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ABSTRACT

E710,

pp ELASTIC SCATTERING AT TEVATRON ENERGIES

Sasan Sadr

Experiment E710, located at site E0 of the Tevatron collider at Fermilab, was conceiVed in order to-
mea;sure pp elastic scattering. The measured parameters were: the total cross section oy, the ratio
of the real to the imaginary part of the forward scattering amplitude p, the nuclear slope parameter
B, the nuclear curvature parameter C, the total elastic cross section o4, and the single diffractive
cross section o,4. These measurements were taken at center-of-mass energies of /s = 1.02 and 1.8

TeV.
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1 Introduction

1.1 The Experiment

The objective of Fermilab Tevatron experimenf E710 ! was the measurement of the differential
pp elastic and diffractive cross sections (p and p refer to proton and antiproton, respectively).
These measurements were taken at center of mass (c.m.) energies \/s = 1.02 and 1.8 TeV, and the
parameters extracted were the total cross section o3, the nuclear slope parametef B, the nuclear
curvature parameter C, the ratio of the real to the imaginary part of the forward nuclear scattering
amplitude p, the total elastic cross section oo, and the single diffractive cross section o,4. This
thesis presents results from the analyéis of E710 data with concentration on the measurements of
o, B, and p, and discusses the implication of these results on the field of elastic scattering.

This section describes the background of the field and the development of the motivation for

E710. Appendix A explains the notation and kinematics of elastic scattering.

1.2 History of the Field

Since the mid 1960s, a large number of pp and pp elastic scattering and total cross section mea-
surements have been carried out at facilities in Europe and the United States. The earliest of these

were pp fixed target mesurements, made at Brookhaven AGS[3] and Serpukhov[4] at c.m. energies

1The E710 Collaboration:

Universita di Bologna and Instituto Nazionale di Fisica Nucleare, Bologna, Italy: M. Bertani, G. Giacomelli, 1.
Veronesi, M. Mondardini, S. Zucchelli

Cornell Unive;rsity, Ithaca, New York 14853: N. Amos, J. Orear

Fermi National Accelerator Laboratory, Batavia, lllinois 60510: C. Avila, W. Baker, B. Gomez, J. Negret, S. Pruss,
R. Rubinstein :

George Mason University, Fairfax, Virginia 22030: R. Ellsworth
University of Maryland, College Park, Maryland 20742: D. Dimitroyannis, J. Goodman, G. Yodh

.Northwestern University, Evanston, Illinois 60208: M. Block, C. Guss, S, Sadr, S. Shukla
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up to 10 GeV. They measured the pp cross section o:(pp), and pp,. The cross sections were found
to be approximately constant at about 40 mb. It was thought at that time that the cross section

would remain constant with increasing energy.

In the early 1970s, pp data taken at the CERN ISR[6] in the energy range 10 < /5 < 62 GeV
showed that the pp cross section was not constant and was instead rising with energy, from about

40 mb at /5 =5 GeV to 43.5 mb at /5 = 62 GeV.

A decade later, with the introduction of the p beam into the ISR, pp colliding beam experiments
were conducted both by the Northwestern-Louvain group[l1] which measured oy, B, and p, and
the Pisa-Stony Brook group[12] which measured oy, only. The Pp cross section showed a dramatic
decline from 50 mb at /s = 5 GeV, to a minimum of 41.5 mb at /s = 20 GeV, before rising to

the o¢+(pp) value of 43.5 mb at /s = 62 GeV.

The ISR experiments also indicated that p,, and ps, approach each other with increasing
energy. psp is constant at around 0 in the interval 10 < /s < 20 GeV before rising to 0.10 at
\/5=53 GeV. p,,, on the other hand, rises from —0.27 at \/s=5 GeV to 0 at /s=23 GeV, before

rising to 0.08 at \/s=62 GeV, which is within errors of the 0.10 value of pg,.

The nuclear slope parameter B is defined as the rate of change, with respect to ¢ (the square of
momentum transfer), of the logarithm of the differential nucléa.r cross section, evaluated at ¢ = 0,
or B= (?1% log ‘—id%";) =g+ The ISR experiments demonstrated that By, and Bp, also approach each
other with increasing energy. B,, rises from 9.5 (GeV/c)~? to 12.5 (GeV/c)~2 in the interval
5 < /s < 62 GeV, while Bj, stays at about 12 (GeV/c)~2 over this energy range. For pp and
f)p,r therefore, o, B, and p appeared to converge with increasing energy. This also indicates that,
at high energies, there is no difference between pp and pPp scattering. The nuclear curvature
parameter C is defined as C = % (:t—z, log %m)mo‘ At the ISR, C was measured to be about 5

(GeV/c)=#[1,44]. Also, the ratio of the elastic to total cross section o.i/0y was measured to be



about 0.17. The significance of the latter two quantities will be discussed in Section 1.3.

The next high energy measurements were taken in 1983-4 when pp experiments at 1/s=540 and
546 GeV were conducted at the SPppS collider by the UA1 and UA4 collal;orations. The former
group reported a total cross section[8] of 67.640.542.7 mb at /s=540 GeV, and the latter[9]
61.941.5 mb at /s=546 GeV. Additionally, the UA5 collaboration reported a total cross section
of 65.34+0.7+1.5 mb at 1/5=900 GeV([29]. All of these values indicate a rise of cross section with
energy. A rise is seen also for measured B values of 15.2+0.2 (GeV/c)~? from UA4 and 17.1£1.0
(GeV/c)~2 from UA1. They also measured the ratio o.;/0¢ to be about 0.22.

The UA4 p value of 0.2440.04 was surprisingly large. Models which had successfully predicted

o: and B at the UA4 energy were not able to justify this high p value. It created a great deal of

controversy which would not be resolved for almost a decade.

1.3 Interpretation of the Results and Motivation for E710:

The original Pomeranchuk theorem states that if pp and pp cross sections become constant asymp-
totically and if p increases less rapidly than logs, then the oy, B, and p values of the pp and pp
systems become equal asymptotically[17]. The early pp results from the Brookhaven AGS[3] and
Serpukhov(4] at ¢.m. energies up to 10 GeV indicated constant cross section values, and thereby
seemed to confirm the first premise of the Pomeranchuk theorem. Latgr on, the data taken at-
the CERN ISR in the energy range 16 < /s < 62 GeV showed that the cross section does not
become constant asymptotically, and that the original Pomeranchuk ﬁheorem was not applicable.
To account for this Tise of the cross sections, the Pomeranchuk theorem was generalized[18] to state
that as § — o0, o¢(pp)/o(pp)— 1. It is not required, however, that the difference in t;le cross

sections go to zero, OT even a non-zero constant as s — co[44]. Eden and Kinoshita showed that

if both cross sections grow as log” s asymptotically, then their difference cannot grow faster than



log?/? s[18].

According to a derivation by Froissart[13] and later by Martin[14], the upper bound of the rise of
pp and pp cross sections with s is (7r/ mf,) log? (s/s0), where m is the rest mass of the pion, and sq is
a scale factor. This principle, known as the Froissart bound, dictates that o; cannot asymptotically
rise faster than log? s. Cornille and Martin[19] proved that inside the forward diffraction peak, at
a given s and ¢, the ratio of the pp and pp differential cross sections asymptotically approaches
unity, although their difference may not. A consequence of this theorem is that the ratio of the
slope parameters goes to unity, i.e., Bpp/Bpp — 1, as s — oco. Furthermore, Block and Cahn[44]

have derived the corollary that the ratio of the squares of the p values asymptotically goes to unity,
i.e., (pop/psp)? — 1, as s — 0.

The curvature parameter C' was defined in Section 1.2. If the nucleon behaves as a sharp-edged
disk of radius R, this curvature parameter would be negative and have a value of —R*/192. As
mentioned in Section 1.2, C was measured to have positive values at the ISR energy of /s = 62
GeV, and at the SppS energy of /s = 540 GeV. These positive values of C' indicate that at ISR

and SPppS energies, the nucleon does not behave as a sharp disk.

In the mid 1980s, Block and Cahn[l1] found the energy dependence of the forward scattering
amplitude by making an asymptotic amplitude analysis fit of ; and p, for pp and pp, in the energy
interval 5 < /s < 62 GeV. From this they extracted the energy dependence of the: cross section
at higher energies. They then put this energy dependence into the Chou—Yang model[20,21]. This
model] postulates that elastic scattering is the shadow of i;he absorption resulting from the passage
of one hadonic matter distribution through another[44]. The scattering amplitudé (see Section 6)
is expressed in terms of an eikonal factorizable into functions of the impact parameter b and the
c.m. energy s. Using the Durand and Lipes[21] assertion that the transverse mati%er distribution

has the same shape as that of the charge distribution, the eikonal was fixed by Block and Cahn to



have the energy dependence obtained from the asymptotic analysis fit to the world data. The point
here is that éince the Chou-Yang model depends on b, it allows the calculation of the differential
cross section do/dt as a function of ¢. For the ISR energy of /s = 62 GeV and the SppS energy
of v/s = 540 GeV, the curvature parameter C was calculated to be positive, in agreement with the
experimental results[1,44,51]. The Chou—Yang model evolves into a black disk as energy increases.
Since a sharp disk exhibits negative curvature, C' must equal zero at some energy, and eventually
become negative. Block and Cahn proceeded to define ‘asymptopia’ as the energy domain where
the elastic differential cross section is basically indistinguishable from that of sharp disk[44]. The
quantitative indicator of the onset of asymptopia is the eneré’y at which C = 0, which Block and
Cahn predicted, using the above model, to be near the Tevatron energy of 1.8 TeV[53].

For a black disk model, the ratio oe/oy = 1/2. This ratio was measured to be 0.17 at the
ISR[15], and 0.22 at the SppS[16].

Experiment E710, the highest energy (/s = 1.8 TeV) elastic scattering experiment to date,

was conceived in order to achieve the following objectives?:

*

¢ To observe the trend in the rise of o4, B, and o;/0; with increasing energy, and to determine

whether the Froissart bound holds at high energies.

e To test the validity of the prediction of Block and Cahn regarding the onset of asymptopia,

by measuring the curvature parameter C at /s = 1.8 TeV to see if it is zero.
o To check the validity of the UA4 p value of 0.24 4 0.04.

e To measure diffractive dissociation and the single-diffractive cross section.

21t should be noted that although the main objective of E710 was the measurement of elastic scattering at
Vs = 1.8 TeV, data were also taken at lower energies of 1020, 546, and 300 GeV. Due to enormous amounts of
background noise, only the 1020 GeV data have been analyzed , the results of which is discussed in this thesis. Data

taken at lower energies have thus far been unusable.



1.4 Results of E710 and its Contemporaries, and their Significance

In 1989, E710 announced their initial pp measurements of o; = 78.3 +£5.9 mb and B = 16.3 +
0.5 (GeV/c)™? at /5 = 1.8 TeV[24]. They also measured the elastic cross section of oo = 19.6£3.0
mb, and the ratio o./0; of 0.25 3 0.02. They normalized their dataraccording to their knowledge
of the accelerator luminosity, which was known with an uncertainty of about 15%. E710 eventually

superseded this cross section value by adopting a luminosity-free approach to normalizing their
data[41].

In 1990, Kang and White[25] attempted to explain the large UA4 p value by postulating that it
signals the presence of a genuine physical threshold just below 540 GeV. They suggested identifying
this threshold with diffractive production of a new 7 particle composed of color sextet quarks, and
with mass of ~ 30 GeV. The asymptotic model based on this hypothesis and fitted to the world
data at the time would generate a cross section of 78.5 mb at /s = 1.8 TeV which was in excellent
agreement with the E710 value, and a p of 0.22 at /s = 540 GeV which agreed well with the
UAA4 result. As we shall discuss in detail in Sect‘:ion 6, the Regge pole model of Laﬁdshoﬂ' and
Donnachie[52], and later the analytic asymptotic amplitude analysis of Block and White[51] and
the QCD-inspired eikonal model of Block, Halzen, and Margolis[49] all agreed with each other and

gave a value of psp = 0.12-0.14!

At the time, E710 and CDF had completed acquisition of their respective data at /s = 1.8
TeV. For E710, the data were basically the same as those which led to their 1989 results. This
time, however, they successfully removed the effects of the large background noise due to beam
halo and therefore probed deeply into the low |¢| regions, in order to measure p as well as oy
and B. In 1990, they published the results of a luminosity-independent measurement of the total
(0¢ = 72.1+ 3.3 mb), elastic (0e; = 16.6 + 1.6 mb), and total single-diffractive (20,4 = 11.7+ 2.3

mb) cross sections[41]. A year later, they announced simultaneously fitted values of o, = 72.8 £3.1



mb, B = 16.99 £ 0.47 (GeV/c)~2, and p = 0.140 £ 0.069[26]. These results were in excellent
agreement with existing models, and they were the first pieces of evidence that suggested that the
UA4 result may be .incorrect. The E710 p value was a major factor that motivated the formation
of the UA4/2 collaboration, whose mission was a precise re-measurement of p at /s = 546 GeV.
E710 also independently used data collected by higher |¢| detectors[53] to obtain the nuclear slope
parameter B = 16.26 + 0.23 (GeV/c)~” and the curvature parameter C = 0.14 0.70 (GeV/c)™*.
This curvature parameter value is compatible with zero, and along with the positive curvature
values reported by the lower energy data, signals the onset of ‘asymptopia’ at /s = 1.8 TeV. This
- shows that 1.8 TeV is the transition energy signaling the onset of asymptopia, as predicted by
Block and Cahn[l]. Also, the measured cross sections were well fitted by the QCD prediction of
Block, Halzen, and Margolis[49]. Future high energy experiments (16 TeV at the LHC and 40 TeV

at the SSC) are expected to measure negative nuclear curvature values.

Also in 1991, the CDF collaboration at Fermilab announced that at /s = 1.8 TeV, oy =
72.0+ 3.6 mb, 0y = 16,5+ 1.5 mb, and B = 16.5 + 0.76 (GeV/c)~2[27]. These results were in

excellent agreement with those of E710.

In 1993, the UA4/2 group, announced the highly anticipated p, value at /s = 546 GeV to be
0.135£0.02[22], thus refuting the large UA4 p value, along with the theoretical models constructed
to explain it. This was a victory for the Regge pole, the analytic asymptotic amplitude, and the
eikonalized QCD’ models. As a final confirmation, E710, in a re-analysis of the /s = 1.8 TeV
data which allowed them to penetrate even deeper into the low |t| region, measﬁred psp to be

0.134+0.069 at /s = 1.8 TeV. The analysis leading to this result is discussed in this work.

Later that year, E710 measured the single-diffactive dissociation cross section[32] at /s = 1.8 .
TeV using a different set of detectors from those used for the 1990 single-diffractive results[41].

They announced a value of 20,4 = 8.1+ 1.7 mb which was in reasonable agreement with the 1990



Vs Experiment oy B p oot/ ot
(GeV) (mb) ((GeV/c)~?)

1800 E710 72.2+2.7 16.724+0.44 0.13440.069 0.230+0.024

1020 E710 61.6+5.7 16.2040.70

546 UA4/2 0.135+0.02

Table 1: Recent experimental results at high energies

results.

The E710 and UA4/2 results for o, B, p, and 0. /0; are shown in Table 1.> This table
summarizes the latest experimental information on elastic scattering. These results indicate a
continuation of the rise of the cross section with energy.

E710 has achieved its objectives by showing that:
e o; and B increase with s.
e 0./0; increases with s, indicating the nucleon is getting blacker.

e C =~ 0 at /s = 1.8 TeV, in contrast to positive values at lower energies. This signals the

onset of asympﬁopia., and the transformation of the nucleon to a black disk.

3In arecent set of preprints, CDF announced a new cross section of 80.0£2.2 mb, which is in marked disagreement
with their earlier result of 72.04:-3.6 mb obtained from the same data sample. There is no discussion in these preprints ~
of the earlier results, and no explanation has yet been offered for the difference between the two values. In this work,

the original results are used in the theoretical analysis.



2 Procedure

2.1 Experimental Strategy

In this experiment, the quantity of interest is the differential elastic cross section do,;/dt, which
is obtained from the differential count dN/d¢t. For a given bin, dN(¢)/dt is the number of counts
within a small interval dt around the ¢ at the center of the bin. This quantity must be normalized

to yield doe/dt:

dN _ dog
dt =L dt '’ @)

where L is the luminosity and has the dimension of (area)~!; the unit for its measurement is the
inverse of the unit for cross section, i.e., mb~?!, pb~1, etc. The expression for the differential elastic
cross section doe;/dt is given in Eq. 113 of Appendix A. There are several methods of fitting Eq. 1
to the data in order to extract oy, B, and p:

One method is referred to as Coulomb pormalization. The ¢ value at which the nuclear and
Coulomb amplitudes are equal is referred to as the interference region #;,;. If the experiment
can cover [t| values lower than |¢|;n¢, namely, into the Coulomb region, then the Coulomb term
dominates the differential elastic cross section, i.e., do./dt ~ 4w(a/t)?. Note that this expression
does not depend on oy, B, and p. It therefore allows the direct determination of the lumirosity,
i.e., an absolute normalization of the-experiment. Using Eqgs. 113 and 1, the number of events in

the interval dt can be written as ) -

a\ 2 aoy GA(t) s Tt 1 '
d—d]t!(t) = £w[(%> G+ (p+ a¢)7gﬁ%ﬂe T + (ZE)2 (14 p?)e? ] : (2)

Using Eq. 2, one can fit £, o3, B, and p simultaneously. The slope parameter is determined
‘primarily by the nuclear (third) term, and p primarily by the interference (second) term.

A second way to measure elastic scattering is the luminosity-free method. Experiments have

9
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shown that the nuclear elastic cross section in small |¢| can be adequately parametrized as

doy, doy,

e?t, 3)
t=0

at T dt

i.e., B is the slope of the straight line obtained from plotting log(doy,/dt) vs |t| in the small |¢|

region. The differential nuclear cross section at £ = 0 can be expressed in the following manner:

donl  _ 7 dom
dt 1=0 - p2 dQ 1=0
™ .
= -1;5IRef(0)+zImf(0)|2- (4)

where f(0) is the nuclear scattering amplitude evaluated at the center of mass frame at ¢ = 0.

Introducing p = Ref(0)/Imf(0), Eq. 4 can be rewritten as

2
doy,

dt

i ‘ (p+9)Imf(0)
A

t=0
2

- W]L/’;;?)‘L , (5)

where the last step used the optical theorem, Eq. 98. The total elastic cross section o can be
expressed as ffoo(dan/dt)dt. Substituting for do,/dt from Egs. 3 and 5, and performing the
integration, we obtain

1 dow

B dt i=0

of (1+0%) (©)
167B

The difference of the total and the elastic cross sectiohs is the inelastic cross section o;pe;. The

luminosity £ normalizes the number of counts to give a cross section, or

N.
Tinel = C"’ \ )

or

=

Tinel
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Ninel
('Tt - a'el)
Ninel
= ( 2) ? (8)
47 [1 - 1+ ]

16w B

where the last expression uses the expression for ¢ in Eq. 6. The expression for £ (Eq. 8) can
alternatively be used in Eq. 2 to normalize the number of counts, provided that the number of
inelastic events N;ne 1s known.

If neither the measurement of the inelastic rate Nj,o nor Coulomb normalization is possible,
a third method is to use an independent measurement of the time-integrated luminosity £. In
this case, Eq. 2 is fitted to the data, where £ is fixed. Again the nuclear and interference terms
would determine B and p, respectively. If data in the interference region is unavailable, i.e., if the
minimum |¢| covered is large such that |t|m;'n > |t|int, then there is not enough information about
p to allow its determination, anci it should be fixed.

Finally, it is obvious that an independent measurement of the integrated luminosity £ allows

the determination of the total cross section o from the total interaction rate Ny, or

N,
o= 'zi (9)

This is a fourth method for measuring the total cross section.

In this experiment the minimum [¢t| covered by the detectors was low enough for the data to
contain some Coulom}s information, i.e., [t|min < |t|int- Furthermore, the number of inelastics
N,-n;I and the time-integrated accelerator luminosity £ were known. 'Therefore, the second and

third methods described above were simultaneously used to normalize the data.

2.2 Formulation of Experiméntal Procedure

To detect the scattered particles and to measure their scattering angles, detectors were placed

about the interaction point at predetermined distances. These detectors measured the positions of
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the scattered particles with respect to the beam line, and hence obtained the particles’ scattering
angles. Throughout this formulation, a right-handed coordinate system is used to identify the
positions of the scattered particles. In this coordinate system, z is the beam direction, and z and

y are the horizontal and vertical directions normal to the beam line, respectively.

One objective of experiment E710 was the meaurement of elastic scattering at |t| values low
enough to yield information about the Coulomb region, i.e., to measure p by using the interference
of the nuclear and Coulomb amplitudes. To do this, measurements had to be taken at very low
scattering angles, which in turn required the placement of the detectors at large distances from the
interaction point. The site assigned to E710 along the Tevatron Collider contained an asymmetric
arrangement of bending magnets about the interaction point at large distances. This asymmetry
was taken into account in the calculation of the angles of the scattered particles. The quantity
“effective length” is the distance between a low |¢| detector and the interaction point which would
result in the same measured scattering angle if there were no bending magnets in the way. Due
to the asymmetry of the arrangements of the bendiné magnets about the interaction region, the
effective lengths were different for the left and right sides of the interaction region. Furthermore,
the bending magnets deflected the particle trajectories differently along the & and y directions.

Therefore, for the same side, the effective lengths had different values in ¢ and y.

Let us isolate from the data sample a subset corresponding to elastically scattered particles,
detected by a detector on the right side of the interactiqn region, that were in corincidencerwit'h
particles detected at a point on the left side detector. Consérvation of momentum requires all
of these right side particles to be concentrated also at a point subtending the same angle with
respect to the beam line as the corresponding left side point (see Fig. 48). In fact, what one sees
is a symmetric two-dimensional distribution ofr particles centered about this point on the right

side. This also holds true with the two sides reversed. The size and shape of this distribution are.
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independent of its location. The width of this distribution is due to the size of the interaction
region, the betatron oscillations, and the detector resolution. We will refer to this distribution as
the elastic pattern.

Due to the asymmetry of the setup about the interactién region, it was conventient to re-scale
all dimensions to correspond to a spatial frame in which the distances between the interaction
region and the detectors were equal. In this new frame, the right side detectors were significantly
larger than the left side, by a factor of 1.52 in « and 1.05 in y. As a result, the right side detectors
covered more of the elastic pattern of the particles incident on the left side detectors than vice
versa. Consequently, the event distributions of the left side detectors required less correction for
acceptance, and were the only distributions used in the analysis. Each bin on the left side contained
events coincident with the entire right side, so no differential right side information was used.

Let us assign to the left and right sides of the interaction region their own reference frames,
with the coordinate system of the left frame identified by (=, y, 2), and that of the right frame by
(z',y,2') such that under a tranformation from tile left side to the right, z — —2', y — ¢/, and
-z — —z'. Let us further identify the z and y effective lengths of the two sides as Ly, Ly, Lo,
and L. Using the transport equation (Eq. 122) from the appendix section on the beam lattice
(Appendix B), the positions, detected by the drift chambers, of an elastically scattered pp pair on

each side of the interaction region can be expressed as

- v = Mg [Tint + é:o] + Lylag + Aag]+ 6z, (10)
g = —mu[@ins + zo) + Lot [z + Acgr] + 80, | (11)

y' = my [Yint + yo] + Ly[oy + Aay] + 8y, and , (12)

Yy = My [Yint + Yo] — Ly [y + Aay] + by, : (13)

where
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my is the left side horizontal focusing factor, mg. is the right side horizontal
focusing factor, etc.,

(®int, Yint) are the coordinates of the interaction with respect to the mean
interaction location,

(o, ¥o) are the coordinates of the beam center with respect to the center of the
detector system (the designated origin),

a, and ay are the # and y components of the scattering angle «,

Aay is the betatron oscillation angle along z (same for A, along

z', ete.),

8, is the detector resolution for the measurement of the location of scattered

particles at z, etc. V

Both sides have a common origin at the geometrical center of the apparatus.

The interaction region, the betatron oscillations A, and the detector resolution 6 all contribute
to broaden the elastic pattern.* Each of these contributions is assumed to broaden the elastic
pattern in a gaussian manner. The differential cross section must be corrected for this broadening
by convoluting it with ten gaussians: two for the # and y components of the coordinate of the event

Qwith respect to the interaction point, four for the ¢ and y components of the betatron oscillation
angles on the left and right sides, and four for the z and y components of the detector resolutions

on the two sides. All of these must be integrated with the =z and y components of the scattering

angle, resulting in a twelve-dimensional integration to be performed. It can be mathematically

4The interaction region also has a width in the z direction. This width was found to be exceedingly small (% 0.6
m) in comparison to the distances between the detectors and the interation region (25-121 m), and was therefore

ignored in this formulation.
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shown that this large convolution collapses to one with only two gaussians, for z and y, the widths
of which contain the effects of all of the factors which broaden the pattern (see Ref. [33]). This was
experimentally verified when the projections of the elastic pattern on the zz and yz planes were
observed to be gaussians. The widths of these gaussians are referred to as the pattern widths, and
are identified by the symbols o, and oy (refer to the section on widths, Section 4.4).

The width of the elastic pattern results in large event losses in the vicinity of the physical
boundaries of the detectors. The amount lost can be as much as 75% at an infinitesimal bin
closest to the beam, i.e., the bin with the lowest [¢|. In Figs. 19 and 20, the half-dashed gaussian
represents the elastic pattern composed of particles coincident with the low [t| stacks of the left
side detector. The dashed part is the portion of the pattern that lies outside of the deteétor
boundaries. Denoting the coordinates of an event on a left side detector as (z,y), and (2',y’) for
a right side detector, the actual form of the differential elastic cross section do.;/dt requires its
convolution with a two-dimensional gaussian representing the elastic pattern. Thus, the pattern

corrected elastic differential cross section is
-3 _1cy=y'y3
)7 om3(557)

w’ma:c y;na'z: do—el e—%(%;—
= dy dz’ (14)
corr /""':m'n. /y' dt 270, Vinoy ’

min

doa
dt

where

a:’min(m ag) @nd y;m.n(m ag) are the boundaries of the right side detector, and.

oz and oy are the z and y pattern widths.

The bin size should preferably be chosen small enough to allow its aﬁproximation as a point.
In practice, this is not possible due to the requirement that each bin contain a minimum number
of events (typicaylly, about 10) for it to have any statistical significance. If the dimensions of a bin

on the left side detector is denoted as min(mar) a0d Ymin(mas) such that Az = 205 — Zmin and
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Figure 1: (a) The effective differential cross section vs |¢| for no event loss due to pattern

width, (b) the expected loss of events at low |¢]

AY = Ymaz — Ymin, the pattern corrected differential cross section (Eq. 14) is thus averaged over
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this bin. This average is the effective elastic differential cross section (do,;/dt); for bin i, or

dU’el _ /.’L’maz‘ A/yma.zl do.el
dt A(L'Ay Tmin; ming

The expression given in Eq. 15 is fitted to the number of counts AN;/At, where AN; is the number

dydx (15)

corr

of events in bin 1, corrected for background and any inefficiencis, such as azimuthal coverage, dead
time, etc. The quantity At is the interval in ¢ covered by the bin. In this experiment, all bins are
the same size, and therefore At is the same for all bins. Again, the data are normalized according
to the second and third methods outlined in Section 2.1.

Fig. la is the plot of (dos/dt) vs the |t| value at the bin center, at /s = 1.8 TeV, if there
were no loss of events near the detector boundaries due to the width of the elastic pattern. This
figure shows a continual rise of the effective differential cross section with decreasing |¢|. Due to
the width of the elastic pattern, however, a significant loss of events is expected in the low |¢| bins,
reéulting in a drop of the effective cross section for these bins as shown in Fig. 1b. This effect is

built into Eq. 15 which is fitted to the data.



3 Experimental Setup

3.1 The Tevatron Co‘llider

Fig. 2[34] is a sketch of the aerial view of the accelerator ring of the Tevatron pp collider at the Fermi

National Accelerator Laboratory (Fermilab) in Batavia, IL, USA. Protons are first accelerated to
uNAC
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Figure 2: The Tevatron Main Ring, Energy Doubler, and p source

QOO‘MeV at the Linac, then sent to the booster where they are accelerated to 8 GeV, and from
there to the Main Ring. At 150 GeV peak excitation, the Main Ring injects the protons into the
Energy Doubler, a ring right beneath the Main Ring in the same tunnel. The Main Ring also
extracts protons at 120 GeV and sends them back to the p production target. An antiproton is
produced for every 20,000 protons and then sent to the p source which has two storage rings. The
antiprotons are first sent to the “debuncher” ring where their narrow time spread is converted to
a narrow momentum bunch spread. This allows them to enter the second “accumula_tor”‘ ring. A
flux of 6 x 101 antiprotons per bunch are then injected back into the Main Ring, as are an order

of magnitude higher number of protons per bunch. Both the p and the p beams are accelerated in

18-
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the opposite directions up to enrgies of 0.9 TeV in the Energy Doubler ring. Each beam is divided
into 6 bunches, and has a period of 21 pusec per revolution. Consequently, there are collisions every

3.5 psec along six intersection regions A0, B0, C0, DO, EO, and F0.

3.2 The E710 Apparatus

Fig. 3 is a schematic of all of the detector systems used in the experiment. The Tevatron was
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Figure 3: The E710 detector at the Fermilab Tevatron. Inset: Blow-up of the béam pipe at

the positions of the tracking telescopes

. designed prior to consideration of this experiment. Upon approval, E710 was assigned the EO
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intersection region where, within 25 m of the interaction region, there were no correction magnets
in the way to alter the trajectories of the beams. It was therefore possible to place four drift
chambers symrﬁetrically above and below the beam line inside the beam pipe on each side, 25 m
from the interaction region. In Fig. 3, these chambers are labeled as 3, 4, 5, and 6, where 3 is the
left arm, inner upper drift chamber above the beam, 4 is the left arm, inner down drift chamber
below the beam, and so on. EO marks the interaction region. These chambers allowed elastic

scattering measurements down to [t| = 0.006 (GeV/c)? at /s = 1.8 TeV.

This minimum covered |t| value was not low enough to allow penetration into the interference
region (see Table 8 in Appendix A), so outer drift chambers were designed to be placed farther
downstream from EO0 on each side. This required finding available locations along the beam pipe

considerably farther than 25 m from EO.

As Fig. 3 demonstrates, the arrangement of quadrupole magnets that stood between these outer
drift chambers was not symmetric about EQ (also see Table 2). On the left side, the outer pots
were placed 91 m from EO, and on the right, 124 m. The quadrupole magnets caused a deflection in
the trajectories of the scattered charged particles on each side. Thus, the y (the vertical direction
transverse to the beam line) positions of the elastic events in the outer chambers were measured
as if the distance between the outer pots and E0 were 80 m on the left side and 76 m on the right,
with no quadrupole magnets in between. In & (the horizontal direction transverse to the beam
line), these distances were 45 m on the left and 30 m on the right. These distances are referred to
as the y and z “effective” lengths L, and L, respectively. If the coordinates of a point loca£ed to
the left of EO is specified as (z,y), and that of a point to the right of EO as («/,y'), then L; and
L, are the left side effective lengths and L,/ and Ly the right side. With thgse outer chambers, it
was possible to obtain ¢ coverage to as low as [t| = 0.00075 (GeV/c)? at /5 = 1.8 TeV, i.e., into

‘the Coulomb side of the interference region. The drift chambers located 25 m from EQ are Vhereby
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Distance from EO (m) Side

inner pots 25 p
quadrupole magnet 27 P
quadrupole magnet 33 p

outer pots 91 ' p

inner pots 25 p
quadrupole magnet 29 p
quadrupole magnet 35 P
quadrupole magnet 93 p
quadrupole magnet 94 P
quadrupole magnet 123 p

outer pots 124 P

Table 2: Positions of the quadrupole magnets between the inner and outer drift chambers on
each side of EO

referred to as the inner or high |¢| chambers, and the ones located farther downstream as the outer,
or low |t|. As Fig. 3 indicates, the outer chambers were identified according to the numbers 1, 2,
7, and 8, such that 1 ié the left upper outef, 2 the left lower outer, and so on.

Due to the asymmetry of the setup about the interaction region, it was conventient to re-scale
all dimensions to correspond to a spatial frame in which the distances between the interaction
region and the detectors were equal. In this new frame; the right side detectors were significantly
larger than the left side, by a factor of 1.52 in z and 1.05 in . As a result, the right side detectgrs
covered more of the elastic pattern of thé particles incident on the left side: detectors than vice
versa. Consequently, the event distributions of the left side detectors required less correction for
acceptance, and were the only distributions used-in the analysis. Each bin on the left side contained

events coincident with the entire right side,‘so no differential right side information was used.

To study elastic scattering at low |t| values, the chambers had to be placed close to the circulat-



22

ing beams. Given the relatively large diameter (5 cm) of the Tevatron beam pipe, it was imperative
to devise a scheme that would allow the detectors to penetrate into the pipe without affecting the
near vacuum (= 10~ torr) condition inside it. To accomplish this objective, the chambers were
encased inside mobile container units, called roman pots, ghat could move inside the beam pipe.
A set of two roman pots, one above and the other below the plane of the accelerator, formed a

castle, as shown in Fig. 4[35]. Each pot could be moved by remote control toward or away from

Figure 4: Two roman pots inside their housing, forming a castle. The dashed line indicates
the beam axis. (Taken from Ref. [36])

the beam. To detect an elastic collision, a pair of inner or outer drift chambers were placed inside
pots located diagonally with respect to the interaction region. As shown iﬁ Fig. 3, four such pairs,
or combinations, existed. As mentioned earlier, the low |t| data were gathered by the four outer
drift chambers (1, 2, 7, and 8).

Behind each drift chamber, there were three scintillation counters. Two of these counters were
identical and were used for triggering. They had 2 ns rise time photomultiplier tubes in order to

have a fast trigger for tracks coming into the drift chambers. The third counter was smaller than
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the other two. It had small holes drilled into it and was placed behind the trigger counters to
provide a known spatial reference frame for calibrating the event coordinate readout system.

In order to approximate 47 angular coverage, ten ring scintillation counters were used on each
side of EQ around the beam pipe for measurement of inelastic scattering, and eight central counters
covering E0. In Fig. 3, the five left ring counters are identified as L1-L5, and the five right ring
counters as R1-R5. The central counters are identified as CC.

The Lambertsons (identified as LAM in Fig. 3) are the bending magnets that direct the p and
p beams from the Main Ring to the Energy Doubler. Their placement close to the detectors was
cause for concern about beam halo background being deflected toward the detectors. To deal with
this problem, 16 tracking drift chambers were placed on each side of EQ around the beam pipe
next to the L5 and R5 ring counters. These chambers were used for tracking events to determine

whether they originated at the vertex. They were also used to measure beam gas background.

3.3 The Elastic Scattering Detectors
3.3.1 Geometry of the Drift Chambers

As mentioned earlier, the drift chambers were used to measure the spatial coordinates of the
scattered particles. Each chamber consisted of 4 horizontal 30 mm long sense wires spaced 6 mm
apart. The chambers were filled with 50-50% argon-ethane mixture. They had 1 kV/cm driﬁ ﬁeld
and 23 mm drift distance (see Fig. 5)[35]. For méchanical stability, the chamber body was milled
from a block of stesalite 4411-W. Voltages were ;ﬁstributed to the field wires through a printed
circuit glued on the side fages of the chamber boay. The wires were held with crimp pins which
contacted directly the printed cirquit without soldering.

The signal from each wire was preamplified with a 20 Q input impedance through high voltage

decoupling capacitors and an impedance matched line built in the printed circuit. The geometry
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Figure 5: Geometry of the drfit chambers for (a) front and (b) side views

shown in Fig. 5 provides a uniform drift field as shown in Fig. 6a where the drift potential distri-
bution is 50 V/line. The pots also had good drift characteristics. Fig. 6b is a map of computed
dl:ift times whose distribution is 5 ns/line, or approximately 0.25 mm per line. The bottom plate
is grounded, the field wires’ voltages increased by 200 V per step up to the arcade voltage of 2200
V. The drain wires were at 2500 V, and the sense wires at 3950 V corresponding to a 1750 V

multiplication voltage drop in a 6 mm diameter cage.

The signal was locally amplified and discriminated and then sent to the counting room along

120 m shielded twisted pair cables. There the signal was digitized by 4-D modules[38].

The coordinate of the incident particle in the z direction (along the length of the wire) was
needed in order to obtain the azimuthal component of its scattering angle and was read by charge
division. The 4-D module digitized the signal into 64 bins in the z direction, where each bin was
calibrated to correspond to about 0.5 mm. The z readout displayed nonlinearities that made it

imperative that the data be integrated over the entire z range.

The y coordinate of the incident particle was needed to obtain the polar component of its

scattering angle, and was digitized into 512 drift-timed bins. Each bin was then calibrated to



25

/Iﬂ ﬂ@- : @'@K@) ‘7&\\\\

\__/\/“/“

. * \' /,

. . VR

S5 S~ V/ 3 % i R
—1 =1 | =

= —tr | —
—

|
::J
= ) —= —= —
=
77
~
e
a

7

Nss

)

<&

(

i

)
»
<<<§<(<<

s — . —
S — ~ — F — F —
: — = = —

® Orain Wire Drift Time M
Orift Pot Potential Map * Fisld Wire ! o ap

50 V/line X Sense Wire

((

)

5 ns/ line b

Figure 6: (a) Map of computed drift potentials, (b) Map of computed drift times

correspond to about 65 microns.

3.3.2 Scintillation Counters Inside the Roman Pots

As mentioned earlier, next to each roman pot there were three scintillation counters, where two"
were used for trigger-ing and the third for the calibration of the coordinate readout system. The
former are referred to as the trigger counters, and the latter as the calibration counter. The three
counters were housed behind each pot with the first counter covering most .of the active area of
each chamber. The dimensions of the trigger counters were 22 mm x 28 mm x 3.2 mm, and the 7

calibration counter 18 mm x 20 mm x 3.2 mm (Fig. 7).
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Figure 7: (a) Front and (b) side views of the trigger counters (TC) and the calibration counter
(CC) ‘

3.4 The Inelastic Scattering Detectors
3.4.1 The Ring Scintillation Counters

The geometries of the left and right ring scintillation counters are shown in Fig. 8. There were 10
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ring counter sections, 5 on each side, designated as L1-L5 and RI-RE). Each section subtended a
circle around the beam pipe, and was composed of four identical quadrants, «, 3, §, and v. In
addition to these ten, there were another class of scintillation counters, called the central counters,
“which covered the EQ vertex on all sides. Four of the central counters were occasionally replaced

with an L-shaped cbunter, L0, near EO to accommodate various 7 coverages.
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Table 3 is a list of the minimum and maximum acceptance angles of all of the ring counters.

These counters were used for identification of inelastically scattered particles with high transverse

Distance Min. Accepetance Max. Acceptance
Counter Section from EQ (m) Angle (mrad) Angle (mrad)
Lo 1.69 29.99 44.98
L1 2.64 19.25 28.87
L2 4.12 12.33 18.50
L3 6.96 7.30 10.95
L4 9.68 5.25 7.87
L5 12.16 3.13 5.22
R1 3.32 15.29 22.94
R2 4.78 10.62 15.93
R3 6.89 7.37 11.06
R4 10.17 4.99 7.49
R5 12.69 3.00 5.00

Table 3: Angular acceptance ranges of the ring counter sections and their distances from EQ

momenta that registered a coincidence with a p or p on the other side, or events identified by high
transverse momentum particles on both sides. The former group are referred to as single diffractive

o

events, and the latter as double diffractive.

3.4.2 The Tracking Telescopes . -

There were a number of factors that resulted in a significant amount of bdckground noise. The
sources of background were initially expected to be beam-gas interactions and single diffractive
events. Later, it was found that anbther major source was beam halo that was deflected in the
magnetic field of the Lambertsons. To keep track of this noise, a series of drift chambers, simi-

lar in construction to the ones used for elastic scattering measurements, were placed in front of
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Figure 9: (a) Cross section of the tracking drift chambers, and (b) beam’s eye view of the drift

chamber telescopes

the Lambertsons on each side of EQ (Fig. 9). These chambers later proved effective in tracking

inelastics from the interaction region and differentiating them from those resulting from beam-gas
interactions.

A doublet, consisting of two sets of four chambers, were symmetrically placed around the beam.

pipe, rotated by +0.05 radians in drift direction from the vertical axis. This was done in order
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to achieve a stereoscopic track reconstruction. These doublets were located along the beam pipe
behind the L5 and R5 ring counters as well as 0.8 m downstream before the Lambertsons on each
side. Their purpose was to measure the fraction of the time the background set off the single arm
diffraction trigger in the logic electronics. A set of four chambers on each side was referred to as a
tracking telescope. These chambers allowed measurements of track angles as low as 2.90 mrad.

As shown in Fig. 9, the tracking telescopes were 7.6 cm high and 10.2 cm wide. They were
active 3.4 cm in drift direction and 8.9 ¢m in width. They were filled with a gas mixture of 80%
argon and 20% carbon dioxide and designed to have an angular resolution of 0.19 mrad (0.15 mm in
drift direction with a 0.8 m separation between the two sets of chambers in a doublet). Inside each
chamber, four 8.9 cm long sense wires of 256 micron diameter were equally spaced and surrounded
by 22 gauge field shaping wires. The outer field wires were set at 3.4 kV and the inner wires near
the sense wires were set at 3.1 kV. This allowed the drift field to act on a larger active area than
the drift chambers used for elastic scattering measurements.

The sense wires were placed transverse to the beam direction. on all sides of the beam pipe.
They were set at 4.8 kV and their signal was read out with preamplifiers. The differential output
of the preamplification was sent by 75 m long twisted pair cable to an amplifier/discriminator. The
output of all four sense wires were fed ir;to a three-out-of-four majority logic. The output of this
majority logic was converted to a standard NIM pulse that was sent into a time-to-digital converter -
to determine the drift time from the particle track to the sense wire[39].

The telescopes were fastened to an aluminum support that was bolted to the floor. A 25 cm
thick layer of lead~bricks was erected around the location of these chambers to provide shielding

from lost protons emanating from the Main Ring.



4 Data Analysis

4.1 Event Selection

Elastic and inelastic events were read and recorded simultaneously. Therefore, the off-line analysis
of the data had to distinguish the two types of events. A number of criteria were used to accomplish

this:

4.1.1 TDC Windows

The first filtering criterion of the event selection procedure used the TDC windows. Lecroy 2228
TDCs, 2249 ADCs, and 2551 scalers were used for reading out event information from all scintilla-
tion counters. The event trigger was used as a start signal for the TDCs. Signals from the counters
were digitized by the ADCs with 150 ns gates: The discriminated signals were sent as stop pulses
to the TDCs. For each counter, a time distribution of events was obtained from the TDCs. These
distributions were used to determine whether a hit in a counter was in time with the interaction
at EO.

A typical TDC distribution for one of the trigger counters is displayed in Fig. 10.

4.1.2 Trigger Selection

Due to the large amount of background noise from the beam halo, particularly in fhe low |¢|
region where practically all of the Coulofnb information lies, it was imperative to separate the
elastic signal from background. To do this, two different kinds of triggers were used. These
triggers differed according to whether they corresponded to coincidences between detectors located
diagonally about the interaction fegion, or the ones located on the same side of the beams.

A candidate for an elastic event was defined as one that registered a trigger in either, but not

both, of the diagonal detector pairs 1-8 or 2-7, and no trigger in any other counter (See Fig. 3).

31
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Figure 10: A typical TDC distribution

“The sample of events satisfying this selection criterion contained the elastic signal as well as a’

significant amount of background noise due to beam halo, and is referred to as the elastic sample.

In addition to this, a sample was formed which contained events that registered a trigger on
either of the parallel detector pairs, 1-7 or 2-8, but no trigger on any other chamber. This is

referred to as the background sample.
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4.1.3 Wire and Track Selection

Each drift chamber had four sense wires. At times, the output from one or two of these wires
was not used due to low efficiency or exceedingly large number of double or more hits, i.e., events
that registered more than one track with a given wire. A track is the computed coordinates of a
detected particle. When filtering events based on their tracks, only the y coordinate was used since

the measured z coordinate was generally not trusted.

Of the wires that were used, at least one was required to have a single hit. The remaining wires
were required to have only single or double hits, i.e., if any one of them did not meet this condition,
it was discarded for that event. Furthe‘rmore, it was required that at least two wires satisfy this
criterion for the event to be accepted. The track of the wire with the single hit was then used as
a refereﬁce with which the tracks of the other wires were compared. For the tracks from any two
wires to be considered in agreement, they had to be within a specified tolerance of each other. The
value of this tolerance was picked by trying a number of values and counting the total number of
events after the filtering. The idea was to use the smallest tolerance possible without unnecessarily
cutting off the amount of statistics. This tolerance was selected to be 0.7 mm. Fig. 11 shows this
. stability study for a number of tolerance values. Once agreement within the specified tolerances
was established among the tracks, they were all arithmeticaly averaged and the result was taken

as the coordinate of that event.

4.2 The Readout System

The mechanisms of the y and & readout systems are described in Section D.1.1., Here, the calibration

procedures of these two systems are described.
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Figure 11: Stability of statistics with track tolerance

4.2.1 Calibration of the y Readout System

The purpose of the circular indentations, as well as the horizontal indentation at the bottom, of
the calibration counter (Fig. 7) was to aid in the calibration of the readout system. This was done
by obser\}ing a sample of events that did not register a hit on the calibration counter , but did
register a hit on a trigger couﬁter behind it. These are the events that went through the holes as
well as the horizontal indention at the bottom of the calibration counter. Their projection along
the y axis is that of four normal distributions (corresponding to the four horizontgl rows of circular
holes) and one step function (corresponding to the bottom edge) (Fig. 12). The objective here

“was to calibrate the y readout system by fitting suitable functions to this distribution where the
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Figure 12: The y projection of the events penetrating th.rough the indentations of the calibration

counter

fitted parameters would include the calibration parameters of interest. To do this, an appropriate
symmetric function had to be fitted to each of the fouf normal distributions. The problem was
that the amount of statistics across the width of a given hole dropped by as much as 50% due
to increasing distance from the beam, hence skewing the distribution and making the fit of a
symmetric function impossible. Fig. 13 shows the distributioniof all events as a function of y which
clearly demostrates this drop in statistics. It was therefore imperative to correct these distributions

for their fall-off. This correction was accomplished by normalizing the distribution of Fig. 12 with
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Figure 13: The y projection of all events regardless of which counter is hit

respect to the amount of raw statistics, i.e., the distribution of Fig. 13. This required dividing
the contents of the former, bin by bin, by those of the latter. This bin by bin division served to
diffuse the skewing effect due to reduction of statistics with increasing distance from the beam. The
profile of this normalized distribution is clearly that of a step function and four normal curves of
comparable sizes (Fig. 14). Each 6f these five sub-distributions are then isolated by the imposition

around them of fiducial cuts the boundaries of which were selected by inspection.

The finite resolution of the detector system resulted in a smearing of these distributions. The

form of this smearing is approximated as a gaussian convoluted with the expected profiles of the
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Figure 14: The corrected y projection of events penetrating the calibration counter

edge and the holes if the detector had infinite resolution. The width of this gaussian is a measure
of the detector resolution.
For the edge of the counter, the convolution of the expected step function with a gaussian results

ih an error function. The form of this function is derived in Appendix E and can be expressed as

Ey) = NT [1+erf (%)} o | (16)

where

y is the electronic bit number identifying the vertical coordinate of the particle
incident on the detector,

E(y) is the normalized distribution of data at a given bit y,
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N, is the normalization constant of the function,

p is the bit number corresponding to the edge of the calibration counter ,

o is the width, iﬁ min, of the gaussian representing the resolution of the detector,
¢ is the physical dimension corresponding to each bit (commonly referred to as the
mm/bit constant),

O is a step function.

The profile of the holes are approximated as the convolution of a radial function with a gaussian

(see Appendix E). For a given hole, this convolution can be expressed as:

where

N r Ay —pem u Y v 2
I(y) = 27’:0/ dY'e” 53l W=Pe=n=Y'T, [1 _ (—;) , (17)

I(y) is the normalized distribution of data at a given bit y,

N}, Is the normalization constant of the function,

r is the radius of the hole (r=0.09 mm),

i is the location of the hole, in mm, with respect to the edge of the calibration

counter.

For each sense wire in a drift chamber, a profile of the particles penetrating the holes and the

bottom slit, similar to the one in Fig. 14, was obtained. Eq. 16 was fitted to the data at the edge

of the calibration counter. Simultaneously, four functions of the form of Eq. 17 were each fitted to

the profile of the holes. The fitted parameters were the five normalization constants, the edge bit

p, the mm/bit constant ¢, and the resolution o. For all wires, there was also a flat background due

to the inclusion of the vertical strips at the left and right edges of the trigger counter which were
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Figure 15: The y calibration fit

not covered by the calibration counter (See Fig. 7). An extra parameter added to the functions of
Eqgs. 16 and 17 was fitted to account for this flat noise.

Fig. 15 is the superposition of this fit on the data of Fig. 14. Of all of the fitted parameters,
two were of primary interest, namely the mm/bit constant ¢ and the bit number of the edge of the
-calibration counter p. Knowledge of these two parameters ié crucial for determining the precise

location of the scattered particle and hence its scattering angle.

4.2.2 Calibration of the r Readout System

The san{ple of events used here was formed in precisely the same manner as with the yA calibration,

except that here they were integrated along the y axis, i.e., the projection along the x axis was
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formed. The abscissa consisted of the 64 electronic bits of the & readout system. As in the y
readout case, two distributions were obtained. One corresponded to the events that registered a
hit on both the trigger and calibration countelgs, and another to the events that registered a hit
on the trigger counter regardless of their hit status on the calibration counter. Again, the former
distribution was divided, bin by bin, by the latter. The shape of the normalized distribution was
flat in the central 20 mm where the trigger counter was covered by the calibration counter, and
rapidly dropped to zero in the outer 4 mm wide regions which were not covered by the calibratidn

counter (refer back to Fig. 7 for counter geometries).



41

Two error functions of the same width w were simultaneously fitted to the two vertical edges.
If the bit numbers corresponding to the left and right edges are labeled as Fy and Ey, respectively,

then the functions Ej(z) and E,(z) fitted to the left and right edges were:

Efz) = Nerf(mw—\/Eil), (18)

E.(z) = Nef (%\;;) . (19)

Here, N is the no;malization constant which is fitted along with £y, E5 , and w. Fig. 16 is the
superposition of the fitted edge functions on the normalized distribution. The quantity |E; — E,|
is’ the distance, in bits, between the vertical edges. Dividing this quantity by the known distance
of 20 mm yielded the mm/bit constant of the = calibration.

Due to the unexpected nonlinearity of the # readout system, the z information was not used in

the analysis.

4.3 Determination of the Scattering Angles

The calibration of the y readout system allowed one to determine the location of a scattered particle
relative to the detector itself. If the electronic bit corresponding to the y coordinate of the scattered
particle is designated as y;, following the nomenclature of Section 4.2.1, the y component of the

location of the particle with respect to the interaction point can be calculated according to
Y= (p - yb)c + Yo + }/pot’ (20)

where Y, is the distance between the upper vertical edge of the calibration counter and the:bottom
of the chamber (Y.; &~ 2 mm as shown in Fig. 7), and Ypo: is the known distance of the chamber
from the center of the. detector system.

The latter quantity Y,.: was deter&ined in the followil;g manner: Before the start of evéry run, -

the pots were moved vertically toward the beam until a sudden increase in the counting rate was
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detected by the trigger counters. This position was recorded and referred to as the touch position.
The halfway point between the touch positions of the upper and lower detectors in a castle is the
center of the detector system. To determine the scattering angle, it was necessary to find the
position of this detector center with respect to the interaction region.

The position of the center of the detector system relative to the beam center is referred to
as the beam offset, and is identified as yo in the equations of motion in Section 2.2. To find yo,
the coordinates ofr the elastically scattered particles on the two sides of E0 were compared. As
mentioned in Secti;)n 3, the quadrupole magnets placed in the accele;'ator ring between the outer
drift chambers and EQ forced the measurement of scattering angles to register values other than
what they would have been had the magnets not altered their trajectories. Thus, the effective
lengths and not the actual lengths between the detectors and the interaction region on each side
of E0 had to be taken into account. A new scaled reference frame was devised. The quantity L is
the average of these four effective lengths (Ls, Ly, Ly, and Ly in the equations of motion).

The coordinates (X ,Y) and (X’,Y’) are designated as the scaled reference frame coordinates

of an elastic track on the left and right sides, respectively. They are defined as

1 .
L = g(Lo+Ly+ Lo+ Ly), (21)
L
X = f;il!, (22)
L
X = Lim (24)
’ L
[— !
Y= - (25)

Rescaling the equations of motion and averaging them, we obtain

<X>

bozo + Lae + 62), ‘ (26)

<X'> = —bpzo+ L{ag + do1), (27)
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<Y > = byyo+ L(ay + ¢y), (28)
<Y'> = bylyo - L(ay + ¢y')) (29)

where the interaction distribution width, the betatron oscillation distribution width, and the de-
tector resolution terms are dropped since they are presumed to average out to zero. The ¢ terms
are possible beam tilts. The b terms are defined according to by = Fmg, by = Emy, etc.

z v

Again, since the only coordinate of interest is y, the z equations will no longer be used. Adding

the y equations yields

_<Y4Y'>

- , 30
Yo by + byl ( )

where ¢, — ¢, is absorbed into the measurement of yo. Also, since Y is independent of Y, the

average of their sum is taken to be the sum of their averages. The amounts by which the coordinates

of the left and right side events should be shifted is then

Yonist = byyo, (31)
Yiise = byto. (32)
This uniform shifting of the event coordinates will leave the pattern centered about the beam.

Once the scaled coordinates (X,Y) of the scattered particle on the left side of EO is thus

determined, its scattering angle 8 is found by using the small angle approximation

X

b = I (33)
v .

by = T (34)

0 = 1/62+062. ~(35)

4.4 'Widths of the Elastic Pattern

In the elastic sample, the differences of the detected coordinates of the two elastically écattered ’

particles, i.e., [Y| = |Y’| and |X| — |X'|, were two-dimensional distributions with finite widths.
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These widths were due to the non-zero width of the interaction region, the betatron oscillations,
and the. detecf.or resolutions. The projections of these distributions on the zz and yz planes are
gaussians. The widths of these gaussians are refered to as the z and y pattern widths, respectively,
and are designated the symbols ¢, and o,. Figs. 17 and 18 show the gaussian = and y patterns

with fitted gaussian functions superimposed on them.
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4.5 Binning of the Data

Figure 18: Gaussian fit to the y elastic pattern

As mentioned in Section 4.1.2, the event selection procedure resulted in two different sets of event

samples. One set corresponded to-events that registered a coincidence between chambers located

diagonally about E0 (1-8 or 2—7),A and another between chambers on the same side of the beam

(1-7 or 2-8 ). The former was referred to as the elastic sample, and the latter as the l')ackground

sample.

The z readout system displayed nonlinearities that made it unsuitable for accurate measure-

ment. Consequently, only the y infqrmatioh was used in the analysis, and for each differential y
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Figure 19: Contours of constant [¢| at c.m. energy of 1.8 TeV

strip, the data were integrated over the complete 28 mm = range.

The data in both sets of samples were binned along the y direction in a number of bins,
referred to as stacks, for each of the chambers. The width of each stack was chosen as 0.5 mm,
approximately equal to the pattern width in y, for the /s=1.8 TeV data . Thig resulted in 40
stacks in o;'der to céver the height of a chamber. For the 1/5=1.0 TeV data, the y pattern width
was about 1 mm. Consequently, 20 stacks, each 1 mm wide, were used for this energy. Fig. 19 is
a schematic of the _sta,cks, v-vhere' Athe t designations correspond to'\/§=l.8 TeV. Fig. 20 is a similar
schematic for /s=1.0 TeV. The point at the center of either figure represents the beam line which

is perpendicular to the plane of the figure. The grids on the top and bottom correspond to the
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Figure 20: Contours of constant |t| at c.m. energy of 1.0 TeV

stack matrices of the left and right side detectors, respectively. Each stack contained all of the
events that registered a coincidence between the y range of that stack and the entire detector on
the other side of the interaction region. The stacks were numbered so that, for each chamber, stack
1 was closest to the beam. Therefore, stack 1 was the bin covering the lowest |t| values, and stack
40 (20) the bin covering the highest. The circles in the ﬁgures are constant |¢] loci, the smallest of

which corresponded to [t|min. It is readily seen that each stack covers a large range of |t| values in

the z direction.

The chosen [¢|min Was that of tile largest of the four outer chambers. Each stack of any chamber-

covered exactly the same solid angle as the corresponding stack of e,ny other chamber. For the
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1.8 TeV data, where the relative background amount was about the same for the two elastic
chamber combinations (1-8 and 2-7), this equivalency of solid angles allowed the averaging of the
contents of each of the two corresponding stacks for the two vertically aligned pots 1 and 2. If after
the centering there were still a non-zero, albet? small, offset between the detector center and the
beam, the second largest (after the Oth order) term in a Taylor expansion of the differential cross
segtion about the centered position, with this offset as the expansion parameter, would be the 1st
order term. This term would have the same magnitude but opposite signs for the two vertically
aligned pots in the same castle. The advantage of this stack by stack averaging would then be the
cancellation of the 1lst order term. This averaging was not warranted with the 1.0 TeV data due
to the large discrepancy in the relative background contents of two combinations. This point will

be elaborated on in Section 5.

4.6 Background Subtraction

On the right side detector, the events which registered a coincidence with a high |t| stack on the left
side detector, as indicated by the diamonds in Figs. 19 and 20, formed a pattern in the shape of a
two-dimensional gaussian which peaked at the same stack number as the left side stack with which
they were coincident. There was also a significant amout of background due to beam halo which
was concentrated in the lower stacks of the right side chamber. This background was separable ‘
from the signal only for events coincident between the high |t| stacks of one detector and all stacks
of the detector on the other side of EQ. In such cases, one could clearly identify two éeaks in the
pattern formed on thé latter detector: a high [t] peak corresponding to the elastic signal, and a
low [t| peak corresponding to the background. There was a strip of empty stacks between these
two péaké which made the isolation of signal from noise straightforward. Fig. 21 demonstrates the

two peaks, as well as the separation between them, for a typical case. For events coincident with
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Figure 21: The separation between the background and the signal peaks

a low |t| stack on the left side, the right side pattern was not that of clearly discernible signal and
background peaks. Since all of the Coulomb and interference information resided in the low |t]
stacks, a method had to be devised to separate the back‘ground noise from the‘ elastic signal in this
region. To do this, the magnitude and shape of the background was derived from the background
- peak that was separable from the elas£ic signal at high || stacks.

A comparison was made between the shapes of Athe distributions corresponding to (a) events ip
the elastic sample coincident between the high [t| region of the left side detector and the low |t
regioh of the right side detector, i.e., thebbackground subset of the elastic sampie Whicﬁ, as men-
tioned, was separable from the elastic signal, ;a;nd (b) events in the background sample coincident

between the same high |t] region of the left side detector and all of the right side detector. These
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Figure 22: Comparison of background shapes from elastic and background samples

two shapes were shown to be the same. Fig. 22 is a comparison.of these two distributions.
The background content B} of a stack ¢ belonging to a left side chamber I can be expressed in

the following way
Joutoss

Bi= ) Ni, (36)
=1
where

N,-Ij" is the number of events coincident between stack i of chamber I and stack j

of chamber J.

Jeutogs is the upper cutoff stack of the region cohtaining the background and is
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found by inspection, such as in Fig. 21,

In Eq. 36, chamber J is the elastic partner of chamber I, i.e., the two chambers are located ’
diagonally about EO, and therefore N"Ij‘l belongs to the elastic sample.
The similarity of background shapes from the two samples, as shown in Fig. 22, indicated that

B} can alternatively be calculated according to

Bf = ¢;P], ' (37)

where C; is an empirically determined proportionality constant. The normalized background con-

tent P{ of stack i of chamber I is determined according to

T N
pi= =1 H . (38)
’ NiE

This normalization is specified by the right side of Eq. 38. The numerator is the pre-normalized
background content, i.e.A, the number of events coincident between stack i of chamber I and all of

chamber K which is located at the same side of the beam as I. It is clear that N

is obtained
from the background sample. The denominator, Ntfff , is the total number of events coincident
- between chambers I and K. It is with respect to the latter quantity that the background content
is normalized.

Equating Egs. 36 and 37, one can solve for C;

Z:]cu!off NIJ
I

T

Ci= (39)

Here, i is a high [t| stack. The constant C; is caleulated for all high |¢| stacks on chamber I where
typically © > jeutoss + 4. The 4 stack, and hence 40, separation between the lowest ¢ and jeuioss
was to prevent inclusion of any elastic events in the N,-Ij" sample. Inversely, the same was done for

the low |t| stacks on chamber I and high |¢| stacks on chamber J, yielding a series of C; values.
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All of these C; and C; values were equal within errors, and were therefore averaged together. This
average, C!7 | was the background normalization constant for the elastic chamber combination I-J,
where I-J was either 1-8 or 2-7. The background content of cell i was then calculated according

to Eq. 37.

‘We can see here that although the background normalization constant was determined by using
information from high [¢| regions only, it allowed the calculation of background in all [t| regions,

particularly in the low |t| stacks where all Coulomb and interference data reside.

Calculating the background content for each stack also provided the signal to noise ratio for
that stack. For a typical subset of the 1.8 TeV data, these ratios for the bottom 10 stacks are

tabulated below:

Stack. Signal + Noise.  Noise Signal  Signal/Noise

1 720. 388.+15. 332. £ 31. 0.85
2 746. 299.+12. 447.+ 30. 1.50
3 656. 227.+£10. 429.427. 1.89
4 600. 181. 8. 419. =+ 26. 2.31
5 619. 151.£7. 468.£26. 3.11
6 548. 127.4£7. 421. % 24. 3.31
7 523. 109.+£6. 414.+24. 3.80
8 506. . 92.4+5. 414.423. 4.48
9 493. 82.+£5. 411.+23. 5.02

10 488. 74.£5. 414.+23. 5.63
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4.7 Normalization of the Data

The data were normalized simultaneously by the number of inelastics and the accelerator luminosity.

4.7.1 The Inelastics

The luminosity-free method was discussed in Section 2.1. The number of inelastics, N;pei, was
counted by the ring scintillation counters (refer back to Fig. 3). Also in Section D.1.2, the L, R,
and LR triggers are defined. These triggers were the primary sources of information about the -
number of inelastic events. Several corrections were made to these numbers due to differences in

bunch intensity and incomplete angular coverage. Theses corrections were estimated to be[41]

single arm L 4 single arm R

IR ' = 0.354 £ 0.075, (40)

d L t £
extrapolate Loss L-l-Rex rapolated R Loss = 0028 0.014 (small angle), (41)
extrapolated L Loss IAl-Rextl"apolated R Loss = 0.016 0.008 (large angle). (42)

Using these corrections, the number of inelastics was calculated and used to normalize the data
at /5 = 1.8 TeV only. The error of the inelastics is composed of two parts. One part is simply
the square root of the number of LR counts. The other part is due to the errors of the corrections

identiﬁed above.

4.7.2 The Acpelerator Luminosity

In addition to the inelastics, the accelerator luminosity was used to normalize the measured éounting
ra.té.

Two of the scaler cons{;ants thjat were recorded at the end of each run were the monitor constants
M and M'. M was the electronics logic coincidence of all the counters in the R5 quadrant (in a 6

ns coincidence) put into a 15 ns electronics logic coincidence with that of all the counters in the L5
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quadrant, all latched to a 30 ns coincidence with the RF signal (refer to Section D.1). Scaler M’
was the same as M, but with the RF signal delayed by 21 us in its coincidence with the L5xR5

logic pulse.

Two other scaler constants were clock and g(ated)clock. The ratio of the latter to the former

was the fraction of the time the experiment was not cut off by the signal indicating beam in the

Main Ring above the Tevatron.

The integrated accelerator luminosity for a given run was calculated by the relation

clock (43)

= -M
p KM )gclock’

where K is the fittegd slope of a straight line to the integrated luminosities vs M — M’ values for a
series of dedicated runs whose luminosities were recorded at the intersection region B0 along the

Tevatron. The value of K was known to an accuracy of about 15%.

4.8 Subdivisions within the Data

For the ‘1.8 TeV data, four series of runs, corresponding to four stores, were analyzed. Within
each series, the runs were first individually analyzed to check for internal consistency. They were
thgn combined at the outset to form what was referred to as a superrun, the run composed of the
entire usable data for that spries. The integrated luminosity of a superrun was simply the sum of
the luminosities of its constituent runs. The four series were labeled as the 600 series (runs 623 to
626), the 650 serieé (runs 627 to 630), the 700 series (runs 754, 755, 757, and 758) and 750 which

was the only usable run from its store.

The 1.02 TeV data were taken from only one store. The runs used were 788 to 793.



4.9 Fitting the Data

Eq. 113 is the expression for the differential elastic cross section. The data, however, do not obey
the form of this relation since each ‘datum ppint is not the number of counts at a ¢ value. Rather,
each 28 mm x 0.5 (or 1) mm stack covers a large range of ¢ values, as seen in Figs. 19 and 20.
Furthermore, as elaborated on in Section 4.4, the elastic pattern had a finite width due to beam
thickness, betatron oscillations, and detector resolution. In the vicinity of the beam, near the
horizontal edges of the right side detector, a portion of the elastic pattern was lost, and therefore
not all of the possible events near the detector edges were recorded. In Figs. 19 and: 20, the
half-dashed gaussian represents the elastic pattern coincident with the low |t| stacks of the left side
detector. The dashed part is the portion of the pattern that lies outside of the detector boundaries.
This problem did not exist for the vertical edges of the chamber, since in scaled space the right side
chambers are wide enough to contain the entire # component of the elastic pattern. The theoretical
function describing the data at a given ¢ value was not simply the differential elastic cross section,
but a new function which takes these limitations into account. This function was the convolution
of the differential elastic cross section, d—gﬁ, with a two-dimensional gaussian, where the limits of
integration were the boundaries of the right side detector.

The ¢t value of each detected particle is calculated using Eq. 94, ie., ¢ = —p29?, where 8 is
the particle’s scattering angle. The latter can be expressed in terms of its polar and azimuthal

components, §; and 6y

62 = 62 + 6, ‘ (44)
where

5, = XX 45)

Oy = L Yl' (46)

2L
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Here, the lowercase coordinates are in physical mm and the uppercase coordinates are in scaled
mm, where this scaling is defined in page 42. The unprimed coordinates are those of the events as
measured by the left side detectors, and the primed coordinates those of the events measured by
the right side detectors. The quantity L is the average of the = and y effective lengths of the two
sides.

The theoretical function describing the data contained in stack ¢ is derived in Appendix F. Its

final form is

—! -y
A selyr - 3L

dael > 1 / /ymin,' +4Ay /°° /yinaz da'el e~ %( Tz , ;
= dydz dy dz
< dt /[, AzlAy /) as Ymin; y ~wJyl . 4t \2me, 270y Y
(47)

The bracketed portion of the integrand is the theoretical function describing the data at a given ¢
value. The form of this function is due to the finite width of the elastic pattern. The quantities o,
and oy are the z and y pattern widths, respectively. The limits of integration in ¢ correspond to
the boundaries of the right side chamber. The integration limits in 2’ are approximated as infinities
due to the sufficiently large width of the right side detector.

As mentioned before, the data points are integrated counts over the area of each stack. There-
fore, the function bracketed in the above expression was averaged over the dimensions of stack i.
The width and thickness of each stack are labeled as Az (=28 mm) and Ay (=0.5 mm at /s=1.8
TeV and 1 mm at 1.02 TeV), respectively. The quantity ymin, 1s the y coordinate, measured with
respect to the beam, of the lowest |t| point of stack i.

The integrals in Eq. 47 were evaluated numerically ﬁsing gaussian quadratures[42]. Appendix
F describes the methodology used in deriving and evaluating these integrals.

The measured quantity for stack i was the number of counts contained in that stack, AN;. The

incremental ¢ range covered by that stack, At, is expressed as

2

At = %AQ, (48)
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where A is the solid angle subtended by each stack and is equal to %% X %’. The differential

count —AKNt-‘ can be expressed in terms of (%‘-)i according to
AN,' _ da'ez
“&r—£<dt > (49)

The luminosity term £ is fitted in addition to oy, B, and p. Both the accelerator luminosity
provided by the accelerator group at Fermilab and the number of inelastics are used to normalize
the fit.

The x? to be minimized by the fit contained three classes of terms. For a stack i, one class

utilized Eq. 49, fitting £ as well as o4, B, and p. The next class of terms employed the relation
Ninet = Loiner. (50)

In the fit, the inelastic cross section ¢jn.; was expressed as o; — o¢;, where the latter was a quantity
in terms of the elastic scattering parameters (see Eq. 6). The last x? term fitted £ with the

empirical accelerator luminosity value which had an error of 15%.



5 Results

Two sets of data corresponding to center of mass energies of \/s=1.80 and 1.02 TeV were analyzed

using the procedure outlined in the analysis section (Section 4).

5.1 The 1.8 TeV Data

As explained in Section 4.8, four sets of superruns were individually analyzed. The results of
theses analyses are presented in Section 5.1.1. Once internal consistency among these superruns
was established, they were fit simultaneously in a global fit the result of which is shown in Fig. 23.

The downward curvature of the experimental points at low stacks is due to loss of statistics resulting
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Figure 23: Fit to the 1.8 TeV data
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Source p o; (mb) B ((GeV/c)™?)
Background normalization constant 0.0328 0.61 0.034
L; 0.0004 0.18 0.001
L, 0.0016 0.93 0.331
Pot position 0.0059  0.16 0.042
Calibration 0.0020 0.07 0.023
Pattern width 0.0001 0.01 0.001
Quadrature sum of systematic errors:  0.033 1.1 0.33
Statistical error: 0.061 2.4 0.29
Overall error: 0.069 2.7 0.44

Table 4: Systematic error contributions for 1.8 TeV data

from decreasing acceptance. These lbsses were modeled and factored into the calculation of the
effective differential cross section as dgscribed in Appendix F. The designation along the abscissa
is the square of Y since, in the nuclear region, the logarithm of the differential cross section varies
linearly with |¢|, which in turns is proportional t;o the square of the scattering angle. The data
were normalized by the number of inelastics and the accelerator luminosity.

The errors are purely statistical. These errors were later enlarged due to systematic contribu-
tions to the overall uncerta'}nty from a number of factors such as effective lengths, pot positions,
pattern widths, readouﬁ calibrations and the background normalization constant. The breg,kdown
of the contribution of each of these factors to the overall errors is shown in Table 4. The-overall
errors are the quadrature sum of the statistical and systematic uncertainties. This yields the final
results for the 1.8 TeV- data of

oy =72.24 2.7 mb,

B =16.724 0.4 (GeV /c)2,
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p=0.134£0.069,

Tel

=0.225£0.164,
47

where the ratio ¢.;/o; was calculated using Eq. 6.

5.1.1 Results from Individual 1.8 TeV Superruns

The four supéerruns described in Section 4.8 were individually analyzed to check for internal consis-
tency among the results. In addition to the AN/At values, the input data consisted of the number
of inelastics N;,.; and the accelerator luminosity £. These values are presented in Table 5 for each

of the four superruns. The rightmost column is the luminosity which resulted from the global fit

Superrun  Njner  Accelerator Luminosity (mb™!)  Fitted Luminosity (mb™?)

600 300298 5376 53744437
650 291296 6049 5065+412
750 134862 2679 2311+188
700 268601 4743 4751+386

Table 5: Normalization parameters of the 1.8 TeV superruns

to the entire data. Plots of the fits are presented in Figs. 24 and 25.

5.1.2 Earlier E710 Elastic Scattering Results at 1.8 TeV

As mentioned in the introductory section, Section 1.4, E710 has analyzed thé low [t| 1.8 TeV data
three times. The results emphasized in this work correspond to the third and final attempt.

The first attempt was in 1989, when no strategy for background subtraction was yet developed[24].
Analysis, therefore, wasr restricted to the relatively background-free region in fhe higher |¢| portion

(0.02 < [¢| < 0.08 (GeV/c)?) of the data. Consequently, no p value was measured; it was instead
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Figure 26: A do/dt vs |t| fit for oy and B from the E710 1989 analysis of the 1.8 TeV data

fixed at the theoretically predicted value of 0.145. No knowledge of the number of inelastics was
available at the time either, so the data were normalized only by the accelerator luminosity. This
analysis resulted in: o; = 78.3 5.9 mb, B = 16.3+0.5 (GeV/c)_z, g = 19.6 £+ 3.0 mb, and

oeifor = 0.25 £ 0.02. Fig. 26 shows a fit to one of the series of runs analyzed.

Results from the second analysis of the 1.8 TeV data were released in 1991. This time, the bez}m
halo background noise was modeled and removec.l from the dé.ta.[26]. This allowed the extension of
the analysis to a much lower |t| region (|t| > 0.0014 (GeV/c)?) than before. The data were nor-
malized only by the number of inelastics, i.e., the luminqsity—free method described in Section 2.1.
The lower |t| coverage allowed the simultaneousfit of o3, B, and p. The results were oy = 72.843.1 |
mb, B = 16.99 & 0.47 (GeV/c)'z, and p = 0.140 + 0.069. The curve for the best fit to these data

is shown in Fig. 27.
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Figure 27: The dN/dy vs y? fit for elastic scattering distribution, for almost all of the E710

1991 analysis

The results discussed in this work represent the third and final analysis of the E710 low |¢|
data at \/s = 1.8 TeV. A modified background-subtraction procedure and more straightforward
acceptance corrections allow penetration to a minimum |¢] of 0.00075 (GeV/c)2. The simultaneous
normalization of the data by the inelastics and the luminosity allow a more accurate determination’
of the cross section.

E710 has also conducted measurements at a high |t|. The paré.meters measureci were the nuclear
curvature —parametexl C and the ratio of the elastic to total cross section o./o:. Fig. 28v is a
plot of the fit to do/dt vs high |t|. The curvature parameter was measured to be C = 0.14 +
0.70 (GeV/ c)—.4, Le., compatible with zero. This result, in conjunction with the positive C valges
measured at lower energies at the ISR[44,1] and the SppS[1,51], signal the transformation of the

nucleon to a sharp disk with increasing s. The Tevatron energy of 1.8 TeV is the energy at which
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Figure 28: Fit to do/dt vs |t| in the high |t| region at 1.8 TeV

the curvature parameter C' makes the transition from positive to negative values.

The ratio of the elastic to total cross section was measured to be 0.230+0.024. This value, along
with the lower energy data from other experiments, is shown in Fig. 29. From this figure it can be
seen that as s increases from ISR energies, the ratio ¢./o; rises. This indicates that the nucleon
becomes blacker with increasing energy, althoug‘h this ratio is still well below the asymptotic value

of 0.5 which would indicate the transformation of the nucleon to a black disk.

5.1.3 Diffraction Dissociation at 1.8 TeV

In 1990, E710 normalized their single diffraction events to LR events. The LR, events were dis-
cussed in the section on inelastics (Section 4.7.1). E710 measured the total single-diffractive cross

section[41] of 20,4 = 11.7 £ 2.3 mb at /5 = 1.8 TeV. The factor 2 indicates that the quantity is



66

T llllF!T[ 1 lll!lil[ T lTllllrr i lllrl'll[ 1 LA
261 o Ayreset al 7
& Amosetal
© Ambrosioetal
.24} -
o Bozzoetal
v Arnisonet al
22+ e This Experiment i
[
b
X 20
% .20 .
b
18}k { ‘% -
A6 % -
s s el 1 vaeeand 1§ el [ NEE A NI
102 103 104 105 106 107
s (GeVv?)

Figure 29: The world o.1/0; data

the total cross section, i.e., the sum of the diffractive dissociation of the proton and the antipro-
ton; the two are always taken to be equal. In 1993, E710 studied single diffractive dissociation
(pp — pX) at /s = 1.8 TeV[32] using an experimental technique different from that used in 1990.
The dissociated particle mass and momentum transfer covered the ranges 3 < Mx < 200 GeV and

0.05 < |t| < 0.11 (GeV/c)?, respectively. The quantities Mx and ¢ are assumed independent, i.e.,

do - 5
H_t_dM_}(—Af(t)g(MX)' (51)
For functions f and g, E710 used the forms
f@) = €, and (52) -

9(Mz) = (M%), (53)
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Figure 30: The world pp and pp total single-diffractive cross section data

and used the data to obtain b, o, and the total cross section for diffraction dissociation given by

do
20’,4 = 2/ Wdt dM)z(, (54)

where the integrations are carried out over all values of ¢ and 2 GeVZ < M% < 0.05s.

The fit to the data yielded @ = 1.13 £ 0.07, which was consistent with someé theoretical models
expecting an Myx? dependence. Furthermore, b was measured to be 10.5 + 1.8 (GeV/c)~2, which
was about half of the nuclear slope parameter for elastic scattering. The total single-diffractive
cross section was measured to be 20,4 = 8.1+ 1.7' mb, which was in reasonable agreement with thé
1990 result. The x%/degree of freedom, howe\}er, was quite high at 3.5. This is probably due t6
the breakdown of the assumption that Mx and t are independent. On the other hand, the elastic
nuclear slope parametér B measured by the ptocedufe used here was féund tobe B = 1.7.9‘:i: 2.5

(GeV/c)~%, which agrees well with the published value of 17.0 + 0.5 (GeV/c)~2. This reinforces
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Figure 31: Fit to the 1.02 TeV data at low |¢] range

confidence in the results for & and b. The total single-diffractive cross section result from this
experiment together with previous pp and pp data, and the earlier E710 result[41] are shown in

Fig. 30.

5.2 The 1.02 TeV Data

The 1.02 TeV data were from only oﬁe store. The fit to the data is shown in Fig. 31. Here, B was
fixed at 16.2 (GeV/c)~2, which was obtained from an independent measurement using data at a
higher |t| range[43]. The dafa were normalized by the the accelerator lumiﬁosity only, since there
was no reliable estimate of the n;imber of inelastics.

These data did not contain enough information in the Coulomb region to yield a reliable p
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Source o; (mb)
Luminosity 4.15
Background normalization constant 0.287
B 0.370
Ly 0.225
Ly 0.1792
Pot position 0.0238
Calibration 0.00691
Pattern width 0.00300
Quadrature sum of systematic errors: 4.19
Statistical error: 0.264
Overall error: . 4.2

Table 6: Systematic error contributions for 1.02 TeV data

value. The only parameter fitted to the data was therefore the total cross section o;. The p value
was fixed at 0.13, which is the most current value predicted by theory (see Section 6). The 15%
error of the luminosity was treated as systematic. The breakdown of the contribution of various
factors to the overall errors is shown in Table 6. The overall errors are the quadrature sum of the
statistical and systematic uncertainties. The 1.0 TeV total cross section obtained from these data,
which are taken at low [¢], is |

oy = 59.6 + 4.2 mb,

el —0.191 4 0.016.
4

An independent measurement of elastic scatfering at /s = 1.02 TeV at a higher |t| range
(0.065 < |t] <'0.21 (GeV/c)?) was conducted by E710[43] in 1992. The slope parameter was

measured to be B = 16.2+0.7 (GeV/c)~%, which was the value at which B was fixed in the low |¢|
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Figure 32: Fit to the 1.02 TeV data at high |¢| range

analysis described above. Using the optical theorem and the accelerator luminosity, they obtained
o1y/1+ p2 = 61.7+5.7 mb. The fit to the measured variation of dN/dy vs 32 is shown in Fig. 32.

The solid line is the fit to an exponential function in y? in the range 161.3 mm? < y? < 501.8 mm?.

Substituting the theoretical value of p = 0.13 into the high [t| E710 measurement of ;1/1 + p2,
one obtains the total cross section of oy = 61.2-45.7 mb. This cross section is virtually independent
of ‘thabt obtained from the low |¢| measurement. The only common parameter between the two
measurements is B, which is me'asﬁre‘d at high |¢| and fixed at low [¢|. However, since the uncértainty
of B has a negligible effect on the low |t| measurements, as indicated in Table 6, one can consider

the high and low |t| measurements independent of each other, and therefore average their total



cross sections. This yields a complete cross section measurement at /s = 1.02 TeV:

oy = 60.2+ 3.4 mb, and

e 0.193+0.014.
ot
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6 Models of Elastic Scattering

The E710 energy of \/s = 1.8 TeV is the highest so far achieved for this class of experiments. It
therefore provides a very large lever arm for the fits that are discussed here.
Three independent and apparently contradictory theoretical models have been fitted to the

world data of oy, B, and p for both pp and pp scattering:
e The Regge pole scenario[52],
e An analytic asymptotic amplitude analysis[51], and
e A QCD-inspired eikonal model[49].

All three models fit the data quite well.

6.1 The Regge Pole Picture

The Regge pole model of the Pomeron was constructed by Landshoff and Donnachie[52]. According

to this model, the world ¢; vs. s data for pp and Pp can be approximated as

oy = 225%% mb. (65)
Furthermore, a Regge pole amplitude using the Regge trajectory

a(t) = 1.‘08 +0.2¢ (56)

provides a good first approximation toﬁear—forward elastic scattering from ISR to Tevatron ener-
gies. The increase of B with s is generally associated with a single Pomeron Regge pole having a
linear trajectory whose slope is the derivative o’ = 0.2 of the Regge trajectory of Eq. 56, and can
be expressed as

B = Bo+2d'logs. (57)

72
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Figure 33: o:(Pp) vs. s. The dashed line shows the behavior of o;(pp), and the dotted line is
given by the Regge pole formula of Landshoff and Donnachie (Eq. 55).

The fit of this model to the current world data of o; and B for pp scattering is shown® in Figs. 33
and 34.° The dashed line in Fig. 33 is the power behavior of the cross section given by Eq. 55.
Both of these figures demonstrate that the E710 and CDF results are consistent with this simple
model. |

From the differential dispersion relations, the real part of the pp scattering amplitude f,, can

be approximated as -

4 T doy ,
P Refpp ~ Em 7 (58)

~ 5The ﬁgu.i‘es in this section are taken from the review by Block, Kang, and White[48].
6The datum points used in Figs. 33-47 are limited to those published prior to June, 1992. Specifically, the CDF
and E710 o¢ and P values are those released in 1991.
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Landshoff and Donnachie (Eq. 57).

Using the power behavior of o; with s given in Eq. 55, the right side of Eq. 58 can be evaluated as
4T ™
—P;' Refpp ~ —2-= x 0.08 x ;. (59)

The imaginary part of the scattering amplitude is related to the total cross section according to
the optical theorem (Eq. 98). The ratio of the real to the imaginary part of the amplitude thus

yields a p value of

p= .’25 x 0.08 ~ 0.12. (60)

This Regge pole model therefore yields a constant value of p which is about Aalf of the UA4
value of 0.24 + 0.04[9]. As mentioned in the Introduction section (Section 1), the UA4/2 group
eventually re-measured(22] p to be 0.135 £ 0.02 which was in agreement with the prediction of the

Regge pole model.
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Figure 35: Cross section vs. energy for pp (o) and pp (x) scattering, with a log? s variation,

and no Odderon.

There are serious problems with this simple picture that are not readily resolvable. First, it
is immediately obvious that the simple s dependence given in Eq. 55 does not satisfy unitarity.
Secondly, the ¢t dependence of the differential cross section in this model is that of a constant
slope with no curvature. Although this model can be modified to exhibit positive curvature at
V/3 < 540 GeV, as measured at the ISR[1,44,51] and SppS[1,51], it cannot at the same time explain
the vanishing of curvature at /s = 1.8 TeV[53]. By the same token, this model cannot explain the

secondary diffraction maxima observed at large [t| at the ISR[15] and SppS[16].

Since the Regge model of the rise of the cross section with energy, given in Eq. 55, violates
unitarity, its prediction of the cross-section at higher energies provides an upper bound -to the

predicted cross sections of the future accelerators.
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Figure 36: p vs. energy for pp (o) and pp (x) scattering, with a log? s variation, and no Odderon.

6.2 Analytic Asymptotic Amplitude Analysis of Elastic Scattering

The Froissart bound states that the rise of pp and pp cross sections with s is asymptoticaly bounded
by 5 log2 ;’;, where my is the rest mass of pion and so is a scale factor[14]. The scattering

amplitude, therefore, cannot cause o; to asymptotically rise faster than log? s.

Based on the available data corresponding to the energy range 5 < /s < 1800 GeV, Block and
Cahn[44] parametrized the elastic scattering amplitude f in terms of an even amplitude f; and an

odd amplitude f.. such that

fPP = .&.:2-.&’ - (61)
I+ +_f—.

3 (62)
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Figure 37: Cross section vs. energy for pp (o) and pp () scattering, with a log? s variation,

and Odderon 2.

These amplitudes had the form

4z
—f
P +

4z
=f
p

2
i (A +3 [log (i) - 1-725] + cs#-le‘"ﬂ-")/z) , (63)

_Dsa—leiw(l—a)/Z. (64)

Here, A, 3, so, ¢, 4, D, and « are all parameters fitted to existing experimental data. The

quantities s and p are the square of the c.m. energy and the c.m. momentum of either incoming

particle, respectively. From the optical theorem, we have

from whichAfollows that

o* = 4—"Ixmg:, (65)
P ’ . ,
ot —¢
o(pp) = , (66)
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Figure 38: p vs. energy for pp (o) and pp (x) scattering, with a log? s variation, and Odderon 2.

ot +o~

opp) = —5—, ' (67)
_ Re(fy—1f)

P = Tm(f - f) (69
_ Re(fy+7-)

PP T Tm(fy ¥ fo) (69)

The cs#~! and Ds*~! terms are referred to as the even and odd Regge exchange terms, respec-
tively. The term in g results in a log? s rise, and A is the constant part of the cross section. In
the fit to the data, the parameter o was found to be about 0.5, and therefore the odd amplitude

vanishes as s — co.

Block and White[51] fitted the above asymptotic amplitudes to the world data. It is important
to keep in mind that the data by themselves may not exhibit the asymptotic behavior. These

measurements were taken at energies of up to /s = 1.8 TeV. Below this energy, the ISR[1,44,51]
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Figure 39: Cross section vs. energy for pp (o) and pp (x) scattering, with a log? s variation,
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and SppS[1,51] experiments measured positive values for the nuclear curvature parameter C. E710
measured the curvature C to be consistent with zero[53], indicating that this is the energy at which

the nucleon begins the transition to disk-like behavior, i.e., to ‘asymptopia’.

There are no data available at higher energies, and hence it is likely that we are not yet in
‘asymptopia’. The analysis being discussed here therefore may not be usingv asymptotic data. It

does, however, describe the data exceedingly well at present energies. -

'Eden and Kiﬁoshita.[lS] have derived that if o(pp) and o(pp) grow aslog” s, then o(pp)—a(pp) — _
log"/? s as s — oo. Fitting the abo;le asymptotic amplitudes to the data, oﬁ the other hand, results

in o(pp) — o{pp) — 0 and p(pp) — p(pp) — 0 as s — oo. Therefore, three types of odd amplitudes,
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Figure 40: p vs. energy for pp (o) and pp (x) scattering, with a log? s variation, and Odderon 1.

referred to as Odderons, that do net vanish asymptotically were introduced via the forms

Ar £O —e®) (70)
p
4_7rf(1> = —|logZ I W (71)
p° - s 2 ’
4T (2 s 7]? (2) »
il = — S I @ .
pf_ [logs0 12] € (72)

The complete odd amplitude is the sum of the conventional odd amplitude of Eq. 64 with one
(or none) of the Odderons of Eqgs. 70-72. Block and White[51] constructed these composite odd
amplitudes and fitted them to the world pp and pp data of o; and p. The results of each fit are

summarized below?

7The figures in this section are taken from Ref. [51].
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Figure 41: Cross section vs. energy for pp (o) and pp (X) scattering, with a log s variation, and

no Odderon.

e The first fit used the conventional even amplitude and no Odderons in the odd amplitude.
The x2/d.f. (x%/degree of freedom) of this fit was 2.03, indicating a poor fit. The computed
curves are shown in Figs. 35 and 36. As the figures show, there is more than a 3 standard
deviation discrepancy between the Tevatron (E710 and CDF) total cross sections and the
predicted value of the fit. Furthermore, it predicts too high a p at 546 GeV and 1.8 TeV. It ‘

is therefore concluded that a simple log? s behavior does not fit the data.

o The second fit added the Odderon of Eq. 72 (Oddéron 2) to the conventional odd amplitude
of Eq. 64, and used it along with the conventional even amplitude. The curves are shown in
Figs. 37 and 38. The x2/d.f. of this fit was 1.93, i.e., another poor fit. Again, the predicted

cross section at 1.8 TeV is too high, as is the predicted p value at 540 GeV. The fitted value of
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Figure 42: p vs. energy for pp (o) and pp (x) scattering, with a log s variaﬁion, and no Odderon.

thé Odderon amplitude was €(2) = —0.022 +0.011 mb which is only two standard deviétions

from zero, and does not play a major role in the fit.

o The third fit added Odderon 1 (Eq. 71) to the odd amplitude and used it along with the
conventional even amplitude. The curves are shown in Figs. 39 and 40. This fit was the
worst of the first three with a x2/d.f. of 2.65. It exhibited the same problems as the first two

fits.

Block and White thus concluded that an even amplitude varying as log®(s/so) does not fit the
world data. This demonstrates that the experimental cross section does not rise as rapidly as
log?(s/so) in the currently accessible energy region. The addition of an Odderon does not affect

this situation. Block and White then considered an asymptotic variation that goes as log(s/so)
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with an even amplitude of the form
%ﬂ_ =1 (A + 4 [log (i) - zg] + cs"‘le""(l‘“)/z) . (73)

They then used the conventional odd amplitude of Eq. 64, along with no Odderon or Odderon 1,

but not Odderon 2 since it is not allowed for a log s fit:

o The first fit used no Odderon in the odd amplitude, and used the new even amplitude of
Eq. 73. The curves are plotted in Figs. 41 and 42. The x2/degree of freedom of the fit was
1.26, which was much more reasonable than the high values (> 2) corresponding to the log” s

models.

e The last fit added Odderon 1 to the odd amplitude, and used the even amplitude of Eq. 73.

The curves are plotted in Figs. 43 and 44. The x2/d f. of this fit was 1.24, making it almost
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Figure 44: p vs. energy for pp (o) and pp (x) scattering, with a logs variation, and Odderon 1.
indistinguishable from the fit with no Odderon.

It is observed that the introduction of an Odderon is not needed to explain the experimental
data. Therefore, an analytic asymptotic amplitude analysis shows that &; values in the energy
range 5-1800 GeV follow a log ;- behavior, and introduction of a non-vanishing odd amplitude is
not requiged.

At the LHC energy of 16 TeV, this analytic asyrr;ptotic model predicts the total cross section
to be 104.4 4 1.0 mb, and at the SSC energy of 40 TeV, 117.4 + 1.3 mb. The errors are statistical,
and are due to the errors of the fitted parameters. As mentioned earlier, the current world data do
not extend to high enough energies to contain information about the asymptotic behaviér of the
cross gection, i.e., we are not yet in ‘asymptopia’. It is likely that the cross section will ultimatel y

rise faster than logs. The values predicted by this model at the LHC and SSC energies should
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therefore be treated as possible lower limits to the actual values.

6.3 QCD-Inspired Model of Elastic Scattering

The eikonalized QCD model of Block, Halzen, and Margolis[49] also explains the pp and pp data for
o¢, B, and p using the quark-quark, quark-gluon, and gluon-gluon interactions, the last of which is
the cause of the rise of the cross section. It also predicts the nuclear curvature parameter to be zero
at /s = 1.8 TeV and positive at lower energies. Using an impact parameter representation[44],

the even and odd scattering amplitudes can be expressed as

f* = %/dzbeiq'bai(b,s), (74)

where |b| = b is the impact parameter, and |q| = ¢ is the momentum transfer such that ¢ = —g?.

The impact parameter space representation, a(b, s), of the scattering amplitude can be expressed

in terms of even and odd eikonals x* according to
. a(b, s) = % [1 _ e—x*(b>s)] _ (75)

As 5 — 00, x~ vanishes.

To understand the properties of this eikonal model, ¥ can be re-written in the form

2x(b,5) = P(b, s), (76)

where P(b, s), the probability of collision, can be expressed in terms of the interaction probabilities

between the constituents of the colliding nucleons as
P =Py + Py + Py, (77)

The terms in the summation correspond to quark-quark, quark-glue, and glue-glue interactions,

respectively . The glue-glue term P, is factorized into the impact parameter space description
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Figure 45: Cross section vs. energy for pp (o) and pp (x) scattering, along with eikonalized
QCD fit

ng(b), and the QCD glue-glue cross section, a'f;?gCD (s), as

ng(b’ s) = WM (b)aiqCD(s)r (78)

where

2
n
Wye(b) = 9_(?;' (Kgg b)3K§ (Bgg l’)’ ‘ (79)

where K3 is the modified Bessel function. The mass s,y sets the scale of the variation in b space,
and is the mass in the dipole form factor (Eq. 100) from electron-proton scattering. The glue-glue

cross section is calculated as

a,;)ycu(s) = /dngg(zlzzzr)agg(rs),. (80)
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where
Fgy = /da:ldzzfg(:cl)fy(mz)is(xlzz“7'), (81)
) 2
700(8) = 0 (= mi). (52

The form used for the gluon structure function is

(1—z)®
7

fo(z) ~ (83)

In Regge language, J is known as the Pomeron intercept, and controls the evolution of the gluon

structure at small z. In high energies, the energy dependence is controlled by the factor

. o ) L
lim drFe(r) ~ / dr- log 7
s .

7
MR mifs T

s J-1 - .
@
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Figure 47: B vs. energy for pp (o) and pp (X) scattering, along with eikonalized QCD fit

Fy44 counts the number of gluons in the colliding hadrons. The number increases rapidly at z =~ 1"\/——‘:
and this is the origin of the rising cross section[49]. In other words, the glue-glue interaction
probability goes as Py4(b, s) ~ Wy,(b)s’~!. When the number of gluons becomes large, the glue-

glu.e interaction probability Py, approaches unity for a critical impact parameter b, given by
cWog(ggbe)s’ ™ ~ 1, (85)

. where c is a constant. Substituting from the expression for W,, (Eq. 79), at large values of ub

¢/ (pggbe)?/2e=Fasbes?=1 L 1, (86)

where ¢’ is another constant. Solving for b., we have -
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The quantity b. can be interpreted as the radius of a sharp disk containing a large number of

gluons. The total cross section can thus be found

—1\2
7y = 2mh? = 27 (J# ) log? —. (88)
99

The parameter J determines the energy behavior by controlling the number of gluons, while y,,
controls the size of the area occupied by the gluons inside the nucleon.
To reproduce the cross section at lower energies, the g¢ and ¢g contributions must also be

3 5
considered. Using toy structure functions f; ~ ﬁl—T:L and f; ~ Q:fl; at high energies we

have[45]
Py = W(ugh) (A+B%), (89)
Py, = W(/lFssb) (A’+B’ log F%) (90)

where A, B, A’, and B’ are free parameters. To insure correct analyticity properties of the model

~imw/2

amplitudes, the substitution s — se is made everywhere for the even amplitude. As suggested

by Regge theory, an asymptotically vanishing odd amplitude is also introduced
m s
Poga = W(Noddb)AHV—%e—m/‘la (91)

where A" is also a free parameter, and the e~"/4 factor insures analyticity.

This QCD-inspired eikonal model was fit simultaneously to the world data of o4, ‘p, and B for
pp and Pp in the energy region 15-1800 GeV. The results are shown in Figs. 45- 47%. The six
" parameter model reproduces the experimental data with a x%/degree of freedom of 1.59. Although
this model predicts a log? s asyrﬁptotic rise of the cross section, at the present energies it provides
an adequate fit to the world data. A

- This QCD fit can be used to predict‘ the cross sections at the LHC and SSC supercollideré. At

the LHC energy of 1/s = 16 TeV, the cross section is predicted to be 106 + 4 mb, and at the SSC

8The figures in this section are taken from Ref. {49].
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Accelerator /s Lower Bound (logs) QCD (Eikonal) Upper Bound (Regge)

(TeV) (mb) (mb) (mb)
LHC 16 104+ 1 106 + 4 115
SSC 40 117+£1 120+5 ' 135

Table 7: Supercollider cross section predictions

energy of /s = 40 TeV, 120 & 5 mb. The errors are statistical, and are due to the errors of the
fitted parameters.

Table 7 lists the predictions, by all three models, of the collider cross sections at the LHC and
SSC energies.

6.4 Conclusion

From the E710 results, it can be concluded that:
o The total cross section o; and the nuclear slope parameter B rise continually with energy.

e The increasing ratio of the elastic to total cross section, o.;/o;, indicates that the nucleon

becomes blacker as energy increases.

e The nuclear curvature parameter C is compatible with zero at /s = 1.8 TeV. This result
-along with the positive values measured by the ISR and SppS experiments at lower energies,
signal the onset of ‘asymptopia’. Measurements at higher energies are needed in order to
confirm the ekpected negative value of the curvature, and the transformation of the nucleon

to a sharp disk.

The E710 results provide a very large lever arm for the three models presented. These three models

are quite contradictory, and yet all give good fits to the same data. These fits show that:
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e Since the Regge model of the rise of the cross section with energy, given in Eq. 55, violates
unitarity, its prediction of the cross section at higher energies provides an upper bound to

the predicted cross sections of the future accelerators.

e It is believed that the highest experimental energy thus far attained, the E710 energy of
/s = 1.8 TeV, is still too low for ‘asymptopia’, and that eventually the cross section may rise
more rapidly than the data indicate. Therefore, the log(s/sq) behavior of the cross section
derived from the analytic asymptotic amplitude analysis should be viewed as a lower bound

prediction.

o The QCD eikonal fits are bounded by the other two models.



Appendix A

Theoretical Formulation of Elastic Scattering

We consider elastic pp scattering with the initial 4-momenta p; and py and the final 4-momenta

ps and p4 (Fig. 48). In the center of mass frame, the magnitude of the momentum of each particle

P2

Figure 48: Two-Body Elastic Scattering

is désignated as p. The square of the center of mass energy is given by

s = (; +P2)2

i

4(p® + m?), (92)

where m is the proton (or anti-proton) mass.

The square of the 4-momentum transfer is
t = (p1—ps)°
= —4p?sin®(8/2), : (93)

where 6 is the c. m. scattering angle. For the ¢ values in the range of interest, the scattering angles

are small enough to allow the approximation
t~ —p*9%. : , (94)

92
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The third Mandelstam variable is u, defined as
U= (Pl -—p4)2. (95)

For the remainder of this formulation, we will use a system of units in which A=c=1. Furthermore,
in collider experiments where the incoming particles have the same energy and equal but opposite
momenta, the center of mass and lab frames are the same.

The differential elastic cross section can be defined in terms of the elastic nuclear scattering
amplitude f,, such t;ha,t

dog

—_ 2
dog 7 9
dt - pz IfN|) (97)
o = %Imfn({):O). (98)

where the last relation is the optical theorem. The differential solid angle is dS2 .

At first, we will consider separately the effects of a Coulombic or a hadronic field. Later, we will
a formulation in which these fields are combined to act simultaneously. For Coulomb scattering,
the Lorentz invariant form of the elastic differential cross section is given by

do. m do.
dt p? dQ

2

=7 (:!:)Gz(t)% (99)

This is the familiar Rutherford result where — and + refer to pp and pp systems, respectively. The
fine structure constant « is approxixhately ﬁlﬁ The proton’s electromagnetic dipole form factor
G(t) is v
_ e\~
Gt)y={1+ ) o (100)
where A2 = 0.71 (GeV /c)?.
The nuclear contribution to the differential cross section can be parametrized as

do, doy

&0n _ GOn Bi4+Cti+...
7 p7 e . ~(101)

=0
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where

d do
B = (— log —"> ) 102
dt dt /.o (102)

B is the nuclear slope parameter. In the ¢ range of interest, the 1st order term Bt dominates the
exponent in Eq. 101. Therefore in this formulation, unless specified otherwise, the terms of 2nd
and higher order in the nuclear parametrization equation are neglected.®

Defining p = %f%{:—z—g%, the differential cross section at ¢ = 0 can be written as

doy, 7 doy,
di =0 B pZ dQ 6=0
T .
= 5 [Refa(f=0) +ilmfu(6 = 0)[*
. 2
= p:’ Tmf, (6 = 0)] . (103)
Substituting for Imf, (6 = 0) from the optical theorem (Eq. 98),
doy, _ |p+i 2 -
|, " Tt (104)
The differential elastic scattering cross section for nuclear scattering is therefore
doy, p+ ? Bt
_dt- T "—47‘_— oL e (105)
In our formulation, we use the invariant amplitude, f, with the properties
dog 2
= . 106
= (106)

It is therefore convenient to introduce the Coulomb and nuclear pp invariant scattering amplitudes,
fe and fi:

fo = %Tt%)—‘/—; (107)

(p+ i)ose
Wr

9The trucation of the polynomial in ¢ in the exponent of Eq. 101 after the first order term is allowed at low [¢],

fo = _(108)

and as E710 demonstrated, at ¢/l ¢ at the Tevatron energy of 1.8 TeV.
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The invariant differential cross sections can then be expressed as

do.

7 = (109)
do A

— = (110)

Each of the above expressions is valid in the presence of its respective field only. If the nuclear and
Coulomb fields are both present, however, we cannot simply superimpose the two amplitudes. A
phase factor aé(t) must be introduced into the Coulomb amplitude such that the complete elastic
differential cross section is given by

dou
dt

() = | foe@?® 4 £| (111)
This phase factor reflects the distortion of the pure amplitudes f. and f,, due to the simultaneous
presence of both hadronic and Coulombic scattering. In the language of Feynman diagrams, f,
corresponds to the sum of all diagrams in which only photons are present and fn to the sum of all
diagrams in which only hadronic exchanges are present. When both fields are present, however,
there are new diagrams possible which have both kinds of exchanges present.l This gives rise to
the phase a¢(t). This phase was first investigated by Bethe[28] and later by West and Yennie[30],

using a QED calculation of Feynman diagrams. It was recalculated by Cahn[31] , using an eikonal

approach, with the result

Blt]\ 8 4| 41\ - 2)¢
¢(t) = ($) [7 + log (T) + log (1 + W) -+ <K§' log F + X‘é‘ , (112)
where ¥ = 0.577 is Euler’s constant. The upper sign is for pp and the lower sign for pp. Over the
t range of interest, ¢(t) varies very slowly and is about 2, and a¢ < 1, so the differential elastic

cross section can be written as

2 2
dg:‘ O =n [(-Tﬁ) GHO) F (o + a¢)f¥%%e% +(3) a+ pz)eB’] L ()

Again, the — and + refer to pp and pp systems, respectively.
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The second term of the summation is known as the interference term and assumes its largest
weight relative to the other two terms when |f.| = |fa], i.e., when do./dt = do,/dt. If p + ad
is positive, the interference is destructive .for pp and constructive for pp. A typical value for |ad]
is &2 0.02. This interference term allows the measurement of the quantity p + a¢, and hence the
determination of p. The ¢ value at which interference is maximum, i.e., when [f.] = |f»|, is given

in (GeV/c)? by

8
lt’int R ia_
47

0.071

s (mb)

(pOine)®, (114)

where 8;,: is the interference angle.

The first term of the summation dominates in the Coulomb region where [t| < [t|;n: and
doei/dt goes nearly as 1/t2. It is independent of the o, B, and p, and can be used to normalize
the experimental data. |

The third term dominates in the nuclear region where |t| > |t|int and doe/dt goes nearly as
ePt. It is the main term that determines B.

Table 8 gives |t|int and 0;p; values for the existing pp colliders and their c.m. energies. Experiment
E710 at the Tevatron attained a maximum energy of /s = 1.8 TeV. At this energy, |t|in: &~ 0.00098
(GeV/c)?. As we shall see, this is very close to the minimum value, [t|mir = 0.00075 (GeV/c)?,
covered by the detectors of this experiment. The interference angle for this experiment was 8;,,; =
0.035 mrad, i.e., a very small angle. At a distance of 80 m from the interaction region, it corre-
sponds to a transverse displacement of only 2.8 mm. This demonstrates the primary challenge of
this experiment: To penetrate into the Coulomb interference region, one needs to probe very close
to the beam. This ekperimental problem is bound to be even more severe for the proposed SSC

experiments that are to be conducted at v/s = 40 TeV, where 6;,,; is only about 0.001 mrad.
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V5 (GeV)  Accelerator  |t|int ((GeV/c)2> Bint (mrad)

23.5 ISR 0.0017 3.6

30.7 ISR 0.0017 2.7

52.8 ISR 0.0016 1.5

62.5 ISR 0.0016 1.3

540 SPS 0.0011 0.120

1800  Tevatron 0.00098 0.035
40000 SSC 0.00059 0.00122

Table 8: Values of |t];n: and 6;,: for Pp elastic scattering

The total elastic cross section o, is defined as ffoo(dan/dt)dt, where do,,/dt, the nuclear
differential cross section, is the square of the nuclear invariant amplitude (Eq. 108). Performing

the integration, we obtain

2 2"
el = Q—&;—%’?—l. (115)
This result will be given the special name Z.;. It is the same as o if, in the nuclear parametriza-
tion equation (Eq. 101), the coefficients of terms of second (Ct?) and higher orders are negligible
compared to the first (Bt) order for all ¢ values. The ratio of the elastic to total cross section is
given as
Sa _ o:(1457)

o 16sB , (116)

The total elastic cross section is useful in correlating the asymptotic rise of ¢y with B since oo/
must be less than unity. Therefore, a model that predicts o; to rise with s at a certain rate must

predict at least as rapid a rise for B.



Appendix B

The Beam Lattice

In an accelerator lattice, equations of motion for a charged particle can be written in the

following manner:

n = A(2)sin[y(2)+ 4], (117)

n' = A'(2)sin[y(z) + ¢] + A(2)¥' cos[y(2) + ¢], (118)
where

2 is the beam path position,

7 is the horizontal or vertical component of displacement from the beam direction,
the primed quantities are derivatives with respect to z, i.e., n/ = dn/dz,

¢’ = d¢/dz, etc.,

A(z) is the amplitude of the displacement at z,

¢ is a constant phase,

1(2) is a periodic phase function dependent on the lattice frequency of particles

in the machine[40].

Eqgs. 117 and 118 can be manipulated to yield

A%y = n? + 20’ + B2 - (119)

; . : 11 ) ATy 2,/ — A fB = ’
Eq. 119 describes an ellipse of area oy TA*Y, where « A'fAY, 8 1/4’, and
7=A'2/A21/)’+¢/.7 )
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Before any displacement, the transverse and longitudinal coordinates of a particle can be iden-

tified as (70, 20), and the equations of motion are:

o Apsin g, (120)

7% Af sin ¢ + Agth cos ¢. (121)

Solving for sin ¢ and cos ¢ in terms of 7y and 1), Egs. 117 and 118 can be written in the form

n miy My o
= (122)

7 ma21 Maz 0

The matrix elements m;; can be shown to be

mi = (B/B0)/*leos $(2) + aosiny(2)], (123)
mia = (BBo)'/?siny(z), (124)
ma1 = (BBo)"*[(cro — @) cos h(z) — (1 + acro) sin9h(2)], | (125)
Moy = (,Bo/ﬂ)l/z[cos ¥(2) — asinP(z)]. (126)

°

The quantity mq; can be thought of as a focusing factor along the n axis, and mj2 can be thought

of as the effective length along the z axis.



Appendix C
Drift Chamber Operation and Control

As mentioned earlier, the drift chambers used for elastic scattering measurements were housed

in roman pots, two pots per castle, one above and one below the beam line. The pots could
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Crate J Input | Output] ADC DAC
Contr.] Reg. Reg. Q . LoT - rear
Q +v]0 ’
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A control ~~ -5 V¥
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< . | -30 v

status Power Supply
register

Figure 49: Schematic of the pot movement system

be moved remotely by a potentiometer motor tied by a belt to the spring upon which the pofs
rested. A motor drive unit[37] and a Linear Drive Transducer (L.D.T.) allowed computer-controlled
motion of the pots. The motor drive unit and the L.D.T. interfaced the Camac datawa;y with the
potentiometer motof. A digital number sent from the computer via the Camac dataway to a 12
bit, 16 channel, NEL typer 9091 multiDAC triggéred the DAC to send a potential voltage through

a motor drive unit to the 10 V range pot potentiometer motor, thus allowing movement of the pot

100
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to the desired location. Fig. 49 is a schematic of the pot movement system.
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Figure 50: Front and side views of drift chambers inside their castle

The pots had a 24 mm distance in which to move vertically toward and away from the beam.
Tha active area of each chamber was about 1.950 mm above the bottom of each roman pot, which
could reach within 100 microns of the center of the castle (see Fig. 50)[35]. The pot potentiometer
position was read with a Borer dual-slope 1241 ADC whose input was the analog signal produced
by the 10 V range L.D.T.

The motor drive unit provided six bits of status information about the pot. This ~iﬁformation
was then sent to a DSP dual I/ O 612 register and fed into the computer for on-line rﬁonitoring of

. the pots. The motor drive unit set one bit if the pot were at a limit switch, another if the pot were
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moving, another if the pot reached its designated position, another as an alarm if the pot could not
reach its designated position within a specified time limit, and another was used as a calibration
bit.

The DAC and ADC used for the pot movement each had a resolution of 1 count per 2.44
mV. Each pot potentiometer was calibrated at about 0.4 V/mm, corresponding to an accuracy
of +6 microns in pot location. The potent.iometer calibration itself was done by surveyors to an
accuracy of 0.1%. A straight line was fit to the ADC mV per bit calibration, with an error of 0.4%.
Therefore, the error in the remote positioning of the pot by 1 mm from its base near the castle
center was 5 microns. The pot offset from the castle center was measured by surveyors with an
error of 20 microns, except for the pots 7 and 8 which had an error of 100 microns. Table 9 lists
the calibration constants for the DAC and ADC channels associated with each pot, along with
each pot’s potentiometer calibration distance and each pot’s base position offset with respect to

the center of the castle.

Potentiometer  Offset from DAC ADC

Cal. Constant Castle Center Cal. Constant Cal. Constant

Pot (V/mm) (mm) (mV /bit) (mV/bit)

LUO 0.3984 0.199 2.440 2.440
LDO 0.3952 0.199 2.440 2.440
ILU 0.3955 0.211 2.440 2.440
ILD 0.4003 0.211 2.440 2.440
" IRU 0.3951 0.085 2.440 2.440
IRD 0.4072 0.085 2.440 2.440
RUO  0.3960 0.349 2.440 2.440
RDO 0.3931 0.349 2.440 2.440

_ Table 9: Calibration constants for pot position measurements



Appendix D

Data Acquisition

D.1 The Trigger System

The stored beams in the Tevatron were divided into six bunches. A radio frequency (RF) system,
located at the FQ intersection region, kept the p and p bunches confined inside guiding buckets.
There were 1113 RF buckets along the circumference of the Tevatron. Of these, only twelve were
populated with particles, six for each species. The relative positions of the six counter-rotating
bunches were such that collisions occured ;lt the designated interaction points. The time of the
interactions was determined by using signals from the guiding RF clock which were received over
the accelerator local area network (ACNET). A gate was thus constructed, with the duration of a
few ns, and centered on the arrival time of the interaction products to the location of the counters.
The triggers were constructed from the the coincidences of counters firing while the gate was open.
Such a coincidence was defined as an in-time hit.

The event trigger types used in this experiment fall into nine categories. They are listed below,
along with a brief definition of each type:

0O: One out of two hit trigger counters in any outer chamber on one side ANDed with that“
on the other side (for small angle elastic scé,ttering).

II: One out of two hit trigger counters in any inner chamber on one side ANDed with that on
Vthe other side (for large angle elastic scattering).
| OI: One out of two hit trigger counters in any outer chamber on one side ANDed with that of
an inner chamber on the other side (for any inelastic scaftéring).

LR: Any hit ring counter.on the left side ANDed with that on the right side (for double arm

inelastic and diffractive scattering).
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L: Left side OR of any ring counter hit (for single arm inelastic and diffractive scattering).

R: Right side OR of any ring counter hit (for single arm inelastic and diffractive scattering).

C: OR of any central counter hit (for any inelastic scattering).

I: One out of two hit trigger counters in any inner chamber (for any inelastic scattering where
an inner chamber was hit).

O: One out of two hit trigger counters in any outer chamber (for any inelastic scattering where
an outer chamber was hit).

As mentioned in Section 3.2, there were two sets of detectors used for the detection of the
elastic and inelastic events. The inner and outer drift chambers were used for the detection of the
elastic events, as well as beam halo background. The rest of the system, i.e., the ring and central

scintillation counters, were used for detecting the inelastic events.

D.1.1 The Elastic Trigger

For each drfit chamber, its corresponding trigger counters (see Section 3.3.2) were used to trigger
its readout.

To obtain the signals from the trigger and calibration counters, Phillips XP1911 10-stage pho-
tomultiplier tubes were used. Signals from the trigger counters were sent to a 30 ns-coincidence
gate with the RF signal. For triggering, the coincidence between any of the two trigger counters
in a left side detector and any of the two trigger counters in a right side detector were used. This
event trigger, referred to as outer-outer or OO, was the trigger used for all of the elastic scattering
events that made up the data analyzed in this work.

The signal from the drift chambers was digitized by 4-D modules[38]. Each dz;tum word read
by the data acquisition system consisted of 16 bits. The last of these 16 bits was a status bit. The

remaining 15 consisted of 6 low bits for the ¢ and 9 higher bits for the y coordinates of the charged
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particle incident on the chamber. The RAM memory of the 4-D unit accepted data from the ADC
and encoder every 40 ns, thus allowing the last 640 ns of information (16 data words) to be stored
and read out by the data acquisition system. A new trigger would erase the memory and allow the
process to start over.

The coordinates of the incident particle were read according to the following mechanisms:

e The z readout: A charged particle incident on a drift chamber produced charges at each end
of the sense wires. These charges were sent, individually, through preamplifiers into a 50
MHz flash ADC which measured the difference in the proportional voltage of each current.
This produced a charge division signal proportional to the  component of the location of
the incident particle. This signal was digitized into 64 bins, where each bin corresponded fto

approximately 0.5 mm.

e The y readout: The discriminated signal of the sum of the two charges at wire ends produced
a drift time signal. A priority encoder’s clock started counting when a trigger was input
to the 4-D unit, and stopped with the drift time pulse, thus producing the 9 bit drift time
readout. This signal was digitized into 512 bins, where each bin corresponded to about 65

microns.

D.1.2 The Inelastic Trigger

To obtain the signals from the ring and central scintillation counters, Phillips XP2262 12-stage
photomultiplier tubes were used. The main inelastic trigger was constructed from the coincidence

_of any of the twelve counters in rings L3, L4, and L5 with any of the twelve counters in the rings R3,

R4, and R5. The signals from the counters of each side were put in an OR and then in coincidence . -

with the RF signal. Most of the non single diffractive events were recognized from this trigger,

which was also referred to as left-right, or LR.
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Another inelastic trigger was made by an OR of the eight central counters with the twenty from
rings LO, L1, L2, Rl, and R2. This was not used as an active trigger, but was occasionally used as

a veto.

D.1.3 The Master Trigger

The number of inelastic collisions was so high that it was not practical to read every one of them on
to data tape. Instead, the number of inelastic triggers was prescaled by a factor which was decided
on empirically from observation of these triggers, ranging from 2 to 500. This prescaling was not
done for the elastic triggers, however, due to the low machine luminosity and signal-to-noise ratio
(see Section 4.6). The grand OR of the prescaled triggers made up the master trigger, which in
turn initiated the readout of the timing and pulse height of the scintillation counters, the 4 -D

modules, etc. Fig. 51 is a block diagram of the master trigger logic.[36].
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Figure 51: The master trigger logic
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D.2 On-line Data Analysis

Data aquisition and on-line analysis was done with a DEC PDP 11/34 computer. The operating
systemn used was RT version 5.3, issued by DEC, Inc. The data acquisition program was a mod-
ified version of RT-Multi, a system developed at Fermilab{54]. The processed data was stored on
magnetic tape. The processor could be accessed interactively by a Decwriter IT hardcopy terminal,
two VT240 terminals, and two serially connected PC/ATs. A port selector allowed access to the
Fermilab VAX cluster as well as a MicroVax II running under the VMS 5.0 operating system. The
primary purpose of the MicroVax was to allow access to ACNET. It was Ie;ter used for part of the
oft-line data analysis.

As mentioned in Section D.1.3, the master trigger initiated the data collection cycle. A NIM
pulse was sent from the logic to the Bison interface box[65]. The Bison box interrupted the PDP,
and the RT-Multi routine began executing a pre-defined Camac definition list. Data from a set of
Camac crates were then sequentially transferred, through a Jorway branch bus, to the data buffer.

Each event buffer contained the following information:

e The ADCs of the 52 ring and central scintillation counters and the 24 trigger and calibration

counters of the drift chambers,

o

e The TDCs of the above counters, as well as those of the chambers from the tracking telescopes.

e The scaler values. The scalers were a set of numbers that included the integrated single rates
read from all of the ring and central counters, as well as those from the trigger counters. An

example of the scaler readouts for a typical run is displayed below:
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SCALERS FOR RUN 623

L1 3874349. L2 4147832. L3 12287859. Lé.l 10303276.

L5 4927250. L2—-5 9099065. L 765798. L PRE 957.
R1 4361079. R2 5102984. R3 6073593. R4 4490484.
R5 7317536. R2 -5 16449130. R 319085. R PRE 639.
C1-8 13077251. C 692014. C PRE 692. LCR 1495072.
LCORI 2419862. LR 28111. LR PRE T703. 0.
LI1-6 11141783. LI 721370. RI1-6 8982744. R 1 380282.
I 1097892. 11 3760. II PRE 0. 0.
IE 173102. IE PRE 0. LO1-6 3095425, L O 5469706.
RO1-6 3499423. RO 3373514. O 5469706. 0.
00 39146. OO PRE 39146. OE 5469706. OFE PRE 6077.
Ol 11637. Ol PRE 0. INTRIGS 2985. MASTER 48173.
CLOCK 2963. CLOCK G 2460. L+ 219028. L« RF 1448T1.
L5+” 144792 Rbx 222383. R5+ RF 52766. M(G) 3630.
M’ (G) 17. LR+ 377232. LR*” 377004. L21R 166.

e The output of the 4-D modules (See Section D.1.1).

After the buffer sent its contents to the tape drive, it was cleared and set for the arrival of the next
event. The maximum rate of ‘data transfer to tape was 220 events/sec. Fig. 62 is a block diagram
of the on-line data acquisition system.

In-addition to the above itemized parameters, another set of parameters that were not event-
dependent were read on to the data tape at the beginning of each run. Theyrconsisted of the

following:

e The pot positions, which were controlled by a Camac crate with a Borel dual slope ADC. In
addition to being recorded at the beginning of each run, they were accessible interactively

during data taking.
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Figure 52: Block digram of on-line data acquisition system

e The values of the high voltages for the field and sense wires in all drift chambers and all

scintillation counters, which were monitored from five ADC modules.

e A set of accelerator-related parameters. This included information about the intensity of the
beams, their emittances, the luminosity values at various intersection regions, the positions
of the steel yokes of the Lambertson magnets, and the gas pressure inside the beam pipe.

This information was transmitted to the MicroVax over ACNET and was recorded on tape.



Appendix E

Derivation of Readout Calibration Functions

E.1 The Calibration Counter Edge

If the resolution of the detectors were indeed infinite, the observed distribution at the edge of the

slit at the bottom of the calibration counter would be a step function:
E'(y)=N.O(y—p), (127)
where

y is the electronic bit number identifying the vertical coordinate of the particle
incident on the detector,

E'(y) is the normalized distribution of data at a given bit y,

N, ié the normalizati'on constant of the function,

p is the bit number corresponding to the edge of the calibration counter ,

O is a step function.

Since the resolution is finite, however, E’(y) is convoluted with a gaussian dispersion function to

yield a new expression E(y):

o 1 2 (N3
E(y) =/ E’(y/)me G/ WY gyt (128)

Here, o is the width, in mm, of the gaussian representing the resolution of the detector, and ¢ is -
the physical dimension corresponding to each bit (commonly referred to as the mm/bit constant).

o /c is the resolution in bits, and will be referred to as X.

110



111

Substituting Eq. 127 into Eq. 128 and simplifying, we get

Ne o0 . N S WY A
E(y) = mz/ —@(y'—p)e ,zz(y ) dy’

Ne [ -zt-v'7 gy
= e~ 337 dy'.
V27E /p ’ v

|

Making the variable substitution ¢ = %;(y — ¢/)? and performing some simple algebra yields:

oQ
E) = Yy 2 / e dt

= 2 [1+erf(%)]. | (129)

Substituting the expression for ¥ into Eq. 129, the function describing the data at the horizontal

edge of the calibration counter is:

B) =5 [1 +erf <L?L}——2?f)] . (130)

E.2 The Calibration Counter Hole

If the detector resolution were infinite, the profile of the particles going through the holes would be
circular, with the maxirﬁuin flux occuring at the center of the hole, and then radially decreasing

to zero toward its perimeter. The observed distribution could be described by

I'lyy = Nh\/l— [(—y:-—%)—c——i] , for [(y—p)e—p| < r,

= 0, for [(y—p)e—p|l>r, (131)

where

I'(y) is the normalized distribution of data at a given bit y,
Ny, is the normalization constant of the function,

4t is the location of the hole, in mm, with respect to the edge of the calibration
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counter,

r is the radius of the hole (r=0.09 mm).

Since the resolution is finite, I’(y) is convoluted with the same gaussian dispersion function that

was used for the edge, to yield a new expression I(y):

I(y)

/ ey’ ,_QIMe‘z—if[(y‘P)““""]’dY’

. 2
N / dyte-al=pe—u-¥'P 1_<£), (132)

2mo Jr r




Appendix F

Evaluation of the Fitting Function

As mentioned briefly in Section 2.2, each experimental bin covers a range of ¢t values. The
differential cross section that is to be fitted to the data must therefore be averaged over the size of
the bin. This averaging is done by integrating the differential cross section over the bin, and then
dividing it by the area of the bin. In this section, we will first briefly discuss the numerical
integration schemes used, and then proceed to develop the expression for the effective elastic

differential cross section which is fitted to the data.

F.1 Numerical Integration Techniques

The integrals were evaluated numerically by gaussian quadrature techniques[42]. These techniques
use orthogonal polynomials, where the nth term of such polynomials is designated the symbol

Pn(z). Orthogonality means that any two terms of the polynomial satisfy the condition

b
| @ @ue) ds = bt (133)

where 8;; is the Kronecker delta function, and h; = f:[p,(a:)]zw(a:) dz, with w(z) as a weight
function.

The polynomial term p,, () has n real zeros in the interval [;1, b} and pn41(z) has n + 1 zeros,
interlaced with those of the nth order. The polynomials are evaluated recursively, using a two term

' recursion relation
Prt1(2) = (e — an)pn(2) — BupPn-1(2), n=0,1,2,3,..., po(z) =1, p_1(z) = 0. (134)

The weight function w(z) along with the limits of integration [a,}], determine the type of

polynomial to be used. As will be shown in Section F.2, the integration in 3 is over finite limits,
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and therefore a Legendre polynomial was used. Integration over infinite boundaries, such as the
one in z’, are done using Hermite polynomials.

Legendre polynomials y = P,(z) satisfy the differential equation

d?y dy
~—z?)—= — 2z + -
1-=z )da:z dem n(n + 1)y = 0. (135)
The derivative satisfies the relation
— g2 é_" — - ‘
(1-2%) Tz (2) = —nzPy(z) + nPy_1(z). (136)

The recursion relation for Legendre polynomials is

Py(z) = 1,
P_i(z) = 0,
(n+ DPryi(z) = (2n+ 1)zPy(z) — nPh-1(z), (137)
with the normalization
[- 11 Po(2) P (@) w(s) dz = %?ﬁamn, (138)

where w(z) = 1. The integration in Eq. 138 is in the interval [—1, 1]. A simple linear transformation
allowed these polynomials to be used with non-unity limits [¥,;,,, Ynae)-

Hermite polynomials y = Hy(z) satisfy the differential equation

d*y dy
The derivatives satisfy the relation
d
n (0) = 2nHn () 4 (140)

The recursion relation is
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H_l(:c) = 0,
Hpy1(z) = 2zHp(z) — 2nHp-1(z), (141)
with the normalization
/ Hp(z)Hm(z)w(z) dz = /72" nlbmn, A (142)

where w(z) = =",

F.2 The Effective Differential Elastic Cross Section

The differential elastic cross section %‘- is given in Eq. 113. Due to the width of the elastic
pattern, the correct form of this differential cross section is expressed by convoluting it with the
two-dimensional gaussian representing the pattern dispersion. As a reminder, small scattering
angle allows the approximation ¢ = —p?62, where the components of # are defined in terms of

the left and right side coordinates according to Egs. 45 and 46. The new pattern corrected elastic

differential cross section is

1 -yl
zslyr — 3y

_/°° /yin.w doey e~ 30552
corr —cc Jy! dt V2nog \/27r0'y

min

dael
dt

dy' dz', (143)

where the limits of integration in y' are the boundaries of the right side chamber. In z, both

chambers are 28 mm wide in physical space. In scaled space, however, the right side detector is

3

= % = 1.52 times wider than the left side chamber. This means that in the frame of the
left side chamber, the right side detector is 28x1.52=42.6 mm wide, leaving a space of more than
7 mm on each vertical side of the right side detector that is not covered by the left side chamber.
Since the  component o, of the pattern width was about 2 mm, this 7 mm clea.u‘a,nce was large
~ enough to prevent any significant pattern loss at fihe vertical edges of the left side detector, and
therefore the limits of integration in &’ were approximated as infinities.

At any given point (z,y) on the left side detector, the ratio of this pattern-convoluted function
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to what the differential cross section would have been without the pattern effect was calculated as

a weight factor W(z, y) such that
dael
W(z,y) = J—%_U—iﬂl. (144)
dt

The significance of this weight factor will be clarified shortly.

Since the measured number of counts, AN, belongs to a cell of 28 mm width and 0.5 or 1 mm
height, the elastic differential cross section given in Eq. 113 was averaged over this cell. But to
account for pattern loss, the average was weighted by the weight function W(z, y) given in Eq. 144.

for stack ¢

dael 1 —Az—z yml’n‘v+Ay dO'eI

Ymin;

Here, the scattering angle is determined by the left side coordinates (z,y) of the scattered particle,
ie., t = —p? [(Lim)z + (7%) 2}. The integrals of Eq. 145 are both over finite limits and were
therefore evaluated by Legendre polynomials. The weights W (z,y) were evaluated at the same
positions as the zeros of the Legendre polynomials over the specified ¢ and y intervals.

Advantage was taken of a few fine points in order to drastically cut down on computing time:

e The W(z,y) values were evaluated for points whose y coordinates were as far as 40, from
the bottom of the chamber. For points higher than that, the weight values were not expected
to depend appreciably on y, and were therefore not calculated. Instead, the same horizontal

series of values were used all the way to the top of the chamber.

e The corrections were performed to account for the pattern loss at the low |t| edge only. The
small statistics at the high [¢| edge, as well as the absence of any Coulomb information, made
the use of pattern corrections for those regions unfeasible. Instead, the three highest edge

stacks were simply not used, with no appreciable effect on the final result.

e Use was made of the symmetry between the regions ——Azﬁ <z<0and0<z <L 7%@. The
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integration in z was therefore performed over the latter interval only, and the result was

doubled.

A stability study was conducted to determine the number of points for each integration. A
minimum number of points were used to yield stability of each integral to 1 part in 1000. For the
Hermite integration in ', this minimum number was 4 for data at 1/s=1.8 TeV, and 9 for data at
4/s=1.0 TeV. For all data, 8 Legendre points were needed to perform the integration in 3/, 16 for

z, and 4 for y.



Appendix G

Error Analysis

The measured quantity in this experiment was the number of counts. Therefore, all errors were
based on the premise that the uncertainty of the measured number of counts in a bin is the square
root of that number. The differential counts % which were fitted were not directly measured,
however, since they were background-subtracted, and background was a calculated quantity based
on measured quantities,

The differential number of counts dN in each stack was obtained according to dN = dN,4., —
dN,, where dN, 4, is the measured signal+noise count, and dN,, is the calculated background. The
statistical error of dN,,, is simply \/H_J_Vs.,.—n . The statistical error of dN, is found from Eq. 37,
and is the quadrature sum of the statistical errors of the background normalization constant C,
and the normalized background content P of that stack obtained from the background sample.
The statistical error of P is in turn found from Eq. 38. Rewriting this equation in simpler form,

we have, for stack ¢

N;
P = .
’ Ntot

(146)

The statistical error of P; can then be calculated according to

SNi\? (6Nt \?
8P, = Pi\/i—ﬁl) +(N:Ot)
b ot
1 1

= Pu/—+ .
WN; T Nt

Since Niot > Nj, the second term inside the square root is dropped, and § P; is calculated according
to
B
6P = —. . : - (14

The error of the background normalization constant C can be calculated in a similar fashion. Its

uncertainty, however, is taken to be due only to that of the background subset (N{j" in Eq. 39) of
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the elastic sample, since the uncertainty of P; is already taken into account. Furthermore, since
the same constant is used to calculate the background of all stacks of a given chamber, treatment
of the constant error as a statistical uncertainty would result in correlation among datum points.
To address this point, only the P; contribution to the background error was treated as statistical.
The contribution from the normalization constant C' was treated as a systematic uncertainty.

In addition to background, the statistical errors of the final results were enlarged due to sys-
tematic contributions from a number of factors, such as effective lengths, pot positions, pattern
widths, and readout calibrations.

PATTERN WIDTHS were used only in the final fit when the pattern corrections were
calculated. So it was a simple matter of re-doing the fit with the new corrections which resulted
from the incremented widths.

- EFFECTIVE LENGTHS were used mainly in the final step to calculate the components of
the scattering angle and the ¢ values. So in the final fit , each of the two left side effective lengths
was in turﬁ incremented by one standard deviation (1%), and the result observed.

POT POSITIONS: There were two factors that contributed to the uncertainty of the pot
positions: The uncertainty in the positions read out by the electronics, and the uncertainty of the

beam position due to centering.

o The beam position: In the centering procedure, the distant between the top and the bottom
pot is held fixed, and tile beam position with respect to the two pots is calculated. A positive
perturbation of this beam position by one standard deviation with respect to one pot will
result in an equal negative perturbation with respect to the other. Since the contents of each
cell of one pot is averaged with the corresponding cell of the other pot to form, effectively,
a composite chamber, thié perturbationAin the beam position canceled out to first order-.

Therefore, any effect on the final error due to uncertainty in beam centering was neglected.



120

o The pot positions were known to an accuracy of 35 microns in all cases. Again, since the data
from the top and the bottom pots were averaged to yield a composite pot, the error in the
position of this composite pot was approximately %55 = 24.7 microns. Therefore, a shift of

24.7 microns in the ¢ scale accounted for the uncertainty in pot position.

CALIBRATIONS: The y coordinate of each event is calculated according to Eq. 20. The

error in Y, 8Y, is determined by taking the variations of the two sides of Eq. 20:

dy\? dy\? dy dY
2 _ hadalll padeill 2 2F 27
(6Y)* = (a'p dp) + <a’c dc) + 20, I (148)

where % and % are the derivatives of Y with respect to p and ¢, and 0’;‘;6 is the covariance between
dy

p and c. It is clearly seen that % =c,and - =p—y = Y—‘Xﬁg—lm, where Yeounter = Yoo + Ypor-

Substituting these into the expression for (§Y)2%, we get
Y -Y, ounte ?
(6Y)? = (cop)? + K___;__m_’“) a‘c] +2(Y — Ycounter)o'f,c- (149)

The second and third terms clearly depend on Y, the location of the event. These terms vanish
when Y = Y.ounter, 1.€., when the event is located on the edge of the calibration counter. The
event can be located as much as 2 mm below the edge and as high as about 20 mm above it (see
Fig.7),s0 =2 mm < Y —Y,ounter < +20 mm. Given typical values of ¢ = 0.0643+0.0001 mm/bit,
op = 0.06 bits, and op. = —1 x 10~5, and if we label the first, second, and third terms of Eq. 149

as t1, t3, and {3 respectively, then we see that
il = (0.0643 x 0.06)> = 1 x 10753,
1x107°<t;<1x1073 and
=4 x 1074 <t3 < +4x 1075,

While fitting the data, the top and bottom boundaries of each stack were thus perturbed. Since
the fitting functioﬁ was the integrated average of the pattern-corrected differential elastic cross

section over the cell boundaries, this procedure changed these boundaries of integration.
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.To investigate the feasibility of altering the pattern corrections, attention was given to the fact
that these corrections are important near the bottom of the chamber. Let us take the very bottom
where Y =Y ounter = —2 mm. Then according to Eq. 149, (§Y)? = 1x 1075 4+1x 1075 4+4x 107° =
6 x 10=5, so §Y = v/6 x 10~% = 0.008 mm. This is only an 8 micron change at the very bottom,
which is only about a quarter of the 35 micron error in pot position. It was thus judged that the
correction factors did not get affected significantly enough to warrant their change. In the high |¢|

regions, they are nearly unity anyway.
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