
Fermi National Accelerator Laboratory

TM-1679

CANVAS: C++ Objects for Easy Graphics on an Evans &
Sutherland PS390 Terminal.

User's Guide

Leo Michelotti and Richard Kick
Fermi National Accelerator Laboratory

P.O. Box500
Batavia, Illinois 60510

August 27,1990

0 Operated by Unlveraitles Research Association Inc. under contract with the United States Department of Energy

CANVAS: C++ objects for easy graphics on an
Evans & Sutherland PS390 terminal.

User's Guide

Leo Michelotti Richard Kick

August 27, 1990

1 Introduction

The Evans and Sutherland PS390 terminal which resides in the X-Gallery HiBay area is a povv'erful, sophis­
ticated graphics engine \vhose price/performance ratio approaches infinity becausi; practically no one uses
it. 1 The reason for this lack of enthusiasm is obvious: no self-respecting scientist still of sound mind Vl,.ould
v.:illingly choose to read) much less assimilate) the seven-volume set of manuals that accompanies this device.
The information buried in those volumes is, of course, essential for programming the PS390 to do all the
sophisticated things it is capable of doing, such as creating automobiles ¥.rith doors that open and close and
steering whi.;els >vhich move synchronously \vi th the front tires, all at the turn of a knob. Regrettably, doing
simple things, such as vie>\:ing three-dimensional magnetic -fields, is no easier than doing the mo~t cornplicated
ones. 2 There is at least one brand of third party soft\.\·are available for viewing data, but it requires spt>cially
formatted data files 1 it does not allow for data interaction, and as is usually the case ,.,:ith selrcontained
programs, it invariably does not do the one or tv.ro tasks needed for a given application. Another approach
v.·as used by Fermilab's Computing Division in writing a Dl-3000 device driver for the PS390 terrninaL This
Y.'as a valid and useful project, but it must have been like trying to fit a square peg into a round hole. The
PS390 is Phigs-like in its graphics protocols ·while Dl-3000 is based on ACM Core, \\'hich '\\'aS devised when
graphics was vie•..ved primarily as a means of drawing pictures rather than interacting with data.

The C-+ classes described in this note comprise an attempt to provide an object-oriented approach,
and if there •vas ever a graphics terminal natura1ly suited to object-oriented programming, the PS390 is it.
Since a canvas is not a program but a variable to be used in programs, users can v.:rite software to suit their
particular needs. By simply declaring canvas variables the application program is provided with an object
y.:hich accepts data and displays it automatically. Any number of canvases can be placed anyv.,here on the
screen, so data can be vie>•.:ed in a variety of v,:ays simultaneously. Further1 the "real-time" transformation

1 An excellent l\1acintosh commercial was developed along these 1.in("s. Two executi\'es are discussing how to e'\·aluate hardware
performance. One suggests that the answer lies in counting "megaflops or megahertz something like that." The other counters
that an easier way is to observe which computer people use most frequently. \\'hen the first objects that the criterion is not
fair because people like to use 11 l\1acintosh he receives 11 withering look, suggestive of severe reductions in prospects fur future

promotion.
2 Perhaps this is just the negative WBJ of saying that cornylicated graphics is no harder than simple graphi<s.

I

capabilities of the PS390 are activated in one step by "connecting" its external devices, the dials and the
puck, to the desired canvas. There is no need for the applications programmer to construct his O\\·n function
net\\·orks 1 choose names for nodes 1 and do any of the other administrative tasks laid out in the manuals,
including connecting the terminal to a host computer and initializing it. These are handled automatically
by the canvases themselves, thus removing this clutter from the application program.

This User:s Guide is arranged as follo\\.·s. \\'e offer in Section 2 four sample programs \,1hich illustrate the
sin1plest usage of the canvas variables: canvas3d, canvas2d1 and canvasRas. This is foll wed by a description
of (currently) available methods in Sections 3 and 4, the former dealing \vi th object-orinted graphics and the
latter \vi th raster graphics. \\-'hat v.•ill be described is a minima1 1 "bare bones" implementation which we hope
v..rill be useful to anyone v.·ho wants an easy way to explore three-dimensional data without frills. It is not our
objective to atternpt, single-handedly1 to provide an Intervie\\'S package for the PS390.3 Hov.'ever 1 features
v..rill continue to be added slowly as needed, especially \Vith regard to (a) locate, pick, and identify functions,
(b) three-dimensional cursors, (c) ready-to-use graphics objects, such as beamLine or surface, (d) new types
of derived canvases, such as stripChart, menu, or tuneDiagram 1 and (e) construction of a canvas4d class.
For those \\.'ho might v.:ant to use these variables and their methods libraries and documentation can be found
in the area ALMOND: :USR$DISK4: [MICHELOTT. PUBLIC. CANV.lS].

2 Sample programs

The first tv..'o programs in this section \1. .. ere suggested by colleagues in Accelerator Division; the other two had
no motivation other than to illustrate the usage of canvas variables. Almost complete listings are provided,
but for our purposes, it is certainly not necessary to understand all their details. "\\'e shall \\'a]k through the
important highlights of each.

All of these sample programs are available to anyone v,1ho might v.'ant to play \.l:ith them to see 'Nhat
they actually look like on the screen. Simply (i) v.·alk up to the XGal Hi Bay \.1ezzanine and log into your
ALI\lOND account using the PS390 terminal; (ii) brov..·se through the demo names by doing

$ DIR ALMOND: : USR$DISK4: [MICHELOTT. PUBLIC. CANVAS. DEMOS]•. DEMO;

and (iii) invoke a demo v•ith

$ =ALMOND: :USR$DISK4: [MICHELOTT .PUBLIC. CANVAS .DEMOS] <name> .DEMO

\vhere <name> is the name of one of the demos seen in Step (ii). Further, it is possible to make hardropies
of the PS390 display (v..rith the exception of canvasRas images) by entering

$=ALMOND: :USR$DISK4: [MICHELOTT.PUBLIC.CANVAS]HARDCOPY

at \-'I\lS system level. A PostScript file named PS800.DAT will be \\'ritten into your default directory.

2.1 Data from files

This first program merely reads three-dimensional data from a set of files and displays them in a canvas. 4

Each file contained one-day temperature profiles at one of twenty-four stations around the ring. Each line

3 Incidentally, the fact that our class has the same name as that used by SUN graphics is purely a coincideni;"e and is not
meant to suggest any correspondence.

4 The program in this sei;"tion was suggested by Walter Kissel.

2

contained a (time, temperature 1 station) triplet 1 and it \\'as desired to display these as twenty-four different­
colored curves. The names of all the data files were 'vritten into a separate file for program access.

"\\le shall mark the important features of this program, flagged by their line numbers:

line 6: The canvas resource file, canvas.rsc 1 must be included before any canvas variables are de­
clared and must have file scope, that is, it must be included outside of all "{ ... }" brackets (the most
logical place being near the top of the file, as shown here). This header can be read from the area
ALMOND: :USR\$DISK4:[MICHELOTT.PUBLIC.HEADERS].

line 11: A number of forms are available for declaring canvas variables. This one employs two character­
string arguments to instance pie) a three-dimensional canvas. The first argument specifies hov.• graphics
transformations are to be carried out; we shall put off its detailed explanation to Section 3.1. The second
requests a parallel, rather than perspective, projection from the three-dimensional "v"orld" of data into the
screen; perspective projections are the default.

lines 13-20: This fragment of code serves the dual purpose of placing axes v.·ithin the canvas and alerting
it to the data ranges it can expect. Each data file contains a 24 hour temperature profile at one of the the
24 stations around the ring. "\Ve choose temperature to bf' the z-axis, v.•hile "hour" and "station" v.rill be the
other two. The array minmax indicate the minimum and maximum valuf's associated with each axis 1 v.·hile
delta specifies the spacing bet'\.veen tic n1arks.

lines 22-25: Anticipating the desire to look at the data from various viev.'s, the PS390 dialbox is con­
nected to the canvas's transformation "nodes." There are thrl;'e basic data transformations ·which can be
carried out: rotations> dilations~ and translations. These statements V.'ill allov.· the first three dials to control
rotations in three independent directions, th(' fourth 1 dilation ('"wvhich is uniform in all three directions), and
the last three 1 translations. Dial 5 is not connected to anything.

lines 8, 33: Names of the data files are contained in a separate file 1 \\'hose name v.'ill appear in the
command line invoking the program 1 as in

$ kissel namefile.dat

lines 37-54: These two while loops form the core of the program. The first reads the names of the
data files, the second, the data. The temperature profiles are modelled as \Vireframes v.•ith the functions
.startFrarne (line 45), v.·hich initializes a \vireframe, and .addToFrame (line 49), v.·hich continues it. Since
transformations have already been connected, the dialbox can be used to manipulate the image as it i.'I being
dratvn.

line 53: It frequently happens at the end of a program that the last fe\\' data points sent to a canvas do
not reach it because the Ethernet buffers have not been filled. The method .purgeBufffl.ushes these buffers
and assures that al1 the data are displayed.

lines 58-61: Fina1ly, \Ve delay leaving the program. Upon exiting 1 canvas destructors are invoked) and
they reset the PS390, destroying all the objects which have been created. "\Vithout the delay, this v.:ou]d
happen before the user had a chance to examine his data. If it is desired to exit a program UJhilc leaving the
objects intact - to make a hard copy of the screen, for example - then exit disgracefully with a -y,

1

2

3

#include <stddef.h>
#include <errno.h>

II These two statements sideline
II annoying compiler warnings
II about PSECT ERRNO

3

4 #include <stdio.hxx>
5
6 #include "canvas .rsc''
7
8 main (int argNwn, char •fileList []) {
9

10 //Declaring the canvas variable
11 canvas3d pie ("OOW'', "orthographic") ;
12
13 I I Setting up the axis system
14 double delta [3] ;

double minmax[6];

II x ------- -------- y z
15

16
17
18

19
20
21

minrnax [O] 1.0; rnirunax [2] 1.0 j mirunax [4]
mirunax [1] 24.0; mirunax [3] 24.0; mirunax [5]

delta [O] 1.0; delta [1] 1.0; delta [2]

pie .make Axes (rnirunax, delta) ;

22 //Connect transformations to dials
23 pie. connRot (1, 2, 3) ;
24 pic.connScale (4) ;
25 pic.connTrans (6, 7, 8) ;
26
27 //Finally, read and display the data
28 FILE •dataFile;
29 FILE •narneFile;
30 char narneOfDataFile[80] ;
31

32
33 narneFile = fopen(fileList[l], "r") ;
34
35 char firstPoint = 1;

double time, temperature, station; 36

37 lr.lhile (fscanf (nameFile, "i.s", nameOfData.File
38 dataFile = fopen(nameO:fDataFile, "r") ;
39 while (fscanf (dataFile, "I.le /.le ~.le",

40

41

42
43
44
45

46
47
48
49

50

!= EOF
) {

ltime, ltemperature, lstation

if (firstPoint) {
pic.startFrame(station, time, temperature);
:firstPoint = 0;
continue;
}

pic.addToFrame(station, time, temperature) ;
}

4

60.0;

120.0;
10.0;

51 fclose(dataFile) ;
52 firstPoint = 1;
53 pic.purgeBuff();
54 }
55
56 fclose(nameFile);
57
58 //Delaying program exit
59 char dummyString[80] ;

60 printf("\nPress RETURN to exit the program. \n");
61 gets(dummyString) ;
62
63 }

2.2 Eyeball curve-fitting

It frequently happens that one would like to fit to data from a parametrized family of curves 1 not by using
automated (least squared error) methods but simply by looking at the curves and playing \\·ith the parameters
until a decent fit is achieved at localized regions of inletest. The program listf'd belov..r enables this typt> of
"exploratory data analysis." 5

lines 16-17, 146-157: 'fhis program had an interesting problem associated with it. I \Vanted tv.·o two­
dimensional canvas variables with file scope on the screen simultanf'ously. Ho\vever, the declarative forms
employed (lines 1.11 and 156) could be used only from within a function. The solution v.·as to declare
pointers to canvases (lines 16 and 17) \vhich are assigned values after the canvases are declared (linf:'s
152 and 157). This illustrates strongly that a C++ class acts completely like the original variables of the
language.

Locations of the canvases on the screen are specified by tv.·o arrays, rt and lb, v.'hich contain ''normalized
screen coordinates" - lying V.'ithin ±1 - of the right~top and left-bottom corners. Thus the canvas fit is to
be centered vertically and occupy the left half of the screen 1 while res id will occupy the right half. (Compare
lines 151 and 156 •Nith line 11 of the preceding section.)

lines 159-165: After the canvases have been declared, translation nodes are connected to dials, as before.
\\'e are not interested in rotations for this application.

lines 172-176: The file containing (2 1 y) coordinate pairs is read and the data stored in two arrays. Line
176 contains one of those multi-purpose statements that non-C programmers sometimes find confusing. It
simultaneously (a) reads the data file, storing one pair at a time, (b) counts the nun1ber of pairs stored, and
(c) terminates when the end of file is reached.

lines 178-211: Then cornes a block of code v.·hich makes an initial estimate for the parameters of a
gaussian model from the data's statistics. Since it is not of interest: in the context of this document, v.·e
have omitted it.

lines 213-224: As in the previous example, axes are established, one for each canvas. The vertical axis
parameters are different for the t\\'O windows 1 since fit is to display the data themselves, ¥:hile res id will
contain the display of residuals from the gaussian model.

E>Thc program in this section was suggested by Craig lVJoore.

5

lines 227-240: Three objects are to be plotted in the two canvases: the scatterplot of (;r., y) coordinate
pairs, the gaussian curve through those points, and the set of residuals. These are respectively given the
tokens1 already declared as char* variables in lines 13-15 1 ofdataGra:f, curve) and residuals. dataGraf is
plotted using the methods .startPts 1 to initialize, and .addToPts, to complete the display (lines 228-229).
The methods .startFrame and .addToFrame implement the display of curve and residuals as ¥1ire­
frames. The colors are chosen from a template made available by canvas.rsc: BLUE1 MAGENTA, RED, YELL011.1,
GREEN and CYAN. Other colors can be obtained by linear interpolation, as in "0.3•RED + 0.7•YELLOW."
The loop beginning at line 235 finishes the wirefran1es. Note that in addition to .addT0Frarnc 1 the plot of
residuals makes use of a method .joinToFrame (line 237). This enables residuals to be constructed from
disconnected pieces, while curve is a completely connected wireframe.

lines 8, 242-249: The C++ class ttMenu v.'as V.'ritten some time ago and is convenient for v.·riting
programs with interactive steps. Its usage should be obvious from the context.

lines 64-141: The functions absChange (lines 64ff) and re!Change (lines 103ff) simply allow the
user to a]ter the parameters of the gaussian either directly or by choosing multipliers or summands. The
details are not of interest, except for lines 98 and 138: after changes are made, the t\\'O objects curve and
residuals are redrav.'n ..

lines 49-62: ... using the function reDraw(). After the old versions are erased from the canvases using
.remove (lines 51-52), the nev.' ones are put in their places: lines 53-61 almost exactly duplicate lines
232-241, in which these objects v.·ere originally drav.rn. The principal difference is that reDraw uses the
pointers fi tPtr and resid.Ptr to refer to canvases.

lines 22-41: This block of code simply contains the gaussian function '.vhich is to be used as the family of
curves for the fitting. The user will be able to manipulate four parameters (lines 27-30) in order to achieve
a "good" fit.

[J'IiOGRAM_LISTING [

I #include <stddef.h>
2 #include <errno. h>
3 #include <stdio.hxx>
4 #include <strearn.hxx>
5 #include <math.hxx>
6

7 #include "canvas .rsc"
8 #include '' [rnichelott. cpp. headers] menu. hxx"
9

10 #define MAXDATA 256
11 const double twoPi 6.2831853072;
12

13 char• dataGrafi
14 char• curve;
15 char• residuals;
16 canvas2d• fitPtr;
17 canvas2d• residPtr;
18 double x [MAXDATA] , y[MAXDATA];
19 int nurn;
20

6

21
22 // ••••••••••••••••••••••••••••

23 //
24 //Gaussian distribution to be used in fitting

25 //

26
double gs Average 0.0;

double gs Sigma 1.0;

27

28
29

30

31

double gsNormalization 1. 0;

32
33

double gsPlatform

double gaussian
double w;

34 double arg;

0.0;

double u) {

35 arg = (u - gsAverage } I gsSigma;
36 arg = - 0.5 • arg • arg;
37 w =exp(arg) I (sqrt(twoPi) • gsSigma);
38 w •= gsNormalization;
39 w += gsPlatform;
40 return w;
41 }

42
43
44 // ••••••••••••••

45 //
46 //Manipulation routines in mainMenu
47 //

48
49 void reDraw() {
50 int i;

51 fitPtr -> remove(curve) ;
52 residPtr -> remove(residuals) ;
53 curve fitPtr -> startFrame(x[O], gaussian(x[O]), RED) ;
54 residuals resid.Ptr -> startFrame(x[O], 0.0, YELLOW);

55 residPtr -> addToFrame(x[O], y[O] - gaussian(x[O]));
56 for (i = 1; i < num; i++) {
57 fitPtr -> addToFrame x[i], gaussian(x[i]) ;
58 residPtr -> joinToFraroe x[i], 0.0) ;
59 residPtr -> addToFrame x[i], y[i] - gaussian(x[i])) ;
60 }

61 fitPtr->purgeBuff{};
62 }
63

64 void absChange() {
65 int choice;
66 double value;
67

7

68 start:

........ <<<Lines 69-93 omitted>>>

94 default:
95 break;
96 }

97
98 reDraw();
99 goto start;
100
101 }

102
103 void relChange() {

104 int choice;

<<< Lines 105-136 omitted >>>

137
138 reDraw();
139 goto start;
140
141 }
142
143
144 main (int argNum, char •fileNarne[]) {
145
146
147
148
149

II Declaring the canvas variables
double rt [2] , lb [2] ;
II ________)[______________ y

lb[O] -1.0; lb[!] - 0.5;

150 rt[O] 0.0; rt[!] 0.5;
151 canvas2d fit (rt, lb, "WWW") ;
152 fitPtr = ifit;
153 II
154
155
156
157
158
159
160
161
162
163
164
165

lb[O] 0. 0; lb[1] - 0.5;
rt [O] 1. 0; rt [1] 0.5;
canvas2d res id (rt, lb, "WWW") ;

residPtr tresid;

II Connect transfonnations to dials
res id. connScale 1, "Scale") ;
resid.connTrans 2. "Horiz",

3. "Vert") ;

fit .connScale 5. "Dilation") ;

fit .connTrans 6. "Horiz",
7. "Vert") ;

8

166

167 //Reading data from the file . , ...
168
169

170
171

FILE•
int

xyFile;
i;

172 xyFile = fopen(fileName[1], "r") ;

173

174 // Read the data file
175 nurn = O;
176 ;;rhile (fscanf { xyFile, "%1£ Zlf", x + nurn, y + nurn) ! = EOF) num++;
177

178 //Find data scales
179
180

double xmin

double xmax
x [OJ ;
x [OJ ;

........ <<<Lines 181-209 omitted>>>

210 gsSigma sigma;

211 gsNormalization =sqrt(twoPi) *sigma* (ymax - ymin);
212

// Setting up the axis system
double delta[2J, minmax[4J;

213

214
215

216
217
218

219
220

221

222
223

II x ___________ y

minmax [O]

minmax [1]

delta[O]

xmin; mirunax [2]

xmax; mirunax [3]

delta(1J
fit.makeAxes(rninmax, delta);

rninrnax [2]

minmax[J]
delta[1]

224 resid.makeAxes(minmax, delta);

225
226
227 // Plotting the data

ymin;
ymax;

1. 0 i

- 1.Sj
1.5;

0.25;

228 date.Graf= fit.startPts(x(O], y[O], YELLOW) i

229 for (i = 1; i < num; i++) fit.addToPts(x[i], y[i]);
230
231 //Plot the initial curve

curve fit.startFrame(x [OJ , gaussian(x[O]) . RED 232
233

234
235

236

residuals resid.startFrame(x [OJ , 0.0, YELLOW

237

238

resid.addToFrame(x [OJ , y [OJ - gaussian(x [OJ
for (i = 1; i < num;

fit.addToFrame
resid.joinToFrame
res id .addToFrwne

i++) {

x[i], gaussian(x[i]);

x[i],0.0);
x[i], y[i] - gaussian(x[i]));

g

)

) :
) :
) ;

239 }
240 fit.purgeBuff();

241
242 //Activate the menu

243 ttMenu mainMenu;
244
245 mainMenu.setPrompt ("PLAYFIT .. > ") j
246 mainMenu .set Item("Absolute change of parameters.", absChange } ;
247 mainMenu.setltem("Relative change of parameters.", relChange } ;
248
249 rnainMenu.go();
250
251 }

2.3 Fields

In addition to \Vire frames and clusters1 canvases recognize vector fields as representable objects. The program
below samples an electric dipole field at random points.

lines 23-38: A canvas variable is declared and custoinized more or less as in Section 2.1 except that
"orthographic" vi{'v.· is not requested 1 V.'hich means the display will be in perspective.

lines 45-52: The method .start VF initializes !he vector field display. In !he loop, getFieldAtPoint
chooses a point randomly and calculates the field at that point. These are loaded respectively into the arrays
x and E. Then, .addToVF (line 51) incorporates these ne"v samples into the diagram as they are calculated.

1 #include <stddef.h>
2 #include <errno.h>
3 #include <stdio.hxx>
4 #include <math.hxx>
5 #include "canvas.rsc"
6

7 extern double ranO(int•);
8

9
10
11

12
13
14
15

16

double x[3]. o[3], b[3], E[3];
int j;
int ranSeed = -9;
void getFieldAtPoint();
inline void getNextPoint() {

for(int k = O; k < 3; k++) x[k]
}

17 main() {
18
19
20

canst int samples 2500;

int i;

- 8.0 + 16.0 * (ranO(iranSeed));

10

21
22
23
24
25
26

27
28
29

char* dipoleField;

canvas3d picture ("OW") ;

II Put axes into the
double mirunax[3];
double delta [3];
II ____ x _________ y

minmax[O] minmax [2]

picture

_________ z

minmax [4] - 5.0;
30 mirunax[l] = minmax[3] = minmax[S] 5.0;
31 delta [O] =delta [1] =delta [2] 1.0;
32 picture.makeAxes(mirunax, delta, RED);
33
34
35
36
37
38

39

II Connect transformations to dials
picture.connRot 1, 2, 3);
picture.connScale 4);
picture.connFrom (5);
picture.connTrans (6, 7, 8);

40 //Set positions of the two sources ,
41 I I x __________ y ____________ z

42 a[O] 0.0; a[1] 0.0; a[2] 0.5;
43 b[O] = 0.0; b[1] = 0.0; b[2] = - 0.5;
44
45 II Main loop
46 getFieldAtPoint();
47 dipoleField = picture.startVF(x, E) ;
48

49 for (i = O; i < samples; i++) {

50 getFieldAtPoint();
51 picture.addToVF(x, E);
52 }
53
54 picture.purgeBuff();
55 //Delaying program exit
56 char dumrnyString[80] ;
57 printf("\nPress RETURN to exit the program. \n");
58 gets(durnmyString);
59
60 }
61

62 void getFieldAtPoint() {

<<<Lines 63-86 omitted>>>

87 }

11

2 .4 Fractals

A third flavor of canvas available for immediate use is canvasRas 1 a two-dimensional canvas designed for
pixel operations: specifically, for scanning a region in R 2 and coloring pixels according to a user-specified
algorithm. This is a useful technique for creating contour plots and is indispensable if one \\-'ants to become
rich and famous, especially rich, by publishing fractal images. 6 The program shov.'n belo"v mixes a canvas3d,
in '"rhich is plotted the Lorenz attractor, with three canvasRas variables 1 in \vhich are displayed various
portions of the Mandelbrot set.

lines 9-10: The external function lorenz propagates an orbit obeying Lorenz 1s differential equation)
v,rhile mandelbrot determines the RGB color code of points in C ::::'. R 2 based on the number of iterates of
the complex function f(z) ~ z2 + c Y.'hich "survive." \\Te need not concern ourselves with their details here.

line 22: The last component of positioning arrays rtf and lbb 1 \vhich appear in instancing the three­
dimensional canvas lorenzCnv, specify positions for the for\\'ard and backward clipping planes. These are
used in conjunction with depth cueing on the PS390: points ¥:hich are "farther away" from the observer are
made to appear dirr1mer. The first two components locate the canvas on the screen 1 as in lines 151 and 1S6
of Section 2.2.

lines 40·50: An orbit of the Lorenz equation is modelled as a v.rire frame beginning at the point (0) 1, 0).
Over five thousand tirni;> steps are taken. Since the transformation nodes have been conne-cted prior to this 1

in lines 35-38, the user can manipulate the attractor ·while it is being constructed.

lines 81·87: Three regions of the ~IJandelbrot set will he displayed in raster canvases, \Vhose declarations
include arguments rt and lb indicating where they are to be placed on the screen, exactly as '"'·ith canvas2d
and canvas3d variables. The .setX and .setY functions then determine the domain in R 2 to be associated
\vith each one 1 after which .scan te1ls the canvas to scan its domain using the RGB color-coding function
narned in the argument, mandelbrot.

I PROGRAM LISTING I

1 #include <stddef.h>
2 #include <errno.h>
3 #include <complex.hxx>
4
5 #include "canvas .rsc"
6

7 II Declaring functions which generate Lorenz's attractor
8 II and the Mandelbrot set , .. ,, .. .
9 extern void lorenz double•, double•, double•);
10 extern void mandelbrot (double•, double•, int•, int•, int•) ;
11
12 main() {
13
14 II ++

15 II Work begins here on the Lorenz attractor
16

61 am told that the current rate for a single fractal "project" in the advertising iildustry is about $150,000. At least, th.is is
the price charged by a fractal pioneer who has left academia to devote himself fuJI~time t•) these worthwhile pursuits.

12

17
18
19
20

21
22

23

24
25
26

27

28

29
30

31

32

33

34

35

36

37
38
39

II Declaring the canvas variable
double rtf[3), lbb[3);
II ___________ x -------------Y _____________ z
lbb[O) -1.0; lbb[l) = -0.6; lbb[2) -1.0;

rtf[O) 0.6; rtf[l] 1.0; rtf[2) 1.0;

canvas3d lorenzCnv (rtf, lbb, "O'WO") ;

I/ Setting up the axis system , .. .
double delta[3];
double minrnax[6];
II ____ x _________ y ________ z

minmax[O] miruna::r: [2] minmax[4] - 50.0;
minmax[1] mirunax[3] minmax[5] 50.0;
delta[O] delta[1] delta[2] 5.0;

lorenzCnv.makeAxes(minmax, delta, YELLOM) ;

II Connect transf onnations to dials
lorenzCnv.connRot (1. 2. 3) ;

lorenzCnv.connScale (4) ;

lorenzCnv.connTrans (5, 6. 7) ;

lorenzCnv.connFrom (8) ;

40 II Set initial conditions and launch the orbit
41

42
43

44

double x

double y
double z

0 .O;

1.0;
0.0;

45 char• attractor;
46 attractor= lorenzCnv.startFrame(x, y, z, RED);
47 for (int timeSteps = O; timeSteps < 5500; timeSteps++) {
48 lorenz(tx, ly, tz);
49 lorenzCnv.addToFrarne(x, y, z) ;
50 }
51
52 II++

53 II Work begins here on the Mandelbrot sets
54
55 II Declare five raster canvases in which we shall scan
56 II various pieces of the Mandelbrot set.
57
58
59

60

61
62

63

double rt [3] [2] ;
double lb [3) [2];

II ______________ x

lb[O] [OJ 0.6;

rt[O][O) 1.0;

II ----------------

________________ y

lb[O)[l) = - 0.2;

rt[O) [1) 0.2;

13

64 lb [1J [OJ 0.6; lb[1][1J - - 1.0;
65 rt[1][0J 1.0; rt[1][1J • - 0.6;
66 II ---------------- ------------------
67
68
69

lb [2J [OJ
rt [2J [OJ

- 0.2; lb[2J[1J - 1.0;
0.2; rt[2J[1J • - 0.6;

70 double xLo[3], xHi[3], yLo[3], yHi[3];
71 xLo[OJ • -1.7935; xHi[OJ • -1.7365;
72 yLo[OJ • -0.0285; yHi[OJ • 0.0285;
73 II ---------------- ------------------
74
75
76
77
78
79
80

xLo[1J • -0.96;
yLo[1J • 0.23;
II ----------------
xLo[2J • -0.94;
yLo[2J • 0.24;
II ----------------

81 canvasRas• mandelCnv;

xHi[1J • -0. 89;
yHi[1] • 0.30;

xHi[2] • -0.89;
yHi[2] • 0.29;

82 for (int i = 0; i < 3 i++) {

83 mandelCnv = nelil canvasRas(I:(rt [i] [O]) , l(lb[i] [O])) ;

84 rnandelCnv -> setX(xLo[i], xHi[i]);
85 mandelCnv -> setY(yLo[i], yHi[i]);
86 mandelCnv ->scan(mandelbrot)j
87 }
88
89 //Delaying program exit , ,
90 char durnmyString[80] ;
91 printf("\nPress RETURN to exit the program. \n");

92 gets(dummyString) ;
93
94 }

3 Object-oriented graphics

In order to reduce the amount of space needed to list methods available to canvas variables, \\'e have adopted
a limited form for indicating options. Using this notation the line 1

{ classA I classB }::mth(double x[3], [int• y ,] char" z [, double t [, int w]])

n1eans that the n1ethod .rnth is available both to class A and to classB using one of the fo1lov,:ing argurnent
lists:

double x[3], char* z),
double x[3], int* y, char* z, double t), or
double x[3], int* y, char* z, double t, int ~).

14

Hov.·ever, (double x [3] , int* y, char• z) \\'ou1d not be allov-.red: unless ot.her\vise indicated, all op­
tions at the same depth go together.

3.1 Declarations

canvas3d::canvas3d ([char• m [, char• v 11)
::canvas3d (double rtf[3], double lbb[3] , char* rn [, char* v]

canvas2d::canvas2d ([[double rt[2], double lb[21,] char* m I)

Canvas constructors are overloaded to provide various options for initializing the graphics display en­
vironment. The argument (char• m) requires some explanation. Three types of '~real-time," interactive
transformations are incorporated into canvases: rotations1 dilations1 and translations. 7 The argument m is
a three-character string (excluding the terminating null character) which specifies the rnodt in which these
transformations are to be carried out. For instance, rotations are carried out relative to three independent
directions. If the first character in m is '\V), this means that these directions are to remain fixed in space
(or, in graphics terminology, in the "world"); if it is 'O' then the rotation axes remain fixed relative to the
objects being rotated. In the latter case 1 dials connected to the rotation node of a canvas (via one of the
.connRot methods discussed below) will act like yaw, pitch, and roll controls. If 'W' is specified, however,
the axes of rotation v.·ill remain fixed "in space" regardless of the orientation of the objects.

A sjmilar criterion is set up with regard to translations, 'vhich also require specification of three axes 1

using the third character in m. The middle character controls the dilation, or "scaling," operation: if 'O' is
chosen 1 then the invariant point of the dilations remains fixed in the object; if '"\\P, in the world.

The argument char* v 1 if present, gives the user the option of specifying an orthographic vie\\', rather
than a perspective one: Any string not beginning \vith the character 'p' - such as v = "orthographic"
-- v.·ill select the orthographic view. This v.'ill perform parallel projection of three-dimensional data onto
the screen.

If more than one canvas is declared, the arrays rt 1 lb, rtf> and lbb indicate the size and position of each
on the screen. The two components of rt and lb contain the relative screen coordinates of the right-top and
left-bottom vertices of the canvas. Relative screen coordinates are al\vays in the range ±1 in each direction:
they indicate position as though the screen v.rere mapped onto { (z, y) I izl::.; 1, IYI :S 1 }. For example, using
rt= (1, 1) and lb= (0, 0) will put the viewport in the upper right hand portion of the screen. !fa rectangular
viev.·port is requested, the one actually constructed 'viii enclose the largest square that fits into this rectangle 1

with top right vertices matching. The three-diniensional arrays rtfand lbb are similar; their third argument
indicates "depth," and sets the positions of the forward and back\vard clipping planes, ¥ihich determine
depth cueing.

Default declarations use no arguments. A canvas constructor assumes that the declared canvas v.·ill be
the only one on the screen and give it maximum size. Data \.\·ill appear in perspective, and depth cueing v.•ill
be activated v.·ith for,1.rard and back¥.:ard clipping planes set at ± 1.
--·----------

7There is actually one more, but we'll save it for later.

15

3.2 Transformations

void canvas3d::connRot (int dialX, [char* labelX,)
int dialY, [char* labe!Y,)
int dialZ [, char* labelZ))

::connTrans (int dialX, [char* labe!X, J

int dialY, [char• labelY,)
int dialZ [, char* lab elZ))

::connFrom (int dial [, char* label))
void canvas2d::connRot (int dial [, char* label))

::connTrans (int dialX, [char* labe!X,)
int dialY [, char* labelY)

void { canvas3d I canvas2d }::connScale(int dial [, char* label J

These functions connect the transformation nodes of a canvas to the PS390's dial box so that they can
be carried out interactively by turning knobs. As their names suggest, .con11Rot and .connTra11s connect
dials to a canvas's rotation and translation nodes respectively, and .connScale connects a dial to dilation.
The integer arguments determine the dials associated v-.·ith '~x 1 " "y," and "z" rotations·· or just "z" rotations,
in the t\\·o-dimensional case - and must lie between 1 and 81 inclusively; the string arguments determine
the labels, limited to eight charactersi ¥.'hich will appear in the LED displays above the associated dials. If
labels are not specified, defaults will be used. An input dial integer less than 1 or larger than 8 ,,·ill result in
no transformation capability about the axis for \vhich the dial number \.Vas intended. This is actually useful
·when it is desired to select fev.'er than all three axes for either rotations or translations .

. co11nScale requires only one integer argument for selecting the dial number to be used for dilation) as
the transformation is carried out uniformly in all three dimensions. It is important to remember that the
origin used for the scaling tranformation is determined by the mode argument, char* m1 used "'hen declaring
a variable of type canvas3d.

The .conn From method, available only to canvas3d variables, allov• the user to "move through '1 the
data by changing the point of observation. Any rotation of the selected dial will result in the simulated
movement of the user along the line connecting the original viev.:ing position and the "vorld axis system
origin. If the vie\\o·ing position is moved beyond the origin (the center of the display region), the data \viii
apear to flip from front to back. 8

3.3 Building displayable objects

char* canvas3d::startFrame(double x, double y, double z [, double c J)

::startPts (double x, double y, double z [, double c J)

::start VF ([doubles,) double p[3), double v[3) [, double c))
void canvas3d ::addToFrame ([char• n, J double x, double y, double z)

::joinToFrame ([char• n,) double x, double y, double z)
::addToPts ([char* n,) double x, double y, double z)

8 This is a flaw which will be repaired eventually.

16

::addTo VF ([char• n,] double p[3], double v[3])
char* canvas2d::startFrame (double x, double y [, double c])

::startPts (double x, double y [, double c])
::start VF ([doubles,] double p[2], double v[2] [, double c])

void canvas2d ::addToFrame ([char• n,] double x, double y)

::joinToFrame ([char* n,] double x, double y)

::addToPts ([char* n,] double x, double y)
::addToVF ([char* n,] double p[2], double v[2])

void { canvas3d I canvas2d }::makeAxes(double m[6], double d[3] [, double c])

At the time of writing, canvases support displayable objects rnodelled as v,1ireframes 1 point sets, vec­
tor fields, or axes. Displaying data as clusters of points is accomplished through the functions .startPts
and .addToPts. The first. initializes the object, and the second adds rnembers to it .. startFrarne, ad­
dT0Frarne1 and .joinToFrame perform similar offices for \\'ireframes .. addToFrame assumes the point
given is to be attached to the frame via an edge; .joinToFrame n1akes the edge invisible: it "lifts the pen,"
as it \Vere, before moving to the new point. Thus, a wire frame need not appear connected.

The .startXXX methods return a string which is·-the internal name of the object being created. One
application of this, the removal of an object from a canvas 1 v.·as illustrated in line 51 of the Section 2.2
listing. Another is given in the methods above: Normally, after an object is started 1 calls are made to
.addToXXX methods in order to continue its construction 1 as done in lines 231-239 of Section 2.2. If that
process is interrupted 1 and another object is started, ¥.'e can still return to the original one by inserting
(the token containing) the valui: returned by a .startXXX function as the char* n argument. This is
illustrated in the fragment below.

canvas3d zlorf ik;
char* firstThingi
char* second'l'hing;
double x, y 1 z;

first Thing = zlor:fik. startFrame(0 .• 0., 0.) ;
secondThing = zlor:fik.startFra.me(1., 1., 1.);
zlorfik.addToFrame(x, y, z); II This refers automatically to

II the most recently started frame
zlorfik.addToFrame(firstThing, x, y, z);
zlorfik.joinToFrarne(secondThing, 2.0*x, 2.0*y, 2.0*z);

Axes, built by the .rnakeAxes functions, are useful for orienting the observer with respect to data. The
t"wo required arguments are arrays 'vhich provide the ranges associated 'wvith each axis (double* m) and the
spacing between tic marks (double• d). Their usage was il1ustrated in all Si:ction 2) for example in lines
16-19 of Section 2.1. Of course, the last (two) components of double* d (double* rn) is (are) ignored by,
and therefore not necessary for 1 canvas2d variables.

The optional argument double s that appears in the vector field function .start VF is a multiplicative

17

"scale factor" for the vectors V.'hich serves to relate the units of the vector field to those of the underlying
space. Its absence is equivalent to setting s = 1.

The argument double c refers to color. BLUE, MAGENTA, RED, YELLOW, GREEN and CYAN are automat­
ically available as defined tokens, and can be inserted into this slot. Other hues can be obtained through
interpolation, as in "O.i*GREEN + 0.9*YELLOW."

3.4 Miscellany

void canvas3d::setRange(double xMin, double xMax,
double yMin, double yMax,
double zMin, double zMax)

void canvas2d::setRange(double xMin, double xMax,
double yMin, double yMax)

void { canvas3d I canvas2d }::setRange(double m[6])
::include(char* n)
::remove(char* n)

void canvas3d::connAnimate(char g, int s }
void canvas2d::connAnimate(int s)

Besides arranging the configuration of the axes, the .makeAxcs methods listed in Section 3.3 alert the
canvas to the range of values it can expect. If necessary, the canvas then scales data so that all directions
visually look as though they had comparable dynamic ranges. The .setRange methods provide a way of
doing this without dra,ving axes. The argurnent double* mis exactly the sa1ne as in Section 3.3; as before 1

the last two cornponents are not needed for canvas2d variables.
After an object is created in one canvas, it can be displayed in other canvases by using the .include

function. Conversely1 .remove wvill remove objects from canvases 1 as was done in lines .51-52 of Section 2.2 .
. connAnimate allows the user to activate an animated rotation about an axis of choice 1 detern1ined by

the argument char g, \Vhich should take on the values 'x' 1 'y 1 , or 'z'. The other argumenti int s 1 controls
the rotation speed: a value of 1 causes the animation to operate at a speed of about 60 degrees per second,
which is the fastest available; any other value will produce a slower rotation. The animation is begun by
placing thf:' locator puck on the tablet and pressing its green button: and it is stoppt>d by pressing the red
one.

4 Raster Graphics

The class canvasRas 1 unlike its cousins, canvas2d and canvas3d) is designed for pixel operations. Specif­
ically, it can be used to generate color-coded contour maps of functions over R 2 . As \~;as demonstrated in
Section 2.4 1 the user specifies an arbitrarily named function

void tune(double• x, double* y, double* r, double* g 1 double* b)

18

v.rhich accepts an (z, y) roordinate pair as input and produces its red-green-blue color code as output. The
values must all satisfy 0 ~ •r, *g, * b < 255. Pixel operations art not updated, so canvasRas variables should
not overlap anything else appearing on the screen, including the '-'AX-produced messages displayed in the
terminal emulator plane and the cursor.

4 .1 Declarations

canvasRas::canvasRas([double rt[2], double lb[2] J)

Jnstancing a canvasRas variable v.tith arguments determines its position on the screen. (For example, see
line 83 on page 14.) As before 1 rt and lb contain normalized screen coordinatesi lying bet'\\·een ::l-1. If the
default option (no arguments) is used) then the canvas ""·ill fill the entire available area, \Vhich means that it
should be the only canvas in the program.

4.2 Scanning the function

canvasRas::setX(double lo, double hi
::setY(double lo, double hi)
::scan(RASTER_FUNC scanFunction)

The desired image is rendered on the screen by setting a don1ain in R 2 and then invoking .scan. The
methods .setX and .setY determine the region to be scanned. Invoking .scan starts the actual data
processing. The argument scanFunction is the nan1e of the user-defined function described above. Usage
'"'as exemplified in lines 10 and 86 of Sec.2.4.

4.3 Miscellany

canvasRas::erase()
::fullErase()

Invoking the .erase method v.rill clear a single raster canvas; invoking .fullErase '\\·ill clear all raster
canvases on the screen.

19

