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Abstract

Issues concerning beam stability of the proposed Fermilab Proton Driver are studied
in its Phase I. Although the betatron tune shifts are dominated by space charge, these
shifts are less than 0.25 and will therefore not drive the symmetric and antisymmetric
modes of the beam envelope into instability. The longitudinal space charge force is
large and inductive inserts may be needed to compensate for the distortion of the rf
potential. Although the longitudinal impedance is space charge dominated, it will not
drive any microwave instability, unless the real part of the impedance coming from the
inductive inserts and wall resistivity of the beam tube are large enough. The design of
the beam tube is therefore very important in order to limit the flow of eddy current and
keep wall resistivity low. The transverse impedance is also space charge dominated.
With the Proton Driver operated at an imaginary transition gamma, however, Landau
damping will never be canceled and beam stability can be maintained with negative
chromaticities.

∗Operated by the Universities Research Association, Inc., under contract with the U.S. Department of
Energy.



1 INTRODUCTION

The Fermilab Proton Driver will be a rapid-cycling high intensity 16-GeV synchrotron

that serves a number of purposes in the Fermilab high energy physics program. In Phase I,

the Proton Driver is designed to provide 1 MV of beam power, while in Phase II 4 MW.

There are two stages in Phase I. Stage 1 provides a maximum beam kinetic energy of 12 GeV

with a 53 MHz rf system to serve as an injector to the Main Injector, whereas Stage 2

increases the beam energy to 16 GeV with a new 7.5 MHz rf system to serve as a production

source for muons destined for a neutrino factory. For a synchrotron of such high intensity, a

thorough study of the beam stability issues is necessary. Protons are injected into the Proton

Driver from the existing Fermilab linac at the kinetic energy of 400 MeV. Thus space charge

problems can become important. In this article, we are going to study the space charge

effects, betatron tune shifts, and coherent single-bunch and multi-bunch instabilities that

may be relevant to the Proton Driver. The problems of a bunch rotation before extraction

to produce short bunches as well as trapped electrons to produce e-p instability are also

addressed. The discussion will be limited to Phase I. Some parameters of the Proton Driver

are listed in Table I.

Table I: Some parameters of the Proton Driver in Stages 1 and 2 of

Phase I operation.

Stage 1 Stage 2

Circumference C = 2πR 711.3 711.3 m

Injection kinetic energy 400 400 MeV

Extraction kinetic energy 12 16 GeV

Repetition rate 15 15 Hz

Total number of protons N 3×1013 3×1013

Number of bunches 126 18

Protons per bunch Nb 0.238×1012 1.67×1012

Rf frequency 53 7.5 MHz

Longitudinal emittance 0.1 0.4 eV-s

Extraction rms bunch length 3 3 ns

Normalized 95% trans. emittance 60×10−6 60×10−6 πm

Betatron tunes νx,y 12.428/11.380 12.428/11.380

Average betatron function 〈βx,y〉 9.109/9.948 9.109/9.948 m
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2 SPACE CHARGE AND IMAGE EFFECTS

2.1 Incoherent Betatron Tune Shifts

The betatron tunes νz, z = x or y denoting horizontal or vertical, of transverse oscil-

lations of charged particles are important parameters in the operation of a particle beam

inside an accelerator ring. They are determined mainly by the applied focusing forces due

to quadrupoles. With finite beam current the tunes are shifted, both by direct space charge

and by “image” forces due to induced voltages in the surrounding structure impedances.

These shifts, if large enough, may render the beam unstable. At relativistic beam energies,

the space charge forces are strongly reduced by a factor γ−2 = 1 − β2 due to partial com-

pensation of electric and magnetic forces, where v = βc is the axial velocity of the beam

particles, with c being the velocity of light. However, in the Proton Driver at 400 MeV

injection energy, γ = 1.426 and the space charge term is then largely dominant.

The incoherent tune shift of a transversely uniform beam of elliptic cross section, with

half width ax and half height ay, consisting of N protons with classical radius rp, with

bunching factor Bf , the ratio of average to peak current, circulating in a vacuum chamber of

half height h, inside a magnet gap of half-height g extending over a fraction κ of the machine

circumference, is given by [1]

∆νz inc = −Nrp〈βz〉
πβ2γ

[
γ−2 − χe

Bf az(ax + ay)
+

(
β2 +

γ−2 − χe
Bf

)
ε1z

h2
+ κβ2 ε2z

g2

]
, (2.1)

where 〈βz〉 ≈ R/νz is the average value of the betatron function, R the average radius of the

ring, χe the fractional neutralization which reduces the electric but not the magnetic force,

thus perturbing their compensation. The incoherent Laslett image coefficients ε1,2z describe

the strength of image forces for a particular geometry. Some examples of the electric image

coefficients ε1z are shown in the second and third columns of Table II. The magnetic image

coefficients ε2z are not defined for a closed cross section. For a pair of horizontal parallel

plates, however, they are ε1y = −ε1x = π2/24.

Except for large neutralizations at high energies (when χe > γ−2), the space charge tune

shift, the first term in Eq. (2.1), is always negative. Since the vertical incoherent Laslett

coefficients are positive, these image terms add to the space charge tune shift, while they

reduce it in the horizontal direction.

The beam is chopped when injected into a rf bucket of the Proton Driver from the

2



Table II: Laslett image coefficients at the center of various cross sections. The

aspect ratio is 119:63 for the elliptic and rectangular cross sections.

Geometry ε1y ε1x ξ1y ξ1x ξ1y−ε1y ξ1x−ε1x

parallel plates 0.2056 −0.2056 0.6169 0.0000 0.4112 0.2056

rectangular 0.1926 −0.1926 0.6039 0.0261 0.4113 0.2187

elliptic 0.1669 −0.1669 0.5956 0.0948 0.4287 0.2617

circular 0.0000 −0.0000 0.5000 0.5000 0.5000 0.5000

linac. The bunching factor is Bf = 0.9. The bunch length and transverse dimensions

are reduced during the acceleration cycle at the repetition rate of 15 Hz. These were ob-

tained by computer simulation and the bunching factor together with the kinetic energy

are plotted in Fig. 1 for the acceleration cycle [2]. The evolution of tune shifts are then

calculated from Eq. (2.1). The results for χe = 0 are shown in Fig. 1 and Table III. For

Table III: Space charge, image, incoherent, and coherent tune shifts.

t (ms) ∆νscy ∆νimyinc ∆νyinc ∆νycoh ∆νscx ∆νimxinc ∆νxinc ∆νxcoh

0 −0.0956 −0.0140 −0.1096 −0.0260 −0.0915 0.0139 −0.0786 0.0062

1 −0.1749 −0.0176 −0.1924 −0.0388 −0.1673 0.0176 −0.1512 0.0042

2 −0.1699 −0.0165 −0.1863 −0.0357 −0.1625 0.0164 −0.1474 0.0043

5 −0.1200 −0.0110 −0.1310 −0.0207 −0.1148 0.0109 −0.1047 0.0047

10 −0.0481 −0.0049 −0.0530 −0.0069 −0.0460 0.0048 −0.0415 0.0034

20 −0.0155 −0.0020 −0.0174 −0.0023 −0.0148 0.0019 −0.0130 0.0017

30 −0.0068 −0.0012 −0.0080 −0.0012 −0.0065 0.0011 −0.0055 0.0010

38 −0.0055 −0.0010 −0.0065 −0.0010 −0.0052 0.0010 −0.0043 0.0009

small neutralizations the incoherent tune shifts are actually reduced. In the computation,

the vacuum chamber has been assumed to be made of stainless steel having an elliptical

cross section with horizontal/vertical radii w = 119 mm and h = 63 mm. The bare hori-

zontal/vertical tunes are ν0x,y = 12.428/11.380 so that the average betatron functions are

〈βx,y〉=9.109/9.948 m. The average dispersion is 〈D〉=1.247 m. The beam has normalized

95% emittance εx,y = 60×10−6πm. Thus, at injection the beam has elliptical cross section

with horizontal/vertical radii ax,y =23.2/24.2 mm, where the full energy spread is 7×10−4

throughout the cycle. The rf frequency for Stage 1 is 53 MHz. The magnet half gap is

3



Figure 1: (color) Bunching factor, energy and tune shifts during one acceler-

ation cycle.

g = 64 mm covering κ = 0.5 of the ring. For the magnet pole faces, the parallel-plate model

was used in the computation of the magnetic images coefficients.

We see that the largest incoherent tune shifts occur 1–2 ms after injection, when the

beam energy is still low, but the bunch length had decreased strongly as the protons were

captured in the rf field.

It is usually considered prudent to keep all tunes away from low-order resonances, in

particular from integer multiples of the revolution frequency. Therefore conservative tune

shift limits of 0.25 are often assumed, and it is satisfying that the estimates given above do

not exceed this limit. However, if the transverse distribution of particles is not uniform but

peaked, the space charge tune shift can be much larger. For example, for those particles

in the center of the beam, the betatron tune is shifted three times larger with bi-Gaussian

distribution than with uniform distribution. Computer simulation had been performed [3]

and the results show that the incoherent tune shifts were slightly above 0.25 in the vertical,

and just below it in the horizontal direction. However, since the dominant space charge

force is generated inside a particle beam itself, it actually does not deflect the beam center
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and thus cannot drive the whole beam into dipole resonances [4]. This can be seen from the

equation for betatron oscillations of a particle with offset y from the center of the vacuum

chamber, in the presence of space charge forces Fsc and other forces Fim coming from images

and vacuum chamber discontinuity:

d2y

dt2
+ (νyω0)

2y = Fimy + Fsc(y − ȳ) , (2.2)

where ȳ is the offset of the beam center. Averaging over all particles yields

d2ȳ

dt2
+ (νyω0)

2ȳ = Fimȳ , (2.3)

i.e., the driving term for the space-charge effect vanishes, while the image term causes a shift

of the coherent tune to ν2
coh = ν2

y0 − Fim/ω2
0 .

2.2 Coherent Betatron Tune Shifts

The coherent tune shifts are given by the same equations as the incoherent ones, but

without the space charge term and with the Laslett incoherent image coefficients ε1,2z re-

placed by the coherent counterparts ξ1,2z. However, for the usual case of a chamber wall

thick enough and the betatron tunes near half integers, the ac magnetic field arising from

betatron oscillation does not penetrate the vacuum chamber and we have the coherent tune

shift [5],

∆νz = −Nrp〈βz〉
πβ2γ

[
β2 ε1z

h2
+

γ−2 − χe
Bf

ξ1z

h2
+ κβ2 ε2z

g2

]
. (2.4)

Notice that the coherent magnetic image coefficient ξ2z is made up of the dc part ε2z and

the ac part which is the rest. Since only the dc part penetrates the vacuum chamber to

land on the pole faces, we therefore have ε2z in the magnet pole term. Since only the ac

magnetic field from betatron oscillation is stopped at the vacuum chamber, the dc part is

being subtracted, which gives the first term inside the squared brackets. Some values of the

coherent image coefficients are listed in Table II.

The direct space charge force does not affect dipole oscillations, but it does change the

external focusing forces. In one dimension, the evolution of the beam size az (z = x or y) is

described by the envelope equation [6]

d2az
ds2

+ Kz(s)az −
εz
a3
z

=
4λrp

β2γ3(ax + ay)
, (2.5)
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where Kz(s) is the external focusing strength, εz the unnormalized transverse emittance, and

λ the number of particles per unit length.

The space charge force leads to a modulation of the beam envelope which reduces the

tune shift of the lowest quadrupole mode to 3
4
νsc, where νsc is the tune shift of the linear-

space-charge-equivalent beam. For a uniformly distributed beam, νsc is just the self-field

tune shift which is the same for all particles, while for a bi-Gaussian distribution, it is one

half of the maximum self-field tune shift for those particles at the beam center. For the 2-

dimensional case, there are 2 modes of quadrupole oscillations: the antisymmetric mode has

its tune shift also reduced to 3
4
νsc, and the symmetric mode even to 1

2
νsc. Hence these modes

are not excited when only the incoherent tune crosses (half-)integer resonances. Nevertheless,

one has to allow for a variation of tunes during acceleration due to incomplete tracking of

quadrupole and dipole strengths, and therefore one needs a certain safety margin to these

resonances. In Phase I of the Proton Driver, tune shifts do not exceed 0.25, which can be

safely accommodated with a properly chosen working point.

Higher order oscillations—sextupole, octupole etc.—have larger space charge tune shifts,

but have not been observed in simulation nor in actual machines. They are suppressed by

Landau damping due to the non-linearity of space charge forces.

2.3 Longitudinal space charge effects

The coherent synchrotron frequency of a bunch is nearly constant with current since the

coherent and incoherent longitudinal tune shifts cancel, ∆νs,coh = −∆νs,inc. At low energies

the incoherent frequency shift of Gaussian beam can be written [6]

∆νs,inc = −3NrpηR2

2β2γ3νs0

gf
L3
b

, (2.6)

where Lb is the full bunch length, and gf is commonly known as the g-factor. For a circular

beam of radius a in a concentric chamber of radius b it is gf = 2 ln(b/a)+1/2, for a rectangular

chamber b should be replaced by 4h/π. This expression contains both the contribution of

space charge in the term ln a and that of the wall in the term ln b.

The voltage induced by the bunch current creates a local potential-well distortion which

slides up and down the applied rf voltage when the synchronous phase angle changes with

bunch current. The (coherent) synchrotron frequency of the bunch, which depends on the
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derivative of the rf voltage, therefore remains constant as long as the applied voltage is

sufficiently linear. However, the (incoherent) synchrotron frequency of individual particles,

given by the local derivative inside the potential well, not only depends on beam current

but also varies between the center and the edge of a bunch. When the (square of the)

synchrotron frequency in the center of a bunch is shifted below zero, an instability may

occur, hence excessive potential well deformations should be avoided.

The mainly inductive wall impedance reduces the tune shift of the “capacitive” space

charge, but is insufficient to compensate it in particular at injection energy. Thus it is useful

to add more inductance, which can be done e.g. with inductive inserts, containing ferrite or

Finemet cores [9]. Even at higher energies the space charge tune shift may be large if the

bunch length is sufficiently small, e.g. due to reduced transition energy or rotation in phase

space (see below). Again inductive inserts can be helpful. However, one has to take care

that the total resistive part of the impedance is not increased excessively by them, as this

determines the growth-rate of instabilities (see next section).

2.4 Effects of space charge on bunch rotation

In Phase I Stage 2 and Phase II, it is desirable to have short proton bunches (1–2 ns)

impinging on the target for efficient production of muons and hence neutrinos. Therefore it

was proposed to rotate the bunches in phase space just prior to ejection, converting their

small energy spread into a short bunch length.

The minimum bunch length thus achievable is restricted by distortions of the bunch

during phase space rotation. The speed of rotation of individual particles is given by their

synchrotron tunes:

νs =

√
−ηhVrf cos φs

2πE/e
, (2.7)

where Vrf is the applied rf voltage at frequency frf with harmonic number h = frf/f0,

f0 = ω0/(2π) being the revolution frequency, and synchronous phase φs. The slip factor

η = γ−2
T − γ−2 expresses the distance to transition energy, and is negative below transition

(for which cos φs is therefore chosen positive). η is only a weak function of energy when γ is

not too close to γT , and then the variation of synchrotron frequency becomes only important

for beams with large momentum spreads.
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In the Proton Driver, the full momentum spread is usually quite small (7.10−4). How-

ever, it has been proposed to reduce transition energy prior to ejection to shorten the bunches

and require only little rotation in phase space. Strong distortions may result during bunch

rotation due to the increased synchrotron frequency spread [7].

Longitudinal effects

For an intense proton bunch, the longitudinal space charge force will counteract the focusing

rf force, thus reducing the synchrotron tune and slowing down the rotation rate. This

cancellation becomes larger and larger as the bunch becomes shorter and shorter during the

rotation. Sometimes, this space charge force will even be larger than the rf focusing force,

making particles embark on an unstable hyperbolic trajectory. However, this may not be

important, because we are interested in only about 1
4

of a synchrotron period. The space

charge modification of the rf potential occurs only near the core of the bunch where the

particle intensity and therefore space charge is most intense. Ironically, this longitudinal

space charge force is actually beneficial to the bunch rotation. This is because the slowing

down of the rotation near the core provides time for the particles near the separatrices to

catch up. As a result, the fraction of particles in the tails of the rotated compressed bunch

will be much less. Of course, when the space charge is too large, bunch lengthening dominates

because of the hyperbolic trajectories of the core particles and bunch compression becomes

impossible. Figure 2 shows the simulation result of the minimum bunch length acquired

through such a rotation as a function of space charge impedance for a typical bunch in the

Cooler Ring at IUCF. From Fig. 2, it appears that in order to have a final compressed bunch

length στ . 3.85 ns (the minimum bunch length when space charge is absent), the space

charge impedance per harmonic must be limited to |Z/n|sc. 15000 Ω. In other words, the

ratio of the space charge force to the rf force must be less than the critical value of [10]

Sp-ch force

Rf force

∣∣∣∣
critical

=
eNb|Z/n|sc√
2πhω2

0σ
3
τVrf

∼ 22.0 , (2.8)

where Nb is the number of particles in the bunch, (Z/n)sc the longitudinal space charge

impedance per harmonic, Vrf the maximum rf voltage at rf harmonic h, ω0/(2π) the revolution

frequency, and στ the desired rms bunch length after compression. It is important to point

out that the actual space charge impedance of the IUCF Cooler is only |Z/n|sc ≈ 1500 Ω.

What we are saying is that, while a rms bunch length στ = 3.85 ns can be obtained in

the absence of space charge, a space charge impedance as large as |Z/n|sc ≈ 15000 Ω will

not lead to a longer compressed rms bunch length although the rf potential will be severely
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Figure 2: Plot showing shortest rms bunch length στ obtained through rotation as a function of
the space charge impedance for a typical bunch in the Cooler Ring at IUCF.

distorted.

The IUCF experiment is compared with the Fermilab Proton Driver in Table IV. It is

evident that for Phase I Stage 2 of the Fermilab Proton Driver, the space charge-to-rf ratio is

very much less than the critical value of 22 stated in Eq. (2.8), implying that the longitudinal

space charge constitute negligible influence on the bunch compression. Thus, we expect the

bunch compression will not be affected longitudinally by the space charge force. For Phase II

operation, the space charge-to-rf ratio for Phase II operation of the Fermilab Proton Driver

is roughly at the critical value. Thus, we expect a compression to στ = 1 ns is still possible.

A shortcoming of the bunch rotation method is the possible development of microwave

instability when the rf voltage is reduced adiabatically to a small value so that the bunch

will fill the whole bucket prior to the rotation. This can be avoided if the synchronous-

phase-shift method of compression is used instead. The synchronous phase is first shifted

from the center of the bucket to an unstable fixed point. The bunch is allowed to spread

out along one set of separatrices. Later the synchronous phase is shifted back to the center

of the bucket. The bunch is allowed to rotate in the longitudinal phase space for about 3
8

of

a synchrotron period and the shortest bunch results. This method gives a theoretical linear

compression ratio of
√

2/(
√

3σφ), where σφ is the initial rms bunch length measured in rf

phase [11]. Of course, final rotation will introduce nonlinearity and tails for the compressed

bunch. However, this can be alleviated by extracting the bunch immediately at the end of
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Table IV: Comparison of the space charge-to-rf ratio in bunch compression

through rotation for the IUCF Cooler Ring, Phase I Stage 2 and Phase II of

the Fermilab Proton Driver.

IUCF Fermilab Proton Driver

Critical Phase I Phase II

Ring circumference (m) 86.83 711.32 711.32

Extraction kinetic energy (GeV) 0.203 16 16

Number per bunch Nb 1.0 109 1.7 1012 2.5 1013

Revolution frequency (MHz) 1.97 0.40932 0.40932

|Z/n|sc (Ohms) 15000 2.639 2.639

Maximum Rf voltage Vrf (kV) 1.0 1400 1400

RF harmonic h 5 18 18

Extraction στ (ns) 3.85 3 1

Sp-ch-to-rf ratio 22.0 0.060 23.9

the drift along the separatrices. The bunch is then sheared back to an upright position in the

beam line via a lengthy optic system with local momentum compaction, or the R56 element

of the transfer matrix.

Transverse effects

At the end of the bunch rotation in the longitudinal phase space, the bunch will be com-

pressed to its minimum length of, for example, στ = 1 ns with half momentum spread

δ = ±0.0482, where a bunch area of 2 eV-s has been assumed. (Actually, the momentum

aperture of the Proton Driver is less than ±0.025. Thus to compress a bunch to 1 ns, the

bunch area must be tailored to less than 1 eV-s to begin with.) Although the extraction

energy is high, the self-field space charge tune shift ∆νsc given by the first term of Eq. (2.1)

can still be appreciable. It is possible that the reduction in betatron tune can modify the ef-

fective transition gamma γT to such an extent that particles find themselves near transition.

Higher order momentum compaction will be needed because of the large momentum spread.

This may result in ruining the whole bunch rotation procedure as a result of nonlinearity.
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Notice that the self-field space charge tune shift in Eq. (2.1) is inversely proportional to

γ3β2. Thus, the tune shift is momentum dependent and can be written as

∆νz ≈ ∆νsc
(
1− 3δ + 12δ2

)
, (2.9)

where ∆νsc is evaluated at the nominal momentum. It is evident that the last two terms

represent the first two lowest orders of chromaticity generated by the transverse space charge

force. In a Hamiltonian formalism, νz = ∂H/∂Jz, where Jz (z = x or y) is the transverse

betatron action, which is related to the transverse offset z from the off-momentum closed

orbit by z =
√

2βzJz, and the unnormalized emittance ε by ε = 2Jz. For the simple case

of a Kapchinskij-Vladimirskij (KV) beam [12] where the transverse distribution is uniform,†

∆νsc is Jz independent. Thus, the contribution of the self-field space charge tune shift to

the Hamiltonian is [10]

∆H = ∆νsc (Jx + Jy)
(
1− 3δ + 12δ2

)
− 1

2
∆αscRδ2 . (2.10)

The first term gives the tune shifts and chromaticities provided by space charge. The last

term is called Umstätter effect‡. It is the modification of the momentum compaction factor by

space-charge tune shifts through the lattice. Although ∆αsc can be momentum dependent,

it must be amplitude independent. If not, the space-charge tune shifts will be altered. For

a FODO lattice, the change in transition gamma is roughly equal to the horizontal space-

charge tune shift (exact for a uniform focusing lattice). For a flexible momentum compaction

lattice, this term can be very much smaller. The additional chromaticities are

∆ξx=−3∆νsc(1−8δ) , ∆ξy=−3∆νsc(1−8δ) . (2.11)

The additional changes in path length and γ
T

are

∆`0

C
=

1

R

〈
d∆`

dθ

〉
= − 1

R

∂∆H

∂δ
= ∆νsc

JxJy
R

(3− 24δ)−
[
2∆νsc

γ3
T

δ · · ·
]

, (2.12)

∆γ
T
≈12γ3

T
∆νsc

Jx + Jy
R

+ ∆νsc , (2.13)

where θ is the independent ’time’ variable which advances by 2π for every revolutionary

turn.

†Even with other more realistic distributions, the result of the following discussions will not be much
altered (see Ref. [10]).
‡This term has been mistakenly left out in Chapter 4 (p. 4-8) of The Proton Driver Design Study,

Ed. W. Chou and C. Ankenbrandt, Fermilab Report TM-2136, 2000.
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In Phase II of the proton driver, the number per bunch is Nb = 2.5 × 1013 and rf

harmonic h = 18. For the στ = 1 ns compressed bunch, the bucket bunching factor is Bf ≈√
2πhf0στ = 0.01899. With normalized 95% emittance εN95 = 60× 10−6 πm and an average

betatron function of 〈βx〉=10 m, the self-field space-charge tune shift is ∆νsc = −0.297 at

extraction. The maximum actions for betatron motion are Jx = Jy = 1.67× 10−6 m. With

the 2% momentum aperture in the vacuum chamber and the nominal transition gamma of

γ
T

= j27.71, the maximum contributions to the additional fractional path difference are

2.62 × 10−8 for the first term of Eq. (2.12) and 5.57 × 10−7 for the second. The maximum

rf voltage used during the bunch rotation is Vrf = 1.4 MV, giving a synchrotron tune of

νs = 1.02×10−3. Thus during the 1
4
-synchrotron-period bunch rotation, the total cumulative

maximum additional path difference due to space-charge tune shift is 0.32×10−6 for the first

term and 4.56×10−5 for the second term. On the other hand, the ratio of the rms bunch

length at extraction to the ring circumference is στ/T0 = 42.11×10−5 , which is much larger,

implying that the effect of space-charge tune shift on bunch compression through rotation

is very minimal.

It is important to point out that by having the Jzδ2 term in the additional Hamiltonian

[Eq. (2.10)], we must include the same term into the original space-charge free Hamiltonian.

This is the next order chromaticity, which will contribute a down-shift to γ
T

just like the

first term Eq. (2.13) with ∆νsc replaced by 1
24

(ξx1Jx + ξy1Jy), where ξz = ξz0 + ξz1δ + · · · .
For a linear machine, ξz1 = −2ξz0. Thus, this order of chromaticity can lead to a much

larger spread in γ
T

than the contribution from the space charge, and may require correction

to ensure the bunch rotation.

3 COHERENT SINGLE BUNCH INSTABILITIES

3.1 Broad-band impedance estimates

The largest impedances in the Proton Driver, in particular at low energies, are due to

space charge. They can be obtained from the last section [22]

Zsc
‖

n
= −j

Z0

2βγ2
gf , Zsc

⊥ z = −j
2RZ0

β2γ2

[
1

az(ax + ay)
− ξ1z − ε1z

b2

]
. (3.1)

The g-factor gf was already given after Eq. (2.6). For an elliptical chamber with 63 to

119 ratio, the Laslett coefficients yield ξ1 − ε1 = 0.4287/0.2617 vertically/horizontally, (for
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a rectangular one 0.4113/0.2187. For a beam of radius a = 25 mm, the longitudinal im-

pedance at injection energy is then about −387jΩ, while the transverse one reaches nearly

−70j/−63j MΩ/m horizontally/vertically.

The finite conductivity of the vacuum chamber wall creates the resistive wall impedance

which contributes the largest real part to the impedance. It increases when the wall is made

of high-resistance material such as Inconel or Ti alloys in order to reduce eddy currents.

For a material with conductivity σc, permeability µ = µrµ0, the skin depth at frequency

ω is δb =
√

2/(ωµσc). For a wall thickness larger than the skin depth, the longitudinal

resistive wall impedance, divided by mode number n = ω/ω0, of a circular cylindrical wall

at radius b becomes
Zrw
‖

n
= (1 + j)βµrZ0

δb
2b

, (3.2)

assuming that the wall is thick compared to the skin depth. The transverse impedance

is found simply by multiplication with 2R/(βb2). The skin depths for various materials,

evaluated at 300 kHz, the revolution frequency f0 at injection energy, are shown in Table

V. The lowest betatron frequencies are smaller, f0 multiplied by the non-integer part of the

tune q or (1− q) if q > 1
2
. For simplicity, we give the skin depths and all impedances for the

revolution frequency at injection energy. The transverse impedances have to be increased

by the factor q−1/2 or (1− q)−1/2 once the exact tune is known. If the walls were made of

Table V: Resistive wall and space charge impedances at injection energy.

Resistive wall ρc σc µr δb Z‖/n Z⊥x Z⊥y

Material [µΩcm] [MS/m] [mm] [Ω] [kΩ/m] [kΩ/m]

Silver 1.59 62.9 1.0 0.116 0.247 5.53 19.7

Copper OF 1.71 58.5 1.0 0.120 0.256 5.74 20.5

Aluminum 2.91 34.4 1.0 0.157 0.334 7.49 26.7

SS Steel 57.1 1.75 1.001 0.694 1.480 33.2 118.4

Si-Steel 1% 23 4.35 9000 0.005 89.05 1997 7124

Inconel 129 0.775 1.002 1.042 2.225 49.9 178.0

Ti alloy 148 0.676 1.0 1.117 2.381 53.4 190.5

Space charge −j384 −j69520 −j62870

good conductors, such as copper or aluminum, eddy current losses would be excessively high
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unless the metal was divided into narrow strips or wires, similar to the wire-cage used in

ISIS [16]. The eddy current power loss per unit length in a metal strip of width w, height

h and conductivity σc, at right angle to a changing magnetic field with time derivative Ḃ,

is approximately given by P/L = σchw3Ḃ2/12. Since it is proportional to the third power

of the width, it can be reduced from over 8 kW/m for a 1.3 mm thick, 22 cm wide, elliptic

Inconel chamber to a few W/m by replacing it with 2 × 50 copper strips of 4 mm width

and 50–100 µm thickness. For a metal thickness t small compared to the skin depth δb, the

impedance given by Eq. (3.2) has to be multiplied by a factor δb/t > 1. For the present case,

this yields an impedance increase by about 3 for strips of 50µm thickness, still tolerable due

to the higher conductivity of copper.

For vacuum chambers made of ceramics, thin metal stripes of high conductivity can

be deposited on the inside to shield the high impedance of the magnetic pole pieces behind

them. However, such chambers need a thickness of 5-6 mm to withstand the pressure of air

and thus would require larger magnet gaps for the full aperture. Composite chambers can

be made slightly thinner, with a thickness of 2-3 mm, and would thus be preferable if their

vacuum properties are found adequate.

Other sources of broad-band impedance are the rf cavities loaded with Ferrite (or

Finemet). Kicker tanks may create both broad-band and narrow-band impedances. Finally,

bellows and other small cross-section variations of the vacuum chamber become important

when they are present in large numbers, but have essentially mainly inductive impedance at

low frequencies.

3.2 Shielding of electromagnetic fields by liners and cages

Although the skin depth is smaller for larger permeability, the additional factor µr in

Eq. (3.2) makes the impedance large for magnetic material such as used for iron pole pieces.

In particular if the pole pieces form part of the vacuum chamber as in the Fermilab booster,

they should be shielded for the driver where higher beam currents are desired. For this

purpose, a screen or liner has been proposed, similar to the one being built as radiation

shield for the LHC [15]. But to minimize eddy current losses, the screen for the driver

should be made as thin as possible.

Therefore it is important to estimate the minimum thickness required to effectively

shield the beam from the outer region. Assuming rotational symmetry, a screen of thickness

14



t at radius b, with skin depth δb � t, and an outer wall at radius d, with skin depth δd, the

shielding condition in the longitudinal direction can be written [21]

t

δb
� β2γ2

2 ln (d/b)

δb
b
≈ β2γ2

2

δb
d− b

(3.3)

where the second relation holds when d − b � b. At low energies, when βγ is small, the

required screen thickness t can thus be smaller than the skin depth by the factor δb/b, or

δb/(d− b) when the screen is close to the outer wall.

A similar condition has been given for a metallized ceramic wall [20], where (d − b)

is replaced by the thickness of the ceramic wall. In the transverse direction, the shielding

condition under the same assumption becomes simply [21] t/δb � β2γ2δb/b, similar to the

longitudinal criterion but without the logarithmic term. Hence for γ not too large, shielding

in the transverse direction is always achieved when longitudinal shielding is good.

For higher energies, taking into account the finite skin depth at the outer wall, the

criterion becomes t/δb � (d/b)(δb/δd), i.e. the skin depth of the screen should be less than

that of the outer wall. This is difficult to fulfill when the outer wall is ferro-magnetic and

thus has a very small skin depth. However, at higher energies the beam is more stable and

the space charge part of the impedance is strongly reduced.

3.3 Longitudinal stability criteria

The simplified Keil-Schnell or circle criterion is often used to estimate longitudinal

stability limits, but is really not applicable for space charge dominated beams, since the

actual stability limit is very large for a capacitive reactance. For bunched beams, one has to

replace average current Ib by peak current by dividing it with the bunching factor Bf . One

thus obtains the Boussard criterion for the microwave instability∣∣Z‖∣∣
n

< F
|η|BfE0

eβ2Ib

[
∆E

E

]2

FWHM

. (3.4)

The form factor F — originally assumed to be of the order of unity — is much larger for a

space charge dominated impedance. In Phase I, the total beam current with 3.1013 protons

is 1.4 A in 126 bunches and Ib only 12 mA. The bunching factor is about 0.5 near injection

energy E = γE0 = 1.3 GeV, E0 being the rest energy. The full energy spread is then 7.10−4,

and the full spread at half height about
√

2 smaller. With a transition gamma of γt = 27.71j

and F = 1, the stability limit starts from 24.95 kΩ at injection and drops monotonically to
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Figure 3: (color) Plot showing the longitudinal microwave stability limits of Phase I Stage 1 (solid
red curve) and Stage 2 (dashed red curve) with form factor F = 1 during the acceleration cycle.
The corresponding space charge impedances per harmonic are shown as solid blue and dashed blue
curves.

0.16 kΩ at extraction (solid red curve in Fig. 3, and is at all times larger than the space

charge impedance |Zsc
‖ /n| (solid blue curve). For Phase I Stage 2, the same current is divided

into only 18 bunches so that the threshold is 7 times smaller (red dashed curve), but is still

much larger than |Zsc
‖ /n| (blue dashed curve) at all times, and hence no problem is expected

from microwave instability.

3.4 Transverse stability criteria

The Boussard-Keil-Schnell-like criterion for transverse bunched beam stability is (for

z = x, y) [18],

|Z⊥z| < F
4BfE

eβ〈βz〉Ib

[
∆E

E

]
FWHM

|Sz| , (3.5)

where the effective chromaticity is Sz = (n − νz)η + ξz, with n an arbitrary integer and ξz

the chromaticity. Instability occurs only for slow waves with n > νz. The form factor F

depends on the transverse particle distribution, but is large compared to unity for a space

charge dominated impedance as in the longitudinal case. Here, η is always negative. If also

the chromaticity ξz is negative, the two terms add and cannot cancel. The lowest value of
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the spread is obtained for n just above the tune νz. Since also |η| ≈ 1
2
, the first term in

Sz can be neglected if |ξz| is large enough. For F = |Sz| = 1, the transverse impedance

threshold dips down to 11 MΩ/m in Stage 1 about 5 ms into the acceleration cycle (solid

red curve of upper or lower plot of Fig. 4). This is very much larger than |Zrw
⊥ z| even when

|n − ν| = 1, and requires ξz ≈ −4 to cope with the space charge impedance (solid blue

curve). In Stage 2, however, the threshold is 7 times smaller (red dashed curve) and is still

much larger than |Zrw
⊥ z|, but requires F |Sz| ≈ 28 to overcome the space charge impedance

(dashed blue curve).To safeguard stability, one may blow up the longitudinal emittance so

as to attain a larger energy spread, thus enhancing Landau damping.

3.5 Cures

Inductive inserts can be effective for compensating the “capacitive” space charge impe-

dance. However, they require considerable space around the machine. Ferrite loaded cavities

and inductive inserts may contribute a large broad band impedance, with a resistive part

which becomes large at frequencies where the ferrites become lossy. This impedance can

drive a longitudinal microwave instability such as the one observed at the LANL PSR [19].

Therefore, ferrite with small losses should be chosen to limit the resistive impedance. An-

other way to lower the resistive impedance and avoid microwave instability is to heat the

ferrite insert to 100◦C or 150◦C [19].

It is further prudent to keep transition well above the highest operation energy by

designing a lattice with small or imaginary momentum compaction. A reduction of transition

to limit the required bunch rotation could be dangerous and should be applied only very

shortly before the beam is ejected.

4 COUPLED BUNCH INSTABILITIES

4.1 Narrow-band impedance estimates

We already mentioned the resistive wall impedance, which is in particular high in the

transverse plane at the lowest betatron frequency qf0, which is about 100 KHz for q = 0.33.

For a thick Inconel wall at b = 63 mm, with a skin depth of 1 mm, Z⊥ ≈ 200 kΩ/m, but

for a very thin one, such as proposed for shielding the pole pieces, the value would be much

higher, e.g 40 times for a thickness of 1 mil= 25 µm. For copper, with a nearly hundred
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Figure 4: (color) Plots showing the transverse microwave stability limits of Phase I Stage 1 (solid
red curve) and Stage 2 (dashed red curve) with form factor F = 1 and effective chromaticity Sz = 1
during the acceleration cycle. The corresponding space charge impedances are shown as solid blue
and dashed blue curves. The amount of |FSz| required to cope with the space charge impedance
to maintain stability are also shown (in green). Upper plot is for the horizontal while lower plot is
for the vertical.
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times better conductivity, all values are 10 times lower.

In addition, we have to include narrow band resonances of higher order modes (HOMs)

in rf and other cavities, such as kicker tanks for injection or ejection. For Stage 2 of Phase I,

the 5 MHz rf cavities will be either tuned or damped by ferrite (or Finemet) and their losses

will damp most HOMs. However, for Stage 1, with a 53 MHz rf system, the cavity modes

must be measured and either damped internally or coupled out to a load. Measurements

should be made when a prototype of these cavities becomes available.

Also the kicker tanks should be designed to permit damping of the HOMs by similar

means. Sometimes it is already sufficient to use lossy material for the insulators inside these

tanks.

4.2 Longitudinal stability criterion

Coupled-bunch modes will become unstable in a beam of nb equally space bunches with

equal average currents Ib when the imaginary part of the complex frequency shift Im ∆ωm,k

exceeds the frequency spread [17]. Here m ≥ 1 is the azimuthal mode number (m = 1 dipole,

m = 2 quadrupole mode etc.), and 0 ≤ k < nb the modal mode number of an oscillation with

phase shift ∆φ = 2πk/nb between adjacent bunches [17]:

∆ωm =
2m

m + 1

E0Ib
ehVrfcosφs

(
Z‖
n

)(m,k)

eff

, (4.1)

where the effective impedance is defined as the (infinite) sum over the product of the im-

pedance Z‖/n and the power density g(ω), evaluated at all spectral frequencies ωmkp =

ω0(pnb + k + mνs), and normalized by the sum over all power densities:(
Z‖
n

)(m,k)

eff

=
∞∑

p=−∞

Z‖
n

(ωmkp)g(ωmkp) , (4.2)

where the power spectrum g(ω) of the m-th mode of oscillation has been normalized such

that
∑

p g(ωmkp) = 1.

For a single resonance at frequency ωr, with shunt impedance Rs and quality factor Q,

the growth rate of the longitudinal coupled bunch oscillations can be written as

1

τ
= −|η|nbIbRsf0

2πνsBf
Re[D(αd)Fm(∆Φ)] , (4.3)
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where αd = ωrτsep/(2Q) is the decrement between bunches separated by τsep. The function

D(αd) is unity for small arguments, and decreases rapidly for larger ones. The form factor

Fm is a function of the phase shift across the bunch ∆Φ = ωrτL. It has maxima for the m-th

mode when the argument is mπ, decreasing approximately as 1/m.

The required damping of the higher modes in the rf cavities, kicker tanks and other

incidental cavities can be calculated only when their frequencies and shunt impedances, shunt

impedances and quality factors have been measured. Computer programs like BBI [23] or

ZAP [24] can be used to perform the necessary summations over all impedances.

4.3 Transverse stability criterion

The transverse parasitic resonances in the 53 MHz rf cavities can also drive transverse

coupled-bunch instabilities in the same way as the longitudinal parasitic resonances. For nb

bunches each with average current Ib, the growth rate is [18]

1

τ
= − 1

m + 1

enbIbc

4πνzE

∑
k

ReZ⊥ z(ωk)F
′
m(ωk − χz) , (4.4)

where χz = −ξzω0τL/η is the chromatic phase shift across the full length τL of the bunch.

The frequency spectrum for the m-th mode of transverse oscillations with coupled bunch

mode number n (0 ≤ n < nb) is given by ωk = knb + n + νz + mνs. The form factor

F ′(ω) expresses the cancellation occurring in the summation over both positive and negative

frequencies of the real part of the impedance, weighted by the spectrum of the m-th mode

of oscillation.

Unlike the longitudinal situation, transverse coupled-bunch instabilities can also be

driven by the resistive wall impedance at the sub-harmonic frequency ([νz] − 1)f0, where

f0 is the revolution frequency and [νz] the noninteger part of the betatron tune. In this

situation, however, the contribution is dominated by only one spectral line at the above low

frequency and F ′ ≈ 0.8. This is because the next driving spectral line will be nbf0 away and

the contribution will be much smaller because of the higher frequency.

Fortunately the Fermilab Proton Driver is small so that the driving resistive wall impe-

dance, which scales as the ring circumference, is small also. With the resistive wall impedance

computed in Sec. 3.1, the growth times are just 137/37 ms horizontally/vertically with ξz = 0

at injection in both Stages 1 and 2. The growth rate for mode m = 0 can be lowered by op-

erating at a negative chromaticity. However, this may introduce instabilities of mode m ≥ 1
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which can be damped by a tune spread of order 1/(ω0τL) that usually occurs naturally; thus

a low-frequency damper may not be necessary.

4.4 Cures

The design of the vacuum chamber and the choice of material for the chamber walls are

most important to keep the resistive wall effect small. Sufficient shielding of the magnetic

pole pieces is necessary if they form part of the vacuum chamber or are separated only by

ceramic or composite walls.

The obvious cure for HOMs of the cavities is damping by lossy material inside or by

coupling the offensive modes out into a load. A larger energy spread would increase the

safety margin for Landau damping and could be obtained simply by increasing the (negative)

chromaticity. The transverse feedback system would only be required for the lowest unstable

oscillation frequencies and could thus be rather inexpensive.

5 ELECTRON-PROTON INSTABILITY

5.1 Equations of motion

When a proton beam is partially neutralized, with fractional neutralization χe, the

electrons in it will start to oscillate transversely with the so-called bounce frequency. For

small amplitudes it is given by

ω2
e = 4c2renp , (5.1)

where re = 1.535 10−15 m is the classical electron radius, and np = Np/(πaxayLb) is the

volume density of the protons in a bunch with Np protons, cross section πaxay and full

length Lb.

The oscillating electrons will also excite the protons to oscillate with frequency

ω2
p = 4c2rpne = 4c2rpχenp . (5.2)

The coupled oscillations lead to a dispersion relation for the e-p oscillation frequency ω as

function of the azimuthal mode number n:(
ω2
e − ω2

) [
ω2
β + ω2

p (nω0 − ω)2] = ω2
eω

2
p . (5.3)
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The amplitudes of the lighter electrons will grow rapidly, while the oscillations of the heavier

proton remain smaller. When electrons reach the vacuum chamber wall, more electrons may

be generated by secondary emission which can lead to an avalanche effect called multipactor.

This may then lead also to emittance growth or beam loss of the protons.

5.2 Observations

e-p oscillations have been seen in a number of proton storage rings (PSRs), and were

overcome by different means. In a small PSR at the INP in Novosibirsk, constructed mainly

for the study of charge exchange injection, it could be overcome by a simple feedback system.

In the CERN ISR, electrons impinging on the chamber wall caused periodic background

spikes, and had to be eliminated by better clearing and pumping. However, at the PSR in

Los Alamos (LANL), the e-p instability was limiting the beam current for many years to

values below the design goal. All attempts to eliminate or at least reduce the number of

electrons failed.

The most common method to reduce neutralization of a beam is to leave a gap in the

train of bunches. A more active method is to install clearing electrodes, and eliminate the

electrons by applying transverse electric fields. If the electrons are generated by vacuum,

better pumping may help—but not if the electrons are coming from the H− stripping foil.

Multipactor at the wall can be reduced by coating with a material with low secondary emis-

sion coefficient, such as Ti-N. If nothing else helps, a feedback system can be the solution.

For the case of the LANL PSR, all these methods were tried and failed, and only a com-

bination of higher rf voltage, sextupoles, partial wall coating and finally inductive insert

permitted to reach the design current.

A particular encouraging experience comes from the spallation source ISIS, where no e-p

instability has ever been seen, even when the vacuum pressure was increased by switching

off several pumps. The instability did not even occur when the machine was not running as

a rapid-cycling synchrotron but with stored beam. This observation is not fully understood,

and further studies are being made, both theoretically and experimentally.

For the present Proton Driver, the injection from the linac is in chopped beams. As

the rf voltage is raised, the bunching factor decreases rapidly from Bf =0.9 to 0.44 in 2 ms

and 0.18 one half into the acceleration cycle. Thus, there will be large bunch gaps so that

trapped electrons should be cleared and hence no e-p instability is expected.
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There has been some argument that a very low vacuum is mainly required for storage

rings, not for a rapid cycling synchrotron as the Proton Driver where the beam is present

only for a short time. This argument, unfortunately, is not quite correct. Take the LANL

PSR, for example. The injection from the linac is generally accumulated for 1000 to 2000

PSR turns before the whole beam is extracted. The revolution period of the PSR is 0.358 µs.

This gives a total accumulated or storage time of 0.36 to 0.72 ms. The longest accumulated

time ever accomplished in the PSR has been 1.225 ms, the maximum obtainable at 1 Hz from

the linac. In any case, the accumulated or storage time at the PSR is very much less than

the acceleration cycle of 38 ms for the Proton Driver. However, this does not necessarily

imply the requirement of a low vacuum in the Proton Driver, since electrons are created

by many other processes in addition to rest gas ionization. While the vacuum inside the

vacuum chamber of the LANL PSR is 2 to 4× 10−8 Torr, a vacuum at level of 10−7 Torr is

generally considered economically achievable for the Proton Driver, even with the magnets

inside the vacuum, which has a rather high out-gassing rate due to various exposed epoxy

surfaces. This approach—with shielding by a liner made from copper strips to reduce the

impedance of the exposed ferro-magnetic pole pieces while keeping eddy current losses small,

is presently considered the preferred solution for the vacuum chamber of the Fermilab Proton

Driver.
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