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Chapter 1

Introduction

The present understanding of particle physics provides a beautiful and simple

picture of the fundamental constituents of matter and the interactions among them.

All matter appears to be composed of quarks and leptons which are structureless,

pointlike, spin-~ particles. Leaving aside gravitation as a negligible perturbation at

the energy scales usually considered, the interactions among these particles are of

three types: weak, electromagnetic, and strong. All three of these interactions are

mediated by spin-l gauge bosons, as described by gauge theories. The interaction

Lagrangians are determined assuming that the states of the particles are invariant

under local phase transformations which are a consequence of local charge conserva­

tion.

The weak and electromagnetic interactions are successfully unified in the elec­

troweak theory, based on the gauge group SU(2)L ~ U(l)y. In this theory, local gauge

invariance is spontaneously broken by the Higgs mechanism. This causes the inter­

mediate bosons (W+ , W-, and Z) of the weak interaction to acquire mass, while

leaving the photon massless. The theory of the strong interaction is known as quan-
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tum chromodynamics (QCD) and is based on the exact local gauge symmetry SU(3)c,

which results in conservation of color (the strong charge). A. distinctive property of

non-Abelian gauge theory is the tendency of the coupling strength to decrease at

short distances; this is known as asymptotic freedom. This behavior explains why

quarks behave as free particles within hadrons, but cannot be liberated.

The phenomenology of the interactions of the elementary particles is incorporated

in the 50-called "Standard Model" of QCD plus the SU(2)L ® U(1)y electroweak the­

ory. The Standard Model suggests grouping the six known leptons into three families:

e

The quarks are similarly grouped in doublets:

T

1£

d'

c

13'

t

h'

where the primes denote Cabbibo-Kobayashi-Maskawa mixing among the charge -l
quarks. Symmetry considerations and b-quark decay features motivated the search

for the third quark with charge +~, the top quark or simply t-quark. The pursuit of

this search finally resulted in the simultaneous announcement of the discovery of the t­

quark in 1995 by both CDF and D0 collaborations at Fermilab. At the Tevatron, the

t-quark is mostly produced in association with a tbar-quark. The quark-antiquark

annihilation contribution to tt production is highly dominant as compared to the

gluon fusion contribution. The D0 experiment has good electron identification and
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jet energy measurement. Because of this and the high branching ratio and relatively
j

high -signal-to-noise ratio, tt --+ e + Ve + jets yields an attracthre signature channel to

search for the t-quark at D0. The small ttbar production cross-section makes the

t-events rare.

The resemblance of background noise to top signal persuades analysts to use

several features of top events to separate signal from background. This brings about

the need to use classification methods which are capable of constructing a decision

boundary between signal and background in a multi-dimensional configuration space.

Several advanced classification methods of this sort have emerged in recent years.

These techniques are of two types: parametric and non-parametric. In parametric

techniques one assumes a particular parametrized functional form for the discrimi-

nator function which determines the boundary between signal and background. In

non-parametric techniques, no preassumption is made about the functional form of

the discriminator. However, non-parametric techniques require higher statistics to

approximate the discriminator function as compared to parametric techniques.

One of the components of the background to the top signal is that due to the

misidentification of a jet as an electron. The samples which are used to study the

characteristics of this background are derived from data. This limits the statistics of

the samples employed to construct the discriminator function. Due to these limited

statistics, the non-parametric techniques fail to adequately approximate the discrim-

inator function in the region with low signal efficiency. Since this region is of great

interest due to its high signal-to-background ratio, parametric techniques are prefered

for discriminator function approximation. It is crucial to use a parametric technique



4

which promises the most general parametrized functional form for the discriminator

function. It has been proven mathematically (see Chapter 5) t.hat the neural network

method provides the most general functional form for function approximation. This

makes the neural network technique a powerful enough method that it is frequently

referred to as "The Universal Approximator". It is worth mentioning that neural

networks approximate functions by using a close-to-minimal number of parameters.

This is important when sample statistics are limited and a decision boundary is sought

based on general features of the signal and background, rather than on idiosyncrasies

in the samples.

This thesis is based on a search for the top quark in the tt -+ e + Ve +jets channel

using neural network techniques. We use data collected with the D0 experiment at

Fermi National Accelerator Laboratory (Fermilab). The thesis is arranged as follows.

In Chapter 2 we have a short overview of the Standard Model, including a discussion

of the fundamental building blocks of matter, and the jets which playa major role

in the top search. We also see how the existence of the top quark is essential for the

integrity and simplicity of the Standard Model. In Chapter 3, those components of the

experimental apparatus at D0 which are crucial to the t-quark search are discussed.

Chapter 4 explains how physical particles and jets are identified and their parameters

derived from the digitized data provided by the experimental apparatus. Chapter 5

covers the basic concepts and theorems of neural networks which are important to

this thesis. In Chapter 6 we estimate the amounts of signal and background in the

data. In Chapter 7, we study features of signal and background events which form the

basis of our classification of the data events discussed in Chapter 8. In conclusion,
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the neural network results have been compared with D0 published results [44] in

which conventional cuts are applied for event classification. This comparison strongly

indicates that the neural networks method is far superior to conventional method of

event classification. Natural units are used throughout the thesis i.e. li. = c = 1 and

energies and momenta are in GeV unless stated otherwise. The unit of electric charge

is Ie I where e is the charge of the electron.
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Chapter 2

Theoretical Overview

2.1 The Standard Model

The goal of particle physics is to identify the structureless units of matter, and

understand the nature of the forces acting between them. The matter/force nature

of this challenge is beautifully illustrated by Maxwell's theory of the electromagnetic

field. The electron is considered both as a source of the electromagnetic field and also

as a constituent of matter. During the past hundred years, the deeper study of matter

has led to the discovery of two new forces, the weak and strong forces. The Standard

Model (SM) generalizes the beautiful electron/electromagnetic field relationship to

the weak and strong forces.

According to the Standard Model there are two constituents of matter, leptons

and quarks. Both are structureless at the smallest distances currently attainable by

the highest-energy accelerators and both have spin l. Charged leptons participate

in both electromagnetic and weak interactions, whereas neutral leptons only interact

weakly. Quarks interact via all three interactions, strong, electromagnetic and weak.
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Force gauge boson symbol chargeee) -spin(!) mass(GeV)

Strong gluon g 0 1 0

Electromagnetic photon I 0 1 0

{ W boson w± ±1 1 80
Weak Z boson Zo 0 1 91

Table 2.1: Fundamental forces and gauge bosons.

The weak and electromagnetic interactions of both quarks and leptons are described

by the Electroweak theory, which is a generalization of Quantum Electrodynamics

(QED). The strong interaction of quarks is described by Quantum Chromodynamics

(QCD).

The forces between matter units (leptons and quarks) are transmitted by specific

fields or particles (equivalent concepts in relativistic quantum theory). The electro--

magnetic force is transmitted by photons, the strong force by massless spin-1 gluons

and the weak force by massive W and Z bosons. These forces are all described by

gauge theories and the transmitting particles are called gauge bosons. The Quantum

treatment of gravity is still an open question and even though the General Theory

of Relativity is a gauge theory, gravitation is not included in the' Standard Model.

Table 2.1 summarizes the characteristics of the fundamental forces and their corre-

sponding gauge bosons [1].

The muon and the tau are leptons which, apart from mass, are identical to the

electron. All three leptons have an associated light neutrino. There are six flavors
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name symbol charge - mass(GeV) type

up u ~ 2-8 X 10-3 quark

first generation {
down d

3
1 5 -15 X 10-3 quark-3

e-neutrino Ve 0 < 5.1 X 10-9 lepton
electron e -1 5.1 x 10-4 lepton

charm c 2 1.0-1.6 quark

second generation {
strange s -':1 0.1-0.3 quark

3
It-neutrino VI-' 0 < 2.7 X 10-4 lepton

muon It -1 0.106 lepton

top(truth) t ~ 175 - 200 quark3
1

third generation {
bottom(beauty) b -3 4.1-4.5 quark

T-neutrino Vr 0 < 3.1 X 10-2 lepton
tau T -1 1.78 lepton

Table 2.2: Three generations of fundamental spin-~ particles.

of quarks. The up, charm and top flavors of quarks have electric charge ~, while the

down, strange and bottom quarks have charge - ~. These six quarks and six leptons

can be grouped into three families (generations). As shown in Table 2.2 apart from

mass all generations are identical [1].

2.2 Color and Color Confinement

The quark model is very successful, but without assigning a new degree of free-

dom to quarks this model would contradict the Pauli principle. The Pauli principle

states that the wavefunction of any quantum state must be antisymmetric under the

interchange of any two identical spin ~ fermions. The spectrum of light baryons



9

requires that the combined space and spin wavefunction be symmetric under the in­

terchange of any two quarks with the same flavor, which is in_conflict with the Pauli

principle. This contradiction between quark model and Pauli principle can be resolved

by assuming an additional degree of freedom for quarks. The wavefunction for this

new attribute, which is called color, is antisymmetric. So the combined space, spin

and color wavefunction is antisymmetric, which is consistent with the Pauli principle

and the space and spin wavefunction remains symmetric, which explains the spectrum

of light baryons.

According to the color idea any quark can exist in three different colors "red",

"green" and "blue". The cross section for producing a quark pair of any flavor is

proportional to the number of colors, so the number of colors can be tested against

experiment. The experimental data are in excellent agreement with the existence of

three colors. Color is an additive quantum number like electric charge, whose values

are opposite in sign for particles and antiparticles.

The quark model alone does not rule out the existence of hadrons with fractional

electric charges. Hadrons can be composed of any combination of quarks and anti­

quarks such as qq, qqq, qqqq. Hadrons with fractional electric charges, however, can

be excluded by imposing color confinement on hadron substructure. The color con­

finement hypothesis states that isolated hadrons as free particles must have no color

charge. The direct consequence of this hypothesis is that the only allowed combina­

tions of quarks and antiquarks are :
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(2.1)

such as qqq, qq, qqqqq, .... Since the electric charge of the quarks is a multiple of ~,

free hadrons cannot have fractional electric charge. Color confinement is analogous

to allowing only neutral atoms to exist yet forbidding ionization. The interaction

between quarks is weaker at short distances (asymptotic freedom) so quarks can be

treated as free particles and perturbative methods apply. On the other hand, at large

distances the interaction strength grows, making the ionization energy infinite (infra­

red slavery). Since isolated quarks and gluons cannot exist, injecting energy into a

hadron creates quark-antiquark pairs, which materialize as new hadrons. "Breaking"

hadrons to produce new hadrons (not free quarks) is very similar to breaking a bar

magnet to give smaller bar magnets (not single S or N poles).

2.3 The KLN Theorem and Jets

At high energy (short distances) perturbative QCD is applicable. The presence

of massless particles (gluons) can cause "mass singularities" in the series expansion

of perturbative QCD. This is closely related to the high degree of degeneracy in the

system i.e. the same total momentum implies the same total energy for parallel

moving massless particles. Such infinities in the QCD series can be removed if we

average over an appropriate ensemble of degenerate states. This is described in the

Kinoshita, Lee, Nauenberg theorem [2]. We call such an ensemble of parallel moving

particles a jet. Each jet is characterized by a total momentum and a narrow cone of
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Figure 2.1: Feynman diagrams for e+e- ---+ bb

fixed size which can be arbitrary small. Since gluons are massless, and light quarks

approximately so, the total energy of a jet is the magnitude of its total momentum

within a sufficiently small cone.

2.4 Why The Top Quark Should Exist

Besides the direct observation of the top quark by the CDF and D0 collabora­

tions at FNAL [43, 44], there is strong indirect evidence to believe in the existence

of the top quark. The Standard Model requires the b quark to be a member of an

SU(2)L doublet, i.e. it should have a partner. There are experiments which support

this prediction of the Standard Model.

Consider the reaction e+e- ---+ bb. This process can be mediated by either a

photon or a Z boson (fig 2.1). The contribution of photon exchange to the angular

distribution of the b about the plane perpendicular to the beam in the center of mass

frame is symmetric; the contribution of the Z should be asymmetric, if the b is in
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an SU(2)L doublet. It can be shown that the forward-backward asymmetry for this

process IS :

where

)
2 2

AFB rv (T3L - T3R (T3L + T3R + Scas 8w )

AFB _ :;:~:~ and T is the generator of SU(2) symmetry [3].

(2.2)

Now, consider the Z decay to bb (fig 2.2). The Feynman rule for Z decay vertex

. -ie (1-.,,5 + l±h)gIves sin6wcos6w I~ CL-2- CR 2 , where CL,R = T3L,R + ~sin28w

b

Figure 2.2: Feynman diagram for Z -+ bb

This results in a width with left and right-handed contributions [3]:

r(Z -+ bb) rv (T3L + ~sin28w)2 + (T3R + ~sin28w)2

The combined measured values for AFB and r(Z -+ bI,) yields [4]:

(2.3)

rn - 0 504 ±0.018.L3L - - • 0.011

Theory predicts

T3R = -0.008±g:g~~

T3L = -0.5, T3R = 0

The results strongly suggest that the b quark is a member of an SU(2)L doublet

(2T3L + 1 = 2 x 0.5 + 1 = 2). A theory with no top would predict T3L = O. The other

member of the doublet is the top quark, by definition.
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There are also some theoretical arguments in favor of the top quark, such as

SM anomalies which can be eliminated by assuming the exist.ence of the t quark and

jjo_BO mixing which needs a t loop diagram to generate the observed values. Even

though the existence of the t quark is sufficient to explain these phenomena, it is not

a necessary condition. However, top does provide the simplest way to explain the

observed jjo_Bo mixing and rectify SM triangular anomalies.

2.5 Top Production and Decay

The lowest order Feynman diagrams for top production due to proton-antiproton

collision are shown in fig 2.3 and fig 2.4. Figures 2.3 correspond to single top

production1 [5, 6], whereas Figure 2.4 corresponds to pair production. As shown in

Figure 2.5, pair production is the dominant process [5]. Among the lowest order

processes for QeD production of a tt pair, quark-antiquark annihilation dominates

for heavy top (fig 2.6). According to the Standard Model, the possible t decay modes

with mt > mw + mb are :

t---+W+b

t---+W+s

t---+W+d

IThe contribution of processes such as gb -+ tW are negligible at Vi = 1.8 TeV.
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Figure 2.3: Feynman diagrams for single top production processes.

The branching ratio for t ---+ W +q is proportional to Ivtq 12
, where V is the Cabibbo­

Kobayashi-Maskawa mixing matrix. Since with 90% C.L.

vtd '" 0.004 - 0.015

vts '" 0.030 - 0.048

vtb '" 0.9988 - 0.9995
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Figure 2.4: Feynman diagrams for top pair production processes
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Figure 2.5: Top cross section for pair and single top production processes.
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Figure 2.6: Contributions from gluon pair fusion and quark-antiquark annihilation in

next to leading order cross section calculations for tt production [7].

t -+ W +b is highly dominant [1]. The b quark forms a jet and the W decays to either

a quark pair(two jets) or a lepton-neutrino pair. Thus the total number of channels

IS :

W+-+ e+ve 1

-+ 11,d 3

-+ p,+v,.. 1

-+ cs 3

-+ T+VT 1

Total: 9

tb is kinematically excluded and the quark channels contribute three times as much

as lepton-neutrino because of the three color degrees of freedom. Therefore, the

branching ratio for decay into jets is ~ and into each lepton-neutrino it is t. Hence,

the branching ratio for each channel is :

tt -+ two identical leptons + two neutrinos + jets 1/81 = 1.23%
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Figure 2.7: tt --. e +ve + jets

tt --. two different leptons + two neutrinos + jets

tt --. lepton + neutrino + jets

tt --. jets

Since there are 3 leptons,

2/81 = 2.47%

12/81 = 14.8%

36/81 = 44.4%

3 x 1.23% + 3 x 2.47% + 3 x 14.8% + 44.4% = 100% .

Even though tl --. jets has the highest branching ratio, it suffers from a huge QCD

multijet background. ti --. lepton + jets +neutrino has the second highest branching

ratio. In the rest of this thesis, I will be discussing characteristics of the electron +

j ets+neutrino channel (fig 2.7) and the methods to isolate the signal from background

for this channel. Backgrounds to this process are a single W along with several jets

and QCD multijet events where a jet is misidentified as an electron.
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Chapter 3

Experimental Apparatus

The data analyzed in this thesis was collected using the D0 detector, at the

Tevatron pP collider located at Fermi National Accelerator Laboratory.

3.1 The Tevatron

The Tevatron can reach a center of mass energy of 1.8 TeV, currently the highest

energy attainable by particle colliders in the world. The long Tevatron circumference

of 3.7 miles reduces the energy loss due to radiation. As shown in Figure 3.1, the

Tevatron consists of the following parts:

• A Cockroft-Walton accelerator, which accelerates H- ions obtained by ionizing

hydrogen gas.

• The Linac, which generates an oscillating electric field to accelerate the ions.

The Linac is 150 meters long and employs an oscillating electric field synchro­

nized to the passage of the ions through electrodes. A carbon foil is then utilized

to strip the electrons from the ions to obtain proton.
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Figure 3.1: Tevatron collider

• The Booster synchrotron ring, which confines the protons to a closed orbit using

bending magnets. The energy of the particles is increased by acceleration in a

synchronized RF cavity. The energy of the protons is increased to 8 GeV in

this stage. As the energy of the protons increases in the synchrotron ring the

magnetic field is increased accordingly to keep the protons in the ring. The

circumference of the Booster synchrotron ring is 500 meters.

• The Main Ring which is employed to further accelerate protons up to 120 GeV.

The protons circulate around the 3.7 mile long Main Ring in bunches containing

2 x 1012 protons each. Six bunches circulate around the Main Ring simultane-

ously. The bunch crossing time, T, for any point on the ring is

Circumference 35
T f"V = . ps

CNbunch
(3.1)

• The Target Hall in which 2 x 107 antiprotons are produced by extracting proton

bunches onto a nickle/copper target. Then a magnetic lens is used to focus and

inject the antiprotons into the debuncher in which a coherent beam is formed.

This process is known as the "cooling" process.
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This process continues until about 4 x 1011 antiprotons are stored. The antiprotons

are then injected into the Main Ring where they are accele!ated to 150 GeV and

then transferred to the Tevatron ring. In the Tevatron, antiprotons circulate in the

opposite direction to the protons. Both protons and antiprotons are accelerated to

acquire an energy of 900 GeV before they collide at D0. The instantaneous luminosity

is given by

N. N.-
L P P L 5 1030 -1 -2 0 5 b- 1 jins = --:;:s- ~ ins '" X sec em =. n sec, (3.2)

where Np and Np are number of the protons and antiprotons per bunch, respectively

and S is the geometrical area of the interaction. The integrated luminosity £, is

defined as

The cross section, (1', for a process is given by

N
(1' = £'

where N is the number of events produced by the process.

3.2 The D0 Detector

(3.3)

(3.4)

The D0 detector is a multipurpose detector specially designed to provide good

electron and muon resolution, superior electromagnetic and hadronic energy resolu-

tion through highly segmented calorimetry , and full solid angle coverage. The major

physics goals of the D0 collaboration include the study of electroweak physics and

the perturbative QeD and the search for high mass states, high PT phenomena and
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new physics beyond the Standard Model.

The basic components of the D0 detector are :

• The Central Detector;

• The Calorimeter;

• The Muon Detector.

A cutaway isometric view of the detector is shown in fig 3.2.

The central detector is designed to trace the trajectory of charged particles (track­

ing). This tracking system is designed to be the closest to the point of interaction

to thereby minimize multiple scattering and identify secondary vertices. The central

detector is surrounded by the calorimeter. The calorimeter is designed to measure

the energy of particles and should be thick enough to stop particles! and measure

the deposited energy. A tracking system, on the contrary, should contain as little

material as possible to minimize the probability of inelastic interactions before par­

ticles reach the calorimeter. Since the energy deposited by a lepton in matter is

inversely proportional to the mass of the particle, muons escape the calorimeter with

little energy deposition. Muons are detected by a 3-layer proportional drift chamber

surrounding the calorimeter. Neutrinos interact only weakly and cannot be stopped

by the calorimeter. Neutrinos are identified by balancing the energy :flow transverse

to the beam.

1 Except v's and p.'s which escape the calorimeter.
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Figure 3.2: D0 detector
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Figure 3.3: D0 detector coordinate system

east

The De> detector weighs 5500 tons and the absence of a central magnetic field

makes it possible for the detector to fit in a compact volume of 13m high x 11m

wide X 17m long. The D0 detector is not designed for tracking and identification of

individual particles within jets. A better jet energy measurement is achieved by the

calorimeter because of the absence of a central magnetic field. A magnetic field would

deflect the charged particle out of the jets. In order to be consistent throughout this

thesis we will adopt a right-handed coordinate system with the positive z-axis along

the beam and in the direction of the protons and y-axis pointing up (fig 3.3). In pp

collisions, the total secondary momentum along the beam direction is not known since
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secondary particles may escape down the beam pipe. The transverse momentum2,

iT, for these particles is small, so momentum conservation _can be applied in the

transverse plane. PT is defined to be:

PT =liT I = psin9 (3.5)

The transverse energy is defined as a vector whose direction is the direction of PT

in the transverse plane and it's magnitude is:

ET = Esin8 (3.6)

Pseudorapidity 11 is frequently used instead of 8.The pseudorapidity is defined as:

(3.7)

(3.8)

which is an approximation of the rapidity defined as:

=!Z (E + PZ)
y 2 n E - pz '

in the limit that ~ ~ 1, where m = v'E2 - p2. Figure 3.4 shows the 11 values

corresponding to different (J's in one quarter of the calorimeter and the tracking

system.

3.3 The Central Detector (CD)

The major role of the central detector is to reconstruct the 3-dimensional tra-

jectory of each charged particle passing through. Tracking in the central detector is

important because :

2The momentum vector projected on the x-y plane
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Figure 3.4: Side view of one quarter of the calorimeter and the central detector. The

numbers show pseudorapidity (11) values.
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Figure 3.5: Side view of the central detector

• Using the tracking information, one can determine whether an electromagnetic

shower in the calorimeter is produced by an electron, a photon or 7r0 ;

• The precise measurement of the location of the interaction vertex is done using

the CD tracking information. The precise vertex measurements can be used for

the calorimeter position measurements;

• By measuring dE/ dz for a track, one can decide if a track is caused by photon

conversion, i -+ e+e- .

The central detector consists of four subdetectors (fig 3.5). These four subdetectors,

ordered from inside to outside, are:
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• The vertex drift chamber (VTX) surrounding the beryllium beam pipe;

• The transition radiation detector (TRD) surrounding the VTXj

• The central drift chamber (CDC) surrounding the TRDj

• The forward drift chambers (FDC) at each end of the central detector.

These four subdetectors are contained in cylindrical volume of radius r = 75 cm and

length l = 270 em.

3.3.1 Operation Principles of The Drift Chambers

The fact that three out of the four subdetectors in CD are drift chamber moti­

vates us to have a brief overview of these devices. For a detailed discussion of drift

chambers, references [8, 10] are recommended. The working principle of the drift

chambers is based on the fact that energetic charged particles cause ionization along

their path as they pass through a gas. When a charged particle passes through a

gas, it will interact with nearby atomic electrons, creating electron/ion pairs along

its path. The number of electron/ion pairs created depends on the energy of the

particle and the type of gas. An electric field is used to collect the liberated electrons

and cause them to drift through the gas towards the positive electrode (sense wire).

The drifting electron causes further ionization along the way to the positive elec­

trode. As the accelerated electron gets closer to the anode it experiences a stronger

electric field causing electron to accelerate faster and gain enough energy to cause

further ionization. This phenomenon, in which the number of the electrons increases

exponentially, is called the avalanche effect. This effect gives rise to a measurable

current which is proportional. to the original. number of ions created. The ratio of the
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final number of electrons collected by the anode to the initial number deposited is

called the gas gain. The gas gain is ofthe order of 104 -106 for_a typical drift chamber.

The velocity of a drift electron is a known quantity determined by the strength

of the field and the density, pressure and temperature of the gas. The fact that the

velocity of the electron is known along its path to the anode enables us to measure

the position of the source particle knowing the drift time. In order to obtain a linear

relationship between the electric field and the velocity of the electron, it is necessary

to have an electric field which is constant over a large volume. The large electric field

needed to drift electrons far away from the anode is generated by a very thin wire

(20-100 /lm in diameter). Additional electrodes, known as field-shaping electrodes

are used to make the electric field more uniform.

3.3.2 The Vertex Drift Chamber (VTX)

The vertex chamber is the innermost drift chamber used for vertex position

measurement. It consists of four carbon fiber cylinders surrounding 3 concentric

layers. The VTX extends from r = 3.7cm to r = 16.2cm radially. The length of the

innermost layer is 97cm and each successive layer is about 10cm longer. Figure 3.6

shows an end view of the VTX chamber. The VTX chamber is a jet chamber. In a

jet chamber sense wires are strung in planes parallel to the path of the particles from

the interaction vertex. The inner layer is divided into 16, while the two outer layers

into 32 cells each. Each layer is rotated in t/> with respect to the adjacent layer to
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Figure 3.6: End view of the VTX chamber

eliminate dead regions and left-right ambiguities3 • Each cell contains 8 sense wires,

which are staggered out of the 1'-4> plane by 100 p,m to lessen left-right ambiguities.

The (1', 4» position of the track is determined from the drift time. The z position is

determined using charge division, in which the sense wire is read out at both ends.

The parameters of the VTX chamber are summarized in Table 3.1.

3.3.3 The Transition Radiation Detector (TRD)

The working principle of the transition radiation detector is based on the fact

that charged particles radiate photons in the forward direction as they traverse the

boundary between two media with different dielectric constants. The radiation inten-

3The drift time measurements only yield the distance electrons have drifted, since the drift can

be from either left or right, the position of any single hit is ambiguous.
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Length of Active Volume: Layer 1 96.6 em

Layer 2 106.6 em

Layer 3 116.8 em

Phi seetorsflayer 16,32,32

Radial Interval (active) 3.7-16.2 em

Radial Wire Interval 4.57 mm

Number of Sense Wires/Cell 8

Number of Sense Wires 640

Stagger of Sense Wires ± 100 p.m

Gas Mixture C02(95%)-Ethane(5%)

Gas Pressure 1 atm

Drift Field 1.0-1.6 kV/ em

Average Drift Velocity 7.3-12.8 p.m/ns

Gas Gain at Sense Wires 4 x 104

Sense Wire Potential +2.5 kV

Sense Wire Diameter 25/Sm NiCoTin

Guard Wire Diameter 152 pm Au-plated AI

Table 3.1: VTX chamber parameters

sity is proportional to , =J 1 = Elmc2 and concentrated in a cone with a half
I-v2 /c2

angle proportional to 1/,. For highly relativistic particles, the radiation is in the

X-ray frequency range. Using these characteristics, a transition radiation detector

discriminates particles with different masses which have similar energies. In order

to obtain a reasonable signal, the charged particle has to traverse a large number of

boundaries. The D0 transition radiation detector is utilized to discriminate electrons

from heavier particles. Electrons are the only particles at the Tevatron likely to cause
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Figure 3.7: An end view of 3 of the 32 CDC modules.

detectable transition radiation4 • The TRD has 3 layers, each layer containing 393

sublayers of 18 /Lm polyethylene foil with 150 /Lm separations. The gaps between the

foils are filled with dry nitrogen. Each radiator is surrounded by a Xenon-filled drift

chamber to detect the transition X-ray radiation. The TRD provides a factor of 10

rejection against pions with a high efficiency of 90% for isolated electrons.

3.3.4 The Central Qrift Chamber (CDC)

The central drift chamber is the outermost subdetector of the CD. It covers the

pseudorapidity range of 1111 :::; 1.2. The CDC consists of 4 layers which extend radially

from r = 49.5 cm to r = 74.5 em and are 184 cm long. Figure 3.7 shows an end view

of a portion of the CDC. Each layer of the CDC is divided into 32 identical sectors

which are arranged in a cylindrical ring. Within each module, there are 7 sense wires,

4The transition radiation occurs when 'Y > 103 •



Length of Active Volume

Radial Interval (active)

Number of Layers

Radial Wire Interval

Number of Sense Wires/Cell

Number of Sense Wires

Stagger of Sense Wires

Number of Delay Lines

Gas Mixture

Gas Pressure

Drift Field

Average Drift Velocity

Gas Gain at Sense Wires

Sense Wire Potential

Sense Wire Diameter

Guard Wire Diameter

179.4 em

51.8-71.9 em

4

6mm

7

896

± 200 p.m

256

Ar(93%)-C~(4%)-C02(3%)

1 atm

620 V/cm

34 p.m/ns

2,6 x 104

+1.5kV

30 p.m Au-plated W

125 p.m Au-plated CuBe

32

Table 3.2: CDC detector parameters

staggered 200 pm relative to each other to resolve left-right ambiguities. The CDC

has a jet geometry similar to the vertex chamber. The (r, </J) position of a hit is

determined using the drift time and the z position is measured by comparing the

arrival times of the avalanche induced pulse at both ends of the inductive delay lines

placed in the module walls in the sense wire plane. The relevant parameters of the

CDC are listed in the Table 3.2.
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Figure 3.8: An exploded end view of an FDC

3.3.5 The Forward Drift Chambers (FDC)

The forward drift chambers are located at both ends of the CDC, covering 1.2 ~

1111 ::; 3.1. This translates to a (J range of rv 5°_34°. Each FDC consists of 3 layers

of chambers, two e layers sandwiching a ~ layer. Figure 3.8 shows an exploded view

of one of the forward drift chambers. The ~ layer is divided into 36 azimuthal drift

cells, each containing 16 sense wires strung radially. The two e layers consist of

4 separate quadrants, each containing 6 rectangular drift cells. The sense wires in

each cell are oriented parallel to the z-axis. In each rectangular drift cell there is a
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delay line similar to that of CDC to measure the position along the length of the cell.

However, there is no delay lines in the ~ layer. The outer e ch.ambers are rotated by

45° with respect to the inner ones.

The parameters of the FDC are given in Table 3.3.

3.4 The Calorimeter

The absence of a central magnetic field makes the calorimeter the only available

device for measuring the energy of most types of particles. Due to the importance of

the calorimeter in the D0 detector, we will have a brief overview of calorimetry. A

more detailed discussion can be found elsewhere [8, 9].

3.4.1 Operation Principles of A Calorimeter

In calorimetry, one measures the energy deposited by a particle, by stopping

it in an absorber. As a high energy electron (Ee ~ 10 MeV) passes through a

dense material, it interacts electromagnetically with atomic nuclei in the material and

emits energetic photons (Bremsstrahlung). A high energy photon, in turn, produces

electron-positron pairs. The photons and electron-positron pairs created through

Bremsstrahlung or pair production produce more electrons, positrons and photons

undergoing the same processes. Therefore, an energetic photon or electron passing

through dense media can produce a shower of electrons, positrons and photons known

as an eleetrumagnetic shower. As the shower develops, it loses energy mostly due

to ionization until it does not have enough energy to go through showering processes.

The rate of energy loss in a material is constant and depends only on the type of the
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material. The rate is expressed as:

(dE) 1 z

~ = - - ur E = Eoe- Xo ,
E X o

where X o is called the radiaticm length.

(3.9)

Radrons, on the other hand, lose energy by colliding inelastically with atomic

nuclei. The hadrons produced by these collisions can cause more inelastic collisions

to produce a hadrcmic shower. The hadronic shower continues to develop until

it loses its energy due to ionization and inelastic collisions. The rate of energy

loss for hadronic showers is the same as in equation 3.9 with X o replaced by the

nuclear absurbticm length.A. For uranium, .A f'V 10.5 em, whereas X o f'V 3.2 mm.

So, hadronic showers are generally both longitudinally and transversly larger than

electromagnetic showers.

In order to measure the energy of the low energy particles produced through

showering, layers of an ionization-sensitive material can be inserted in the dense par-

ticle absorber. Since this active medium only sees a fraction of the energy lost by

the incident particle, this type of calorimeter is called a sampling calurimeter. The

fraction of the energy detected is known as the sampling fracticm. The statistical

nature of this type of calorimetry degrades the energy resolution.

The response of the calorimeter to electromagnetic and hadronic showers is differ­

ent. Since neutrinos and muons produced by K and'1r decays escape the calorimeter

and the nuclei break-up energy is not measured, the calorimeter response to hadronic

showers is smaller. This difference in calorimeter response to electromagnetic and
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Figure 3.9: A unit cell of the liquid argon calorimeter

hadronic showers is quantified by measuring the ratio of the responses to electrons

and pions, known as the e/1r ratio. Hadronic showers can have electromagnetic com­

ponents through 7J and 1r decays to photons. The fraction of hadrons which cause

electromagnetic showers may change from shower to shower. In order to have an

energy resolution independent of this, it is desirable to have e/1r = 1. A calorimeter

with e/1r '" 1 is called a campensating calorimeter.

3.4.2 Calorimeter Configuration

The D0 calorimeter is a sampling calorimeter. The primary absorber material

used in the calorimeter is depleted uranium; copper and stainless steel are also used.

The sampling medium is liquid argon (LAr). The calorimeter is divided into a large

number of modules, each containing layers of absorber plates and signal boards. Fig­

ure 3.9 shows a part of a module. The 2.3 mm gaps between absorber plates and

signal boards are filled with LAr as the ionization material. The signal boards are

copper readout pads placed between two layers of GIO covered by a resistive epoxy.
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Figure 3.10: D0 calorimeter

The electric potential difference between the resistive coating and the absorber plates

is about 2.D-2.5kV with the absorber plates grounded. During operation, as a shower

develops, charged particles in the shower cause ionization in the LAr and the collected

electrons on the signal boards induce a signal on the copper pads. Each readout pad

is further divided into smaller cells to measure the transverse position of the shower.

The calorimeter is divided into a central calorimeter (CC), covering 1111 < 1.2 and

two end calorimeters (EC) with a coverage of 1.3 < 1111 < 4. Since the sampling ma-

terial used in the calorimeter is LAr, the calorimeter has to be kept cold. Therefore,

both CC and EC are placed inside cryostats. Figure 3.10 shows an isometric view of

the D0 calorimeter.

The CC consists of 3 layers of modules. The inner layer contains 32 electro­

magnetic (EM) modules for electromagnetic shower measurement. The middle layer

contains 16 fine hadronic (FH) modules, measuring hadronic showers. The outer lay-
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ers consists of 16 coarse hadronic (CH) modules, to reduce the leakage(punchthrough)

out of the calorimeter to the muon system. The EC contains _3 layers of electromag­

netic, fine hadronic and coarse hadronic modules. The relevant parameters of the

central and end calorimeters are summarized in Tables 3.4 and 3.5.
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e module6 ~ moaule6

z interval 104.8-111.2 em 113.0-127.0 em

128.8-135.2 em

30 I'm NiCoTin

163 I'm Au-plated AI

1 atm 1 atm

1.0 kV/em 1.0 kV/em

37p.m/ns 40p.m/ns

2.3,5.3 x 104 3.6 X 104

+1.5 kV +1.5kV

5.3 em

0.2mm

8mm

10°

16

o
576

11-61.3 em11-62 em

6

5.3 em

0.2mm

8mm

8

1

384

96

Ar(93%)-C}4(4%)-C02(3%)

Radial Interval

Number of Cells in Radius

Maximum Drift Distance

Stagger of Sense Wires

Sense Wire Separation

Angular Interval/cell

Number of Sense Wires/Cell

Number of Delay Lines/Cell

Number of Sense Wires/End

Number of Delay Lines Readout/End

Gas Mixture

Gas Pressure

Drift Field

Average Drift Velocity

Gas Gain at Sense Wire

Sense Wire Potential

Sense Wire Diameter

Guard Wire Diameter

Table 3.3: FDC detector parameters



EM FH CH

Rapidity Coverage ± 1.2 ± 1.0 ± 0.6

Number of Modules 32 16 16

Absorber" Uranium Uranium Copper

Absorber Thickness (cm) 0.3 0.6 4.65

Argon Gap (cm) 0.23 0.23 0.23

Number of Cells/Module 21 50 9

Longitudinal Depth 20.5 X o 3.24 ~o 2.93 ~o

Number of Readout Layers 4 3 1

Cells/Readout Layer 2,2,7,10 21,16,13 9

Total Radiation Lengths 20.5 96.0 32.9

Radiation Length/cell 0.975 1.92 3.29

Total Absorption Lengths (A) 0.76 3.2 3.2

Absorption Length/Cell 0.036 0.0645 0.317

Sampling Fraction (%) 11.79 6.79 1.45

Segmentation (t/J x 'II)" 0.1 x 0.1 0.1 x 0.1 0.1 x 0.1

Total Number of Readout Cells 10,368 3456 768

Table 3.4: CC detector parameters

"Uranium is depleted and FH absorbers contain 1.7% Niobium alloy

bLayer 3 of the EM has 0.05 x 0.05

40



EM IFH ICH MFH MCH OH

Rapidity Coverage 1.3-4.1 1.6-4.5 2.0-4.5 1.0-1.7 1.3-2.0 0.7-1.4

Number of Modules/End Calor. 1 1 1 16 16 16

Absorber4 U U SSb U SS SS

Absorb Thickness (em) 0.4 0.6 4.6 0.6 4.6 4.6

Argon Gap (em) 0.23 0.21 0.21 0.22 0.22 0.22

Number of Cells/Module 18 64 12 60 12 24

Longitudinal Depth 20.5Xo 4.4~0 4.Uo 3.6~0 4.4Ao 4.4~0

Number of Readout Layers 4 4 1 4 1 3

Cells/Readout layer 2,2,6,8 16 12 15 12 8

Total Radiation Lengths 20.5 121.8 32.8 115.5 37.9 65.1

Total Absorption Length (A) 0.95 4.9 3.6 4.0 4.1 7.0

Sampling Fraction (%) 11.9 5.7 1.5 6.7 1.6 1.6

li.¢J SegmentationC 0.1 0.1 0.1 0.1 0.1 0.1

li.T/ Segmentationd 0.1 0.1 0.1 0.1 0.1 0.1

Total Number of Readout Ch.e 14976 8576 1856 2944 768 1784

Table 3.5: EO detector parameters

4Uranium is depleted and FH (IFH and MFH) absorbers eontain 1.7% Niobium alloy

bStainless Steel

CLayer 3 of the EM has li.¢J x li.T/ =0.05 x 0.05 for IT/I < 2.6

dFor IT/I> 3.2, li.¢J =0.2 and li.T/ ~ 0.2

eMCH and OH are summed together at IT/I = 1.4

41
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The typical coverage of a readout cell is 0.1 x 0.1 in ",-¢ space. The cells in the

third-layer of the electromagnetic modules are smaller (0.05 X 0.05), and the cells in

pseudorapidity beyond 3.2 are larger. Figure 3.11 shows the calorimeter segmentation

for full ", coverage of 0-4 in all layers.

The region 0.8 < 1",1 < 1.4 between the CC and the EC in the calorimeter is

uninstrumented due to the cryostat walls and support hardware (see fig 3.4). In

order to sample the shower development in this region, two subsystems are employed:

the massless gaps(MG) and the intercryostat detector(ICD). The ICD is an array of

384 scintillation counter tiles of size 0.1 x 0.1 in ",-¢ space. The ICD modules are

mounted on the front surface of each EC cryostat. Phototubes are utilized for ICD

readout. The modules of the massless gaps contain two signal boards with LAr-filled

gaps. The size of the readout cells of the massless gaps is 0.1 x 0.1 in ",-¢ space.

The massless gap modules are mounted on the end plates of the CCFH, ECMH, and

ECOH modules 5 (see fig 3.11).

3.4.3 Calorimeter Performance

The calorimeter energy resolution is given by

(3.10)

where C, S, and N are constants reflecting the error due to calibration, statistical

fluctuations, and noise, respectively. The measured values for these constants are:

1
C = 0.003 ± 0.002, S = 0.157 ± 0.005 (GeV)2, N = 0.140 GeV

5The CCFH, ECMH, and ECOH stand for CC fine hadronic, EC middle hadronic, and EC outer

hadronic, respectively.
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for electrons and:

1 -

C = 0.032 ± 0.004, S = 0.41 ± 0.04 (GeV) 2" , N = 1.28 GeV

for pions. The ej1r ratio ranges from 1.04(150 GeV) to 1.11(10 GeV) and the resolu-

tion for position measurements is about 0.8-1.2 rom.

3.5 The Muon System

Although muons are not studied in the analysis presented in this thesis, a brief

overview of the muon system is included in this Section. A detailed discussion of the

muon system can be found in [11, 12, 13].

The muon system consists of 5 solid iron toroidal magnets sandwiched between

3 layers of proportional drift tubes (PDT).
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Figure 3.12: Muon system.
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The initial and final directions of the muon are measured and the muon momen-

tum is determined by measuring the deflection of the muon~ in the magnets. The

muons are deflected in the r-z plane as they experience a 1.9 T magnetic field. The

three major parts of the muon system are (fig 3.12):

• A magnet in the central region called CF (Central Fe) covering 1111 ~ 1.0.

• Two magnets in the end regions called EF (End Fe) covering 1.0 < 1"11 ~ 2.5.

• Two magnets in the Small Angle Muon System (SAMUS) covering 2.5 <

1"11 ~ 3.6.

The CF and the two EF's together are known as the Wide Angle Muon System

(WAMUS). One layer of PDT is just inside the magnet and two layers outside the

magnet with a I-3m air-gap between them. The inner and the two outer layers are

referred to as A, B, and C layers, respectively. The muons should have at least a

minimum energy of 3.5 GeV to reach the muon system in the central region. This

minimum energy becomes about 5 GeV for higher "1 as the muon has to go through

more material in the calorimeter. The momentum resolution for the muon is given

by

(!J.P)2 = (0.18)2 + (0.0Ip)2,
P

where p is the momentum of the muon in GeV. Table 3.6 summarizes the relevant

parameters of the muon system.

3.6 The Trigger System

As derived in the beginning of this Chapter, the instantaneous luminosity is

about 0.5 x nb-1/sec. The total cross section for pP ~ X is 70 mb. Therefore, the
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WAMUS SAMUS

Rapidity Coverage 1171 ~ 2.3 2.3 ~ 1171 ~ 3.6

Magnetic Field 2T 2T

Number of Chambers 164 448

Interaction Lengths 13.4 18.7

Bend View Resolutiona ± 0.53 mm ± 0.35mm

Non-Bend Resolution ±3mm 3.5mm

6P/pb 18% 18%

Gas Ar(90%)-CF4(5%)-C02(5%) CF4(90%)-C~(10%)

Average Drift Velocity 6.5 cm/p.s 9.7 cm/p.s

Anode Wire Voltage +4.56 kV +4.0 kV

Cathode Pad Voltage +2.3 kV

Number of Cells 11,386 5308

Sense Wire Diameter 50 p.m 50 p.m

Table 3.6: Muon system parameters

aThe diffusion limit is 0.2-0.3 mm.

bMultiple Coulomb Scattering limit - assumes 100% chamber efficiency.

rate of pP interactions is about 350 kHz. Since it is not feasible to record all of the

interactions, a filtering system, known as the trigger system has been implemented

to select events relevant to the physics analyses at D0. Triggering is carried out in 3

levels; level 0, levelland level 2.

Level 0

Level 0 is a scintillator-based trigger designed for fast vertex position measure-

ment and to indicate the occurrence of inelastic collisions. The Level 0 trigger consists ...,
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of two hodoscopes mounted on the front surface of the EC cryostats. The hodoscopes

contain two sets of scintillator counters arranged in planes perpendicular to the beam

and rotated 90°with respect to each other. Since inelastic collisions cause a signifi­

cant activity in the forward regions, the coincidence of the signals from two scintillator

arrays is attributed to inelastic collisions. Moreover, the interaction vertex is deter­

mined with a resolution of ±15 cm, by comparing the arrival times of the signals from

two scintillator arrays. The hodoscpes give a partial coverage for 1.9 < /T/I < 4.3 and

an almost complete coverage for 2.2 < IT/I < 3.9.

The Level 0 trigger is also used for instantaneous luminosity measurements [15].

The rate of the events at the Level 0, NLO , is given by:

(3.12)

where fLO is the acceptance of the Level 0 trigger. Using a Monte Carlo simulation

fLO is determined to be 69%. The cross-section Utot is measured by experiments

E710 [16, 17] and CDF [18, 19] at the Tevatron, the average of which used by D0 IS

70 mb. The relative error on the instantaneous luminosity is 5.4% [20].

Levell

The level 1 trigger decides within 3.5 JLS (bunch crossing time) whether an event

should be kept or not, based on the information collected from Level 0, the calorime­

ter, and the muon system. These pieces of information are stored in a 32-bit logical

trigger word. Events with at least one nonzero trigger bit are accepted. A pro­

grammable prescale is associated with each trigger bit. When a prescale N is as­

signed to a trigger, the trigger bit is fired every once in N times that events satisfy

the trigger condition.
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Level 2

-
The events which pass the level 1 trigger requirements are transferred to level

2. Level 2 is a software trigger system which employs 48 nodes of VAXstations

(4000/M60 and 4000/M90) for fast reconstruction of the digitized raw data collected

from the different parts of the detector which passed level 1. At this level a set of

algorithms is implemented to look for electromagnetic jets, hadronic jets, missing

transverse energy and muons, etc. As a result, 128 software filters are built out of

these algorithms for the specific physics analyses. Any event passing level 2 must

satisfy the requirements of at least one of these filters. The output event rate for

the full trigger system is about 1-2 Hz. The trigger rate at each level is shown in

Figure 3.13.

Events passing Level 2 are sent to the host system where they are recorded on

magnetic tapes. In the next Chapter we will see how this digitized data is used

to derive the various parameters of the physical objects. For further study of the

experimental apparatus at D0, references [12, 13] are recommended.
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Figure 3.13: Trigger rates.
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Chapter 4

Event Reconstruction

The signals collected from different parts of the detector are due to the particles

produced by the pP collisions. However, one cannot describe the kinematic parameters

of these particles, using the raw information from the detector directly. The process

of turning the raw data into the kinematic parameters of the particles is known as

event reconstruction. The reconstruction process in D0 is carried out by a software

package called D0RECO.

4.1 Event Vertex

As explained in the previous Chapter, the transverse components of the momenta

and energies of the particles are the quantities of interest in physics analyses. In order

to calculate the transverse energies, one needs to know the energy and direction of

the particles. The calorimeter determines the energy and the position of the particles

where they hit. To find the direction of the particles, the position of the interaction

vertex from which the particles originate is needed.



52

The vertex position is reconstructed with the following procedure:

• The drift chamber hit are fitted to reconstruct a track in the r-lj> plane l
;

• A reconstructed r-z track is associated with the reconstructed r-lj> track;

• The intersections of these reconstructed space tracks with the z-axis form a

distribution in z. The estimated z position of the vertex is the mean of a

gaussian fitted to this z intercept distribution. In the case of a z distribution

with more than one peak and therefore multiple vertices, the vertex with the

maximum number of tracks is considered as the primary vertex. The resolution

of the vertex z-component is about 1-2 cm.

4.2 Electrons

An electron is identified as localized energy in the electromagnetic calorimeter

with a track in the central detector pointing to a vertex. Electrons are reconstructed

by the following procedure:

• A cluster is constructed by starting with the highest-Er EM tower2 and adding

nearby towers to the cluster with Er above a certain threshold;

• At least 90% of the energy of the cluster should be from the electromagnetic

calorimeter and 40% of its energy should be contributed by a single tower;

IThe stagger in the sense wire helps finding the correct solution by choosing the best fit.

2An EM tower is defined as 4 layers of the EM calorimeter plus the first layer of the fine hadronic

calorimeter.
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• The centroid of the cluster is calculated as the In(E)-weighted mean of the cell

-positions in the third EM layer(the third layer is the most finely segmented EM

layer);

• If there is a track in the central detector within a solid angle 3 of t:J.1J = ±O.1 and

t:J.cf> = ±O.1, pointing from a vertex to the cluster, the cluster will be identified

as an electron; otherwise, it is considered as a photon.

The electron energy resolution is

(4.1)

where E is the mean energy, C reflects the calibration errors due to the thickness

variation in the LAr gaps and the momentum variation of the calibration test beam,

S is the error due to statistical fluctuations, and N reflects the noise due to the

electronics and the radioactivity of the absorber.

4.2.1 Electron Identification

The identification procedure explained above favors efficiency rather than rejec­

tion. The following quantities can further discriminate electrons from other objects.

• Isolation fraction:

The electrons coming from W's should not be too close in space to other objects.

Therefore the fraction of the electron energy outside a certain well-difined cone

should be small. In order to quantify this idea the isolation fraction is defined

as:

-t. _ ~OT(O.4) - EEM(O.2)
Jasol - EEM(O.2) ,

3Frequently referred to as the "road".

(4.2)
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where ErOT(O.4) is the energy deposited in all calorimeter cells within ti.R =

_0.4 around the electron direction and EEM(0.2) is the ~nergy deposited in the

electromagnetic calorimeter within ti..R = 0.2. Requiring fisol < 0.1 enhances

electron identification.

• Track ionization:

Photon conversion, I -+ e+e-, can produce close electron-positron pairs. Since

there is no magnetic field to move the electron and positron further apart, they

may be reconstructed as a single track. However, the energy deposition per

distance, ~~, would be twice the f:: for a single electron. The unit usually

used for f:: is that of the "minimum ionization particle" (mip). One can have

a better electron identification rejection by excluding electron candidates with

f:: around 2 mips. The actual cuts used for : are:

1.5 :::;; ~~ :::;; 3.0 for the CDC;

1.3 $ f:: :::;; 2.7 for the FDC

• Track match significance:

Since photons do not leave a track in the central detector, one can enhance

the electron identification by reducing the chance of reconstructing a track for

photons due to nearby charged particles. In order to quantify the accuracy with

which a track points to a calorimeter cluster, the track match significance is

(4.3)

(4.4)

s = (ti.¢)2 + ( ti.Z)2 for the CC;
(J'1::1,p (J'l::1z

defined as:

s = (ti..¢)2 + ( ti.r)2 for the EC,
(J'1::1,p (J'l::1r

where ti.¢, ti.z, and ti.r denote the coordinate differences between the track hit

and the cluster centroid, and (J'1::1,p, (J'l::1z, and (J'l::1r are the corresponding resolu-
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tions. A cut of S < 5 will further discriminate electrons from the background.

• - Covariance Matrix X2:

Suppose Iz > is a vector whose components are a set of M linearly independent

variables. The covariance matrix4
, V, for a sample of N events is defined as

1 N
V = N L(lzi > -I;;; »« zil- < ;;;1),

i=l

where

(4.6)

Then the X2 for an event IZk > not in the sample is defined as:

(4.7)

The components of I:z: > are linearly independent, so V is invertible and the

above definition is well-defined. Since V is symmetric, it is diagonalizable.

Suppose the \Yi >, i = 1, ... , M are eigenvectors of V and the trl i = 1, ... , M

are its eigenvalues5
• Then

(4.8)

A small X2 requires that the event k be close to the means ii if the IYi >

distributions of the sample events are approximated by gaussians with variances

(4.9)

4The multi-dimensional analogue of the variance.

sSuppose Ai is an eigenvalue of V corresponding to IYi >. Hence,

N1"" 2 2~i =< YiIVIYi >= N LJ 1< Yilzi > - < Yilz >1 2:: 0 - ~ = CTi'
i=l
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To have a better electron identification, the X2 has been calculated for a set of

-41 variables. These variables are:

- The fractional energies in layers 1, 2 and 4 of the EM calorimeter;

- The fractional energy in each cell of the 6 x 6 array in the third layer of

the EM calorimeter;

- The vertex z-component;

- The logarithm of the total energy of the cluster.

The covariance matrix V is obtained using Monte Carlo electrons. A cut of

X2 < 100 is usually applied for better background rejection.

• The electron likelihood:

In order to obtain a better background rejection one can optimize a multivariate

cut in the 4-dimensional space of X2, S, ~1!., and fEM where fEM = :~/nergy •
a:£" 0 a energy

The likelihood method is applied to obtain this cut. The optimized likelihood

cuts are [14],

Le < 2.5 for the CC and Le < 3.0 for the EC

Table 4.1 summarizes the efficiencies for different electron-id cuts relevant to this

thesis.

4.3 Jets

Jet reconstruction is carried out using the "cone algorithm", in which a jet is

considered as the energy inside of a cone with a fixed size in .,,-4>. In this algorithm the
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Efficiency in CC Efficiency in EC

electron likelihood 0.8135 ± 0.0127 0.4913 ± 0.0200

tracking efficiency(data) 0.8267 ± 0.0107 0.8519 ± 0.0102

tracking efficiency(Monte Carlo) 0.9475 ± 0.0064 0.9069 ± 0.0157

Table 4.1: Electron tracking and likelihood efficiencies.

calorimeter towers are sorted in Fir to form a set of "seed" clusters. A precluster is

constructed using all of the towers above an Fir-threshold of 1 GeV within Ill771 < 0.5

and IllcPl < 0.5 around the highest-Fir tower which has not yet been assigned to a

precluster. The axis of the jet is defined as the Fir-weighted centroid. Some cells may

contribute to more than one jet. If the fraction of the energy shared by the jets is

more than 50%, the two jets will be merged and a new jet axis is defined using all

the cells in the merged jet. If the fraction of the energy shared is less than 50%, the

two jets are considered as separate jets and each shared cell is assigned to the closest

jet. A threshold of 8 GeV is required for the Er of the jets. However, the response

of the calorimeter is nonlinear for low-energy « 2 GeV) particles and the sum of the

calorimeter responses does not give the correct total energy. Moreover, a hadronic

shower may develop beyond the jet cone. Some corrections are applied to take these

effects into account [2:1.].

The jet energy resolution is expressed by:

(4.10)

where C, S, and N are constants depending on the calibration error, the shower
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fluctuations in the sampling gap and the detector noise, respectively. The value of

these constants obtained from the data are:

C = 0.01 ± 0.005, S = 0.74 ± 0.07 (GeV)~, N = 2.16 ± 0.22 GeV.

4.4 Missing Transverse Energy

According to conservation of transverse momentum, the sum of the transverse

momenta of the particles produced by pP collisions should be zero. If the total trans-

verse momentum is significantly different from zero, the difference is attributed to

neutrinos. In order to calculate the transverse energy of the neutrinos, a vector E;'

is assigned to each calorimeter cell, including the lCD, whose magnitude is the mea-

sured energy in the cell and it points from the interaction vertex to the center of the

cell. Then the calorimeter missing energy is defined as:

-+ cal
Jh I: Ecell •

all cells

(4.11)

The muons deposit small amounts of energy in the calorimeter, so the transverse
-+ cal

momenta of all good muon tracks should be subtracted from Jh to get the total
-+

transverse missing energy, Jh. Since all the objects in the calorimeter contribute to

ItTcal any mismeasurement in the energy of these objects would cause a mismeasure­

ment in Jhcal. Therefore when a correction is applied to the calorimeter objects, a

corresponding correction should be applied to 1h'CQI.

The Jh resolution has been studied using QCD dijet data samples. The ItT

resolution is parameterized as follows [22]:

(j = a+ bST + cSi, (4.12)



where ST is the summed transverse energy in the calorimeter and

a = 1.89 ± 0.05 GeV, b = (6.7 ± 0.7) x 10-3
, C = (9.9 ± 2.1) x 10-6 (GeV)-l

59



60

Chapter 5

Classification and Neural Networks

This Chapter provides a brief overview of classification methods, and neural

networks formalism, theorems and rules of thumb which are relevant to this thesis.

The first Section contains a general discussion about the classification.

5.1 Classification

Any classification model consists of three parts: 1) a transducer; 2) a feature

extractor; 3) and a classifier. The transducer senses the input data and converts

these data to a form suitable for processing. The feature extractor! extracts relevant

information from the data. The classifier uses this information to assign input data to

one or another of the categories of interest. The distinction between feature extractor

and classifier is based on practical, not theoretical considerations. Theoretically, an

ideal feature extractor would make the job of the classifier trivial and an extremely

powerful classifier would not need a feature extractor.

lalso known as the receptor, property filter, attribute detector or preprocessor.
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The corresponding elements of the classification model used in this thesis (shown

below) are the D0 detector as the transducer, a set of variables as the feature ex­

tractor and the neural network as the classifier. As explained above, a good choice

of variables would simplify the classifier job and a strong classifier would be able to

partition the input data using any combination of input variables, so long as they

carry all the necessary information and then there would be no need to look for the

best choice of variables.

--+ Error Minimization

Ideally, one would like to classify the data events such that no decision would be

ever wrong. When that is not possible, one would like to minimize the probability of

error.

Any classification consists of two steps :

• Estimation of the probability to observe an instance of each class in the data.

• Making a decision based on the estimated probabilities.
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First we discuss the decision making and we see the relevance of the probability

density function estimation.

5.1.1 Bayes Decision Theory

Bayes Decision theory is based on the assumption that a decision problem is

described in probabilistic terms and all the relevant probabilities are known. Let Ci

denote the possible classes of the data or states of nature. Since the state of nature

is unpredictable, the Ci's are considered as random variables. For example you can

think of the Ci'S as the possible classes of the data in the analysis in this thesis, i.e.

QCD multijet, W +jets and top. We assume there is some a priori probability P(Ci )

that the state of the data is Ci • If we were to make a decision about the state of

the data at this level, with so little information, it would be reasonable to adopt a

decision rule as follows :

Decision Rule decide Ci if P(Ci ) > P(Cj ) V j =J i (5.1)

This may look strange because we assume that the state of the data is always of

one type even though we know it contains other types. However, this decision rule

guarantees the smallest probability of error. Fortunately, we are not forced to make

a decision with so little information about the data. Usually, we have some Monte

Carlo samples that represent the patterns we intend to classify and a set of features

to distinguish states of the data from each other. Let i denote this set of features.

For the classification problem in this thesis, the components of i can be, for example,

the energy of the jets, variables describing the shape of the event, etc. We consider

i as a set of continuous random variables whose distributions depend on the state
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of the data. Let p(iICi ) be the class-conditional or the state-conditional probability

density function for i, given that the state of the data is Ci. _

As an example, consider the classification problem we are trying to solve in

this thesis, i.e. classifying the events in our data-sample into top, QCD multijet and

W+jets events. The possible classes of the data are C = {top,qcd,wj}. We apply

certain procedures to estimate the amount of each. signal and its background in the

data. This would provide a priuri probabilities to observe each class in the data :

P(top), P(qcd) and P(wj). As explained above these a priuri probabilities do not

carry enough information for making a useful decision. So we study certain features

of the Monte Carlo samples (simulation), such. as i = (Ef, fh, Ef, ...) for each. class.

The distributions for the features of the Monte Carlo samples provide more informa­

tion about each class through p(iICi ).

How can we update our a priuri probabilities P(Ci ) by using the information

we obtain through the class-conditional probabilities p(iICi ) derived from the Monte

Carlo samples? The Bayes rule provides the answer. According to the Bayes rule:

where

(C.\ ....) _ p(iICi)P(Ci )
p I:Z: - p(i) ,

p(i) = LP(iICi)P(Ci ).
I

(5.2)

(5.3)

Therefore the updated a priuri probability is p(Ci Ii). This is known as the a posteriuri

probability; p(iICi)P(Ci) is normalized by p(i) to make sure that 2:iP(Ci li) = 1.

Since we have more information about each class of the data we can make a more
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Figure 5.1: Risk for a given one dimensional cut.

useful decision. The Bayes decision rule suggests :

(5.4)

This decision rule assures us that the misclassification probability or the probability

of error is minimal. Suppose the decision €Xi is made where the true state of the data

is OJ then this decision would be wrong if i i= j. So

p(error) =R(€Xili) = LP(Gjli),
#i

where R(€Xili) is the risk taken by the decision ai. Hence:

R(€Xil z) = LP(Gjlz) = 1 - p(Gilz)
#i

(5.5)

(5.6)

Since the Bayes decision rule maximizes the a posteriori probabilities it minimizes the

risk or the misclassification probability. One may think of a classifier as machinery

which divides the feature space into decision regions. Suppose a classifier divides the

feature space into regions S and B for the signal and the background, then the risk
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function is :

Risk(x) = p(xeSIB)P(B) + p(xeBIS)P(S)

Is p(xIB)P(B)dx + IB p(xIS)P(S)di. (5.7)

When p(xlB)P(B) > p(xlS)P(S), the risk would be less if we moved the boundary

between the signal and the background regions toward the signal region and vice

versa. This is exactly what Bayes decision rule suggests. Figure (5.1) shows the risk

where z is one dimensional. However, the decision might be made according to the

goal of the classification. The goal might be a certain measurement or the observation

of a rare signal. In the latter case one might want to maximize the significance2
,

whereas the former would be in favor of a decision which results in a smaller relative

error on the measurement.

As discussed in this Section we can have an optimal classifier if we know the

a priori probabilities P(Ci ) and the class-conditional probabilities p(xICi ). In the

next Section we discuss methods which attempt to provide us these probabilities.

5.1.2 Classification Methods

In this Section, we present a brief overview on methods which approximate un-

known probabilities. The estimation of P(Ci ) is not difficult as compared with the

estimation of p(xICd, where we have serious problems due to limited statistics of the

2Significance is the number of standard deviations away from the mean of the unit normal

distribution in the positive direction above which the integrated probability equals the probability

that a normally distributed background with mean B and error .tJ.B would fluctuate above the signal

according to a poisson distribution. This concept will be revisited in the next Chapters.
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Monte Carlo samples and large dimensionality of the feature space. So the major

focus of the classification methods is on the class-conditionaLprobability density ap­

proximation.

The general knowledge about the data will help to guess the functional form

of the function p(ilCi ) so one could reduce the probability function estimation to

a parameter estimation, where p( ilCi ) is described as a particular functional form

depending on several parameters. For example, based on knowledge about the prob­

lem one may consider p(iICi ) as a normal distribution with mean p. and standard

deviation u. As a result, the problem would be reduced to the problem of estimating

p. and u using distributions of Monte Carlo samples in the feature space. This class

of techniques is known as parametric techniques as opposed to non-parametric tech­

niques which estimate probability functions directly. The PDE (probability density

estimation) method is an example of a non-parametric technique and the maximum

likelihood method and the neural networks are parametric techniques.

Even though non-parametric techniques are more general than parametric tech­

niques, they require much larger statistics to approximate the probability function

as compared to the parametric techniques. The only drawback. of the parametric

technique is the loss of generality due to the particular functional form assumed for

the probability function. In the next Section we show how neural networks method

minimizes this loss of generality by using a functional form for the probability func­

tion which is close to the most general form.

It is worth mentioning that even though the maximum likelihood method and
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Figure 5.2: Classification methods

the neural networks are both parametric techniques, there is a conceptual difference

between them. In the Maximum Likelihood method parameters are considered fixed

but unknown and one tries to estimate the best values of the parameters by maxi­

mizing the probability (likelihood) of obtaining the observed samples. In the neural

network or Bayesian estimation, the parameters are random variables with some

a priari distribution. We then fit these parameters by sharpening the a posteriari

density function. This process is called Bayesian learning. If the samples we select

for the training are labelled, then the learning is called supervised learning as op­

posed to unsupervised learning where the training samples are not labelled. In the

rest of this Chapter we focus on supervised neural networks as a Bayesian estimator.
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Figure 5.3: Nodes Vi feeding the node v'

5.2 Artificial Neural Networks

Artificial Neural Networks (ANN) is a mathematical model which exhibits fea­

tures and functionality ofthe Vertebrate Central Nervous system (CNS), whose details

were uncovered in the 1940's with the invention of the electron microscope [23, 24].

Artificial neural networks consist of building blocks called nodes3
• A node is an

abstraction of the biological neuron. Mathematically, each node can be considered as

a variable whose value is a non-linear function of the superposition of the values of

the other nodes. This can be shown analytically as follows :

V' = g(1: WiVi + fJ)
I

(5.8)

where v' and the vi's are nodes, the wi's are called weights and -fJ is called the

threshol0,4. The threshold and the weights may be collectively symbolized as weights

W = {Wi, fJ}. Figure 5.3 represents equation (5.8) schematically. In the neural net-

works terminology, the nodes Vi are feeding v'. This term would make more sense

if you thought of g(x) as a step function or a sigmoid function g(x) = (1 + e-2xt 1

(fig 5.4). As shown in Figure 5.4, if linear combinations of vi's exceed the threshold

(-fJ), the value of v' will be significant, otherwise v'is negligible and is said to be not

activated. As we will discuss later, this feature of non-linear functions widely used in

3Also called unit.

4(] is referred to as bias.
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Figure 5.4: Examples of activation functions

the neural networks method plays a major role in classification problems.

By connecting nodes one can design any arbitrary architecture for a neural net-

work. There are two distinct architectures for the neural networks, feed- farward

and feed-back. In the feed-forward networks a signal is processed from a set of input

nodes through layers of nodes to the output nodes. In the feed-back networks, on

the contrary, activation is bidirectional. In this thesis we restrict consideration to

feed-forward networks with 3 layers of nodes; an input layer, an output layer, and

an intermediate layer known as the hidden layer. Figure 5.5 is an example of a feed-

forward neural network with 3 input nodes in the input layer, 5 hidden nodes in

the hidden layer and one output node. The mathematical expression for a general

feed-forward network with one hidden layer and one output is :

Nh Ni

Y = g(I:Wig(I:WiiZi + 8i) + 8)
i=l i=l

(5.9)

where the z/s are input nodes and y is the output node. N i is the number of input

nodes, Nh is the number of hidden nodes and the function g(z) is known as the

aetivatiun function. Therefore, the feed-forward neural network can be considered as
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Figure 5.5: A feed-forward network

a non-linear function of i with several parameters w,

y = F(i,w). (5.10)

The function F(i, w) is a candidate for the probability function we try to approximate

in the classification problems. This non-linear function has the specific functional

form (5.9). How general is the functional form proposed by the feed-forward neural

networks?

5.3 Kolmogorov's Theorem and the Existence of

Neural Networks

In the 1950's, solving the 13th problem of Hilbert, two prominent Soviet math­

ematicians, Kolmogorov and V.I.Arnold, were drawn into a friendly competition.

Kolmogorov's powerful 1957 theorem [25] ended this competition. Although this

theorem did not help mathematicians in proving other important theorems in math­

ematics, the implications of this theorem concerning the representation of arbitrary

functions from the n-dimensional cube to the real numbers in terms of one dimen­

sional functions can be interpreted as an existence theorem for feed-forward neural

networks [26]. An improved version of the Kolmogorov's theorem due to Sprecher [27]
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states that :

Given any continuous function f : In ---+ /{!1l Y = f( z) where I is the closed unit

interval [0, 1], f can be implemented exactly by a 3-layer neural network having n input

nodes, (2n + 1) hidden nodes and m output nodes.

Although this theorem is a powerful theorem, it does not provide a procedure

to implement the function f or the activation function g(x) of the network. One can

restrict himself/herself to the class of continuous squashing functions.

A function g:R ---+ [0,1] is a squashing function if it is non-decreasing, limx ....oo g(z) =

1, andlimx...._oog(z) = 0.

It has been proven mathematically [28, 29] that:

The multilayer feed-forward networks with as few as one hidden layer using ar-

bitrary continuous squashing functions are capable of approximating any continuous

function from one finite dimensional space to another to any desired degree of accu-

racy, provided sufficient number of hidden nodes are available.

One of the most frequently used squashing activation functions is the sigmoid

function [30]:
1

g(z) = 1 + e-2(3x'
(5.11)

T is called the temperature and {3 is referred to as the inverse temperature. Accord­

ing to the above theorem if we use a feed-forward neural network with one hidden
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layer and a sufficient number of hidden nodes, using the sigmoid activation function,

we will have the most general parameterized form for the probability function we

intend to approximate in the classification problems. How do we fit the weights w

appearing in the feed-forward neural network general functional form?

5.4 Training

In the training processes the w's are fitted using the gradient descent method

on a suitable error function.5 In this process the training patterns (events in the

Monte Carlo sample) are presented over and over again with successive updating of

the weights. As soon as this iterative process reaches an acceptable level of low error

the training process is stopped and the weights are frozen. We then feed the network

by patterns that the network has never seen before to classify the events in our data­

set, e.g. as signal and background. One of the most widely used error functions is the

summed square error function:

(5.12)

where Np is the number of patterns used for updating the weights, y is the output of

the network and d is the desired output. In supervised training, training samples are

labelled, so the desired outputs are :

(5.13)

5Also called the cost function.
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For example, in the case that we have two classes, e.g. the signal and background:

d=
1 for signal

o for background

We force the network output to be close to the desired output by minimizing the

error function E(w). In the gradient descent algorithm the w's are randomly chosen

initially. We pick Np patterns from the training patterns and calculate E(w) and

~~. We then change the w's in the direction along which E decreases fastest, i.e.

BE
~w(t) = -TJ Bw' (5.14)

where t is the iteration index and TJ is a multiplicative factor known as the learning rate.

This procedure is convergent mathematically [31]. This means that after a sufficient

number of iterations E reaches a minimum and the w's are fixed. In order to avoid

oscillation around the minimum and reach the minimum error faster, an extra term

known as the momentum term is usually added to the equation (5.14) :

BE
~w(t + 1) = -TJ Bw + a~w(t), (5.15)

where t refers to the previous iteration. Now, one may ask how many cycles of training

do we have to go through, practically ?

5.5 Cross Validation

Theoretically, for ideal training samples with an infinite number of patterns we

can make IE - Emin I as small as we wish by going through more cycles. However,

in practical cases the number of patterns in the training sample is finite. Finite
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Figure 5.6: Overtraining

samples may contain misleading regularities due to sampling. Mter a certain number

of cycles the network starts to take advantage of these idiosyncrasies to decrease the

error. This causes the error on a separate test sample to increase since the network

is trying to classify the patterns based on artifacts of the training sample rather than

on the general features (fig 5.6). To avoid this overfitting known as overtraining,

one may use cross-validaticm methods to measure the generalization ability of the

network during the training. The two most popular cross-validation methods are the

leave-cme-O'Ut cross-validation and the two- fold cross-validation. In the leave-one-out

cross-validation method one updates the weights in the network using N -1 patterns

out of N patterns leaving one event out for the testing. This method is difficult

to implement in the neural networks technique as compared to the two-fold cross­

validation method where the patterns are divided into two disjoint subsets of equal

size; training and the testing samples. The error on the testing sample is monitored

while the training is in progress on the training sample. As soon as the error on the

testing sample starts rising the training is stopped. This then gives us the number of

cycles the network has to go through in order to acquire a good generalization ability
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by avoiding overtraining. However, overtraining is less relevant when the size of the

training sample is much bigger than the number of weights in the network.

5.6 The Optimal Network and The Pruning Algo-

rithm

As discussed earlier in this Chapter, feed-forward networks with one hidden layer

and the sigmoid activation function are capable of approximating any continuous func-

tion provided a sufficient number of hidden nodes are available. To obtain a good

generalization one has to use a small network with a small number of hidden nodes

(Nweights ~ Npatterns). On the other hand, a small network may be sensitive to initial

conditions and learning parameters or it may get stuck in some local minimum of the

error function. One can start with a large network and then reduce the size of the

network by trimming the less active hidden nodes during training. This process is

called pruning. One of the most popular pruning algorithms is to add an extra term

to the error function known as the penalty term. The penalty term used in this thesis

has the following form :

w 2 jw2

E ~ E + ..\ L ij 2 0 2
.. 1 +w.. jwo
IJ IJ

(5.16)

where the summation is over all weights. For large Wi;'S, i.e. IWijl ~ Wo, the

penalty is ..\, whereas for IWij I ~ Wo the penalty is negligible. So the penalty term is

a measure of the number of active weights. Since the training algorithm forces the

error function to decrease, those w's which are not active get pruned by this algorithm

during the training until an optimal network architecture is obtained.
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Another way of looking at pruning is that the penalty term adds the following

extra term to the equation (5.15):

2".,>'Wij fw5
(1 +W[jfW5F·

This term causes the weights to decay with a weight-dependent decay rate:

2".,>.fw5
decay rate = ( 2 f 2)2'1 +Wij Wo

(5.17)

(5.18)

--

As the decay rate implies, smaller weights decay faster while larger weights survive.

5.7 ANN as Bayesian a posteriori probability esti-

mator

In the first Section of this Chapter it was explained that the goal of the classi­

fication is to estimate a posteriori probabilities p(Cili) using P(Ci), the estimation

of p(iICi) from simulation, and applying the Bayes rule p(Cili) = p(X1~(~(Ci).

One of the most powerful characteristics of neural networks is that under very

general conditions a network is capable ofestimating p(Ci Ii) directly. Simple proofs [32]

show that:

The outputs of the multilayer networks estimate Bayesian a posteriori probabil­

ities when the desired network outputs are 1 for a given class and 0 for all others
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(d(Ci ) = 8ij) and the summed square or cross-entrop,! error function is used.

The proof of this theorem assumes the availability of infinite training data.

Therefore the accuracy of this estimation depends on the size of the training sam­

ple [32]. However, one may choose to consider the output of the neural network

as a random variable to discriminate the signal from the background rather than a

Bayesian a posteriori probability.

5.8 Rules of Thumb

The last Section of this Chapter is devoted to pra.ctical issues concerning training

parameters. We discuss some rules of thumb which enhance the quality of the training

and the convergence speed.

• Input scale: The change of weights in each updating is proportional to the

learning rate 1]. If we are to use a global learning rate for the network, the

weights should be of the same order of magnitude. The outputs of the hidden

nodes are sigmoid functions so < hi > f"V O(1) V i. It is natural to rescale the

input such that < Zi > f"V O( 1) V i so the weights connecting input nodes to

hidden nodes would be of the same order of magnitude as the weights connecting

hidden nodes to the output node. Therefore a global 1] can be used across all

6Cross-entropy error function:

N p

E(w) = - ~)dilogYi + (1 - di )log(l - Yi)] (5.19)
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layers.

• -Learning rate : As a rule of thumb the optimal learning rate scales like 1/ f"V

fan~in or stronger [33]. The fan-in to a node is defined as the number of nodes

connected to that node in the forward direction.

• Momentum Q : It is helpful to pick an Q close to unity (0.5 < Q < 1).

• Initial weights: In order to have a large initial change in weights, g'(z) should be

large (~w <X E' <X g'). g(z) is steeper for small z so /3 L, Wij hi should be small.

As a rule of thumb, weights are initially chosen such that {3 L,wijhi f"V 0.1,

hence:

. . .al 0.1
Imtl W f"V {3( £ .)max an-m

(5.20)

• Temperature T: A low T corresponds to a steep g(z) and frustrates the weights.

A good choice is T = 1 which corresponds to a moderate slope of 1 for g(z) at

z = o.

• Number of training patterns, Np : The generalization error is of order (~). For
p

a good generalization ~ 2: 10.

Although the above rules recommend certain values for learning parameters, the best

values are determined by the analyst according to the level of generalization ability

and convergence speed needed.
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Chapter 6

Background and Signal Estimations

This Chapter discusses background and signal samples, selection cuts applied

on each sample and the expected contribution of signal and each background to the

data sample. The data-set used in this analysis was collected during run 1b, from

December 1993 to July 1995, with an integrated luminosity of 74.86 ± 4.04 pb-l.

6.1 Background and Signal Samples

As discussed in Chapter 1, W + jets and QCD multijet events are background

to tt -+ e + ve + jets . In this Chapter we simulate each of these using both Monte

Carlo techniques and the data.

6.1.1 W+jets

The W +jets sample is generated using the VECBOS Monte Carlo program. The

VECBOS generator contains leading order parton-level calculations using exact ma­

trix elements of W, Z +njet processes for n :::; 4 [34]. VECBOS calculations are based



80

on perturbative QG D (PQG D) and require:

• ET > 10 GeV for all final partons;

• LlR =J Ll1J2 + Ll¢2 > 0.5 for every pair of jets;

• CTEQIM structure functions;

• < Q2 >= mw2 for dynamical scale.

To estimate the higher order processes (n > 4) and fragmentation effects, events gen­

erated by VECBOS are passed through ISAJET, the D0GEANT detector simulator

(shower library) and the event reconstruction program. VECBOS ignores diagrams

beyond leading order. This causes a significant uncertainty in cross section. There­

fore, we estimate the W +jets cross section by normalizing the VECBOS generated

events with respect to the data. So then we can rely only on the distributions of events

generated by VECBOS. The observed distributions agree with the background calcu­

lation, which includes contributions from both W + jets as calculated by VECBOS

and QCD multijet events [44].

6.1.2 QeD Multijet

The QCD multijet events sample is derived from data. QCD multijet events are

background to the electron + jets events where one of the jets is misidentified as an

electron and a significant amount of lIT is observed due to mismeasurement. QeD

jets fragmented in a highly electromagnetic mode may deceive the electron-id algo­

rithm into misidentifying 7I"± or 7I"°'S as electrons. Moreover, the photons from isolated
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1I"°'S may convert in the central tracking system and produce electrons. Even though

the probability for electron misidentification due to statistical fluctuations is small,

the large cross section for multijet events makes this background significant. Since

events with high EM fraction jets and JlT are considered further to fake an electron,

the QeD multijet background sample is obtained by requiring a "bad" electron in

the data sample (an electromagnetic cluster satisfying electron triggers but failing

electron-id) convoluted with the probability of faking an electron [37, 38].

6.1.3 Top Monte Carlo Sample

Our top Monte Carlo sample is generated by ISAJET. The output of ISAJET

is fed into the D0GEANT detector simulation, trigger simulation and reconstruction

routines. To study the systematic error due to event generation, another popular

event generator known as HERWIG is used for comparison.

6.2 Omine Cuts on The Samples

The first set of offline cuts that we make on our samples before feeding them into

the neural network classifier is listed below. These cuts reject unwanted events and

enhance the characteristics of each sample whether it is signal or background.

• Main Ring loss and Microblank [35]

One of the unusual features of the D0 detector is that two accelerators pass

through it! This causes about 25% deadtime. The Main Ring is constantly

employed in p production to supply the anti-protons which have been ex-
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tracted from the stack for frp collisions. The major Main Ring loss is due to

_injection/transition!. To blank out the injection/transiti9n period plus calorime­

ter and muon high voltage recovery time we use two trigger terms :

MRBS_LOSS A gate from 0.1-0.5 sec during the Main Ring full cycle (f"V 2.4

sec) to blank the injection/transition period and allow a recovery time for muon

high voltage and calorimeter preamps. This brings about 17% (0.4/2.4) dead­

time.

MICROBLANK vetoes events when the Main Ring beam is present at D0

and the muon system is functioning. The muon lifetime for Main Ring particles

is ±800 nsec around the pp crossing time. Since the calorimeter lifetime is about

2 p,sec, MICROBLANK will not be fully efficient for vetoing events with the

Main Ring energy in calorimeter. MICROBLANK causes a deadtime of about

7-9%.

• Trigger requirements

We require ELEJETJIIGH and EMI-EISTRKCC_MS trigger terms for

our data-set. These triggers enhance tt - e + jets and W - e + Ve character­

istics in the data by applying the following cuts on the data samples:

ELEJET_HIGH selects:

1 Tran"ition is the period of time when the particle beam enters the highly relativistic regime

where the head of the bunch should be accelerated to keep the bunch together.
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- One or more electromagnetic towers with Er > 15 GeV, /11 I < 2.5, tight

longitudinal and transverse shape cuts and isolation in a cone with R = 0.4;

Two or more hadronic plus electromagnetic trigger towers with ET >

10 GeV, 1111 < 2.5 and R = 0.3;

- 1h > 14.

EMl.-EISTRKCC_MS selects:

- One or more electromagnetic towers with Er > 20 GeV, isolation in a cone

with R = 0.4 and a track cut in the CC region;

- Ih> 15 GeV .

• Cut on liT

We require a cut of 25 GeV on 1h for all samples. This cut reduces the QCD

multijet background in the data-sets.

• Cut on electrons

We require a "good" electron in the data sample. Our criteria for a good electron

are:

l11e l < 2.0

Ef > 20 GeV

fi80l ~ 0.1

Le < 2.5 for the CC and Le < 3.0 for the EC

Since the electron likelihood is not well-modeled by Monte Carlo in the CC

region, the electron likelihood cut is not applied to the Monte Carlo for CC

electrons. We require a bad electron for the QCD multijet sample.
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Figure 6.1: Electron and Jh quality plane

• Cut on jets

For a sample with jet multiplicity N, we require N jets with Er > 15 GeV,

1111 < 2.0 and cone size R = 0.5.

6.3 Background and Signal Estimation

To study the discrimination power of the variables and train the neural network,

we need to have a realistic background sample with the proportion of W + jets and

QCD multijet events we expect to see in the data. We use the following procedure

to estimate the proportion of each background and signal. To separate QCD multijet

events (non-W background) from electrons and neutrinos coming from real W's, we

study the quality of electron and neutrino for each event and divide the events into

four different categories (fig 6.1) :

gg - good electron and good neutrino

gb good electron and bad neutrino

bb - bad electron and bad neutrino

bg - bad electron and good neutrino

- passed electron id and Jh > 25 GeV

- passed electron id and Jh < 25 GeV

failed electron id and Jh ~ 25 GeV

- failed electron id and lIT > 25 GeV
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The total number of events is :

(6.1)

where:

Ni - number of data events in quadrant i

N i
Q

- number of fake W events in quadrant i

Nt - number of real W events in quadrant i

equation 6.1 can be rewritten as

(6.2)

The ai's are determined from the Monte Carlo and take into account the electron-id

efficiency.

To solve for N:; and N~, we need one more constraint on NfJ and Ni
W

• Since

the electron and neutrino in QCD multijet events are not decay products of a real

W, we assume that the electron and ItT quality are independent for QCD multijet

background. Therefore :

N~ = N~ (6.3)
~ Nbb

Using equations 6.2 and 6.3 we can solve for N; and N~. NgV: and N~ for each jet

multiplicity and their corresponding statistical errors are shown in Table 6.1.

The contribution to real W's comes from either the W + jets background or the top

quark. Berend scaling [36] is the basis of our estimation for top events in the data

sample. According to Berend scaling:

number of W + n jets
-------=----~-.- = ex = constant for n::5 5 (6.4)
number of W + (n - 1) Jets
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Jet Multiplicity N~ NW-
99

1 236.75 ± 22.44 7185.25 ± 90.00

2 202.71 ± 14.78 1152.29 ± 40.07

3 51.86 ± 7.21 199.14 ± 17.61

4 10.93 ± 3.32 37.07 ± 7.89

Table 6.1: Number of fake and real W's.

In other words, an extrajet in W +jets sample adds an extra strong coupling constant

factor to the cross section for samples with low jet multiplicity. So:

where:

Using (6.4)

N;:'i -

N.w. -
N~. -

number of real W events with jet multiplicity i

number of W + i jets events

number of top events with jet multiplicity i

N w i-1Nw of llTt • 1 4
99,i = a 1 + Ji lY . ~ = ,...,

(6.5)

(6.6)

where fi is the fraction of top events with jet multiplicity i and is derived from the

Monte Carlo. We find a, Nr' and Nf by fitting equation (6.6) to N::,i in Table 6.1.

The proportion of QCD multijet, W +jets and expected top events for each jet mul­

tiplicity is shown in Table 6.2. The number obtained for the amount of top in the

data is not used in any calculation in this analysis, however, the proportion of QCD



87

Jet Multiplicity NQ NW

1 236.75 ± 22.44 7168.48 ± 89.66 16.77 ± 17.50

2 202.71 ± 14.78 1136.26 ± 49.44 16.26 ± 16.98

3 51.86 ± 7.21 185.39 ± 15.62 13.75 ± 14.35

4 10.93 ± 3.32 28.02 ± 3.52 9.05 ± 9.45

Table 6.2: Contributions of QCD multijet, W +jets and top.

and W background is used for normalizing the corresponding Monte Carlo samples

to the data.

In the next Chapter we study the discrimination power of variables and try to

select a set of variables for inclusive 3-jet analysis using the neural network. Higher

statistics is the only incentive for requiring 3 jets or more in the data sample. This

not only promises lower statistical errors but also improves the performance of the

optimization process and training algorithm of the neural network. The selection cuts

applied to the samples and their contribution to the 3-jet data-set are summarized

in Table 6.3. References [39, 40, 41, 42] were major source of inspiration for methods

used for background and signal estimation in this Chapter.



Selection Cut QCD Multijet W+jets Top Data

Main Ring ..; x x ..;

trigger ..; x x ..;

good e x ..; ..; ..;

bad e ..; x x x

Jh> 25 GeV ..; ..; ..; ..;

Ef > 15 GeV, l71i / < 2.0 ..; ..; ..; ..;

88

Proportion(3j) 51.86 185.39 13.75 251

Table 6.3: Selection cuts on the Monte Carlo samples and the data.
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Chapter 7

Feature Extraction

In this Chapter, we study the distribution of signal and background events for

different variables and choose a set of variables to be fed into the neural network to

separate the signal from background. The background sample is a mixture of QCD

multijet and W +3jets combined with the proportions estimated for inclusive 3-jet

events in the previous Chapter. The signal sample is the top Monte Carlo sample

with a top mass of 180 GeV. Theoretically, for an infinite training sample one can

use all the variables describing the events without losing generalization ability, but

for finite samples the generalization error'" !ft-. As discussed in Chapter 3, in order
p

to have a good generalization one should have ~: ~ 0.1. The number of patterns

in our signal and background is about 2000 events each. Since we apply the 2-fold

cross-validation method, half of this sample will be used for training and the other

half for testing. Therefore the training sample contains about 1000 events for each of

signal and background. To have a good generalization, the number of weights, Nw ,

should be about 100. If we use a network with n input nodes and 2n + 1 hidden
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nodes1 , then

hence

Nw = (n + 1)(2n + 3),

(n + 1)(2n + 3) I"V 100 _ n I"V 6.

(7.1)

(7.2)

Therefore, we select up to 6 variables to train the network, without loss of general-

ization ability. In the next two Sections we focus on two important features of the

top events; high mass and event shape.

One of the most pronounced characteristics of the top quark is its high mass.

Recent top mass estimations by both CDF and D0 at FNAL confirm this assumption.

In March 1995, both experiments claimed observation of the top quark, CDF with a

mass of 176 ± 13 GeV [43] and D0 with a mass of 199~~i± 22 [44]. The final hadronic

decay products of a heavy top tend to have higher Er compared to the background.

Therefore, HT , defined below is a good discriminator.

HT = L Ef
1'71<2,E~>15

(7.3)

Figure 7.1 shows the HT distribution for the top and the background. All distributions

are normalized to 1. The y axis represents the relative frequency for an event with

a given HT • Figures 7.2, 7.3, and 7.4 show the Er distribution for the first three

leading jets.

iTo comply with Kolmogorov's theorem.
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Figure 7.2: E¥ distribution for signal and backgrounds
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Figure 7.3: E¥ distribution for signal and backgrounds
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7.2 Aplanarity and Sphericity

Another distinctive characteristic of the top quark is the event shape. Monte

Carlo studies show that top events tend to be more spherical compared to background

events. In order to quantify this observation, the momentum tensor M is defined as :

M= L IPi >< Pil
i=ietll

(7.4)

To rely only on the shape of the event rather than its energy we normalize M by its

trace:
3

tr(M) = L < jl( L IPi >< pil)lj >= L IPil 2

i=l i=ietll i=ietll

so we define the normalized momentum tensor M as:

A M
M=---

tr(M)

(7.5)

(7.6)

The way we constructed M can assure us that M depends on the shape of the event

only and has a small correlation with HT and Er of the jets. M is symmetric and

positive so it has to have 3 real eigenvalues .AI, .A2' .A3. Suppose I~ > is the normalized

eigenvector corresponding to an eigenvalue ~. Therefore :

Hence,

(7.7)

(7.8)

As a result

.Ai 2: 0 i = 1, 2, 3.

Considering the fact that tr(M) = 1, for an ordered set of .Ai's we have:

(7.9)

(7.10)
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(1/3,1/3,1/3)

Figure 7.5: Allowed values for ~b ~2' and ~3.

The shaded area in Figure 7.5 shows the allowed values of the ~i. Since ~3 is not

independent of ~1 and ~2, we can find the range of the ~i by looking at the projection

of the shaded triangle in Figure 7.5 on the ~1-~2 plane (fig 7.6) :

• 0 ~ ~1 ~ k

• 0 ~ ~2 ~ ~

• ~~~3~1

Each corner of the shaded triangle corresponds to a degeneracy in iI, which in turn

corresponds to a distinct event shape.

• Linear : ~1 = ~2 = 0 and ~3 = 1

• Planar : ~1 = 0 and ~2 = ~3 = ~

• Spherical : ~1 = ~2 = ~3 = k

Aplanarity and Sphericity are defined as :

3 1
A = - ~1, 0 < A < -2 - - 2 (7.11)
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Figure 7.6: Allowed values for ..\1 and ..\2.

(7.12)

As shown in Figures 7.7 and 7.8, top events tend to have higher aplanarity and

sphericity as compared to background events. This can also be seen in the ..\1-..\2 plane

where background events tend to be far from the spherical corner of the triangle and

closer to the linear corner see(fig 7.6). The discrimination provided by aplanarity and

sphericity is not as good as that of HT and ~ of the jets. However, the event shape

variables can improve the discrimination when they are used along with the energy

of the jets because of their independence from the energy of the jets.

7.3 ET of electrons and neutrinos

Electrons and neutrinos coming from real W's have higher ~ as compared to

electrons and neutrinos from W's faked by a QeD multijet. So, any cut on Ih or Ef

will further suppress the QeD multijet background. Figures 7.10 and 7.11 illustrate

this fact.
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Figure 7.12: Discrimination

7.4 Discrimination Power

In order to rank the variables according to their discrimination power between

signal and background one can study the efficiency for the signal and the background

for various cuts on the variables. If €s and €b represent the efficiency for signal and

background, respectively, then variables with a higher positive curvature for €b as a

function of €s give a better discrimination. Figure 7.13 shows €b versus €s for some

of the variables discussed in this Chapter. The background used for calculating €b is

a combination of W + 3jets and QeD multijet with the proportions obtained in the

previous Chapter.

One can quantify the discrimination power using €s-€b plots. A good candidate is,

(7.13)

Figure 7.12 shows the area mentioned in the above definition. The range of values

for Dis [0,1]. D = 0 occurs when the distribution of the background and the signal

for the variable z coincide, and D = 1 when signal and background are completely
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Figure 7.13: Contamination as a function of efficiency.
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separated2 in z. An analytical expression for D(z) is

(7.14)

As shown in the Figure 7.13 the variables ordered in descending discrimination power

are HT, E¥, ItT, S, A, and Ef. This ranking is according to the discrimination

power of individual variables. The discrimination power of the whole set, considering

the correlations among variables, will be discussed in the next Chapter where these

six variables are fed into a neural network to separate the signal from background.

2It is assumed that Eb as a function of E. is concave (~ ~ 0) i.e. the cut on the variable :z: favors

signal.
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Chapter 8

Event Classification and Conclusion

In this Chapter we use the six variables selected in the previous Chapter, HT ,

E¥, Jh, A, S, and Ef, to train a neural network. Then the trained network is used

to classify the events in the data as signal and background. The top cross section

is calculated based on this classification and various sources of systematic errors are

studied.

8.1 Training

The network architecture chosen consists of 6 input nodes, 13 hidden nodes, and

1 output node. This architecture contains 105(= 7 x 15) weights to be fitted. The

training and the testing samples contain 1116 events each for signal and background.

The network is trained on one of the samples while the error on the other sample is

monitored. The learning rate is chosen to be 11 = 0.02 and the momentum Q = 0.5

with pruning on. The 2-fold cross-validation method is used to avoid overtraining.

Figures 8.1 and 8.2 show the error on the testing and training samples as the number

of training cycles increases. As shown in Figure 8.1, after 700 cycles the network
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starts taking advantage of the artifacts of the training sample to decrease the error.

Therefore, the training is stopped at 700 cycles and the weights are frozen.

Next we treat the network output, Pout, as a random variable (like BT , A, etc).

Pout can be considered as a new variable which is a nonlinear function of BT, E¥,

lh, A, S, and Ef:

(8.1)

The analytic functional form of Pout in terms of HT' E¥, lh, A, S, and Ef is given in

Appendix A. One may also think of Pout as a probability function Pout: It' ~ [0,1]

for being the top quark. Any cut on Pout corresponds to a 5-dimensional surface

which divides the 6-dimensional space of (HT,E¥ ,lh,A,S,Ef) into signal and back­

ground regions. Treating Pout as a new variable, we can study its discrimination

power, €~" €b, signal-to-background ratio SIB, etc. for various cuts between 0 and

1. Figure 8.3 shows the distribution of signal and backgrounds for Pout. All distri­

butions are normalized to the same number of events. In Figure 8.4 the €b-€a curve

for Pout is compared with that of HT (as discussed in the previous Chapter HT is

the best single discriminator among the 6 variables used). Figure 8.5 shows that

for fa < 0.7 (where we will make the final cut), Pout achieves to suppress the back­

ground significantly by combining other variables with HT • The SIB as a function

of (total efficiency) x (branching ratio), ftotBr, is shown in Figure 8.6. As calculated

in Chapter 1, Br = 14.8% for e + jets + lh channel.
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Figure 8.3: Neural network output for the signal and backgrounds
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8.2 Decision

The network trained in the previous Section provides an infinite set of optimized

6-dimensional cuts, each. corresponding to a cut on Pout. In order to best classify the

events observed in the data into top and background events, the cut which. minimizes

the misclassification probability or the risk function is selected. Since we use Pout as

a random variable, the risk function discussed in Chapter 4 is (z ~ Pout):

Risk(Pout) = fs~(Pout Iwj)P(wj)+p( Pout Iqed)P(qed)]dPout+kp( Pout Itop)P(top)dPout .

(8.2)

Replacing

kP(Poutltop) ~ (1- ftop(Poud)

fsp(PoutIWj) ~ fwj(Pout )

Is p(Pout Iqed) ~ fqcd( Pout)

we have:

where P(wj) and P(qed) are the expected proportions of W +3jets and QCD multijet

backgrounds in the data. P(top) is derived from Monte Carlo. Figure 8.7 shows the

risk as a function of Pout. Figure 8.8 focuses on a part of Figure 8.7 where the risk

function approaches the minimum. The risk function is minimal at Pout = 0.95 and

the minimum risk is 0.052. Therefore, the cut Pout;::: 0.95 assures us that our classi-

fication of events in the data as top quark and background is 94.8% correct. In other

words, on average only 5.2% of the time a background event may be misclassified as
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Figure 8.9: Network output for the data events.

top event or a top event mistaken as background.

Now, we apply the cut Pout ~ 0.95 to the data. The Pout distribution for the

data is shown in Figure 8.9. The number of observed events in the data, No1m the

expected number of signal and background events, Se:s:p and Be:s:p, €totBr and the cross

section are listed below. The error on the quantities are statistical.

Pout 2:: 0.95

p(error) = Risk = 5.2%

Nabs = 10

Sexp = 5.44 ± 0.20

Be:s:p = 2.51 ± 0.43 (B:'lp = 2.08 ± 0.42,~: = 0.43 ± 0.09)

%€tot.Br = 1.73 ± 0.06

(j = 5.78 ± 2.47 pb
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8.3 Systematic Errors

The following systematic errors on the efficiency and cross section have been

studiedl :

• The systematic error on the integrated luminosity is 5.4% [20];

• The systematic error on efficiencies due to the jet energy corrections is 4.4% for

the top Monte Carlo and 13.8% for VECBOS;

• The systematic error on the top efficiency due to the Monte Carlo generator is

estimated to be 5.8% (comparing ISAJET and HERWIG);

• A systematic error of 2.9% has been assigned to the application of berend scaling

by looking at the deviation of the fitted values from the berend scaling values.

Considering the above systematic effects, the cross section and the efficiency for top

production with a mass of 180 GeV are:

%€tot.Br = 1.73 ± O.06(stat) ± O.16(sys)

u = 5.78 ± 2.47(stat) ± O.59(sys) pb

IThere is no systematics associated with the neural networks method because the network output

has been treated as a random variable which is a function of HTI .EJ?\ FIr, A, 5, and Ej. similar

to HT being a function of Er of the jets. Any change to this functional form will result in a new

variable.
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Nob' 10
-

Berp 2.51 ± 0.43(stat) ± 0.35(sys)

Significance 3.3

top 160 GeV 8.14 ± O.34(stat) ± 1.77(sys)

Se:J:p top 180 GeV 5.44 ± 0.20(stat) ± 0.58(sys)

top 200 GeV 4.11 ± 0.13(stat) ± 0.89(sys)

top 160 GeV 1.33 ± 0.05(stat) ± 0.28(sys)

%eBr top 180 GeV 1.73 ± 0.06(stat) ± 0.16(sys)

top 200 GeV 2.43 ± 0.07(stat) ± 0.52(sys)

top 160 GeV 7.52 ± 3.22(stat) ± 1.69(sys)

CT (ph) top 180 GeV 5.78 ± 2.47(stat) ± 0.59(sys)

top 200 GeV 4.12 ± 1.76(stat) ± 0.91(sys)

Table 8.1: Summary of the event classification using neural networks.

8.4 Conclusion

The result of applying the neural network cut on the top Monte Carlo with masses

200 GeV and 160 GeV is summarized in Table 8.1 along with that of 180 GeV. The

observation of 10 events shows a significant excess of events over the estimated back-

ground of Bezp = 2.51. The probability that a normally distributed background,

with a mean Bezp = 2.51 and variance ABezp = 0.55 (0.43 E9 0.35), could have fluc­

tuated above 10 according to a Poisson distribution to bring about the observation

Nabs = 10 is 7 X 10-4 which yields a significance of 3.3. The theoretical cross section

for top quark production in pP collision has been calculated up to O(a~) by Laenen
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mt (GeV) Laenen et aI. (pb) Berger et aI. (pb) experiment (pb)

160 8.16±5:~~ 9.01±U~ 7.52 ± 3.64

180 4.21±g:~~ 4.71±g:g~ 5.78 ± 2.54

200 2.26±g:~~ 2.57±8:g5 4.12 ± 1.98

Table 8.2: The calculated and measured top cross section.

et al. and Berger et al. [45, 46]. The difference between these two calculations is

due to different approaches in setting infra-red cutoffs2 • The calculated cross section

for mt =160, 180, 200 GeV and corresponding measured cross sections are shown in

Table 8.2. The uncertainty in theoretical calculations is due to the change in renor-

malization scale3 , p.. The lower limits correspond to p. = T' central value to p. = mt,

and upper limit to p. = 2mt. Since;;; is a dimensionless scale in the renormalization

group equation, the range ~ E {~, 2} is considered to be a reasonable measure of the

theoretical perturbative uncertainty. The variation of the strong coupling strength ,

as, is about ±10% in this range. In Figure 8.10 the measured values for the cross

section are compared with the central values of theoretical perturbative calculations.

2In both the qq and the gg channels, the contribution of the O(Q~) terms to partonic cross section

is much larger than that of O(Q~) counterparts in kinematic region of small 1'/ where 1'/ = s/4m~ -1

and 8 is the square ofthe energy ofparton-parton subprocess. Therefore the notion, that higher order

terms in the perturbation series should be smaller, is not valid at small 1'/. The significant contribution

of this near-threshold region makes this region of phase space important for top production at the

Tevatron.

3The physical quantities are independent of renormalization scale 1-£. Unfortunately, however,

5-matrix can be calculated only through a perturbation series which is truncated after first few

orders. This makes the physical predictions IV"dependent.
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One surmises that, within errors, the calculated cross section tend to be more consis­

tent with the measured values in the mass range 160-180 GeV than the mass range

180-200 GeV.

Comparison of the D0 published results in the e+jets channel [44] with the

neural network results indicates that for all three masses, 160, 180, and 200 GeV the

signal efficiency provided by the neural network is higher than that of the conventional

method for the same signal-to-background ratio, and, for the same signal efficiency

the neural network achieves a higher signal-to-background ratio as compared to the

conventional method. For example, for top with a mass of 180 GeV, the signal

efficiency provided by the neural network is 46% higher than that of the conventional

cut for the same signal-to-background ratio, and, for the same efficiency, the signal­

to-background ratio for the neural network cut is 34% higher than this ratio for the

conventional cut. It is conclusive that the neural network method is far superior to

the conventional method of event classification.
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Appendix A

The Functional Form of the Network Output

The analytic expression of Pout for the network trained in chapter 7 is,

Pout(Ih, Ef, E¥, HT' A, S) = g(w.g(Oi + e) + 8),

where

1
g(z) = 1 + e-2z

and

EfT

Ef
Eh

T

HT-E¥

A

s
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+0.2922E - 01 -0.1504E - 01 +0.3685E - 01 +0.2741E - 02 -0.4952E + 01 +0.2498E + 00
-

+0.8418E - 03 -0.1673E - 01 +0.2884E - 02 -0.4526E - 02 -0.1316E + 01 -0.2175E + 00

+0.4056E - 02 +0.8896E - 03 +0.2543E - 01 -0.3715E - 02 +0.3014E + 01 +0.4433E + 00

-0.4507E - 02 -0.1091E - 01 +0.1306E - 03 -0.6537E - 02 +O.1096E + 01 -0.1744E+00

-0.3831E - 01 -0.4027E - 01 +O.2750E - 01 +0.1987E - 03 -0.3424E + 00 -0.3512E + 00

-0.7949E - 02 -0.8831E - 02 -0.8364E - 02 -0.6048E - 02 +0.2180E + 01 -0.1322E + 00

0= -0.4081E - 02 -O.l090E - 01 +0.3954E - 02 -0.8154E - 02 +0.1378E + 01 -O.2222E + 00

-0.4664E - 01 +0.3638E - 01 -0.4880E - 02 +0.1986E - 02 -0.7754E + 01 -0.9766E + 00

-0.3261E - 01 +0.2391E - 01 +O.3379E - 02 -0.1712E - 03 +0.8160E + 01 +0.2987E + 00

+0.2656E - 01 -0.7661E - 02 +0.1789E - 01 -0.1203E - 02 -0.2026E + 01 +0.3770E + 00

+0.4419E - 01 +0.8900E - 02 -0.5998E - 01 -0.1381E - 01 +0.8518E + 00 -0.9107E - 01

-0.9OO1E - 02 -0.6398E - 02 -0.1073E - 01 -0.7483E - 02 +O.3382E + 01 -0.5247E - 01

-0.2976E - 02 -0.1684E - 01 +0.2328E - 02 -0.3261E - 02 -0.1122E + 01 -0.2379E + 00

-0.5366 +0.1046E + 01

+0.6075 -0.1029E + 01

-0.4679 +0.9053E + 00

+0.7340 -0.1166E + 01

+0.7250 -0.1303E + 01

+0.8228 -0.1266E + 01

s= ... and e= -0.2293.+0.9278 w= -0.1334E + 01

+0.7508 -0.1292E + 01

-0.4960 +0.8451E + 00

-0.5256 +0.9228E + 00

+0.3938 -0.1338E + 01

+0.8909 -0.1381E + 01

+0.6163 -0.1053E + 01
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