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ABSTRACT

The charged two-body decays of D° mesons produced by 500 GeV/c 7~ incident
on platium and carbon foil targets at the Fermilab Tagged Particle Laboratory have

been analyzed. Three measurements are presented in this thesis: (1) Branching

0 - '
Ratios of Charged Two-body Decays: II“((%°:II{{‘I7S+)) = 0.107 £ 0.003 + 0.003,
LD oatm™) _ DD’ K*K™) _

T R = 0.040 0,002 % 0.002, Y7 ) = 2.65 % 0.14 013, and

0 —g—mtot
1‘(1%( 551_‘: ;{'_L;U = 2.19 £ 0.03 + 0.08; (2) Lifetime Difference: Txx = 0.414 +

0.012 + 0.014, 7k = 0.409 X 0.003 £ 0.004, with Ay = —0.06 £ 0.15 & 0.15, or
the upper limit of Mixing rate as R'Ilnix < 0.00079 (due to lifetime difference only) at
90% confidence level; and (3) CP Asymmetry Parameters: ABR(K*K¥) = —0.018
+ 0.054 + 0.012, ABB(x*7¥) = —0.053 & 0.093 + 0.029, and ABR(K37) = —0.018
+ 0.023 + 0.002.

All measurements are consistent with most theoretical predictions and world av-

erage experimental values.

xiii



CHAPTER I

INTRODUCTION

This thesis focuses on three topics regarding the charged two-body singly Cabibbo
suppressed decays (SCSD) of D° mesons, using a consistent analysis scheme. The

topics are

o -_
1. the Branching Ratio (BR) %5)011{7;5_)),

2. the Lifetime Difference between D® —+ K~7t+ and D°— K*K~, and

3. the CP Asymmetry between D° and D°.

Measurements of these phenomena can yield sensitive tests of the Standard Model

and various modifications to that model.

Unless noted otherwise throughout this thesis, particle symbols denote both par-

ticles and anti-particles.

The theoretical framework and how these measurements impact upon it will be

presented in the following sections. Fig. 1.1 illustrates the quark contents, decay

diagrams and decay amplitudes for D° - K*K~ and D°—#*7~.
1.1 The Standard Model

The Standard Model [Kane88]' is the SUc(3) x SUL(2) x Uy (1) gauge theory with

three families of fermions (spin = integer+1).

(12) (38) (i3)

tCode in square brackets refers to coded references in REFERENCE.
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c _ .S c . d
D° K p?
— € et -~ T
u v} v} a
sinB¢c cosOc - sinB¢ cosBg

s
-
sinB¢ cosd¢e § ‘ - sinB¢ cosOg d
g K* r*
c
D° s
s
u K T
sinB¢ cosbc u sinB¢ cosh¢ u

(c)

Figure 1.1. The Significant Decay Diagrams for D° - K*K~ and D° —»nt71™:

(a) spectator, (b) quark exchange and (c) penguin decays. The Cabibbo factors
under SU(3) symmetry, including signs, are indicated.




Each fermion family contains two quarks and two left-handed leptons, but isolated
quarks are never observed. Instead they are always confined to be mesons (gg pairs)
or baryons (gqgq triplets). The symmetries of such a gauge group give rise to 12 gauge

bosons (spin=integer): 8 gluons, the W#, the Z°, and the photon (7).

The Uy(1) electromagnetic symmetry is manifested by Quantum Electro-Dyna-
mics (QED) where photons mediate interactions between electrically charged quarks

and leptons.

The SUL(2) weak symmetry consists of both a flavor-changing charged current,
mediated by the W*, and a flavor-conserving neutral current, mediated by the Z°.
The W*’s are responsible for the SCSD in Fig. 1.1. The coupling of the charged

current interaction is assumed to be universal, that is the decays

u—d c—s' t—b'

have the same strength. The Cabibbo-Kobayashi-Maskawa (CKM) matrix rotates
the quark mass eigenstates into the weak decay eigenstates, Eq. (1.1). The lepton

weak and mass eigenstates are identical, and their coupling to the W* is 1.

d Vid Vus Vp d
= va Vi Vi || s (1.1)
b’ Via Vie Vi b

The varying magnitudes of the CKM matrix elements imply that the strength of the

rotations between the mass eigenstates is not universal.

In particular the (d, s) subspace can be parameterized by the Cabibbo angle (6¢ ~
13°):

d\ _ cosfc sinfg d
( s ) - ( —sinfc cosf¢ ) ( s ) (1.2)



Therefore, the decays involving ¢ «» d and u « s vertices are suppressed (sinf¢)
relative to ¢ <> 3 and u < d vertices (cosf¢). The decays suppressed by one factor

of sin f¢ are called SCSD, indicated in Fig. 1.1.

The SU¢(3) color symmetry consists of eight gluons mediating the strong interac-
tions between the color carriers — the quarks and the gluons themselves. There have
been many attempts to include strong interaction effects into weak decays. These
includes the Penguin diagrams in Fig. 1.1 (e)(f), and the factorization approach of
Bauer, Stech and Wirbel (BSW) [BSW87|.

There is a special phenomenon, Mixing, in neutral meson systems. For example,

in the K° — K° system, one can delineate three sets of states:

e Strong or Quark eigenstates — (K°, K°);
o CP ecigenstates — (K7, K9);

o Weak or Mass eigenstates — (K3, K?).

The rotations among these three states can be visualized as follows for the D°-D°

system (including Direct CP asymmetry):

Mass Ccp Quark

Eigenstate Eigenstate Eigenstate

0 #=(i0) (B) 4 D) (8) 2]

DY 1-ler \ € 1 D} Va1l -1 D° -, 3
Indirect CP Mixing Direct CP

(1.3)

where € is the Indirect (or Mixing-type) CP asymmetry parameter, and €' is the Direct
CP asymmetry parameter depending on the final state, f. The subscript notations H

and L are chosen because we expect to observe a larger mass difference than lifetime




difference. Thus H and L stand for Heavy and Light, and 1 and 2 denote CP-odd
and CP-even, respectively. If there is no Mass Mixing or no Indirect CP asymmetry,
then the corresponding rotation in Eq. (1.3) would reduce to a unit matrix. One can
easily derive the rotation between the quark eigenstates and the mass eigenstates by

combining two rotations into one. [Commins]

Mass Quark
Eigenstate Eigenstate

7 1 € —€ 0 (1.4)
(%F) = v (013 i23) (5)

I will demonstrate how to construct the decay amplitudes, and thus the partial
decay rates in Sec. 1.2. Then I will look in detail into CP asymmetry and D°-D°

Mixing in Sec. 1.3.

] . DD K*K~)
1.2 The Branching Ratio T = aFr)

0 +K-
I‘F% = —’fr - f—f would be 1 [EiQu75),

because there is no difference between u, d, and s in the simple picture of Fig. 1.1.

From naive SU(3) symmetry, one expects that

But in 1979 the first experimental data [mark-79] showed this ratio to be 3.4 + 1.8,
and since then various models have been proposed to explain this result while exper-
imental groups have improved the precision of this measurement. The most recent

. (D> KtK—)_
world average is DS ar) — 2.86 £ 0.28 [PDGY94]. To date, the phenomeno-

logical fitting model and the final state interaction (FSI) model can explain all the

D — PP or PV (P=pseudoscalar, V=vector) hadronic 2-body decays of D mesons.

1.2.1 Effective Hamiltonian for Hadronic Charm Decays. The effective

Hamiltonian for hadronic charm decays is given as [Bur86]

H = \/gammz{clu‘cz),:@cn + ea(Re)u(F)i}, (L5)



where ¢, and c; are composed of short distance QCD coefficients (¢4 and c_):
1 1
a=glerte) =y —c), (1.6)

and V;; are the elements of the CKM matrix with (c, k) and (4,!) standing for +2
charge (up-type) quarks and —; charge (down-type) quarks, respectively. The V — A
weak interaction is

(R = Batu(l = 95l (L7)

with « being the color index. In Eq. (1.5), the first operator describes the usual
charged current interactions. The second term is an effective neutral current interac-
tion generated by short distance QCD effects and in the absence of these effects, i.e.

cy = c_ = 1, the second term vanishes.

In particular the Cabibbo favored decay (CFD) of D° — K~7* is described by
1
HE = \/;GFV;:VM{C]_('I_LCZ)L(EC)L + Cz(ﬁC)L(Ed)L}. (18)

To find the decay amplitude, one computes the matrix H3 of Eq. (1.8) between the

initial state |D°>, and the final state |K~7%>:
A(D°>K—nt) =<K~ nt|HE D> . (1.9)

1.2.2 Factorization Model. Continuing from Sec. 1.2.1, I factorize! the

weak amplitude in all possible ways by performing appropriate Fierz transformations

i

tThe factorization hypothesis means that the meson two-body decay amplitudes may
be expressed as the product of two independent hadronic currents.




[BS85] — vacuum insertion — on the hadronic matrix elements. With this replace-
ment of interacting fields by asymptotic fields, I neglect any initial or final state

interaction of the corresponding particles for the moment [BSW87]. Then

ADP = K1) = \[3GrViVia{ar <m*|(ad)0 >< K |(3¢)|D° >

+aq < K~7t|(%c)L|0><0|(3d)L|D° >}, (1.10)

where:

@y =c1+éc;, arx=cy+¢a. (1.11)

It has been emphasized [Bur86] that factorization follows to leading order in a 1/N,
expansion, where N, is the number of quark colors (3 in SU(3)). The color factor
¢ = 1/N, arises from color mismatch in forming color singlets after Fierz transforma-
tion. After some phenomenological tests, it has been shown that £ is not universal but
channel or class dependent {Chen94]. The first term in Eq. (1.10) represents the spec-
tator decay mechanism, and the second the quark annihilation decay contribution.

Evaluating the corresponding matrix elements in Eq. (1.10) we find

AD° - K %) = al\/—GF "Vedfr - ( mk) - FPEK(m2 0%). h

+ az\/EGFv;vaD (mk = m3) FXr(m,0%) - h (1.12)

where fr and fp are the decay constants, Fpg(g?,0") and Fk,(g%,0") are the form
factors, and h is a reduction factor which has been introduced to account for an in-
complete overlap of the relevant meson wave functions. From Eq. (1.12), annihilation
is suppressed by a factor of (a2/a1)(m% /m%) relative to the charm quark decay. The
annihilation term in Eq. (1.12) can be neglected due to the conserved vector current

(CVC) hypothesis [KaXu92}, unless the annihilation form factor, Fxx(m%,0%), shows

an unexpected large resonance effect.



Thus the partial decay width for D° — K—7* is

I(D°— K~7%) o |A(D° = K~7)? o |ay|* x Dkr (1.13)

Similar results [BSW87| can be obtained for other D — PP or PV decays. By
this factorization approach, I can separate all the partial decay widths for D —
PP or PV into three classes characterized by the QCD factors |ay|? (e.g. D° —
7T K"), |az|? (e.g. D®°—7°K°®) and |ay + za,|? (e.g. Dt — K%7*). The parameter z
describes SU(3) breaking effects and is equal to 1 in the SU(3) limit. The success of
the BSW model in the two-body nonleptonic decays indicates that, to leading order
in 1/N., quarks belonging to different color singlet currents do not form hadrons, or

equivalently, color suppression is absolute [Bur86].

The decay amplitudes of both D° - K*K~ and D® - «+r~ fall into class a;:

AD° > K*K™) = —a1\/1GrViViufx - (mh — mk) - FPX(m},0%) - b (1.14)

AD°—7tr™) = ay/IGrVaVaafy - (md — m2) - FP~(m2,0%) - h. (1.15)

Some examples in other classes are:

1
A(D® —77%) = —az\/;GFVc;Vudf,, (m} —m2) . Fpe(m2,0%)-h
AD°—-K°K®) = 0 (1.16)
AD orort) = B DGyt (md —m2). Fpo(m2,0%) - h

V2

SU(83) symmetry breaking effects can be found in the straightforward comparison

: . T I'D°— K+tK) )
of Eq. (1.14) and Eq?,(l.15). First, the deviation of TD° S rtr) from 1 is due to

the slight difference between |V.,| and |V,4| (~cosfc), and |V,,| and |Vea| (~sinfc).

Second, the deviation from 1 of FPX(0)/FP*(0) (~ 0.76/0.83) [PDGY4] , fx/f~



(~159.8/130.7) [PDGY4] , and mg /m, (~493.7/139.6) [PDGY94]. The ¢* dependence
of the form factor F(g?) is usually assumed to be governed by a single low-lying pole:

F(0)

F&) = Tty

(1.17)

where m, is the mass of the 0% pole, with m, = 2.47 GeV/c? for FP* and m, = 2.60
GeV/c? for FPX [ChCh94].

Phenomenological approaches [BSW8T] treat ay, a, and z as the fitting parame-
ters for available data, using them to predict other decay widths. Generally speak-
ing, this factorization approach can fit most of the experimental decay widths of
D — PP or PV, but some exceptions (e.g. D°—w¥7~) force us to other models,
such as final state interactions (FSI), to decrease the discrepancy between experi-

mental data and theoretical predictions.

1.2.3 Final State Interactions. Final state interactions (FSI) play an im-
portant role in processes where a number of hadrons are produced through a “basic”

process and then allowed to interact strongly. Familiar examples are: [KaCo81]

o Electromagnetic (EM) form factors where the basic process is EM, and FSI

endows the form factors with a momentum-transfer dependence;

o Weak decays of hadrons, for example K — 27 or 3w, A — pr~, etc., where the

basic process is weak and FSI results in a phase to the amplitude;

e Particle production, for example TN —» 7w N and KN —7KN, etc., where the

basic process is a real Born amplitude followed by FSI in 2-body sub-systems

of produced particles.
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The D meson mass lies in a resonance region where strong rescattering effects
of the outgoing mesons will be of particular importance. For the on-mass-shell FSI

case, the bare amplitude A° should be corrected to [BSW87)
A=+S. A, (1.18)

where /S denotes the square root of the strong interaction S-matrix for hadron-
hadron scattering. Inclusion of this correction results in the introduction of phase

factors and mixing of channels. Since little is known about the many open channels,

V'S cannot be estimated.

Nevertheless, an isospin analysis gives some information about the effects of FSI.
For such an analysis we borrow the concept of strong scattering with isospin decom-
position to analyze D — nw, K7, and KK. In terms of isospin (I) amplitudes, the

decay amplitudes are: [KaPh941]

e D—oxm; I =0, 2 in the final state,

]. e s.d 1 Y. k. 8
AD° > rtr) = —=AT"e% 4+ ——AT"e]
( ) J6 o Ji2 2
]. v 2.4 AN
A(D° —7°1°) = —=AT"e¥"  — Lz‘l’{"'e“s2 (1.19)

V6
V3

A(DY »7ort) = ———=AJ e

2v2

V3

e D KK;1=0,1 in the final state,

A(Do—)K+K—) = %Agkeiﬁgfk + LA{(RQ"‘SLKK
N
V2
A(D* > K*R°) = VaAKRel#l™®

A(D° > K°K°) = —=AKReif®  _ —1—A{‘Ke*5{“ (1.20)
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¢ D> Km; 1= %, 3 in the final state,

A(Do — K~rt)

1 5K 2 5K
v \gA{‘/:e“f‘“

A(D°—>R°r°) = \/gAgf;;e“f/? ~ Lamedtn (Lo

V3
A(D* »R°rt) = 3AKze"h

There are many more decay modes as well, and it is possible to use data from
all of the different decay modes to fit these parameters simultaneously, and make
predictions for other modes, in order to see if FSI can explain all the phenomena. In

fact, the uncertainty of the FSI model is due to the arbitrary complex isospin phases.

An attempt to connect the FSI and BSW models (described in Sec. 1.2.2) is made
by assuming that FSI simply rotates the decay amplitudes in the complex plane
(in others words, assuming FSI is weak or elastic) [KaXu92], so that the isospin
amplitudes can be evaluated by setting all the isospin phases equal to zero and
equating the amplitudes in Sec. 1.2.3 with the amplitudes in Sec. 1.2.2. This allows
a test of the consistency of the BSW model.

Alternatively, for example, one can avoid the complex FSI phases by comparing

the phase-independent quantities (BR’s): [KaPh941]
LI(D°—>KK)=T(D°—>K*K~) + T(D°— K°K?) (1.22)

and (Dt — K°K*). Thus, without the uncertainty of unknown complex isospin

phases, one can test the consistency of the BSW model and also estimate the strong

interaction amplitudes.

1.2.4 Phenomenological Approach. There is another phenomenological
approach using the model-independent quark-diagram scheme to assign decay ampli-

tudes for all 2-body exclusive decays of D mesons. It has the 6 basic quark diagrams

shown in Fig. 1.2: [ChCh87|
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Figure 1.2. Six Possible Weak Quark-decay Diagrams in a Phenomenological Ap-
proach:
A — The external W emission diagram; B — The internal W emission diagram;
C — The W exchange diagram; D — The W annihilation diagram;
& — The horizontal W loop diagram; F — The vertical W loop diagram.
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External W emission (A).

Internal W emission (B).

W exchange (C).

W annihilation (D).

Horizontal W loop (£).

Vertical W loop (F).

This classification is independent of the strong-interaction schemes, and can incor-
porate any specific strong-interaction-model calculations. Thus all the s, ¢, b, and ¢
particle decays can be expressed in terms of these six types of quark diagrams and the
quark mixing matrix. These quark diagrams are specific and well-defined physical
quantities. They are classified according to the topology of first-order (e.g. one-

gluon loop) weak interactions, but all QCD strong-interaction effects are included

[ChCh892].

Table 1.1 [ChCh92] lists a few decay amplitudes of interest. The amplitudes
with tildes (*) denote the diagrams involving the creation of s3; 66 = £ — € and
§F = F — F. These are SU(3) breaking. In addition, the difference of form factors
and decay constants (discussed in Sec. 1.2.2) will further induce different A’s for
different decay modes. FSI is expressed by the phase shifts, the §’s, which in general
have both real and imaginary parts. The real parts are related to the elastic scattering
effects while the imaginary parts indicate effects of inelasticity [ChCh94]. 6FF (as
mentioned in Sec. 1.2.3) is the FSI phase shift of isospin I in D — PP decay and

App is the phase difference between the two final isospin states.

In the case ¢f T'(D°— K*K~) and T'(D°—#*x~), Table 1.1 shows two possible

sources responsible for the deviation from the naive SU(3) symmetry prediction that
LD°—-KYKD) _ 4
TD?—-7tn™) ’
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Table 1.1. Amplitudes of D — PP Decays

Decay SU(3) symmetry Amplitudes in { } are replaced due to
Mode  V,,V2~VuVi=s161 SU(3) breaking and FSI

Dt

ot Ja(sre){A+ B} (A+ B)e:™

K+Ro° (s1c1){A — D} (A—D + 6€)eis ™

Eor+ (c1)?{A + B} (A+ B)ess

D°—

K-n* (e1)*{A+C} [(A+C) - (A + B)(1 — eidrn)eis

KK+ (s1e1){A +C} [(A+C)+(6E+26F) - (A+c+6£)(1 eidkr)ess

- xt —(s1c1){A+C} [(A+C) - (6€ + 26.7-') A+ B)(1- e’A’"r )jes”

Br H(eMB-c) [(B-C) - 3(A+ B)(1 - eidxe)jel

K°R?® (s101){0} [(C—C +26F) + (A +C + 66)(1 — etbrr)ei®s™

7070 715(31c1){3 -C} (B-C)+ (8¢ + 25}') 2(A + B)(1 — etlrr)lets™

o SU(3) symmetry breaking — Accumulations of small pieces of SU(3)-symmetry

breaking effects, such as the decay constants, the form factors, and the mass-

D’ KtTK™)
I'(D°—rtr7)

from 1. However, SU(3) symmetry breaking is insufficient to explain all of the

difference ratios (described in Sec. 1.2.2), lead to a deviation of

data.}

e Coupled Channel FSI — The 77 can rescatter into KK through the I = 0
channel by inelastic FSI [KaCo81, KaSi87]. In particular, there is a known 0*
resonance ( fo(1300)) which couples to both 77 and KK by the I = 0 channel,

as well as a resonance ao(980) which couples to both 7 and KK by the I =1

channel.

Tt has been suggested [Finj81, Pham86] that penguin contributions (Fig. 1.1(c) or &£
& F in Fig. 1.2) may help to explain the discrepancy between models and experiments.
However, it is evident in Table 1.1 that including penguins contributions vould only increase
the deviation. Also, the penguin contributions are rather small, estimated to be £/ A ~ 1%.
Kamal & Pham [Ka.Ph94l] conclude that the Penguin mecha.msm, which could solve some
problems in isolation, is not the solution to the global problem in D — KK and D — 7w
decay.
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0 + K-
FI(‘g)O:Iv{r +7Ir{‘)) is only one of

many BR’s. There are many models which calculate this particular BR relying on

To summarize the BR study, I emphasize that

the apparent simplicity and similarity implied by Fig. 1.1. But few models can survive
a global pheﬁomenological test of all the two-body decay BR’s. Our measurements
narrow the experimental errors, so that further phenomenological tests can be made

on different models and different decay modes.

So far, the BR’s have been calculated by ignoring the tiny (10~* or smaller)
differences in decay rates between particles and anti-particles. The following section
will discuss the effects of direct CP and Mixing phenomena resulting in different BR’s

for particles and anti-particles.
1.3 CP Violation and Mixing in the D°-D° System

Looking at the simple picture in Eq. (1.3), another parameter is the direct CP
asymmetry, €. This direct CP asymmetry would be reflected in a difference between
the partial decay widths of any (charged or neutral) particle and its anti-particle,

namely the asymmetry between < f|H|D° > and < f|H|D® >. To complete the
consideration of neutral mesons, there is

o Direct CP asymmetry, €';

¢ Indirect CP asymmetry, ;

e Mass Mixing, v, Ay, and Am.

The time evolution of the quark eigenstates (D°, D°) is described in terms of an

effective Hamiltonian. That is, writing the wavefunction in the two-component form

¥(t) = ( {gﬁgg; ) ) (1.23)
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with
$(0) = ( }gﬁ; ), (1.24)
we have
iSU) = HE ) | (1.25)
= (2 F2)wo (:26)
= (M- %T) ¥(2) (1.27)
- ( M]g ::§£I2 Mj}:ﬁ;‘u )¢(t). (1.28)

where M and 7 are the mass matrix and the decay matrix, respectively, and CPT

is conserved for Eq. (1.28) [Commins, Na94).
Following Eq. (1.4), the Physical mass eigenstates D} and D are found to be

| DY > = 2(11“6'2)[(1 +€)|D°> + (1 —¢€)|D°>] = p|D°> + q|D°> (1.29)

DY > = ﬁ[(l +€)|D°> — (1 —¢€)|D°>] = p|D°> — q|D°>, (1.30)

or by diagonalizing the mass matrix Eq. (1.28), and using different notation

1 | H. My — 43T
p_l+e_ 12 _ 1‘2 13 iz. (1.31)

where € = P—19
Y4

+q
Let f denote the final decay state of the neutral meson and f its charge conjugate
state. Define 4 decay amplitudes for D°and D°: [PaWu95)

g =< fIHE|D® >, h =< f|HFD>; g =< fIHF| D>, h =< flHF D> . (1.32)
Paranieters containing direct CP violation are defined by

d=3"2 g=2"9 w=9"9 @ _1"2 (1.33)
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Note that the above parameters are not physical observables since they are from
complex decay amplitudes, and thus are not rephase-invariant [PaWu95]. One can

however define the CP-violating observables by considering the ratio,

_ <fIHFDY>  1-ry

"= AEEIDY S 1ty (1.34)
with r; = %% being rephase-invariant. It can be shown that!
+ag+1
P (1.35)
2+aeayta g
with new rephase-invariant quantities
o = Lola/pl® _ 2R(e)
T 1+lg/pP 1|
_ 1-—1|h/g* _ 2R(¢)
“% = T k/gR T 1+ €]
erd = [T+ la/pP)(1 + h/gl) L+ D)1+ [€P) !
., = —4R(gh/pg) _ 1 = 18(03(e) — 2(lel® + 1€
e = (T+]a/p)(1 + h/gP) T+ 1P +1€P)

Only three of these are independent as (1 —ag)(1 —a) = ai+€, +(1+a.y)? Anal-
ogously, one has

_ <JIHF|Dy> _ o +ag +ia.¢
~ < fIHEDY > T 2+ aeay +ag’

nf (1.37)

where ag, a. o and a g are similar to ay, a, o~ and a g but with ¢ being replaced
by €. Two additional rephase-invariant quantities complete the set of observables,

_1-lg/gP _ 2R(e") _1-[R/AP _ 2R(")
“1+0g/aP 14 T I RAPE I+ @R

G:EII

(1.38)

CP violation can be classified into three types:

"By using 1—ab=[(14+a)(1-b)+(1—a)(1+b)]/2and 1+ab=[(1+a)(1+b)+(1-
a)(1 - b)]/2.
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e pure indirect (Mixing-type) CP violation which is given by the rephase-invariant

CP-violating observable ag;

e pure direct CP violation which is characterized by the rephase-invariant CP-

violating observables a . and az (plus ag and ay for the following special

cases);
e indirect-direct mixed CP violation which is described by the rephase-invariant

CP-violating observables a &a, ganda g &ag.

In order to measure these rephase-invariant observables, consider the proper time

evolution of the neutral mesons

1 . . L
|D°(t) > = —2—p-e"'('""“’"’/2)‘|D?;> +21_pe_‘(mb—"’lb/2)tlD%> (1.39)
- 1 . : 1 . .
1D°(t) > = Ee—-(ma—tm/2)tw2{> _é;e"(mL—“YL/z)‘ID%> (1.40)
or
D°(t)> = f@®)D°> + L.5()D°>,
_ P p _ (1.41)
D> = Pop@pe> 4+ fIDo>,
with
fr = _;_{e.-(-m,,+.-zgz)¢ + ei-mutifny (1.42)
YH +7
N = TL (1.43)
I I3 ‘
Ay = - = +49\/(M12 - ZTH)(MIz - %%2), (1.44)
.F12 I‘;z
Am = myp —mg = —-2%R (Mlg —_ ZT)(M;Z - ‘I/T) (1.45)
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The time-dependent decay rates are found to be [PaWu95)

2 2
F(Do(t)—)f) P I < lesvﬁ"DO(t)> |2 _ 1 Igl + |h| J—
1 + de 2

{(1 + aeay) cosh(Axt) + (1 + a ) sinh(Avt)
+(ae + ag) cos(Amt) + ag, ¢ sin(Amt)} (1.46)

I(D°(t)— F) o | < FEEIDO®)> | = — g2 + 1A e,
1-ae 2

{(1 + aea.g) cosh(Avt) + (1 + aeg) sinh(A~t)

— (ae + ag) cos(Amt) — a o sin(Amt)}. (1.47)

1.3.1 Lifetime Difference for D°-D® Mixing. Ordinarily, one measures the

Mixing rate by the ratio of wrong sign signals to right sign signals

D(D°(t)—~ f)

Rmix(t) = I‘(Do(t)—-)f) | (1‘48)
5 _ D)~ 1)
anlx(t) - F(Do(t)-—)f) : (1'49)

Note that Romix(t) and Rppix(t) would be the same only for CP invariance, i.e. p = ¢
in Eq. (1.41) or € = 0 in Eq. (1.4). See also the discussion of indirect-CP with Mixing

in a first order approximation by L. Wolfenstein [Wolf95].

Assume CP invariance!, i.e. |¢| and |€"| are 0, |g| = |g|, |k| = ||, and p = ¢ = L.
Then directly from Eq'. (1.3), the mass eigenstates are identical to the CP eigenstates.
Obviously, K*K¥ are the decay products of the CP-even eigenstate DY which has
definite lifetime and mass, whereas K¥n* is not a decay product of a CP eigenstate

but rather a mixture of CP-even and CP-odd states.

!Original idea by T. Liu [Liu94]
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With the CP invariance assumption, we have a¢ = ag =0, ¢/p=1,9=3g, h = &,
G = Gg, G =Gz, and o, o = a g Ea. (1.46) and Eq. (1.47) lead to
N(D%(t)— f) o | < FIHFID(D)> P = LR ooy
{cosh(A'yt) + (1 + a_y) sinh(Avt)
+ ag cos(Amt) + a, sin(Amt)} (1.50)
D(D%(t) — ) o | < FUEGGDO() > [ = L o,
{cosh(A'yt) + (1 + a,y) sinh(Art)
~ ag cos(Amt) — a, g sin(Amt) . (L51)
Combine Eq. 1.50 and Eq. 1.51 for K¥7+:
T(D° D°— K¥7*) o (|gl* + [h[*)e ™
{cosh(A'yt) +(1+ay) sinh(A'yt)} (1.52)

which is not a pure exponential decay.

e For K*KT being a CP-even eigenstate decay, which has definite mass and

lifetime, Txx in D — K+ K~ is the inverse of ~,.

o For K¥ 7% case, h could be considered as the contribution from Doubly Cabibbo
Suppressed Decay (DCSD). Obviously, Eq. 1.50 and Eq. 1.51 are not pure
exponential decays. Even after the right sign tagging from the strong decay of
D** ——>D°(ﬁ°)1ri, i.e. with A = 0, Eq. 1.50 and Eq. 1.51 still do not yield pure
exponential decays: .

T(D°(t)— K™n%) o | < fIHFIDO(t)> [
| = [—gzl—ze—"'t X [cosh(Afyt) + cos(Amt)]

T(D°(t)—K*r™) o | < FIHFIDO(t)> |*
= l—'-qzl—ze""' X [cosh(A'yt) - cos(Amt)].

(1.53)
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But Tk, in D° — K~ 7+ can be approximated as the inverse of v, and since only
the exponential decay can be noticed easily, there is no need to separate D°

and D° to measure Tx, [Liu95].

Thus, by studying the lifetime difference with the CP invariance assumption,

Y2(L) — Yi(H) (1.54)

Ay =
1 1
= 2 (————— 1.55
(Txx TK«-) ( )
- o.TKx ~TKK (1.56)
TKK X TK~x
TKx — TKK
-’-\—J 2 . (P—‘DG_W. (1.57)

In Appendix Af, I also adopt another approach by using the difference between two
mean values of the proper decay time to estimate the lifetime difference (Txx — TkK)

in terms of Eq. (1.57).

The Mixing rate can be parameterized, assuming CP invariance as

_ 3}2 + ,y2
Rmix = Rmix = D) (1.58)
with z = M2~ ™ and y = u, leading to
Y2+ M Y2+ M
y= (2 ) (1.59)
TKK
. 2 . ey . .
for 7k = — and Tk, = . By studying the lifetime ratio, we can estimate
V2 Y2+ ™

the Mixing rate due to lifetime difference. Note that = and y is independent to each

other (mass difference vs. lifetime difference). To have a complete estimate of Mixing

tDeveloped by Dr. M. Purohit
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rate, we need to have both z and y. The Standard Model predicts that % < Am

7
in D° D° system. E791 measurement will be the first estimate of y in D°-D°® Mixing.

1.3.2 Direct CP Violation. Experimentally, define the CP asymmetry pa-

rameter from the comparison of the partial decay widths as

Lage ||

r—
I+

Acp = (1.60)

L |

In general, one can represent the decay amplitude of a meson M (M) decaying

to a final state, f (f), as

AM—f) = Wi + W,

A(M—»f) = Wl'e"s1 + W;ei's’

where W'’s are the weak decay amplitudes and é’s are the strong final state-interaction

phases. Then

r-r
L +T
A*A— A*A
A*A+ A4
2S(WL W) sin(6, — 6y)

= . 1.61
lB]_‘z -+ IBZI2 + 2§R(W1W;) COS(62 — 51) ( )

Acp(M— f) =

Both factors in the numerator of Eq. (1.60) should be nonvanishing to have a nonzero
effect. Moreover, to have a sizable asymmetry the moduli of the two amplitudes W,
and W, should not differ by very much. From Table 1.1, note that the SCSD’s,
D®— K+tK- and D°— w7, look like candidates to observe Direct CP asymmetry,
since they have two different weak amplitudes — V,, V% from quark diagrams and
VeaV from penguin diagrams — as well as two different strong isospin final states.
However, I will show below that D°— K*K~ and D° —»#n¥r~ are not good candi-

dates for observing pure direct CP asymmetry. Even Acp(K¥F7%) could be nonzero
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resulting from unknown contributions of the beyond-Standard-Model (BSM) sector
[YORS2], if any, and the well-known interference of FSI.

To measure the direct CP asymmetry [BeJa81, BuLu93|, Acp, for the charged
mesons (without any neutral meson in the intermediate or final state), one can follow
the definition described above. But for neutral mesons, as D° and D°, indirect CP

asymmetry is accompanied by D°-D° Mixing,

Following Eq. (1.46) and Eq. (1.47), first define a time-dependent Acp(t) as
T'(t) — T(¢)
T(t) + T(t)
T(D(8) = 1) — T(D°() = )
L(DO(t)— f) + T(D°(t)— f)

Consider two special cases: [PaWu95)

Acp(t) =

(1.62)

o D% — f(D° /5 f),D°— f(D° /> f), ice. f or f is not a common final state
of D%nd D°. If one can rule out Doubly Cabibbo Suppressed Decay (DCSD)
contamination! then D®— K~rt (D°— K*7~) is such an example. Also I

assume the “DCSD after Mixing,” i.e. D 225 PO 2°% gr—r+ is well below the

order of Acp. This case leads h = h = 0, ag = —ag =1,a, s =a =0,
and a g = a.y = —1 in Eq. (1.46) and Eq. (1.47). Then
Acp(t) = ag (1.63)

which is actually time-independent. Even though D° — K~7* is CFD, the mea-
surement of nonzero Acp(D® — K~7*) would indicate pure direct CP asymme-

try from the interference of weak phases between the SM and BSM sectors
[YOR92].

tDCSD is an order of tan* 6 (Cabibbo angle), and D°-D° CP violation would be below
this order, so DCSD is non-negligible in CP studies.
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e D°=(f =f, fOP = £)« DO, i.e. the final states are CP eigenstates, such as
D°—K*K~ and D°—ntr~. This caseleads to g = h, h = §, ay = an =

Gz =agn 0 =0y and a, g = a ¢ in Eq. (1.46) and Eq. (1.47). Thus,
An(t) — aey(2)

Acp(t) = B(E) — aehm(t) (1.64)
where
Am(t) = (ae+ay)cos(Amt)+ a,, g sin(Amt),
A(t) = (1+ aeg;l) cosh(Aﬁst) + (+1€’+ a’cfe’) sinh(Avt). (1.65)

Acp(t) is no longer a pure direct CP asymmetry parameter but a mixture of

direct and indirect CP asymmetry parameters.

Ideally, by making Acp measurements on different D decays, especially the time-
dependent measurements, one can extract information about the multiple parameters

of Direct and Indirect CP asymmetry and Mass Mixing.

ABE for the E791 Experiment. For a collider experiment, the above the-
oretical discussion is sufficient, but in fixed target experiments, such as E791, the

Leading Particle Effect' complicates D meson production studies.

In order to compensate for this production asymmetry, define a new CP asym-

metry parameter using branching ratios:
D> (D° > KtK )nt)y T(D* = (D°—K Kt)n~)
(D= (D°—>K~7t)nt) (D" =(D°—Ktr)r)

ABR(K*K¥F) = — 1.66
e )= TS (Do KK )nhy | D" —(D° =K K*)r) (1.66)
[(D*"—(D°— K~nt)x+) (D* = (D°— K*tr~)7™)
[(D**—(D° > xtr~)nh D* - (D° -7 7t)7)
*t 0 — Yty 'S no +o=) =

DY = (D°srtr-)rty DD = (D°>x-7t)1)
I(D*'—(D°—= K~7t)xt)  T(D* —(D°—K*tr=)7)

tThe leading particle is the charm particle carrying the valence quark from the incident
7~ (#d), and its anti-particlc is non-leading. So"in fixed target experiments, we see more
production of leading particles (e.g. D°(cz) D~(&d)) than non-leading (e.g. D°(¢u) D*(cd))
in the forward direction (or the high z region). Also, fixed target experiments usually don’t
have good acceptance in the negative zy region, enhancing the net production asymmetry
between leading and non-leading particles.
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where I utilize the strategy of identifying the bachelor 7% from the strong decay of
D** — D%(D°)n* to tag D° (D°) production and decay. I use the D°— K~7+ mode

as the normalization mode.

Note that even in the simpler picture of Eq. (1.64) and Eq. (1.65) there are three
factors — Direct CP asymmetry, Indirect CP asymmetry, and Mass Mixing. So from
a naive approach, in order to study Direct CP asymmetry, I wish to cancel out (1)
the huge production asymmetry (such as the Leading Particle Effect), (2) the tiny
Mixing (causing the interference), and (3) the unknown Indirect CP asymmetry, by
doing certain normalizations. My intention here is to deduce a prediction from theory

BR
for ACP .

First, the right sign} D** — D°(D°)r* tagging is necessary for K¥n* (and K3r),
in order to eliminate or reduce DCSD contamination. In addition, the possibly dif-
ferent efficiencies for slow (or bachelor) 7%’s tagging in D**—(D°®— K+*K~)n* and
D**—(D°->K~-K*)r~ can be compensated for by normalizing to
D**—=(D° - K-7*)n* and D* - (D°— K*r~)7~. I do not induce more CP asym-
metry from D** — D°(D°)n%, since these are strong decays (but if strong CP asym-
metry is of the same order there might be interference between strong and weak CP
asymmetries). I do include the possible weak CP asymmetry from D® — K~ 7% and

D® — K*n~ into Eq. (1.66) and Eq. (1.67).

tIn D**—(D°— K-xt)x*, events with two same-charged 7’s are called right sign
events, a.nd_ those with opposite-signed =’s are called wrong sign. Similar notation applies
to D* - (D> Ktx~)x~.
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Second, due to the limited statistics, I measure the time-integrated ASE. Inte-

grating the general forms of Eq. (1.46 and 1.47),

o DO s Pt o 1 ol + IAP
T = P e o BT o)

{1+ aeag)r® + 7(AmP] + (1 + ag)ly? Ay + Ay(Am]

~ (ae+ ag)A (A7) — ] - ag glAmil(Aq) -1} (1.68)
~ Bo . 7 1 gl + AP
T~ P o o o AT e)

{(1+ acag)ly® + 9 (AmP] + (1 + age)ir* Ay + Ar(Am)

+(ae+ a2)1 (A7) - 7]+ agglAmi(Aaf -2} (169)

Thus for the D° —» K+ K~ mode (according to the conditions mentioned above),

i _ 1 gl + 1gl?
DD =~ KK o A + ()] * 2(1 % ae)

{1+ acag)lr® +A(AmP] + (1 + age) P&y + Ar(Am)
~ (ae + ag)r (A1) = 7] - ag olAml(Ayf )} (L70)
1 L lal + loP
V2 = (A7)?ly? + (Am)?] © 2(1 — a¢)
{1+ acag)lr +2(Am) + (1 + ag)y? Ay + Ax(Am)]

T(D° - K-K+)

+(ae+ ag)lH (A7) = 7]+ ag gl Amli(Af -2} (171)

and for the D® — K~7% mode,

O LK-77) 1 |9’|2
B = K o e Bl + (o] ™ 21+ a0)

{a+ a0l +a(amf) — @+ Din(ary -} (@7)
(D> K+r~) < ! X g'" X

o = BT + (AmP] ™ 21 - g
{a+e0l® + r(amf T+ @e- D&y -2} (@7)
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Substituting Eqs. (1.70-1.73) into Eq. (1.66), two different decay modes share the
same set of indirect CP rephase-invariant parameters, Ay, Am and v — but different
g and ¢' (the decay amplitude of the numerator and denominator, respectively),
and different direct CP rephase-invariant parameters. Unfortunately, the calculation

.of ABR cannot be simplified without further assumption, due to the complicated
normalization of Eq. (1.72, 1.73) — the difference between |¢’| and |§'| and between
—(ae + 1) and +(ae — 1). Also because each term in Eqs. (1.70-1.73) is additive, it
makes cancellation difficult, especially the terms in the KX¥7* mode.

Because both K¥7* and K3~ are in the same category (the final state is not a
common state of D°and D°, and both share the same Mixing parameters and Indirect
CP parameters although not Direct CP parameters), without any assumption, the

ABR for right sign K3r with the same normalization of right sign K¥r* shows a

simple form:

lof* _ lal*
ABR(K3r) = %:—%f_. (1.74)
FIERNFTE
This is an indication of direct CP asymmetry of the BR LD° K_W_"T‘Fﬂi).

D= K7™

Applying assumptions in the order of their least effect on ABE,

e Assume Direct CP invariance in D°® — K7t and D°— K+t7~ — i.e. the un-

likely weak phase from BSM [YOR92] sector is ruled out, thus |¢’| = |g'| and

ABB(KKT) = {ae(l + agg)Ay{(Am) +[(A) — 41+
ae(1 + aea g )Y[(Am)? + y*][(Av)? — 4% —
2, o|Am|[(AY) = V] [~(A7)? + 42 + (1 + ae)[(Am)? +47]] -

(ae +ag (A7) =PI [~(A) +72 + (1 + ag){(Am)* + ] } +
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{~aeac,olami[[(A7) ~ 47| - ac(ae + ag)[[(A) 7] +
(14 ) AY[(Am)* + 7] [~(A7)? + 9% + (1 + ae)[(Am)? ++7]]

(1 + aeag)[(Am)? +22][~(Av) +92 + (1 + ae)[(Am) + 7]} (1.75)

Also, in Eq. (1.74) ABB(K3n) would be 0 (again because K¥r* and K37 are

in the same category).

Assume no Indirect CP asymmetry — i.e. eor ae < 1, as '(D* > K~ 7%) =
[(D°— K*r~) in ABR(K*K7¥). Thus, the € and € interference terms will
reduce to pure Direct CP asymmetry parameters:

. 2S(¢) ~ —2€
et€ ~ T’ Y€ T TP

(1.76)

ABR of our SCSD modes under such assumptions would be simplified to
—ag[Y(A7)? = ¥°] — o, o|Am|[(A7)? — 7]
[ +7(Am)*] + (1 + e )V? Ay + Ay(Am)?]
—agV[(Av/7)? — 1] — a. g|Am|[(Ay/7)* - 1]
[y + (Am)? /] + (1 + ag o)Ay + Ay(Am/y)?]

which is equivalent to no normalization in Eq. (1.66). If the measurement is

ABK*KT) =

(1.77)

non-zero it indicates that at least one of a s and a, +e has to be non-zero; 1.e.

|€| # 0, an indication of Direct CP asymmetry.

Neglect (Am/v)? and (Av/7v)? terms — i.e. Am, Ay < 7.

agy + ag, o |Am|
7+ (14 GGEI)A"/.

If the measurement of ABR(K*K¥) is 0, then the following relationships hold:

ABR(K*KF) ~ (1.78)

agy ~ —ag J|Am| (1.79)
2R(e)y ~ —295(€)|Am| (1.80)

_lam|  ®(€) _
-~ ) ¢ =0. (1.81)

In this case, Direct CP invariance is not guaranteed by the measurement of

ABR(K*KTF) = 0.
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Taking advantage of Eq. 1.74 (the CFD K37 mode normalized to the CFD K¥r+
mode), a simplication of the theory and an interpretation of experimental results can
be achieved simultaneously by studying ASE —I;%h"%:— , i.e. the SCSD 7*7r¥ mode
normalized to the SCSD K*K¥ mode, which is also described by Eq. 1.74, since both
are CP-even eigenstates. But the price is that a huge amount of data is necessary in
order to study SCSD A8R. Also, if |g| > |g| and |¢'| > |§'| or |g] < || and |¢'| < |7
then the direct CP asymmetry of 7*7Fand K*K¥ will be masked; but if |g| > |g]
and |g'| < |g'| or |g] < |g| and |g’| > |g'| then the direct CP asymmetry of 77 ¥ and
K* K7 will be enhanced.
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CHAPTER 1I

THE E791 EXPERIMENT

The E791 collaboration took data over a 6-month period ending in January 1992

at the Tagged Particle Laboratory (TPL) at Fermilab. E791 was one of the second

generation charm hadro-production experiments.
Fig. 2.1 shows the elements of the E791 spectrometer at TPL.

2.1 The 500 GeV/c Negative Pion Incident Beam

The source of the incident 7~ was the 900 GeV /c Tevatron proton beam. Protons
were extracted from the Tevatron and split into our P-East beam line, and then

focused on a 30-cm beryllium target where the secondary 500 GeV/c 7~ were created.

P-East received an average of 2 x 10'? protons per 22-second spill, resulting in

about 107 7~ incident on E791 targets per spill, and about 200,000 events recorded

per spill.

Define the +z (longitudinal) axis from South to North, very close to the direction
of the beam line, with 2z = 0 at the center of the E791 Interaction Counter located
just downstream of the target foils. With a right-handed coordinate system, the z-
axis is parallel to the ground (West) and the y-axis is vertical. Additionally, the u,
v, w and w' directions are defined as follows: u and v are at an angle of +20.5° and

—20.5° from the z-axis on the (z,y) plane, and w and w' are at +60° on the same

plane.
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2.2 Upstream Beam Tracking

For upstream beam tracking, there were 8 planes of Proportional Wire Chambers
(PWC’s) and 6 planes of Silicon Microstrip Detectors (SMD’s) before the target foils.

Table 2.1 shows the characteristics of the upstream tracking configuration.

Table 2.1. E791 Upstream Tracking Configurations

PWC First Group Second Group
Number of Planes 4 4
Dimension(cm) 6x3 6x3

View Ordering z,z’,y,w z,z' Yy, w
Wire Spacing(mm) 1.0 1.0
Resolution(pm) 145(z, '), 289(y, w') 145(z, z'), 289(y, w')
7 position(cm) —3117 - —3116 ~1211 - —1209
SMD First Group Second Group
Number of Planes 3 3
Dimension(cm) 5x5 5x5

View Ordering ¥, z,w w',z,y

Strip Pitch(pm) 25 - 25
Resolution(um) 7.2 7.2

Z position(cm) —80.25 — —74.52 —-33.163 — —29.483

2.3 Target Foils

The ET91 target consisted of 5 foils. They were a platinum coin and 4 carbon
(diamond) foils. The lifetime of the D° is 0.415 ps [PDG94], or about .667 cm for
100 GeV/c momentum, so the 1.5-cm spacing between center of each target foil
is adequate for our lifetime study. Some details of the E791 targets are listed in
Table 2.2. Using two different target materials makes possible a study of the A-

dependence (A stands for the atomic number) of the production mechanism.

2.4 Downstream Region One Tracking

Separating the secondary decay vertices from the primary production vertex re-

quires good spatial resolution and good solid angle coverage. Table 2.3 shows the
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Table 2.2. E791 Target Configurations

Target Number 1 2 3 4 5
Material(Atomic number) Pt(78) C(12) C(12) C(12) C(12)
Thickness(cm) .052 1572 1567 .1530 .1584
Diameter(cm) 1.606 1.369 1.377 1.368 1.355
Proton Interaction

Length(cm)t .00584 .00590 .00585 .00582 .00587
Z position(cm) —8.143 —6.663 -5.127 —-3.588 —2.048

tThe ratio of interaction lengthis 7 : p = 2: 3.

characteristics of the downstream Region 1 (from target to the first magnet) track-
ing, consisting of 17 planes of SMD and 2 planes of PWC (Fig. 2.1). The angular
acceptance of the SMD system is about £150 mrad around the beam axis and the
per-plane efficiency is roughly 90% with 0.1% noise. The longitudinal resolution of
the vertex is 300 to 400 pum, and the transverse resolution 15 pm. The resolution of

our PWC detectors is approximately the wire spacing divided by v/12.

2.5 Two Magnets

E791 used two large-aperture dipole magnets to reconstruct the momentum of
the charged tracks (Fig. 2.1). Since different momenta yield different bending angles

[ B-dl

0 ~
3.33 p

where p is track momentum, B the magnetic field and dl for the path integral, we
measure momentum by tracking before and after the magnets and reconstructing the

bend angle . Some characteristics of the two magnets are listed in Table 2.4.
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Table 2.3. E791 Downstream R1 Tracking Configurations

SMD z position Strip Pitch(um) Box, View
Plane (cm) (inner;outer)
1 0.670 (25;50) @, v)
2 1.000 (25;50) (1, =)
3 1.931 (25;50) (2, z)
4 3.015 (50;50) (2, ¥)
5 6.684 (50;50) (2, v)
6 11.046 (50;50) (3, ¥)
7 11.342 (50;50) (3, z)
8 14.956 (50;50) (3, v)
9 19.915 (50;50) (4, z)
10 20.254 (50;50) (4, y)
11 23.878 (50;50) (4, v)
12 27.558 (50;200) (x, v)
13 31.848 (50;200) (o)
14 34.548 (50;200) (%, 9)
15 37.248 (50;200) (%, z)
16 39.948 (50;200) (%, ¥)
17 45.508 (50;200) (%, v)
PWC z position Strip Pitch(mm) View
Plane (cm)
1 118.10 ) y
9 164.40 2 y

* Planes 12 - 17 were not grouped.

Table 2.4. E791 Magnet Configurations

Magnets M1 M2
Center z (cm) 272.2 619.2
Length (cm) 165 208
Entrance Aperture 153.6 x 72.6 154.0 x 73.8
Exit Aperture (cm?) 194.6 x 96.2 188.8 x 102.6
pr Kick (GeV/c) 0.212 0.320

[ Bdl (T-m) -0.71 ~1.07
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2.6 Drift Chambers

E791 was equipped with a total of 35 drift chamber (DC) planes grouped into 4
sets to measure 4 different views (Fig. 2.1). The z' view is offset from the z view
in order to eliminate ambiguity in reconstructing tracks. Table 2.5 lists the DC
configurations. The gas and field strength in our DC’s resulted in a drift velocity
of 50 pm/ns. In each event, to is chosen when the Interaction Counter is hit. An
additional time offset corresponding to the distance of each plane from the Interaction
Counter, and lthe electronic delay of each sense wire, is subtracted in order to measure

the true drift time.

Table 2.5. ET91 Drift Chamber Configurations

D1 D2 D3 D4

Dimension (cm?) 126 x 71 285 x 143 323 x 143 511 x 259
View ordering 2(z, ', u,v) 4(z,u,v) 4(z,u,v) 1(z,u,v)
Number of planes

& channels 8 & 1536 12 & 2400 12 & 1952 3 & 416
z cell size (cm) 0.446 0.892 1.487 2.974
uv cell size (cm) 0.476 0.953 1.588 3.175
Resolution (pm) 400 300 300 450

2.7 Cerenkov Counters

E791 used two gas radiator Cerenkov counters for charged particle mass identi-
fication. The upstream counter (Cl) was located just downstream of M2, actually
partially inset into M2 due to space constraints. Thus, C1 had two-bounce optics to
keep the photomultiplier tubes (PMT’s) out of the magnetic field of M2. The other
Cerenkov counter (C2) was located between D3 and D4 (Fig. 2.1), and it had only one

primary mirror plane. Table 2.6 summarizes the Cerenkov counter configurations.
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Table 2.6. E791 Cerenkov Counter Configurations

C1 C2
Length (m) 3.7 6.6
Number of Mirrors 28 32
Gas Mixture 100% N, 80% He & 20% N,
7 momentum threshold 6 GeV/c 11 GeV/e
K momentum threshold 20 GeV/c 36 GeV/c
p momentum threshold 38 GeV/c 69 GeV/c

The Cerenkov probability calculation proceeds as follows. For each track and
mass hypothesis, a Poisson distribution with the predicted number of photons (u)

and the observed number of photons (n) was formed:

n
L e L pTH
f‘y."—n!e

where ¢ stands for C1 or C2, and j for different particles. The final combined proba-
bility P; used for particle identification was normalized by taking into account that
there is an a priori expectation (A;) based on the assumed natural occurrence of each

type of particle:

P — fui X fa
! 22:1 fk

with a prior: values of A(e, u, 7, K,p) = (0.02,0.01,0.81,0.12,0.04).

X Ak,

2.8 Calorimeters

TPL utilized two calorimeters, the Segmented Liquid Ionization Calorimeter
(SLIC) and the Hadrometer. Both were used to enhance the particle identification
capabilities for charged tracks, and to identify possible photon and neutral hadron

candidates. Also, both were used as part of the transverse energy (E7r) trigger.

The SLIC consisted of 60 scintillation layers, and some of the characteristics of the

SLIC are listed in Table 2.7. Electrons in matter can emit bremsstrahlung photons
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and photons near nuclei may produce e*e™ pairs. These two processes are responsible
for the propagation of electromagnetic showers. This scintillation light is proportional

to the energy of the incident particle.

Table 2.7. The SLIC Configuration

u channel v channel y channel
Number of channels 109 109 116
Number of layers 20 20 20
Single channel width (cm) 3.17 3.17 3.17
Channel length (cm) 110.4 110.4 46.25
Radiating material . lead
Scintillating material plastic and mineral oil
Total radiation length 20
Total absorption length 1.5
Position resolution (cm) .65

The Hadrometer was a steel and acrylic scintillator calorimeter located down-
stream of the SLIC. Hadrons can lose energy due to interactions with the nucleus via
the strong interaction when traveling in a high density material. Less than 1% of the
energy of electromagnetic showers reached the Hadrometer. Thus, charged hadrons
could be identified as wide SLIC showers with significant hadronic energy. Neutral
hadrons were also identified after all the hadronic energy associated with charged

tracks was subtracted. Table 2.8 lists some information about the Hadrometer.

Table 2.8. The Hadrometer Configurations

z channel y channel
Number of channels 66 76
Number of layers 36 36
Single channel width (cm) 14.5 14.5
Interacting material steel
Scintillating material plastic

Total interaction length 6
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2.9 The Muon Wall

ET791 had two muon walls made of scintillating paddles placed directly behind
a thick (106-cm) steel shielding wall. The steel wall blocked hadrons that had not
deposited their complete energy in the SLIC and Hadrometer. Muons interact mainly
through ionization and consequently retain most of their energy even after going
through the calorimeters and steel wall. These minimum ionizing particles are easily

detected with simple scintillating paddles. Table 2.9 summaries our two muon walls.

Table 2.9. The Muon Wall Configurations

z wall y wall
Number of channels 15 ' 16
Single channel width (cm) 40.6 14.2
Radiating material lead
Scintillating material plastic
Absorber thickness 11.6 interaction lengths
Active dimension (cm?) 300 x 224

2.10 Triggering and Data Acquisition

E791 was designed to take data with a very open trigger and to prune events
in offline software. The E791 trigger consisted of two parts: a pre-trigger based on
the quality of the 7~ beam and a secondary trigger based on the charm-like decay
products. The pre-trigger required one and only one beam particle incident within the
target cross section. The secondary trigger required an above-threshold (4-particle)
signal from the Interaction Counter behind the target foils, plus a minimum total

transverse energy for the event Ex > 4.5 GeV.

The E791 Data Acquisition (DA) system was designed to accept a large amount
of data at the fastest rate allowing data to be fully processed. T4 then made use of
the dead time in the beam delivery structure to process and record the data to tapes.

The DA system read out 24000 channels in 50 us, and events were accepted at a rate
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of 9000 events per second. Data was written continuously to a total of 42 Exabyte
Model 8200 tape drives in 6 VME crates at a rate of 9.6 Mb/sec. It took an average
of 2.5 hours to fill a set of 42 8-mm tapes. We successfully collected 20 billion Physics

events with an average event size of 2500 bytes on 24,000 tapes.
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CHAPTER III

ALIGNMENT, RECONSTRUCTION AND SELECTION

Each event was reconstructed, filtering charm candidate events from 24,000 raw
data tapes onto 7,500 data summary tapes (DST’s). To reconstruct hits in the
detectors into tracks, and further to assign tracks to vertices, required good geometry
constants to define the coordinates of each plane. The initial geometry constants were
measured by a survey team, allowing rough reconstruction of tracks. The geometry
constants were then fine tuned on a run-by-run basis. Production processing then

could precisely reconstruct tracks using the refined alignment constants.

3.1 Alignment

IIT was responsible for SMD alignment for each run on an IBM RS-6000 single
node UNIX machine. The algorithm used is described in E791 internal document
043.

The basic procedure was

e Reconstruction tracks: Choose the geometry file from the nearest earlier run as

the starting point, in order to reconstruct tracks by knowing the approximate

positions of hits.

o Selecting samples from raw data: The alignment was done in a multi-pass

manner for each run. From each run two disk files were created:

— Er sample: A total of about 8800 events passing the Interaction trigger
with Er > 3 GeV/c?. There must be at least one gocd quality track

having momentum > 10 GeV/c, more than 11 hits in the SMD’s, and a
track slope > 25 mrad.
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— Beam sample: A total of 7000 events passing only the pre-scaled Beam

trigger.

The Er sample was used for aligning the 17 downstream SMD planes, and later
was used again for locating the 5 targets and the Interaction Counter. The

Beam sample was used for the 6 upstream SMD planes and the 8 upstream

PWC planes.
e Downstream alignment: Define 5 alignment constants for each plane.

— Au — Offset of the central strip from the z-axis.

— A¢ — Plane rotation around the z-axis.

— Az — Plane shift along the z-axis.

— A@ — Tilt around the strip direction.

~ A% — Tilt around the axis normal to the strip direction.

There were a total of 4 passes of minimizing the x? for the final downstream

alignment constants:
— 15t fit — Global fit of Au and A¢ by fixing planes 9, 12, 15, and 16 for
Au, and planes 9 and 12 for Ag.

— 9nd gt _ Global fit of Au, A¢ and Az by fixing planes 9, 12, 15, and 16

for Au, planes 9 and 12 for A¢, and plane 9 and 15 for Az
— grd fit — Using fitted values of Au, A¢ and Az, further global fit Af.

— qth gy Using fitted values of Au, A@, Az, and A6, further global fit

A
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o Upstream alignment: In the upstream alignment, only the accuracy of Au
is critical, in order to reconstruct a good straight beam track. So after the
downstream planes was properly aligned, 7000 events of the Beam sample were
projected from downstream to upstream. The mean residual values from these
7000 events for each of the upstream SMD’s and PWC’s were determined. In an
example of upstream alignment for run 1500, Fig. 3.1 shows the beam profiles
and beam slopes in two views. Fig. 3.2 shows the residual of each upstiea.m

PWC plane. Fig. 3.3 shows the residual of each upstream SMD plane.

Finally,

o Target alignment: After downstream and upstream alignments were done, the
new geometry constants were used to re-reconstruct wide-angle and high mo-
mentum tracks plus the beam tra.ck(to form a primary vertex for each event.
By plotting more than 8000 primary vertices, each target foil was fit with a
Gaussian distribution to get the z-position of each foil center. Fig. 3.4 shows

the mean z-positions of 5 target foils and the Interaction Counter.

After SMD alignment was complete, by using a similar algorithm and multiple
passes, the DC alignment was done. Then the new and complete geometry constants

file was posted to all machines, and farm reconstruction of this run could proceed.

3.2 Event Reconstruction

The philosophy of charm candidate reconstruction is: from hits to form tracks,
from tracks to form vertices, and then to separate secondary vertices from the primary

vertex.

In ET791, first a beam track is reconstructed from the best x? fit of the hits in
the upstream 6 SMD’s and 8 PWC’s. Then focus shifts to the downstream SMD
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Beam Profile on Upstream Planes
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Figure 3.1. The Beam Profile in z and y Views, in Terms of the Intercepts and
Slopes of the Beam Line
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Figure 3.2. The Alignment Residuals of Eight Upstream PWC Planes: they are the

offsets to their own view direction on vertical planes.
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Offsets of Upstream 6 SMD Planes
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5 Target Foils and 1 Interaction Counter
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Figure 3.4. The z-position Alignments for Five Target Foils and the Interaction
Counter: The first target foil is a Pt coin, and the other 4 are made of Carbon.
The right-most peak is the Interaction Counter, a plastic scintillator in wrapping
paper.
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planes. Projections are formed in each view (z, y, Aa.nd v). Tracks are formed from
3 views and compiled into a Track List. Independently, tracks are also formed in
the DC system (downstream of magnets). Then the SMD tracks are linked with the
single-bend hypothesis to the DC tracks. This yields intercepts and slopes on = and

y, and the momentum for each track.

Using the Track List and the unique beam track, a 3-D reconstruction of the
primary vertex is done. Finally from the remaining tracks, 2-prong, then 3-prong,
4-prong, and higher multiplicity secondary vertices are formed into a Vertex List.

Each vertex has an associated x2.
3.3 Event Selection

In order to prune the huge data set and improve signal to noise, certain criteria
were added at each stage of Filtering, Stripping, Sub-stripping, KSU Micro-stripping,
and Final analysis — due to huge amount of data, several stages of reduction are
necessary to have a compact and manageable amount of data for different users and
different topics. Most of our cuts have one goal: separating the secondary vertices
from the primary vertex. I summarize my analysis cuts in Table 4.1, but let me define

them here.

e SDZ - The longitudinal distance between the primary and the secondary
vertices divided by their measurement errors added in quadrature. The higher
the value of SDZ, the more significant is the separation between the primary

and secondary vertices.

e DIP - The distance on the z — y plane between the primary vertex and the

line of flight of the reconstructed particles. Refer to Fig. 4.12 (a).
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PT2DK - The sum of the P? (in GeV2/c?) of all the secondary tracks with
respect to the flight path of the reconstructed particles.

PT_BAL - The absolute value of the vector sum of the P, (in GeV/c) of the

secondary tracks with respect to the flight path of the reconstructed particles.

TARSIG - The number of standard deviations in distance of the secondary

vertex from the closest edge of target foil or Interaction Counter.

TAUDEC - The roughly estimated decay proper time in ps for the recon-
structed charm hypothesis.

MNCHYV - The least CHVXTK - the x? for including this track into the
primary vertex fit; the smaller the value of MNCHYV is, the more likely is the

track to come from the primary vertex.

IMPACT - The intercept on the ¢ — y primary vertex plane of the bachelor
pion candidate track from the D*. Refer to Fig. 4.12 (a).

lp1 o

ASYM - The asymmetry of two decay tracks’ momenta: n
D1+ P2

in the lab
frame. It is correlated to the COS# and PT2DK cuts.

COS 6§ - The opening angle of one track along the parent line of flight. It is
correlated to the ASYM and PT2DK cuts.

JCATSG - ET791 divides the detector geometry into 4 regions; for example,
region 1 is the SMD area and region 2 is between the two magnets (refer to
Fig. 2.1). Whether a given track has hits in each region is encoded into a
computer word as a bit pattern: bit 1 is on if there are hits in region 1, etc.
This encoded word for a track which is seen in all accessible regions then has

possible values of 3 (0011), 7 (0111), or 15 (1111) depending on the track length.
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CHAPTER IV

PHYSICS ANALYSIS PREPARATION

The strategy of my analysis follows. I use the Vertex List to analyze every 2-
prong vertex. To improve statistical significance, I apply some tighter cuts for my
final analysis sample. To categorize 2-prong vertices into K~ K*, K~x™*, or 7~ ¥,
I rely on the Cerenkov particle identifications. To extract signal (SG), I use fitting
functions to estimate the background (BG) under SG. I describe the preparation for

the complete analysis in the following sections.
4.1 Monte Carlo Simulation

I use the Monte Carlo (MC) simulation for several purposes:

e To produce an unbiassed set of the MC SG. I use this SG from the MC and
BG from real DATA to tune the analysis cuts.

e To understand the acceptance of the detector geometry. I apply geometric

corrections to observed data.

e To understand the efficiency of the chosen set of cuts. I apply an efficiency

correction to the survival sample.

Usually, the last two items are combined into one study.

In addition, I use the well-known CFD D® — K-7—7+7+ mode to check the con-
sistency of my analysis Techrique. Therefore I am dealing with 4 decay modes simul-
taneously, D° > K*K~, D° > K—n*, D® s x*7r~, and D°—> K-7"7*x+. I count

the event numbers at the generator-level, so that more raw MC data events (800,000
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events) can be saved on one tape without truth table information. Without apply-
ing the Cerenkov ID cut, it is not easy to distinguish K=+ from K*x~, resulting
in problems fitting the MC BG. Therefore, I generate four sets of MC samples:
(1) D°>K~x* and D°— K*ntr~n~, (2) D° - K- n~xtxt and D°— Ktr~, (3)
D° - K+K~ and D°— K~K*, and (4) D° »n*7~ and D° - 7~x+. D° and D° are
not forced to appear in the same event. There is no extra selection criteria on how
D° and D° are produced but only on the decay modes. Note that in (1) and (2) D°
and DO are easily distinguished without Cerenkov identification. I accumulate more

than 7 million MC events for each decay mode at the generator-level.
4.2 Tuning Analysis Cuts

Since I have no a priori knowledge of what the best set of cuts is nor how the pure
signal (SG) data distributes for each cut variable, to tune the cuts, I start with SG
from a D° — K~nt MC simulation, and BG normalized by two sidebands of DATA
(D° — K~x* hypothesis). I compare distributions of certain cut variable from the
MC SG and from the DATA SG in order to understand which set of cuts has been
well represented in the MC. Refer to Appendix B for details of these comparisons

and specifications of signal and sideband regions.

A few things to be emphasized are:

o I consider only cuts which yield very similar distributions in DATA and MC;
especially, there must be no shift of peak values between MC and DATA (refer
to Appendix B).

e Among the chosen set of cuts, the first cut I adopt is the one giving the best
). Fig. 4.1 (c) and (f) show

optimization (statistical significance = _TS'%
SG and SG? )
vBG VvBG”

the effect of using different optimizations (
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o Adding the best optimized cut at a time, I iterate the optimizing steps for the

next best cut.

Fig. 4.1 shows the best cut to apply in the first iteration. After applying PT2DK>
5.2, I found the next best cut is MNCHV> 6 (Fig. 4.2). In the third iteration, there
is no further improvement. Thus, I have completed the tuning cut process. Table 4.1
lists all the analysis cuts including the stages where they are applied. In my final
analysis (refer to Chapter V), I apply all the cuts simultaneously. Because there is
a small fraction of double-charm events (two charm mesons in the same event), all
charm candidates are required to pass the same selection criteria. The same analysis
is applied to the MC sample, and I don’t need to worry whether MC has the correct

double-charm production.

I apply the same set of cuts on D° - K+*K~, D° -+ K-nt, D°—>7x*tr~, and
D°— K-7~ntn*. Recall that I used MC (K¥n%) SG and DATA (K¥n%) BG to
tune the cuts. If the MC (D° — K~ n*) can satisfactorily reproduce the effects of cuts
on the DATA (D°— K~w%), then there is no reason why the MC should not yield
reliable cut distributions for D® — K*K~, and D° —»7*7~. Applying the same set of

cuts to each sample reduces the complexity of the systematic error study described

in Sec. 6.3.
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Table 4.1. Summary of Analysis Cuts

Name Value Comment
Cuts for D%candidates
NOT.Target outside targets 0.1 cm At Strip stage.
or Int_Counter 0.5 cm
TAUDEC < 2.5ps At Strip stage.
PSUM > 25 GeV At Strip stage.
Zsecondary <3.0cm At Strip stage.
Charge =0 At Strip stage.
Track P; 156 — 500 GeV At Strip stage.
ASYM < 0.8 At Strip stage.
Mass > 1.7 GeV At Micro-strip stage.
SDZ > 8.0 At Micro-strip stage.
PTBAL < 0.40 GeV for 2-prong
< 0.35 GeV for 4-prong At Micro-strip stage.
Zprimary < -0.35 cm At Micro-strip stage.
| cos 4| < 0.995 At Micro-strip stage.
JCATSG =3,7,0r15 At analysis stage (to have momentum).
Track x? < 5.0 for 2-prong (very loose)
< 6.0 for 4-prong At analysis stage.
PT2DK > 0.52 GeV for 2-prong At analysis stage.
MNCHV > 6.0 At analysis stage.
Track | P| 6 — 80 GeV At analysis stage, for the C ID.
Kaon Kp > 0.16 for 2-prong
Pion K;p < 0.16 for 2-prong At analysis stage.
Cuts for D** tagging
JCATSG =3,7,0r 15 At analysis stage.
Track | P| < 100 GeV At analysis stage.
IMPACT < 0.008 cm At analysis stage.
Am 0.1430 — 0.1480 GeV At analysis stage.
ONLY = To ensure 1 7 for 1 vertex, at analysis stage.




57

Cuts comparison for MC and DATA of mkpi2422

B 1 o o
'6 4000 nt 3
» IsH 7]
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']
data SG dashed (b)
DATA pt2dk .gt
I S
\ 5
S [
€ o

mc / sqrt(data BG)

mc*mc / sqrt(data BG)

mc / sqrt(mc + data BG)

(e) ()
S/sqrt(B+S) VS. pt2dk .gt S/sqrt(B)*EFF VS. pt2dk gt

Figure 4.1. Tuning cut in the first iteration finds the best cut as PT2DK > 0.52 in
(e). In (a), the solid line is the cut distribution from MC SG and the dashed line is
from DATA SG; in (b), the solid line is the sideband to represent the DATA BG,
and the dashed line is DATA SG. Focusing on two solid lines in (a) as SG and in
(b) as BG, calculate the SG/+/SG + BG in (e), and estimate the cut value as 0.52
giving the maximum peak. (c) is SG/v/BG (not a good criteria in this case), (d)
the cut efficiency, and (f) another selection criteria of (c)*(d).
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Figure 4.2. Tuning cut in the second iteration finds the best cut as MNCHV > 6 in
(e). In (a), the solid line is the cut distribution from MC SG and the dashed line
from DATA SG; in (b), the solid line is the sideband to represent the DATA BG,
and the dashed line is DATA SG. Focusing on two solid lines in (a) as SG and in
(b) as BG, calculate the SG/+/SG + BG in (e), and estimate the cut value as 0.52
giving the maximum peak. (c) is SG/v BG, (d) the cut efficiency, and (f) another

S/sqrt(B+S) VS. mnchv .gt (e)

selection criteria of (c)*(d).
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4.3 Cerenkov ID Efficiency

In order to use Cerenkov identification to separate kaons from pions, I must
determine the efficiency for kaons and pions as a function of their momenta and
charges. Because the MC doesn’t have accurate Cerenkov efficiencies (evidence in

Fig. B.14), I can only use DATA to do this study.

I use the signals of decay particles themselves as evidence of the correct track
assignment, and then I vary one ID cut for one track at a time, to get the efficiency
from the ratio of the reduced SG number over the original SG number. For exam-
ple, if I am interested in K~ ID efficiency, then using the D®— K~ 7t sample and
hypothesis, I form an invariant mass plot, and the BG-subtracted D°® SG number is
then taken to be the number of K=. In other words, no D** — D°(D%)r* tagging
is required to distinguish D°® — K~#+ and D° — K*7~. Using the D* - K~x*g+
sample and hypothesis, the unlike charged track in the 3-prong vertex is the K.
I assume that the DCSD contamination is tiny in either sample. I also study the

K3 —w*r~ sample for the 7w ID efficiency comparison.

Using 100% of the DATA sample of D°— K~-=*, I fix all other non-Cerenkov |
ID cuts (as listed in Table 4.1) — varying non-Cerenkov ID cuts only produces
< 1% difference in the Cerenkov efficiencies. The ID cut efficiency as a function of
momentum and charge is defined as

A = D° SG number after ID cut

E =
T = D° SG number without ID cut

(4.1)

I use two steps to determine the BG-subtracted D® SG numbers (contrary to use

sidebands to do BG subtraction — fix sidebands and signal regions):
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e Not fixing the sidebands: I don’t assume the BG is a linear function, but rather a
third order polynomial function (p3), because the reflections from D° —» K+ K~
and D°— K% x° appear in the low-mass region of the D° — K~ 7+ hypothesis

(Fig. 4.3).

e Not fixing the SG region: I let the Gaussian widths float, because the fitted
widths of decay particles are a result of two track momenta. For instance, Whpﬂ
I study 7~ ID efficiency in low momentum bins, the partner K* tends to have
lower momentum, when 7~ is above a priori Cerenkov probability. In other
words, the widths might be different after each Cerenkov ID cut (illustrated in
Fig. 4.4).

I then apply the Cerenkov ID cut in 0.05 increments for each momentum bin
for each charge. The momentum bins run from 6 to 66 Gev/c in 2 GeV/c steps,
then 2 bins from 66 to 73 and 73 to 80 GeV/c, due to the lack of statistics in the

high-momentum region.

As an example, Fig. 4.3 shows the efficiency study for K+ with momentum 21-

24 GeV/c from the D°— K*+n~ sample. The ID cut efficiency for Kfp > 0.20 is
1867.2 £+ 50.6
2325.7 + 69.6
momentum 6-9 GeV/c from the D°— K*7~ sample. Note that the widths are

= 0.8027 £ 0.0171. Fig. 4.4 shows the efficiency study for =~ with

smaller above the a priori value of CPRB2(7) = 0.81. In this case, the ID cut

. 428.3 +£26.1
1 T > 0. —_—— = (. . .
efficiency of 7p > 0.90 is 14699 £ 56.3 0.2912 4+ 0.0159

According to Eq. (4.1), the efficiency error is calculated not simply by assuming
that numerator and denominator are uncorrelated, but by assuming that [the SG
number of events above ID cut] and [the SG number of events under ID cut] are

uncorrelated. Redefine the efficiency as:

= A = D° SG number above ID cut (4.2)
~ [A = D° SG number above ID cut] + [B = D° SG number under ID cut]’ |
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1.e.

E

Il
M|

and the associated error is estimated as

- L
dE\’ dE\?|?
Op = (O'A . EZ) + (U'B . -d—B;) ] (4.3)

To return to Eq. (4.1), I can replace B by T' — A and op by /0% — 0}, since I
consistently estimate the SG errors (for A, B, and T') as the /SG + BG in the SG

region.

Note that using different samples (D°— K~n*, D* - K~n¥xnt, or KO —»otnr™)
yields 10% variations in some momentum bins (compare Fig. 4.8 and Fig. 4.9). The
variations could arise because in order to get the SG number by BG subtraction in
Eq. (4.1), I am actually measuring the average efficiency in a certain momentum bin:

[ letp) - £(o)) dp
E,' — YPi-1

(4.5)

P

" f(p)dp

Pi-1

where f(p) is the momentum distribution of sample tracks. The kaons or pions from
D° - K~7tand Dt — K~ntxt, each have their own distinctive momentum distri-

butions, so the average Cerenkov efficiencies are not the same in bins of momentum:

JCORAOL.
" hle)dp

Pi-1

Ei(K_)DO —~ Ko

E(k-)DT - Komrat Juo [:(p) ) dp
fa(p) dp

Pi-1
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They would be the same only if ¢(p) were a constant, or f;(p) and fa(p) were pro-
portional to each other. Compare Fig. 4.5 with Fig. 4.6. In 3-prong vertex finding,
we form a good 2-prong vertex first and then add the third track to form a 3-prong
vertex, so index 3 in a 3-prong vertex list is usually a slower pion track. The dif-
ferent efficiencies between the two pions (with the same charges and birth poiﬁts)
from the same Dt — K~n*tn*t (Fig. 4.9) in the low momentum bins offers support
to my argument. Also, the different efficiencies between the kaon from D°— K~ =t
and the kaon from Dt — K~7*n* is presented in Fig. 4.8 and Fig. 4.9. Thus, the
difference of Cerenkov ID efficiencies from D°— K~7+ and D* — K~n*x+ samples
can be explained as the difference of momentum spectra of decay tracks. This shows

the need to be cautious in applying Cerenkov efficiencies based upon a sample with

a similar momentum distribution.

After these comparisons, I am confident of using D° — K~ for my final Ceren-
kov ID efficiency study, and the assumption here is that the kaons of D®— K*K~
and the pions of D® — w7~ have similar momentum distributions to the kaons and
pions from D® — K~7*. I choose the analysis cut of Kyp > 0.16 (which gives the best
statistical significance on D° — K*tK ™) to identify tracks as kaons. If Kp < 0.16,
tracks are assumed to be pions. Thus, each 2-prong vertex can be a candidate for
one and only one of D° - K*K~, D°—atr~, or D°— K~7+. Table 4.2 lists the

Cerenkov ID efficiencies I use for the final analysis.
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Momentum distribution of K from D°
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Figure 4.5. Track Momentum Spectra of DATA BG-subtracted D° — K~ nt:

Vertical axis is events/bin and horizontal axis is momentum from 6 to 80 GeV/c.
Please compare (a), (b), (c), and (d) with Fig. 4.6. (e) and (f) are made by taking
the ratios of (b) to (a) and (d) to (c), in order to understand the possible detection

bias or the mismatch of the MC simulation. Also compare with Fig. 4.7.
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Momentum distribution of K7t from DT
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Figure 4.7. Track Momentum Spectra of MC BG-subtracted D° — K~ = *:
Vertical axis is events per 2 GeV/c and horizontal axis is momentum from 6 to 80
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order to understand the mismatch of the MC simulation. Compare with Fig. 4.5 to
see that the data points in Fig. 4.5 () and (f) are merely statistical fluctuations.
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Cerenkov Efficiency in Cat =3,7,15 p = 3 GeV Range from D°
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Cerenkov Efficiency in Cat =3,7,15 p = 3 GeV Range from D*
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Figure 4.9. Track Cerenkov ID Efficiencies of D+ — K-n*n+:
Vertical axis is ID cut efficiency and horizontal axis is momentumin GeV/c. Please
compare with Fig. 4.8. Also note the difference between m; and w3 of the same

charge in low momentum bins, mainly due to the difference of momentum distri-
butions in Fig. 4.6.
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Table 4.2. Cerenkov ID Efficiency of Kaon and Pion Identification

Momentum Kip > 0.16 as kaon, Krp < 0.16 as pion (from D%— K~ rt sample)
range K- Kt " T
6-8 0.40 + 0.04 0.38 + 0.03 0.91 £ 0.02 0.90 £ 0.02
8§-10 0.58 + 0.03 0.63 + 0.04 0.95 £+ 0.01 0.96 4+ 0.01

10 -12 0.74 £+ 0.03 0.70 + 0.03 0.94 + 0.01 0.94 £ 0.02
12 - 14 0.82 £+ 0.03 0.85 £ 0.03 0.85 + 0.01 0.85 + 0.02
14 - 16 0.79 £+ 0.02 0.84 + 0.02 0.85 + 0.01 0.83 + 0.01
16 - 18 0.88 £+ 0.02 0.89 £ 0.02 0.90 + 0.01 0.86 + 0.02
18-20 0.87 £ 0.02 0.88 + 0.02 0.87 + 0.01 0.84 + 0.02
20 - 22 0.80 + 0.02 0.85 £+ 0.02 0.85 + 0.01 0.84 + 0.02
22 - 24 0.77 + 0.02 0.84 + 0.02 0.89 £+ 0.02 0.88 + 0.02
24 - 26 0.83 + 0.02 0.82 £ 0.02 0.85 + 0.02 0.90 £+ 0.02
26 — 28 0.80 £+ 0.02 0.73 + 0.02 0.88 £+ 0.02 0.89 £+ 0.02
28 - 30 0.77 £ 0.02 0.78 + 0.02 0.85 + 0.02 0.85 £+ 0.02
30 - 32 0.75 £+ 0.02 0.75 £ 0.02 0.86 & 0.02 0.92 £ 0.02
32-34 0.78 £+ 0.02 0.74 £+ 0.02 0.85 + 0.02 0.93 £+ 0.02
34 - 36 0.72 £+ 0.02 0.73 + 0.02 0.84 £+ 0.02 0.91 £ 0.02
36 - 38 0.68 £ 0.02 0.74 + 0.02 0.88 + 0.02 0.90 + 0.02
38 - 40 0.68 £+ 0.03 0.68 + 0.02 0.96 + 0.02 0.90 + 0.02
40 - 42 0.60 £ 0.02 0.66 + 0.02 0.91 £ 0.02 0.84 + 0.02
42 — 44 0.64 + 0.03 0.62 £+ 0.02 0.88 + 0.02 0.87 + 0.02
44 — 46 0.56 + 0.02 0.51 + 0.02 0.89 + 0.02 0.92 + 0.02
46 — 48 0.51 + 0.03 0.51 + 0.02 0.84 £+ 0.03 0.93 £+ 0.02
48 - 50 0.54 + 0.03 0.49 £+ 0.02 0.88 £+ 0.02 0.86 + 0.03
50 — 52 0.53 £ 0.03 0.46 + 0.02 0.84 £+ 0.03 0.91 + 0.03
52 - 54 0.48 £+ 0.03 0.45 + 0.03 0.88 + 0.02 0.92 + 0.03
54 — b6 0.43 £+ 0.03 0.45 £+ 0.03 0.81 + 0.03 0.82 + 0.03
56 — 58 0.41 £+ 0.03 0.42 £+ 0.03 0.86 + 0.03 0.93 + 0.02
58 - 60 0.42 + 0.03 0.40 £+ 0.03 0.81 + 0.03 0.84 + 0.03
60 - 62 0.38 + 0.03 0.35 + 0.03 0.79 £ 0.03 0.79 + 0.03
62 — 64 0.41 £+ 0.03 0.38 £+ 0.03 0.88 + 0.03 0.82 + 0.04
64 — 66 0.37 + 0.03 0.46 £+ 0.03 0.76 + 0.04 0.85 + 0.04
66 — 73 0.33 + 0.02 0.35 + 0.02 0.84 + 0.02 0.80 £ 0.02
73 - 80 0.28 £+ 0.02 0.32 + 0.02 0.82 + 0.02 0.81 + 0.02
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4.4 Fitting Invariant Mass Plots

In Fig. 4.10, I show the most likely BG contribution for the D° — K+ K~ mass
hypotheses. BG are mainly from the reflections of D° - K~n+ and D°— K~ rt=®.
We see these in MC and data scatter plots. I have also checked some semi-leptonic

decay modes and 3-prong modes, and none of them contributes significant BG after

our Cerenkov ID cuts.

For D° — K+ K~ 1fit the SG as a Gaussian (G), the D° — K~ 7*7° reflection as
a broad Breit-Wigner (BW) distribution function the D®— K~ 7% reflection as an
asymmetric half-G-half-BW (ASY) — continuous at the peak, and the combinatoric
BG as a linear function (L). For the D° »w*x~ case, I only see the asymmetric
reflection of D®— K~ 7% on the low-mass side of the SG, and the combinatoric BG

as an exponential function (E).

Thus I fit the mass window of 1.70 — 2.20 GeV/c? in 5 MeV/c? per bin for
D° 5 K+tK~ with <L+ BW + G+ ASY >, D° > atr~ with < E + ASY + G >,
and D° = K~ 7% and D° - K~7~n*x* with <G + P3>. Fig. 4.11 is the result of
fitting in the D° > K~-nt, D° - K+*K~, D° s xtn~, and D°— K-7~7*7* modes.
Note that I always use (Gaussian peak +2.5¢') as the SG region, and the Gaussian
peak above the crossed BG is BG-subtracted SG. Fig. 4.11 also shows the necessity
of applying Cerenkov ID cuts to improve the statistical significance for D° — K+ K~

(plot (b)), and fixing SG width to estimate SG for D® —»x*x~ (plot (c)).
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Figure 4.10. Study of Likely BG Under D°® — Kt K~ Signal:

(2) From MC, K is misidentified as KK, an asymmetric broad shape.

(b) From MC K, scatter plot of K7 mass vs. KK mass. The “cross” is from
double misidentified K7 as 7K.
(c) From MC, K7(7°) is misidentified as 2-prong KK, and it shows a broad shape.
(d) From MC Kr(7°), identified as K7 mass vs. KK mass. Superimposed (b) and
(d) to compare with data (f).
(e) From Data, KK mass plot with Cerenkov ID cuts.

(f) From Data, K7 mass vs. KK mass from the same vertex.
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Event Without ID Cuts ==F791==
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Figure 4.11. The Fitting Functions:
(2) < G + P3 > for K¥r%, (b) < L + BW + G + ASY > for K*K¥, (c) <
E 4+ ASY + G> for n*n¥, and (d) <G + P3> for K3n.
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4.5 Reduced Proper Time

The decay proper time ¢ for a particle of invariant mass mo and momentum p is

defined as

: = Lyest
v

— Liab/1E
v

_ Ljap-mo

FY-mo-v

= Labmo (4.6)

4

where L is the decay length in the lab or rest frame, v is the velocity, v is the

Lorentz energy factor, mg is the invariant mass and p is the measured momentum.

The main purpose in adopting reduced proper time is to correct for the loss from
our analysis cuts at low proper time without further decreasing the size of the data
sample. I can then apply a better (or flatter) acceptance function without huge

uncertainties in the low reduced proper time bins.

The basic idea of Reduced Proper Time is to redefine the starting time ¢, in the

sample surviving our analysis cuts. There are several ways to define a new reduced

. L sn °
proper time. For example, I could define ¢; to be —L";ﬂ, where ppaz and Lmin
nmazx

are the maximum momentum and closest approach to the primary vertex under our

cuts, and they could be a single value for all events. Then the reduced proper time
L- Lpin - .
st =t—ty = o _ Zmin 0 Byt in this case all I really have done is to
p pma:l:

shift the origin of ¢, which does not increase the acceptance of low proper time bins.

This example illustrates that the lifetime is a unique characteristic of each decayed
particle, and it does not matter when you start clocking the particles, since the decay

probability is always exponential, i.e. the particle has no “memory” of how long it
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has already lived, and it also illustrates that the proper time is a function of length

and velocity.

I could also define a new minimum length, L,,;,, as the distance between the point
of closest approach to the primary vertex, and the secondary vertex, illustrated in

Fig. 4.12 (b). Note that Lmin cannot be a function of L nor of proper time.

Lmin ‘

I then define the origin of reduced proper time as t; = Zmin "0 Note that to
p

is a function of both reduced length and momentum. For the same value of Ly,
different values of p will yield different values of t). However I can separate my
sample into different momentum subsamples, and they all share the same lifetime,
1.e. the reduced proper time is just a coeflicient times an exponential distribution,
Chp, * e~%, for each subsample. Then I can combine all the momenta; effectively I
am summing all the coefficients but with the same exponential factor of lifetime T,
i.e. [Cp + Cpy + Cpy + -]+ e~%. In other words, a momentum-weighting scheme
in reduced proper time will not change the exponential character of the decay time

spectrum, and our reduced proper time will not change the measured decay lifetime.

(L — Lmin) - Mass

2 , where Ly is the maximum of L32Z

min

So, I define t' =

LETBAL | [5DZ i jllustrated in Fig. 4.12, where the basic idea is to “swim back” the

and

DP° vertex along the line of flight toward the primary vertex. The reconstructed D°
reaches the point of closest approach at L3527 as determined by the SDZ., value.

So from simple trigonometry, we have

. SDZ ey

1pr = 1500 (41)
PTBAL

LPTBAL fnnd - — R

mn L PTBAL (48)
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DIP and Impact Parameter. (a)

+Z axis

SDZ /L = SDZ,y; / Ly

Lnin Of SDZ for Reduced Proper Time. (b)

Figure 4.12. Tllustrations of (a) DIP and IMPACT Cuts and (b) Reduced Proper
Decay Length, LS2Z.
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CHAPTER V

PHYSICS ANALYSIS

5.1 Relative Branching Ratios

The BR’s are calculated as follows:

D(D°>K+K-)  €*(K*K7) - {5 (K*K7) Ny pex )

I‘(D°—->K'7r+) - e;l(K:eri)-{egl(K$7ri)'NK;7ri} (5.1)
I(D0—atr) g (rta®) - {G(n*a¥) - Nox %} (5.2)
TD°—K ) G (K™n%) {eg (K7n%) Nyr oz '

PO KHK-) & (K*KF) - {g' (K*KF) Ngegr ) (5:3)

T(D° —»7tr=) & (rEn¥). {egl(vrivr*) : Nﬂ.iw;}

where ¢, is the correction from acceptance (geometry and analysis cuts), 651 is the

correction from Cerenkov ID cuts, and N is the BG subtracted signal number we

observe.

I apply the Cerenkov ID efficiency correction by applying a “weight” to each 2-
prong vertex (each track has its own efficiency as a function of its momentum and

charge):
1
[E¢(Cr,p1) £ AE] X [E(Cayp2) £ A

where C; and p; are the charge and the momentum of tracks : = 1, 2. The error is

weight £ Aw =

(5.4)

propagated from the corresponding efficiency error (refer to Sec. 4.3).

First, I fit the results from the MC study with the same set of cuts as the DATA.
I consistently treat Data and MC on the vertex basis. By dividing by the gener-
ated MC numbers, I get an acceptance for D° —» K~n+, D° > KtK-, D° »rn*7n~,

and D°— K~-n~wtx* in Fig. 5.1. Second, I fit DATA as illustrated in Fig. 5.2. I
fix the widths (by assuming they all have the same ratio of DATA/MC from the
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D° - K~7% mode) for D°—» K+*K~ and D°—xtnr~. For example, to obtain the

width for D°— K+ K~ mode

WidData(K:FW:t)
Wind(K:F'Il'i) '

Widpata(KiK:F) = Wind(KiK:F) X

Especially in the D® — w¥ 7~ case, it is necessary to fix the width (refer to Fig. 4.11).
I fit unweighted data first in order to determine the fractional errors, then apply these
fractional errors to the weighted plots, propagating weighted errors from unweighted
fractional errors. Finally, by applying the acceptance correction on each mode, I
get the results listed in Table 5.1. Note that D°— K~n~w*n* is our consistency

checking mode, and there is no ID cut on D® — K~n~w*x* (but I choose the highest

D> K r ntwt)
(D’ — K7t

shows reasonable agreement with the PDG’94 value (2.02 + 0.11) [PDG94], and this

Kp as kaon), so the only correction is from the MC acceptance.

indicates that our MC acceptance is satisfactory.

Table 5.1. Branching Ratios (Statistical Error Only)

De(;:a.y Mfde Branching Ratios
%f(%{i%;é))) 0.107 + 0.003
11:(( gg: II{{;};D) 0.040 + 0.002
L 2.65 + 0.14

DD K~ n_mtnt) 2.19 + 0.03

T(D°— K—nT)

5.2 Lifetime Difference

Our major 2-prong cuts are

e SDZ > 8. — affects the low proper time.

e PTBAL < .4 GeV — affects the low proper time.
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MC Acceptance ==E791==
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Figure 5.1. MC Acceptance Study for
(a) K¥r%: (3.062 £ 0.006)%, (b) K*KF: (3.047 £ 0.006)%, (c) m*nF: (3.087 +
0.007)%, and (d) K3w: (0.231 £ 0.002)%.
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unweighted DATA Knt

Branching Ratics ==F791==
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Figure 5.2. The DATA in the left column are the unweighted plots after ID cuts,

used to propagate the fractional errors to the right column plots, which are weighted
DATA after ID cuts.

To fit the SG numbers of (b), (d), and (f), I fix the widths by comparing DATA

and MC.
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o Cerenkov ID cuts — alters the momentum spectra and tests the MC’s reliability.

The first two items will be corrected by using the reduced proper time. Since we don’t
have reliable Cerenkov efficiency in the MC, before applying the MC acceptance

correction, we apply the Cerenkov correction from the DATA study, described in
section 4.3 and Eq. 5.4.

Fig 5.3 illustrates the 2-dimensional view of mass vs. reduced proper time for (a)
K*K¥ and (b) K¥r%. I will slice into 16 bins of reduced proper time for binned
method, and also will check the validity by unbinned maximum likelihood fitting on

TKx

5.2.1 Binned Reduced Proper Time Method. Fig. 5.5 (D°— K*K~) and
Fig. 5.6 (D°— K~rt) are from Cerenkov weighted mass plots in 16 reduced proper
time bins. I propagate the weighted statistical errors from the unweighted fractional

errors of Fig. 5.4, as described in Sec. 5.1.

To fit the SG number in each plot, I fix the SG width in all reduced proper
time bins for both modes. Fixing the SG fitting width is reasonable — within the
same range of SG region, we are measuring the exponential decay lifetime. This is
evidenced by the fact that in the MC of D°— K+K~ (Fig. 5.7) and D°— K~ n™,
and the DATA of D°— K~—n* (Fig. 5.6), one sees similar SG widths throughout the

reduced proper time bins. This can be understood from the definition of proper time:

(5.5)

where L, mg, and p are decay length, rest mass, and momentum in the lab frame.
The measured momenta are used to get the invariant mass of the hypothesis, so the

errors of invariant mass and momentum are correlated.
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2D View of Mass VsS. Reduced Proper Time ==E£791
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Unweighted KK in 16 bins of t' ==E791==
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Figure 5.4. D°— K+*K~ Mass Plots After ID Cut But Unweighted, in 16 Bins of
Reduced Proper Time.
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Figure 5.5. BG Subtraction from Cerenkov Corrected (Weighted) D° — K+ K~ Mass
Plots in 16 Bins of Reduced Proper Time.
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Figure 5.6. BG Subtraction from Cerenkov Corrected D° — K=+ Mass Plots in 16
Bins of Reduced Proper Time:

It also illustrates that the widths in each reduced proper time bins are about the

same size.
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MC D° — KK in 16 bins
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Figure 5.7. BG Subtraction from MC D° — K+ K~ Mass Plots in 16 Bins of Reduced

Proper Time:

It also illustrates that the widths in each reduced proper time bins are about the

same size.
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Fig. 5.8 shows the extraction of acceptance functions from the MC studies. Since
I have done the Cerenkov ID correction (weighting) in DATA, I apply the same 2-
prong cuts, binning the MC into the same 16 reduced proper time bins, but without
the Cerenkov ID cuts. I fit the MC from bins 4 to 10 into an exponential shape to
get an estimate of heights, and then I use the input MC lifetime (.415 ps) as the
slope tb draw two straight lines on the semi-log scale, as shown by the dotted lines in
Fig. 5.8(a). From the central value of each reduced proper time bin I get the ratios of
the fitted MC data points to the exponential inputs. Thus, I get the floating discrete
MC acceptance functions (as shown in Fig. 5.8(b)) for the reduced proper time. I
consistently use the central value of each bin in DATA and MC, thus eliminating the

uncertainty due to the finite binning.

I then apply the MC acceptance corrections on weighted distributions in Fig. 5.5
and Fig. 5.6, and fit the corrected 16 bins with an exponential decay function by
log-likelihood maximization. The statistical errors of MC events have been taken
into account for each data point. At the same time I also calculate the mean values
for D° > K+tK~ and D°— K~n*. Fig. 5.9 presents the fit result from this binned
method on a semi-log scale. Fig. 5.10 shows the fitted values and the mean values.

Table 5.2 lists the results of the binned lifetime measurement.

Table 5.2. Binned Method Lifetime (Statistical Error Only)

Method Mode Binned lifetime measurement
Binned Likelihood TKK 0.414 £ 0.012
TKx 0.409 + 0.003
Eq. 1.57 A~vapprox —0.055 + 0.148
Eq. 1.55 AYgted ~0.056 + 0.149

Decay Mean Value Difference Approaches. Using the method detailed in

Appendix A, I also calculate tmean from these 16 bins of BG-subtracted SG. Owing
to the complicated BG in K*K¥ plots, it is difficult to use the unbinned method
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Figure 5.8. The Study of MC Acceptance Functions for the Binned Method:
(a) MC is passed through the same selection criteria as DATA, and separated into
the same 16 reduced proper time bins as DATA. The solid line comes from a fit of
the 4th bin to the 10th bin in order to get the heights. The dotted slopes are then
taken from the MC input lifetimes and the fitted heights. -
(b) The ratio of output to input in each bin is my floating discrete acceptance
function.
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to calculate the mean value, but in the K¥7¥ case, it is possible to approximate

the linear sideband for an unbinned BG subtraction. I calculate tmean and o; (root
Yiti- S

_ > S
\/l <t?> — <t>?|, where S; and t; are the BG-subtracted SG number and the

mean square, RMS) according to their definitions: < t >= and o, =

central value of the :** bin, respectively. The uncertainty of assigning t; is only about

0.001 ps in this case. The error of tmean is estimated by -—a-l-, where N is the total

vN

number of events.

According to Sec. A.1, I use the S; as the MC acceptance corrected SG number,
because Fig. 5.8(b) shows a slight acceptance difference between K*K¥ and K¥r*,

Thus, from Eq. 1.57 and Eq. A.8, I estimate A-ypeani as shown in Fig. 5.10.

I generated the MC with 7, = 0.415 ps [PDG94] (also from Table 5.2, the MC
generated lifetime is closer to the measured value of 7xk ), so following the discussion
in Sec. A.2 and Sec. A.3, I should use Eq. A.19 (not Eq. A.21) to estimate the
A9mean2 in Fig. 5.10. Here the S; and o are not MC acceptance corrected. The
correction factor is obtained from the ratios of two MC mean values of the same
Tk lifetime as shown in Eq. A.19. Table 5.3 summarizes the results of the A«
approximation by mean value difference methods. The difference between tpeani

and tpean9 is due to whether the MC acceptance correction is applied or not.

5.2.2 Unbinned 2-Dimensional Maximum Likelihood Fit. In this section,
I focus on the D® — K~w* case, in order to confirm that the binned reduced proper

time method described in Sec. 5.2.1 is adequate.

One can construct the probability distribution function (p.d.f.) for the it* K¥x*

candidate as

P(mi, ti | par(1 : 9)) =

7o - Gauss(m;, md0, wd0) - —}-e;% +
0

(1 —ro) - Lin(my, bgh, bgs) - Lint(t;, 71, bgc, Te2) (5.6)
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Figure 5.10. Fitting Results for Ay Using Different Approaches:
The solid line is K*K¥; the dashed line is K¥7*; and the dotted line is from
PDG'94 KFr* lifetime.
tmean shows the mean values described in Appendix A. The left portion of tmean’s

are from the method in Sec. A.1, and the right portion is from Sec. A.2. The results
of the maximum likelihood fit are shown.
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Table 5.3. Binned Ay Mean Value (Statistical Error Only)

Method Value Mode E791 Data
Sec. A.1 tmeani KEKT 0.3821 + 0.0060
K¥x% 0.3786 =+ 0.0017
RMS1 K*K+¥ 0.3362 =+ 0.0060
K¥rgt 0.3342 + 0.0023
AYpeanl — —0.063 £ 0.112
Sec. A.2 tmean? KEKT 0.4086 + 0.0041
K¥Fgt 0.4030 + 0.0017
RMS2 K*K¥ 0.3374 + 0.0077
KFx* 0.3337 + 0.0025
MC correction factor 0.40729/0.40898
AYmean?2 — —0.068 + 0.083
where
1_e-HERR)
Gauss(m;, md0,wd0) = — "”101; 2= ,
/ (—————=e~5=5E%)) dm
ml de\/ﬁ—'lF

Lin(mi, bgh, bgs) = mzbgh t+bgs-(mi—20)
f (bgh + bgs - (m — 2.0))dm
ml

-t -t
€ ™ 4 bgc-e T

Lint(t;, Te1, bge, To2) = —3 : R
(e_ bt + bgc N e_.rbz )dt
t1

Each P(m, ;) for a single event has 2 contributions: (1) the signal of a Gaussian
mass term with a single exponential decay term, and (2) the combinatoric linear term
with a double-exponential decay term. Each term is normalized to the mass interval

(ml,m2) of 1.77 — 1.95 GeV/c? and the time interval (¢1,2) of 0.0 — 1.6 ps.

The 9 parameters are

o o, md0,wd0, and 7, — fraction, Gaussian peak, width and lifetime of the signal,

o bgh, bgs, Ts1, Tb2, and bgc - height, slope, 1%, 2™, and coefficients for the two
lifetimes of the linear BG.
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There is thus a 2-D 9-parameter p.d.f. for each event. Because each observation
is independent of the others, the likelihood function (LF), or the joint probability of

all observations, is

L(m,t | par(1:9)) = [ P(mi,t; | par(l : 9)). (5.7)

=1

But recall that in order to use the MC acceptance function A(t) properly, I need
to correct the Cerenkov efficiency by weighting w; for each event. So the LF is then

[Frodesen]

N
L(m,t | par(1:9)) = [[ (P(mi,t; | par(1 : 9))). (5.8)

i=1
The reason for putting w; in as a power is that the model of P(m,t) is based on
unbiased prediction and detection (the ideal Gaussian mass term and the ideal ex-
ponential decay term), but it is necessary to account for the reciprocal of detection
probability due to the Cerenkov ID cut. If at a value of (m4,t;) one observes one
candidate, there should have been a total of w; similar candidates, having the same
P(m;, t;). The product of all these w; candidates of P(m;, t;) is equivalent to apply-
ing the weight as a power. The Cerenkov efficiency correction does not depend on
mass or decay time — SG and BG could have the same Cerenkov efficiency correction

(weighting), as described in Sec. 5.2.1.

A similar argument could be applied to the correction of the acceptance function

A(t). The LF would be

L(m,t | par(1:9)) = ﬁ (P(mi, ti | par(l : 9)))"""‘4_1(“). (5.9)

1=1
But I extract the continuous (unbinnéd) acceptance function from the MC study

using a chosen SG region. In other words, I assume that the acceptance function

does not depend strongly on mass. It may not be sufficient to assume that the BG
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has the same acceptance nor to apply the acceptance correction on both the SG term

and the BG term. Thus, I model A(%) into the SG decay function in new P'(m,t) as

P'(my, t; | par(l:9)) =
To * Gauss(m", me, ‘de) . AE(t.', To) +

(1 — o) - Lin(m;, bgh, bgs) - Lint(t;, s, bgc, Tba)- (5.10)

where the new normalized SG reduced proper time probability is

A(t; -e_%
AB(ti, 7o) = —E)

/ A(t)- e dt
tl

The new LF is then
N
L'(m,t | par(l:9)) = [ (P'(ms,t; | par(1 : 9)))™. (5.11)
=1

Applying the log-likelihood method — the product II changes into a summation X,
and the power w; becomes a coefficient in front of each (log P'(m,t)) term; the

log-likelihood function (LLF) is:

N
—log £'(m,t | par(1:9)) = — ) w; - log(P'(mi, t; | par(1 : 9))). (5.12)

=1

where the extra negative sign is necessary for the minimizing program MINUIT

[MINUIT].

MINUIT calculates errors by assuming that the LLF is distributed as a Gaussian
near the minimum, and that the LLF can be approximated as a parabolic shape.

The variance matrix of n parameters is approximated as

V(n xn) = HY, (5.13)
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with
B *log L
a0, 86,

In my weighted LLF, this method obviously underestimates the error, for all w; > 1.

Hy =

(5.14)

I can reduce every w; into w; by a common factor, e.g. the average weight. Note
that rescaling w} results in a log £’ of order similar to the unweighted log £; each
w! is just a coefficient in front of log(P!(m;,t;)), so rescaling w} does not alter any
parameter at the minimum. Then the weighted errors estimated by MINUIT are of
the same order as unweighted errors. I can then approximate the rescaled weighted
error by multiplying by the “spread” of weights!, |

VEY w}/(ZF i)’
1/VN '

If all the weights were the same, the spread would be 1.

(5.15)

Table 5.4 lists the unbinned maximum likelihood fit results. It shows good agree-
ment with the binned method (refer to Sec. 5.2.1). The small difference could be

interpreted as a systematic uncertainty due to the binned method.
5.3 CP Asymmetry

Recall Eq.(1.66) and Eq.(1.67):

N(D¥'-»(D°— K*K~)nt) N(D* —(D°—K-K*)=")
N(D*'>(D°>K-mt)1*)  N(D*—>(D°—>Ktn-)7")

ABR(K*KF) = =
cp ) N(D**-(D°—>K*K-)n*) N(D*—=(D°>K-K*)x")
N(D*'—(D°—K-nt)n*t) = N(D*—=(D°—=Ktr~)7")
N(D*—(D° »xtr=)x+) _ N(D* - (D° 7= n¥)7w™)
pB(rinsy — NP Ea)nh)  N(D— (D = Ko n)w)

N(D*'=(D° s xtr-)xt) © N(D* = (D°—r n+)r")
N(D*—(D°— K-nt)nt)  N(D* = (D°— K*tr~)x~)

tPrivate communication from Dr. M. Purohit.
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Table 5.4. Result of Unbinned 2-D Maximum Likelihood Fit

Number Parameter D% K~ 7t mode
1 md0 1.86668 + 0.00009
2 wid0 0.01342 + 0.00009
3 rat0 0.2612 £+ 0.0016
4 bgh 0.118 + 0.0462
5 bgs ~0.84 + 0.33

* 6 % To 0.4083 £+ 0.0028

7 THi ‘ 0.3928 + 0.0025
8 bgc 2.74 £+ 0.042
9 Th2 0.0619 £ 0.0009

Average Weight and Spread for D’ - K~ =+
in mass window 1.77 — 1.95 GeV/c?
Average Weight 1.614
Weight Spread 1.072

where N stands for the observed SG number after BG-subtraction, decay is assigned
to D° or D° by using the charge of the bachelor 7% of D** — D%(D°)r* tagging, and
the normalization to the D° — K~ 7% and D® —» K*7~ modes is necessary to correct
for the asymmetry from D° and D° productions. The corrections from geometry and
cut efficiency are not necessary in ASR, because they all are cancelled out by the

normalization denominators. For instance, the inefficiency of the slow =+ detection
N(D*'—(D°— K*+K~)7t)
N(D**'=(D°— K-7+)n™")
charges would be cancelled out by the 2-opposite-charge-pseudoscalar decays. As

would be cancelled out by , and the detection bias of
a check, I also measure the CP asymmetry of the D° - K~7~7*7* mode, which
is a CFD, and ABR(K3r) should be consistent with zero if there is no direct CP
in CFD. ABB(K3r) is designed to support our measurements on ASR(K*K¥) and

ABR(ntn¥), in case of being non-zero.

In order to carry out proper comparisons between D° and D°, I again fix the same
widths for fitting both D° and D° mass plots, using widths from the combined D°
and D° mass plots in 4 decay modes. Fig. 5.11 and Fig. 5.12 are the result of fitting

mass plots.
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Figure 5.11. ABR Study of DATA Plots for K¥n* and K*K¥:

Tagged D° and D° are combined to get “average” widths which are later fixed to
fit individual D° and D°.
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Figure 5.12. ABRStudy of DATA Plots for 7*n¥ and K3r:

Tagged D° and D° are combined to get “average” widths which are later fixed to
fit individual D° and D°.
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Note that in this CP asymmetry study, there is no MC involved, eliminating
any uncertainty due to the MC simulation. Also, because they are all D° —+ PP
(pseudoscaler), the decay products of D° and D° are isotropic with no polarization
in space. Thus, the detector asymmetry between positive charge and negative charge
has very little effect on our result. The asymmetry of the bachelor 7+ (7~) tagging

is cancelled out by using D°® — K~7+(D° — K*+7~) for normalization.

Table 5.5 lists the results of ABR(K*K¥), ABR(n*7F) and ABR(K3w). Also, I
translate the results into 90 % confidence level (C.L.) upper limits?. All measurements

are consistent with zero.

Table 5.5. AZE (Statistical Error Only)

Decay Mode ABR Upper Limit at 90% Conﬁdence Level
;(K*K‘F) —0.018 + 0.054 -10.7% < A g{ <71%
R(w*ﬁ —0.052 + 0.093 -20.6.% < AZp < 10.1%
BR(K37) ~0.018 + 0.023 -5.6% < AB < 1.9%

{By using central value + 1.64 X statistical error
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CHAPTER VI

SYSTEMATIC ERROR

In the following sections, I will describe the systematic error arising from the
different assumptions or techniques used in the analysis, and the systematic error

will be estimated as a fraction relative to the statistical errors.
6.1 Uncertainty Due to Fitting Functions

Some studies from other experiments, such as the study of Acp, rely on a MC to
estimate the BG (using the BR from previous measurement), and then do the BG
subtraction to eliminate reflections, leading to only a linear BG remaining. But this
assumption uses the previous measurement of BR to generate the MC for all possible
modes.- Obviously, this kind of BG-subtraction is not an appropriate technique for
studying BR itself. Instead, I rely on fitting functions to estimate the BG shape. To
include the systematic error from the choice of the fitting functions, I have compared
several possible choices and choose the function with the lowest x? as my analysis
fitting function as described in Sec. 4.4. I estimate the systematic errors from the

deviations produced by other fitting functions.

Plot (a) in Fig. 6.1, Fig. 6.2, and Fig. 6.3 is my analysis fitting function. Other

fitting functions with larger x? are illustrated as plots (b), (c), and etc.

I conclude that in terms of the statistical error o, the systematic errors due to the
uncertainty of fitting function choices are (1) £0.500 for N(D° - nt7 ), (2) £0.500
for N(D°— K*K~), and (3) £1.500 for N(D° — K~7*). These conditions lead to

0 -
(1) £0.500 for 1111((50 S
I(D° = K+K)

INY Y A

0 + -
, (2) £0.500 for II‘,((%(,: £X 7, and (3) +0.400 for
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Systematic Study of Different Fitting Functions for K¥r*:

(a) <G+ P3> (Gaussian + 3rd-order-polynomial) with the lower x%;
(b) < E+G> with an Exponential BG gives (b)/(a) = 1.01, which is the systematic
error due to the choice of fitting function.
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Figure 6.2. Systematic Study of Different Fitting Functions for K*K¥:
(a) <L+ BW + G + ASY > with the lowest x?;
(b) < E + BW + G + ASY > with an exponential BG, reasonable, and (b)/(a)
= 1.01 will be used to estimate the systematic error due to the choice of fitting

function;

(c) <E+BW + G+ BWA> (E + BW + G + Half-BW-Half-BW) gives (c)/(a)

= 1.01;

(d) < BW + G + ASY > is ignored, so is (f); but

(e) yields (e)/(a) = 1.01.
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Figure 6.3. Systematic Study of Different Fitting Functions for n¥«¥:
(a) < E4+ ASY +G > (Exponential + Half-G-Half-BW + Gaussian) with the lowest
2,
%Cb) < L + ASY + G > with linear BG, discarded;
(c) <E+ ABW +G> (E + Half- BW-Half-BW + G) unlikely, but (c)/(a) = 0.79;
(d)/(a) = 0.98 will be used to estimate the systematic error due to the choice of
fitting function.
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6.2 Uncertainty Due to Weighting

After Cerenkov ID cuts are applied, and iﬁ order to correct for the Cerenkov ID

cut efficiency, I apply weights to each surviving vertex. I estimate the error of the

weight according to Eq. (5.4):

1

W A = [ Cop) £ AB,] X (Ba(Carpa) £ AF (6-1)

where C; and p; are the charge and the momentum of tracks s = 1, 2.

But the Aw has not been propagated into the weighted analysis. Therefore I ran-

domly (according to a Gaussian random (GR) number generator) vary the individual

weight as:

w' =w+ Aw - GR(), (6.2)

where GR() generates a random number from —oco to oo according to the probability

of a Gaussian distribution with 0 center and o = 1.

The basic idea here is to randomly apply a weight to each candidate entry, then
to see the gross variation of the final values, e.g. fitted BG-subtracted SG number.

Thus, I define the residual as

Si — So
So '

Ty =

(6.3)

where S, is the SG number without any random weighting, and the S; is the random

weight, © = 1 - 2000, in my study.

Each vertex calls GR() in a loop of 2000 calls to produce high statistics; in other
words, the total GR() calls are (total vertices x 2000). I calculate r; by fitting
2000 plots similar to Fig. 5.2 to get 2000 different fitted SG number for each decay

mode. Fig. 6.4 shows the distribution of residuals for 3 decay modes. The Gaussian

distributed residuals in Fig. 6.4 consist of:
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e the uncertainty of random weights on the SG number (7.e. the residual Gaussian
o in Fig. 6.4): The small values of the residual o’s (e.g., Fig. 6.4(a)) arises from
the fact that each vertex, SG or BG, can fluctuate the histograms on Fig. 5.2
in the same manner, so that even relatively large variations in random weights

(refer to Fig. 4.8) produce a small difference in the fitted distributions.

e the goodness of fit (the offset of the mean from 0): The tiny shift in the residual

mean for 7%

7F seen in Fig. 6.4(c) may be explained by the observation that
fitting an exponential BG is quite unstable, because we only have one sideband

for the 7*7¥ mode (see Fig. 5.2).t

I include both the ¢’s and mean offsets from Fig. 6.4 as the systematic error due

to both weighting and fitting.

I conclude that in terms of the statistical error o, the systematic errors due to the
uncertainty of Cerenkov correction weighting are (1) £0.069¢ for N(D° —n*7~), (2)
+0.01180 for N(D°— K*K~), and (3) £0.0670 for N(D°— K~n*). These condi-

. D> 7tn— ND°—»K*K~
tions lead to (1) £0.05¢ for I‘((DO :K"?r"'))’ (2) £0.100 for I‘((D": K‘?r'*'))’ and (3)
D’ KK

(D’ —»mtr™y

+0.060 for

There is no Cerenkov correction in the ABE study. For the lifetime difference,
I check by fitting two lifetimes without the Cerenkov ID cut.! Fig. 6.5 illustrates
D° — K*K~ without ID cuts in 16 bins of reduced proper time, and Fig. 6.6 illus-
trates the semi-log scale of fitting slopes. Table 6.1 lists the results with no ID cut
(1.e. no weighting).

tKeeping all conditions the same, except fixing the same SG Gaussian width for 2000
fits, Fig. 6.4(c) shows a residual plot of double peaks. The fitting condition is the only
factor which results in such double peaks.

!The main reason to apply Cerenkov ID cut for the final result is to optimize statistical
significance, ¢.e. to minimize fractional error.
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SG Uncertainty of 2000 Random—Weighting

800
x/ndf 2.530 / 3
Constont B34.1 22.87
600 Mean 0.1205E-04 £0,8637E—05
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- X' /ndf 8263 / 41
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100 = Mean  —~0.2921E-03 +£0.6478E—04
- Sigma_ 0.2782E-02 £0.4777E~04
50 E-
0 N B A
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. . . b
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- ¥/ndf 9404 / 44
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100 C Mean  —0.1059E—02 +0,70BBE—04
L Sigma  0.3030E-02 £0.5515E-04
50 -
}-
O 8 1 l 1 l 1 I .
-0.02 ~0.015 ~0.01 -0.005 ) 0.005 0.01 0.015 0.02
. . . C
77 residual plot from the weight uncertainty ( )

Figure 6.4. The Uncertainty of SG Numbers from Randomized Weighting:
(a) KFr%, (b) K*K¥, and (c) nr¥.
The quadrature of offset and Gaussian width is the systematic error due to com-
bined weighting and fitting.
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Table 6.1. Binned Method Lifetime (No ID Cut or Weighting)

Method Mode Binned lifetime measurement
Binned- TKK 0.417 £ 0.018
likelihood TKx 0.409 + 0.003

Eq. A8 AYmeanl —-0.123 + 0.113

Eq. A.19 AYmean? - —0.156 £ 0.087

Eq. 1.57 A‘Ya,pprox —-0.091 £ 0.141

Eq. 1.55 Avftted —0.092 + 0.140

Comparing Table 6.1 with Table 5.2 and Table 5.3, I conclude that in terms of
the statistical error o, the systematic errors due to Cerenkov correction weighting are
(1) £0.250 for Txk, (2) 0.000 for Tkx, (3) £0.250 for Aygiteq and (4) £0.60c and

+1.000 for AvYmeani and AvYmean?, respectively.
6.3 Uncertainty Due to Cuts

The basic idea here is to vary the cuts and then to see the effect of such variations
on the final result, e.g. BR, Acp, and A~y. Using the analysis cuts arrived at in
Chapter V as starting values, I vary each cut one at a time, for example, PT2DK
from 0.47 to 0.92. Each varied cut is applied to MC and DATA, and run through
the same fitting and analysis procedure. This method thus probes the combined

uncertainty of cuts in MC and DATA.

Table 6.2 lists the various cuts numbered with an index used in Fig 6.7 to Fig 6.9:

e 0 is the analysis set of cuts;
¢ 1 is the value from PDG’94 or previous data for comparison;
¢ 2-7 demonstrate variations of the ASYM cuts;

e 8-12 demonstrate variations of the DIP cuts;
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Fit of Semi—log Scale t’ (no ID cut) ==E791==
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Figure 6.6. A Semi-log Scale Plot of Fitting Lifetimes (Without ID Cuts):
The solid line is K*K¥; the dashed line is K¥7%; and the dotted line is from
PDG'94 7k, lifetime.
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13-22 demonstrate variations of the MNCHYV cuts;
23-32 demonstrate variations of the PT2DK cuts;

33-42 demonstrate variations of the PTBAL cuts;

43-50 demonstrate variations of the SDZ cuts;

51-54 demonstrate variations of the window of Am in D** — D°(D°)n* tag-

ging; and

e 55-61 demonstrate variations of the IMPACT cut of the slow (bachelor) 7% in

D** - D%(D°)n* tagging.

Table 6.2. List of Cut Variations

Item Cut Variation (x indicates the placement of the starting values)
0 ASYM < 0.8, (No DIP cut), MNCHV > 6,
PT2DK > 0.52, PTBAL < 0.4, SDZ < 8,
0.1430 < Am < 0.1480, IMPACT < 0.008.
1 PDG’94 or Previous Data
-7 ASYM < 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, *
8- 12 DIP < 0.002, 0.004, 0.006, 0.008, 0.010, (%)
13-22  MNCHV > 5.0, 5.5, %, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0
23 -32  PT2DK > 0.42, 0.47, x, 0.57, 0.67, - - -, 0.87, 0.92
33-42  PTBAL < 0.20, 0.22, 0.24, 0.26, 0.28, 0.30, 0.32, 0.34, 0.36, 0.38, *
43 - 50 SDZ > «, 9, 10, 11, 12, 13 ,14 ,15 ,16
51 — b4 Am in (0.1425, 0.1485), %, (0.1435, 0.1475), (0.1440, 0.1470), (0.1445, 0.1465)
55 — 63 IMPACT < 0.005, 0.006, 0.007, *, 0.009, 0.010, 0.011, 0.012

Some starting values are placed on an end of a range of variation because these

cuts are applied on the previous analysis stages (Strip, Micro-Strip, etc.) and I cannot

easily recover the stripped data. Fig B.2 shows the mismatch of DIP cuts between

MC and DATA. There is no DIP cut in my analysis, but I still varv DIP cuts to

probe the reliability of the MC simulation. The results are illustrated in Fig. 6.7 for

BR, Fig. 6.8 for lifetime, Fig. 6.9 for A+, and Fig. 6.10 for ABE.



112

The shift in lifetime seen in Fig. 6.8 indicates the inaccuracy of our MC, especially
for the calculation of reduced proper decay time from SDZ and PTBAL as defined
in Eq. 4.7 and Eq. 4.8. ‘We also see evidence of this from the comparison between
MC and DATA in Fig. B.8 to Fig. B.11. The systematic cancellation can be seen in
Fig. 6.8 (c) and (d), in terms of the difference or the ratio of two lifetimes. The same

percentage on systematic error is assigned to (Txkx — Tkx ) and (Tkx/TkK)-

On the other hand, the correlations in Fig. 6.9 are evidence for the consistency of

the two different approaches:

(1) A« from individual lifetime fitting, and

(2) A« from mean values difference (described in Appendix A).

I conclude that in terms of the statistical error o, the systematic errors due to
P(D0—>K+K-) (2)
o D> K%’

r tK-
£1000 for {pit, (3) £0400 for 2 KTKD) (4) 41200 for

il D% —rtr™)
0 -
P{% gof_{, E-H ) (5) £0.500 for Txk, (6) +1.00 for T+, (7) £0.500 for (ks —

the uncertainty of the choices of analysis cuts are (1) £0.900 for
LD —7tr)

k) and (Tkx/Tkk), (8) £0.500 for Aygiteq, (9) £0.80c and +£1.000 for Aymeani
and Avypean2, respectively; (10) £0.200 for ABR(K* K¥), (11) £0.300 for ABR(r¥7¥),
and (12) £0.100 for ABR(K3r).

6.4 Uncertainty Due to Fixed Widths

In the analysis (described in Chapter V), I fix the Gaussian widths for fitting
SG numbers in order to both simplify the calculation of the BR for D° —»#x*7~ (fix
the ratio of MC/DATA), and to improve the comparison of the lifetime measurement
(fixed in different decay time bins) and ABE (fixed in both D° and D°). Thus varying

the common widths is the main technique of this systematic study.
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Mean value difference and (2) Fitted lifetime difference — is confirmed.
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In the BR study, I multiply the widths from the MC by a common ratio:

Widpata( K1)

d ata KiK:F =W KT . .
Wadpat ( ) szc(K K )X Wind(Kq:‘lri) (64)
The common ratio is defined as
Widpam(K:Fﬂ'i) +op
Rt or = e (Kn%) T on (6.8)

where op and o are independently deduced from the SG Gaussian fitting errors.

Similarly, in getting the “average” width from combined D° and D° for the AB}
study or from the combined 16 bins of reduced proper time for lifetime studies, I

have the associated fitting error for each “average” width, i.e. ow.

Taking the increment of o or ow, I estimate the 1-o deviations of the calculated
quantities as illustrated in Fig. 6.11 through Fig. 6.15, as measures of the contribu-

tions of varying widths to the systematic errors in the SG numbers.

I conclude that in terms of the statistical error o, the systematic errors due to

+
the uncertainty of fixing SG Gaussian widths are (1) £0.400 for II‘,((%O_) K I,’f T )) (2)
I'D°—-7tr)y I'D°> K+tK™)
T S Kor +) (3) £0.400 for TS rFr) (4) £0.150 for 7xk, (5)

+0.120 for Tkx, (6) £0.200 for Aygiieq, (7) £0.240 and £0.320 for Aypeani and

40.100 for

AvYmean, Tespectively; (8) +0.080 for ABR(K*K¥F), (9) £0.100 for ABR(r*7¥), and
(10) £0.020 for ABR(K3r).

6.5 Uncertainty Due to Binned Lifetime Fitting

When I fit the lifetimes by the binned method (described in Sec. 5.2.1), I choose
16 bins of reduced proper time and fit them from the first bin to the last one In this

section, I study the uncertainty due to the choices of bins. Table 6.3 lists the results
of this study.
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BR Uncertainty due to Widths
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Figure 6.11. Systematic Study gf Varying Widths for BR:
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width fixed in the F(DI,( Ei 17{'-_;:_ +;r ) study. The +10g deviation is the estimate

of the systematic errors. In this figure, it is assumed that changes in the widths
are correlated in numerators and denominators. But in Fig. 6.12, each mode has
its own systematic error on SG.

There i1s no
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SG Uncertainty due to Widths
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Figure 6.12. Systematic Study of Varying Widths for SG:
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Lifetime Uncertainty due to Widths
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Figure 6.13. Systematic Study of Varying widths For (a) 7kx and (b) 7xx. The
+1low deviation is the estimate of the systematic errors.
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Figure 6.14. Systematic Study of Varying Widths for

(2) AYmean1, (b) AYmean2, (¢) Avapprox, and (d) AYfitted-
The +low deviation is the estimate of the systematic errors.
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Aes Uncertainty due to Widths

0.2 - ] L | ('N | 'l’ | -I‘ ] .CI’ o e Ind had
L o> [5,] . (&) (&) [5,] N w — [5.] Q [} —_ w N [4,] [#] w L o 144
Q Q Q Q Q =] qQ Q Q Q Q Q Q Q Q Q Q Q Q Q Q
) S R R TR R RO IRt I T T N R O IO OO O O P
L1 T T T T |
—02|  -0.015732 & 0.053938 + 0.004706 , ‘
-4 -2 0 2 4
Ad of KK from Various Widths (a)
0.4 F ) I ] I i
[ o S vo N S . AN Aot AN g o = nd bl hal
14,] w R [5,] (1) w N [3,} —_ v (o] [4,] — wm N wn w w o o [3,3
02F a q Q Q Q qQ Q Q Qa Q Q Q Q Q Q Q Q q q Q Q
3 25 N S R RO A N R RO R A [N N [N N S s
I D T T T T LA Lk v il e i A
-0.2 b
ou b —0.05186 + 0.093356 + 0.011168 _ ‘ ‘
' —4 —2 0 2 4
A of 7t from Various Widths (b)
o1 kb
[ | I | i |
1 P R vo N W N e A e . Ingd “ >
sk 38 3 3 a & a a e & a5 3T ETETT
R 2 T I N I { { 1 } ! NN IO A S N N |
—0.05 :_l 17 1T 1 ] P8 b1 T T b
_os B -0.020301 + 0.02314 + 0.00073 . A
—4 -2 0 2 4
(c)

Ag of K37 from Various Widths

Figure 6.15. Systematic Study of Varying Widths for ABR:
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Start, End TKK TKx Avgsiad
*1,16 * 0.4121 + 0.0123 0.4091 + 0.0032 —0.0365 £ 0.1498
1,15 0.4118 + 0.0127 0.4101 + 0.0033 —0.0200 £ 0.1553
1, 14 0.4121 + 0.0133 0.4109 + 0.0035 —0.0142 + 0.1620
1,13 0.4161 & 0.0142 0.4101 + 0.0037 —0.0700 £ 0.1695
1,12 0.4206 + 0.0153 0.4107 £+ 0.0039 -0.1139 £ 0.1788
2,16 0.4146 + 0.0145 0.4054 + 0.0037 —0.1085 £ 0.1747
2,15 0.4143 + 0.0151 0.4066 + 0.0039 —0.0922 + 0.1823
2,14 0.4149 + 0.0159 0.4073 £+ 0.0041 -0.0902 £ 0.1913
2,13 0.4203 &+ 0.0172 0.4059 + 0.0043 —0.1694 £ 0.2018

I conclude that in terms of the statistical error o, the systematic errors due to
the uncertainty of binning fits are (1) £0.25¢ for Txx, (2) £0.800 for Tkx, and (3)

+0.250 for AYgtted) AVmeanl; 20d AYpeans.

6.6 Uncertainty Due to MC Production Distribution

The E791 MC has been tuned to match the DATA production asymmetry. The
MC for my final analysis results are generated with charm quark mass (¢,) 1.7 GeV/c?
and primordial transverse momenta (K7) of the incoming partons as 1.0 GeV/c. I
also have studied a MC sample generated using the values distributed with Ver-
sion 5.7 of Phythia [Pythial: ¢n = 1.35 GeV/c? and K7 = 0.44 GeV/c. After
identical analysis procedures, the results from two MC samples are consistent with

each other within statistical errors. So, I conservatively conclude the systematic er-

. 1 P(DO — K+K_)
rors due to MC production are* (1) £0.300 for TS K1) {0.104}, (2) £0.300

0 -
O {0030}, (3) £0.200 for DD KTK™) 19 67} (4) +1.000 for

N I(D°—rtr™)
0 —r—t
I‘U?I’,( Bj,f_i Ig_: +;U {2.01}, (5) £1.000 for Txx {0.423}, (6) £0.500 for Tx, {0.412},

(7) £0.250 for (T~ — Trk) {0.011}, (8) £0.800 for Avygiteq {-0.141}, (9) £0.800
and £0.800 for Aypeani {-0.151} and Aypeana {-0.162}, respectively.

D -rtr)

for

{The values in the braces { } are the results using a different MC production distribution.
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6.7 Uncertainty Due to Detection Bias on ABE

Recall the definition of ABR(K*K¥) in Eq. 1.66. The detection bias of slow 7+
in D** — D°(D°)n* tagging can be compensated by the normalization. For pseu-
doscalers, since K*K¥T are the same final states of D° and D°, any detector bias

will be cancelled out. So, I only need to worry about the detection bias between
D° S K-nt and D°— K*tr~.

Let me divide detector efficiency into two geometrical parts: longitudinal efficiency

and transverse efficiency.

o For longitudinal efficiency, Fig. 4.5 shows K* and K~ or 7+ and 7~ have very
similar momentum spectra after detection. Fig. 4.5 and Fig. 4.6 illustrate that

there is no longitudinal efficiency bias.

e For transverse efficiency, to form a D% or D° requires two tracks (one positive-
charged and one negative-charged), so charge detection inefficiency is not a
problem here. Fig. 4.5 (e) and (f) show that K*/K~ and n%/7~ have flat
slopes, indicating our detection along the direction low-momentum to high-

momentum on the transverse plane is smooth (also compare Fig. 4.7 of MC).

Of course, I assume that the direct CP asymmetry between D°— K~ 7t and
D°— K+7~ is minimal, otherwise the above discussion is incomplete because any
detection bias may be hidden by CP asymmetry. In such a case, we return to out
original intention: measure the CP asymmetry of K* K¥ and 7*n¥, since Fig. 4.5

proves there is no net asymmetry in the normalization mode.
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COMPARISONS AND CONCLUSIONS
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In this chapter, I present the comparisons of my measurements with previous

experimental data. I include here the systematic errors discussed in Chapter VI.

I also emphasize the meanings of my measurements to Theoretical predictions.

7.1 Comparison with Previous Measurements

The comparison of BR measurements are listed in Table 7.1 and Table 7.2, and

illustrated in Fig. 7.1 and Fig. 7.2. E7T91 has better measurements than the previous

world averages.

Table 7.1. Comparison of BR Measurements

(D' KtK~— D —>xtr— D> KtK~

Year Group T K‘7r+)) I‘((DO = K"1r+)) I(‘(Do - W+T_))
1979 Mark II[mark-?g] 0.113+40.030 0.033 +0.015 3.4 +1.8

1984 Mark IH[mark-85] 0.12240.0184+0.012 0.033 +0.010 +0.006 3.7 £1.3

1989 ARGUS[a.rgu-QO] 0.10 £0.02 +0.01 0.040 +0.007 £0.006 2.5 0.7

1990 CLEO[cleo-QO] 0.11740.0104+0.007 0.050 £0.007 +0.005 2.35+0.374-0.28
1991 E691[8691-91] 0.107+0.010+0.009 0.055 +£0.008 *£0.005 1.95+0.344-0.22
1992 WA82[W8.82-92] 0.107+0.029+0.015 0.048 +£0.013 +0.008 2.234+-0.81+0.46
1993  CLEO]cleo-93] 0.03480.0030::0.0023

1994 E687[e687-94] 0.109+0.007+0.009 0.043 +£0.007 +0.003 2.53+40.46+0.19
1994 PDG [PDG94] 0.11340.006 0.039640.0027 2.86+0.28

1995 E791 0.107+0.003+0.003 0.040 £0.002 +0.002

2.65+0.14+0.13

The comparison of lifetime measurements is listed in Table 7.3 and illustrated in

Fig. 7.3(a).

The comparison of CP asymmetry measurements is listed in Table 7.4 and illus-

trated in Fig. 7.3(b).
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Figure 7.1. ET791 BR’s Comparison with Previous Experiments:

) ——
113(113)0: If;’: ) from 1) 1079 Mark I1, 2) 1984 Mark IIL, 3
1989 ARGUS, 4) 1990 CLEO, 5) 1991 E691, 6) 1992 WAS82, 7) 1994 E687, 8) 1994
PDG, 9) This experiment.

0 —
11: (‘go :};ﬁ’;ﬁ) from 1) 1979 Mark II, 2) 1984 Mark I1I,
3) 1989 ARGUS, 4) 1990 CLEO, 5) 1991 E691, 6) 1992 WAS82, 7) 1993 CLEO II,
8) 1994 E687, 9) 1994 PDG, 10) This experiment (with the better error than the
world average).
The solid error bars include only the statistical errors, and the dashed error bars

represent the systematicferrors added to statistical errors.

(a) The comparison of

(b) The comparison of
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Figure 7.2. ET791 BR’s Comparison with Previous Experiments:
) I'D°—> K*K™)
(a) The comparison of (D% = 7¥r) from 1) 1979 Mark II, 2) 1984 Mark III, 3)
1989 ARGUS, 4) 1990 CLEO, 5) 1991 E691, 6) 1992 WAS82, 7) 1994 E687, 8) 1994
PDG, 9) This experiment.
0 ot
(b) The comparison of F(II)‘(D_(;{_(_, ;_;’;%’r ) from 1) 1977 Mark I, 2) 1984 SPEC,
3) 1985 ARGUS, 4) 1986 ACCM, 5) 1988 CLEO, 6) 1991 NA14, 7) 1992 NA14, 8)
1994 PDQ@, 9) This experiment.
The solid error bars include only the statistical errors, and the dashed error bars
represent the systematic errors aaded to statistical errors.
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Figure 7.3. E791 7, and ABR(K*K¥F) Comparison with Previous Experiments:
(a) The comparison of Tk.from 1) 1987 ACCM, 2) 1988 E691, 3) 1988 ARGUS,
4) 1990 ACCM, 5) 1990 NA14, 6) 1991 E687, 7) 1994 E687, 8) 1994 PDG, 9) This
experiment.

(a) The comparison of AZE(K*K¥) from 1) 1991 E691, 2) 1994 E687, 3) 1995
CLEO II, 4) This experiment.

The solid error bars include only the statistical errors, and the dashed error bars
represent the 90% C.L. interval.
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Table 7.2. Comparison of BR K31 Measurements

O L K-n—ntat
Year Group P(I;‘{ D"ﬁ ; ":"';r_l
1977 Mark I [mark-77] 22 +0.8
1983 SPEC [accm-83) 20 +£1.0
1985 ARGUS [argu-85] 2.17 £+ 0.28 + 0.23
1986 ACCM [accm-86] 20 £09
1988 CLEO [cleo-88] 2.12 £+ 0.16 £ 0.09
1991 NA14 [nal4-902] 1.90 + 0.25 + 0.20
1992 E691 [e691-92) 1.7 £02 +£0.2
1994 PDG [PDG94] 2.02 + 0.11
1995 E791 2.19 + 0.03 £+ 0.08

Table 7.3. Comparison of Lifetime Measurements

Year Group Decay Mode Mean Lifetime (ps)

1987 ACCM [accm-872) DI K- xt 042 £ 0.05

1988 E691 [e691-882] D’ K-rxt 0.422 + 0.008 + 0.010

1988 ARGUS [argu-882] D K—nt 0.48 +0.04 +0.03

1990 ACCM [accm-902] D K-xt 0.388 + 0.022

1990 NA14 [nal4-902] D° 5 K-nt 0.417 = 0.018 + 0.015

1991 E687 [e687-912] D K-nt 0.424 4+ 0.011 % 0.007

1994 E687 [e687-942] DS K-nt, K3nr 0.413 4 0.004 + 0.003

1994 PDG [PDG94] CFD 0.415 <+ 0.004

1995 E791 DV K-t 0.409 £ 0.003 £ 0.004
D° s KtK- 0.414 =+ 0.012 + 0.014

1995 E791 (TKx — TKK) —0.005 £ 0.012 £ 0.013

Table 7.4. Comparison of CP Asymmetry Measurements

Year  Group & Mode Acp of D°-D° Upper Limit at C.L. 90% *
1991 E691 ABF(KTKT) 020 +0.15 AZE < 45% [e691-91]

1994 E687 ARR(K*KT) 0.024 + 0.084 —11% < ABE < 16% [e687-943]
1995 CLEO Acp(K*K¥) 0.069 + 0.059 —-2.8% < Acp < 16.6% [cleo-953)
1995 E791 AEB(K*K¥F) —0.018 £ 0.054 £ 0.012 -10.8% < Agp < 7.2%
1995 E791 ABR(x%2¥)  —0.052 + 0.093 + 0.029 -21.2% < A§R < 10.6%
1995  E791 ABR(K3r)  —0.018 + 0.023 + 0.002 -5.5% < ARF < 1.9%

!By using central value + 1.64 X combined error
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7.2 Conclusions

Branching Ratio. In the past, there were many theoretical models developed

0 + K- '
to explain PI(‘(DDO—:g +7Ir{‘)) alone, but not all models survived the global fit to all

0 + -

the 2-body decay BR’s of D mesons. The current LD 0_'K +K_) measurement
: ING LY AF o

is consistent with previous experimental data (see Fig. 7.1 and Fig. 7.2) as well as

theoretical explanations — SU(3) symmetry breaking and coupled channel final state

interactions. These E791 measurements provide data for phenomenological studies

of other decay modes.

Decay Mode E791 Branching Ratios

I{i{%&%};ﬁ 0.107 & 0.003 & 0.003
e S 0.040 + 0.002 + 0.002
1*(1)[;(20;-1;:;;)7‘_4.) 2.656 + 0.14 + 0.13
T(D°—> K-ty 2.19 £0.03 £ 0.08

All the BR measurements are consistent with previous measurements, and yield

smaller errors than the previous world average values.

Lifetime Difference. This work reports the first measurement of Ay and y
using the lifetime difference (7x»—7Tkx ) and lifetime ratio (7x«/Tkx —1), respectively.
In addition to directly measuring two exponential decay lifetimes, I also approximate
the lifetime difference in terms of the difference of two mean decay times (described

in Appendix. A), so that I have a parallel approach to confirm the measurement.

E791 Measurements
kx DS KTE- 0414 £ 0012 £ 0.014
ke  D°—K-mt  0.409 + 0.003 + 0.004
AT (Tks—Tkk) —0.005 + 0.013 £ 0.013
A~y  (CP invariance) —0.06 =+ 0.15 =+ 0.15
y (Tkx/TkK —1) —0.0121 £ 0.0483 (combined error)
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With the CP invariance assumption, A7, A, and y are the first estimate of the
D°-D° Mixing due to the lifetime difference. According to Eq. 1.58, Rlix=v/2=
0.000073 4 0.000438* due to lifetime difference, which gives an upper limit of 0.00079
at 90% C.L. All measurements are consistent with the Standard Model prediction of

very small Mixing effects in the D°-D° system.

CP Asymmetry. In Sec.1.3.2,emphasized that D° > K*K- (or D° - x*7™)
is not a good system in which to measure pure Direct CP asymmetry, due to in-
terference with possible Indirect CP asymmetry arising from D°-D° Mixing. The
interference of direct-indirect CP asymmetry cannot be cancelled by the normaliza-
tion of D**— (D°— K~x*)n*. But any non-zero result of our measurements would
indicate Direct or Indirect CP asymmetry, or both. In addition, ABR(K*K¥)=0is
no longer a guarantee of CP invariance (see Eq. 1.81). The current measurements are
consistent with zero, but it is still appropriate to estimate the upper limits for ABE
being non-zero at the 90% confidence level. Although ABR(K37) has been used in
this work as a consistency checking mode, it can also be interpreted as a measurement
of a direct CP asymmetry arising from interference between the sector of beyond the

Standard Model and the sector of the Standard Model (see Sec. 1.3.1).

Decay Mode Agp of DU.D° 90% C.L. Upper Limit
K=K¥  —-0.018 £ 0.054 + 0.012 -108% < AEF <7.2%
S o -0.052 + 0.093 + 0.029 -21.2 % < AB} < 10.6 %
K3~ —0.018 + 0.023 + 0.002 -5.5% < ABR < 1.9 %
o F
ABR —"TT“'—) = —0.034 £ 0.106, as described at the end of Chapter I, can also be

interpreted as an indication of direct CP asymmetry. It too is consistent with zero.

'] assign the same magnitude of statistical error as systematic error, then combine them
in quadrature for an estimated error in y.
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The AR measurements are currently the best CP asymmetry measurements in
the D°-D° system, and are consistent with the predictions of the Standard Model.
In future high statistics charm experiments, it may be possible to measure the time-
evolution of the CP asymmetry parameter, Acp(t) as described in Sec. 1.3.2, and to
do the multiple-parameter fit for Direct CP asymmetry, Indirect CP asymmetry, and

the Mass Mixing parameters.
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APPENDIX A

LIFETIME DIFFERENCE VS. MEAN DECAY TIME DIFFERENCE
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A.1 A7 in the Case of Equal Acceptance

If the acceptance for D° decays in both modes is identical, then the lifetime

difference can easily be measured using the observed mean lifetimes as follows.t

Let us define the mean and sigma of the observed time distribution as ¢; and o.
Higher moments of the observed distribution will be called ¢,. Thus,

_Jt-e T A(t)dt N
PT JetmA(tyt D (A1)

where A(t) is the acceptance as a function of time and 7 is the lifetime of the particle.

N and D simply stand for numerator and denominator respectively.

Similarly,
Jtr et A(t)dt

= e ARat (&.2)
Recall that o is related to the moments simply by
o =t; -t (A.3)
Now, we see that

= —;— / t-A(t)-et" (7—2) dt — g; / A(t) et/ (7:3) dt  (A.5)

- b ';tg (A.6)

T
= g—: (A.7)

Thus, the lifetime difference in the two modes can be obtained from the difference

in measured mean lifetime:

72
Ar = At (A8)

tDeveloped by Dr. M. Purohit.
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A.2 A7 in the Case of Unequal Acceptance

In the previous section we assumed that A(%) is the same for both modes. However,
we know that there could be differences in the acceptance for the two modes. For
instance, there is less phase space in the K* K¥ mode so the lab frame opening
angle may be smaller leading to somewhat different acceptance. This may be a
bigger effect at higher momenta. Similarly, due to differences in Cerenkov cuts the
acceptance could be different in the two modes. Again, this could be a momentum
dependeﬁt effect. So we must think about how to measure A7 in spite of differences

in acceptance.t

One important fact is that the acceptance is really a function of the lab frame
attributes of the decay particles. After integrating over those variables, we may think
of the acceptance as a function of the lab frame D° variables: t, p,, and pr. Since the
DO is spinless, it is sufficient to consider the 'a,ccepta.nce as A(t,p), but the argument
is the same regardless of how many variables A depends on. Take the vector 7 to
denote “all D° variables.” Note that A(t) does not depend on lifetime 7, but on

decay time ¢.

Let us then call the acceptance in the two modes as xx A(t,P) and g.A(%,p) and
the density of D%s to be f(p). The mean measured decay time in the two modes will

be given by
_ Jdtt exp(—t/Txk) [ dP f(P) xx A(t,P)

t = L3 ) A9
Kt = e (3/7x) [ 95 1(8) xcACh 5) (49)
Similarly, for the K¥1% mode

Kxli = fdt exp(—t/'rer)fdﬁ f(m KrA(t,ﬁ) .

tDeveloped by Dr. M. Purohit.
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Defining the acceptance integrated over everything except the proper time ¢ as

ke A(t) = [ &7 f(7) xxAlt,7)

and
keA(t) = [ &5 F(7) reA(t,B).
We see that
— fdt t exp(—t/'rKK) KKA(t)
kKb = Jdt exp(—t/Txkk) kxA(t) (A.11)
and
ety = Jdt t exp(—t/Tkx) kxA(t) (A12)

Jdt exp(—t/Tkx) kxA(t)

It is conceivable that xx A(t) will be different from g,A(t) despite the fact that
momentum and ¢ are uncorrelated. In general, these are different functions and we

can write without loss of generality
kk A(t) = g(t) - k= A(t) (A.13)

where g(t) is some function of ¢ which can be determined from MC. We will see below

that we do not actually need to determine g(t).

Now,

Jdt ¢ exp(—t/Txk) kK A(t)
[t exp(—t/7xcx) xxcAQH)
[dtt exp(—t/TxK) 9(t) kxrA(2)
Jdt exp(—t/Trk) 9(t) k= A(t)
g1 [dtt exp(—t/Tkx) KxA(t)
go [ dt exp(_t/'rer) KWA(t)

KKt

(A.14)

where we have introduced two constants g; and g, defined by

= Jdt ¢t exp(—t/Tkk) krA(t)
T Jdtt exp(—t/7xK) KxA(2)

(A.15)
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and

_ Jdt exp(—t/7xk) kK A(t)

9= Tdt exp(—t/7x) xeA(D) (4.16)
We see immediately that
g kkt’C
go - K.Ktlbfc (A.l7)

where xxtMC and g,tMC are defined as the mean accepted time for MC events in
the KK and K7 modes respectively where both MC are generated using the same

lifetime 7k k-

We can rewrite Eq. A.14 as
_ 5 K=
KKt1 = S KK (A.18)
0

where gxtX™ stands for the mean measured decay time in the KX mode if the
acceptance for the KK mode were the same as the more copious K7 mode. We

know from the Eq. A.8 that

T 9o
—_ - — t —_— —
(Tkx — TKK) 52 (kxt1 " KKt1)
2 MCTKK
T Kwt1
et — t — ——————
e [Kw 1 ( xtMOTRE )KKt1]. (A.19)

The advantage of Eq. A.19 is obvious: we do not need to know the details of the

difference in the acceptance in the two modes. We only need to know from MC the
MCTKK . :

Kxt1 . . . . .
— MOTKK which can be more easily determined to sufficient precision. Note
1

KK

ratio

again that the two MC samples should be generated with the same parameter 7xk.
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A.3 Comments

Eq. A.8 can only be used for a small lifetime difference due to the approximation

from (in a single decay mode)

[

6t1 _ g

ar 13
to (between two decay modes)

Atl _ 02

Ar 1%

Following Sec. A.l, to make acceptance corrections in each decay time bin for each
mode, requires adequate MC statistics for each bin. Alternatively, Sec. A.2 shows a
method of determining a gross MC acceptance correction. Ideally, we would expect
that if we generate MC with the same kg for K *KF and K¥7* then it does not
matter how accurate the MC 7k is, as long as it is the same for the K*K¥ and

K¥r* samples. But if we simply reverse Eq. A.13 as

k=A(t) = g() - kK A(t) (A.20)
then we get
_ ™ %
(TK‘K - TKK) = ‘&?(ax,tl — KKtl)
2 KKtMCTK,,
= :ﬁ[(;ﬁr}:) Kwly — KKtl]- (A.21)
xl1

This requires that we generate the same MC 7, for K*KF and K¥rt,

Since both 7xx and Tk, are unknown, and we expect that A7 is small compared

with «, the method in Eq. A.19 or Eq. A.21 is not sufficient to detect A7 alone.

However I measure the separate 7xx and 7x, (described in Sec. 5.2), and I can
thus use the measured 7xx to generate two MC samples (K *K¥F and K :F7l'i) to find
AT according to Eq. A.19. Similarly, I can use the measured Tk, to generate two
MC samples (K*K¥ and KFr*) to find AT according to Eq. A.21. Both of these

should give the same A7, and I have then examined the measured 7xx and Tx,.
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APPENDIX B

CUT COMPARISONS OF MC AND DATA
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In this Appendix, I use the sidebands of D — K~77 to represent the BG under
SG peak, and to produce the continuous cut distributions of SG by BG subtrac-
tion. Thus, it is very important to understand the BG distributions. Each figure
in Appendix B has 3 rows (e.g.. Fig. B.1). The first row is produced without any
Cerenkov ID selection criteria; for data (the right column), I try both K7 and 7K
hypotheses on each vertex, so I double-count BG (but without double-counting in
the SG peak) and create charm-like or double misidentified BG in the sidebands.
In the second row, I apply loose Cerenkov criteria choosing the track with higher
Kp as the kaon. There is then no double-counting in BG, but still some charm-like
or double misidentified events in the sidebands. In the third row, I apply Ceren-
kov criteria (K;p > .16 as kaons and K;p < .16 as pions), thus eliminating any
double-counting or misidentification, but the inefficiency of the MC ID cuts has to
be accounted for. I concentrate on the comparison of the second rows, but use the
top and bottom rows as references and comparisons (e.g. Fig. B.6). the SG region is
defined to be in the interval of MC(1.8345, 1.8945) and DATA(1.837, 1.897); the low
sideband BG is MC(1.7245, 1.7845) and DATA(1.727, 1.787), and the high sideband
BG is MC(1.9445, 2.0045) and DATA(1.947, 2.007). The results are not sensitive to

the choice of sideband regions.

These comparisons serve two purpose:

o In order to choose a “matched” set of cuts for tuning the cuts, described in

Sec. 4.2;

e To understand the systematic errors due to the MC inefficiency, described in

Chapter VI
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The guideline is the comparison of the shapes and peak values between the distribu-

tion of MC SG and DATA SG (BG-subtracted).

For example, Fig. B.2 and Fig. B.3 show shifts in MC (the solid line) compared
to DATA (the dotted line) in the left columns, and thus I avoid using DIP and PISO
cuts in my analysis. Fig. B.6 shows no peak shift, and the slight mismatch can
be accounted for by the difficulty in deducing the BG-subtraction from the DATA
sidebands. Fig. B.13 indicates the failure of the MC production model to accurately
reproduce the D° momentum spectrum. The bottom left plots of Fig. B.14 and

Fig. B.15 indicate the inefficiency of the Cerenkov identification in the MC.




Cuts comparison for MC and DATA of mkpi2422
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Figure B.1. Mass plots in the left column are from MC in 3 stages:
(1) try both K7 and 7K hypothesis (no ID cuts, but double-counting in BG);
(2) choose higher kaon ID as kaon (loose ID cuts, no double-counting);
(3) Kip > .16 as kaon, and K;p < .16 as pion (tight ID cut, to reduce BG).
The plots in the right column are from DATA in the equivalent 3 stages.
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Cuts comparison for MC and DATA of mkpi2422
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Figure B.2. DIP cut distribution comparisons are done in 3 stages in order to un-

derstand the BG subtraction in DATA:

Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are

data SG dotted
DATA dip

for MC SG, and the values in the right are for DATA SG.
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Cuts comparison for MC and DATA of mkpi2422
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Figure B.3. PISO cut distribution comparisons are done in 3 stages in order to
understand the BG subtraction in DATA:
Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are
for MC SG, and the values in the right are for DATA SG.
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Cuts comparison for MC and DATA of mkpi2422

© Mean 2640 2 ‘Maon 27.71
e RMS algss | © |1ms 7381
8300” - (7]
a gam -
Q =]
= 20000 |- 5
o
20000 §~
10000 =
o L L 1 i o y i 1 L
10 a0 30 10 a0 30
data SG dotted data SG dotted
MNCHY DATA mnchv
o Mean 2633] O Weon 27.20 |
= RMS ajpes | 3% I | RMS 7577
0 20000 [ S b
@ 18000 -
) 18000 |= S
= L [s]
Toooo |-
10000 =
2000 - 5000 1= "
° L L 1 s o F PR b o L L N
10 a0 30 10 20 30
data SG dotted data SG dotted
MNCHV DATA mnchv
kel Mean 2817 2B Mean 26.90
= i RMS 8E3s | © WO RMS 7
0 I W s
10000 | it
@} & i
Q S om0 |-
= o
=]
5000 p=
2000 - H
° [ N 1 L 1 o i PR e e 1 1 LU
10 20 30 1 20 30
data SG dotted data SG dotted
MNCHV DATA mnchv

Figure B.4. MNCHYV cut distribution comparisons are done in 3 stages in order to
understand the BG subtraction in DATA:
Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are
for MC SG, and the values in the right are for DATA SG.
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Cuts comparison for MC and DATA of mkpi2422
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Figure B.5. MNCHYV (without 32) cut comparisons are done in 3 stages in order to
understand the BG subtraction in DATA:
Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are
for MC SG, and the values in the right are for DATA SG.
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Cuts comparison for MC and DATA of mkpi2422
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Figure B.6. PT2DK cut distribution comparisons are done in 3 stages in order to
understand the BG subtraction in DATA:
Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BQ@G, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are
for MC SG, and the values in the right are for DATA SG.




Cuts comparison for MC and DATA of mkpi2422

MC SG solid

Mean 1.087] © Meon 0.9752
RMS 09032} O RMS 0.7743

1

[

a

o

-

o

©

1

10

data SG dotted

10
data SG dotted

data SG dotted

DELS DATA dels
ko] Mean 10291 © Mean 0.9139
©° RNS 0.B548 2 RMS 0.7053
] a
(@]
@ @
[&] O
= °
©
Loa PUEPEI B SIS ST Y S 1 PRNPEE BT SRR S
L 7.5 10 5 78 10

data SG dotted

DATA dels

DELS

° Mean 08656 § O
e RMS 0.6607 o
172 %)
(]
@ @
Q o]
= ©
©

| ISP UT S N SR W S |

4 [} s

DELS

Mson 0.8320
RMS 0.6209

data SG dotted

L] L]

data SG dotted

DATA deis

151

Figure B.7. Decay Distance distribution comparisons are done in 3 stages in order
to understand the BG subtraction in DATA:
Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are

for MC SG, and the values in the right are for DATA SG.
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Figure B.8. SDZ cut distribution comparisons are done in 3 stages in order to un-

Cuts comparison for MC and DATA of mkpi2422
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derstand the BG subtraction in DATA:

Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are

for MC SG, and the values in the right are for DATA SG.
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Cuts comparison for MC and DATA of mkpi2422
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Figure B.9. L3527 distribution comparisons are done in 3 stages in order to under-
stand the BG subtraction in DATA:
Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are
for MC SG, and the values in the right are for DATA SG.
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Cuts comparison for MC and DATA of mkpi2422
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Figure B.10. PTBAL cut distribution comparisons are done in 3 stages in order to
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understand the BG subtraction in DATA:

Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are
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for MC SG, and the values in the right are for DATA SG.
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Cuts comparison for MC and DATA of mkpi2422
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Figure B.11. LETBAL
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min . distribution comparisons are done in 3 stages in order to
understand the BG subtraction in DATA:

Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BQG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are
for MC SG, and the values in the right are for DATA SG.
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Figure B.12. Reduced Length distribution comparisons are done in 3 stages in order
to understand the BG subtraction in DATA:
Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are

Cuts comparison for MC and DATA of mkpi2422
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for MC SG, and the values in the right are for DATA SG.
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Cuts comparison for MC and DATA of mkpi2422
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Figure B.13. D° Momentum distribution comparisons are done in 3 stages in order
to understand the BG subtraction in DATA:
Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are
for MC SG, and the values in the right are for DATA SG.
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Cuts comparison for MC and DATA of mkpi2422
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Figure B.14. K~ Momentum distribution comparisons are done in 3 stages in order
to understand the BG subtraction in DATA:
Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are
for MC SG, and the values in the right are for DATA SG.




MC SG solid MC SG solid

MC SG solid

400

200

400
300

200 |

comparison for MC and DATA of mkpi2422

Mean 34.55
RMS 18.54

-----

Mean 35.21
RMS 18,35

H
(T

P DU U G S T S 'Y

40 L] 80

datc SG dotted

Mean 34.16

RMS 18.38 |

RN WS T S S Y

a0 60 80

data SG dotted
PP2

data BG solid data BG solid

data BG solid

1000

3
730

3
2%

200

Meon 32.99
RMS 17.78

data SG dotted
DATA pp2

I Mean 31.95
RMS 17.33

data SG dotted

DATA pp2
Mean 31.26
RMS 17.20

in.,
e
13

e,

PR ORI SRS T T SO
40 [} a0
data SG dotted
DATA pp2

159

Figure B.15. 7 Momentum distribution comparisons are done in 3 stages in order

to understand the BG subtraction in DATA:

Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and

right dotted line to the height). The mean and rms values in the left column are
for MC SG, and the values in the right are for DATA SG.
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Cuts comparison for MC and DATA of mkpi2422
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Figure B.16. IMPACT cut distribution comparisons are done in 3 stages in order
to understand the BG subtraction in DATA:
Solid lines in the left column are from MC SG, the solid lines in the right are from
normalized DATA BG, and the dotted line in both columns are from normalized
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and
right dotted line to the height). The mean and rms values in the left column are
for MC SG, and the values in the right are for DATA SG.
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