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ABSTRACT 

E710, 

pp ELASTIC SCATTERING AT TEVATRON ENERGIES 

Sasan Sadr 

Experiment E710, located at site EO of the Tevatron collider at Fermilab, was concei'7ed in order to· 

measure pp elastic scattering. The measured parameters were: the total cross section O-t, the ratio 

of the real to the imaginary part of the forward scattering amplitude p, the nuclear slope parameter 

B, the nuclear curvature parameter C, the total elastic cross section u el, and the single diffractive 

cross section D"sd· These measurements were taken at center-of-mass energies of vs= 1.02 and 1.8 

TeV. 
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1 Introduction 

1.1 The Experiment 

The objective of Fermilab Tevatron experiment E710 1 was the measurement of the differential 

pp elastic and diffractive cross sections (p and p refer to proton and antiproton, respectively). 

These measurements were taken at center of mass (c.m.) energies vs= 1.02 and 1.8 TeV, and the 

parameters extracted were the total cross section <Tt, the nuclear slope parameter B, the nuclear 

curvature parameter C, the ratio of the real to the imaginary part of the forward nuclear scattering 

amplitude p., the total elastic cross section <Tel, and the single diffractive cross section <T sd • This 

thesis presents results from the analysis of E710 data with concentration on the measurements of 

<Tt, B, and p, and discusses the implication of these results on the field of elastic scattering. 

This section describes the background of the field and the developl?ent of the motivation for 

E710. Appendix A explains the notation and kinematics of elastic scattering. 

1. 2 History of the Field 

Since the mid 1960s, a large number of pp and pp elastic scattering and total cross section mea-

surements have been carried out at facilities in Europe and the United States. The earliest of these 

were pp fixed target mesurements, made at Brookhaven AGS[3] and Serpukhov[4] at c.m. energies 

1The E710 Collaboration: 

Universita di Bologna and Instituto Nazionale di Fisica Nucleare, Bologna, Italy: M. Bertani, G. Giacomelli, I. 
Veronesi, M. Mondardini, S. Zucchelli 

Cornell University, Ithaca, New York 14853: N. Amos, J. Orear 

Fermi National Accelerator Laboratory, Batavia, Illinois 60510: C. Avila, W. Baker, B. Gomez, J. Negret, S. Pruss, 
R. Rubinstein 

George Mason University, Fairlax, Virginia 22030: R. Ellsworth 

University of Maryland, College Park, Maryland 20742: D. Dimitroyannis, J. Goodman, G. Yodh 

. Northwestern University, Evanston, Illinois 60208: M. Block, C. Guss, S. Sadr, S. Shukla 

1 
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up to 10 GeV. They measured the pp cross section O't(PP), and Ppp· The cross sections were found 

to be approximately constant at about 40 mb. It was thought at that time that the cross section 

would remain constant with increasing energy. 

In the early 1970s, pp data taken at the CERN 1SR[6] in the energy range 10 <vs~ 62 GeV 

showed that the pp cross section was not constant and was instead rising with energy, from about 

40 mb at VS= 5 GeV to 43.5 mb at VS= 62 GeV. 

A decade later, with the introduction of the p beam into the ISR, pp colliding beam experiments 

were conducted both by the Northwestern-Louvain group[ll] which measured O't, B, and p, and 

the Pisa-Stony Brook group[l2] which measured O't, only. The pp cross section showed a dramatic 

decline from 50 mb at VS = 5 Ge V, to a minimum of 41.5 mb at vs = 20 Ge V, before rising to 

the O't(PP) value of 43.5 mb at vs= 62 GeV. 

The ISR experiments also indicated that Ppp and Ppp approach each other with increasing 

energy. PPP is constant at around O in the interval 10 < vs < 20 GeV before rising to 0.10 at 

vs=53 GeV. Ppp, on the other hand, rises from -0.27 at vs=5 GeV to O at vs=23 GeV, before 

rising to 0.08 at vs=62 GeV, which is within errors of the 0.10 value of Ppp· 

The nuclear slope parameter B is defined as the rate of change, with respect to t ( the square of 

momentum transfer), of the logarithm of the differential nuclear cross section, evaluated at t = 0, 

or B = ( ft log 4rt) t=O. The ISR experiments demonstrated that Bpp and Bpp also approach each 

other with increasing energy. Bpp rises from 9.5 (GeV /c)- 2 to 12.5 (GeV /c)- 2 in the interval 

5 < vs < 62 GeV, while Bpp stays at about 12 (GeV /c)-2 over this energy range. For pp and 

pp, therefore, O't, B, and p appeared to converge with increasing energy. This also indicates that, 

at high energies, there is no difference between pp and pp scattering. The nuclear curvature 

parameter C is defined as C = ½ (d~: log 4rt) . At the ISR, C was measured to be about 5 
t=O 

(GeV /c)- 4 [1,44]. Also, the ratio of the elastic to total cross section O'eif O't was measured to be 
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about 0.17. The significance of the latter two quantities will be discussed in Section 1.:3. 

The next high energy measurements were taken in 1983-4 when pp experiments at y's=540 and 

546 GeV were conducted at the SppS collider by the UAl and UA4 collaborations. The former 

group reported a total cross section[8] of 67.6±0.5±2.7 mb at y's=540 GeV, and the latter[9] 

61.9±1.5 mb at y's=546 GeV. Additionally, the UA5 collaboration reported a total cross section 

of 65.3±0.7±1.5 mb at y's=900 GeV[29]. All of these values indicate a rise of cross section with 

energy. A rise is seen also for measured B values of 15.2±0.2 (GeV /c)- 2 from UA4 and 17.1±1.0 

(GeV /c)- 2 from UAL They also measured the ratio aei/at to be about 0.22. 

The UA4 p value of 0.24±0.04 was surprisingly large. Models which had successfully predicted 

at and B at the UA4 energy were not able to justify this high p value. It created a great deal of 

controversy which would not be resolved for almost a decade. 

1.3 Interpretation of the Results and Motivation for E710 

The original Pomeranchuk theorem states that if pp and pp cross sections become constant asymp-

totically and if p increases less rapidly than logs, then the at, B, and p values of the pp and pp 

systems become equal asymptotically[l 7]. The early pp results from the Brookhaven AGS[3] and 

Serpukhov[4] at c.m. energies up to 10 GeV indicated constant cross section values, and thereby 

seemed to confirm the first premise of the Pomeranchuk theorem. Later on, the data taken at· 

the CERN ISR in the energy range 16 ::; vs ::; 62 Ge V showed that the cross section does not 

become constant asymptotically, and that the original Pomeranchuk theorem was not applicable. 

To account for this rise of the cross sections, the Pomeranchuk theorem was generalize~~to state 

that as s-+ oo, at(PP)/at(PP)-+ 1. It is not required, however, that the difference in the cross 

sections go to zero, or even a non-zero constant as s -+ oo[44]. Eden and Kinoshita showed that 

if both cross sections grow as log'Y s asymptotically, then their difference cannot grow faster than 
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log-r/2 s[18]. 

According to a derivation by Froissart[13] and later by Martin[14], the upper bound of the rise of 

pp and pp cross sections withs is ( 1r/m;) log2(s/ so), where m,.. is the rest mass of the pion, and s0 is 

a scale factor. This principle, known as the Froissart bound, dictates that <J"t cannot asymptotically 

rise faster than log2 s. Cornille and Martin[19] proved that inside the forward diffraction peak, at 

a given s and t, the ratio of the pp and pp differential cross sections asymptotically approaches 

unity, although their difference may not. A consequence of this theorem is that the ratio of the 

slope parameters goes to unity, i.e., Brr/ B;;p -. 1, as s -. oo. Furthermore, Block and Cahn[44] 

have derived the corollary that the ratio of the squares of the p values asymptotically goes to unity, 

i.e., (Prr/ Pt>r) 2 -. 1, ass-. oo. 

The curvature parameter C was defined in Section 1.2. If the nucleon behaves as a sharp-edged 

disk of radius R, this curvature parameter would be negative and have a value of -R4 /192. As 

mentioned in Section 1.2, C was measured to have positive values at the ISR energy of vs= 62 

GeV, and at the SppS energy of vs= 540 GeV. These positive values of C indicate that at ISR 

and SppS energies, the nucleon does not behave as a sharp disk. 

In the mid 1980s, Block and Cahn[l] found the energy dependence of tlie forward scattering 

amplitude by making an asymptotic amplitude analysis fit of <J"t and p, for pp and pp, in the energy 

interval 5 ::; vs::; 62 GeV. From this they extracted the energy dependence of the cross section 

at higher energies. They then put this energy dependence into the Chou-Yang model[20,21]. This 

model postulates that elastic scattering is the shadow of the absorption resulting from the passage 

of one hadonic matter distribution through another[44]. The scattering amplitude (see Section 6) 

is expressed in terms of an eikonal factorizable into functions of the impact parameter b and the 

c.m. energy s. Using the Durand and Lipes[21] assertion that the transverse matter distribution 

has the same shape as that of the charge distribution, the eikonal was fixed by Block and Cahn to 
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have the energy dependence obtained from the asymptotic analysis fit to the world data. The point 

here is that since the Chou-Yang model depends on b, it allows the calculation of the differential 

cross section du/dt as a function oft. For the ISR energy of vs= 62 GeV and the SppS energy 

of vs = 540 Ge V, the curvature parameter C was calculated to be positive, in agreement with the 

experimental results[l,44,51]. The Chou-Yang model evolves into a black disk as energy increases. 

Since a sharp disk exhibits negative curvature, C must equal zero at some energy, and eventually 

become negative. Block and Cahn proceeded to define 'asymptopia' as the energy domain where 

the elastic differential cross section is basically indistinguishable from that of sharp disk[44]. The 

quantitative indicator of the onset of asymptopia is the energy at which C = 0, which Block and 

Cahn predicted, using the above model, to be near the Tevatron energy of 1.8 Te V[53]. 

For a black disk model, the ratio <Tei/<Tt = 1/2. This ratio was measured to be 0.17 at the 

1SR[15], and 0.22 at the SppS[16]. 

Experiment E710, the highest energy (vs= 1.8 TeV) elastic scattering experiment to date, 

was conceived i:q order to achieve the following objectives2 : 

• To observe the trend in the rise of <Tt, B, and <T er/ <Tt with increasing energy, and to determine 

whether the Froissart bound holds at high energies. 

• To test the validity of the prediction of Block and Cahn regarding the onset of asymptopia, 

by measuring the curvature parameter C at vs= 1.8 TeV to see if it is zero. 

• To check the validity of the UA4 p value of 0.24 ± 0.04. 

• To measure diffractive dissociation and the single-diffractive cross section. 
2It should be noted that although the main objective of E710 was the measurement of elastic scattering at 

ys = 1.8 TeV, data were also taken at lower energies of 1020, 546, and 300 GeV. Due to enormous amounts of 

background noise, only the 1020 Ge V data have been analyzed, the results of which is discussed in this thesis. Data 

taken at lower energies have thus far been unusable. 
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1.4 Results of E710 and its Contemporaries, and their Significance 

In 1989, E710 announced their initial pp measurements of O"t = 78.3 ± 5.9 mb and B = 16.3 ± 

0.5 (GeV /c)- 2 at vs= 1.8 TeV[24]. They also measured the elastic cross section of O"e/ = 19.6±3.0 

mb, and the ratio uez/O"t of 0.25 ± 0.02. They normalized their data according to their knowledge 

of the accelerator luminosity, which was known with an uncertainty of about 15%. E710 eventually 

superseded this cross section value by adopting a luminosity-free approach to normalizing their 

data[41]. 

In 1990, Kang and White[25] attempted to explain the large UA4 p value by postulating that it 

signals the presence of a genuine physical threshold just below 540 Ge V. They suggested identifying 

this threshold with diffractive production of a new r, particle composed of color sextet quarks, and 

with mass of,..., 30 GeV. The asymptotic model based on this hypothesis and fitted to the world 

data at the time would generate a cross section of 78.5 mb at vs= 1.8 TeV which was in excellent 

agreement with the E710 value, and a p of 0.22 at vs = 540 GeV which agreed well with the 

UA4 result. As we shall discuss in detail in Section 6, the Regge pole model of Landshoff and . 
Donnachie[52], and later the analytic asymptotic amplitude analysis of Block and White[51] and 

the QCD-inspired eikonal model of Block, Halzen, and Margolis[49] all agreed with each other and 

gave a value of PfJp ~ 0.12-0.14! 

At the time, E710 and CDF had completed acquisition of their respective. data at vs = 1.8 

TeV. For E710, the data were basically the same as those which led to their 1989 results. This 

time, however, they successfully removed the effects of the large background noise due to beam 

halo and therefore probed deeply into the low ltl regions, in order to measure p as well as O"t 

and B. In 1990, they published the results of a luminosity-independent measurement of the. total 

(ut = 72.1 ± 3.3 mb), elastic (ue1 = 16.6 ± 1.6 mb), and total single-diffractive (2usd = 11.7 ± 2.3 

mb) cross sections[41]. A year later, they announced simultaneously fitted values of O"t = 72.8 ± 3.1 
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mb, B = 16.99 ± 0.47 (GeV /c)- 2 , and p = 0.140 ± 0.069[26]. These results were in excellent 

agreement with existing models, and they were the first pieces of evidence that suggested that the 

UA4 result may be incorrect. The E710 p value was a major factor that motivated the formation 

of the UA4/2 collaboration, whose mission was a precise re-measurement of p at vs= 546 GeV. 

E710 also independently used data collected by higher ltl detectors[53] to obtain the nuclear slope 

parameter B = 16.26 ± 0.23 (GeV /c)- 2 and the curvature parameter C = 0.14± 0.70 (GeV /c)- 4
. 

This curvature parameter value is compatible with zero, and along with the positive curvature 

values reported by the lower energy data, signals the onset of 'asymptopia' at vs= 1.8 TeV. This 

shows that 1.8 Te V is the transition energy signaling the onset of asymptopia, as predicted by 

Block and Cahn[l]. Also, the measured cross sections were well fitted by the QCD prediction of 

Block, Halzen, and Margolis[49]. Future high energy experiments (16 TeV at the LHC and 40 TeV 

at the SSC) are expected to measure negative nuclear curvature values. 

Also in 1991, the CDF collaboration at Fermilab announced that at vs = 1.8 TeV, <Tt = 
72.0 ± 3.6 mb, <Tel = 16.5 ± 1.5 mb, and B = 16.5 ± 0.76 (GeV /c)- 2 [27]. These results were in 

excellent agreement with those of E710. 

In 1993, the UA4/2 group, announced the highly anticipated PPP value at vs= 546 GeV to be 

0.135±0.02[22], thus refuting the large UA4 p value, along with the theoretical models constructed 

to explain it. This was a victory for the Regge pole, the analytic asymptotic amplitude, and the 

eikonalized QCD models. As a final confirmation, E710, in a re-analysis of the vs = 1.8 TeV 

data which allowed them to penetrate even deeper into the ·low ltl region, measured PPP to be 

0.134±0.069 at vs= 1,8 TeV. The analysis leading to this result is discussed in this work. 

Later that year, E710 measured the single-diffactive dissociation cross section[32] at vs = 1.8 

TeV using a different set of detectors from those used for the 1990 single-diffractive results[41]. 

They announced a value of 2<T,d = 8.1 ± 1.7 mb which was in reasonable agreement with the 1990 
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vs Experiment <Tt B p <T ez/ <Tt 

(GeV) (mb) ((GeV /c)- 2) 

1800 E710 72.2±2.7 16.72±0.44 0.134±0.069 0.230±0.024 
1020 E710 61.6±5.7 16.20±0.70 
546 UA4/2 0.135±0.02 

Table 1: Recent experimental results at high energies 

results. 

The E710 and UA4/2 results for <Tt, B, p, and <Tez/<Tt are shown m Table 1.3 This table 

summarizes the latest experimental information on elastic scattering. These results indicate a 

continuation of the rise of the cross section with energy. 

E710 has achieved its objectives by showing that: 

• <Tt and B increase with s. 

• <Tez/<Tt increases withs, indicating the nucleon is getting blacker. 

• C ~ 0 at VS= 1.8 TeV, in contrast to positive values at lower energies. This signals the 

onset of asymptopia, and the transformation of the nucleon to a black disk. 

3 In a·recent set of preprints, CDF announced a new cross section of 80.0±2.2 mb, which is in marked disagreement 

with their earlier result of 72.0±3.6 mb obtained from the same data sample. There is no discussion in these preprints 

of the earlier results, and no explanationhas yet been offered for the difference between the two values. In this work, 

the original results are used in the theoretical analysis. 



2 Procedure 

2.1 Experimental Strategy 

In this experiment, the quantity of interest is the differential elastic cross section dO"e1/dt, which 

is obtained from the differential count dN/dt. For a given bin, dN(t)/dt is the number of counts 

within a small interval dt around the t at the center of the bin. This quantity must be normalized 

to yield dO" el/ dt: 

dN = CdO"e/ 
dt dt , (1) 

where £ is the luminosity and has the dimension of (area)-1; the unit for its measurement is the 

inverse of the unit for cross section, i.e., mb- 1, pb- 1 , etc. The expression for the differential elastic 

cross section dO"ei/dt is given in Eq. 113 of Appendix A. There are several methods of fitting Eq. 1 

to the data in order to extract O"t, B, and p: 

One method is referred to as Coulomb normalization. The t value at which the nuclear and 

Coulomb amplitudes are equal is referred to as the interference region tint· If the experiment 

can cover jtj values lower than jtlint, namely, into the Coulomb region, then the Coulomb term 

dominates the differential elastic cross section, i.e., da:e/dt ~ 41r(n:/t)2. Note that this expression 

does not depend on O"t, B, and p. It therefore allows the direct determination of the lumir,osity, 

i.e., an absolute normalization of the·experiment. Using Eqs. 113 and 1, the number of events in 

the interval dt can be written as 

dN [(2n:) 2 
4 O:O"tG2(t) B< (O"t) 2 

2 Btl dt(t) = C1r ltf G (t) + (p+ wp)--;--jtj-eT + 471" (1 + p )e . (2) 

Using Eq. 2, one can fit £, O"t, B, and p simultaneously. The slope parameter is determined 

primarily by the nuclear (third) term, and p primarily by the interference (second) term. 

A second way to measure elastic scattering is the luminosity-free method. Experiments have 

9 
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shown that the nuclear elastic cross section in small JtJ can be adequately parametrized as 

dun = dun ' eBt, 
dt dt t=O 

(3) 

i.e., B is the slope of the straight line obtained from plotting log(dun/dt) vs JtJ in the small JtJ 

region. The differential nuclear cross section at t = 0 can be expressed in the following manner: 

dun' 
dt t:0 

7r dun I 
p2 df!. t:0 

~ JRef(O) + ilmf(O)J 2
• p 

(4) 

where f(O) is the nuclear scattering amplitude evaluated at the center of mass frame at t = 0. 

Introducing p = Ref(O)/Imf(O), Eq. 4 can be rewritten as 

dun' & t:0 = 7r I (p + i)~mf(O) r 
= 1( I (p ::)Ut r (5) 

where the last step used the pptical theorem, Eq. 98. The total elastic cross section u el can be 

expressed as t
00

(dun/dt)dt. Substituting for dun/dt from Eqs. 3 and 5, and performing the 

integration, we obtain 

<J'e/ = l dun' 
B dt t=O 

u; (1 + p2) 

l61rB 
(6) 

The difference of the total and the elastic cross sections is the inelastic cross section Uinel. The 

luminosity £ normalizes the number of counts to give a cross section, or 

(7) 

or 

C 



Nine/ 

(O"t - O"e/) 

Nine/ 

[1 - <1t(l+e2)] ' O"t 16,rB 
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(8) 

where the last expression uses the expression for O"e/ in Eq. 6. The expression for ,C (Eq. 8) can 

alternatively be used in Eq. 2 to normalize the number of counts, provided that the number of 

inelastic events Nine/ is known. 

If neither the measurement of the inelastic rate Nine/ nor Coulomb normalization is possible, 

a third method is to use an independent measurement of the time-integrated luminosity £. In 

this case, Eq. 2 is fitted to the data, where ,C is fixed. Again the nuclear and interference terms 

would determine B and p, respectively. If data in the interference region is unavailable, i.e., if the 

minimum !ti covered is large such that ltlmin > ltlint, then there is not enough information about 

p to allow its determination, and it should be fixed. 

Finally, it is obvious that an independent measurement of the integrated luminosity ,C allows 

the determination of the total cross section O"t from the total interaction rate Nt, or 

(9) 

This is a fourth method for measuring the total cross section. 

In this experiment the minimum !ti covered by the detectors was low enough for the data to 

contain some Coulomb information, i.e., ltlmin < ltlint· Furthermore, the number of inelastics 

Nine/ and the time-integrated accelerator luminosity ,C were known. Therefore, the second and 

third methods described above were simultaneously used to normalize the data. 

2.2 Formulation of Experimental Procedure 

To detect the scattered particles and to measure their scattering angles, detectors were placed 

about the interaction point at predetermined distances. These detectors measured the positions of 
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the scattered particles with respect to the beam line, and hence obtained the particles' scattering 

angles. Throughout this formulation, a right-handed coordinate system is used to identify the 

positions of the scattered particles. In this coordinate system, z is the beam direction, and x and 

y are the horizontal and vertical directions normal to the beam line, respectively. 

One objective of experiment E710 was the meaurement of elastic scattering at jtj values low 

enough to yield information about the Coulomb region, i.e., to measure p by using the interference 

of the nuclear and Coulomb amplitudes. To do this, measurements had to be taken at very low 

scattering angles, which in turn required the placement of the detectors at large distances from the 

interaction point. The site assigned to E710 along the Tevatron Collider contained an asymmetric 

arrangement of bending magnets about the interaction point at large distances. This asymmetry 

was taken into account in the calculation of the angles of the scattered particles. The quantity 

"effective length" is the distance between a low jtj detector and the interaction point which would 

result in the same measured scattering angle if there were no bending magnets in the way. Due 

to the asymmetry of the arrangements of the bending magnets about the interaction region, the 

effective lengths were different for the left and right sides of the interaction region. Furthermore, 

the bending magnets deflected the particle trajectories differently along the x and y directions. 

Therefore, for the same side, the effective lengths had different values in x and y. 

Let us isolate from the data sample a subset corresponding to elastically scattered particles, 

detected by a detector on the right side of the interaction region, that were in coincidence with 

particles detected at a point on the left side detector. Conservation of momentum requires all 

of these right side particles to be concentrated also at a point subtending the same angle with 

respect to the beam line as the corresponding left side point (see Fig. 48). In fact, what one sees 

is a symmetric two-dimensional distribution of particles _centered about this point on the right 

side. This also holds true with the two sides reversed. The size and shape of this distribution are. 
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independent of its location. The width of this distribution is due to the size of the interaction 

region, the betatron oscillations, and the detector resolution. We will refer to this distribution as 

the elastic pattern. 

Due to the asymmetry of the setup about the interaction region, it was conventient to re-scale 

all dimensions to correspond to a spatial frame in which the distances between the interaction 

region and the detectors were equal. In this new frame, the right side detectors were significantly 

larger than the left side, by a factor of 1.52 in x and 1.05 in y. As a result, the right side detectors 

covered more of the elastic pattern of the particles incident on the left side detectors than vice 

versa. Consequently, the event distributions of the left side detectors required less correction for 

acceptance, and were the only distributions used in the analysis. Each bin on the left side contained 

events coincident with the entire right side, so no differential right side information was used. 

Let us assign to the left and right sides of the interaction region their own reference frames, 

with the coordinate system of the left frame identified by (x, y, z), and that of the right frame by 

( x', y', z') such that under a tranformation from the left side to the right, x ---+ -x', y ---+ y', and 

z ---+ -z'. Let us further identify the x and y effective lengths of the two sides as Lx, Ly, Lx,, 

and Ly,. Using the transport equation (Eq. 122) from the appendix section on the beam lattice 

(Appendix B), the positions, detected by the drift chambers, of an elastically scattered pp pair on 

each side of the interaction region can be expressed as 

x' 

y' 

where 

(10) 

(11) 

(12) 

(13) 



mx is the left side horizontal focusing factor, mx, is the right side horizontal 

focusing factor, etc., 

(xint, Yint) are the coordinates of the interaction with respect to the mean 

interaction location, 

(x 0 , y0 ) are the coordinates of the beam center with respect to the center of the 

detector system ( the designated origin), 

ax and ay are the x and y components of the scattering angle a, 

~ax is the betatron oscillation angle along x (same for ~ax, along 

x', etc.), 

Dx is the detector resolution for the measurement of the location of scattered 

particles at x, etc. 

Both sides have a common origin at the geometrical center of the apparatus. 
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The interaction region, the betatron oscillations ~a, and the detector resolution 8 all contribute 

to broaden the elastic pattern.4 Each of these contributions is assumed to broaden the elastic 

pattern in a gaussian ~anner. The differential cross section must be corrected for this broadening 

by convoluting it with ten gaussians: two for the x and y components of the coordinate of the event 

with respect to the interaction point, four for the x and y components of the betatron oscillation 

angles on the left and right sides, and four for the x and y components of the detector resolutions 

on the two sides. All of these must be integrated with the x and y components of the scattering 

angle, resulting in ·a twelve-dimensional integration to be performed. It can be mathematically 

4 The interactionregion also has a width in the z direction. This width was found to be exceedingly small(:::::: 0.6 

m) in comparison to the distances between the detectors and the interation region (25-121 m), and was therefore 

ignored in this formulation, 
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shown that this large convolution collapses to one with only two gaussians, for x and y, the widths 

of which contain the effects of all of the factors which broaden the pattern (see Ref. [33]). This was 

experimentally verified when the projections of the elastic pattern on the xz and yz planes were 

observed to be gaussians. The widths of these gaussians are referred to as the pattern widths, and 

are identified by the symbols <J'x and <J'y (refer to the section on widths, Section 4.4). 

The width of the elastic pattern results in large event losses in the vicinity of the physical 

boundaries of the detectors. The amount lost can be as much as 75% at an infinitesimal bin 

closest to the beam, i.e., the bin with the lowest JtJ. In Figs. 19 and 20, the half-dashed gaussian 

represents the elastic pattern composed of particles coincident with the low JtJ stacks of the left 

side detector. The dashed part is the portion of the pattern that lies outside of the detector 

boundaries. Denoting the coordinates of an event on a left side detector as (x, y), and (x', y') for 

a right side detector, the actual form of the differential elastic cross section d<J' et/ dt requires its 

convolution with a two-dimensional gaussian representing the elastic pattern. Thus, the pattern 

corrected elastic differential cross section is 

where 

x:nin(max) and Y~in(max) are the boundaries of the right side detector, and. 

<J'x and <J'y are the x and y pattern widths. 

(14) 

The bin size should preferably be chosen small enough to allow its approximation as a point. 

In practice, this is not possible due to the- requirement that each bin contain a minimum number 

of events (typic~lly, about 10) for it to have any statistical significance. If the dimensions of a bin 

on the left side detector is denoted as -Xmin(max) and Ymin(max) such that 6.x = Xmax - Xmin and 
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Figure 1: (a) The effective differential cross section vs !ti for no event loss due to pattern 

width, (b) the expected loss of events at low !ti 
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t:i..y = Ymax - Ymin, the pattern corrected .differential cross sectio~ (Eq. 14) is thus averaged over 
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this bin. This average is the effective elastic differential cross section (dcr8 rf dt); for bin i, or 

( 
dcrer) 1 1."'ma.,, 1Yma.,, dcrer I - =--. - dydx 
dt i AxAy Xmin· Ymin· dt corr . . (15) 

The expression given in Eq. 15 is fitted to the number of counts AN;/ At, where AN; is the number 

of events in bin i, corrected for background and any inefliciencis, such as azimuthal coverage, dead 

time, etc. The quantity At is the interval int covered by the bin. In this experiment, all bins are 

the same size, and therefore At is the same for all bins. Again, the data are normalized according 

to the second and third methods outlined in Section 2.1. 

Fig. la is the plot of (dcrerf dt) vs the jtj value at the bin center, at vs = 1.8 TeV, if there 

were no loss of events near the detector boundaries due to the width of the elastic pattern. This 

figure shows a continual rise of the effective differential cross section with decreasing jtj. Due to 

the width of the elastic pattern, however, a significant loss of events is expected in the low jtj bins, 

resulting in a drop of the effective cross section for these bins as shown in Fig. lb. This effect is 

built into Eq. 15 which is fitted to the data. 



3 Experimental Setup 

3.1 The Tevatron Collider 

Fig. 2[34] is a sketch of the aerial view of the accelerator ring of the Tevatron pp collider at the Fermi 

National Accelerator Laboratory (Fermilab) in Batavia, IL, USA. Protons are first accelerated to 
UNAC 
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ENEAGY COU9LEA 
( TEVATAON I 

Figure 2: The Tevatron Main Ring, Energy Doubler, and p source 

200 MeV at the Linac, then sent to the booster where they are accelerated to 8 GeV, and from 

there to the Main Ring. At 150 GeV peak excitation, the Main Ring injects the protons into the 

Energy Doubler, a ring right beneath the Main Ring in the same tunnel. The Main Ring also 

extracts protons at 120 GeV and sends them back to the p production target. An antiproton is 

produced for every 20,000 protons and then sent to the p source which has two storage rings. The 

antiprotons are first sent to the "debuncher" ring where their narrow time spread is converted to 

a narrow momentum bunch spread. This allows them to enter the second "accumula_tor" ring. A 

flux of 6 x 1010 antiprotons per bunch are then injected back into the Main Ring, as are an order 

of magnitude higher number of protons per bunch. Both the p and the p beams are accelerated in 

18 
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the opposite directions up to enrgies of 0.9 TeV in the Energy Doubler ring. Each beam is divided 

into 6 bunches, and has a period of 21 µsec per revolution. Consequently, there are collisions every 

3.5 µsec along six intersection regions AO, BO, CO, DO, EO, and FO. 

3.2 The E710 Apparatus 

Fig. 3 is a schematic of all of the detector systems used in the experiment. The Tevatron was 
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Figure 3: The E710 detector at the Fermilab Tevatron. Inset: Blow-up of the beam pipe at 
the positions of the tracking telescopes 

designed prior to consideration of this experiment. Upon approval, E710 was assigned the EO 
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intersection region where, within 25 m of the interaction region, there were no correction magnets 

in the way to alter the trajectories of the beams. It was therefore possible to place four drift 

chambers symmetrically above and below the beam line inside the beam pipe on each side, 25 m 

from the interaction region. In Fig. 3, these chambers are labeled as 3, 4, 5, and 6, where 3 is the 

left arm, inner upper drift chamber above the beam, 4 is the left arm, inner down drift chamber 

below the beam, ~nd so on. EO marks the interaction region. These chambers allowed elastic 

scattering measurements down to !ti= 0.006 (GeV /c) 2 at vs= 1.8 TeV. 

This minimum covered !ti value was not low enough to allow penetration into the interference 

region (see Table 8 in Appendix A), so outer drift chambers were designed to be placed farther 

downstream from EO on each side. This required finding available locations along the beam pipe 

considerably farther than 25 m from EO. 

As Fig. 3 demonstrates, the arrangement of quadrupole magnets that stood between these outer 

drift chambers was not symmetric about EO (also see Table 2). On the left side, the outer pots 

were placed 91 m from EO, and on the right, 124 m. The quadrupole magnets caused a deflection in 

the trajectories of the scattered charged particles on each side. Thus, the y (the vertical direction 

transverse to the beam line) positions of the elastic events in the outer chambers were measured 

as if the distance between the outer pots and EO were 80 m on the left side and 76 m on the right, 

with no quadrupole magnets in between. In x (the horizontal direction transverse to the beam 

line), these distances were 45 m on the left and 30 m on the right. These distances are referred to 

as the y and x "effective" lengths Ly and Lrc, respectively. If the coordinates of a point located to 

the left of EO is specified as (x, y), and that of a point to the right of EO as (x', y'), then Lrc and 

Ly are the left side effective lengths and Lrc, and Ly' the right side. With these outer chambers, it 

was possible to obtain t coverage to as low as !ti = 0.00075 (GeV /c) 2 at vs= 1.8 TeV, i.e., into 

the Coulomb side of the interference region. The drift chambers located 25 m from EO are hereby 



Distance from EO (m) Side 

inner pots 25 p 
quadrupole magnet 27 p 
quadrupole magnet 33 p 

outer pots 91 p 
inner pots 25 p 

quadrupole magnet 29 p 

quadrupole magnet 35 p 

quadrupole magnet 93 p 

quadrupole magnet 94 p 

quadrupole magnet 123 p 

outer pots 124 p 

Table 2: Positions of the quadrupole magnets between the inner and outer drift chambers on 

each side of EO 
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referred to as the inner or high Jtl chambers, and the ones located farther downstream as the outer, 

or low JtJ. As Fig. 3 indicates, the outer chambers were identified according to the numbers 1, 2, 

7, and 8, such that 1 is the left upper outer, 2 the left lower outer, and so on. 

Due to the asymmetry of the setup about the interaction region, it was conventient to re-scale 

all dimensions to correspond to a spatial frame in which the distances between the interaction 

region and the detectors were equal. In this new frame, the right side detectors were significantly 

larger than the left side, by afactor of 1.52 in x and 1.05 in y. As a result, the right side detectors 

covered more of the elastic pattern of the particles incident on the left side detectors than vice 

versa. Consequently, the event distributions of the left side detectors required less correction for 

acceptance, and were the only distributions used in the analysis. Each bin on the left side contained 

events coincident with the entire right side, so no differential right side information was used. 

To study elastic scattering at low Jtl value_s, the chambers had to be placed close to the circul~t-
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ing beams. Given the relatively large diameter (5 cm) of the Tevatron beam pipe, it was imperative 

to devise a scheme that would allow the detectors to penetrate into the pipe without affecting the 

near vacuum (~ 10-9 torr) condition inside it. To accomplish this objective, the chambers were 

encased inside mobile container units, called roman pots, that could move inside the beam pipe. 

A set of two roman pots, one above and the other below the plane of the accelerator, formed a 

castle, as shown in Fig. 4(35]. Each pot could be moved by remote control toward or away from 

Figure 4: Two roman pots inside their housing, forming a castle. The dashed line indicates 
the beam axis. (Taken from Ref. [36]) 

the beam. To detect an elastic collision, a pair of inner or outer drift chambers were placed inside 

pots located diagonally with respect to the interaction region. As shown in Fig. 3, four such pairs, 

or combinations, existed. As mentioned earlier, the low !ti data were gathered by the four outer 

drift chambers (1, 2, 7, and 8). 

Behind each drift chamber, there were three scintillation counters. Two of these counters were 

identical and were used for triggering. They had 2 ns rise time photomultiplier tubes in order to 

have a fast trigger for tracks comil'}g into the drift chambers. The third counter was smaller than 
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the other two. It had small holes drilled into it and was placed behind the trigger counters to 

provide a known spatial reference frame for calibrating the event coordinate readout system. 

In order to approximate 41r angular coverage, ten ring scintillation counters were used on each 

side of EO around the beam pipe for measurement of inelastic scattering, and eight central counters 

covering EO. In Fig. 3, the five left ring counters are identified as Ll-15, and the five right ring 

counters as Rl-R5. The central counters are identified as CC. 

The Lambertsons (identified as LAM in Fig. 3) are the bending magnets that direct the p and 

p beams from the Main Ring to the Energy Doubler. Their placement close to the detectors was 

cause for concern about beam halo background being deflected toward the detectors. To deal with 

this problem, 16 tracking drift chambers were placed on each side of EO around the beam pipe 

next to the 15 and R5 ring counters. These chambers were used for tracking events to determine 

whether they originated at the vertex. They were also used to measure beam gas background. 

3.3 The Elastic Scattering Detectors 

3.3.1 Geometry of the Drift Chambers 

As mentioned earlier, the drift chambers were used to measure the spatial coordinates of the 

scattered particles. Each chamber consisted of 4 horizontal 30 mm long sense wires spaced 6 mm 

apart. The chambers were filled with 50-50% argon-ethane mixture. They had 1 kV /cm drift field 

and 23 mm drift distance (see Fig. 5)(35]. For mechanical stability, the chamber body was milled 

from a block of stesalite 4411-W. Voltages were distributed to the field wires through a printed 

circuit glued on the side faces of the chamber body. The wires were held with crimp pins which 

contacted directly the printed circuit without soldering. 

The signal from each wire was preamplified with a 20 n input impedance through high voltage 

decoupling capacitors and an impedance matched line built in the printed circuit. The geometry 
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shown in Fig. 5 provides a uniform drift field as shown in Fig. 6a where the drift potential distri-

bution is 50 V /line. The pots also had good drift characteristics. Fig. 6b is a map of computed 

drift times whose distribution is 5 ns/line, or approximately 0.25 mm per line. The bottom plate 

is grounded, the field wires' voltages increased by 200 V per step up to the arcade voltage of 2200 

V. The drain wires were at 2500 V, and the sense wires at 3950 V corresponding to a 1750 V 

multiplication voltage drop in a 6 mm diameter cage. 

The signal was locally amplified and discriminated and then sent to the counting room along 

120 m shielded twisted pair cables. There the signal was digitized by 4-D modules[38]. 

The coordinate of the incident particle in the x direction ( along the length of the wire) was 

needed in order to obtain the azimuthal component of its scattering angle and was read by charge 

division. The 4-D module digitized the signal into 64 bins in the x direction, where each bin was 

calibrated to correspond to about 0.5 mm. The x readout displayed nonlinearities that made it 

imperative that the data be integrated over the entire x range. 

The y coordinate of the incident particle was needed to obtain the polar component of its 

scattering angle, and was digitized into 512 drift-timed bins. Each bin was then calibrated to 
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correspond to about 65 microns. 

3.3.2 Scintillation Counters Inside the Roman Pots 
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• 

b 

As mentioned earlier, next to each roman pot there were three scintillation counters, where two 

were used for triggering and the third for the calibration of the coordinate readout system. The 

former are referred to as the trigger counters, .and the latter as the calibration counter. The three 

counters were housed behind each pot with the first counter covering most of the active area of 

each chamber. The dimensions of the trigger counters were 22 mm X 28 mm X 3.2 mm, and the 

calibration counter 18 mm x 20 mm x 3.2 mm (Fig. 7). 
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Figure 7: (a) Front and (b) side views of the trigger counters (TC) and the calibration counter 
(CC) 

3.4 The Inelastic Scattering Detectors 

3.4.1 The Ring Scintillation Counters 

The geometries of the left and right ring scintillation counters are shown in Fig. 8. There were 10 
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ring counter sections, 5 on each side, designated as 11-15 and Rl-R5. Each section subtended a 

circle around the beam pipe, and was composed of four identical quadrants, a, /3, 8, and 1 . In 

addition to these ten, there were another class of scintillation counters, called the central counters, 

which covered the EO vertex on all sides. Four of the central counters were occasionally replaced 

with an L-shaped counter, LO, near EO to accommodate various T/ coverages. 
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Table 3 is a list of the minimum and maximum acceptance angles of all of the ring counters. 

These counters were used for identification of inelastically scattered particles with high transverse 

Distance Min. Accepetance Max. Acceptance 
Counter Section from EO (m) Angle (mrad) Angle (mrad) 

LO 1.69 29.99 44.98 

11 2.64 19.25 28.87 

12 4.12 12.33 18.50 

13 6.96 7.30 10.95 

14 9.68 5.25 7.87 

15 12.16 3.13 5.22 

Rl 3.32 15.29 22.94 

R2 4.78 10.62 15.93 

R3 6.89 7.37 11.06 

R4 10.17 4.99 7.49 

R5 12.69 3.00 5.00 

Table 3: Angular acceptance ranges of the ring counter sections and their distances from EO 

momenta that registered a coincidence with a p or p on the other side, or events identified by high 

transverse momentum particles on both sides. The former group are referred to as single diffractive 

events, and the latter as double diffractive. 

3.4.2 The Tracking Telescopes 

There were a number of factors that resulted in a significant amount of background noise. The 

sources of background were initially expected to be beam-gas interaction~ and single diffractive 

events. Later, it was found that another major source was beam halo that was deflected in the 

magnetic field of the Lambertsons. To keep track of this noise, a series of drift chambers, simi-

lar in construction to the ones used for elastic scattering measurements, were placed in front of 
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Figure 9: (a) Cross section of the tracking drift chambers, and (b) beam's eye view of the drift 

chamber telescopes 

the Lambertsons on each side of EO (Fig. 9). These chambers later proved effective in tracking 

inelastics from the interaction region and differentiating them from those resulting from beam-gas 

interactions. 

A doublet, consisting of two sets of four chambers, were symmetrically placed around the beam. 

pipe, rotated by ±0.05 radians in drift direction from the vertical a.xis. This was done in order 
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to achieve a stereoscopic track reconstruction. These doublets were located along the beam pipe 

behind the 15 and R5 ring counters as well as 0.8 m downstream before the Lambertsons on each 

side. Their purpose was to measure the fraction of the time the background set off the single arm 

diffraction trigger in the logic electronics. A set of four chambers on each side was referred to as a 

tracking telescope. These chambers allowed measurements of track angles as low as 2.90 mrad. 

As shown in Fig. 9, the tracking telescopes were 7.6 cm high and 10.2 cm wide. They were 

active 3.4 cm in drift direction and 8.9 cm in width. They were filled with a gas mixture of 80% 

argon and 20% carbon dioxide and designed to have an angular resolution of 0.19 mrad (0.15 mm in 

drift direction with a 0.8 m separation between the two sets of chambers in a doublet). Inside each 

chamber, four 8.9 cm long sense wires of 25 micron diameter were equally spaced and surrounded 

by 22 gauge field shaping wires. The outer field wires were set at 3.4 kV and the inner wires near 

the sense wires were set at 3.1 kV. This allowed the drift field to act on a larger active area than 

the drift chambers used for elastic scattering measurements. 

The sense wires were placed transverse to the beam direction on all sides of the beam pipe. 

They were set at 4.8 kV and their signal was read out with preamplifiers. The differential output 

of the preamplification was sent by 75 m long twisted pair cable to an amplifier/discriminator. The 

output of all four sense wires were fed into a three-out-of-four majority logic. The output of this 

majority logic was converted to a standard NIM pulse that was sent into a time-to-digital converter 

to determine the drift time from the particle track to the sense wire[39]. 

The telescopes were fastened to an aluminum support that was bolted to the floor. A 25 cm 

thick layer of lead bricks was erected around the location of these chambers to provide shielding 

from lost protons emanating from the Main Ring. 



4 Data Analysis 

4.1 Event Selection 

Elastic and inelastic events were read and recorded simultaneously. Therefore, the off-line analysis 

of the data had to distinguish the two types of events. A number of criteria were used to accomplish 

this: 

4.1.1 TDC Windows 

The first filtering criterion of the event selection procedure used the TDC windows. Lecroy 2228 

TDCs, 2249 ADCs, and 2551 scalers were used for reading out event information from all scintilla-

tion counters. The event trigger was used as a start signal for the TDCs. Signals from the counters 

were digitized by the ADCs with 150 ns gates. The discriminated signals were sent as stop pulses 

to the TDCs. For each counter, a time distribution of events was obtained from the TDCs. These 

distributions were used to determine whether a hit in a counter was in time with the interaction 

at EO. 

A typical TDC distribution for one of the trigger counters is displayed in Fig. 10. 

4.1.2 Trigger Selection 

Due to the large amount of background noise from the beam halo, particularly in the low ltl 

region w_here -practically all of the Coulomb information lies, it was imperative to separate the 

elastic signal from background. To do this, two different kinds of triggers were used. These 

triggers differed according to whether they corresponded to coincidences between detectors located 
' . 

diagonally about the interaction region, or the ones located on the same side of the beams. 

A candidate for an elastic event was defined as one that registered a trigger in either, but not 

both, of the diagonal detector pairs 1-8 or 2-7, and no trigger in any other counter (See Fig. 3). 

31 
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Figure 10: A typical TDC distribution 

-The sample of events satisfying this selection criterion contained the elastic signal as well as a 

significant amount of background noise due to beam halo, and is referred to as the elastic sample. 

In addition to this, a sample was formed which contained events that registered a trigger on 

either of the parallel detector pairs, 1-7 or 2-8, but no trigger on any other chamber. This is 

referred to as the background sample. 
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4.1.3 Wire and Track Selection 

Each drift chamber had four sense wires. At times, the output from one or two of these wires 

was not used due to low efficiency or exceedingly large number of double or more hits, i.e., events 

that registered more than one track with a given wire. A track is the computed coordinates of a 

detected particle. When filtering events based on their tracks, only the y coordinate was used since 

the measured x coordinate was generally not trusted. 

Of the wires that were used, at least one was required to have a single hit. The remaining wires 

were required to have only single or double hits, i.e., if any one of the~ did not meet this condition, 

it was discarded for that event. Furthermore, it was required that at least two wires satisfy this 

criterion for the event to be accepted. The track of the wire with the single hit was then used as 

a reference with which the tracks of the other wires were compared. For the tracks from any two 

wires to be considered in agreement, they had to be within a specified tolerance of each other. The 

value of this tolerance was picked by trying a number of values and counting the total number of 

events after the filtering. The idea was to use the smallest tolerance possible without unnecessarily 

cutting off the amount of statistics. This tolerance was selected to be 0.7 mm. Fig. 11 shows this 

stability study for a number of tolerance values. Once agreement within the specified tolerances 

was established among the tracks, they were all arithmeticaly averaged and the result was taken 

as the coordinate of that event. 

4.2 The Readout System 

The mechanisms of they and x readout systems are described in Section D.1.1. Here, the calibration 

procedures of these two systems are described. 
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4.2.1 Calibration of the y Readout System 
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The purpose of the circular indentations, as well as the horizontal indentation at the bottom, of 

the calibration counter (Fig. 7) was to aid in the calibration of the readout system. This was done 

by observing a sample of events that did not register a hit on the calibration counter , but did 

register a hit on a trigger counter behind it. These are the events that went through the holes as 

well as the horizontal indention at the bottom of the calibration counter. Their projection along 

the y axis is that of four normal distributions ( corresponding to the four horizontal rows of circular 

holes) and one step function ( corresponding to the bottom edge) (Fig. 12). The objective here 

was to calibrate the y readout system by fitting suitable functions to this distribution where the 
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Y HOLE CAL WIRE 8 

Figure 12: The y projection of the events penetrating through the indentations of the calibration 

counter 

fitted parameters would include the calibration parameters of interest. To do this, an appropriate 

symmetric function had to be fitted to each of the four normal distributions. The problem was 

that the amount of statistics across the width of a given hole dropped by as much as 50% due 

to increasing distance from the beam, hence skewing the distribution and making the fit of a 

symmetric function impossible. Fig. 13 shows the distribution of all events as a function of y which 

clearly demostrates this drop in statistics. It was therefore imperative to correct these distributions 

for their fall-off. This correction was accomplished by normalizing the distribution of Fig. 12 with 



36 

Y EL DIST WIRE 8 

Figure 13: The y projectiou of all events regardless of which counter is hit 

respect to the amount of raw statistics, i.e., the distribution of Fig. 13. This required dividing 

the contents of the former, bin by bin, by those of the latter. This bin by bin division served to 

diffuse the skewing effect due to reduction of statistics with increasing distance from the beam. The 

profile of this normalized distribution is clearly that of a step function and four normal curves of 

comparable sizes (Fig. 14). Each of these five sub-distributions are then isolated by the imposition 

around them of fiducial cuts the boundaries of which were selected by inspection. 

The finite resolution of the detector system resulted in a smearing of these distributions. The 

form of this smearing is approximated as a gaussian convoluted with the expected profiles of the 
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Figure 14: The corrected y projection of events penetrating the calibration counter 

edge and the holes if the detector had infinite resolution. The width of this gaussian is a measure 

of the detector resolution. 

For the edge of the counter, the convolution of the expected step function with a gaussian results 

in an error function. The form of this function is derived· in Appendix E and can be expressed as 

where 

y is the electronic bit number identifying the vertical coordinate of the particle 

incident on the detector, 

E(y) is the normalized distribution of data at a given bit y, 

(16) 



N 0 is the normalization constant of the function, 

p is the bit number corresponding to the edge of the calibration counter , 

<T is the width, in mm, of the gaussian representing the resolution of the detector, 

c is the physical dimension corresponding to each bit ( commonly referred to as the 

mm/bit constant), 

e is a step function. 
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The profile of the holes are approximated as the convolution of a radial function with a gaussian 

(see Appendix E). For a given hole, this convolution can be expressed as: 

l(y) =_!!_!:_Jr dY'e-2!,[(y-p)c-µ-Y']' )1 -(Y') 2
, 

-./'Er <T - r r 

where 

I(y) is the normalized distribution of data at a given bit y, 

Nh is the normalization constant of the function, 

r is the radius of the hole (r=0.09 mm), 

µ is the location of the hole, in mm, with respect to the edge of the calibration 

counter. 

(17) 

For each sense wire in a drift chamber, a profile of the particles penetrating the holes and the 

bottom slit, similar to the one in Fig. 14, was obtained. Eq. 16 was fitted to the data at the edge 

of the calibration counter. Simultaneously, four functions of the form of Eq. 17 were each fitted to 

the profile of the holes. The fitted parameters were the five normalization constants, the edge bit 

p, the mm/bit constant c, and the resolution u. For all wires, there was also a flat background due 

to the inclusion of the vertical strips at the left and right edges of the trigger counter which were 
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not covered by the calibration counter (See Fig. 7). An extra parameter added to the functions of 

Eqs. 16 and 17 was fitted to account for this flat noise. 

Fig. 15 is the superposition of this fit on the data of Fig. 14. Of all of the fitted parameters, 

two were of primary interest, namely the mm/bit constant c and the bit number of the edge of the 

calibration counter p. Knowledge of these two parameters is crucial for determining the precise 

location of the scattered particle and hence its scattering angle. 

4.2.2 Calibration of the x Readout System 

The sample of events used here was formed in precisely the same manner as with the y calibration, 

except that here they Were integrated along the y axis, i.e., the projection along the X axis Was 
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Figure 16: The calibration function superimposed on the normalized x distribution 

formed. The abscissa consisted of the 64 electronic bits of the x readout system. As in the y 

readout. case, two distributions were obtained. One corresponded to the events that registered a 

hit on both the trigger and calibration counters, and another to the events that registered a hit 

on the trigger counter regardless of their hit status on the calibration cov.nter. Again, the former 

distribution was divided, bin by bin, by the latter. The shape of the normalized distribution was 

flat in the central 20 mm where the trigger counter was covered by the calibration counter, and 

rapidly dropped to zero in the outer 4 mm wide regions which were not covered by the calibration 

counter (refer back to Fig. 7 for counter geometries). 
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Two error functions of the same width w were simultaneously fitted to the two vertical edges. 

If the bit numbers corresponding to the left and right edges are labeled as E 1 and E2 , respectively, 

then the functions E1(x) and Er(x) fitted to the left and right edges were: 

(
x - E1) Nerf w,,/2 , 

(
E2 - x) 

Nerf w,,/2 . 

(18) 

(19) 

Here, N is the normalization constant which is fitted along with E1, E2 , and w. Fig. 16 is the 

superposition of the fitted edge runctions on the normalized distribution. The quantity IE1 - E2I 

is the distance, in bits, between the vertical edges. Dividing this quantity by the known distance 

of 20 mm yielded the mm/bit constant of the x calibration. 

Due to the unexpected nonlinearity of the x readout system, the x information was not used in 

the analysis. 

4.3 Determination of the Scattering Angles 

The calibration of the y readout system allowed one to determine the location of a scattered particle 

relative to the detector itself. If the electronic bit corresponding to the y coordinate of the scattered 

particle is designated as Yb, following the nomenclature of Section 4.2.1, the y component of the 

location of the particle with respect to the interaction point can be calculated according to 

Y = (p- Yb)c + Yeb + Ypot, (20) 

where Yeb is the distance between the upper vertic_al edge of the calibration counter and the bottom 

of the chamber (Yeb ~ 2 mm as shown in Fig. 7), and Y,,ot is the known distance of the chamber 

from the center of the detector system. 

The latter quantity Y,,ot was determined in the following manner: Before the start of every run, · 

the pots were moved vertically toward the beam until a sudden increase in the counting rate was 
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detected by the trigger counters. This position was recorded and referred to as the touch position. 

The halfway point between the touch positions of the upper and lower detectors in a castle is the 

center of the detector system. To determine the scattering angle, it was necessary to find the 

position of this detector center with respect to the interaction region. 

The position of the center of the detector system relative to the beam center is referred to 

as the beam offset, and is identified as Yo in the equations of motion in Section 2.2. To find y0 , 

the coordinates of the elastically scattered particles on the two sides of EO were compared. As 

mentioned in Section 3, the quadrupole magnets placed in the accelerator ring between the outer 

drift chambers and EO forced the measurement of scattering angles to register values other than 

what they would have been had the magnets not altered their trajectories. Thus, the effective 

lengths and not the actual lengths between the detectors and the interaction region on each side 

of EO had to be taken into account. A new scaled reference frame was devised. The quantity L is 

the average of these four effective lengths (L/C, Ly, LIIJ,, and Ly' in the equations of motion). 

The coordinates (X, Y) and (X', Y') are designated as the scaled reference frame coordinates 

of an elastic track on the left and right sides, respectively. They are defined as 

1 L - 4(L/IJ +Ly+ L/C, +Ly'), 

X 
L - L/C x, 

y L - y-Y, y 

X' L I - LX' /Cl 

Y' L I - Ly. y' 

Rescaling the equations of motion and averaging them, we obtain 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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(28) 

(29) 

where the interaction distribution width, the betatron oscillation distribution width, and the de-

tector resolution terms are dropped since they are presumed to average out to zero. The <p terms 

are possible beam tilts. The b terms are defined according to bx = /:,,, mx, by = t my, etc. 

Again, since the only coordinate of interest is y, the x equations will no longer be used. Adding 

the y equations yields 

< y +Y' > 
Yo= by+ by, 

(30) 

where </>y - </>y' is absorbed into the measurement of YO· Also, since Y is independent of Y', the 

average of their sum is taken to be the sum of their averages. The amounts by which the coordinates 

of the left and right side events should be shifted is then 

"½hift (31) 

(32) 

This uniform shifting of the event coordinates will leave the pattern centered about the beam. 

Once the scaled coordinates (X, Y) of the scattered particle on the left side of EO is thus 

determined, its scattering angle 0 is found by using the small angle approximation 

Bx 
X (33) = L' 

0y 
y 

(34) L' 

0 Jo;+ 0~. (35) 

4.4 Widths of the Elastic Pattern 

In the elastic sample, the differences of the detected coordinates of the two elastically scattered 

particles, i.e., IYI - IY'I and IXI - IX'I, were two-dimensional distributions with finite widths. 
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Figure 17: Gaussian fit to the x elastic pattern 

These widths we~e due to the non-zero width of the interaction region, the betatron oscillations, 

and the detector resolutions. The projections of these distributions on the xz and yz planes are 

gaussians. The widths of these gaussians are refered to as the x and y pattern widths, respectively, 

and are designated the symbols u x and u y. Figs. 17 and 18 show the gaussian x and y patterns 

with fitted gaussian functions superimposed on them. 
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Figure 18: Gaussian fit to the y elastic pattern 

4.5 Binning of the Data 

As mentioned in Section 4.1.2, the event selection procedure resulted in two different sets of event 

samples. One set corresponded to -events that registered a coincidence between chambers located 

diagonally about EO (1-8 or 2-7), and another between chambers on the same side of the beam 

(1-7 or 2-8 ). The former was referred to as the elastic sample, and the latter as the background 

sample. 

The x readout system displayed nonlinearities that made it unsuitable for accurate measure-

ment. Consequently, only the y information was used in the analysis, and for each differential y 
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Figure 19: Contours of constant !ti at c.m. energy of 1.8 TeV 

strip, the data were integrated over the complete 28 mm x range. 

The data in both sets of samples were binned along the y direction in a number of bins, 

referred to as stacks, for each of the chambers. The width of each stack was chosen as 0.5 mm, 

approximately equal to the pattern width in y, for the ys=l.8 TeV data . This resulted in 40 

stacks in order to cover the height of a chamber. For the ys=l.0 TeV data, the y pattern width 

was about 1 mm. Consequently, 20 stacks, each 1 mm wide, were used for this energy. Fig. 19 is 

a schem~tic of the stacks, where the t designations correspond to ys=l.8 Te V. Fig. 20 ia a similar 

schematic for ys=l.0 TeV. The point at the center of either figure represents the beam line which 

is perpendicular to the plane of the figure. The grids on the top and bottom correspond to the 
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Figure 20: Contours of constant ltl at c.m. energy of 1.0 TeV 

stack matrices of the left and right side detectors, respectively. Each stack contained all of the 

events that registered a coincidence between the y range of that stack and the entire detector on 

the other side of the interaction region. The stacks were numbered so that, for each chamber, stack 

1 was closest to the beam. Therefore, stack 1 was the bin covering the lowest !ti values, and stack 

40 {20) the bin covering the highest. The circles in the figures are constant !ti loci, the smallest of 

which corresponded to ltlmin· It is readily seen that each stack covers a large range of !ti values in 

the x direction. 

The chosen it I min was that of the largest of the four outer chambers. Each stack of any chamber· 

covered exactly the same solid angle as the corresponding stack of any other chamber. For the 
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1.8 TeV data, where the relative background amount was about the same for the two elastic 

chamber combinations (1-8 and 2-7), this equivalency of solid angles allowed the averaging of the 

contents of each of the two corresponding stacks for the two vertically aligned pots 1 and 2. If after 

the centering there were still a non-zero, albeit small, offset between the detector center and the 

beam, the second largest ( after the 0th order) term in a Taylor expansion of the differential cross 

section about the centered position, with this offset as the expansion parameter, would be the 1st 

order term. This term would have the same magnitude but opposite signs for the two vertically 

aligned pots in the same castle. The advantage of this stack by stack averaging would then be the 

cancellation of the 1st order term. This averaging was not warranted with the 1.0 Te V data due 

to the large discrepancy in the relative background contents of two combinations. This point will 

be elaborated on in Section 5. 

4.6 Background Subtraction 

On the right side detector, the events which registered a coincidence with a high ltl stack on the left 

side detector, as indicated by the diamonds in Figs. 19 and 20, formed a pattern in the shape of a 

two-dimensional gaussian which peaked a_t the same stack number as the left side stack with which 

they were coincident. There was also a significant amout of background due to beam halo which 

was concentrated in the lower stacks of the right side chamber. This background was separable 

from the signal only for events coincident between the high ltl stacks of one detector and all stacks 

of the detector on the other side of EO. In such cases, one could clearly identify two peaks in the 

pattern formed on the latter detector: a high jtj peak corresponding to the elastic signal, and a 

low ltl peak corresponding to the background. There was a strip of empty stacks between these 

two peaks which made the isolation of signal from noise straightforward. Fig. 21 demonstrates the 

two peaks, as well as the separation between them, for a typical case. For events coincident with 
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a low ltl stack on the left side, the right side pattern was not that of clearly discernible signal and 

background peaks. Since all of the Coulomb and interference information resided in the low ltl 

stacks, a method had to be devised to separate the background noise from the elastic signal in this 

region. To do this, the magnitude and shape of the background was derived from the background 

peak that was separable from the elastic signal at high !ti stacks. 

A comparison was made between the shapes of the distributions corresponding to (a) events in 

the elastic sample coincident between the high ltl region of the left side detector and the low ltl 

region of the right side detector, i.e., the background subset of the elastic sample which, as men-

tioned, was separable from the elastic signal, and (b) events in the background sample coincident 

between the same high ltl region of the left side detector and all of the right side detector. These 
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Figure 22: Comparison of background shapes from elastic and background samples 

two shapes were shown to be the same. F~g. 22 is a comparison.of these two distributions. 

The background content B{ of a stack i belonging to a left side chamber I can be expressed in 

the following way 

where 

icutoJJ 

Bf= L N{/, 
j=l 

N{/ is the number of events coincident between stack i of chamber I and stack j 

of chamber J. 

icutof f is the upper cutoff stack of the region containing the background and is 

(36) 
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found by inspection, such as in Fig. 21, 

In Eq. 36, chamber J is the elastic partner of chamber I, i.e., the two chambers are located 

diagonally about EO, and therefore Nif belongs to the elastic sample. 

The similarity of background shapes from the two samples, as shown in Fig. 22, indicated that 

Bf can alternatively be calculated according to 

(37) 

where Ci is an empirically determined p·roportionality constant. The normalized background con-

tent P{ of stack i of chamber I is determined according to 

~max NIK 
p! - L..,k=l ik 

i - Nf/{ (38) 

This normalization is specified by the right side of Eq. 38. The numerator is the pre-normalized 

background content, i.e., the number of events coincident between stack i of chamber I and all of 

chamber K which is located at the same side of the beam as J. It is clear that N{{ is obtained 

from the background sample. The denominator, Nf/{, is the total number of events coincident 

between chambers I and K. It is with respect to the latter quantity that the background content 

is normalized. 

Equating Eqs. 36 and 37, one can solve for Ci 

~~cutojJ Nf.J 
C. _ L..,3 =1 tJ 
,- I pi (39) 

Here, i is a high ltl stack. The constant Ci is calculated for all high It! stacks on chamber I where 

typically i ~ ieutoff + 4. The 4 stack, and hence 4u, separation between the lowest i and ieutoff 

was to prevent inclusion of any elastic events in the N{/ sample. Inversely, the same was done for 

the low ltl stacks on chamber I and high It! stacks on chamber J, yielding a series of Cj values. 
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All of these Ci and Cj values were equal within errors, and were therefore averaged together. This 

average, C1J, was the background normalization constant for the elastic chamber combination I-J, 

where J-J was either 1-8 or 2-7. The background content of cell i was then calculated according 

to Eq. 37. 

We can see here that although the background normalization constant was determined by using 

information from high ltl regions only, it allowed the calculation of background in all ltl regions, 

particularly in the low ltl stacks where all Coulomb and interference data reside. 

Calculating the background content for each stack also provided the signal to noise ratio for 

that stack. For a typical subset of the 1.8 Te V data, these ratios for the bottom 10 stacks are 

tabulated below: 

Stack. Signal+ Noise Noise Signal Signal/Noise 

1 720. 388. ± 15. 332. ± 31. 0.85 

2 746. 299. ± 12. 447. ± 30. 1.50 

3 656. 227. ± 10. 429. ± 27. 1.89 

4 600. 181. ± 8. 419. ± 26. 2.31 

5 619. 151. ± 7. 468. ± 26. 3.11 

6 548. 127. ± 7. 421. ± 24. 3.31 

7 523. 109. ± 6. 414. ± 24. 3.80 

8 506. 92.±5. 414. ± 23. 4.48 

9 493. 82.± 5. 411. ± 23. 5.02 

10 488. 74.±5. 414.± 23. 5.63 
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4. 7 Normalization of the Data 

The data were normalized simultaneously by the number of inelastics and the accelerator luminosity. 

4.7.1 The Inelastics 

The luminosity-free method was discussed in Section 2.1. The number of inelastics, Nine/, was 

counted by the ring scintillation counters (refer back to Fig. 3). Also in Section D.1.2, the L, R, 

and LR triggers are defined. These triggers were the primary sources of information about the · 

number of inelastic events. Several corrections were made to these numbers due to differences in 

bunch intensity and incomplete angular coverage. Theses corrections were estimated to be[41] 

single arm L + single arm R 
LR 

extrapolated L Loss + extrapolated R Loss 
LR 

extrapolated L Loss + extrapolated R Loss 
LR 

0.354 ± 0.075, 

0.028 ± 0.014 (small angle), 

0.016 ± 0.008 (large angle). 

(40) 

(41) 

(42) 

Using these corrections, the number of inelastics was calculated and used to normalize the data 

at vs= 1.8 TeV only. The error of the inelastics is composed of two parts. One part is simply 

the square root of the number of LR counts. The other part is due to the errors of the corrections 

identified above. 

4. 7.2 The Accelerator Luminosity 

In addition to the inelastics, the accelerator luminosity was used to normalize the measured counting 

rate. 

Two of the scaler constants that were recorded at the end of each run were the monitor constants 

M and M'. M was the electronics logic coincidence of all the counters in the R5 quadrant (in a 6 

ns coincidence) put into a 15 ns electronics logic coincidence with that of all the counters in the 15 
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quadrant, all latched to a 30 ns coincidence with the RF signal (refer to Section D.l). Scaler M' 

was the same as M, but with the RF signal delayed by 21 µs in its coincidence with the 15 x R5 

logic pulse. 

Two other scaler constants were clock and g(ated)c/ock. The ratio of the latter to the former 

was the fraction of the time the experiment was not cut off by the signal indicating beam in the 

Main Ring above the Tevatron. 

The integrated accelerator luminosity for a given run was calculated by the relation 

C = K(M - M') clock ' 
gclock 

(43) 

where K is the fitte~ slope of a straight line to the integrated luminosities vs M - M' values for a 

series of dedicated runs whose luminosities were recorded at the intersection region BO along the 

Tevatron. The value of K was known to an accuracy of about 15%. 

4.8 Subdivisions within the Data 

For the 1.8 Te V data, four series of runs, corresponding to four stores, were analyzed. Within 

each series, the runs were first individually analyzed to check for internal consistency. They were 

then combined at the outset to form what was referred to as a superrun, the run composed of the 

entire usable data for that series. The integrated luminosity of a superrun was simply the sum of 

the luminosities of its constituent runs. The four series were labeled as the 600 series (runs 623 to 

626), the 650 series (runs 627 to 630), the 700 series (runs 754, 755, 757, and 758) and 750 which 

was the only usable run from its store. 

The 1.02 TeV data were taken from only one store. The runs used were 788 to 793. 
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4. 9 Fitting the Data 

Eq. 113 is the expression for the differential elastic cross section. The data, however, do not obey 

the form of this relation since each datum point is not the number of counts at a t value. Rather, 

each 28 mm x 0.5 (or 1) mm stack covers a large range oft values, as seen in Figs. 19 and 20. 

Furthermore, as elaborated on in Section 4.4, the elastic pattern had a finite width due to beam 

thickness, betatron oscillations, and detector resolution. In the vicinity of the beam, near the 

horizontal edges of the right side detector, a portion of the elastic pattern was lost, and therefore 

not all of the possible events near the detector edges were recorded. In Figs. 19 and. 20, the 

half-dashed gaussian represents the elastic pattern coincident with the low It! stacks of the left side 

detector. The dashed part is the portion of the pattern that lies outside of the detector boundaries. 

This problem did not exist for the vertical edges of the chamber, since in scaled space the right side 

chambers are wide enough to contain the entire x component of the elastic pattern. The theoretical 

function describing the data at a given t value was not simply the differential elastic cross section, 

but a new function which takes these limitations into account. This function was the convolution 

of the differential elastic cross section, d~f' , with a two-dimensional gaussian, where the limits of 

integration were the boundaries of the right side detector. 

The t value of each detected particle is calculated using Eq. 94, i.e., t = -p202 , where 0 is 

the particle's scattering angle. The latter can be expressed in terms of its polar and azimuthal 

components, 0"' and 0y 

02 = 0; + 0;, (44) 

where 

0/Il = x+x' {45) 2L ' 

0y = Y+Y' (46) 2L 
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Here, the lowercase coordinates are in physical mm and the uppercase coordinates are in scaled 

mm, where this scaling is defined in page 42. The unprimed coordinates are those of the events as 

measured by the left side detectors, and the primed coordinates those of the events measured by 

the right side detectors. The quantity L is the average of the x and y effective lengths of the two 

sides. 

The theoretical function describing the data contained in stack i is derived in Appendix F. Its 

final form is 

-- =-- dydx ----------dy'dx' . (
d<7'e/) 1 1~ !Ymin,+~Y [loo JY!..a., dUe/e-½("';;')

2 
r½(~)2 l 

dt , AxAy _A£ y . . _00 y' . dt -,,fiirux -,,fiiruy 
" :I m1n1 nun 

(47) 

The bracketed portion of the integrand is the theoretical function describing the data at a given t 

value. The form of this function is due to the finite width of the elastic pattern. The quantities Ux 

and Uy are the x and y pattern widths, respectively. The limits of integration in y' correspond to 

the boundaries of the right side chamber. The integration limits in x 1 are approximated as infinities 

due to the sufficiently large width of the right side detector. 

As mentioned before, the data points are integrated counts over the area of each stack. There-

fore, the function bracketed in the above expression was averaged over the dimensions of stack i. 

The width and thickness of each stack are labeled as Ax (=28 mm) and Ay (=0.5 mm at y's=l.8 

TeV and 1 mm at 1.02 TeV), respectively. The quantity Ymin, is the y coordinate, measured with 

respect to the beam, of the lowest ltl point of stack i. 

The integrals in Eq. 47 were evaluated numerically using gaussian quadratures[42]. Appendix 

F describes the methodology used in deriving and evaluating these integrals. 

The measured quantity for stack i was the number of counts contained in that stack, AN;. The 

incremental t range covered by that stack, At, is expressed as 

p2 
At= -An, 

7r 
(48) 
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where Ail is the solid angle subtended by each stack and is equal to ~ x f:. The differential 

count ~£;; can be expressed in terms of ( d~;1 ) i according to 

ANi = .C / duel) . 
At \ dt i 

(49) 

The luminosity term .C is fitted in addition to Ut, B, and p. Both the accelerator luminosity 

provided by the accelerator group at Fermilab and the number of inelastics are used to normalize 

the fit. 

The x2 to be minimized by the fit contained three classes of terms. For a stack i, one class 

utilized Eq. 49, fitting.Caswell as Ut, B, and p. The next class of terms employed the relation 

(50) 

In the fit, the inelastic cross section Uinel was expressed as Ut -Ue/, where the latter was a quantity 

in terms of the elastic scattering parameters (see Eq. 6). The last x2 term fitted .C with the 

empirical accelerator luminosity value which had an error of 15%. 



5 Results 

Two sets of data corresponding to center of mass energies of vs=l.80 and 1.02 Te V were analyzed 

using the procedure outlined in the analysis section (Section 4). 

5.1 The 1.8 TeV Data 

As explained in Section 4.8, four sets of superruns were individually analyzed. The results of 

theses analyses are presented in Section 5.1.1. Once internal consistency among these superruns 

was established, they were fit simultaneously in a global fit the result of which is shown in Fig. 23. 

The downward curvature of the experimental points at low stacks is due to loss of statistics resulting 
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Figure 23: Fit to the 1.8 Te V data 
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Source p Ut (mb) B ((GeV /c)- 2) 

Background normalization constant 0.0328 0.61 0.034 

Lx 0.0004 0.18 0.001 

Ly 0.0016 0.93 0.331 

Pot position 0.0059 0.16 0.042 

Calibration 0.0020 0.07 0.023 

Pattern width 0.0001 0.01 0.001 

Quadrature sum of sy~tematic errors: 0.033 1.1 0.33 

Statistical error: 0.061 2.4 0.29 

Overall error: 0.069 2.7 0.44 

Table 4: Systematic error contributions for 1.8 Te V data 

from decreasing acceptance. These losses were modeled and factored into the calculation of the 

effective differential cross section as described in Appendix F. The designation along the abscissa 

is the square of Y since, in the nuclear region, the logarithm of the differential cross section varies 

linearly with JtJ, which in turns is proportional to the square of the scattering angle. The data 

were normalized by the number of inelastics and the accelerator luminosity. 

The errors are purely statistical. These errors were later enlarged due to systematic contribu-

tiims to the overall uncertainty from a number of factors such as effective lengths, pot positions, 

pattern widths, readout calibrations and the background normalization constant. The breakdown 

of the contribution of each of these factors to the overall errors is shown in Table 4. The overall 

errors are the quadrature sum of the statistical and systematic uncertainties. This yields the final 

results for the 1.8 TeV data of 

Ut = 72.2 ± 2.7 mb, 

B = 16.72 ± 0.44 (GeV /c)-2 , 



p = 0.134 ± 0.069, 

<1'e/ = 0.225 ± 0.164, 
<Tt 

where the ratio <1'ei/<1't was calculated using Eq. 6. 

5.1.1 Results from fudividual 1.8 TeV Superruns 
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The four superruns described in Section 4.8 were individually analyzed to check for internal consis-

tency among the results. In addition to the .D..N / .D..t values, the input data consisted of the number 

of inelastics Nine/ and the accelerator luminosity .C. These values are presented in Table 5 for each 

of the four superruns. The rightmost column is the luminosity which resulted from the global fit 

Superrun Nine/ Accelerator Luminosity (mb- 1) Fitted Luminosity ( mb- 1) 

600 300298 5376 5374±437 

650 291295 6049 5065±412 

750 134862 2679 2311±188 
700 268601 4743 4751±386 

Table 5: Normalization parameters of the 1.8 TeV superruns 

to the entire data. Plots of the fits are presented in Figs. 24 and 25. 

5.1.2 Earlier E710 Elastic Scattering Results at 1.8 TeV 

As mentioned in the introductory section, Section 1.4, E710 has analyzed the low JtJ 1.8 TeV data 

three times. The results emphasized in this work correspond to the third and final attempt. 

The first attempt was in 1989, when no strategy for background subtraction was yet developed[24]. 

Analysis, therefore, was restricted to the relatively background-free region in the higher JtJ portion 

(0.02 < JtJ < 0.08 (GeV/c)2) of the data. Consequently, no p value was measured; it was instead 



...--. 
N ...--. 

0 

';;-
<I) 

" '-' 

' J:J 
E 
'-' 
...--. 102 ..., 
<I 

' z 
<I 
'-' ...--. 
...J 

' ... '-' 

...--. 
N ...--. 

0 

~ 
" '-' 

' J:J 
E 
'-' 
...--. 102 ..., 
<I 

' z 
<I 
'-' ...--. 
...J 

' ... '-' 

14-MAY-93 20:56:45 

Run 600 -- Pots < 1 +2> 
a=68.91 + /- 4.55 mb 2 8=16.30+/- 0.47 (GeV/c)-
p=0.2620+ /-0.0878 _, 
L= 5666.+/- 372. mb 
X = 0.0 - 14.0 mm 
Y = 2.4 - 20.9 mm 

Accel. L= 5376.+/- 806. mb- 1 

Ninel=300298.+;'.- 633. 
/ lum=0.129 / inel=0.000 

2 x tot= 40.23 d.o.f.= 35 

//df= 1.149 

0 500 1000 

[Y (stock number)J2 

14-MAY-93 21:17:22 

Run 650 -- Pots <1 +2> 

1500 

a=72.31 +/- 4.71 mb _2 8=16.59+/- 0.59 (GeV/c) 
p=0.1369+/-0.1265 _, . 
L= 5210.+/- 337. mb 
X = 0.0 - 14.0 mm 
Y = 2.5 - 21 .0 mm 

Accel. L= 6049.+/- 907. mb- 1 

Ninel=291295.+;'.- 624. 
/ lum=0.855 / inel=0.000 

x2 tot= 47.88 d.o.f.= 35 

//df= 1.368 

0 500 1000 

[Y (stock number)J2 
1500 

Figure 24: Fits to the 600 and 650 series of. the 1.8 Te V data 

61 



r--, 

"' r--, 
() 

~ 
<I) 

(.!) .._, 

" .a 
E .._, 

r--, 
+' 

~ z 
<I 
'-' 
".:]' 

" '-' 

r--, 

"' r--, 
() 

~ 
<I) 

(.!) 
'-' 

" .a 
E 
'-' 
r--, 
+' 

~ z 
<I 
'-' 
".:]' 

" ~ '-' 

102 

102 

14-MAY-93 22: 15:36 

Run 750 -- Pots <1 +2> 
u=68.20+ /- 5.14 mb 2 8=16.01+/- 0.69 (GeV/c)-
p=0.1888+/-0.1147 -1 
L= 2553.+/- 193. mb 
X = 0.0 - 14.0 mm 
Y = 2.5 - 21 .0 mm 

Accel. L= 2679.+/- 402. mb- 1 

Nine1=134862.+/'.- 426. 
/ lum=0.098 / inel=O.OQO 

x2 tot= 26.81 d.o.f.= 35 

//df= 0.766 

0 500 1000 

[Y (stack number)J2 

14-MAY-93 22: 12:25 

Run 700 -- Pots < 1 +2> 

1500 

a=78.31 +/- 2.51 mb 2 8=17.48+/- 0.52 (GeV/c)-
p=0.0203+ /-0.0997 -1 
L= 4449.+/- 143. mb 
X 0.0 - 14.0 mm 
Y = 2.5 - 21 .0 mm 

Accel. L= 4743.+/- 711. mb-1 

Ninel=268601.+/'.- 601. 
x2 lum=0.171 x2 inel=0.000 

x2 tot= 40.93 d.o.f.= 35 

//df= 1.170 

0 500 1000 

[Y (stack number)J2 
_1500 

Figure 25: Fits to run 750 and the 700 series of the 1.8 TeV data 
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Figure 26: A du/dt vs ltl fit for Ut and B from the E710 1989 analysis of the 1.8 TeV data 
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fixed at the theoretically predicted value of 0.145. No knowledge of the number of inelastics was 

available at the time either, so the data were normalized only by the accelerator luminosity. This 

analysis resulted in: Ut = 78.3 ± 5.9 mb, B = 16.3 ± 0.5 (GeV /c)- 2
, u 0 1 = 19.6 ± 3.0 mb, and 

u 0 tf ut = 0.25 ± 0.02. Fig. 26 shows a fit to one of the series of runs analyzed. 

Results from the second analysis of the 1.8 Te V data were released in 1991. This time, the beam 

halo background noise was modeled and removed from the data(26]. This allowed the extension of 

the analysis to a much lower ltl region (ltl 2: 0.0014 (GeV /c)2) than before. The data were nor-

malized only by the number of inelastics, i.e., the luminosity-free method described in Section 2.1. 

The lower !ti coverage allowed the simultaneous fit of Ut, B, and p. The results were Ut = 72.8 ± 3.1 

mb, B = 16.99 ± 0.47 (GeV /c)- 2 , and p = ·o.140 ± 0.069. The curve for the best fit to these data 

is shown in Fig. 27. 
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Figure 27: The dN/dy vs y2 fit for elastic scattering distribution, for almost all of the E710 
1991 analysis 
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The results discussed in this work represent the third and final analysis of the E710 low ltl 

data at ,/s = 1.8 Te V. A modified background-subtraction procedure and more straightforward 

acceptance ·corrections allow penetration to a minimum It I of 0.00075 ( Ge V / c )2 • The simultaneous 

normalization of the data by the inelastics and the luminosity allow a more accurate determination 

of the cross section. 

E710 has also conducted measurements at a high itl, The parameters measured were the nuclear 

curvature parameter C and the ratio of the elastic to total cross section <rei/<r1. Fig. 28 is a 

plot of the fit to d<r/dt vs high JtJ. The curvature parameter was measured to be C = 0.14 ± 

0.70 (GeV /c)-4
, i.e., compatible with zero. This result, in conjunction with the positive C values 

measured at lower energies at the ISR[44,1] and the SppS[l,51], signal the transformation of the 

nucleon to a sharp disk with increasing s. The Tevatron energy of 1.8 TeV is the energy at which 



65 

102 ' C'II 
101 

u 
' > 
Q) 

10° (!) 

' .0 
E 10·1 

~ 

-0 10·2 
' \:) 
"O 

10·3 
0 0.2 0.4 0.6 

ltl (GeV/cl 2 

Figure 28: Fit to du/dt vs ltl in the high !ti region at 1.8 TeV 

the curvature parameter C makes the transition from positive to negative values. 

The ratio of the elastic to total cross section was measured to be 0.230±0.024. This value, along 

with the lower energy data from other experiments, is shown in Fig. 29. From this figure it can be 

seen that as s increases from ISR energies, the ratio u el/ <rt rises. This indicates that the nucleon 

becomes blacker with increasing energy, although this ratio is still well below the asymptotic value 

of 0.5 which would indicate the transformation of the nucleon to a black disk. 

5,1.3 Diffraction Dissociation at 1.8 TeV 

In 19-90, E710 normalized their single diffraction events to LR events. The LR events were dis-

cussed in the section on inelastics (Section 4.7.1). E710 measured the total single-diffractive cross 

section[41] of 2u,d = 11.7 ± 2.3 mb at vs = 1.8 TeV. The factor 2 indicates that the quantity is 
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f 

the total cross section, i.e., the sum of the diffractive dissociation of the proton and the antipro-

ton; the two are always taken to be equal. In 1993, E710 studied single diffractive dissociation 

(pp - pX) at vs= 1.8 TeV(32] using an experimental technique different from that used in 1990. 

The dissociated particle mass and momentum transfer covered the ranges 3 < Mx < 200 GeV and 

0.05 < ltl < 0.11 (GeV /c)2, respectively. The quantities Mx and t are assumed independent, i.e., 

d<J' ( 2 dtdM2 =Af(t)g Mx)· 
X 

For functions f and g, E710 used the forms 

f(t) = it, and 

(51) 

(,52) 

(53) 



67 

16 

M Chapmon et al. • This Experiment 
.c 0 Schamberger et al. 
_§ 14 X Barish et al. 
C: 0 Al brow et al. .Q 

+ Armitage et al. 
al 12 ., Whitmore et al. Vl 

"' C Ansorge et al. 
"' c. Alner et al. 0 
U 10 C Bernard et al. 
C: X Amos etal. g 
g 8 TT T .:: , !u~: it -cS 
Q) 6 a, OJ~ C: 

Vl 
o 4 
0 
I-

2 
102 

Figure 30: The world pp and pp total single-diffractive cross section data 

and used the data to obtain b, a, and the total cross section for diffraction dissociation given by 

ff du 2 
2uad=2 dtdMJcdtdMx, (54) 

where the integrations are carried out over all values oft and 2 GeV2 < M} < 0.05 s. 

The fit to the data yielded a= 1.13± 0.07, which was consistent with some theoretical models 

expecting an Mi_ 2 dependence. Furthermore, b was measured to be 10.5 ± 1.8 (GeV /c)- 2 , which 

was about half of the nuclear slope parameter for elastic scattering. The total single-diffractive 

cross section was measured to be 2uad = 8.1 ± 1.7 nib, which was in reasonable agreement with the 

1990 result. The x2 /degree of freedom, however, was quite high at 3.5. This is probably due to 

the breakdown of the assumption that Mx and t are independent. On the other hand, the elastic 

nuclear slope parameter B measured by the pi'_ocedure used here was found to be B = 17.9 ± 2.5 

(GeV /c)- 2 , which agrees well with the published value of 17.0 ± 0.5 (GeV /cr 2 . This reinforces 
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confidence in the results for a and b. The total single-diffractive cross section result from this 

experiment together with previous pp and pp data, and the earlier E710 result[41] are shown in 

Fig. 30. 

5.2 The 1.02 Te V Data 

The 1.02 TeV data were from only one store. The fit to the data is shown in Fig. 31. Here, B was 

fixed at 16.2 (GeV /c)- 2 , which was obtained from an independent measurement using data at a 

higher JtJrange[43]. The data were normalized by the the accelerator luminosity only, since there 

was no reliable estimate of the number of inelastics. 

These data did not contain enough information in the Coulomb region to yield a reliable p 



Source 

Luminosity 

Background normalization constant 

B 
Lx 
Ly 
Pot position 

Calibration 

Pattern width 

Quadrature sum of systematic errors: 

Statistical error: 

Overall error: 

<J't (mb) 

4.15 

0.287 

0.370 

0.225 

0.1792 

0.0238 

0.00691 

0.00300 

4.19 

0.264 

4.2 

Table 6: Systematic error contributions for 1.02 TeV data 
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value. The only parameter fitted to the data was therefore the total cross section <J't. The p value 

was fixed at 0.13, which is the most current value predicted by theory (see Section 6). The 15% 

error of the luminosity was treated as systematic. The breakdown of the contribution of various 

factors to the overall errors is shown in Table 6. The overall errors are the quadrature sum of the 

statistical and systematic uncertainties. The 1.0 Te V total cross section obtained from these data, 

which are taken at low !ti, is 

<J't = 59.6 ± 4.2 mb, 

<J' el - = 0.191 ± 0.016. 
<J't 

An independent measurement of elastic scattering at VS = L02 TeV at a higher !ti range 

(0.065 ~ !ti ~ 0.21 (GeV /c)2 ) was conducted by E710[43] in 1992. The slope parameter was 

measured to be B = 16.2 ± 0.7 (GeV /c)- 2 , which was the value at which B was fixed in the low !ti 
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Figure 32: Fit to the 1.02 TeV data at high !ti range 

analysis described above. Using the optical theorem and the accelerator luminosity, they obtained 

O'tJl + p2 = 61.7± 5.7 mb. The fit to the measured variation of dN/dy vs y2 is shown in Fig. 32. 

The solid line is the fit to an exponential function in y2 in the range 161.3 mm2 :S y2 :S 501.8 mm 2. 

Substituting the theoretical value of p = 0.13 into the high ltf E710 measurement of O'tJl + p2 , 

one obtains the total cross section of O't = 61.2±5.7 mb. This cross section is virtually independent 

of that obtained from the low !ti measurement. The only common parameter between the two 

measurements is B, which is measured at high !ti and fixed at low ltJ. However, since the uncertainty 

of B has a negligible effect on the low Jtl measurements, as indieated in Table 6, one can consider 

the high and low Jtl measurements independent of each other, and therefore average- their total 



cross sections. This yields a complete cross section measurement at VS= 1.02 TeV: 

rrt = 60.2 ± 3.4 mb, and 

rrel - = 0.193 ± 0.014. 
(f't 
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6 Models of Elastic Scattering 

The E710 energy of ys = 1.8 TeV is the highest so far achieved for this class of experiments. It 

therefore provides a very large lever arm for the fits that are discussed here. 

Three independent and apparently contradictory theoretical models have been fitted to the 

world data of <1't, B, and p for both pp and pp scattering: 

• The Regge pole scenario(52], 

• An analytic asymptotic amplitude analysis(51], and 

• A QCD-inspired eikonal model[49]. 

All three models fit t_he data quite well. 

6.1 The Regge Pole Picture 

The Regge pole model of the Pomeron was constructed by Landshoff and Donnachie(52]. According 

to this model, the world IYt vs. s data for pp and pp can be approximated as 

<Yt = 22 SO.OS mb. (55) 

Furthermore, a Regge pole amplitude using the Regge trajectory 

a(t) = 1.08 + 0.2t (56) 

provides a good first approximation to near-forward elastic scattering from ISR to Tevatron ener-

gies. The increase of B with s is generally associated with a single Pomeron Regge pole having a 

linear trajectory whose slope is the derivative a' = 0.2 of the Regge trajectory of Eq. 56, and can 

be expressed as 

B =Bo+ 2a'logs. (57) 
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The fit of this model to the current world data of O't and B for pp scattering is shown5 in Figs. 33 

and 34. 6 The dashed line in Fig. 33 is the power behavior of the cross section given by Eq. 55. 

Both of these figures demonstrate that the E710 and CDF results are consistent with this simple 

model. 

From the differential dispersion relations, the real part of the pp scattering amplitude /pp can 

be approximated as 

471' 71' dO"t p Re/pp~ 2 d(logs) · (58) 

5The figures in this section are taken from the review by Block, Kang, and White[48]. 
6The datwn points used in Figs. 33-47 are limited to those published prior t~ June, 1992. Specifically, the CDF 

and E710 <Tt and p values are those released in 1991. 
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Using the power behavior of <Tt with s given in Eq. 55, the right side of Eq. 58 can be evaluated as 

41T 1T p Re/pp ~ 2 x 0.08 x <Tt, (59) 

The imaginary part of the scattering amplitude is related to the total cross section according to 

the optical theorem (Eq. 98). The ratio of the real to the imaginary part of the amplitude thus 

yields a p value of 

1T 
p = 2 X 0.08 ~ 0.12. (60) 

This Regge pole model therefore yields a constant value of p which is about half of the UA4 

value of 0.24 ± 0.04[9]. As mentioned in the Introduction section (Section 1), the UA4/2 group 

eventually re-measured(22] p to be 0.135 ± 0.02 which was in agreement with the prediction of the 

Regge pole model. 
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There are serious problems with this simple picture that are not readily resolvable. First, it 

is immediately obvious that the simple s dependence given in Eq. 55 does not satisfy unitarity. 

Secondly, the t dependence of the differential cross section in this model is that of a constant 

slope with no curvature. Although this model can be modified to exhibit positive curvature at 

vs~ 540 GeV, as measured at the ISR[l,44,51] and SppS[l,51], it cannot at the same time explain 

the vanishing of curvature at vs= 1.8 TeV[53]. By the same token, this model cannot explain the 

secondary diffraction maxima observed at large it! at the 1SR[15] .and SppS(l6]. 

Since the Regge model of the rise of the cross section with energy, given in Eq. 55, violates 

unitarity, its prediction of the cross- section at higher energies provides an upper bound. to the 

predicted cross sections of the future accelerators. 
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Figure 36: p vs. energy for pp ( o) and pp ( x) scattering, with a log2 s variation, and no Odderon. 

6.2 Analytic Asymptotic Amplitude Analysis of Elastic Scattering 

The Froissart bound states that the rise of pp and pp cross sections with s is asymptoticaly bounded 

by m""i log2 ..L, where m,,. is the rest mass of pion and so is a scale factor[14]. The scattering 
" &o 

amplitude, therefore, cannot cause o-1 to asymptotically rise faster than log2 s. 

Based on the available data corresponding to the energy range 5 ~ ys ~ 1800 GeV, Block and 

Cahn[44] parametrized the elastic scattering amplitude fin terms of an even amplitude f + and an 

odd amplitude f- such that 

fpp 

/pp = 

!+-!-
2 

!++!-
2· 

(61) 

(62) 
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and Odderon 2. 

These amplitudes had the form 

471"/ -+ p 

471" f_ 
p = 

i ( A+,0 [10g (:J-iir +csµ-leiir(l-µ)/2), 

-Dsa-1 eiir(l-a)/2. 
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(63) 

(64) 

Here, A, ,0, s0 , c, µ, D, and a are all parameters fitted to existing experimental data. The 

quantities s and p are the square of the c.m. energy and the c.m. momentum of either incoming 

particle, respectively. From the optical theorem, we have 

from which follows that 

± 47r 
<1 = -Imf±, 

p 

u(pp) = 

(65) 

(66) 
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Figure 38: p vs. energy for pp ( o) and pp ( X) scattering, with ~ log2 s variation, and Odderon 2. 

er(pp) 
er++ er-

(67) = 2 

PPP 
Re U+ - f-) (68) 
Im(!+ - /-) 

PPP = Re(!++ f-) (69) 
Im(!++/-)' 

The csµ-l and Ds°'..,. 1 terms are referred to as the even and odd Regge exchange terms, respec-

tively. The term in /3 results in a log2 s rise, and A is the constant part of the cross section. In 

the fit to the data, the parameter o: was found to be about 0.5, and therefore the odd amplitude 

vanishes ass - oo. 

Block and White[51] fitted the above asymptotic amplitudes to the world data. It is important 

to keep in mind that the data by themselves may not exhibit the asymptotic behavior. These 

measurements were taken at energies of up to ,./s = 1.8 TeV. Below this energy, the ISR[l,44,51] 



x • ~ o • p Data File: 8RFIT3 230 ........ T"T"TTT---r--r-,.....,....T"T"T....--..--..---,r-T""l'"T'T"...---r---.-,,-,-r"T"T-n--..---.-,r-T""~ 

220 
210 
200 
190 
180 
170 
160 
150 

.0 140 
.5 130 

120 
b 110 

100 
90 
80 
70 
60 
50 •l 

"""---·-.....·-··-··-40 ,,._ ___ ..;....::.::..:::...----

·ssc· 

30 ....................... _...__...._ ................ __ ..._...__.....,_......._...__,.._....__.-'-L.L.l..u___.,__.,__._._~ 

4 10 100 1000 10000 100000 

-fs (GeV) 

Figure 39: Cross section vs. energy for pp ( o) and pp ( X) scattering, with a log2 s variation, 

and Odderon 1. 

79 

and SppS[l,51] experiments measured positive values for the nuclear curvature parameter C. E710 

measured the curvature C to be consistent with zero[53], indicating that this is the energy at which 

the nucleon begins the transition to disk-like behavior, i.e., to 'asymptopia'. 

There are no data available at higher energies, and hence it is likely that we are not yet in 

'asymptopia'. The analysis being discussed here therefore may not be using asymptotic data. It 

does, however, describe the data exceedingly well at present energies. 

Eden and Kinoshita[18] have derived that if u(pp) and u(pp) grow as log'Y s, then u(pp)-u(pp) -

log-r/2 s ass - oo. Fitting the above asymptotic amplitudes to the data, on the other hand, results 

in u(pp) - u{pp) - 0 and p(pp) - p(pp) - 0 as s - oo. Therefore, three types of odd amplitudes, 
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Figure 40: p vs. energy for pp ( o) and pp ( x) scattering, with a log2 s variation, and Odderon 1. 

referred to as Odderons, that do not- vanish asymptotically were introduced via the forms 

(70) 

= - (rog !..._ - i!!..] / 1) 
So 2 ' 

(71) 

[ ]

2 
s . 1r 2 • = - log - - i- / ) . 

So 2 
(72) 

The complete odd amplitude is the sum of the conventional odd amplitude of Eq. 64 with one 

(or none) of the Odderons of Eqs. 70-72. Block and White(51] constructed these composite odd 

amplitudes and fitted them to the world pp and pp data of <Tt and p. The results of each fit are 

summarized below 7 

7The figures in this section are taken from Ref. [51). 
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Figure 41: Cross section vs. energy for pp ( o) and pp ( x) scattering, with a logs variation, and 

no Odderon. 

. 
• The first fit used the conventional even amplitude and no Odderons in the odd amplitude. 

The x2 / d.f. (x2 / degree of freedom) of this fit was 2.03, indicating a poor fit. The computed 

curves are shown in Figs. 35 and 36. As the figures show, there is more than a 3 standard 

deviation discrepancy between the Tevatron (E710 and CDF) total cross sections and the 

predicted value of the fit. Furthermore, it predicts too high a pat 546 GeV and 1.8 TeV. It 

is therefore concluded that a simple log2 s behavior does not fit the data. 

• The second fit added the Odderon of Eq. 72 (Odderon 2) to the conventional odd amplitude 

of Eq. 64, and used it along with the conventional even amplitude. The curves are shown in 

Figs. 37 and 38. The x2 /d.f. of this fit was 1.93, i.e., another poor fit. Again, the predicted 

cross- section at 1.8 Te V is too high, as is the predicted p value at 540 Ge V. The fitted value of 
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Figur~ 42: p vs. energy for pp ( o) and pp ( x) scattering, with a logs variation, and no Odderon. 

the Odderon amplitude was t:< 2) = -0.022 ± 0.011 mb which is only two standard deviations 
' 

from zero, and does not play a major role in the fit. 

• The third fit added Odderon 1 (Eq. 71) to the odd amplitude and used it along with the 

conventional even amplitude. The curves are shown in Figs. 39 and 40. This fit was the 

worst of the first three with a x2 /d.f. of 2.65. It exhibited the same problems as the first two 

fits. 

Block and White thus concluded that a~ even amplitude varying as log2 (s/so) does not fit the 

world data. This demonstrates that the experimental cross section does not rise as rapidly as 

log2( s /so) in the currently accessible energy region. The addition of an Odderon does not affect 

this situation. Block and White then considered an asymptotic variation that goes as log( s /so) 
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with an even amplitude of the form 

(73) 

They then used the conventional odd amplitude of Eq. 64, along with no Odderon or Odderon 1, 

but not Odderon 2 since it is not allowed for a logs fit: 

• The first fit used no Odderon in the odd amplitude, and used the new even amplitude of 

Eq. 73. The curves are plotted in Figs. 41 and 42. The x2 / degree of freedom of the fit was 

1.26-, which was much more reasonable than the high values(> 2) corresponding to the log2 s 

models. 

• The last fit added Odderon 1 to the odd amplitude, and used the even amplitude of Eq. 73. 

The curves are plotted in Figs. 43 and 44. The x2 /d.f. of this fit was 1.24, making it almost 
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Figure 44: p vs. energy for pp ( o) and pp ( x) scattering, with a logs variation, and Odderon 1. 

indistinguishable from the fit with no Odderon. 

It is observed that the introduction of an Odderon is not needed to explain the experimental 

data. Therefore, an analytic asymptotic amplitude analysis shows that <rt values in the energy 

range 5-1800 GeV follow a log /
0 

behavior, and introduction of a non-vanishing odd amplitude is 

not required. 

At the LHC energy of 16 TeV, this analytic asymptotic model predicts the total cross section 

to be 104.4± 1.0 rob, and at the SSC energy of 40 TeV, 117.4± 1.3 rob. The errors are statistical, 
. 

and are due to the errors of the fitted parameters. As mentioned earlier, the current world data do 

not extend to high enough energies to contain information about the asymptotic behavior of the 

cross section, i.e., we are not yet in 'asymptopia'. It is likely that the cross section will ultimately 

rise faster than logs. The values predicted by this model at the LHC and SSC energies should 
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therefore be treated as possible lower limits to the actual values. 

6.3 QCD-Inspired Model of Elastic Scattering 

The eikonalized QCD model of Block, Halzen, and Margolis[49] also explains the pp and pp data for 

<1't, B, and p using the quark-quark, quark-gluon, and gluon-gluon interactions, the last of which is 

the cause of the rise of the cross section. It also predicts the nuclear curvature parameter to be zero 

at J's = 1.8 TeV and positive at lower energies. Using an impact parameter representation[44], 

the even and odd scattering amplitudes can be expressed as 

(74) 

where lbl = b is the impact parameter, and 141 = q is the momentum transfer such that t = -q2 . 

The impact parameter space representation, a(b, s), of the scattering amplitude can be expressed 

in terms of even and odd eikonals x± according to 

(75) 

As s --. oo, x- vanishes. 

To understand the properties of this eikonal model, x can be re-written in the form 

2x(b, s) = P(b, s), (76) 

where P(b, s), the probability of collision, can be expressed in terms of the interaction probabilities 

between the constituents of the colliding nudeons as 

. P = Pqq + Pqg + P09 • (77) 

The terms in the summation correspond to quark-quark, quark-glue, and glue-glue interactions, 

respectively . The glue-glue term P99 is factorized into the impact parameter space description 
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Wgg(b), and the QCD glue-glue cross section, u'jtD(s), as 

where 

2 

Wgg(b) = ::;(µggb}3Ka(µgg~), 

86 

(78) 

(79) 

where Ka is the modified Bessel function. The mass µgg sets the scale of the variation in b space, 

and is the mass in the dipole form factor (Eq. 100) from electron-proton scattering. The glue-glue 

cross section is calculated as 

(80) 
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Figure 46: p vs. energy for pp ( o) and pp ( x) scattering, along with eikonalized QCD fit 

where 

The form used for the gluon structure function is 

f ( ) "' (1-x)5 

g X J • 
X 

87 

(8 l) 

(82) 

(83) 

In Regge language, J is known as the Pomeron intercept, and controls the evolution of the gluon 

structure at small x: In high energies, the energy dependence is controlled by the factor 

(84) 
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,Figure 47: B vs. energy for pp (o) and pp (x) scattering, along with eikonalized QCD fit 

Fgg counts the number of gluons in the colliding hadrons. The number increases rapidly at x ::: ~ 

and this is the origin of the rising cross section(49]. In other words, the glue-glue inter~ction 

probability goes as P00 (b, s),...., W00 (b)sJ-t. When the number of gluons becomes large, the glue-

glue interaction probability P00 approaches unity for a critical impact parameter be given by 

(85) 

. where c is a constant. Substituting from the expression for W00 ·(Eq. 79), at large values of µb 

where c' is another constant. Solving for be, we have 

J -1 s 
be :::::i --log-. 

µgg So 

(86) 

(Si) 
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The quantity be can be interpreted as the radius of a sharp disk containing a large number of 

gluons. The total cross section can thus be found 

( )

2 
2 J-1 28 

<Tt = 21rbc = 21r -- log -. 
µgg so 

(88) 

The parameter J determines the energy behavior by controlling the number of gluons, while Jt99 

controls the size of the area occupied by the gluons inside the nucleon. 

To reproduce the cross section at lower energies, the qq and qg contributions must also be 

(1-xt d f (1-x)6 h" h . considered. Using toy structure functions fq ""' vi an 9 ,._, x ; at 1g energies we 

have[45] 

Pqq = W (µqq b) (A + B ~) , (89) 

Pqu W(Jµqqµ99 b) (A' +B'log ~ 5), (90) 

where A, B, A', and B' are free parameters. To insure correct analyticity properties of the model 

amplitudes, the substitutions-+ s e-i1r/2 is made everywhere for the even amplitude. As suggested 

by Regge theory, an asymptotically vanishing odd amplitude is also introduced 

P W( b)A" mo -i1r/4 
odd = µodd VS e , 

where A" is also a free parameter, and the e-i1r/4 factor insures analyticity. 

(91) 

This QCD-inspired eikonal model was fi.t simultaneously to the world data of <Tt, p, and B for 

pp and pp in the energy region 15-1800 GeV. The results are shown in Figs. 45- 478 • The six 

parameter model reproduces the experimental data with a x2 /degree of freedom of 1.59. Although 

this model predicts a log2 s asymptotic rise of the cross section, at the present energies it provides 

an adequate fit to the world data . 

. This QCD fit can be used to predict the cross sections at the LHC and SSC supercolliders. At 

the LHC energy of vs= 16 TeV, the cross section is predicted to be 106 ± 4 mb, and at the SSC 

8 The figures in this section are taken from Ref. (49]. 



Accelerator 

LHC 

SSC 

vs 
(TeV) 

16 
40 

Lower Bound (logs) 

(mb) 

104± 1 

117± 1 

QCD (Eikonal) 

(mb) 

106±4 

120± 5 

Upper Bound (Regge). 

(mb) 

115 

135 

Table 7: Supercollider cross section predictions 

90 

energy of vs= 40 TeV, 120 ± 5 mb. The errors are statistical, and are due to the errors of the 

fitted parameters. 

Table 7 lists the predictions, by all three models, of the collider cross sections at the LHC and 

SSC energies. 

6.4 Conclusion 

From the E710 results, it can be concluded that: 

• The total cross section O-t and the nuclear slope parameter B rise continually with energy. 

• The increasing ratio of the elastic to total cross section, o-el./ O-t, indicates that the nucleon 

becomes blacker as energy increases. 

• The nuclear curvature parameter C is compatible with zero at vs= 1.8 TeV. This result 

-along with the positive values measured by the ISR and SppS experiments at lower energies, 

signal the onset of 'asymptopia'. Measurements at higher energies are needed in order to 

confirm the expected negative value of the curvature, and the transformation of the nucleon 

to a sharp disk. 

The E710 results provide a very large lever arm for the three models presented. These three models 

are quite contradictory, and yet all give good fits to the same data. These fits show that: 
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• Since the Regge model of the rise of the cross section with energy, given in Eq. 55, violates 

unitarity, its prediction of the cross section at higher energies provides an upper bound to 

the predicted cross sections of the future accelerators. 

• It is believed that the highest experimental energy thus far attained, the E710 energy of 

,Js = 1.8 TeV, is still too low for 'asymptopia', and that eventually the cross section may rise 

more rapidly than the data indicate. Therefore, the log( s /so) behavior of the cross section 

derived from the analytic asymptotic amplitude analysis should be viewed as a lower bound 

prediction. 

• The QCD eikonal fits are bounded by the other two models. 



Appendix A 

Theoretical Formulation of Elastic Scattering 

We consider elastic pp scattering with the initial 4-momenta p1 and p2 and the final 4-momenta 

p3 and p4 (Fig. 48). In the center of mass frame, the magnitude of the momentum of each particle 

P1 

Figure 48: Two-Body Elastic Scattering 

is designated as p. The square of the center of mass energy is given by 

s (Pi+ P2)2 

4(p2 + m2), 

where mis the proton (or anti-proton) mass. 

The square of the 4-momentum 'transfer is 

t = (p1 - p3)2 

-4p2 sin2 (0 /2), 

P2 

(92) 

(93) 

where 0 is the c. m. scattering angle. For the t values in the range of interest, the scattering angles 

are small enough to allow the approximation 

(94) 

92 
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The third Mandelstam variable is u, defined as 

(95) 

For the remainder of this formulation, we will use a system of units in which 1i=c=l. Furthermore, 

in collider experiments where the incoming particles have the same energy and equal but opposite 

momenta, the center of mass and lab frames are the same. 

The differential elastic cross section can be defined in terms of the elastic nuclear scattering 

amplitude fn, such that 

d<Te/ 

dO. 
d<Te/ 

dt ;lfnl2
, 

471' 
-lmfn(0 = 0). p 

where the last relation is the optical theorem. The differential solid angle is dO. . 

(96) 

(97) 

(98) 

- At first, we will consider separately the effects of a Coulombic or a hadronic field. Later, we will 

a formulation in which these fields are combined to act simultaneously. For Coulomb scattering, 

the Lorentz invariant form of the elastic differential cross section is given by 

(99) 

This is the familiar Rutherford result where - and + refer to pp and pp systems, respectively. The 

fine structure constant o: is approximately 117 , The proton's electromagnetic dipole form factor 

G(t) is 

( itl )-2 

G(t) = 1 + A2 , (100) 

where A2 = 0.71 (GeV /c)2. 

The nuclear contribution to the differential cross section can be parametrized as 

(101) 
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where 

B - ( 
d dun) -d log-d . 
t t t=O 

(102) 

B is the nuclear slope parameter. In the t range of interest, the 1st order term Bt dominates the 

exponent in Eq. 101. Therefore in this formulation, unless specified otherwise, the terms of 2nd 

and higher order in the nuclear parametrization equation are neglected. 9 

Defining p = f;t ::~), the differential cross section at t = 0 can be written as 

dun I = 
dt t:0 

= 

7r dun I 
p2 dO IJ=O 

~ jRefn(0 = 0) + iimfn(0 = 0)12 p 

I 
+. 12 

7r Pp z Imfn(0 = 0) 

Substituting for Imfn(0 = 0) from the optical theorem (Eq. 98), 

dun I _ Ip+ i 1
2 

dt - 7r 4 Ut ' 
t=O 7r 

The differential elastic scattering cross section for nuclear scattering is therefore 

dun I p + i fil 1
2 

-- = 7r -- Ut e • dt 41r 

In our formulation, we use the invariant amplitude, f, with the properties 

duel 
dt = 

(103) 

(104) 

(105) 

(106) 

It is therefore convenient to introduce the Coulomb and nuclear pp invariant scattering amplitudes, 

fc and fn: 

fc (107) 

fn = _(108) 

9 The trucation of the polynomial int in the exponent of Eq. 101 after the first order term is allowed at low it!, 

and as E710 demonstrated, at all tat the Tevatron energy of 1.8 TeV. 



The invariant differential cross sections can then be expressed as 

d<ie 
dt 

d<in 
dt llnl2 • 
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(109) 

(110) 

Each of the above expressions is valid in the presence of its respective field only. If the nuclear and 

Coulomb fields are both present, however, we cannot simply superimpose the two amplitudes. A 

phase factor a<f;(t) must be introduced into the Coulomb amplitude such that the complete elastic 

differential cross section is given by 

(111) 

This phase factor reflects the distortion of the pure amplitudes le and In due to the simultaneous 

presence of both hadronic and Coulombic scattering. In the language of Feynman diagrams, le 

corresponds to the sum of all diagrams in which only photons are present and In to the sum of all 

diagrams in which only hadronic exchanges are present. When both fields are present, however, 

there are new diagrams possible which have both kinds of exchanges present. This gives rise to 

the phase a<f;(t). This phase was first investigated by Bethe(28] and later by West and Yennie(30], 

using a QED calculation of Feynman diagrams. It was recalculated by Cahn(31] , using an eikonal 

approach, with the result 

[ ( Bltl) ( 8 ) (41t1) (41t1) 2lt1] <P(t) = (=i=) "I+ log -2- + log 1 + BA2 + A2 log A2 + A2 ' (112) 

where 7 = 0.577 is Euler's constant. The upper sign is for pp and the lower sign for pp. Over the 

t range of interest, <f;(t) varies very slowly and is about 2, and a¢ «: 1, so the differential elastic 

cross section can be written as 

d<iel(t)= [(2a) 2
a4(t) ( ,l.)<X<itG

2
(t) ~f (<it) 2(1 2) Btl dt 7r ltl . =i= p + a'I' 7r . ltl e + 41r + p e . (113) 

Again; the - and + refer to pp and pp systems, respectively. 
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The second term of the summation is known as the interference term and assumes its largest 

weight relative to the other two terms when lfcl = lfnl, i.e., when duc/dt = dun/dt. If p + o:</J 

is positive, the interference is destructive for pp and constructive for pp. A typical value for io:</JI 

is ~ 0.02. This interference term allows the measurement of the quantity p + a</J, and hence the 

determination of p. The t value at which interference is maximum, i.e., when lfcl = lfnl, is given 

in (GeV /c) 2 by 

where 0int is the interference angle. 

<Yt 
0.071 

<Yt(mb) 

(p 0int)2
, (114) 

The first term of the summation dominates in the Coulomb region where jtj ~ ltlint and 

duez/dt goes nearly as 1/t2 • It is independent of the <Yt, B, and p, and can be used to normalize 

the experimental data. 

The third term dominates in the nuclear region where jtj ~ ltlint and due1/dt goes nearly as 

eBt . It is the main term that determines B. 

Table 8 gives It lint and 0int values for the existing pp colliders and their c.m. energies. Experiment 

E710 at the Tevatron attained a maximum energy of ...ft= 1.8 TeV. At this energy, ltlint ~ 0.00098 

(GeV /c)2. As we shall see, this is very close to the minimum value, ltlmin = 0.00075 (GeV /c)2, 

covered by the detectors of this experiment. The interference angle for this experiment was 0int = 
0.035 mrad, i.e., a very small angle. At a distance of 80 m from the interaction region, it corre-

sponds to a transverse displacement of only 2.8 mm. This demonstrates the primary challenge of 

this experiment: To penetrate into the Coulomb interference region, one needs to probe very close 

to the beam. This experimental problem is bound to be even more severe for the proposed SSC 

experiments that are to be conducted at ...ft= 40 TeV, where 0int is only about 0.001 mrad. 
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vs (GeV) Accelerator It lint ((GeV /c) 2
) 0int (mrad) 

23.5 ISR 0.0017 3.6 

30.7 ISR 0.0017 2.7 

52.8 ISR 0.0016 1.5 

62.5 ISR 0.0016 1.3 

540 SPS 0.0011 0.120 

1800 Tevatron 0.00098 0.035 

40000 SSC 0.00059 0.00122 

Table 8: Values of ltlint and 0int for pp elastic scattering 

The total elastic cross section <1'el is defined as J~
0
,)d<1'n/dt)dt, where d<1'n/dt, the nuclear 

differential cross section, is the square of the nuclear invariant amplitude (Eq. 108). Performing 

the integration, we obtain 

(115) 

This result will be given the special name Ee1. It is the same as <1' ~I if, in the nuclear parametriza-

tion equation (Eq. 101), the coefficients of terms of second (Ct2 ) and higher orders are negligible 

compared to the first (Bt) order for all t values. The ratio of the elastic to total cross section is 

given as 

(116) 

The total elastic cross section is useful in correlating the asymptotic rise of <1't with B since <1' el/ <1't 

must be less than unity. Therefore, a model that predicts <1't to rise with s at a certain rate must 

predict at least as rapid a rise for B. 



Appendix B 

The Beam Lattice 

In an accelerator lattice, equations of motion for a charged particle can be written in the 

following manner: 

'f/ A(z) sin[1µ(z) + ¢], (117) 

A'(z) sin[1µ(z) + ¢] + A(z)1µ1 cos[1µ(z) + ¢], (118) 

where 

z is the beam path position, 

'f/ is the horizontal or vertical component of displacement from the beam direction, 

the primed quantities are derivatives with respect to z, i.e., 'f/1 = d'f//dz, 

¢' = dq,/dz, etc., 

A(z) is the amplitude of the displacement at z, 

¢ is a constant phase, 

1µ(z) is a periodic phase function dependent on the lattice frequency of particles 

in the machine[40]. 

Eqs. 117 and 118 can be manipulated to yield 

(119) 

,rA2,f,I Eq. 119 describes an ellipse of area --'====-= = 
,/-rfJ-a2 -A'/A1µ1

, '(3 = lN', and 
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Before any displacement, the transverse and longitudinal coordinates of a particle can be iden-

tified as ('TJo, z0 ), and the equations of motion are: 

'T]o Ao sin <p, (120) 

(121) 

Solving for sin <p and cos <p in terms of 'T]o and 'TJ~, Eqs. 117 and 118 can be written in the form 

( 
1]

1 

) = ( mu m12 ) ( 'T]~ ) • 

'T] m21 m22 'TJo 

The matrix elements m;i can be shown to be 

mu (/3 / /Jo )112 [cos'¢( z) + ao sin'¢( z )] , 

(/3/30)1/ 2 sin 1/J(z), 

(/3/Jo)- 112 [(a0 - a)cos'lj;(z)- (1 + aao)sin'lj;(z)], 

(f30 /f3) 112 [cos'lj;(z) - a sin 1/J(z)]. 

(122) 

(123) 

(124) 

(125) 

(126) 

The quantity mu can be thought of as a focusing factor along the 'T] axis, and m12 can be thought 

of as the effective length along the z axis. 



Appendix C 

Drift Chamber Operation and Control 

As mentioned earlier, the drift chambers used for elastic scattering measurements were housed 

in roman pots, two pots per castle,' one above and one below the beam line. The pots could 
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Figure 49: Schematic of the pot movement system 

be moved remotely by a potentiometer motor tied by a belt to the spring upon which the pots 

rested. A motor drive unit[37] and a Linear Drive Transducer (L.D.T.) allowed computer-controlled 

motion of the pots. The motor drive unit and the L.D.T. interfaced the Camac dataway with the 

potentiometer motor. A digital number sent from the computer via the Camac dataway to a 12 

bit, 16 channel, NEL type 9091 multiDAC triggered the DAC to send a potential voltage through 

a motor drive unit to the 10 V range pot -potentiometer motor, thus allowing movement of the pot 
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to the desired location. Fig. 49 is a schematic of the pot movement system. 
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Figure 50: Front and side views of drift chambers inside their castle 
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The pots had a 24 mm distance in which to move vertically toward and away from the beam. 

Tha active area of each chamber was about 1.950 mm above the bottom of each roman pot, which 

could reach within 100 microns of the center of the castle (see Fig. 50)(35]. The pot potentiometer 

position was read with a Borer dual-slope 1241 ADC whose input was the analog signal produced 

by the 10 V range L.D.T. 

The motor drive unit provided six bits of status information about the pot. This information 

was then sent to a DSP dual I/0 612 register and fed iri.to the computer for on-line monitoring of 

, the pots. The motor drive unit set one bit if the pot were at a limit switch, another if the pot were 



102 

moving, another if the pot reached its designated position, another as an alarm if the pot could not 

reach its designated position within a specified time limit, and another was used as a calibration 

bit. 

The DAC and ADC used for the pot movement each had a resolution of 1 count per 2.44 

m V. Each pot potentiometer was calibrated at about 0.4 V /mm, corresponding to an accuracy 

of ±6 microns in pot location. The potentiometer calibration itself was done by surveyors to an 

accuracy of 0.1 %. A straight line was fit to the ADC m V per bit calibration, with an error of 0.4%. 

Therefore, the error in the remote positioning of the pot by 1 mm from its base near the castle 

center was ±5 microns. The pot offset from the castle center was measured by surveyors with an 

error of 20 microns, except for the pots 7 and 8 which had an error of 100 microns. Table 9 lists 

the calibration constants for the DAC and ADC channels associated with each pot, along with 

each pot's potentiometer calibration distance and each pot's base position offset with respect to 

the center of the castle. 

Potentiometer Offset from DAC ADC 
Cal. Constant Castle Center Cal. Constant Cal. Constant 

Pot (V/mm) (mm) (mV/bit) (m V /bit) 

LUO 0.3984 0.199 2.440 2.440 
LDO 0.3952 0.199 2.440 2.440 
ILU 0.3955 0.211 2.440 2.440 
ILD 0.4003 0.211 2.440 2.440 

IRU 0.3951 0.085 2.440 2.440 
IRD 0.4072 0.085 2.440 2.440 
RUO 0.3960 0.349 2.440 2.440 
RDO 0.3931 0.349 2.440 2.440 

Table 9: Calibration constants for pot position measurements . 



Appendix D 

Data Acquisition 

D .1 The Trigger System 

The stored beams in the Tevatron were divided into six bunches. A radio frequency (RF) system, 

located at the FO intersection region, kept the p and p bunches confined inside guiding buckets. 

There were 1113 RF buckets along the circumference of the Tevatron. Of these, only twelve were 

populated with particles, six for each species. The relative positions of the six counter-rotating 

bunches were such that collisions occured at the designated interaction points. The time of the 

interactions was determined by using signals from the guiding RF clock which were received over 

the accelerator local area network (ACNET). A gate was thus constructed, with the duration of a 

few ns, and centered on the arrival time of the interaction products to the location of the counters. 

The triggers were constructed from the the coincidences of counters firing while the gate was open. 

Such a coincidence was defined as an in-time hit. 

The event trigger types used in this experiment fall into nine categories. They are listed below, 

along with a brief definition of each type: 

00: One out of two hit trigger counters in any outer chamber on one side ANDed with that 

on the other side (for small angle elastic scattering). 

II: One out of two hit trigger counters in any inner chamber on one side ANDed with that on 

the other side (for large angle elastic scattering). 

01: One out of two hit trigger counters in any outer chamber on one side ANDed with that, of 

an inner chamber on the other side (for any inelastic scattering). 

LR: Any hit ring counter on the left side ANDed with that on the right side (for double arm 

inelastic and diffractive scattering). 
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L: Left side OR of any ring counter hit (for single arm inelastic and diffractive scattering). 

R: Right side OR of any ring counter hit (for single arm inelastic and diffractive scattering). 

C: OR of any central counter hit (for any inelastic scattering). 

I: One out of two hit trigger counters in any inner chamber (for any inelastic scattering where 

an inner chamber was hit). 

0: One out of two hit trigger counters in any outer chamber (for any inelastic scattering where 

an outer chamber was hit). 

As mentioned in Section 3.2, there were two sets of detectors used for the detection of the 

elastic and inelastic events. The inner and outer drift chambers were used for the detection of the 

elastic events, as well as beam halo background. The rest of the system, i.e., the ring and central 

scintillation counters, were used for detecting the inelastic events. 

D.1.1 The Elastic Trigger 

Fpr each drfit chamber, its corresponding trigger counters (see Section 3.3.2) were used to trigger 

its readout. 

To obtain the signals from the trigger and calibration counters, Phillips XP1911 10-stage pho-

tomultiplier tubes were used. Signals from the trigger counters were sent to a 30 ns,,coincidence 

gate with the RF signal. For triggering, the coincidence between any of the two trigger counters 

in a left side detector and any of the two trigger counters. in a-l'ight side detector were used. This 

event trigger, referred to as outer-outer or 00, was the trigger used for all of the elastic scattering 

events that made up the data analyzed in this work. 

The signal from the drift chambers was digitized by 4-D modules[38]. Each datum word read 

by the data acquisition system consisted of 16 bits. The last of these 16 bits was a status bit. The 

remaining 15 consisted of 6 low bits for the x and 9 higher bits for the y coordinates of the charged 
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particle incident on the chamber. The RAM memory of the 4-D unit accepted data from the ADC 

and encoder every 40 ns, thus allowing the last 640 ns of information (16 data words) to be stored 

and read out by the data acquisition system. A new trigger would erase the memory and allow the 

process to start over. 

The coordinates of the incident particle were read according to the following mechanisms: 

• The x readout: A charged particle incident on a drift chamber produced charges at each end 

of the sense wires. These charges were sent, individually, through preamplifiers into a 50 

MHz flash ADC which measured the difference in the proportional voltage of each current. 

This produced a charge division signal proportional to the x component of the location of 

the incident particle. This signal was digitized into 64 bins, where each bin corresponded to 

approximately 0.5 mm. 

• The y readout: The discriminated signal of the sum of the two charges at wire ends produced 

a drift time signal. A priority encoder's clock started counting when a trigger was input 

to the 4-D unit, and stopped with the drift time pulse, thus producing the 9 bit drift time 

readout. This signal was digitized into 512 bins, where each bin corresponded to about 65 

microns. 

D.1.2 The Inelastic Trigger 

To obtain the signals from the ring and central scintillation counters, Phillips XP2262 12-stage 

photomultiplier tubes were used. The main inelastic trigger was constructed from the coincidence 

. of any of the twelve counters in rings L3, 14, and 15 with any of the twelve counters in the rings R3, 

R4, and R5. The signals from the counters of each side were put in an OR and then in coincidence. 

with the RF signal. Most of the non single diffractive events were recognized from this trigger, 

which was also referred to as left-right, or LR. 



106 

Another inelastic trigger was made by an OR of the eight central counters with the twenty from 

rings LO, Ll, L2, Rl, and R2. This was not used as an active trigger, but was occasionally used as 

a veto. 

D.1.3 The Master Trigger 

The number of inelastic collisions was so high that it was not practical to read every one of them on 

to data tape. Instead, the number of inelastic triggers was prescaled by a factor which was decided 

on empirically from observation of these triggers, ranging from 2 to 500. This prescaling was not 

done for the elastic triggers, however, due to the low machine luminosity and signal-to-noise ratio 

(see Section 4.6). The grand OR of the prescaled triggers made up the master trigger, which in 

turn initiated the readout of the timing and pulse height of the scintillation counters, the 4 -D 

modules, etc. Fig. 51 is a block diagram of the master trigger logic.(36]. 

Figme 51: The master trigger logic 

C01'1PUT£R $TAAT 
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D.2 On-line Data Analysis 

Data aquisition and on-line analysis was done with a DEC PDP 11/34 computer. The operating 

system used was RT version 5.3, issued by DEC, Inc. The data acquisition program was a mod-

ified version of RT-Multi, a system developed at Fermilab[54]. The processed data was stored on 

magnetic tape. The processor could be accessed interactively by a Decwriter II hardcopy terminal, 

two VT240 terminals, and two serially connected PC/ ATs. A port selector allowed access to the 

Fermilab VAX cluster as well as a Micro Vax II running under the VMS 5.0 operating system. The 

primary purpose of the Micro Vax was to allow access to ACNET. It was later used for part of the 

off-line data analysis. 

As mentioned in Section D.1.3, the master trigger initiated the data collection cycle. A NIM 

pulse was sent from the logic to the Bison interface box[55]. The Bison box interrupted the PDP, 

and the RT-Multi routine began executing a pre-defined Camac definition list. Data from a set of 

Camac crates were then sequentially transferred, through _a J orway branch bus, to the data buffer. 

Each event buffer contained the following information: 

• The ADCs of the 52 ring and central scintillation counters and the 24 trigger and calibration 

counters of the drift chambers, 

• The TDCs of the above counters, as well as those of the chambers from the tracking telescopes. 

• The scaler vallles. The scalers were a set of numbers that included the integrated single rates 

read from all of the ring and central counters, as well as those from the trigger counters. An 

example of the scaler readouts for a typical run is displayed below: 
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SCALERS FOR RUN 623 

Ll 3874349. L2 4147832. L3 12287859. L4 10303276. 

L5 4927250. L2-5 9099065. L 765798. LPRE 957. 

Rl 4361079. R2 5102984. R3 6073593. R4 4490484. 

R5 7317536. R2-5 16449130. R 319085. RPRE 639. 

Cl-8 13077251. C 692014. CPRE 692. LCR 1495072. 

LCRI 2419862. LR 28111. LR PRE 703. 0. 

Lil-6 11141783. LI 721370. RI 1-6 8982744. RI 380282. 

I 1097892. II 3760. II PRE 0. 0. 

IE 173102. IE PRE 0. LO 1-6 3095425. LO 5469706. 

RO 1-6 3499423. RO 3373514. 0 5469706. 0. 

00 39146. OOPRE 39146. OE 5469706. OE PRE 6077. 

OJ 11637. OIPRE 0. INTRIGS 2985. MASTER 48173. 

CLOCK 2963. CLOCK G 2460. L5* 219028. L5*RF 144871. 

L5*" 144792. R5* 222383. R5*RF 52766. M(G) 3630. 

M"(G) 17. LR* 377232. LR*" 377004. L2lR 166. 

• The output of the 4-D modules (See Section D.1.1). 

After the buffer sent its contents to the tape drive, it was cleared a:0:d set for the arrival of the next 

event. The maximum rate of data transfer to tape was 220 events/sec. Fig. 52 is a block diagram 

of the on-line data acquisition system. 

In -addition to the above itemized parameters, another set of parameters that were not event-

dependent were read on to the data tape at the beginning of each run. They consisted of the 

following: 

• The pot positions, which were controlled by a Camac crate with a Borel dual slope ADC. In 

addition to being recorded at the beginning of each run, they were accessible interactively 

during data taking. 
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Figure 52: Block digram of on-line data acquisition system 

• The values of the high voltages for the field and sense wires in all drift chambers and all 

scintillation counters, which were monitored from five ADC modules. 

• A set of accelerator-related parameters. This included information about the intensity of the 

beams, their emittances, the luminosity values at various intersection regions, the positions 

of the steel yokes of the Lambertson magnets, and the gas pressure inside the beam pipe. 

This information was transmitted to the Micro Vax over ACNET and was recorded on tape. 



Appendix E 

Derivation of Readout Calibration Functions 

E.1 The Calibration Counter Edge 

If the resolution of the detectors were indeed infinite, the observed distribution at the edge of the 

slit at the bottom of the calibration counter would be a step function: 

where 

E'(y) = Ne0(y- p), 

y is the electronic bit number identifying the vertical coordinate of the particle 

incident on the detector, 

E'(y) is the normalized distribution of data at a given bit y, 

Ne is the normalization constant of the function, 

p is the bit number corresponding to the edge of the calibration counter , 

e is a step function. 

{127) 

Since the resolution is finite, however, E'(y) is convoluted with a gaussian dispersion function to 

yield a new expression E(y): 

E(y) = E'(y')---e - o(o-/c)• y-y dy1• l oo 1 1 ( ')" 

-oo ../2-iu / c (128) 

Here, u is the width, in mm, of the gaussian representing the resolution of the detector, and c is 

the physical dimension corresponding to each bit ( commonly referred to as the mm/bit constant). 

u / c is the resolution in bits, and will be referred to as :E. 
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Substituting Eq. 127 into Eq. 128 and simplifying, we get 

E(y) = Ne loo . I t (y y')" I -- · 0(y - p)e- 2D2 - dy V21rE -oo 

~ foo e- .~. (y-y')" dy'. 
V21rE JP 
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Making the variable substitution t = 2~. (y - y') 2 and performing some simple algebra yields: 

E(y) 

(129) 

Substituting the expression for E into Eq. 129, the function describing the data at the horizontal 

edge of the calibration counter is: 

E(y) = ~e [ 1 + erf Cy ~:)c)] . (130) 

E.2 The Calibration Counter Hole 

If the detector resolution were infinite, the profile of the particles going through the holes would be 

circular, with the maximum flux occuring at the center of the hole, and then radially decreasing 

to zero toward its perimeter. The observed distribution could be described by 

where 

I'(y) = Nh/1-[(y-p;c-µr, for!(y-p)c-µi::Sr, 

0, for l(Y - p)c - µI > r, 

I'(y) is the normalized distribution of dat.a at a given bit y, 

Nh is the normalization constant of the function, 

µ is the location of the hole, in mm, with respect to the edge of the calibration 

(131) 
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counter, 

r is the radius of the hole (r=0.09 mm). 

Since the resolution is finite, I'(y) is convoluted with the same gaussian dispersion function that 

was used for the edge, to yield a new expression I(y): 

I(y) 100 

I'(Y')-1-e-~[(y-p)c-µ-Y']2 dY' 
-oo .../2iro-

= _!!!!_ jr dY'e-,!,[(y-p)c-µ-Y']'J1-(Y')2, 
.../2iro- -r r 

(132) 



Appendix F 

Evaluation of the Fitting Function 

As mentioned briefly in Section 2.2, each experimental bin covers a range of t values. The 

differential cross section that is to be fitted to the data must therefore be averaged over the size of 

the bin. This averaging is done by integrating the differential cross section over the bin, and then 

dividing it by the area of the bin. In this section, we will first briefly discuss the numerical 

integration schemes used, and then proceed to develop the expression for the effective elastic 

differential cross section which is fitted to the data. 

F .1 Numerical Integration Techniques 

The integrals were evaluated numerically by gaussian quadrature techniques(42]. These techniques 

use orthogonal polynomials, where the nth term of such polynomials is designated the symbol 

Pn ( x). Orthogonality means that any two terms of the polynomial satisfy the condition 

1b Pi(x)pj(x)w(x) dx = hiDij, (133) 

where Dij is the Kronecker delta function, and hi = J:[pi(x)]2w(x) dx, with w(x) as a weight 

function. 

The polynomial term Pn(x) has n real zeros in the interval [a, b] and Pn+1(x) has n + 1 zeros, 

interlaced with those of the nth order. The polynomials are evaluated recursively, using a two term 

recursion relation 

Pn+1(x) = ('YnX - O!n)Pn(x)- .BnPn-1(x), n = 0, 1, 2, 3, ... , Po(x) = 1, P-1(x) = 0. (134) 

The weight function w(x) along with the limits of integration [a, b], determine the type of 

polynomial to be used. As will be shown in Section F .2, the integration in y' is over finite limits, 

113 



114 

and therefore a Legendre polynomial was used. Integration over infinite boundaries, such as the 

one in x', are done using Hermite polynomials. 

Legendre polynomials y = Pn(x) satisfy the differential equation 

d2 y dy 
(1 - x2

) dx 2 - 2x dx + n(n + l)y = 0. (135) 

The derivative satisfies the relation 

(136) 

The recursion relation for Legendre polynomials is 

Po(x) 1, 

(n + l)Pn+1(x) = (2n + l)xPn(x) - nPn-1(x), (137) 

with the normalization 

1
1 2 

Pn(x)Pm(x)w(x)dx = -2 18mn, 
-1 n+ (138) 

where w(x) = 1. The integration in Eq. 138 is in the interval [-1, 1]. A simple linear transformation 

allowed these polynomials to be used with non-unity limits [y'min, Y:nax]. 

Hermite polynomials y = Hn(x) satisfy the differential equation 

(139) 

The derivatives satisfy the relation 

d!n (x) = 2nHn-1(x). (140) 

The recursion relation is 

Ho(x) = 1, 
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Hn+i(x). = 2xHn(x) - 2nHn-1(x), (141) 

with the normalization 

(142) 

F .2 The Effective Differential Elastic Cross Section 

The differential elastic cross section d~;' is given in Eq. 113. Due to the width of the elastic 

pattern, the correct form of this differential cross section is expressed by convoluting it with the 

two-dimensional gaussian representing the pattern dispersion. As a reminder, small scattering 

angle allows the approximation t = -p202 , where the components of 0 are defined in terms of 

the left and right side coordinates according to Eqs. 45 and 46. The new pattern corrected elastic 

differential cross section is 

d<T el ' · 100 ly:,,. ~"' d<T el e-½( "';;' )2 e -½( u;;' )
2 

-- = -----,=----=-- dy' dx', 
dt corr -oo y:,_.,. dt ,,/iir<T x ,,/iir<T y 

(143) 

where the limits of integration in y' are the boundaries of the right side chamber. In x, both 

chambers are 28 mm wide in physical space. In scaled space, however, the right side detector is 

f:; = !t~: = 1.52 times wider than the left side chamber. This means that in the frame of the 

left side chamber, the right side detector is 28xl.52=42.6 mm wide, leaving a spac~_ofmore than 

7 mm on each vertical side of the right side detector that is not covered by the left side chamber. 

Since the x component <Tx of the pattern width was about 2 mm, this 7 mm clearance was large 

enough to prevent any significant pattern loss at the vertical edges of the left side detector, and 

therefore the limits of integration in x' were approximated as infinities. 

At any given point (x, y) on the left side detector, the ratio of this pattern-convoluted function 
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to what the differential cross section would have been without the,pattern effect was calculated as 

a weight factor W(x, y) such that 
d11., I 

W(x,y) = ~orr, 
dt 

The significance of this weight factor will be clarified shortly. 

(144) 

Since the measured number of counts, tl.N, belongs to a cell of 28 mm width and 0.5 or 1 mm 

height, the elastic differential cross section given in Eq. 113 was averaged over this cell. But to 

account for pattern loss, the average was weighted by the weight function W(x, y) given in Eq. 144. 

for stack i 

(
duel) 1 1~ 1Ymin;+~Y duel 
dt . = Llx.6. ,,,., . dtW(x,y)dydx. 

i Y -,- Ym,ni 

(145) 

Here, the scattering angle is determined by the left side coordinates ( x, y) of the scattered particle, 

i.e., t = -p2 [ ( {.,) 
2 

+ ( t) 2] . The integrals of Eq. 145 are both over finite limits and were 

therefore evaluated by Legendre polynomials. The weights W(x, y) were evaluated at the same 

positions as the zeros of the Legendre polynomials over the specified x and y intervals. 

Advantage was taken of a few fine points in order to drastically cut down on computing time: 

• The W(x, y) values were evaluated for points whose y coordinates were as far as 4uy from 

the bottom of the chamber. For points higher than that, the weight values were not expected 

to depend appreciably on y, and were therefore not calculated. Instead, the same horizontal 

series of values were used all the way to the top of the chamber. 

• The corrections were performed to account for the pattern loss at the low !ti edge only. The 

small statistics at the high !ti edge, as well as the absence of any Coulomb information, made 

the use of pattern corrections for those regions unfeasible. Instead, the three highest edge 

stacks were simply not used, with no appreciable effect on the final result. 

• Use was made of the symmetry between the regions -';'° $ x $ 0 and O $ x $- ';'°. The 
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integration in x was therefore performed over the latter interval only, and the result was 

doubled. 

A stability study was conducted to determine the number of points for each integration. A 

minimum number of points were used to yield stability of each integral to 1 part in 1000. For the 

Hermite integration in x', this minimum number was 4 for data at vs= 1.8 Te V, and 9 for data at 

Js=l.0 TeV. For all data, 8 Legendre points were needed to perform the integration in y', 16 for 

x, and 4 for y. 



Appendix G 

Error Analysis 

The measured quantity in this experiment was the number of counts. Therefore, all errors were 

based on the premise that the uncertainty of the measured number of counts in a bin is the square 

root of that number. The differential counts ~1 which were fitted were not directly measured, 

however, since they were background-subtracted, and background was a calculated quantity based 

on measured quantities. 

The differential number of counts dN in each stack was obtained according to dN = dNs+n -

dNn, where dNs+n is the measured signal+noise count, and dNn is the calculated background. The 

statistical error of dN,+n is simply ,jdNs+n· The statistical error of dNn is found from Eq. 37, 

and is the quadrature sum of the statistical errors of the background normalization constant C, 

and the normalized background content P of that stack obtained from the background sample. 

The statistical error of P is in_ turn found from Eq. 38. Rewriting this equation in simpler form, 

we have, for stack i 

. _ Ni P,---. 
Ntot 

The statistical error of P; can then be calculated according to 

8P; P; (8~;) 2 
+ (8Ntot)

2 

N, Ntot 

(146) 

Since Ntot ~ N;, the second term inside the square root is dropped, and 8P; is calculated according 

to 

(147) 

The error of the background normalization constant C can be calculated in a similar fashion. Its 

uncertainty, however, is taken to be due only to that of the background subset (NlJ in Eq. 39) of 
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the elastic sample, since the uncertainty of Pi is already taken into account. Furthermore, since 

the same constant is used to calculate the background of all stacks of a given chamber, treatment 

of the constant error as a statistical uncertainty would result in correlation among datum points. 

To address this point, only the Pi contribution to the background error was treated as statistical. 

The contribution from the normalization constant C was treated as a systematic uncertainty. 

In addition to background, the statistical errors of the final results were enlarged due to sys-

tematic contributions from a number of factors, such as effective lengths, pot positions, pattern 

widths, and readout calibrations. 

PATTERN WIDTHS were used only in the final fit when the pattern corrections were 

calculated. So it was a simple matter of re-doing the fit with the new corrections which resulted 

from the incremented widths. 

- EFFECTIVE LENGTHS were used mainly in the final step to calculate the components of 

the scattering angle and the t values. So in the final fit , each of the two left side effective lengths 

was in turn incremented by one standard deviation (1%), and the result observed. 

POT POSITIONS: There were two factors that contributed to the uncertainty of the pot 

positions: The uncertainty in the positions read out by the electronics, and the uncertainty of the 

beam position due to centering. 

• The beam position: In the centering procedure, the distant between the top and the bottom 

pot is held fixed, and the beam position with respect to the two pots is calculated. A positive 

perturbation of this beam position by one standard deviation with respect to one pot will 

result in an equal negative perturbation with respect to the other. Since the contents of each 

cell of one pot is averaged with the corresponding cell of the other pot to form, effectively, 

a composite chamber, this perturbation in the beam position canceled out to first order. 

Therefore, any effect on the final error due to uncertainty in beam centering was neglected. 
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• The pot positions were known to an accuracy of 35 microns in all cases. Again, since the data 

from the top and the bottom pots were averaged to yield a composite pot, the error in the 

position of this composite pot was approximately '72 = 24. 7 microns. Therefore, a shift of 

24. 7 microns in the t scale accounted for the uncertainty in pot position. 

CALIBRATIONS: The y coordinate of each event is calculated according to Eq. 20. The 

error in Y, 8Y, is determined by taking the variations of the two sides of Eq. 20: 

2 ( dY)
2 

( dY)
2 

2 dYdY (8Y) = Up dp + Uc"7k + 2upc dp °7k' (148) 

where ~~ and ~~ are the derivatives of Y with respect top and c, and O';c is the covariance between 

p and c. It is clearly seen that ~~ = c, and ~~ = p - Yb = Y -Yc~n'or, where Ycounter = Yeb + Y,,ot. 

Substituting these into the expression for ( 8Y) 2 , we get 

(8Y) 2 = (cup)2 + [ (Y - ~ounter) (J'c] 
2 

+ 2(Y - Ycounter)O';c· (149) 

The second and third terms clearly depend on Y, the location of the event. These terms vanish 

when Y = Ycounter, i.e., when the event is located on the edge of the calibration counter. The 

event can be located as much as 2 mm below the edge and as high as about 20 mm above it (see 

Fig. 7), so -2 mm::; Y -Ycounter ::; +20 mm. Given typical values of c = 0.0643±0.0001 mm/bit, 

<Tp = 0.06 bits, and Upc = -1 x 10-5, and if we label the first, second, and third terms of Eq. 149 

as t1, t2, and t3 respectively, then we see that 

t1 = (0.0643 X 0.06)2 = 1 X 10-5 , 

-4 X 10-4 ::; t3::; +4 X 10-5• 

While fitting the data, the top and bottom boundaries of each stack were. thus perturbed. Since 

the fitting function was the integrated average of the pattern-corrected differential elastic cross 

section over the cell boundaries, this procedure changed these boundaries of integration. 
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To investigate the feasibility of altering the pattern corrections, attention was given to the fact 

that these corrections are important near the bottom of the chamber. Let us take the very bottom 

where Y-Ycounter = -2 mm. Then according to Eq. 149, {8Y)2 = 1 X 10-5 +1 X 10-5 +4x 10-5 = 
6 x 10-5 , so 8Y = )6 x 10-5 = 0.008 mm. This is only an 8 micron change at the very bottom, 

which is only about a quarter of the 35 micron error in pot position. It was thus judged that the 

correction factors did not get affected significantly enough to warrant their change. In the high ltl 

regions, they are nearly unity anyway. 
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