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PROPOSAL SUMMARY 

1. Title of E).'periment--Measurement of Inelastic Compton Scattering 

2. Experimenters--D. Caldwell, V. Elings, A. Greenberg, B. Kendall, 

R. Morrison, and F. Murphy 

3. ~ummary of EXEeriment 

Inelastic electron scattering data indicates that the electrons may 

be scattering from point -like objects in the nucleon. A model by 

Bjorken, Feynman, and Paschos predicts that there is a relationship 

between the cross sections for inelastic Compton scattering and in­

elastic electron scattering which depends on the average charge of the 

point-like constitutents of the nucleons. We propose, therefore, to 

measure the inelastic Compton scattering from deuterium for an in­

cident bremsstrahlung energy of 40 GeV. 

4. Equipment Required for Experiment 

a. A liquid deuterium target with a cell 10 cm in diameter and 1 m 
" 

in length. 

b, A 240-in. I-I magnet capable of 18 kG. 

5, Beam Requirements 

7
Three -hundred hours of "prime time II with 4 x 1 0 electrons/pulse 

at 40 GeV for data taking and equipment checkout; 100 hours of low-

priority time for checkout of the equipment. 

6. 	 Time Ready 

We could be ready for checkout when the machine turns on. 
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THEOHETICAL MOTIVATION FOB. THE EXPERIMENT 

Deep inelastic electron scattering experiments at SLAC have 

shown that cross sections beyond the resonance region are very large 

and decrease much more slowly with momentum transfer than do the 

.cross sections for either elastic scattering or production of specific 

resonances. Theoretical speculations, therefore, have focused on the 

possibility that these data might indicate point -like char d structures 

within the nucleon. 

To review the situation more quantitatively, the cross section for 

i
inelastic electron scattering can be written 

2 
2 . 2 ]W cos 0/2 + 2W sm 0/2 , (1 ) 

2 . 4 [ 2 1
4E sm 0/ 2 

where 

E energy of incident electron, 

E' = energy of scattered .electron, 

0 -- angle of scattered electron, 

v = E-E'. 

Wi (q2, v<) and W 2(q2, v) are relativistically invariant functions which 

describe the nucleon IS properties. 

At high energies and large momentum transfers, the cross section 

can be written as 
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Z 

Z
aW 

[ 1 +.-L (Z)Z ZEE'4E sin
4 e/z 

where at and aR. are proportional to the cross sections for transverse 

and longitudinally polarized photons. For moderate inelasticities and 

high incident energies, the second term in the parenthesis is small for 

the entire region 0 < a/a < 0:>,p 

What the inelastic electron scattering has shown is that v W Z is a 

function only of v / q Z. The experimental results are shown in Fig. 1. 

Z
As one can see, the function v W Z approaches a constant for v/q 

-1
? Z BeV . 

1,Z
Bjork'en, Feynman, and Paschos have proposed a nlOdel to ex­

plain the striking results of the inelastic electron scattering. Their 

model assumes that the nucleon is composed of point -like charged 

objects which they call partons. They argue that the inelastic electron 

scattering, then, can be understo~d in terms of the electron's scattering 

incoherently from these individual constitutents of the nucleon. They 

tried to fit. the electron data 'assuming that the proton consisted of three 

quarks with the usual charges. They find that in this case v W Z is a 

rapidly varying function of v / q Z and goes to zero in the limit v / q Z -,.. 0:>, 

which does not agree with the data. They also tried a model which -as­

sumes that besides the three quarks there an infinite sea of quark, 

anti -quark pairs. With this particular composition they find that they 

can make a reasonable fit to the data. 
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1
Bjorken and Paschos have shown that independent of the details 

of the model, there is a simple relation between the cross section for 

inelastic Compton scattering and the cross section for inelastic electron 

scattering 

2 
v = (3) 

yp 

where < Qn> is the nth power of the charge of the constituents (partons) 

averaged over the constituents. 

If th e partons have integer charge, < Q4> / < Q2> = 1. For the 

three -quark model in an infinite sea of quark, anti -quark pairs, they 

have calculated upper and lower limits which are 

1 
3 

5 
(4 )9' 

Thus in this model the ratio of photon to electron inelastic scattering 

R.· Blankenbec1er has conJectured that the electron scattering 

would provide a measure of the charge of the point -like objects doing 

the scattering. 

. 3 

data might be understood in terms of th\:! electron sca.ttering from non-

point -like objects with form factors (such as pions) in which the con­

tributions of the possible final states increase with momentum transfer 

in such a way that the inelastic cross section is independent of the mo­

mentum trans This point of vie\v is implicit in the field theoretical 
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basis of the parton model as developed by Drell and co -workers. In a 

model such as this J one might eX1Ject the Compion yield to be higher than 

that calculated by Bjorken and Paschos J since the form factors of the 

non -point -like objects would be higher for real incident photons (Compton 

. scattering) than for virtual photons (electron scattering). 

A third model probably giving the sort of results observed in in­

elastic electron scattering the strong-coupling model in the form 

developed by A. Krass. 4 Because this is equivalent to having one point 

particle within the nucleon J the photon to electron inelastic scattering 

cross sections would have a ratio similar to the one given by Bjorken 

and Paschos but with Q := 1. 

In general, it appears likely that highly inelastic Compton scat­

tering of appreciable cross section may Its magnitude and 

momentum-transfer dependence J if observed J may then serve as a 

means of choosing among several models. 

The main problem with measurintt the inelastic Compton scattering 

cross seotion is that the scattered photon must be observed in a back­

ground of photons coming fropl the decay of photoproduced Tr°'s. Using. . 

equipment similar to that proposed for this experiment, our group has 

already made an attempt to measure the inelastic Compton scattering 

at SLAC with a 20-GeV incident bremsstrahlung beam. Figure 2 shows 

the calculated yields of ,,'s from Compton scattering and the decay of 

1T °'s .for a 20-GeV bremsstrahlung beam. It clear that even at the 
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most favorable angle and energy for the scattered y, the separation of 

the two processes would be difficult. Our data indicates that the yield 

of y's from. IT 
o 

decay equal to that which we expected; i. e. , the yield 
. 

of ITo's was equal to the average of the IT+ and IT - yields which were 

measured in the beam survey at SLAC. \Vhether or not our data in­

dicates any inelastically Con1.pton scattered photons not yet clear. 

If one uses a 40-GeV incident bremsstrahlung beam, as we pro­

pose in this experiment, the situation changes dramaticaUy for the 

better. Figure 3 shows, in this case, the calculated yield of y's from 

inelastic Compton scattering and the decay of lTo,S at various angles and 

energies. The Compton yield was calculated from relationship (3) as 

suming a parton charge of one. The lT
o 

yield was calculated using a . 

. 5 
multi -Regge exchange model to scale up to 40 GeV the average of the 

+ - . 
IT and 1T yields measured as SLAC with an 18 -GeV bremsstrahlung 

beam. At scattered y energies of 20 GeV and angles of 6 
0 

the in­I 

elastic Compton yield is about 100 tiD'les the IT 
0 

decay yield, a vast im­

provement over the situation at SLAC energies. In addition, the high 

duty cycle available at NAL will make possible the reduction and meas 

urement of this background. 

We feel that the inelastic Compton scattering experiment a very.. 
important one and asks basic questions about the make -up of nucleons. 

This measurement will not be possible at Serpukhov as the photon in 

-2 6
tensities a:re too low. The proton intensity is down by 10 from NAL, 

_ •...._----_....... ---- ---- -----­
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and we have calculated that there is another factor of 10 in photon 

production due to the lower proton energy, giving a photon intensity 10 

lower than is possible at NAL in the energy range 20-40 GeV. The ex­

perimental setup which we propose in the next section is quite simple 

and inexpensive but has proven to operate very well ,at SLAC under much 

more severe conditions than will exist at NAL. For the cost involved, 

compared to the physics which can develop from this experiment, we 

feel that it should certainly be one of the first experiments to run at 

NAL. One of us (Rollin Morrison) will, while attending the 1970 

NAL Summer Study, look into the details involved in modifying the 

3. 5-mrac1 beam so that it can be used as an electron beam. 

EXPERIMENTAL METHOD 

The experimental method which we propose is quite simple. It 

consists of running a 40-GeV bremsstrahlung beam into a liquid deu­

terium datget and looking, with an array of 40 Pb -glass total absorption 

shower counters, for wide -angle photons emitted from the target. The 

experimental arrangement is shown in Fig. 4. 

The. bremsstrahlung beam is produced by an electron beam im­

pinging on a 0.2 r.1. radiator. The electron beam is described in our 

proposal for- the measurement of the total y -nucleus cross section and 

in the summer -study reports of Toner 7 and Diebold and Hand. 8 The 

yield" of electrons expected for the beam is shown in Fig. 5. In order to 

obtain an acceptable counting rate, we have chos en to run at an electron 

energy of 40 GeV. 
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After the electrons pass through the radiator, they are bent by a 

240-in. magnet into a beam dump. The experiment has been designed 

with the magnet operating at 9 kG so that the experim.ent can be easily 

extended to electron energies of 80 GeV if the results warrant it. The 

photons continue forward into a 1. -meter -long target'which contains 

'deuterium. Photons which do not interact in the target and e +e - pairs 

produced in the target go forward into a quantameter which measures 

the beam flux. 

One of the concerns in any photon experiment at NAL will be the 

effects of pion contamination of the electron beam. This has been es­

8 -3
timated by Diebold and Hand to be ss than 10 of the electron flux. 

4
One can then expect that for each 1. 0 photons produced In the upper 30% 

of the bremsstrahlung spectrum there will be -1 pion interaction in the 

. 
radiator. Neutral hadrons could pass through the magnet and have a 

high probability of interacting in the liquid target. Such events would' 

be s than an upper limit of 2,0% of photon -induced events. 

This contamination will be reduced by a factor of at 100 by 

the introduction of veto counters shown in Fig. 4. The hadron detector 

upstream of the magnet is from several lead -scintillator 

layers which will detect at least one particle froITl a hadron interaction 

.in the radiator. This is essentially the hadron detector used in our 

total'cross-section measurement. 9 The beam hole will be chosen such 

that bremsstrahlung and pairs procluc eel in the radiator characterizedJ 
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by small production angles, will pass through while hadrons produc ed 

. with angles - 400 Me V IE will be detected. The veto counters Ai' A , 

and AO will also help with the discrimination against pion-induced 

events. The beam -defining shower veto counter AO will also protect 

against wide -angle bremsstrahlung. If the photons are tagged with 

'shower counters, as described in our total cross -section proposal, 

this would provide another factor of 10-100 in discrimination. 

Photons which are inelas..tically Compton scattered (and those 

from Ir
o 

decays) are detected by an array of 40 Pb-glass shower coun­

ters which are at a distance of 5 m from the target. Each show-er 

counter consists of a 2i-in. X 21-in. x 13-~-in. Pb -glass block (50% Pb 

by weight, radiation length 1 in.) with a 2-in. phototube optically 

coupled to the rear. The blocks are stacked to form a 5 x 8 array as 

shown in Fig. 4. The array subtends 'I scattering angles from 6 
0 

to 12 
0 

. 0 

and has an angular resolution of ±6 mrad (±0.37 ). There is good pos­

sibility that by the time this experiment is run, our group will obtain an 

additional 24 blocks, making a total of 64. This will increase the pro­

posed counting rates by - 50%. The Pb -glass counters, which we have 

already used in experiments at SLAC and LRL, have a resolution of 6% 

fwhm for photon energies of 12 GeV. This resolution improves with 

energy, going as 1/,fE. The phototubes on each of the Pb -glass
'I 

counters are connected to sample -and -hold circuits which in turn feed 

analog-to -digital converters. FOr every even!: the pulse heights from 
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ea~h of the 40 counters is digitized and read into our PDP -15 computer 

. which will be operating on -line. 

In addition to single photons I the lead-glass array has a high 


probability for det~cting both of the photons from Tr 
0 decays. The 


opeNing angle for a 20-GeV Tr° corresponds to about 'the width of one 


'lead-glass block in the geometry shown in Fig. 4. To reduce the con' ­

fusion due to photons striking between the blocks I we plan to improve 

the spatial resolution by converting the photons in front of the lead 

glass in 2 - 3 radiation lengths of lead follO\.ved by proportional planes. 

We have made tests which show that 2 -3 radiation lengths of material 

in front of a shower counter do not significantly worsen the resolution 

of that counter. 

The information from the proportional planes will help not ~:mly 

o • 
in measuring the 'IT background but also in reducing the background on 

o 
an event by event basis. Due to the steep slope of the iT energy dis­

tribution, the photons observed at a given energy tend to come from 

asymmetric decays from TrOiS of only slightly higher energy. The pro- . 

.	bability of detecting both photons from such decays is hard to estimate 

since it will depend upon experimental conditions. The use of propor­

tional planes in conjunction with shower detectors is I as far as we know, 

an untried technique. The additional information from these detectors 

will make the e)"'-periment a bit cleaner but is not e(3sential to its success. 

Because of the low counting rate for high -energy secondary y 
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rays> (on the order of tens of counts !hour) > it is important that one 

eliminate background events' .. In order to insure that large pulses in 

the shower. counters are acc.ompanied by an interaction in the target, 
• 

we propose to trigger the electronics of a signal from a counter placed 

downstream of the target, as shown in Fig. 1. This counter is designed 

to detect hadrons or their decay products emitted from the target. The 

counter is constructed of 4 alternate layers of ii-in. thick lead and ~-

in. thick scintillator. We have used such a counter in our total y-

nucleon cross -section lYl.eaSUrernents at SLAC and found it to be more 

than 99% efficient for detecting haclrons emerging from the target. The 

detector will be insensitive to low-energy below 1 GeV) electromagnetic 

background and, therefore, the rate in the counter will not be excessively 

high. 

Another way to obtain a trigger would be to tag the photon beam. 

Although this is feasible> it would require another magnet. Our philo­

'sophy is to make the experiment as simple and inexpensive to NAL as· 

possible, but still have an apparatus which will do the job. If our other 

proposal (to measure the total photoabsorption cross secti~m) is ap­

proved, t~en we could us e that setup, with its tagging system, to per­

form this experiment. The only changes in the setup that would bs 

required are the installation of a thicker radiator:, the installation of 

the Pb -glass array, and the remodeling of the hole in the hadron 

counter, SZ' to allow a clear path from the tal'get to the Pb -glass array. 



c;r-i2 ­

S2 woul,d then be used in coi~1cidence with the tagging counter to provide 

a trigger. The tagging system and the shower counter S would both 
1 

serve as beam monitors. 

The tagging system has two additional advantages. In the first 

place it gives the incoming photon energy so that one would not have to 

fold the bremsstrahlung spectrum into the parton model as has been 

done in Figs. 2 and 3. In additi?n, the tagging system provides a large 

additional factor of djscriminatiol1 against e'vents related to the pion 

beam contarnination. 

The expected yields in 5 of the 40 Pb -glass counters for 200 hours 

of running time using a i-m long D target are shown in Fig. 6. )j1.gure 6 

shows 3 curves: 1) the 'I yield expected if there is ~ inelastic Compton 

yield and if all of the 'l'S come from the decay of rro,s vrhich are photo­

produced in the target. The rr
o 

yield was calculated in the manner dis­

cussed ·previously. 2) The yield of '1'S expected from both rr
o 

decay and 

inelastic Compton scattering using the model of Bjorken and Paschos 

with partons of unit charge (Q ::; 1). 3) The sarne as 2 but with par-tons 

'of <Q
4
> /<Q

2
> == 1/3 which is the least favorable possibility if the par-

tons are quarks. The yields jn Fig. 6 are only for the one column of 

Pb-glass cour:ters subtending scattering angles between 6.8 and 6.75
0 

, .
,'" 

i. e .. only 5 of the 40 counters. Similar data would be collected simul­

taneously by the other 35 counters in the array. 


It should be emphaSized that the cross section at which the jnelastic 




aCompton yield is equal to the yield from the decay of Tf IS is almost 

independent of angle. As sho"vn in Fig. 3, the crossover paint is at 

2 -32 2 
d o-/dS"tdk = 10 em /sr GeV. This means that all eight eolumns of 

The sho\'{er counters will be calibrated by turning off the ditching 

magnet and moving the counter array into the beam line so that the 

electrons enter directly into the Pb glass. lfuowing the energy of the 

electrons the pulse heights from the counters can be calibrated.J 

All counters and electronics, including the PDP-i5 computer J 

will be supplied by our group. 

RUNNING TIME REQUII1ED 

As shown in Fig. 6, one can determine in 200 hours of running 

time if there is an illelastic Compton scattering cross section com.parable· 

to that predicted by the parton model. This time is bas ed on the as - . 

7
sumption that the beam has 4 X 10 electrons/pulse at 40 GeV/c. 

We propose, therefore, to ask for 200 hours of data-taking time' 

plus an additional 100 hours, at the same inh·nsity J to checkout and 

calibrate the counters and to check out the electronics. We will need 

10b hours of parasite time to check out the electron and photon beams. 



REFERENCES 


1 
. J. D. Bjorken and E. A. Paschos, Phys. Hev. ~, 1975 (1969). 


2R . P. Feynman, unpublished. 


3

R. Blankenbecler, private communication. 

4A . Krass, private communication. 

5L . Caneschi and A. Pigl10tti, Phys. Rev. Letters 22, 1219 (1969), 

6J. K. Walker, Proc. Int. Conf. on Expectations for Particle Reactions 

at the New Accelerators, University of I.Visconsin, 197 O. 

7W . T. Toner, Electron and Photon Beams at NAL, National Acccl­

erator Laboratory 1968 Sumrner Study Report B. 9-68-31, Vol. II, 

p. 125. 

8R . Diebold and L. Hand, Electron-Photon Beam at NAL, National 

Accelerator Laboratory 1969 Summer Study Heport SS-49, Vol. 1, 

p. 153. 

9D . O. Caldwell, V. B. Elings, W. P. Hesse, G. E. Jahn,. . 
• 

R. J. Morrison, F. V. Murphy, and D. E. Yount, Phys. Rev. Letters 

23, 1256 (1969). 



FIOURE CAPTIONS 


Fig. 1. Inelastic electron scattering data in the form of a plot of 

2 2' 

vW2 (q J v) as a ~unct~on of v/q . 


Fig. 2. Calculated photon yields for background (Tfa decays) and signal 

(inelastic Compton scattering using the parton model) for an incident 

20-GeV bremsstrahlung beam. 

Fig. 3. The same as Fig. 2 but for a 40-GeV bremsstraJllung beam. 

Fig. 4. Layout of the e:."..-perimental equipment. The drawing is not to 

scale, but some dimensions are indicated in the figure. 

Fig. 5. Electron yield expected for the modified 3.5-mrad beam. The 

13
yield is for 10 interacting protons/pulse and for a momentum bite 

6.p/p of 5%. 

l<l.g. 6. The expected statistical errors for data collected in 5 of the 

40 lead-glass counters in 200 hours of running. Three curves are 

shown: 1.) rr 
o decay, 2) rr

o 
deca"y plus inelastic Compton scattering 

calculated with the parton model using Q :: 1, 3) the same as 2 but 

4 2
with < Q > / < Q > 1/ 3 . 
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SUPPLEMENT TO NAL PROPOSAL NO. 24 

In our original proposal apparently we did not make clear 

the reason for doing inelastic Compton scattering at NAL, as 

opposed to other accelerators. The reason, which we shall ex­

plain more fully below, is basically the signal-to-background 

ratio. By utilizing bremsstrahlung of 40 GeV inste.ad of 20 GeV 

the signal-to-background ratio improves by about two orders of 

magnitude. This permits not only the unambiguous observation of 

an effect, if photons scatter from point-like constituents of 

the proton, but also allows the observation of the effect over a 

sufficient range of secondary photon energies and angles that 

positive identification of the source of the effect appears possible. 

The motivation for the experiment arises from the explanation 

of deep inelastic electron scattering in terms of the interaction 

of the electrons with point-like constituents of the proton. Such 

a picture explains in a compelling way the large cross section 

which decreases remarkably slowly with momentum transfer and which 

displays Itscalingll. Since our proposal was written similar 

scattering has been observed from the neutron, and it is also 

consistent with this picture. If this point of view is correct, 

then quite independent of the details·of the model, there is a 

direct proportionality between deep inelastic photon scattering 

and deep inelastic electron scattering. Aside from kinematic 

factors, the proportionality constant involves just the charge 

of the point-like object which is doing the scattering. Thus 
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point by point in secondary particle energy and angle the photon 

cross section is predicted by the electron results, with the 

normalization giving the charge of the scatterer. 

The problem with the experiment is that processes other than 

inelastic Compton scattering can produce high energy photons. 

Particularly troublesome is the production of high ener"gy 'TT 
0 (s, 

which give high energy photons upon decaying. At 20 GeV, except 

at the very highest secondary photon energies, the y-rays from 

'TT 
0 decay swamp any signal from inelastic Compton scattering. As 

the incident energy is increased, the 'TT 
0 background does not 

change appreciably, but the inelastic Compton signal, which 

like the inelastic electron scattering -- does not falloff much 

with momentum transfer, appears more and more clearly as larger 

secondary photon energies become kinematically available. Thus 

one can achieve signal-to-background ratios two orders of magnitude 

better at 40 GeV than at 20 GeV. This point is illustrated by 

two figures from our proposal which are attached. 

We have investigated other backgrounds and find 'TT 
0 decay 

the worst problem. In particular it has been suggested that 

WO 0 
- 'TT + Y might be an important background source, particularly 

because WO's are diffractively produced and hence their cross 

section is energy independent. Detailed calculations show that 

the contribution of this decay to the high-energy y's at 40 GeV 

incident energy is negligible. At 20 GeV, non-diffractively 

produced WO's are more of a problem, and experimental information 

is unfortunately sparse, but even this source of y-rays appears 
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to be significantly less than the rro,s. 

Although the data are still being analyzed, there is an 

indication from our brief look at 20 GeV inelastic Compton scattering 

at SLAC that high energy yrays are present in roughly the quantity 

predicted by scattering from point-like constituents of the proton. 

We can do a better experiment at SLAC, but it is highly probable 

that only at NAL can a clear signal be observed over a sufficient 

range of secondary energies and angles to test conclusively the 

source of these y rays. 
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