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Abstract 

Dilution of the longitudinal rms emittance of a bunch passing a RF cavity is estimated for the 
sinusoidal dependence of the energy gain on phase and Gaussian beam distribution. 

1. Model
Dilution of the longitudinal rms emittance of a bunch passing a RF cavity can be estimated

caused in a simplest model: 
a) Energy ∆𝐸 gained by a particle depends only on its phase 𝜑 and the energy gain on

crest 𝑈 as
∆𝐸 = 𝑈 ∙ cos 𝜑. (1) 

b) The energy gain of all particles is small in comparison with the total kinetic energy
𝑈 ≪ (𝛾 − 1)𝑀𝑐2 , (2) 

where 𝛾 is the relativistic factor,  𝑀 is particle mass, and 𝑐 is the speed of light. 
c) The longitudinal distribution is Gaussian

𝜌(𝑧, 𝑧′) ≡
𝑑2𝑁

𝑑𝑧 𝑑𝑧′
=

𝑁0

2𝜋𝜀
𝑒

−
𝐽

𝜀0 , 𝐽 =
1

2
(𝛾𝑇𝑧2 + 2𝛼𝑇𝑧 ∙ 𝑧′ + 𝛽𝑇𝑧′2), (3) 

where 𝑁0 is the total number of particles in the bunch, 𝜀0 is the rms longitudinal 
emittance and 𝛼𝑇 , 𝛽𝑇 , 𝛾𝑇 are the longitudinal Twiss functions. The distribution is 
expressed in terms of the distance to the synchronous particle 𝑧 and the rate of 
changing this distance along the longitudinal coordinate 𝑠, 

𝑧′ ≡
𝑑𝑧

𝑑𝑠
= −

∆𝛽

𝛽
 , (4) 

where 𝛽𝑐 is the velocity of the synchronous particle and ∆𝛽𝑐 is the velocity deviation. 
d) Effects of space charge, beam loading, etc. are ignored. The only considered effect is

the different energy gain for particles with different 𝑧.

2. Calculation
After passing the cavity, the particle velocity with respect to the synchronous particle changes

by 𝛿𝛽𝑐, so that 
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𝑧1
′ = 𝑧′ −

𝛿𝛽

𝛽
= 𝑧′ −

1

𝛽2𝛾3

∆𝐸 − 𝑈 ∙ cos 𝜑𝑠

𝑀𝑐2
≡ 𝑧′ + 𝛿𝑧′,

𝛿𝑧′(𝑧) = −
1

𝛽2𝛾3

𝑈

𝑀𝑐2
[cos(𝜑𝑠 − ∆𝜑) − cos 𝜑𝑠],

∆𝜑 =
2𝜋𝑓𝑐𝑧

𝛽𝑐
, (5)

 

where 𝑓𝑐 is the cavity frequency, and 𝜑𝑠 is the synchronous phase.  
The diluted rms emittance 𝜀1 is calculated by usual averaging over all particles: 
𝜀1

2 = 𝑧2̅̅ ̅𝑧1
′ 2̅̅ ̅̅ − 𝑧𝑧1

′̅̅ ̅̅ 2
= 𝑧2̅̅ ̅ (𝑧′2̅̅ ̅̅ + 2𝑧′𝛿𝑧′̅̅ ̅̅ ̅̅ ̅ + 𝛿𝑧′2̅̅ ̅̅ ̅̅ ) − (𝑧𝑧′̅̅ ̅̅ 2

+ 2𝑧𝑧′̅̅ ̅̅ ∙ 𝑧𝛿𝑧′̅̅ ̅̅ ̅̅ + 𝑧𝛿𝑧′̅̅ ̅̅ ̅̅ 2
) =

= 𝜀0
2 + 𝜎𝑧

2 ∙ 2𝑧′𝛿𝑧′̅̅ ̅̅ ̅̅ ̅ + 𝜎𝑧
2 ∙ 𝛿𝑧′2̅̅ ̅̅ ̅̅ − 2𝑧𝑧′̅̅ ̅̅ ∙ 𝑧𝛿𝑧′̅̅ ̅̅ ̅̅ − 𝑧𝛿𝑧′̅̅ ̅̅ ̅̅ 2

,

𝜀0
2 ≡  𝑧2̅̅ ̅𝑧′2̅̅ ̅̅ − 𝑧𝑧′̅̅ ̅̅ 2

,   𝜎𝑧
2 ≡ 𝑧2̅̅ ̅ = 𝛽𝑇𝜀0, 𝑧𝑧′̅̅ ̅̅ = −𝛼𝑇𝜀0. (6)

 

 
Averaging of each component of Eq.(6) can be made by explicit integration using Eq.(1), 

Eq.(3), and Eq.(5). The first component is integrated as follows. 

𝑧′𝛿𝑧′̅̅ ̅̅ ̅̅ ̅ =
1

𝑁0
∫ 𝑑𝑧 ∫ 𝑧′𝛿𝑧′𝜌(𝑧, 𝑧′)𝑑𝑧′

∞

−∞

∞

−∞

. (7) 

To simplify the expression, the 𝑧, 𝑧′ variables are expressed through the variables 𝑢, 𝑣: 
 

𝑧 = 𝑢𝜎𝑧 ≡ 𝑢√𝛽𝑇𝜀0 ,   𝑧′ =
𝑣−𝛼𝑇𝑢

√
𝛽𝑇
𝜀0

, (8) 

Eq.(7) can be re-written as 

𝑧′𝛿𝑧′̅̅ ̅̅ ̅̅ ̅ =
1

2𝜋
√

𝜀0

𝛽𝑇
∫ 𝛿𝑧′(𝑢)𝑑𝑢 ∫ (𝑣 − 𝛼𝑇𝑢)𝑒−

𝑢2+𝑣2

2 𝑑𝑣 =
∞

−∞

−
∞

−∞

𝛼𝑇

√2𝜋
√

𝜀0

𝛽𝑇
∫ 𝛿𝑧′(𝑢)𝑢𝑒−

𝑢2

2 𝑑𝑢
∞

−∞

. (9) 

 
Substituting Eq.(8) to Eq.(5), 

𝛿𝑧′(𝑢) = −
1

𝛽2𝛾3

𝑈

𝑀𝑐2
[cos(𝜑𝑠 − 𝑘𝑢) − cos 𝜑𝑠] = 𝐴(cos 𝜑𝑠 cos 𝑘𝑢 + sin 𝜑𝑠 sin 𝑘𝑢 − cos 𝜑𝑠), 

𝐴 ≡ −
1

𝛽2𝛾3

𝑈

𝑀𝑐2
, 𝑘 ≡

2𝜋𝑓𝑐𝜎𝑧

𝛽𝑐
. (10) 

 
Integral of the first and third terms in Eq. (10) is zero by parity, and Eq. (9) yields 

𝑧′𝛿𝑧′̅̅ ̅̅ ̅̅ ̅ = −
𝛼𝑇

√2𝜋
√

𝜀0

𝛽𝑇
𝐴 sin 𝜑𝑠 ∫ sin 𝑘𝑢 𝑢𝑒−

𝑢2

2 𝑑𝑢 = −𝛼𝑇√
𝜀0

𝛽𝑇
𝐴 sin 𝜑𝑠 𝑘𝑒−

𝑘2

2

∞

−∞

. (11) 

 
Integration of other terms of Eq.(6) is similar: 

𝛿𝑧′2̅̅ ̅̅ ̅̅ =
1

2𝜋
∫ 𝛿𝑧′2(𝑢)𝑑𝑢 ∫ 𝑒−

𝑢2+𝑣2

2 𝑑𝑣
∞

−∞

∞

−∞

= 

=
𝐴2

√2𝜋
∫ ⌈1 +

cos 2𝜑𝑠

2
+

1

2
cos 2𝜑𝑠 cos 2𝑘𝑢 − (1 + cos 2𝜑𝑠) cos 𝑘𝑢⌉ 𝑒−

𝑢2

2 𝑑𝑢
∞

−∞

= 
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= 𝐴2 [1 +
cos 2𝜑𝑠

2
+

cos 2𝜑𝑠 𝑒−2𝑘2

2
− (1 + cos 2𝜑𝑠)𝑒−

𝑘2

2 ] , (12) 

 

𝑧𝛿𝑧′̅̅ ̅̅ ̅̅ =
𝜎𝑧

2𝜋
∫ 𝑢 ∙ 𝛿𝑧′(𝑢)𝑑𝑢 ∫ 𝑒−

𝑢2+𝑣2

2 𝑑𝑣
∞

−∞

∞

−∞

= 𝐴𝜎𝑧 sin 𝜑𝑠 𝑘𝑒−
𝑘2

2 . (13) 

 
Substitution of Eq.(11) – (13) into Eq. (6) gives 

𝜀1
2 − 𝜀0

2 = −2𝜎𝑧
2𝛼𝑇√

𝜀0

𝛽𝑇
𝐴 sin 𝜑𝑠 𝑘𝑒−

𝑘2

2 +

+𝐴2𝜎𝑧
2 [1 +

cos 2𝜑𝑠

2
+

cos 2𝜑𝑠 𝑒−2𝑘2

2
− (1 + cos 2𝜑𝑠)𝑒−

𝑘2

2 ] + 

+2𝛼𝑇𝜀0𝐴𝜎𝑧 sin 𝜑𝑠 𝑘𝑒−
𝑘2

2 − (𝐴𝜎𝑧 sin 𝜑𝑠 𝑘𝑒−
𝑘2

2 )

2

. (14)

 

 
After combining the terms in Eq. (14), the final expression for the diluted emittance is  

𝜀1
2 − 𝜀0

2 = 𝐴2𝜎𝑧
2 {cos 2𝜑𝑠 [

1

2
+

𝑒−2𝑘2

2
− 𝑒−

𝑘2

2 +
𝑘2

2
𝑒−𝑘2

] + 1 − 𝑒−
𝑘2

2 −
𝑘2

2
𝑒−𝑘2

} . (15) 

 
For a small dilution, the relative emittance change can be expressed as 

𝛿𝜀

𝜀0
≡

𝜀1 − 𝜀0

𝜀0
≈ 𝐴2

𝜎𝑧
2

2𝜀0
2 {cos 2𝜑𝑠 [

1

2
+

𝑒−2𝑘2

2
− 𝑒−

𝑘2

2 +
𝑘2

2
𝑒−𝑘2

] + 1 − 𝑒−
𝑘2

2 −
𝑘2

2
𝑒−𝑘2

} . (16) 

 

3. Case of the small bunch length 
The variable 𝑘 introduced in Eq. (5) is the rms bunch length expressed in the phase units, 𝑘 ≡

𝜎𝜑. Typically, this value is small, 𝜎𝜑 ≪ 1. For this case, Eq. (16) can be expanded to the first non-
zero terms: 

𝛿𝜀

𝜀0
≈ 𝐴2

𝜎𝑧
2

2𝜀0
2 [cos2 𝜑𝑠 (

3

8
𝜎𝜑

4 +
19

48
𝜎𝜑

6) +
𝜎𝜑

6

6
] . (17) 

For a bunching cavity,  𝜑𝑠 = −
𝜋

2
, Eq. (17) can be transformed to show explicitly the initial 

parameters as follows: 
𝛿𝜀

𝜀0
≈

1

12
(

1

𝛽2𝛾3

𝑈

𝑀𝑐2
∙

𝛽𝑐

2𝜋𝑓𝑐𝜀0
)

2

𝜎𝜑
8. (18) 

 
For convenience, Eq. (18) can be expressed through the RF wavelength 𝜆 =

𝑐

𝑓𝑐
 and normalized 

emittance 𝜀𝑛 = 𝛽𝛾3𝜀0: 
𝛿𝜀

𝜀0
≈

1

12
(

𝑈

𝑀𝑐2
∙

𝜆

2𝜋𝜀𝑛
)

2

𝜎𝜑
8. (19) 
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For an accelerating cavity, |𝜑𝑠| −
𝜋

2
≫ 𝜎𝜑√

2

9
 , Eq. (17) is approximated  

𝛿𝜀

𝜀0
≈

3

16
(

𝑈 cos 𝜑𝑠

𝑀𝑐2
∙

𝜆

2𝜋𝜀𝑛
)

2

𝜎𝜑
6. (20) 

 
Note that in Eq. (20), the synchronous phase enters only as the energy gain by the synchronous 

particle.  
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