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1 Introduction

Geant4 is a tool kit developed by a collaboration of physicists and computer
professionals in the high energy physics �eld for simulation of the passage of
particles through matter. The motivation for the development of the Beam
Tools is to extend the Geant4 applications to accelerator physics. The Beam
Tools are a set of C++ classes designed to facilitate the simulation of acceler-
ator elements: r.f. cavities, magnets, absorbers, etc. These elements are con-
structed from Geant4 solid volumes like boxes, tubes, trapezoids, or spheers.

There are many computer programs for beam physics simulations, but Geant4
is ideal to model a beam through a material or to integrate a beam line with a
complex detector. There are many such examples in the current international
High Energy Physics programs. For instance, an essencial part of the R&D
associated with the Neutrino Source/Muon Collider accelerator is the ioniza-
tion cooling channel, which is a section of the system aimed to reduce the size
of the muon beam in phase space. The inonization cooling tecnique uses a
combination of linacs and light absorbers to reduce the transverse momentum
and size of the beam, while keeping the longitudinal momentum constant. The
MuCool/MICE (muon cooling) experiments need acurate simulations of the
beam transport through the cooling channel in addition to a detailed simula-
tion of the detectors designed to measure the size of the beam. The accuracy
of the models for physics processes associated with muon ionization and mul-
tiple scattering is critical in this type of applications. Another example is the
simulation of the interaction region in future accelerators. The high luminosity
and background environments expected in the Next Linear Collider (NLC) and
the Very Large Hadron Collider (VLHC) pose great demand on the detectors,
which may be optimized by means of a simulation of the detector-accelerator
interface.

2 How to Use this Guide

We assume that the reader knows the basics of Unix, C++, and Geant4. Ex-
cept in the case of complex applications which may need some code develop-
ment, there is no need to be an expert in object oriented design or C++ to use
Geant4 and the beam tools to put together a simulation. After summarizing
of the BT-v1.0 features, we explain how to install the tools in a Linux system.
The installation �les include the MuCool package, a Geant4 based simulation
of an accelerator section which makes use of the Beam Tools. The MuCool ex-
ample is a simple version (�rst section) of one of the cooling channels proposed
for the neutrino factory : the Double Flip (DF) channel, described in Ref. [1].
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After installation, the user can inmediatelly run a few events, following the
directions in Section 5, and analyze the generated data (see Section 6). This
exercise will give you a glimpse at the capabilities of the tools and the MuCool
analysis package.

If you are writting your own accelerator simulation, Section 7 will tell you how
to incorporate the basic accelerator elements using MuCool as an example.
Other examples are also included to illustrate additional capabilities. The
header �les with MuCool pre�x correspond to the Geant4 user classes, or others
which are typically modi�ed by the user. They are described in Section 8. The
header �les with BT pre�x de�ne the BT-v1.0 classes. They are not supposed
to be modi�ed, except to enhance the tools capabilities. They are available
online in the beam tools reference guide [2], and brie
y described in Section 9.
In general, we do not describe the Geant4 classes (with pre�x G4). except the
user classes. Documentation on installation and usage of Geant4 is available
in Ref. [3].

3 Summary of Features

The Beam Tools version 1.0 (BT-v1.0) allows the user to construct solenoid
magnet objects, including the coil material, shielding, and associated mag-
netic �eld, which is computed analytically from a current density in volume.
Pill Box r.f. cavities are also available, including the material, the �eld and
the possibility of adding windows to increase the shunt impedance. Arbitrary
�elds, created with special tools from calculations or measurements, can also
be constructed as magnetic or electric �eld map objects. Absorber objects of
cylindrical and parabolic shape, including the material and its container can
also be added to the simulation. The initial beam may be read from an ASCII

�le or generated following a Gaussian distribution for the average position,
momentum and length of the beam. The relative phase of each r.f. cavity with
respect to the others is tuned using a \reference" particle, which is processed
automatically before the beam. (See Sections 7.2 and 7.4.6 for details). The
reference particle is de�ned as a particle with velocity equal to the phase veloc-
ity of the r.f. wave. Typically, this particle takes kinematic parameter values
that match the associated mean values for the beam.

Although the user is free to use any analysis package, the MuCool example
utilizes Root, the high energy physics analysis tool developed at CERN [4].
The simulation creates a set of histograms and NTuples for diagnostic and
analysis of the simulated data. A snapshop of the beam (mostly kinematic
information) is stored in an NTuple one time per unit cell of the accelerator
lattice. A skeleton of a root analysis package to process the NTuples is also
provided.
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The user may also choose from di�erent available visualization packages, which
will allow him/her to see a representation of the simulated apparatus on the
screen. The MuCool example uses Open Inventor [5], which allows direct ma-
nipulation of the objects on the screen, plus perspective rendering via the use
of light.

4 Installing the Beam Tools (and the MuCool Example)

Before installing BT-v1.0, you have to make Geant4 available in your com-
puter. If you are working on the Computational Physics Department (CPD-
CD-Fermilab) Linux computers, the Geant4 libraries become available by typ-
ing:

% setup geant4 v4 4 1 -f Linux+2.4 -q GCC 2 95 2

If you have access to a machine where the fnal products database is available
(ups/upd), ask your system administrator to add geant4 v4 4 1 to your local
database. Then, you should type the setup command as in the CPD machines.
In both cases, the environmental variable GEANT4 DIR will be de�ned pointing
to the directory which contains the Geant4 libraries. If you have not access
to a CPD machine or the fnal products database, you will need to install
Geant4 in your system. Visit the Geant4 web page [3] and follow the link to
the Installation Guide. You will �nd detailed information about the di�erent
computer platforms, operative systems and software supported or required by
Geant4. The Geant4 source code and libraries are also available. Make sure
you download the Linux2.4 version for the g++ gcc 2.95.2 compiler, which is
the only compatible with BT-v1.0. Geant4 is still not supported for g++ gcc
versions higher than 2.95.2.

Once Geant4 is available in your system, a list of the $GEANT4 DIR directory
must display the following:

% ls $GEANT4 DIR

CVS ReleaseNotes environments include source

Configure config examples lib ups

Then, you must create a work directory where you will edit the main pro-
gram, write your simulation using the Geant4 user classes, and run the ex-
ecutable. For example, if your user name is johndoe, you may create the
�johndoe/work directory, and download there the MuCool example and BT-v1.0
from the Fermilab Geant4 web page [2]. You must download, un-zip, and un-
tar the �le BT-v1.0.tar.gz. The newly created MuCool directory must show
the following contents:
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% ls �johndoe/work/MuCool
GNUmakefile MuCool.cc bin include set env g441.sh src

The MuCool.cc �le contains the main program for the MuCool example, while
the src directory contains the source code for MuCool and the Beam Tools,
and include the header �les. Remember that �les related to the Beam Tools
start with the pre�x BT and �les associated with the example start with the
pre�x MuCool. Next, you should download AuxLib.tar.gz from the Fermilab
Geant4 web page. It contains some libraries [6] needed mostly in the solenoidal
�eld calculation: Exceptions, SpecialFunctions, ZMtools, and ZMutility.
Un-zip and un-tar AuxLib.tar.gz in the area of your choice in your system.
If you did not install Geant4 from the CPD or fnal products databases, but
from the Geant4 web page, you need to download architecture.gmk and
Linux-g++.gmk from the Fermilab Geant4 web page to replace the �le with
the same name in $GEANT4 DIR/config and $GEANT4 DIR/config/sys. Make
sure that $GEANT4 DIR points to the area in your system you selected for the
Geant4 installation.

The set env g441.sh script must be run (% source set env g441.sh) be-
fore compiling, linking, executing the simulation package, or before building
the Geant4 libraries. The user must previously edit the �le and make sure
some environmental variables point to the correct areas:

setenv SPECIAL BASE DIR /area-where-you-installed-the-AuxLibs/zoom2/

zoom/zoomdist/releases/base

setenv G4SYSTEM Linux-g++

setenv G4INSTALL $GEANT4 DIR

setenv G4LIB $G4INSTALL/lib
setenv G4WORKDIR �johndoe/work/MuCool
setenv G4TMP $G4WORKDIR/tmp
setenv G4BIN $G4WORKDIR/bin

These variables point to the location of the Geant4 library (G4LIB), the user
work directory (G4WORKDIR), the object �les (G4TMP), and the executable
(G4BIN). The set env g441.sh �le is an example which runs on the CPD
Linux machines. If you do not have access to the fnal products database,
you will have to install the packages which are setup in set env g441.sh.
You do not need, however, to use Root or the visualization capability (pack-
ages) if you do not wish. Root is available on the web [4].

Now you are ready to compile/link the package and create a MuCool executable
which will be located at $G4WORKDIR/MuCool/bin/Linux-g++.
In $G4WORKDIR/MuCool, just type:
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% source set env g441.sh deb verb vis

% gmake

The parameters deb (for debug version), verb (for verbosity on), vis (for
building a visualization version) are optional and can be written in any order or
omitted. The time performance of Geant4 is seriously degraded when running
executables with debug or verbosity on.

5 Running the MuCool Example

In this section, we will give only \operative" directions on how to run the
MuCool example, for the user to test the installation and get a feeling on
the package capabilities. You will be able to visualize the simulated appa-
ratus, look at some diagnostic plots, and analyze the output data �les. In
$G4WORKDIR/MuCool/bin/Linux-g++, you will �nd the following �les: MuCool.in
(geometry, �eld, beam and global user de�ned input parameters), InputBeam.dat
(kinematic variables for each one of the list of particles forming the input
beam), MuCoolSol.dat (binary �le with solenoidal �eld information), prerun vis.mac

(macro �le for visualization setup), and MuCool.mac (macro �le in case you
are running in macro mode). The MuCool.in �le is thoroughly commented.
Details on the input parameters are discussed in succeeding sections.

There are three di�erent run modes for MuCool, accessed by typing one of the
following three options:

%MuCool MuCool.in VISUAL

%MuCool MuCool.in MACRO MuCool.mac

%MuCool MuCool.in HARD

5.1 The VISUAL Mode

The VISUAL mode opens an x-window with an image of the simulated ap-
paratus. Figure 1 is an Open Inventor [5] view of a unit cooling cell of the
MuCool example lattice. The viualization window and image was created by
the macro prerun vis.mac which was run from main, before any particle was
propagated through the geometry. For information about macro commands
for visualization, see the Geant4 User's Guide [3] under \How to Visualize the
Detector and Events". The image in Fig. 1 can be manipulated interactivelly
with the mouse. Rotations are achieved by left-clicking on the left vertical
and horizontal wheels and draging towards the desired direction. The vertical
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wheel on the right is for zooming. A right-click on any part of the image will
bring the \examiners viewer" and then the \functions" menu: help, home (de-
fault image), set home (set new default image), view all (largest possible image
which �ts the screen), seek (sets new rotation center). These functions may
also be accessed directly by left-clicking on the icons (question mark, house,
house with arrow, etc). The icon with the hand allows to manually rotate the
drawing by just clicking and dragging on the image. The \examiners viewer"
then \draw style" menu contains options like \as is" (for solid images) and
\wireframe" (for transparent images).

If you are ready to run some particles through the simulated apparatus, you
should �rst left-click on the \File" menu and select \close". Then your ter-
minal window will display the prompt Idle>, inviting you to interactivelly
modify settings and run particles through the simulation using the built-in
(or eventually user de�ned) commands provided by Geant4. To quit the pro-
gram type exit on the Idle> prompt. The macro �le MuCool.mac contains
some examples of interactive Geant4 commands. For more information, see
the chapter on \Communication and Control" in the Geant4 User's Guide [3].

5.2 The MACRO Mode

In MACRO mode, some settings, particle or beam parameters, and commands
are read from a macro �le. For example, MuCool.mac contains the following
lines:

/gun/energy 100 MeV

/gun/direction 0 0 1

/gun/position 2 1 0 cm

/run/beamOn 1

The �rst three commands set the \gun", which \shoots" the particles. The
kinetic energy is set to 100 MeV, the particle direction along the z axis and the
initial position is (2; 1; 0) cm from the global origin. The last command turns
the beam on and orders to shoot one particle. For more on built-in commands
or how to create user de�ned commands, see the chapter on \Communication
and Control" in the Geant4 User's Guide [3].

5.3 The HARD(-wired) Mode

This mode should be used to run a large beam through a thoroughly debugged
and stable simulation. Some user interfase commands are hardwired (embed-
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ded in the code), and the beam is either produced in the particle generation
user's class or read from an ASCII �le.

Fig. 1. Open Inventor window showing a unit cell of the MuCool example lattice.
The blue cylinder is the solenoid, the red cylinder is the linac, and the grey cylinder
is the liquid hydrogen absorber.

6 Analyzing the Simulated Data

There are three steps in a High Energy Physics simulation study: the writ-
ting of the simulation code, the production of \Monte Carlo" events, and the
analysis of these events.

The MuCool example produces a set of Monte Carlo events, which can be an-
alyzed with the Root software package. It creates a Root �le (MuCool.root)
which contains a set of histograms and NTuples with kinematic information of
the individual beam particles. Directions on how to use Root are available in
the Root user's guide [4]. The MuCool.root �le contains one NTuple per lat-
tice unit cell, which is a \snapshot" of the beam at that particular z location.
Figure 2 is the Root browser window, which displays a set of NTuples and his-
tograms: RTTracRefPart1 is an NTuple containing complete trace information
for the reference particle used to tune the cavity phases, RTTraces0 contains
trace information for the �rst particle in the list, rf NTuBegin is a snapshot
of the initial beam, and rt NTu0-19 are snapshots of the beam at every one of
the 20 unit cells of the MuCool lattice. The histograms TestBx,y,z show the

10



global magnetic �eld on axis. Figure 3 is the NTuple viewer for rf NTuBegin.
It displays the 11 variables: x, y, z, x0, y0, P (total momentum), Tof (time
of 
ight), PiD (particle ID), EventNum, ParentID (ID of the parent of the
particle), weight (particle weight in the distribution). As an illustration of the
analysis of Monte Carlo events generated by the MuCool package, Fig. 4 shows
the evolution of py versus x for a beam that propagates along the Double Flip
(DF) cooling channel. The �rst histogram corresponds to the initial beam,
and the next four are snapshots of the beam taken every 5 cooling cells.

Fig. 2. Browser window, showing a set of NTuples and histograms.

Root may be turned o� by following directions under \Setup Root" in the
set up.sh �le. You can search your cc (source) and hh (header) �les in the
MuCool, src, and include areas under work for the key word: ROOTFLAG. This

ag controls a set of #ifdef statements which you may inactivate by unsetting
the 
ag. You may also remove/replace these blocks in case you wish to use a
di�erent analysis tool, or change the contents of histograms and NTuples.

In the $G4WORKDIR/MuCool/bin/Linux-g++ directory you will �nd three �les:
MuCool.C, Analysis.h, and Analysis.C. MuCool.C is the main Root macro:

gROOT->LoadMacro("Analysis.C");
Analysis *m = new Analysis();

m->Loop();

Analysis.C includes a C++ method, Loop(), which performs the event by
event analysis (see Fig. 5). Analysis.h de�nes a C++ class with the NTuple
variables as data members (not seen in Fig. 6) and a set of methods. In the
Analysis(TTree *tree) constructor, you should make sure to use the name
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Fig. 3. NTuple viewer for rf NTuBegin showing the 11 variables: x, y, z, x0, y0, P
(total momentum), Tof (time of 
ight), PiD (particle ID), EventNum, ParentID
(ID of parent's particle), weight (particle weight in the distribution).

of the Root �le and NTuple you wish to analyze. In the case illustrated in
Fig. 6, we are studying rt NTuBegin from MuCool.root.

If you need to change the structure (number and/or name of variables) of the
NTuples, you will have to remake the Analysis class using the MakeClass

method of the TFile class (see Root documentation [4]).
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Fig. 4. Evolution of py versus x for a realistic beam along the Double Flip (DF)
cooling channel (MuCool example). The �rst histogram corresponds to the initial
beam, and the next �ve are snapshots every 5 cells of the �rst section of the DF.
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Fig. 5. Analysis.C includes a C++ method, Loop(), which performs the event by
event analysis.
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Fig. 6. Analysis.h de�nes a C++ class with the NTuple variables as data members
(not seen here) and a set of methods.
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7 Usage of the Beam Tools by Examples

This Section is devoted to explain how to construct beams and accelerator
elements using the Beam Tools. We will only discuss the usage of the Beam
Tools classes. See Section 9 for a list and a description of the BT-v1.0 classes.

Geant4 provides a set of user classes, or \hooks", for the user to provide the
geometry, �eld, and beam, or access information at di�erent stages of the
simulation process. You can �nd the header and the implementation �les in
the include and src subdirectories below $G4WORKDIR/MuCool. The three
fundamental user classes for accelerator simulations are:
MuCoolPrimaryGeneratorAction (beam construction), MuCoolConstruction
(geometry, e.m. �eld construction), MuCoolSteppingAction (diagnostic and
actions at the end of every step in the simulation). The �rst rule in programing
with BT-v1.0 is to include the corresponding header �le, each time a Beam
Tools class is utilized.

7.1 Data Cards for Input Parameters

BT-v1.0 uses a native input parameter handler instead of the Geant4 messen-
ger classes. The MuCooldataCards class allows the user to create a MuCool.in
�le containing parameters which may be passed to the simulation at run time.
No compilation or linking is needed upon a modi�cation of the parameter val-
ues in MuCool.in. To add a parameter, you should �rst edit MuCooldataCards.cc
and add a new line following the appropriate syntax, as in the example below:

MuCooldataCards::MuCooldataCards()

f
cd["numEvts"] = 1.;

cd["NumberOfTraces"] = 0.;

cs["ROOTFileName"] = "MuCool.root";

cs["InputBeamFile"] = "InputBeam.dat";

.

.

.

g

ROOTFileName is the name of the output �le containing histograms and NTu-
ples, and InputBeamFile the name of the input beam �le. numEvts is the total
number of particles to be processed, and NumberOfTraces the number of par-
ticles for which the user wants to create a trace NTuple. Note that the only
types allowed to the parameters are string and double, although they may
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be casted to any other type in the user's code. The statement cs[``....''] is
used to add a parameter of type string, and cd[``....''] to add a double.
It is necessary to compile and link MuCool (using gmake) after making a mod-
i�cation to MuCooldataCards.cc. The �le MuCool.in in the Linux-g++ area
is meant for the user to modify the parameter values without the need of
re-compilation/linking. For example, the following lines in MuCool.in would
overide the hard-wired values in MuCooldataCards.cc:

numEvts 100.

NumberOfTraces 5.

ROOTFileName MuCool2.root

InputBeamFile InputBeam2.dat

Other parameters to control global run conditions are: ChannelType (only
MuCool available), rfCellType ( either PillBox, rfmap, or none for no r.f. sys-
tem), BeamMode (gaussian beam or read from file), verboseTrackingLevel
(0 for no tracking information on screen, higher numbers to get more and
more information), NoStochastics is 1 if no multiple scattering or strag-
gling is modelled in the physics processes, 0 to turn on these processes).
MaxRadiusInChannel is the maximum radius of any element in the simu-
lation, StopAtRadius and StopAtZ are the thresholds in r-z space beyond
which a particle is no longer propagated. KineticEnergyCut is the minumum
allowed kinetic energy of a particle before it is killed.

The syntax to read a string or double parameter from the user code is:

std::string fileROOTout =

MyDataCards.fetchValueString("ROOTFileName");

int vL = (int) MyDataCards.fetchValueDouble("verboseTrackingLevel");

Note that the verboseTrackingLevel double has been casted to an int vL.

7.2 The MuCool main Program

The main function is implemented by the user in MuCool.cc, and controls the

ow of the program. It takes two or more arguments, as explained in Section 5:
the input �le, the run mode, and eventually a macro �le. The handling of the
input arguments and the selection of the run mode is done in the �rst and the
last few blocks of main, using a switch statement.

The core of main starts with the construction of the runManager. This object
of type G4RunManager* actually controls the 
ow of the program and manages
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the event loop within a run. The are some mandatory user classes which must
be set next:

// set mandatory initialization classes

MuCoolConstruct *detector = new MuCoolConstruct();

runManager->SetUserInitialization(detector);
cout << " Processing MuCool Example (Double Flip Channel) " << endl;

MuCoolPhysicsList *physList = new MuCoolPhysicsList();

runManager->SetUserInitialization(physList);

// set mandatory user action class

runManager->SetUserAction(new MuCoolPrimaryGeneratorAction);

runManager->SetUserAction(new MuCoolTrackingAction);

MuCoolSteppingAction* stepAct = new MuCoolSteppingAction;

runManager->SetUserAction(stepAct);
runManager->SetUserAction(new MuCoolEventAction);

These objects of the user classes contain the information related to the geom-
etry of the apparatus, the �elds, the beam, and actions taken by the user at
di�erent times during the simulation. They will be described in the following
sections.

Geant4 allows to set a production cut on secondary particles, like gammas
and electors in the MuCool example. Given a primary particle going through
matter (for example a muon), a secondary particle will not be generated if the
current energy of the primary particle is low enough so that it would come
to rest in a given range (cut value by range). Cuts could also be set directly
by energy. More details on production cuts are available in the Geant4 user's
guide [3]. In main, we explicitly set the cut values for gammas and electrons
by range to the default value of 2 mm. For this, we use interface commands
de�ned by the user in the MuCoolPhysicsListMessenger class.

UI->ApplyCommand("/range/cutG 2 mm");

UI->ApplyCommand("/range/cutE 2 mm");

The runManager->Initialize() statement initializes the Geant4 kernel. If
the accelerator has an r.f. system, like in the MuCool example, main must
contain a block where parameters are set to run a reference particle. As illus-
trated in Fig. 7, the global e.m. �eld is retrieved and the reference particle
mode set. Then, all stochastic processes are turned o�: delta rays, multiple
scattering, and straggling. Next, the reference particle is processed with a call
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to runManager->BeamOn(1). At the end, the normal running mode is set in
preparation for processing the beam (see Fig. 8).

The last important block in main is a switch statement for the three cases
associated with the run modes: VISUAL, MACRO, and HARD, which were
described in Section 5.

Fig. 7. Use of a reference particle for r.f. phase tunning in main.
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Fig. 8. Preparation for normal run in main.

7.3 The Beam

The user constructs the beam by writting his/her own code in methods pro-
vided by the MuCoolPrimaryGeneratorAction user class. In the MuCool ex-
ample, there are two modes of beam operation, controlled from MuCool.in:
either the beam is read from InputBeamFile (BeamMode file option) or it
is generated from AverageKineticEnergy, BetaFunc, SigmaX, BunchLength,
and DeltaEoverE, which are parameters of a Gaussian beam (BeamMode gaussian

option). The beam in the example can be injected at an arbitrary instant
and position with respect to the global coordinate system (controlled by
ZOffsetStart, TimeOffsetStart).

#
# Beam information

#
MuonCharge 1.

# 1 means positive muons

muDoDecay 0

# 0 means the muon does not decay

AverageKineticEnergy 94.35
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# ave kinetic energy of the initial Gaussian beam (in MeV)

ReferenceKineticEnergy 94.35

# energy of the reference particle (in MeV)

BetaFunc 380.301

# initial value of the beta perp function (in mm)

SigmaX 54.6

# sigma of the beam X distribution (in mm)

BunchLength 0.33356

# sigma of the time distribution (in ns)

DeltaEoverE 0.2119

# E means kinetic energy here.

# 10% of total 200MeV

ZOffsetStart 0.0

# distance from z-origin for the initial beam (in mm)

TimeOffsetStart 0.

# initial time (in ns)

The user also controls the kinetic energy of the reference particle utilized to
tune the phase of each r.f. cavity (ReferenceKineticEnergy), the charge of
the muon (MuonCharge), and whether it is allowed to decay or not (muDoDecay).

The �le MuCoolPrimaryGeneratorAction.cc contains the
MuCoolPrimaryGeneratorAction::MuCoolPrimaryGeneratorAction() con-
structor, and the GeneratePrimaries method. The constructor typically con-
tains the actions which need to be performed only once. It should not be mod-
i�ed unless you want to change the particle type, using
FindParticle(particleName="..."), create new beam modes, or in general
add/remove data members to the class (de�ned in the header �le with the
pre�x my). In MuCool, the MuCoolPrimaryGeneratorAction constructor cre-
ates the rt NTuBegin NTuple and initializes the injection coordinates of the
beam. It also veri�es the presence of an r.f. system to decide whether or not
to process a reference particle to tune the cavity phases.

Each particle of the beam is generated after the previous one has been processed
through the simulation. This is done in the GeneratePrimaries method, also
implemented in MuCoolPrimaryGeneratorAction.cc. If the system has r.f.,
the code enters in reference particle mode, a reference particle is processed,
and the times when the particle goes through the center of the r.f. cavities
are internally stored for tuning the cavity phases to the desired synchronous
phase. The code below illustrates the particle generation process which starts
by setting its initial position, kinetic energy, and direction:

if (myhasRF && aEMField->isModeRFRefParticlef())
f
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mymuonGun->SetParticlePosition(G4ThreeVector(0.,0., myzStart));

mymuonGun->SetParticleEnergy(
MyDataCards.fetchValueDouble("ReferenceKineticEnergy"));

mymuonGun->SetParticleMomentumDirection(G4ThreeVector(0.,0., 1.));

mymuonGun->GeneratePrimaryVertex(anEvent);
return;

g

If the BeamMode is gaussian, the GeneratePrimaries method generates one
particle at a time with Gaussian distributed px, py, time, and energy. The user
may add/remove correlations between the particle coordinates. For example,
MuCool includes an x-py correlation to account for the angular momentum of
the beam in a 3 T solenoidal �eld, as well as a transverse-longitudinal correla-
tion to optimize the Double Flip channel performance. In case the BeamMode

is file, the particle information is read out from an ASCII �le and stored in
the array beam. The format of the �le is:

Ptcle# x(cm) px(MeV) y(cm) py(MeV) z(cm) E(MeV) T(sec) Weight

The user will most probably have to change formats when writting a di�erent
application. This is a trivial exercise achieved by just changing the assignments
of the beam array to the kinematic variables. Be aware of the units.

else if (myBeamMode == "file")

f
float beam[9] = 0.,0.,0.,0.,0.,0.,0.,0.,0.;

// read file with input beam information

myinputbeam >> beam[0] >> beam[1] >> beam[2] >> beam[3]

>> beam[4] >> beam[5] >> beam[6] >> beam[7] >> beam[8];

// Fill up arrays with kinematic information

position[0]=beam[1]*10.; // from cm to mm

position[1]=beam[3]*10.; // from cm to mm

position[2]=0.0;

Enow = beam[6]; // in MeV

momentum[0]=beam[2]; // in MeV

momentum[1]=beam[4]; // in MeV

momentum[2]=sqrt(Enow*Enow-momentum[0]*momentum[0]-

momentum[1]*momentum[1]-mp*mp); // in MeV

Tnow = beam[5]/29.99792458; // in ns

weight = beam[8]; // particle weight
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g

At the end of GeneratePrimaries, rt NTuBegin is �lled and the \gun" to
\shoot" the particle is set in the same way as for the reference particle. More
information on how to \generate primaries" is available in the Geant4 user's
guide [3].

7.4 The Accelerator

We will describe here how to use BT-v1.0 to model the di�erent pieces of
the accelerator system: magnets, r.f. cavities, absorbers, detectors. The tools
use Geant4 library classes, which start with the pre�x G4. Information on the
Geant4 classes is available in Ref. [3].

The simulation code is implemented in the Construct() method of
MuCoolConstruct.cc. The �rst part of this method does the initialization of
the magnetic and full electromagnetic �elds: BTGlobalMagField* magFF and
BTGlobalEMField *fullEMField. The equation of motion is initialized, the
stepper selected, and the accuracy parameters set. In the MuCool example,
we selected the G4ClassicalRK4 (Runge-Kutta) stepper, which is accurate to
O(l4), with l the integration step size in real space. The user should select the
stepper that better suits the needs of the application, from those available in
the Geant4 library [3]. Note that Runge-Kutta integrators are not symplectic,
which means that in certain applications long term stability problems might
arise. The most common example of such an application is long term tracking
of particles in a circular channel. The net e�ect of a non-symplectic integrator
is the same as a slight non-conservation of phase space area. In the case of
a circular ionization cooling channel this should not be a problem, since the
e�ect of the absorbers will be much larger than the numerical inaccuracies
of the integrator. Of course, a non-symplectic integrator will limit the ability
to understand the dynamic properties of such a channel in the absence of
the absorbers. It is worth emphasizing that the limitations of the Runge-
Kutta integrators are inherent to the method, and have nothing to do with
their implementation in Geant4. The same problem exists in Geant3 and its
derivatives, like DPGeant [7], with its double precision implementation of the
integrator.

The MuCool example, in Construct(), also illustrates on how to construct
materials for use in the magnets, cavities, and absorbers. See the Geant4 user's
guide for more information on these choices, as well as sintax issues associated
with the classes with pre�x G4 [3]. By contrast, the Beam Tool classes start
with a pre�x BT. Information on the BT-v1.0 classes is available in Section 9.
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7.4.1 The \world" and the MuCool Lattice

The MuCool example is the �rst section of the Double Flip cooling channel [1],
which consists of a periodic structure of 20 unit cells like the one shown in
Fig. 1. First, the user must setup the \world", which will contain the simulated
apparatus. The \world" volume is de�ned as an empty \experimental hall"
box, �lled with vacuum, in the MuCool example.

G4Box* experimentalHall box

= new G4Box("expHall box",expHall x,expHall y, lzAll);

G4LogicalVolume* experimentalHall log

= new G4LogicalVolume(experimentalHall box, Vacuum,"expHall log",0,0,0);

G4ThreeVector expHallPos(0.,0.,0.);

G4VPhysicalVolume* expPhys = new G4PVPlacement(0,expHallPos,"expHall",

experimentalHall log,0,false,0);

Every element in Geant4 has three componets: the solid or shape (a G4Box

object for the experimental hall), a logical volume of type G4LogicalVolume

which includes the material the solid is made of, and a physical volume of
G4PhysicalVolume type which includes the position of the object in global
coordinates. The vector (expHall x,expHall y, lzAll) gives the dimensions
of the box (half lengths of the three sides). The geometric center of the ex-
perimental hall is located at the origin (expHallPos=(0,0,0)). Each logical
volume must be assigned a maximum step size. This association of step and
volume assumes that properties and parameter values of volumes are fairly uni-
form. If the �eld changes abruptly inside a given volume, it may be necessary
to introduce a daughter volume with a di�erent step size. Geant4 calculates
the step size following accuracy criteria related to the 
uctuations in �elds
and volume properties, but the user sets the maximum allowed step size for a
logical volume by typing:

G4double maxStep = MyDataCards.fetchValueDouble("MaxStepSizeDefault");

experimentalHall log->SetUserLimits(new G4UserLimits(maxStep));

The magnetic �eld of an accelerator section does not typically fall abruptly
at the beginning and the end. Real systems are matched to similar preceeding
and succeeding lattices to avoid sudden �eld changes which would a�ect the
motion of the beam. In MuCool, we have added a pre and a post section to
ensure a smooth �eld at the edges. These two sections consist of a magnetic
lattice identical to that in the cooling channel (section one), but without an
r.f. system or absorber. The longitudinal size of the experimental hall will
therefore have to be larger than the sum of the three sections (pre, �rst,
post). To be safe, lzAll (half the full length) is slightly larger than two times
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the sum of the half lengths of each section:

G4double lzAll = 2. * (numCellPre * myperiodLengthPre +

numCell1 * myperiodLength1 + numCellPost * myperiodLengthPost) + 1000.;

where numCell... and myperiodLength... are the number of cells and half
the length of each cell.

The user decides on the visualization properties of the logical volumes. The line
experimentalHall log->SetVisAttributes (G4VisAttributes::Invisible)

would make the experimental hall invisible. To make if visible, replace that
line by:

G4VisAttributes * dbVisAttHall

= new G4VisAttributes(G4Colour(1.0,1.0,1.0));

experimentalHall log->SetVisAttributes(dbVisAttHall);

The experimental hall will be drawn white. Consult the Geant4 guide for color
codes [3]. If you search the �les with MuCool pre�x in the src area for the key
word G4VIS USE, you will �nd all the code blocks associated with visualization
statements. You can then change settings that suit your needs.

To �nish with the general description of the MuCool structure, we will go over
a set of geometry input parameters. In MuCool.in, there is a geometry block:

#
# Geometry

#
MoveZorigin 0.0

# offset of the channel origin with repect to the global origin (mm)

NumCellPeriodPre 5.0

# some solenoid cells to have a uniform field in channel

GapSectionPre 1.0;

# 1 mm gap between the four coils forming a cell

LatticePeriodPre 2420.0

# length of pre-section cell (in mm)

NumCellPeriod1 20.0

# number of cells in first section

GapSection1 1.0;

# 1mm gap between the four coils forming a cell (in sec 1)

LatticePeriod1 2420.0

# length of first-section cell (in mm)

NumCellPeriodPost 5.0

# some solenoid cells to have a uniform field in channel
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GapSectionPost 1.0;

# 1mm gap between the four coils forming a cell

LatticePeriodPost 2420.0

# length of post-section cell (in mm)

#
# Maximum step sizes for lattice unit cell logical volumes

#
MaxStepSizePre 100.0

# max step size in mm for pre-section (for the RK integrator)

MaxStepSizeSec1 100.0

# max step size for first section (in mm)

MaxStepSizePost 100.0

# max step size for post section (in mm)

MaxStepSizeDefault 100.0

# max step size in the channel (in mm)

Although the user can change the length of the cooling channel (section one)
or that of the pre and post sections, the origin of the global coordinate system
will automatically be adjusted to be at the begining of the channel (section
one). MoveZorigin can be used to shift the channel position with respect to
the global coordinate system. The solenoid covers the full length of a unit
cell (LatticePeriod...), but we have divided it in four solenoid units sepa-
rated by a 1 mm GapSection... The gap values are negligible in the MuCool
example, but the feature exists to allow the user some 
exibility for introduc-
ing one or up to four solenoids per unit cell, as well as controling the size
of the gaps between them. Although the unit cell is an abstract concept, it
is de�ned as a solid volume G4Tubs* aCellTubeSec1, with associated log-
ical (G4LogicalVolume *aCellLogSec1) and physical (G4VPhysicalVolume
*aCellPhysSec1) objects in MuCool. Magnets, r.f. cavities and absorbers are
placed inside this volume, as will be illustrated in subsequent sections.

G4Tubs* aCellTubeSec1 =

new G4Tubs("CellSection1",0., radInner+radBlock+5.0*extraR,

myperiodLength1, startZeroAngle, spanningAll360);

G4LogicalVolume *aCellLogSec1 =

new G4LogicalVolume(aCellTubeSec1, Vacuum, ostCellLogSec1.str() ,

0,0,0);

G4VPhysicalVolume *aCellPhysSec1 =

new G4PVPlacement(0, V3, ostCellPhysSec1.str(), aCellLogSec1,

expPhys , false, iCell);
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In the MuCool example, the lattice unit cell solid is a cylinder (G4Tubs*
aCellTubeSec1) �lled with vacuum, with a radius slightly larger than the
maximum radius of any accelerator element, and length equal to the lat-
tice period. There is also a G4LogicalVolume *aCellLogSec1 associated with
aCellTubeSec1. The physical volume is placed many times (iCell is a loop
control parameter over all cells) at the position G4ThreeVector V3 of each
cell with respect to the global coordinate system. The �rst parameter in the
G4PVPlacement constructor is a pointer to a G4RotationMatrix object which
allows to rotate the lattice unit cell with respect to the global coordinate
system. (See Geant4 user's guide for usage [3]). These feature is useful, for
example, to simulate closed orbit accelerators or, in general, any accelerator
which is not straight.

7.4.2 The Solenoids

Here we will tell you how to simulate realistic solenoids from current distribu-
tions. BT-v1.0 provides the user with classes to construct BTSheet, BTSolenoid,
BTSolenoidLogicVol and BTSolenoidPhysVol objects. BT-v1.0 also provides
a class to read a generic magnetic �eld produced or calculated externally (see
Section 7.4.4 for details). For information on these BT classes, see the reference
guide in Section 9.

BTSheet objects are a set of parameters necessary to generate analytically the
magnetic �eld for an in�nitecimally thin solenoidal current sheet. BTSolenoid
objects are �eld maps in the form of a grid in r-z space. They correspond to
solenoid coils of �nite thickness made of a set of concentric acurrent sheets
BTSheet. The BTSolenoidLogicVol class de�nes objects containing the ma-
terial and physical size of the coil system which generates the BTsolenoid

�eld from the BTSheets. The BTSolenoidPhysVol class is the placed version
of the BTSolenoidLogicVol object.

The parameters necessary to construct the solenoids are provided by the user
through the sheet/solenoid block in MuCool.in:

#
# Sheet/Solenoid information

#
SheetLength 602.5

# length of sheet (4 per cell) in mm

NumberofSheets 2.0

# number of concentric sheets to form a thick coil

InnerRadius 710.0

# sheet inner radius (in mm)

BlockRadius 20.0
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# block thickness (in mm)

BlockCurrent 120.4

# block current (in A/mm**2)

MakeVolumeSheet 1

# to draw each of the sheets

SolDataFiles useFiles

# other than ``none'' means the field is read from a file

#SolDataFiles none

# none means the field is constructed

GridLengthR 710.0

# radial length of the field grid in mm

GridLengthZ 10.0

# longitudinal length of the field grid (in number of radii)

NumberNodesRGrid 100.0

# number of nodes of the grid in R

NumberNodesZGrid 1000.0

# number of nodes of the grids

StepSizeInSol 100.0

# maximum step size for the Runge-Kutta integrator (in mm) in solenoid

The process of simulating a solenoid starts with the construction of the BTSheets
in MuCoolConstruct.cc:

for (G4int l=0; l<solnsheets; ++l)

f
radSheet = radInner + (((G4double) l) + 0.5) *radBlock/solnsheets;

idSheet = 1;

vsheets.push back(BTSheet(G4ThreeVector(0.,0.,0.), idSheet,

typeSheet, thicksheet, radSheet, lenSheet, -curSheet));

g

The loop is performed over a number solnsheets of in�nitecimally thin and
concentric BTSheets. The sheets radii radSheet are equally spaced to model
a magnet coil of thickness radBlock. The BTSheet constructor takes the sheet
position in local coordinates of the solenoid (G4ThreeVector(0.,0.,0.) for
concentric sheets), the idSheet and typeSheet (irrelevant in BT-v1.0), the
sheet thickness thicksheet (only zero is supported), the radius (radSheet),
the full length (lenSheet), and the one dimensional current density in Ampere/mm2

(curSheet). The push backmethod stores one by one the sheets into a vsheets
vector of BTSheets which will make the solenoid. Figure 9 shows an image of
a sheet system.

If the parameter SolDataFiles is set to useFiles, then a BTSolenoid mag-
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netic �eld map object is constructed from a binary �le MuCoolSol.dat in
$G4WORKDIR/MuCool/bin/Linux-g++ using:

solSH = new BTSolenoid("MuCoolSol.dat");

If it is set to none, the solenoid map is constructed from the vector of BTSheets
and written into a MuCoolSol.dat �le for subsequent use. The object solSH
is just a �eld map with no associated volume or material.

solSH = new BTSolenoid(0., solmaxrxy, solnumptrxy,-solmaxz, solmaxz,

solnumptz, vsheets);

The �eld is stored as a grid in r-z space (data member arrays), where solnumptz
and solnumptrxy are the number of z and r nodes, [0.,solmaxrxy] and
[-solmaxz, solmaxz] de�ne the domain of the grid. The parameters associ-
ated with a spline �t of Bz(z) and Br(z) at �xed values of r (nodes) are also
stored as BTSpline1D members of BTSolenoid. From a linear interpolation
of the spline �ts at a �xed r and z location of the trajectory of the particle,
Br(r; z) and Bz(r; z) are calculated and provided to the Geant4 tracking code.
The more nodes in z, the better the accuracy of the spline �t; the more nodes
in r, the better the accuracy of the interpolation. To ensure good accuracy, the
�eld map should extend well beyond the physical limits of the magnet, since
the �eld at a given point in space is the sum of contributions from all mag-
nets in the lattice. Note that solmaxrxy is provided through GridLengthR in
milimeters, but solmaxz is provided through GridLengthZ in number of sheet
radii.

The next step is to construct the logical volume of a solenoid, that is a concrete
coil system associated with the solSH �eld. The BTSolenoidLogicVol con-
structor needs the �eld grid solSH, and the coil material (copper). It may also
have shielding for the coils, although the associated parameters are set to zero
and Vacuum in the MuCool example. ostSolLogPre.str() is the name of the
solenoid volume. The next two zeros re
ect the fact that no extra longitudinal
or radial space is needed when there is no shielding. The third zero is the
value of the shielding thickness parameter. The false argument means that
the solenoid tube and associated logical volume is a ring encompassing the
coils and shielding, not a solid cylinder as true would mean. The makeSheet
boolean variable is related to the input parameter MakeVolumeSheet. If the
former is true (the latter would be 1), then the sheets forming the solenoid are
drawn in the visualization window. solmaxstep is the maximum step length
associated with the solenoid logical volume. Figure 9 shows a solenoidal cop-
per coil system modelled with four in�nitecimally thin sheets equally spaced
in radius.

solLogSec1 = new BTSolenoidLogicVol(solSH, Copper, 0, Vacuum,

ostSolLogSec1.str(), 0., 0., 0., false, makeSheet, solmaxstep);
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Fig. 9. A solenoidal copper coil system modelled with four in�nitecimally thin sheets
equally spaced in radius. Some changes were made to the default MuCool.in parame-
ters: the number of sheets was increased to four, and the sheet length was decreased
for increasing the gaps. The knee on the surface of the sheet is an artifact of the
visualization tool.

The last step is to place the four solenoid sections inside the lattice unit cell
separated by gaps, using the BTSolenoidPhysVol constructor. The �rst pa-
rameter, set here to zero, is a pointer to a G4RotationMatrix object. By
rotating individual solenoids independently with respect to the lattice unit
cell, the user can create a set of short \tilted" solenoids adding a dipole com-
ponent to the magnetic �eld. To make \ring" accelerators, however, the best
option is to rotate the lattice unit cells with respect to the global coordi-
nate system and leave the actual solenoids unrotated, as discussed in Sec-
tion 7.4.1. V3sheet is the position of the solenoid with respect to the center of
the lattice unit cell volume. The BTSolenoidPhysVol constructor also needs
a pointer to its BTSolenoidLogicVol *solLogSec1 and its \mother" volume
aCellPhysSec1, because it is placed inside the lattice unit cell. Other input
parameters are the copy number 0 through 3, a scale factor -1 to increase,
reduce the �eld strength, or change its sign, and a pointer to the global mag-
netic �eld magFF. The code below shows how to place a set of four solenoids
in a single lattice unit cell, separated by a short gap, gapSec1=1mm. Figure 10
shows a similar con�guration, with longer gaps.
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offset = -myperiodLengthSec1 + 0.5*lenSheet + extraZ;

V3sheet[2] = offset;

BTSolenoidPhysVol *aSolPhysSec1sh1 =

new BTSolenoidPhysVol(0, V3sheet, solLogSec1, aCellPhysSec1,

false, 0 , -1.0 , magFF);

offset = offset + gapSec1 + lenSheet;

V3sheet[2] = offset;

BTSolenoidPhysVol *aSolPhysSec1sh2 =

new BTSolenoidPhysVol(0, V3sheet, solLogSec1, aCellPhysSec1,

false, 1 , -1.0, magFF);

offset = offset + gapSec1 + lenSheet;

V3sheet[2] = offset;

BTSolenoidPhysVol *aSolPhysSec1Sh3 =

new BTSolenoidPhysVol(0, V3sheet, solLogSec1, aCellPhysSec1,

false, 2 , -1.0, magFF);

offset = offset + gapSec1 + lenSheet;

V3sheet[2] = offset;

BTSolenoidPhysVol *aSolPhysSec1Sh4 =

new BTSolenoidPhysVol(0, V3sheet, solLogSec1, aCellPhysSec1,

false, 3 , -1.0, magFF);

In summary, the user must create only one BTSolenoid and its associated
BTSolenoidLogicVol per type of magnet in the channel. Each solenoid type is
placed as many times as needed (using the BTSolenoidPhysVol constructor).
It is possible to control the strength and sign of the magnetic �eld at this
stage.

7.4.3 r.f. Systems

This section tells how to simulate realistic r.f. systems using resonant cavi-
ties. BT-v1.0 provides classes to construct BTPillBox, BTrfCavityLogicVol,
BTrfWindowLogicVol and BTLinacPhysVol objects. BT-v1.0 also provides
a class to read a generic magnetic �eld produced or calculated externally
(see Section 7.4.5 for details). For information on these BT classes, see the
reference guide in Section 9. BTPillBox is a class of Pill Box cavities. The
associated logical volume is created with the BTrfCavityLogicVol construc-
tor. For better cavity performance (increased shunt impedance), threre is a
BTrfWindowLogicVol class to cover the cavity iris with thin windows. Place-
ment is done with the BTLinacPhysVol class by positioning a Linac, that is
an array of identical cavities.
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Fig. 10. Array of four solenoids in a single Double Flip unit cell. The gaps between
solenoids are larger than the 1 mm default value in the MuCool example.

In MuCoolConstruct::Construct(), every r.f. related statement is inside an
if block controled by the input parameter rfCellType. If rfCellType is not
``PillBox'' or ``rfmap'', the r.f. system is not built and the reference
particle is not processed (no need for phase tuning).

A Pill Box cavity is a cylinder of radius R and length L made of a conductor
material. In real life, the beam pipe goes through the cavity hole (iris) in the
end cups of the cavity. BT-v1.0 provides the option to place thin windows to
close the iris and obtain electric �elds closer to the ideal Pill Box �elds. The
cavity �elds, however, correspond to the ideal case even if windows are not
placed. The only objective of the windows in the simulation is, therefore, to
account for the interactions between the beam and the window material. The
Pill Box �elds are given by:

Ez = Vp J0
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where Vp is the cavity peak voltage, � the wave frequency, �s the synchronous
phase, and J0;1 the Bessel functions evaluated at (2��c r). The radius of the
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cavity is derived from:
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but the length, L, must be calculated and provided by the user as an input
parameter. L is a function of particle velocity (v), r.f. phase advance, and
cavity frequency:

2��

v
L =

�

2
(phase advance) ) R =

v

4�
(5)

The r.f. input parameters are controled from the r.f block in MuCool.in:

#
# r.f. system information

#
StepSizeInRf 100.0

# maximum step size for the Runge-Kutta integrator (in mm) in r.f

rfWindowMaterial Beryllium

# material for rf window cavities

rfFrequencySec1 0.20125

# frequency of rf cavities (in GHz)

rfPeakFieldSec1 0.01648

# peak voltage of rf cavities (in MV/mm)

rfCellLengthSec1 320.0

# rf cavity length for phase advance pi/2 (in mm)

rfAccelerationPhaseSec1 0.4451

# rf cavity synchronous phase (in radians)

rfCellSkinDepthSec1 0.005

# skin depth for wall effects (in mm)

rfNumCavPerLinacSec1 6.

# number of rf cavities in linac (per cooling cell)

ReferenceEGainPerLinacSec1 12.90

# gain per linac (in MeV)

rfWallThickSec1 5.0

# rf cavity wall thickness (in mm)

rfWindowThickSec1 0.300

# window thickness-inner circle (in mm)

rfWindowradiusSec1 160.0

# window radius (in mm)
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rfWindowOutThickSec1 0.600

# window thickness-outer ring (in mm)

rfWindowRoR0-Sec1 0.7

# fraction of radius defining inner and outer rings

# in step windows

Most of the parameters are self explanatory. ReferenceEGainPerLinacSec1 is
an estimated energy gain per lattice cell by the accion of the linac. This para-
meter is used in reference particle mode to tune the cavity phases to operate
at synchronous phase at the time when the particle traverses the geomet-
ric center of the cavity. The ReferenceEGainPerLinacSec1 parameter will
be revisited in Section 7.4.6. rfWindowThickSec1 and rfWindowradiusSec1

referes to the thickness and radius of the window covering the cavity iris.
There is the possibility of implementing a \step window", as a simple way
to model a radius dependent thickness. For that, a second \ring" window
with inner radius of rfWindowRoR0-Sec1 � rfWindowradiusSec1, outer ra-
dius rfWindowradiusSec1, and thickness rfWindowOutThickSec1 must be
placed contiguous to the �rst window. Figure 11 shows a single r.f. cavity (in
red), with an outer window ring (dark green) and an inner full window (light
green). When a linac of more than two cavities is placed, contiguous cavities
share a window.

Fig. 11. A single Pill Box cavity (in red), with an outer window ring (dark green)
and an inner full window (light green).
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The following lines summarize the construction of the r.f. system (a linac)
contained in a lattice unit cell:

BTPillBox *aRFEMPillBoxSec1;

BTrfCavityLogicVol *aPillBoxLogSec1;

BTrfWindowLogicVol *aRFWindowSec1;

// Read information necessary to construct a Pill Box cavity.

freqInSec1 = MyDataCards.fetchValueDouble("rfFrequencySec1");

lengthPBSec1 = MyDataCards.fetchValueDouble("rfCellLengthSec1");

skinDepthSec1 = MyDataCards.fetchValueDouble("rfCellSkinDepthSec1");

eFieldMaxGradSec1 = MyDataCards.fetchValueDouble("rfPeakFieldSec1");

phaseAccSec1=MyDataCards.fetchValueDouble("rfAccelerationPhaseSec1");

// Construct a Pill Box cavity (it is a cylinder).

aRFEMPillBoxSec1 = new BTPillBox (freqInSec1, lengthPBSec1,

skinDepthSec1, eFieldMaxGradSec1, phaseAccSec1);

First, we create the three relevant objects to built the cavity electric elec-
tric �eld: BTPillBox, BTrfCavityLogicVol, and BTrfWindowLogicVol. The
BTPillBox constructor takes the following arguments: cavity frequency, length,
depth inside the walls the electric �eld penetrates, peak voltage, and syn-
chronous phase. The BTrfCavityLogicVol constructor needs a pointer to the
associated BTPillBox object, the cavity walls material (copper), the cavity
inside material (vacuum), the logical volume name, the extra length necessary
to accomodate the support structure (end cups or window rims, cooling de-
vices, etc), the wall thickness, and the maximum step size associated with the
volume:

aPillBoxLogSec1 = new BTrfCavityLogicVol( aRFEMPillBoxSec1, Copper,

Vacuum, ostRFLogSec1.str() , extraPBz, wallThickSec1,rfmaxstep );

As a rule, the logical volume name must contain the \RF" string. This is a
requirement for the automatic phase tuning to function in reference particle
mode. The window solids and logical volumes are created in the
BTrfWindowLogicVol constructor:

aRFWindowSec1 = new BTrfWindowLogicVol( winRadSec1 ,

(rRF + wallThickSec1), winThickSec1, wallThickSec1,

rfWindowMat, Vacuum, ostWinLogSec1.str());
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The arguments are the window radius, the outer radius of the rim (window
support structure), the window thickness, the rim thickness, the window ma-
terial, the material �lling the top volume which contains the window structure
(vacuum), and the name of that volume. To use the \step window" option, we
need to create the outer ring window logical volume:

aRFWindowSec1->AddOuterFoil(ror0Sec1*winRadSec1, thickOutSec1,

rfWindowMat);

The �rst argument takes the ring window inner radius, the second its thickness,
and the last its material.

Finally, a linac composed of a number nnn of cavities is placed by a call to the
BTLinacPhysVol constructor:

for (G4int ic1=1; ic1 < nnn; ++ic1)

f
zLocsCavsSec1[ic1] = zLocsCavsSec1[0] + ll1*ic1;

g
aLinacSec1 = new BTLinacPhysVol(nnn, zLocsCavsSec1,

aPillBoxLogSec1, aRFWindowSec1, aCellPhysSec1, fullEMField );

where zLocsCavsSec1 is the array which contains the z positions of the nnn

cavities with respect to the geometric center of the linac. Since the linac is
placed in the lattice unit cell, its constructor also takes a pointer aCellPhysSec1
to the unit cell physical volume. The last argument is a pointer to the global
electromagnetic �eld fullEMField.

7.4.4 Magnetic Field Maps

BT-v1.0 provides the BTMagFieldMap class to include user de�ned �eld maps
for magnets in the simulation. Although BTMagFieldMap is restricted to �elds
with azimuthal symmetry, the user may create a class for arbitrary maps
following the same model. Note that BTMagFieldMap is a �eld object not
associated with a solid (no coil structure is modelled), in contrast with the
case of the cavity maps which are associated with a dummy structure as will
be explained in Section 7.4.5.

The user provides an ASCII �le with a �eld grid in (r,z) space, following the
format:

z(cm) r(cm) Bz(KiloGauss) Br(KiloGauss)

z0 r0 ... ...
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z1 r0 ... ...

... r0 ... ...

zn r0 ... ...

... ... ... ...

... ... ... ...

z0 rm ... ...

... ... ... ...

zn rm ... ...

The BTMagFieldMap constructor must be called in the detector user method
MuCoolConstruct::Construct(), as shown below:

//std::string typeofmap="HardEdge";

std::string typeofmap="Interpolated";

BTMagFieldMap *aMagFieldmapSec1;

aMagFieldmapSec1 = new BTMagFieldmap (``HardEdgeBF.dat'',

typeofmap, mfzoffSec1, mfzlgthSec1, mfrlgthSec1,numMBnodesZSec1,

numMBnodesRSec1 );

//G4Tubs* aCellTubeSec1

// = new G4Tubs("CellSection1",0., mfrlgthSec1 + 5.0*extraR,

//periodLength1, startZeroAngle, spanningAll360);

//double sdradSec1 = MyDataCards.fetchValueDouble("SensDetradSec1");

//double sdlenSec1 = MyDataCards.fetchValueDouble("SensDetlenSec1");

//G4Tubs* aSensSec1 = new G4Tubs("Sensor", 0., sdradSec1,

sdlenSec1/2., startZeroAngle, spanningAll360);

//G4LogicalVolume *aSensLogSec1

// = new G4LogicalVolume(aSensSec1, this->theVacuum, "SensSec1" ,

//0,0,0);

// aSensLogSec1->SetUserLimits(new G4UserLimits(maxStepsens));

The type of magnet must be \HardEdge" or \Interpolated". In the �rst case,
the �eld is constant in between (r,z) nodes, taking the Br and Bz value at
the lower edge of the interval. In the second case, the �eld is evaluated in
between nodes using a linear interpolation. The \HardEdge" option is use-
ful, for example, to create square �elds. The \Interpolated" option is aimed
to reproduce accurately an arbirary �eld. The larger the node density, the
best the linear interpolation works. mfzoffSec1 is the z o�set if the local
�eld map z-origin is not located at the geometric center of the map. The
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map length, radius, and number of nodes in both directions must also be
provided. The uncommented lines in the previous example would create an
interpolated magnetic �eld. To create a square �eld, the user must comment
the typeofmap=``Interpolated'' line and uncomment all the others. The
aSens... objects are created as arti�cial boundaries, coincident with �eld
transition regions, to change (reduce) the maximum step size at the �eld 
ips
and avoid Geant4 to \miss" them. For example, a square �eld has very short
non-zero Br components at the Bz 
ip regions which will be missed if a virtual
detector is not placed there to force the Geant4 tracking code to make a step
at the boundary.

As shown in Fig. 12, the magnetic �eld map is placed by calling
BTMagFieldMapPlacement with the �rst argument being a pointer to a
G4RotationMatrix object for a rotation of the �eld with respect its geometric
center. MagZSec1 is a G4ThreeVector object which contains the global coor-
dinates of the �eld geometric center, aMagFieldmapSec1 is a pointer to the
�eld map which is being placed, 1 is the �eld scaling factor, and magFF is the
Geant4 global magnetic �eld object. The code in Fig. 12 corresponds to the
placement of the square magnetic �eld described in Ref. [8]. Bz is shown in
Fig. 13. Br, in Fig. 14, is calculated from Bz to be consistent with the Maxwell
Equations (see Ref. [8] for details). Sensitive detectors are placed at the Bz

transition regions where Br is non-zero. The �rst few lines of the ASCII �le
containing the �eld grid in this example are:

-50 0 0 0

-49.5 0 20 0

-49 0 20 0

-48.5 0 20 0

-48 0 20 0

-47.5 0 20 0

-47 0 20 0

-46.5 0 20 0

-46 0 20 0

-45.5 0 20 0

following the format described before. z goes from -50 cm to 50 cm, r from 0 to
30 cm, Bz is either 20, or 0 KiloGauss, and Br is in the range [-600,600] Kilo-
Gauss depending on r and z. Note that only the Bz >0 range is needed in the
�le, since the negative range (the other half of the wave) is constructed as a
separate map using a -1 scaling factor argument in MagFieldMapPlacement.

7.4.5 Electric Field (r.f.) Maps

BT-v1.0 provides the BTrfMap class to include user de�ned �eld maps for cav-
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Fig. 12. Placement of a magnetic �eld map (hard edge square �eld). See Ref. [8] for
details.

ities in the simulation. Although BTrfMap is restricted to �elds with azimuthal
symmetry, the user may create a class for arbitrary maps following the same
model. In contrast to BTMagFieldMap, BTrfMap is associated with a solid, as
will be explained below. To include �eld maps in the simulation, the input
argument rfCellType must be set to ``rfmap''. The format for the user
de�ned ASCII �les is:
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Fig. 13. Bz versus z. Note the zero �eld regions at the transition points.
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Fig. 14. jBrj versus z at r=10.3 cm.The spikes are 0.5 cm long at z=0, �4 m, and
�4.32 m, where Bz changes by �2 T. The spikes are 1 cm in the other locations,
where Bz changes by �4 T. The arrows show the physical limits of a lattice unit cell.

z(cm) r(cm) Ez(MV) Er(MV)

z0 r0 ... ...

z1 r0 ... ...

... r0 ... ...

zn r0 ... ...

... ... ... ...

... ... ... ...
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z0 rm ... ...

... ... ... ...

zn rm ... ...

The BTrfMap constructor must be called in the detector user method
MuCoolConstruct::Construct(), as shown below:

BTrfMap *aRFEMmapSec1; BTCavityLogicVol *aRFmapLogSec1;

rfmaxstep = MyDataCards.fetchValueDouble("StepSizeInRf");

freqInSec1 = MyDataCards.fetchValueDouble("rfFrequencySec1");

rfzoffSec1 = MyDataCards.fetchValueDouble("rfzoffsetSec1");

lengthMAPSec1 = MyDataCards.fetchValueDouble("rfCellLengthSec1");

rMaxSec1 = MyDataCards.fetchValueDouble("rfMaximumRadiusSec1");

rEffSec1 = MyDataCards.fetchValueDouble("rfEffectiveRadiusSec1");

wallThickSec1 = MyDataCards.fetchValueDouble("rfWallThickSec1");

phaseAccSec1 =

MyDataCards.fetchValueDouble("rfAccelerationPhaseSec1");

numRFnodesZSec1 =

(int) MyDataCards.fetchValueDouble("rfNumNodesZSec1");

numRFnodesRSec1 =

(int) MyDataCards.fetchValueDouble("rfNumNodesRSec1");

double ZPhaseSec1 = MyDataCards.fetchValueDouble("rfZPhaseSec1");

aRFEMmapSec1 = new BTrfMap ("HardEdgeEF.dat", freqInSec1, rfzoffSec1,

ZPhaseSec1, lengthMAPSec1, rMaxSec1, rEffSec1, phaseAccSec1,

numRFnodesZSec1, numRFnodesRSec1);

where the arguments are the name of the ASCII �le containing the electric
�eld grid, the cavity frequency, the z-o�set of the map coordinate system
with respect to the geometric center of the cavity, the z position at which
the synchronous phase is de�ned (zero if the cavity is phased at its geometric
center), the length and radius of the cavity solid object, the e�ective radius
of the map used when retrieving the �eld (can be smaller than the cavity
radius), the synchronous phase, and the number of nodes of the grid in (r,z)
space. Unlike BTMagFieldMap, BTrfMap is associated with a logical volume
BTrfCavityLogicVol. BTrfCavityLogicVol is a cylindric tube bounded by
a cylindric ring (wall) with the same geometric disposition as the Pill Box
conductor ring, except that it is made of vacuum. Although this structure
may have nothing to do with the geometry of the real cavity which produced
the �eld, this object allows the user to visualize the boundaries of the r.f.
�eld. In addition, it provides a dummy software structure to include windows,
if necessary.
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aRFmapLogSec1 = new BTrfCavityLogicVol( aRFEMmapSec1, Vacuum,

Vacuum, ostRFLogSec1.str() , extraMAPz, wallThickSec1,

rfmaxstep);

Following the same model as for Pill Box cavities, a linac composed of
nCellPerLinacSec1 cavity maps is placed by a call to the BTLinacPhysVol

constructor:

for (int ic1=1; ic1 < nCellPerLinacSec1; ++ic1)

f
zLocsCellsSec1[ic1] = zLocsCellsSec1[0] + ll1*ic1;

g
aLinacSec1 = new BTLinacPhysVol(nCellPerLinacSec1, zLocsCellsSec1,

aRFmapLogSec1, 0., ZPhaseSec1, aCellPhysSec1, fullEMField );

The argument which takes the pointer to a window logical volume is set to
0, meaning that no windows are modelled in the example. ZPhaseSec1 is the
distance between the phase and the geometric centers of the cavity (zero if
they are coincident). The other arguments are the same as in the Pill Box
case.

As an example of the above, Fig. 15 shows a lattice cell of a cooling chan-
nel where a solenoid is embeded in a large low frequency (44 MHz) cavity.
The electric �eld map represented by the red cylinders was made available
in grid format to the BTrfMap constructor. Since the beam circulates inside
the solenoid, the �eld map was restricted to a cylindric volume with radius
slightly smaller than the inner radii of the magnets. The geometry is illustrated
in Fig. 16. For details on this example, see Ref. [8].

BT-v1.0 also allows to simulate \instantaneous" kicks using thin cavities.
The �rst few lines of an ASCII �le with an example are shown below. The
�le contains the �eld grid for a 1 cm long cavity, which provides a gradient of
200 MV/m.

-0.5 0. 200. 0.

0.5 0. 200. 0.

-0.5 1. 200. 0.

0.5 1. 200. 0.

-0.5 2. 200. 0.

0.5 2. 200. 0.

In this case, a more realistic equivalent acceleration device would be a 1 m
long cavity providing a gradient of 2 MV/m.
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Fig. 15. Unit cell of a cooling channel where a solenoid is embeded in a large low
frequency (44 MHz) cavity.

7.4.6 Tuning the r.f. Cavity Phases

One of the critical elements of an accelerator simulation is the \r.f. tuning".
Each cavity must be operated at the selected synchronous phase at an instant
coincident with the passage of the beam. The r.f. wave must be therefore
synchronized with the beam, more speci�cally, with the region of beam phase
space that the user needs to manipulate. For this, there is the concept of
a reference particle, which typically takes the average characteristics of the
beam. If the kinematic and dynamic variables of the reference particle are
set to values which are coincident with the mean values of the corresponding
variables for the beam, the r.f. system should a�ect the mean beam properties
in a similar way it a�ects the reference particle. Note that the r.f. wave does
not necessarilly have to be tuned to follow the mean velocity of the beam.
Di�erent applications may need a reference particle to represent the leading
edge, the trailing edge, or any other sub-range of the total beam phase space.

The MuCool example shoots a \reference particle" to tune the r.f. system
before processing the beam. The time instants the particle goes through the
phase center of each cavity are calculated, displayed on screen, and used to ad-
just each cavity phase to provide the proper kick, at the selected synchronous
phase. If the accelerator contains absorber elements, stochastic processes like
multiple scattering and straggling must be turned o� as the reference particle
goes through the system. The setup and shooting of the reference particle is
controled from MuCool.cc, as shown in Fig. 17.

The user sets the kinetic energy (MeV) of the reference particle. As explained
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Fig. 16. Geometry of a low frequency cooling channel as simulated in Geant4. The
red cylinders are the dummy software structure representing the limits of the electric
�eld map.

in Section 7.3, this parameter is provided to the GeneratePrimaries method
in MuCoolPrimaryGeneratorAction:

ReferenceKineticEnergy 94.35

The user must also calculate and input the total energy (in MeV) contributed
by each linac operated at the selected synchronous phase. This is done in the
r.f. block of the input parameter �le:

ReferenceEGainPerLinacSec1 12.90

Figure 18 shows the reference particle trace through the MuCool example
channel. You can see how the energy of the particle increases as it goes through
the six cavity linacs (12.9 MeV) and then decreases as it goes through the
liquid hydrogen absorbers. The phases of every cavity are calculated from this
trajectory to provide a synchronous phase of 25.5� at the time the reference
particle goes through its phase center.

An important point to make is that the r.f. model used to accelerate the
reference particle is not the same the beam experiences in normal mode. While
the latter could be a Pill Box or an arbitrary �eld map, the former is a Gaussian
distributed �eld around the phase center of the cavity. The � of the distribution
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Fig. 17. The reference particle is shot from main (MuCool.cc) using the
runManager->BeamOn(1) statement. Multiple scattering and straggling processes
are previously turned o�.

is 20% of the length of the real simulated cavity or map, and the area under
the curve is the total energy provided by that cavity to the particle.

The user should tune the r.f. system using the following procedure:

(i) Calculate and set the value for the energy gain per linac
ReferenceEGainPerLinacSec1 for the reference particle. For example,
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Fig. 18. Reference particle trace through the MuCool channel. The twenty lattice
cells with the acceleration and absorber regions are apparent. The section shown
is tuned to provide an average net acceleration of 50 MeV to a beam with mean
kinematic parameter values coincident with those of the reference particle.

if the cavity peak gradient is Vr =16 MeV/m, its length L =0.32 m,
and its synchronous phase �s =25.5

�, the energy gain per cavity will be
Vp�L� sin(�s) �2.2 MeV. A six cavity linac would therefore provide an
energy gain of 12.9 MeV.

(ii) Run the simulation for only one particle. This includes the reference
particle and the �rst in the beam input �le: InputBeam.dat.

(iii) Look at Ekin versus z in the RTTrackRefPart1 NTuple. Go to item (ii),
if necessary, and iterate until the desired energy pro�le is obtained. This
is done by adjusting the energy gain per linac to achieve the design net
acceleration. For example, in Fig. 18, the design energy gain for the 20
cooling cells is 50 MeV. ReferenceEGainPerLinacSec1 should be larger
than 50 MeV in 20 cells to compensate for the large energy loss in the
absorbers.

(iv) Add at the top of InputBeam.dat a particle with kinematic parameter
values equal to those of the reference particle. Adjust Vp and �s of the
realistic r.f. cavities to re
ect any change to ReferenceEGainPerLinac.

(v) Run the simulation for only one particle. Make sure NumberOfTraces is
set to 1.

(vi) Look at Ekin versus z for the RTTraces0 NTuple, which is the �rst particle
in the InputBeam.dat �le. This is a reference particle going through the
normal run, realistic, r.f. system. Check if the phase tuning worked for
this particle by verifying that Ekin versus z is quantitatively close to the
same plot for RTTracRefPart1 (the reference particle through the static
Gaussian r.f. approximation).
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The MuCool example corresponds to a linear accelerator. In the case of closed
systems, like ring accelerators, the user should follow the model used in the
tools and make the necessary software modi�cations. One possibility would be
to associate a vector of phases and times to each cavity (one vector element
related to one turn).

7.4.7 Absorbers

BT-v1.0 provides a set of classes to simulate blocks of material in the path of
the beam. The constructors for di�erent types of absorbers are implemented
in BTAbsorberObjects.cc. The absorbers are not a common element in ac-
celerators because they typically degrade the beam. There are cases, however,
where they can be useful. For example:

{ It may be necessary for some experiments to utilize beams of di�erent sizes
and qualities. Absorbers may be then used to degrade the beam emittance
accordingly.

{ Transverse ionization cooling in muon beams may be achieved by reducing
the beam total momentum by energy loss through an absorber material.
After re-acceleration along the beam direction, the net result will be a re-
duction in the transverse emittance.

{ Emittance exchange may be achieved with wedge or lense absorbers placed
in a beam with transverse-longitudinal correlations. For example, if the pz
of a particle in a beam is a function of the distance r to the system center,
a wedge or a lense can selectively reduce the speed of faster particles with
respect to slower ones.

The MuCool example simulates the cylindric vessels used in most of the cooling
channels studied for neutrino factory applications. The Construct method in
MuCoolConstruct.cc calls the BTCylindricVessel constructor which builds
a cylindric aluminum vessel with aluminum end cup thin windows. The vessel
is �lled with liquid hydrogen. In Geant4 language, this is a set of tubes and
associated logical volumes. It also places the vessel inside the aCellPhysSec1
lattice cell. As illustrated in Fig. 19, BTCylindricVessel takes the absorber
location in local coordinates of the lattice unit cell, a pointer to that cell, the
absorber material, the maximum step length in the absorber, the name of the
object, the outer radius, the length, the absorber window material, the window
radius, and its thickness. Both the cylinder and end cup walls are 3 cm thick,
and the end cups inner radii adjusts itself automatically depending on the
window radius. Realistic vessel windows are typically parabolic in shape to
withstand presure. The BT-v1.0 options, however, include only 
at windows.

The grey cylinder in Fig. 1 is a schematic representation of a liquid hydrogen
vessel with aluminum walls and windows, visualized using the MuCool package.
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Fig. 19. Construction of a cylindric vessel with liquid hydrogen absorber.

The vessel parameters are read from the MuCool.in absorber block:

#

# Absorber information

#

AbsorberType Liquid Hydrogen

# absorber material

AbsWindowMaterial Aluminium

# absorber window materia
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AbsLengthSec1 300.

# absorber length (in mm)

AbsOuterRadSec1 200.

# radial length (in mm)

AbsWindowTypeSec1 flat

# type of window

AbsWindowRadiusSec1 160.

# window radius (in mm)

AbsWindowThickSec1 0.360

# window thickness (in mm)

AbsStepMaxSec1 100.

#

Figure 20 shows the location of the absorber vessel in a MuCool lattice unit
cell. The wireframe mode allows to visualize the linac and the absorber through
a transparent solenoid.

Fig. 20. side view of a lattice unit cell. The wireframe mode allows to visualize the
linac and the absorber through a transparent solenoid.

BT-v1.0 also provides two constructors to simulate absorber lenses:
BTParabolicLense and BTCylindricLense. The �rst one is a parabolic ob-
ject with uniform density, and the second is a cylinder object with the den-
sity decreasing parabolically as a function of radius. From the point of view
of the physics e�ect on the beam, both objects are almost equivalent. The
BTParabolicLense constructor takes the object location with respect to the
local coordinates of the lattice unit cell, a pointer to the lattice unit cell vol-
ume, a pointer to the lense material, the maximum step length allowed, a
name, the length (maximum) at r=0, the radius, and the number of cylindric
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slices which make up the lense:

BTParabolicLense::BTParabolicLense( G4ThreeVector location,

G4VPhysicalVolume* pMother, G4Material *material, G4double stepmax,

G4String paraname, G4double parablength, G4double parabradmax,

G4int parabnumslice )

The lense is built as a set of short cylinders. The radius is maximum for the
central cylinder and reduces symmetrically following a parabolic equation for
the others in both sides.

The BTCylindricLense constructor takes essencially the same arguments as
the parabolic lense, except that the number of slices is replaced by the number
of rings. The object is built from concentric cylinder rings of the same length,
di�erent radius, and di�erent densities to mimic a real lense.

BTCylindricLense::BTCylindricLense( G4ThreeVector location,

G4VPhysicalVolume* pMother, G4Material *material, G4double stepmax,

G4String cyliname, G4double cylilength, G4double cyliradmax,

G4int cylinumrings )

Figure 21 shows a set of six parabolic lenses placed in a �eld 
ip region at the
end of the Double Flip �rst section where the MuCool example ends [9]. The
lenses are placed to mitigate the e�ect of the decrease in hpzi at large radii in
the 
ip region, using an emittance exchange mechanism.

Wedge absorbers are also useful in some cases. Although BT-v1.0 does not
provide a constructor to build a wedge object, it can be easily constructed
using the Geant4 trapezoid shape G4Trap. For more details, see the Geant4
user's guide [3]. Fig. 22 and Fig. 23 show a muon track, represented by a
red line, propagated through a solenoidal plus a rotating dipole �eld. The
yellow and green objects are the wedge absorbers, and the blue discs are
representations of a thin cavity r.f. �eld map. More information about this
\Helical Cooling Channel" is available in Ref. [10].
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Fig. 21. Side view of a �eld 
ip region of the Double Flip channel in wireframe mode.
The 
ip section inner coils are shown in the center of the �gure following a regular
lattice cell. The six parabolic lenses, in grey, preceed a new cell.
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Fig. 22. A muon track, represented by a red line, propagating through a solenoidal
plus a rotating dipole �eld. The yellow and green objects are the wedge absorbers,
and the blue discs are representations of a thin cavity r.f. �eld map.

Fig. 23. Wireframe front view of the same system described in Fig. 22.
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7.5 Sensitive Detectors

The sensitive detectors are empty software volumes which only provide bound-
aries, that is a volume transition, to force the stepper to make a pause and
allow the user to execute some actions through UserSteppingAction. Sensi-
tive detectors may also be used to force a change in the maximum step size to
help the stepper not to miss an abrupt and short change in the electromagnetic
�eld. In MuCool, we use them to produce the output NTuples.

The \data" output �le, MuCool.root, includes a set of histograms and NTu-
ples. The NTuples contain kinematic information of the beam at di�erent
locations along the channel (z-planes). The NTuple associated with the ini-
tial beam is �lled in MuCoolPrimaryGeneratorAction::GeneratePrimaries,
every time the method is invoked before each particle is processed. The other
NTuples, however, must be �lled along the channel at z-locations selected by
the user. This is done in the MuCoolSteppingAction::UserSteppingAction
method implemented in MuCoolSteppingAction.cc. This method is invoked
at the end of each step in the integration of the equation of motion, along the
particle trajectory. Usage of the stepping action user class will be discussed in
Section 7.6. The issue is discussed here because the way to de�ne the z-planes
is by placing \sensitive detectors" which force a step in that location for the
UserSteppingAction method to �ll the NTuple.

In the MuCool example, the sensitive detectors are short cylinders, 1 mm long
and 500 mm in radius, which will be intersected by all particles in the beam.
The user provides the geometry arguments through MuCool.in:

#

# Sensitive Detector information

#

SensDetRadius 500.

# Radius of sensitive detectors big enough to intersect the beam,

# small enough to avoid intersecting an accelerator element.

SensDetLength 1.

# z-length of sensitive detectors

and calls the MuCoolConstruct::SetDetectors at the end of the
MuCoolConstruct::Construct method:

G4double radSensDet, zlengthSensDet;

radSensDet = MyDataCards.fetchValueDouble("SensDetRadius");

zlengthSensDet = MyDataCards.fetchValueDouble("SensDetLength");

// set sensitive detectors to fill

// NTuples at different channel
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// locations (one per cell)

SetDetectors(radSensDet,zlengthSensDet);

cout << "Sensitive detectors are now in place" << endl;

Figs. 24 and 25 show an example on how to implement the SetDetectors

method. In a �rst step, we construct a tube and its associated logical vol-
ume. In a second step, we create a loop to place each of the sensitive detec-
tors, one per lattice cell. Note that we use two data member vectors of the
MuCoolConstruct user class, which were previously �lled in
MuCoolConstruct::Construct, inmediatelly before constructing the BTSolenoidLogicVol
object:

// Store in vector data member myCellPhys a pointer to the lattice

unit cell physical volume. Store in vector data member

// myAllLengthsPeriods the location of the Sensitive Detectors

// in local coordinates, slightly off from the left edge

(beginning) of the lattice unit cell.

myCellPhys.push back(aCellPhysSec1);

myAllLengthPeriods.push back(-myperiodLength1+extraZ);

The myCellPhys vector contains the pointers to the physical volumes associ-
ated with the lattice unit cells, and myAllLengthPeriods the positions of the
sensitive detectors in local coordinates of the lattice cell. The number of cells
is extracted from the size of myCellPhys, and the local position ll from the
myAllLengthPeriods vector.

The placement of the aSensDetPhys sensitive detectors, illustrated in Fig. 25,
is followed by the construction of a vector Dets (global) of BTSensDetGrid
objects, which is accessed in UserSteppingAction. The constructor of the grid
object takes the arguments: pointer to the sensitive detector mother volume,
pointer to the physical volume the particle comes from when it reaches the
sensitive detector, pointer to the sensitive detector physical volume, grid object
identi�cation number, and name.

Note that for closed orbit accelerators there should be one detector per cell
multiplied by the number of turns of the beam around the ring. One option
would be to modify the BTSensDetGrid to contain turn information.
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Fig. 24. SetDetectors method in MuCoolConstruct (�rst part).
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Fig. 25. SetDetectors method in MuCoolConstruct (second part).
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7.6 Stepping Actions

The MuCoolSteppingAction user class allows to perform actions at the end
of each step of the integration of the equation of motion. This actions may
include killing a particle under certain conditions, retrieving information for
diagnostics, etc. Remember that di�erent stepper packages are available from
the Geant4 library. The choice is made at the beginning of the
MuCoolConstruct::Construct method. See the Geant4 documentation for
more information about steppers [3].

Any information provided through MuCool.in should be read from the
MuCoolSteppingAction constructor (called only once). The
MuCoolSteppingAction::UserSteppingAction is called at the end of every
step to perform the user actions. For example, if I want to kill a particle when
it is too slow or goes too far from the center of the beam, I will read the
thresholds in the MuCoolSteppingAction constructor:

// Read space boundaries for particle

mymaxRadCut = MyDataCards.fetchValueDouble("StopAtRadius");

mymaxZCut = MyDataCards.fetchValueDouble("StopAtZ");

myKinEneCut = MyDataCards.fetchValueDouble("KineticEnergyCut");

and execute the action in MuCoolSteppingAction::UserSteppingAction,
following the syntax shown in Fig. 26. Figure 27 shows how to retrieve informa-
tion such as the global �eld and pointers to the physical volumes inmediatelly
before (pre) and after (post) the current step position. Figure 28 lists the nec-
essary code to perform the r.f. phase tuning. If we are processing the reference
particle, and Geant4 has made a step in between a volume with an \RF" string
in its name (pre) and a volume with a \DetMiddle" in its name, then the par-
ticle is at the phase center of a cavity and the phase delay must be calculated
to adjust the total phase to the selected synchronous phase. Note that a sensi-
tive detector with name \DetMiddle" is hard-coded in the phase center of each
cavity. These sensitive detectors are placed automatically by the Beam Tools
when constructing a linac. The user must, however, make sure that there is an
\RF" string in the name of the cavity logical volume; otherwise, he/she must
change the if statement to re
ect the name of the cavity volume. The method
SetPhaseDelayAtZ of BTGlobalEMField retrieves the global time associated
with the reference particle as it goes through the phase center of each cavity.
It also stores these phase delays in a BTLinacCellPhaseInfo object which is
retrieved at the time of calculating the global �eld for a normal run particle
at a given position.
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Fig. 26. The user can retrieve particle information and use it to perform actions at
the end of each integration step in MuCoolSteppingAction::UserSteppingAction.
For example, kill a particle under certain conditions.

Figure 29 shows the process of �lling the z-plane NTuples during a nor-
mal run. For this, we use the global BTSensDetGrid object Dets created in
MuCoolConstruct::Construct. A given detector element Dets[jV] is 
agged
when the particle is at a point in space in between a sensitive detector volume
(thePostPV) and a di�erent preceeding volume (thePrePV), which is provided
by the user to the BTSensDetGrid in MuCoolConstruct::Construct. Then,
the NTuple is �lled with the particle kinematic information available from the
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Fig. 27. The user can also retrieve information like a pointer to the global �eld and
the name of the volumes before and after the current step location.

current step object aStep.

The subsequent blocks in UserSteppingAction �ll the trace NTuples, both
for a normal run and the reference particle. While in the case of the z-plane
NTuples there is one entry per particle at a given z location, the trace NTuples
are related to one single particle and are �lled at the end of every step. Note
that all NTuples are data members of MuCoolSteppingAction.
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Fig. 28. This block of code is necessary to perform the r.f. phase tuning.
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Fig. 29. Filling of the z-plane NTuples during a normal run.
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7.7 Physics Processes

Geant4 allows the user to select among a variety of physics processes which
may occur during the interaction of the incident particles with the mate-
rial of the simulated apparatus. There are electromagnetic, hadronic and
other interactions available like: \electromagnetic", \hadronic", \transporta-
tion", \decay", \optical", \photolepton hadron", \parameterisation". In the
MuCool example, the information on physics processes is contained in the
MuCoolPhysicsList *physList object. The contructor of the
MuCoolPhysicsList class is implemented in MuCoolPhysicsList.cc, together
with other methods to create the di�erent types of particles and processes.
More information on physics processes can be found in the Geant4 user and
physics reference guides [3]).

There is also a method, SetCuts() of MuCoolPhysicsList, which must be
implemented in MuCoolPhysicsList.cc (see Fig 30). It allows to select what
type of particles to apply production thresholds on. Each particle type may
have di�erent cut values which are assigned to data member variables of
MuCoolPhysicsList by the SetGammaCut, SetElectronCut, SetProtonCut
methods. The cuts are applied in a Geant4 internal call to SetCuts(). The
implementation of these methods is illustrated in Fig. 31.

7.7.1 The MuCoolPhysicsListMessenger Class

Geant4 provides a tool to pass run parameters interactivelly through prede-
�ned commands. We have seen two examples in main (MuCool.cc). In one case,
/process/inactivate msc is a built-in command provided by the Geant4 li-
brary to inactivate the multiple scattering process:

// Turn off Multiple scattering, using a UI command provided by

// the GEANT4 library.

UI->ApplyCommand("/process/inactivate msc");

In the second case, /range/cut.. are user de�ned commands to change the
particle production thresholds:

// Set particle production thresholds explicitly to default values.

// Use the user interface commands defined BY THE USER in the

// MuCoolPhysicsListMessenger class.

UI->ApplyCommand("/range/cutG 2 mm");

UI->ApplyCommand("/range/cutE 2 mm");
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Fig. 30. The SetCuts() method of MuCoolPhysicsList.

Physics related commands may be de�ned in the MuCoolPhysicsMessenger

constructor, as shown in Fig. 32. The new values are set by the SetNewValue
method of MuCoolPhysicsMessenger which is invoked internally by Geant4.
Figure 33 shows the implementation of SetNewValue.

There is a variety of built-in commands and messenger user classes available
from the Geant4 library. More information on user interface capabilities is
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Fig. 31. Each particle type may have di�erent cut values which are assigned to data
member variables of MuCoolPhysicsList by the SetGammaCut, SetElectronCut,
SetProtonCut methods.

available in the Geant4 user's guide [3].
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Fig. 32. The MuCoolPhysicsListMessenger constructor.
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Fig. 33. SetNewValue method of MuCoolPhysicsMessenger.
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7.8 Tracking Actions

The tracking action user class allows to perform actions on tracks. In the
MuCool example, we are interested in tracing only the muons. Secondary
particles from muon decay or product of the interaction of muons with matter
are therefore discarded. This is done in the PreUserTrackingAction method
of the MuCoolTrackingAction class:

if(aTrack->GetParentID()==0) // particle ID=0 means primary particle

f
fpTrackingManager->SetStoreTrajectory(true);
g
else

f
fpTrackingManager->SetStoreTrajectory(false);
g

7.9 Event Actions

The event action user class allows to perform actions at the begining or the
end of an event, de�ned as the process of one particle through the simulated
apparatus. In the MuCool example, we implemented the
MuCoolEventAction::EndOfEventAction method to print the event number
on the screen at the end of the process. We print the number for all events for
the �rst 10, one every ten for the next 90, one every 100 for the following 900,
and one every 1000 for the rest:

void MuCoolEventAction::EndOfEventAction(const G4Event* currentEvent)

f // Retrieve the identification number of the current event

G4int iEvt = currentEvent->GetEventID();

// Print on screen the identification number of the just finished

// event. Will print all event numbers for the first 10, 1 every

// 10 events for the first 100, 1 every 100 events above 100,

// and 1 every 1000 above 1000.

if (iEvt < 10) cout << " Event " << iEvt << endl;

else if ((iEvt < 100) && (iEvt%10 == 0)) cout <<
" Event " << iEvt << endl;

else if ((iEvt < 1000) && (iEvt%100 == 0)) cout << " Event "
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<< iEvt << endl;

else if ((iEvt < 10000) && (iEvt%1000 == 0)) cout << " Event "

<< iEvt << endl;

g

8 MuCool Header Files

This section is a reference guide for the MuCool example. It contains the
header �les associated with all the MuCool user classes. Pay attention to the
data members of each class since this property may be crucial to access these
variables in di�erent parts of the code. This section does not contain the
header �les of the Beam Tool classes. A reference guide with this information
is available on line [2].
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Fig. 34. The MuCooldataCards.hh header �le.
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Fig. 35. The MuCoolPrimaryGeneratorAction.hh header �le.
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Fig. 36. The MuCoolConstructor.hh header �le.
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Fig. 37. The MuCoolSteppingAction.hh header �le.
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Fig. 38. The MuCoolPhysicsList.hh header �le (�rst part).
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Fig. 39. The MuCoolPhysicsList.hh header �le (second part).
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Fig. 40. The MuCoolPhysicsListMessenger.hh header �le.
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Fig. 41. The MuCoolTrackingAction.hh header �le.

76



Fig. 42. The MuCoolEventAction.hh header �le.
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Fig. 43. The MuCoolVisManager.hh header �le.
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9 Class Structure and Program Flow

This Section is aimed to developers or users interested in learning about how
the Beam Tools work. It is an \abstract" of the reference guide. We present
some information on the program 
ow and class structure, but little code
detail. The Beam Tools header and code implementation �les are thoroughly
commented and available on line as a reference guide [2].

9.1 The Magnet Classes

{ The BTSheet Class inherits from G4MagneticField. The class objects are
�eld maps generated by an in�nitecimally thin solenoidal current sheet. The
class data members are all the parameters necessary to generate analytically
a magnetic �eld in r-z space (there is ' symmetry). No geometric volumes or
materials are associated with the BTSheet objects. GetFieldValue is a con-
crete method of BTSheet inherited from G4Field, through G4MagneticField.
It returns the �eld value at a given point in space and time.

{ The BTSolenoid Class inherits from G4MagneticField. The class objects
are �eld maps in the form of a grid in r-z space. They are generated by a set
of in�nitecimally thin solenoidal current sheets. The BTSheet objects form-
ing the solenoid are data members of BTSolenoid, as well as the BTSpline1D
objects containing the spline �ts of Bz and Br versus z for each r in the �eld
grid. No geometric volumes or materials are associated with BTSolenoid.
The �eld at a point in space and time is accessed through a GetFieldValue
method, which performs a linear interpolation in r of the spline �t objects.

{ The BTSolenoidLogicVol Class de�nes the material and physical size
of the coil system which is represented by the set of current sheets. A
BTSolenoid must �rst be constructed out of a list of current BTSheets.
The BTSolenoid object is a data member of BTSolenoidLogicVol. The
BTSolenoidLogicVol class constructor creates G4Tubs solid volumes and
associated logical volumes for the coil system, the shielding, and the inside
regions. The last one may be omitted if the pointer to the shielding material
is set to 0. Only the logical volumes are de�ned here. No placement is done.

{ The BTSolenoidPhysVol Class is the placed version of the
BTSolenoidLogicVol. It contains the associated BTSolenoid object, and
pointers to the physical volumes of its logical constituents.

{ The BTMagFieldMap Class inherits from G4MagneticField. The construc-
tor reads the map information from an ASCII �le containing the value of
the �eld at a set of nodes of a grid. No geometric objects are associated
with the �eld. The �eld at a point in space and time is accessed through a
GetFieldValue method, which does a linear interpolation of the values at
the nodes of the �eld grid in r-z space.

{ The BTMagFieldMapPlacement Class is a placed BTMagFieldMap object.
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Only the �eld is placed because there is no geometric object associated
with it (no coil or support system).

9.2 The r.f. Classes

{ The BTAccelDevice.hh Class is abstract. All accelerator device classes are
derived from BTAccelDevice, which inherits from G4ElectroMagneticField.

{ The BTPillBox Class inherits from BTAccelDevice and represents single
�=2 pillbox cavity objects. This time dependent electric �eld is computed
using a simple Bessel function. An important feature is the reference particle
mode, used to tune the phase of the r.f. system. In reference mode, the
�eld is static (does not depend on time), and given by a Gaussian function
centered at the geometrical center of the Pill Box in z. The integral of Ez

over the domain of the function is the energy transfered by the cavity to the
particle. The BTPillBox object is a �eld, with no associated solid. The �eld
at a point in space and time is accessed through a GetFieldValue method.

{ The BTrfMap Class inherits from BTAccelDevice. The class objects are
e.m. �eld maps which represent an r.f. cavity. In this way, complex r.f.
�elds can be measured or generated with software and then included in
the geant4 simulation. The �eld map, in the form of a grid, is read in the
BTrfMap constructor from an ASCII �le. The BTrfMap object is a �eld, with
no associated solid. A GetFieldValue method returns the �eld value at a
point in space and time by means of a linear interpolation of the �eld grid.

{ The BTrfCavityLogicVol Class constructor creates solids and logical vol-
umes associated with the r.f. �eld classes. In the case of a map, a vacuum
cylinder box (with end cups) represents its limits. In addition to geome-
try and material parameters of the cavity, the class contains e.m. �eld and
accelerator device information.

{ The BTrfWindowLogicVol Class is used together with the
BTCavityLogicVol class to create the geometry and logical volume of the
r.f. cavity windows, including the support structure.

{ The BTLinacPhysVol Class is a placed linac object. A linac is a set of con-
tiguous r.f. cavities, which include the r.f. �eld, the support and conductor
material, windows, and sensitive detectors for the phase delay calculation.
The BTLinacPhysVol constructor is overloaded. One version places a linac
of Pill Box cavities (phase set at the geometric center of the cavity). A
second version places �eld maps (phase may be set at a distance from the
geometric center of the cavity).

{ The BTLinacCellPhaseInfo Class contains cavity related information nec-
essary to add the r.f. �eld to the global electromagnetic �eld. The object is
created in the BTLinacPhysVol constructor. See section 9.3 for more details.
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9.3 The Global Field Classes

There are two global �eld classes: one for the case that the �eld is purely
magnetic, and another one in the case there is also an electric component.

{ The BTGlobalMagField Class inherits from G4MagneticField. A single
BTGlobalMagField object is constructed from the sum of individual mag-
netic �elds generated by all magnetic objects, like solenoids and magnetic
�eld maps. The global magnetic �eld is accessed by a GetFieldValue method,
where the sum of the �elds is implemented. To perform these operations,
the magnet objects and their positions in global coordinates need to be data
members of the global �eld class. The BTGlobalMagField constructor only
does a trivial initialization to zero of some of the data members. The global
magnetic �eld is actually �lled up or \included" by the IncludeSolenoid

and IncludeMaps methods, which are invoked in the BTSolenoidPhysVol

and BTMagFieldMapPlacement constructors, respectively. In summary, the
magnet objects, their location, and �eld scale factor are constructed or de-
�ned in the Construct() method of the detector construction user class.
This information is then passed to IncludeSolenoid and IncludeMaps

through BTSolenoidPhysVol and BTMagFieldMapPlacement. IncludeSolenoid
and IncludeMaps assign this information to the data members of BTGlobalMagField
for its use by GetFieldValue. Since this is the GetFieldValue associated
with the �eld fed to the equation of motion, it will be called internally by
Geant4 to retrieve the global magnetic �eld.

{ The BTGlobalEMField Class inherits from G4ElectroMagneticField. A
single BTGlobalEMField global e.m. object is constructed from the exist-
ing BTGlobalMagField, by adding the �elds from the acceleration elements,
such as r.f. cavities. The mechanism for feeding the global e.m. �eld infor-
mation into Geant4 is the same as in the case of the BTGlobalMagField.
The r.f. �eld is added to the global �eld by the IncludeAnRFCell method
of BTGlobalEMField, which is called in BTLinacPhysVol. The global e.m.
�eld has an additional feature related with the r.f. system phase tuning.
The SetPhaseDelayAtZ method is invoked from the UserSteppingAction
method only in reference particle mode. It uses the step object at the phase
center of each cavity to calculate and set a phase delay for the cavity to
operate at the required synchronous phase in a normal run. Although re-
dundant, the BTLinacCellPhaseInfo class is convinient as it de�nes the
right object to be manipulated by the global �eld. The synchronous phase
may be set by the user at either the geometric center of the cavity, or at a
distance zPhase from it (only available for maps). This argument is passed
to the BTLinacPhysVol constructor, then to the BTLinacCellPhaseInfo

object, and �nally to the global e.m. by IncludeAnRFCell.
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9.4 The absorber classes

{ The BTAbsObj Class is the abstract class from which all the absorber ob-
jects are derived.

{ The BTCylindricVessel Class is a concrete class derived from BTAbsObj.
Objects are physical volumes of a cylindric object, de�ned as a central
cylindric rim (3 cm thick), two end cup rims (same thickness), with thin
windows of radius equal to the inner radius of the vessel. The material is
the same for the vessel walls and windows, and the window thickness is
constant. The vessel is �lled with an absorber material.

{ The BTCylindricLense Class is a concrete class derived from BTAbsObj.
Objects are physical volumes of cylindric lenses, that is an absorber with the
shape of a cylinder but density which depends parabolically from the radius.
The lense is actually constructed from a number of concentric cylindric rings
of di�erent density.

{ The BTParabolicLense Class is a concrete class derived from BTAbsObj.
Objects are physical volumes of parabolic lenses, that is an absorber with
uniform density and the shape of a lense. It is actually constructed from a
number of cylinders of maximum radius in the middle, decreasing parabol-
ically towards the edges.
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