
GlideinMonitor

Marco Mambelli, Fermilab
Thomas Hein, UIC-Fermilab

1 Introduction

1.1 Purpose
This document describes GlideinMonitor. GlideinMonitor is a Web application
that allows to view GlideinWMS’s Glidein log files: it provides a user interface,
tools to do quick searches and to decode the log content; it provides an efficient
managed archive of the log files and a framework to add log processing, e.g. log
sanitation.
The system does not provide extensive log analysis, e.g. like Elastic Search. The
implementation of log pre-processing (e.g. log sanitation) is not covered in this
description. The system is designed with security in mind but the choice and
implementation of a user authentication and authorization layer is not covered.

1.2 Scope
This document will describe GlideinMonitor. GlideinMonitor is a Web application
that allows to view GlideinWMS’s Glidein log files: it provides a user interface,
tools to do quick searches and to decode the log content; it provides an efficient
managed archive of the log files and a framework to add log processing, e.g. log
sanitation.
The system does not provide extensive log analysis, e.g. like Elastic Search. The
implementation of log pre-processing (e.g. log sanitation) is not covered in this
description. The system is designed with security in mind but the choice and
implementation of a user authentication and authorization layer is not covered.

1.3 Rationale
GlideinMonitor will help greatly troubleshooting operations of GlideinWMS
operators and developers. This includes Factory and VO Frontend operators, VO
managers, the software development team. GlideinMonitor simplifies the
distribution of the log files and the access to the correct logs needed to
understand and fix problems with the GlideinWMS system. The access to this
information is currently very labor intensive:

● The interested party has to request a copy of a specific log files to the
Factory operators

● Log files have to be searched with Unix command line tools (grep, …)

- 1 -

FERMILAB-TM-2735-SCD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

● Embedded components have to be extracted and decoded manually on a
host where the GlideinWMS Factory tools are installed

● The relevant information has to be isolated and if other log files are
needed the whole process needs to be repeated

1.4 Terminology
Glideins are pilot jobs sent to distributed computing nodes to test and setup the
nodes so that user jobs will run as desired. These also collect information about
the nodes and the jobs running on them.
GlideinWMS is the Glidein based Workload Management System
[https://glideinwms.fnal.gov/], a system to provide simple access to distributed
computing resources. It has three main components: the Glideins, the Factory
producing Glideins and the Frontend calculating the Glideins required to satisfy
the user’s needs.
GlideinMonitor is the Web application described in this document
Indexer is the GlideinMonitor component that collects, prepares and archives
new log files
Webserver is a Web application serving and decoding the archived log files. It
provides simple log search capabilities and client-side applications to decode and
search the log files
[https://www.cloudflare.com/learning/serverless/glossary/client-side-vs-server-sid
e/]. It provides also a RESTful
[https://en.wikipedia.org/wiki/Representational_state_transfer] interface to the log
files.
Pre-processing in this document refers to any operation that is performed on the
log files before archiving them and making them available via the Webserver.
This may include for example log anonymization and sanitation, e.g. to remove
from the log files Personally Identifiable Information (PII
[https://en.wikipedia.org/wiki/Personal_data])

2 Overview
GlideinMonitor automatically indexes job files, currently those files include “.err”
and “.out”, and saves them in a compressed archive for long term storage. While
searching and compressing them, basic information within these files such as
their size, and date generated within the file is stored in a database.
GldeinMonitor contains an authenticated website dashboard for users to interact
with. This dashboard allows for searching for jobs in a table based format.
Specific queries can be performed such as providing a datetime range and
selecting which entries the user is interested in.

- 2 -

Once a particular job has been selected by the user, the website will provide
general information about that job such as the entry, factory, time created, and
more. Links are also provided to either view or download the raw files
themselves, an archive of the file, or even compressed logs within them such as
Condor logs.
The web dashboard itself is powered by a REST based API that other
applications can use as well. The API provides various endpoints providing
JSON responses. These endpoints provide information such as the output from
the table found in the homepage of the dashboard, general job view information,
ability to download the archived job file itself, and more.
The server and indexing system powering it is made using Python with typical
installations only requiring at minimum a Flask installation. More powerful
installations can make use of external database support such as MariaDB,
separate job file indexing and web server instances, and more robust web
servers such a NginX powering Flask.

3 Requirements
This server requires a few basic read and write permissions to folders and to the
desired database. A more in depth explanation is stated in Major Inputs and
Outputs
 The web server will only require read level access but the index script requires
write level access.
The index script also requires write level access to a database. This database
can either be a MariaDB instance or a SQLite database. The web server will
only require read level access to this same database.
Both the index script and the web server requires a Python v3.7.x installation.
The web server further needs the Flask package to be installed as well.

3.1 Actors
External actors depends primarily on the setup. For any setup, the Factory log
files must be generated and published for the GlideinMontitor indexing script to
access. Some setups may utilize external databases such as an offsite MariaDB
instance that would also pose as an external actor. User’s accessing the
dashboard would be additional external actors as well.

3.2 The Major Inputs and Outputs
Read access is required for a folder containing factory logs. This folder can be a
mount, a synced folder, or the actual folder of the factory logs. The index script
will access this folder each time it is run, however, the web server will never
access this folder.

- 3 -

The index script also requires a place to save logs and a long term storage folder
for archives. The long term archive folder must be in a place that the web server
can access directory.

3.3 Behavioral requirements (use cases)

3.3.1 Index System
Task Index Job Files

Level GlideinMonitor archiving job files for long term storage and
writing basic information about each job in a database

Goal Stated as a short active verb phrase

Actor Cron

Trigger Scheduled Interval to find new job files

Preconditions Job file accessible, database & archive location writable, and
index system not already running.

Post-conditio
ns

N/A

Description 1. Cron launches index system
2. Index system searches for new/modified job files and

archives them accordingly
3. Index system updates database

Nonstandard
Flow

- Lock file present, index system does not run
- Missing out or err file to a job, index system writes to log

and continues
- Index system cannot write to disk, index system writes to

log and exits
- Index system cannot write to database, index system

writes to log and exists

Comments The index system should be placed on the cron and run
automatically. The schedule should be less than the time of the
lifecycle of job files available on the factory (job files from being
added to the factory to being deleted).

3.3.2 Web Query
Task Querying and viewing job files

Level A user searching for job files and viewing/downloading their
contents

- 4 -

Goal Allow a user to find job files quickly and get specific information
within their contents quickly

Actor User viewing information about jobs

Trigger User using the web interface

Preconditions GlideinMonitor running, web server having access to job file
archives & database, and user w/ proper credentials to
dashboard

Post-conditio
ns

N/A

Description 1. User types in credentials into dashboard http login
2. User creates query in table to find job(s) wanted
3. Selects wanted job id, loads job view page
4. User searches within content or opens/downloads

individual logs

Nonstandard
Flow

- User cannot find job
- Incorrect credentials
- Job file missing content/archive

Comments The dashboard is a quick way to search for job files given a
proper query. User’s must have credentials to the web server
before performing searches or using the API. The job view page
allows for viewing of the condor extracted logs as well.

3.4 Constraints
Indexing speed is limited on how fast the server can open each .out/.err file for
the basic information. This process starts with getting general information about
the file before the index script opens the file. This general information is then
checked against the database that will respond with whether or not the file needs
to be updated.
If the file needs to be updated (or created for the first time) in the archive, the
index script will proceed to open the file accessing general information like
creation time and searching for condor logs.
Web server constraints are dependent on the speed at which the database can
be queried, the archives can be accessed and sent over to the client, and the
number of clients using the server at once.
It is recommended for production use that NginX is used if there are a large
number of clients separate from the factory operations staff. The package
powering the web pages is called Flask, which includes a very simple web server

- 5 -

that, according to their documentation, should only be used for development
purposes.

4 Architectural Overview

4.1 General Overview

The design of this project allows the web server and the index system to be
completely isolated assuming they can share a file system for archived job files
and a database.
While the index system is designed to run as lean as possible, it does contain
modularity including the ability to send uncompressed logs in their human
readable text form to check for sensitive information.
While the index system does need write access to the database and the location
of where it sends archived job files, the web server and index system when
fetching job files from the factory only requires read level access.
In order to lessen the load on the web server, the server itself only sends the
archived job file as it sits on the disk. The web browser will go through the
process locally of extracting the data, parsing the extracted files, and even
parsing the hashed condor logs within them.

4.2 Functional Unit Process
4.2.1 GlideinMonitor Index System

- 6 -

4.3 Deployment scenario

5 Component Interfaces
Expand the interfaces of the components shown in the previous section. Include
relationships to other components here.
How they talk together, provide SQL schema

6 Protocols
Describe known elements of any protocol involved in data exchanges, external or
internal to this subsystem, and the types of messages or data that may be
exchanged. This is distinguished from component interfaces right now – should it
be?
Show important invocation or message exchange timing sequences here. Show
what parts of the interfaces are used by other components.
rest api

7 Discussion
This section captures discussions and information that lead to the current
architecture view and component organization.

- 7 -

7.1 Decisions and Choices
The GlideinMonitor contains two systems under the same repository, a web
dashboard and an indexing script. The indexing script and the dashboard have
been designed as lean as possible while giving options for added features. The
project also is allowed to run side by side or on totally separate systems as well.
The web dashboard itself, especially the job view page, has been created to
handle zip extraction, log extraction, and condor log decompilation.

7.2 Rationale
The index system and web dashboard have different purposes and executions
but do share many functions such as connecting to the database, configuration
parsing, and logging. For

7.3 Implications resulting from Choices
Additional constraints that are imposed on the whole system or this system as a
result of choices made here.

7.4 Resulting rules
Include all things that must be true in the system and rules that must be followed
while the system is in operation. An example is that one worker node will only be
assigned to one partition.

7.5 Constraints imposed on other systems
List what constraints this system imposed on other systems.

8 Testing considerations
Explain any load testing that must be performed to evaluate the performance of
this system as a whole or parts within it. Suggestions for how to test (verification
and validation) this system should be included. Ways of evaluating the
performance of this system should be included here.

- 8 -

