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Abstract

We propose procedure for vector calibration of Q0 vs Eacc curve measurement
for superconducting resonators. The proposed vector calibration procedure and
hardware has several advantages over the techniques currently used for vertical
cavity tests. It provides high level of automation and reduces manpower and
preparation time for the test; it provides in situ, real time control of hardware
parameters and allows to detect hardware failure and operator’s errors; it allows
to control and exclude the most significant systematic uncertainties, measured
values of Q0(Eacc) can be made traceable to national standards.

1 Introduction

Vertical testing of SRF cavities in a helium bath is used to measure their main pa-
rameters: intrinsic quality factor and accelerating gradient. Practical developments in
material science, aimed to improve cavity performance heavily rely on these measure-
ments, therefore it is critically important to ensure their accuracy and repeatability.

Determination of intrinsic quality factor and accelerating gradient is based on the
analysis of the r.f. power that is reflected from the cavity, dissipated in the cavity and
transmitted through it. These measurements can contain significant errors if features
of r.f. networks with distributed parameters are not taken into account. To author’s
knowledge all known operational SRF facilities are using methods of scalar network
analysis (based only on power measurements) for vertical test stand (VTS) calibration,
however these methods are approximate by definition. In this report we propose to
use methods of vector network analysis (based on magnitude and phase measurements)
for a complete VTS calibration. It is important to mention that some ideas of VTS
measurements with elements of vector correction were proposed earlier. In [2] authors
used variable delay line installed between cavity and incident power source, similar to
how it was proposed in 1977 for network analyzers based on six-port reflectometers
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[5]. And in [3] authors used cavity in a self excited loop connected to a commercial
vector network analyzer. Unfortunately these previous works do not have complete r.f.
system models and only partially use the advantages of vector measurements.

Error models in this report are used in all modern vector network analyzers (VNA)
and are standard in the r.f. measurement community (see general error models in [12],
[9], [8]). But these known calibration procedures and especially hardware architecture
of commercially available VNAs cannot be directly used for VTS measurements be-
cause of such features as arbitrary cavity frequency detuning due to helium pressure,
high power of test signals and requirement to know absolute power levels rather than
ratios. These limitations are analyzed in this paper and improved VTS r.f. system
architecture and methods of cavity measurements are proposed. Values of intrinsic
quality factor and accelerating gradient measured with these methods can be made
traceble to national standards.
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2 Vertical Test Stand Equations

For simplicity in this paper we consider an accelerating cavity under test as a two port
device: first for incident wave and second for transmitted wave, with no additional
ports. For all r.f. measurements VTS facility at Fermilab is using procedure described
in [1]. Final cavity parameters intrinsic quality factor Q0 and accelerating gradient
Eacc are defined in eqs. (1), (2).

Q0 = (1 + β1 + β2) ·QL, (1)

Eacc =

√
Q0Ploss

r/Q

L
=

[
V

m

]
, (2)

where:

β1, β2 - coupling of ports 1 and 2;
QL - loaded quality factor of the cavity;
Ploss - loss power in the cavity, [W ];
r/Q - geometric factor [Ω/m];
L - electrical length of the cavity [m];

Among these parameters QL is usually extracted from the cavity decay time mea-
surement, r/Q and L can be extracted from the electromagnetic simulations. The rest
of the parameters Ploss, β1 and β2 are extracted form the r.f. measurements (3), (4):

Ploss = Pi − Pr − Pt,
Pi = PimCi,

Pr = PrmCr,

Pt = PtmCt,

(3)

where:

Pi, Pr, Pt - corrected values of incident, reflected
and transmitted power;

Pim, Prm, Ptm - measured values of power;
Ci, Cr, Ct - correction coefficients.

β2 = Pt/Ploss,

β1 = β∗ · (1 + β2),

β∗ =
1− Γ

1 + Γ
,

Γ = Cβ | Γ |,
| Γ |=

√
Pr/Pi,

(4)
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where Cβ is coupling factor, +1 for under-coupled cavity and −1 for over-coupled
and it is selected based on the reflected power envelope shape measured with an oscil-
loscope.

From eqs. (1) - (4) it can be seen that there are four core measurands that can
introduce direct error into Q0 and Eacc determination: QL, Pi, Pr, Pt. We shall study
last three parameters. According to eq. (3), these parameters are products of mea-
sured power and correction coefficients. In VTS r.f. power is measured directly with
calibrated power sensors, error of this measurement in general defined by specifica-
tions of the sensor. However, error of correction coefficients Ci, Cr, Ct determination
is defined by methodology and math that is used for their evaluation. According [1],
determination of Ci, Cr, Ct relies on pure scalar corrections, based on direct r.f. power
measurements: all signal paths should be characterized separately using signal injection
and measurement on the other side of the path. However, with such approach differ-
ences in mismatches of various connectors are ignored, matching of the incident and
transmitted power port is ignored, electrical length variations in the cables are ignored,
and practical implementation of such calibration procedure demands for multiple man-
ual connections and re-connections that requires significant amount of manpower and
leads to increased cost of cavity tests and probability of errors. These problems can
be particularly severe at high frequencies (at Fermilab SRF cavities up to 9 GHz are
tested).

In the following sections instead of measuring scalar ratios of power levels that
give only approximate values of Ci, Cr, Ct we propose to determine them based the
direct measurements of vector ratios of the scattered waves with full featured vector
error correction techniques used in modern r.f. test equipment. We also propose the
required new VTS hardware architecture.
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3 Vertical Test Stand Errors

3.1 Error in reflection measurement

A standard error model for a directional device is described in [7]. Illustration to this
model is given in fig. 1. It assumes that between actual reflection coefficient ΓA and
its measured value ΓM there exists an error network that distorts the measured result.
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ГA
1

2 3
4

a b

Figure 1: Illustration to reflection error model

1 - r.f. generator; 2 - directional coupler of forward wave; 3 - directional coupler of reflected
wave; 4 - load; ΓM , ΓA - measured and actual values of reflection from load 4;

EDF - directivity, ERF - reflection tracking, ESF - source match.

Under such conditions the measured value of reflection can be found from the flow
graph as a ratio ΓM = b/a. Error in reflection measurement δΓ can be defined as
difference between measured and actual values:

ΓM = EDF +
ERFΓA

1− ESFΓA
(5)

δΓ = ΓM − ΓA =
ERFΓA − ΓA + ESFΓ2

A

1− ESFΓA
+ EDF (6)

Calibration procedure from [1] corrects only for reflection tracking ERF error factor,
while the directivity EDF and source match ESF are assumed ideal. It can be seen from
the graphs in fig. 2 that under some conditions error can be quite significant. Even if
cavity is critically coupled the reflection measurement error can easily reach 100% if
directivity error factor EDF is ignored.

For the real hardware used in Fermilab VTS, directivity is typically EDF = −30
dB or 0.032 defined by the directional coupler (Narda Model 3022 for 1.3 GHz system),
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Figure 2: Graphical representation of eq. (6).

Error of reflection measurement with different values of source match ESF . Left: with real
value of directivity EDF = 0.032. Right: with ideal directivity EDF = 0. Both cases assume

ideal reflection tracking ERF = 1.

source match ESF = −15... − 20 dB, and even for well matched cavity ΓA = 0.32
unexcluded systematic error of cavity input reflection measurement will be around
13% with calibration procedure from tutorial [1].
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3.2 Error in transmission measurement

Transmission measurement can be defined by model in fig. 3. This model is specific to
cavity measurements and is slightly different from general models described in [8] and
[9] by fact that cavity transmissions in forward and reverse directions are equal and
output port of the cavity has reflection equal to one, since it is very weakly coupled to
the cavity. These assumptions are reasonable in almost all practical cases and allow to
simplify equations.
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Figure 3: Illustration to transmission error model

1 - r.f. generator; 2 - directional coupler of forward wave; 3 - directional coupler of reflected
wave; 4 - cavity under test; ΓM , ΓA - measured and actual values of reflection from cavity 4
input; EDF - directivity, ERF - reflection tracking, ESF - source match, TM , TA - measured
and actual values of cavity 4 trasmission, ELF - load match, ETF - transmission tracking,

EXF - crosstalk.

From the signal flow graph in fig. 3 the measured value of trasmission b/a = TM
can be found as eq. (7) using the non-touching loop rule [6]. By analogy with eq. (6)
trasmission error δT can be defined as eq. (8).

TM =
TAETF

1− (ΓAESF + T 2
AELFESF + ELF ) + ΓAESFELF

+ EXF (7)

δT = TM − TA (8)

Resulting transmission errors are shown in fig. 4, one can see that transmission
error is significant and like reflection error it can reach 100% and even higher in some
cases. Calibration procedure [1] allows to exclude only error factor ETF from the
measurement, while load match error factor ELF and crosstalk EXF are assumed to be
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Figure 4: Graphical representation of eq. (8).

Error of transmission measurement with two values of load match ELF = −30 dB (excellent
load match on the left) and ELF = −10 dB (poor load match on the right). And two values

of ΓA = 0.32 for relatively good cavity input coupling and ΓA = 0.8 for bad coupling.
Different curves correspond to several values of source match ESF . Transmission tracking
ETF = 1 is assumed to be known (calibrated). Note that vertical scale is percentage error

of the linear value of TA, while horizontal scale is logarithmic for convenience.
EXF = −80 dB for all curves.

ideal and equal to zero, however, from blue curve in upper left plot it can be seen, that
even in such ideal conditions error is about 5%.

In real operating conditions, as described above when source match ESF = −15...−
20 dB, cavity input mismatch Γ = 0.3...0.8, load match ELF = −30... − 10 dB and
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typical cavity attenuation TA = −20 dB error will span from 7% to 60%. Under typical
conditions ESF = −20 dB, load match ELF = −20 dB and Γ = 0.3...0.8, unexcluded
systematic error of cavity transmission measurement will be in range 16%...21%.

These two described above types of errors for transmission and reflection measure-
ments are in essence errors of the coefficients Ct and Cr in eq. (3).
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3.3 Errors in Q0 measurement

To evaluate error of Q0 measurement we will use eq. (1) and redefine corresponding
parameters from eq. (3) and eq. (4). If incident power Pi is known (we will show later
how to measure it) and parameters b/a = ΓM and c/a = TM are measured with setup
in fig. 3, then parameters Pr, Pt and Ploss can be defined in eq. (9). Betas can then
be redefined in eq. (10). Note, that absolute values of |ΓM | and |TM | should be used
because Q0 is real number.

Pr = Pi|ΓM |2,
Pt = Pi|TM |2,
Ploss = Pi − Pi|ΓM |2 − Pi|TM |2

(9)

β2 =
|TM |2

1− |ΓM |2 − |TM |2
,

β∗ =
1− Cβ|ΓM |
1 + Cβ|ΓM |

,

β1 = (1 + β2)β∗.

(10)

By substituting eq. (10) to eq. (1) one will find definition of Q0 as eq. (11).

Q0M =
2QL(Cβ|ΓM | − 1)

|ΓM |2 + |TM |2 − 1
(11)

It is interesting to notice from eq.(11) that Q0 measurement in general doesn’t rely
on the knowledge of absolute power levels, so parameter Pi is not needed. To measure
Q0M one only needs to know ΓM , TM and QL.

Systematic error of Q0M can be calculated as eq. (12).

δQ0 =

√(∂Q0M

∂ΓM

)2

|δΓ|2 +
(∂Q0M

∂TM

)2

|δT |2 +
(∂Q0M

∂QL

)2

δQ2
L. (12)

Corresponding derivatives are:

∂Q0M

∂ΓM
=

2QL

(
|TM |2 − |ΓM |2 + 2Cβ|ΓM | − 1

)(
|TM |2 + |ΓM |2 − 1

)2 ,

∂Q0M

∂TM
=

4QL|TM |
(
1− Cβ|ΓM |

)(
|TM |2 + |ΓM |2 − 1

)2 ,

∂Q0M

∂QL

=
2(Cβ|ΓM | − 1)

|TM |2 + |ΓM |2 − 1
.

(13)

We will further focus on errors δΓ and δT since loaded quality factor mesurement
error was discussed in previous works [2]. In this analysis we will consider QL negligible
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in comparison with δΓ and δT , so eq. (12) will reduce to eq. (14):

δQ0 =

√(∂Q0M

∂ΓM

)2

|δΓ|2 +
(∂Q0M

∂TM

)2

|δT |2. (14)

An alternative way to estimate errors of Q0 measurement is to subtract measured value
Q0M from its actual value Q0A by analogy with eqs. (6), (8):

δQ0 = Q0M −Q0A =
2QL(Cβ|ΓM | − 1)

|ΓM |2 + |TM |2 − 1
−Q0A . (15)

By substituting ΓM and TM in eq. (15) with their definitions from eqs. (5), (7) it is
possible to find dependence of δQ0 on various error factors. Our calculations showed
that results obtained from eqs. (15) and (14) differ by less than 3% in the operating
regions (far from singularities). We will use eq. (14) for further investigation.

Analyzing eq. (14) and definitions of ΓM and TM one will see that δQ0 is function
of several arguments:

δQ0(EDF , ERF , ESF , ETF , ELF , EXF , TA,ΓA, QL, Cβ). (16)

Let’s analyze this result with application to the calibrating procedure from [1]. Er-
ror factors ERF and ETF are compensated with it and we assume that standard VTS
calibration completely corrects these errors and ERF = ETF = 1 meaning that corre-
sponding transmission coefficients are normalized. The results of δQ0 are presented in
figure 5. All parameters are in logarithmic scale and have dB units, however in case
where we want to show infinite attenuation we write EXX = 0 in linear units, in the
same way we write EXX = 1 in linear units where we want to show no attenuation.

Plots (a), (c) and (e) show Q0 measurement error with standard calibration proce-
dure from [1]. To calculate these curves we assumed directivity of the coupler to be
EDF = −30 dB and crosstalk EXF = −60 dB. Plots (a), (c), (e) lead us to an impor-
tant result. Even with good matching ESF = ELF = −25 dB which is hard to achieve
in practice, well coupled cavity and all standard scalar calibrations [1] performed, min-
imum error of Q0 measurement is at the order of 10 %.

Under conditions closer to real world from series (a) it can be seen that with typical
matching of the source and load port at the level of ESF = ELF = −20...−15 dB error
of Q0 measurement reaches 20 %, and is right on the slope of the curve. If ESF changes
due to the directional coupler heating etc., total error will increase very fast. Similar
result can be seen from series (c). Crosstalk EXF , if kept within typical range of
−60...− 50 dB, doesn’t change total error much.

These results, however, are true for relatively well matched cavity ΓA = 0.464. If
cavity is not coupled well, for example ΓA = 0.8 unexcluded systematic error of Q0

measurement will increase 100 %, and with real practical parameters of ESF , ELF even
several hundred percent.

Plots (b) and (d) show how Q0 error can be reduced if calibration procedure could
compensate for directivity EDF and crosstalk EXF . For the same ideal conditions as
above, minimum unexcluded systematic error will reduce from 10 % to almost zero.
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For above real conditions, it reduces from 20 % to about 5 %. But if EDF and EXF
errors could also be compensated, then total systematic error can be reduced to values
below 1 %, where random errors will dominate.

This means that if a special calibration procedure based on the above
equations is applied, even strongly overcoupled or undercouled cavities can
be tested in VTS with relatively small uncertainties .
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Figure 5: Percentage of δQ0 depending on ESF , ELF and EXF .

(a), (c), (e): only ETF and ERF error factors are compensated (standard VTS calibration);
(b), (d), (f): also directivity EDF is compensated. Span ELF , ESF EXF under different
conditions. Results are calculated with the next parameters: QL = 6.162 · 109, Cβ = −1,

ΓA = 0.464, TA = 0.26. Attention: most parameters are in dB, however we use linear units
if EXX = 1 or EXX = 0.
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3.4 Errors in the gradient measurement

Using gradient eq. (2) by analogy with (12) we will define error of gradient measurement

as eq. (17), assuming that uncertainty of coefficient κ =
√

r/Q
L

is negligibly small in

comparison with other uncertainties, as it was found in [4].

δEacc =

√(∂Eacc
∂Q0

)2

δQ2
0 +

( ∂Eacc
∂Ploss

)2

δP 2
loss =

=

√( Plossκ

2
√
Q0Ploss

)2

δQ2
0 +

( Q0κ

2
√
Q0Ploss

)2

δP 2
loss =

=
1

2

√
κ2
(
δQ2

0P
2
loss + δP 2

lossQ
2
0

)
PlossQ0

(17)

As can be seen from eq. (17) it demands for uncertainty δPloss. This uncertainty
can be found by differentiating equation for Ploss in (9):

∂Ploss
∂Pi

= 1− |TM |2 − |ΓM |2

∂Ploss
∂|TM |

= −2Pi|TM |

∂Ploss
∂|ΓM |

= −2Pi|ΓM |

(18)

Then using (18), uncertainty δPloss can be found as eq.(19) by analogy with δEacc:

δPloss =

√(∂Ploss
∂Pi

)2

δP 2
i +

(∂Ploss
∂|TM |

)2

|δT |2 +
(∂Ploss
∂|ΓM |

)2

|δΓ|2 =

=
√
δP 2

i (|TM |2 + |ΓM |2 − 1)2 + 4P 2
i |TM |2|δT |2 + 4P 2

i |ΓM |2|δΓ|2
(19)

Analyzing eqs. (19, 17) and definitions of ΓM and TM one will see that δEacc is
function of several arguments:

δEacc(EDF , ERF , ESF , ETF , ELF , EXF , TA,ΓA, QL, Cβ, Pi, δPi, κ). (20)

The results of fractional uncertainty eq. (17) under various conditions are given in
fig. 6. All parameters are in logarithmic scale and have dB units, however in case where
we want to show infinite attenuation we write EXX = 0 in linear units, in the same
way we write EXX = 1 in linear units where we want to show no attenuation.

These results in fig. 5 and in fig. 6 were calculated for cavity TE1PAV007 tested in
VTS on October 15, 2019 for one point, where measured parameters were Eacc = 10.51
MV/m, Q0 = 2.516 ·1010. Lets analyze fig. 6. Series (a), (c), (e) show uncertainty with
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standard VTS calibration procedure from [1] and various values ESF , ELF and EXF .
It can be seen from (a) that even under approaching to ideal conditions when source
match ESF = −30 dB gradient uncertainty is in range of 5 %. Under real conditions
when ESF = -20...-15 dB, gradient error is in range of 10% if load match ELF is good,
and error can reach 20% if match ELF is poor. Series (b) show that if directivity EDF
and cross-talk EXF corrections are applied then corresponding uncertainties reduce
from 10% to 4% for good match ELF and from 20% to 17% for poor match ELF .

Then, red trace in series (b) at -40 dB point shows the condition when all corrections
are applied and total uncertainty reduces to 2.5%, when only uncertainty δPi remains.
Finally, if we set δPi = 0 (which cannot be done in reality) total uncertainty will also
reduce to 0% (red dotted line), which shows that model works correctly.

Series (c), (d), (e), (f) show that uncertainty curves are relatively flat in the operat-
ing ranges of parameters ELF = −25...− 15 dB, and EXF = −60...− 40 dB. However,

in the operating range of source match ESF = −20...−15 dB ratio δEacc

/
Eacc becomes

very non-linear. This means that source match significantly effects the error of gradi-
ent measurement. In general, series (a) show that without additional correction VTS
calibration [1] can lead up to 15% error in gradient measurement, even for relatively
well matched cavity. For strongly over-coupled or under-coupled cavity this error will
be sufficiently higher.
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Figure 6: Percentage of δEacc depending on ESF , ELF and EXF .

(a), (c), (e): only ETF and ERF error factors are compensated (standard VTS calibration);
(b), (d), (f): also directivity EDF is compensated. Results are calculated with the next

parameters: QL = 6.162 · 109, Cβ = −1, ΓA = 0.464, TA = 0.26, κ = 88.474, Pi = 0.76 W,
δPi = 5%. Attention: most parameters are in dB, however we use linear units if EXX = 1

or EXX = 0.
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3.5 Vector errors

Let’s now analyze what effect deviations in cable length have on errors of Q0 and
Eacc measurement. In general, equations (5) and (7) demand for complex values of
EDF , ERF , ESF , ETF , ELF , EXF , and corresponding values of Γ and T and their er-
rors δΓ and δT are complex by definition. This is why all formulas for Q0, Eacc,
δQ0, δEacc contain only absolute values of Γ, T , δΓ and δT . However, error factors
EDF , ERF , ESF , ETF , ELF , EXF add and multiply as vectors and therefore absolute
values of Γ, T , δΓ and δT and as a result values of δQ0, δEacc are functions not
only of magnitudes, but also phases (arguments). This means that errors of Q0 and
Eacc directly depend on variations in electrical lengths of the components in VTS.
In [2] authors used heuristic approach to show this dependency for ERF error fac-
tor. By using complex error factors in equations from above sections of this work,
one can get strict and complete analytic definitions of VTS vector errors for any of
EDF , ERF , ESF , ETF , ELF , EXF parameters. We will show it next.

For our example cavity TE1PAV007 resonance frequency is f = 1.3 GHz. Any error
factor EXX can be defined using complex notation (21).

EXX(A,L) = A · ejβL (21)

where:
A - magnitude
β = 2π/λ - phase constant
λ = c/f - wavelength
c - speed of light
L - electrical length

Previously we found, that standard VTS calibration procedure [1] corrects for ERF
and ETF errors, but what if electrical length of the r.f. connections change due to
cable bending or temperature variations, or bad r.f. connectors, or even if one add a
small r.f. adapter between directional coupler and test cable? Procedure [1] will not
calibrate such errors.

Figure 7 shows what happens. From series (a) and (c) one can find that for 1.3
GHz cavity, change in electrical length of the cable from zero to 100 mm will lead
to change in uncertainty from 8% to 100% in gradient and from 14 % to 180 % in
quality factor. Effect from electrical length variations in ESF , ELF , and EDF is not so
catastrophic, but also leads to uncertainty variations about 8%. Note the behavior of
the curves: they oscillate because standing wave is shifting in transmission line together
with increase of the distance between generator and load - very well known effect.

Of course, in normal conditions length of the cables should not change after calibra-
tions so much. But with increase in cavity frequency this oscillating region will shift
toward left and even very small variations in length will cause significant variations in
uncertainty.

However, even for 1.3 GHz what seems a small modification in hardware can have
significant impact. Assume one adds a N-male-to-N-male adapter to the cavity Pi
cable after calibration was performed to connect it back to the directional coupler.
Such adapter has length about 10 mm, this will change electrical length of ERF error
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factor. As can be seen from figure 8, such change in hardware will cause uncertainty
of Q0 to increase from 15% to 35%, and Eacc from 8% to 20%.

Finally, these estimates are made for a relatively well coupled cavity with Γ = 0.464
and β1 = 3. If for any reason, cavity under test is not well coupled, errors will increase
by an order of magnitude, leading to hundreds of percent.
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Figure 7: Fractional uncertainties of gradient Eacc and Q0 measurement depending on
electrical length L of various error factors.

(a), (b): fractional uncertainty of gradient measurement, (c), (d): fractional uncertainty of
Q0 measurement. For all curves standard VTS calibration [1] applied, with no vector error
correction. Data calculated for 1.3 GHz over-coupled cavity, ΓA = 0.464 (TE1PAV007).
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Figure 8: Fractional uncertainties of gradient Eacc and Q0 measurement depending on
electrical length L of ERF and ETF .

Zoomed versions of (a) and (c) plots of fig. 7. With standard VTS calibration [1], no vector
error correction. Data calculated for 1.3 GHz over-coupled cavity, ΓA = 0.464

(TE1PAV007).
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3.6 Summary on errors

Using error models for transmission and reflection measurement and graph theory we
derived complete analytical relationships between error terms and measured values of
Q0 and Eacc that show how actual values will change due to impact of errors. We
demonstrated that systematic errors of Q0 and Eacc measurement can be character-
ized by six error terms: EDF , ERF , ESF , ETF , ELF , EXF . Standard VTS calibration
procedure corrects only for two of these terms: ERF , ETF and provides only scalar
correction.

While for critically matched cavity this can be enough, in real world conditions
ignoring of other terms will cause systematic error that can span form 15% to several
hundreds inQ0 and from 8% to several tens for Eacc. For example we used VTS raw data
of real cavity and processed it with our equations, applying practical values of remaining
error terms: EDF , ESF , ELF , EXF , assuming that ERF = ETF = 1 (calibrated).

The resulting Q0 plot with error bars is given in fig. 9. To get this plot we took
Q0(Eacc) data from VTS, assuming it to be perfect ”actual data”. Then we added
errors to this data based on our analytic model and real hardware parameters of the
test stand resulting in distorted data ”measured data”. However, result in fig. 9 is only
simulation; in reality, VTS raw data already has errors and real hardware experiments
should be conducted to show how scalar corrected data will differ from vector corrected
data.

From fig. 9 one can see that reduction of reflection from the cavity input Γ leads
to reduction in total error of Q0 and Eacc, as expected from previous works [1], [2].
In this plot error of power meter is assumed δPi = 5%, directivity EDF = −30 dB,
source match ESF = −20 dB, load match ELF = −25 dB. Depending whether cavity
is under-coupled or over-coupled this errors will create positive or negative bias to the
final Q0 result.

These systematic errors can be measured and corrected, reducing the total error of
measurement to negligible random errors. Methods and mathematics of such correc-
tions and required hardware modifications to VTS are described in the next sections.
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Figure 9: Top: cavity parameters as measured at VTS (blue) and with added erros as
calculated (red); bottom: measured reflection from cavity input.
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4 Improved Vertical Test Stand Architecture

A block diagram of the vertical test stand r.f. system that allows to perform a vector
error correction is shown in fig. 10.

The r.f. system works as follows. In the normal cavity measurement mode switch
13 is in position ”4” and matrix switch 19 is in position ”3-2” . In such configuration
generator 1 produces an r.f. signal that goes through transmitter ”T” where it is
amplified in the power amplifier 4, and then through switch 13 and test cable 17,
and coupler 21 it finally reaches cavity 22. Some of the power is reflected back from
the cavity 22 and coupler 21 and returns back to the transmitter ”T” through test
cable 17 and switch 13, where it is directed to downconverter 9 through attenuator
8 and circulator 7. Some portion of r.f. power from the output of the amplifier 4 is
also directed to the downconverter 6 through directional coupler 5. Power from the
coupler 23 is directed to the downconverter 11 trough the test cable 20, switch 19 and
broadband splitter 12, the rest part of this power goes through splitter 12 to the phase
locked loop 3. This phase locked loop generates control signal that is proportional to
the cavity 22 detuning from the frequency of the r.f. generator 1. Control signal tunes
generator 1 in resonance with cavity 22, so a stable magnitude of electric field can be
achieved in the cavity, like in any known SRF test system.

An additional r.f. generator 2 has frequency offset by several MHz from generator 1.
Generator 2 serves as a local oscillator for downconverters 6, 9, 10. Generators 1 and 2
can be locked so frequency offset between them always remains the same, which means
that downconverters will produce signals with equal frequencies on their outputs. This
signals can be then digitized and processed in digitizer 10 in order to find their vector
ratios.

In the calibration mode parameters of the transmitter ”T” are measured by com-
paring magnitude and phase of signals from the outputs of downconverters 6, 9 with
different standard loads connected, by turning switch 13 into corresponding positions.
Parameters of test cable 17 are also measured during this step.

Then switch 13 is turned into position 5, and switch 19 into position ”1-2” param-
eters of test cable 20 are measured in the same way by comparing signals from the
outputs of the downconverters 6, 9.

Finally, switch 19 is turned into position ”1-3” to measure parameters of the receiver
”R” by comparing magnitude and phase of signals from the outputs of downconverters
6, 11. This finalizes calibration procedure, from now switch 19 is turned into position
”3-2” to do regular cavity measurements. In the following sections we will describe
this calibration procedure in details.
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Figure 10: Block-diagram of improved VTS system

1,2 - r.f. generators; 3 - phase-locked-loop; 4 - r.f. power amplifier; 5 - directional coupler;
7 - high power circulator; 8 - attenuator; 6,9,11 - downconverters; 10 - digitizer;

12 - broadband splitter; 13 - SP5T r.f. switch; 15 - r.f. power meter; 14 - open standard;
16 - short standard; 18 - transmission standard; 17,20 - test cables (including cryogenic

part), 19 - three-port matrix switch; 21 - input power coupler; 22 - cavity; 23 - transmitted
power coupler; ”T” - transmitter; ”R” - receiver; ”G” - signal generation section;

”C” - calibration standards’ section; ”D” - dewar.

5 VTS r.f. error model and de-embedding

Flow graph in fig. 11 shows a complete VTS error model. When VTS is operated in
normal mode the electronics is measuring voltages in three points a, b and c. In fig. 10
these points are outputs of the downconverters 6, 11 and 9 correspondingly. If there
were no error factors in the system direct ratios of b/a and c/a would give one the
trasmission through the cavity and reflection from the cavity.

However under real conditions there are error terms, that exist between cavity and
the meters that distort measurement result. These error terms are EDF , ERF , ESF of
the transmitter ”T”, ETF , ELF of receiver ”R”, EXF - crosstalk, TI , ΓIW , ΓIC of the
cable 17 and TT , ΓTC , ΓTW of the cable 20. It is necessary to find these paprameters
in order to exclude them from model and finally extract parameters T and Γ of the
cavity.

Unfortunately, there are several practical problems since parameters ΓIW , ΓIC ,
ΓTW , ΓTC cannot be measured directly without placing calibration standards in cryo-
genic environment like authors did it in [10], mainly because it is not studied how
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Figure 11: Flow graph of cavity measurement in system of S-parameters

T , R - transmitter and receiver
PI , PT , C - incident, transmitted power cables and cavity

with corresponding S-parameters
EDF - directivity
ERF - reflection tracking
ESF - source match
ETF - transmission tracking
ELF - load match
EXF - crosstalk

high power r.f. switches will operate in liquid helium and what will be the operation
reliability.

However from series (d) in fig. 6 and fig. 5 it can be seen that if ELF is in range
-30...-20 dB it doesn’t change the value of total error, therefore it can be ignored, and
it is practically possible to make ELF be close to zero. Then ΓTW , ΓTC can also be
ignored. Finally, if cavity reflection Γ >> ΓIW ,ΓIC which is true in most practical
scenarios then ΓIW and ΓIC can also be ignored since they will make very small impact
to the error of Q0 and Eacc measurement. Such assumptions are rather reasonable since
cable connectors can be made with very high quality, and good load match ELF of the
receiver ”R” is achieved with high quality splitter 12 and switch 19. This allows to
significantly simplify flow graph from fig.11. This reduced graph is shown in fig.12
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Figure 12: Reduced graph of cavity measurement in system of S-parameters

From this graph measured reflection c/a = MΓ from the cavity can be defined as
eq.(22).
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MΓ = EDF +
T 2
I ΓERF

1− ΓT 2
I ESF

(22)

And transmission b/a = MT through the cavity can be defined as eq.(23).

MT = EXF +
TITTTETF

1− ΓT 2
I ESF

(23)

By solving system of eqs.(22,23) one can easily find final cavity parameters:

Γ =
MΓ − EDF

ERFT 2
I − EDFESFT 2

I + ESFT 2
IMΓ

(24)

T =
ERFMT − ERFEXF

ERFETFTITT − EDFESFETFTITT + ESFETFTITTMΓ

(25)

6 VTS r.f. system vector calibration

Eqs.(24,25) show that transmitter parameters ESF , EDF and ERF ; receiver parameter
ETF ; and cable parameters TI , TT must be known. These parameters can be measured
using OSM (Open Short Match, sometimes reffered also as SOL) calibration [11], [9],
[8]. Before calibration, actual S-parameters of calibration standards 14,16,18 and re-
flection coefficient of r.f. power meter 15 should be measured with calibrated vector
network analyzer and recorded in files. After that VTS system can be characterized.

6.1 Transmitter calibration

First, parameters of transmitter ”T” will be found. In calibration section ”C” r.f.
power meter 15 serves as matched load calibration standard. Switch 13 is turned into
position ”1” and vector voltage ratio c/a between outputs of mixers 9 and 6 gives
measured reflection value of matched standard.

LM = EDF +
ERFLA

1− ESFLA
(26)

Then switch 13 is turned in position ”2” and open standard is measured:

OM = EDF +
ERFOA

1− ESFOA

(27)

Then switch 13 is turned in position ”3” and short standard is measured:

SM = EDF +
ERFSA

1− ESFSA
(28)

Then solution of system (26, 27, 28) gives error terms EDF , ERF , ESF .
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N = LALMOASM − LALMOMSA − LAOAOMSM + LAOMSASM+

+ LMOAOMSA − LMOASASM

EDF =
N

LALMOA − LALMSA − LAOAOM + LASASM +OAOMSA −OASASM

(29)

ERF =
(LA −OA) (LA − SA) (LM −OM) (LM − SM) (OA − SA) (OM − SM)

(LALMOA − LALMSA − LAOAOM + LASASM +OAOMSA −OASASM)2

(30)

ESF =
−LAOM + LASM + LMOA − LMSA −OASM +OMSA

LALMOA − LALMSA − LAOAOM + LASASM +OAOMSA −OASASM
(31)

6.2 Crosstalk calibration

Next, switch 13 is turned into position ”1” and switch 19 into position ”3-2” and
measurement of vector voltage ratio b/a between outputs of mixers 11 and 6 gives
crosstalk EXF directly.

6.3 Receiver calibration

Next, parameters of receiver ”R” are found: switch 13 is turned to position ”5” and
switch 19 to posotion ”1-3”. A transmission standard 18 with known S-parameters
is now connected between transmitter ”T” and receiver ”R”. Flow graph of such
connection is shown in fig.13.
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Figure 13: Transmission standard measurement

Path of interest for us is from a to b, voltage ratio b/a = METF
and from a to c ratio

c/a = MELF
, in this notation ”M” means measured value that different from actual.

By using the nontouching-loop rule [6] it is possible to find analytically solution for
both paths eqs. (32) and (33).

METF
=

S21ETF
1− (S11ESF + S21ELFS12ESF + ELFS22) + S11ESFELFS22

+ EXF (32)
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MELF
=

(1− ELFS22)S11ERF + S21ELFS12ERF
1− (S11ESF + S21ELFS12ESF + ELFS22) + S11ESFELFS22

+ EDF (33)

Solution of system (32, 33) gives error terms ELF and ETF .

ETF = −ERFS12 (EXF −METF
)

D
D = EDFESFS11S22 − EDFESFS12S21 − EDFS22 − ERFS11S22+

+ ERFS12S21 − ESFMELF
S11S22 + ESFMELF

S12S21 +MELF
S22

(34)

ELF =
EDFESFS11 − EDF − ERFS11 − ESFMELF

S11 +MELF

D
(35)

6.4 Cryogenic cables calibration

Since cables PI and PT are reciprocal devices only one transmission parameter is un-
known for each cable TI and TT . Reflection parameters ΓIW , ΓIC , ΓTW , ΓTC are subject
to assumptions discussed above.

To find parameter TI switch 13 is turned in the position ”4” and cavity is detuned
from resonance to achieve full reflection from coupler 21 as it is done in standard
procedure [1]. Corresponding graph is shown in fig. 14.
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Figure 14: Calibration of PI cable.

In such configuration vector voltage ratio c/a = MTI . Using the non-touching loop
rule parameter MTI can be defined as eq.(36)

MTI =
(1− ΓIC)ΓIWERF + T 2

I ERF
1− (ΓIWESF + T 2

I ESF + ΓIC) + (ΓIWESFΓIC)
+ EDF (36)

Then from eq.(36) the required TI parameter can be found:

TI =

√
(EDF −MTI )(ΓIC + ESFΓIW − ESFΓICΓIW − 1) + ERFΓIW (ΓIC − 1)

ERF − ESF (EDF −MTI )
(37)
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Then, to find TT parameter of cable 20, switch 19 is turned into position ”1-2” and
switch 13 into position ”5”. This connects cable 20 to the transmitter ”T” through the
transmission standard ”L” 18. Flow graph is shown in fig.15.

For such graph direct solution c/a using non-touching loop rule is quite bulky, so
we will split it in two. First by using the non-touching loop rule we will get reflection
from cross-section a′ − b′ in form of M ′

TT
:

M ′
TT

=
(1− ΓTC)S21ΓTWS12 + S21T

2
TS12

1− (ΓTWS22 + T 2
TS22 + ΓTC) + ΓTWS22ΓTC

+ S11 (38)

From eq.(38) TT can be easily extracted as eq.(39) where M ′
TT

is unknown:

TT =

√
(M ′

TT
− S11)(ΓTC + S22ΓTW − S22ΓTCΓTW − 1) + S12S21ΓTW (ΓTC − 1)

S12S21 + S22(M ′
TT
− S11)

(39)

And since measured voltage ratio c/a = MTT can be defined as eq. (40),

MTT = EDF +
ERFM

′
TT

1− ESFM ′
TT

(40)

the unknown value of M ′
TT

for eq. (39) can be found from (40) as:

M ′
TT

=
MTT − EDF

ERF − EDFESF + ESFMTT

(41)

For a perfect match assumption in the PI and PT cable connectors ΓIW = ΓIC =
ΓTW = ΓTC = 0 so eq.(37) and eq.(39) will reduce to eq.(42) and eq.(43) correspond-
ingly.

TI =

√
MTI − EDF

ERF − EDFESF + ESFMTI

(42)

If Pt cable match is perfect on both ends reduces to

TT =

√
M ′

TT
− S11

S12S21 + S22(M ′
TT
− S11)

(43)
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In order to reduce additional complexity in the equations, the above calibration
procedures do not include switch terms like it is done in [12] and we assume equal
attenuation and electrical lengths of paths in SP5T switch 13 and matrix switch 19
which for our frequency range 0.1 - 10 GHz can be easily achieved in practice.

6.5 Summary on vector calibration and cavity measurements

Below we summarize algorithm of VTS vector calibration and Q0(Eacc) measurement.

I. Calibration. Detune cavity from resonance.

1) Turn switch 13 in position ”1”. Measure LM = c/a, measure port power Pport
with power meter 15 directly.

2) Turn switch 19 in position ”3-2”. Measure EXF = b/a;
3) Turn switch 13 in position ”2”. Measure OM = c/a;
4) Turn switch 13 in position ”3”. Measure SM = c/a;
5) Find EDF , ERF , ESF using eqs. (29), (30), (31);
6) Turn switch 13 in position ”5”, switch 19 in position ”1-3”. Measure METF

= b/a
and MELF

= c/a;
7) Find ETF , ELF using eqs. (34), (35);
8) Turn switch 19 in position ”1-2”. Measure MTT = c/a;
9) Find M ′

TT
using eq.(41), then find TT with eq. (43);

10) Turn switch 13 in position ”4”. Measure MTI = c/a;
11) Find TI using eq. (42).

II. Cavity measurement. Tune cavity to resonance, lock PLL.

Switch 13 should be in position ”4”, switch 19 in position ”3-2”. First, loaded
quality factor QL of the cavity is measured using standard decay technique. After
that:

1) Measure MT = b/a, MΓ = c/a;
2) Find cavity transmission T and reflection Γ using eqs. (25, 24)
3) Determine coupling Cβ of the cavity from the phase φ of the reflection coefficient

Γ. For overcoupled cavity phase will be somewhere in ranges (0◦ < φ < 90◦) and
(270◦ < φ < 360◦). For undercoupled cavity phase will be in range (90◦ < φ < 270◦);

3) Find Q0 using eq. (44) (by analogy with eq. (11);

Q0 =
2QL(Cβ|Γ| − 1)

|Γ|2 + |T |2 − 1
(44)

4) Find power Pi at the input cavity coupler 21 simply by applying attenuation TI
of the cable 17 to the measured earlier port power:

Pi = Pport|TI |2 (45)

5) Find accelerating gradient Eacc using eq.(46), see eqs. (2, 9) for reference.

Eacc = κ
√
Q0(Pi − Pi|ΓM |2 − Pi|TM |2) (46)
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7 Final Comments

The proposed above vector calibration procedure and hardware has several advantages
over the techniques currently used for vertical cavity tests:

1) It provides high level of automation and reduces manpower and preparation time
for the test.

2) It provides in situ, real time control of VTS hardware parameters and allows to
detect hardware failure and operator’s errors.

3) It allows to control and exclude the most significant systematic uncertainties,
measured values of Q0(Eacc) can be made traceable to national standards.

4) For sub-Kelvin experiments, eq.(44) with setup from [10] can be used for the
direct measurement of Q0 in the dilution refrigerator, without necessity to preliminary
measure cavity coupling in VTS.

Several aspects, however, remain unfinished: cryogenic cable mismatches are not
characterized in the proposed procedure and assumed to be negligibly small. For extra
high-accuracy, such characterization requires moving calibration standards in cryogenic
environment, which remains unsolved problem for kW-range power levels used for
accelerating cavities’ tests. Or different methods of calibration such as time-domain
reflectomerty should be used. These problems are subject of our ongoing research.
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