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I Introduction 

We propose to search for charm.ed mesons and baryons produced at the 

c~ Internal Target. These measurements would consist of two steps. First 

we would precisely determine the energy dependence of the K/n ratio, 

looking for abrupt changes or anomalies when a threshold for pair pro­

duction of charmed particles is crossed. Second, We would combine the 

apparatus used for the K/n ratio measurement with the high resolution 

spectrometer which we are now constructing for experiment 198 to do 

effective mass searches for two body decays of these particles. The 

first step of this program could be started immediately. 

II Motivation 

It has been widely speculated that the narrow resonance recently 

observed at SPEAR and BNL (J or $(3105»1 is a charmed vector singlet 

(Ortho charmonium). Borchardt, Mathur and Okubo
2 

have demonstrated 

that the measured properties of this particle are indeed consistent 

with 8u(4) when symmetry breaking of the same magnitude seen in 8U(3) 

is included. From their calculation they estimate the other charmed 

vectors and pseudoscalar mesons to have masses of about 2.2 GeV/c. 

They also estimate masses for charmed baryons to be in the range of 
2 3

4 - 5 GeV/c These charmed particles are expected to be produced 

in pairs, the production threshold for charmed meson pairs being 

-25 GeV and for charmed baryons 50 GeV. The ligtlest of these particles 

should decay weakly predominantly into final states containing strange 

particles. From simple quark model considerations it is expected that 

the production cross section for charmed pairs in p-p collisions 

should be considerably larger than the cross section for producing the 

http:charm.ed
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+ - -3h 2
singlet. The reported cross section for pp -+ J -+ e e is 	-10 em· 

(ref. h). Including all decay channels this becomes a total production 

-32 2 5 cross section of _10 cm. Charmed pair production is 	conservatively 

6
estimated to be one or two orders of magnitude above this.

The C~ area is ideal for searching for particles of this type. 

The availability of a continuously varying incident energy coupled with 

high luminosity makes high precision searcbesfor thresholds feasible. 

Also, since the energy varies during each pulse, the energy dependence 

of different processes can be detected in a <d.uite bias free manner. 

These thresholds may occur in the 20-50 GeV incident energy range, 

energies only available at C¢. Pair production may involve 

charmed reggeon exchange. Since these trajectories most likely 

have fairly low intercepts the cross section for this reaction 

T
might very ''lell peak not far above threshold. 

III Teohnigue 


We assume charmed meson pairs are produced according to 


p + N -+ c + C + X 

·~K+'IT 

If we take a mass of 2.2 GeV for charmed mesons as given in Ref. 2 

we determine that a K meson at 90° in the CM originating from a K'IT 

decay of a charmed meson, produced at pair production threshold, to 

have a lab momentum of 4 GeV/c and a lab angle of 15° from the 

incident beam direction. By virtue of the high Q value of the decay 

this K meson has a relatively high transverse momentum, P ~ 1 GeV/c, 
T 

where K's from less exotic origins are somewhat damped. Since K+ 's 

and K-'s are produced in equal strength in charmed pair production we 

choose to look for K-'s since their normal production is abour an order 

of magnitude below K
+ 

production. Similar considerations obtain at 

higher energy for charmed baryon pair production. 
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For the first part of this measurement we plan to install a simple 

small aperture single magnet spectrometer in the tunnel at C0. The 

magnet position will be variable from 15° to 40° from the beam line 

and will bend negative particles produced in the target vertically. 

In front and in back of the magnet will be hodoscopes of small 

scintillation counters. The rear arm will also have a gas Cherenkov 

counter to separate ~'s from K's. A Cherenkov counter in front will be 

used to separate Kls and p-I S • 

A one meter long 18 kg magnet ,.ill bend 4.ogev/c particl.esby .14 rads. 

The bending angle will be determined to within ±2. 5 mrads by the front 

hodoscope and two rear hodoscopes. The solid angle will be limited to 

be within the 4" I.D. gas Cherenkov counter whose exit window will be 

_4 meters downstream from the target. The K (~-) momentum will be de­

termined to an accuracy of I:::.P _ ± .07 GeV / G at tile 15° setting, the 

accuracy improving ~t the other lower momentum runs. For the second stage 

of this proposal this resolution could be improved by the addition of 

finer counters and/or Mlf.PCls. 

The experiment will thus be to count K-'s and ~ 's, produced in an 

internal target, in small incident energy bins (I:::.ECM - .1 GeV) during 

the accelerator ramping cycle. Accidental ~IS and K's and one extra 

monitor will be recdrded for each incident energy bin. The data will be stored 

event by event using a 4K memory (PHA) and tape drive (non-computer) 

as-for E188. The beam intensity. radial and vertical position 

will be checked for abnormalities before a set of data is kept. Runs 

will be taken at a variety of transverse and longitudinal momenta and 

over the entire incident energy swing of the accelerator. We would 

vary the angle from 15° where the detection is the hardest but the 

signal to noise is best out to 40° where the detection is easiest and 

the Signal to noise worst. Systematic features which usually plague 

experiments of this type such as detection efficiency. solid angle 

----------------- ..-~----, 
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acceptance, decays in flight, interaction in counters and windows etc., 

do not contribute an energy dependent effect of the type we're interested 

in measuring. 

The second stage of these mea.surements would explore any anomalies 

seen in the K/n ratio by carefully examining the Knmass spectrum in a 

two arm system using the previously described spectrometer together with 

the high resolution recoil spectrometer we are currently preparing for 

experiment #198. In this case we will be sensitive to K-n+ decays of 
. 

neutral charmed mesons, and Kp decays for neutral charmed baryons. The 

details of spectrometer angles will depend upon the results found in 


2
Step 1. We estimate that for a charmed meson mass of 2.2 GeV/c we can 

obtain an effective mass resolution of frM ~ flO MeV. Again seeing the 

development of this spectrum as a function of energy should be quite 

valuable. 

IV Sensitivity and Rates 

Using the CERN results for PP + K-X at an incident energy of 

8 224 GeV we find for x = 0 and PT ~ 1 GeV/c; dcr/an*dP* ~ 4xlO-30 cm /sr 

GeV/c. For a transverse momentum bite of 0.03 GeV/c, we ha.ve for in­

10-31 2clusive K-'s, dcr/dn* ~ cm /sr. At threshold, assuming isotropic 

decays, we get for K-'s of charmed parentage dcr/dn* = cr B/4n. HereT


crT is the total production cross section and B is an effective branching 


ratio for one or the other charmed particle to ultimately yield a K-. 


-31 2
Taking B = 1 and crT = 10 x crT (PP + J + x) ~ 10 cm, we get 

. dcr/du"* ~ 10-32 cm2/sr. Thus we cauld see a rather abrupt lOif% increase 

in the K/TI ratio as we pass through threshold. With 1-2% relative 

precision in each energy bin this should be rather apparent. Of course, 

if the cross section is higher the effect would be more dramatic. 

For 1% (2%) statistical accuracy on the K- yield we need 104(3 x 103 ) 

counts per energy bin (on.e energy bin "" 10 millisecs of ramp). For a 
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50 2 d f" " 2 4cm e lnlng aperture 5 meters from the target AQlab=A/R =2xlO- sr. 

Also dQ /dQl b ~ 10 at P. =25 GeV/c. First we would explore thecm a lnc 

region using a rotating carbon filament target. Here we can achieve 

-6 2target densities of -1.5 x 10 gms/cm. We estimate the rates for 

K-'s per second as being 

2 
~ 1013 prot x 5xl04 traY x 10-30 cm -4 6 23 -E2xlO srx xlO xl.5xlO.traY sec 

,- 2--
c 

. gm/cm 

= 100 K-'s/sec or 1 K-'s/IO millisec/cycle 

(Rotating Carbon Target) 

Thus for each setting we can accumulate 1% statistics in each 

bin in about a day of continuous running. It may be necessary to 

reduce the target density in order to lower the radiation in the 

area. Our rates will be reduced proportionately. 

Only in hydrogen is the CM energy clearly defined. Thus it 

may be interesting to take some measurements from hydrogen. In 

this case the target density is reduced by about a factor of 10. 

The counting rate would thus be 

= 10 K-'s/sec or 0.1 K-'s/IO millisec/cycle 

(Gas Jet Target) 

In this case fifteen shifts of running should give 2 to 3% statistics 

in each energy bin. This would require about two weeks of running 

per setting. 

V Details 

i ) l~anpower 

The group proposing this program is currently preparing for 

Experiment 198. We expect that we could measure the K/n ratio without 
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impeding progress on the construction of the recoil spectrometer. If· 


indeed we found some interesting anomalies in this ratio the E198 spectromete:r: 


would be used in a more detailed search for these charmed states. 


Otherwise our experiment 198 program will proceed as planned. 


ii) Schedule 

We could start setting up the ratio measurements immediately. The 

essentials of the apparatus are on hand and could be assembled into a 

working spectrometer in 4 - 5 weeks. After another 2 - 3 weeks of 

tuning and testing we would be ready to take data. 

iii) Apparatus 

The University of Rochester Particle Physics Group has two working 

Cherenkov counters which are suitable for this spectrometer. 9 The Harvard 

magnet used in Expt. 184 is still at C¢ and might be available for our 

use. We are building hodoscopes for Expt. 198 and these could be put 

into use essentially right away. 

VI Conclusion 

The importance of looking for these particles can't be overstated. 

In the proposal we suggest a systematic search for them exploiting the 

unique features of the C¢ internal target laboratory. 
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Figure Captions 

1. 	 A schematic view of the spectrometer described in this proposal. 

a) Plan view 

b) Elevation 

2. 	 pp ~ K-x yields at 24 GeV/c from ref. 8. 
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I' • ATTACHMENT 

A POSSIBLE EX?LAKA.TION OF TEE 't~w P.ESCNA1~CE 

+ -	 * IN ·e e A!OOHILATION 

s. 	Dorchardt, V. S. !!athur, and S. Ckubo 

University of Rochester 

Rochester. New York 14623 

ADST3ACT' 

We propose that the recently discovered resonance in e+e­

annihilation is a member of the 15 S 1 dimensional representa­

tion of the S~(4) group_ This hypothesis is consistent with the 

various experimental features reported for the resonance. In 

.addition, we make a prediction for the masses of the cha~ed 

vector mesons belongingtothesarne representation. 

*Work. supported i~ part .by the- U.S. Atomic Energy ·Comi:1ission. 
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I 

I Ver,y recently a new type of resonance which couples to thei ­I hadrons and the leptons:has been discovere~ both at SLAC a~d 
I 
; ENt. Denoting this' structure, as '\' (3105) t SLAe has quoted the mass 

and width of this resonance as 

... M'l' = 3.105 ± 0.003 Gev • 

1" ' r " ~ 1.3 Uev. ,
1 " 

' 

j , ' 

i 
i 
I' 'In this note '"we discuss the, theoretical interpretation of
! 
I· " , this structure. For simplicity, ~e assume the spin or tp to be 

1 .~ one. Writing the effective interaction of t\" with the electron­

1 " , ." positron ,pair as 
;". '" ',,',' ." 

, ... ' 

", ....." : .," , ~.' 

. 
" (2) 

' ~ 

, ' 

" ( : ~:1 
'. '. 

, . 
the total production cross-section of' ,'" , integrated over the 

.. ,­ . ',. ,," 
, width' or '\' is comput~d:to be' 

. ".. . . . . . 

... ' 
,.' .­

" 

' . ..; 
. .' ~, . 

'" ,(3)
" 

, .. 

, .. "-, 

" , 

\ :. .' 'II, " '(4) 
, : ' ~ ! .'. ,.' 

" ;'. " '. . '" . 
" ", 

.;' .:.~' .,,~:~ :< 'I' ;. ,.'....:..~~ .. 
'.,' ". ",. ,\ 

".r 

.' ".. , 
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Next using this value, we compute the partial decay width for 

-ee "to be 

Experimentally, from the figures in ref. C1), we r~ghly estilT.ate 

r (q.,-,> ~e)/r(c.f ~ all) ~ 1/25 , so that we eXpect 

f' ('\I,"", all) ::: 50 Kev. {6} ." 

We propose that *is a member of the 15 e 1 dimensional 

representation VeJ,. ( cA =0, 1, ••• 15) of 51::'("4). This represent­

atio~ for the vector mesons (1-) will contain the usual nonet 

( r ' K*,. Q, q,), an SUe 3) charm carrying triPle: (C ' Cd' C )u s

consisting of the I = 1/2 vector mesons C ' Cd and an I = 0 u 

strangeness carrying meson Cs,a corresponding charge conjugate 

SU(3) "triplet (au' Cd' e )' a~d the uncha.:t'Tf1ed meson tV. Note thats 
":'.' 


"",-, " 
," ,lil, ~ " and V are identified with the physical states resulting
'" 

from a." mixing between the"Vot .' V 8 and V15 members ,of. the represe~t:"' 
# •• " .. ' -, ... '. 

',,", .. 
~ "'. '. > " : " atlon. " We claim'that the various experimental features reported " 

. .!' * 

tor "are "consistent with this hypothesis>' In addition, we 
, - . 

predict" "the masses of the chazmed mesons.. :-' 

. "',.. 
, ; 

~ *" . :. 

:~ "-'. 
. :- ': ­

, -, 

. -­

" . - .." " " 
~- - ~~\. ' ••Z, ;_1,"" 

,.1, 

" . ," .,,',.. ": . 

. '.' " ':"".;:l;~'::' 
", .. " ,. 

- -' 

-----------~- .----".~.,--~-~-' 
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First, we would like to point out that this hypothesis can 

explain the value of g in Eq. (4) obtained from experimental 

results. We shall 9.SSl.Llle that parity is conserved in the ir.terac~·.. 

tion (2); later we sr~l discuss possible ways of testing this 

assumption. Assumi~ (as for ~ , lU ,and, tt> >, that 'f is coupled,1, 
t • - ".1 

to the ee system through a virtual photon exchange, we obtain 
, " 

., 
from. Eq. t~)' 

, , ' 

, 2. ('4 J ) 2 C2 '/ ,,4g:= 'It' '" '\' 't; "\» 

, .I 
I 

,where Q. is the fine structure constant and C;.- is the effective 

coupling between~, and the photon,. Now Gy . can be esti.'ilated 

from the f'ollowing considerations. Assuming that the electromag­
. ~,' . 

, 3 18' 
.. '-.. netic cur:ent has, besides the usual structure ~ + .f1" V".. , 

an extra. contribution ,XV; in theSU(4) theory,: wher~x ~ 1,' we 


..' .-,,: -, ..... 
.. :.', " may use Weinberg's' firat spectral function sum rule ,to estimate 
.' 

, :':-. :.' ' ..~ , Cq. ,: if" we. ~eglect the mixing problem.-- ,..tJsing~he ansatoz',of',l'ole " 
-.. " .. 

• '.' ~'. - .•..• • , " ,,__ :'~.' '. ~: ~,' •• ' ,s" 
., 

dominance for speptral fUDCtio~, we estimate " ,," 
. ' .. . ...... 
~ .: -... ' 


\ f' 


~ . .:: "~: . 

(8) '- .., 

". ", " , 4 " 
'With the experimental value for q., or usi:gg the KSRF relatio~ , 


, ..... C2 I M~,\'= ,,?, 1J 1ria~re '£..r i~ the -«,~ deOO:y ~o~tant ' 

¥ 

, (numerieall~ f1r ~ : m~::f: the '~ion Jl13Ss) I} we obtain from Eqe.. 

", .... '. ..(7) '.: 
1.: ..... 

. -";';' 

',~' -~- .. ' 

". '. 
~.\ '.::. ~: . 

,;, ' 

\ .. ~:~ , . 
, •• ~.- • '. ~ _' :' .•0. ." •• 

, .' 
• • • ~ '. _v ., :.~. 

&I1d.(aJ,,1',.":,;:: 
'.' ': .. ": ~ ':;'~ .: '.' :. 

", " ,'" .. ",. 
,;~ ... l;:,. ~ ~." ' .•.. 

, , • .:iG 
' , \ .'.. ~" r"~' ....., . .. 

, , ~ ~ oj,· .­
o .~'•• 

;. ­ ";",' 

. '. -.} 
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. ­

,~ ... 
, " 

, . ..~ , 

'. 


. ' 
", .. ' . 

2 
10-5'g ~ 1 7• 

which is close to the result (4). 

We now turn, to the intriguing question why the width of ~ 

should be as small as the result quoted in (1) or obt?ined in (6). 

Essentially this arises from considerations of (», ~, tV mixing 

which lead to the .result that W' has predominantly a p'.p' quark 

structure (p' is the fourth char.:t carryir...g quark) with very small 

admixtures of pp + iin and ~A. This is not unexpected and the 

situation here is analogous to the usual "~, ~ mixing theory, where -ct> has predominantly"a "~', quark structure. Physically this 
. . I, 

implies that the decay of ct' into ordinary hadrons is highly sup­

pressed. Furthermore, if the charmed particle masses are? 1.5 Gev., 

decays like, ~ ~ CC would be energetically forbidden. In order to 

obtain the mass formUlas forbrokenSU( 4), 'we assume in di.-rect gener~. 

aliza;ion of the SU(3) ,theory, that the"mass spl,itting arises from an 

. ' . , :- .: . .;..interaction 
" 

, (10) . 

where TS.and T15 belong to the same 15-plet of 50(4). Note that T15 
. , 

breaks sue 4) to the level o~ su( 3} 11 and Te b~aks SUe 3) down to 

su{ 2) in the usual manner.', 

The matrix elements of the squared mass-matrix. for the 15 0 
:represe,ntation of vector mesons Vol ~;then,be~~ten as 

. . I, ~ t '. - ~. ." .; ..... 
, , 


. ', .. ' ," 


."
,'. 
'.,.:;" . : .' 

" 

" . 

1 
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, • t ...'_. ,. 

• 

(11) 


where i,j = 1, ••• 15, g2 and M~, are the SU(4) invariant squared 

masses of the 15-plet and singlet respectively, and D and A are the 

reduced matrix eleI!lents~ The matrix (11) contains the off diagonal 

" 2 2 2 
matriX, elements; (t.I )e,15' (M )O.8' (U )0,15. 'Diag~nalizing the. 

matrix In this sector. 'we can ,determine the five 'unknown parameters 

in (11) by using the known masses of ~ ,K*, \,I), ~ and ~. 

Nume~callY we obtain the value~ 

" · .....2 " ( ) 2 ' (')2 ' m =2.8 Gev. t D = -0.23 GeT•• d. =21.6, 
" . '2 " , 2 2 " 

I\) ,= ;.~(GeV.), A = -0.19 (Gev.),. (12) 

''., " 

Fu:rt~rmore, the physical states <\>' t.ii, and q, a:retoaver,y gOod 

aPProx:1mat1on given by the simple rela.tions 
,'." " -, 

';'l' .' " ,', ' 
. . ';'.: ~.; . . 1 ' ' . 

l!,\: ":, ,; <\:r '= cosOVa - sin9 2 (n V

O + V15) , 


.', ., W = sin'S Va + cos~ ~ (Bvo + V15) (13) 
: . '. 

: 't\»' = f (Vo - f}v15) 
. 

-. "; 

, 

where ~ is :the usual C&1 ,q, mixing angle in the sue;) theor.r. Note 

'in, p~icular that in terms or quark ~ontent:'~tV'~ \p'p') '. 'Our' 
, .... l .' '""' ' 

. '" ..... ...: : '. : 
,,'.. " ­

..,' 

:... .' 

f ". 

1. ' '. 

I 
,\ " 

" 
. :~ ...: , .~ 

:: '.".' 
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numerical analysis in fact shows that the admixture of quark structures· -(pp + iin)and t.'A in the state 'f is less than 5i~. As an illustra.­

tion we, find that the width for '-\- -r KK is about 8 Kev. 

The numerical values in (12) predict the following,masses for 

charmed vector mesons 

U(C ) = l:(Cd) = 2.19 Gev. u ( 14) 
J.:~(C ) = 2.22 Gav. s ' 

Using the same value for ~ in the mass formulas for pseudoscalar 

mesons, we find aL'llost the same 'masses for the corresponding charmed 

pseudoscalar mesons. These charmed particles could decay Weakly into 
i 

the usual hadrons.and leptonS, and for short enough lifetime could have 
'~ '.-;J,

escaped detection. If we believe in the GIJ,~ construction for the weak 

charged currents, it should be noted that for the emitted hadrons, the 

Cabibbo angle favors decay modes where at least one strange particle 

is produced,. so one would expect predominantly the K1r , KK. or K1T1\ 

etc. a.s final particle states. ' 

It is interesting to note that if we define 

then using the estimate (4), we see that G is numericall,y also close 

to the usual Fermi constant ~ or weak interactionS~ The identifi­

cation of <¥ with the inte:rmediate vector boson mediating weak inter­

actions. at a mass value gi.van by (1) 11 would 
.~ :,. 

. . "'" -~" 

" ' 

.~. 

". ~.' "' ­

.. ' ". 

..~ ::. . 

". '"'' . : : . 
" . 

. .•... " 

.. ".,,: ..... -. 
• /I, ' 
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contradict the mass constraint imposed by the currently popular
, . 

unified gauge theory models of weak and electromagnetic interactio~ 

Experimenta11y,the question can be sett1~d in principle by investi ­

gating whether parity is conserved or not in the two and three 

body decays of tr , in mueh the sa~e fashion as was done for the 

Q and 1"" modes of decay of the kaon.. 

Details of this paper with further developments of our hypo­

thesis will be published later., We would like, to thank Professor 
, I I ' " '.' 

T. Ferb812nd Dr•. D. Weingarten ·for stimulating.' discussions•. 
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