
0 Fermi National Accelerator Laboratory

The ACPMAPS System
A detailed overview

M. Fischler

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

FERMILAB-TM-1780

O Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy

'"'I'

The ACPMAPS System
(A Detailed Overview)

Mark Fischler
Fermilab Computer R&D Department

Introduction ... 2

An Overview of ACPMAPS ... 3
Architecture Requirements ... 3
System Overview .. 5

Processors ... 5
Communication .. 6
1/0 .. 7
Software .. 8
Host Computer ... 8

Hardware .. 9
Communications Backbone .. 11
Processor Modules ... 16
Distributed 1/0 ... 17
The Host .. 19

ACPMAPS Software ... ID
Creating and Running Applications .. ID
How the ACPMAPS System Software Runs Applications 21

Canopy ... 23
Goals of Canopy ... 23
General Strategy ... 24
Concepts ... 25

Geometrical concepts - details .. 25
Flow control concepts - details .. 28

Implementation Strategy .. 33
Organizational Strategy .. 33
Implementation of Concepts .. 34

When is Canopy Applicable .. 35
Costs Associated With Using Canopy ... 36
Canopy and CHIP Routines and Data Types :rT
Acknowledgement ... 42

2

Introduction
This paper describes the ACPMAPS computing system - its purpose,

its hardw~re architecture, how the system is used, and relevant
programming paradigms and concepts. Features of the hardware and
software will be discussed in some detail, both quantitative and qualitative.
This should give some perspective as to the suitability of the ACPMAPS
system for various classes of applications, and as to where this system
stands in the spectrum of today's supercomputers.

The ACPMAPS project at Fermilab was initiated in 1987 as a
collaboration between the Advanced Computer Program (now the
Computer R&D department) and the lattice gauge physicists in the Theory
department. ACPMAPS (pronounced A-C-P-maps) is an acronym for
Advanced Computer Program Multiple Array Processor System - this
acronym is no longer accurate, but the name has stuck. Although
research physics computations were done on ACPMAPS as early as 1989,
the full-scale system was commissioned as a reliable physics tool in early
1991. The original ACPMAPS was a 5 Gflop (peak) system. An upgrade by
a factor of ten in compute power and memory size, by substituting a new
CPU board, will occur during early 1992 - this is referred to as the
ACPMAPS Upgrade or 50 GF ACPMAPS. The appellation ACPMAPS II
has also been applied to the upgrade; this is somewhat of a misnomer,
since only one of five major components was changed.

The idea of the project was to create a system suitable both for production
running of lattice gauge codes, and for efficient investigation of new
algorithms. These goals are less orthogonal than might be supposed, since
to seriously study how a group of proposed algorithms will behave requires
nearly as much compute power as a production run using one of those
algorithms. This is often beyond the reach of ordinary computing systems,
so in order to investigate algorithms, a suitable supercomputer is required.

The ACPMAPS system can be divided into five major subsystems, three
hardware and two software. The hardware can be described as a
distributed memory MIMD (multiple instruction I multiple data) system,
with a flat addressing space and high speed I low latency communications
network, augmented by a large distributed disk/tape 1/0 subsystem. The
components are:

• A CPU module containing a processor and a fairly large local
memory. The first generation, this was based on the 20 Mflop Weitek
XL-8032 chip set, attached to 10 Mbytes of memory. The upgraded
CPU module is based on the 80 Mflop Intel i860, containing two
processing units, each with 32 Mbytes of memory. The original and
upgraded systems comprise 256 and 306 CPU modules respectively -
total peak speeds of 5 Gflops and 50 Gflops. (The achieved Gflop rate
on actual physics problems usually ranges from 15% - 40% of the
peak speed.)

• A communication backbone consisting of 36 crossbar switch crates,
with active backplanes implementing 16-way crossbar switches. The

3

crates are interconnected by differential high-bandwidth ribbon
cables, to form a flat addressing space network analogous to a
telephone switching network. Any processor (node) can establish a
connection to any other node independent of other communications
going on. The crossbar swiiches provide sub-microsecond arbitration
and 20 Mbyte/sec transfer rates, so communications overhead is quite
low.

• A distributed I/O system, capable of storing and retrieving large data
sets in a reasonable time frame. This consists of a 20 Gbyte disk
system staging data to 32 helical scan large capacity 8mm tape
drives. The communications backbone allows processors to access
the I/O devices using the same flat addressing space employed in
interprocessor communication. This decouples the arrangement of
data on processing nodes from the arrangement of data on storage
media.

• A software framework allowing the user to code in terms of the
concepts which permeate the physics of the problems being attacked.
This framework, called Canopy, consists of a library of routines
which allow the user to express the nature of the algorithm, without
having to worry about details of how the processing will be done in
parallel. Canopy improves the efficiency of scientists' algorithm
investigation, by eliminating the need for vast expertise in parallel
programming techniques. It can easily and beneficially be ported to
other platforms including MIMD parallel computers and single­
thread computers.

• A set of software tools for hosting the users' jobs, controlling
allocation of resources, and so forth. ACPMAPS is a multi-user
shared system; a spooler facilitates submission of jobs from multiple
Unix computers and initiates each job at a time deemed appropriate
in light of resource requirements.

This paper will consists of two sections: First there is a complete
overview of the ACPMAPS system, for use by those who wish to learn what
the system does and how it behaves. This is followed by detailed
descriptions of each of the above components of ACPMAPS - the latter
section is intended for ACPMAPS users. Further information can be found
in documentation including the Canopy Manual and the hardware
manuals for the various ACPMAPS components.

An Ovexyiew ofACPMAPS

Design Criteria
The requirements for the hardware of ACPMAPS were driven by the

sort of software which was intended to be run. This consists of jobs written
in the Canopy framework. Although Canopy concepts will be detailed
below, some key requirements should be noted when examining the
hardware architecture.

It was not considered acceptable to reject out of hand all algorithms
requiring MIMD processing. This means that the system has to have

4

MIMD architecture. For a given algorithm, the MIMD approach is no
more complicated to express than the SIMD approach (if one exists), and is
indeed easier to implement in a straightforward way when the geometry of
the problem is an imperfect match to the system hardware. Certainly the
natural approach to programming currently in vogue is tu think in terms of
objects and actions - inherently MIMD concepts.

Similarly, it was considered unacceptable to restrict algorithms based
on the nature of communications requirements. This has several
consequences:

• Any processor must be able to access data from any other processor
(otherwise particular patterns of communication will become
impossible);

• The communication cannot require synchronous operation across
many nodes (otherwise MIMD becomes restricted);

• Any processor may initiate a data access without foreknowledge or
preparation on the part of any other (since in general algorithms, the
pattern of communication may be data dependant).

We require that the processors in the system be capable of running C
programs. C allows for clean address manipulation, which is important in
managing MIMD concepts, and has the advantage of being ubiquitous.

A further practical requirement on communications is low latency. The
Canopy paradigm encourages the user to express the algorithm in terms in
which the granularity naturally matches the problem. In many cases, this
leads to frequent medium-length data accesses rather than infrequent
grouped data transfers. It is desirable that the price paid for the increased
communications frequency be acceptably small; otherwise, users will
attempt to re-formulate their algorithms in less natural terms.

There are several workable approaches to achieving these
communications requirements. True shared memory, of course, will
work, but so will a multitude of explicit communications schemes,
permitting distributed memory architectures. These can take the form of
directly accessing dual-ported memories or message-passing schemes
involving interrupts of the slave processor (the owner of the memory being
accessed). The connectivity can be any sort of crossbar, mesh, hypercube or
other grid; routing can be done in hardware or software, and may involve
intermediate nodes (increasing communications latency). On the other
hand, systems which require the explicit cooperation (in user code) of the
slave node to permit access to its data, or which switch all communications
paths in a synchronous manner, or which only permit communication to
some set of "neighboring" processors, do not meet the requirements.

The strategy employed by ACPMAPS involves distributed memory
accessible across transparent hardware-routed links. This access is done
directly (in the earlier 5 Gflop system), or by messages interrupting the
slave processor (in the upgraded 50 Gflop i860 system).

Any system meeting the above MIMD and communications
requirements, and which can run C programs on its individual
processors, may be considered a candidate for porting the Canopy software.
We call a system satisfying the above model a Canopy platform. Note that

5

single thread computers generally satisfy these requirements in a trivial
way.

To enhance its utility as a tool for algorithm exploration, a Canopy
platform shouid aiso have several features. The most important of these is
adequate memory space. Large memory sizes are important for four
reasons:

• Algorithms that might otherwise be rejected out of hand due to
memory considerations can be explored;

• The user need not devote substantial consideration to ideas of which
data structures can share space, at least until after the behavior of
the algorithm itself is understood;

• It is often beneficial to explore the behavior of an algorithm on a
problem size which would be too large for a high statistic production
run;

• When a system has too little memory for an application, that is a
hard limit. If an application is sufficiently important, slightly
insufficient speed is a soft limitation - you may be able to accept
lower statistics, or longer running time.

Another important feature is a distributed mass storage I/O subsystem.
This should have sufficient disk space, and adequate bandwidth to tapes for
storing masses of data. It might be imagined that you ought to be able to
run the entire program without any external mass storage device,
producing a manageably small final result. This is not the case even for
mature production jobs, and it is emphatically not true for algorithm
exploration.

A third useful feature for any algorithm exploration platform is multi­
user capability. If the system cannot be shared, one of two situations will
occur: (a) Users with "small" jobs (too large to run on conventional
computers) testing new ideas will have to wait for long production and test
jobs to complete; or (b) several small development systems will be needed,
and the size and power requirements of these systems must be guessed in
advance.

A final useful property in any potential Canopy platform is a host
computer running a version of Unix which is reasonably close to POSIX
compliant. This makes porting the Canopy hosting tools straightforward,
and allows the users to make use of shell scripts and other Unix tools they
have been using on a variety of platforms.

System Overview
Here we describe the way the ACPMAPS system implements a Canopy

platform, from the point of view of the how the system software sees the
architecture. The purpose of each component will be put into perspective
here; later, further details are provided.
Processors

The system includes numerous processor nodes. Each processor node
consists of a commercially available CPU chip (or chip set), with local
memory. Each processor runs its program with instruction stream

6

independent of the other processors - thus the first requirement (MIMD
processing) is trivially satisfied. The aggregate of the local memories
makes up the entire memory in the system, that is, ACPMAPS is a
distributed memory system.

In the 5 Gflop system, the processor nodes were each a single board,
using the Weitek XL-8032 chip set, and with 10 Mbytes of memory; such a
board is called an FPAP (Floating Point Array Processor). In the upgraded
system, two processor nodes occupy one physical board. Each processor
node has an Intel i860 (80 Mflops peak performance) and 32 Mbytes of
memory. The board containing two i860 processor nodes is referred to as a
D860 ("Dual 860") module.

Each processor node runs one process at any given time - the system is
shared by assigning a set of nodes to each job. Within the system, there are
no restrictions on which (or pow many) nodes can be assigned to which job.
For a given job, one of the processors is designated the control node. The
non-distributed portion of the user's job runs on the control node; the
distributed tasks are of course run by all the nodes assigned to that job.
Communication

The second requirement, of "flat" access to the entire memory, is
implemented by means of a communications system, based on
interconnected crossbar switch crates. A processor node can establish a
channel to access any other node in the system. (We refer to the processor
node initiating communication as the master, and the node being accessed
as the slave for a particular communication.) The switching to establish
one channel is performed independently of (and transparently to) any other
communications which may be proceeding. Thus the communications
system is analogous to a telephone switching network: Any phone can
access any other phone, asynchronously with various other connections
being established. As with a phone network, the establishment of a
communications channel can temporarily be blocked (a "busy signal")
either because the target is involved in another communication, or because
there is no unused path available to get from one crate to another. A strong
point of the ACPMAPS hardware is the very low latency required for
switching.

Processor nodes are not the only modules which can be reached via this
communications backbone. From the viewpoint of all software, the various
modules in ACPMAPS can be classed according to whether they have data
which can be accessed in this way. Modules which can be accessed by
means of an address in this "flat communications space" are referred to as
a node. Examples of nodes include processor nodes, memory modules used
as I/O buffers, and SCSI controllers for the disk and tape drives.
(Occasionally, where there is no danger of ambiguity, the ACPMAPS
documentation will use "node" when it more properly means "processor
node".) Examples of ACPMAPS components which are !1Q1 nodes are the
crossbar switch crates and interconnect boards which make up the
communications backbone itself, and the host computer. The processor
nodes, for instance, cannot directly control the behavior of the host or
switches by accessing data assigned to those devices.

7

Every memory location which can be accessed via the communications
backbone is assigned a unique full address. The full address specifies a
node number and a local address within that node. The node number
specifies information as to how to reach the node (which slot number and
path on the backbone to connect to over the backbone). The node number
also contains information as to the type of module, and in the case of
multiple nodes accessible through the same slot, a field selecting which
node to access. Each node in the system is assigned a unique node number.
Any arbitrary processor node can access any node in the system, referring
to whatever full address is required. The local address portion of a full
address can refer to the local memory of a processor node, or a register
address or an address on some other bus when accessing other kinds of
nodes. The current implementation of ACPMAPS software supports up to
64K nodes and a 32-bit local address space.

(An exception to the rule that any processor node can access any full
address in the system is that the FPAP processors in the 5GF system
cannot write to their own local instruction memory. This feature provides
the means of protecting one user job from being affected by another job
accessing its memory space due to communications specifying erroneous
full addresses - a jump table specifying which nodes can be accessed is
kept as instruction memory. For the upgraded system, the same protection
is implemented by utilizing the i860 memory mapping/supervisor mode
capabilities. In neither case do we claim the mechanism to be secure
against malicious intentional mischief, but the protection against
accidental corruption of results is pretty absolute. Intra-job "security"
issues are discussed in more detail later.)

Communications can always be viewed as ordered: If a master
performs several data accesses to a slave, the order in which the effects of
the communications appear to the slave is the same as the order of
communications done by the master. In particular, if, say, ten words are
transferred, then the last word will be changed last. However,
communications involving the transfer of more than one word of data
should not be viewed as being atomic. Mechanisms are provided to
establish semaphores which are valid independent of hardware used.

The communications hardware is flexible enough to present a wide
choice as to how the system will physically be wired. Details of the physical
connectivity of the crates composing the ACPMAPS system impact
performance, but conceptually are unimportant. A numbering scheme
relates the node field of the full address, to particular crates and slots, in a
regular manner. Details of the connectivity chosen and the numbering
scheme used in ACPMAPS will be presented later.
110

The distributed I/O subsystem consists of multiple disks and tape drives
(currently 32 WREN VI disks, providing 20 Gbytes of space, and 32 Exabyte
tape drives). Logically, the paradigm for the I/O subsystem is that a file
resides on a volume consisting of one or more disks or tapes - files on the
distributed system are identified by a name in the form
volume_name#file_name and are accessed via Canopy routines such as

8

read_field, open_field_file, and so forth. When field data (which is
distributed over all the nodes in a job) is written to a distributed I/O volume,
the Canopy software will guide the sending of some fraction of the data to
each disk or tape drive, by designating some processors to gather and route
the appropriate data. This process is communications intensive, but the
internode communications bandwidth is much greater than the available
bandwidth to disk or tape, so the communications costs are negligible.

The disk and tape controllers for this I/O system are accessed as
ordinary nodes. There is also I/O buffer memory, accessible both as
ordinary nodes and by the controllers. The disk and tape drives themselves
are assigned node numbers for the purposes of bookkeeping and resource
allocation, but are unlike the usual ACPMAPS nodes in that they do not
have memory - it is meaningless to try to access them directly by
specifying some appropriate full address.
Software

The ACPMAPS software will be discussed in detail later. It can be
divided into two broad pieces: The Canopy software which is used to create
applications to run on ACPMAPS, and various software tools to guide the
running of applications. Canopy is a library of routines to be linked with
user code; the tools are executables and shell scripts to handle building,
scheduling and servicing applications on the shared system.
Host Computer

The ACPMAPS system utilizes a Unix host computer to provide access
to the outside networked world, start up jobs on the system, service Unix
calls made by programs running on the processor nodes, and provide
allocation and debugging capability. Various software tools are provided
to accomplish these functions - three important ones are the Canopy
hosting tool, the spooler, and the db tool.

The spooler is the program controls the system. A single instance of the
spooler runs on one host computer for the entire system. Its primary
purpose is to schedule jobs, assign processor nodes and I/O resources, and
cause each submitted user job to start up at an appropriate time. Secondary
functions of the spooler include acting as a central point for control of
distributed I/O operations, and keeping logs of system usage and
exceptional conditions.

The Canopy hosting tool coordinates with the spooler to run a user job.
The user runs one instance of the hosting tool for each job submitted. This
tool initiates downloading of the user programs to the processor nodes, and
sends commands to the processors to commence running the user code.
While the job is running, the hosting tool will service UNIX calls made by
the control node, and periodically check all nodes to make sure nothing
catastrophic has occurred. Since UNIX calls are serviced by the host, a
Canopy job running on ACPMAPS can freely access files on the normal
UNIX file system.

Although only one copy of the spooler should be running on the system
at any time, multiple copies of the hosting tool may be running. The system

9

can be have multiple host computers attached at any given time, and
hosting tools may run on any of the hosting computers. Currently two
varieties of host computers are supported: An SGI 4D25, and an Ultrix
Microvax.

The db tool is a low-level processor node debugging aid. It allows the
user to allocate sets of processors, to access the memories of processors,
and to issue various commands such as reset, run program, suspend and
resume. Although in principle there is never a need to allocate a particular
set of nodes (as opposed to some number of nodes), the db tool allows one to
do so - this can be useful for troubleshooting and for evaluation of the
impact of communications topology on performance.

The host computer also can run the various compilers and shell scripts
necessary to create an executable for a Canopy job. (Actually, this is just a
convenience and not an essential feature of a Canopy platform.) Thus the
user logged into the system host can cross-compile his code (using UNIX
make tools if desired), submit jobs to run on ACPMAPS via the canopy
command (which interacts with the spooler), create UNIX input and result
files, and control the execution of jobs via UNIX shell scripts, all on the
same host computer.

Hardware
The ACPMAPS system consists of processor boards, communications

modules, modules to interface with SCSI I/O devices, the I/O devices
themselves, host computers, and modules to interface the hosts to the
system. This section will provide an overview of the nature of these
components and the interrelations among them.

Physically, the full scale system appears as a collection of a dozen racks
(arranged as four planes of three racks each). Each rack holds 3 crates of
modules and up to 8 disk and tape drives. The racks are about 2 feet wide by
3 feet deep, and are six feet tall. The system comprises roughly 600
modules, each of which is a card occupying one slot in one of the crates.
Most of the modules are processor boards or communication interface
boards. The layout of the system is as follows:

10

.'
I

A

·' I

B

I
I

·'

c

"

"

D ACPMAPS System (top view)

·,
....

VME Backplane

\
\

BmmTape

Cable Channel

~ / '--~~~~~~/ "-7-' 7
/ / __ _, /

BSBCrale
/ __ J

/

Figure 1: Layout of the ACPMAPS system

11

Communications Backbone

The ACPMAPS system can logically be viewed as a collection of
processor nodes inhabiting a communications backbone. The key element
of this backbone is the BSB crate (Bus Switch Backplane). This is a ~rate
with 16 slots, each of which can be occupied by a module (card) -
analogous to a VME or Multibus II crate. The BSB, however, has an active
backplane, consisting of:

• Sufficient 16-way crossbar switch chips to implement full crossbar of
a 50-bit data and control paths between the 16 slots.

• Logic to control the switching of the configurations of the crossbars
chips, and to arbitrate among requesting masters. The maximum
time required to arbitrate and reconfigure the crossbar switches is
700 nsec. If a path from one node to another requires multiple hops
(traverses more than one switch crate), then each crate must
arbitrate - 700 nsec per hop.

• A PROM to supply routing information - this will allow any node to
transparently access the memory of any other node in the system.
Each BSB crate configures itself independently of the others, in
response to addresses presented by masters in its slots.

The BSB slots can each be occupied by a module containing one or more
processor nodes, or by a BSIB (Bus Switch Interface Board) card. This card
is similar in appearance to the processor cards, except the BSIB has a pair
of ribbon cables attached at the front panel. The BSIB allows the
establishment of a communications channel going across a BSB backplane
and out the BSIB onto BranchBus. BranchBus is a 50-bit wide bus (control
signals plus a 32-bit data path) implemented in differential RS485 as two
ribbon cables, each carrying 25 differential pairs. It has multi-master
capabilities and a particularly simple bus protocol - the protocol along the
BSB backplane matches that of BranchBus.

The bandwidth of data through each channel on the BSB backplane is 20
Mbytes per second. The BranchBus data bandwidth matches this. The
BSIB module re-synchronizes data and control signals, acting as both an
interface and a repeater; thus a data channel can be established across
multiple BSB switch backplanes and multiple BranchBus cables with a
reliable bandwidth of 20 Mbytes per second. The addressing information
needed to control the reconfiguration of switches to establish the channel is
propagated along the same path as the control and data signals. This is
illustrated below, for a situation where one CPU has established a channel
to another CPU which goes through on intermediate BSB switch crate and
across to separate cables. Note that communications across other channels
can be proceeding at the same time.

12

Figure 2: An illustration of inter-CPU communication

Note that the communications hardware does not require every crate to
have a direct connection to every other crate. A given pair of crates can
have no direct connection, or be connected by one or more BranchBus
cables. Typically, a system would be configured with some selected
topology, in which certain crates are connected by one bus - the intercrate
bandwidth of 20 Mbytes/second is shared by all the nodes in those crates.
Thus depending on the nature of the problem being solved, there is potential
for a bottleneck in intercrate bandwidth. Changing the topology of the
system would be a matter of physically re-cabling the modules and
changing the routing PROMs - in general, using more BSB crates and

13

BSIB modules per processor module would reduce the impact of intercrate
bandwidth bottlenecks.
The Communication Topology

The topology selected for .. A .. CPMAPS is that of a 3x3x2x2 hypercube of
crates, augmented by connections along all the diagonals in the 3x3 and 2x2
sectors. For typical problems, the impact of bandwidth bottlenecks in this
configuration is acceptably small (up to 15% for the upgraded system).

As shown in figure 1 above, the ACPMAPS system comprise four
"planes" (labeled A, B, C, and D). Each plane consists of 9 crates,
connected (using BSIB modules in four slots) to form a 3x3 grid, with all
diagonals. Within the plane, each BranchBus cable connects three crates
("three on a bus"). This connectivity is depicted below:

--,
I I 3 I

'-'---'
Figure 3: Connections between crates in one plane of ACPMAPS

14

There are BSIB modules in three more slots of each crate, connecting it
with the corresponding crate in each of the other planes to form a
tetrahedron. (A tetrahedron is the same as a 2x2 square augmented by both
the diagonals - each crate is connected by a Branchbus cable to each of the
three others.) The interplane connections can thus be viewed as nine
tetrahedrons of crates:

Figure 4: The interplane connections in ACPMAPS

For applications with amorphous communications requirements, this
topology has slight advantages compared to a strict hypercube of, say, 32
crates. For example, in such a hypercube, the average path to a randomly
chosen crate occupies 2.5 busses out of 80 - exactly the "fair share" of the
80 busses in the system. In the ACPMAPS topology, the average path
occupies 1.75 busses out of 102 - only 62% of the fair share. Of course, the
hypercube requires only five BSIB slots per crate, rather than seven; even
talcing that into account, communication is 15% more costly in a hypercube.
Another advantage is that in the ACPMAPS configuration, no crate is more
than two hops from any other. Of course, this configuration requires "three
on a bus" cables, while the hypercube would not.

15

The Communication Mechanism

The processor boards each contain one or more independent processor
nodes (CPU and memory). Here, we will describe the D860 module in the
upgraded system, which contains two nodes, each based on an i860 CPU
and 32 Mbytes of memory. The two processor nodes occupying a D860
module (a node and its partner node) share one interface to the BSB
backplane. This interface consists of a local bus to move data from the
individual nodes to the BSB interface, a large reprogrammable gate array
chip to support the BranchBus protocol, and a set of FIFO chips to buffer up
to BK of incoming or outgoing data. When a node acts as a master to access
the memory of another processor (the "slave"), the sequence of events will
be:

• The master arbitrates for its local bus (this arbitration logic is done by
the gate array chip, referred to as the BIC - Bus Interface Chip);

• The BIC performs the protocol to request a channel to be opened on
the BSB;

• The BSB makes a connection between the master's slot and the
appropriate destination slot (based on the address supplied for the
communication; this is looked up in the BSB's PROM);

• The communications might then have arrived at the target node, or
might be routed through a BSIB to another switch crate for further
routing - ultimately, to the target slave node;

• The slave node responds to the the communication, and either
provides the data required or accepts the data sent.

The D860 slave node will be interrupted when the communications
channel is established. This is necessary because the i860 processor
depends heavily on internal cache memory for efficient performance. Since
no "cache snooping" mechanism is available to invalidate cache lines for
memory that has changed (or to force the processor to write the current
value to main memory if it has been updated), the slave CPU must
participate in each communication, reading from (or writing to) its own
local memory. The cost of this participation by the slave CPU (in terms of
additional latency on data access) is partly offset by several advantages in
having a powerful processor directly involved in the communication. For
example, longitudinal parity checksumming can be implemented to protect
against undetected loss of data in a packet, and special-purpose transfers
such as semaphores can be provided.

When the slave node is an FPAP (in the 5 GF system), the
communications mechanism is somewhat different, in that the slave
processor is not interrupted and does not participate in the data access.
The FPAP memory is dual ported, and can be read and written directly
across the bus, slowing the slave processor only to the extent that memory
cycles have been stolen. The i860 memory is single ported, accessible via
the processor only - all communications are under program control.

On the D860, communications of up to the length transferred in a single
block are truly and inherently atomic - the slave processor is interrupted
and does no further user processing until the transfer is complete.
Further, the system software will retain the open channel between blocks of

--":-'--·-- - -

16

a long communication, so transfers of any length are always atomic.
When the slave is an FP AP, transfers are not atomic: The slave can
conceivably examine the first word of data sent, and take action based on
that, before the last word of the transfer has arrived. The ACPMAPS
software is written assuming the worst (non-atomic) case, and thus does
not depend on the atomic nature of D860 communication.
Processor Modules

The processor module in the original ACPMAPS, called the FPAP, is
based on the Weitek XL-8032 processor, a 3-chip set. The floating point unit
has a short (3 stage) pipeline and the integer instruction set is of a RISC
flavor. The peak speed of the FPAP is 20 Mflops; 8 Mbytes of data memory
(and 2 Mbytes of instruction memory) are provided. The upgraded system
uses a D860 board, which contains two independent processor units, each
based on an Intel i860 CPU. This chip also has a 3 stage floating point
pipeline and a RISC-like integer instruction set. The peak speed of each
i860 processor is 80 Mflops; each processor is supplied with 32 Mbytes of
memory. Thus to first order, the D860 board is 8 times as powerful as the
FPAP.

The D860 memory uses 4 Mbyte DRAM chips; these are mounted on
SIPs to minimize the board space needed. (Custom SIPs were required
because the BSB crate uses the same board spacing as VME, and most off­
the-shelf SIMMs are too tall for this spacing.) The memory system for each
node is controlled by fast PALs and can deliver a 64-bit word of data every 50
nsec. The latency for memory access depends on whether there is a "page"
change (a change in the row address supplied to memory - the "page size"
for this purpose is 4K bytes). Without a page change, the data is delivered
50 nsec after the address is asserted (this is as fast as the i860 can take it).
If a page miss occurs, the latency is 125 to 175 nsec.

The cycle times of the FPAP and i860 processors are respectively 100 and
25 nsec. Their floating point architectures are very similar: One 32-bit
floating point add and one floating multiply can be performed every cycle,
with a pipeline length of 3 steps. The memory size and access bandwidth
also scales with the cycle speed, although the page miss latency is only two
extra cycles for the FPAP. One difference which can be important for
certain problems is that the i860 can perform 64-bit floating point operations
(at half its single precision speed), while the FP AP has no double precision
capability.

In spite of the similarities in their architectures, the i860 is somewhat
less efficient in running actual problems. For example, where the FPAP
might achieve an actual performance of 7 Mflops per processor on a
particular algorithm, each i860 might only get 18 Mflops (rather than 28).
The main causes of this inefficiency are related to memory access.
Although the bandwidth to main data memory is one 32-bit word per cycle
in both cases, the memory latency for page misses is much greater for the
D860. Also, the FPAP uses a separate bus for instruction memory fetches.
While these effects should be offset by the fact that the i860 has internal
cache, the cache is rather small and uses a write-back virtual cache
strategy that leads to surprisingly frequent cache misses. Although the

17

D860 is less efficient relative to peak power, the factor of four increase in
peak speed and memory size (and the presence of two processor nodes per
module) means the upgrade to D860's represents a substantial increase in
effective computing power.
Distribut.ed. 1/0

The large-scale distributed I/O subsystem is based on SCSI disk and tape
drives. These are "commodity" devices, available at low cost. The tape
drives are Exabyte helical scan 2.3 Gbyte 8mm devices; the disks currently
used are WREN VI drives with 650 Mbytes of data each. (Thus the 32 disk
and 32 tape drives provide 20 Gbytes of disk space and 70 Gbytes of tape on
line.) These disk and tape drives occupy 16 separate SCSI buses (two tapes
and two disks per bus); although up to seven devices can share a bus, the
current arrangement was chosen so as to minimize inefficiencies due to
SCSI bus bandwidth limitations (2-4 Mbytes/sec per SCSI bus).

The connection between the BranchBus based communications
backbone, and the SCSI buses used for 1/0, is based on modules residing in
4-slot VME crates. These are referred to as VME cratelets and are located
inside each BSB switch crate. (The switch crate backplane is somewhat
wider than required for 16 slots, and deeper than a standard 6U VME card;
this makes this compact arrangement possible.) The physical arrangement
is shown below:

1A

··.· .
j)-:.:-::-::·:.:-::·:.:·:.:·:.:-:.:-:.:-:.:-:.:-::~

::·: ·: .·.. 2A -:
· ... ··.···
>:~{
. :·:.:-:.:-... · ... · ... · ... · ... · ... · ... · ... · ... · ... · ... · ... ··.· .:·:.:·:.;. ;:~;:~· ·.:
-:·:-:·:·: ~=n= ·:
·:·:·:·:·: r::r:: 3A ·: -:':.:':-: ~~r:~ ·:
·:':-:':·: ~~~~ -:
•· .. · •. xxxx •

• •• · .. ·. ::x::x ·• -:>:>: ?!~~x •:
·:.:-:_:·:.:·:.:-:.:·:.:-:_:·:.:-:_:·:.:-:.:-:.:.:.:-:.:·:.:-:
·:.:·:.:·:.:·:.:·:.:·:.:·:.:·:.:·:.:·:.:·:.:·:.:·:.:·:.:·:.:·:

ID
ID
rm
1111

·.
4A

SA
:-:.:·:.:-:
~:~<<ii;;;;;...., ____ ...
~: ~: ~: ~: ~: ~.:. ;;~~;~:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:::

:-:':·:':-: ~=~ :-:':·:·:·: ~=~= :-:':·:':·: r:~~:
•• · .• · •• xxxx
••• ,•, ,•. ::x:!X
..... • .. xxxx

SA

•· .• · •. ·. ::x::x · ..
:-:>:>:. ~~~x ••

~:i:i:i:j:i:i:j:i:j:j:j:i:i:i:i:i:i:i:j:~:j:i:j:j:j:j:j:j:j:j::

?A

Figure 5: One plane of ACPMAPS, showing SCSI connections for 110

Each VME cratelet contains:
• a VRM VME Resource Module (a crate controller);

~Tapes

Disks

18

• a Ciprico VME-based SCSI bus controller (which controls both
Exabyte tape and WREN disk drives);

• a BCI BranchBus Ciprico Interface which allows the BranchBus to
act as a master on Vl\1E in a manner appropriate for using the
Ciprico - this is a slight variation on a basic BrachchBus to VME
interfaces (BVI);

• and a 4 Mbyte VME memory for use as UO buffer space.
The data coming from the disks goes over SCSI to the Ciprico, and from
there is placed (over VME) into the buffer memory, to eventually be read out
across VME and through the BCI into the main communications backbone.
This is illustrated below.

Network

m
m Tapes.

Disks

Figure 6: An illustration of a CPU controlling a disk drive

19

Note that since the host can act as a master on the main
communications backbone. it can directly control the I/O devices.
Normally, however, the VO to a given disk or tape drive is controlled by a
designated "I/O captain node", which gathers the necessary data and sends
it to the VME memory and sends orders to the Ciprico. The disk drives
each operate at up to 1 Mbyte/sec; the SCSI bandwidth is 2-4 Mbytes/sec.
Each word of data traverses the VME bus twice (once to get into the buffer
memory, then again to get out across the BCD; the VME bandwidth is
nominally 20 Mbytes per second but realistically half that - 10 Mbytes per
second is more than adequate to keep up with the SCSI devices. The 20
Mbytes/sec bandwidth on the BranchBus in the main communications
backbone allows the captain nodes to gather and send data without slowing
down any of the VO devices. The aggregate system bandwidth to disk is
roughly 32 Mbytes/sec.
The Host

The host computer for the ACPMAPS system needs to be able to act as a
master on the communications backbone (but need not be accessible as a
slave). In addition to downloading the node program to the control node for
each job (the remaining downloading is then done by the nodes in a tree-like
fashion), the host will monitor the control node to service potential UNIX
calls, and will occasionally monitor the remaining nodes to check for
exceptional conditions. To act as a master on the communications
backbone, the host must become a master on BranchBus; various modules
allow different machines to accomplish this.

The computers currently used as hosts are a Silicon Graphics SGI
4D25/S, and a MicroVax 3200 running lntrix. The SGI has an internal
VME bus, in which we place a VBBC (VME - BranchBus Controller) which
can be a BranchBus master with transfer rates of up to 20 Mbytes/sec. The
illtrix Vax has an internal Q-bus, in which we place a QBBC (Q-bus -
BranchBus Controller). The transfer speed through this is limited by Q-bus
considerations, to about .05 Mbytes/sec. This is still adequate for the duties
required of a host, but there is considerable impact on the performance of
the illtrix Vax due to bus cycles taken by the QBBC. For this reason, the
SGI is superior as a host when the workload includes multiple
simultaneous jobs.

ACPMAPS Software
Two distinct aspects of the software are of concern to the ACPMAPS

user. There is the issue of how to code up an application. The Canopy
library comprises a set of tools for coding a grid-oriented algorithm in a
natural manner, such that the multiprocessor aspects are handled
automatically. The paradigm and concepts underlying Canopy, and the
typical ways of using key routines, are discussed in an overview of Canopy
later on.

The other aspect is the issue of how to cause an application to run on the
multiprocessor system, and what runtime support can be expected.

Creating and Running Applications
When an application is to be run on the ACPMAPS system (or any

system supporting Canopy), the following steps occur:
• The application is written in C, using whatever Canopy routines are

appropriate. (The C language was selected because it is ubiquitous,
and because pointers are handled in a natural way. Hand-optimized
assembly code can, of course, be linked in for major production
programs where efficiency is critical.)

• A shell automates compiling and linking the application with the
necessary Canopy library routines. There are several such shells:
cane to create an executable to run on the current (single processor)
computer; acanc for creating an executable for the 5GF system's
FPAPs; and dcanc to create an executable for the 50 GF system's D860
modules. These commands are similar in form and arguments to
the cc (C compiler) command.

• To run the application on the multiprocessor system, the user issues
a canopy command, which takes the form

canopy <number_ot_nodeS> [<time_limit>] <executable> [args]
args are passed to the program in the usual (argv, argc). The canopy
command is supported on the system host computers.

• If the resources requested are available, the job will start
immediately; otherwise, a message will be issued informing the user
that the job is being held. If the job is held, one can wait or abort via a
AC.

• The program runs on the nodes. As will be seen in the overview of
Canopy, the program is a single-thread application (called the
"control program") running on one "control node", with occasional
invocations of tasks to be done by many processors. The control node
concept is discussed further in the context of the overview of Canopy.

• Standard input is taken from stdin; thus scanf can be used in the
control program. The canopy command can be issued interactively,
as part of a shell script which may contain further data for stdin, or
at the end of a pipe which generates stdin.

• Standard output and error output are directed to stdout and stderr
(stderr will also be placed into a system log file). Normally, only the
control program will issue any printf commands.

21

• The canopy command returns the program's exit status when the
job completes.

How the ACPMAPS System Software Runs Applications
Although the user may view the system as a "black box" which takes

canopy commands and produces results according to the program
executed, it may be helpful to see what happens when a job is run. Two key
software components running on the host computers are the spooler and
the canopy hosting tool. The spooler manages system resources; a single
instance of this program is run on one of the host computers. The canopy
hosting tool provides host support for a job; one instance of this program
runs (on any host computer) per application running on the system.

The ACPAMPS system is coordinated by a daemon process, called the
spooler, which runs continuously on one host. The sequence of events
described below is initiated when a user logged in to one of the hosts issues
a canopy command.

• The canopy command sends a message to the spooler process (which
may be running on the same computer or on another host).

• The spooler determines whether the job can be run at this time with
the resources requested - if not, a "job held by spooler; wait or
"C to abort" message is sent back to the canopy command.

• If the appropriate resources are available, then they are assigned to
this job, and the spooler will allow the canopy hosting tool run the job.

• The hosting tool will cause the downloading of the executable to all
the assigned nodes. (For efficiency, this is done by downloading the
program and the node numbers of all assigned nodes to a single
control node, and commanding the control node to complete the
downloading. The remaining nodes are loaded in a tree, without
further host participation.)

• The user program begins running on the system. While it is
running, the hosting tool continues operating, to handle any Unix
call issued by the job. Normally, only the control node will issue Unix
calls to be handled by the host. Unix calls (other than locally handled
heap management calls) issued by other nodes are not formally
supported within Canopy - since these nodes are always computing
in parallel, the ordering and effects of the calls would be hard to
define. Nonetheless, in exceptional circumstances, any node can
issue a Unix call. (For example, an fprintf to report an exception will
lead to a write() Unix call.) The hosting tool will poll all the nodes on
a several second time scale, to verify that the job is proceeding with
no obvious problems.

22

• Several circumstances can indicate that the job has completed:
» Normally, the control node will issue an exit() call after the

computation has been done.
» Any of the nodes can issue a terminatejob() call cause a job to

end prematl.i.rely.
» A fatal exception on one of the nodes will cause the job to

terminate.
» The user can force a termination by issuing a "C to the canopy

command.
» The job can time out by exceeding its time limit.

In any of these cases, the hosting tool will report to the spooler the
fact that the job has terminated, and will exit with the appropriate
status.

• The spooler detects that the job has completed (normally, by a
message from the hosting tool). It will then de-assign the resources
which had been assigned to this job. As long as the spooler program
is running, the system and all available resources can be used, even
if the other host computer has crashed while running hosting tools
which had been assigned resources.

Cano,py
Canopy is a software underpinning which allows a user to design a

multiprocessor application without having to worry about the details of the
parallel system architecture. Canopy has been running for several years
on several systems including ACPMAPS.

In this overview, we will:
• Explain the intent and goals of the software underpinning;
• Discuss the general approach to achieving these goals;
• Discuss the key concepts involved in the Canopy paradigm;
• Outline the strategy used by Canopy to implement these concepts and

run an algorithm on a multiprocessing system;
• Discuss what sort of problems are and are not suitable to approach

via the Canopy paradigm.
• Discuss the costs associated with using Canopy.
• A brief list of Canopy routines and data types.
Further details about Canopy can be found in the Canopy Manual. Any

user writing a Canopy application should obtain a copy of that document.

Goals of Canopy
Our overall aim is to provide the scientist with a straightforward way to

get from the natural description of an algorithm to an effective
implementation of the algorithm. In particular, lattice gauge algorithms
typically involve discretized local differential equations, described as some
operation done on many points in space simultaneously. Therefore the goal
is to use these concepts directly, so that once the user has stated his
algorithm in these terms, the intellectual effort involved in structuring the
program is done.

Previous approaches required the user to intersperse the natural
description of the algorithm with explicit details of how data is to be
distributed and accessed, how workloads are to be shared, and how
boundary conditions are to be handled. The goal of Canopy is to eliminate
the need to think about these things, without introducing other difficulties.
We have found a way to do this by using a slightly different paradigm to
picture the parallelism of the algorithm.

24

General Strategy
Canopy provides a set of concepts for thinking about algorithms, a

methodology for expressing algorithms in terms of these concepts, and a
library of routines implementing this methodology. We have implemented
this library in C to take advantage of the availability of C software tools.

Several particularly important considerations are:
• To provide a natural and uni.tied way for the physicist to express the

geometric aspects of an algorithm. By geometric aspects, we mean
concepts like "the site to my left" or "there are 3 grids, of sizes A, B
and C". This allows the user to express the local operations
independent geometric considerations.

• To provide a natural way to express the flow control of an algorithm.
Here we mean concepts like "do this step for each site in that set".
These concepts are used to automatically take advantage of the
parallel system in a straightforward way. The user has provided the
necessary insight as to the parallel nature of the algorithm.

• To shield the user from the details of the parallel system. These
details include most of the effort needed to make the program run in
parallel - distribution of data, control of multiprocessor execution,
and so forth. In particular, the user need never know anything about
the number or connectivity of processor nodes.

• To automate routine lattice address calculations. Once the user has
expressed the geometric concepts of the algorithm, automating and
hiding these details becomes straightforward. The benefit is a
factoring out of the constant clutter of "take this index, check against
boundaries" and so forth - this brings the code much closer to the
way a physicist thinks about an algorithm.

• To improve overall program robustness. When an algorithm is
expressed in terms of the proper set of standardized, basic concepts,
the program tends to be clearer and easier to verify. The fact that the
user need not care about which (or how many) nodes are being used
makes the system more flexible (in terms of sharing between users).
Shielding the user from the details of the parallel hardware makes
Canopy applications trivially portable over a broad class of machines
meeting certain minimum requirements (as discussed below).

These considerations have several desirable side effects:
• Better organized, more modular code. This comes from providing a

natural way of expressing the geometric and flow control aspects of
an algorithm. It becomes easier to re-use portions of a program in
different settings, and to identify and optimize critical code sections.

• Easy program modification. When the routine address calculations
are automated and "factored out" of the explicit physics code, it
becomes easy to modify lattice size, shape, connectivity, boundary
conditions, and so forth. Canopy supplies a library of grid definition
routines, but the user is free to specify a grid with special properties
as well.

• Optimizations can be done by systems people. For instance, a side
benefit of automating address calculations is that the system

software designers can afford to spend a lot of thought identifying the
cleanest and most efficient way to do the calculations. Although in
principle for any given algorithm the scientist could come up with a
faster method, the automated scheme turns out to be superior to the
code actually written when scientists explicitly guide the address
computations.

Note that although the details of the parallel nature of the system are
hidden, the parallel nature of the algorithm is not; in fact Canopy makes it
natural to highlight the tasks that are to be distributed over many
processors. Thus Canopy does not attempt to be an automated parallelizer
(which would be very difficult to do well). The scientist has better
knowledge of how to parallelize an algorithm than any pre-conceived
system could possibly hope for. The idea is to make it easy for the user to
convey that knowledge, and to use that information to control the program's
parallel execution.

Concepts
The set of concepts described here are designed to achieve the above

goals for grid-oriented problems. Chapters 2 and 3 of the Canopy Manual
Version 4.0 is a detailed tutorial of the Canopy concepts; in the following
short summary C structures are presented in bold face.

Canopy introduces structures which match the natural concepts of
discretized differential equations where the operations are done on some set
of sites which are connected together into a grid. Sites in Canopy are
exactly the sites of the discretization; a grid in Canopy is the same as the
discretized grid. Canopy further introduces the concept of a direction from
a site leading to a neighboring site on a grid, and the concept of a path,
which is an ordered set of directions that lead from one site to another.
The variables in a discretized problem are fields over a grid; Canopy
provides field variables that live on the sites of the grid and fields on the
links joining the sites. These fields are then the usual targets of operations,
and the repository of the mass of data associated with the problem. Canopy
allows more than one grid to be defined and provides for maps to connect
them together.

Canopy flow control is divided into three parts: first, when the program
starts, a single-thread control program is running as an ordinary C
program. This control program has a declaration section, where grids
and fields are defined, followed by an execution section. The execution
section invokes tasks, which execute task routines in parallel on sets of
sites. The task routine is called once for each site in the set, and has special
mechanisms for passing arguments and collating return values.
Geometrical concepts - details

Physical problems represented by differential equations on a continuum
in some space are often attacked by discretizing the space - treating the
continuum as a lattice of points. The differential equations become
relations between variables defined on these points. This approach is called
the grid approximation. The physical concepts of sites, grid and fields refer
to the individual points, the lattice comprised of the entire collection of

points, and the variables in those relations. Canopy defines constructs
which correspond to these physical concepts.
site

A site corresponds to a point on the lattice. Associated with each is
some field data, and other properties such as a site serial number,
coordinates, and information about neighboring sites. Every site on a given
grid is identical in structure to every other site. Parallel execution in
Canopy is logically done simultaneously over a set of sites. Thus a site is
similar in concept to a virtual processor - the field data corresponds to the
local memory. Routines refer to particular sites by means of a site variable:
A variable of typedef site.

grid
dimensions
coordinates
directions
links

A grid is a collection of identical structures (representing the sites
which make it up). Certain natural geometrical properties are associated
with a grid. These describe where the sites on the grid are, and how they
are connected to one another. The grid is organized as having some
number of dimensions, - each site is assigned coordinates,
represented by an array of length matching the number of dimensions of
the grid.

Another natural and useful geometrical property of a grid is that of
connectivity. The grid has some number of directions: Each site may
have other sites as neighbors in the positive and negative units of each
direction. Although in a Cartesian lattice the number of directions equals
the number of dimensions, and each site has neighbors every direction,
neither of these properties need hold for general grids.

The concept of boundary conditions on these connections is natural : A
site on one "side" of the grid might have as a neighbor in each direction any
desired site, or no site at all. The concept of directions and neighbors often
provides the most natural and convenient way of specifying another site in
local algorithms. It is also natural to picture the lattice as having links,
lines connecting sites with their neighbors. Although there is no link type
defined by Canopy, there is the concept of a link_field - data which is
logically associated with each link rather than with each site.

Canopy has a collection of pre-defined grid declaration routines, for
convenient creation of periodic Cartesian grids in various sizes and
dimensions. The user can also use the function arbitrary_grid to create a
grid of any desired properties. Grid declaration routines return a variable
of typdef grid. This grid identifier is used in other routines where a grid
must be specified - a given application may use several distinct grids.

field
site field
link field
field elements
field_pointer
link_field_pointer

A field is a collection of data structures - one instance of a structure
associated with each site on a grid. Many physical problems involve fields
of some nature defined on the continuum, such as the electric field in space
or a gluon field defined over space-time. When such problems are solved in
a grid approximation, the continuum fields are replaced by fields on the
sites or links. In Canopy, a field is defined by calling site_field or link_field
- these routines reserve space for field elements on each site or link in the
grid. The field declaration routines return a variable of typedef field,
which can later be used as an identifier to specify that particular field. In
an application which declares several grids, a different fields might be
defined over each grid.

Algorithms often involve accessing field data associated with some given
site. Canopy shields the user from the complexities of address computation
and off-node data access by providing routines to handle all access to
accessing field data.

Read access to site field data is done by field_pointer routines, which
return a pointer to a read-only copy of the field element. The arguments to
these routines specify the desired field, and the site with which the desired
data is associated. The user need not know whether the data was kept on
the local processor node or on a remote node.

Access to elements of link fields is provided by routines such as
link_field_pointer. The user specifies the field, the site at which the
desired link originates, and a direction to select which link field element is
to be accessed.
site variables

site manipulation routines
path
map

One way to specify the site in a field access routine is by specifying a site
variable. Canopy provides a typdef site; such a variable can refer to any
site on any of the grids declared for the application. Site manipulation
routines are provided to set a site variable by specifying coordinates, or
relative to another site by one unit in a specified direction, by a specified
path, or by a map to another grid.

put_field

When modifying (writing) a field element, a put_field routine is used.
These routines perform a copy into the appropriate field element. Again,
the user need not know whether the field element is stored on the local
processor node or elsewhere.

Flow control concepts - details

control ()
declaration section
complete_def initions
execution section
tasks

The main routine of a Canopy program - always called control() -
sequences the activities in the job. Before multiprocessor activity can be
started, the control program must define the geometric and data structure
concepts relevant for the application. This is done in a declaration section,
which invokes grid definition routines to establish the geometry, and field
definition routines to establish the data structures. This section can be
interlaced with code to accept input and to perform computations. The
declaration section is terminated by a call to complete_definitions(), which
causes all requisite information about geometry and data structures to be
sent to the individual processing nodes.

The execution section of the control program expresses the body of the
algorithm. Some single-thread global computation and decision making
occurs in this section, but the most important activity is the initiation of
tasks - routines to be executed in parallel on many sites, enlisting the aid
of all the processor nodes involved in the job. Each task is invoked by calling
the routine do_task, and completes on all sites before the control program
continues execution. The algorithm can take advantage of the multi­
processor nature of the system to the extent that most of the computational
burden is in these tasks.
do task

task routine
set of sites
set and grid typedefs
pass arguments
integrate arguments
do task triplets
example of do task and triplets

The do_task routine is a remote, multiprocessor subroutine call. To
initiate processing on the processor nodes, two things must be specified:
The task_routine, that is, the routine to be invoked for each site; and the
set_of_sites over which this routine is to be executed. The set of sites is
represented by a variable of typedef set. This can be an entire grid: a grid
identifier - of typedef gr id - can always be used in place of a set of sites.
Or the set of sites can be defined during the declaration section, or
dynamically during the execution section. The task routine will be called
once for each site in the set, in an arbitrary order. The do_task call returns
to the control program when all these task routine invocations have
completed.

A mechanism allows for passing arguments to the task routines.
These will appear to the task routine as ordinary C arguments, passed by
pointer. However, in the argument list to do_task, they must be specified in
a special way: In the context of parallel execution, where the task routine
will be run in an undefined order (and in principle simultaneously) on

many virtual processors, concept of a subroutine argument is not
unambiguous - guidance is required.

First, it is necessary to distinguish between arguments which, from the
viewpoint of the task routine, are "read-only" versus "write-only" . In a
parallel environment, arguments which are read-only (in the sense that
the task routine uses but never alters their values) are handled by
communicating their values to each processor node and making them
available as ordinary arguments. Canopy refers to these read-only
arguments as pass arguments.

Other arguments can be considered "write-only": The task routine is
passed a pointer, and returns a result by writing it to the indicated address;
the calling routine passes the pointer and expects the subroutine to place a
single result there. In the context of parallel execution, the results from
many virtual processors must be amalgamated into a single result. These
"write-only" result arguments are called integrate arguments: The user
specifies how they are to be amalgamated into a single value. For example,
the results from individual task routines can be added as floating point
numbers, or to the maximum among the individual results can be taken.

On a single processor it is easy to pass an array of values, simply by
supplying a pointer to that array - in a distributed memory environment,
this does not work in a naive manner . The mechanism provided for
specifying the nature of an argument also provides for passing arrays of
values. Each argument to the task routine is presented to do_task as a
triplet of arguments. The triplet consists of:

• A keyword describing the nature of the argument. The options
include PASS to supply a read-only argument, and various options
for result arguments: SUM INTEGER, SUM REAL, MAX REAL,
and so forth. There is also a mechanism for eustomizing, in case a
required amalgamation technique is not among the options provided.

• A pointer to the argument itself (the argument may be a single word,
or an array or structure).

• The size of the argument - this is what guides Canopy in
determining how much data to communicate to the processor nodes.

Thus do_task takes as arguments the task routine to be done, the set of
sites to do it on, as many arguments are desired (one triplet per argument),
and an END keyword do delimit the list of arguments. For example:

/* in control() *I
float f [4 J; float sum; field *x;
do task (my_task , this_set_of_sites

PASS, &f, 4*sizeof(float),
INTEGRATE, &sum, sizeof(float),
PASS, x, sizeof {field *), END) ; . . .

/* elsewhere in program, task routine appears: */
void my task (float *array4, float *ans, field *x) {
/* code-which uses array4 (fin the calling program) */
/* and the field x to produce a result ans */ }

In this example, my task does something to field x (it might elsewhere
be invoked for some other field) based on array f, to produce an answer in

*ans; these answers are summed for all the sites in this set of sites
and placed into *sum in the control program. - - -

Since the task routine is invoked for many virtual processors, results of
the task roight be desired in the form of an array of answers, one associated
with each site. There is a natural way to handle this in Canopy: Such an
array is a field; the task routine writes its answer by calling put_field.

C allows arguments which are "read/write": A value can be passed by
reference, and the pointer to that value can later be used to return a result.
This sort of argument can always be split into a read-only argument and a
result argument. Canopy does not support read/write arguments to task
routines.
field access during tasks

HOME site
field access relative to HOME
Changing fields at the HOME site

A task is logically performed over an entire set of sites simultaneously.
The task routine is invoked for each site in the set. At any given time, the
processor is doing the computation for a particular site, referred to as the
HOME site. Canopy defines a variable of typdef site called HOME, which
refers to this site.

The task routine will virtually always involve accessing (and usually
modifying) field elements at this HOME site. Non-trivial algorithms will also
involve accessing data belonging to other sites. Field data is always
accessed via calls to Canopy field access routines - field_pointer for read­
only access, and put_field to modify data. (Task routines should modify
data at the HOME site only.) For convenience during task routines, there are
routines are provided which access fields at sites relative to the home site -
offset by a direction or a path. For example, field_pointer _at_dir takes as
arguments a field and a direction, and is equivalent to setting a site variable
to HOME, moving that site variable one unit a direction, and using that site in
field_pointer.

During task routines, there can be one important exception to the rule
that field data cannot be changed except by using the put_field routines:
When field_pointer has been used to access a field element on the HOME site,
that field element is known to be stored on the local node. Thus data
belonging to that element can be changed in place, without concern about
later copying the new element into the proper location on a remote node.

The control program can use the field access routines to read or write
field data, but the concept of the HOME site is valid only within task routines.
global variables

broadcast

Canopy applications differ from single-thread programs in their
treatment of global variables. The ability to set values to be known
throughout an application is quite useful. Nonetheless, modern
programming philosophies disparage the use of global variables, because
subtle errors can be introduced through their misuse. Further complexity
(hence scope for error) is introduced when multi-processor systems are

31

considered. Canopy supports global variables, but requires that a set of
rules be followed to prevent erroneous usage:

• Values of global variables may be changed only by the control
program, not by a task routine. (\Vere a task routine to alter a global
variable, the timing of when the change was to occur - relative to
the "simultaneous" execution of the same task routine for other sites
- would be ambiguous.)

• Having modified the value of a global variable, the control program
must call the Canopy broadcast() routine, to inform all processors of
the change. This must be done before invoking tasks which use the
variable. Task routines may not call broadcast.

• Dynamically allocated global variables are not permitted. That is, a
structure which was created by a declaration in the control program
can be used as a global variable, but a structure which uses memory
allocated by malloc cannot.

The above rules apply to variables which are referenced by task routines.
Global variable which are employed exclusively within the control program
can be treated as per ordinary C global variables.
compound tasks

levels in sets of sites
sync_field_pointer
do task n times - - -

Certain algorithms have steps which require performing computations
on an ordered set of sites - the task routine for some sites must be
completed before the routine for other sites is allowed to begin. To facilitate
coding such algorithms, Canopy extends the concept of a task running a
routine once per site in no particular order.

When a set of sites is defined, each site in the set may be assigned a level
(multiple sites can be at the same level). We call a set of sites with unequal
levels a compound set of sites. A task routine can be written to run on a
compound set of sites in such a way that the routine is logically executed for
sites with lower levels first.

To maximize the opportunities for parallel execution, the
synchronization is enforced when field data is accessed, rather than when
execution is initiated for each site. The task routine accesses field data
which is liable to be changed using sync_field_pointer instead of
field_pointer; this will wait until the site owning that data has been
processed, if it is at a lower level than the HOME site. Thus, one processor
might be handling level 10 sites while another is only up to level 2; the first
does not block until it needs data that has yet to be updated at a lower level.

Logically, compound sets of sites accomplish nothing that could not be
done by defining multiple disjoint sets of sites (one for each level) and
calling do_task multiple times. There is a convenience advantage in
grouping these multiple do_task calls into one compound task. A
compound task can also be more efficient than the individual simple tasks,
since .

A special sort of compound task is invoked by the do_task_n_times
routine. The user employs explicit synchronization (sync_field_pointer)

32

within the task routine. Again, the advantage is that synchronization is
done only when necessary, not between each invocation of do_task.
distributed I/O routines

open_field_file
read_field/write_field
slice of field

The distributed I/O system is used to store field data. The control
program initiates all field file activity. The Canopy routine open_field_file
is used to specify the name of a file; on ACPMAPS, we use a leading #
character to signify a file on the distributed I/O system. Then read_field
and write_field routines can be called. The field is written and read back in
a manner independent of the number of nodes being used for the job - a job
running on many nodes can save a field to be examined by a job running on
fewer nodes, and vice versa.

Canopy provides a read_slice_of_field routine to fill a field with only a
portion of a previously written field file. For example, one might require
only a single time slice of a large lattice. This feature is indispensable for
algorithms which require one small part of each of several huge fields -
reading in the complete fields might be prohibitive in terms of memory
space.

Implementation Strategy
The details of the implementation of Canopy concepts are in principle

irrelevant - other than the fact that they work. Canopy has been
implemented since 1989, and has achieved its goals a:s an aid in algorithm
development. Canopy applications run applications with good efficiency on
ACPMAPS. Nonetheless, a discussion the general principles and
strategies is useful in several ways:

• An understanding of how things work often leads to insight about the
best way to use them;

• A grasp of how Canopy is structured can help in evaluating the
suitability of other platforms for a Canopy port;

• A knowledge of implementation strategies can point out potential
areas of inefficiency, which may help in designs of future Canopy
platforms.

Organiz.ational Strategy

Canopy is organized into three pieces. The main user-level Canopy
routines appear in several files amounting to 7 ,000 lines of C code. These
are compiled and put into a library that the cane shells link with the user
code. There is a canopy.h file which the user program includes to obtain
function prototypes for all the Canopy routines, and definitions for the
keywords used.

The second piece is a collection of libraries for frequently needed
functions. These include a library of grid definition routines, a collection of
functions for complex variables, one for random number routines, one for
Fast Fourier Transfer operations, and so forth. New routines can be added
to these without altering the basic set of Canopy concepts.

The Canopy library and the supporting libraries are written in C and
independent of the target system. Canopy assumes it is running on a
system with a particular, well defined interface for doing things like
interprocessor communication. This model is defined and implemented by
the final piece in the Canopy organization: A set of underlying routines
called the Canopy Hardware Interface Package (CHIP).

The CHIP routines have well defined arguments and results (described
in the Canopy Manual) implementing the model Canopy uses. For
example, the basic primitives for interprocessor communication, called by
higher-level Canopy routines, are part of CHIP - these operate in terms of
Canopy concepts such as full addresses. CHIP includes routines like
remote_read, remote_ write, and do_on_all_nodes. Although these
routines have interfaces defined by the Canopy system model, their
implementations will be machine dependant. The system model is rather
simple; the implementation of CHIP typically is about 2,000 lines of code.

This strategy of isolating the machine dependant implementation
details and providing a well-defined system model has two positive
implications:

• To port Canopy to a new system, one only needs to port the CHIP
primitives. For example, if the communication on the new system is

34

based on a message passing protocol, one must write CHIP routines
like remote_read in terms of that actual protocol. The bulk of the
code that makes up Canopy remains unchanged.

• The sophisticated user has the option of calling CHIP routines
directly (bypassing the Canopy concepts), without sacrificing
portability. This may be useful in implementing aspects of an
algorithm which fit the Canopy paradigm poorly. Some of the
benefits of Canopy will be lost when this is done. For example, the
user can write a routine which is no longer independent of the
number of nodes in use.

Implementation of Concepts

Canopy contains the concept of a site as a virtual processor. The key
implementation strategy is: The responsibility for all the sites in a grid is
divided (roughly equally) among all the processor nodes in the job. This
responsibility includes storage of field data associated with the site, and
processing of task routines to be run for that site. All processor nodes,
including the control node on which the control program runs, are
apportioned a share of the sites.

When a task is running, each processor node will execute the task
routine for every site in the selected set which it owns, in an arbitrary
order. Canopy says nothing about the nature of these task routines; thus
the processors must run independent instruction streams (MIMD). When
a task is done, the program flow must wait for every processor node to
complete the task routine for all the sites owned. If each processor node
has responsibility for many sites, the fluctuations in time taken to perform
the task routine for a single site tend to average out. Although the entire
system must wait for the last node to finish, this wait is usually a small
fraction of the overall time taken to perform the task. Canopy works most
efficiently if the number of sites greatly exceeds the number of processor
nodes.

The task routines are the only portion of the computation which is
worked by multiple nodes. While the control program performs single­
thread computations, the remaining nodes are idle. Thus Canopy
applications achieve high Gflop rates only in cases where the bulk of the
computational work involves tasks - calculations which can be associated
with each site.

Address computations - determining the location of data associated
with various sites - are done using pointers. Actually, these pointers are
of a type called a full address, containing information as to node number
as well as a local memory address. For example, a s it e variable contains
a full address pointing to a zero-point in the appropriate site data. This
scheme is not only completely flexible, but is more efficient than explicit
address computation. The concept of grid connectivity, with each site
having neighbors in various directions, is implemented by storing (as part
of the site data) an array of pointers to neighboring sites.

Most algorithms are largely local in nature, (with sites communicating
most frequently with some set of neighboring sites). Thus it is desirable to

minimize internode communications needs by distributing the sites among
the processing nodes such that neighboring sites tend to be clumped on the
same node. Since almost all users can use one of the packaged Canopy grid
declaration routines, a moderate amount of systems effort in doing this
clumping well has benefits for virtually every Canopy application run.

When field_pointer is used, it returns a "read-only copy" of the data
requested. Actually, if is on the local node, no copy is made, and a pointer
to this field element is returned. If the data is on a remote node, the field
element is copied into the local processor's memory, and a pointer to that
copy is returned.

Canopy has no concept of virtual processors associated with the links on
a lattice. Link fields are stored at the sites: A given site will own the data
for the elements of a link field corresponding to links leaving that site in
positive directions. Thus on a grid with d directions, there will be d
identical field elements on each site.

Canopy assumes the processors in a job are identical, and are running
the identical program in the same address space. Thus the control
program node can take the name of a task routine as an argument to
do_task, and simply send its address (on the control node) to the other
nodes to specify the routine. Similarly, the broadcast routine knows where
to send global data to each node: It always goes to the same local address as
on the control node. (This is why dynamically allocated globals are
dangerous.)

A few techniques are used to enhance efficiency. When tasks are started
up or completed, and when broadcasts are done, information is sent in a
binary tree fashion, rather than creating a bottleneck at the control node.
When distributed I/O is done, "captain nodes" are designated to collect the
data and send it to the VME memories, and to control the SCSI devices; the
control node does not have to do all the work itself. Finally, frequently used
small pieces of Canopy have been hand coded assembler for optimal speed
on the processors used in ACPMAPS. For example, field_pointer is called
so often that this improves performance by a noticeable amount. Such
routines are still defined in C - this makes Canopy easy to port. When
hand optimizing code, it helps to compare against a known correct
implementation.

When is Canopy Applicable
An algorithm is suitable for attacking with the Canopy paradigm if it

has the following properties:
• The arena on which the algorithm is to apply can be viewed as a fixed

grid of sites. Canopy is more valuable in cases where the grid has
some natural connectivity, but this is not required.

• It must be possible to organize the mass of data in the algorithm into
many instances (associated with many sites) of a few types of
structures (fields). The data associated with any site cannot be very
different in size from that associated with other sites, and cannot
dynamically undergo large size variations.

• It must be possible to express the algorithm in terms of tasks -
sequential steps done across many sites. If the bulk of the
computation does not reside in these tasks, then the Canopy
application will not take full advantage of the multi-processor
system.

To avoid inefficient running, additional properties are desirable:
• The number of sites worked on should greatly exceed the number of

nodes, to minimize between-task synchronization losses.
• The average number of internode communications required per site

for the task routines, should be small relative to the amount of
computation done by the routine. The extent to which this criterion
is met depends on the system's communications overhead.

• The computational loads for various tasks should not differ wildly. If
the load does vary greatly, but in a static manner, then explicit load
balancing by supplying a carefully constructed site distribution
function may be possible.

These requirements are met, at least at some level, by a broad spectrum
of grid-oriented algorithms. Some problems which appear to lack one or
more of these properties can still be profitably approached using Canopy,
either by re-couching the algorithm in a minor way, or by accepting a low
efficiency in exchange for the greater ease in coding. An inefficient Canopy
implementation may still be close to the best that can actually be
accomplished on a particular system for a given algorithm.

There are time consuming problems which involve very little data, or
involve data which cannot be organized into instances of a few sorts of
structures. These problems tend not to be suitable for attack via the Canopy
paradigm. Similarly, if the algorithm cannot be expressed as a sequence of
tasks, then it may be unsuitable for running with the Canopy
underpinning. Canopy currently does not include concepts appropriate for
certain changes while an application is running: dynamic load balancing,
changing grid size or connectivity, or changing field allocation for the sites
("time-varying numbers of particles at each site").

Costs Associated With Using Canopy
There are costs associated with the advantages of Canopy. The most

basic limitation is that the whole scheme is useful because the proper
paradigm and concepts for a class of grid-oriented problems has been
identified. Problems falling outside this class are at best awkward to attack
using Canopy. It may be possible to broaden the applicability of Canopy by
expanding the concepts to include other classes of problems, but that has
not been done to date.

A second cost is the requirement that the system constitute a "canopy
platform" - MIMD processors and asynchronous, global "memory access"
style of communication. The multiple instruction stream limitation is not
severe, since the intention from the outset was to be able to explore MIMD
algorithms, but the communications requirement can be restrictive.

A third price is paid in program efficiency. In order to implement the
natural concepts identified, it was necessary to take an approach in which

the basic unit of work is associated with one site of a grid. That is, the
natural granularity of the problem is typically small compared with the
portion of the entire lattice residing on a processing node. This has
implications which we can identify as being associated with computation
granularity and communications granularity.

Because the software underpinning works on a one site basis, vectorized
or pipelined operations are restricted to a typical length associated with the
work to do for one site. For many nearly-SIMD algorithms, there exist
alternative approaches in which the length is associated with a fraction of
the entire lattice - Canopy cannot take advantage of these efficiency gains.
Except for particularly simple and regular algorithms, this "computation
granularity" cost is not severe.

Of more concern is a "communications granularity" cost: The Canopy
user gives up, for ease of programming, the option of grouping many data
accesses (associated with the same remote processor node) into a single
access. That means that Canopy magnifies the cost associated with per­
communication overhead. For many systems designed without these
requirements in mind, this overhead can be quite high; for systems
intended as canopy platforms from the start, the inefficiency is tolerable.

The natural Canopy concepts probably cannot be implemented without
paying these granularity costs, unless one is willing to restrict the sorts of
algorithms which can run. These inefficiencies are partially offset by
efficiency gains due to modular program structures and efficient
automated address computations. At any rate, it is more important to do
the right algorithm slowly than to achieve a high Megaflop rate on the
wrong algorithm - effective use of scientists' thought can be more critical
than optimized use of computer time.

Canopy and CHIP Routines and Data Types
We list and briefly explain the various jargon terms associated with a

Canopy program - defined data types, routine names, keywords, macros,
and global variables set up by Canopy. The file canopy.h should be included
in the application to provide these definitions, and function prototypes for
the Canopy routines.

We also list the public CHIP concepts. These are terms involved in the
"public interface" to the Canopy Hardware Interface Package (CHIP).
Canopy uses these to implement its functionality; the user is free to use
CHIP concepts directly in applications. The canopy.h file includes chip.h,
which provides definitions and prototypes for the public CHIP concepts.

In addition, Canopy supplies various support libraries for convenience
in defining grids, working with complex variables, and so forth. We will
list concepts provided by the gridlib library, and grid.h.

In these lists, we have highlighted the more basic, or more commonly
used, concepts in boldface.

CHIP Objects (Structures and Typedefs)

CHIP object
node_bits

fu l l_addre ss

semaphore

data tyne
structure

structure

structure

CAN_do_dask_keyword

Canopy Objects

Specifies a particular node in the system. along with tag
fields which are used in various ways.
Specifies a memory location in the system. Consists of
node_bits and an ordinary pointer.
Memory locations set aside for implementing a resource­
lock semaphore.
A structure describing how to handle a multi-node
function argument.

Some of the objects used in Canopy are internally defined as integers;
these are often identifiers returned by a declaration routine (for instance,
site_field returns a variable of type field). Other objects are arrays of
integers. Still others are structures containing a full_address - this is
defined in chip.h and is the multinode analogue to a pointer, specifying but
node number and local memory location.
Canooy object data type
grid int

site

set

field

field_address

coordinates

direction

pUlt

map

sync_ word

full_address

int
int

full_address

int*

int

int*

int

full_address

A collection of sites with specified coordinate and
connectivity propeties.
One of the points composing a grid. A variable of type site
is used to specify a position o the grid.
A collection of sites (forming a subset of a grid).
A collection of identical data structures. One instance of
the structure is associated with each site in a grid.
Points to a field element: The structure associated with
some field at a particular site. The direct use of
field_address can improve efficiency in some cases.
Array of integers large enough to hold one value per
dimension of a grid. The coordinates associated with a
site can have the obvious geometric interpretation.
Integer selecting to one of several neighbors of a generic
site. The obvious geometric interpretation applies.
Array of integers containing a sequence of directions,
defining a way of traversing from a generic site on a grid.
A relationship associating points on a domain grid with
points on a range grid.
Pointer to a site to be synchronized within a compound
task. The direct use of sync_word can improve efficiency
in some cases.

Canopy Keywords, Macros, and Global Variables

The following definitions are provided in canopy.h:
Canopy object data type
HOME site*
NOWHERE site

NOGRID grid

Pointer to the home site during task routine.
The null site. If a node has no neighbor in some direction,
the pointer to its neighbor points to NOWHERE.
The null grid.

READ
WRITE
STREAM_PER_SITE

Keyword used by open_field_file.
Keyword used by open_field_file.
Keyword used to make a random number generator that
generates one stream for each site. Useful in writing
applications that pr l.lduce results independent of the
number of nodes used.

STREAM_PER_NODE Keyword used to make a random number generator that
generates one stream on each node. Requires less
memory and can be more efficient than stream per site.

CHIP Keywords, Macros, and Global Variables

The following global variables are provided in chip.h:
CAN_number_of_nodes Number of nodes used by this job.
CAN_number_this_nodes Index of this node. The control node is assigned index 0.
CAN_this_node_bits A node_bits data type containing bits for this node.
CAN_node_array An array containing node_bits for all the nodes in the job.

The following are pointers to CAN_do_task_keyword variables,
provided in chip.h to support various argument passing and amalgamation
options:
PASS Pass any type of argument except a function.
FUNCTION
SUM_REAL
INTEGRATE
MAX_REAL
MIN_REAL
SUM_INTEGER
MAX_INTEGER
MIN _INTEGER
SUM_DOUBLE
MAX_DOUBLE
SUM_DOUBLE
TAG_MAX_INTEG ER
TAG_MAX_REAL
TAG_MAX_DOUBLE
END

Pass a function.
Sum up the returned arguments, as floats.
Synonym for SUM_REAL.
Take the maximum of the returned float arguments.
Take the minimum of the returned float arguments.
Sum up the returned arguments, as integers.
Take the maximum of the returned integer arguments.
Take the minimum of the returned integer arguments.
Sum up the returned arguments, as double precision.
Take the maximum of the returned double arguments.
Take the minimum of the returned double arguments.
Return the maximum value (integer, real, or double) and
a tag field associated with it. Useful for finding the site
with the largest value of some function.
Not a CAN_do_task_keyword pointer, but just an integer
value used to signify the end of the do_task triplet list. The
same keyword delimits directions forming a path in the
make_path routine.

Keywords Defined in grid.lib

The following definitions are provided in grid.h:
X, Y, Z, T 1, 2, 3, 4 Useful in specifying various directions, as in:
MINUS.){ -1 q = field_pointer_at_dir (quark, MINUS_Y);
MINUS_Y -2 (site *)later = move_site(HOME, T);
MINUS_Z -3
MINUS_T -4

40

Canopy Routines

Canopy provides the following declaration routines:
arbitrary _grid Declare a grid using user-supplied functions for the grid

site_field
link_field
overlap_fields
cluster _fields

set_of_sites
redefine_set_of_sites

define_rnap

compose_map

make_randorn_generator

declare_lalloc_size

connectivity and distribution. More commonly, a pre­
packaged routine from gridlib is used.
Declare a field over the sites in a grid.
Declare a field on the links of a grid.
Force fields to share memory space.
Force fields to be located consecutively in memory for each
site.
Define a set of sites, for later use in a do_task call.
Change the definition of a set of sites. This is the only
declaration routine called after complete_definitions.
Define a map from one grid onto another, via a user­
supplied mapping function.
Forms a map as the product of two previously defined
maps.
Declares a user-definied random number generator. Pre­
packaged generators are supplied in ranlib.
The field access routines set aside an area for copying
fields accessed from remote nodes during a task routine.
If an unusually large amount of data will be accessed in
this way, declare_lalloc_size can increase the size of that
local allocation Oalloc) heap.

complete_definitions Terminates the declaration section of a program.

Task initiation is controlled by do_task routines:
do_task Call some subroutine on each site in a set.
do_task_n_times Call some subroutine on each site in a set, multiple times.

Synchronization concepts apply, as for compound tasks.
do_task_on_inverse_image Used within a task routine, calls a sub-task done on the

sites which translate (under a given map) into the HOME
site.

do_task_on_inverse_image_set Within a task routine, calls a sub-task done on the sites
which translate (under a given map) into the HOME
site, and which are in a specified set of sites. This can
be used with a compund set, to create a "compound sub­
task".

Site and path manipulation routines:
site_at_coordinates
move_sit.e

rnove_site_at_path

site_at_dir

site_at_path

is_sarne_site

Set a site variable to selected coordinates on a grid.
Move a site one step in a specified direction, relative to
some other site variable.
Move a site according to a specified path, relative to some
other site variable.
Set a site variable to one step in a specified direction,
relative to the HOME site.
Set a site variable by moving along a specified path,
relative to the HOME site.
Test if two site variables refer to the same site.

grid_supporting_site
irnage_of_si te
inverse_irnage_of_site

get_coodinates
get_coordinates_at_dir

get_coordinates_at_path

sprintf_site_coordinates
make_path

extend_path
concat__path

41

Return the grid a specified site is part of.
Retutrn the image of a site, under to a specified map.
Return a pointer to a list of sites which map into the given
site under a specified map.

Coordinates associated with a given site variable.
Coordinates associated with the site one step from HOME
in a given direction.
Coordinates associated with the site reached by proceeding
from HOME via the given path.
Write the site coordinates into a string.
Place into an integer array data defining a path, formed
from steps in a given set of directions (terminated by
END).
Extend a path by one step in a given direction.
Extend a path by adding another path to the end.

copy_path Copy the data defining a path, into another integer array.
path_length Determine the length of a path, in number of steps.

Field access and synchronization routines:
field_pointer

field_pointer _at_dir

field_pointer_at_path

put_field
put_field_at_dir

put_field_at_path

link_field_pointer
link_field_poin ter _at_dir
link_field_pointer _at_path
put_link_field
put_link_field_at_dir
put_link_field_at_path
synchronize

synchronize_at_dir

Return pointer to read-only copy of the field element at a
given site. May point to the actual fieold data, or a copy
brought from a remote node. If the site is HOME inside a
task (but not inside a sub-task), then the pointer always
points to the actual field data, rather than a copy.
Return pointer to read-only copy of the field element at the
site one step in a given direction, from the HOME site.
Return pointer to read-only copy of the field element at the
site reached by a path, relative to the HOME site.
Copy an object into the specified field element at a site;
Copy an object into the specified field element at the site
one step in a given direction, from the HOME site.
Copy an object into the specified field element at the site
reached by a path, relative to the HOME site.
The link field access routines are the same as the site field
access routines, but take one more argument -a direction.
They provide access to the link field element on the link
originating at a site, and traveling in that direction.

In compound tasks, wait until the specified site reaches the
current synchronization level.
Synchronizes with a site specified by direction from the
HOME site.

synchronize_at_path Synchronizes with a site specified by a path from the
HOME site.

sync_ word The sync_ word routines provide a slightly more efficient
sync_word_at_dir way of syncronizing, which requires some preparation in
sync_word_at_path advance.
synchronize_ with_synch_ word

l'''r ,,,,

42

synch_field_pointer
synch_field_pointer _at_dir
synch_field_pointer _at_path

Optimized combinations of synchronization and field
access routines.

address_of_field
address_of_field_at_dir
address_of_field_at_path
address_of_link_fie Id
address_of_fieldlink __ at_dir
address_of_field_link_at_path
field_pointer _from_address
sync_fie ld_poin ter _from_address
put_field_at_field_address
length_of_field_address_field

Some program<:. can run more efficiently by computing
and storing field addresses in advance. These routines
support that optimization.

Given a field_address, return the length of the field
starting at that address.

broadcast

reset_lalloc

intcpy

CHIP Public Routines

Make the value of a global variable set in the control node
known to all the task routines in every node in the job.
Reclaims all the memory in a lalloc heap, pointers
obtained by invalidating previous field_pointer calls.
Used primarily if the control program accesses field data,
since the lalloc heap is automatically cleared between
instances of task routines.
Copies a word-aligned array of data in the fastest
available manner.

The routines in CHIP are in general machine dependant. However, the
interfaces to the routines are public and fixed in a machine independant
manner, so they can be used to write applications which go outside the
Canopy paradigm, yet which are portable to other Canopy plateforms.
These are the public CHIP routines:

remote_ read
remote_read_and_keep
remote_read_more
remote_read_more_and_keep

Read some amount of data from a given full_address into
a specified address on the local node. The more/keep
versions are advisory only, allowing efficiency gains
when multiple blocks will be transfered to the same node.
These routines check for full_address refering to the local
node, and behave properly in that case as well.

remote_ write Write some amount of data from a specified address on the
remote_write_and_keep local node to a given full_address. The more/keep
remote_ write_more versions are advisory only, allowing efficiency gains
remote_ write_more_and_keep when multiple blocks will be transfered to the same node.

These routines check for full_address refering to the local
node, and behave properly in that case as well.

init_resource
lock_resource
free_resource
wait_for _resource

do_on_all_nodes

Routines in gricllib
periodic_grid

chunky _periodic_grid

periodic_linear _grid
periodic_square_grid
periodic_cubic_grid
periodic_hypercubic_grid

43

These routines provide a standard way of contending for
resources via semaphores. Each resource is represented
by a "semaphore variable" at a full_address; thus there
can be an arbitrary number of resources, the variables for
which are distributed arbitrarily among th.o nodes.
Invokes a routine on every node. Accepts arguments in
the same triplet form as do_task.

Defines a periodic Cartesian grid in an arbitrary number
of dimensions. The distribution of sites to nodes is done in
a way which is reasonable for any shape of grid., but not
optimal in terms
Defines a periodic Cartesian grid in an arbitrary number
of dimensions. The distribution of sites to nodes is done in
a way which minimizes the surface/volume ratio for the
volume handled by each node. This routine is useful when
there is a natural way of dividing the grid into rectilinear
blocks and distributing them evenly to the nodes.

Conveniently define Cartesian periodic grids in
commonly used numbers of dimensions.

chunky _periodic_square_grid
chunky _periodic_cubic_gri d
chunky _periodic_hypercubic_grid

Acknowledgement
This paper summarizes work which was a collaborative effort between

the Fermilab Computer R&D and Theory departments. Direct Contributors
to this document include George Hockney and Michael Uchima. Fermilab
is operated by Universities Research Association, Inc. under contract with
the U.S. Department of Energy.

