- FERMILAB-TM-2110

ARCHITECTURE AND SIMULATION

JiM HOFF AND ABDER MEKKAOU]

b

LEE

TABLE OF CONTENTS

INTRODUCTION i ccinnis i st s . 4

A SHORT NOTE ON TERMINOLOGY s S enes eesarssennes &

. CORECELLEAND PERIPHERY TELLS s - i e i s 6

CORE ORGANIZATION cvivenins srpsusehs e SRS e e et e

THE PIXEL CELL v O SR B— , e L

I OSHNALS - e 1 b R 1 R R R TS 08 s st DD
52 PiNEL Cﬁm Amz #:sc:; ?"RC}. ﬁ_ E} e 12
3 PivsnCrrnDioTarn C@\?R{}L eer 13
5.3F Killamd f?gfv;:fiags{ O
532 ADC Enceder Logic.. 14
533 ADC Outpur Lagic .. e 18
534 Commind Lomic oo RO PEUPTUPOPOG)
3341 Algorithm.., » RO ST .
3342 ”i"hc: Front Commcmcﬁ (,cﬂ e 2
343 This Mt Cotiditioners et s oo 2
5344 Thie Resét Logic. e S - v 2
5345 ThePassed (’mmnm d L{\g_;am .. 25
BA4ET The FastOR Logite..
Foken Control f;e.f;wia*,w..
Address Logic .. . kit e s
A ADEFALED zzz’“%‘umzm {ﬁ: A Hi"i" ¥ Rﬁ*’s? THE f’i\h? CELLT w E)E"RSP}'{ “ﬂ\h BRSPS %

THE END-OF-COLUMN LOGIC o csimsesnssiisssasiios R ETO—— : - 38

6.1 SHINALS.. e e 4 e et O URUOUOUOTR:. .
62 (}vmwr}zw
6.3 THE CUWMANﬁﬁiATkMA{:HIN}?& ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, R A e w8 e E £ E EE H S 2 e g4 g S AR 413
G4 THE COLUNMN STATE MACHINE oo evenrrns s S ey o e s s 46
BT NOTHIRE F0 S0V oo ne et e e i e L e
B.42 Bomething 0 iy i cion s s e e a5
43 Talrfcizzg.,.,,a..“,......,
.44 Silent ...
643 ..S:I?ﬁ!éfﬂfff?ﬁ& ebermtssnncaes s a o emmn e sr ey
BB Horizowial }’bﬁm Pm
s.4.7 Llock E"”amsf?f.fwgm“
A5 THE END-ORCOLUMN 3
66 FASTORLOGK con g e e e 3
& ? LASTEN PRIGHY g\(”t}i}?il e S e €S e T 0 R i £ £ £ Rt 0 £ 0 e o
5
5

68 QUTPUT PRIORITY E L(}I}"&R‘.M- T
6.8 A DETAILED DESCRIPTION OF A HIT FROM THE ?VlﬁwﬂfwﬁijL{ PN LUC‘EC g {’ERSFECTWL

CORE LOGIC.. : 58
{4 E e A T L T T T L T T P A T T ST P

ol TN ettt etestisv et ereemeeae e e bbb sS4 2 ek e ettt Sas ot eh e et e s e b v S e SR gt e e
IR ROIIUCTION ot oo oee st eeee b sesee s et e e ee e oo s e st esctren i crirers T
T3 ORI COTITER et oo et ee st eese oot ee s st s e et et ons e mr i
TA ORI STRTE WEATTIINE oot oresns oo s mmm s e i inS v s ot oo e 6w 50w 284 o 03Bt
TE EHAGHOSTIC SHENALS oot seieinnmem s s sas sttt sts e o b s b 64y b s e e

8

VERILOG SIMULATION...

P

51

“ORE ARCHITECTURE AND
THE PREFPIX2 CHIP

ARCHITECTURE AND SIMULATIONS

1 INTRODUCTION

px’t:’??i‘?{“} is & developmental step in the evolution of the final BTeV pixel architecture. Itisa

smaller version of a fully functional FPIX Core. - 1018 a necessary step between FPIX1 and FPIX2
‘mostly for monetary reaschs. Both FPIX1and FPIX2 Tiwst be bump bonded to 18x160 arrays of

ATLAS pixel detectors. Therefore, since each pixel is S0 im by 400 i, each FPIX chip cannot
possibly be smallerthan 7.2 mm by & nim. - Since such a large chipis expensive; the collaborators
are -only béing conservative by pmﬁiucmﬁ smaller versions of full FPIX chips when testing

'-dzifﬁmm E{ii‘ms

- Most impoitantly, preFPIX2 continiues & progression towards smaller and smaller device
geometries, FPIXO was developed using Hewlet-Packard's 0.8um CMOS process. FPIX1 was

developed using Hewlett-Packard's 05(im CMOS process. FPIX2will be 'déve?@p@:(i inn IBM’s
0.25 {im process or TSMCs .25 um process or in both processes. The major objectives of the
development of preFPIX2 are Yo test our ability to successfully develop deup submicron IC chips

and to test the C&pdbﬁltiﬁ% of ‘both the TSMC and IBM processés. The goal of reducing the

prodess geomeiry is todake advantage of the }}whar and higher radiation tolerances they provide

[1}. To further the goal-of high radiation thlefance, F?’EL‘U will b developed using vadiation
tolerant design: !&ihmq&i{% if pm‘zmu}aa enclosed transistors [2]. preFPIXZ s the fsr%t fanctional
‘chip éev&lugzﬁd at Fermitlaby'to use such technigues.

Finally, mePEXE ‘has been {Et':‘\fdﬂpﬁd 10 test 4 number of & mmhsmp mivdifications to the

afiginal read-out control dewziﬁp@d in: FPIX1. The FPIX1 readout architecture, also called ‘the

--C@mmmd Driven Architectare, has beén ‘highly successful in all tests, - However, it was decided”
that 1t could bé dmproved substantially and q;mpi;md dmmaﬂmﬂy without cimnemfr it
fundamentally.

The purpose of this papet is to deseribe in detail this new version of the Command Driven

_Arf::hﬂwmm and o demnbe @ congept that is xomawmt new 16 FPLX < the division of labor
- between the C{m and the Periphery..

2 A SHORT NOTE ON TERMINCGLOGY

It can be somewhat confusing talking about Pixels because so many words mean the same
thing and because, very often; the same word is uséd to-medn miuny things. The following is.a list
of words and their meanings as they will be uged in this paper,

{. Pixel Detéctor < The actual semiconductor ::Eewu through which & high-
energy. particle will pass and leave an electrical trace.

b

Pixel Cell - The VLSI circuit that dsals with the electrical signals of the
Pixel Detector and, among other thm% Lonverts thmc signals into vsable dmxta‘i data
{1.e. converts hit datd to recorded data).

3. Pixel Cell Array

The array of Pixel Cells viewed as a single entity

4. Pixel Détector Arviy The array of Pixel Detectors viewed us a-single entity

E]

5. Hit Data’ - The electrical signal of a-Pixel Detector or the electrical
signals Pixel Detector Array. Hit data can be considered the current state of the Pixel
Detector Array.- Hit data changes with each beam crossover.

6. Recorded Data - The result of the conversion of Hit Data i5to usable digital
data that i i part stored in the Pixel Cell Array and in part stored in the End-of-column
Logic. Recorded data remaing stored uniil 1t s read out.

7. Outpat Data = Also called Core Qutput Data, Tt is the data stream oulput
frovi the Corg,

‘Maost of the confusion ccctirs with the overuse of the word “data™, This s why it 48 important to
e explicit with the three types 'of data in the FPIX Core. Hit data is produced by the pixel
detector array. 1t s anever-changing snap shop of the inferaction chamber, Hit:data is converted
inta recorded: datd by the pixel cell array. Recorded data is held mda%mitelv It is converted to
cutput ‘data by the combined efforts of the Pixel Cell, End-of-colwnn Logic and the Core Logic.
As recorded data’is. mnvemé into output data it is erased fromi the pzmi cell srray. The pixel
- detector array .Sl'fp})ff(:*s or has hit data: - The pixel.cell afray fus récorded data. The Core streams
output data. If the FPIX Core has. done irs job-properly, the original hit data can be reconstructed
from the omput dara. Infact, tHat is the tltimate purpose of the FPIX Core.

3 CORECELLS AND PERIPHERY CELLS

Havelata -
SN
18x160 | : | coreData = Cutput to DAQ
Pixel Detectars| - —
am —§ Core | ":E' Rejectits] Periphery | 1y from DAQ

S

_ SendData
JPead clack

3 E‘ BCO clock|

FPIX Architecture

Figure 1: Core und Periphery Cells

Starting with preFPIX2, the FPIX aichitecture should be viewed as two black boxes: the Core
- and the Periphery (See Figure 1). The Core is confected to the pixel detector artay and 1o the
P@atg}heﬁ “The Periphery is connected to the Core and to the DAQ systen. The job of the Core
8o accept Hit ddta from the pixel detector artay, convert it into-the Core output data. Stream and
present that stredin. to-the Periphery in a consistent fashion. The job of the Periphery isto take
‘that predmmble ouiput data stream and Convert i into a form acwpmbl; by whatever DAQ
systeri 1§ connected to the chip. The purpose of this division of 1abor is to allow Core. and
Periphery arichitecturss 1o develop with some independence. It ensures that changes o the L“}AQ
system do not influece the way pixel detector arrays are handled and it ensures “that changes in
thé way prxel detector arrays are handled do not influence the way the DAQ system g vazhars duta.
This allows the pm%) e of pixel readout o be optimized in Imiatscm from the myriad pfobim‘f‘m of
output-data ofganization. Some users miight want triggered operation whereas others might want
non-tiiggered: opesation. . Somié might want ixma»méere& output whereas others might not care.
Some might want to rowsor miﬁmm ordered output, ete. All ordering ahd/or triggering as well as.
“ny rf:{;uwmmm% of chip-t6-DDAQ communication should be handled in the ?s:{‘lg}htﬂ The Core
would remain untobched by these requireménts.

To -accomplish this division of labor, a consistent interface between the Core and Periphery
has been defined (See Figure 1). The Periphery provides the Core with the Beami Cross Over
Clock {BCO ¢lock) dnd the Read Clock which establish the timing for hit-datd and putput data,
respectively. Tnorder to reduces sources of ertor, the design of the Core shonld be mah that these
twr clocks are not reguired to-bé related in cither fmqu»m_y or synchronicity. The Periphery

also provides the Core with two signals, SendData and ‘RejectHits. RejectHits controls the
conversion 'of hit data into recorded data that is er&rmed by the pmui cetlarray. I3 is active,
the conversion 1s am;}nm}&,ﬁ and new hit data 15 ignored, IF it i inactive, the conversion i8
entabled, and new hit data 1§ recorded. SendData controls the conveérsion of recorded dats into
“output put data that is performed by the End-of<column Logic and the Care Logic. Ifitis active
the conversion s enabled and recorded data is output from the Core. I it in ihactive, the

cofversion is sugpended and recorded data’is heid i iize pixel cell wray, The two controls are
independent as shown in Table 1. -

Fable i1 M e‘:r;cming of Send Data ind Rejeot Hits

State Meaning Action '

06 Send Datainactive = No recorded data is sent. Core will accépt new hit data. After
Reject Hits inactive aninfinite amouiit of time, the entire pixel cell array will be full
' - of recorded data.

{1 Send Dateinactive Norecorded data is sent. Nopew hit data is accepted.. The state
Reject Hits avtive of the Core will not change one or both of these signals is
: changed.
10 Send Data active ‘Recorded data is sent. ii“:om wm accept new hit data. Novmal
Reject Hits imactive operational mode.
it Send Data gctive Recorded data is sent. Core-will not acceptnew hit data. After
Reject Hits active a short time, the Core will be empty of recorded data.

The Core provides the Periphery with the HaveData signal. ‘When HaveData is active, the
Core is streaming output data. “When inactive, the Core is NOT streaming output data. It is
possible for HaveDta to be ingctive in spite.of the fact that there is recorded data somewhere in
the pixel cell array. This would depend.on tising. “HaveData is an indicator that the Core is
streaming output data. [tis not an indicator of the presence of recorded data in the pixel cell array
orof the presence of hit data in the pixel detector array. coreData’is the output data of the Core.
~Inthe interest-of Speed; 1o compromises were made on theé width of the output data word. ‘Each
word contains the full BCO nuwmber (Gime stamp) of the event; the- fuﬂ column number, the full
row address and the full: maﬁmmdc of the hit. Any concatenatinn of separation of cutput data
words should be handled in the Periphery.

The armount 0‘{ {az,:tput data manipulation and organization that -occurs in ‘the Periphery can
vary over-a very wide spectrum. It has, in fact, no logical limit. Tts only prictical Hmitation is
that, typically. pixel projécts like to limit the arhount of chip area not dedicated to the pixel cell
‘array (the detection area). The Petiphery could contain FIFOs, serializers, Content-Addressable
: Mamer}f ete: It could even be empty-provided that the DAQ systern can be structired to provide
the Signals necessary to run the Cote. This last fact is demonstrated by preFPIX2 itself.
preFPIXT is an FPIX Core with a sthall {18x32) pixel cell drtay and no Periphery.

[Pixel Ceil [Pxel Gei] (P‘axe% Ce" } {Plxei Cell }
O L I - [TT1 1
{ Pixel Cell } [Pixel Qa } Pixel Coll) Z Pixsl Cell
0 0 0 R I B N
(Pixel Cell j { Pixel. Ce } | PixelCell } | Pixel Celi
T S i A i 5 A 1
{ anei Cell } { Pxei Ceii) [Pixel Cell j "\h Pixel Cell

| End.of Column | | End of Column || End of Column | | End of Column
- Logic g Logic By Logic - Logic

Core Logic

Figure 2:0rgainmizarion of a4 x 4 Core

4 CORE ORGANIZATION

The orgamization of the FPIX Core is very similar to the organization of FPIX1 (See
Figure 2). “'i he aitray of pixel célls controls the array of pixel detectors (one cell to one détecton).
'The pmu} cells must be, of course, the same physical size as the pixel detectors. The cells are

“aware™ of hit data comning from the detectors. They are contralled by commands and wkw«;
coming fror the End-of-column Logic cells: Most importantly, the pixel cells are not “aware” of
time at all. "Théy live in'a Viriually asynchronons world. Each cell can receive hit data from its
pixel detector. If commarnded to do so; it records (stores) that hit data. Finally, if comnmanded to
doso, the cell will either outputior reset 8 recorded data.

Pixel cells are organized into Coliinns, each of which is controlled by an End-of-column
Logie, The End-of-column Logic 15 “aware” of the presence of récorded data somewhere in the
column. Tt dlso controls the commands and tokengs sent to the pixel-cells in its colummn, though it
is niot aware which pixels aré obeying which commands, The End-of-cohwmn Logic is aware of
time through the BCO clock and Read clock as well as the BEO number provided by the Core
Logic. Mostimportantly, the End-of-column Logie kniows whether it is Talking or Silent. If it is
Silent, it knows if it has Nothing to Sdy, if it has ‘Something to Say {ﬁw next time it gets the
token) or if it has Finished Talking.

Finally, the Core: Logic controls access to the outpit data bus by controlling the so-called
Horizontal Token. Similar to the End-of-column Logic, the Core Logic kmwg whether it is
CTalking or Silent.--At starkap, the Core Logic s reset 1o %he Silent state. When there is data to be
output from dity Fnd-of-column Logic, the Core Logic makes & transition t6 the Talking state and
initiates the Horizontal Token drop. When the Horizontal Token makes it out-of the other side of

‘the columns, the Core Logic make,s__Z-?:ﬁ_i:_-'-%’remsi_s_i{m _;back 16 the Silent state. The Core Logic
provades the BCO numbér to all columns and it contains some diagnostie logic as well.

It 15 very important to realize that nothing in.the FPIX Core is aware of a chip token. The
chip token was used it FPIX1 to indicate'to an' FPEX] chip that it had the right to cutput data onto
the externdl data bus. The FPIX Core always thinks it bas the right to output data provided that
SendData is active. Anv chip-to-chip arbittation for an external bus would be handled by the
Periphery.

5 THE PIXEL CELL

10

i1

12

14

15

5.1 SIGNALS

The Kill and Inject Logic Signals

KI_RESET

KILL. CLK
KILL_CLKB

KILL SHIN

KILL_SHOUT

INI_CLK
NI, CLKB

INJ_SHIN
INJ_SHOUT
Command Signals
COMA=<]:0>
COMB<1:0>
COMC<1:0>

COMD<1:0>

Input. Resets the kill and inject logic so that the cell is not killed and
not injected

- Input. Advances/clocks the kill shift register

o "}f‘ﬁput. Shift input for the kill shift register
. Output. Shift output for the kill shift register

- Input. Advances/clocks the inject shiff register

| Imput. Shiftinput for the inject shift register

< “Output. Shift output for the inject shift register

- Anput. Command Pair
Input. Command Pair
: if{hput. Command Pair

Input. Command Pair

Token and Control Sigrial

ACCEPT

COLTOKENIN

RFASTNOR

HFASTNOR

Input. Controls the Hit Data to Recorded Data conversion. If
ACCEPT=], the pixel cell accepts new hits. If ACCEPT=0 the pixel

- cell ignores new hits

Input. The Column Token Input. If COLTOKENIN=1 and the pixel
needs the token, then on the next r'ising edge of the COLREADCLK,
the pixel will output its data. If COLTOKENIN=0, then the pixel
st wait.

Output. Will be pulled low when the pixel needs to output data. The
signal 1s always in response fo an Output-Command from the End-of-
column Logic

Output. Will be pulled low when the pixel cell has received a hit (has

contverted hit data into recorded .data). The signal is always in
response to hit data from a detector cell while ACCEPT=1 and the

19

20

20

21

22

23

24

25
26

27

COLTOKENOUT

COLREADCLK
COLREADCLKB

DATARESET

READRESET

Data Signals
PIXDATA<7:0%
PIXDATA<IO:8>

Bias-Signals.

VTH<7:0>
YVREF
VFB2

VEBBP

VBBP2

VDIFFB
VEF

VBBNL

FEnd-of-column Logic is driving a Listen Command.

.Outp'z:;t; If the pixel cell does not need to output its data,
COLTOKENOUT=COLTOKENIN. If the pixel does need to output

data, then COLTOKENOUT=0 until the pixel cell gets control of the
bus.

Input. Clock strobe for output data

Input. Driven from the main Reset signal pad. When active, any
recorded data 1s wiped from the pixel.

Input. Equal to the main Reset signal pad OR-ed with the End-of-

column Logi¢ entering the Silent state. Guaranteed reset of pixels
that have been outputting.

Cutput. Row address,

Output. Pixel Cell ADC output

Input. Threshold control input (includes main threshold and ADC

thresholds).

Input. Reéference voltage for second stage amplifier (threshold
voltages are relativé to VREF)

Input. Second stage feedback bias voltage (can be connected to
VREF)

Imput. Input current. - Bias current for the front end preamp.

Input. Bias current for the second stage. Can be connected to VBBP
provided that the currentis doubled.

Input. Bias current for the leakage compensation amplifier.
input. Bias current controlling the feedback of the preamplifier

Input. Bias cuarrent for the preamplifier

i1

Ez2 PIXEL CELL ANALOG FRONT END
To be written by Abder Mekkaoui

ST L

A

Token Adddress

Logic

Figure 3: Generval organization of the Digital Conirol of the Fixel Cell

Cormmand
Logic

{ ADG Outpit:
Logie

o

53 PIXEL CELL DIGITAL CONTROL

The troe complexity of the pixel cell lies in the Tact that it is rigidly constrained to the size of
the pixel detector it controls. From an algorithimic perspective, it is actually quite simple.
Figure:4 shows the organization of the Digital Control section of the pixel cell. In the drawing,
the analog front end s to the far left and outside of the graphic. The Kill and Inject Logit 18 one
“segment of a-pair-of shift repisters that wind throughout the pixel cell array. The kill signal closes
off the inpit of the analog front end. The inject signal enables @ diagnosti¢ input of the analog
front end. The ADC Encoder Logic converts the seven-bit thermometer code output of the front
end's anatag-to-digital converter into a three-bit binary ¢code. The ADC Output Logic drives the
three ADC bits down the colimn:. The Command Logic interprets the Commands and control
signals coming from the End-of-cotuinn Logic to the pixel. Tt controls the conversion of hit data
into recorded date. Italso controls the resetting of the pixel ¢ell following a read-out or 4 chip-
wide reset. The Token Logic controls the access 10-the column bus by grabbing or passing a
column token. Finally, the Address is the unigue positional data of the pixel cell that is driven to
the End-of-column Logic whenever the pixel cell ontputs its recorded data.

531 KILL-AND INJECT LOGIC

Cné% §}a ;s@dws{iuaﬁy mjmmbi e dﬁ{i kiﬁ&t‘f}b Te} be m;{‘:cmb}c means tiﬁm{ a test ;mfs& ¢an m}eai a
charge intothe pixel cell. Thisallows each individual plxel 1o be tested ész’ecﬂy and controllably.
To bef; killable' means that a pixel cell can be forced to ignore hit data from its pixel detactor and
from test pulsés. A killed pixel cell masks hit data from the digital sections of the pixel and,
consequently, prevents the hit data from being recorded. This a]lows naisy pixels to be shut off
by the user. This is different from the Regeutﬁm signal that the Periphery provides the Core.
First, killing & pixel affects only that pixel whereas activating the RejectHits signal affects the
entire pixel ¢ell array. Sécond, killing a pixel cell is done in th{, analog front end {}f the prm} cell
whergas activating the Rejthus signal instructs the digital back ends of all pixel cells in the
pixel cell @rray toignore incoming hits.

The logic for the Kill and Inject signals-is simplicity itself. From the perspective of a singls
pixel cell, the kill state (I=Killed, O=not killed) is stored in one flip-flop and the inject state
{I=injectable, O=not injectable) is stored on a-second fhip-flop. The outputs of each flip-flop are
passed 1o the analog front end of the pixel cell where they perform the kill and injéect functions.
There are independent clock signals foredch of the two Hip-flops; but they share a common reset
Signal. This is shown in Piguré'd on the lefi-hand side.

i3

Kl Cut it Out

B | Q_'-—J | E}. Q.—}

Flesat Resat

K Ko ksMrese?_m;Jﬁmmm

Frgure 4 Kill amﬁ inject Logiv in pre FPIX2{within one pixel cell tleft) und in a 434 pixel cell arvay
frightii

From the perspedtive of the entire pixel cell array, the Kill dnd Inject logic resembles two

parallel shift registers. This is shown in Figure 4 on the right hand side. The outputs of each flip-

flop in a particular: pixel cell are the inputs fo the kill and inject flip-flops of the next pixel cell.
The separate clocks allow the two scan paths o be operated independenily. This is an
improvement ‘over FPIX1. The common reset is dlso an improverent over FPIX1, which
required the user to scan in the kil and m;em states, even if the user required no kils and no
tiijects. InpreFPIX2 and beyond, a programiming réset will reset all pixel cells 1o “not killed™ and
"ot injected”. :

The kil and inject logic has no effect on the digital back-end of the pixel.cell.

532 ADCENCODER LOGIC

The ADC Encoder accepts-as-its inputs the 7-bitv wide themmmuermmde that is output by the
flash ADC located in the analog front end of the pixel cell. The ADC Encoder generates a 3-bit
bindry output from the input as shown in Table 2

Table 2: ADC Thermometer Code Qutput vs. fnput

Topat T T i
| .T(v TS | T«« T% T: | T[Tﬂ BQ “8 1 Eﬂ
00 0 0 o 00 060
6 0 0 0 0 0 1 o 0 1
¢ 0 0 0 0 1 i o 10
o 0 0 0 1 1 011
o 0 0 1 1 1 100
9 0 1 1 1 1 1 10 1
(SN R SR T R S B
| N T T D L1

_ There are a numbier of ways to implement this transformation. Thie minimal method requires
82 transistors. t is a nend-nand CMOS network the outputs of which come from d«nput nand

gat@s& Itis an irregular desion, which ‘would’ ha\ss requited a- large amount of routing and,
consequently,a mrtre gmount of space. For those réasons, this method was rejected.

The ¢hosen method for the transformation is pass<transistor logic, which, while requiring 100
transistirs ro implement, s exvremely regularin-its lavout and can be fabricated nan area S5um
by S0gim. This design style is essentially an array of CMOS 2-to-1 multiplexors. Each of the
seven input bits controls thrée muliiplexors, one per cutput bi, Depending on the state of each
input bit, the multiplexors choose to either pass the cutput of the previous multipléxor or drive a
riew ontpul. Algebraically, thisis shown as:

Po=0
Povr=ToButTuPa Equation 1
Clut = Py '

where Tn 15 ‘each of the seven thermometer-code input bits, B is the binaty number {o drive if
Tre=1, and Poig the binary output of the previous multiplexor 1o be pussed if Tn=0. To achieve a
thermometer code to bindry transformation, the various Bn for the three vutput bits are defined as
shown in Tablé 3 :

Fable 3

TBit2 Bl B0

B, 0 o 1
B, 0 1 {
B, 0 1 i
B, 1 0 0
B, 1 0 1
B, 1 1 0
B t 1 i

.

The schematic that implements this transformation is shown in Figure 3. The layout is shown
in Figore 6. This implementation method 18 slower than the full CMOS version, but speed i 3ot
an important limitation for the ADC Encoder: The End-of-column Logitc guarantess that there
will be -a minimum-of one beam-crossing period (132ns) between . the. drrival of & hit and the
request for output. The pass-transistor Jogic implémentation is easily capable of settling to-its
final valog in that length of time. Figure 7 clearly shows that not only does the ADC Encoder
gecurately make the transformation, b it also does it in less than Ins,

15

=]

m,_w,;' >

7 Bl

4
eR

Figure 37 The schemativ for the Pixel ADC Encoder. The oval surrounds a single d-transistor CMOS

multiplexor. The encoder is obviously an array of these devices, Thelr left inpuis are the outpuls of

thee previows miltiplexors, and thetr right inputsare either tied fo power or ground, reflecting the Br
nepmbers chowt in Table 3. '

% . - N ity T AV ST LS IR |
i s St s o

Figuve 6: The Pixel ADC Encoder Layour. The oval surrownds-a single d-transistor CMOS
wattiplexar.

SRR Ly
PR

Figure 7: ELDO simulation-of the ADC Encode. The upper seven signals [V(T6)-V(T0)] ave the
incomiig therimonmieter code which changés every 20ns. Thi next three [V(B2)-VIBO} are tie
encoded putpuis. The finaf signal [Encoded | shows the hexidecimal output of the encoder.

17

A

AOCEIL B# :
II Ot
ety

T

{8y

Figure 8: (A} The old (FPIXI}) way of driving ADC ouwtputs (B} The new (FPIXZ) way of driving ADC
DHITWLS

333 ADCOUTPUTLOGIC

in previous versions of FPIX, there was no entoder. Instead, the outputs of three comparator
latches werg driven-directly by CMOS diivers. CMOS switches controlled by the pixel GétBus
sigial either connected the drivers to o tri-stated the dnver\ from the three column-wide outpul
Tines: This is showw in Figure 8(A).

There are several tmproverients that can be made Yo this approach. First, the CMOS drivers
requirs two fiiverting sthges o drive the original signal. Second, the CMOS switches must be
wiade very large to minimize the resistance on the output lines, These large CMOS switches also
serve 1o load the GetBus signal, which contiols the rélease of both pixel address data-and pixel
ADC data.

In preFPIX2; these two Dometiony {drivinw and tri-stating) are-combingd into two fransistors,
one pull-up and one pull-down. At any given time, these two transistors either will both beoff or
only one will be on. If they are both off, the ADC Output iy trisstated. [f one or the other is on,
the cutput Tine will be pudled high (if the encoded ADC bitis a-one} or low (if thie encoded ADC
bit is awzeroy. Inthis case, the: xg}ﬁed of the GetBus signal 1 improved because it is only loaded by
a mintmum size CVOS gate. This is showtiin szsm &(ﬁ)

Flgs

‘The logic inside the box in Figure 8(B} is vety straightforward. If GetBus is a zero, then o=0
aud B=1. I0GetBas is o one and ADC Bit is a zéro, ‘then o=1 and B=1. I GetBus is a one and
ADC Bitis a'one, then a=0and B=0. This yields the following equations for ceand b

e i
o =\ADChit + GetBus)

’ Eguation 2
B ={ADCbit » GetBus)
These equationis-can be easily implemented with eight minimum sized transistors. Al three
ADC Outpuy drivers with thelr support logic can be laid out in an area 19w by 50um. this s
shown in

B

g

i o e

Figare 9: The ADC Outpw DriverLayout. The three ovals cover (clockwise from the:lower right) the
twa drive transistors, the NOR gdte for gencraring & and the NAND gate for generating 5. These
thiee streuits ure repepted tivée Hies, onte for such ADC bir.

19

334 COMMAND LOGIC

In the interest of keeping this section self-contained, some of this information may be a
repetition of inforination given elsewhere. First, the Command Logic of a pixel cell is either Fall
or Empty, meaning it is either holding recorded data-from a previcus hit or it is niot. Second, the
Command Logic in €ach pixel cell accepts as input four pairs of Command Lines from the End-
of-columin Logic. Each pair.of Command Lines is used to transinit the following commands:

1. Idie 00y
2. Listen (11)
3. OQOutput (10)

4, Reset (61

=do nothing

—listen for incoming hits

“output data (address and ADC) when the @ixe‘i cell g‘été_'_the bus

- 85et the Cominand Logic-of a pixel ceil back to Empty and reset the
ADE data '

Other Command Logic input signals are:

1. AnaNewHit

2. Accept

3. GetBus (gbus)

— from the analog front-end.of the pixel cell; the-actual “néw hit” signal

— from the End-of-column Logic; If high (One); accept new data; If low
{Lero), reject new data,

— froni the Token Control Logic; indicates whether or not the pixel cell
controls the output bus

The Command Logic outpuit signals are:

1. MNeedToken

2. HFastOR

3. RFa‘stOR

5.3.4.1 Algorithm -

-2 $ignal to the Token Control Logic that pixel cell nead:s.the'output bus;
only happens when the Command Logic is Full and has been ordered to
Cuiput,

~a signal to the End-of-column Logic that the pixel cell has received new
hit data and converted it to recorded data; only happens when an End-of-
colurmm register is issuing a Listen

— a signal to the End-of-column Logic that the pixel needs to the cutput

' ‘bus; only happens when the Command Logic is Full and has been ordered
to Output.

1} While Empty, the :C.om'mand Logic observes all four command lines with equal priority and
ignores all commands éxcept the Listen Command.

2) When AnaNewHit arrives from the analog front end:

" The Accept -signzi}.is derived from the RejectHits input to the Core.

aj)

b)

c)

If the Accept signal is low (Zero),. the niew hit data is ignored and discarded. Nothing
happens.

If the Accept signal is high (One) and the pixel cell is Full, the new hit-data is ignored
and discarded. Nothing happens.

If the Accept signal is high (One) and the pixel cell is Empty:

1) If no Command Lines are ordering the pixel to “Listen”, the pixel cell waits until one
of the Commands Lines orders It to “Listen”. The pixel cell will wait indefifntiely for
this to-happen. It is the responsibility of the End-of-column Logic to make sure the
pixel céll does not wait forever.

11} If a pair of Command Lines is ordering the pixel to Listen:

(1} the pixel cell will latch the hit data, thereby completing the transformation of hit
data to recorded data

(2} The pixel cell will focus its astention onto the pair of Command Lines that had
1ssued the Listen Command when the hit data arrived. Until the pixel cell is
read-out or reset by commands from that particular pair of Command Lines, the
pixel cell will-ignore commands fromy all other Command Lines. This is called
associating the pixel with an End-of-columi Register.

(3) The pixel cell will consider itself Full until it is read-out or reset.

(4) The pixel cell will alert the End-of-column Logic of the presence of a hit by
pulling low the HFastOR sighal. It will hold this signal low until its associated
End-of-coluimn Register acknowledges the hit by withdrawing the Listen
Command.

3) While Full (wot Empty):

)
b)

c)

d)

Commands issued on unassociated Command Lines are ignored.

If the associated Command Lines issue an Idle Command, the pixel cell does nothing,
and the recorded data remains recorded

If the associated Comnand Lines issue a Listen Command, the pixel cell will puli the.
HFastOR signal low until the Listen Command is withdrawn. Recorded data remains
unchanged. (This sttuation should never happen uhder ordinary operation. This condition
was added to the-algorithm to increase the Single Event Effect tolerance of FPIX2.)

If the associated Command Lines issue a Reset Command

1) The pixel cell will reset itself

i1) The Full pixel cell will become Empty.

ii1} The recorded data will be erased

21

1v) A-reset will be issued by the Command Logic to the analog frontend of the pixel cell
for the purpose-of resetting the ADC latches,

¢} If the associated Command Lines issue an Output Command

1} The pixel cell acknowledges the command by pulling the RFastOR low. The pixel
- cell will remain in this state for as long as the Output Command is being issued to the
Full pixel cell.

i} The Command Logic signals the Token Control Logic via the NeedToken signal that
it needs the output bus. The pixel cell will remain in this state for as long as the
Output Command is being issued to the Full pixel cell.

iif) ‘Eventually, the Token Control Logic will signal the Command Logic that the pixel
cell has control of the output bus (via the GetBus signal).

(1) The GetBus signal will reset the Command Logic (see 3.d.1 through 3.d.ii
above).

(2) The pixel.cell will refease the RFastOR signal.

(3) The next read clock cycle, a signal will be released by the Command Logic to
reset the analog front end of the pixel cell.

The true difficulty ‘i the above algorithm is that all of this functionality had to be
implemented in an area 50um by 75um. The design is best understood if it 1§ broken down into
five subsections: the Front Command Cells, the Hit Conditioners, the Reset Logic, the Passed
Conumand Cells; and the FastOR Logic.

5.3.4.2 The Front Command Cells

Figure 10: A Schematic of the Front Command Cell

There are four Front Command Cells in each pixel cell. One Front Command Cell connects
to each pair of Command Lines. These four separate Front Command Cells allow an Empty pixel
cell to observe all four End-of-column Registers with equal priority as required in the above
Algorithm, Part 1.

Each Frorit Command Cell contains the logic to.decede the Listen Command {and only the
Listen Comumand).. In fact, the code for the Listen Command (11) was chosen to simplify the
Front Command.Cell because with this code, a single nand gate is all that is necessary to decode
the commtand.

All Front Command Cells are connected to the InterestingHit signal, which is a conditioned
version of the hit-signal output by the dnalog front end of the pixel cell. More will be said about
this signal later. For now, it is enongh to know that it activates when there is new hit data for this
pixel cell. Tt is active fow.

Each Front Command Ce¢ll contains a single SR flip-flop. This flip-flop is actually where
recorded data is stored. If a pair of Command Lines connected to a Front Command Cell 1s
issuing the Listen Command and InterestingHit goes active, then the SR flip-flop in that Front
Command Cell will be set and the pixel cell is now Full. The flip-flop will remain set until the
pixel cell is reset or until the pixel cell is read out. The act of setting one of these flip-flops is
actually the transformation of hit data.to recorded data. The complementary outputs of this SR
flip-flop-are called Hit and NoHit. They have two purposes:

1. Within each Front Command Cell, the Hit and NoHit signals are used to open or close
two CMOS switches (see Figure 10). The inputs to these switches are the two Command
Line inputs to the Front Command Cell. The outputs of these two switches are the two
PassCmd signals. If a Front Cormmand Cell has recorded a hit in its SR flip-flop, then the
two Command Lines are passed to the PassCmd signals. If a Front Command Cell does
not have a recorded hit inits SR flip-flop, then the two Command Lines are blocked from
the PassCmd signals. This is how the Command Logic associates itself with only one
End-of-colomn register. Whenthe pixel cell is Emipty, each of the four Front Command
Cells are “looking™ at their respective End-of-column register. The Front Command
Cells can only recognizé the Listen Command. Any End-of-column register issuing Idle,
Output-or Reset is ignored. At any given time, only one of the End-of-column registers
will ‘be issuing & Listen command. When a hit arrives, the SR flip-flop in the Front
Command Cell connected to that pair of Command Lines will be set, and those
Command Lines will be passed to the rest of the pixel cell where logic exists to decode
other cornmands. Other Command Lines will be blocked from the rest of the pixel cell
and their commands ignored. As shall be shown later, InterestingHit will be prevented
from going active as long as the pixel cell is Full.

2. External to the Front Command Cells, all of the NoHit signals are ORed together to
produce a signal that is high (One) when the pixel cell is Empty and fow (Zero) when any
Front Command Cell SR flip-fiops are set. This signal is called PreviousHith.

5.34.3 The Hit Conditioners

Figure 11: The Command Logic Hit Conditiorer. “msp_dff_ar” is an asynchronously resertable
positive edged, D flip-flop.

The job of the Hit Conditioner is to block unwanted hits while passing the desired ones as
guickly as possible. The Hit Conditioner is shown in Figure 11.

The Accept signal is a One if the End-of-column Liogic wishes the pixel cells in its column to
accept new hits. It is a Zero otherwise. AnaNewHit is the discriminator ovtput of the analog
front end of the pixel cell, which goes high when there is a new hit. The positive edge of
AnaNewHit ¢locks an edge~triggered D ﬂlp-ﬂoy (msp_dff_ar). T Accept is a One, then the
output of the flip-flop will be 2 One indicating a new hit. If Accept is a Zero, then the output of
the flip-flop will be (remain) a Zero, and the Command Logic will never know that a hit occurred.
It is possible to condition AnaNewHit with a simple AND gate that combines Accept and
AnaNewHit. However, the output of that AND gate would depend on the duration of the
AnaNewHit $ignal, which itself is' dépendent on bias settings and radiation damage. Hits that
occurred while Accept was a Zero might appear as hits that suddenly occurred as soon as the
Accept signal was restored to 4 One. The flip-flop prevents that from happening. Only hits
whose rising edge armives when-Accept is a One will génerate hit data in the Command Logic.

The outpui of the flip-flop is further conditioned by the PreviousHith signal which is a Zero
when the pixel cell is full and a One when it is Empty. InterestingHit, tbe output of the Hit
Conditioner, will 'go to Zero only for a hit that arrives when Accept is a One and the pixel cell is
Empty.

5.3.4.4 The Reset Logic

There are several resets that affect the pixel cell. The first is the Reset Command, which is an
order by the End-cf-column Logic to reset. This would be a column-wide reset for any pixel cells
obeying that particular patr of Command Lines. The second is a Master Reset, which is a chip-
wide order fromi & user to erase the data in the FPIX and start over. The third is an indication
from the Token Control Logic that the pixel has the bus. When this signal is received, the pixel is
outputting its data, and the recorded data can be erased in preparation for the next hit.

I gnen g oy 2T g o d
DoremanaRened

Figure 12: The pixel reset logic

Note that in Figure 12 there are two outputs from the reset logic. One 1s PixelReset, which
resets the Front Command Cells and the Hit Conditioner. The other is the ADC reset, which
resets the flip-flops in the analog front end. The only difference between the two is delay. In the
“Tigure, ghusb is-the indication from the Token Control Logic that the pixel cell controls the bus.
“delayed_gbusb” is identical to gbusb except that it is delayed by one Read Clock period. This
delay ts essential ‘because the ADC data 1s stored on latches and it cannot be reset until after the
regd-out is done.

5.3.4.5 The Passed Command Logic

P]
]
mn; : Previoustiin
Pl
P |
N 165 r““*“fw@ﬂ
P ot o e JE 185 -
PG .. B A V; Gy PRI
kiR —telalai) oM Grnas
gt L .
Bigumat o T v T
1 155 ordnics ml-u—
' P I 68
ey ’ Y f\\ﬂ
S— 53 . g o T
HF Yemnonre” PET 1L Fiwats
Bt
Pagel il -8
FaguCmy #®
5.2
(U] e
it
Poggindd
TRaguGngt 5
| - i
e Ea
eoBddn L gL H
E’_;_mufmh oy
e W e

Figure 13: The Passed Command Logic showing the outputs of the four Front Command Cells (far
Lefy), the pull-down transistors {bottom), the command decode logic (cenrer right) and the RFastOR
transistor (far right).

In Section 5.3.4.1, the Algorithm for the Command Logic specifically mentions that an
Empty pixel cell must view all four Command Lines with equal priority and must réspond only to
a Listen Command. A Full pixel cell, on the other hand, muost obey only the commands issued to
it by its associated End-of-column Register. The four Front Command Cells accomplish these

25

two all-important tasks. First, each Front Command Ceil is connected 10 a different pair of
- Command Lines and each Front Command Cell contains its own Listen Command decoder so
that all four pair of Command Lines are observed equally. Second, an association between o
pixel cell and a particular End-of-column Register is established when one of the Front Command
Cells is teceiving the Listen Command from its Command Lines as a hit occurs”. Under this
specific set of circumstances, a flip-flop internal to that particular Front Command Cell is set, and
CMOS switches are opened iy the Front Command Cell, allowing only its Command Lines to be
passed onward.

These associated Command Lines are passed to the Passed Command Logic shown in Figure
13. This is Hitle more than two two-bit decoders, one-that locks for 01 {Reset) and the other that
looks for 10 (QOutput). If the Reset Command is issued, then the Passed Command Logic
activates the CommandReset signal to the Reset Control Logic. If the Ountput Command is
issued, then the Passed Command Logic activates the NeedToken signal to the Token Control
Logic and pulls down the RFastOR. If the Listen Command or Idle Command are issued, they
have no effect on the Passed Command Logic.

When the pixel cell is Empty, no Command Lines are passed to the Passed Command Logic.
This ensures that the pixel cell ignores all commands but Listen while 1t is empty. However,
floating inputs to the Passed Command Logic could cause spuriots érrors by dynamically storing
erroneous ‘commands. This would also be a serious source of Single Event Effect errors if left
uncorrected. Therefore, the transistors shown on the bottom of Figure 13 are used to force the
inputs to the Passed Command Logic to the Idle Command (00).

5.3.4.6 The FastOR Logic

-~ I

End of Column

Pixelt | | Pixelo |

Figure 14: A schematic of the FastOR Logic

Figure 14 shows a simple schematic of a FastOR system. It is essentially a distributed
pseudo-NMOS NOR gate with an inverter. Each of the four “pixel cells” in the “coluran”
contains a single pull-down transistor. The “End-of-column Logic” contains a pull-up transistor
and an inverter. Whenever a gate of one of the pull-down transistors goes high, the FastNOR line

* It is-the job of the End-of-column Logic to make sure only one End-of-column Register is issuing the Listen
Comimand at any given time.

is lowered, and the FastOR Hne is driven high. T all of the gates of the pull-down transistors are
Tow, then the pulb-up transistor raises the FastNOR line and the FastOR Tine is deiven Tow.

The key performance issues are the width-to-length ratio of the pull-up pfef, the width-to-
length ratio of the pull-down nfets, and the geometry of the FastNOR liné itseif. In FPIX1, there
‘was some difficalty with the FastNOR lines due to their irregular shape. This shape led-to a
higher-than-anticipated resistance on the RFastOR and HFastOR lines. Consequently, hit data
occurring in the upper pixel ceélls {more than 90 - 100 pixel cells away from the End-of-colums’
Logicy was not recognized by the End-of-column Logic because it could not pull the FastNOR
lines below the frip point of the inverter (See Figure 14). Therelore, in preFPIXZ and beyond, the
geometry of the FastNOR Tines is rigidly defined to be rectangular, The only variables in the
geometiy of the FastNOR linies are their length and their widih. The pixel width and the number
of pixels per ¢olumn, of courseé, define the i_&?’igthx It7is, therefore, is out of the hands of the chip
designer.. Simulation snd practicality détermine FastNOR Tirie width.

Larger nfet width (See Figure 14) increases the drive capability of each pull-down transistor..
H{;}wwar it also increases the mp&ummt: of the FastNOR line, which slows signal propagation.
Larger piut width décreases the rife-time of the FastNOR: line, but it also increases the fall time
-dné the minimum voltage attaisable by the pull-down transistors.. If this voltage approaches the
irip point of the inverter, it thieateis the ability of a pixel cell to make the FastOR signal,

from upper pixel

to lower pixel

Fighre 450 Pivel Cell Model used in simulations of the FastOR circuitr

I order 1o smiulate the relative effscts of nfet width, pfét width and line width, numerous
simiilations were performed. Ineach simulation,-each pixel cell was modeled as shown in Figure
15, Tt was decided betore layout began that all signals propagating up or down a column woald
be_carried by metdl2 {(second level meral). Since the pixel width is defined to be 50um, the
resistance R in the figure represents the resistance of 25min of metad2. Similarly, the capacitance
C represents the capacitance of 25um of metal2 coveréd above by metal3 and below by metall

27

and runpning @amikei to 28um of metal? on ethier side. In other words, the maximuam capacitance

that .could be-experienced by a metal2 run. Tt was also assumed that the width W would be

‘conétrained to those widths obtainable by enclosed geothetry transistors. For a 160 pixel colum,

the conclusions of these simulations are shown in Table 4.

Table 4: FastOR optimal geometries

Nfetwidth 12.95um
Pfet width X.0um

Line width 2.0fun

Sirnulations of the above geometries under sigma and supply variation aré shown in Figure

1%

3A-Febm20U0 . File : fEetdy.vou
2008 EastQr: SIG‘MA, TEME sad SUPPLY varlation

oV BFORBOTY: 318 ovm“«ogss:m w AV EPORSOT] AL

nmmmm 1 1..9{%0%)"‘"&5 ik &V{H"ﬁm’ﬁ"} 1? S
V(PF{BRBQI} lg 1 &V&WQRE@E'S 19 is V{HE‘DRWJ)‘R‘§ CERGY 1

I V(SE‘ORBO’}‘} 3 Lo W THEORBOTY 453
NV{RNRBOT} '3 t &?{HY‘(}RHM} &k
T

R "‘:0”'“3; .
SVIERRETOR) (B4 & VINRASTOR) (1011 4 VIRFASTUR (3171

Y RERSTOR. 12 LTV LERETORT 3311 4V AEASTORT 1401

WV HRARESNY 1551 8 VIRERSIOR) 1811 o WIRFASTORY 1711

= T{EERTIOR) __w VLRV EHRRSTORE - ARIL o VISFASTUR 268

S HEASTORY S0t 5V (HEASIOR) P20 o VIRPASTONG J2a:1

W T {RERETORY 1241w (HERSIORY TR wViHTRSIOR 28iL

IV {HFRRTORY 27X +Vi;=is’asma) a Y -‘vmmﬁ“uﬁ) 3 4oV {HEARPORI 4%

Y {REASTOR) 8 ¥ (HEASTOR) €% WV HFASTOR) T3 8 (HERETORY 8:1

T

Vo VIRFASTORL, §iL #VIRIREY INCE

Figure 16 Simlations of the FastOR

The squaté waves in the figure show the topmost pixel cell acthximff its nfet pull-down. The
upper ‘set of ‘waves are the signal on the FastNOR line right next to the Exd-of-column Logi¢.
The Tower set of waves are the FastOR sutput.

The propagation delay {}i‘ the fising edge of the FastOR signal is 2.5 to 3ns. The propagation
delay of the falling ‘edge is-5 to J0ns. TE@ PRI voimgu of the FastNOR. Tine is 0.4 10 0.6

vy, OF mmaa:ﬁ@mhi& iportance is also how the FastOr behaves over 3 £20% varigtion in line
width, This correspondsto a+20% mmiism m hm%; ine resistanes. and camgzmzmﬁ,

wwebwz@aa Pile : fasEOr . &ou :
;::;f:s;g_:;'::.m CELOO w7 3.1 (Drodustion) : Heesm st

@Viﬂ?ﬁm} R @V{Rmm?} AR ﬂ%iﬁi’@&"ﬁﬂ?} ®ii wRIRFORBOR) 4oL

: SUTRTOREOTY 3 k¢ wam&am% L e VIEEORBOT) "? e &?(HWWME B k4
v e VIEFORBOTY 001

gy B o B

?{&E%S‘M}R} ded q.vm@mmm LEL »memm o B3 4 V{ﬁ?ﬁﬁ%&? i 22

V{HFM%R) 5 b vmmmm Gl s?{HERSTQR} T l &V{KFM?{DR} Ti1
g»vmmm@m Ardoe vimz’w; 1 IL

L

.pmmg%mﬁ ciﬁii«.w i
cand U6V ‘

and fiﬁmmga mﬁ &mw 41 ha m@@ﬁmmm féﬁ?%‘ my whémmiz in pm«ri m{}ﬁ% or'in :Pm mm%w wi g}i&ﬂ
percoluron.

535 TOKENCONTROL LOGIC

Tokern O I 'Pi:mi Mot
NeadToken Combinatoriaf| gbErable |+ 1o £ gt
Logic : P
& _ r > & bl Gbust
Tﬁken i%set i % Reaﬁf;}aa{:k S8 g 'ﬁis‘i@f Raset .
Token. O'u ' : Pixel M
NewdToken | ' Combinatorial] gbEnstle | | 1o a
Logic e .
& ' o > 5 Gbusb
Token Reset Token i ¢ e il ‘ ﬂ?ﬁﬁsﬁer Heset B
Tokem ol Pixel N1/
NeedToke : G@mbmamnai gbEnatie | 1 1y & i Ghus
Lagic . -
& > i Gbush
m:{?kéﬁﬁ%&éﬁ o ;'f?aken;ﬂ . ReadClock] ?Miastaf Feset

Figure 18: The Interactions of several Token-Control Logic Cells

Freguently, Sseveral pixels in a single column are hit simultanecusly. When this happens all
of those hit pixels will -associate themae,]ves with the same End-of-column register. Therefore,
when that Bid-of-column ségister iSsuds the {}utput Cwmmané all of those pixels will try 1o get
<ontrol of the output bus. - A column tokes tmposes & sequential order onto’ the readout of those
.;}:axeia 56 they do notall output their data sinultaneously. To reiterate, the readout sequence is as
follows:
1y A pixel has recorded data.
2y The pixel receives the Output Command from its associated End-of-column register

3 The pixel recet vy the columm token .

43 When the previcus three conditions. are met, at the next fising edge of the Read Clock, the
pixel-cell wilk

a} Output its dats (address and ADC),
b) Release the column token to the next pixel that needs the bus; and

<} Resetifself,

To accomplish the above seguence, each pixel feeds Token Control Logit intéracting as
shown in Figure 18. This logic has thiree main goals: 1) to acquire the token when it becomes
available if the pixel cell needs it; 2) 1o pass the token 45 rapidly as possible if the pixel cell does
not need it; and 3) to clear all token information as rapidly as possible to make the column ready
forthe next readout sequence. Goal number 3 was-a limiting factor for previous versions of FPIX
which did not have the Token Reset shown in Figure 18. In these older versions, the End-of-
column Logic would assert the column token at the beginning of a readout sequence, and then
withdraw it when the readout was finished. The asserted token would propagate up the column,
being grabbed by pixel cells that needed it and being passed by pixel cells that did not. At the
concliision of the readout sequence, the “withdrawal” of the token would have to propagate up the
column through all pixel cells sequentially. Obviously, if a second readout sequerice was issued
too quickly, then it would be possible for more than one pixel cell to think it had control of the
bus-at the same time. The “withdrawal” of the token might not have had enough time to propagate
all the way up the column, and pixels higher in the column might think that they still had the
token.

The Token Conirol Logic has two parts, a purely combinatorial section and an
asynchronously resettable, posiiive edge-triggered d-flip-flop that ensures that data output will be
synchronous to the Read Clock. The combinatorial section, labeled as such in Figure 18, has two
tnputs, NeedToken from the Command Logic section of the pixel cell and Tokenln from the
“previous pixel cell. It also has two outputs, gbEnable which is the input to the Token Control
~flip-flop and TokenOut’ which becomes the Tokenln of the next pixel cell. Within the Token
Control Logic itself, for Historical reasons, NeedToken is referred to as “hit” and the inverse of
NeedToken as“hith™. Details of the combinatorial section are shown in Figare 19.

A g 10
h ‘]' Y b s
o ‘f > L —-~-"--'--"‘&%.A-nm_,.,te-
i et
riv B
sty
e
L waetd
4
! e
tok, in Wwwiwﬁ—* o i
MNAND
ok fesel @ #

Figure 19: The combinatorial portion of the Token Control Logic

31

_ From Figure 18, the Read Clock s ﬁxsi;s%}umd to-all pixel cells in & column siniultamicously.
In-order to fulfil the required readout séqiience, ghEnable should only be activated when the- pi\€§
‘cell has the-tokien and the pixel cell needs the token. By DeMorgan™s Law,

NeedToken o Tokenin = { NeedToken + Tokenln) Eg‘;ﬁ.&tiﬁn 3

~ ‘This-explains the simple NOR gate driving the gbEnable signal in Figure 19. The TokenOut
1§ ot guite-as simple.

1y Tf NeedToken (hit) is sctive (high), then TokenOut musi be azero. In other words, the token
cannod be passed uintll this pixel cell has gained control of the bus and has beéen reset to
Empty. Theretore, NeedToken (hit) is connected 1o the gate of an nfet transistor that polls
TokenOut down to zero whm NeedToken is 2 one.

2y Regardless of the state of NeedToken, if the token has not yet arrived to-a pixel cell (Tokenln
15 zert)y then TokenOut fust be zere, Tokenln and Token_res are the two inputs 1 the
NAND in Figure 19. The output of that NAND is connected to the gate of an nfet transistor
that is mg}@hie of pulling TokenOut down to zero. If Token_res'is a innactive (Token_res=1),
then the output of the NAND gate is equal to the inverse of TokenIn. Therefore, if the token
has not yet arrived (Tokenln 15 a zerd) then the output of the NAND gate is a one, afic
TokenQutisa zero.

3y When Token.Res is activated {Token_Res=0), the oitput of the NAND i zfxzémma{émiiy
driven to-a one. Therefore, TokenOur will be pulled 10 & zero by the pull-down tansistor
connécted to the output of the NAND.

4y When the pixel cell does not need the token (Need Token=0)-then hith is a one. When hitb-is
& one, thie “Gate™ transistor connects the. output of the NAND directly to the TokenOut pull-
up transistor. Therefore, as soon as the Tokenin arrives, TokenOut will be pulled 1o 2 one.
This is how fast passing of the token is accomplished.

5} When the pixel cell needs the token (NeedToken=1), then hith is a zéro, and the “Gate”
transistor disconnects the cutput of the: NAND from the TokenOut pull-up transistor. Instead,
the relatively weak “Hold” transistor keeps the gate of the TokenOut ;,mi? ayp transistor high,
cutting-off the-pull-up wansistor and leaving the state of the TokenOut in the hands of the
pall duwn trangistors.

6y Fmally, when & pixel cell needs the token (NeedToken=1), TokenOut 15 essentially Torced to
‘azero. ‘When the token does arrive; gbEnable is activated, and on the next rising edge of the
Read Clock; the pixel cell will get ihe& bus. When the pixel cell getsthe bug, it will reset itself
to Empty via the Reset Lw;m When the pixel cell is Empﬁ, by definition, NeedToken
becomes 4. zero, Therefore, when a. pixel cell gets control of the bus, TokenOut suddénly
becomes free to follow the stite of Tokénln, ind it goes high.

Like the FastOR Logic, numerous simulations were performed to optimize the circuit, In
fact, each transistor . Figure 19 was individually optiriized for the I1BM process, This makes it
less than perfectly optimized Tor the TSMC process. I the vollaboration elects to go with the
TSUN process or with o 236 pixel column, this optimization will have 1o be performed ugain.
Table S-$hows the final wansisior sizes.

Table 5: Optimized Token Passing Widths

NAND pfet

NAND nfet

TokenOut pull-down nmi
TokenOut pull-up plet
Gate nfet:

Hold pfet

Token Restrace width

Token InfToken_ Oul trace width
“Read Clock trace widih

“Width=6.61m

Length=0.8um
Width=16.15m

Length=0.8um

Width=3.35wm
Length=08um
Width=15tin

Lendth=0.8um

Width=6.55um
Lendth=08um

Width=1dum-
Length=0.8m
1.0

(56w

. 1 :._'{)L_L'm

PheFeR-R000 Flie 1 Sokéncen
LEI330DL Tosken Pawning Reday
v, BRI » vt 0T
ER- ool
540 , i
- £ P
201 i
b
S 5
L
Bio, " it
Pase T] P e
BN S [+] i [E P L. To4 I.Ee
- . B 3 . LI
SRR DR o VITUR_OUTLY 2 VRO OUTRY v OIOK CURE) oo eTal |

VPO DUTEY e VTR OTTEY v VITOR QUTT e W ITOR, oUEy oV mol e
¥ ﬁ&v{wxwwzm = PUTOR_ODESY = ¥ (TOR_OUT) oV ITOR COTDY o V{0 (0TE)
B y . P L)

ELE
0
180

9%

Figure 200 Token Passing Sitmalations

Figure 20 shows a simulation of an entire column ¢f Token Control Logic Cells interacting as
they will in the FPIX chips. Since it is too confusing to show all 160 TokenOut signals at the
same time, the lower graph in Figure 20 shows eévery tenth TokenOut. The upper graph shows

the token input to the column, and the final token-output froim the column. The simulation is a

worst case scenario in which pixeld, the pixel cell closest to the End-of-column Logic, and

pixel159, the-pixel cell firthest from the End-of-column Logic, are both hit simultaneously, and

no pixel cells in-between them are hit. Under this specific condition — admittedly very rare, the
token must be passed through 158 pixel cells between the start of one Read Clock cycle and the
start of the next. Inthe lower graph, the series of rising edges indicate the token skip frequency ~
the-frequency at which the Token Control Logic will pass the token through pixel cells that do not
need the Token. At the rising edge of the Read Clock, pixelQ will grab the bus and begin to pass
the token. The time between the rising edge of TOK_OUTO and the rising edge of TOK_OUTE
18 the time required for the token to skip through 140 pixel cells. This time is 16.5ns, which
corresponds to 118ps per pixel cells or a pixel skip frequency of 8.48 GHz. As a side note, if
there were 256 pixels in a column, the entire column could be traversed in 30.2n5. With a 160-

pixel column, the entire column could be traversed in 18.8ns. For the 256-pixel column, the pixel

skip frequency would be alimiting factor for Read Clock frequencies greater than 32.3 MHz. For
the 160-pixel column, the pixel skip frequency would be a Hiniting factor for Read Clock
frequencies greater than 53 MHz,

The reset time is-simply the difference between the falling edges of the column Token input
and the column Token ocutput shown in the upper graph of Figure 20. This time is 6.48ns, which
is considerably shorter than any Read Clock frequencies being considered. In fact, it only
becomes a limiting factor for Read Clock frequencies inexcess of 155 MHz.

336 ADDRESSLOGIC

The address logic is very straightforward in the pixel cell. Each pixel cell in the coluran has
its own unique combination of nmos and pmos transistors that make up its physical address. Al
address transistors, whether pull-up (pfet) or pull-down (nfet) are the same physical size. This
means that the fall times will be faster than the rise times. However, the physical size and
regularity of the addtess transistors are more important than the relative speeds of the rise or fall
times. As long as an address settles to its fiial value within the read cycle, that'is all that matters.

The final design specifications are-shown below.

Table 6: Optimized Token Passing Widths

Transistor Width 2.8um
Trace Width Tpm

54 A DETAILED DESCRIPTION OF A HIT FROM THE PIXEL CELL’S PERSPECTIVE

; i oo Pbrv B, DGl Boen Bl rw e 1 Pt i
HEN el Y msesting “
. . e _
e i s Dighit ;
'l“]i”':“ : My -‘ﬁﬂ : ¢ AnaNavit W .
Va R N 1
RT1 S P : | .

s st | A {ista
Encoder [[e%3 Doswrand

Hitor Listen Sedjlience

Figure 21 A simple schematic of the 3 Seguence

When a particle. passes throdgh the Detector; a pulse of electrons is injected into a
preamplifier. The integral of that pulse of electrons s, o first order, the amount of charge
deposited on the'detector by the particle: This charge pulse is amplified by

Vo= '~w’-€‘~4-
G,

This voltage is amplified with respect to Vref (set external to the pixel cell).

Vb = -——ﬂgﬁw'{%"a ~Vref }+ Vref
12

Asgcond theans of génerating hit data is to program the Inject logic to inject acharge into the
préamplifier ona f@iimv edpeoof Ving, Theeffecton Vi will be i:&';c:, same 45 if 4 real hit‘was seen
by the Detector.

Regardiess of how the chirge was injected, Vb is simultaneously compared {6 eight different
'mimwm by eight different comparators. Seven of these Comparators comprise a ﬂd%i‘i analog-to-
digital converter which produces a 7-bit thérmometér code. Thése signals are latched by Set-
Reset flip-flops which will hold the thermometer code indefinitely. Note that this'ase of S-R flip-
ﬁa}pa fm*m% @ zzmxmi pcak céuﬁciar ’Ehe seven c}mpmx of ihf: SwR ﬁ;;awﬂ{}pa Ti T? are mpni to
.ADC‘ (}mput Drwem Nme &15{) _timt the AE)C Emod.e:: and ihe ADC OQtpui i")nvus are pumly
combinatorial. The memory of the it magnitude is in the seven S-R flip-flops. that latch the
thenmomeisi code.

The eighth Comparator is the main hit comparator. I Vb exceeds Vih, then a hit has
occurred: E? the user has programmied thispixel cell to bekilled, then the hit data will be Blocked
by an AND gate and the digital back end will never kiow a hit cecurred. Consequently, the End-
of<column Log;g and the rest of the chip-will never know a hit has occurred. Tf the user Has not

LH

programimed this pixel cell to be killed, then the hit data is passed to the Digital Back End of the
pixel cell ag the Sigmal AnﬁN&wHiL

A vising edge o AnaNewHit will: ;)a\s the value of the Accept signal onto the rest of the %mh_
end as the swmi DigHit. Only @ ristng edge on AmaNewHit has any effect. Therefore, the pixel
cell cannol be adversely effected by puim durition in the Analog Front End. I Acceptis a one,
DigHit becomes a one. I %aept is a zere, DigHitremains a zero, and the rest of the cell will
never know s Hit ocourred.

DigHir is ANDed with a signal that is a one if there are no-previous hits contained in the pixel
cell anid a Zzers if there aré previous hits stored in the pixelcell. If there are no previous hits, then
this new hit is an interesting hit; and IntetestingHit becomes a one. I there were previous hits,
then this new hit is pot interesting, and TriterestingHit will rersain a zero and the rest of the pixel

el will never know ahit oceurred.

H an End-of-column Cormand Register is i8suing a Listen Cormmind, then a Listen Decoder
will output a one; and the hit Will be recorded onto an S-R flip-flop. The Previous Hit signal will
nov indicate that theté i a recorded hit in: the pixel cell, blocking any subsequent hits from
“affecting the pixel cell

. . . i e . .
Crtpustor Feadout Ssoquencs: Hesst
13 9 B RS Hust
Lsiiin
Sty Fene B | DAl Batk e it [|
e . bl L St - -

Feator I

Inlernginng g - { Tessi. i
Fm— & -—-aI__E Fo b TakelHe]

—_
i - o
‘at?l‘n!’i?ﬂ).ﬁ ;‘.?.5?'&&\? s

ALitten

j{ gt T Tokes

; Tisentiar g TRy Chyedrpd 1 Ackirags
| | e | —
L

Eoy (f 1 s e |
Hriiciar v it Lrresring ; @ \l/
. i ‘ Tokemein Tt ?“MK be)
VAR

Figure 227 A simple schematic of the Readowr Seguence

After the hit has been recorded, the output-S-R flip-tlop that stored the hit closes a swiich
connecting the cominands of the End-of-column register with the Reset and Output Decoders in
the pixel cell. When the Output Command is issued, NeedToken is activated and the pixel cell
“wiiits for the column token to-arrive. Note that the pixel cell could not respond to the Qutput
Command wniess it had already received a Fit because in the dbsence of a hit, the Output Decoder
is disconnected fromiall Comimand Lines, :

When the Token arrives, the pixelcell waits for the next rising edge of the Read Clock before
it activates Gbus. This causes the Digital Reset Logic toreset the §- R flip flop that had siored the
hit, making the pixel cell Erapty again. This: m?eaxes the Token to the next hit-pixel. Gbus also
Causes the address data to be driven onto the address bus and the ADC data to-be driven by the
ADC Quiput drivers,

Atthe next rising edge of the Read Clock, Gbus s latched by a second flip-flop, the output of
which activates the Analeg Reset Logic that resets the Thermometer code in the Analog Front
End. -

If a Reset Command had been issued instead of the Output Command, the Reset Decoder
would have activated the CommandReset line which would have simultaneously reset both the
thermometer code in the Analog Front End and the S-R flip-fiop that recorded the hit in the
Digital Back end.

37

] THE END-OF-COLUMN LOGIC

10

11

12

14

15

6.1 SIGNALS

Cutputs from an End-of-column Logic to the pixel cells in its column.

COMA<1:0>
COMB<1:0>
COMC<1:0>
COMD<1:0>

ACCEPT

COLTOKENIN
COLREADCLK
COLREADCLKB

DATARESET

READRESET

Output. Command State Machine A command pair
Output. Command State Machine B command pair
Output. Command State Machine C command pair
Cuiput. Command State Machine DD command pair

Output. Controls the Hit Data to Recorded Data conversion for all
pixels in the coluron. If ACCEPT=1, the End-of-column Logic is
ordering pixel cells to accept new hits. If ACCEPT=0 the End-of-
columm Logic is ordering pixel cell to 1gnore new hits

Output. The Column Token for arbitrating bus access

Output. The Read Clock released by the End-of-column Logic to the
pixel cells in the colummn. It is only released when the End-of-column
is “Talking” otherwise, it 15 held at zero.

Output. The Master Reset relayed from the chip nput pads, through
the End-of-column Logic and to all pixel cells. Will cause a reset of
all pixel cell digital back ends and analog front ends.

Output. A Reset specifically for the two flip-flops in each pixel cell’s
Token Control Logic. This Reset is activated when the End-of-
column Logic has “Nothing to Say”

Outputs from an End-of-colummn Logic to the Core Logic.

HTOKOUT

HAVEDATA

COLDATA<T 0>

COLDATA<I2:8>

COLDATA<20:13>

COLDATA<23:21>

Output. Horizontal Token Output for column-to-column bus
arbitration

Output. Indication of the presence of data to be output from the
column

Qutput. Row address.
Qutput, Column address,
Cutput. BCO Number

Cutput. ADC Magnitude

Inputs to an End-of-columa Logic from the Pixel Cell.

16

17

18

19

20

21

22

23

25

26

27

28

29

HFASTOR

RFASTOR

PIXDATA<T 0>
PIXDATA<10:8>

COLTOKENOCUT

COLDATA<Z3:21>

Input. Hit Fast OR indicator of the presence of a hit somewhere in the
colamn

Input. Read Fast OR indicator of the presence of data to be output
somewhere i the column, When this signal goes from active to
inactive, the End-of-column Logic knows that the column is done
Outputting data

Input. Row address.
Input. ADC Magnitude.

Input. The Token Out of the highest pixel cell’s Token Control Logic.
When this activates, the token has passed through all of the pixels.
This signal is used as-a diagnostic. If COLTOKENOUT activates
and the RFASTOR still has not gone inactive, then something is
wrong.

Output. ADC Magnitude

Inputs to an End-of-columm Logic from the Core Logic.

BCO<T 0>
HTOKIN

BCOCLK_IN
BCOCLKB_IN

READCLK_IN
READCLEB_IN

CHIPSENDDATA

MASTERREJECT

DATARESET IN

CORESILENT

Input. The Beam Cross-over Number; indicator of time.
Input. Horizontal Token Input for column-to-column bus arbitration

Input. Beam Cross-over clock.
Input. Read Clock

Input. When active (1) a “Talking” End-of-column Logic can
continue to chliange its data at every rising edge of the Read Clk.
When inactive (0) a “Talking” End-of-columsn Logic must latch the
data being sent and not change it until CHIPSENDDATA goes
active.

Input. When high (1), the ACCEPT signal output to the pixel cells
must be low (03, When low (00), the ACCEPT signal output to the

pixel cells will be high (1) unless all four End-of-column registers are
full. MasterReject is a system-wide throttle.

Input. The Master Reset directly from the chip pads

Input. When high (1), the Core is not ouiputting data. When low (0},
the Core is outputting data. '

39

6.2 OVERVIEW

Command Lines

Talking/Silent / Column

e State

Machine

Who's Who's
Next Empty? Full? Next
to io

Listen | Quiput

Listen
Priority
Encoder /

Cutput
Priority
Encoder _

Figure 23: A Schematic Overview of the End-of-column Logic

The majority of the intelligence in the FPIX Core is located in the End-of-column Logic. It
needs to understand what commands to issue to the pixel cells and when to issue those
commands. It must also understand time with respect to the BCO clock, the Read Clock and the
BCO number.

Each End-of-column cell consists of

1.

6.

four Command State Machines which issue commands to pixel cells via the Command
Lines,

four Registers which are paired one-for-one with Command State Machines and which
store BCO-numbers when necessary,

one Column State Machine which controls the End=of-column Logic in general,

one Hit Priority Encoder which determines which State Machine/Register pair is the next
to “listen” for hits

one Qutput Priority Encoder which determines which State Machine/Register pair is the
next to output data., and :

necessary support logic.

All of these subcircuits are considerably different from their counterparts in FPIX1. Figure 23
shows the interactions between the major components of the End-of-column Logic.

6.3 THE COMMAND STATE MACHINES

The four Command State Machinés operate independently of one another and their primary
purpose is to generate the four Command Line pairs. Each is a Mealy state machine that changes
with each rising-edge of the BCO clock and that has four states:

1. Empty - No hit has been received and not listening for hits
2. Listen - No hithas been received, but listening for one

3. Fult - Ahit has been received, but not outputting yet

4. Output - A hit has been received and the data is being output

The states flow as shown in Figure 24.

o HNex
All transitions occur on
the rising edge of the ’
BCO Clock "
ReadDone HNext{Hil+Nol.isten)
ReadDone

| Listen |

RNexi(ReadDone+NoOQOutput)

RBiNext

Figure 24: The Command State Machine state diagram

At.any given time, only one Command SM can be allowed to be in the Listen state. If there
is a hit somewhere in the column, the pixel cells that are hit are going to ty to associate

41

themselves with whichever Command SM is issuing the Listen Command. If more than one
Command-SM isissuing a Listen Commasid, then any hit pixel cells are going to try to obey more
than one Command SM. The results conld be unpredictable.

Moreover, there must be.a Command SM in the Listen state unless all four Command SMs
are full. Recall from the description of the pixel cells that they only pull down the HFastOR line
if they get a hit when a Command Ling is issuing the Listen Command. If no Command SMs are

in the Listen state, then no one will be issuing a Listen Command and no pixel cells will pull
down the HFastOR line. The result is a hung chip.

This problem is solved by the Hit Priority Encoder and the HNext and Nol.isten signals that it
generates, There is one NoListen. signal for all four Command SMs. When it is active (1); then
no Command SMs are in the Listen state. There is a unique HNext signal for each Command SM
and it is the job of the Hit Priority Encoder to make sure that a maximum of one of these signals
is active at any time. When HNext is active for a particular Command SM, then that Command
SM will be the next SM to make the transition to the Lisien state. The function of these signals
and the state machines is best described by example.

1. I Command SMa is in the Enopty state and has an active HNext signal and no Command
SMs are in the Listen state, then NoListen will be active. On the next rising edge of the
BCO clock, Command SMa will make the transition to the Listen State.

2. If Command SMa is in the Listen state and Command SMb is in the Empty state and has
an active HNext signal, NoListen will be inactive. At the next rising edge of the BCO
clock dfrer there has been a hit somewhere in the column, Command SMa will make the
transition to the Full state and Command SMb will make the transition to the Listen state.

Similarly, at any given time there can be only one Command SM in the Output state. If more
than one-SM were allowed into the Cutput state at a given time, then information from more than
one time slice would be output at the same time.

As in the case with the Listen state, these problems associated with the Output state are
solved by the Output Priority Encoder and the Rnext and NoOutput signals that it generates.
There is one NoOQutput signal for all four Command SMs., When it is active (13, then no
Command SMs are in the Output state. There is a unique RNext signal for each Command SM
and it is the job of the Output Priority Encoder to make sure that a maximum of one of these
signals is active at any time. When RNext is active for a particular Command SM, then that
Command SM 'will be the next SM to make the transition to the Output state. The function of
these signals and the state machine is again best described by example.

3. If Command SMa is in the Full state and has an active RNext signal and no Command
SMs are in the Output state, then NoQutput will be active. On the nexi rising edge of the
BCO clock, Command SMa will make the transition to the Output State.

4. If Command SMa is in the Output state and Command SMb is in the Full state and has an
active RNext signal, NoOutput will be inactive. At the next rising edge of the BCO clock,
after the column 1s done reading out, Command SMa will make the final transition back
to the Empty state and Command SMb will make the transition to the Output state.

In the above four examples, two signals are left unexplained. A Command SM receives
information about hits via the HFastOR circuitry, which will be described later. Since hit arrival
is virtually synchronous with the BCO clock, no further conditioning of the HFastOR signal is
necessary. It might be logical to assume that the Command SM receives information gbout the

conclusion of the read cycle directly from the RFastOR circuitry. However, since read out is
performed synchronous with the Read Clock and notf the BCO clock, an additional conditioning
step is necessary to ensure stability. This circuitfy is shown in Figure 25. The first part of this
conditioning is performed by the Column State-Machine, which operates at the Read Clock
frequency and which accepts the output of the RFastOR. circuitry and generates the colSilent
signal (column silent). The edge triggered d-flip-flop in the figure ensures that only the rising
edge of colSilent affects Done and NotDone. This guarantees that only the completion of the
present read .out will activate the Done sigrial. The input to the edge-triggered d-flip-flop is the
Output state signal. This guarantees that Done will only be activated in the SM in the Output
state. An S-R flip-flop actua fly creates the Done and NotDone signals. It is reset to NotDone
whenever the Command SM.is in either the Empty state or the Listen state. The Empty state also
resets the edge-triggered d-flip-flop. The S-R flip-flop s set and Done is activated only at the
rising edge of the LOISﬂent signal if the Command SM is presently NotDone. This two-step
proecess guarantees signal stability in spite of the fact that the Command SMs operate on the BCO
clock and readout occurs on a different clock.

edge-triggerad
d-ff

ar-ft
lata G Dry

Tl [+
colSilent " set

Dirv
reset } +)O—| >0— reset © NotDone

Empty i

Cutput
Done

- listen

Figure 25 Conditioning Circuitry for Read Done

Finally, the actual commands sent up the Command Lines are generated from the Empty,
Listen, Full and Output states and the Done and NotDone signals.

ComQ = Listen + Output - Done

Coml = Listen + Output - NotDone Fauation 3
When in the Listen state, Com0 and Com1 will both be high, and 11 is the Listen Command.
When in either the Empty or the Fall state, Com0 and Com1 will both be low, and 00 is the Idle
Command. When in the Qutput state before-the readout is done, Com0 will be a 1 and Com1 will
be a zero, and 10 is the Output Comymand. Finally, when in the Output state affer the readout is
done, Com will be a 0 and Com1 will be a 1, and 01 is the Reset Command. This last feature
was added to ensure that if there was any communication difficulty with the column token, then
at least the column could be made to function up to the point of the communication difficulty. If
any pixel cells remained unread after the End-of-column Logic thought it was done, then those

pixel cells would be reset and they would not interfere with-further operation of the column.

besCore 51 DateRese! é

et a:f.o«kﬁ.&%:‘ﬂ;ﬁé : ; . | : :

00 § : 4

I

I - i
o L 5 : o

| f

EE R

HestCore.pe tnent.Con

G0

et | ‘ :
oavs 0t e BBty [1911 | . 0

Pl el | o000 I : 60t

esiloresol el SR >€

e

iy C o
A

,cs!.sce.\:‘:ciwrﬁ.a,it-‘éen-xi . : 8
|

P

e lsstated. | 001 E

zsiCore pol.cesti ol H‘w:’%

A
wegsimle m*Siim%

ooe

e i)

(st} sk Ao R Fieati] aEng FHOO

Figure 26: End-of-column Logic ar Reser. The signals are, from top to bottom, Master Reset, the
BCO clock, the four pairs of Command Lines, Empty state indicators, Listen state indicators, Full
state indicators, Output state indicators, the NoListen signal, the RNext signal, the HNext signal, the
Hir indicator, and the column Silent signal. The state indicators decode the state of each of the four
Command State Machines and indicate (with a 1) when a stare machine is in a certain siate,

Figure 26 shows an End-of-column Logic cell during.a Master reset, and, in particular, shows
those signals important to the Command SMs. First, during the actual reset (in the first 20 ns of
the graph}, all four Command Lines are driven to the Reset Command (01). This is accomplished
not in the state machines themselves, but rather in “override” logic atfached to the drivers of the
Command Lines. In this fashion, regardiess of the state of the Command SM, the Reset
Command will be driven up the column during a Master Reset. Note that after the completion of
the Master Reset, all four Command Lines are showing the Idle Command (00); the Empty state
mndicator 15 showing that all four Command SMs are in the Empty state (1111); the Listen state

“indicator is showing that no Command SM is in the Listen state (0000); as expected, the NoListen

signal is active (1) because no Command SM is in the Listen state; and, finaily, the HNext signal
indicates that Command SMa has been selected as the next state machine to-move to the Listen
state {0001}, At the next rising edge of the BCO clock, Command Line A changes to the Listen
Command (11); the Empty state indicator changes to 1110, indicating that Command SMa is no
longer in the Empty state; the Listen state indicator changes to 0001 indicating that Command
SMa is now in the Listen state; NoListen goes inactive; and HNext indicates that Command SMb
has been selected as the next state machine to move to the Listen state. Finally, note that at the
next rising edge of the BCO clock, everything remains the same because nothing has happened
that would precipitate a state change in any of the Command SMs.

Figure 27 shows a single Command SM during a hit cycle. All of the signals in the figure are
connected directly to that Command SM. At first; the SM is in the Listen state as indicated by the
Listen state indicator and by the presence of the Listen Command (11) at the Command Lihe pair.
At approximately 800ns, there is a hit. At the next rising edge of the BCO clock, the SM makes
the transition to the Full state. The Commmand Line changes to the Idle Command (00). The
Output Priority Encoder selects the SM to be the next to-output by activating the RNext signal at
approximately 850ns. At the next rising edge of the BCG clock (almost 1000ns), the SM makes
the transition to the Output state where it remains until the rising edge of the BCO clock after the
arrival of the colSilent sighal at approximately 1200ns. During the Output state, the Command
Line pair-issues first the Output Command (10), and then the Reset Commmand {01). Finally, at
approximalely 1250ns, the SM makes the transition back to the Empty state, Note that the Listen
Priority Encoder selects this SM (via the HNext signal) to be the next SM to make the transition
tothé Listen state. This is coincidental.

esitiona pet Bk

ke ook B Sy

s [T[T ILELLMUUJ JUUUUUUUUL

e ool 2 Listenfl}

ooz e ool Fulsh

okl o Dutpodty

bRt el 2l 24l

Jre gt oetllel Nl iz

e e N0

e prlon e RN

iepetosclel Htil]
rel pec caiSiant . . ‘
ECmepol cedhlomd : it i 0 i 10 i o1 J : o0
e R . o . .
OO0 Rl w0 00 14006 TG 304 15000 REAE]

Figure 27 One Command SM in the End-of-column Logic during a hit cycle. From top to bottom the
signals are-the Read Clock, the BCO clock, the Empty state indicator, the Listen state indicator, the
Full state indicator, the Quiput state indicator, the Hit signal, the NoListen signal, the NoGutput
signal, the RNext signal, the HNext signal, the column silent signal, and the Command Line pair,

45

6.4 THE COLUMN STATE MACHINE

Each -End-of-column Logic cell has otie Column -State Machine that, in short, controls the
réad out of the column. It changes its state, if necessary, only on the rising edge of the Read
Clock and it has four states:

1. Nothing to Say No pixels need to be read out at this time

2. Somethingto Say Pixels are waiting to be read out

3. Talking - Pixels are being read out
4, Silent - The column is done reading out this event

The states flow as shown in Figure 28.

All transitions occur on
the rising edge of the
Read Ciock

| Nothing |

Any Qutput Command

Core Silent,” ~issued by any Command SM

_ _ ' Arrival _of
Column Read ® Horizontal Head Token

FastOR goss away

| Talking |

Figure 28: The Column State Machine Siate Dicgram

64.1 NOTHING TO SAY

Upon Reset, the Column State Machine is forced into the “Nothing to Say” state. This is only
logical since, after a Reset, the column cannot possibly need to output data. The SM will remain
in the “Nothing to Say” state until any one of the four Command State Machines issues-an Qutput
Command (10). At the first rising edge of the Read Clock after receiving an Cutput Command,
the Column SM will make the transition to the “Something to Say” state.

Waiting until there is an Output Command has some important implications. First, this
implies that the some Command SM had been in the Listen State; some pixel had received hit

data; the Command SM moved into the Full State and finally into the Output State. Second, the
same circoitry that decodes an Output. Command in each pixel cell is also used to decode the
Output Commands for the Colwmn SMi™ Furihermore, the Columin SM decodes the actual
command lines that are sent up the column. Therefore, by the time the Column SM is aware that
some Command SM is issuing the Output Command, all pixels associated to that Command SM
are also aware that it is-issuing the Output Command. This eliminates almost all timing-sensitive
problems associated with read out. For example, the Output Command must arrive before the
Column Token. If the Column Token arrives first, then the pixel cell will not yet realize that it
needs to grab the token and it will therefore pass it on. This can lead to more than cne pixel
driving the bus af the same time.

During the “Nothing to Say” state, the Read Clock is blocked from the column via the Clock
Control Locxc which will be explained hereaftcr

642 SOMETHING TO SAY

After the Column SM has received an Output Command and has made the transition to the
“Something to Say” state, clearly there are pixels in the column that need to be read out.
However, the Core is not ready for this column to read out yet. The Core needs to arbitrate
among all of the columns that have “Something to Say”. Like the colummn which arbitrates via the
Column Token, the Core arbitrates via the Horizontal Token (Htok). The first rising edge of the
Read Clock after the Column State Machine receives-the Htok, it makes the transition into the
Talking state.

During the “Something to Say” state, the Read Clock is stili blocked from the column via the
Clock Control Logic. CoreHasData, a diagnostic signal that indicates when there is data to
output, is activated during this phase. CoreHasData is a distributed OR similar to the HFastOR
and it can be activated by any End-of-column Logic. Finally, and most importantly, the Column
Token is sent up-the column in this phase. Again, this guarantees that the Qutput Command has
been sent to the pixel before the token gets there. Secondly, this makes sure that in each column
the first pixel with output data has the token before the Read Clocks are released into the column.

64.3 TALKING

After the Column SM has received the Horizontal Token and makes the transition to the
Talking state, it is free to output its data. It will remain in this state until the RFastOR circuitry
indicates that the last-pixel is outputting its data. The first rising edge of the Read Clock after the
nising edge of the RFastOR line, the Column SM will make the transformation to the Silent state.

During the Talking state, the Read Clock is finally transmitted up the column via the Clock
Control Logic. CoreHasData, the diagnostic signal that indicates when there is data to output, is
still active during this phase. Tri-state buffers are enabled in this state connecting the column bus
to the Core output bus.

64.4 SILENT

After a Talking Column SM has seen the rising edge of the RFastOR and makes the transition
to the Silent state, it no longer hias data to output, but other columns in the Core may still be
outputting. Therefore, the Column SM rémains in the Silent state until it receives the coreSilent

47

signal indicatitig that the whole Core is done outputting. This helps prevent a hot column from
grabbing the Core Cutput bus again and again while other columns are trying to output. When
the coreSilent signal is received, the Column SM will make the transition back to the “Nothing to
Say” state after the next rising edge of the Read Clock.

During. the Silent state, the Read Clock is still transmitted up the column via the Clock
Control Logic. This ensures that the last pixel cell to output receives enough clock edges.to reset
both the digital back end and the ADC latches. The cohimui token is reset in this phase to prepare
for the next read out cycle. The colSilent signal is issued to the Command SM so they can make
their necessary transition between their Output states and their Empty states. Finally, the tri-state
buffers connecting the column bus to the Core output bus are disconnected.

6.4.5 SIMULATIONS

testtore. BCIB&:RF‘] ;

S e e
e nnnnnEnpnhhnnianihnni

Tirt e cockisf (5 ey

I
L
.:c:acc?&lsﬁsﬂ&m'm;i : IS _»’“"""W" ‘
Lavepit o6 WN,Za!(rg: 1’; ’v Em_w] |

|
T - . —

o oo S50 et ’ E -4

staept ol Hiads s - .
o o
st el G RT J &? !

- . e
eoove s e Cotiesik G . J ! J—{
o . bl H "

tesCoin it o RO

ik sl iy .

o0 s EL3M el

!
. P ﬁf/j T
estbam gt honlon DO0DUG | Se0TA0C01 Gacc fﬁc@?oﬂw&? - Doct Mﬂsﬂﬂ izo/awmﬁf? OcTRZ0sfIR0e000 - = =
| |
" _ i - et PR S A S

=0 G000 Rlok] Henn 13064 150 b [T OO

Figure 29: Verilog simuldtion of a single Column State Machine.

Figure 29 shows a single Column SM as it progresses through an entire read out cycle. At
approximately -800ns (A), the Column SM is in the “Nothing to Say” state and a hit occurs
somewhere in the column. This has no effect on the state of the Column SM. Also, though the
Read Clock is free running, it does not reach the pixels in the column. At approximately 1000ns
(B}, the AnyRead signal activates indicating that some Command SM is issuing the Quiput
Command. Atthe fmt rising-edge of the Read clock after the arrival of the AnyRead signal, the
Column SM makes the transition to the “Something to Say” state (C). In this state, the column
Token is issued (D). After the arrival of the Horizontal Token (E), the Columnn SM makes the
transition to the Talking state (F). Once in the Talking state, the Read Clock is released to the
column (G), and for each rising edge of the Read Clock, one pixel of information is driven to the
Core Output bus (H) until the rising edge of the RFastNOR (I) which indicates that this column is

outputting its last pixel. At this point the Horizontal Token is released (J) and on the next rising
edge of the Read Clock, the Column SM makes the transition to the Silent state (K). While in the
Silent state, other columns continue to drive the Core Qutput bus (L) and the Read Clock remains
active in the Silentcolumn (M). Finally, the coreSilent signal activates (N) {shown here inverted)
and at the rext risihg edge of the Read Clock, the Column SM makes the transition back to the
“MNothing to Say” state (O).

640 HORIZONTAL TOKEN PASSING LOGIC

i sr-if

Nothing \ ore

HaveToken q _._{>‘ HTokOut
set

Talking

ReadDone :
reget

coreSient i gb—

Figure 30; Horizontal Token Passing Logic

The Horizontal Token Passing Logic in the Column SM is complicated enough to warrant
further explanation. It is shownin Figure 30, The token itself is originally generated by the Core
when the Core makes its own transition from coreSilént to coreTalking. It would be possible to
have a completely combinatorial horizontal token pass. However, it is critical to the read out
speed of the Core that the horizontal token resets uniformly across the Core. Morgover, since the
horizontal 1oken ‘pass is so critical to proper operation of the Core and in. the interest of single
event upset (SEU) folerance, it is important that one SEU in the Core Logic cannot hang the chip
by desfroying the horizontal token. Therefore, the horizontal token passes through a series of SR
flip-flops, one per column. These are all reset at once when coreSilent activates.

If a column has “Nothing to Say” and it has the token, it immediately sets the SR flip-flop
and passes the token. Ifit has “Something to Say”, then when it has the token, HtokOut will not
be set. Instead; the Column SM will make the transition to the Talking state and then, when the
RFastOR: logic activates the ReadDone signal, the Horizontal Token Passing Logic will set the
SR flip-flop and pass the token. Note, ReadDone dctivates while the End-of-column Logic is
outputting the last pixel. Therefore, the next column with “Something to Say” will get the
Horizontal Token and be ready to output by the next rising edge of the Read Clock. This is
demonstrated in Figure 29 (L).

Another important note regards the Column SM “having the token”. The signal
“HaveToken” in Figure 30 is not simply the Htokln signal in Figure 29. Instead,

HaveToken= HTokin e HTokOut Eguation 4

In other words, a column has the token when it has received the token from the previous
column but has not yet passed the token to the next column. If a column has passed the token on,
then it does not have the token any more.

49

The Horizontal Token Passing Logic actually poses a minor problem for the FPIX Core. Itis
a limiting factor in the readout speed. By simulation, if there-is a hit in the 17" column, it takes
more than-one Read Clock cy¢le for the horizontal token to reach the 17" column. This is
because the skip frequency of the Horizontal Token Passing Logic is only 22.2 MHz.

Additional simulations have revealed that the majority of the problem is in the driver shown

in Figure 30. If that driver is eliminated and replaced with a properly sized inverter of gb, then
the skip frequency is increased to 34.4 MHz.

647 CLOCK CONTROL LOGIC

Silent A . — iy
Stent # «—- 12
\ Y
5 |)‘” "
L !
: . 17
— JE YN Ve
Talking e R
PR
- | SRa o
ogot | PIGOTVIIER> - -
EESR=TS AR e .
- @ —mmm— | -~ colReadClk
155 Out —mmm =
171
=il ateh Sutbar m ,,,,,,,,,,,, _Nq :‘:\\Q\ﬁ"*-‘\k\ o
Rese . D'“J;i//) .
g — || CcolReadClkb

Figure 31: The clock control logic

The Clock-Control Logic needs to do a number of things.

1. When the Column SM is in either the “Nothing to Say” or “Something to Say” states, the
Read Clock must be Blocked from the column. Moreover, the column Read Clock must

be a zere during these states.

2. When the Colurnn SM is in either the Talking or Silent states, the Read Clock must be

passed to the columm.

3. When ChipSendData is inactive (low), the Clock Control Logic needs to hold the clock at

its present state tegardless of whether that state is a one or a zero.

4. The Clock Control Logic must be resettable.

5. Ttmust be capable of driving the entire column in a timely fashion.

These functions are-accomplished in several steps-as shown in Figure 31. The two drivers,
bigDrvl and bigDrv0, have enough strength to drive the column’s line capacitance. Moreover,
when either Talking or Silent are active, bigDrvQ drives the colReadClk to a zero and bigDrvi
drivers the colReadClkb to a one.

The circuit cLatch-converts ReadClk to a differential CMOS signal when SendData is active.
When SendData is inactive, cLatch holds the 1ast state of the ReadCik. Finally, at Reset Out and
QOutbar are setto one and zero, respectively.

6.5 THE END-OF-COLUMN REGISTERS

WC’{!’i : Negative Edge Triggered
Weir > D fiip-flop Rotrl
Inpu D Q S @ > Quiput
ctrib
BCO Clk> Dok ab
RST

Reset >

Figure 32: A single bit of an End-of-column Register

There is one eight bit End-of-column Register for each End-of-column Command State
Machine. When a particular Command SM is in the Listen state and receives a hit, the job of the
Register is to record the current BCO number which acts as a timestamp for the.event. When the
Command SMis in the Qutput state, then the Register must output the recorded BCO number.

The Command SM makes the transition from the Listen state to the Foll state at the same
time that the BCO namber is changing from “n” to “n+1". (They both change state on the rising
edge of the BCO Clock.) To prevent any race condition from developing, each bit of the End-of-
column register is designed-as shown in Figure 32. The heart of each bit of the End-of-column is
a negative edge-triggered d flip-flop. The iriput to cach flip-flop is 2 CMOS 2-to-1 multiplexor.
When the write control-{Wcirl} is active, then on the negative edge of every BCQ clock, the
Register will be updated to the present value of the BCO number. When the write control is
inactive, thenw on the negative edge of every BCO clock, the Register will be refreshed to its
present value. The Wetrl signal of each End-of-column Register is equivalent fo the Listen signal
of the corresponding End-of-column Command SM.

The CMOS switch at the output of Figure 32 allows all four End-of-column Registers to be
placed on the same bus. The Retrl signal of each End-of-column Register is equivalent to the
Output signal of the corresponding End-of-column Command SM.

A simulation of an End-of-column Register is shown in Figure 33, “Datalii” in the figure is

the BCO number. It thanges on every rising edge of the BCO clock. “StoredBCQ” is the
number being held by the End-of-column Register. Note that it changes to the current value of

51

“Ditaln” on every negative edge of the BCO clock as-long as the Command SM is in the Listen

state. “DataOut” is the utput of the End-¢f<column Register. It is tristated unless the Command
SM is in the Qutput state.

i
tesiCore.pol DataReset ﬂ

§ H

—~ T

— UUUTUTUUL

ﬁ_——i

I
H
‘esTCc're.yx:f oect.elempty{0] :

H
H

restCone pe.oech.elbistenid]

estCorenct ooch. o Fuill]

1

estCore.pe? .uecO.eE‘Oumuti.ﬁi

Y T ? .
L N . .
festCorefiet oot eleReghlatalt | o 0z E - E o o8 ! C s 1 ar % ‘ PP oa
A] ; § : :

:; ‘f R . :
SwredBCOL g E o1 [o Lo 04 I 05 ’ o6

i ;
b
1 B i
Testore fef Hoed BRRBBUDRANN | i L L e e e e e e e o e o e + o8 (ORI
| | . L H
i I
fier fs) : b : H
Gl 0.6 0.6 7508 UGS 12500 T3 4%

Figure 33: Simulation of a single End-of-column Register through o hit cycle

6.6 FAST OR LOGIC

There are two types of FastOR logic used in the End-of-column Logic. The first and simplest
is the HFastOR logic shown in Figure 34, In this circuit, a weak PMOS transistor serves as the
pull-up for the distributed NOR gate throughout the column. This NOR is inverted to an OR and
then run through a non-clocked d flip-flop. The ocutput, Hit, is a orie when the HFastOR is low
(puiled down).

sr-ff
Drv
it
g
HFastNOR DC cet D
Dirv
reset Qb E MNoHit

Figure 34: HFastOR Logic

The RFastOR logic is slightly more complicated because it is actually looking for the rising
edge of the RF4stNOR signal. On that rising edge, the column is outputting the last pixel that
needs to be output. To accomplish this, the RFastNOR signal is brought directly into the clock
input of a positive edge-triggered d flip-flop. On the rising edge of RFastNOR, the flip-flop
changes ReadDone to active. ReadDone remains active until it is reset, which is accomplished by
either the column going silent or the master reset activating.

positive edge triggerad

Drv
i D g >__Head Done

.

. Dirv
RFastNOR > ok b : }Readmotasne
reset
coiSilent
DataBesat

Figure 35: RFastOR Logic

67 LISTEN PRIORITY ENCODER

As indicated earlier, there were extensive modifications to Command State Machine i the
development of the FPIX Core. Principle among them was the change in the state stracture from
the simple “Empty” and “Full” used in FPIX! to the more complete “Empty”, “Listen”, “Full”,

33

and “Output” used in the FPIX Core. Using the latter allows the complicated, state-machine-
based Priority Encoder used in FPIX1 to be replaced with a simple combinatorial logic block in
the FPIX Core. The logic simply makes State Machine 0 the next to listen if it is currently in the
Ernpty state. If SMO is not Empty, then SM1 is next if it is Empty. If both SM0 and SM1 are not
Empty, then SM2 is next if it is Empty. If SMO, SM1 and SM2 are all not Empty, then SM3 is
next.if it is not Empty. This logic is shown in Figare 36.

Emptyl0] Empty[1] Empty[2] Empty[3]

Lo

Drv
> Next{(]
% >DW_ Nexi[1]
c D
. >‘L Next[2]
& |
)\ ' >Next{3}
Drv

Figure 36. Listen Priority Encoder

Also, the Listen Priority Encoder is responsible for determining if no Command State
Machines are in the Listen state and if not Command State Machines are free. “NoneFree” is
active (high) if no Command SM is in the Listen state and no Command SM is in the Empty
state. If NoneFree is active, then the Accept signal to the pixel column is brought low (inactive)
so that.no new hit data will be converted into recorded data until an End-of-column register is
free. This prevents hits from appearing in the wrong BCO number on hot chips.

6.8 OUTPUT PRIORITY ENCODER

One of the inefficiencies in FPIX1 involves how it selects which Command SM to output
next. External to the End-of-column Logic, the a requested BCO counter incremented through
possible BCO numbers and a Command SM started to output when their was a match between the
requested BCO and its stored BCO number.

In the FPIX Core, there are no requested BCO numbers, so each End-of-column Logic must
have the ability to determine which Command SM goes next. A straightforward priority encoder
such as the one used in the Listen Priority Encoder will not work. Old data could get “trapped” in
Command SM3 and never get out because Command SMO continually receives the right to
output. Instead, what is used is a circular priority encoder in which, at any given time, the

sS4

Command SM with the lowest priority is the SM that is currently in the Qutput state. If no SM is

in the Output state, then a “seed” SM establishes the priority.
The algorithin has two parts. The first describes how to pass or withhold the right to output.

I} If T am not in the Full state and 1 receive the right to output from my
neighbor to my left, 1 pass the right to output to my neighbor on my right.

2} I T am not in the Full state and I am the seed register, I pass the right to
output to my neighbor on my right

3} If I am in the Output state, I pass the right to output to my neighbor on my
right.

4}y If I am in the Full state and I receive the right to output from my neighbor to
my left, I withheld the right to output from my neighbor to my right

5) If I am in the Full state and 1 am the seed register, 1 withhold the right to
oufput from my neighbor to my right.

The second part of the algorithm describes which register gets to advance to the Qutput state next.

1y If I am in the Full state and net in the Output state and I am the seed register,
then I am the next to Output

2y If T am in the il state and not in the Output state and 1 receive the right to
output from my neighbor to my left, I am the next to Cutput.

Output Fuil

Output Output

Full Fulf

From Neighber To Meighbor

To Neighbor From Neighbor

Quiput Full

Figure 37: A diagram of the Cutpit Prioriry Encoder logic

55

The above algorithm can be accomplished with purely combinatorial logic. Four identical
circuits are arranged in acircle. The seed input of three of them are grounded and the Jast is tied
to asignab which is high if not Command SMs are in the Output state.

6.9 A DETAILED DESCRIPTION OF A HIT FROM THE END-OF-COLUMN LOGICS
PERSPECTIVE

Upon reset, the four Command State Machines are forced to their Empty state and the
Column State Machine is forced to its Nothing-to-say state. The column Token and the column
Read Clock are both forced to a zero. The RFastOR Logic s reset, indicating that any reads are
not done. '

The fact that all four Command State Machines are Empty, NoListen is activated indicating
that nobody is in the Listen State. Moreover, since all of the State Machines are Empty,
NoneFree is inactive, mdicating that there are free State Machines. Therefore, at the next nising
edge of the BCO clock, one state machine will be moved to the Listen state. The Listen Priority
Encoder selects SMO for this honor since it is Empty. Recall-that an Empty SMO supersedes all
other State Machines. Furthermore, since NoneFree is inactive the Accept signal driven up the
cotummn is a one {(assuriing the user is not activating the MasterReject).

In this state, with no Command State Machines Full or Outputting, the Output Priority
Encoder is indicating that no one will be the next to Output and that everyone has the right to
output. However, nobody is paying attention to the Output Priority Encoder at this point.

The End-of-coluinn Logic can remain in this state indefinitely, with one Command SM
outputting a Listen Command, the other three outputting the Idle Command, and the Column SM
indicating Nothing-to-say. The Listen Priority Encoder indicates that SM1I will be the next to
Listen, but there has been, as yet, no cause to advance the state machines so the Listen Priority
Encoder will just continue to indicate that SM1 will be the next to Listen. The Output Priority
Encoder is still outputting nonsense, but at this point, no one cares. At every falling edge of the
BCO clock, the BCO number is latched by SMO’s End-of-column Register,

Eventually, the HFastOR logic will indicate that a hit has been received. This will cause
several things to happen.

1} SMO will make the transition from the Listen State to the Full State.

2} SMO will stop outputting the Listen Command and start outputting the Idle
Command.

3) SMI will make the transition from the Empty State to the Listen state
because it was marked as the next to listen by the Listen Priority Encoder.

4y SM1 will start outputting the Listen Command
5) The Listen Priority Encoder will mark SM2 as the next to listen.

6) Now that something is in the Full state (SMO), the Qutput Priority Encoder
will indicate that SMO is marked as the next to output.

7y SMO’s End-of-column Register will hold the last BCO number it latched.

The system -will not remain in this state for long. Since no one is in the Quiput State,
NoQutput is active. With an active NoQuitput -signal -and an Qutput Priority Encoder which
indicates that someone {SMO) is marked as the next to Gutput, then on the next rising edge of the
BCO clock, SMO will make the transition from the Full State fo the Output state.

For the sake of simplicity, we can assume that no other hits have occurred. However, this is
n6ta requirernent of the system. Had their been another hit, SM1 would have moved into the Full
state, SM2 would have moved to the Listen state, etc.

The transition to the Qutput state drives the Output Command up the column. This alerts the
Column State Machine that someone is in-need of outputting. At the next rising edge of the Read
Clock, the column state machine will make the transition from the Nothmg—to—qay state to the
Something-to-say state. This has two effects.

1) The Column Token will be driven up the column to the first pixel that
requires it.

23 The Core Logic will be alerted that the Core “HasData™.

‘The system can remain in this state indefinitely with Command SMO in the Output state and
the Column SM in the Something-to-say state. What we are waiting for is the horizontal Token
to indicate that this End-of-column Logic can grab the Core bus. When this happens, at the next
rising edge of the Read Clock, the Column SM will make the transition from the Something-to-
say state to the Talking state. This will release the column Read Clocks into the column and data
will begin to pour through the End-of-column to the Core bus. It will also release the BCO
number stored in SMO's End-of-column Register to the Core bus.

At the rising edge of the RFastOR, the ReadDone signal is activated. This passes the
Horizontal token to-the next needy column, and on the next rising edge of the Read Clock, the
Column SM will make the transition to the Silent state. This activates the Done signal in
Command SMO.

While Done is active and until the next rising edge of the BCO clock, Command SMO will
output the Reset Command just in case there is some miscommunication between the End-of-
column Logic and the pixels. At the next rising edge of the BCO clock, Command SMO will
make the transition back to the Empty state. This will veset the Done signal, completing SM0’s
Hit cycle.

The Column -SM will remain in the Silent state until it receives the signal from the Core
indicating that the Core has gone silent, i.e. that no other columns are talking. When this
happens, the Colummn SM makes its final transition back to the Nothing-to-say state completing its
hit eycle. This last transition also resets any flip-flops in the address section of the column that
may still be active. Again, this is just a precautionary measure in case there is some
miscommunication between the End-of-columin Logic and the pixels.

57

7. CORE LGGIC

7.1 SIGNALS

Qutputs from the Core Logic to the End-of-column Logic cells.

1 CORETALKING Output. Signals that the Core is Talking

2 CORESILENT Cuiput. Signals that the Core 1s Silent
3 BCO<T:0> Output. The current BCO number
4 COMD<1:(0> Qutput. Command State Machine D command pair

Qutputs from the Core Logic to Periphery.
5 COREHASDATA Qutput. Signals that the Core has data it needs to output
6 COREHIT Output. Signals that some pixel the Core has been hit

7 COREERROR Output. Signals that the column Token in some column has exited the
top of the column before Read Done activates.

Inputs tothe Core Logic

8 BCOCLK_IN Input. Beam Cross-over clock.
BCOCIXB_IN

9 READCLE_IN Input. Read Clock
READCLKB_IN

10 DATARESET Input. Reset

7.2 INTRODUCTION

The increased intelligence of the End-of-column Logic and the decision to design the FPIX
Core as a purely non-triggered system has greatly. simplified the Core design. It consists of a
simple counter, a very stupid state machine and a trio or diagnostic output circuits.

7.3 CORE COUNTER

One of the three principle components of the Core Logic is the Core Counter that is nothing
more than 4 tesettable counter that changes state on thie rising edge of the BCO clock. The
counter has seven bits wide., The reset'is asynchronous.

7.4 CORE STATE MACHINE

The second major component of the Core Logic is the Core State Machine. Its sole purpose
is-to determine when the Core is Talking and when it is Silént. It operales synchronous with the
rising edge of the Read Clock.

There is no chip token as far as the FPIX Core is concerned. Therefore, as soon as the Core
has data to send, the Core SM changes state to Talking on the next rising edge of the Read Clock.

The Talking signal becomes the horizontal token passed among the columns during the Output
sequence. The Core SM remains in the Talking stateuntil the horizontal token-comes out of the
last column in the Core.. At the next rising edge of the Read Clock after the horizontal token
comes out of the {ast coliarin, the Core SM switches back to the Silent state. Its that simple.

ChipHasNoData

coreSilent

Horizontal

ChipHasData
Token Qut |

coreTalking

Horizontal
Token Not Out

Figure 38: Core State Diagram

7.5 DIAGNOSTIC SIGNALS

The Core Logic also supports three diagnostic circuits identical to the HFastOR logic in each
column. However, instead of operating within a single column, they operate across all of the
columns. Within each End-of-column Logic, there are three puli-down transistors. One is gated
by the hit signal output from that column’s HFastOR Logic. This transistor will be used to
generate a signal indicative of the presence of a hit anywhere in the Core.

59

A second pull-down transistor is gated by :th'e_ _i_gﬁgi_éal ORing of the Column State Machine’s
Something-to-say and Talking signals. * This transistor will be used to generate the ChipHasData
sighal used by the Core State Machine to make transitions between Silent and Talking.

The third pull-down transistor is gated by the logical ANDing of Column Token Cut with
ReadNotDone. If the column Token comes. out of the top of the column before Read Done
activates, then there has been some kind of error. This pull-down transistor is used to indicate the
presence of such an error.

This is illustrated for three columms in Figure 39.

Talking OR Something-to-say !

ColTokenDut AND ReadNOTDone !

HiFastOR Logic

coraError

HFastOR Logic

coreHasData

HFastOR Logic

coretit

Figure 39: Core Diagnostic signals

s VERILOG SIMULATION

The FPIX Core design was subjected to extensive Verilog simulation both before and after
layout. First, realistic propagation delay values were determined by SPICE simulation for
standard blocks such as inverters, 2- and 3-input Nand gates, 2- and 3-input Nor gates, etc.
Larger components such as flip-flops were created from the building blocks. Other components
such as large drivers were simulated in SPICE driving the maximum conceivable load. The delay
required to drive such a load was back annotated to the Verilog model. Finally, special nodes
such as HFastOR lines were individually simulated under realistic conditions (l.e. full sized
transistors and full 160-pixel columns). The delays on such lines were back annotated to the
Verilog model as well.

The Verilog model of the FPIX Core itself is completely structural in nature. No behavioral
modeling wasused. The reason for this is simple: since such pains were taken to accurately back
annotate structural block delays to the Verilog model, it made no sense to short-cut those delays
by modeling circuits behaviorally. Furthermore, Cadence provides a path whereby schematics
can be extracted directly from structural Verilog code. Using this path assured the designers that
layout-versus-schematic comparison was, in effect, a layout-versus-Verilog comparison, and,
therefore, we could be comfortably certain that the final chip would behave as it'was simulated.

The Verilog code for the simulation could be broken down into three parts- the Detector, the
FPIX Core, and the DAQ. The stimuli for the Verilog simulation was derived from the results of
Monte Carlo analysis of the BTeV interaction chamber. Each set of stimuii represents 5000 time
siices of operation or approximately 0.7 milliseconds. Three primary sets of stimuli were used,
one -at half the expected luminosity, one at full luminosity, and one at double the expected
luminosity. Each hit includes the row and column number of the hif pixel and the magnitade of
the hit expressed as-a 5-bit number.

At the start of each simuiation, all 5000 time slices are read into a memory array, and then at
each rising edge of the BCO clock, 18x160 “pixels” in the Detector are loaded with the hits for
that times slice. Each “pixel”in the detector is actually a tiny delay element that connects to one
of the pixel cells in the FPIX Core. Based on the magnitude of the hit, the arrival of the hit data is
delayed from the pixel cell in the FPIX Core. For a very large hit, the delay is very small —
approximately 40ns. For a very small hit, the delay can be greater than 100 ns. These delays
were determined by tests of earlier FPIX preamplifiers, and they can be adjusted to allow for
studies of time walk. In addition-to the hit data, the most significant 3 bits of the 5-bit magnitude
are held by the “analog section” of the pixel cell to be used as the ADC values. Finally, each
pixel in the detector “dies” for a period of time after it has been hit. If the hit was small in
magnitude, the pixel dies for only 50 ns. If the hit was very large, the pixel dies for as much as 2
s, This corresponds to the expected behavior of the preamplifier.

The DAQ is a very simple system latches the output of the FPIX Core on the falling edge of
every Read Clock whenever coreTalking is active. It stores all of these values and then compares
them with the original data input to the simulation. it then give an indication of the number of
matches, misses (output data not found in the stimuli), scratches (garbage data), and missed
originals (stimuli not found in the output data). This is shown in the table below:

61

Table 7: Stinulation Results

Lunﬁnosiiy .. Hits Scratches Matches Misses Missed Accuracy
Criginals
0.5 1342 0 1341 0 1 99.9%
1.0 2751 0 2748 1 4 99.8%
2.0 11643 0 11537 31 106 99.1%

A detailed analysis of the data revealed that the majonity of the missed originals correspond to
one of two things. One, a second hit occurs on the same “pixel” while the “pixel” is dead. Two,
a second hit occurs on the same pixel while the digital section is waiting to output its data. Asa
consequence, thése hits, which are real to the Monte Carlo analysis, are never seen by the DAQ
system since FPIX “ignores” them. Hence, they are “missing originals” — te. hits present in the
stimuli that do not make it to the DAQ system.

A large percentage of the Misses can be attributed to time walk on small magnitude hits.
In any case, the accuracy of the FPIX Core and its ability to reconstruct its inputs faithfully is

extremely encouraging. Even at twice the luminosity, we should not be limited in any way by the
FPIX Core.

