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ABSTRACT

The  computer  program  LFSC  (« Linac  Feedback  Simulation  Code »)  is  a 
numerical tool for simulation beam based feedback in high performance linacs. The code 
LFSC is  based  on the  earlier  version  developed by  a  collective  of  authors  at  SLAC 
(L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 
1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and 
NLC projects1,2,3. It can simulate as pulse-to-pulse feedback on timescale corresponding 
to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and 
Beam Delivery System.

The code LFSC is running under Matlab for MS Windows operating system. It 
contains about 30,000 lines of source code in more than 260 subroutines. The code uses 
the  LIAR4 (“Linear  Accelerator  Research  code”)  for  particle  tracking  under  ground 
motion and technical noise perturbations. It  uses the Guinea Pig code to simulate the 
luminosity performance. 

A set of input files includes the lattice description (XSIF format), and plane text 
files  with  numerical  parameters,  wake  fields,  ground  motion  data  etc.  The  Matlab 
environment provides a flexible system for graphical output.

1 P.N.Burrows et al., Nanosecond-timescale intra-bunch-train feedback for the linear collider, SLAC-
PUB-11185, 2004
2 L.I.Hendrickson et al., Beam-based Feedback for the NLC Linac, SLAC-PUB-10493, 2004
3 A.Seryi et al., Effects of dynamic misalignment and feedback performance of luminosity stability in linear 
colliders, SLAC-PUB-9896, 2003
4 LIAR – A Computer Program for the Modeling and Simulation of High Performance Linacs, 
SLAC/AP-103, 1997
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1. MATHEMATICAL BACKGROUND 

a. The Kalman filter algorithm for optimal control

Kalman  filters  are  based  on  linear  dynamical  system  discretised  in  the  time 
domain.  They are  modeled on a Markov chain built  on linear operators perturbed by 
Gaussian noise. The state of the system is represented as a vector of real numbers. At 
each discrete time increment, a linear operator is applied to the state to generate the new 
state, with some noise mixed in, and optionally some information from the controls on 
the  system if  they  are  known.  Then,  another  linear  operator  mixed with more  noise 
generates the visible outputs from the hidden state. The Kalman filter may be regarded as 
analogous to  the hidden Markov model,  with the key difference that the hidden state 
variables take values in a continuous space (as opposed to a discrete state space as in the 
hidden  Markov  model).  Additionally,  the  hidden  Markov  model  can  represent  an 
arbitrary distribution for the next value of the state variables, in contrast to the Gaussian 
noise model that  is used for the Kalman filter.  There is a strong duality between the 
equations of the Kalman Filter and those of the hidden Markov model. A review of this 
and other models is given in Roweis and Ghahramani (1999).

In order to use the Kalman filter to estimate the internal state of a process given only a 
sequence  of  noisy  observations,  one  must  model  the  process  in  accordance  with  the 
framework of the Kalman filter. This means specifying the matrices Fk,  Hk,  Qk,  Rk, and 
sometimes Bk for each time-step k as described below.

Model underlying the Kalman filter is shown in Figure 1. Circles are vectors, squares are 
matrices, and stars represent Gaussian noise with the associated covariance matrix at the 
lower right.

The Kalman filter model assumes the true state at time k is evolved from the state at 
(k − 1) according to 

           xk = A xk-1 + B uk-1 + wk-1,

where

• Ak is the state transition model which is applied to the previous state xk−1; 
• Bk is the control-input model which is applied to the control vector uk; 
• wk is the process noise which is assumed to be drawn from a zero mean 

multivariate normal distribution with covariance Qk. 

At time k an observation (or measurement) zk of the true state xk is made according to

zk = Hk xk + vk,
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where  Hk is the observation model which maps the true state space into the observed 
space and vk is the observation noise which is assumed to be zero mean Gaussian white 
noise with covariance Rk.

The  initial  state,  and the  noise vectors at  each step {x0,  w1,  ...,  wk,  v1 ...  vk} are  all 
assumed to be mutually independent.

Many real dynamical systems do not exactly fit this model; however, because the Kalman 
filter is designed to operate in the presence of noise, an approximate fit is often good 
enough for the filter to be very useful. Variations on the Kalman filter described below 
allow richer and more sophisticated models.

Figure 1. Computational scheme for the Kalman Filter algorithm.

The Kalman filter is a recursive estimator. This means that only the estimated 
state from the previous time step and the current measurement are needed to compute the 
estimate for the current state. In contrast to batch estimation techniques, no history of 
observations and/or estimates is required. It is unusual in being purely a time domain 
filter; most filters (for example, a low-pass filter) are formulated in the frequency domain 
and then transformed back to the time domain for implementation. In what follows, the 
notation represents the estimate of the state at time n given observations up to, and 
including time m.

The state of the filter is represented by two variables:

• xk, the estimate of the state at time k; 
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• Pk, the error covariance matrix (a measure of the estimated accuracy of the state 
estimate). 

The Kalman filter has two distinct phases: Predict and Update. The predict phase uses 
the state estimate from the previous timestep to produce an estimate of the state at the 
current timestep. In the update phase, measurement information at the current timestep is 
used to refine this prediction to arrive at a new, (hopefully) more accurate state estimate, 
again for the current timestep.

Two feedback models were implemented in the code LFSC: general and exponential one.

b. General feedback model in LFSC 

General model is described by the system of linear equations
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c. Exponential model 

The corresponding equations for exponential model are

where
ek – exponential change,
y – BPM reading,
w – exponential weight.

It  will  be  shown  later  that  exponential  model  for  some  cases  has  higher 
convergence rate than general one, but there is a correlation between gain and weight 
factors to provide the stability of iterations for this model.
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2. THE CODE STRUCTURE 

The code LFSC has two separate modules. First one makes the calibration for 
each  feedback loop.  It  saves  the  calibration results  to  some files are  used in  further 
simulations. Second one does the linac simulation for N beams, where N=1,2,3. First two 
beams correspond to electrons and positrons. Setting N=3 means that both beams and 
Interaction  Point  (IP)  are  included  into  the  feedback  loop.  Each  FB  loop  is  an 
independent variable parameter for optimal control.

The current version of LFSC code has considerable difference from the original 
SLAC  version  in  respect  of  data  organization.  Earlier  version  had  two  main 
disadvantages:  1) the code and data were not totally separated, many data items were 
embedded in the code; 2) too many input files, many of them contains just one number. 
Most  part  of  these  problems was resolved  in  current  version,  but  user  should  make 
changes in the code, when he changes the BPM and corrector’s arrangement in FB loops.

a. Calibration module FB_CAL_LINAC

The module reads a set of initial data using subroutine INITLIAR, then makes the 
calibration with Fb_CALIB, creates the feedback matrices with Fb_DES, and save the 
results into the file FBKCAL_LINAC.MAT. 

 

Figure 2. Flowchart for the calibration module FB_CAL_LINAC.

Fb_Fb_cal_linac.
m

Fb_des(ibeam)

Fb_calib(ibeam)

initliar

Save fbkcal_linac.mat

ibeam = 1, N

Fb_global

Fbstruc

initializes the LIAR code

moves each corrector in turn to set up 
the model for feedback system

Creates the feedback matrices for 
further simulations
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The  file  FBKCAL_LINAC.MAT  includes  two  structures  of  dimension  N: 
Fb_GLOBAL with the parameters set for each beam and FBSTRUC with the feedback 
data. Structure FBSTRUC of dimension Nloop includes the feedback matrices and other 
data for each loop.

Figure 3. An example of feedback data FB_GLOBAL and FBSTRUC.

Procedure INITLIAR reads the lattice, loads wakefields and makes setup for 
beam and Twiss parameters. As the result it produces output files for emittance and rays.
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Figure 4. Initialization for the LIAR code.

Figure 5. Procedure FB_DES creates the global matrices, and saves the results 
into structures FB_GLOBAL (global parameters) and FBSTRUCT (feedback structure).

nlc_mlbd_basic nlc_mlbd_config

Read lattice Emit.out

Rays.out

Restore_config

Load wakes

Beam setup

Twiss setup
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Figure 6. Routine FDESIGN creates the global matrices for FB simulations.

Figure 7. Routine FDES_CHECK – feedback step simulation.

Load Init Scale in Plant Gain Kalman

Check

Scale out Write to disk

Good_enough=1

|gamma|>0

i=1:npstate

Wgtstate(i)>0

Dcbreject(i) ¬[-3,-200]

Good_enough=0

Good_enough<1

Print(for bad results)Plot Graphs

Feedback step simulationInit_misc

Gamma, wgtstate

Calculates an actuator 
response state

Fdes_check

Fdes_act

Iter=1:niter

Calculates the state vector X

[y2, t2, x2] = lsim

Get physical state

Convert to expected raw state

Calculates dc bias rejection
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b. Simulation module SIM2 

Module  SIM2 provides  the  beam based  feedback  simulation  for  a  linac  with 
Nbeams. Parameter Nbeams=1 corresponds to a single beam linac, Nbeams=2 – electron-
positron  linac,  Nbeams=3  –  IP  simulation  to  maximize  the  luminosity  factor.  The 
algorithm makes particle tracking pulse-by-pulse up to Npulses with using subroutine 
SIM2_ITER, then it saves the results into two files. File SAVESIM.MAT includes the 
results  of  last  run:  two  structures  FB_STRUC described  above,  and  FB_RESULTS, 
which keep the data for beam position and emittance for each pulse. It will be renewed in 
the next run. 

Figure 8. Flowchart for linac simulation module SIM2.

The file EMIT<…>.MAT keep the results for emittance evolution. It has the 
additional parameters in its name:

• Fn – n=0 – no feedback; n=1 – FB loops in main linac (default); n=2 – includes 
BDS cascades; n=3 – dispersion correction (loads the dispersion initial data); n=4 
– measure dispersion every 40 pulses on 10th pulse, dispersion correction;

• Sn – n – number of GM seeds;
• In – mode of quad pulse jitter (n=0,…,18; 0 – no jittering);

Sim2 
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Dofeed=2
Disable X bds fb
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-

-

-

-

+

+

+

+
Feed_fast Read lattice Fast collide Put corrects

-
iter=1:npulses

Sim2_iter
Save savesim.mat

Save emitf!_s!_j!_ij!_bm!.mat

Linac simulation
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• IJn – mode of klystron jitter (n=0,…,10; 0 means no jittering);
• BMn – n – number of beams.

This trick makes it possible to keep a bunch of different results for different set of 
input parameters with no rename of files.

Figure 9. Routine SIM2_ITER provides the feedback iterations.
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Figure 10. Routine FB_FEED calculates the correction vector for different FB models.

Bunch.out Bunch data: SLICE#, X,  XANG, Y, YANG, EX, EY, E, Q, Z, NE, 
XX, XXA,  XAXA,  YY, YYA, YAYA, XSIZ, XPSZ, YSIZ, YPSZ

Emit.out Tracking data for beam1: N, S, X, Y, EMX, EMY, PSIX, PSIY, 
BETAX, BETAY, BMAGX, BMAGY, XLUMR, YLUMR, E, 
SIGE/E, SIGX, SIGXP, SIGY, SIGYP, SIGE, ALPHAX, ALPHAY, 
BEAMYAW, BEAMPITCH

Emit0.out Similar tracking data for unjittered reference beam (X=Y=0.0)
Train.out Train data: # BUNCH, X, XANG, Y, YANG, JX, JY, EX, EY, E, Q, 

EX_ALL, EY_ALL, YNORM, YPNORM, XSIZ, YSIZ, XPSIZ, 
YPSIZ

Bpmnames.out List of names for the BPM’s
Xcornames.out List of names for X-correctors
Ycornames.out List of names for Y-correctors
Matliarlog.out Log-file for LIAR code running
XSIF.ERR Xsif parser error-file
XSIF.STR Xsif parser log-file
Xsiftemp.out Temporary output file for parser
gm.out Ground motion histograms

Figure 11. Structure of the output files for the code LFSC.

Dp   =      Phys_state     –      setpoint;

State     =   exp_change  +  exp_wgt ( state – Dp )+Dp

Du = -gain * NMPT * state;

U  =   U   +   Du;

      exp_change     =    BMPT   *    Du;  (initialize to 0)

Act  =   U   +    Act
ref

;

Xcor_data = Act(ixcor); Ycor_data = Act(iycor).

Meas   =  [xbpm_data; ybpm_data]

Phys_state = HHPT * ( meas – meas
ref

 )

fb_fastfeedfb_feed1
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         i=1:nloops
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 return
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3. GETTING START 

We assume that user can get all the information about the LIAR code from its 
User’s Guide.

Typical configuration of file system for the code LFSC has the main folder which 
contains a set of subfolders:

• MFILES – Matlab source code for LFSC program;
• MFILES_WINDOWS – wrappers, interface for the LIAR code;
• FDESIGN – Matlab source code for the Kalman Filter algorithms;
• INFILES – common initial data (Ground Motion models A,B,C,J,K; lattice files 

with extension XSIF; longitudinal and transversal wakes; energy dispersion, GM 
seeds);

• RUN<n> - set of initial data and results for different runs.

You should create new folder for a new problem, then copy there the following 
set of files from any RUN-folder:

• FB_CAL_LINAC.M, SIM2.M – calibration and simulation modules;
• MATLIAR.DLL, MATLIAR2.DLL – dynamic linked libraries for the LIAR 

code;
• ELECTRONC.CFG, POSITRONC.CFG – configuration settings for electron and 

positron beams;
• TRLRFILE.DAT – path and name for the wakefield data;
• XSIFLINE.DAT – the name of beamline at corresponding lattice file;
• PARAMS.TXT – file with the global parameters of the problem.

We provide the example of PARAMS-file with brief comments:

jitter pulsejit model itime time_pulse wakes beams bunches pulses dofeed loops seeds BPMres gain exp_wgt espread bpmx bpmy 
quadx quady
   0        0       "B"       0        0.2              0         1           1        50          1          5     10        0.1      0.8       0.33        1          0.0  300.0     
  0.0     0.0

Here
• JITTER – klystron jitter model ( 0 – no jittering );
• PULSEJIT – pulse jitter model ( 0 – no jittering );
• MODEL – Ground Motion model ( model “B” );
• ITIME –
• TIME_PULSE – repetition rate for bunch train ( 0.2 sec = 5Hz );
• WAKES – number of wake files ( 0 – no wakes );
• BEAMS – number of beams ( 1 – main linac simulation );
• BUNCHES – number of bunches in a train ( 1 bunch );
• PULSES – number of pulses ( 50 pulses - 50*0.2 = 100 seconds );
• DOFEED – FB mode ( 1 – FB for main linac, no dispersion correction );
• LOOPS – number of FB loops ( 5 loops );
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• SEEDS – number of GM seeds ( 10 seeds );
• BPMres – BPM resolution ( 0.1 um );
• GAIN – gain factor for FB model ( 0.8 );
• EXP_WGT – exponential weight ( 0.33; zero value means general FB model );
• ESPREAD – energy spread ( 1% of nominal energy of beam );
• BPMX – x-BPM initial misalignment ( 0 – perfect alignment );
• BPMY – y-BPM initial misalignment ( 300 um );
• QUADX – x-quad initial misalignment ( 0 – perfect alignment );
• QUADY - y-quad initial misalignment ( 0 – perfect alignment ).

The LFSC run includes the following steps:

1. Run the Matlab application;
2. Enter the appropriate Run directory;
3. Load FB_CAL_LINAC.M file;
4. Load INITLIAR1.M file and make needed changes in BPM/Corrector arrangement at 

lines 233-241, in FB_SETUP.M at lines 106-109 also;
5. Select the FB_CAL_LINAC.M file and run it using hot key F5 or menu item 

“Debug/Run”;
6. Select the file SIM1.M to run linac simulation or file SIM2.M to run IP simulation, 

then run it;
7. The simulation modules produce graphical results for beam position and emittance 

using PLOT_RESULTS.M. Load it and make needed changes when you want to get 
another or additional graphics.
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4. THE RESULTS OF NUMERICAL SIMULATION FOR ILC PROJECT 

The  results  presented  here  include  some  simple  benchmarks  and  realistic 
simulations for short lattice ( 50 FODO cells ) and entire ILC lattice ( 114 FODO cells ). 
These  calculations  give  an  impression  on  the  efficiency  of  beam  based  feedback 
algorithms implemented in the code LFSC.

Figure 12 presents typical layout for some NLC FB structure.

Figure 12. FB device layout for 10 loops of 2 correctors (red cross) 
and 2 BPMs (green circle) each in x and y directions.

Figure 
13.  The response 
for stepwise 

perturbation for each FB loop.
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Figure 14. Parameters of low pass Kalman Filter.

Figure 15. Amplification ratio. Red – FB off; blue – FB on.

Figures 13-15 represent the step response and parameters of Kalman Filter for 
each of feedback loops.
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a. Simple benchmarks 

We present one of the simplest tests, which include one FB loop with 2 correctors 
and 4 BPMs in each direction. The lattice includes total number of 100 correctors and 
101 BPMs. Train repetition rate is 5 Hz.

Figure 16. Simple test for short ILC structure with one FB loop.

Initially  the lattice  is perfectly  aligned.  The perturbation is  made by the  quad 
number 50. It is moving with harmonic law in y-direction as Y50 = A cos(2π F t) with 
amplitude A=25μm and varying frequency F=0-0.5Hz.

Correctors              Quad  BPMs
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i. Static perturbation, perfect BPM resolution 

Figure 17 shows static response ( F=0 ) for stepwise perturbation depending of 
varying gain factor G of general Kalman Filter model. Optimal value G=1 takes 35-37 
pulses to reach more or less good aligned state.

Figure  17.  Static  response  vs.  gain  for  general  FB  model.  Different  colors 
correspond to different BMPs. Two of them work in opposite phases.

The origin of FB delay is determined by the influence of limited pass band of 
used Kalman Filter. It couldn’t be substantially reduced. Our results are in good 
agreement with publications2 and5.

5 I.Reyzl, Simulation of Feedback for Orbit Correction, EPAC’96.

Gain= 0.1

Gain= 1

Gain= 0.5
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ii. Dynamic response 

By  varying  the  perturbation  frequency  F,  we  can  detect  that  upper  limit  for 
effective FB control is factor of 50 less than repetition rate, as it shown at Figure 18.

Figure 18. Dynamic response for general model of Kalman Filter.

F=0.01Hz

F=0.05Hz

F=0.1Hz
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iii. Effect of BPM resolution 

Our  simulations  show  that  BPM  errors  can  be  effectively  suppressed  by  FB 
system, when resolution value is 1 micrometer or less. 

Figure 19. FB efficiency vs. BPM resolution for static perturbation.

Res = 1um

Res = 5um

Res = 0.1um
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iv. Stability of exponential model vs. Gain and Weight factors 

Our first runs for exponential FB model showed that unsuitable gain and weight 
factors  can  produce  the  divergence  in  FB  control.  From  the  other  hand,  converged 
process can produce big oscillations.

Figure 20. Different behavior of FB control for gain factor G=1.

Further  study  shows  the  lowering  of  G-factor  can  effectively  suppress  those 
oscillations, and there is strong correlation between gain and weight factors, which can 
provide  stable  control  and  effectively  suppress  the  oscillations.  Figures  21-22 
demonstrate these features of exponential model. Comparing more flexible exponential 
model with general one, one can see it takes 13-14 pulses to reach good alignment for 
static response versus 35-37 pulses for general model.

Figure 23 demonstrate the efficiency of exponential model for harmonic 
perturbations of different frequency.

Convergence. W = 0.35

Divergence. W = 0.3
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Figure 21. Effect of Weight factor for static perturbation. Gain factor G=0.8.

W=0.33

W=0.5

W=0.2
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Figure 22. Effect of Gain factor. Weight factor W=0.33.

G=0.5

G=0.9

G=0.75
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Figure 23. Frequency response for exponential FB model; G=1, W=0.5.

F=0.125Hz

F=0.25Hz

F=0.05Hz
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b. Short linac of 50 FODO cells 

All further simulations for ILC lattice will have 5 FB loops. Each loop includes 2 
x and y correctors with 90º phase shift between them to provide good control sensitivity 
for any BPM position. We varied the number of BPMs in a loop, BPM resolution and 
other parameters to study the FB efficiency.

i. Vertical emittance under GM with no feedback 

We should simulate GM perturbation with no feedback control to get impression 
how does FB work in different conditions. The result of this simulation is presented in 
Figure 24.

Figure 24. One our of Ground Motion perturbation with no FB control.
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ii. Effect of BPM resolution 

Figures 25-26 demonstrate the effect of BPM resolution for different number of 
BPMs in each loop. Our simulations show that vertical emittance < 20.7 for 8-bpm loop, 
and it is < 23.7 for 4-bpm loop. As the signal is averaged over all BPMs in a group, more 
BPMs can effectively suppress the BPM-reading errors.

Figure 25. Effect of BPM resolution for 4 BPMs in each loop.

These  results  have  good  correlation  with  BPM  effect  for  a  described  before 
simple static test.

Res=1um Res=5um
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Figure 26. Effect of BPM resolution for 8 BPMs in each loop.

Beam position for 
different time moments

Vertical 
emittance
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iii. Effect of time intervals 

Our simulations for 1 hour and 10 hours of ground motion perturbations (model 
“B”) and 1μm of BPM resolution shows that FB system can effectively neutralize the 
influence of low frequency parasitic oscillations.

7

Figure 27. Vertical emittance and beam position for 1 hr and 10 hrs of GM 
simulation with FB on and off.

Beam position at different time moments. 

Beam position at different time moments. 
10hrs

Vertical emittance. 1 hr of GM with FB

Vertical emittance. 10 hr of GM. No FB
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c. Entire ILC linac of 114 FODO cells 

i. Effect of feedback control for 10 hrs of GM, model B 

The efficiency of FB system for entire linac is demonstrated in Figure 28. Here 
we setup GM model “B”, simulation period is 10 hours and BPM resolution of 1μm. 

Figure 28. The efficiency of FB control for entire linac.

Feedback off Feedback on
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ii. Effect of initial misalignment

Figure  29  below  shows  the  effect  of  random  initial  BPM-offset  and  quad 
misalignment  of  300  μm  for  beam  position  and  vertical  emittance  of  entire  linac. 
Simulation period for this case was 5 hours.

Figure 29. Effect of initial random misalignment for entire linac.

Beam position & V-emittance for perfect aligned linac Random initial misalignment is 300 um
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iii. Effect of beam energy and quad jittering

The results of klystron and quad jittering simulations are presented in Figure 30. 
These results show that jittering effect just add the noise, which could not be in control.

Figure 30. Effect of quad and klystron jittering for entire linac.

Vertical emittance. No Jitter

Vertical emittance & beam position with Quad jitter = 50 nm, energy jitter = 0.5%.
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