the amplitudes we determine. Second, we can arbitrarily pick from the four pairs of
solutions for |G(u)[" either root «, or root ;. There are 2™ ways to define the set of
roots we use for the definition of G(u). Since a set of solutions {u1 Sy, u,m} and the

complex conjugate set {u,‘,u.;, “L.,.} gives the same solution ( G(«) versus G"(u«)), there

are 2" unique negative reflectivity solutions to the problem. Therefore in our case

(L,,.=4) we expect 8 unique solutions.

As mentioned earlier, if we use the negative reflectivity solution to determine the
* —2£,(6). we first check if for the

reflectivity (+) amplitudes. Since i, ()" =1|h_(6)
negative reflectivity amplitudes give |h_(6)|2 —2f£,(6) 2 0. If not, the particular solution is
eliminated from the list of acceptable solutions. Otherwise we define a new G(u)

polynomial that obeys:

IGu)* =|r_(68) ~2£,(6)

G(u) = (l + uz)l'" h (u)= coﬁ(u - u)

k=1
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Here there is a significant difference that reduces the number of distinct solutions.

From the definition of the functions e’ ,(u)

=" " < (=1 u*
DJE+mMI-m) - m—k)(l— k) (m+k)k!

e:lno (w)=

and the expression of h, (u) in terms of the functions e/ ,(u), we find that there is always a
trivial solution u=0. The reason for this is that for all terms of the sum that defines &, («),

m=1. If we write the positive reflectivity polynomial as (1 + ul)l"‘ h (u)= utaku‘ , the
k=0

form of e. (1) allows only terms with k even (recall that L__ =2/__ ). Therefore we can

rewrite the positive reflectivity polynomial as:

G = (1+ 1) ~h, (W) = e T T (- 1)

k=1
So for each root we have the additional symmetry that if-u is a valid solution -u is also a
valid solution. There are /[, —1 unique r, roots. Considering that the complex conjugate
is also a root, there are 2="* ways to define the set of roots that we use for the definition

of G(u) (assuming [/, =2). For the case considered here [ ,, =2. Thus there is at most

one reflectivity (+) set of amplitudes for each reflectivity (-) set.

In conclusion the maximum number of valid solutions per production bin is eight.
The problem of identifying any one of the eight solutions as the most probable solution is
going to be addressed at the same time we present a procedure to relate solutions across

production variable bins.

It was mentioned earlier that there is no guarantee that we can find a complex

polynomial G(u), such that its modulo squared (|G(u)|2) is equal to the polynomial defined
by the acceptance corrected moments (¢,,,). Such a constraint does not exist in the fitting

procedure that determines the acceptance corrected moments. Statistical fluctuations can

"move" the ideal set of ¢,,, we could obtain using unlimited statistics to a set for which no
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amplitude solution exists. We estimate the effect of statistical fluctuations by repeatedly
regenerating sets of z,,,, distributed according to the error matrix E(¢). For each new set
of acceptance corrected moments we repeat the amplitude analysis and if a solution is found
we keep it in a data file. This procedure has the additional benefit of allowing us to
determine how the statistical errors of the ¢,,, propagate to the amplitude solutions. The
statistical method we use to determine the acceptance corrected moments, ¢,,,, also
provides their statistical correlations through the error matrix E(¢). In order to generate
randomly a new set of t,,, that exhibits the same statistical behavior (correlations) we have
to define a unitary transformation that diagonalizes the error matrix E(t). The diagonal
matrix is the error matrix of a multivariable Gaussian with 12 independent variables. We
generate a new set of parameters according to this muitivariable Gaussian distribution. In
other words we throw 12 random numbers, each one distributed according to a Gaussian
with sigma equal to the square root of the corresponding element of the diagonal matrix.
We use the unitary transformation to "rotate” each set of 12 independent variables, to a set
of ¢,,, that exhibit the proper statistical behavior. In matrix notation the relation between

the diagonal matrix G(c) and the error matrix E(t) is:
E()=UG(c*)UT
We use standard matrix diagonalization techniques to determine U . The relation between

each set of Gaussian distributed, independent parameters ( g,,, ), to a new set of properly

correlated acceptance corrected moments (¢,,,), is given by:

by =U gy

4.6 Amplitudes Analysis Across Production Bins

In the previous section we presented procedures that use the angular distribution of

the final state pions to determine the amplitudes of the intermediate meson (X). We do not
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make any attermnpt to correlate the multiple solutions along production bins. In order to
present the amplitude as a function of the production variables (e.g. invariant mass) we
need a method to relate the solutions across production variable bins. We demonstrated
that the number of distinct solutions per bin is between zero and eight. Since we "throw"
the acceptance corrected moments multiple times for each production bin, we find multiple
sets of solutions per bin. Each one of the solution sets contains anywhere between zero

and eight distinct solutions.

We proceed to present a method that allows us to label each one of the eight
solutions. We can use this label to relate distinct solutions across production bins (e.g.
across bins of invariant mass). In order to identify such a label we have to look at the roots
of the polynomial |G(u)|2 (the polynomial we use for amplitude determination, see section
4.5), and see how the complex roots evolve as a function of the production variables. It
can be proven that the roots (the so called Barrelet zeros ) trace a continuous trajectory as a
function of production variables in the complex plane [55]. Thus we identify the solutions
through their trajectory. It can also be proven that the trajectory is continuous and unique
as long as it does not cross the real axis. If the root trajectory crosses the real axis, it
bifurcates and there is more than one way to continue the solution on the complex plane.
We will show that for the particular sample we study, in the production region where we
perform the study, there is no crossing of the real axis. Because we "rethrow" the
acceptance corrected moments for each analysis bin, we can find multiple sets of roots and

have the additional benefit of a statistical interpretation of the study.

Figure 4.16 shows all roots found as a function of invariant mass for the selection

cuts specified in the figure. As mentioned earlier, the eight roots of the polynomial [G(u)|2

come in pairs. If &, is a root, then u, is also a root. In Figure 4.16 we plot only the roots

that have positive imaginary part (four out of eight). We plot the roots only if at least one
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out of a maximum of eight amplitude solutions was found. The number of entries per

figure is the product of:

-- # of roots, equal to 4

— # of mass bins within the mass range we plot, in this case 5

— # of times we "throw" the ¢,,, and find at least one amplitude solution. For

this figure we “"throw" the ¢, 100 times, therefore we expect this number to

be anywhere between 0 and 100.

The resulting number of entry points per plot is between 0 and 2000. Except for the mass
region 0.3< M, <0.5 GeV/c there are four very clear clusters where the entries
concentrate. Because the root trajectories are restricted to small regions on the complex
plane, we can use the regions to label the roots. Labeling the roots is equivalent to labeling

the amplitude solutions. The procedure we use to identify the roots is:

- Read the phases of all four roots. Of the eight roots I pick four with positive
imaginary part.

-- If two roots in [ 0, /2] and two roots in [ /2, = ] save the indices.
Otherwise tag the solution as unacceptable and reject the solution. Except
near threshold all solutions have two roots per quadrant.

- I tag the root pairs as
[ 0,7/2] — roots u, & u,

(m/2, ® ] — roots u,& u,

I use the modulo of the roots to tag roots within the pair. The conditions are:
[ 0 ,n/2] u<u,

[0 ,m/2] w,> 4

The root labels are also shown in Figure 4.16. We now use the labeled roots to assign

labels for the multiple amplitude solutions:
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Solution # Roots combination
1 b, U, U,

Uy sty s, Uy

Uy, Uyl Uy

Uiy, 15, 1

Uyl Uy, Uy

Uy U, Uy s Uy

Uy, Uy ey

Uy, Uy, 1

0 N | [k W

It is easy to see from Figure 4.16 that the number of times we find valid amplitude
solutions is related to the statistical significance of the sample. The number of entries for
mass regions above | GeV/c? is much smaller than in the mass regions below 1 GeV/c?,

and only a few entries can be seen above 1.5 GeV/c?.

In Figure 4.17 we plot the modulo of all valid amplitude solutions as a function of
mass. In Figure 4.18 we present the same plots for only one of the eight amplitude
solutions (solution #6). This is a clear demonstration that we can identify and label the
solutions following the trajectory of the polynomial roots on the complex plane. We see a

continuous distribution as a function of mass and no "jumping” between solutions.

Of the eight solutions shown in Figure 4.17 we select #6 as the most probable to
correspond to the produced amplitudes. We expect the dominant amplitude near threshold
to be the lowest energy configuration, namely S-wave. We select the solution that has the
highest S-wave module in the first 10 mass bins (first 400 MeV/c2). As can be seen in
Figure 4.17 and 4.18 there is a clearly separable solution satisfying this criterion (solution
#6). Since we are able to identify and follow the solution as a function of mass through the
complex roots of the polynomial, we can select one of the eight solutions for the whole

mass spectrum.
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Figure 4.18 presents the modulo of the amplitudes found for solution # 6 as a
superposition of all solutions found and labeled #6, after throwing the acceptance corrected
moments (z,,) multiple times. Instead of plotting multiple entries, we can plot the average
and the associated variance. This is done in Figure 4.19. For this figure instead of
amplitude (I‘a,ml) we plot amplitude squared (|‘a,m|l ). The reason for plotting the
amplitude squared is that it makes comparison with the z,, plots easier. There is a simple

relation between the number of events per bin (equal to £,,) and the amplitudes squared:

to =|Sof" +IPof +[Dof +[Pf +|D[" +|P.[ +[D,f
So a loose interpretation would be that the modulo squared is equal to the number of events

per wave. We should not take that analogy too far because it ignores interference effects.

From Figure 4.19 it is obvious that S-wave production dominates for the particular
region of the production variable where we carry the analysis. Because the number of
events per bin decreases rapidly after | GeV/c?, it is difficult to see the relative values of
waves in the high mass region. Figure 4.20 presents the same waves normalized to |S,|’.
We can see large modulie in the region above 1 GeV/c”, for the D,, P,, D, waves where
the well known f,(1270) resonance is expected, but they are small compared to |S°|Z. For
Figures 4.19 and 4.20 we use the restriction p?,, p?, < 0.1(GeV/c ). Figures 4.21 and
4.22 use the same cuts, except that now we look at events with high transverse momentum
for the fast proton ( p; ;>0.1 (GeV/ c )2 )- As expected the S-wave is not as dominant in

this figure. In particular in Figure 4.22 we observe a very clear f,(1270) signal in the D,

wave.

A final consistency check is presented in Figures 4.23 to 4.26. We compare the
acceptance corrected distributions estimated from detector events selected with different
Cherenkov identification criteria. In the first case we require that both particies
reconstructed in the multiparticle spectrometer are tagged by the Cherenkov counter as pion

compatible. In the second case we impose the additional requirement that at least one of the
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two particles is tagged by the Cherenkov counter as "exactly pion” (incompatible with any
other assignment). The comparison tests both our ability to correct for angular acceptance
and the significance of missidentified events. For example events that correspond to central
production of K*K~ are excluded from the second sample. We judge the acceptance
corrected distributions looking at the acceptance corrected moments (¢,,). In Figure 4.23
we superimpose the results obtained from the two samples. In the first case (boxes) we
require just "soft” Cherenkov identification. In the second case (crosses) we add the

requirement that at least one of the two particles is "exactly pion”. Figure 4.24 presents the

t,, values plotted in Figure 4.23, for the mass region [1.1,1.9] GeV/c2 only. For both
Figures (4.23, 4.24) we require low p? for the fast (beam) proton ( p; <0.1 (GeV/c)Z).
Figures 4.25 and 4.26 are identical to 4.23 and 4.24 except for the fast proton p
requirement (here p?>0.1 (GeV/c)2). In all four plots we observe very good agreement
between samples isolated with different selection criteria. We see that there is a scale
difference (estimation of overall number of events produced) that decreases as the invariant
mass of the intermediate meson (X) increases. Despite the scale difference the acceptance
corrected angular distributions (reflected in the relative values of the ¢,,) are consistent for
the two Cherenkov identification criteria. We attribute the scale difference to large
acceptance corrections necessary near the x.=-0.1 region. We can see from Figure 4.2

that detector acceptance improves as the mass of the intermediate meson (X) increases.
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Table 4.1. Results from one parameter fits of the expansion coefficients as a function of
mass. We perform the fits for three sets of coefficients: experimental moments

(b,,), and two sets of acceptance corrected moments (¢, ). The y° is defined as:

- 1 N (tbn ()- (tln ))l

. 1= — . Plots of the results are shown in figure 4.10.
e Ny =13 O (i)
experimental acceptance corrected acceptance corrected
moments ( b,,) moments (¢,,) using all /,m | moments (z,,) using
allowed. <4, m<2

IL,m average x-’ average x-’ average z-’
0,0 2000.837 24.208 4013.755 1.872 3869.000 1.302
1,0 79.286 2.885 18.184 0.807 3.306 0.579
1,1 -21.510 0.679 -7.796 1.286 -12.327 1.090
2,0 -649.367 28.547 5.245 1.601 -85.755 1.070
2,1 118.959 2.454 -2.245 1.078 31.367 0.914
2,2 -7.551 1.023 -6.755 1.243 -17.061 1.194
3,0 -53.816 2.656 55,531 1.249 16.388 0.908
3,1 14.347 0.942 -37.367 1.230 -47.490 0.877
3,2 4.143 0.834 4.408 1.103 15.367 1.018
3,3 9.204 0.865 21.878 0.844

4,0 -74.408 5.355 32.020 1.542 -13.408 1.475
4,1 34.388 1.107 26.918 1.178 43.796 1.388
4,2 -1.020 1.083 49.245 1.217 22.224 0.870
4,3 -1.755 1.164 -12.551 1.676

4.4 0.388 0.839 5.939 0.999

5,0 13.633 1.110 60.694 1.295

5,1 2.306 1.297 2.327 1.655

5,2 -2.653 0.903 -24.837 1.263

5,3 10.837 1.011 33.592 1.248

5,4 0.469 0.967 28.918 1.234

5,5 -2.000 1.281 -0.224 1.397

6,0 5.388 1.485 4.143 1.564

6,1 -4.122 1.176 22.224 1.318

6,2 1.469 1.515 17.714 1.531

6,3 -9.347 1.101 -55.367 1.611

6,4 -4.673 1.089 -4.388 1.301

6,5 6.265 1.510 -10.959 1.044

6,6 -38.306 1.162 -9.837 1.081

7,0 0.857 1.279 42.041 1.458

7,1 2.265 1.144 4.653 1.895

7,2 7.878 1.350 14.122 1.375

7,3 -1.714 1.273 30.061 2.009

7,4 -7.592 1.247 -0.224 1.317

7,5 15.959 1.003 -10.061 1.268

7,6 -23.490 1.292 15.796 0.987

7,7 45.959 1.507 16.061 1.110

8,0 14.347 1.299 -6.490 1.385

8,1 -5.347 1.134 38.816 1.248

8,2 3.327 0.910 10.224 1.178

8,3 3.224 1.131 -6.939 1.887

8,4 0.122 1.177 43.653 1.330

8,5 0.224 0.779 -11.469 0.805

8,6 2.735 1.004 -9.449 1.429

8,7 -1.306 1.105 -21.898 1.390

8,8 -20.224 1.087 -20.980 1.355
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Figure 4.1 Acceptance as a function of mass for central meson (X), x. in the interval [-

0.1,0.0]. We plot the generated and reconstructed mass spectrum.

(a) — Generated events.
-- Reconstructed events satisfying Vertex requirements and two (Cherenkov) pion

compatible tracks in multiparticle spectrometer.

- -1<MPI<1 GeV/c.
-- Rapidity gap>1.8 between the slow proton and any one of the two pions.

() - P2, P}, <0.1(GeV/c)’.

- —-0c<MM’*<o.

- —0<MM?*< /2

(c), (d) Same as (a), (b) except for Cherenkov identification. Here we require that at
least one of the multiparticle spectrometer particles be identified as “exactly pion".

(d), (¢) Same as (a), (b) except for Cherenkov identification. Here we require that
both particles in multiparticle spectrometer be identified as "exactly pion".

182



E [ M, <0.6GevV/c 0.6 <M, <1.0 GeV/c? 0.1 | LO<M,<L5GeV/c
< - G C
R e u - -

*g 351 F JJNL’ - 0.075 |
T SN R T @ -foy
= 5 . ' 5 - .

- ) ol P 508 L
E=s . .. T .f‘ : 535 C> I (j ;
g «£CoT ‘ r - C ; '
= - ., y I N ot g
£ g - ~ 1 -ozs B = = - '
g3 - ¥ ~ = = - - - ]
g < C . “H, IR B! 5 3 F e 1 [ -~ ,_,_;'J—- 1 o L _:
B -9.2 =0 Q -2 =as 5] -2 -3 )
ax x, for data(solid) / MC(dash) x, for data(solid )/ MC(dash) x, for data(solid) / MC(dash)
Soft x Cherenkov ID Soft © Cherenkov ID Soft £ Cherenkov ID
z 0.2 B M <06Gev/c L 0.6<M, <10 GeV/c [  L0<M, <1.5GeV/c
= L o ' 08 —
S £ C - ' u e
2 2c1s | S e .
EEC'C F m C ®2) sos o3 |
£ 2 » | -
Es 1 L 204 j [
N > - ~ S = -
2 2 L - Yoo C
EE.~= F | - coo- L
PO - . o 202 B :
T:‘ < r L o I - o ‘:_‘
g = C o i:-r"{_. I ) i 2 PRI AL (e -J— 1 1 L
k=i -1.2 -0 - c -2.2 —C‘.' o S.2 -3 )
= x, for data(solid )} / MC(dash) x, for data(solid) / MC(dash) x, for data(solid) / MC(dash)
. One exactly © Cherenkov [D One exactly # Cherenkov [D One exactly £ Cherenkov D
__% M, <0.6 GeV/c? 0.6 < M, <1.0 GeV/c? I LO< M, <L5GeV/c?
8 = - c.2 F - -
£ P 02 - : - -
E g u ' s E ‘> C (e3) -
£ 315 B (2 - [ (e3)
£ L@ sE@ _ i
Ee 02 [ . F 1 - §
23 C SR - r : .
é '5 - ): v - : l '
zz “'F 335 F - . |
8 = C _ - rF
‘Z C L+ : fg'- ”L o} C 1 ! -,J-fr i r -‘r " :-l 2
= -3z =0 C N s PRt A
x, for data(solid ) / MC(dash) x, for data(solid) / MC(dash) X, for data(solid)/ ‘v(C(dnsh)

Two exactly 7 Cherenkov ID

Two exactly & Cherenkov [D

Two exactly © Cherenkov ID

Figure 4.2 Comparison of x, distributions for Data (solid), Monte Carlo (dash) after

selection cuts. The three rows of plots show the distributions for three different
Cherenkov identification requirements. The three columns show the distributions for three
different mass regions. This is necessary since we integrate over mass and the Data/MC mass
distributions are not the same. The Data and Monte Carlo distributions are normalized, so that
the integral of each distribution is equal to unity. The selection requirements are: Vertex,

Cherenkov ID, -1<MPI<!| GeV/c> Rapidity gap>1.8, p?, <0.1(GeV/c)’, —-c< MM* < o.

(al,a2,a3) Soft Cherenkov ID
(b1,b2,b3) At least one "exactly pion" particle in Cherenkov counter.
(cl,c2,c3) Both multiparticle spectrometer particles "exactly pion" in Ch. counter.
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Figure 4.3 Monte Carlo sample p} distributions for slow and fast protons. We plot

generated and reconstructed distributions for "soft" Cherenkov identification.
(a) - Generated events, p;, distribution.
-- Reconstructed events satisfying Vertex requirements, "soft" Cherenkov pion
identification, & -1<MPI<! GeV/c2, & Rapidity gap>1.8.
-— & x. inthe interval [-0.1,00] —-& —o<MM’<o
(b) -- Fit for last distribution in (a).
(c) - Generated events, p;, distribution.
-- Reconstructed events satisfying Vertex requirements, "soft" Cherenkov pion
D, & -1<MPIl<1 GeV/c2, & Rapidity gap>1.8, & x, in the interval [-0.1,0.0]
~ & p?, <0.1(GeV/c?) ~-& ~c<MM’<o
(d) - Fit for last distribution in (c).
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Figure 4.4 Monte Carlo sample p; distributions for slow and fast protons. We plot

generated and reconstructed distributions for one “"exactly pion" Cherenkov
identification.

(a) - Generated events, p;, distribution.
-- Reconstructed events satisfying Vertex requirements, one "exactly pion”
Cherenkov ID, & -1<MPl<1 GeV/c2, & Rapidity gap>1.8.
-- & x, in the interval [-0.1,00] - & -c<MM’<o
(b) - Fit for last distribution in (a).
(c) - Generated events, p;, distribution.

— Reconstructed events satisfying Vertex requirements, one “exactly pion”
Cherenkov ID, & -1<MPI<1 GeV/c2, Rapidity gap>1.8, x, in [-0.1,0.0]

~& p?, <0.1(GeV/c*) -& —o<MM’<o
(d) - Fit for last distribution in (c).
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Figure 4.5 Monte Carlo sample p? distributions for slow and fast protons. We plot

generated and reconstructed distributions for two "exactly pion” Cherenkov
identification.

(a) -- Generated events, p;, distribution.
-- Reconstructed events satisfying Vertex requirements, two “"exactly pion”
Cherenkov ID, & -1<MPI<1 GeV/c2, & Rapidity gap>1.8.
— & x. inthe interval {-0.1,00] & -c<MM’<o
(b) - Fit for last distribution in (a).
(c) -- Generated events, p;, distribution.
-- Reconstructed events satisfying Vertex requirements, two "exactly pion”
Cherenkov ID, & -1<MPl<1 GeV/c2, Rapidity gap>1.8, x, in [-0.1,0.0]
- & p}, <0.1(GeV/c2)2 ~-& -6<MM*<o
(d) -- Fit for last distribution in (c).
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Figure 4.6 Monte Carlo sample ¢,, distributions (relative angle between final state fast and
slow protons). We plot generated and reconstructed distributions for three
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Cherenkov identification criteria.
(a) — Generated events
(b) -- Reconstructed events satisfying Vertex requirements, two "exactly pion”
Cherenkov ID, & -1<MPI<I GeV/c2, & Rapidity gap>1.8,

& x. in the interval [-0.1,0.0]
~ & p?, <0.1(Gev/c*)’

~-& -c<MM*<o
(c) — Same as (b) except for Cherenkov requirement. At least one of the multiparticle
spectrometer particles must be "exactly pion".
(d) -- Same as (b) except for Cherenkov requlrement Both multiparticle
spectrometer particles must be "exactly pion".
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Figure 4.7 Experimental moments ( b,,) as a function of invariant mass for generated Monte

Carlo sample. The events used satisfy the selection criteria:
-- Vertex requirements and two (Cherenkov) pion compatible tracks

in multiparticle spectrometer and x, in the interval [-0.1,0. 0]

- -1<MPI<1 GeV/c2.
— Rapidity gap>1.8 between the slow proton and any one of the two pions.

P, b2, <0.1(GeV/c*)'.
- —-c<MM?’<o
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Figure 4.8 Acceptance corrected moments (z,,) as a function of invariant mass for generated
Monte Carlo sample. The events used satisfy the selection criteria: '
— Vertex requirements and two (Cherenkov) pion compatible tracks
in multiparticle spectrometer and x in the interval {-0.1,0.0].
— -1<MPI<1 GeV/c2.
- Rapidity gap>1.8 between the slow proton and any one of the two pions.
-~ p},. pl, <0.1 (GeV/(:z)2 .
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Figure 4.9 Acceptance corrected moments (¢,,) as a function of invariant mass for generated
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Monte Carlo sample. We allow moments with [ <4, m <2. The events used

satisfy the selection criteria:

— Vertex requirements and two (Cherenkov) pion compatible tracks
in multiparticle spectrometer and x, in the interval [-0.1,0.0].

— -1<MPi<1 GeV/c2.

-- Rapidity gap>1.8 between the slow proton and any one of the two pions.

~ p3,. P2, <0.1 (GeV/cz)z.
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Figure 4.11. Experimental moments ( 5,,) as a function of invariant mass for detector data

sample. After selection cuts 635 x 103 events are selected for this set of plots.
The events used satisfy the selection criteria:
— Vertex requirements and two (Cherenkov) pion compatible tracks

in multiparticle spectrometer and x, in the interval [-0.1,0.0].

- -1<MPI<1 GeV/c2.

— Rapidity gap>1.8 between the slow proton and any one of the two pions.
P, P, <0.1(GeV/c*)'.
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Figure 4.12. Acceptance corrected moments (¢, ) as a function of invariant mass for detector
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data sample. After selection cuts 635 x 103 events are selected for this set of
plots. The events used satisfy the selection criteria:
- Vertex requirements and two (Chereakov) pion compatible tracks

in multiparticle spectrometer and x; in the interval {-0.1,0.0].

-1<MPI<1 GeV/c2.
Rapidity gap>1.8 between the slow proton and any one of the two pions.

p:'J, p,z._r <0.1 (GeV/(:z)2 .
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Figure 4.12. Continued.
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Figure 4.13. Acceptance corrected moments (¢,,) as a function of invariant mass for detector
data sample. For this figure we restrict the 1, to [ <4, m < 2. After selection

cuts 635x 103 events are selected for this set of plots. The events used satisfy the
selection criteria:
-- Vertex requirements and two (Cherenkov) pion compatible tracks

in multiparticle spectrometer and x, in the interval [-0.1,0.0].

- -1<MPI<I GeV/c2.
-- Rapidity gap>1.8 between the slow proton and any one of the two pions.
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Figure 4.14 Acceptance corrected moments (¢,,) as a function of invariant mass for detector
data sample. All moments (and associated error bars) are normalized to z,,.
Although the normalized value of ¢,,_, is an exact ratio, we scale and present the

associated error bars in order to indicate the uncertainty in the unormalized

measurement. After selection cuts 635 x 103 events are selected for this set of
plots. The events used satisfy the selection criteria:
— Vertex requirements and two (Cherenkov) pion compatible tracks

in multiparticle spectrometer and x, in the interval [-0.1,0.0].

- -1<MPI<1 GeV/c2.
-- Rapidity gap>1.8 between the slow proton and any one of the two pions.
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4.15. Acceptance corrected moments (¢,,,) as a function of invariant mass for detector
data sample. All moments are normalized to f,,. Although the normalized value
of 1,,_, iS an exact ratio, we scale and present the associated error bars in order to
indicate the uncertainty in the unormalized measurement. For this figure we
restrict the ¢,, to [ <4, m<2. After selection cuts 635 x 103 events are selected

for this set of plots. The events used satisfy the selection criteria:
- Vertex requirements and two (Cherenkov) pion compatible tracks

in multiparticle spectrometer and x, in the interval [-0.1,0.0].

- -1<MPI<1 GeV/c2.

— Rapidity gap>1.8 between the slow proton and any one of the two pions.

~ P}, Pt <0.1(GeV/c*).
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roots) X (5 bins) x (0 to 100 root sets per 100 "throws")=0 to 2000 entries per

plot.

The events used satisfy the selection criteria:
-- Vertex requirements and two (Cherenkov) pion compatible tracks
in multiparticle spectrometer and x, in the interval [-0.1,0.0].

— -1<MPI<1 GeV/c2.

-- Rapidity gap>1.8 between the slow proton and any one of the two pions.
— P2, P, <0.1(GeV/c*)'.
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Figure 4.17 Modulo of all valid amplitude solutions as a function of mass. We
superimpose all of the eight possible solutions.
The events used satisfy the selection criteria:

— Vertex requirements and two (Cherenkov) pion compatible tracks

in multiparticle spectrometer and x, in the interval {-0.1,0.0].
~ -1<MPi<1 GeV/c2.
— Rapidity gap>1.8 between the slow proton and any one of the two pions.
- pt,, P2 <0.1(GeV/c ).
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Figure 4.18 Modulo of all solutions labeled as solution #6, plotted as a function of invariant
mass. We superimpose all labeled solutions. The events used satisfy the

selection criteria:

— Vertex requirements and two (Cherenkov) pion compatible tracks
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in multiparticle spectrometer and x, in the interval (-0.1,0.0].

-1<MPI<1 GeV/c2.
Rapidity gap>1.8 between the slow proton and any one of the two pions.

p,. pt. <0.1 (GeV/c )z.
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— -1<MPI<1 GeV/c2.
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Figure 4.20 Normalized modulo squared of all solutions labeled as solution #6, plotted as a
function of invariant mass. We average all labeled solutions and divide all
modulo squared amplitudes by |S,[* . Although the normalized value of |S,,|2 is an

exact ratio, we scale and present the associated error bars in order to indicate the
uncertainty in the unormalized measurement. The events used satisfy the

selection criteria:

-- Vertex requirements and two (Cherenkov) pion compatible tracks
in multiparticle spectrometer and x, in the interval [-0.1,0.0].

— -1<MPI<1 GeV/c2.

- Rapidity gap>1.8 between the slow proton and any one of the two pions.

~ P Pi. <0.1 (GeV/c )2.

206

—-—-c<MM?*<o



40C0C

el
]
=]
= - ~
9: 20306
=]
S
g 20090
[-3]
-~
= S
= 1 JC06C
£
=3
o

-

_T]ll‘lllllf’lllfr’l

N |

Invariant mass in GeV/c*

amplitude modulo squared

amplitude modulo squared

O

1

Invariant mass in GeV/c*

43000

(sl

(9]

2

(9]

O

o
)
€
()
(9]

12000

-

C

o
(@)
(@)
Q)
[}

(a
()
Q
[

(@]

b XaYetala
22C00C

13300

C

llll|Ylllllllllllll

I

i |

[

Invariant mass in GeV/c?

o~

llllTllllllllllll

t';:.o» ot

I

2

1

|
-
<

Invariant mass in GeV/c*

<JC00

( rzl
(@]
(@]
(@]
»]

N
(&
(@]
L

Q

12C0C

g

(8]

s

{
}

A

. -
P—r’rT.' AR RANRR R R
*
A
3
A

1 =

Invariant mass in GeV/c*

23000
C
30000 | 2
- |D_|
2000C |
r
12C0C |
!;\' :-1_—(-— PP e SN | 3 L ]

1

Invariant mass in GeV/c*

<3500

33Ca0

'lllllllllll

&
[
[}
(@)
|

O bl |

bog o#72% .
s v

2
N

\D

1 z

Invariant mass in GeV/c*

Figure 4.21 Use high p] fast protons and plot: Modulo squared of all solutions labeled as

solution #6, plotted as a function of invariant mass. We average all labeled
solutions. The events used satisfy the selection criteria:
-- Vertex requirements and two (Cherenkov) pion compatible tracks

in multiparticle spectrometer and x, in the interval [-0.1,0.0].

— -1<MPI<1 GeV/c2.
-- Rapidity gap>1.8 between the slow proton and any one of the two pions.

~ p2,>0.1(GeV/c )", pi, <0.1(GeV/c)
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Figure 4.22 Use high p; fast protons and plot: Normalized modulo squared of all solutions
labeled as solution #6, plotted as a function of invariant mass. We average all

labeledsolutions and divide all modulo squared amplitudes by |S,|" .The error bars for |S,[*

reflect the uncertainty in the determination of the unormalized value. The events used satisfy
the selection criteria:
— Vertex requirements and two (Cherenkov) pion compatible tracks
in multiparticle spectrometer and x, in the interval [-0.1,0.0].
— -1<MPI<1 GeV/c2.
-- Rapidity gap>1.8 between the slow proton and any one of the two pions.
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Figure 4.23 Acceptance corrected moments (t,,,,) for two different Cherenkov ID

requirements (low p; ., mass region for (X) [0.3,2.3] GeV/c2). Boxes
correspond to a sample satisfying "soft” Cherenkov ID criteria, crosses to a
sample satisfying one "exactly pion" Cherenkov ID. The remaining selection
criteria are:

- Vertex requirements and x, in the interval [-0.1,0.0].

- -1<MPI<1 GeV/c.
— Rapidity gap>1.8 between the slow proton and any one of the two pions.
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Figure 4.24 Acceptance corrected moments (¢,,) for two different Cherenkov ID

requirements (low p,z_ r» mass region for (X) [1.1,1.9] GeV/cz). Boxes
correspond to a sample satisfying "soft" Cherenkov ID criteria, crosses to a
sample satisfying one “exactly pion" Cherenkov ID. The remaining selection
criteria are:

- Vertex requirements and x, in the interval [-0.1,0.0].

— -1<MPI<1 GeV/c.

-- Rapidity gap>1.8 between the slow proton and any one of the two pions.
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Figure 4.25 Acceptance corrected moments (t,,,,) for two different Cherenkov ID

requirements (high pﬁ s» mass region for (X) [0.3,2.3] GeV/cZ). Boxes
correspond to a sample satisfying "soft" Cherenkov ID criteria, crosses to a
sample satisfying one "exactly pion" Cherenkov ID. The remaining selection
criteria are:

— Vertex requirements and x, in the interval [-0.1,0.0].

— -1<MPI<1 GeV/c2.

- Rapidity gap>1.8 between the slow proton and any one of the two pions.

~ .pt,>0.1(GeV/c ), pi <0.1(GeV/c ) - -C<MM’<o
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Figure 4.26 Acceptance corrected moments (%,,) for two different Cherenkov ID

requirements (high pf - Mass region for (X) [1.1,1.9] GeV/c2). Boxes

correspond to a sample satisfying "soft" Cherenkov ID criteria, crosses to a
sample satisfying one "exactly pion” Cherenkov ID. The remaining selection

criteria are:

— Vertex requirements and x, in the interval [-0.1,0.0].

— -1<MPI<1 GeV/c2.

-- Rapidity gap>1.8 between the slow proton and any one of the two pions.

-~ .pp,;>0.1(GeV/c )2,

p:. <0.1(GeV/c )2
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CHAPTER 5
CONCLUSIONS

In a study of the reaction:
pp - pfa.n(X)D ‘aw

+ -

T

at +/s = 38.8 GeV/c2, where the dipion pairs are produced in the central x, region (close to
x-=0), we find in a partial wave analysis that the S-wave is the dominant amplitude. In
this analysis we find eight amplitude solutions consistent with the observed data set for
dipion invariant mass up to 1.5 GeV/c2. (For higher values of invariant mass the statistics
are not adequate to perform a partial wave analysis). The assumption of S-wave
dominance near threshold is sufficient to select a single, continuous solution throughout the

considered mass spectrum. This result holds when we use events with small transverse

momentum for both final state protons (p,z<0.l (GeV/c)2). When we allow high
transverse momentum for the fast proton (p,l>0.l (GeV/c)z), we see significant D-wave
contribution in the mass region above 1| GeV/c2. The D-wave signal is due to the
production of the well known f,(1270)and serves as confirmation of the amplitude
analysis procedure. We avoid working with events that have high p} for the slow proton

(high missing p?) because we are concemned about background contamination of the

sample.

Precision measurement of amplitudes produced in the reaction aid the mapping the
low lying meson spectrum. The amplitudes we have measured can be used as input to
phenomenological models of pion-pion scattering such as the ones by Morgan and
Pennington [24,27,28] and Zou and Bugg [29]. Of even greater interest for these models
is the relative cross section of pion and kaon production near KK threshold. This analysis

will be combined with a similar analysis of the KK system in the same data [18] which
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will provide a comprehensive analysis of the meson spectrum. The phenomenological
models mentioned here do not provide a definite answer for the nature of observed
resonances. They constrain the resonance identity across final state channels ( 7#7x and
KK). Hopefully this constraint will lead to a clear assignment of observed states to the
SU(3) multiplets. Having assigned the conventional states we can reliably identify extra
states which would be interpreted as exotics. These measurements of central production
amplitudes are interesting because of the expectation that the reaction is fertile ground for
the production and observation of exotic mesons, in particular glueballs. When the four
momentum transfer (¢) is low for both protons, meson production is thought to be
dominated by double Pomeron exchange. This exchange mechanism is the reason the
reacﬁdn is considered a glue rich environment [1]. Our observation of S-wave dominance
and absence of P-wave resonances (such as p(770)) are consistent with such a production

mechanism.

The importance of final state channel coupling can be seen in the sharp drop of the
S-wave amplitude at the M, =1 GeV/c2 mass region. The drop is related to the opening of
the KK final state. We observe a second dramatic drop in the M, =1.5 GeV/c2 mass
region. This is at the mass where the Crystal Barrel collaboration claims the existence of a
0+ glueball candidate. In an independent analysis [18] this experiment observes a 0++
state with the same mass and width in the KK final state. A future combined analysis will
provide additional information regarding this case, although it is not as easy to develop
phenomenological models in this mass region because the number of final state channels is

not restricted to 7z and KK .

Other possible studies using this data sample and analysis technique are: (1) the
extension of the amplitude analysis above the 1.5 GeV/c2 mass region and (2) the study of
the produced amplitudes as a function of the relative angle between the two proton planes.

As related to (1) this analysis uses only 10% of the total data sample. With a tenfold
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increase in the data sample we would have sufficient statistics to study the mass region
above 1.5 GeV/c2. Study (2) is motivated by recent publications [35] which show a strong
dependence of the observed states on the relative angle of the proton planes. This
dependence is not explained by any production model. The excellent acceptance of our
apparatus along with the high statistics data sample will allow us to make a comprehensive

study of the dependencies.

215



APPENDIX A

METHOD OF MOMENTS
OR
LINEAR ALGEBRA METHOD

We want to determine the angular distribution of the produced events using an expansion:

Ipmd(Q) = Zt[m Re{Ylm (Q)}

m20

Since parity is conserved for the reaction we study, the expansion is restricted to n 20 and
the real part of the functions Y,,(Q). In the following we simply write Y, () as a

shorthand for Re{Y,,(€2)} and we compress the indices /,m to a single Greek index A.

The detector has a limited acceptance. The observed event distribution can be

written as:
L.(Q)=A(Q)],,,(Q)=A(Q)Y 1Y, (Q)

Multiplying both sides with Y, () and integrating over the solid angle:
Jaay,(Q)L.(@)=[dY, (Q)A(Q);t,_YA(Q) =
[dQY , (Q)I,.(@)= ;{ [daY,(@AQ)Y, (Q)}:l -
b, = 21“ A t,

We refer to the integrals of the accepted distribution as experimental moments , b, .

The expansion coefficients for the produced distribution we call acceptance corrected

moments , t,. In practice the quantity b, is a function of the observed events and can be

obtained from (see Appendix C for the relationship between integrals and sums):

b, =~2":Y1&(Qi)

i=1
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The acceptance correlations A, depend on the detector acceptance only. They
can be calculated using the Monte Carlo technique. First we generate N, events random
in the variables cos(6), ¢ . The events generated are run through the detector simulation.
The result of the simulation is run through the analysis chain used for real events (track and

vertex reconstruction, particle identification and analysis cuts). We use this sample to

evaluate the acceptance correlations:

1

PRACNACD

mc gen i=1

A,=

Notice that we sum over the events that survive the analysis cuts N and normalize over

mc obs

the events generated N

me gen”

Since we use randomly generated events to evaluate the acceptance correlations
A uio there is a statistical error associated with the computed values. For this study we
generate a Monte Carlo sample ten times larger than the sample of observed events.
Therefore the statistical error due to the finite size of the Monte Carlo sample is much
smaller than the statistical error due to the number of observed events. In the following we

do not propagate statistical errors due to the evaluation of A ;. We consider the calculation

exact.

Given the experimental moments {bp} and the computed A, we want to find the

best set of coefficients {tl} that describe the data set. For the system of equations

b, = ; At
we can limit the number of moments to A, and the number of equations to 4, . If

A2 < Hmx We have an over constrained problem. The equality in the equation above

holds only in the ideal case of infinite statistics. For sufficient statistics the {b, } are
y M

distributed as a multivariable Gaussian:
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L _
Distrib(b) =consxe ** , x*=d"E(b)'d , d=b-b
with error matrix

E(b),m' = fYy(Qi)Yu'(Qi)

i=l
The error matrix of the experimental moments E(b) and the error matrix of the acceptance

corrected moments E(r)
E(t)=A"E(b)AT"

are evaluated in Appendix B. Here A represents the acceptance correlations matrix. We

can use the relationship between b”, t, and write

du = bu - ;Aﬂtl

The best fit to the data is given by the set of {t, } that minimizes x*:

¥ =2 4[E®)"], 4,

After some algebra:

ax’
oL,

b-f— (b” - ;AM:1 )[E(b)" ]””,[by, - ;A”.A.:A.) =0=

x pp’

=0=

-2%‘! A [ E®) ]”n,(b#. - ;A“.tl,) =0=

sy’

C, D, L,

IMEORIRS > {EA,,K[E(b)" ]W,A,,,A.},l. -
-2

we get a system of 4, equations with A__, unknowns that can be solved using standard

matrix inversion.
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Examples

Although we use the same method as Grayer [26] for the acceptance corrections and the
statistical analysis of the sample, there are some differences in the normalization
conventions. Here I list the differences and present a few examples that make the

formalism a bit more intuitive.

The definition of the expansion functions is:

Y,.(Q) =Re{Y,.(Q)} = (-1)" ‘,2: ;‘8 ”’;' P™(cos)cos ¢

. , | .
In the code I avoid the factor an in the Y, (Q) definition. As a result my conventions

differ from Grayer’s:

Grayer paper my code
1
i T/ﬁ"m
4 T
Aw=N 2Y,(Q)Y,(2) N ZY )Y, (Q,)
mcgen i=l mc gen  i=1

The conventions above leave the intensity expansion unaltered:

I prod (Q) = z tlelm (Q)

{
m20
but the integral of the produced distributions

[ 1. (Q)dQ=1t,=N,,,

is different in my code than the Grayer convention N, = vart,. The values of the

acceptance correlations A, are identical for the two normalization conventions.
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The use of the real part of the Y, (€2) and the normalization convention leads to the
orthogonality relation:

1 m=0

IdQRe{Ym (Q)}RC{YM:(Q)} = slml’nI'E(m) ? e(m){l/z m=#0

From the orthogonality relation and the definition of ¢, b, , we see that the expansions for
l,.4(Q), 1. () are different
I,.4Q)=Y 1, RelY,(Q)}
m20
l
,(Q2) =) b,——RerY,(Q
abs( ) % lms(m) { lm( )}

The relation between ¢, and b, is illustrated by a trivial example. For acceptance
independent of the solid angle we get:

1 m=0

, Aol
Y2 m=0 ©Lm

A, =AS,E(m),  £(m) ={

where A is the acceptance for the particular analysis bin and it is a constant. In this case the

equations that minimize y* become:

ZA,,,[E(b)—']un,b“. =;{Z A [Eb)" ]W,A",l,}tl. =

ZAS( K)8,.[E(b)" ]lm,b“. =;{2 Ag(u)8,[E(b) ]W,Ae(u')a”.l.}zl. =

Ae"Y[E®)'] b, =Ae" Y A E@®)"] 1, =

o

S[E®)"], b = 2 Ac(w)E®)] 1,

so that for a non-singular E(b).

1 1
t = b T —
"= Ae(u) and ¢, Y

Nabx

If in addition we require that data are evenly distributed in solid angle:
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E®),y = 3 Y, (@)Y, (2) = 8, (0N, =

o-(b)pp \‘ E(b 5 8(/1 nbx
,/Nu,,, /2 m#0

and for the acceptance corrected moments we find:

E(f)=ATE(L)AT " =
E(r),, = ZA;;E(b)u, Al =
AL’

E(:)m‘,=; L 5.5,4) "”‘AE 50 =

L_eM)N,, 1
E(t — T\ ) obs
O =0 K 2lu) eu) &
and
I N l Nobx m=0
O'(t)"” E(t) X —‘;f’ =6‘m.—
£ Al BN m=o0
obs
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APPENDIX B

ERROR MATRIX

For a multivariable Gaussian distribution with independent parameters the event
distribution is

n A 1 n w
G(u)=HG(u,_)=cons><e 2, cons=—————, and S=z

i=l I‘[(Zn.o.i )uz =1

i=1

t AN

=u’ (6*)" u

Q,

We can transform to the case of correlated errors with a unitary transformation to another
set of variables.
d=Uu = u=U"'d=U"d
where we have used the fact that since u and d are real, the transformation matrix U is
also real. Then
S=u" () u=d"[U()'U"ld=d"E'd ,with E'=U(c*)"'U"

and the matrix E is related to the standard deviations as follows
(d.d,)= [ d,d,G(d) d"(d)

= I(ZUM w, U, u,) Gi) di

- MV’

=yU,.U, o6,=Uc>U"), =E
&

uv

Therefore in the correlated case the Gaussian is given by

i

G(d)=consxe? ,with S=d"E"d ,and E, =(d,d,)

Here we have assumed that (d“ ) =0. For a distribution not centered at zero we can use

d,=b, - F,, Since displacement of the central values does not alter the distribution, the

error matrix is the same for both sets of parameters.
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In principle, to calculate the error matrix E(b) we need to repeat the experiment an

infinite number of times and calculate the standard deviations. Let's consider an infinite

number of experiments with N_,, measurements for each experiment.

Nows

Q Q ...Q, o b=) Y(Q)
k=1
IVB.‘

Q Q... QL - b= rQ)
k=1
N,

Q Q... Q. -5 b=3 7@

k=1

From the definition of the error matrix

N, _ —
E®) = 3, 6 ~B,) (6, ~B,)]=

r r=l r

{2 b’b’} b,b, , with N, - oo

r=1

For convenience in the proof that follows, we use two normalization conventions for the

expected values of b,
N, Ny, 1
Z b = ,\l, P ACH
e B v ()
(Bu)=7% 3 ¥ @)
b.r r=l =l )
We can rewrite the error matrix
E®),, = {ZZ Y, (Q))Y, () } b b, =
r ij
{22 Y (Q)Y,(Q)+XY Y.(Q)Y, (Q')}_g”gvz
r r = r "I

= {ZZY(Q')HQ'H sV, (Nos, = 1)(5, X, )} By b,

r

This is the result for a collection of experiments with a fixed number of observed events,

N,,.. If we allow N, to be Poison distributed

E(b),, = Ni {22 Y, @) YV<Q;)}~+5,, b,-5,b,

r i=j
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The steps above require more explanation. We start the proof assuming a collection

of experiments with exactly the same number of observed events, N, . We divide the

calculation of

NL{ZZ Y, (Q:)YV(Q;)}

r r ij
totwocases: i# j and i= j.

For the case i # j we group the summation over r into m sums with n terms each.

=TT T 1@ 1@

r {m} {n} i=j

We group together n experiments that have one of the N, events with parameters 2
infinitely close. I give to this event from group m the index k. Then we can rearrange the
sum.

D YAV, V() + D, V(MY QM) =

(m} {2} et e
ey

PRIACDINISACHED WIS ACDIHC
{m} {n} j=k {n} i=k
i#f

Now we perform only the summation over 7 for the first of the terms in brackets. Since
the rest of the events are not correlated and n can be arbitrarily large, the result of the
summation is n(bv) .
1 nm nm nm
~ YAV QMY nb,)+ DY V(Y Q)=

r {m} =k {n} izk
i»f

1

N, 25| O N = Ol ) + 35 QT
r{m n} ik
i%j

and summation over m
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N, = )n(b, )Z{Y @™} + —Z Y¥ v, @y, @)=

r r {m} | {n} i=k
i®j

=7vl——nm( =B XB) + ——2 3T vy @

r r {m} 1 {n} i=k
ij

We started with N, (N,,, — 1) products of Y, (Q])Y,(Q}) and we separated the sum into
two terms with (N,,, —1) and (N,,, —1)(N,,, — 1) products each. We can repeat the same
procedure for as many values the index k can take. Thatis N,,, times. We will get the
same result in every iteration. So after we take into account that N, =nm, we can rewrite

the sum

3 ¥, (@) V(@) = Ny (N, ~ 1B, XB,)

r o r i®j

So far, we assumed that the number of observed events is fixed. We can consider

the case above a subset of a collection of s groups of experiments with a fixed number of

observed events ( NV, ) in each group. The proof above applies for each one of the groups.

ergug')ym')- 2,((1v,:,,,)2 N5 )b, )B,)
( Xb _Z(( abs) _N:Jbs)

In addition, we assume that the number of experiments in each group follows a Poisson

distribution with average (N:b,) N,_,. . For such a distribution

abs °
<N:b:z) = (N.fb,)' (N;bs)
With this substitution
T3 1@ V() =(N5) (B.)b,) = 5,5,

rrue]

In conclusion

E(b),, = NL{ZZ 7,2 Yv(n.f)}

225



Since we perform the experirment only once, the best estimate of the error matrix is given

by:

——

Y Y,(Q)Y,(Q)

E(b),,

I

Error matrix E(t)

To find the error matrix for the acceptance corrected moments E(t). we use the
transformation b, = ZA:AM‘A .

1 & ryr . L
E(b)”,=FZ b, -b,b,1=

r r=1

l Nr ’ ; 1 N, -, .,
- [(ZAM.:”.)(ZAW.:,,)}-—N 3 [[ZAW.I,,)(ZAWJV,)]
ror=l u v ror=l I v

For both terms we can rearrange the summation

N,
E(b),, =Y ALA,, {—I\II_ > (e - t-,:.t-‘:,]}
nv

r r=1

The term in brackets is the definition of the error matrix for the acceptance corrected

moments E(t)“,v.. Therefore,

E(b),, =3 A A ED),,
&

Finally, we can write in matrix notation
E(b),,. =AE(AT =

E(t)=A"EB)AT ' =

E(t)=[ATE®) " A]"
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APPENDIX C

INTEGRATION WITH A DISCRETE SAMPLE

We described the linear algebra method using integrals over continuous variables cos@,¢.
In practice we observe a discrete sample of events with parameters cos 8, @. The event
distribution intensity can be written as:

Iacc(Q) = % 6(9 - Ql)

i=l
This definition has the correct normalization:

Noos
[dar, (@)=[dQ} sQ-0)=N,,

i=1
and all integrals involving angular distribution have to be replaced by sums over the
observed events. For example, the definition of the experimental moments is:

b, = [dQY,(Q)L.(Q) = [dQY, (Q)fo 5(Q-Q,) =NZ'" Y, (Q)

i=] i=

The acceptance moments were defined as

A, =[dQY, (QAQ)Y,(Q)

We perform the integration using the Monte Carlo method. We generate events uniformly
distributed in solid angle and run them through a model of the detector. The Monte Carlo
events are subject to the same reconstruction and analysis selection procedure as the real
data. For a given bin in cos 8, ¢ the acceptance function A(Q) is given by the ratio of the
number of events accepted by the analysis procedure to the number of events produced.
The value of the acceptance moments can be obtained with numerical integration over bins

of solid angle. Specifically:
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LSy, @)1,(@)

bins i=l

A=

where n; is the number of events that survive the analysis cuts in bin i. Altemnatively we

can sum over events observed.

Au = 3 %,(Q)Y,(@)

prod i=l
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