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Introduction 
This paper describes the ACPMAPS computing system - its purpose, 

its hardw~re architecture, how the system is used, and relevant 
programming paradigms and concepts. Features of the hardware and 
software will be discussed in some detail, both quantitative and qualitative. 
This should give some perspective as to the suitability of the ACPMAPS 
system for various classes of applications, and as to where this system 
stands in the spectrum of today's supercomputers. 

The ACPMAPS project at Fermilab was initiated in 1987 as a 
collaboration between the Advanced Computer Program (now the 
Computer R&D department) and the lattice gauge physicists in the Theory 
department. ACPMAPS (pronounced A-C-P-maps) is an acronym for 
Advanced Computer Program Multiple Array Processor System - this 
acronym is no longer accurate, but the name has stuck. Although 
research physics computations were done on ACPMAPS as early as 1989, 
the full-scale system was commissioned as a reliable physics tool in early 
1991. The original ACPMAPS was a 5 Gflop (peak) system. An upgrade by 
a factor of ten in compute power and memory size, by substituting a new 
CPU board, will occur during early 1992 - this is referred to as the 
ACPMAPS Upgrade or 50 GF ACPMAPS. The appellation ACPMAPS II 
has also been applied to the upgrade; this is somewhat of a misnomer, 
since only one of five major components was changed. 

The idea of the project was to create a system suitable both for production 
running of lattice gauge codes, and for efficient investigation of new 
algorithms. These goals are less orthogonal than might be supposed, since 
to seriously study how a group of proposed algorithms will behave requires 
nearly as much compute power as a production run using one of those 
algorithms. This is often beyond the reach of ordinary computing systems, 
so in order to investigate algorithms, a suitable supercomputer is required. 

The ACPMAPS system can be divided into five major subsystems, three 
hardware and two software. The hardware can be described as a 
distributed memory MIMD (multiple instruction I multiple data) system, 
with a flat addressing space and high speed I low latency communications 
network, augmented by a large distributed disk/tape 1/0 subsystem. The 
components are: 

• A CPU module containing a processor and a fairly large local 
memory. The first generation, this was based on the 20 Mflop Weitek 
XL-8032 chip set, attached to 10 Mbytes of memory. The upgraded 
CPU module is based on the 80 Mflop Intel i860, containing two 
processing units, each with 32 Mbytes of memory. The original and 
upgraded systems comprise 256 and 306 CPU modules respectively -
total peak speeds of 5 Gflops and 50 Gflops. (The achieved Gflop rate 
on actual physics problems usually ranges from 15% - 40% of the 
peak speed.) 

• A communication backbone consisting of 36 crossbar switch crates, 
with active backplanes implementing 16-way crossbar switches. The 
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crates are interconnected by differential high-bandwidth ribbon 
cables, to form a flat addressing space network analogous to a 
telephone switching network. Any processor (node) can establish a 
connection to any other node independent of other communications 
going on. The crossbar swiiches provide sub-microsecond arbitration 
and 20 Mbyte/sec transfer rates, so communications overhead is quite 
low. 

• A distributed I/O system, capable of storing and retrieving large data 
sets in a reasonable time frame. This consists of a 20 Gbyte disk 
system staging data to 32 helical scan large capacity 8mm tape 
drives. The communications backbone allows processors to access 
the I/O devices using the same flat addressing space employed in 
interprocessor communication. This decouples the arrangement of 
data on processing nodes from the arrangement of data on storage 
media. 

• A software framework allowing the user to code in terms of the 
concepts which permeate the physics of the problems being attacked. 
This framework, called Canopy, consists of a library of routines 
which allow the user to express the nature of the algorithm, without 
having to worry about details of how the processing will be done in 
parallel. Canopy improves the efficiency of scientists' algorithm 
investigation, by eliminating the need for vast expertise in parallel 
programming techniques. It can easily and beneficially be ported to 
other platforms including MIMD parallel computers and single­
thread computers. 

• A set of software tools for hosting the users' jobs, controlling 
allocation of resources, and so forth. ACPMAPS is a multi-user 
shared system; a spooler facilitates submission of jobs from multiple 
Unix computers and initiates each job at a time deemed appropriate 
in light of resource requirements. 

This paper will consists of two sections: First there is a complete 
overview of the ACPMAPS system, for use by those who wish to learn what 
the system does and how it behaves. This is followed by detailed 
descriptions of each of the above components of ACPMAPS - the latter 
section is intended for ACPMAPS users. Further information can be found 
in documentation including the Canopy Manual and the hardware 
manuals for the various ACPMAPS components. 

An Ovexyiew ofACPMAPS 

Design Criteria 
The requirements for the hardware of ACPMAPS were driven by the 

sort of software which was intended to be run. This consists of jobs written 
in the Canopy framework. Although Canopy concepts will be detailed 
below, some key requirements should be noted when examining the 
hardware architecture. 

It was not considered acceptable to reject out of hand all algorithms 
requiring MIMD processing. This means that the system has to have 
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MIMD architecture. For a given algorithm, the MIMD approach is no 
more complicated to express than the SIMD approach (if one exists), and is 
indeed easier to implement in a straightforward way when the geometry of 
the problem is an imperfect match to the system hardware. Certainly the 
natural approach to programming currently in vogue is tu think in terms of 
objects and actions - inherently MIMD concepts. 

Similarly, it was considered unacceptable to restrict algorithms based 
on the nature of communications requirements. This has several 
consequences: 

• Any processor must be able to access data from any other processor 
(otherwise particular patterns of communication will become 
impossible); 

• The communication cannot require synchronous operation across 
many nodes (otherwise MIMD becomes restricted); 

• Any processor may initiate a data access without foreknowledge or 
preparation on the part of any other (since in general algorithms, the 
pattern of communication may be data dependant). 

We require that the processors in the system be capable of running C 
programs. C allows for clean address manipulation, which is important in 
managing MIMD concepts, and has the advantage of being ubiquitous. 

A further practical requirement on communications is low latency. The 
Canopy paradigm encourages the user to express the algorithm in terms in 
which the granularity naturally matches the problem. In many cases, this 
leads to frequent medium-length data accesses rather than infrequent 
grouped data transfers. It is desirable that the price paid for the increased 
communications frequency be acceptably small; otherwise, users will 
attempt to re-formulate their algorithms in less natural terms. 

There are several workable approaches to achieving these 
communications requirements. True shared memory, of course, will 
work, but so will a multitude of explicit communications schemes, 
permitting distributed memory architectures. These can take the form of 
directly accessing dual-ported memories or message-passing schemes 
involving interrupts of the slave processor (the owner of the memory being 
accessed). The connectivity can be any sort of crossbar, mesh, hypercube or 
other grid; routing can be done in hardware or software, and may involve 
intermediate nodes (increasing communications latency). On the other 
hand, systems which require the explicit cooperation (in user code) of the 
slave node to permit access to its data, or which switch all communications 
paths in a synchronous manner, or which only permit communication to 
some set of "neighboring" processors, do not meet the requirements. 

The strategy employed by ACPMAPS involves distributed memory 
accessible across transparent hardware-routed links. This access is done 
directly (in the earlier 5 Gflop system), or by messages interrupting the 
slave processor (in the upgraded 50 Gflop i860 system). 

Any system meeting the above MIMD and communications 
requirements, and which can run C programs on its individual 
processors, may be considered a candidate for porting the Canopy software. 
We call a system satisfying the above model a Canopy platform. Note that 
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single thread computers generally satisfy these requirements in a trivial 
way. 

To enhance its utility as a tool for algorithm exploration, a Canopy 
platform shouid aiso have several features. The most important of these is 
adequate memory space. Large memory sizes are important for four 
reasons: 

• Algorithms that might otherwise be rejected out of hand due to 
memory considerations can be explored; 

• The user need not devote substantial consideration to ideas of which 
data structures can share space, at least until after the behavior of 
the algorithm itself is understood; 

• It is often beneficial to explore the behavior of an algorithm on a 
problem size which would be too large for a high statistic production 
run; 

• When a system has too little memory for an application, that is a 
hard limit. If an application is sufficiently important, slightly 
insufficient speed is a soft limitation - you may be able to accept 
lower statistics, or longer running time. 

Another important feature is a distributed mass storage I/O subsystem. 
This should have sufficient disk space, and adequate bandwidth to tapes for 
storing masses of data. It might be imagined that you ought to be able to 
run the entire program without any external mass storage device, 
producing a manageably small final result. This is not the case even for 
mature production jobs, and it is emphatically not true for algorithm 
exploration. 

A third useful feature for any algorithm exploration platform is multi­
user capability. If the system cannot be shared, one of two situations will 
occur: (a) Users with "small" jobs (too large to run on conventional 
computers) testing new ideas will have to wait for long production and test 
jobs to complete; or (b) several small development systems will be needed, 
and the size and power requirements of these systems must be guessed in 
advance. 

A final useful property in any potential Canopy platform is a host 
computer running a version of Unix which is reasonably close to POSIX 
compliant. This makes porting the Canopy hosting tools straightforward, 
and allows the users to make use of shell scripts and other Unix tools they 
have been using on a variety of platforms. 

System Overview 
Here we describe the way the ACPMAPS system implements a Canopy 

platform, from the point of view of the how the system software sees the 
architecture. The purpose of each component will be put into perspective 
here; later, further details are provided. 
Processors 

The system includes numerous processor nodes. Each processor node 
consists of a commercially available CPU chip (or chip set), with local 
memory. Each processor runs its program with instruction stream 
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independent of the other processors - thus the first requirement (MIMD 
processing) is trivially satisfied. The aggregate of the local memories 
makes up the entire memory in the system, that is, ACPMAPS is a 
distributed memory system. 

In the 5 Gflop system, the processor nodes were each a single board, 
using the Weitek XL-8032 chip set, and with 10 Mbytes of memory; such a 
board is called an FPAP (Floating Point Array Processor). In the upgraded 
system, two processor nodes occupy one physical board. Each processor 
node has an Intel i860 (80 Mflops peak performance) and 32 Mbytes of 
memory. The board containing two i860 processor nodes is referred to as a 
D860 ("Dual 860") module. 

Each processor node runs one process at any given time - the system is 
shared by assigning a set of nodes to each job. Within the system, there are 
no restrictions on which (or pow many) nodes can be assigned to which job. 
For a given job, one of the processors is designated the control node. The 
non-distributed portion of the user's job runs on the control node; the 
distributed tasks are of course run by all the nodes assigned to that job. 
Communication 

The second requirement, of "flat" access to the entire memory, is 
implemented by means of a communications system, based on 
interconnected crossbar switch crates. A processor node can establish a 
channel to access any other node in the system. (We refer to the processor 
node initiating communication as the master, and the node being accessed 
as the slave for a particular communication.) The switching to establish 
one channel is performed independently of (and transparently to) any other 
communications which may be proceeding. Thus the communications 
system is analogous to a telephone switching network: Any phone can 
access any other phone, asynchronously with various other connections 
being established. As with a phone network, the establishment of a 
communications channel can temporarily be blocked (a "busy signal") 
either because the target is involved in another communication, or because 
there is no unused path available to get from one crate to another. A strong 
point of the ACPMAPS hardware is the very low latency required for 
switching. 

Processor nodes are not the only modules which can be reached via this 
communications backbone. From the viewpoint of all software, the various 
modules in ACPMAPS can be classed according to whether they have data 
which can be accessed in this way. Modules which can be accessed by 
means of an address in this "flat communications space" are referred to as 
a node. Examples of nodes include processor nodes, memory modules used 
as I/O buffers, and SCSI controllers for the disk and tape drives. 
(Occasionally, where there is no danger of ambiguity, the ACPMAPS 
documentation will use "node" when it more properly means "processor 
node".) Examples of ACPMAPS components which are !1Q1 nodes are the 
crossbar switch crates and interconnect boards which make up the 
communications backbone itself, and the host computer. The processor 
nodes, for instance, cannot directly control the behavior of the host or 
switches by accessing data assigned to those devices. 



7 

Every memory location which can be accessed via the communications 
backbone is assigned a unique full address. The full address specifies a 
node number and a local address within that node. The node number 
specifies information as to how to reach the node (which slot number and 
path on the backbone to connect to over the backbone). The node number 
also contains information as to the type of module, and in the case of 
multiple nodes accessible through the same slot, a field selecting which 
node to access. Each node in the system is assigned a unique node number. 
Any arbitrary processor node can access any node in the system, referring 
to whatever full address is required. The local address portion of a full 
address can refer to the local memory of a processor node, or a register 
address or an address on some other bus when accessing other kinds of 
nodes. The current implementation of ACPMAPS software supports up to 
64K nodes and a 32-bit local address space. 

(An exception to the rule that any processor node can access any full 
address in the system is that the FPAP processors in the 5GF system 
cannot write to their own local instruction memory. This feature provides 
the means of protecting one user job from being affected by another job 
accessing its memory space due to communications specifying erroneous 
full addresses - a jump table specifying which nodes can be accessed is 
kept as instruction memory. For the upgraded system, the same protection 
is implemented by utilizing the i860 memory mapping/supervisor mode 
capabilities. In neither case do we claim the mechanism to be secure 
against malicious intentional mischief, but the protection against 
accidental corruption of results is pretty absolute. Intra-job "security" 
issues are discussed in more detail later.) 

Communications can always be viewed as ordered: If a master 
performs several data accesses to a slave, the order in which the effects of 
the communications appear to the slave is the same as the order of 
communications done by the master. In particular, if, say, ten words are 
transferred, then the last word will be changed last. However, 
communications involving the transfer of more than one word of data 
should not be viewed as being atomic. Mechanisms are provided to 
establish semaphores which are valid independent of hardware used. 

The communications hardware is flexible enough to present a wide 
choice as to how the system will physically be wired. Details of the physical 
connectivity of the crates composing the ACPMAPS system impact 
performance, but conceptually are unimportant. A numbering scheme 
relates the node field of the full address, to particular crates and slots, in a 
regular manner. Details of the connectivity chosen and the numbering 
scheme used in ACPMAPS will be presented later. 
110 

The distributed I/O subsystem consists of multiple disks and tape drives 
(currently 32 WREN VI disks, providing 20 Gbytes of space, and 32 Exabyte 
tape drives). Logically, the paradigm for the I/O subsystem is that a file 
resides on a volume consisting of one or more disks or tapes - files on the 
distributed system are identified by a name in the form 
volume_name#file_name and are accessed via Canopy routines such as 
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read_field, open_field_file, and so forth. When field data (which is 
distributed over all the nodes in a job) is written to a distributed I/O volume, 
the Canopy software will guide the sending of some fraction of the data to 
each disk or tape drive, by designating some processors to gather and route 
the appropriate data. This process is communications intensive, but the 
internode communications bandwidth is much greater than the available 
bandwidth to disk or tape, so the communications costs are negligible. 

The disk and tape controllers for this I/O system are accessed as 
ordinary nodes. There is also I/O buffer memory, accessible both as 
ordinary nodes and by the controllers. The disk and tape drives themselves 
are assigned node numbers for the purposes of bookkeeping and resource 
allocation, but are unlike the usual ACPMAPS nodes in that they do not 
have memory - it is meaningless to try to access them directly by 
specifying some appropriate full address. 
Software 

The ACPMAPS software will be discussed in detail later. It can be 
divided into two broad pieces: The Canopy software which is used to create 
applications to run on ACPMAPS, and various software tools to guide the 
running of applications. Canopy is a library of routines to be linked with 
user code; the tools are executables and shell scripts to handle building, 
scheduling and servicing applications on the shared system. 
Host Computer 

The ACPMAPS system utilizes a Unix host computer to provide access 
to the outside networked world, start up jobs on the system, service Unix 
calls made by programs running on the processor nodes, and provide 
allocation and debugging capability. Various software tools are provided 
to accomplish these functions - three important ones are the Canopy 
hosting tool, the spooler, and the db tool. 

The spooler is the program controls the system. A single instance of the 
spooler runs on one host computer for the entire system. Its primary 
purpose is to schedule jobs, assign processor nodes and I/O resources, and 
cause each submitted user job to start up at an appropriate time. Secondary 
functions of the spooler include acting as a central point for control of 
distributed I/O operations, and keeping logs of system usage and 
exceptional conditions. 

The Canopy hosting tool coordinates with the spooler to run a user job. 
The user runs one instance of the hosting tool for each job submitted. This 
tool initiates downloading of the user programs to the processor nodes, and 
sends commands to the processors to commence running the user code. 
While the job is running, the hosting tool will service UNIX calls made by 
the control node, and periodically check all nodes to make sure nothing 
catastrophic has occurred. Since UNIX calls are serviced by the host, a 
Canopy job running on ACPMAPS can freely access files on the normal 
UNIX file system. 

Although only one copy of the spooler should be running on the system 
at any time, multiple copies of the hosting tool may be running. The system 
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can be have multiple host computers attached at any given time, and 
hosting tools may run on any of the hosting computers. Currently two 
varieties of host computers are supported: An SGI 4D25, and an Ultrix 
Microvax. 

The db tool is a low-level processor node debugging aid. It allows the 
user to allocate sets of processors, to access the memories of processors, 
and to issue various commands such as reset, run program, suspend and 
resume. Although in principle there is never a need to allocate a particular 
set of nodes (as opposed to some number of nodes), the db tool allows one to 
do so - this can be useful for troubleshooting and for evaluation of the 
impact of communications topology on performance. 

The host computer also can run the various compilers and shell scripts 
necessary to create an executable for a Canopy job. (Actually, this is just a 
convenience and not an essential feature of a Canopy platform.) Thus the 
user logged into the system host can cross-compile his code (using UNIX 
make tools if desired), submit jobs to run on ACPMAPS via the canopy 
command (which interacts with the spooler), create UNIX input and result 
files, and control the execution of jobs via UNIX shell scripts, all on the 
same host computer. 

Hardware 
The ACPMAPS system consists of processor boards, communications 

modules, modules to interface with SCSI I/O devices, the I/O devices 
themselves, host computers, and modules to interface the hosts to the 
system. This section will provide an overview of the nature of these 
components and the interrelations among them. 

Physically, the full scale system appears as a collection of a dozen racks 
(arranged as four planes of three racks each). Each rack holds 3 crates of 
modules and up to 8 disk and tape drives. The racks are about 2 feet wide by 
3 feet deep, and are six feet tall. The system comprises roughly 600 
modules, each of which is a card occupying one slot in one of the crates. 
Most of the modules are processor boards or communication interface 
boards. The layout of the system is as follows: 
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Figure 1: Layout of the ACPMAPS system 
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Communications Backbone 

The ACPMAPS system can logically be viewed as a collection of 
processor nodes inhabiting a communications backbone. The key element 
of this backbone is the BSB crate (Bus Switch Backplane). This is a ~rate 
with 16 slots, each of which can be occupied by a module (card) -
analogous to a VME or Multibus II crate. The BSB, however, has an active 
backplane, consisting of: 

• Sufficient 16-way crossbar switch chips to implement full crossbar of 
a 50-bit data and control paths between the 16 slots. 

• Logic to control the switching of the configurations of the crossbars 
chips, and to arbitrate among requesting masters. The maximum 
time required to arbitrate and reconfigure the crossbar switches is 
700 nsec. If a path from one node to another requires multiple hops 
(traverses more than one switch crate), then each crate must 
arbitrate - 700 nsec per hop. 

• A PROM to supply routing information - this will allow any node to 
transparently access the memory of any other node in the system. 
Each BSB crate configures itself independently of the others, in 
response to addresses presented by masters in its slots. 

The BSB slots can each be occupied by a module containing one or more 
processor nodes, or by a BSIB (Bus Switch Interface Board) card. This card 
is similar in appearance to the processor cards, except the BSIB has a pair 
of ribbon cables attached at the front panel. The BSIB allows the 
establishment of a communications channel going across a BSB backplane 
and out the BSIB onto BranchBus. BranchBus is a 50-bit wide bus (control 
signals plus a 32-bit data path) implemented in differential RS485 as two 
ribbon cables, each carrying 25 differential pairs. It has multi-master 
capabilities and a particularly simple bus protocol - the protocol along the 
BSB backplane matches that of BranchBus. 

The bandwidth of data through each channel on the BSB backplane is 20 
Mbytes per second. The BranchBus data bandwidth matches this. The 
BSIB module re-synchronizes data and control signals, acting as both an 
interface and a repeater; thus a data channel can be established across 
multiple BSB switch backplanes and multiple BranchBus cables with a 
reliable bandwidth of 20 Mbytes per second. The addressing information 
needed to control the reconfiguration of switches to establish the channel is 
propagated along the same path as the control and data signals. This is 
illustrated below, for a situation where one CPU has established a channel 
to another CPU which goes through on intermediate BSB switch crate and 
across to separate cables. Note that communications across other channels 
can be proceeding at the same time. 
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Figure 2: An illustration of inter-CPU communication 

Note that the communications hardware does not require every crate to 
have a direct connection to every other crate. A given pair of crates can 
have no direct connection, or be connected by one or more BranchBus 
cables. Typically, a system would be configured with some selected 
topology, in which certain crates are connected by one bus - the intercrate 
bandwidth of 20 Mbytes/second is shared by all the nodes in those crates. 
Thus depending on the nature of the problem being solved, there is potential 
for a bottleneck in intercrate bandwidth. Changing the topology of the 
system would be a matter of physically re-cabling the modules and 
changing the routing PROMs - in general, using more BSB crates and 
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BSIB modules per processor module would reduce the impact of intercrate 
bandwidth bottlenecks. 
The Communication Topology 

The topology selected for .. A .. CPMAPS is that of a 3x3x2x2 hypercube of 
crates, augmented by connections along all the diagonals in the 3x3 and 2x2 
sectors. For typical problems, the impact of bandwidth bottlenecks in this 
configuration is acceptably small (up to 15% for the upgraded system). 

As shown in figure 1 above, the ACPMAPS system comprise four 
"planes" (labeled A, B, C, and D). Each plane consists of 9 crates, 
connected (using BSIB modules in four slots) to form a 3x3 grid, with all 
diagonals. Within the plane, each BranchBus cable connects three crates 
("three on a bus"). This connectivity is depicted below: 

--, 
I I 3 I 

'-'---' 
Figure 3: Connections between crates in one plane of ACPMAPS 
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There are BSIB modules in three more slots of each crate, connecting it 
with the corresponding crate in each of the other planes to form a 
tetrahedron. (A tetrahedron is the same as a 2x2 square augmented by both 
the diagonals - each crate is connected by a Branchbus cable to each of the 
three others.) The interplane connections can thus be viewed as nine 
tetrahedrons of crates: 

Figure 4: The interplane connections in ACPMAPS 

For applications with amorphous communications requirements, this 
topology has slight advantages compared to a strict hypercube of, say, 32 
crates. For example, in such a hypercube, the average path to a randomly 
chosen crate occupies 2.5 busses out of 80 - exactly the "fair share" of the 
80 busses in the system. In the ACPMAPS topology, the average path 
occupies 1.75 busses out of 102 - only 62% of the fair share. Of course, the 
hypercube requires only five BSIB slots per crate, rather than seven; even 
talcing that into account, communication is 15% more costly in a hypercube. 
Another advantage is that in the ACPMAPS configuration, no crate is more 
than two hops from any other. Of course, this configuration requires "three 
on a bus" cables, while the hypercube would not. 
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The Communication Mechanism 

The processor boards each contain one or more independent processor 
nodes (CPU and memory). Here, we will describe the D860 module in the 
upgraded system, which contains two nodes, each based on an i860 CPU 
and 32 Mbytes of memory. The two processor nodes occupying a D860 
module (a node and its partner node) share one interface to the BSB 
backplane. This interface consists of a local bus to move data from the 
individual nodes to the BSB interface, a large reprogrammable gate array 
chip to support the BranchBus protocol, and a set of FIFO chips to buffer up 
to BK of incoming or outgoing data. When a node acts as a master to access 
the memory of another processor (the "slave"), the sequence of events will 
be: 

• The master arbitrates for its local bus (this arbitration logic is done by 
the gate array chip, referred to as the BIC - Bus Interface Chip); 

• The BIC performs the protocol to request a channel to be opened on 
the BSB; 

• The BSB makes a connection between the master's slot and the 
appropriate destination slot (based on the address supplied for the 
communication; this is looked up in the BSB's PROM); 

• The communications might then have arrived at the target node, or 
might be routed through a BSIB to another switch crate for further 
routing - ultimately, to the target slave node; 

• The slave node responds to the the communication, and either 
provides the data required or accepts the data sent. 

The D860 slave node will be interrupted when the communications 
channel is established. This is necessary because the i860 processor 
depends heavily on internal cache memory for efficient performance. Since 
no "cache snooping" mechanism is available to invalidate cache lines for 
memory that has changed (or to force the processor to write the current 
value to main memory if it has been updated), the slave CPU must 
participate in each communication, reading from (or writing to) its own 
local memory. The cost of this participation by the slave CPU (in terms of 
additional latency on data access) is partly offset by several advantages in 
having a powerful processor directly involved in the communication. For 
example, longitudinal parity checksumming can be implemented to protect 
against undetected loss of data in a packet, and special-purpose transfers 
such as semaphores can be provided. 

When the slave node is an FPAP (in the 5 GF system), the 
communications mechanism is somewhat different, in that the slave 
processor is not interrupted and does not participate in the data access. 
The FPAP memory is dual ported, and can be read and written directly 
across the bus, slowing the slave processor only to the extent that memory 
cycles have been stolen. The i860 memory is single ported, accessible via 
the processor only - all communications are under program control. 

On the D860, communications of up to the length transferred in a single 
block are truly and inherently atomic - the slave processor is interrupted 
and does no further user processing until the transfer is complete. 
Further, the system software will retain the open channel between blocks of 
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a long communication, so transfers of any length are always atomic. 
When the slave is an FP AP, transfers are not atomic: The slave can 
conceivably examine the first word of data sent, and take action based on 
that, before the last word of the transfer has arrived. The ACPMAPS 
software is written assuming the worst (non-atomic) case, and thus does 
not depend on the atomic nature of D860 communication. 
Processor Modules 

The processor module in the original ACPMAPS, called the FPAP, is 
based on the Weitek XL-8032 processor, a 3-chip set. The floating point unit 
has a short (3 stage) pipeline and the integer instruction set is of a RISC 
flavor. The peak speed of the FPAP is 20 Mflops; 8 Mbytes of data memory 
(and 2 Mbytes of instruction memory) are provided. The upgraded system 
uses a D860 board, which contains two independent processor units, each 
based on an Intel i860 CPU. This chip also has a 3 stage floating point 
pipeline and a RISC-like integer instruction set. The peak speed of each 
i860 processor is 80 Mflops; each processor is supplied with 32 Mbytes of 
memory. Thus to first order, the D860 board is 8 times as powerful as the 
FPAP. 

The D860 memory uses 4 Mbyte DRAM chips; these are mounted on 
SIPs to minimize the board space needed. (Custom SIPs were required 
because the BSB crate uses the same board spacing as VME, and most off­
the-shelf SIMMs are too tall for this spacing.) The memory system for each 
node is controlled by fast PALs and can deliver a 64-bit word of data every 50 
nsec. The latency for memory access depends on whether there is a "page" 
change (a change in the row address supplied to memory - the "page size" 
for this purpose is 4K bytes). Without a page change, the data is delivered 
50 nsec after the address is asserted (this is as fast as the i860 can take it). 
If a page miss occurs, the latency is 125 to 175 nsec. 

The cycle times of the FPAP and i860 processors are respectively 100 and 
25 nsec. Their floating point architectures are very similar: One 32-bit 
floating point add and one floating multiply can be performed every cycle, 
with a pipeline length of 3 steps. The memory size and access bandwidth 
also scales with the cycle speed, although the page miss latency is only two 
extra cycles for the FPAP. One difference which can be important for 
certain problems is that the i860 can perform 64-bit floating point operations 
(at half its single precision speed), while the FP AP has no double precision 
capability. 

In spite of the similarities in their architectures, the i860 is somewhat 
less efficient in running actual problems. For example, where the FPAP 
might achieve an actual performance of 7 Mflops per processor on a 
particular algorithm, each i860 might only get 18 Mflops (rather than 28). 
The main causes of this inefficiency are related to memory access. 
Although the bandwidth to main data memory is one 32-bit word per cycle 
in both cases, the memory latency for page misses is much greater for the 
D860. Also, the FPAP uses a separate bus for instruction memory fetches. 
While these effects should be offset by the fact that the i860 has internal 
cache, the cache is rather small and uses a write-back virtual cache 
strategy that leads to surprisingly frequent cache misses. Although the 
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D860 is less efficient relative to peak power, the factor of four increase in 
peak speed and memory size (and the presence of two processor nodes per 
module) means the upgrade to D860's represents a substantial increase in 
effective computing power. 
Distribut.ed. 1/0 

The large-scale distributed I/O subsystem is based on SCSI disk and tape 
drives. These are "commodity" devices, available at low cost. The tape 
drives are Exabyte helical scan 2.3 Gbyte 8mm devices; the disks currently 
used are WREN VI drives with 650 Mbytes of data each. (Thus the 32 disk 
and 32 tape drives provide 20 Gbytes of disk space and 70 Gbytes of tape on 
line.) These disk and tape drives occupy 16 separate SCSI buses (two tapes 
and two disks per bus); although up to seven devices can share a bus, the 
current arrangement was chosen so as to minimize inefficiencies due to 
SCSI bus bandwidth limitations (2-4 Mbytes/sec per SCSI bus). 

The connection between the BranchBus based communications 
backbone, and the SCSI buses used for 1/0, is based on modules residing in 
4-slot VME crates. These are referred to as VME cratelets and are located 
inside each BSB switch crate. (The switch crate backplane is somewhat 
wider than required for 16 slots, and deeper than a standard 6U VME card; 
this makes this compact arrangement possible.) The physical arrangement 
is shown below: 
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Figure 5: One plane of ACPMAPS, showing SCSI connections for 110 

Each VME cratelet contains: 
• a VRM VME Resource Module (a crate controller); 

~Tapes 

Disks 
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• a Ciprico VME-based SCSI bus controller (which controls both 
Exabyte tape and WREN disk drives); 

• a BCI BranchBus Ciprico Interface which allows the BranchBus to 
act as a master on Vl\1E in a manner appropriate for using the 
Ciprico - this is a slight variation on a basic BrachchBus to VME 
interfaces (BVI); 

• and a 4 Mbyte VME memory for use as UO buffer space. 
The data coming from the disks goes over SCSI to the Ciprico, and from 
there is placed (over VME) into the buffer memory, to eventually be read out 
across VME and through the BCI into the main communications backbone. 
This is illustrated below. 

Network 

m 
m Tapes. 

Disks 

Figure 6: An illustration of a CPU controlling a disk drive 
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Note that since the host can act as a master on the main 
communications backbone. it can directly control the I/O devices. 
Normally, however, the VO to a given disk or tape drive is controlled by a 
designated "I/O captain node", which gathers the necessary data and sends 
it to the VME memory and sends orders to the Ciprico. The disk drives 
each operate at up to 1 Mbyte/sec; the SCSI bandwidth is 2-4 Mbytes/sec. 
Each word of data traverses the VME bus twice (once to get into the buffer 
memory, then again to get out across the BCD; the VME bandwidth is 
nominally 20 Mbytes per second but realistically half that - 10 Mbytes per 
second is more than adequate to keep up with the SCSI devices. The 20 
Mbytes/sec bandwidth on the BranchBus in the main communications 
backbone allows the captain nodes to gather and send data without slowing 
down any of the VO devices. The aggregate system bandwidth to disk is 
roughly 32 Mbytes/sec. 
The Host 

The host computer for the ACPMAPS system needs to be able to act as a 
master on the communications backbone (but need not be accessible as a 
slave). In addition to downloading the node program to the control node for 
each job (the remaining downloading is then done by the nodes in a tree-like 
fashion), the host will monitor the control node to service potential UNIX 
calls, and will occasionally monitor the remaining nodes to check for 
exceptional conditions. To act as a master on the communications 
backbone, the host must become a master on BranchBus; various modules 
allow different machines to accomplish this. 

The computers currently used as hosts are a Silicon Graphics SGI 
4D25/S, and a MicroVax 3200 running lntrix. The SGI has an internal 
VME bus, in which we place a VBBC (VME - BranchBus Controller) which 
can be a BranchBus master with transfer rates of up to 20 Mbytes/sec. The 
illtrix Vax has an internal Q-bus, in which we place a QBBC (Q-bus -
BranchBus Controller). The transfer speed through this is limited by Q-bus 
considerations, to about .05 Mbytes/sec. This is still adequate for the duties 
required of a host, but there is considerable impact on the performance of 
the illtrix Vax due to bus cycles taken by the QBBC. For this reason, the 
SGI is superior as a host when the workload includes multiple 
simultaneous jobs. 



ACPMAPS Software 
Two distinct aspects of the software are of concern to the ACPMAPS 

user. There is the issue of how to code up an application. The Canopy 
library comprises a set of tools for coding a grid-oriented algorithm in a 
natural manner, such that the multiprocessor aspects are handled 
automatically. The paradigm and concepts underlying Canopy, and the 
typical ways of using key routines, are discussed in an overview of Canopy 
later on. 

The other aspect is the issue of how to cause an application to run on the 
multiprocessor system, and what runtime support can be expected. 

Creating and Running Applications 
When an application is to be run on the ACPMAPS system (or any 

system supporting Canopy), the following steps occur: 
• The application is written in C, using whatever Canopy routines are 

appropriate. (The C language was selected because it is ubiquitous, 
and because pointers are handled in a natural way. Hand-optimized 
assembly code can, of course, be linked in for major production 
programs where efficiency is critical.) 

• A shell automates compiling and linking the application with the 
necessary Canopy library routines. There are several such shells: 
cane to create an executable to run on the current (single processor) 
computer; acanc for creating an executable for the 5GF system's 
FPAPs; and dcanc to create an executable for the 50 GF system's D860 
modules. These commands are similar in form and arguments to 
the cc (C compiler) command. 

• To run the application on the multiprocessor system, the user issues 
a canopy command, which takes the form 

canopy <number_ot_nodeS> [<time_limit>] <executable> [args] 
args are passed to the program in the usual (argv, argc). The canopy 
command is supported on the system host computers. 

• If the resources requested are available, the job will start 
immediately; otherwise, a message will be issued informing the user 
that the job is being held. If the job is held, one can wait or abort via a 
AC. 

• The program runs on the nodes. As will be seen in the overview of 
Canopy, the program is a single-thread application (called the 
"control program") running on one "control node", with occasional 
invocations of tasks to be done by many processors. The control node 
concept is discussed further in the context of the overview of Canopy. 

• Standard input is taken from stdin; thus scanf can be used in the 
control program. The canopy command can be issued interactively, 
as part of a shell script which may contain further data for stdin, or 
at the end of a pipe which generates stdin. 

• Standard output and error output are directed to stdout and stderr 
(stderr will also be placed into a system log file). Normally, only the 
control program will issue any printf commands. 
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• The canopy command returns the program's exit status when the 
job completes. 

How the ACPMAPS System Software Runs Applications 
Although the user may view the system as a "black box" which takes 

canopy commands and produces results according to the program 
executed, it may be helpful to see what happens when a job is run. Two key 
software components running on the host computers are the spooler and 
the canopy hosting tool. The spooler manages system resources; a single 
instance of this program is run on one of the host computers. The canopy 
hosting tool provides host support for a job; one instance of this program 
runs (on any host computer) per application running on the system. 

The ACPAMPS system is coordinated by a daemon process, called the 
spooler, which runs continuously on one host. The sequence of events 
described below is initiated when a user logged in to one of the hosts issues 
a canopy command. 

• The canopy command sends a message to the spooler process (which 
may be running on the same computer or on another host). 

• The spooler determines whether the job can be run at this time with 
the resources requested - if not, a "job held by spooler; wait or 
"C to abort" message is sent back to the canopy command. 

• If the appropriate resources are available, then they are assigned to 
this job, and the spooler will allow the canopy hosting tool run the job. 

• The hosting tool will cause the downloading of the executable to all 
the assigned nodes. (For efficiency, this is done by downloading the 
program and the node numbers of all assigned nodes to a single 
control node, and commanding the control node to complete the 
downloading. The remaining nodes are loaded in a tree, without 
further host participation.) 

• The user program begins running on the system. While it is 
running, the hosting tool continues operating, to handle any Unix 
call issued by the job. Normally, only the control node will issue Unix 
calls to be handled by the host. Unix calls (other than locally handled 
heap management calls) issued by other nodes are not formally 
supported within Canopy - since these nodes are always computing 
in parallel, the ordering and effects of the calls would be hard to 
define. Nonetheless, in exceptional circumstances, any node can 
issue a Unix call. (For example, an fprintf to report an exception will 
lead to a write() Unix call.) The hosting tool will poll all the nodes on 
a several second time scale, to verify that the job is proceeding with 
no obvious problems. 
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• Several circumstances can indicate that the job has completed: 
» Normally, the control node will issue an exit() call after the 

computation has been done. 
» Any of the nodes can issue a terminatejob() call cause a job to 

end prematl.i.rely. 
» A fatal exception on one of the nodes will cause the job to 

terminate. 
» The user can force a termination by issuing a "C to the canopy 

command. 
» The job can time out by exceeding its time limit. 

In any of these cases, the hosting tool will report to the spooler the 
fact that the job has terminated, and will exit with the appropriate 
status. 

• The spooler detects that the job has completed (normally, by a 
message from the hosting tool). It will then de-assign the resources 
which had been assigned to this job. As long as the spooler program 
is running, the system and all available resources can be used, even 
if the other host computer has crashed while running hosting tools 
which had been assigned resources. 



Cano,py 
Canopy is a software underpinning which allows a user to design a 

multiprocessor application without having to worry about the details of the 
parallel system architecture. Canopy has been running for several years 
on several systems including ACPMAPS. 

In this overview, we will: 
• Explain the intent and goals of the software underpinning; 
• Discuss the general approach to achieving these goals; 
• Discuss the key concepts involved in the Canopy paradigm; 
• Outline the strategy used by Canopy to implement these concepts and 

run an algorithm on a multiprocessing system; 
• Discuss what sort of problems are and are not suitable to approach 

via the Canopy paradigm. 
• Discuss the costs associated with using Canopy. 
• A brief list of Canopy routines and data types. 
Further details about Canopy can be found in the Canopy Manual. Any 

user writing a Canopy application should obtain a copy of that document. 

Goals of Canopy 
Our overall aim is to provide the scientist with a straightforward way to 

get from the natural description of an algorithm to an effective 
implementation of the algorithm. In particular, lattice gauge algorithms 
typically involve discretized local differential equations, described as some 
operation done on many points in space simultaneously. Therefore the goal 
is to use these concepts directly, so that once the user has stated his 
algorithm in these terms, the intellectual effort involved in structuring the 
program is done. 

Previous approaches required the user to intersperse the natural 
description of the algorithm with explicit details of how data is to be 
distributed and accessed, how workloads are to be shared, and how 
boundary conditions are to be handled. The goal of Canopy is to eliminate 
the need to think about these things, without introducing other difficulties. 
We have found a way to do this by using a slightly different paradigm to 
picture the parallelism of the algorithm. 
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General Strategy 
Canopy provides a set of concepts for thinking about algorithms, a 

methodology for expressing algorithms in terms of these concepts, and a 
library of routines implementing this methodology. We have implemented 
this library in C to take advantage of the availability of C software tools. 

Several particularly important considerations are: 
• To provide a natural and uni.tied way for the physicist to express the 

geometric aspects of an algorithm. By geometric aspects, we mean 
concepts like "the site to my left" or "there are 3 grids, of sizes A, B 
and C". This allows the user to express the local operations 
independent geometric considerations. 

• To provide a natural way to express the flow control of an algorithm. 
Here we mean concepts like "do this step for each site in that set". 
These concepts are used to automatically take advantage of the 
parallel system in a straightforward way. The user has provided the 
necessary insight as to the parallel nature of the algorithm. 

• To shield the user from the details of the parallel system. These 
details include most of the effort needed to make the program run in 
parallel - distribution of data, control of multiprocessor execution, 
and so forth. In particular, the user need never know anything about 
the number or connectivity of processor nodes. 

• To automate routine lattice address calculations. Once the user has 
expressed the geometric concepts of the algorithm, automating and 
hiding these details becomes straightforward. The benefit is a 
factoring out of the constant clutter of "take this index, check against 
boundaries" and so forth - this brings the code much closer to the 
way a physicist thinks about an algorithm. 

• To improve overall program robustness. When an algorithm is 
expressed in terms of the proper set of standardized, basic concepts, 
the program tends to be clearer and easier to verify. The fact that the 
user need not care about which (or how many) nodes are being used 
makes the system more flexible (in terms of sharing between users). 
Shielding the user from the details of the parallel hardware makes 
Canopy applications trivially portable over a broad class of machines 
meeting certain minimum requirements (as discussed below). 

These considerations have several desirable side effects: 
• Better organized, more modular code. This comes from providing a 

natural way of expressing the geometric and flow control aspects of 
an algorithm. It becomes easier to re-use portions of a program in 
different settings, and to identify and optimize critical code sections. 

• Easy program modification. When the routine address calculations 
are automated and "factored out" of the explicit physics code, it 
becomes easy to modify lattice size, shape, connectivity, boundary 
conditions, and so forth. Canopy supplies a library of grid definition 
routines, but the user is free to specify a grid with special properties 
as well. 

• Optimizations can be done by systems people. For instance, a side 
benefit of automating address calculations is that the system 



software designers can afford to spend a lot of thought identifying the 
cleanest and most efficient way to do the calculations. Although in 
principle for any given algorithm the scientist could come up with a 
faster method, the automated scheme turns out to be superior to the 
code actually written when scientists explicitly guide the address 
computations. 

Note that although the details of the parallel nature of the system are 
hidden, the parallel nature of the algorithm is not; in fact Canopy makes it 
natural to highlight the tasks that are to be distributed over many 
processors. Thus Canopy does not attempt to be an automated parallelizer 
(which would be very difficult to do well). The scientist has better 
knowledge of how to parallelize an algorithm than any pre-conceived 
system could possibly hope for. The idea is to make it easy for the user to 
convey that knowledge, and to use that information to control the program's 
parallel execution. 

Concepts 
The set of concepts described here are designed to achieve the above 

goals for grid-oriented problems. Chapters 2 and 3 of the Canopy Manual 
Version 4.0 is a detailed tutorial of the Canopy concepts; in the following 
short summary C structures are presented in bold face. 

Canopy introduces structures which match the natural concepts of 
discretized differential equations where the operations are done on some set 
of sites which are connected together into a grid. Sites in Canopy are 
exactly the sites of the discretization; a grid in Canopy is the same as the 
discretized grid. Canopy further introduces the concept of a direction from 
a site leading to a neighboring site on a grid, and the concept of a path, 
which is an ordered set of directions that lead from one site to another. 
The variables in a discretized problem are fields over a grid; Canopy 
provides field variables that live on the sites of the grid and fields on the 
links joining the sites. These fields are then the usual targets of operations, 
and the repository of the mass of data associated with the problem. Canopy 
allows more than one grid to be defined and provides for maps to connect 
them together. 

Canopy flow control is divided into three parts: first, when the program 
starts, a single-thread control program is running as an ordinary C 
program. This control program has a declaration section, where grids 
and fields are defined, followed by an execution section. The execution 
section invokes tasks, which execute task routines in parallel on sets of 
sites. The task routine is called once for each site in the set, and has special 
mechanisms for passing arguments and collating return values. 
Geometrical concepts - details 

Physical problems represented by differential equations on a continuum 
in some space are often attacked by discretizing the space - treating the 
continuum as a lattice of points. The differential equations become 
relations between variables defined on these points. This approach is called 
the grid approximation. The physical concepts of sites, grid and fields refer 
to the individual points, the lattice comprised of the entire collection of 



points, and the variables in those relations. Canopy defines constructs 
which correspond to these physical concepts. 
site 

A site corresponds to a point on the lattice. Associated with each is 
some field data, and other properties such as a site serial number, 
coordinates, and information about neighboring sites. Every site on a given 
grid is identical in structure to every other site. Parallel execution in 
Canopy is logically done simultaneously over a set of sites. Thus a site is 
similar in concept to a virtual processor - the field data corresponds to the 
local memory. Routines refer to particular sites by means of a site variable: 
A variable of typedef site. 

grid 
dimensions 
coordinates 
directions 
links 

A grid is a collection of identical structures (representing the sites 
which make it up). Certain natural geometrical properties are associated 
with a grid. These describe where the sites on the grid are, and how they 
are connected to one another. The grid is organized as having some 
number of dimensions, - each site is assigned coordinates, 
represented by an array of length matching the number of dimensions of 
the grid. 

Another natural and useful geometrical property of a grid is that of 
connectivity. The grid has some number of directions: Each site may 
have other sites as neighbors in the positive and negative units of each 
direction. Although in a Cartesian lattice the number of directions equals 
the number of dimensions, and each site has neighbors every direction, 
neither of these properties need hold for general grids. 

The concept of boundary conditions on these connections is natural : A 
site on one "side" of the grid might have as a neighbor in each direction any 
desired site, or no site at all. The concept of directions and neighbors often 
provides the most natural and convenient way of specifying another site in 
local algorithms. It is also natural to picture the lattice as having links, 
lines connecting sites with their neighbors. Although there is no link type 
defined by Canopy, there is the concept of a link_field - data which is 
logically associated with each link rather than with each site. 

Canopy has a collection of pre-defined grid declaration routines, for 
convenient creation of periodic Cartesian grids in various sizes and 
dimensions. The user can also use the function arbitrary_grid to create a 
grid of any desired properties. Grid declaration routines return a variable 
of typdef grid. This grid identifier is used in other routines where a grid 
must be specified - a given application may use several distinct grids. 



field 
site field 
link field 
field elements 
field_pointer 
link_field_pointer 

A field is a collection of data structures - one instance of a structure 
associated with each site on a grid. Many physical problems involve fields 
of some nature defined on the continuum, such as the electric field in space 
or a gluon field defined over space-time. When such problems are solved in 
a grid approximation, the continuum fields are replaced by fields on the 
sites or links. In Canopy, a field is defined by calling site_field or link_field 
- these routines reserve space for field elements on each site or link in the 
grid. The field declaration routines return a variable of typedef field, 
which can later be used as an identifier to specify that particular field. In 
an application which declares several grids, a different fields might be 
defined over each grid. 

Algorithms often involve accessing field data associated with some given 
site. Canopy shields the user from the complexities of address computation 
and off-node data access by providing routines to handle all access to 
accessing field data. 

Read access to site field data is done by field_pointer routines, which 
return a pointer to a read-only copy of the field element. The arguments to 
these routines specify the desired field, and the site with which the desired 
data is associated. The user need not know whether the data was kept on 
the local processor node or on a remote node. 

Access to elements of link fields is provided by routines such as 
link_field_pointer. The user specifies the field, the site at which the 
desired link originates, and a direction to select which link field element is 
to be accessed. 
site variables 

site manipulation routines 
path 
map 

One way to specify the site in a field access routine is by specifying a site 
variable. Canopy provides a typdef site; such a variable can refer to any 
site on any of the grids declared for the application. Site manipulation 
routines are provided to set a site variable by specifying coordinates, or 
relative to another site by one unit in a specified direction, by a specified 
path, or by a map to another grid. 

put_field 

When modifying (writing) a field element, a put_field routine is used. 
These routines perform a copy into the appropriate field element. Again, 
the user need not know whether the field element is stored on the local 
processor node or elsewhere. 



Flow control concepts - details 

control () 
declaration section 
complete_def initions 
execution section 
tasks 

The main routine of a Canopy program - always called control() -
sequences the activities in the job. Before multiprocessor activity can be 
started, the control program must define the geometric and data structure 
concepts relevant for the application. This is done in a declaration section, 
which invokes grid definition routines to establish the geometry, and field 
definition routines to establish the data structures. This section can be 
interlaced with code to accept input and to perform computations. The 
declaration section is terminated by a call to complete_definitions(), which 
causes all requisite information about geometry and data structures to be 
sent to the individual processing nodes. 

The execution section of the control program expresses the body of the 
algorithm. Some single-thread global computation and decision making 
occurs in this section, but the most important activity is the initiation of 
tasks - routines to be executed in parallel on many sites, enlisting the aid 
of all the processor nodes involved in the job. Each task is invoked by calling 
the routine do_task, and completes on all sites before the control program 
continues execution. The algorithm can take advantage of the multi­
processor nature of the system to the extent that most of the computational 
burden is in these tasks. 
do task 

task routine 
set of sites 
set and grid typedefs 
pass arguments 
integrate arguments 
do task triplets 
example of do task and triplets 

The do_task routine is a remote, multiprocessor subroutine call. To 
initiate processing on the processor nodes, two things must be specified: 
The task_routine, that is, the routine to be invoked for each site; and the 
set_of_sites over which this routine is to be executed. The set of sites is 
represented by a variable of typedef set. This can be an entire grid: a grid 
identifier - of typedef gr id - can always be used in place of a set of sites. 
Or the set of sites can be defined during the declaration section, or 
dynamically during the execution section. The task routine will be called 
once for each site in the set, in an arbitrary order. The do_task call returns 
to the control program when all these task routine invocations have 
completed. 

A mechanism allows for passing arguments to the task routines. 
These will appear to the task routine as ordinary C arguments, passed by 
pointer. However, in the argument list to do_task, they must be specified in 
a special way: In the context of parallel execution, where the task routine 
will be run in an undefined order (and in principle simultaneously) on 



many virtual processors, concept of a subroutine argument is not 
unambiguous - guidance is required. 

First, it is necessary to distinguish between arguments which, from the 
viewpoint of the task routine, are "read-only" versus "write-only" . In a 
parallel environment, arguments which are read-only (in the sense that 
the task routine uses but never alters their values) are handled by 
communicating their values to each processor node and making them 
available as ordinary arguments. Canopy refers to these read-only 
arguments as pass arguments. 

Other arguments can be considered "write-only": The task routine is 
passed a pointer, and returns a result by writing it to the indicated address; 
the calling routine passes the pointer and expects the subroutine to place a 
single result there. In the context of parallel execution, the results from 
many virtual processors must be amalgamated into a single result. These 
"write-only" result arguments are called integrate arguments: The user 
specifies how they are to be amalgamated into a single value. For example, 
the results from individual task routines can be added as floating point 
numbers, or to the maximum among the individual results can be taken. 

On a single processor it is easy to pass an array of values, simply by 
supplying a pointer to that array - in a distributed memory environment, 
this does not work in a naive manner . The mechanism provided for 
specifying the nature of an argument also provides for passing arrays of 
values. Each argument to the task routine is presented to do_task as a 
triplet of arguments. The triplet consists of: 

• A keyword describing the nature of the argument. The options 
include PASS to supply a read-only argument, and various options 
for result arguments: SUM INTEGER, SUM REAL, MAX REAL, 
and so forth. There is also a mechanism for eustomizing, in case a 
required amalgamation technique is not among the options provided. 

• A pointer to the argument itself (the argument may be a single word, 
or an array or structure). 

• The size of the argument - this is what guides Canopy in 
determining how much data to communicate to the processor nodes. 

Thus do_task takes as arguments the task routine to be done, the set of 
sites to do it on, as many arguments are desired (one triplet per argument), 
and an END keyword do delimit the list of arguments. For example: 

/* in control() *I 
float f [ 4 J; float sum; field *x; 
do task ( my_task , this_set_of_sites 

PASS, &f, 4*sizeof(float), 
INTEGRATE, &sum, sizeof(float), 
PASS, x, sizeof {field *), END ) ; . . . 

/* elsewhere in program, task routine appears: */ 
void my task ( float *array4, float *ans, field *x ) { 
/* code-which uses array4 (fin the calling program) */ 
/* and the field x to produce a result ans */ } 

In this example, my task does something to field x (it might elsewhere 
be invoked for some other field) based on array f, to produce an answer in 



*ans; these answers are summed for all the sites in this set of sites 
and placed into *sum in the control program. - - -

Since the task routine is invoked for many virtual processors, results of 
the task roight be desired in the form of an array of answers, one associated 
with each site. There is a natural way to handle this in Canopy: Such an 
array is a field; the task routine writes its answer by calling put_field. 

C allows arguments which are "read/write": A value can be passed by 
reference, and the pointer to that value can later be used to return a result. 
This sort of argument can always be split into a read-only argument and a 
result argument. Canopy does not support read/write arguments to task 
routines. 
field access during tasks 

HOME site 
field access relative to HOME 
Changing fields at the HOME site 

A task is logically performed over an entire set of sites simultaneously. 
The task routine is invoked for each site in the set. At any given time, the 
processor is doing the computation for a particular site, referred to as the 
HOME site. Canopy defines a variable of typdef site called HOME, which 
refers to this site. 

The task routine will virtually always involve accessing (and usually 
modifying) field elements at this HOME site. Non-trivial algorithms will also 
involve accessing data belonging to other sites. Field data is always 
accessed via calls to Canopy field access routines - field_pointer for read­
only access, and put_field to modify data. (Task routines should modify 
data at the HOME site only.) For convenience during task routines, there are 
routines are provided which access fields at sites relative to the home site -
offset by a direction or a path. For example, field_pointer _at_dir takes as 
arguments a field and a direction, and is equivalent to setting a site variable 
to HOME, moving that site variable one unit a direction, and using that site in 
field_pointer. 

During task routines, there can be one important exception to the rule 
that field data cannot be changed except by using the put_field routines: 
When field_pointer has been used to access a field element on the HOME site, 
that field element is known to be stored on the local node. Thus data 
belonging to that element can be changed in place, without concern about 
later copying the new element into the proper location on a remote node. 

The control program can use the field access routines to read or write 
field data, but the concept of the HOME site is valid only within task routines. 
global variables 

broadcast 

Canopy applications differ from single-thread programs in their 
treatment of global variables. The ability to set values to be known 
throughout an application is quite useful. Nonetheless, modern 
programming philosophies disparage the use of global variables, because 
subtle errors can be introduced through their misuse. Further complexity 
(hence scope for error) is introduced when multi-processor systems are 
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considered. Canopy supports global variables, but requires that a set of 
rules be followed to prevent erroneous usage: 

• Values of global variables may be changed only by the control 
program, not by a task routine. (\Vere a task routine to alter a global 
variable, the timing of when the change was to occur - relative to 
the "simultaneous" execution of the same task routine for other sites 
- would be ambiguous.) 

• Having modified the value of a global variable, the control program 
must call the Canopy broadcast() routine, to inform all processors of 
the change. This must be done before invoking tasks which use the 
variable. Task routines may not call broadcast. 

• Dynamically allocated global variables are not permitted. That is, a 
structure which was created by a declaration in the control program 
can be used as a global variable, but a structure which uses memory 
allocated by malloc cannot. 

The above rules apply to variables which are referenced by task routines. 
Global variable which are employed exclusively within the control program 
can be treated as per ordinary C global variables. 
compound tasks 

levels in sets of sites 
sync_field_pointer 
do task n times - - -

Certain algorithms have steps which require performing computations 
on an ordered set of sites - the task routine for some sites must be 
completed before the routine for other sites is allowed to begin. To facilitate 
coding such algorithms, Canopy extends the concept of a task running a 
routine once per site in no particular order. 

When a set of sites is defined, each site in the set may be assigned a level 
(multiple sites can be at the same level). We call a set of sites with unequal 
levels a compound set of sites. A task routine can be written to run on a 
compound set of sites in such a way that the routine is logically executed for 
sites with lower levels first. 

To maximize the opportunities for parallel execution, the 
synchronization is enforced when field data is accessed, rather than when 
execution is initiated for each site. The task routine accesses field data 
which is liable to be changed using sync_field_pointer instead of 
field_pointer; this will wait until the site owning that data has been 
processed, if it is at a lower level than the HOME site. Thus, one processor 
might be handling level 10 sites while another is only up to level 2; the first 
does not block until it needs data that has yet to be updated at a lower level. 

Logically, compound sets of sites accomplish nothing that could not be 
done by defining multiple disjoint sets of sites (one for each level) and 
calling do_task multiple times. There is a convenience advantage in 
grouping these multiple do_task calls into one compound task. A 
compound task can also be more efficient than the individual simple tasks, 
since . 

A special sort of compound task is invoked by the do_task_n_times 
routine. The user employs explicit synchronization (sync_field_pointer) 
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within the task routine. Again, the advantage is that synchronization is 
done only when necessary, not between each invocation of do_task. 
distributed I/O routines 

open_field_file 
read_field/write_field 
slice of field 

The distributed I/O system is used to store field data. The control 
program initiates all field file activity. The Canopy routine open_field_file 
is used to specify the name of a file; on ACPMAPS, we use a leading # 
character to signify a file on the distributed I/O system. Then read_field 
and write_field routines can be called. The field is written and read back in 
a manner independent of the number of nodes being used for the job - a job 
running on many nodes can save a field to be examined by a job running on 
fewer nodes, and vice versa. 

Canopy provides a read_slice_of_field routine to fill a field with only a 
portion of a previously written field file. For example, one might require 
only a single time slice of a large lattice. This feature is indispensable for 
algorithms which require one small part of each of several huge fields -
reading in the complete fields might be prohibitive in terms of memory 
space. 



Implementation Strategy 
The details of the implementation of Canopy concepts are in principle 

irrelevant - other than the fact that they work. Canopy has been 
implemented since 1989, and has achieved its goals a:s an aid in algorithm 
development. Canopy applications run applications with good efficiency on 
ACPMAPS. Nonetheless, a discussion the general principles and 
strategies is useful in several ways: 

• An understanding of how things work often leads to insight about the 
best way to use them; 

• A grasp of how Canopy is structured can help in evaluating the 
suitability of other platforms for a Canopy port; 

• A knowledge of implementation strategies can point out potential 
areas of inefficiency, which may help in designs of future Canopy 
platforms. 

Organiz.ational Strategy 

Canopy is organized into three pieces. The main user-level Canopy 
routines appear in several files amounting to 7 ,000 lines of C code. These 
are compiled and put into a library that the cane shells link with the user 
code. There is a canopy.h file which the user program includes to obtain 
function prototypes for all the Canopy routines, and definitions for the 
keywords used. 

The second piece is a collection of libraries for frequently needed 
functions. These include a library of grid definition routines, a collection of 
functions for complex variables, one for random number routines, one for 
Fast Fourier Transfer operations, and so forth. New routines can be added 
to these without altering the basic set of Canopy concepts. 

The Canopy library and the supporting libraries are written in C and 
independent of the target system. Canopy assumes it is running on a 
system with a particular, well defined interface for doing things like 
interprocessor communication. This model is defined and implemented by 
the final piece in the Canopy organization: A set of underlying routines 
called the Canopy Hardware Interface Package (CHIP). 

The CHIP routines have well defined arguments and results (described 
in the Canopy Manual) implementing the model Canopy uses. For 
example, the basic primitives for interprocessor communication, called by 
higher-level Canopy routines, are part of CHIP - these operate in terms of 
Canopy concepts such as full addresses. CHIP includes routines like 
remote_read, remote_ write, and do_on_all_nodes. Although these 
routines have interfaces defined by the Canopy system model, their 
implementations will be machine dependant. The system model is rather 
simple; the implementation of CHIP typically is about 2,000 lines of code. 

This strategy of isolating the machine dependant implementation 
details and providing a well-defined system model has two positive 
implications: 

• To port Canopy to a new system, one only needs to port the CHIP 
primitives. For example, if the communication on the new system is 
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based on a message passing protocol, one must write CHIP routines 
like remote_read in terms of that actual protocol. The bulk of the 
code that makes up Canopy remains unchanged. 

• The sophisticated user has the option of calling CHIP routines 
directly (bypassing the Canopy concepts), without sacrificing 
portability. This may be useful in implementing aspects of an 
algorithm which fit the Canopy paradigm poorly. Some of the 
benefits of Canopy will be lost when this is done. For example, the 
user can write a routine which is no longer independent of the 
number of nodes in use. 

Implementation of Concepts 

Canopy contains the concept of a site as a virtual processor. The key 
implementation strategy is: The responsibility for all the sites in a grid is 
divided (roughly equally) among all the processor nodes in the job. This 
responsibility includes storage of field data associated with the site, and 
processing of task routines to be run for that site. All processor nodes, 
including the control node on which the control program runs, are 
apportioned a share of the sites. 

When a task is running, each processor node will execute the task 
routine for every site in the selected set which it owns, in an arbitrary 
order. Canopy says nothing about the nature of these task routines; thus 
the processors must run independent instruction streams (MIMD). When 
a task is done, the program flow must wait for every processor node to 
complete the task routine for all the sites owned. If each processor node 
has responsibility for many sites, the fluctuations in time taken to perform 
the task routine for a single site tend to average out. Although the entire 
system must wait for the last node to finish, this wait is usually a small 
fraction of the overall time taken to perform the task. Canopy works most 
efficiently if the number of sites greatly exceeds the number of processor 
nodes. 

The task routines are the only portion of the computation which is 
worked by multiple nodes. While the control program performs single­
thread computations, the remaining nodes are idle. Thus Canopy 
applications achieve high Gflop rates only in cases where the bulk of the 
computational work involves tasks - calculations which can be associated 
with each site. 

Address computations - determining the location of data associated 
with various sites - are done using pointers. Actually, these pointers are 
of a type called a full address, containing information as to node number 
as well as a local memory address. For example, a s it e variable contains 
a full address pointing to a zero-point in the appropriate site data. This 
scheme is not only completely flexible, but is more efficient than explicit 
address computation. The concept of grid connectivity, with each site 
having neighbors in various directions, is implemented by storing (as part 
of the site data) an array of pointers to neighboring sites. 

Most algorithms are largely local in nature, (with sites communicating 
most frequently with some set of neighboring sites). Thus it is desirable to 



minimize internode communications needs by distributing the sites among 
the processing nodes such that neighboring sites tend to be clumped on the 
same node. Since almost all users can use one of the packaged Canopy grid 
declaration routines, a moderate amount of systems effort in doing this 
clumping well has benefits for virtually every Canopy application run. 

When field_pointer is used, it returns a "read-only copy" of the data 
requested. Actually, if is on the local node, no copy is made, and a pointer 
to this field element is returned. If the data is on a remote node, the field 
element is copied into the local processor's memory, and a pointer to that 
copy is returned. 

Canopy has no concept of virtual processors associated with the links on 
a lattice. Link fields are stored at the sites: A given site will own the data 
for the elements of a link field corresponding to links leaving that site in 
positive directions. Thus on a grid with d directions, there will be d 
identical field elements on each site. 

Canopy assumes the processors in a job are identical, and are running 
the identical program in the same address space. Thus the control 
program node can take the name of a task routine as an argument to 
do_task, and simply send its address (on the control node) to the other 
nodes to specify the routine. Similarly, the broadcast routine knows where 
to send global data to each node: It always goes to the same local address as 
on the control node. (This is why dynamically allocated globals are 
dangerous.) 

A few techniques are used to enhance efficiency. When tasks are started 
up or completed, and when broadcasts are done, information is sent in a 
binary tree fashion, rather than creating a bottleneck at the control node. 
When distributed I/O is done, "captain nodes" are designated to collect the 
data and send it to the VME memories, and to control the SCSI devices; the 
control node does not have to do all the work itself. Finally, frequently used 
small pieces of Canopy have been hand coded assembler for optimal speed 
on the processors used in ACPMAPS. For example, field_pointer is called 
so often that this improves performance by a noticeable amount. Such 
routines are still defined in C - this makes Canopy easy to port. When 
hand optimizing code, it helps to compare against a known correct 
implementation. 

When is Canopy Applicable 
An algorithm is suitable for attacking with the Canopy paradigm if it 

has the following properties: 
• The arena on which the algorithm is to apply can be viewed as a fixed 

grid of sites. Canopy is more valuable in cases where the grid has 
some natural connectivity, but this is not required. 

• It must be possible to organize the mass of data in the algorithm into 
many instances (associated with many sites) of a few types of 
structures (fields). The data associated with any site cannot be very 
different in size from that associated with other sites, and cannot 
dynamically undergo large size variations. 



• It must be possible to express the algorithm in terms of tasks -
sequential steps done across many sites. If the bulk of the 
computation does not reside in these tasks, then the Canopy 
application will not take full advantage of the multi-processor 
system. 

To avoid inefficient running, additional properties are desirable: 
• The number of sites worked on should greatly exceed the number of 

nodes, to minimize between-task synchronization losses. 
• The average number of internode communications required per site 

for the task routines, should be small relative to the amount of 
computation done by the routine. The extent to which this criterion 
is met depends on the system's communications overhead. 

• The computational loads for various tasks should not differ wildly. If 
the load does vary greatly, but in a static manner, then explicit load 
balancing by supplying a carefully constructed site distribution 
function may be possible. 

These requirements are met, at least at some level, by a broad spectrum 
of grid-oriented algorithms. Some problems which appear to lack one or 
more of these properties can still be profitably approached using Canopy, 
either by re-couching the algorithm in a minor way, or by accepting a low 
efficiency in exchange for the greater ease in coding. An inefficient Canopy 
implementation may still be close to the best that can actually be 
accomplished on a particular system for a given algorithm. 

There are time consuming problems which involve very little data, or 
involve data which cannot be organized into instances of a few sorts of 
structures. These problems tend not to be suitable for attack via the Canopy 
paradigm. Similarly, if the algorithm cannot be expressed as a sequence of 
tasks, then it may be unsuitable for running with the Canopy 
underpinning. Canopy currently does not include concepts appropriate for 
certain changes while an application is running: dynamic load balancing, 
changing grid size or connectivity, or changing field allocation for the sites 
("time-varying numbers of particles at each site"). 

Costs Associated With Using Canopy 
There are costs associated with the advantages of Canopy. The most 

basic limitation is that the whole scheme is useful because the proper 
paradigm and concepts for a class of grid-oriented problems has been 
identified. Problems falling outside this class are at best awkward to attack 
using Canopy. It may be possible to broaden the applicability of Canopy by 
expanding the concepts to include other classes of problems, but that has 
not been done to date. 

A second cost is the requirement that the system constitute a "canopy 
platform" - MIMD processors and asynchronous, global "memory access" 
style of communication. The multiple instruction stream limitation is not 
severe, since the intention from the outset was to be able to explore MIMD 
algorithms, but the communications requirement can be restrictive. 

A third price is paid in program efficiency. In order to implement the 
natural concepts identified, it was necessary to take an approach in which 



the basic unit of work is associated with one site of a grid. That is, the 
natural granularity of the problem is typically small compared with the 
portion of the entire lattice residing on a processing node. This has 
implications which we can identify as being associated with computation 
granularity and communications granularity. 

Because the software underpinning works on a one site basis, vectorized 
or pipelined operations are restricted to a typical length associated with the 
work to do for one site. For many nearly-SIMD algorithms, there exist 
alternative approaches in which the length is associated with a fraction of 
the entire lattice - Canopy cannot take advantage of these efficiency gains. 
Except for particularly simple and regular algorithms, this "computation 
granularity" cost is not severe. 

Of more concern is a "communications granularity" cost: The Canopy 
user gives up, for ease of programming, the option of grouping many data 
accesses (associated with the same remote processor node) into a single 
access. That means that Canopy magnifies the cost associated with per­
communication overhead. For many systems designed without these 
requirements in mind, this overhead can be quite high; for systems 
intended as canopy platforms from the start, the inefficiency is tolerable. 

The natural Canopy concepts probably cannot be implemented without 
paying these granularity costs, unless one is willing to restrict the sorts of 
algorithms which can run. These inefficiencies are partially offset by 
efficiency gains due to modular program structures and efficient 
automated address computations. At any rate, it is more important to do 
the right algorithm slowly than to achieve a high Megaflop rate on the 
wrong algorithm - effective use of scientists' thought can be more critical 
than optimized use of computer time. 

Canopy and CHIP Routines and Data Types 
We list and briefly explain the various jargon terms associated with a 

Canopy program - defined data types, routine names, keywords, macros, 
and global variables set up by Canopy. The file canopy.h should be included 
in the application to provide these definitions, and function prototypes for 
the Canopy routines. 

We also list the public CHIP concepts. These are terms involved in the 
"public interface" to the Canopy Hardware Interface Package (CHIP). 
Canopy uses these to implement its functionality; the user is free to use 
CHIP concepts directly in applications. The canopy.h file includes chip.h, 
which provides definitions and prototypes for the public CHIP concepts. 

In addition, Canopy supplies various support libraries for convenience 
in defining grids, working with complex variables, and so forth. We will 
list concepts provided by the gridlib library, and grid.h. 

In these lists, we have highlighted the more basic, or more commonly 
used, concepts in boldface. 



CHIP Objects (Structures and Typedefs) 

CHIP object 
node_bits 

fu l l_addre ss 

semaphore 

data tyne 
structure 

structure 

structure 

CAN_do_dask_keyword 

Canopy Objects 

Specifies a particular node in the system. along with tag 
fields which are used in various ways. 
Specifies a memory location in the system. Consists of 
node_bits and an ordinary pointer. 
Memory locations set aside for implementing a resource­
lock semaphore. 
A structure describing how to handle a multi-node 
function argument. 

Some of the objects used in Canopy are internally defined as integers; 
these are often identifiers returned by a declaration routine (for instance, 
site_field returns a variable of type field). Other objects are arrays of 
integers. Still others are structures containing a full_address - this is 
defined in chip.h and is the multinode analogue to a pointer, specifying but 
node number and local memory location. 
Canooy object data type 
grid int 

site 

set 

field 

field_address 

coordinates 

direction 

pUlt 

map 

sync_ word 

full_address 

int 
int 

full_address 

int* 

int 

int* 

int 

full_address 

A collection of sites with specified coordinate and 
connectivity propeties. 
One of the points composing a grid. A variable of type site 
is used to specify a position o the grid. 
A collection of sites (forming a subset of a grid). 
A collection of identical data structures. One instance of 
the structure is associated with each site in a grid. 
Points to a field element: The structure associated with 
some field at a particular site. The direct use of 
field_address can improve efficiency in some cases. 
Array of integers large enough to hold one value per 
dimension of a grid. The coordinates associated with a 
site can have the obvious geometric interpretation. 
Integer selecting to one of several neighbors of a generic 
site. The obvious geometric interpretation applies. 
Array of integers containing a sequence of directions, 
defining a way of traversing from a generic site on a grid. 
A relationship associating points on a domain grid with 
points on a range grid. 
Pointer to a site to be synchronized within a compound 
task. The direct use of sync_word can improve efficiency 
in some cases. 

Canopy Keywords, Macros, and Global Variables 

The following definitions are provided in canopy.h: 
Canopy object data type 
HOME site* 
NOWHERE site 

NOGRID grid 

Pointer to the home site during task routine. 
The null site. If a node has no neighbor in some direction, 
the pointer to its neighbor points to NOWHERE. 
The null grid. 



READ 
WRITE 
STREAM_PER_SITE 

Keyword used by open_field_file. 
Keyword used by open_field_file. 
Keyword used to make a random number generator that 
generates one stream for each site. Useful in writing 
applications that pr l.lduce results independent of the 
number of nodes used. 

STREAM_PER_NODE Keyword used to make a random number generator that 
generates one stream on each node. Requires less 
memory and can be more efficient than stream per site. 

CHIP Keywords, Macros, and Global Variables 

The following global variables are provided in chip.h: 
CAN_number_of_nodes Number of nodes used by this job. 
CAN_number_this_nodes Index of this node. The control node is assigned index 0. 
CAN_this_node_bits A node_bits data type containing bits for this node. 
CAN_node_array An array containing node_bits for all the nodes in the job. 

The following are pointers to CAN_do_task_keyword variables, 
provided in chip.h to support various argument passing and amalgamation 
options: 
PASS Pass any type of argument except a function. 
FUNCTION 
SUM_REAL 
INTEGRATE 
MAX_REAL 
MIN_REAL 
SUM_INTEGER 
MAX_INTEGER 
MIN _INTEGER 
SUM_DOUBLE 
MAX_DOUBLE 
SUM_DOUBLE 
TAG_MAX_INTEG ER 
TAG_MAX_REAL 
TAG_MAX_DOUBLE 
END 

Pass a function. 
Sum up the returned arguments, as floats. 
Synonym for SUM_REAL. 
Take the maximum of the returned float arguments. 
Take the minimum of the returned float arguments. 
Sum up the returned arguments, as integers. 
Take the maximum of the returned integer arguments. 
Take the minimum of the returned integer arguments. 
Sum up the returned arguments, as double precision. 
Take the maximum of the returned double arguments. 
Take the minimum of the returned double arguments. 
Return the maximum value (integer, real, or double) and 
a tag field associated with it. Useful for finding the site 
with the largest value of some function. 
Not a CAN_do_task_keyword pointer, but just an integer 
value used to signify the end of the do_task triplet list. The 
same keyword delimits directions forming a path in the 
make_path routine. 

Keywords Defined in grid.lib 

The following definitions are provided in grid.h: 
X, Y, Z, T 1, 2, 3, 4 Useful in specifying various directions, as in: 
MINUS.){ -1 q = field_pointer_at_dir (quark, MINUS_Y); 
MINUS_Y -2 (site *)later = move_site(HOME, T); 
MINUS_Z -3 
MINUS_T -4 
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Canopy Routines 

Canopy provides the following declaration routines: 
arbitrary _grid Declare a grid using user-supplied functions for the grid 

site_field 
link_field 
overlap_fields 
cluster _fields 

set_of_sites 
redefine_set_of_sites 

define_rnap 

compose_map 

make_randorn_generator 

declare_lalloc_size 

connectivity and distribution. More commonly, a pre­
packaged routine from gridlib is used. 
Declare a field over the sites in a grid. 
Declare a field on the links of a grid. 
Force fields to share memory space. 
Force fields to be located consecutively in memory for each 
site. 
Define a set of sites, for later use in a do_task call. 
Change the definition of a set of sites. This is the only 
declaration routine called after complete_definitions. 
Define a map from one grid onto another, via a user­
supplied mapping function. 
Forms a map as the product of two previously defined 
maps. 
Declares a user-definied random number generator. Pre­
packaged generators are supplied in ranlib. 
The field access routines set aside an area for copying 
fields accessed from remote nodes during a task routine. 
If an unusually large amount of data will be accessed in 
this way, declare_lalloc_size can increase the size of that 
local allocation Oalloc) heap. 

complete_definitions Terminates the declaration section of a program. 

Task initiation is controlled by do_task routines: 
do_task Call some subroutine on each site in a set. 
do_task_n_times Call some subroutine on each site in a set, multiple times. 

Synchronization concepts apply, as for compound tasks. 
do_task_on_inverse_image Used within a task routine, calls a sub-task done on the 

sites which translate (under a given map) into the HOME 
site. 

do_task_on_inverse_image_set Within a task routine, calls a sub-task done on the sites 
which translate (under a given map) into the HOME 
site, and which are in a specified set of sites. This can 
be used with a compund set, to create a "compound sub­
task". 

Site and path manipulation routines: 
site_at_coordinates 
move_sit.e 

rnove_site_at_path 

site_at_dir 

site_at_path 

is_sarne_site 

Set a site variable to selected coordinates on a grid. 
Move a site one step in a specified direction, relative to 
some other site variable. 
Move a site according to a specified path, relative to some 
other site variable. 
Set a site variable to one step in a specified direction, 
relative to the HOME site. 
Set a site variable by moving along a specified path, 
relative to the HOME site. 
Test if two site variables refer to the same site. 



grid_supporting_site 
irnage_of_si te 
inverse_irnage_of_site 

get_coodinates 
get_coordinates_at_dir 

get_coordinates_at_path 

sprintf_site_coordinates 
make_path 

extend_path 
concat__path 
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Return the grid a specified site is part of. 
Retutrn the image of a site, under to a specified map. 
Return a pointer to a list of sites which map into the given 
site under a specified map. 

Coordinates associated with a given site variable. 
Coordinates associated with the site one step from HOME 
in a given direction. 
Coordinates associated with the site reached by proceeding 
from HOME via the given path. 
Write the site coordinates into a string. 
Place into an integer array data defining a path, formed 
from steps in a given set of directions (terminated by 
END). 
Extend a path by one step in a given direction. 
Extend a path by adding another path to the end. 

copy_path Copy the data defining a path, into another integer array. 
path_length Determine the length of a path, in number of steps. 

Field access and synchronization routines: 
field_pointer 

field_pointer _at_dir 

field_pointer_at_path 

put_field 
put_field_at_dir 

put_field_at_path 

link_field_pointer 
link_field_poin ter _at_dir 
link_field_pointer _at_path 
put_link_field 
put_link_field_at_dir 
put_link_field_at_path 
synchronize 

synchronize_at_dir 

Return pointer to read-only copy of the field element at a 
given site. May point to the actual fieold data, or a copy 
brought from a remote node. If the site is HOME inside a 
task (but not inside a sub-task), then the pointer always 
points to the actual field data, rather than a copy. 
Return pointer to read-only copy of the field element at the 
site one step in a given direction, from the HOME site. 
Return pointer to read-only copy of the field element at the 
site reached by a path, relative to the HOME site. 
Copy an object into the specified field element at a site; 
Copy an object into the specified field element at the site 
one step in a given direction, from the HOME site. 
Copy an object into the specified field element at the site 
reached by a path, relative to the HOME site. 
The link field access routines are the same as the site field 
access routines, but take one more argument -a direction. 
They provide access to the link field element on the link 
originating at a site, and traveling in that direction. 

In compound tasks, wait until the specified site reaches the 
current synchronization level. 
Synchronizes with a site specified by direction from the 
HOME site. 

synchronize_at_path Synchronizes with a site specified by a path from the 
HOME site. 

sync_ word The sync_ word routines provide a slightly more efficient 
sync_word_at_dir way of syncronizing, which requires some preparation in 
sync_word_at_path advance. 
synchronize_ with_synch_ word 

l'''r ,,,, 



42 

synch_field_pointer 
synch_field_pointer _at_dir 
synch_field_pointer _at_path 

Optimized combinations of synchronization and field 
access routines. 

address_of_field 
address_of_field_at_dir 
address_of_field_at_path 
address_of_link_fie Id 
address_of_fieldlink __ at_dir 
address_of_field_link_at_path 
field_pointer _from_address 
sync_fie ld_poin ter _from_address 
put_field_at_field_address 
length_of_field_address_field 

Some program<:. can run more efficiently by computing 
and storing field addresses in advance. These routines 
support that optimization. 

Given a field_address, return the length of the field 
starting at that address. 

broadcast 

reset_lalloc 

intcpy 

CHIP Public Routines 

Make the value of a global variable set in the control node 
known to all the task routines in every node in the job. 
Reclaims all the memory in a lalloc heap, pointers 
obtained by invalidating previous field_pointer calls. 
Used primarily if the control program accesses field data, 
since the lalloc heap is automatically cleared between 
instances of task routines. 
Copies a word-aligned array of data in the fastest 
available manner. 

The routines in CHIP are in general machine dependant. However, the 
interfaces to the routines are public and fixed in a machine independant 
manner, so they can be used to write applications which go outside the 
Canopy paradigm, yet which are portable to other Canopy plateforms. 
These are the public CHIP routines: 

remote_ read 
remote_read_and_keep 
remote_read_more 
remote_read_more_and_keep 

Read some amount of data from a given full_address into 
a specified address on the local node. The more/keep 
versions are advisory only, allowing efficiency gains 
when multiple blocks will be transfered to the same node. 
These routines check for full_address refering to the local 
node, and behave properly in that case as well. 

remote_ write Write some amount of data from a specified address on the 
remote_write_and_keep local node to a given full_address. The more/keep 
remote_ write_more versions are advisory only, allowing efficiency gains 
remote_ write_more_and_keep when multiple blocks will be transfered to the same node. 

These routines check for full_address refering to the local 
node, and behave properly in that case as well. 



init_resource 
lock_resource 
free_resource 
wait_for _resource 

do_on_all_nodes 

Routines in gricllib 
periodic_grid 

chunky _periodic_grid 

periodic_linear _grid 
periodic_square_grid 
periodic_cubic_grid 
periodic_hypercubic_grid 
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These routines provide a standard way of contending for 
resources via semaphores. Each resource is represented 
by a "semaphore variable" at a full_address; thus there 
can be an arbitrary number of resources, the variables for 
which are distributed arbitrarily among th.o nodes. 
Invokes a routine on every node. Accepts arguments in 
the same triplet form as do_task. 

Defines a periodic Cartesian grid in an arbitrary number 
of dimensions. The distribution of sites to nodes is done in 
a way which is reasonable for any shape of grid., but not 
optimal in terms 
Defines a periodic Cartesian grid in an arbitrary number 
of dimensions. The distribution of sites to nodes is done in 
a way which minimizes the surface/volume ratio for the 
volume handled by each node. This routine is useful when 
there is a natural way of dividing the grid into rectilinear 
blocks and distributing them evenly to the nodes. 

Conveniently define Cartesian periodic grids in 
commonly used numbers of dimensions. 

chunky _periodic_square_grid 
chunky _periodic_cubic_gri d 
chunky _periodic_hypercubic_grid 
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