TAGGED HIGH ENERGY n, HYPERON AND ANTI-HYPERON BEAMS AT NAL

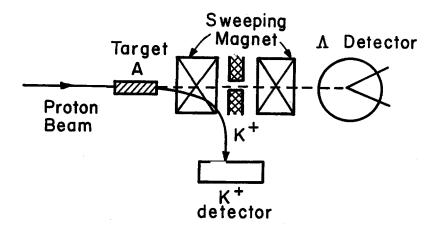
David Cline University of Wisconsin

August 12, 1968

With the advent of high-energy high-intensity accelerators it becomes reasonable to discuss the production of relatively high-energy exotic beams. In particular the availability of nearly monochromatic Λ and $\bar{\Lambda}$ beams would open up a new class of hadron interactions (i.e. the comparison of Λp and $\bar{\Lambda} p$ total cross sections at high energy; I = 1 meson exchange being forbidden for these processes might lead to equal cross sections at a lower momentum than for $\bar{p} p$ and p p). In addition, it should be possible to obtain high-intensity partially separated \bar{p} beams (~ 10 $^6/pulse$ with 10 - 40 BeV/c) at the thin target stations. Using these beams, it should be possible to obtain adequate \bar{n} or $\bar{\Lambda}$ beams for counter, streamer-chamber or rapid-cycling bubble-chamber experiments.

Although it seems possible to obtain high-energy Σ^- beams using the highest energy negative particles coming from a target, the production of Λ , $\bar{\Lambda}$ and \bar{n} beams is intrinsically more difficult.

One possible technique is to use the characteristic properties of the diffraction dissociation processes to produce fast Λ , $\bar{\Lambda}$ and \bar{n}' s with these processes being tagged using mesons produced in the dissociation process. The processes to be used are


with A being a nucleus of atomic number A. The characteristic features of these process are

- 1. The N^* 's are produced strongly forward on protons and should be even more sharply forward on nuclei A. The baryons from the N^* decay carry essentially all the beam momentum.
- 2. The $N^* \rightarrow \pi n$ is most likely isotropic in the center of mass. $\rightarrow \Lambda K$
- 3. The cross section for N^* (1400) [and possibly N^* (1700)] is substantially larger than that either of charge exchange or for other N^* production with incident nucleons above a momentum of ~10 BeV/c. [At low momentum the production of Δ (1238) is large,]
- 4. The cross section for these N^* production is presumably almost constant with energy.
- 5. The decay of N^* (1700) $\rightarrow \Lambda K$ might give polarized Λ' s at certain angles in the N^* center of mass.

Unfortunately, only fragmentary experimental evidence exists concerning the N* (1700) production and even less information is available concerning the ΛK decay of this object. However, there exists some evidence that the reaction $\pi^- p \to \Lambda K$ couples strongly to an N* with mass in the 1700 region. In addition pp $\to \Lambda Kp$ experiments below 8 BeV/c see a strong accumulation of ΛK events near 1700 with a low momentum transfer to the nucleon.

It would be extremely useful if experiments were performed at the AGS to measure the $\Lambda\,$ flux associated with a K^+ using high energy protons.

The scheme for making such a beam is shown below.

If the N^* (1700) production followed by a subsequent decay into ΛK^+ does dominate the N^* production process for very high momentum p's, then a crude momentum measurement of the K^+ (~20%) should define

the Λ momentum to much better than 20%. Using the same set up but with incident \bar{p}' s and tagging outgoing π^- should provide an \bar{n} beam of relatively high intensity (i. e. at 10 BeV/c with 10 \bar{p} /pulse, $\sim 10^2 - 10^3$ \bar{n} might be obtained in a small solid angle). If the outgoing baryon momentum from the N^* decay is strongly correlated to the pion or kaon momentum it might be possible to use a larger solid angle hyperon or \bar{n} beam. The $\bar{\Lambda}$ flux available by such techniques would surely be one to two orders of magnitude down from the \bar{n} flux.

Finally, using a monochromatic neutron beam with the same device it should be possible to make tagged Σ beams using the process

In this case, the first sweeping magnet is used to deflect the Σ through the hole in the shielding wall. Some further momentum analysis could be used beyond the hole.