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ABSTRACT 

The charged two-body decays of n° mesons produced by 500 GeV /c 71"- incident 

on platium and carbon foil targets at the Fermilab Tagged Particle Laboratory have 

been analyzed. Three measurements are presented in this thesis: ( 1) Branching 

Ratios of Charged Two-body Decays: ~~
0

0--+ ~~ K;> = 0.107 ± 0.003 ± o;oo3, ( ..... 71" ) 
ren°--+ 71"+71"-) ren°--+ K+ K-) r no K- + = 0.040 ± 0.002 ± 0.002, r no + _ = 2.65 ± 0.14 ± 0.13, and ( ..... 71" ) ( --+71" 71" ) 
rcn°--+ K-71"-71"+71"+) . · · r no K- + = 2.19 ± 0.03 ± 0.08; (2) Lifetime Drfference: TKK = 0.414 ± ( ..... 71" ) 
0.012 ± 0.014, TK1r = 0.409 ± 0.003 ± 0.004, with D.-y = -0.06 ± 0.15 ± 0.15, or 

the upper limit of Mixing rate as 'R.~ix < 0.00079 ( due to lifetime difference only) at 

90% confidence level; and (3) CP Asymmetry Parameters: A~~(K± K=F) = -0.018 

± 0.054 ± 0.012, A~~('1r±'ll"=i=) = -0.053 ± 0.093 ± 0.029, and A~~(K371") = -0.018 

± 0.023 ± 0.002. 

All measurements are consistent with most theoretical predictions and world av-

erage experimental values. 
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CHAPTER I 

INTRODUCTION 

This thesis focuses on three topics regarding the charged two-body singly Cabibbo 

suppressed decays (SCSD) of n° mesons, using a consistent analysis scheme. The 

topics are 

. . ( rcn°-+K+ x-) 1. the Branchmg Ratio BR) r no + - , ( -+7r 7r ) 

2. the Lifetime Difference between n°-+ x-1r+ and n°-+ K+ K-, and 

3. the CP Asymmetry between n° and [)0 • 

Measurements of these phenomena can yield sensitive tests of the Standard Model 

and various modifications to that model. 

Unless noted otherwise throughout this thesis, particle symbols denote both par-

ticles and anti-particles. 

The theoretical framework and how these measurements impact upon it will be 

presented in the following sections. Fig. 1.1 illustrates the quark contents, decay 

diagrams and decay amplitudes for n°-+ K+ x- and n°-+ 1r+1r-. 

1. 1 The Standard Model 

The Standard Model [Kane88]f is the SUo(3) x SUL(2) x Uy(l) gauge theory with 

three families of fermions (spin= integer+½). 

tcode in square brackets refers to coded references in REFERENCE. 
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u ~ci ~6 K+ 1t+ 

C C 
), ), 

Do K' Do 
1t-

a a a a 
sin9c cos90 - sin9c cos9c 

(a) 

K+ 1t+ 
C C 

Do w+ Do w+ 
[i K' [i -1t 

sin9c cos9c - sin9c cos9c 

(b) 

o•~ 

sin0c cos90 u 

[i 

sin9c cos9c 

(c) 

Figure 1. 1. The Significant Decay Diagrams for n° _.,, K+ K- and n° _.,, 1r+1r-: 
(a) spectator, (b) quark exchange and (c) penguin decays. The Cabibbo factors 
under SU(3) symmetry, including signs, are indicated. 
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Each fermion family contains two quarks and two left-handed leptons, but isolated 

quarks are never observed. Instead they are always confined to be mesons ( qq pairs) 

or baryons ( qqq triplets). The symmetries of such a gauge group give rise to 12 gauge 

bosons (spin=integer): 8 gluons, thew±, the z0 , and the photon(,). 

The Uy(l) electromagnetic symmetry is manifested by Quantum Electro-Dyna-

mics (QED) where photons mediate interactions between electrically charged quarks 

and leptons. 

The SUL(2) weak symmetry consists of both a flavor-changing charged current, 

mediated by the w±, and a flavor-conserving neutral current, mediated by the Z 0 • 

The W±'s are responsible for the SCSD in Fig. 1.1. The coupling of the charged 

current interaction is assumed to be universal, that is the decays 

u.~ d' c~s' t~b' 

have the same strength. The Cabibbo-Kobayashi-Maskawa ( CKM) matrix rotates 

the quark mass eigenstates into the weak decay eigenstates, Eq. (1.1 ). The lepton 

weak and mass eigenstates are identical, and their coupling to the w± is 1. 

( 
d' ) ( Vud Vu. V ub ) ( d ) s' = Vcd Vc. Ve& s 
b' Ytd ¼. ¼r, b 

(1.1) 

The varying magnitudes of the CKM matrix elements imply that the strength of the 

rotations between the mass eigenstates is not universal. 

In particular the ( d, s) subspace can be parameterized by the Cabibbo angle ( 0e ~ 

13°): 

( d' ) _ ( cos Be sin Be ) ( d ) 
s' - - sin Be cos Be s (1.2) 
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Therefore, the decays involving c +-+ d and u +-+ s vertices are suppressed ( sin Be) 

relative to c +-+ s and u +-+ d vertices ( cos Be). The decays suppressed by one factor 

of sin Be are called SOSD, indicated in Fig. 1.1. 

The SUe(3) color symmetry consists of eight gluons mediating the strong interac-

tions between the color carriers - the quarks and the gluons themselves. There have 

been many attempts to include strong interaction effects into weak decays. These 

includes the Penguin diagrams in Fig. 1.1 (e)(f), and the factorization approach of 

Bauer, Stech and Wirbel (BSW) (BSW87]. 

There is a special phenomenon, Mixing, in neutral meson systems. For example, 

in the K 0 - [(0 system, one can delineate three sets of states: 

• Strong or Quark eigenstates - (K0 , [(0 ); 

• OP eigenstates - (Kf, Ki); 

• Weak or Mass eigenstates - (K~, Kf). 

The rotations among these three states can be visualized as follows for the D0-D0 

system (including Direct OP asymmetry): 

Mass 
Eigenstate 

(it) 1 ( 1 E) 
y'l-lEl2 E 1 

Indirect CP 

CP 
Eigenstate 

1 ( 1 1 ) 72 1 -1 

Mixing 

Quark 
Eigenstate 

( £~) --+ f 
€ -

--+ f 
Direct CP 

(1.3) 

where e is the Indirect ( or Mixing-type) OP asymmetry parameter, and tis the Direct 

OP asymmetry parameter depending on the final state, f. The subscript notations H 

and L are chosen because we expect to observe a larger mass difference than lifetime 
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difference. Thus Hand L stand for Heavy and Light, and 1 and 2 denote OP-odd 

and OP-even, respectively. If there is no Mass Mixing or no Indirect CP asymmetry, 

then the corresponding rotation in Eq. (1.3) would reduce to a unit matrix. One can 

easily derive the rotation between the quark eigenstates and the mass eigenstates by 

combining two rotations into one. [Commins] 

Mass 
Eigenstate 

Quark 
Eigenstate 

(1.4) 

I will demonstrate how to construct the decay amplitudes, and thus the partial 

decay rates in Sec. 1.2. Then I will look in detail into CP asymmetry and n°-D0 

Mixing in Sec. 1.3. 

r(n°-+- K+ K-) FromnaiveSU(3) symmetry,oneexpectsthat r no + _ would be 1 [EiQu75], ( -+-'Ir 7r ) . 

because there is no difference between u, d, and s in the simple picture of Fig. 1. 1. 

But in 1979 the first experimental data [mark-79] showed this ratio to be 3.4 ± 1.8, 

and since then various models have been proposed to explain this result while exper-

imental groups have improved the precision of this measurement. The most recent 
. rcn°-+- x+ x-) world average lS r no + _ ( -+-'Ir 7r ) 

2.86 ± 0.28 [PDG94]. To date, the phenomeno-

logical fitting model and the final state interaction (FSI) model can explain all the 

n-+-PP or PV (P=pseudoscalar, V=vector) hadronic 2-body decays of n mesons. 

1.2.1 Effective Hamiltonian for Hadronic Charm Decays. The effective 

Hamiltonian for hadronic charm decays is given as [Bur86] 

(1.5) 
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where c1 and c2 are composed of short distance QCD coefficients ( c+ and c_ ): 

(1.6) 

and ¼; are the elements of the CKM matrix with (c, k) and (j, l) standing for +i 
charge (up-type) quarks and-½ charge (down-type) quarks, respectively. The V-A 

weak interaction is 

(1.7) 

with a being the color index. In Eq. (1.5), the first operator describes the usual 

charged current interactions. The second term is an effective neutral current interac-

tion generated by short distance QCD effects and in the absence of these effects, i.e. 

c+ = c_ = 1, the second term vanishes. 

In particular the Cabibbo favored decay (CFD) of D0 ~ K-1r+ is described by 

(1.8) 

To find the decay amplitude, one computes the matrix H;ff of Eq. (1.8) between the 

initial state ID0 >, and the final state IK-1r+ >: 

(1.9) 

1.2.2 Factorization Model. Continuing from Sec. 1.2.1, I factorizet the 

weak amplitude in all possible ways by performing appropriate Fierz transformations 

tThe factorization hypothesis means that the meson two-body decay amplitudes may 
be expressed as the product of two independent hadronic currents. 
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[BS85] - vacuum insertion - on the hadronic matrix elements. With this replace-

ment of interacting fields by asymptotic fields, I neglect any initial or final state 

interaction of the corresponding particles for the moment [BSW87]. Then 

where 

A(D0 -+ K-7r+) = y'½GF v:::vuc1{a1 <7r+1(ud)LIO >< x-1(sc)LID0 > 

+a2 < x-7r+1(uc)LIO >< Ol(sd)LID0 > }, (1.10) 

(1.11) 

It has been emphasized [Bur86] that factorization follows to leading order in a 1 / Ne 

expansion, where Ne is the number of quark colors (3 in SU(3)). The color factor 

e = 1 / Ne arises from color mismatch in forming color singlets after Fierz transforma-

tion. After some phenomenological tests, it has been shown that ! is not universal but 

channel or class dependent [Chen94]. The first term in Eq. (1.10) represents the spec-

tator decay mechanism, and the second the quark annihilation decay contribution. 

Evaluating the corresponding matrix elements in Eq. (1.10) we find 

A(D0 -+ K-7r+) = a1y'½GFV:::Vuc1!1r · (m1 - m}) · pDK(m;, o+) · h 

+ a2y'½GFV:::Vuc1fv · (m} - m;) · pK1r(m1:>, o+) · h (1.12) 

where f1r and fv are the decay constants, FvK(q2,0+) and FK1r(q2,o+) are the form 

factors, and h is a reduction factor which has been introduced to account for an in-

complete overlap of the relevant meson wave functions. From Eq. (1.12), annihilation 

is suppressed by a factor of (a2/a1)(mk/m1) relative to the charm quark decay. The 

annihilation term in Eq. (1.12) can be neglected due to the conserved vector current 

(CVC) hypothesis [KaXu92], unless the annihilation form factor, FK1r(m1:>, o+), shows 

an unexpected large resonance effect. 
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Thus the partial decay width for D0 -+ K-1r+ is 

Similar results [BSW87] can be obtained for other D -+ PP or PV decays. By 

this factorization approach, I can separate all the partial decay widths for D -+ 

PP or PV into three classes characterized by the QCD factors Ja1J2 (e.g. n°-+ 

1r+K-), Ja2J2 (e.g. n°-+1r°K0 ) and Ja1 +xa2J2 (e.g. n+-+k01r+). The parameter X 

describes SU(3) breaking effects and is equal to 1 in the SU(3) limit. The success of 

the BSW model in the two-body nonleptonic decays indicates that, to leading order 

in 1/Nc, quarks belonging to different color singlet currents do not form hadrons, or 

equivalently, color suppression is absolute [Bur86]. 

The decay amplitudes of both n°-+ K+ K- and n°-+ 1r+1r- fall into class a1 : 

A(n°-+K+ K-) = -a1/½GF~:vu.!K. (mb - mk). FDK(mk,o+). h (1.14) 

A(n°-+1r+1r-) = a1/½GFV:a_Vwd1r. (mb - m;). FD'll"(m;,o+). h. (1.15) 

Some examples in other classes are: 

A( no-+ Ko f(O) 

-a2{f GF v:a. Vwd1r '(mh - m;) 'FD1r(m;, o+)' h 

0 

A(n+ ~,,,.o,,,.+) a1 + a2 0 v•v. f ( 2 2) ( 2 +) h ----,- " " - - \l'2 F cd uc1 1r · mD - m1r · FD1r m1r, 0 · 

(1.16) 

SU(3) symmetry breaking effects can be found in the straightforward comparison 

of Eq. (1.14) and Eqv(l.15). First, the deviation of rf~o-+ K: K_-) froro 1 is due to ·.. . ( -+7r 7r ) 
the slight difference between JVc.J and JVuc1J (rvcosBc), and JVu.J and JVcdJ (rvsinBc). 

Second, the deviation from 1 of FfK(O)/Ff""(O) (rv 0.76/0.83) [PDG94] , fx/f,.. 
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("' 159.8/130. 7) [PDG94] , and mK /m-rr ( -493. 7 /139.6) [PDG94]. The q2 dependence 

of the form factor F( q2) is usually assumed to be governed by a single low-lying pole: 

2 F(O) 
F(q ) = 1 - (q2/m~)' (1.17) 

where m. is the mass of the o+ pole, with m. = 2.4 7 Ge V / c2 for F{/-rr and m. = 2.60 

GeV /c2 for FfjK [ChCh94]. 

Phenomenological approaches [BSW87] treat a1 , a2 , and :.c as the fitting parame-

ters for available data, using them to predict other decay widths. Generally speak-

ing, this factorization approach can fit most of the experimental decay widths of 

D-+ PP or PV, but some exceptions (e.g. D 0 -+1r+1r-) force us to other models, 

such as final state interactions (FSI), to decrease the discrepancy between experi-

mental data and theoretical predictions. 

1.2.3 Final State Interactions. Final state interactions (FSI) play an im-

portant role in processes where a number of hadrons are produced through a "basic" 

process and then allowed to interact strongly. Familiar examples are: [KaCo81] 

• Electromagnetic (EM) form factors where the basic process is EM, and FSI 

endows the form factors with a momentum-transfer dependence; 

• Weak decays of hadrons, for example K-+ 21r or 31r, A-+ p7r-, etc., where the 

basic process is weak and FSI results in a phase to the amplitude; 

• Particle.production, for example 1rN-+1r1rN and KN-+1rKN, etc., where the 

basic process is a real Born amplitude followed by FSI in 2-body sub-systems 

of produced particles. 



10 

The n meson mass lies in a resonance region where strong rescattering effects 

of the outgoing mesons will be of particular importance. For the on-mass-shell FSI 

case, the bare amplitude A0 should be corrected to [BSW87) 

A=VS·A0
, (1.18) 

where .,/s denotes the square root of the strong interaction S-matrix for hadron-

hadron scattering. Inclusion of this correction results in the introduction of phase 

factors and mixing of channels. Since little is known about the many open channels, 

../S cannot be estimated. 

Nevertheless, an isospin analysis gives some information about the effects of FSI. 

For such an analysis we borrow the concept of strong scattering with isospin decom-

position to analyze n --+ 7r7r, K 7r, and K K. In terms of isospin (I) amplitudes, the 

decay amplitudes are: [KaPh941) 

• n--+ 7r7rj I = 0, 2 in the final state, 

A(n°--+ 7r+7r-) l A 'In!' io,..,.. - e o v'6 0 + l A 'In!' i.i"" -- e, v'I2 2 

A( no--+ 7ro7ro) l A 'In!' i.i,..,.. - e o v'6 0 

l A 'In!' i.i,..,.. - e, v'3 2 
(1.19) 

A(n+ --+7r0 7r+) - J3 A 'In!' io"" --- e, 2v2 2 

• n--+ K K; I = O, 1 in the final state, 

A(n°--+ K+ K-) l AKK iaKK - e o J2 0 + l AKK i5KK - e i v'21 
A( no--+ Ko f(o) l AKK i.iKK - e o J2 0 

l AKK i.iKK - e i J2 1 (1.20) 

A(n+ --+K+ K 0
) - v2AfKeiofK 
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• D-+ K 1T'j I = ½, ! in the final state, 

A(D0 -+ K-11"+) 1 ioK,r ~ i6K,r - -AK'll'e 3/2 + AK'll'e 112 y'3 3/2 1/2 

A(Do-+ [(o1T"o) ~ ioK,r 
1 •0K,r 

- AK'll'e 3/2 -AK'll'e' 112 
3/2 v'3 1/2 (1.21) 

A(D+-+ K 0 1T"+) - Ja ioK,r AK'll'e 3/2 
3/2 

There are many more decay modes as well, and it is possible to use data from 

all of the different decay modes to fit these parameters simultaneously, and make 

predictions for other modes, in order to see if FSI can explain all the phenomena. In 

fact, the uncertainty of the FSI model is due to the arbitrary complex isospin phases. 

An attempt to connect the FSI and BSW models ( described in Sec. 1.2.2) is made 

by assuming that FSI simply rotates the decay amplitudes in the complex plane 

(in others words, assuming FSI is weak or elastic) [KaXu92), so that the isospin 

amplitudes can be evaluated by setting all the isospin phases equal to zero and 

equating the amplitudes in Sec. 1.2.3 with the amplitudes in Sec. 1.2.2. This allows 

a test of the consistency of the BSW model. 

Alternatively, for example, one can avoid the complex FSI phases by comparing 

the phase-independent quantities (BR's): [KaPh941) 

(1.22) 

and r(n+-+ .K° K+). Thus, without the uncertainty of unknown complex isospin 

phases, one can test the consistency of the BSW model and also estimate the strong 

interaction amplitudes. 

1.2.4 Phenomenological Approach. There is another phenomenological 

approach using the model-independent quark-diagram scheme to assign decay .:illlpli-

tudes for all 2-body exclusive decays of D mesons. It has the 6 basic quark diagrams 

shown in Fig. 1.2: [ChCh87) 
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C )I, ~. l )I, = 
A B 

C D 

E F 
Figure 1.2. Six Possible Weak Quark-decay Diagrams in a Phenomenological Ap-

proach: 
A - The external W emission diagram; B - The internal W emission diagram; 
C - The W exchange diagram; 'D - The W annihilation diagram; 
£ - The horizontal W loop diagram; F - The vertical W loop diagram. 
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• External W emission (A). 

• Internal W emission (B). 

• W exchange ( C). 

• W annihilation ('D). 

• Horizontal W loop ( £). 

• Vertical W loop (.r). 

This classification is independent of the strong-interaction schemes, and can incor-

porate any specific strong-interaction-model calculations. Thus all the s, c, b, and t 

particle decays can be expressed in terms of these six types of quark diagrams and the 

quark mixing matrix. These quark diagrams are specific and well-defined physical 

quantities. They are classified according to the topology of first-order ( e.g. one-

gluon loop) weak interactions, but all QCD strong-interaction effects are included 

[ChCh892]. 

Table 1.1 [ChCh92] lists a few decay amplitudes of interest. The amplitudes 

with tildes C) denote the diagrams involving the creation of ss; 8£ = £ - £ and 

S.r = J: - F. These are SU(3) breaking. In addition, the difference of form factors 

and decay constants ( discussed in Sec. 1.2.2) will further induce different A's for 

different decay modes. FSI is expressed by the phase shifts, the S's, which in general 

have both real and imaginary parts. The real parts are related to the elastic scattering 

effects while the imaginary parts indicate effects of inelasticity [ChCh94]. Sf P ( as 

mentioned in Sec. 1.2.3) is the FSI phase shift of isospin I in D --+ PP decay and 

!:::,.pp is the phase difference between the two final isospin states. 

, In the case c.F r(n°--+ K+ K-) and r(n°--+1r+7r-), Table 1.1 shows two possible 

sources responsible for the deviation from the naive SU(3) symmetry prediction that 
rcn°--+ K+ K-) _ 
rcn°--+ 1r+1r-> - 1. 
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Table 1. 1. Amplitudes of D---+ PP Decays 

Decay SU(3) symmetry Amplitudes in { } are replaced due to 
Mode Vu. Ve~ ~ -V ud vcd = St Ct SU(3) breaking and FSI 
n+-
11"011"+ 72(stct){A + 8} (A+ 8)ei6;" 

K+f<O (stct){A- '.D} (A - i> + 5e)ei6frc 
f<01r+ (ct)2{A + 8} (A+ 8)ei6ft; 
D--+ 
x-1r+ (ct)2{A + C} [(A+ C) - ½(A+ 8)(1 - eiaK,. )]ei6ft; 
x-x+ (stct){A + C} [(A+c)+(5e+25F) -½(A+C+5e)(l-eiaKK)]ei6frc 
11"-11"+ -(stct){A + C} [(A+ C) - (5e + 25.r) - ½(A+ 8)(1- eia,..,. )]ei6;" 
[(011"0 72(ct)2{8- C} [(8 - C) - ~(A+ 8)(1 - eiaK,. )]ei6ft; 
KOf<O (stct){O} [(C - c + 25.r) +½(A+ c + ce)(l - eiaKK)]ei6frc 
1!"011"0 72(stct){8 - C} [(8 - C) + (5e + 25.r) - }(A+ 8)(1 - eia,..,.)]ei6o"' 

• SU(3) symmetry breaking-Accumulations of small pieces of SU(3)-symmetry 

breaking effects, such as the decay constants, the form factors, and the mass-

difference ratios ( described in Sec. 1.2.2), lead to a deviation of rf.z;o---+ K: K_-) ( ---+ 7r 7r ) 

from 1. However, SU(3) symmetry breaking is insufficient to explain all of the 

data.* 

• Coupled Channel FSI - The 1r1r can rescatter into K K through the I = 0 

channel by inelastic FSI [KaCo81, KaSi87]. In particular, there is a known o+ 

resonance (!0(1300)) which couples to both 71"7r and KK by the I= 0 channel, 

as well as a resonance a0(980) which couples to both 1J7r and .k K by the I= 1 

channel. 

*It has been suggested [Finj81, Pham86] that penguin contributions (Fig. 1.1( c) or e 
& Fin Fig. 1.2) may help to explain the discrepancy between models and experiments. 
However, it is evident in Table 1.1 that including penguins contributions -vould only increase 
the deviation. Also, the penguin contributions are rather small, estimated to be e /A"' 1 %. 
Kamal & Pham [KaPh941] conclude that the Penguin mechanism, which could solve some 
problems in isolation, is not the solution to the global problem in D --+ K k and D --+ 11"11" 
decay. 
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h rcn°-+ K+ K-) . f To summarize t e BR study, I emphasize that r no + _ 1s only one o ( -+ 71" 71" ) 

many BR's. There are many models which calculate this particular BR relying on 

the apparent simplicity and similarity implied by Fig. 1.1. But few models can survive 

a global phenomenological test of all the two-body decay BR's. Our measurements 

narrow the experimental errors, so that further phenomenological tests can be made 

on different models and different decay modes. 

So far, the BR's have been calculated by ignoring the tiny (10-4 or smaller) 

differences in decay rates between particles and anti-particles. The following section 

will discuss the effects of direct CP and Mixing phenomena resulting in different BR's 

for particles and anti-particles. 

1.3 CP Violation and Mixing in the n°-D0 System 

Looking at the simple picture in Eq. (1.3), another parameter is the direct CP 

asymmetry, e'. This direct CP asymmetry would be reflected in a difference between 

the partial decay widths of any ( charged or neutral) particle and its anti-particle, 

namely the asymmetry between < f1Hln° > and < flHID0 >. To complete the 

consideration of neutral mesons, there is 

• Direct CP asymmetry, e'; 

• Indirect CP asymmetry, e; 

• Mass Mixing,,, !:l1 , and /:lm. 

The time evolution of the quark eigenstates ( n°, [)0 ) is described in terms of an 

effective Hamiltonian. That is, writing the wavefunction in the two-component form 

- ( 1n°(t)>) v,(t) - ID0 (t) > ' (1.23) 
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with 

1/,(0) = ( 1i:~ ) ' (1.24) 

we have 

i :t 'ljJ(t) H$ 'ljJ(t) (1.25) 

( Hu Hr.l ) 'ljJ(t) H21 H22 (1.26) 

(M - i~T) 'ljJ(t) (1.27) 

- ( 1:1" - ~tr. M12 - ~\r12 ) 'ljJ(t). M12 - i 2r 12 M - i 2r (1.28) 

where M and T are the mass matrix and the decay matrix, respectively, and OPT 

is conserved for Eq. (1.28) [Commins, Na94]. 

Following Eq. (1.4), the Physical mass eigenstates D'k and ni are found to be 

ID'k> = 
1ni> = 

J2(1~1e12)[(l + e)jDo> + (1- e)!Do>] pjDo> + qjDo> (1.29) 

J 1 [(1 + e)jD0 > - (1 - e)jl>0 >] _ pjD0 > - qjD0 >, (1.30) 
2(HIEl2 ) 

or by diagonalizing the mass matrix Eq. (1.28), and using different notation 

p-q 
where e = --. p+q 

(1.31) 

Let f denote the final decay state of the neutral meson and/ its charge conjugate 

state. Define 4 decay amplitudes for D0 and l>0 : [PaWu95] 

g =<flH$1D0 >, h =<flH$1D0 >; g =<flH$1D0 >, h =<flHfjD0 >. (1.32) 

Paran1eters containing direct CP violation are defined by 

g-h 
€ = g + h' 

h-g 
't=h+g; I'= g-g 

- g+g' 
h-h -=II -

E = h+li' (1.33) 
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Note that the above parameters are not physical observables since they are from 

complex decay amplitudes, and thus are not rephase-invariant [PaWu95]. One can 

however define the OP-violating observables by considering the ratio, 

- < JIH{IID2 > 1 - TJ 
111 = < flH{QIDt> = 1 +r1' 

with r1 = !J: being rephase-invariant. It can be shown thatt 

ae + al + iae+I 
11! = 2 + aea1 + ael 

with new rephase-invariant quantities 

1 - lq/pl2 2!R( e) 
1 + lq/pl2 1 + lel2' 
1 - lh/ 912 2!R( I) 
1 + lh/ 912 1 + 1112, 

(1.34) 

(1.35) 

-4':s(qh/p9) 29(e)(l - 1112) + 29(1)(1 - iel2) 
- (1 + lq/pl2)(l + lh/912) = (1 + lel2)(1 + 1112) ' (1.35) 

-4!R(qh/pg) 49(e)S:(I) - 2(1el2 + 1112) ----"--~---1=-~-,-,-.c--,---,-,--,---
(1 + lq/pl2)(l + lh/gl2) (1 + lel2)(l + 1112) · 

Only three of these are independent as (1 - a~)(l - a}) = a!+I + (1 + ael )2. Anal-

ogously, one has 

(1.37) 

where at, ae+E' and aet are similar to a1, ae+I and ael but withe' being replaced 

by t. Two additional rephase-invariant quantities complete the set of observables, 

1-lg/gl2 2!R(e") 
a11 = 1 + lg/9!2 = 1 + 11'12' 

_ 1 - lh/hl2 2!R(e") 
at,= 1 + lh/hl2 = 1 + lf''l2· (1.38) 

OP violation can be classified into three types: 

tBy using 1- ab= [(1 + a)(l - b) + (1- a)(l + b)]/2 and 1 +ab= [(1 + a)(l + b) + (1-
a)(l - b)]/2. 
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• pure indirect (Mixing-type) CF violation which is given by the rephase-invariant 

CF-violating observable ae; 

• pure direct CF violation which is characterized by the rephase-invariant CF-

violating observables a€, and at, (plus a€ and at for the following special 

cases); 

• indirect-direct mixed CF violation which is described by the rephase-invariant 

CF-violating observables a€+€ & ae+'t and a€€ & aet· 

In order to measure these rephase-invariant observables, consider the proper time 

evolution of the neutral mesons 

or 

with 

1no(t) > 

IDO(t) > 

1no(t) > 

IDO(t) > 
f+(t)ID0 > + 1 · J_(t)ID0 >, 

p 
~ · f-(t)ID0 > + f+(t)ID0 >, 
q 

J± - 1{ei(-mH+i1;i-)t ± ei(-mL+i.'.!f-)t}, 

,H+,L 
'Y 2 

fl, 'YL - 'YH = +4S' (M .r12)(M• .rr2) 12 - i2 12 - i2 , 

/.lm fflL-fflH = -2~ (M .r12)(M .rr2) 12-i2 i2 -i2. 

(1.39) 

(1.40) 

(1.41) 

(1.42) 

(1.43) 

(1.44) 

(1.45) 
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The time-dependent decay rates are found to be (Pa Wu95] 

r(Do(t) __.. f) ex I < JIHetrlDo(t) > 12 = 1 IYl2 + 1h12 e--ytx 
w 1 + ae 2 

{ (1 + aeae') cosh(b.-yt) + (1 + aee') sinh(b.-yt) 

+ ( ae + ae') cos(b.mt) + ae+e' sin(.6.mt)} (1.46) 

r(.Do(t) __.. J) ex I < flHfl.Do(t) > 12 = 1 IDl2 + 1h12 e--Ytx 
1-ae 2 

{ (1 + aeat) cosh(b.-yt) + (1 + ae"t) sinh(b.-yt) 

- (ae +at) cos(b.mt) - ae+E" sin(b.mt) }· (1.47) 

1.3.1 Lifetime Difference for D0 -.D0 Mixing. Ordinarily, one measures the 

Mixing rate by the ratio of wrong sign signals to right sign signals 

'Rmix(t) 

'Rmix(t) -

r(D0 (t) __.. J) 
r(D0 (t) __.. f) 
r(.D0 (t) __.. f) 
r(D0 (t) __.. f) · 

(1.48) 

(1.49) 

Note that 'R.mix(t) and 'Rmix(t) would be the same only for CP invariance, i.e. p = q 

in Eq. (1.41) ore= 0 in Eq. (1.4). See also the discussion of indirect-CF with Mixing 

in a first order approximation by L. Wolfenstein [Wol£95]. 

Assume CP invariance*, i.e. lei and je''I are O, jgj = ID!, !hi = !hi, and p = q = 1. 

Then directly from Eq. (1.3), the mass eigenstates are identical to the CP eigenstates. 

Obviously, K± K":f are the decay products of the CP-even eigenstate D~ which has 

definite lifetime and mass, whereas K-:t=7r± is not a decay product of a CP eigenstate 

but rather a mixture of CP-even and CP-odd states. 

*Original idea. by T. Liu (Liu94] 
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With the OP invariance assumption, we have ae = ae = O, q/p = 1, 9 = g, h = h, 
ae = ae, aee = aet, and ae+e = ae+e'· Eq. (1.46) and Eq. (1.47) lead to 

r(no(t)~ !) ex I< JIHtlDO(t)> 12 = 1912 + 1h12 e-,ytx 
2 

{ cosh(.6.-yt) + (1- + aee) sinh(.6.-yt) 

+ ae cos(.6.mt) + ae+e sin(.6.mt)} (1.50) 

r(.f>o(t) ~ f) ex I < flH{fl.Do(t) > 12 = 1912 + 1h12 e-,ytx 
2 

{ cosh(.6.-yt) + (1 + aee) sinh(.6.-yt) 

- ae cos(.6.mt) - ae+e sin(.6.mt) }· (1.51) 

Combine Eq. 1.50 and Eq. 1.51 for KT71"±: 

r( Do' .f>O ~ KT11"±) ex ( 1912 + lhl2)e-,yt X 

{ cosh( .6.-yt) + (1 + aee) sinh( .6.-yt)} 

which is not a pure exponential decay. 

(1.52) 

• For K± KT being a OP-even eigenstate decay, which has definite mass and 

lifetime, TKK in D~ ~ K+ K- is the inverse of -y2 • 

• For KT7!"± case, h could be considered as the contribution from Doubly Cabibbo 

Suppressed Decay (DCSD). Obviously, Eq. 1.50 and Eq. 1.51 are not pure 

exponential decays. Even after the right sign tagging from the strong decay of 

n•± ~ D0 (.f>0 )11"±, i.e. with h = 0, Eq. 1.50 and Eq. 1.51 still do not yield pure 

exponential decays: 

(1.53) 

----·------.- ·---==-=====-----.-,..., 
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But TK1r in D0 -+ K-1r+ can be approximated as the inverse of,, and since only 

the exponential decay can be noticed easily, there is no need to separate D0 

and [)0 to measure TK1r (Liu95]. 

Thus, by studying the lifetime difference with the CP invariance assumption, 

fl., - 'Y2(L) - ,1(H) (1.54) 

1 1 
(1.55) - 2·(---) 

'T"KK 'T"K1r 

2· 'T"K1r - 'T"KK (1.56) -
'T"KK X 'T"K1r 

'T"K,r - 'T"KK (1.57) "' 2 . (PDG )2' 'T"K1r 

In Appendix At, I also adopt another approach by using the difference between two 

mean values of the proper decay time to estimate the lifetime difference ( TK1r - 'TKK) 

in terms of Eq. (1.57). 

The Mixing rate can be parameterized, assuming CP invariance as 

_ x2 + y2 
nmix = 'Rmix = 2 

. h m2 - m1 d 1'2 - 1'1 1 d' wit x = --- an y = ---, ea mg to 
1'2 + 1'1 1'2 + 1'1 

y . ( 'T"K,r - 1) 
'T"KK 

(1.58) 

(1.59) 

for TKK = _!__ and TK1r == 2 
. By studying the lifetime ratio, we can estimate 

1'2 /2 + 'Yl 
the Mixing rate due to lifetime difference. Note that x and y is independent to each 

other (mass difference vs. lifetime difference). To have a complete estimate of Mixing 

tneveloped by Dr. M. Purohit 
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. D.."( D..m rate, we need to have both :z: and y. The Standard Model predicts that - < --
'Y 'Y 

in D0-D0 system. E791 measurement will be the first estimate of yin D0 -D0 Mixing. 

1.3.2 Direct CP Violation. Experimentally, define the CP asymmetry pa-

rameter from the comparison of the partial decay widths as 

r-r 
Acp = r+r (1.60) 

In general, one can represent the decay amplitude of a meson M (M) decaying 

to a final state, f (f), as 

A(M-t f) 

A(M-t f) 

where W's are the weak decay amplitudes and S's are the strong final state-interaction 

phases. Then 

r-r 
r+r 
A•A-ii•ii 
A•A+A•ii 

2~(W1 W;) sin( 62 - 61) (1.61) 

Both factors in the numerator of Eq. (1.60) should be nonvanishing to have a nonzero 

effect. Moreover, to have a sizable asymmetry the moduli of the two amplitudes W1 

and W2 should not differ by very much. From Table 1.1, note that the SCSD's, 

n° -t K+ K- and n° -t 1r+1r-, look like candidates to observe Direct CP asymmetry, 

since they have two different weak amplitudes - Vu. V::! from quark diagrams and 

Vud V::d from penguin diagrams - as well as two different strong isospin final states. 

However, I will show below that D0 -tK+K- and D0 -t1r+1r- are not good candi-

dates for observing pure direct CP asymmetry. Even Acp(K,=1r±) could be nonzero 

----- ... ·----··-·· ·~--- --------··-·--···---
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resulting from unknown contributions of the beyond-Standard-Model (BSM) sector 

[YOR92), if any, and the well-known interference of FSI. 

To measure the direct CP asymmetry [BeJa81, BuLu93], Acp, for the charged 

mesons (without any neutral meson in the intermediate or final state), one can follow 

the definition described above. But for neutral mesons, as n° and fJ0 , indirect CP 

asymmetry is accompanied by n°-fJ0 Mixing. 

Following Eq. (1.46) and Eq. (1.47), first define a time-dependent Acp(t) as 

Acp(t) = r(t) - f'(t) 
r(t) + r(t) 
r(n°(t)~ f)- r(fJ0 (t)~ J) 
r(n°(t)~ f) + r(D0(t)~ f) 

Consider two special cases: [Pa Wu95] 

(1.62) 

• n° ~ f(n° f+ f), fJ0 ~ !(fJ0 f+ f), i.e. f or f is not a common final state 

of n°and fJ0 • If one can rule out Doubly Cabibbo Suppressed Decay (DCSD) 

contamination* then n° ~ K-1r+ (fJ0 ~ K+1r-) is such an example. Also I 

assume the "DCSD after Mixing," i.e. n° Mixing fJ0 ~ K-1r+ is well below the 

order of Acp. This case leads h = h = O, a€ = -at = 1, ae+e' = ae+e' = 0, 

and aee' = aet = -1 in Eq. (1.46) and Eq. (1.47). Then 

(1.63) 

which is actually time-independent. Even though n° ~ K-1r+ is CFD, the mea-

surement of nonzero Acp(n° ~ K-1r+) would indicate pure direct CP asymme-

try from the interference of weak phases between the SM and BSM sectors 

[YOR92]. 

*DCSD is an order of tan4 9c (Cabibbo angle), and D0-fJ° CP violation would be below 
this order, so DCSD is non-negligible in CP studies. 
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• D0 --+ (f = J, JCP = f) +- fJ0 , i.e. the final states are CP eigenstates, such as 

D0 --+ K+ K- and D0 --+1r+1r-. This case leads to g = h, h = g, ae, = ae', = 

at = at,, aee' = aet and ae+e' = ae+e' in Eq. (1.46) and Eq. (1.47). Thus, 

Acp(t) = .6.m(t) - ae.6.-y(t) (1.64) 
.6...,(t) - ae.6.m(t) 

where 

.6.m(t) = ( ae + ae') cos(.6.mt) + ae+e' sin(.6.mt), 
.6...,(t) = (1 + aeae') cosh(.6.,t) + (1 + aee') sinh(.6.,t). (1.65) 

Acp(t) is no longer a pure direct CP asymmetry parameter but a mixture of 

direct and indirect CP asymmetry parameters. 

Ideally, by making Acp measurements on different D decays, especially the time-

dependent measurements, one can extract information about the multiple parameters 

of Direct and Indirect CP asymmetry and Mass Mixing. 

AgJ for the E791 Experiment. For a collider experiment, the above the-

oretical discussion is sufficient, but in fixed target experiments, such as E791, the 

Leading Particle Effectt complicates D meson production studies. 

In order to compensate for this production asymmetry, define a new CP asym-

metry parameter using branching ratios: 
rcn·+--+ (D0 --+ K+ K-) 1r+) - rcn·---+ (D0 --+ K- K+) 7r-) 

AaR(K± K=t=> = rcn•+--+ (Do--+ K-1r+) 7r+> rcn·---+ (!?o--+ K+1r-) 1r-> (1.66) 
cp rcn•+--+ (D0 --+ K+ K-) 1r+> rcn·~ (D0 --+ K- K+) 1r-> 

rcn·+--+ (D0 --+ K-1r+) 1r+> + rcn·---+ (D0 --+ K+1r-) 1r-> 
rcn·+--+ (D0 --+ 1r+1r-) 1r+> _ rcn·---+ ( fJ0 --+ 1r-1r+) 1r-> 
rcn•+--+ (D0 --+ K-1r+) 1r+> rcn·---+ (D0 --+ K+1r-) 1r-> (1.67) A~~( 7r±1r=t=) = --'----.---'------'----'--;__-__,_ ____ ~_ rcn•+--+ ( D0 --+ 7r+7r-) 7r+) rcn·---+ ( D0 --+ 7r-7r+) 7r-) 

rcn·+--+ (D0 --+ K-1r+) 7r+) + rcn·---+ (D0 --+ K+7r-) 7r-) 

fThe leading particle is the charm particle carrying the valence quark from the incident 
71"-(ud), and its anti-particl-, is non-leading. So-in fixed target experiment_!i, we see mo_!e 
production ofleading particles (e.g. D0(cu.) n-(cd)) than non-leading (e.g. n°(cu) n+(cd)) 
in the forward direction ( or the high XF region). Also, fixed target experiments usually don't 
have good acceptance in the negative XF region, enhancing the net production asymmetry 
between leading and non-leading particles. 
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where I utilize the strategy of identifying the bachelor ,r± from the strong decay of 

n·±--+ n°(D0 ),r± to tag n° (D0 ) production and decay. I use then°--+ K-,r+ mode 

as the normalization mode. 

Note that even in the simpler picture of Eq. (1.64) and Eq. (1.65) there are three 

factors - Direct CP asymmetry, Indirect CP asymmetry, and Mass Mixing. So from 

a naive approach, in order to study Direct CP asymmetry, I wish to cancel out (1) 

the huge production asymmetry (such as the Leading Particle Effect), (2) the tiny 

Mixing ( causing the interference), and ( 3) the unknown Indirect CP asymmetry, by 

doing certain normalizations. My intention here is to deduce a prediction from theory 

for A~~-

First, the right signt n•±--+ D0 (D0 ),r± tagging is necessary for K,=,r± ( and K3,r ), 

in order to eliminate or reduce DCSD contamination. In addition, the possibly dif-

ferent efficiencies for slow (or bachelor) ,r±'s tagging in n•+--+(D0 --+K+K-),r+ and 

n•---+ (D0 --+ K- K+) 7r- can be compensated for by normalizing to 

metry from n•± --+D0 (D0 )7r±, since these are strong decays (but if strong CP asym-

metry is of the same order there might be interference between strong and weak CP 

asymmetries). I do include the possible weak CP asymmetry from n°--+ K-,r+ and 

D0 --+ K+,r- into Eq. (1.66) and Eq. (1.67). 

trn D*+-+(D0 -+K-1r+)1r+, events with two same-charged 1r's are called right sign 
events, and those with opposite-signed 1r's are called wrong sign. Similar notation applies 
to n·--(n°-K+1r-)1r-. 
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Second, due to the limited statistics, I measure the time-integrated A~~. Inte-

grating the general forms of Eq. (1.46 and 1.47), 

/
00 1 1912 + 1h12 

lo r(Do(t)~f)dtex (1,2-(~,)2](,2+(~m)2] X 2(l+ae) X 

{ (1 + aeae1)b3 + ,(~m)2] + (1 + aef')[,2~, + ~,(~m)2] 

- (ae + ae1)b(~,)2 - , 3
] - ae+e'l~ml[(~,)2- ··,2]} (1.68) 

(
00 -o - 1 l.912 + 1h12 

lo r(D (t) ~ f)dt ex (,2 - (~,)2)(,2 + (~m)2] X 2(1 - ae) X 

{ (1 + aeat )[,3 + ,(~m)2] + (1 + aef! )[,2~, + ~,(~m)2
] 

+ (ae + at )[,(~1 )2 
- ,

3
] + ae+tl~ml[(~,)2 - 1

2
] }· (1.69) 

Thus for the D0 ~ K+ K- mode ( according to the conditions mentioned above), 

r(Do~K+K-) ex 1 x 1912 + l.912 X 
(,2 - (~,)21[,2 + (~m)2] 2(1 + ae) 

{ (1 + aeae1 )[,3 + ,(~m)2] + (1 + aee' )[,2~, + ~,(~m)2] 

- (ae + ae1)b(~,)2 - ,y3] - ae+e'l~ml[(~,)2 
-,

2
]} (1.70) 

r(fJO~K-K+) ex 1 X l.912 + 1912 X 
(,2 - c~,)2)(,2 + (~m)2] 2(1 - ae) 

{ (1 + aeae1)b3 + ,(~m)2] + (1 + aee1)b2
~, + ~,(~m)2] 

+ (ae + ae1 )b(~,)2 - , 3
] + ae+e'l~ml[(~,)2 - , 2

] }; (1.71) 

1 I '12 r(n°~K-1r+) ex-------- X g X 
(,2 - (~1 )2][,2 + (~m)2] 2(1 + ae) 

{ (1 + ae)[,3 + ,(~m)2] - (ae + 1)[,(~1 )2 
- ,y3]} (1.72) 

1 1-112 r(IJ0 ~K+1r-) ex-------- X 9 X (,2 _ (~,)2)(,2 + (~m)2] 2(1 - ae) 

{ (1 + ae)[,3 + ,(~m)2] + (ae - 1)[,(~,)2 - 1
3

] }· (1.73) 
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Substituting Eqs. (1. 70-1. 73) into Eq. (1.66), two different decay modes share the 

same set of indirect CP rephase-invariant parameters, D.."(, !lm and 'Y -but different 

g and g' (the decay amplitude of the numerator and denominator, respectively), 

and different direct CP rephase-invariant parameters. Unfortunately, the calculation 

. of ~~ cannot be simplified without further assumption, due to the complicated 

normalization of Eq. (1.72, 1.73) - the difference between 19'1 and 19'1 and between 

-(ae + 1) and +(ae -1). Also because each term in Eqs. (1.70-1.73) is additive, it 

makes cancellation difficult, especially the terms in the K=f,r± mode. 

Because both K-=F,r± and K31r are in the same category ( the final state is not a 

common state of n° and D0, and both share the same Mixing parameters and Indirect 

CP parameters although not Direct CP parameters), without any assumption, the 

~~ for right sign K31r with the same normalization of right sign K-=F,r± shows a 

simple form: 

A~~(K31r) = 

r n° K- -+ +> 
This is an indication of direct CP asymmetry of the BR ( r i)o '{-7r + 7r 

( -+- 7r ) 

Applying assumptions in the order of their least effect on A~~' 

(1.74) 

• Assume Direct CP invariance in n° -+-K-1r+ and i5°-+-K+,r-- i.e. the un-

likely weak phase from BSM [YOR92] sector is ruled out, thus 19'1 = 19'1 and 

A~~(K± K-=F) ..:.. { ae(l + aee' )fl1[(/lm )2 + 12][(/l, )2 -12]+ 

ae(l + aeae' )'Y[(!lm )2 + 12][(fl1 )2 -12] -

ae+e'lflml[(fl1)2 -12] [-(fl1)2 + "(2 + (1 + ae)[(!lm)2 + 12]] -

(ae + ae' )'Y[(fl1)2 -12] [-(fl,)2 + 12 + (1 + ae)[(!lm)2 + 12]]} + 



28 

{-aeae+e' !Ami [ [( A; )2 - ; 212] - ae( ae + ae') [ [( A, )2 - ; 212] + 
(1 + aee' )A1 [(Am)2 + , 21 [-(A;)2 + ; 2 + (1 + ae)[(Am)2 + , 21] 
(1 + aeae1 )[(Am)2 + , 21 [-(A;)2 + 1 2 + (1 + ae)[(Am)2 + ; 21]} (1.75) 

Also, in Eq. (1.74) Ag~(K37r) would be O (again because K":f7r± and K37r are 

in the same category). 

• Assume no Indirect CP asymmetry - i.e. e or ae ~ 1, as r(n° ~ x-7r+) = 
r(.D0 ~ K+7r-) in Ag~(K± K°T). Thus, the e and e' interference terms will 

reduce to pure Direct CP asymmetry parameters: 

(1. 76) 

Ag~ of our SCSD modes under such assumptions would be simplified to 

-ae1[;(A,)2 - ,al - ae+e'IAml[(A;)2 - ,21 
(;3 + 1 (Am)2l + (1 + aee' )[;2A1 + A1(Am)2] 
-ae1;[(A,/,)2 - 1] - ae+e'IAml[(A;/;)2 - 1] 
[; + (Am)2/,] + (1 + aee1)[A; + A,(Am/1 )2]"(1.

77
) 

which is equivalent to no normalization in Eq. (1.66). If the measurement is 

non-zero it indicates that at least one of ae' and ae+e' has to be non-zero; i.e. 

le'I =/- 0, an indication of Direct CP asymmetry. 

• Neglect (Am/;)2 and (A;/;)2 terms - i.e. Am, A;~,. 

Ag~(K± K'F) ~ ae1, + ae+e'IAml. 
; + (1 + aee1)A; 

(1. 78) 

If the measurement of Ag~(K± K'F) is 0, then the following relationships hold: 

ae1, ,..,, -ae+e'IAml (1. 79) 

2~(e'), ,..,, -2S'( e')IAml (1.80) 

!Ami ~(e') or e' = 0. (1.81) ------
')' S:( e') 

In this case, Direct CP invariance is not guaranteed by the measurement of 

Ag~(K± K°T) = 0. 
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Taking advantage of Eq. 1.74 (the OFD K31r mode normalized to the OFD K-=F1r± 

mode), a simplication of the theory and an interpretation of experimental results can 

be achieved simultaneously by studying A~~( ;!J:-=r= ), i.e. the SOSD 1r±1r-=r= mode 

normalized to the SOSD K± K-=F mode, which is also described by Eq. 1.74, since both 

are OP-even eigenstates. But the price is that a huge amount of data is necessary in 

order to study SOSD A~~. Also, if 191 > l.91 and 19'1 > 19'1 or 191 < l.91 and 19'1 < l.9'1 
then the direct OP asymmetry of 1r±1r-=Fand K± K-=F will be masked; but if 191 > l.91 
and 19'1 < 19'1 or 191 < l.91 and 19'1 > 19'1 then the direct OP asymmetry of 1r±1r-=r= and 

K± K-=F will be enhanced. 
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CHAPTER II 

THE E791 EXPERIMENT 

The E791 collaboration took data over a 6-month period ending in January 1992 

at the Tagged Particle Laboratory (TPL) at Fermilab. E791 was one of the second 

generation charm hadro-production experiments. 

Fig. 2.1 shows the elements of the E791 spectrometer at TPL. 

2.1 The 500 GeV /c Negative Pion Incident Beam 

The source of the incident 7r- was the 900 GeV /c Tevatron proton beam. Protons 

were extracted from the Tevatron and split into our P-East beam line, and then 

focused on a 30-cm beryllium target where the secondary 500 GeV /c 7r- were created. 

P-East received an average of 2 X 1012 protons per 22-second spill, resulting in 

about 107 7r- incident on E791 targets per spill, and about 200,000 events recorded 

per spill. 

Define the +z (longitudinal) axis from South to North, very close to the direction 

of the beam line, with z = 0 at the center of the E791 Interaction Counter located 

just downstream of the target foils. With a right-handed .coordinate system, the x-

axis is parallel to the ground (West) and the y-axis is vertical. Additionally, the u, 

v, w and w' directions are defined as follows: u and v are at an angle of +20.5° and 

-20.5° from the x-axis on the (x,y) plane, and wand w' are at ±60° on the same 

plane. 
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2.2 Upstream Beam Tracking 

For upstream beam tracking, there were 8 planes of Proportional Wire Chambers 

(PWC's) and 6 planes of Silicon Microstrip Detectors (SMD's) before the target foils. 

Table 2.1 shows the characteristics of the upstream tracking configuration. 

Table 2.1. E791 Upstream Tracking Configurations 

PWC First Group Second Group 
Number of Planes 4 4 
Dimension( cm) 6x3 6x3 
View Ordering :z:,:z:',y,w :z:, :z:', y,w 
Wire Spacing( mm) 1.0 1.0 
Resolution(µm) 145(:z:, :z:'), 289(y, w') 145( :z:, :z:'), 289(y, w') 
Z position( cm) -3117 - -3116 -1211- -1209 
SMD First Group Second Group 
Number of Planes 3 3 
Dimension( cm) 5x5 5x5 
View Ordering y,x,w' w',x,y 
Strip Pitch(µm) 25 25 
Resolution(µm) 7.2 7.2 
Z position( cm) -80.25 - -74.52 -33.163 - -29.483 

2.3 Target Foils 

The E791 target consisted of 5 foils. They were a platinum coin and 4 carbon 

( diamond) foils. The lifetime of the D0 is 0.415 ps [PDG94], or about .667 cm for 

100 Ge V / c momentum, so the 1.5-cm spacing between center of each target foil 

is adequate for our lifetime study. Some details of the E791 targets are listed in 

Table 2.2. Using two different target materials makes possible a study of the A-

dependence ( A stands for the atomic number) of the production mechanism. 

2.4 Downstream Region One Tracking 

Separating the secondary decay vertices from the primary production vertex re-

quires good spatial resolution and good solid angle coverage. Table 2.3 shows the 
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Table 2.2. E791 Target Configurations 

Target Number 1 2 3 4 5 
Material(Atomic number) Pt(78) C(12) C(12) C(12) C(12) 
Thickness( cm) .052 .1572 .1567 .1530 .1584 
Diameter( cm) 1.606 1.369 1.377 1.368 1.355 
Proton Interaction 
Length( cm)t .00584 .00590 .00585 .00582 .00587 
Z position( cm) -8.143 -6.663 -5.127 -3.588 -2.048 

tThe ratio of interaction length is ?r: p = 2: 3. 

characteristics of the downstream Region 1 (from target to the first magnet) track-

ing, consisting of 17 planes of SMD and 2 planes of PWC (Fig. 2.1). The angular 

acceptance of the SMD system is about ±150 mrad around the beam axis and the 

per-plane efficiency is roughly 90% with 0.1% noise. The longitudinal resolution of 

the vertex is 300 to 400 µm, and the transverse resolution 15 µm. The resolution of 

our PWC detectors is approximately the wire spacing divided by v'I2. 

2.5 Two Magnets 

E791 used two large-aperture dipole magnets to reconstruct the momentum of 

the charged tracks (Fig. 2.1). Since different momenta yield different bending angles 

0 ~ f B · dl 
3.33 p 

where p is track momentum, B the magnetic field and dl for the path integral, we 

measure momentum by tracking before and after the magnets and reconstructing the 

bend angle 0. Some characteristics of the two magnets are listed in Table 2.4. 

\ 

- - - ---~· - . -----~--- - ------- -------------- --- ----~----,.-------



Table 2.3. E791 Downstream Rl Tracking Configurations 

SMD 
Plane 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13. 
14 
15 
16 
17 
PWC 

Plane 
1 
2 

Magnets 
Center z (cm) 
Length (cm) 
Entrance Aperture 
Exit Aperture ( cm2) 

PT Kick (GeV /c) 
J Bdl (T-m) 

z position Strip Pitch(µm) 
(cm) (inner;outer) 

0.670 (25;50) 
1.000 (25;50) 
1.931 (25;50) 
3.015 (50;50) 
6.684 (50;50) 
11.046 (50;50) 
11.342 (50;50) 
14.956 (50;50) 
19.915 (50;50) 
20.254 (50;50) 
23.878 (50;50) 
27.558 (50;200) 
31.848 (50;200) 
34.548 (50;200) 
37.248 (50;200) 
39.948 (50;200) 
45.508 (50;200) 

z position Strip Pitch(mm) 
(cm) 

118.10 2 
164.40 2 

* Planes 12 - 17 were not grouped. 

Table 2.4. E791 Magnet Configurations 

Ml 
272.2 
165 

153.6 X 72.6 
194.6 X 96.2 

0.212 
-0.71 

35 

Box, View 

(1, y) 
(1, :i:) 
(2, :i:) 
(2, y) 
(2, 11) 
(3, y) 
(3, :i:) 
(3, 11) 
(4, :i:) 
(4, y) 
(4, 11) 
(*, 11) 
(*, :i:) 
(*, y) 
(*, :i:) 
(*, y) 
(*, 11) 
View 

y 
y 

M2 
619.2 
208 

154.0 X 73.8 
188.8 X 102.6 

0.320 
-1.07 
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2.6 Drift Chambers 

E791 was equipped with a total of 35 drift chamber (DC) planes grouped into 4 

sets to measure 4 different views (Fig. 2.1). The x' view is offset from the x view 

in order to eliminate ambiguity in reconstructing tracks. Table 2.5 lists the DC 

configurations. The gas and field strength in our DC's resulted in a drift velocity 

of 50 µm/ns. In each event, t0 is chosen when the Interaction Counter is hit. An 

additional time offset corresponding to the distance of each plane from the Interaction 

Counter, and the electronic delay of each sense wire, is subtracted in order to measure 

the true drift time. 

Table 2.5. E791 Drift Chamber Configurations 

Dl D2 D3 D4 
Dimension (cm2) 126 X 71 285 X 143 323 X 143 511 X 259 
View ordering 2(:z:,:i:',u,v) 4(:i:, u, v) 4(:i:,u,v) 1(:z:,u,v) 
Number of plane~ 
& channels 8 & 1536 12 & 2400 12 & 1952 3 & 416 

:i: cell size (cm) 0.446 0.892 1.487 2.974 
uv cell size (cm) 0.476 0.953 1.588 3.175 
Resolution (µm) 400 300 300 450 

2. 7 Cerenkov Counters 

E791 used two gas radiator Cerenkov counters for charged particle mass identi-

fication. The upstream counter (Cl) was located just downstream of M2, actually 

partially inset into M2 due to space constraints. Thus, Cl had two-bounce optics to 

keep the photomultiplier tubes (PMT's) out of the magnetic field of M2. The other 

Cerenkov counter (02) was located between D3 and D4 (Fig. 2.1), and it had only one 

primary mirror plane. Table 2.6 summarizes the Cerenkov counter configurations. 
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Table 2.6. E791 Cerenkov Counter Configurations 

Length (m) 
Number of Mirrors 
Gas Mixture 
1r momentum threshold 
K momentum threshold 
p momentum threshold 

Cl 
3.7 
28 

100% N2 
6 GeV/c 

20 GeV /c 
38 GeV /c 

C2 
6.6 
32 

80% He & 20% N2 
11 GeV /c 
36 GeV /c 
69 GeV /c 

The Cerenkov probability calculation proceeds as follows. For each track and 

mass hypothesis, a Poisson distribution with the predicted number of photons (µ) 

and the observed number of photons ( n) was formed: 

µn 
/: .. - -e-µ 

J1,3 - I n. 

where i stands for Cl or C2, and j for different particles. The final combined proba-

bility P; used for particle identification was normalized by taking into account that 

there is an a priori expectation (A;) based on the assumed natural occurrence of each 

type of particle: 

p. - Ji.; X h,; X A 
3 - "5 /: k, 

L..k=l Jk 

with a priori values of A(e, µ, 1r, K,p) = (0.02, 0.01, 0.81, 0.12, 0.04). 

2.8 Calorimeters 

TPL utilized two calorimeters, the Segmented Liquid Ionization Calorimeter 

(SLIC) and the Hadrometer. Both were used to enhance the particle identification 

capabilities for charged tracks, and to identify possible photon and neutral hadron 

candidates. Also, both were used as part of the transverse energy (ET) trigger. 

The SLIC consisted of 60 scintillation layers, and some of the characteristics of the 

SLIC are listed in Table 2. 7. Electrons in matter can emit bremsstrahlung photons 
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and photons near nuclei may produce e+ e- pairs. These two processes are responsible 

for the propagation of electromagnetic showers. This scintillation light is proportional 

to the energy of the incident particle. 

Table 2.7. The SLIC Configuration 

Number of channels 
Number of layers 
Single channel width (cm) 
Channel length (cm) 
Radiating material 
Scintillating material 
Total radiation length 
Total absorption length 
Position resolution ( cm) 

u channel 
109 
20 

3.17 
110.4 

'IJ channel 
109 
20 

3.17 
110.4 

lead 
plastic and mineral oil 

20 
1.5 
.65 

y channel 
116 
20 

3.17 
46.25 

The Hadrometer was a steel and acrylic scintillator calorimeter located down-

stream of the SLIC. Hadrons can lose energy due to interactions with the nucleus via 

the strong interaction when traveling in a high density material. Less than 1 % of the 

energy of electromagnetic showers reached the Hadrometer. Thus, charged hadrons 

could be identified as wide SLIC showers with significant hadronic energy. Neutral 

hadrons were also identified after all the hadronic energy associated with charged 

tracks was subtracted. Table 2.8 lists some information about the Hadrometer. 

Table 2.8. The Hadrometer Configurations 

Number of channels 
Number of layers 
Single channel width (cm) 
Interacting material 
Scintillating material 
Total interaction length 

:z: channel 
66 
36 

14.5 
steel 

plastic 
6 

y channel 
76 
36 

14.5 



40 

2.9 The Muon Wall 

E791 had two muon walls made of scintillating paddles placed directly behind 

a thick ( 106-cm) steel shielding wall. The steel wall blocked hadrons that had not 

deposited their complete energy in the SLIC and Hadrometer. Muons interact mainly 

through ionization and consequently retain most of their energy even after going 

through the calorimeters and steel wall. These minimum ionizing particles are easily 

detected with simple scintillating paddles. Table 2.9 summaries our two muon walls. 

Table 2.9. The Muon Wall Configurations 

Number of channels 
Single channel width ( cm) 
Radiating material 
Scintillating material 
Absorber thickness 
Active dimension ( cm2) 

2.10 Triggering and Data Acquisition 

X wall 
15 

40.6 
lead 

plastic 
11.6 interaction lengths 

300 X 224 

y wall 
16 

14.2 

E791 was designed to take data with a very open trigger and to prune events 

in offiine software. The E791 trigger consisted of two parts: a pre-trigger based on 

the quality of the 'IT'- beam and a secondary trigger based on the charm-like decay 

products. The pre-trigger required one and only one beam particle incident within the 

target cross section. The secondary trigger required an above-threshold (4-particle) 

signal from the Interaction Counter behind the target foils, plus a minimum total 

transverse energy for the event ET 2'.: 4.5 GeV. 

The E791 Data Acquisition (DA) system was designed to accept a large amount 

of data at the fastest rate allowing data to be fully processed. Tt then made use of 

the dead time in the beam delivery structure to process and record the data to tapes. 

The DA system read out 24000 channels in 50 µs, and events were accepted at a rate 
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of 9000 events per second. Data was written continuously to a total of 42 Exabyte 

Model 8200 tape drives in 6 VME crates at a rate of 9.6 Mb/sec. It took an average 

of 2.5 hours to fill a set of 42 8-rnrn tapes. We successfully collected 20 billion Physics 

events with an average event size of 2500 bytes on 24,000 tapes. 
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CHAPTER III 

ALIGNMENT, RECONSTRUCTION AND SELECTION 

Each event was reconstructed, filtering charm candidate events from 24,000 raw 

data tapes onto 7,500 data summary tapes (DST's). To reconstruct hits in the 

detectors into tracks, and further to assign tracks to vertices, required good geometry 

constants to define the coordinates of each plane. The initial geometry constants were 

measured by a survey team, allowing rough reconstruction of tracks. The geometry 

constants were then fine tuned on a run-by-run basis. Production processing then 

could precisely reconstruct tracks using the refined alignment constants. 

3.1 Alignment 

IIT was responsible for SMD alignment for each run on an IBM RS-6000 single 

node UNIX machine. The algorithm used is described in E791 internal document 

043. 

The basic procedure was 

• Reconstruction tracks: Choose the geometry file from the nearest earlier run as 

the starting point, in order to reconstruct tracks by knowing the approximate 

positions of hits. 

• Selecting samples from raw data: The alignment was done in a multi-pass 

manner for each run. From each run two disk files were created: 

- ET sample: A total of about 8800 events passing the Interaction trigger 

with ET 2:: 3 Ge V / c2• There must be at least one good quality track 

having momentum> 10 GeV /c, more than 11 hits in the SMD's, and a 

track slope > 25 mrad. 
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- Beam sample: A total of 7000 events passing only the pre-scaled Beam 

trigger. 

The ET sample was used for aligning the 17 downstream SMD planes, and later 

was used again for locating the 5 targets and the Interaction Counter. The 

Beam sample was used for the 6 upstream SMD planes and the 8 upstream 

PWC planes. 

• Downstream alignment: Define 5 alignment constants for each plane. 

- D.:u - Offset of the central strip from the z-axis. 

- fl.</> - Plane rotation around the z-axis. 

- tl.z - Plane shift along the z-axis. 

- tl.6 - Tilt around the strip direction. 

- fl.VJ - Tilt around the axis normal to the strip direction. 

There were a total of 4 passes of minimizing the x2 for the final downstream 

alignment constants: 

- 1st fit - Global fit of tl.u and fl.</> by fixing planes 9, 12, 15, and 16 for 

tl.u, and planes 9 and 12 for tl.q,. 

- 2nd fit - Global fit of tl.u, fl.</> and tl.z by fixing planes 9, 12, 15, and 16 

for tl.u, planes 9 and 12 for tl.<p, and plane 9 and 15 for tl.z 

- 3rd fit - Using fitted values of tl.u, tl.<p and tl.z, further global fit tl.6. 

- 4th fit - Using fitted values of tl.u, fl.</>, tl.z, and tl.6, further global fit 

f;l.'lp. 
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• Upstream alignment: In the upstream alignment, only the accuracy of flu 

is critical, in order to reconstruct a good straight beam track. So after the 

downstream planes was properly aligned, 7000 events of the Beam sample were 

projected from downstream to upstream. The mean residual values from these 

7000 events for each of the upstream SMifs and PWC's were determined. In an 

example of upstream alignment for run 1500, Fig. 3.1 shows the beam profiles 

and beam slopes in two views. Fig. 3.2 shows the residual of each upstream 

PWC plane. Fig. 3.3 shows the residual of each upstream SMD plane. 

Finally, 

• Target alignment: After downstream and upstream alignments were done, the 

new geometry constants were used to re-reconstruct wide-angle and high mo-

mentum tracks plus the beam track to form a primary vertex for each event. 

By plotting more than 8000 primary vertices, each target foil was fit with a 

Gaussian distribution to get the z-position of each foil center. Fig. 3.4 shows 

the mean z-positions of 5 target foils and the Interaction Counter. 

After SMD alignment was complete, by using a similar algorithm and multiple 

passes, the DC alignment was done. Then the new and complete geometry constants 

file was posted to all machines, and farm reconstruction of this run could proceed. 

3.2 Event Reconstruction 

The philosophy of charm candidate reconstruction is: from hits to form tracks, 

from tracks to form vertices, and then to separate secondary vertices from the primary 

vertex. 

In E791, first a beam track is reconstructed from the best x2 fit of the hits in 

the upstream 6 SMD's and 8 PWC's. Then focus shifts to the downstream SMD 
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Figure 3.1. The Beam Profile in x and y Views, m Terms of the Intercepts and 
Slopes of the Beam Line 
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Figure 3.2. The Alignment Residuals of Eight Upstream PWC Planes: they are the 
offsets to their own view direction on vertical planes. 
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Offsets of Upstream 6 SMD Planes 
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Figure 3.3. The Alignment Residuals of Six Upstream SMD Planes: they are the 
offsets to their own view direction on vertical planes. 
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5 Target Foils and 1 Interaction Counter 
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Figure 3.4. The z-position Alignments for Five Target Foils and the Interaction 
Counter: The first target foil is a Pt coin, and the other 4 are made of Carbon. 
The right-most peak is the Interaction Counter, a plastic scintillator in wrapping 
paper. 



50 

planes. Projections are formed in each view (a:, y, and v). Tracks are formed from 

3 views and compiled into a Track List. Independently, tracks are also formed in 

the DC system ( downstream of magnets). Then the SMD tracks are linked with the 

single-bend hypothesis to the DC tracks. This yields intercepts and slopes on a: and 

y, and the momentum for each track. 

Using the Track List and the unique beam track, a 3-D reconstruction of the 

primary vertex is done. Finally from the remaining tracks, 2-prong, then 3-prong, 

4-prong, and higher multiplicity secondary vertices are formed into a Vertex List. 

Each vertex has an associated x2 • 

3.3 Event Selection 

In order to prune the huge data set and improve signal to noise, certain criteria 

were added at each stage of Filtering, Stripping, Sub-stripping, KSU Micro-stripping, 

and Final analysis - due to huge amount of data, several stages of reduction are 

necessary to have a compact and manageable amount of data for different users and 

different topics. Most of our cuts have one goal: separating the secondary vertices 

from the primary vertex. I summarize my analysis cuts in Table 4.1, but let me define 

them here. 

• SDZ - The longitudinal distance between the primary and the secondary 

vertices divided by their measurement errors added in quadrature. The higher 

the value of SDZ, the more significant is the separation between the primary 

and secondary vertices. 

• DIP - The distance on the a: - y plane between the primary vertex and the 

line of flight of the reconstructed particles. Refer to Fig. 4.12 (a). 
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• PT2DK - The sum of the Pl (in GeV2 /c2 ) of all the secondary tracks with 

respect to the flight path of the reconstructed particles. 

• PT_BAL - The absolute value of the vector sum of the .Pt (in GeV /c) of the 

secondary tracks with respect to the flight path of the reconstructed particles. 

• TARSIG - The number of standard deviations in distance of the secondary 

vertex from the closest edge of target foil or Interaction Counter. 

• TAUDEC - The roughly estimated decay proper time in ps for the recon-

structed charm hypothesis. 

• MNCHV - The least CHVXTK - the x2 for including this track into the 

primary vertex fit; the smaller the value of MNCHV is, the more likely is the 

track to come from the primary vertex. 

• IMP ACT - The intercept on the :z: - y primary vertex plane of the bachelor 

pion candidate track from then•. Refer to Fig. 4.12 (a). 

• ASYM - The asymmetry of two decay tracks' momenta: !Pi - P2 I in the lab 
Pt+ P2 

frame. It is correlated to the COS8 and PT2DK cuts. 

• COS () - The opening angle of one track along the parent line of flight. It is 

correlated to the ASYM and PT2DK cuts. 

• JCATSG - E791 divides the detector geometry into 4 regions; for example, 

region 1 is the SMD area and region 2 is between the two magnets (refer to 

Fig. 2.1 ). Whether a given track has hits in each region is encoded into a 

computer word as a bit pattern: bit 1 is on if there are hits in region 1, etc. 

This encoded word for a track which is seen in all accessible regions then has 

possible values of 3 (0011 ), 7 (0111 ), or 15 (1111) depending on the track length. 
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CHAPTER IV 

PHYSICS ANALYSIS PREPARATION 

The strategy of my analysis follows. I use the Vertex List to analyze every 2-

prong vertex. To improve statistical significance, I apply some tighter cuts for my 

final analysis sample. To categorize 2-prong vertices into K-K+, K-1r+, or 1r-1r+, 

I rely on the Cerenkov particle identifications. To extract signal (SG), I use fitting 

functions to estimate the background (BG) under SG. I describe the preparation for 

the complete analysis in the following sections. 

4.1 Monte Carlo Simulation 

I use the Monte Carlo (MC) simulation for several purposes: 

• To produce an unbiassed set of the MC SG. I use this SG from the MC and 

BG from real DATA to tune the analysis cuts. 

• To understand the acceptance of the detector geometry. I apply geometric 

corrections to observed data. 

• To understand the efficiency of the chosen set of cuts. I apply an efficiency 

correction to the survival sample. 

Usually, the last two items are combined into one study. 

In addition, I use the well-known CFD n° ~ K-1r-1r+1r+ mode to check the con-

sistency of my analysis Techni.que. Therefore I am dealing with 4 decay modes simul-

taneously n° ~ K+ K- n° ~ K-1r+ n° ~ 1r+1r- and n° ~ K-1r-1r+1r+ I count , , , ' . 
the event numbers at the generator-level, so that more raw MC data events (800,000 
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events) can be saved on one tape without truth table information. Without apply-

ing the Cerenkov ID cut, it is not easy to distinguish K-1r+ from K+1r-, resulting 

in problems fitting the MC BG. Therefore, I generate four sets of MC samples: 

(1) n°-+K-1r+ and D0 -+K+1r+1r-1r-, (2) n°-+K_1r_1r+1r+ and f>0 -+K+1r-, (3) 

n°-+K+K- and f>0 -+K-K+, and (4) n°-+1r+1r- and f>0 -+1r-1r+. n° and f>0 are 

not forced to appear in the same event. There is no extra selection criteria on how 

n° and f>0 are produced but only on the decay modes. Note that in (1) and (2) n° 

and f>0 are easily distinguished without Cerenkov identification. I accumulate more 

than 7 million MC events for each decay mode at the generator-level. 

4.2 Tuning Analysis Cuts 

Since I have no a priori knowledge of what the best set of cuts is nor how the pure 

signal (SG) data distributes for each cut variable, to tune the cuts, I start with SG 

from a n°-+ K-1r+ MC simulation, and BG normalized by two sidebands of DATA 

( n°-+ K-1r+ hypothesis). I compare distributions of certain cut variable from the 

MC SG and from the DATA SG in order to understand which set of cuts has been 

well represented in the MC. Refer to Appendix B for details of these comparisons 

and specifications of signal and sideband regions. 

A few things to be emphasized are: 

• I consider only cuts which yield very similar distributions in DATA and MC; 

especially, there must be no shift of peak values between MC and DATA (refer 

to Appendix B). 

• Among the chosen set of cuts, the first cut I adopt is the one giving the best 

optimization (statistical significance= SG ). Fig. 4.1 (c) and (f) show 
JSG+BG 

h .a: f . d·.a: t· . . ( SG d sa2 ) t e euect o usmg 1uerent op 1m1zations . lrin an . r;:,;:; . 
vBG vBG 
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• Adding the best optimized cut at a time, I iterate the optimizing steps for the 

next best cut. 

Fig. 4.1 shows the best cut to apply in the first iteration. After applying PT2DK> 

5.2, I found the next best cut is MNCHV> 6 (Fig. 4.2). In the third iteration, there 

is no further improvement. Thus, I have completed the tuning cut process. Table 4.1 

lists all the analysis cuts including the stages where they are applied. In my final 

analysis (refer to Chapter V), I apply all the cuts simultaneously. Because there is 

a small fraction of double-charm events (two charm mesons in the same event), all 

charm candidates are required to pass the same selection criteria. The same analysis 

is applied to the MC sample, and I don't need to worry whether MC has the correct 

double-charm production. 

I apply the same set of cuts on D0 -+ K+ K-, D0 -+ K-1r+, D0 -+ 1r+1r-, and 

D0 -+ K-1r-1r+1r+. Recall that I used MC (K=F1r±) SG and DATA (K=F1r±) BG to 

tune the cuts. If the MC (D0 -+ K-1r+) can satisfactorily reproduce the effects of cuts 

on the DATA (D0 -+ K-1r+), then there is no reason why the MC should not yield 

reliable cut distributions for D0 -+ K+ K-, and D0 -+ 1r+1r-. Applying the same set of 

cuts to each sample reduces the complexity of the systematic error study described 

in Sec. 6.3. 
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Name 

. NOT.Target 

TAUDEC 
PSUM 

Zsecondary 
Charge 

Track Pz 
ASYM 
Mass 
SDZ 

PTBAL 

Zprimary 
I cos Bl 

JCATSG 
Track x2 

PT2DK 
MNCHV 
Track IPI 

Kaon 
Pion 

JCATSG 
Track IPI 
IMPACT 

.6.m 
ONLY 1r 

Table 4.1. Summary of Analysis Cuts 

Value Comment 
Cuts for n°candidates 

outside targets 0.1 cm At Strip stage . 
or InLCounter 0.5 cm 

< 2.5 ps 
> 25 GeV 
< 3.0 cm 

=0 
15- 500 GeV 

< 0.8 
~ 1.7 GeV 

> 8.0 
< 0.40 GeV for 2-prong 
< 0.35 GeV for 4-prong 

< -0.35 cm 
< 0.995 

= 3, 7, or 15 
~ 5.0 for 2-prong 
~ 6.0 for 4-prong 

> 0.52 GeV for 2-prong 
> 6.0 

6-80 GeV 
Km ~ 0.16 for 2-prong 

At Strip stage. 
At Strip stage. 
At Strip stage. 
At Strip stage. 
At Strip stage. 
At Strip stage. 
At Micro-strip stage. 
At Micro-strip stage. 

At Micro-strip stage. 
At Micro-strip stage. 
At Micro-strip stage. 
At analysis stage ( to have momentum). 
( very loose) 
At analysis stage. 
At analysis stage. 
At analysis stage. 
At analysis stage, for the C ID. 

KID < 0.16 for 2-prong At analysis stage. 
Cuts for n•± tagging 

= 3, 7, or 15 At analysis stage. 
< 100 Ge V At analysis stage. 
< 0.008 cm At analysis stage. 

0.1430 - 0.1480 GeV At analysis stage . 
To ensure 1 7r for 1 vertex, at analysis stage. 
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Figure 4.1. Tuning cut in the first iteration finds the best cut as PT2DK > 0.52 in 
(e). In (a), the solid line is the cut distribution from MC SG and the dashed line is 
from DATA SG; in (b ), the solid line is the sideband to represent the DATA BG, 
and the dashed line is DATA SG. Focusing on two solid lines in (a) as SG and in 
(b) as BG, calculate the SG/JSG + BG in (e), and estimate the cut value as 0.52 
giving the maximum peak. (c) is SG/../JJG (not a good criteria in this case), (d) 
the cut efficiency, and ( £) another selection criteria of ( c )*( d ). 
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Figure 4.2. Tuning cut in the second iteration finds the best cut as MNCHV > 6 in 
(e). In (a), the solid line is the cut distribution from MC SG and the dashed line 
from DATA SG; in (b ), the solid line is the sideband to represent the DATA BG, 
and the dashed line is DATA SG. Focusing on two solid lines in (a) as SG and in 
(b) as BG, calculate the SG/y'SG + BG in (e), and estimate the cut value as 0.52 
giving the maximum peak. (c) is SG/./BiJ, (d) the cut efficiency, and (f) another 
selection criteria of ( c )*( d). 
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4.3 Cerenkov ID Efficiency 

In order to use Cerenkov identification to separate kaons from pions, I must 

determine the efficiency for kaons and pions as a function of their momenta and 

charges. Because the MC doesn't have accurate Cerenkov efficiencies ( evidence in 

Fig. B.14), I can only use DATA to do this study. 

I use the signals of decay particles themselves as evidence of the correct track 

assignment, and then I vary one ID cut for one track at a time, to get the efficiency 

from the ratio of the reduced SG number over the original SG number. For exam-

ple, if I am interested in K- ID efficiency, then using the D0 -+ K-7r+ sample and 

hypothesis, I form an invariant mass plot, and the BG-subtracted D0 SG number is 

then taken to be the number of K-. In other words, no n•-:1,.-+ D0 (.fJ0 )7r± tagging 

is required to distinguish D0 -+ K-7r+ and fJ0 -+ K+7r-. Using the n+-+ K-7r+1r+ 

sample and hypothesis, the unlike charged track in the 3-prong vertex is the K-. 

I assume that the DCSD contamination is tiny in either sample. I also study the 

K~-+ 7r+7r- sample for the 7r ID efficiency comparison. 

Using 100% of the DATA sample of D0 -+ K-'lT'+, I fix all other non-Cerenkov 

ID cuts (as listed in Table 4.1) - varying non-Cerenkov ID cuts only produces 

< 1 % difference in the Cerenkov efficiencies. The ID cut efficiency as a function of 

momentum and charge is defined as 

A = D0 SG number after ID cut E=---~----------T = D0 SG number without ID cut 
(4.1) 

I use two steps to determine the BG-subtracted D0 SG numbers ( contrary to use 

sidebands to do BG subtraction - fix sidebands and signal regions): 
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• Not fixing the sidebands: I don't assume the BG is a linear function, but rather a 

third order polynomial function (p3), because the reflections from n°-+ K+ K-

and n°-+ K-1r+1r0 appear in the low-mass region of the n°-+ K-1r+ hypothesis 

(Fig. 4.3). 

• Not fixing the SG region: I let the Gaussian widths float, because the fitted 

widths of decay particles are a result of two track momenta. For instance, when 
, 

I study 1r- ID efficiency in low momentum bins, the partner K+ tends to have 

lower momentum, when 1r- is above a priori Cerenkov probability. In other 

words, the widths might be different after each Cerenkov ID cut (illustrated in 

Fig. 4.4). 

I then apply the Cerenkov ID cut in 0.05 increments for each momentum bin 

for each charge. The momentum bins run from 6 to 66 Gev / c in 2 Ge V / c steps, 

then 2 bins from 66 to 73 and 73 to 80 Ge V / c, due to the lack of statistics in the 

high-momentum region. 

As an example, Fig. 4.3 shows the efficiency study for K+ with momentum 21-

24 GeV /c from the .fJ0 -+ K+1r- sample. The ID cut efficiency for KtD ~ 0.20 is 
1867·2 ± 50·6 = 0.8027 ± 0.0171. Fig. 4.4 shows the efficiency study for 7r- with 
2325. 7 ± 69.6 
momentum 6-9 GeV /c from the .fJ0 -+ K+1r- sample. Note that the widths are 

smaller above the a priori value of CPRB2( 7r) = 0.81. In this case, the ID cut 
. 428.3 ± 26.1 

efficiency of 7rJD ~ 0.90 lS 1469.9 ± 56.3 = 0.2912 ± 0.0159. 

According to Eq. ( 4.1 ), the efficiency error is calculated not simply by assuming 

that numerator and denominator are uncorrelated, but by assuming that [the SG 

number of events above ID cut] and [the SG number of events under ID cut] are 

uncorrelated. Redefine the efficiency as: 

A = n° SG number above ID cut E - ----------~------ (4.2) = [A= n° SG number above ID cut]+ [B = n° SG number under ID cut]' 
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i.e. 

and the associated error is estimated as 

[( dE) 2 

( dE) 2
] ½ 

O'E O' A • dA + O'B • dB (4.3) 

[ 
2 2] ½ 

( 
u A • B ) ( O'B • A ) = (A+B)2 + (A+B)2 (4.4) 

To return to Eq. (4.1), I can replace B by T - A and O'B by Ju'f - ui, since I 

consistently estimate the SG errors (for A, B, and T) as the v'SG + BG in the SG 

region. 

Note that using different samples (D0 --+ K-1r+_, n+--+ K-1r+1r+, or K 0 --+ 1r+1r-) 

yields 10% variations in some momentum bins ( compare Fig. 4.8 and Fig. 4.9). The 

variations could arise because in order to get the SG number by BG subtraction in 

Eq. (4.1), I am actually measuring the average efficiency in a certain momentum bin: 

(4.5) 

where f (p) is the momentum distribution of sample tracks. The kaons or pions from 

D0 --+ K-1r+and n+--+ K-1r+1r+, each have their own distinctive momentum distri-

butions, so the average Cerenkov efficiencies are not the same in bins of momentum: 

D
o K- + 1Pi [ei(P). fi(p)] dp 

Ei(K-) --+ 7r = _P_i-_1-c-P=i ____ _ 
ii-1 f1(p) dp 

D
+ K- + + 1Pi [Ei(P). h(p)] dp 

Ei(K-) --+ 7r 7r = _P_i-_1....,.P=i-----
ii-1 h(p) dp 
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They would be the same only if €i(P) were a constant, or f 1(p) and / 2(p) were pro-

portional to each other. Compare Fig. 4.5 with Fig. 4.6. In 3-prong vertex finding, 

we form a good 2-prong vertex first and then add the third track to form a 3-prong 

vertex, so index 3 in a 3-prong vertex list is usually a slower pion track. The dif-

ferent efficiencies between the two pions ( with the same charges and birth points) 

from the same n+ -t K-1r+1r+ (Fig. 4.9) in the low momentum bins offers support 

to my argument. Also, the different efficiencies between the kaon from n°-t K-1r+ 

and the kaon from n+ -t K-1r+1r+ is presented in Fig. 4.8 and Fig. 4.9. Thus, the 

difference of Cerenkov ID efficiencies from n° -t K-1r+ and n+ -t K-1r+7r+ samples 

can be explained as the difference of momentum spectra of decay tracks. This shows 

the need to be cautious in applying Cerenkov efficiencies based upon a sample with 

a similar momentum distribution. 

After these comparisons, I am confident of using n°-t K-1r+ for my final Ceren-

kov ID efficiency study, and the assumption here is that the kaons of n° -t K+ K-

and the pions of n° -t 1r+1r- have similar momentum distributions to the kaons and 

pions from n°-t K-1r+. I choose the analysis cut of Km ~ 0.16 (which gives the best 

statistical significance on n° -t K+ K-) to identify tracks as kaons. If Kw < 0.16, 

tracks are assumed to be pions. Thus, each 2-prong vertex can be a candidate for 

one and only one of n° -t K+ K-, n° -t 1r+1r-, or n° -t K-1r+. Table 4.2 lists the 

Cerenkov ID efficiencies I use for the final analysis. 

--------~~·--~-------·- ~----··--
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Figure 4.3. K+ Cerenkov Efficiency Study in the Momentum Range 21-24 Ge V / c 
from the fJ0 Sample: 
20 plots represent 20 increments of Km per 0.05. So for KtD ~ 0.20, the ID cut 
efficiency is (1867.2 ± 50.6)/(2325.7 ± 69.6) = 0.8029 ± 0.0043. 
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Figure 4.4. 71"- Cerenkov Efficiency Study in the Momentum Range 6-9 Ge V / c from 
the tJ0 Sample: 
20 plots represent 20 increments of 71"JD per 0.05. So for 71"rD 2:: 0.90, the ID cut 
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are smaller in the last three plots. 



Momentum distribution of Kn from 0° 

1500 

1000 

500 

0 ...... _._ ................... .._..._. _______ _ 

20 40 60 80 

2000 

1500 

1000 

500 

K- Momentum (a) 

~ I Mean 34.541 e ~ .__~R_M~S ___ ....;.;17~.9~8_,, ·, ... -------""' O'-'-...J..-2._0 ...... ..,_.._4.._0_._..,_.._6.._0_._..,_.._.80 

(c) 

3 r--;.iiiiiaiiiiiiiiiiiiiiii:iiiiii::iii;ii;;::;;;iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii.iiiiil 
47.97 / 30 

1.067 ±0.2709E-01 

2 0.4055(-03 ±0.6902(-03 

+ 
+ 

0 L....1....J..-2._o_._..,_..__4._o ...... ..,_...__6._0 ...... ..,_.._.80 

Koon + /- Difference (e) 

1500 

1000 

500 

0 ._. _____ ......__, ............. ____ ...._. 

20 40 60 80 

K+ Momentum (b) 

2000 F"----'";:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiil 
~ I Mean 34.451 

1500 
S ~ ._, ~R_M~S ___ -'-'18~.2~4_,_ ~-'e,B 

1000 

500 --..,__ 
O ...... __,__2 ... 0 ...._..,_..__40.._.__,__._..,.6 .... 0 ....................... 80 

-,i;/ Momentum (d) 

3 C--;.iiiiiaiiiiiiiiiiiii:::iiiiiiiii.i;iii;;;;::;:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiil 
53.29 / 30 

2 

+ 

0.9003 ±0.2155E-01 
0.1613(-04 ±0.6355(-03 

+ 

0 .....___,__2.._o_._..,_...._40.__.__,__.__6.._o_._...,__....._.80 

Pion + /- Difference (f) 

Figure 4.5. Track Momentum Spectra of DATA BG-subtracted D0 --+ K-1r+: 
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Vertical axis is events/bin and horizontal axis is momentum from 6 to 80 GeV /c. 
Please compare (a), (b), (c), and (d) with Fig. 4.6. (e) and (f) are made by ta.king 
the ratios of (b) to (a) and ( d) to ( c), in order to understand the possible detection 
bias or the mismatch of the MC simulation. Also compare with Fig. 4.7. 
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Momentum distribution of K7i7i from o+ 
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Figure 4.6. Track Momentum Spectra of DATA BG-subtracted D+--+ K-1r+1r+: 
Vertical axis is events per 3 Ge V / c and horizontal axis is momentum from 6 to 80 
GeV/c. Please compare with Fig. 4.5 (a), (b), (c), and (d). 
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Figure 4.7. Track Momentum Spectra of MC BG-subtracted D0--+K-1r+: 
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Vertical axis is events per 2 Ge V / c and horizontal axis is momentum from 6 to 80 
GeV/c. (e) and (f) are made by taking the ratios of (b) to (a) and (d) to (c), in 
order to understand the mismatch of the MC simulation. Compare with Fig. 4.5 to 
see that the data points in Fig. 4.5 ( e) and ( f) are merely statistical fluctuations. 
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Cerenkov Efficiency 1n Cat =3, 7, 15 p = 3 GeV Range from 0° 
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Figure 4.8. Track Cerenkov ID Efficiencies of n° ~ K-1r+: 
Vertical axis is ID cut efficiency and horizontal axis is momentum in th range 6-80 
GeV /c. Please compare with Fig. 4.9. 
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Figure 4.9. Track Cerenkov ID Efficiencies of n+---+ K-1r+1r+: 
Vertical axis is ID cut efficiency and horizontal axis is momentum in GeV /c. Please 
compare with Fig. 4.8. Also note the difference between 1r2 and 1r3 of the same 
charge in low momentum bins, mainly due to the difference of momentum distri-
butions in Fig. 4.6. 
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Table 4.2. Cerenkov ID Efficiency of Kaon and Pion Identification 

Momentum Km~ 0.16 as kaon, Km< 0.16 as pion (from n°-K-1r+ sample) 
range K- K+ 7r 7r+ 

6-8 0.40 ± 0.04 0.38 ± 0.03 0.91 ± 0.02 0.90 ± 0.02 
8-10 0.58 ± 0.03 0.63 ± 0.04 0.95 ± 0.01 0.96 ± 0.01 
10 - 12 0.74 ± 0.03 0.70 ± 0.03 0.94 ± 0.01 0.94 ± 0.02 
12 -14 0.82 ± 0.03 0.85 ± 0.03 0.85 ± 0.01 0.85 ± 0.02 
14-16 0.79 ± 0.02 0.84 ± 0.02 0.85 ± 0.01 0.83 ± 0.01 
16 - 18 0.88 ± 0.02 0.89 ± 0.02 0.90 ± 0.01 0.86 ± 0.02 
18 - 20 0.87 ± 0.02 0.88 ± 0.02 0.87 ± 0.01 0.84 ± 0.02 
20- 22 0.80 ± 0.02 0.85 ± 0.02 0.85 ± 0.01 0.84 ± 0.02 
22 - 24 0.77 ± 0.02 0.84 ± 0.02 0.89 ± 0.02 0.88 ± 0.02 
24- 26 0.83 ± 0.02 0.82 ± 0.02 0.85 ± 0.02 0.90 ± 0.02 
26 - 28 0.80 ± 0.02 0.73 ± 0.02 0.88 ± 0.02 0.89 ± 0.02 
28- 30 0.77 ± 0.02 0.78 ± 0.02 0.85 ± 0.02 0.85 ± 0.02 
30- 32 0.75 ± 0.02 0.75 ± 0.02 0.86 ± 0.02 0.92 ± 0.02 
32- 34 0.78 ± 0.02 0.74 ± 0.02 0.85 ± 0.02 0.93 ± 0.02 
34- 36 0.72 ± 0.02 0.73 ± 0.02 0.84 ± 0.02 0.91 ± 0.02 
36 - 38 0.68 ± 0.02 0.74 ± 0.02 0.88 ± 0.02 0.90 ± 0.02 
38-40 0.68 ± 0.03 0.68 ± 0.02 0.96 ± 0.02 0.90 ± 0.02 
40- 42 0.60 ± 0.02 0.66 ± 0.02 0.91 ± 0.02 0.84 ± 0.02 
42-44 0.64 ± 0.03 0.62 ± 0.02 0.88 ± 0.02 0.87 ± 0.02 
44- 46 0.56 ± 0.02 0.51 ± 0.02 0.89 ± 0.02 0.92 ± 0.02 
46- 48 0.51 ± 0.03 0.51 ± 0.02 0.84 ± 0.03 0.93 ± 0.02 
48- 50 0.54 ± 0.03 0.49 ± 0.02 0.88 ± 0.02 0.86 ± 0.03 
50 - 52 0.53 ± 0.03 0.46 ± 0.02 0.84 ± 0.03 0.91 ± 0.03 
52 - 54 0.48 ± 0.03 0.45 ± 0.03 0.88 ± 0.02 0.92 ± 0.03 
54- 56 0.43 ± 0.03 0.45 ± 0.03 0.81 ± 0.03 0.82 ± 0.03 
56 - 58 0.41 ± 0.03 0.42 ± 0.03 0.86 ± 0.03 0.93 ± 0.02 
58- 60 0.42 ± 0.03 0.40 ± 0.03 0.81 ± 0.03 0.84 ± 0.03 
60 - 62 0.38 ± 0.03 0.35 ± 0.03 0.79 ± 0.03 0.79 ± 0.03 
62- 64 0.41 ± 0.03 0.38 ± 0.03 0.88 ± 0.03 0.82 ± 0.04 
64- 66 0.37 ± 0.03 0.46 ± 0.03 0.76 ± 0.04 0.85 ± 0.04 
66 - 73 0.33 ± 0.02 0.35 ± 0.02 0.84 ± 0.02 0.80 ± 0.02 
73- 80 0.28 ± 0.02 0.32 ± 0.02 0.82 ± 0.02 0.81 ± 0.02 
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4.4 Fitting Invariant Mass Plots 

In Fig. 4.10, I show the most likely BG contribution for the n°---+ K+ K- mass 

hypotheses. BG are mainly from the reflections of n°---+ K-1r+ and n°---+ K-1r+1r0 • 

We see these in MC and data scatter plots. I have also checked some semi-leptonic 

decay modes and 3-prong modes, and none of them contributes significant BG after 

our Cerenkov ID cuts. 

For n°---+K+K- I fit the SG as a Gaussian (G), the n°---+K-1r+1r0 reflection as 

a broad Breit-Wigner (BW) distribution function the D0 ---+ K-1r+ reflection as an 

asymmetric half-G-half-BW (ASY) - continuous at the peak, and the combinatoric 

BG as a linear function (L ). For the n°---+ 1r+1r- case, I only see the asymmetric 

reflection of D0 ---+ K-1r+ on the low-mass side of the SG, and the combinatoric BG 

as an exponential function (E). 

Thus I fit the mass window of 1. 70 - 2.20 Ge V / c2 in 5 Me V / c2 per bin for 

n°---+ K+ K- with < L + BW + G + ASY >, n°---+ 1r+1r- with < E + ASY + G >, 

and D0 ---+ K-1r+ and D0 ---+ K-1r-1r+1r+ with < G + P3 >. Fig. 4.11 is the result of 

fitting in the D0 ---+ K-1r+, D0 ---+ K+ K-, D0 ---+ 1r+1r-, and D0 ---+ K-1r-1r+1r+ modes. 

Note that I always use (Gaussian peak ±2.5u) as the SG region, and the Gaussian 

peak above the crossed BG is BG-subtracted SG. Fig. 4.11 also shows the necessity 

of applying Cerenkov ID cuts to improve the statistical significance for D0 ---+ K+ K-

(plot (b) ), and fixing SG width to estimate SG for D0 ---+ 1r+1r- (plot ( c) ). 
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Figure 4.10. Study of Likely BG Under D0 -+K+ K-Signal: 
(a) From MC, Kir is misidentified as KK, an asymmetric broad shape. 

2 
(f) 

(b) From MC Kir, scatter plot of K1r mass vs. KK mass. The "cross" is from 
double misidentified K,r as 7r K. 
(c) From MC, K1r(1r0 ) is misidentified as 2-prong KK, and it shows a broad shape. 
(d) From MC K1r(1r0 ), identified as K1r mass vs. KK mass. Superimposed (b) and 
(d) to compare with data (f). 
( e) From Data, KK mass plot with Cerenkov ID cuts. 
(f) From Data, K1r mass vs. KK mass from the same vertex. 
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(a) < G + P3 > for K=F1r±, (b) < L + BW + G + ASY > for K±K=r:, (c) < 
E + ASY + G> for ,r±,r=r:, and (d) < G + P3 > for K31r. 
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4.5 Reduced Proper Time 

The decay proper time t for a particle of invariant mass m 0 and momentum p is 

defined as 

t - Lrest 
V 

Llab/'YE -
V 

Llab. mo - -y·mo·v 
Llab. mo (4.6) - p 

where L is the decay length in the lab or rest frame, v is the velocity, 'YE is the 

Lorentz energy factor, mo is the invariant mass and p is the measured momentum. 

The main purpose in adopting reduced proper time is to correct for the loss from 

our analysis cuts at low proper time without further decreasing the size of the data 

sample. I can then apply a better ( or flatter) acceptance function without huge 

uncertainties in the low reduced proper time bins. 

The basic idea of Reduced Proper Time is to redefine the starting time t0 in the 

sample surviving our analysis cuts. There are several ways to define a new reduced 

F 1 d fi , Lmin · mo d proper time. or examp e, I coul de ne t0 to be ----, where Pmaz an Lmin 
Pmaz 

are the maximum momentum and closest approach to the primary vertex under our 

cuts, and they could be a single value for all events. Then the reduced proper time 

, , L . mo Lmin . mo B . h" all I all h d . t is t = t - t0 = --- ----. ut mt 1s case re y ave one 1s o 
P Pmaz 

shift the origin oft, which does not increase the acceptance of low proper time bins. 

This example illustrates that the lifetime is a unique characteristic of each decayed 

particle, and it does not matter when you start clocking the particles, since the decay 

probability is always exponential, i.e. the particle has no "memory" of how long it 
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has already lived, and it also illustrates that the proper time is a function of length 

and velocity. 

I could also define a new minimum length, Lmin, as the distance between the point 

of closest approach to the primary vertex, and the secondary vertex, illustrated in 

Fig. 4.12 (b ). Note that Lmin cannot be a function of L nor of proper time. 

I then define the origin of reduced proper time as t~ = Lmin · mo . Note that t~ 
p 

is a function of both reduced length and momentum. For the same value of Lmin, 

different values of p will yield different values of t~. However I can separate my 

sample into different momentum subsamples, and they all share the same lifetime, 

i.e. the reduced proper time is just a coefficient times an exponential distribution, 

Cp1 • e- ~, for each subsample. Then I can combine all the momenta; effectively I 

am summing all the coefficients but with the same exponential factor of lifetime r, 
t 

i.e. [0111 + C'P2 + 0 113 + · · ·] · e-:;:. In other words, a momentum-weighting scheme 

in reduced proper time will not change the exponential character of the decay time 

spectrum, and our reduced proper time will not change the measured decay lifetime. 

1 _ (L- Lmin) · Mass . . SDZ So, I define t = p , where Lmin 1s the maximum of Lmin and 

L;J,;1AL. L!,f; is illustrated in Fig. 4.12, where the basic idea is to "swim back" the 

n° vertex along the line of flight toward the primary vertex. The reconstructed n° 
reaches the point of closest approach at L!f; as determined by the Sn Z=t value. 

So from simple trigonometry, we have 

L. SnZ=t 
snz 

_ L· PTBAL 
PTBAL=t 

(4.7) 

(4.8) 
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CHAPTER V 

PHYSICS AN ALYS IS 

5.1 Relative Branching Ratios 

The BR's are calculated as follows: 

r(n°~K+K-) _ e;1(K±KT) · et1(K±KT) · NK±KT 
r(n° ~ K-71'+) - e;1(KT7r±) • Et1(KT7r±) 'N KT7r± 

reno ~7r+7r-) 
r(n° ~ K-71'+) 

r(n°~K+K-) 
reno~ 7r+7r-) 

e;1(7r±7r=f) · { ei(7r±7r=r) · N7r±7rT} 
e;l(KT7r±). { Etl(KT7r±) . N KT7r±} 

e;1(K± KT)· { ei(K± KT)· N K± K=f 
e;1 (7r±7rT) · e~;1(7r±7r=f) · N?l'±?l',= 
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(5.1) 

(5.2) 

(5.3) 

where e;1 is the correction from acceptance (geometry and analysis cuts), e61 is the 

correction from Cerenkov ID cuts, and N is the BG subtracted signal number we 

observe. 

I apply the Cerenkov ID efficiency correction by applying a "weight" to each 2-

prong vertex ( each track has its own efficiency as a function of its momentum and 

charge): 

(5.4) 

where Ci and Pi are the charge and the momentum of tracks i = 1, 2. The error is 

propagated from the corresponding efficiency error (refer to Sec. 4.3). 

First, I fit the results from the MC study with the same set of cuts as the DATA. 

I consistently treat Data and MC on the vertex basis. By dividing by the gener-

ated MC numbers, I get an acceptance for n° ~ K-71'+, n° ~ K+ K-, n° ~ 7r+7r-, 

and n° ~ K-71'-71'+71'+ in Fig. 5.1. Second, I fit DATA as illustrated in Fig. 5.2. I 

fix the widths (by assuming they all have the same ratio of DATA/MC from the 



78 

n°~K-1r+ mode) for n°~K+K- and n°~1r+1r-. For example, to obtain the 

width for n° ~ K+ K- mode 

Especially in then° ~1r+1r- case, it is necessary to fix the width (refer to Fig. 4.11). 

I fit unweighted data first in order to determine the fractional errors, then apply these 

fractional errors to the weighted plots, propagating weighted errors from unweighted 

fractional errors. Finally, by applying the acceptance correction on each mode, I 

get the results listed in Table 5.1. Note that n° ~ K-1r-1r+1r+ is our consistency 

checking mode, and there is no ID cut on n° ~ K-1r-1r+1r+ (but I choose the highest 
rcn° ~ K-1r-1r+1r+) Km as kaon), so the only correction is from the MC acceptance. r no K- + 

( ~ 7r ) 

shows reasonable agreement with the PDG'94 value (2.02 ± 0.11) [PDG94], and this 

indicates that our MC acceptance is satisfactory. 

Table 5.1. Branching Ratios (Statistical Error Only) 

Decay Mode 
rcn -+K K ) 
ren° - K-1r+> rcno-1r+71'-) 
ren°-K-7!"+) 
rcn°-+ K+ K-) 
rcno-71'+7!"-) 

rcn°-+ K-7!"-7!"+7!"+) 
ren°-+ K-7!"+) 

5.2 Lifetime Difference 

Our major 2-prong cuts are 

• SDZ > 8. - affects the low proper ti~e. 

Branching Ratios 
0.107 ± 0.003 

0 .040 ± 0 .002 

2.65 ± 0.14 

2.19 ± 0.03 

• PTBAL < .4 Ge V - affects the low proper time. 
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(a) KT,r±: (3.062 ± 0.006)%, (b) K±KT: (3.047 ± 0.006)%, (c) 7r±7rT: (3.087 ± 
0.007)%, and ( d) K31r: (0.231 ± 0.002)%. 
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To fit the SG numbers of (b), (d), and (f), I fix the widths by comparing DATA 
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• Cerenkov ID cuts-alters the momentum spectra and tests the MC's reliability. 

The first two items will be corrected by using the reduced proper time. Since we don't 

have reliable Cerenkov efficiency in the MC, before applying the MC acceptance 

correction, we apply the Cerenkov correction from the DATA study, described in 

section 4.3 and Eq. 5.4. 

Fig 5.3 illustrates the 2-dimensional view of mass vs. reduced proper time for (a) 

K± KT and (b) KT7r±. I will slice into 16 bins of reduced proper time for binned 

method, and also will check the validity by unbinned maximum likelihood fitting on 

5.2.1 Binned Reduced Proper Time Method. Fig. 5.5 (D0 --+ K+ K-) and 

Fig. 5.6 (D0 --+ K-7r+) are from Cerenkov weighted mass plots in 16 reduced proper 

time bins. I propagate the weighted statistical errors from the unweighted fractional 

errors of Fig. 5.4, as described in Sec. 5.1. 

To fit the SG number in each plot, I fix the SG width in all reduced proper 

time bins for both modes. Fixing the SG fitting width is reasonable - within the 

same range of SG region, we are measuring the exponential decay lifetime. This is 

evidenced by the fact that in the MC of D0 --+ K+ K- (Fig. 5. 7) and D0 --+ K-7r+, 

and the DATA of D0 --+ K-'lf'+ (Fig. 5.6), one sees similar SG widths throughout the 

reduced proper time bins. This can be understood from the definition of proper time: 

L·mo 
t=---

p 
(5.5) 

where L, m0 , and p are decay length, rest mass, and momentum in the lab frame. 

The measured momenta are used to get the invariant mass of the hypothesis, so the 

errors of invariant mass and momentum are correlated. 
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Figure 5.4. D0--+ K+ K-Mass Plots After ID Cut But Unweighted, m 16 Bins of 
Reduced Proper Time. 
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Figure 5.6. BG Subtraction from Cerenkov Corrected n° ~ K-7r+ Mass Plots in 16 
Bins of Reduced Proper Time: 
It also illustrates that the widths in each reduced proper time bins are about the 
same size. 
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Figure 5. 7. BG Subtraction from MC D0 ~ K+ K- Mass Plots in 16 Bins of Reduced 
Proper Time: 
It also illustrates that the widths in each reduced proper time bins are about the 
same size. 
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Fig. 5.8 shows the extraction of acceptance functions from the MC studies. Since 

I have done the Cerenkov ID correction ( weighting) in DATA, I apply the same 2-

prong cuts, binning the MC into the same 16 reduced proper time bins, but without 

the Cerenkov ID cuts. I fit the MC from bins 4 to 10 into an exponential shape to 

get an estimate of heights, and then I use the input MC lifetime (.415 ps) as the 

slope to draw two straight lines on the semi-log scale, as shown by the dotted lines in 

Fig. 5.8(a). From the central value of each reduced proper time bin I get the ratios of 

the fitted MC data points to the exponential inputs. Thus, I get the floating discrete 

MC acceptance functions ( as shown in Fig. 5.8(b)) for the reduced proper time. I 

consistently use the central value of each bin in DATA and MC, thus eliminating the 

uncertainty due to the finite binning. 

I then apply the MC acceptance corrections on weighted distributions in Fig. 5.5 

and Fig. 5.6, and fit the corrected 16 bins with an exponential decay function by 

log-likelihood maximization. The statistical errors of MC events have been taken 

into account for each data point. At the same time I also calculate the mean values 

for n° ~ K+ K- and n° ~ K-1r+. Fig. 5.9 presents the fit result from this binned 

method on a semi-log scale. Fig. 5.10 shows the fitted values and the mean values. 

Table 5.2 lists the results of the binned lifetime measurement. 

Table 5.2. Binned Method Lifetime (Statistical Error Only) 

Method 
Binned Likelihood 

Eq. 1.57 
Eq. 1.55 

Mode 

~,approx 
~,fitted 

Binned lifetime measurement 
0.414 ± 0.012 
0.409 ± 0.003 

-0.055 ± 0.148 
-0.056 ± 0.149 

Decay :\Aean ValuE Difference Approaches. Using the method detailed in 

Appendix A, I also calculate tmean from these 16 bins of BG-subtracted SG. Owing 

to the complicated BG in K± K=f plots, it is difficult to use the unbinned method 
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Figure 5.8. The Study of MC Acceptance Functions for the Binned Method: 
(a) MC is passed through the same selection criteria as DATA, and separated into 
the same 16 reduced proper time bins as DATA. The solid line comes from a fit of 
the 4th bin to the 10th bin in order to get the heights. The dotted slopes are then 
taken from the MC input lifetimes and the fitted heights. 
(b) The ratio of output to input in each bin is my floating discrete acceptance 
function. 
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to calculate the mean value, but in the K=F,r± case, it is possible to approximate 

the linear sideband for an unbinned BG subtraction. I calculate tmean and Ut (root 

RMS) d. t th · d fi · · E, t, . s, d mean square, accor mg o e1r e mt1ons: < t >= S an Ut = E, , 
/I < t 2 > - < t >2 I, where S, and t, are the BG-subtracted SG number and the 

central value of the ith bin, respectively. The uncertainty of assigning t, is only about 

0.001 ps in this case. The error of tmean is estimated by Jl\f, where N is the total 

number of events. 

According to Sec. A.l, I use the S, as the MC acceptance corrected SG number, 

because Fig. 5.8(b) shows a slight acceptance difference between K± K=F and K=f,r±. 

Thus, from Eq. 1.57 and Eq. A.8, I estimate ~'Ymeanl as shown in Fig. 5.10. 

I generated the MC with rK'lr = 0.415 ps (PDG94] (also from Table 5.2, the MC 

generated lifetime is closer to the measured value of TKK ), so following the discussion 

in Sec. A.2 and Sec. A.3, I should use Eq. A~l9 (not Eq. A.21) to estimate the 

~'Ymean2 in Fig. 5.10. Here the S, and Ut are not MC acceptance corrected. The 

correction factor is obtained from the ratios of two MC mean values of the same 

TKK lifetime as shown in Eq. A.19. Table 5.3 summarizes the results of the ~'Y 

approximation by mean value difference methods. The difference between tmeanl 

and tmean2 is due to whether the MC acceptance correction is applied or not. 

5.2.2 Unbinned 2-Dimensional Maximum Likelihood Fit. In this section, 

I focus on the D0 --+ K-,r+ case, in order to confirm that the binned reduced proper 

time method described in Sec. 5.2.1 is adequate. 

One can construct the probability distribution function (p.d.f.) for the ith K=F,r± 

candidate as 

P(m,, t, I par(l : 9)) = 
1 . .!i 

r0 • Gauss(m,,mdO,wdO) · -e-"ll + 
ro 

(l - r0 ) • Lin(m,, bgh, bgs) · Lint(t,,r,,1 , bgc,r,,2 ) (5.6) 
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Figure 5.9. A Semi-log Scale Plot of Fig. 5.10: 
The solid line is K± K"f; the dashed line is K"f 1r±; and the dotted line is from 
PDG'94 TK'II' lifetime. 
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Figure 5.10. Fitting Results for 1:1, Using Different Approaches: 
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The solid line is K± K=F; the dashed line is K=F1r±; and the dotted line is from 
PDG'94 K=F1r± lifetime. 
tmean shows the mean values described in Appendix A. The left portion of tmean's 
are from the method in Sec. A.l, and the right portion is from Sec. A.2. The results 
of the maximum likelihood fit are shown. 
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Table 5.3. Binned /J.1 Mean Value (Statistical Error Only) 

Method Value Mode 
K±KT 
KT7r± 
K± KT 
KT7r± 

E791 Data 
Sec. A.1 

RMSl 

~'Ymeanl 
Sec. A.2 

RMS2 

0.3821 ± 0.0060 
0.3786 ± 0.0017 
0.3362 ± 0.0060 
0.3342 ± 0.0023 
-0.063 ± 0.112 

K± KT 0.4086 ± 0.0041 
KT7r± 0.4030 ± 0.0017 
K± KT 0.3374 ± 0.0077 
KT7r± 0.3337 ± 0.0025 

MC correction factor 0.40729 /0.40898 

where 

~'Ymean2 -0.068 ± 0.083 

1 -1( m;-mdO )2 -~e 2 wdO 

Gauss(m;,mdO,wclO) = [' ~ , 
(---e-½< m;;;:wdO )2) dm 

ml wday'2,r 

L . ( b h b ) · bgh+bgs·(mi-2.0) in mi, g , gs = m2 , 

f (bgh + bgs. (m - 2.0))dm Jml 

Each P(mi, ti) for a single event has 2 contributions: (1) the signal of a Gaussian 

mass term with a single exponential decay term, and (2) the combinatoric linear term 

with a double-exponential decay term. Each term is normalized to the mass interval 

(ml, m2) of 1.77 - 1.95 GeV /c2 and the time interval (tl, t2) of a.a - 1.6 ps. 

The 9 parameters are 

• r0 , mda, wda, and r0 - fraction, Gaussian peak, width and lifetime of the signal, 

• bgh, bgs, 71,1 , 71,2 , and bgc - height, slope, 1 •t, 2nd , and coefficients for the two 

lifetimes of the linear BG. 
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There is thus a 2-D 9-parameter p.d.f. for each event. Because each observation 

is independent of the others, the likelihood function (LF), or the joint probability of 

all observations, is 

N 
.C(m, t I par(l : 9)) = II 'P(mi, ti I par(l : 9)). (5.7) 

i=l 

But recall that in order to use the MC acceptance function A(t) properly, I need 

to correct the Cerenkov efficiency by weighting Wi for each event. So the LF is then 

[Frodesen] 
N 

.C(m, t I par(l : 9)) = II ('P(mi, ti I par(l : 9)))wi. (5.8) 
i=l 

The reason for putting Wi in as a power is that the model of 'P(m, t) is based on 

unbiased prediction and detection ( the ideal Gaussian mass term and the ideal ex-

ponential decay term), but it is necessary to account for the reciprocal of detection 

probability due to the Cerenkov ID cut. If at a value of (mi, ti) one observes one 

candidate, there should have been a total of Wi similar candidates, having the same 

'P(mi, ti). The product of all these Wi candidates of 'P(mi, ti) is equivalent to apply-

ing the weight as a power. The Cerenkov efficiency correction does not depend on 

mass or decay time - SG and BG could have the same Cerenkov efficiency correction 

(weighting), as described in Sec. 5.2.1. 

A similar argument could be applied to the correction of the acceptance function 

A( t). The LF would be 

N 
.C(m, t I par(l : 9)) = II ('P(mi, ti I par(l : 9))ti · A-l(ti). (5.9) 

i=l 

But I extract the continuous (unbinned) acceptance function from the MC study 

using a chosen SG region. In other words, I assume that the acceptance function 

does not depend strongly on mass. It may not be sufficient to assume that the BG 
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has the same acceptance nor to apply the acceptance correction on both the SG term 

and the BG term. Thus, I model A(t) into the SG decay function in new 'P'(m, t) as 

'P'(mi, ti I par(l : 9)) = 

r 0 • Gauss(mi,mdO,wdO) · AE(ti,ro) + 

(1 - ro) · Lin(mi, bgh, bgs) · Lint(ti, r,,1, bgc, 112). (5.10) 

where the new normalized SG reduced proper time probability is 

The new LF is then 

N 
.c'(m, t I par(l : 9)) = IT ('P'(mi, ti I par(l : 9)))wi. (5.11) 

i=l 

Applying the log-likelihood method - the product II changes into a summation ~, 

and the power Wi becomes a coefficient in front of each (log 'P'(mi, ti)) term; the 

log-likelihood function (LLF) is: 

N 
-log.C'(m, t I par(l : 9)) = - LWi · log('P'(mi, ti I par(l : 9))). (5.12) 

i=l 

where the extra negative sign is necessary for the minimizing program MINUIT 

(MINUIT]. 

MINUIT calculates errors by assuming that the LLF is distributed as a Gaussian 

near the minimum, and that the LLF can be approximated as a parabolic shape. 

fhe variance matrix of n parameters is approximated as 

V(n x n) = H-1 , (5.13) 
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with 
82 log.C 
86; 86k. (5.14) 

In my weighted LLF, this method obviously underestimates the error, for all Wi > 1. 

I can reduce every Wi into wi by a common factor, e.g. the average weight. Note 

that rescaling wi results in a log£' of order similar to the unweighted log .C; each 

wi is just a coefficient in front of' log('P'(mi, ti)), so rescaling wi q.oes not alter any 

parameter at the minimum. Then the weighted errors estimated by MINUIT are of 

the same order as unweighted errors. I can then approximate the rescaled weighted 

error by multiplying by the "spread" of weightst, 

V'Ef wtf ('E1/ wi)2 

1/../N 
If all the weights were the same, the spread would be 1. 

(5.15) 

Table 5.4 lists the unbinned maximum likelihood fit results. It shows good agree-

ment with the binned method (refer to Sec. 5.2.1). The small difference could be 

interpreted as a systematic uncertainty due to the binned method. 

5.3 CP Asymmetry 

Recall Eq.(1.66) and Eq.(1.67): 

N(D*+--+ (D0 --+ K+ K-) 7r+) N(D*---+ (.D0 --+ K- K+) 71'-) 
N(D*+--+ (D0 --+ K-7r+) 7r+) - N(D*---+ (D0 --+ K+7r-) 1r-) 
N(D*+--+(D0 --+ K+ K-) 7r+) N(D*---+ (.D0 --+ K-K+) 7r-) 
N(D*+--+ (D0 --+ K-7r+) 7r+) + N(D*---+ (D0 --+ K+7r-) 71'-) 
N(D*+--+ (D0 --+ 7r+7r-) 7r+) N( D*---+ ( .D0 --+ 71'-71'+) 7r-) 
N(D*+--+ (D0 --+ K-7r+) 7r+) - N(D*---+ (.D0 --+ K+7r-) 7r-) 
N(D*+--+ (D0 --+ 7r+7r-) 7r+) · N(D*---+ (.D0 --+ 71'-71'+) 71'-) 
N(D*+--+ (D0 --+ K-7r+) 7r+) + N(D*---+ (.D0 --+ K+7r-) 71'-) 

tPrivate communication from Dr. M. Purohit. 
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Number 
1 
2 
3 
4 
5 

* 6 * 
7 
8 
9 

Table 5.4. Result of Unbinned 2-D Maximum Likelihood Fit 

Parameter 
mdO 
widO 
ratO 
bgh 
bgs 
To 
'Tl,t 
bgc 
'Tl,2 

Average Weight a.nd Spread for D0 -+ x-1r+ 
in mass window 1. 77 - 1.95 Ge V / c2 

Average Weight 
Weight Spread 

n°-x-1r+ mode 
1.86668 ± 0.00009 
0.01342 ± 0.00009 

0.2612 ± 0.0016 
0.118 ± 0.0462 
-0.84 ± 0.33 

0.4083 ± 0.0028 
0.3928 ± 0.0025 

2.74 ± 0.042 
0.0619 ± 0.0009 

1.614 
1.072 

where N stands for the observed SG number after BG-subtraction, decay is assigned 

to DO or jjO by using the charge of the bachelor 71"± of fl*:l:.-+ D0(fl0 )7r± tagging, and 

the normalization to the D0 -+ K-71"+ and fJ0 -+ K+7r- modes is necessary to correct 

for the asymmetry from D0 and fJ0 productions. The corrections from geometry and 

cut efficiency are not necessary in A~~, because they all are cancelled out by the 

normalization denominators. For instance, the inefficiency of the slow 7r+ detection 
N(D*+-+ (D0 -+ K+ K-) 7r+) 

would be cancelled out by + 
0 

, and the detection bias of 
N(D* -+ (D -+ K-7r+) 7r+) 

charges would be cancelled out by the 2-opposite-charge-pseudoscalar decays. As 

a check, I also measure the OP asymmetry of the D 0 -+ K-7!"-71"+7!"+ mode, which 

is a OFD, and A~~( K37r) should be consistent with zero if there is no direct OP 

in OFD. A~~( K37r) is designed to support our measurements on A~~( K± K=F) and 

A~~( 7r±7r=F), in case of being non-zero. 

In order to carry out proper comparisons between D0 and tJ0 , I again fix the same 

widths for fitting b9th D0 and fJ0 mass plots, using widths from the combined D0 

and tJ0 mass plots in 4 decay modes. Fig. 5.11 and Fig. 5.12 are the result of fitting 

mass plots. 
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Figure 5.11. ~~ Study of DATA Plots for K=f1r± and K± K=F: 
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Tagged n° and D0 are combined to get "average" widths which are later fixed to 
fit individual no and JjO. 
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Figure 5.12. A~~Study of DATA Plots for 7r±7r=i= and K37r: 
Tagged n° and fJ0 are combined to get "average" widths which are later fixed to 
fit individual no and fJO. 
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Note that in this CP asymmetry study, there is no MC involved, eliminating 

any uncertainty due to the MC simulation. Also, because they are all D0 -+ PP 

(pseudoscaler), the decay products of D0 and fJ0 are isotropic with no polarization 

in space. Thus, the detector asymmetry between positive charge and negative charge 

has very little effect on our result. The asymmetry of the bachelor 7r+ (1r-) tagging 

is cancelled out by using D0-+ K-1r+(fJ0-+ K+1r-) for normalization. 

Table 5.5 lists the results of A~~(K±K=F), A~~(1r±1r=F) and A~~(K31r). Also, I 

translate the results into 90 % confidence level ( C .L.) upper limit st. All measurements 

are consistent with zero. 

Decay Mode 

Ag~(K± K=F) 
A~~( 7r±7r=F) 
A~~(K37r) 

Table 5.5. ~~ (Statistical Error Only) 

ABR 
CP 

-0.018 ± 0.054 
Upper Limit at 90% Confidence Level 

-10.7% <Ag~< 7.1% 
-0.052 ± 0.093 -20.6.% < A~~< 10.1% 
-0.018 ± 0.023 -5.6% < ~~ < 1.9% 

*By using central value ± 1.64 X statistical error 
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CHAPTER VI 

SYSTEMATIC ERROR 

In the following sections, I will describe the systematic error arising from the 

different assumptions or techniques used in the analysis, and the systematic error 

will be estimated as a fraction relative to the statistical errors. 

6.1 Uncertainty Due to Fitting Functions 

Some studies from other experiments, such as the study of Acp, rely on a MC to 

estimate the BG (using the BR from previous measurement), and then do the BG 

subtraction to eliminate reflections, leading to only a linear BG remaining. But this 

assumption uses the previous measurement of BR to generate the MC for all possible 

modes.· Obviously, this kind of BG-subtraction is not an appropriate technique for 

studying BR itself. Instead, I rely on fitting functions to estimate the BG shape. To 

include the systematic error from the choice of the fitting functions, I have compared 

several possible choices and choose the function with the lowest x2 as my analysis 

fitting function as described in Sec. 4.4. I estimate the systematic errors from the 

deviations produced by other fitting functions. 

Plot ( a) in Fig. 6.1, Fig. 6.2, and Fig. 6.3 is my analysis fitting function. Other 

fitting functions with larger x2 are illustrated as plots (b), ( c), and etc. 

I conclude that in terms of the statistical error u, the systematic errors due to the 

uncertainty of fitting function choices are (1) ±0.50u for N(n°-+1r+1r-), (2) ±0.50u 

for N(n°--+K+K-), and (3) ±l.50u for N(n°--+K-1r+). These conditions lead to 

( ) ren°-+ 1r+1r-) ( ) ren°--+ K+ K-) 1 ±0.50u for r no K- + , 2 ±0.50u for r no K- + , and (3) ±0.40u for (--+ 7r) (-+ 7r) 
ren°--+ K+ K-) reno--+ 1r+1r-) . 
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Figure 6.1. Systematic Study of Different Fitting Functions for K=F1r±: 
(a)< G + P3> (Gaussian+ 3rd-order-polynomial) with the lower x2; 

(b) < E+G> with an Exponential BG gives (b )/(a)= 1.01, which is the systematic 
error due to the choice of fitting function. 
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Figure 6.2. Systematic Study of Different Fitting Functions for K± K=f-: 
(a) <L + BW + G + ASY> with the lowest x2 ; 

103 

(b) < E + BW + G + ASY > with an exponential BG, reasonable, and (b)/(a) 
= 1.01 will be used to estimate the systematic error due to the choice of fitting 
function; 
(c) <E + BW + G + BWA> (E + BW + G + Half-BW-Half-BW) gives (c)/(a) 
= 1.01; 
(d) <BW + G + ASY> is ignored, so is (f); but 
(e) yields (e)/(a) = 1.01. 
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Fitting Function Comparison for i'ii'i ==E791 == 
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Figure 6.3. Systematic Study of Different Fitting Functions for 1r±1r=F: 
(a) <E+ASY +G> (Exponential+ Half-G-Half-BW + Gaussian) with the lowest 
x2; 
(b) < L + ASY + G > with linear BG, discarded; 
(c) <E+ABW +G> (E + Half-BW-Half-BW + G) unlikely, but (c)/(a) = 0.79; 
(d)/(a) = 0.98 will be used to estimate the systematic error due to the choice of 
fitting function. 
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6.2 Uncertainty Due to Weighting 

After Cerenkov ID cuts are applied, and in order to correct for the Cerenkov ID 

cut efficiency, I apply weights to each surviving vertex. I estimate the error of the 

weight according to Eq. (5.4): 

(6.1) 

where Ci and Pi are the charge and the momentum of tracks i = 1, 2. 

But the l::iw has not been propagated into the weighted analysis. Therefore I ran-

domly (according to a Gaussian random (<J'R) number generator) vary the individual 

weight as: 

w' = w + l::iw · Q'R(), (6.2) 

where Q'R() generates a random number from -oo to oo according to the probability 

of a Gaussian distribution with O center and a= 1. 

The basic idea here is to randomly apply a weight to each candidate entry, then 

to see the gross variation of the final values, e.g. fitted BG-subtracted SG number. 

Thus, I define the residual as 

(6.3) 

where So is the SG number without any random weighting, and the Si is the random 

weight, i = 1 - 2000, in my study. 

Each vertex calls Q'R() in a loop of 2000 calls to produce high statistics; in other 

words, the total Q'R() calls are (total vertices x 2000). I calculate Ti by fitting 

2000 plots similar to Fig. 5.2 to get 2000 different fitted SG number for each decay 

mode. Fig. 6.4 shows the distribution of residuals for 3 decay modes. The Gaussian 

distributed residuals in Fig. 6.4 consist of: 
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• the uncertainty of random weights on the SG number ( i.e. the residual Gaussian 

u in Fig. 6.4): The small values of the residual u's (e.g., Fig. 6.4(a)) arises from 

the fact that each vertex, SG or BG, can fluctuate the histograms on Fig. 5.2 

in the same manner, so that even relatively large variations in random weights 

(refer to Fig. 4.8) produce a small difference in the fitted distributions. 

• the goodness of fit (the offset of the mean from 0): The tiny shift in the residual 

mean for ,r±,r=F seen in Fig. 6.4( c) may be explained by the observation that 

fitting an exponential BG is quite unstable, because we only have one sideband 

for the ,r±,r=i= mode (see Fig. 5.2).t 

I include both the u's and mean offsets from Fig. 6.4 as the systematic error due 

to both weighting and fitting. 

I conclude that in terms of the statistical error u, the systematic errors due to the 

uncertainty of Cerenkov correction weighting are (1) ±0.069u for N(D0-+,r+,r-), (2) 

±0.0118u for N(D0-+ x+ x-), and (3) ±0.067u for N(D0-+ x-,r+). These con.di-

( ) reD0-+ ,r+,r-) (  ) reD0-+ x+ x-) d ( ) 
tions lead to 1 ±0.05u for r no x-+ , 2 ±0.lOu for r no x-+ , an 3 

(-+ 71") (-+ 71") 

reD0-+ x+ x-) 
±0.06u for r no + -) . 

( -+ 71" 71" 

There is no Cerenkov correction in the ~~ study. For the lifetime difference, 

I check by fitting two lifetimes without the Cerenkov ID cut) Fig. 6.5 illustrates 

D0-+ K+ x-without ID cuts in 16 bins of reduced proper time, and Fig. 6.6 illus-

trates the semi-log scale of fitting slopes. Table 6.1 lists the results with no ID cut 

( i.e. no weighting). 

fKeeping all conditions the same, except fixing the same SG Gaussian width for 2000 
fits, Fig. 6.4(c) shows a residual. plot of double peaks. The fitting condition is the only 
factor which results in such double peaks. 

fThe main reason to apply Cerenkov ID cut for the final result is to optimize statistical. 
significance, i.e. to minimize fractional. error. 
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Figure 6.4. The Uncertainty of SG Numbers from Randomized Weighting: 
(a) K=F1r±, (b) K±K=F, and (c) 1r±1r=F. 
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The quadrature of offset and Gaussian width is the systematic error due to com-
bined weighting and fitting. 
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Table 6.1. Binned Method Lifetime (No ID Cut or Weighting) 

Method 
Binned-

likelihood 
Eq. A.8 

Eq. A.19 
Eq. 1.57 
Eq. 1.55 

Mode 

~'Ymeanl 
~'Ymean2 
~'Yapprox 
~'Yfi.tted 

Binned lifetime measurement 
0.417 ± 0.018 
0.409 ± 0.003 

-0.123 ± 0.113 
-0.156 ± 0.087 
-0.091 ± 0.141 
-0.092 ± 0.140 

Comparing Table 6.1 with Table 5.2 and Table 5.3, I conclude that in terms of 

the statistical error u, the systematic errors due to Cerenkov correction weighting are 

(1) ±0.25u for TKK, (2) O.OOu for TKw, (3) ±0.25u for ~,:fitted and (4) ±0.60u and 

±1.00u for ~,meanl and ~,mean2, respectively. 

6.3 Uncertainty Due to Cuts 

The basic idea here is to vary the cuts and then to see the effect of such variations 

on the final result, e.g. BR, Acp, and ~,. Using the analysis cuts arrived at in 

Chapter V as starting values, I vary each cut one at a time, for example, PT2DK 

from 0.4 7 to 0.92. Each varied cut is applied to MC and DATA, and run through 

the same fitting and analysis procedure. This method thus probes the combined 

uncertainty of cuts in MC and DATA. 

Table 6.2 lists the various cuts numbered with an index used in Fig 6. 7 to Fig 6.9: 

• 0 is the analysis set of cuts; 

• 1 is the value from PDG'94 or previous data for comparison; 

• 2-7 demonstrate variatfons of the ASYM cuts; 

• 8-12 demonstrate variations of the DIP cuts; 
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Figure 6.5. BG Subtraction from D0---. K+ K-(Without ID Cut) Invariant Mass 
Plots in 16 Bins of Reduced Proper Time. 
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• 13-22 demonstrate variations of the MNCHV cuts; 

• 23-32 demonstrate variations of the PT2DK cuts; 

• 33-42 demonstrate variations of the PTBAL cuts; 

• 43-50 demonstrate variations of the SDZ cuts; 

• 51-54 demonstrate variations of the window of !J..m in n•± -+ n°( lJ0},r± tag-

ging; and 

• 55-61 demonstrate variations of the IMPACT cut of the slow (bachelor) 7r± in 

n•± -+ n°( [}O )1r± tagging, 

Item 
0 

1 
2-7 
8 -12 
13 - 22 
23 - 32 
33 - 42 
43-50 
51- 54 
55 - 63 

Table 6.2. List of Cut Variations 

Cut Variation (*indicates the placement of the starting values) 
ASYM < 0.8, (No DIP cut), MNCHV > 6, 
PT2DK > 0.52, PTBAL < 0.4, SDZ < 8, 
0.1430 < .6.m < 0.1480, IMPACT< 0.008. 
PDG'94 or Previous Data 
ASYM < 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, * 
DIP < 0.002, 0.004, 0.006, 0.008, 0.010, (*) 
MNCHV > 5.0, 5.5, *, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 
PT2DK > 0.42, 0.47, *, 0.57, 0.67, · · ·, 0.87, 0.92 
PTBAL < 0.20, 0.22, 0.24, 0.26, 0.28, 0.30, 0.32, 0.34, 0.36, 0.38, * 
SDZ > *, 9, 10, 11, 12, 13 ,14 ,15 ,16 
.6.m in (0.1425, 0.1485), *, (0.1435, 0.1475), (0.1440, 0.1470), (0.1445, 0.1465) 
IMPACT < 0.005, 0.006, 0.007, *, 0.009, 0.010, 0.011, 0.012 

Some starting values are placed on an end of a range of variation because these 

cuts are applied on the previous analysis stages (Strip, Micro-Strip, etc.) and I cannot 

easily recover the stripped data. Fig B.2 shows the mismatch of DIP cuts between 

MC and DATA. There is no DIP cut in my analysis, but I still vary DIP cuts to 

probe the reliability of the MC simulation. The results are illustrated in Fig. 6. 7 for 

BR, Fig. 6.8 for lifetime, Fig. 6.9 for !J..1 , and Fig. 6.10 for A~~. 
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The shift in lifetime seen in Fig. 6.8 indicates the inaccuracy of our MC, especially 

for the calculation of reduced proper decay time from SDZ and PTBAL as defined 

in Eq. 4.7 and Eq. 4.8. We also see evidence of this from the comparison between 

MC and DATA in Fig. B.8 to Fig. B.11. The systematic cancellation can be seen in 

Fig. 6.8 ( c) and ( d), in terms of the difference or the ratio of two lifetimes. The same 

percentage on systematic error is assigned to ( TK'II' -'TKK) and ( TK'll'/rKK ). 

On the other hand, the correlations in Fig. 6.9 are evidence for the consistency of 

the two different approaches: 

( 1) D.:y from individual lifetime fitting, and 

(2) D..,y from mean values difference (described in Appendix A). 

I conclude that in terms of the statistical error u, the systematic errors due to 

the uncertainty of the choices of analysis cuts are (1) ±0.90u for ~ ~~ ~ ~~ K;), (2) 
( ~ 7r ) 

rcn°~1r+1r-) () rcn°~K+K-) () £ ±1.00u for r no K- + , 3 ±0.40u for r no + _ , 4 ±l.20u or 
( ~ 7r ) ( ~'Tr 7r ) 

rcn° ~ K-1r-1r+1r+) r no K-+  , ( 5) ±0.50u for 'TKK, ( 6) ±1.0u for 'TK'II', (7) ±0.50u for ( 'TK'II' -
( ~ 7r ) 

'TKK) and ( 'TK'll'/TKK ), (8) ±0.50u for D.."'ffitted, (9) ±0.80u and ±1.00u for D."'fmeanl 

and D.."'fmean2, respectively; (10) ±0.20u for A~~(K±K=F), (11) ±0.30ufor A~~(1r±1r=F), 

and (12) ±0.lOu for A~~(K31r ). 

6.4 Uncertainty Due to Fixed Widths 

In the analysis ( described in Chapter V), I fix the Gaussian widths for fitting 

SG numbers in order to both simplify the calculation of the BR for n° ~ 1r+1r-( fix 

the ratio of MC/DATA), and to improve the comparison of the lifetime measurement 

(fixed in different decay time bins) and ~~ (fixed in both n° and l>0). Thus varying 

the common widths is the main technique of this systematic study. 
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Figure 6.7. Systematic Study of Varying Cuts for BR: 
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(a) rcn°-+ K+ K-) (b) rcn°-+ 1r+1r-) ( ) rcn°-+ K+ K-) rcn6 -+K-1r+>' rcn°-+K-7r+)' c rcn°-+1r+7r-> ' and (d) 
rcn°-+ K-7r-1r+7r+) 

rcn°-+ K-71'"+) 
Please refer to Table 6.2 for the key. 
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Please refer to Table 6.2 for the key. 
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Please refer to Table 6.2 for the key. The consistency of two approaches - (1) 
Mean value difference and (2) Fitted lifetime difference - is confirmed. 
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In the BR study, I multiply the widths from the MC by a common ratio: 

(6.4) 

The common ratio is defined as 

(6.5) 

where UD and UM are independently deduced from the SG Gaussian fitting errors. 

Similarly, in getting the "average" width from combined D0 and b 0 for the Ag~ 
study or from the combined 16 bins of reduced proper time for lifetime studies, I 

have the associated fitting error for each "average" width, i.e. uw. 

Taking the increment of UR or uw, I estimate the 1-u deviations of the calculated 

quantities as illustrated in Fig. 6.11 through Fig. 6.15, as measures of the contribu-

tions of varying widths to the systematic errors in the SG numbers. 

I conclude that in terms of the statistical error u, the systematic errors due to 

the uncertainty of fixing SG Gaussian widths are (1) ±0.40u for ~~~--+ ~~ K;), (2) (--+ 71") 
ren°--+ 7r+7r-) ( ) ren°--+ x+ x-) ( ) ( ) ±0.lOu for r no x- + , 3 ±0.40u for r no + _ , 4 ±0.15u for 7'KK, 5 ( --+ 71" ) ( --+ 71" 71" ) 

±0.12u for 7'K1r, (6) ±0.20u for .6.,fitted, (7) ±0.24u and ±0.32u for .6.,meanl and 

.6.,mean2, respectively; (8) ±0.08u for A~~(K± K=F), (9) ±0.lOu for A~~(7r±7r=f), and 

(10) ±0.02u for A~~(K37r ). 

6.5 Uncertainty Due to Binned Lifetime Fitting 

When I fit the lifetimes by the binned method ( described in Sec. 5. 2.1), I choose 

16 bins of reduced proper time and fit them from the first bin to the last one In this 

section, I study the uncertainty due to the choices of bins. Table 6.3 lists the results 

of this study. 
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BR Uncertainty due to Widths 
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Figure 6.11. Systematic Study of Varying Widths for BR: 

( ) reno-+ K+ K-) (b) reno-+71"+7!"-) d ( ) reno-+ K+ K-) There is no 
a ren°-+ K-71"+) ' ren°-+ K-71"+)' an C ren°-+ 7r+7r-) . rcn° K- - + + width fixed in the r iJo I'<- 71" + 71" ) study. The ±luR deviation is the estimate e-+ 71") 

of the systematic errors. In this figure, it is assumed that changes in the widths 
are correlated in numerators and denominators. But in Fig. 6.12, each mode has 
its own systematic error on SG. 



7500 

7000 

6500 

65000 

64000 

63000 

62000 

3250 

3000 

2250 

SG Uncertainty due to Widths 

I I I .!. I 
I 

.,. I t,< I N I .!. 0 0 
(JI "' .,. (.71 t,< (.71 N (.71 (.71 0 (.71 (.71 
Q Q Q Q Q Q Q Q q q q q q Q 

6728.63 ± 163.46 ± 29.27 
-4 -2 0 

KK SG from Various Widths 

I I I I I 
I .,. I t,< I N I .!. 0 0 

(JI (.71 .,. (.71 t,< (.71 N (.71 (.71 0 (.71 (.71 
.. q q q q q q q q q Q Q q q Q 

++ I I I I I I 1 I I I I I 
63043.2 ± 369.47 ± 50.6992 

-4 -2 0 

Kn SG from Various Widths 

I 
-I> 
q 

I I I 
~ l ~ i u, ~ 
q q q q q q 

2596.07 ± 122. 1 9 ± 15.29 
-4 -2 

I 
0 
(JI 
q 

0 
q 

0 

0 
(JI 
q q 

(JI 
Q 

nn SG from Various Widths 

N 
q 

2 

N 
q 

I 
2 

2 

N 
q 

N t,< 
(.71 t,< "' q Q q 

N t,< 
(.71 t,< (.71 
q Q q 

t 1 t 

N tH 
(.JI ~ (.JI 
q Q q 

Figure 6.12. Systematic Study of Varying Widths for SG: 

4 

4 

.,. 
q 

-I> 
q 

I 

-I> 
q 

;I'-
(JI 
q 

.,. 
(.71 
q 

I 
I 

.,. 
(JI 
q 

(11 
q 

(a) 

(11 

q 

I 
I 

(b) 

(11 
q 

(c) 

119 

(a) K± K=F-, (b) K=t-1r±, and ( c) 7r±7r=r-. There is no width fixed in K31r study. The 
±low deviation is the estimate of the systematic errors. 
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Lifetime Uncertainty due to Widths 
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Figure 6.13. Systematic Study of Varying widths For (a) TKK and (b) TK1r· The 
±low deviation is the estimate of the systematic errors. 
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The ±low deviation is the estimate of the systematic errors. 
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Start, End 
* 1, 16 * 

1, 15 
1, 14 
1, 13 
1, 12 
2, 16 
2,15 
2, 14 
2, 13 

Table 6.3. List of Different Bins Fitting 

0.4121 ± 0.0123 
0.4118 ± 0.0127 
0.4121 ± 0.0133 
0.4161 ± 0.0142 
0.4206 ± 0.0153 
0.4146 ± 0.0145 
0.4143 ± 0.0151 
0.4149 ± 0.0159 
0.4203 ± 0.0172 

0.4091 ± 0.0032 
0.4101 ± 0.0033 
0.4109 ± 0.0035 
0.4101 ± 0.0037 
0.4107 ± 0.0039 
0.4054 ± 0.0037 
0.4066 ± 0.0039 
0.4073 ± 0.0041 
0.4059 ± 0.0043 
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~,fitted 
-0.0365 ± 0.1498 
-0.0200 ± 0.1553 
-0.0142 ± 0.1620 
-0.0700 ± 0.1695 
-0.1139 ± 0.1788 
-0.1085 ± 0.1747 
-0.0922 ± 0.1823 
-0.0902 ± 0.1913 
-0.1694 ± 0.2018 

I conclude that in terms of the statistical error u, the systematic errors due to 

the uncertainty of binning fits are (1) ±0.25u for TKK, (2) ±0.80u for TK1r, and (3) 

±0.25u for .6.,Yfttted, .6.1meanl, and .6.1'mean2· 

6.6 Uncertainty Due to MC Production Distribution 

The E791 MC has been tuned to match the DATA production asymmetry. The 

MC for my final analysis results are generated with charm quark mass (Cm) 1.7 GeV /c2 

and primordial transverse momenta (KT) of the incoming partons as 1.0 GeV /c. I 

also have studied a MC sample generated using the values distributed with Ver-

sion 5.7 of Phythia [Pythia]: Cm = 1.35 GeV /c2 and KT = 0.44 GeV /c. After 

identical analysis procedures, the results from two MC samples are consistent with 

each other within statistical errors. So, I conservatively conclude the systematic er-

rors due to MC production aret (1) ±0.30u for ~(~~---+~~K;) {0.104}, (2) ±0.30u ( ---+ 7r ) 
rcn°---+ 7r+7r-) { } ( ) rcn°---+ K+ K-) { } ( ) for r no K- + 0.039 , 3 ±0.20u for r no + _ 2.67 , 4 ±1.00u for ( ---+ 7r ) ( ---+ 7r 7r ) 

rcn°-+ K-7r-7r+7r+) r Do K- + {2.01}, (5) ±l.00u for 'rKK {0.423}, (6) ±0.50u for TK1r {0.412}, ( -+ 7r ) 
(7) ±0.25u for ( TK1r - TKK) {0.011}, (8) ±0.80u for .6.,Yfttted {-0.141}, (9) ±0.80u 

and ±0.80u for .6.1meanl {-0.151} and .6.1mean2 {-0.162}, respectively. 

*The values in the braces { } are the results using a different MC production distribution. 
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6. 7 Uncertainty Due to Detection Bias on ~~ 

Recall the definition of A~~(K± K=F) in Eq. 1.66. The detection bias of slow 7r± 

in n•±. ~ n°(.f>0)7r± tagging can be compensated by the normalization. For pseu-

doscalers, since K± K=F are the same final states of n° and .f>0, any detector bias 

will be cancelled out. So, I only need to worry about the detection bias between 

n°~K-71"+ and t>0~K+71"-. 

Let me divide detector efficiency into two geometrical parts: longitudinal efficiency 

and transverse efficiency. 

• For longitudinal efficiency, Fig. 4.5 shows K+ and K-or 7r+ and 71"-have very 

similar momentum spectra after detection. Fig. 4.5 and Fig. 4.6 illustrate that 

there is no longitudinal efficiency bias. 

• For transverse efficiency, to form a n° or .f>0 requires two tracks ( one positive-

charged and one negative-charged), so charge detection inefficiency is not a 

problem here. Fig. 4.5 (e) and (f) show that K+/K-and 7r+/7r-have fl.at 

slopes, indicating our detection along the direction low-momentum to high-

momentum on the transverse plane is smooth (also compare Fig. 4.7 of MC). 

Of course, I assume that the direct CP asymmetry between n° ~ K-7r+ and 

[)
0 ~ K+71"-is minimal, otherwise the above discussion is incomplete because any 

detection bias may be hidden by CP asymmetry. In such a case, we return to out 

original intention: measure the CP asymmetry of K± K=F and 7r±7r=i=, since Fig. 4.5 

proves there is no net asymmetry in the normalization mode. 
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CHAPTER VII 

COMPARISONS AND CONCLUSIONS 

In this chapter, I present the comparisons of my measurements with previous 

experimental data. I include here the systematic errors discussed in Chapter VI. 

I also emphasize the meanings of my measurements to Theoretical predictions. 

7.1 Comparison with Previous Measurements 

The comparison of BR measurements are listed in Table 7.1 and Table 7.2, and 

illustrated in Fig. 7.1 and Fig. 7.2. E791 has better measurements than the previous 

world averages. 

Table 7.1. Comparison of BR Measurements 

Year Group r(D0 --+K+K-) r(D0 --+71"+7r-) r(D0 --+ x+ x-l 
r(Di'.I - x-71"+l r(Di'.1--+ x-71"+) r(Di'.l--+71"+71"-) 

1979 Mark II(mark-79] 0.113±0.030 0.033 ±0.015 3.4 ±1.8 
1984 Mark III(mark-85] 0.122±0.018±0.012 0.033 ±0.010 ±0.006 3.7 ±1.3 
1989 ARGUS( argu-90] 0.10 ±0.02 ±0.01 0.040 ±0.007 ±0.006 2.5 ±0.7 
1990 CLEO(cleo-90] 0.117±0.010±0.007 0.050 ±0.007 ±0.005 2.35±0.37±0.28 
1991 E691(e691-91] 0.107±0.010±0.009 0.055 ±0.008 ±0.005 1.95±0.34±0.22 
1992 WA82(wa82-92] 0.107±0.029±0.015 0.048 ±0.013 ±0.008 2.23±0.81±0.46 
1993 CLEO( cleo-93] 0.0348±0.0030±0.0023 
1994 E687(e687-94] 0.109±0.007±0.009 0.043 ±0.007 ±0.003 2.53±0.46±0.19 
1994 PDG [PDG94] 0.113±0.006 0.0396±0.0027 2.86±0.28 
1995 E791 0.107±0.003±0.003 0.040 ±0.002 ±0.002 2.65±0.14±0.13 

The comparison of lifetime measurements is listed in Table 7.3 and illustrated in 

Fig. 7.3(a). 

The comparison of OP asymmetry measurements is listed in Table 7.4 and illus-

trated in Fig. 7.3(b ). 
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Figure 7.1. E791 BR's Comparison with Previous Experiments: 
ren°--+ K+ K-) (a) The comparison of I' no x- + from 1) 1979 Mark II, 2) 1984 Mark III, 3) ( --+ 7f' ) 

1989 ARGUS, 4) 1990 CLEO, 5) 1991 E691, 6) 1992 WA82, 7) 1994 E687, 8) 1994 
PDG, 9) This experiment. 

ren°--+ 7r+7r-) (b) The comparison of r Do x- + from 1) 1979 Mark II, 2) 1984 Mark III, ( --+ 7f' ) 
3) 1989 ARGUS, 4) 1990 CLEO, 5) 1991 E691, 6) 1992 WA82, 7) 1993 CLEO II, 
8) 1994 E687, 9) 1994 PDG, 10) This experiment (with the better error than the 
world average). 
The solid error bars include only ~he statistical errors, and the dashed error bars 
represent the systematicferrors added to statistical errors. 

------·------
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Figure 7.2. E791 BR's Comparison with Previous Experiments: 
rcn°--+ K+ K-) (a) The comparison of r no + _ from 1) 1979 Mark II, 2) 1984 Mark III, 3) ( --+ 7r 7r ) 

1989 ARGUS, 4) 1990 CLEO, 5) 1991 E691, 6) 1992 WA82, 7) 1994 E687, 8) 1994 
PDG, 9) This experiment. 

rcn°--+ K-1r-1r+1r+) (b) The comparison of r no K- + from 1) 1977 Mark I, 2) 1984 SPEC, (--+ 7r) 
3) 1985 ARGUS, 4) 1986 ACOM, 5) 1988 CLEO, 6) 1991 NA14, 7) 1992 NA14, 8) 
1994 PDG, 9) This experiment. 
The solid error bars include only the statistical errors, and the dashed error bars 
represent the systemd.tic errors aci.ded to statistical errors. 
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Figure 7.3. E791 TK'II' and Ag~(K± K,=) Comparison with Previous Experiments: 
(a) The comparison of TK'll'from 1) 1987 ACOM, 2) 1988 E691, 3) 1988 ARGUS, 
4) 1990 ACOM, 5) 1990 NA14, 6) 1991 E687, 7) 1994 E687, 8) 1994 PDG, 9) This 
experiment. 
(a) The comparison of Ag~(K±K,=) from 1) 1991 E691, 2) 1994 E687, 3) 1995 
CLEO II, 4) This experiment. 
The solid error bars include only the statistical errors, and the dashed error bars 
represent the 90% C.L. interval. 
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Table 7.2. Comparison of BR K31r Measurements 

Year 

1977 
1983 
1985 
1986 
1988 
1991 
1992 
1994 
1995 

Group 

Mark I [mark-77] 
SPEC [accm-83] 
ARGUS [argu-85] 
ACCM [accm-86] 
CLEO [cleo-88] 
NA14 [na14-902] 
E691 [e691-92] 
PDG (PDG94] 

E791 

rcn°-x-1r-1r+7r+) 
rcn°-x-11'+> 
2.2 ± 0.8 
2.0 ± 1.0 
2.17 ± 0.28 ± 0.23 
2.0 ± 0.9 
2.12 ± 0.16 ± 0.09 
1.90 ± 0.25 ± 0.20 
1.7 ± 0.2 ± 0.2 
2.02 ± 0.11 
2.19 ± 0.03 ± 0.08 

Table 7.3. Comparison of Lifetime Measurements 

Year Group Decay Mode 
n°-x-1r+ 
n°-x-1r+ 
n°-x-1r+ 
n°-x-1r+ 
n°-x-1r+ 
n°-x-1r+ 

Mean Lifetime (ps) 
0.42 ± 0.05 
0.422 ± 0.008 ± 0.010 
0.48 ± 0.04 ± 0.03 
0.388 ± 0.022 

1987 
1988 
1988 
1990 
1990 
1991 
1994 
1994 

ACCM [accm-872] 
E691 [e691-882] 
ARGUS [argu-882] 
ACCM [ accm-902] 
NA14 [na14-902] 
E687 [e687-912] 
E687 [e687-942] 
PDG [PDG94] 

n°--+ x-1r+ K31r 
' 

0.417 ± 0.018 ± 0.015 
0.424 ± 0.011 ± 0.007 
0.413 ± 0.004 ± 0.003 
0.415 ± 0.004 

1995 

1995 

E791 

E791 

CFD 
n°-x-1r+ 
n°-x+ x-

(rKw -'T'KK) 

0.409 ± 0.003 ± 0.004 
0.414 ± 0.012 ± 0.014 
-0.005 ± 0.012 ± 0.013 

Table 7.4. Comparison of OP Asymmetry Measurements 

Year Group & Mode 
1991 E691 Ag~(K± K=f) 
1994 E687 A~~(K± K=f) 
1995 CLEO Acp(K± K=F) 
1995 E791 Ag~(K± K=f) 
1995 E791 A~~( 1r±1r=F) 
1995 E791 A~~(K31r) 

Acp of n°-n° 
0.20 ± 0.15 
0.024 ± 0.084 
0.069 ± 0.059 
-0.018 ± 0.054 ± 0.012 
-0.052 ± 0.093 ± 0.029 
-0.018 ± 0.023 ± 0.002 

Upper Limit at C.L. 90% * 

Ag~ < 45% [e691-91] 
-11% <A~~< 16% [e687-943] 
-2.8% < Acp < 16.6% [cleo-953] 

-10.8% <A~~< 7.2% 
-21.2% < ~~ < 10.6% 
-5.5% < ~~ < 1.9% 

*By using central value ± 1.64 x combined error 
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7.2 Conclusions 

Branching Ratio. In the past, there were many theoretical models developed 
r,n°-+ K+ K-l . to explain r no + - alone, but not all models survived the global fit to all e ---+ 71" 71" ) 

rcn°-+ K+ K-> the 2-body decay BR's of n mesons. The current r no + _ measurement . e ---+71"71") 

is consistent with previous experimental data (see Fig. 7.1 and Fig. 7.2) as well as 

theoretical explanations - SU(3) symmetry breaking and coupled channel final state 

interactions. These E791 measurements provide data for phenomenological studies 

of other decay modes. 

E791 Branching Ratios Decay Mode 
r(D0 -+K+K-) 
reD0 -+ K-71"+) 
rcno-71"+71"-) 
ren°-+ K-71"+) 
rcD0 -+ K+ K-) 
reno-71"+71"-> 

rcn°- K-71"-71"+71"+) 
rcn° - K-71"+) 

0.107 ± 0.003 ± 0.003 

0.040 ± 0.002 ± 0.002 

2.65 ± 0.14 ± 0.13 

2.19 ± 0.03 ± 0.08 

All the BR measurements are consistent with previous measurements, and yield 

smaller errors than the previous world average values. 

Lifetime Difference. This work reports the first measurement of /:j,:-y and y 

using the lifetime difference ( TK -ir-TK K) and lifetime ratio ( TK-ir / TK K-1), respectively. 

In addition to directly measuring two exponential decay lifetimes, I also approximate 

the lifetime difference in terms of the difference of two mean decay times ( described 

in Appendix. A), so that I have a parallel approach to confirm the measurement. 

D0 -+K+ K-
. D0 -+ K- 7r+ 
(TK-ir - TKK) 

( CP invariance) 
(TK-ir/TKK - 1) 

E791 Measurements 
0.414 J· 0.012 ± 0.014 
0.409 . ± 0.003 ± 0.004 
-0.005 ± 0.013 ± 0.013 
-0.06 ± 0.15 ± 0.15 
-0.0121 ± 0.0483 (combined error) 
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With the CP invariance assumption, /::,.:r, !::,.,y, and y are the first estimate of the 

n°-D0 Mixing due to the lifetime difference. According to Eq. 1.58, 'R.~ix = y2 /2 = 

0.000073 ± 0.000438* due to lifetime difference, which gives an upper limit of 0.00079 

at 90% C.L. All measurements are consistent with the Standard Model prediction of 

very small Mixing effects in the n°-D0 system. 

CP Asymmetry. In Sec. 1.3.2, I emphasized that n°-+ K+ K-( or n°-+ 1r+1r-) 

is not a good system in which to measure pure Direct CP asymmetry, due to in-

terference with possible Indirect CP asymmetry arising from n°-D0 Mixing. The 

interference of direct-indirect CP asymmetry cannot be cancelled by the normaliza-

tion of n•+-+ ( n°-+ K-1r+) 1r+. But any non-zero result of our measurements would 

indicate Direct or Indirect CP asymmetry, or both. In addition, A~~(K± K=F)=O is 

no longer a guarantee of CP invariance (see Eq. 1.81). The current measurements are 

consistent with zero, but it is still appropriate to estimate the upper limits for ~~ 

being non-zero at the 90% confidence level. Although A~~( K31r) has been used in 

this work as a consistency checking mode, it can also be interpreted as a measurement 

of a direct CP asymmetry arising from interference between the sector of beyond the 

Standard Model and the sector of the Standard Model (see Sec. 1.3.1). 

Decay Mode 90% C.L. Upper Limit 
-0.018 ± 0.054 ± 0.012 -10.8 % < ~~ < 7.2 % 
-0.052 ± 0.093 ± 0.029 -21.2 % < ~~ < 10.6 % 
-0.018 ± 0.023 ± 0.002 -5.5% < ~~ < 1.9 % 

BR 7r±7r=F 
A0p( K± K=F) = -0.034 ± 0.106, as described at the end of Chapter I, can also be 

interpreted as an indication of direct CP asymmetry. It too is consistent with zero. 

*I assign the same magnitude of statistical error as systematic error, then combine them 
in quadrature for an estimated error in y. 
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The ~~ measurements are currently the best CP asymmetry measurements in 

the D0-D0 system, and are consistent with the predictions of the Standard Model. 

In future high statistics charm experiments, it may be possible to measure the time-

evolution of the CP asymmetry parameter, Acp(t) as described in Sec. 1.3.2, and to 

do the multiple-parameter fit for Direct CP asymmetry, Indirect CP asymmetry, and 

the Mass Mixing parameters. 

-~----------- --------------------
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APPENDIX A 

LIFETIME DIFFERENCE VS. MEAN DECAY TIME DIFFERENCE 
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A.1 b,.:r in the Case of Equal Acceptance 

If the acceptance for n° decays in both modes is identical, then the lifetime 

difference can easily be measured using the observed mean lifetimes as follows. t 

Let us define the mean and sigma of the observed time distribution as t1 and a. 

Higher moments of the observed distribution will be called tn, Thus, 

_ J t · e-t/'r · A(t)dt N 
ti = f e-t/-r · A(t)dt = n (A.l) 

where A( t) is the acceptance as a function of time and r is the lifetime of the particle. 

N and n simply stand for numerator and denominator respectively. 

Similarly, 
t = f tn · e-t/.,. · A(t)dt 
n - I e-t/-r. A(t)dt 

Recall that a is related to the moments simply by 

2 - t t2 U - 2 - l· 

Now, we see that 

at1 1 aN Nan 
8r n 8r n2 8r 

- _!. j t. A(t). e-t/-r (_!_) dt - !!_ j A(t). e-t/-r (_!_) dt n r 2 n2 r 2 

t2 - t~ - r2 
(]'2 

- r2 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

Thus, the lifetime difference in the two modes can be obtained from the difference 

in measured mean lifetime: 

(A.8) 

tneveloped by Dr. M. Purohit. 
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A.2 Ar in the Case of Unequal Acceptance 

In the previous section we assumed that A( t) is the same for both modes. However, 

we know that there could be differences in the acceptance for the two modes. For 

instance, there is less phase space in the K± K=F- mode so the lab frame opening 

angle may be smaller leading to somewhat different acceptance. This may be a 

bigger effect at higher momenta. Similarly, due to differences in Cerenkov cuts the 

acceptance could be different in the two modes. Again, this could be a momentum 

dependent effect. So we must think about how to measure Ar in spite of differences 

in acceptance. t 

One important fact is that the acceptance is really a function of the lab frame 

attributes of the decay particles. After integrating over those variables, we may think 

of the acceptance as a function of the lab frame n° variables: t, p:ll, and PT· Since the 

n° is spinless, it is sufficient to consider the acceptance as A( t, P), but the argument 

is the same regardless of how many variables A depends on. Take the vector p to 

denote "all n° variables." Note that A(t) does not depend on lifetime r, but on 

decay time t. 

Let us then call the acceptance in the two modes as KKA(t,P) and K'l!'A(t,P) and 

the density of n°'s to be f(i). The mean measured decay time in the two modes will 

be given by 
- J dt t exp(-t/rKK)f dp f(i) KKA(t,P) 

KKtl = Jdt exp(-t/TKK)fdp f(i) KKA(t,P). 

Similarly, for the K=F-1r± mode 

_ J dt t exp(-t/rK'I!') J dp J(i) K'l!'A(t,P) 
K'l!'tl = ( I ) J ... ( ;t\ ;:;'\ • J dt exp -t rK'I!' dp f p1 K'l!'A(t,p, 

tneveloped by Dr. M. Purohit. 

(A.9) 

(A.10) 
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Defining the acceptance integrated over everything except the proper time t as 

KKA(t) = J dp f(p) KKA(t,p) 

and 

K,..A(t) = j dp f(p) K,..A(t,p). 

We see that 
_ f dt t exp(-t/rKK) KKA(t) 

KKt1 = ------'---'----'--__,;c...;;.. 
Jdt exp(-t/'T"KK) KKA(t) 

(A.11) 

and 
_ Jdt t exp(-t/rK,..) K,..A(t) 

K1rti = d ( / ) ( ) · J t exp -t 'T"K,.. K,..A t (A.12) 

It is conceivable that KKA(t) will be different from K,..A(t) despite the fact that 

momentum and t are uncorrelated. In general, these are different functions and we 

can write without loss of generality 

KKA(t) = 9(t). K,..A(t) (A.13) 

where 9(t) is some function oft which can be determined from MC. We will see below 

that we do not actually need to determine 9( t). 

Now, 

f dt t exp(-t/'T"KK) KKA(t) 
J dt exp(-t/'T"KK) KKA(t) 

J dt t exp(-t/rKK) 9(t) K,..A(t) 
J dt exp(-t/'T"KK) 9(t) K,..A(t) 

91 J dt t exp(-t/rK,..) K,rA(t) 
9o J dt exp(-t/rK,r) K,rA(t) 

where we have introduced two constants 91 and 90 defined by 

_ J dt t exp(-t/rKK) KKA(t) 91 = -----'-----'----'-------'~ 
J dt t exp(-t/rKK) K,rA(t) 

(A.14) 

(A.15) 
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and 

- Jdt exp(-t/TKK) KKA(t) 
90 = J dt exp(-t/TKK) K1rA(t) · 

We see immediately that 

91 
go 

(A.16) 

(A.17) 

where KKtt1° and K1rtt1° are defined as the mean accepted time for MC events in 

the KK and K7r modes respectively where both MC are generated using the same 

lifetime 'TK K. 

We can rewrite Eq. A.14 as 

t 91 tK,r 
KK 1 = - KK 1 

9o 
(A.18) 

where KKtf1r stands for the mean measured decay time in the K K mode if the 

acceptance for the K K mode were the same as the more copious K 71" mode. We 

know from the Eq. A.8 that 

(A.19) 

The advantage of Eq. A.19 is obvious: we do not need to ~now the details of the 

difference in the acceptance in the two modes. We only need to know from MC the 
MC'TKK ' ' 

. K1rtl h' h b ·1 d . d ffi. . . . N t ratio MC'TKK w 1c can e more eas1 y etermme to su c1ent prec1s1on. o e 
KKt1 

again that the two MC samples should be generated with the same parameter 'TKK· 
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A.3 Comments 

Eq. A.8 can only be used for a small lifetime difference due to the approximation 

from (in a single decay mode) 

to (between two decay modes) 
~t1 c,2 

~,,. - ,,.2· 
Following Sec. A.l, to make acceptance corrections in each decay time bin for each 

mode, requires adequate MC statistics for each bin. Alternatively, Sec. A.2 shows a 

method of determining a gross MC acceptance correction. Ideally, we would expect 

that if we generate MC with the same 'T"KK for K± KT and KT1r± then it does not 

matter how accurate the MC 'T"KK is, as long as it is the same for the K± KT and 

KT1r± samples. But if we simply reverse Eq. A.13 as 

K1rA(t) = g(t). KKA(t) (A.20) 

then we get 

(A.21) 

This requires that we generate the same MC 'T"K1r for K± KT and KT1r±. 

Since both 'T"KK and 'T"K1r are unknown, and we expect that~,,. is small compared 

with,, the method in Eq. A.19 or Eq. A.21 is not sufficient to detect ~,,. alone. 

However I measure the separate 'T"KK and 'T"K1r ( described in Sec. 5.2), and I can 

thus use the measured 'T"KK to generate two MC samples ( K± KT and KT1r±) to find 

~,,. according to Eq. A.19. Similarly, I can use the measured 'T"K1r to generate two 

MC samples (K± KT and KT1r±) to find ~,,. according to Eq. A.21. Both of these 

should give the same~,,., and I have then examined the measured 'T"KK and 'T"K1r· 
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APPENDIX B 

CUT COMPARISONS OF MC AND DATA 
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In this Appendix, I use the sidebands of D0 ~ K-1r+ to represent the BG under 

SG peak, and to produce the continuous cut distributions of SG by BG subtrac-

tion. Thus, it is very important to understand the BG distributions. Each figure 

in Appendix B has 3 rows (e.g. Fig. B.1). The first row is produced without any 

Cerenkov ID selection criteria; for data (the right column), I try both K1r and 1rK 

hypotheses on each vertex, so I double-count BG (but without double-counting in 

the SG peak) and create charm-like or double misidentified BG in the sidebands. 

In the second row, I apply loose Cerenkov criteria choosing the track with higher 

KrD as the kaon. There is then no double-counting in BG, but still .some charm-like 

or double misidentified events in the sidebands. In the third row, I apply Ceren-

kov criteria (Kw ~ .16 as kaons and Kw < .16 as pions), thus eliminating any 

double-counting or misidentification, but the inefficiency of the MC ID cuts has to 

be accounted for. I concentrate on the comparison of the second rows, but use the 

top and bottom rows as references and comparisons ( e.g. Fig. B.6). the SG region is 

defined to be in the interval of MC(l.8345, 1.8945) and DATA(l.837, 1.897); the low 

sideband BG is MC(l.7245, 1.7845) and DATA(l.727, 1.787), and the high sideband 

BG is MC(l.9445, 2.0045) and DATA(l.947, 2.007). The results are not sensitive to 

the choice of sideband regions. 

These comparisons serve two purpose: 

• In order to choose a "matched" set of cuts for tuning the cuts, described in 

Sec. 4.2; 

• To understand the systematic errors due to the MC inefficiency, described in 

Chapter VI. 
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The guideline is the comparison of the shapes and peak values between the distribu-

tion of MC SG and DATA SG (BG-subtracted). 

For example, Fig. B.2 and Fig. B.3 show shifts in MC (the solid line) compared 

to DATA ( the dotted line) in the left columns, and thus I avoid using DIP and PISO 

cuts in my analysis. Fig. B.6 shows no peak shift, and the slight mismatch can 

be accounted for by the difficulty in deducing the BG-subtraction from the DATA 

sidebands. Fig. B.13 indicates the failure of the MC production model to accurately 

reproduce the D0 momentum spectrum. The bottom left plots of Fig. B.14 and 

Fig. B.15 indicate the inefficiency of the Cerenkov identification in the MC. 
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Cuts comparison for MC and DATA of mkpi2422 
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Figure B.l. Mass plots in the left column are from MC in 3 stages: 
(1) try both K1r and 1rK hypothesis (no ID cuts, but double-counting in BG); 
(2) choose higher kaon ID as kaon (loose ID cuts, no double-counting); 
(3) Km ~ .16 as kaon, and Km < .16 as pion (tight ID cut, to reduce BG). 
The plots in the right column are from DATA in the equivalent 3 stages. 
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Cuts comparison for MC and DATA of mkpi2422 
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Figure B.2. DIP cut distribution comparisons are done in 3 stages in order to un-
derstand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). The mean and rms values in the left column are 
for MC SG, and the values in the right are for DATA SG. 



147 

Cuts comparison for MC and DATA of mkpi2422 
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Figure B.3. PISO cut distribution comparisons are done in 3 stages in order to 
understand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the heie,;ht ). The mean and rms values in the left column are 
for MC SG, and the values in the right are for DATA SG. 
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Cuts comparison for MC and DATA of mkpi2422 
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Figure B.4. MNCHV cut distribution comparisons are done in 3 stages in order to 
understand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns  are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). The mean and rms values in the left column are 
for MC SG, and the values in the right are for DATA SG. 
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Figure B.5. MNCHV (without 32) cut comparisons are done in 3 stages in order to 
understand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). The mean and rms values in the left column are 
for MC SG, and the values in the right are for DATA SG. 
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Figure B.6. PT2DK cut distribution comparisons are done in 3 stages in order to 
understand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). The mean and 7ms values in the left column are 
for MC SG, and the values in the riglit are for DATA SG. 
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Figure B.7. Decay Distance distribution comparisons are done in 3 stages in order 
to understand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). _ The mean and rms values in the left column are 
for MC SG, and the values in the right are for DATA SG. 
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Figure B.8. SDZ cut distribution comparisons are done in 3 stages in order to un-
derstand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). The mean and rms values in the left colu.~n are 
for MC SG, and the values in the right are for DATA SG. 



:'S! 
0 
VI 

C., 4000 
VJ 
u ::. 

2000 

-0 •.• = 3000 0 
VI 

c., 
VJ 
(.) 2000 
::. 

1000 

Cuts comparison for MC and DATA of mkpi2422 
Mean 0.~7 :'S! 1!5000 
RMS 0.1843 0 

VI 
c., 
~10000 -0 
-0 

eooo 

0 
2 3 4 

data SG dotted 
LSDZ 

Mean 0.3356 :'S! 
RMS 0.17!18 0 

VI 
c., 4000 
CD 
0 -0 
-0 

2000 

data SG dotted 
LSDZ 

Mean 0,3002 ;'S! 
RMS 0,14311 o 1500 ....._ _____ ___, ........... VI 

data SG dotted 
LSDZ 

c., 
CD 
.S 1000 
0 
-0 

500 

... 

0 

Maan 
RMS 

2 3 

0.2989 
0.1580 

data SG dotted 
DATA lsdz 

Mean 
RMS 

0.2934 
0.1489 

data SG dotted 
DATA lsdz 

Mean 
RMS 

0.2814 
0.1332 

data SG dotted 
DATA lsdz 

153 

Figure B.9. L::/; distribution comparisons are done in 3 stages in order to under-
stand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). The mean and rms values in the left column are 
for MC SG, and the values in the right are for DATA SG. 
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Cuts comparison for MC and DATA of mkpi2422 
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Figure B.10. PTBAL cut distribution comparisons are done in 3 stages in order to 
understand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). The mean and rms values in the left column are 
for MC SG, and the values in the right are for DATA SG. 
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Cuts comparison for MC and DATA of mkpi2422 
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Figure B.11. L~f!1AL distribution comparisons are done in 3 stages in order to 
understand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). The mean and rms values in the left column are 
for MC SG, and the values in the right are for DATA SG. 
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Figure B.12. Reduced Length distribution comparisons are done in 3 stages in order 
to understand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). The me:,.n and rms values in the left column are 
for MC SG, and the values in the right art. for DATA SG. 
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Cuts comparison for MC and DATA of mkpi2422 
;Q Mean 94.75 ;Q Mean 82.32 
0 RMS 56.68 0 RMS 45.90 
(/) (/) 

<..:> <..:> 4000 
(/) 2000 co 
u 0 
::::!: .... 

0 
-0 

1000 2000 

0 0 
0 100 200 JOO 400 0 100 200 J00 400 

data SG dotted data SG dotted 
PV DATA pv 

:2 Mean BB,75 :2 Mean 75.89 

g 2000 
RMS 53.91 0 RMS 41.46 

(/) 2000 

<..:> (!) 
(/) CD 
() 1500 0 1000 
::::!: 

.., 
0 
'O 

1000 1000 

000 000 

100 200 JOO 400 100 200 300 400 

data SG dotted · data SG dotted 
PV DATA pv 

;Q Mean 71,62 :2 Mean 68,11 
0 1000 RMS 311.14 0 800 RMS 34,51 
(/) (/J 

c., c., 
(/) co 800 

~ 1000 0 .... 
0 
'O 400 

000 

·· .. 200 

•, .. .. ' 0 
100 200 JOO 400 100 200 J00 400 

data SG dotted data SG dotted 
PV DATA pv 

Figure B.13. D0 Momentum distribution comparisons are done in 3 stages in order 
to understand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right a.re from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines a.re normalized to MC SG numbers and 
right dotted line to the height). The mean and rms values in the left column a.re 
for MC SG, and the values in the right a.re for DATA SG. 



158 

Cuts comparison for MC and DATA of mkpi2422 
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Figure B.14. K- Momentum distribution comparisons are done in 3 stages in order 
to understand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). The mean and rms values in the left column are 
for MC SG, and the values in the right are for DATA SG. 



159 

Cuts comparison for MC and DATA of mkpi2422 
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Figure B.15. 1r+ Momentum distribution comparisons are done in 3 stages in order 
to understand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). The mean and rms values in the left column are 
for MC SG, and the values in the right are for DATA SG. 
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Cuts comparison for MC and DATA of mkpi2422 
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Figure B.16. IMPACT cut distribution comparisons are done in 3 stages in order 
to understand the BG subtraction in DATA: 
Solid lines in the left column are from MC SG, the solid lines in the right are from 
normalized DATA BG, and the dotted line in both columns are from normalized 
BG-subtracted DATA SG (left dotted lines are normalized to MC SG numbers and 
right dotted line to the height). The mean and rms values in the left column are 
for MC i:,G, and the values in the right are for DATA SG. 
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