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Abstract

In this document, we describe a new reconstruction workflow developed for the MicroBooNE

experiment. It features the use of Deep Convolutional Neural Networks trained to recognize key

structures within the data sufficient for the 3D reconstruction of neutrino interactions within the

detector. As a test of the reconstruction utility, the products of the reconstruction workflow are

used to select inclusive charged-current (CC) νe and νµ interactions in both simulated and real

MicroBooNE data. In simulation, our νe and νµ selections achieve an efficiency of 57% and 68%,

respectively, with a purity of 91% and 96%, respectively. We find that these selections are competi-

tive with the inclusive selections used for the most recent MicroBooNE LEE searches. In particular,

the CC-νe inclusive selection efficiency improves by over 20% while also improving sample purity.

As a first step in quantifying potential bias, the data and Monte Carlo expectations are compared

for both selections using the MicroBooNE open data. Within statistical and systematic uncertain-

ties, both the electron and muon CC-inclusive event samples agree. A comparison of the real data

events chosen by our work and another reconstruction framework shows that the two analyses each

identify a sizeable fraction of events the other does not. This suggests that future analyses inte-

grating the strengths of each could lead to combined gains. This work demonstrates, for the first

time on real LArTPC data, state-of-the-art neutrino interaction reconstruction centered around

deep learning algorithms.

∗ MICROBOONE INFO@fnal.gov

1
This document was prepared by MicroBooNE Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office 
of Science, Office of High Energy Physics HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

FERMILAB-FN-1257-PPD-V

mailto:MICROBOONE_INFO@fnal.gov


CONTENTS

I. Introduction 4

II. A CNN-based Neutrino Reconstruction for LArTPCs 5

A. Overview of the Reconstruction 5

1. Detector coordinate system and Data set terminology 9

B. LArMatch: 3D spacepoints and keypoints generation 10

1. Proposal of 3-wire intersections, or “triplets” 13

2. Feature Generating U-Net 15

3. Spacepoint real/ghost classifier 16

4. Spacepoint Keypoint score 17

5. Weighting the Multi-objective Loss 19

C. 3D Particle Trajectory Reconstruction 19

D. Keypoint Generation 20

E. Particle and Interaction Reconstruction with 3D Spacepoints 21

1. Forming track candidates 22

2. Forming shower candidates 24

F. Interaction Candidate Formation 28

G. Reconstruction Validation 29

1. Vertex Validation 30

2. Prong Validation 31

H. Energy Reconstruction 33

I. LArPID: A Prong Classification CNN 34

1. Network Inputs and Image Preprocessing 37

2. Network Architecture 39

3. Training 40

4. Network Performance 44

5. Interpreting the Model 46

III. Demonstration: Selection of inclusive νeCC and νµCC interactions in MicroBooNE 49

A. CC nue inclusive selection cuts 49

B. CC numu inclusive selection cuts 58

2



C. Systematic uncertainty estimates 60

1. Detector Systematic Uncertainties 61

2. Flux, Cross Section, and Hadron Re-Interaction Uncertainties 63

D. Results 65

E. Results of Data and MC comparison using Open Data Sample 70

IV. Discussion 71

V. Conclusions 76

References 78

A. Additional distributions for data vs expectation comparisons 82

3



I. INTRODUCTION

The liquid argon time projection chamber (LArTPC) is the detector technology of choice

for several future and current neutrino experiments. Current experiments include Micro-

BooNE [1], the Short Baseline Neutrino Detector [2], and ICARUS [3]. Future experiments

notably include the Deep Underground Neutrino Experiment (DUNE) [4] an effort towards

which several prototype LArTPCs [5] have been constructed. LArTPCs have now found

their way into many experiments due to their combination of resolution and scalability.

LArTPCs can track charged particle trajectories with millimeter-scale position resolution

for detectors with target volumes into the tens of kilotons.

The output of LArTPCs can be characterized as very image-like. The waveforms recorded

from planes of sense wires can be naturally arranged to produce images of the ionization

patterns left behind by charged particles traversing the detector. Image formats are also

relevant for alternative readout designs for LArTPCs, such as those that directly measure

the 2D location of ionization in order to naturally capture voxelized 3D trajectories [6]. The

format of this spatial data has facilitated the application of newly developed machine learning

techniques, in particular from the domain of computer vision, to the task of reconstructing

the trajectories and particle interactions captured by LArTPCs. Early applications focused

on the classification of either entire images cropped from the data or for individual pixels [7].

Structures traditionally important in the reconstruction of interactions, such as the location

of neutrino vertices have been searched for. High-level, more abstract quantities such as

neutrino interaction flavor [8], the energy of electromagnetic (EM) showers [9], and the

neutrino energy [10] have been targets of ML algorithms. While these applications were on

2D image data, there has been much progress in developing a full reconstruction chain for

3D voxelized data.

A fully end-to-end machine learning workflow outputs pixel-wise particle classification,

the location of key points on particle trajectories, particle clusters, and assembled neutrino

interactions into a fully-differentiable workflow [11]. The application of ML to reconstruc-

tion has indeed seen rapid progress in the past several years. However, demonstrations of

these ML-based tools in the context of analyses of real LArTPC data are only starting to

be realized. One such analysis centered around a CNN performing pixel-wise particle-type

classification [12, 13] which was used as a central input for the targeted exclusive selection
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of one-lepton and one-proton final state interactions [14]. This analysis was part of Micro-

BooNE’s search for an excess of low-energy electron neutrino interactions [15], conducted to

investigate the reported event excess observed by the MiniBooNE experiment [16].

This document provides a description of a new “DLGen2” reconstruction and applies it to

the selection of inclusive νeCC and νµCC interactions in MicroBooNE. Unlike the previous

MicroBooNE DL-based analysis, this iteration has aimed for the general reconstruction of

all charged particle trajectories coming from neutrino interactions. An overall evaluation

and demonstration of the reconstruction is conducted through the execution of the selection

on the MicroBooNE open neutrino data set. We find that the efficiencies for this analysis

are competitive with the highest-efficiency search previously published by MicroBooNE [17],

which utilizes the Wire-Cell reconstruction [17–19]. Furthermore, the inspection of events

selected by our reconstruction finds unique events not found by the analysis of Ref. [17].

II. A CNN-BASED NEUTRINO RECONSTRUCTION FOR LARTPCS

A. Overview of the Reconstruction

The reconstruction utilizes convolutional neural networks to enable both 3D energy de-

posit reconstruction and perform particle ID on 2D images. The approach taken makes use

of the different advantages inherent in the 2D image and 3D point cloud representations.

We start the description of the reconstruction chain with a brief overview of the major

components of the reconstruction, which are illustrated in figure 1. Later sections then will

describe the algorithms used in each component in more detail.

The input to the reconstruction is a set of three 2D images, one for each of the wire-

planes installed inside the MicroBooNE liquid argon TPC (LArTPC) detector [1]. The

waveforms arranged in these images are the output of the first pre-processing stage applied

to the raw waveforms. This stage includes the removal of coherent noise seen in sets of

neighboring channels [20]. It also reconstructs the original space charge distribution from

the measurements on wires by reverting the detector response (e.g., electronic response and

field response) and sparsifying the input images. We call this process “Signal Processing.”

For more details on the pre-processing stage see Refs. [21, 22].

The image set is then provided to two convolutional neural networks (CNN). The first
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Figure 1: Overview of the reconstruction workflow. The wireplane images and optical
information are passed into several components to produce labeled spacepoints
reconstructing the location of ionization left behind by charged particles traversing the
LArTPC. The labels associated to each spacepoint include particle type and a tag
estimating if a given spacepoint is from beam-related or cosmic-ray particles. These points
are then clustered into candidate particle trajectories by a set of reconstruction algorithms.
A CNN is used to provide a particle-type label for each trajectory. The final output of the
workflow are candidate neutrino interactions formed by associating one or more particle
clusters to neutrino vertex candidates.

CNN acts on each wire plane image separately and is responsible for labeling each pixel

in the image according to two broad particle categories, split by the spatial pattern of

ionization produced. The first type is “track”-like trajectories coming from particles such

as muons, charged pions, and protons. The second type is “shower”-trajectories produced

by electromagnetic cascades initiated by electrons or photons interacting in the detector.

This pixel labeling CNN is referred to as “SSNet” for the semantic-segmentation network

and was used in the first MicroBooNE DL analysis. The details of SSNet can be found in

Ref. [13].

A second, new CNN is applied to the set of three 2D images collectively and is referred

to as the “LArMatch” network. The network produces two outputs. The first is a set of

candidate 3D spacepoints which represent the location of energy depositions consistent with

input images. The second product is a set of scores for six different classes of “keypoints.”

Keypoints are useful locations at the start or end of tracks and showers, which, if known, can

greatly simplify the algorithms required to help with clustering and the formation of neutrino
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interaction candidates. The keypoint classes consist of 1) potential neutrino interaction

vertices, 2) the start of track-like particles, 3) the end of track-like particles, 4) start points

of EM showers excluding those from delta rays and muon decay, (5) the start points of delta

ray showers, and 6) the start point of showers from muon decay.

The input images also go through a reconstruction workflow separate from the one de-

scribed here. This workflow, referred to as the “Wire-Cell” reconstruction [18], builds space-

points, does clustering, and matches clusters of charge to pulses of light seen in the optical

detectors [19]. The workflow uses many non-ML approaches and features the application

of compressed sensing. What we utilize in our reconstruction workflow is the association of

charge clusters to pulses of light either inside or outside the neutrino beam window. This

information is used to provide a tag for the spacepoints made by the LArMatch network, as

either in-time or out-of-time with the neutrino beam.

At this point in the reconstruction, we have a set of spacepoints with various tags deriving

from pixel-based labels along with a collection of keypoints. The next step in the workflow is

to reconstruct 3D spacepoints, which are then clustered into subclusters covering individual

particle trajectories. The purpose of starting with subclusters is to emphasize the purity

of the clustering over completeness. Here the purity refers to the largest fraction of points

whose ground truth label is associated to the end of the event. A pure cluster would contain

spacepoints associated to only one particle. The completeness measures the fraction of

possible pixels or spacepoints in the cluster.

The 3D clustering algorithm implements the commonly used Density-Based Scan (DB-

Scan) algorithm which uses the distances between k-nearest neighbors. What allows for this

simple clustering routine is the many tags coming from LArMatch, SSNet, and the Wire-

Cell in-time/out-of-time algorithm. These labels are used to partition the spacepoints before

clustering, helping to reduce overclustering where spacepoints from two different particle tra-

jectories are included into one cluster. For example, the LArMatch track and shower start

keypoints are used to temporarily remove nearby spacepoints in order to prevent spacepoints

from particles coming out of a common interaction vertex from being grouped together.

After the subclustering step, non-ML algorithms are then used to combine the subclusters

to form sets of spacepoints intended to represent the ionization produced by a single particle.

These algorithms make use of the LArMatch ouputs for track endpoints and shower starts

to seed the particle-building algorithms.
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After this clustering stage is complete, the reconstruction has formed candidate particle

trajectories. The following stage forms neutrino interaction candidates by associating pri-

mary particle trajectories to interaction vertices. Secondary trajectories are also associated

to interactions by looking for trajectories that seem to emerge from previously included tra-

jectories. Cosmic muon trajectories are also formed by using track start and end keypoints

to seed the track-building algorithm applied to only out-of-time subclusters. Neutrino and

cosmic muon candidates are the core outputs of the 3D reconstruction workflow.

For the individual neutrino interactions, further analyses are performed. Another CNN,

referred to as “LArPID”, assigns particle identification scores to individual particle trajecto-

ries. This LArPID network acts on two sets of images for a given individual particle cluster.

The first set of images are sub-images formed by cropping around the cluster’s projected

position on each wire plane image. These images include values for only those pixels at

the projected locations of spacepoints. The second set of images provided to LArPID is a

set of “context” images which use the same cropped location but include more pixels, only

masking out pixels with an out-of-time tag (those likely not produced by interactions asso-

ciated with the beam). The purpose is to provide LArPID with both a given cluster’s pixels

and information pertaining to the entire interaction. We believe (see section II I 5) that the

context images are critical in maximizing the particle ID accuracy of LArPID. The context

images provide information the network can use to better ID the cluster. The context im-

ages also provide the means to overcome clustering errors from the 3D spacepoint algorithms

by providing information that might have been lost during clustering but is still present in

the images around the location of the clusters. The primary output of LArPID is particle

class scores for five particles: muon, charged pion, proton, electron, and photon. Particles

and their anti-particles are combined into the same class. LArPID also provides auxiliary

outputs in order to provide the option to make data selection cuts based on estimates of

the cluster reconstruction quality and as to whether the particle in question is a primary

particle emerging from a neutrino interaction vertex or a secondary particle descended from

the interactions of the primary particles.

The final outputs provided by the reconstruction are collections of candidate neutrino

interactions and cosmic muons. For each neutrino candidate, each prong (reconstructed

track or shower cluster) is provided a particle ID score from LArPID. Using this network’s

ID, the energy and 3-momentum are estimated for each particle. The kinematics estimator
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for muons, protons, and charged pions is based on the visible tracklength and uses the

relationship between particle energy and the estimated length of fully ranged-out particles.1

The energy estimator for the electromagnetic showers uses calorimetry based on charge.

Additional network outputs related to keypoint scores and LArPID estimates are also passed

along as outputs. The information for candidate neutrino interactions and their constituents

can then be used to develop physics analyses.

In the rest of this section, we provide more details for a subset of the components dis-

cussed above. We do not include discussions of the image pre-processing algorithms, the

in-time/out-of-time Wire-Cell tagger, and the SSNet CNN since their details can be found

in the indicated references. For each component described, we focus on outlining the core

approach of the algorithms, reference previous related work, and document key heuristics in

tuning their behaviors.

1. Detector coordinate system and Data set terminology

We will often visualize the outputs of the reconstruction or define performance metrics

assuming a specific 3D coordinate system. For the basis vectors, the positive x̂-direction

runs in the direction of the anode to the cathode and points in the direction opposite to the

drift of ionization electrons towards the anode. The positive ẑ-direction runs in the same

direction of the neutrino beam. The positive ŷ-direction points upward to the sky. The

origin of the coordinate system is defined at the boundary of the TPC where z = 0 is the

side closest to the source of the beam, i.e. upstream, x = 0 is at the induction plane closest

to the drift volume, and y = 0 is located at the midpoint of the vertical TPC dimension.

The MicroBooNE TPC is a rectangle whose lengths are (256 cm, 233 cm, and 1036 cm)

along the (x, y, z) axes, respectively.

Another important definition is what constitutes an “event”. The values specified here

are particular to the MicroBooNE experiment. However, the overall data schema will be

similar for other LArTPCs utilizing sense-wires. Each event includes a set of waveforms

from each of the three wire planes that are arranged in a 2D array to make three wire plane

images, which we will refer to as “TPC images” or simple “images.” The three wire planes

of the MicroBooNE detector – from closest to the TPC drift region to the furthest – are

1 This estimate is applied to tracks regardless of whether they range out inside or exit the detector. A more

accurate estimate for exiting tracks will be the subject of future work.
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the first induction plane, the second induction plane, and the collection plane. They are

so-named by the process with which ionization produces a current signal within the sense

wires. The three wire planes are given a label, ’U’, ’V’, and ’Y’, respectively. Every event

will have exactly one TPC image from each of the three planes.

Each of the waveforms that makes up the images in an event consists of a time series

of 9600 voltage measurements, or samples, recorded every 0.5 microseconds. The primary

DAQ system for the MicroBooNE detector must be externally triggered (in other words

instructed) to capture a synchronous set of waveforms for all channels. The two trigger

types relevant for this work include (1) a signal synchronized with a firing of the neutrino

beam, typically referred to as a “spill” (which references the release of a bunch of protons

from the accelerator into a carbon target), and (2) a trigger signal produced by a signal

generator programmed to fire at regular intervals in a time window between beam spills.

The data recorded using the latter, non-beam spill, triggers are referred to as the “externally

triggered” or EXT data set. The MicroBooNE detector records waveforms in sync with the

Booster Neutrino Beam (BNB) produced by Fermi National Laboratory, and the data set

recorded in coincident with the firing of this beam is referred to as the “BNB” data. Later

in the sections demonstrating the performance of the reconstruction workflow through its

use in a neutrino event selection, only data from the BNB and EXT data sets are used.

B. LArMatch: 3D spacepoints and keypoints generation

The purpose of the LArMatch network, illustrated in figure 2, is to use the TPC wire plane

images to infer information related to the 3D location of ionization made by charged particle

trajectories. Inferring the true location of such ionization is not trivial as this essentially

requires inverting a tomographic projection, which by its nature will be an under-specified

problem due to the information lost during the projection operation. To make this difficulty

more concrete, we can consider trying to infer the location of energy depositions coming from

a uniform line of ionization where the line is parallel to the wire readout planes. Figure 3

provides an illustration showing the signal that would be seen in the wire plane images,

which is simply a line of uniform intensity across some set of wires all occurring at the same

time (i.e. region of TPC samples). A naive approach would be to ask “what is the set

of spacepoints that is consistent with producing a wire signal in all three planes?”. This
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Figure 2: LArMatch network schematic. First, a U-Net CNN with residual convolutions
takes as input three TPC images. For each input pixel, the CNN outputs a
(16-dimensional) vector whose purpose is to represent the relevant patterns around a given
pixel. Next, a non-ML algorithm proposes candidate spacepoints by forming all possible
locations consistent with the charge deposition pattern in the images. The location of each
proposed spacepoint is projected into the wire plane images in order to associate it a pixel
from each wire plane. A (48-dimensional) feature vector for each spacepoint is made by
concatenating the feature vectors belonging to the associated pixels. Three sets of
multi-layer perceptrons (MLPs) then map the spacepoint vector to three types of outputs.
One output is the score determining if a proposed spacepoint is located where a true
energy deposition occurred. The second is a score for five particle types. The other output
is a score indicating the location of several types of keypoints.

defines a 2D region of possible spacepoints, indicated by the purple region in the bottom

illustration of Figure 3. The true locations of ionization would occur along a line within this

region, indicated by the dashed line in the figure. One can select a subset of spacepoints in

this region by utilizing some physical priors. If one assumes prior knowledge that (1) the

true trajectory comes from a line segment and (2) the ends of the line must be consistent

across the planes, then the set of possible spacepoints reduces to the correct region around

the true path of ionization, as indicated by the yellow regions in the illustration of Figure 3.

Another important refinement is to enforce some consistency in the signal intensity between

the planes. In our example, one can use what in principle should be differences between the

planes for the intensity per wire due to the different projected lengths of the ionization path

onto the region around each wire. One can also impose a regularizing constraint such as

biasing towards solutions that minimizes the number of spacepoints, which in this example
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Figure 3: Example illustration of how inferring the 3D location of ionization can be an
under-specified problem. We assume a line of uniformly distributed ionization occurs
within the TPC and that the line is parallel to the wire planes. In this case, the wire plane
images (top row) will contain a line of signal (cyan) occurring at the same time. Using
only the knowledge of which wires on the planes see a signal, there is a 2D region in the
TPC of possible spacepoints that are consistent with the wire plane signals (shown in
purple). Only by also assuming a line shape and testing for consistency of the line length
across planes can one determine the true region of ionization (shown in yellow) that
corresponds to the true path.

can be seen to have a similar effect to having a line-like prior. These two latter approaches

are a core part of the approach employed by the Wire-Cell reconstruction framework [18].

What this example is meant to illustrate is the type of prior information or strategies needed

to pick out the true points of ionization. While this example is the worst-case scenario for

simple line trajectories, for LArTPC wire planes on the surface or in regions with many

particles emerging from a neutrino interaction other degeneracies will arise.

The motivation for the LArMatch network is to complement charge consistency and reg-

ularization by using machine learning to find additional features to match across the planes

which improves the identification of true ionization points. One can imagine separating true

3D energy depositions from false ones by learning to “match” local energy deposition pat-

terns in one plane to another. These patterns must follow coherently from the underlying

3D patterns of ionization. The algorithm thus proceeds in two steps. The first is to use a

simple, deterministic algorithm to propose a large set of possible 3-wire intersections that

might correspond to the location of real energy depositions in the detector. Next, a convo-

lutional neural network (CNN) is trained to identify which 3-wire intersections are real or
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false. We use what is known as a ‘U-Net’ for the CNN architecture. A U-Net maps the input

images to a set of latent vectors at each pixel whose purpose is to summarize the relevant

information in the neighborhood of the pixel. For a given 3D spacepoint, we project its

location onto each wire plane and associate a pixel from each. We then concatenate the

feature vectors from each pixel and pass them to a multi-layer perceptron which outputs a

score indicating if the spacepoint is real or false. The feature vectors are also used by other

MLP heads to produce additional information. In total, each feature vector is mapped to

three outputs: (1) a score indicating if the spacepoint is true or false, (2) a set of scores

classifying the spacepoint as one of five particle types, and (3) a set of scores related to how

far away the point is from five types of keypoints. In the following sections, we first describe

the algorithm that produces the spacepoint proposals from the wire plane images. We then

provide details on the image-to-feature vector U-Net. Finally, we discuss the three different

output heads.

1. Proposal of 3-wire intersections, or “triplets”

The first step to the LArMatch approach is to generate spacepoint candidates simply

based on minimal geometric plausibility. Initial spacepoints represent the location of 3-wire

intersections for wires with an above threshold signal coincident in time. We represent these

wire combinations as a “triplet” of integers whose components contain the index associated

with wires from each of the three wire planes. When the wire plane data is represented as

an image, the triplet refers to the tuple of column indices for the three wire plane images. In

order to not miss spacepoints that project onto non-responsive wires, the wire combinations

can include one wire which has been tagged as non-responsive. About 10% of the sense wires

in the MicroBooNE detector are classified as non-responsive. We do not try to make up for

missing spacepoints due to below threshold wire signals caused by ionization patterns that

cause destructive interference on the induction wires. These are associated with ionization

patterns where local segments are perpendicular to the wire planes. False positive and false

negative errors can also be induced by the presence of noise features on the wires.

We form a set of candidate triplets for each time tick (represented by a row in the 2D

wire-plane images) in the wire plane signals. The three column indices and row index specify

the projected pixel locations in the three wire planes. This information also specifies a 3D
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location determined by (1) the location of the 3-wire intersection and (2) knowledge of

which image row represents the time coincident with the beam trigger combined with a drift

velocity assuming a perfectly uniform drift field.

The proposed spacepoints for an example simulated MicroBooNE event are shown in

Figure 4. Metadata, which captures the “truth” about the particle trajectories present in

each event, is saved during the simulation and used to create the ground truth labels for the

LArMatch network. This includes both a list of charged particle trajectories passing through

the TPC and the location of energy deposited by the particles. To save disk space, much of

this information is projected into an 2D array with the same dimensions as the wire plane

images, thereby facilitating the ability to determine the particle type or individual trajectory

ID that deposited the most ionization observed at a given 2D pixel. In the simulation, the

locations where energy was deposited by a particle is stored. For each pixel in the wire plane

image, we assign to it the largest energy deposition that contributed to the value in the pixel.

We then project this position into the other wire planes. The pixels on the other wire planes

then are used to calculate the shift in the number of columns between the pixels on the

two wire planes. In order to recover the YZ location of the largest energy deposit cluster

that contributed to the pixel in the starting plane, one calculates the 2D intersection of the

two wires from the different planes. The distance of the energy deposit from the wire plane

can be calculated from the time relative to the event trigger and the drift velocity. Given

that the wire planes are a tomographic projection of the 3D space points, this method of

saving the 3D locations does not allow for perfect inference. However, we find the accuracy

is sufficient to construct the ground truth for the LArMatch network, while reducing the

amount of data to be saved. For future work, it would be worth exploring a better method

of compressing the 3D energy deposition information that is not inherently lossy.

In figure 4, the proposed spacepoints for one event are shown along with the ground

truth ’true’ or ’ghost’ labels built from the simulation metadata. Spacepoints near a true

location of ionization are given the ‘true” ground truth label shown in red. The rest of the

spacepoint proposals are given the ‘false” ground truth label shown in blue. We highlight

two regions of this figure. The first is the volume between z=[600 cm,800 cm]. Here, many

short line-like regions of false spacepoints are seen. This is due to a fairly large region of

unresponsive wires on one of the wire planes (the ”Y” collection plane). In these regions, the

requirement to propose a spacepoint is relaxed from requiring ionization to be observed on
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Figure 4: Initial spacepoint candidates for an example simulated MicroBooNE event. The
“true” spacepoints located near regions of ionization are colored in red. The “false” or
“ghost” spacepoints that are not near ionization are colored in blue.

only two (as opposed to all three) wire plane images. We make this accommodation with the

aim of minimizing the amount of missing ionization at the cost of potentially accepting more

false positives. The idea will be to use a downstream algorithm, specifically a particle-level

CNN, to correct for false spacepoints or clustering mistake. The other region to point out in

Figure 4 is the relatively large region of false (i.e. blue points) surrounding one muon track

between z=[400 cm, 600 cm]. This is where a portion of a cosmic muon is parallel to the

wire planes, similar to the illustration discussed earlier.

2. Feature Generating U-Net

The core part of the LArMatch network is the U-Net [23] CNN mapping images to pixel-

wise feature vectors. We use residual convolutions [24] over standard convolutions. There are

a total of six convolutional layers including five downsampling layers, each time with stride

two. When normalization layers are used, we use instance normalization [25]. We upsample

on the decoder part of the network with convolution-transpose operations. Because the wire

plane images are sparse, i.e. most pixels have a value very nearly zero, the network uses

sparse-submanifold convolutions [26] as implemented by the MinkowskiEngine library [27].

The U-Net takes in a sparse tensor representation of a single wire plane image at a time
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and is applied to each wire plane, separately. In other words, the input of the U-Net is a

sparse tensor, s, which consists of a list of N pixels, which is a subset of all the pixels in the

image. To be included into the sparse tensor, a pixel had to pass two criteria. One was that

the pixel had a value above some threshold value. We used a threshold of ≥ 10.0, or what

is about a quarter of the average pixel value for minimum ionization sections from cosmic

muon tracks. The second criterion is that a pixel, with a below threshold value, was from a

non-responsive wire while also being the projected location of a proposed spacepoint. The

sparse image tensor, s, is represented through a pair of tensors. The first is a coordinate

tensor, c ∈ WN×2, which contains the indices of the above threshold pixels. The second is

a feature tensor, f ∈ RN×1, containing the associated pixel values. The U-Net, therefore,

maps s = (c, f) to N 16-dimensional feature vectors, v ∈ RN×16.

3. Spacepoint real/ghost classifier

A 2-layer MLP is used to classify each proposed spacepoint as either real or ghost. This

classifier takes in the concatenated 48-dim feature vector, v⃗, formed from the individual 16-d

feature vectors from the project pixels from each plane. The MLP has two hidden layers,

each with 32-features, and outputs both a real and ghost class score. A softmax function

normalizes the sum of these scores to 1.0. We use the normalized score for being a true

spacepoint, p(v⃗), for classifying proposed spacepoints.

We train the network to optimize this prediction using a focal loss [28] objective. We also

weight each spacepoint based on the relative total number of ground truth-labeled real and

ghost points. This weighting is used to mitigate bias that might favor true negative predic-

tions coming from the higher frequency of ghost spacepoints compared to real spacepoints.

Our training objective is

min
θ

Lghost = min
θ

[
Nb∑
b

[ Nit,b∑
it

wb,t log(pθ(vi,t))(1− pθ(vi,t))
γ+

Nif ,b∑
if

wb,f log(1− pθ(vi,f ))(pθ(vi,f ))
γ

 .

(1)

We optimize the objective using AdamW, an implementation of stochastic gradient descent
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with features such as adaptive gradient normalization and momentum. We train our models

with randomly sampled batches of data. The parameters of both the UNet and the MLP

heads producing the LArMatch outputs are learned simultaneously in one combined training

procedure. Within a batch of Nb training samples, the b-th sample consists of Nb feature

vectors, vi produced by the UNet for all Nb candidate spacepoints. We use the simulation

meta-data to produce ground truth labels for the set of vectors, vi. The subset of Nb,t

’real’ or ’true’ ground truth-labeled vectors is vi,t; the subset of Nb,f ’ghost’ or ’false’ labeled

vectors is vi,f (with Nb = Nb,t + Nb,f ). The likelihood estimate for being a real point is

pθ(vi) and is approximated by the output of the true/ghost MLP, parameterized by θ. The

(1−pθ(vi,t))
γ and (pθ(vi,f ))

γ are the focal-loss factors. As pθ(v) approaches the ground truth

value (1.0 for real points, 0.0 for ghost points), the focal loss factors increasingly down-weight

these examples with the γ meta-parameter controlling how quickly the downweighting occurs

with increased confidence. Conversely, the spacepoints whose classification is incorrect will

contribute more to the update of the model parameters. In effect, the focal loss is intended to

nudge the optimization towards improving “harder” examples over increasing the confidence

for easy examples.

4. Spacepoint Keypoint score

The LArMatch network also is tasked with providing the outputs to identify locations of

ionization that can be useful for later 3D trajectory reconstruction. We defined six classes

of “keypoints”: (1) a neutrino interaction vertex, (2) the start of a track-like trajectory

(defined as belonging to a muon, proton, charged pion, and other heavy mesons), (3) the

end of a track-like trajectory, (4) the start of EM shower not produced by processes in the

following types, (5) the start of EM showers produced by the decay of a muon, and (6) the

start of EM showers form delta rays (typically radiating from energetic muon tracks).

The way the location of possible keypoints is represented in the output of the network

is through a score made for each spacepoint. The score ranges from 0 to 1.0, with scores

inversely proportional to the distance to a keypoint. The network is trained to reproduce a

score distribution that follows a Gaussian with a uniform, uncorrelated variance. In other

words, the network is asked to produce a heat map near keypoints with the hotspots having

a set shape. A post-processing step can then be used to identify hotspots and use the
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spatial score distribution to fit to the precise keypoint location. The ground truth-score is

calculated using meta-data from the simulation which retains the creation point of charged

track-like particles and the earliest location of ionization within the TPC of an EM shower.

All particles whose meta-data information was used to define EM shower keypoints were

required to have at least one wireplane image with 20 or more pixels whose signal was

attributed to its ionization.

A 2-layer MLP, sθ is used to map each spacepoint’s feature vector, v⃗, to a vector, k⃗ ∈ R6,

whose components are the scores of each keypoint class. The value of each component is

independently kept within the range of [0, 1] by applying a sigmoid-function element-wise.

This bounded output is then compared to the ground truth scores for each keypoint class.

Both the dedicated keypoint MLP and the UNet parameters are optimized to minimize

the keypoint training objective, Lkeypoint, given by

Lkeypoint =
1

Nb

Nb∑
b

[
1

Nc

Nc∑
c

[
Nb,t∑
i

wb,c,t(ŝi,c,b,t − sθ(v⃗i,b,t))
2+

Nb,f∑
j

wb,c,f (ŝj,c,b,f − sθ(v⃗j,b,f ))
2

 .

(2)

For the above equation, the sum over Nb is over the number of examples in each training

batch. Each example consists of proposals from one set of wire plane images from one TPC

readout event. The sum over Nc is over the six different keypoint classes. Because most

spacepoint proposals are unlikely to be near a true keypoint, to aid training, we use weights

to balance the contribution of examples near true keypoints, for which the MLP needs to

output a score, and those far away from true keypoints, for which the MLP only needs to

output zero. Therefore, for each class we split the total number of spacepoint proposals in

the b-th example, Nb, into “true example” points within 10 cm of a true keypoint and “false

example” points which are not. Thus, in the above equation, the sum over Nb,c,t is for the

true example spacepoints for class c, while the sum over Nb,c,f for the false examples for

class c within the b-th example of the batch. Regardless of the class, the number of true and

false examples total to the same number of spacepoint proposals, i.e. Nb,c,t + Nb,c,f . The

true example weight for class c, wb,c,t, is set to the ratio of the total number of spacepoints,

Nb,c,t + Nb,c,f , over the number of true examples in the b-th training example. Similarly,
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the weight, wb,c,t, is the ratio of the total number of spacepoints over the number of false

examples in the b-th training example. For each true (false) spacepoint, the contribution

to the loss is the weighted squared-difference between the keypoint MLP output, sθ(v⃗i,b,t)

(sθ(v⃗j,b,f ), which is a function of the feature vector, v⃗i,b,t (v⃗j,b,f ), of the i-th (j-th) spacepoint

in the b-th training example. The ground truth score for a given spacepoint is labeled by

ŝi,c,b,t and ŝi,c,b,f .

5. Weighting the Multi-objective Loss

We use a dynamic weighting of the different task objectives when forming the final, overall

loss function. This technique changes the relative weights of the tasks based on an estimate

of the uncertainty. This method in effect aims to encourage parity in the contribution of the

terms to the total loss throughout the training period. In our application, the total loss is

Llarmatch = e−sghostLghost + e−skeypointLkeypoint + sghost + skeypoint. (3)

C. 3D Particle Trajectory Reconstruction

The 3D reconstruction of individual particle trajectories is designed around the outputs

produced by the LArMatch CNN, the SSNet CNN, and the Wire-Cell out-of-time tagger.

The fundamental input to the reconstruction is the set of spacepoints produced by the

LArMatch stage. The algorithms described below first create clusters belonging to individual

particles. This is followed by building a representation of the trajectory. A line segment, fit

to a cluster’s spacepoints, is used to represent track-like particles. A cone, whose axis is fit

along an initial path of spacepoints, represents shower-inducing particles. These outputs are

more easily achieved by the pattern recognition performed by the previous CNNs, alleviating

the need to find the necessary patterns within the set of spacepoints, directly.

The upstream outputs are first used to refine and partition the candidate spacepoints.

First, the LArMatch real/ghost score is used to filter ghost points. A ’real’ spacepoint score

threshold of 0.8 is applied to remove ghost points. This score value removes approximately

90% of ghost points and keeps approximately 75% of true points. The cut value chosen favors

background rejection in order to keep the typical run time of downstream algorithms between
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10-20 seconds per event. Next, the Wire-Cell out-of-time/in-time label splits the spacepoints

into two sets: ‘in-time’ and ‘cosmic’. Both of these sets are subdivided into track and shower

hits using the scores from the 2D SSNet CNN. At this stage of the reconstruction, we have

four buckets of spacepoints: in-time-track, in-time-shower, cosmic-track, and cosmic-shower.

Because of spacepoint proposal’s very forgiving criteria, the density of points around the

true trajectory can be high with many spacepoints providing redundant information. We

apply a heuristic to remove points away from the core of the trajectory. For each plane, we

only tag one spacepoint to keep per pixel, choosing the spacepoint with the largest LArMatch

real/ghost score. The final set of spacepoints we keep are the union of all the spacepoints

associated with pixels from each plane. This heuristic is applied to the in-time-track, in-time-

shower, and cosmic-track spacepoint partitions. Figure 5 shows the fraction of space points

that are within some distance of a true muon, charged pion, or proton trajectory within the

TPC. The simulated data used to make the plot in this figure contained simulated cosmic

particles (mostly muons) and neutrino interactions. About 90% of spacepoints are within 1

cm of track-like trajectories.

Figure 5: Fraction of spacepoints vs. distance from the ground truth trajectory of a true
muon, charged pion, or proton trajectory within the TPC.

D. Keypoint Generation

The output of the LArMatch keypoint proposal CNN are pixel-wise scores. This infor-

mation needs to be distilled into individual keypoint candidates. Ideally, the scores from
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the network should be arranged spatially as spherical hotspots. We separate the hotspots

by first retaining keypoints with a minimum score and then using density-based clustering

algorithm, DBSCAN, to identify individual candidates. The location of a keypoint is taken

to be the spacepoint within a cluster with the highest keypoint score. Spacepoints part of a

reconstructed keypoint are tagged and removed from the original pool. The scores of points

within the remaining pool are modified by using the set of newly created keypoint locations

to subtract the expected score contributions (defined by a Gaussian function). The modified

score is clamped to be zero or greater. This keypoint-finding procedure is applied twice, first

with a high keypoint score threshold and again with a lower score threshold. This procedure

is applied separately for each type of keypoint. As a result, a spacepoint can be a part

of keypoint clusters for multiple classes. However, a spacepoint can only be part of one

keypoint cluster within the same class.

Keypoints from all six classes are searched for within the ’in-time’ spacepoint partition.

Only track-start and track-end types are constructed from the ’out-of-time’ spacepoint par-

tition. All of the above keypoints will be used by the next set of algorithms to seed the

creation of particle clusters.

In the future, keypoints with the remaining classes can be built using the out-of-time

spacepoints. This could be used to reconstruct cosmogenic particle clusters, beyond those

for cosmic muons, with the intended use of creating side-band datasets. For example, it

might be useful to reconstruct out-of-time neutron-induced interactions. These could be

identified by track-start keypoints or regions with high neutrino-like scores as they often

mimic NC-like final states.

E. Particle and Interaction Reconstruction with 3D Spacepoints

Two different sets of algorithms are used to form track-like and shower-like clusters.

However, both take the approach of trying to form pure sub-clusters and then using heuristics

to stitch together the subclusters belonging to individual particles.
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Figure 6: Schematics of the steps of the track reconstruction. (A) Spacepoints with
track-like and in-time labels are collected along with start and end keypoints (here a start
keypoint is shown in cyan; end keypoints are in magenta). (B) Spacepoints around certain
keypoints are removed from clustering. (C) Spacepoints are clustered and then broken into
straight pieces based on the convex hull around the points. (D) Clusters are represented as
a line segment with two ends. Line segments between end points within a certain distance
are formed. A graph is defined with nodes defined by the cluster end points and two types
of edges defined by the line segments within charge clusters (black solid lines) and those
between clusters (red dashed lines). (E) Track-start keypoints are used to seed a
depth-first graph traversal algorithm that proposes possible tracks. (F) Spacepoints are
assigned to nearby line-segments and together define a candidate particle track. In this
schematic, four candidates are proposed.

1. Forming track candidates

For track-like particles, we form subclusters by looking for neighboring spacepoints ar-

ranged in a straight line. We start by using DBScan to form clusters of neighboring space-

points. To avoid clustering spacepoints from multiple particles, we apply several heuristics.

The first is that we remove spacepoints within a 3 cm radius of reconstructed keypoints. This

length is three times the DBScan maximum distance parameter of 1 cm in order to ensure

points from different particles emerging from a vertex or secondary interaction point will not

be clustered together. (A cartoon of this step is shown in Figure 6B). This is done to separate

spacepoints coming from the locations of neutrino interactions, secondary interactions, or

decay. The other heuristic aims to find locations of intersecting trajectories. The approach

is to recognize ’vee’ patterns using the convex hull around the set of pixels corresponding

to the projected spacepoint location on the wire planes. This reuses algorithms built for
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the one 1-lepton-1-proton exclusive analysis in the previous MicroBooNE low-energy excess

search [29]. We use convex hull defect points to identify intersecting trajectories and the

location to split the clusters assuming either an ’X’- of ’V’-shaped 3D spatial pattern. (A

cartoon of this step is shown in Figure 6C).

We build individual particle tracks by chaining, end-to-end, the straight-line subclusters.

We use a recursive depth-first graph traversal algorithm to build chains of subcluster seg-

ments. This algorithm begins by defining a graph whose nodes are the collection of line

segment endpoints. Two types of edges are defined between the nodes. The first edge type

(A) connects endpoint nodes belonging to the same subcluster. The second edge type (B)

connects endpoint nodes below some max distance. (A cartoon of this step is shown in

Figure 6D with the A-type edges represented as solid black line segments and B-type edges

as dashed red line segments.) Multiple B-type edges between the endpoints of two line

segments can be formed.

Once the graph is formed using all the subcluster line segments, a recursive graph traversal

algorithm is used to build chains of line segments representing candidate track trajectories.

The sub-set of endpoint nodes sufficiently close to designated keypoints serve as starting

points. (A cartoon of this step is shown in Figure 6E.) Using depth-first recursion, a tree-

structured subgraph for each seed node is built by traversing edges of alternating type,

starting with A-type edges. Heuristics based on angles and distances between edges and

segments were used to choose and prioritize B-type edges to include in the tree. For potential

B-type edges less than 3 cm, the cosine between the track segments that this B-edge would

connect is required to be greater than zero. For edge lengths between 3 to 10 cm, the cosine

between track segments must be greater than 0.7. For lengths longer than 10 cm, the cosine

must be greater than 0.9. We allow for such fairly large distances between track segments

in order to cross regions of unresponsive wires that occur within the detector. These values

were optimized to maximize the completeness of simulated cosmic muon tracks. To prevent

loops, nodes can only be visited once.

Paths within a tree subgraph that connect the root node to the leaf nodes represent

candidate trajectories. Possible paths are selected using the heuristic that true trajectories

run along regions of ionization. This is quantified by the fraction of the trajectory length

that projects onto locations within the wire plane images that are near pixels with sufficient

ionization. Paths satisfying this criterion are scored based on weighted sum of the total path
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length, the trajectory fraction near ionization, whether the end of the path coincides with

a track-end keypoint, and a measure of the overall trajectory straightness. Valid paths are

then sorted by descending score.

Candidate track particles are created from the set of paths, starting with the highest

scoring. The ordered collection of line segments define the trajectory of the track. Track-

like spacepoints close to the line segments form a cluster associated with the trajectory. Any

remaining paths that fork from the current highest-scoring path are used to define secondary

tracks that begin at the last common node. Once a track trajectory is created, any segments

included in the path are forbidden to be reused. Any remaining path is removed if it includes

any A-type edges corresponding to segments included in a track. Track creation continues

with the remaining highest-scoring path and completes once the set of valid paths is empty.

Candidate tracks are created in this way for all starting nodes. An individual subcluster

line segment can be a part of multiple track candidates, as long as the tracks were created

using different starting nodes. Once all candidate tracks have been formed for a given pool

of track subclusters, refinements to the line segment trajectory are made for each track can-

didate. The refinements consist of creating new points along the segmented line such that

a chosen maximum distance occurs between points. The locations of the expanded set of

points are iteratively perturbed using gradient descent in order to minimize squared-distance

between projected wireplane positions and pixels with ionization. Once refinements of the

line-segment trajectories are completed, 3D spacepoints are associated with each trajectory.

First, spacepoints in the sub-clusters used to make the trajectory are added. Second, space-

points close to keypoints, which were vetoed initially, are added to the trajectory. The

collection of spacepoints along with the line segment trajectory represent the candidate par-

ticle tracks. (The final track candidates in the diagram of Figure 6, defined with both a line

segment trajectory and associated spacepoints, are shown in sub-figure F.)

2. Forming shower candidates

The approach taken for forming shower candidates is to assume that shower keypoints are

located at the start of a shower and then to collect 3D spacepoints, tagged as shower-like by

SSNet, belonging to the shower. Points are added to a candidate shower if they fall within

a cylindrical region around the shower’s reconstructed direction. To determine the shower
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Figure 7: Schematic illustrating steps of the shower reconstruction. (A) Spacepoints with
shower-like and in-time labels are collected along with shower keypoints. The shower
points are colored orange. Shower keypoints are given random colors. (B) DBscan is used
to cluster the points based on neighbor distances. Found clusters are assigned a random
color and index. There are some points shown which did not have enough points to form a
cluster. (C) The first principal component direction and keypoint define the initial
direction of the shower. (D) A subset of points within each cluster near the keypoint is
used to define a shower trunk. (E) The trunk direction and keypoint defines a line.
Clusters close to this line are added to the shower candidate, defined by a keypoint, shower
trunk, and cluster of shower spacepoints.

direction, a shower “trunk” is defined as a line that running along the first 3-10 centimeters

of ionization at the start of the shower.

The shower reconstruction begins by gathering, as input, spacepoints that have been

filtered to have (1) an SSNet shower score greater than 0.5, (2) a LArMatch ’true’ score of

0.8 (the same threshold for accepting spacepoint candidates), and (3) to be associated with

pixels that have not been tagged as being out-of-time with the beam, (in other words does

not have a cosmic tag). The algorithm also requires a set of shower keypoints. In figure 7a,

spacepoints satisfying the conditions are shown as orange circles. Different candidate shower

keypoints are also shown in figure 7a in random colors, here blue, red, and magenta.

Next, DBscan is used to build shower subclusters and is run with the following parameters:

a maximum distance of 5.0 cm, minimum cluster size of 20, and max nearest neighbors of

20. The somewhat higher minimum points to form a cluster is meant to reduce the number
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of small disconnected shower fragments. In the illustration in figure 7b, three clusters are

found are given a random color and index. Note the smaller fragments which do not form a

cluster. The first principal component (PC) is then calculated for each cluster. To remove

very short clusters, any cluster whose first PC length – measured by the maximum distance

between pairs of points projected onto the first PC line – is shorter than 1 cm is rejected.

In the illustration in figure 7c, examples of PC axes for each cluster is shown.

Next, the shower keypoints are used to find a good shower “trunk.” For all keypoints

within 10 cm of the axis-aligned bounding box of each shower cluster, a subset of cluster

points within a certain radius of the keypoint are collected. For each subset of points, a

first PC axis is found and defines the axis of the shower trunk. A subset of points is made

three times for each keypoint and cluster pair, using a radius of 3 cm, 5 cm, and 10 cm. In

all cases, the keypoint is required to be at most 1 cm from the nearest cluster spacepoint in

order to be able to define a valid shower trunk. In studies of the dE/dx along the true initial

direction of simulated electron showers, the energy loss per unit length was most separable

between electrons and photons between 1 cm to 3 cm. The upper bound was interpreted

to be approximately the length scale where some aspect of the shower’s cascade has begun,

causing a widely varying dE/dx that differs from just ionization. Of the three candidate

trunks, we choose the one to represent the cluster’s trunk based on which is the most line-

like. This is quantified using the ratio between the second-to-first principal component of

the cluster’s spacepoints.

At this point in the shower reconstruction, each shower candidate includes the cluster

points, a shower trunk, and the seeding shower keypoint. Figure 7d provides an example

where a shower trunk has been found for each of the three clusters in the illustration. Note

that a subset of points, marked with a darker color, are tagged as being part of the shower

trunk, can fall within different radii of their respective keypoints.

Finally, we attempt to add additional shower points to each candidate shower cluster.

We do not add individual points, but instead test to see if we should add an entire cluster’s

points to a shower candidate. For each shower candidate, we loop through all shower clusters

and ask which fraction of the cluster’s points are within a volume around the line defined

by the shower trunk’s direction and the position of the keypoint. The acceptance volume

is split into two regions. The first volume is for points in the “forward direction” of the

shower, which must be (1) within 5 cm of the trunk axis while (2) it’s projected distance
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along the axis is less than 50 cm from the keypoint. The second volume is for points in the

“backward direction” of the shower. These points must have as projected distance within

3 cm of the keypoint and be within 3 cm of the trunk axis. This second volume is meant

to help with cases where the shower keypoint is reconstructed a few centimeters into the

trunk. If half of the points within the cluster falls within the volume defined by the shower

candidate trunk, all of the spacepoints are added to the shower candidate. In our illustrative

examples, figure 7e depicts successful tests to add a cluster of points to shower candidates

1 and 3 as each have a cluster whose points are within some distance of the trunk’s line.

Note that the shower cluster merging condition at this point of the reconstruction is rel-

atively restrictive. We later use the neutrino vertex to help merge shower cluster candidates

into bigger, more complete shower clusters. This cluster merging occurs when neutrino in-

teraction candidates are being constructed. We start the process of building showers by

tagging a subset of shower candidates found from the procedure above as “shower prong”

candidates. These are intended to represent the beginning of a possibly larger shower emerg-

ing from a neutrino interaction. Prongs are first identified based on how well they point

back to the neutrino vertex. To qualify as a prong, the shortest distance between the line

defined by a shower cluster’s trunk direction and the neutrino vertex (often described as

the impact distance in other scattering contexts) is below 20 cm. The shower prongs that

qualify are then sorted by those with the smallest distance to those with the largest. Then,

beginning with the prong with the smallest distance, we then loop over all shower clusters

and decide on merging each into the prong if a cluster falls within a cone defined by the

prong. The cone is defined by an axis whose starting point and direction are defined by the

prong’s trunk. Because the trunk is a line segment, the endpoint of the trunk closest to the

neutrino vertex is designated as the tip of the cone. The trunk line segment is used to define

the ray of the cone such that the direction of the ray is away from the neutrino vertex. The

opening angle of the prong cone is 30 degrees. This is the angle of a right triangle whose

height is approximately 2 Moliere radii (9.04 cm in liquid argon) and whose base is 50 cm

(or about 3.5 radiation lengths) [30]. We add other ‘test’ shower clusters to the prong by

determining if the test cluster falls within the prong’s cone. To determine this, we ask if the

test cluster’s trunk endpoint closest to the neutrino vertex is within the 30-degree opening

angle. We iteratively define a new prong and associate available shower clusters to it, all the

while tagging clusters as unavailable and skipping them if they were used to define a prong
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or were merged into a prong. In this way, we use the neutrino vertex to help sort the order

of shower candidates and thus bias which ones should serve as the starting prongs on which

to build.

F. Interaction Candidate Formation

The formation of neutrino interaction candidates begins with associating neutrino key-

point candidates with track subcluster segments and shower-trunk candidates. The track

subclusters derive from the in-time-track spacepoints. The shower subclusters and trunks are

made from the in-time-shower spacepoints. Both types of subclusters are added as ’primary

prongs’ based on the distance between (1) the vertex and the closest segment endpoint and

(2) the neutrino keypoint and the prongs first principal component axis. The graph-based

algorithm described above is used to build candidate tracks using only the neutrino keypoint

as a seed. The cone-based procedure described above is used to construct shower candidates

using the associated shower prongs. For any shower subclusters assigned to multiple shower

candidates, we prevent over-counting of visible energy by forbidding subclusters from being

added to multiple shower prongs in this context. The track and shower candidates created

at this stage of interaction reconstruction are tagged as primary prongs. At this stage, we

also correct for potential reconstruction errors due to small clusters of spacepoints being

mislabeled as track-like by the SSNet CNN. One algorithm checks for such track-like clus-

ters that might occur at the beginning of a shower. For each shower prong, a line between

its start point and the vertex is defined. We then check for any track clusters with over 90%

of its spacepoints within 3.5 cm of this line or within 2 cm of the shower’s trunk, for which

the latter is defined by a line segment up to 10 cm long. We also check for short track-like

subclusters that lie deeper within a shower, beyond the trunk. When such track clusters

are detected, the track cluster is removed and its spacepoints are added to the shower’s

spacepoint container.

With the set of primary particles defined, the next step of the reconstruction is to add

secondary particles to the candidate neutrino interaction. The search for secondaries starts

by finding track and shower subclusters whose starting points are within 2 cm of any of the

associated primary tracks or whose first principal component forms a line that approaches

within 2 cm. For each secondary track prong, the graph-based track builder is used to
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create track particles. Likewise, for each secondary shower prong, the cone-based shower

building algorithm is used to construct a secondary shower particle. This secondary particle

reconstruction continues to iterate until no additional track-like or shower-like subclusters

are associated with the interaction.

The construction of neutrino candidates concludes with routines to estimate the energy

of tracks using range under the assumption of a few particle species. The initial direction

of the track is also estimated. Calorimetric estimates of the total ionization are made by

summing the pixel values of individual wire plane images. This leads to three plane-specific

estimates for each shower. An initial integral-to-energy conversion is applied. Details for

these energy estimates are in Section IIH.

In addition to neutrino interactions, the reconstruction also builds cosmic muon tracks

using the graph algorithm seeded by track-start and track-end keypoints. The tracks are

made using clusters coming from the cosmic-track spacepoints.

This interaction-building stage is the final step of the 3D spacepoint-based reconstruction.

The neutrino interactions and their candidate primary and secondary particles are saved for

analysis. The spacepoints and their associated scores are saved only for those assigned to a

particle that is part of a neutrino candidate. These products will be used by the CNN-based

particle ID to be described in later sections. The scores of the keypoints are also stored for

selection and analysis purposes.

G. Reconstruction Validation

The algorithms described in the previous sections are able to efficiently reconstruct neu-

trino interactions and final state particles. This section presents validation plots exploring

vertex and prong reconstruction quality using a sample of MC neutrino interactions (overlaid

over cosmic-ray background data) occurring inside the MicroBooNE fiducial volume (defined

as 3cm from the edge of the space-charge-corrected TPC boundary as in [17]). The ability

of our reconstruction outputs to select CC νµ and CC νe events with high efficiency and

purity is explored in sections IIIA and III B. These metrics are defined by the fraction of

selected events relative to all charged-current events whose vertex occurs within the fiducial

volume.
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1. Vertex Validation

Figure 8a shows the efficiency of our neutrino vertex reconstruction as a function of

simulated neutrino energy for CC νµ and CC νe interactions. Vertex efficiency is higher for

CC νe events, but is high in both cases, rising above 80% by 0.5 - 0.6 GeV in neutrino energy

and leveling off at around 85% - 90% above 1 GeV. Below 0.5 GeV, vertex reconstruction

efficiency drops steeply (as expected), falling below 60% around 0.2 - 0.3 GeV. Figure 8b

shows how accurate the vertex reconstruction is in cases where a candidate neutrino vertex

is found. From this area normalized distribution of the distance between the reconstructed

and true neutrino interaction vertex (for all MC neutrino interactions), we can see that the

vast majority of reconstructed vertices are within 1cm of the true position. More specifically,

68% of reconstructed vertices are within 9.2mm of the simulated interaction position. The

spacing between wires is 3mm, so we can reconstruct vertices within within about three

wires, which is quite close to the one-wire-limit on the accuracy of a perfect reconstruction.

(a) (b)

Figure 8: (a): The fraction of MC νµCC and νeCC interactions occurring inside the
MicroBooNE fiducial volume in which a neutrino candidate vertex was reconstructed (as a
function of simulated neutrino energy). (b): The distance between the true and
reconstructed neutrino vertex for all MC neutrino interactions inside the MicroBooNE
fiducial volume.
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2. Prong Validation

To determine the quality of reconstructed prongs, we select a sample of tracks and showers

attached to reconstructed neutrino vertices fromMC neutrino interactions. Prongs are truth-

matched to simulated particles from the interaction by projecting all of their spacepoints

back into the 2D wire plane images and finding the simulated particle that deposits the

most charge in associated 2D pixels. To allow for accurate truth-matching, we require

that no more than 20% of the prong’s 2D pixel charge come from the overlaid cosmic-ray

background data. For each prong, we calculate the reconstruction quality metrics of purity

and completeness, where purity is defined as the fraction of the prong’s total 2D pixel charge

that was produced by the truth-matched simulated particle, and completeness is defined as

the fraction of the total 2D pixel charge deposited by the simulated particle that is included

in the reconstructed prong.

Figure 9 shows plots of purity vs. completeness for prongs that are truth-matched to

simulated muons, charged pions, protons, electrons, and photons. The vast majority of

reconstructed prongs occupy the high-purity, high-completeness upper-right corner of these

plots, indicating a quality reconstruction. However, for protons and, to a greater extent,

charged pions, there is a non-trivial population of prongs with high completeness but rela-

tively low (roughly 40 - 70%) purity. This is largely due to the difficulty in separating out

short tracks from the often dense clusters of charge surrounding the immediate vicinity of

interaction vertices. Additionally, charged pions often decay, producing (through an inter-

mediate muon) a small electron shower. In these cases, the electron shower and charged

pion track are sometimes reconstructed as part of the same prong, contributing to the popu-

lation of lower-purity pion prongs. There is also a non-trivial population of electron prongs

with high purity, but low completeness. This is caused by either an early, spatially isolated

branch of the electron shower getting reconstructed as a separate shower or by the pixels

associated with a small stub of the trunk of the electron shower getting tagged as track

pixels, causing that stub to get reconstructed as a separate track. However, in these cases,

most of the electron shower is almost always reconstructed in a separate prong, and these

occasional reconstruction issues can be overcome by identifying such prong fragments by

estimating their purity and completeness with the LArPID network (discussed in section

II I).
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(a)

(b) (c)

(d) (e)

Figure 9: Purity vs. completeness for reconstructed prongs (from MC neutrino interactions
occurring inside the MicroBooNE fiducial volume) that are attached to neutrino candidate
vertices and truth-matched to simulated muons (a), charged pions (b), protons (c),
electrons (d), or photons (e).
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H. Energy Reconstruction

To reconstruct the energy of tracks, we first use the LArPID network discussed in section

II I to determine the particle type: tracks are classified as either muons, charged pions,

or protons based on which of those three LArPID particle scores is highest. Knowing the

particle type, we can then use the track length and fits to the kinetic energy vs. range

curves of these three particles to determine a kinetic energy for the track. These fits are

shown in figure 10 overlaid over a scatter plot of kinetic energy vs. length for simulated

muon, charged pion, and proton trajectories (from MicroBooNE MC νµCC interactions)

that begin and end at least 10cm from the edge of the MicroBooNE active volume. The fit

for muons provides accurate results; however, charged pions and protons often interact before

ranging out, causing a spread above the fit line for particles in which our range calculation

underestimates energy. This range calculation will also of course underestimate the energy

of track-like particles that exit the detector. These shortcomings will be addressed in future

studies.

Shower energy is reconstructed from the visible charge observed in the collection plane,

Qsh, which is linearly related to shower energy. As discussed in more detail in [31], a fit to

shower energy vs. Qsh yields the conversion:

E[MeV ] = (0.0126± 0.0001)Qsh, (4)

where the error is from statistical uncertainty in simulated events used in the fit.

Our neutrino energy estimate is then simply calculated as the sum of the reconstructed

track and shower energies for all prongs attached to the reconstructed neutrino interaction

vertex. This is a measure of visible energy, not a sophisticated neutrino energy reconstruc-

tion. A more accurate energy reconstruction that addresses the limitations of the track

energy estimate and includes more sophisticated techniques will be introduced in future

works.

The accuracy of this visible neutrino energy estimate is illustrated in figure 11, which

shows reconstructed vs. true neutrino energy for a sample of MC νeCC and νµCC events.

Only simulated interactions in which all neutrino final state particles are contained inside

the detector and that were reasonably well reconstructed (a neutrino vertex must have been

found with an attached prong that contains at least 60% of the primary lepton’s deposited
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(a)

(b) (c)

Figure 10: Kinetic energy vs. range for simulated muons (a), charged pions (b), and
protons (c) that begin and end in the detector fiducial volume and were produced in MC
νµCC interactions. The fits used in track energy reconstruction are shown in blue.

charge) are included in these plots2. While the majority of events’ reconstructed energy falls

below the overlaid one-to-one line and underestimates the true neutrino energy (as expected

for this visible energy calculation), there is a reasonably strong linear relationship.

I. LArPID: A Prong Classification CNN

To aid in event selections and physics analyses, another CNN, the Liquid Argon Particle

IDentification (LArPID) network, was developed to provide additional information about

reconstructed prongs. CNNs have effectively been used for particle identification in the

past (e.g. in NOvA [32]) and hold particular promise for LArTPCs given their ability to

2 Of simulated contained νeCC events with a reconstructed vertex, 66% have an attached shower containing

at least 60% of the simulated electron’s deposited charge. For νµCC events (same conditions), 74% have

an attached track with at least 60% of the simulated muon’s deposited charge.
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(a) (b)

Figure 11: Reconstructed vs. true neutrino energies for MC νeCC (a) and νµCC (b)
interactions that were successfully reconstructed (a prong from a neutrino candidate vertex
was reconstructed with at least 60% of the simulated primary lepton’s deposited charge)
and in which all simulated neutrino final state particles are contained (begin and end
inside the detector).

image neutrino interactions with mm-scale precision. While the primary aim of LArPID is

to perform particle identification, it also predicts the input prong’s production process and

useful reconstruction quality metrics. Specifically, for each input prong, LArPID predicts:

• Particle type: The network outputs five scores indicating how likely it is that the

prong was produced by a muon, electron, photon, charged pion, or proton. As the

vast majority of charged particles produced in MicroBooNE neutrino interactions are

of one of these types, other very rare particles (e.g. kaon, lambda, or sigma particles)

are ignored. While the prong is assigned the particle type with the highest score,

as we will see in section IIIA, taking into account all five particle scores is useful in

quantifying how confident we can be with this classification.

• Production process: The network outputs three scores indicating how likely it is that

the prong represents a primary final state particle produced in the neutrino inter-

action, a secondary particle with a charged parent, or a secondary particle with a

neutral parent. Rather than attempt to classify all common secondary particle pro-

duction processes (Michel decays, delta ray production, pion decay, etc.) these broad

classes were chosen to simplify the prediction while accomplishing its primary aim:

distinguishing primary final state particles from secondaries. The two most general
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types of observable secondary topology classes - those where the secondary prong does

(charged parent) and does not (neutral parent) originate at the end point of another

cluster - were chosen to provide additional information about secondaries and aid the

network in organizing prongs into general topology classes. This production process

prediction provides another valuable tool to aid in interpreting events.

• Purity: The fraction of visible energy in the prong that was deposited by the true

particle. Here, visible energy is calculated as the sum of all pixel values for all 2D

wire-plane-image pixels used in the 3D space points that make up the reconstructed

prong. As discussed in section II I 3, when training the network on Monte Carlo

simulation, the labelled truth particle is the simulated particle that deposits the most

visible energy in the input reconstructed prong.

• Completeness: The fraction of all visible energy deposited by the true particle that

was reconstructed in the input prong (where visible energy and “true particle” are

defined as above for the purity prediction).

Analyzing these network outputs for all reconstructed prongs attached to a candidate

neutrino interaction vertex provides valuable information about both the prongs and the

candidate neutrino interaction. The particle classification outputs not only aid in identi-

fying particles and selecting neutrino interactions with desired final states, but could also

allow for a more accurate neutrino energy estimate by providing a robust particle hypothesis

in e.g. range-based momentum calculations or neural-network based energy estimation tech-

niques utilizing high-level reconstruction outputs. In addition to organizing particles into

parent/daughter hierarchies for true neutrino interactions, the particle production process

can be used to veto mis-reconstructed neutrino interaction vertices placed at the position

of e.g. a particle decay. As shown in section IIIA, it is particularly helpful in CC νe event

selections as it can veto background events where the candidate primary electron prong is

in fact a secondary (for example a charged pion decay product or cosmic Michel electron).

And the completeness and purity metrics allow for the identification of poorly reconstructed

prongs: prongs reconstructed from energy depositions of a variety of different particles or

those representing a fragment of a true particle. These reconstruction quality metrics can be

used to better understand reconstructed neutrino interactions and, in the future, to improve
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the reconstruction as inputs to downstream algorithms or networks that could reorganize

clusters into prongs that better represent particle trajectories.

The following sections detail this LArPID network’s inputs (section II I 1), architecture

(section II I 2), training details (section II I 3), and performance (section II I 4). Preliminary

studies on interpreting the model are discussed in section II I 5.

1. Network Inputs and Image Preprocessing

The LArPID network operates on all three 2D wire-plane images (with tagged cosmic

pixels removed) of both the input reconstructed prong and the full event. Going back

to the 2D images provides the network with information that may have been lost during

reconstruction as a result of dead channels or other errors. For example, in the probable CC

νe data event shown in figure 12, shower pixels near the interaction vertex are present in the

collection plane, but are missing in both the U and V planes. As a result, no 3D space points

could be formed near the vertex, and the reconstructed 3D shower prong begins at a distance

from the reconstructed neutrino interaction vertex. If considering only the 3D reconstruction

outputs, this might indicate that the shower is a photon (which travel a distance from the

vertex before pair-converting and depositing energy). However, by operating on the original

2D wire-plane inputs, the LArPID network can see the shower extending back to the vertex

in the collection plane and classifies this shower as an electron.

Including the full-event context images, with all non-cosmic-tagged pixels, provides the

network with a wealth of additional information that aids in all the network’s tasks. Seeing

the full event improves particle identification accuracy by allowing the network to learn

physical features associated with different particle types. For example, photons start at a

distance from the interaction vertex, whereas electrons begin depositing energy directly at

the vertex. Neutral pions decay into a pair of photons, so the network can learn that when

it sees two showers pointing back to the vertex these are likely photons. Preliminary studies

indicating that the network indeed picks up on this kind of context information in assigning

particles scores are presented in section II I 5. The context information is of course also

needed to observe parent or fellow neutrino final state particles in distinguishing between

primaries and secondaries in the production process classifier. Finally, allowing the network

to observe when prong pixels are embedded in a larger cluster or a mix of different clusters
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Figure 12: Bottom: zoomed in view of three wire plane images for a probable CC νe
interaction in a MicroBooNE open dataset. The views are from the U induction plane
(left), the V induction plane (center), and the Y collection plane (right). Top:
Reconstructed neutrino candidate for the same event with PMT positions recording flashes
highlighted (purple: reconstructed neutrino vertex position, copper: 3D space points in
reconstructed shower, green: 3D space points in reconstructed track). This event passed
our selection even though there is a visible gap in 3D spacepoints between the shower and
vertex caused by unresponsive wires in the U and V planes. However, the prong-CNN still
designated the shower electron-like likely due to the shower visibly starting from the vertex
in the Y plane. This is a candidate example where using the low-level 2D information has
helped overcome downstream reconstruction errors.

is needed for accurate completeness and purity estimates.

The prong and context images passed to the network are processed as follows. To obtain

the prong images, 3D space points in the reconstructed prong are projected back into the 2D

wire-plane images to obtain all associated pixels. To reduce computational requirements,

these images are then cropped to a 512x512 pixel (153.6 x 153.6 cm) window. This window

size is large enough to encompass most charged particles from neutrino interactions in Micro-

BooNE. This crop is performed separately in each wire plane. In a given wire-plane image,

when the full set of prong pixels does fit within this window, the crop is centered around
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the middle of the prong (the point half-way between the min and max row and column).

If the prong pixels do not fit within this window, the crop is centered around the end of

the prong for tracks and around the beginning of the prong for showers. This decision was

taken as most of the information in distinguishing muon, charged pion, and proton tracks

lies at their end (as the particle slows down and potentially decays), whereas the informa-

tion needed to distinguish between photon and electron showers lies at the beginning, in

the shower trunk. In each wire-plane, the context image is cropped around the same region

as the prong image. Before passing these six images (one prong and one context image for

all three wire-planes) to the network, pixel values are normalized into the range of roughly

-1 to 1 by subtracting the mean and dividing by the standard deviation of all final state

particle pixels in a large set of simulated neutrino interactions. An example of the six input

images passed to the network for a reconstructed charged pion track from a simulated CC

νµ interaction is provided in figure 13.

2. Network Architecture

The LArPID network architecture is illustrated in figure 14. A 34-layer residual network

(ResNet34) [24] was chosen for the CNN3. LArPID’s ResNet34 CNN has two input channels

for the prong and context image of one wire plane, and it operates separately on each

wire plane using shared weights for all three. A 2D adaptive average pooling operation

is performed on the output of the final layer, providing 512 learned features for each of

the three wire planes. These features are concatenated into a single 1536-length feature

vector summarizing information learned about the input prong. This concatenated feature

vector is then used as input to four multi-layer perceptrons (MLPs) used to perform the

four network tasks. Each MLP has a single hidden layer4. The particle classification MLP

has a five-neuron output layer, whose logits are passed through a softmax to provide the

muon, charged pion, proton, electron and photon scores. The particle production process

classification MLP uses a length three output layer and softmax to provide the primary,

secondary with charged parent, and secondary with neutral parent scores. The purity and

3 While slightly improved performance might be achieved by using an deeper network, this would have

increased the computational complexity and made the network difficult to deploy on cpus as required for

large-scale MicroBooNE data processing. An 18 layer ResNet CNN was tested as well, but was found to

provide lower performance.
4 Increasing the number of hidden layers was found to increase the time it took the model to converge

during training without improving performance
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Figure 13: Example LArPID input images for a reconstructed charged pion track from a
simulated CC νµ interaction. Top row: prong images for all three wire planes. Bottom
row: full event context images for all three wire planes

completeness regression MLPs use a single-neuron output layer and sigmoid to provide purity

and completeness predictions in the required physical range of 0 to 1.

3. Training

The LArPID network was trained on a sample of over 652,000 reconstructed prongs from

MicroBooNE neutrino Monte Carlo simulations overlaid over off-beam cosmic-ray back-

ground data [MC citation]. Only prongs attached to reconstructed candidate neutrino in-

teraction vertices were considered. If an event had multiple reconstructed neutrino vertices,

only prongs attached to the vertex with the highest LArMatch neutrino keypoint score were

selected for training. Two additional requirements were imposed on prongs selected for the

training sample:
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Figure 14: LArPID network architecture with the example inputs from figure 13.

• Training prongs must have at least 10 above-noise-threshold pixels (which span 3cm

in the detector) in all three wire-plane images. Studies were performed to test if

increasing this minimum-pixel threshold might improve performance on larger prongs

that are primarily considered in neutrino event selections. However, it was found that

the network, when trained only on larger (minimum pixel threshold = 90) prongs, did

not perform better on a validation set including only such large prongs than when

trained on a prong sample including the smallest reconstructed prongs.

• To allow assignment of truth labels, no more than 20% of charge included in training

prongs could come from cosmic-ray contamination.

To assign truth labels for training and validation, 3D space points included in recon-

structed prongs are projected back into the three wire-plane images to obtain all associated

2D pixels. The total amount of charge in all prong pixels that was deposited by each

simulated charged particle produced in the neutrino interaction is summed, and the true-

particle-type label is assigned as the simulated particle that deposited the most charge. The

total charge deposited in the entire detector by this truth-matched simulated particle is also
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calculated, and the true completeness value is assigned as the fraction of this charge included

in the reconstructed prong. The purity value is assigned as the fraction of all charge in the

reconstructed prong that is contributed by this truth-matched simulated particle. Finally,

the particle production process label is assigned according to how the truth-matched simu-

lated particle was generated. The number of prongs in the training sample truth-matched

to each of the five particle types is shown in table I below.

muons charged pions protons electrons photons

163,987 53,871 266,653 90,940 76,915

Table I: Number of prongs truth-matched to each of the five particle classes in the LArPID
training sample

The network was trained over this sample for 20 epochs using a multi-task loss function

with learned weights following the procedure outlined in [33]. A loss must be defined for

each of LArPID’s four tasks (predictions) and combined to form the network’s full loss

function. The relative weight attached to each task-specific loss function can significantly

impact the network’s performance, so the value chosen for these weights is important. The

method employed in [33] treats task weights as learned network parameters that can be

optimized during training. The authors found that this technique can provide superior

performance than even optimal hard-coded weights (e.g. hard-coded values of w1 and w2 in

the two-task loss function L = w1L1 + w2L2). We confirmed this in the case of LArPID by

varying hard-coded task weights used in combining task specific loss functions. We found

that the network trained with learned weights outperformed the network trained with any

set of hard-coded weight values. We further found that the network’s particle classification

performance, perhaps the most important network task, was no better when trained only on

that task than when trained on all four tasks using learned task weights. Therefore, using

the technique outlined in [33], the loss function used to train LArPID was defined as:

L = e−scrLMSE(ŷcr, ycr) + e−sprLMSE(ŷpr, ypr)

+ 2e−sicLCE(ŷic, yic, wic) + 2e−spcLCE(ŷpc, ypc, wpc)

+ scr + spr + sic + spc

(5)

where LMSE and LCE are the mean squared error (for regression tasks) and cross entropy
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(for classification tasks) loss functions, respectively; y and ŷ are the true and predicted

network outputs, respectively, for a given input and network task; the s parameters are

the learned task-specific loss weights; the subscripts cr, pr, ic, and pc denote quantities

for the completeness regression, purity regression, particle-identification classification, and

particle-production-process classification tasks, respectively; and wic and wpc are vectors of

class weights based on the number of prongs belonging to each particle identification and

production process classes, respectively, in the full training sample. These class weights are

calculated once upfront and used to weight contributions to the cross entropy loss functions

to account for class imbalances. This ensures, for example, that the network doesn’t learn

to increase the probability of classifying all inputs as protons simply because there are more

proton-labelled prongs in the training sample than any other type of particle.

Additional training details are as follows:

• One data augmentation technique was employed to reduce over-fitting: input images

were randomly flipped horizontally or vertically, each with a probability of 50%. As

demonstrated in figure 15, which shows overall particle classification accuracy for the

training sample and an independent validation sample with 50,000 prongs (10,000 per

particle type), over-fitting was not a significant issue. Similar few percent differences

were observed in the training vs. validation performance of the other network tasks.

More details and discussion on network performance in the validation sample are

presented in section II I 4.

• The AdamW gradient descent algorithm [34] was used to update network weights.

• The single-cycle cosine annealing learning rate scheduler shown in figure 16 was used.

This type of variable learning rate has been found to reduce the number of training

epochs required for convergence [35]. The minimum and maximum learning rate values

used in the scheduler were chosen by varying the learning rate in a test training run

and determining the range of rate values over which the model continues to converge.

A variety of other single-cycle, oscillatory, and stepped learning rate schedulers were

tested, but none achieved better performance or faster convergence than the chosen

schedule depicted in figure 16.
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Figure 15: Overall particle classification accuracy for the training sample and an
independent validation sample with 50,000 prongs (10,000 per particle type) as a function
of training iteration.

Figure 16: The learning rate scheduler used to train the LArPID network, shown as a
function of training iterations. The full schedule lasts for 20 epochs.

4. Network Performance

The performance of the LArPID network was tested on an independent validation sample

of 50,000 reconstructed prongs (10,000 of each particle type: muons, charged pions, protons,

electrons and photons). The same selection criteria detailed in section II I 1 used to construct

the training sample were used for this validation sample. For the classification task results,

an additional requirement that at least 60% of the validation prongs’ total pixel charge be

contributed by a single simulated particle (true prong purity > 60%) was imposed. This

requirement was placed to ensure sensible truth labels could be assigned.5

The network achieved an impressive overall validation accuracy of 91.8% on the particle

5 A version of the network was also trained with the same true prong purity > 60% requirement, but it was

found that this did not improve the network’s classification performance on a purity > 60% validation

sample. This requirement was therefore not ultimately imposed on the training sample so that the network

could be trained to make more accurate purity and completeness predictions in cases where purity < 60%.
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identification task. A confusion matrix showing the accuracy for each particle type is shown

in table II. The per-particle validation accuracy is very high for all five particle types, and

when the network does mis-classify a prong, it almost always applies the label of a particle

that leaves similar signatures in the detector. For example, mis-classified electrons are almost

always assigned a photon label (and vice versa) and mis-classified charged pions are almost

always assinged a muon label (and vice versa).

True e± True γ True µ± True π± True p

Fraction classified as e± 84.5% 5.2% 0.1% 0.5% 0%

Fraction classified as γ 12.7% 94.3% 0.2% 0.2% 0.1%

Fraction classified as µ± 0.4% 0.1% 93.9% 11.5% 0.3%

Fraction classified as π± 2.3% 0.3% 5.6% 86.5% 1.6%

Fraction classified as p 0.1% 0.1% 0.2% 1.4% 97.9%

Table II: A confusion matrix showing LArPID’s particle classification accuracy in the
validation sample: the fraction of prongs truth matched to each particle type that LArPID
classified as an electron (e±), photon (γ), muon (µ±), charged pion (π±), or proton (p)
(columns sum to 100%).

The network’s overall validation accuracy on the particle-production-process classification

task was similarly high, at 89.0%. As shown in table III, accuracy is high for all three

production-process classes. Accuracy is highest for identifying secondaries with a neutral

parent, likely as this signature (a prong created with no other tracks or showers originating

at it’s start position) is more unique than the other two classes.

True primary True neutral parent True charged parent

Fraction classified as primary 87.8% 3.4% 6.5%

Fraction classified as neutral parent 2.9% 93.6% 6.9%

Fraction classified as charged parent 9.3% 3.0% 86.7%

Table III: A confusion matrix showing LArPID’s particle-production-process classification
accuracy in the validation sample: the fraction of prongs with each true production-process
class that LArPID classified as a primary neutrino-final-state particle, a secondary with a
charged parent, or a secondary with a neutral parent (columns sum to 100%).

The validation accuracy of the network’s completeness and purity predictions are illus-

trated in figure 17, which shows 2D histograms of the predicted vs. true reconstruction

quality metrics. For a given range of true completeness or purity values, there is a non-

trivial spread in the predicted values. However, the bulk of the prongs in these heat maps
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(a) (b)

Figure 17: A 2D histogram showing predicted vs. true completeness (a) and purity (b) for
prongs in the validation sample.

do roughly follow a one-to-one line. So while the exact value of LArPID’s completeness

or purity prediction for a given prong should not be interpreted with extremely high con-

fidence, these predictions are robust in revealing whether the input prong is likely to be a

small fragment of a true particle, a mostly complete reconstruction, or something in between

(completeness) and, similarly, whether it is likely to be reconstructed from a mix of different

particles or mostly from a single particle (purity).

5. Interpreting the Model

Preliminary image manipulation studies were carried out to shed light on what informa-

tion LArPID is using from input images to make its predictions. While clear decision-making

algorithms cannot be extracted from the complex network of neurons in deep learning mod-

els, these interpretability studies can provide valuable insights into how neural networks are

making decisions. The technique employed here involves testing hypotheses on what infor-

mation is being used in the network by providing the model with a set of counter-factual

images. This is done by replacing an input reconstructed prong or a particle from the context

image with another simulated particle and seeing how the network output changes.

An example of one such image manipulation study is shown in figure 18. Here, we

checked to see if the network is learning, from examples of π0 decay photons, that when two

electromagnetic showers’ initial trajectories can be traced back to an intersection (the π0

decay position) near the interaction vertex, that these showers are likely photons. Figure
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Figure 18: One wire-plane prong image (a) and context image (b) for a reconstructed
photon prong produced during a π0 decay in a simulated CC νµ interaction. A modified
context image (c) in which the input photon prong’s companion π0 decay photon is
removed. With the original inputs (a and b), LArPID outputs an electron score of 0.027
and photon score of 0.97. With the modified inputs (a and c), LArPID outputs an electron
score of 0.21 and photon score of 0.77.

18 (a) and (b) show (for one wire-plane) the prong and context images for a reconstructed

photon shower produced during a π0 decay. The second π0 decay photon is clearly visible in

the context image. With these inputs, the network confidently and correctly predicted that

the input prong is a photon, with photon and electron scores of 0.97 and 0.027, respectively.

The network was then presented with the same input prong images but modified context

images (figure 18c) that had the second π0 decay photon removed. With these inputs,

the network’s confidence in its photon prediction decreased significantly, with photon and

electron scores of 0.77 and 0.21, respectively. The same context manipulation had a similar

effect in other examples of input photon prongs from π0 decays, indicating that the network

has indeed, as expected, learned to increase its photon scores for input showers that are

consistent with π0 decays.

Another set of image manipulations for an example LArPID input is shown in figure 19.

Panels (a) and (b) show (for one wire-plane) input images for a prong (from a simulated CC

νµ interaction) that is reconstructed from both a short charged pion track and the electron

shower produced following the pion decay. As the majority of this reconstructed prong

comes from the simulated electron, the network predicts that this prong is an electron, with

electron and charged pion scores of 1 and 2.4·10−3, respectively.

We wanted to test how the network’s individual particle scores are impacted when an
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Figure 19: One wire-plane prong image (a) and context image (b) for a prong reconstructed
from a charged pion and an electron produced during the pion decay in a simulated CC νµ
interaction. A modified prong (c) and context image (d) in which the charged pion and its
decay electron were replaced by a simulated electron with the same start position and
momentum and the original charged pion. A second set of modified prong (e) and context
(f) images in which the same substitution was performed with another simulated electron,
but the replacement electron was simulated to begin at a short distance from the neutrino
interaction position. LArPID’s output electron, photon, and charged pion scores were 1,
8.9·10−4, and 2.4·10−3, respectively, for the original images (a and b); 0.99, 6.5·10−3, and
1.8·10−4, respectively, for the first set of modified images (c and d); and 3.8·10−4, 1, and
2.7·10−6, respectively, for the second set of modified images (e and f).

input prong is reconstructed with significant contributions from different particles. In cases

such as these, can information about what combination of particles contribute to a low-purity

prong be gleaned from the individual particle scores? In figure 19 (c) and (d), the input prong

was replaced with a pure simulated electron with the same start position and momentum

as the original charged pion. With these inputs, the network’s pion score decreased to

1.8·10−4. A similar set of manipulations on combined charged pion-electron prongs yielded

similar results, indicating that the charged pion score for classified electron prongs can be

used to determine if such prongs likely came from a charged pion decay. This feature is
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exploited in the CC νe selection of section IIIA to reduce CC νµ backgrounds.

An additional set of image manipulations shown in figure 19 verify that the network is

using the context images to learn that showers that start at a distance from an interaction

vertex are more likely to be photons, and those that start at the vertex are more likely to

be electrons. In panels (e) and (f), a similar manipulation is performed in which the input

prong was replaced with a simulated electron, but this time with a start position at a small

distance from the interaction vertex. With these inputs, even though the input is a true

electron, the network confidently classifies it as a photon prong, with photon and electron

scores of 1 and 3.8·10−4, respectively. A similar set of manipulations in which simulated

electrons were placed at a distance from an interaction vertex yielded the same result (a

confident photon prediction), indicating that the network has indeed learned to use this

context information for electron/photon discrimination.

These tests demonstrate the utility of such image manipulation studies in learning how

the network is making decisions. In a future work, these manipulations will be performed

at scale and the results quantified for a more complete set of counter factuals. This will

improve understanding of the model, increase confidence in its predictions, and inform how

its outputs might more effectively be used in event selections and physics analyses.

III. DEMONSTRATION: SELECTION OF INCLUSIVE νeCC AND νµCC INTER-

ACTIONS IN MICROBOONE

A. CC nue inclusive selection cuts

As a demonstration of the effectiveness of these reconstruction tools, we have developed

a set of inclusive CC νe selection criteria utilizing the output of the LArMatch and LArPID

networks. As we will show, an effective, high purity and efficiency CC νe selection can

be achieved by selecting LArMatch-identified neutrino candidate vertices and filtering out

cosmic and neutrino backgrounds with the Wire-Cell based cosmic tagger discussed in section

IIA and cuts on LArPID outputs of attached prongs. For this study, we use off-beam data

to analyze the cosmic-ray background and simulated neutrino interactions overlaid over

cosmic-ray background data for CC νe and neutrino background events.

The full set of CC νe selection criteria is provided in table IV. We will examine the impact
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of adding each selection cut one at a time. With each new cut, we will then discuss the

motivation for its inclusion, show distributions of the cut variable for signal and background,

show data/MC comparisons of reconstructed neutrino energy for events passing the new

selection criteria using a small 4.4·1019 POT MicroBooNE open data sample, and show the

MC-predicted impact of the new cut on efficiency as a function of true (simulated) neutrino

energy. A new “cut set” is defined in table IV as a set of selection criteria including a newly

specified cut along with all previous cuts.

Table IV: Inclusive CC νe Selection Cuts

Cut Notes

LArMatch-identified neutrino candidate vertex found in-
side the fiducial volume

Added in cut set 1 (included
in cut sets 1-6 and final set)

3D space points of prongs attached to neutrino candidate
do not all overlap with Wire-Cell-tagged cosmics

Added in cut set 2 (included
in cut sets 2-6 and final set)

No LArPID-identified muon tracks are attached to neu-
trino candidate

Added in cut set 3 (included
in cut sets 3-6 and final set)

At least one LArPID-identified electron shower attached
to neutrino candidate

Added in cut set 4 (included
in cut sets 4-6 and final set)

The largest identified electron was classified by LArPID
as a neutrino final state particle

Added in cut set 5 (included
in cut sets 5-6 and final set)

No tracks attached to neutrino candidate have a high
LArPID muon score: max log(muon score) < −3.7

Added in cut set 6 (included
in cut set 6 and final set)

The largest identified electron was classfied by LArPID
as an electron with high confidence: log(electron score)
− (log(pion score) + log(photon score))/2 > 7.1

Added in final cut set

The first CC νe selection criteria is that a LArMatch-identified neutrino interaction vertex

was found inside the detector fiducial volume. For our neutrino selections, we define the

fiducial volume as 3cm from the space-charge corrected TPC boundary as in [17]. Data

and MC reconstructed neutrino energy distributions with only this requirement are shown

in figure 20a. The data excess seen here and as additional cuts are applied is not unique

to our CNN-based reconstruction and selection and has been seen in other frameworks. As

we will show in section IIID, data and predictions with the full set of selection cuts are

consistent once accounting for statistical and systematic uncertainties. The MC-predicted

CC νe selection efficiency with just this vertex reconstruction requirement is shown in figure

20b. Vertex finding has a non-trivial impact on efficiency at low (<500 MeV) neutrino

energies where electron showers and other prongs are small and more difficult for LArMatch
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(a) (b)

Figure 20: (a): Data/MC reconstructed neutrino energy comparison of events selected by
CC νe cut set 1 with 4.4·1019 POT of MicroBooNE run1 data. (b): MC-predicted CC νe
efficiency vs. true neutrino energy with CC νe cut set 1. The CC νe cut set 1 only contains
the requirement that a LArMatch-identified neutrino vertex was reconstructed inside the
fiducial volume. Cut sets are defined in table IV.

to identify and separate from cosmic background.

If LArMatch identifies more than one neutrino keypoint cluster in an event, we select the

one with the highest keypoint score as the candidate neutrino interaction vertex. Further

selection criteria apply to prongs attached to this candidate interatction vertex.

There is still a significant cosmic-ray background after selecting events with LArMatch-

identified neutrino candidates. The majority of this background can be removed with the

Wire-Cell cosmic tagger discussed in section IIA. Figure 21a shows neutrino and cosmic

background distributions for the fraction of 3D points in any cluster attached to the neutrino

candidate vertex that was tagged as cosmic. Events in the final cosmic-dominated bin with

100% cosmic overlap (events where all hits in all prongs attached to the vertex have at least

one constituent pixel that was tagged as cosmic by the Wire-Cell cosmic tagger) are rejected.

Figure 21b shows the new reconstructed neutrino energy distributions with this requirement

included (with “cut set 2”). Figure 21c compares the efficiency curve for this “cut set 2”

to “cut set 1,” which only includes the neutrino vertex reconstruction requirement. This

cosmic-ray rejection cut does not have a large impact on CC νe efficiency.

Further cuts on the LArPID outputs of prongs attached to the candidate neutrino vertex

can remove almost all of the remaining cosmic and neutrino backgorund. As a first step,

to remove most of the CC νµ background and some of the remaining cosmic background,
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(a)

(b) (c)

Figure 21: (a): MC and off-beam cosmic background data distributions of the fraction of
hits associated with the candidate neutrino vertex that were constructed from pixels
tagged as cosmics. Events in the final bin were rejected as the new requirement in CC νe
cut set 2. (b): Data/MC reconstructed neutrino energy comparison of events selected by
CC νe cut set 2 with 4.4·1019 POT of MicroBooNE run1 data. (c): MC-predicted CC νe
efficiency vs. true neutrino energy with CC νe cut sets 1 and 2, and the ratio of these two
efficiency curves. Cut sets are defined in table IV.

events with identified muons are rejected. Figure 22a compares signal and background

distributions for the number of reconstructed muons - the number of LArPID identified

muon tracks attached to the candidate neutrino vertex - in events remaining after applying

“cut set 2.” The requirement that no reconstructed muons are present in the event was added

in “cut set 3.” Figure 22 (a) and (b) show the reconstructed neutrino energy distributions

and efficiency curve comparisons for cut sets 2 and 3. This muon-track rejection cut does

not have a large impact on efficiency.

Now that events with identified muons have been removed, we select events with identified
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(a)

(b) (c)

Figure 22: (a): MC and off-beam cosmic background data distributions of the number of
LArPID-identified muon tracks (reco muons) attached to the candidate neutrino vertex.
The requirement that no reco muons are present was added in CC νe cut set 3. (b):
Data/MC reconstructed neutrino energy comparison of events selected by CC νe cut set 3
with 4.4·1019 POT of MicroBooNE run1 data. (c): MC-predicted CC νe efficiency vs. true
neutrino energy with CC νe cut sets 2 and 3, and the ratio of these two efficiency curves.
Cut sets are defined in table IV.

electrons. Figure 23a shows the distribution of the number of LArPID-identified electron

showers for remaining signal and background events. The requirement that at least one

electron shower was identified was added in “cut set 4.” This removes the majority of the

remaining neutrino and cosmic backgrounds, but has a moderate impact on our CC νe

selection efficiency across neutrino energies (see figure 23c). The data/MC reconstructed

neutrino energy comparison with “cut set 4” is shown in figure 23b.

As can be seen in figure 23a, it is not rare in true CC νe events for multiple electron showers

to be identified. This is generally not due to LArPID incorrectly classifying showers, but
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(a)

(b) (c)

Figure 23: (a): MC and off-beam cosmic background data distributions of the number of
LArPID-identified electron showers (reco electrons) attached to the candidate neutrino
vertex. The requirement that at least one reco electron is present was added in CC νe cut
set 4. (b): Data/MC reconstructed neutrino energy comparison of events selected by CC
νe cut set 4 with 4.4·1019 POT of MicroBooNE run1 data. (c): MC-predicted CC νe
efficiency vs. true neutrino energy with CC νe cut sets 3 and 4, and the ratio of these two
efficiency curves. Cut sets are defined in table IV.

clustering errors in which small fragments of the true primary electron are reconstructed as

a different shower. In these cases, one reconstructed shower tends to carry the majority of

the true electron’s deposited charge. The candidate primary electron is therefore identified

as the LArMatch-identified electron shower with the most charge.

The majority of the remaining cosmic and neutrino background can be removed by placing

additional cuts on the LArPID outputs for this candidate primary electron shower. In much

of the remaining background, a true electron is in fact present, but as a secondary, e.g. a

Michel electron, delta ray, or an electron produced after a charged pion decay. Figure 24a
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(a)

(b) (c)

Figure 24: (a): MC and off-beam cosmic background data distributions of the candidate
primary electron shower’s LArPID production process class output. The requirement that
the candidate primary electron was classified by LArPID as a primary particle was added
in CC νe cut set 5. (b): Data/MC reconstructed neutrino energy comparison of events
selected by CC νe cut set 5 with 4.4·1019 POT of MicroBooNE run1 data. (c):
MC-predicted CC νe efficiency vs. true neutrino energy with CC νe cut sets 4 and 5, and
the ratio of these two efficiency curves. Cut sets are defined in table IV.

shows the output of the LArPID particle production classifier for the candidate primary

electron in signal and background events remaining after “cut set 4.” This classifier is able

to accurately separate out the true primary electron showers from the candidates produced

in background events, almost all of which are classified as secondaries. The requirement that

the primary electron candidate was classified by LArPID as a neutrino final state particle

was therefore added in “cut set 5.” This new requirement has a fairly small impact on CC νe

selection efficiency except at very low (<200 MeV) neutrino energies (see figure 24c). The

new reconstructed neutrino energy distributions are shown in figure 24b.
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(a)

(b) (c)

Figure 25: (a): MC and off-beam cosmic background data distributions of the log of the
highest LArPID muon score for any track attached to the candidate neutrino vertex. The
bin at -20 contains events with no tracks. The requirement that no track have a log(muon
score) above -3.7 was added in CC νe cut set 6. (b): Data/MC reconstructed neutrino
energy comparison of events selected by CC νe cut set 6 with 4.4·1019 POT of MicroBooNE
run1 data. (c): MC-predicted CC νe efficiency vs. true neutrino energy with CC νe cut
sets 5 and 6, and the ratio of these two efficiency curves. Cut sets are defined in table IV.

At this stage, much of the remaining background is present due to photons or secondary

showers being mis-classified as primary electrons or muons being mis-classified as charged

pions (and therefore not getting rejected by the no reconstructed muons cut). The latter

issue is addressed first.

Generally, when muon tracks are mis-classified as charged pions, they still get a fairly

high LArPID muon score. Events remaining after “cut set 5” with a true muon present can

therefore be identified by searching for those containing a track with a high muon score (even

though events with muon-classified tracks have already been removed). Figure 25a shows
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the distribution for the log of the maximum LArPID muon score for any track attached

to the candidate neutrino vertex in remaining events. The cut on this distribution that

provides the largest CC νe selection purity*efficiency product is -3.7. Events with a track

that has a muon score above this value were therefore removed as the new requirement in

“cut set 6.” The cut set 6 neutrino energy distributions and efficiency curves are shown in

figure 25 (b) and (c). This cut does not have a large impact on selection efficiency.

The final cut seeks to remove events where a photon or a mis-reconstructed charged pion

prong (composed of a charged pion and the electron produced in its decay) was mis-classifed

by LArPID as a primary electron. As with the mis-classified muon tracks, in these cases, the

network tends to hedge its bets and also give these showers a high photon or charged pion

score. An electron class confidence metric for the candidate primary electron was therefore

defined as the difference in its LArPID electron score and the average of its charged pion

and photon scores: log se− (log sπ +log sγ)/2, where se, sπ, and sγ are the electron, charged

pion, and photon scores, respectively.6 The distribution of the primary electron candidate’s

class confidence metric for signal and background events remaining after “cut set 6” is shown

in figure 26a. The signal and background distributions separate out well. The electron class

confidence cut that maximized the CC νe purity*efficiency product, class confidence > 7.1,

was added as the final CC νe selection cut. The data and MC reconstructed neutrino energy

distributions with all selection cuts is shown in figure 26b, which includes a 1σ uncertainty

band on the predictions including both statistical and systematic (discussed in section III C)

errors. As we will show in section IIID, the data and predictions are consistent within the

quoted uncertainties. The final selection efficiency is shown in figure 26c along with a

comparison to “cut set 6.” Adding in the electron class confidence cut does significantly

impact efficiency, but is necessary to remove remaining backgrounds.

Additional cuts (including utilizing the LArPID completeness, purity, and production

process score values) were tested, but none outperformed these results. With the cuts

enumerated in table IV, we are able to achieve a CC νe selection with an overall efficiency

of 56.8% and purity of 91.1%, which is very competitive with PRD 105:112005 [17], the

highest-efficiency CC νe search previously published by MicroBooNE. Additional data/MC

comparisons (including hand scans of selected data events), performance plots, and a detailed

6 We also attempted cutting separately on the charged pion and photon scores, but this did not achieve

better results.
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(a)

(b) (c)

Figure 26: (a): MC and off-beam cosmic background data distributions of the candidate
primary electron shower’s electron class confidence (LArPID electron score minus average
of charged pion and photon scores). The requirement that the primary electron candidate
have an electron class confidence value above 7.1 was added to the final CC νe cut set. (b):
Data/MC reconstructed neutrino energy comparison of events selected by the full CC νe
cut set with 4.4·1019 POT of MicroBooNE run1 data. (c): MC-predicted CC νe efficiency
vs. true neutrino energy with all CC νe cuts and cut set 6, and the ratio of these two
efficiency curves. Cut sets are defined in table IV.

comparison of these results with the inclusive CC νe selection of PRD 105:112005 are shown

in section IIID.

B. CC numu inclusive selection cuts

Here, we use a similar approach - taking events with LArMatch-identified neutrino vertex

candidates (selecting the one with the highest score if there are multiple), applying the same

Wire-Cell cosmic rejection cuts discussed in section IIIA, and cutting on the LArPID outputs
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of attached prongs - to achieve a highly effective inclusive CC νµ selection. Figure 22a from

section IIIA shows the number of LArPID-identified muon tracks attached to the neutrino

candidate for MC CC νµ events, cosmic, and (in this context) other simulated neutrino

backgrounds (after applying Wire-Cell cosmic rejection cuts). A CC νµ dominated sample

can be selected by simply requiring that there be at least one identified muon track attached

to the LArMatch neutrino candidate vertex. (Note that figures 22b and 22c show results

with the CC νe requirement of 0 reconstructed muons, not the ≥ 1 condition discussed

here for the CC νµ selection.) When there are multiple reconstructed muons in true CC νµ

events, this is generally because of clustering errors in which a small section of the track

is reconstructed as a separate cluster. In these cases, according to MC, the track with the

highest LArPID muon score is truth-matched to the simulated muon 96.4% of the time, and

the identified muon track with the most charge is matched to the true muon 95.7% of the

time.

This simple selection yields a predicted overall CC νµ purity of 96.0% and efficiency of

67.9%. While significant improvements were not achieved by applying further cuts on the

LArPID outputs of the identified primary muon track or other attached prongs, we found

that purity can be increased (at the expense of efficiency) by cutting on the neutrino keypoint

score of the candidate neutrino vertex, the angle of the muon track (to remove downwards

going cosmic-background muons), and the LArPID production process scores of the muon

track.

The full set of CC νµ selection criteria are enumerated in table V. The predicted selection

efficiency as a function of true neutrino energy after applying each cut is shown in figure 27b.

As with the CC νe selection, the largest impact on efficiency comes from the neutrino vertex

reconstruction and the primary lepton identification. Distributions of reconstructed neutrino

energy for data and MC (including the 1σ uncertainty band calculated in section III C) with

the full selection are shown in figure 27a. The overall data excess seen here is not unique

to our CNN-based reconstruction and is consistent with the excess seen in the inclusive

CC νµ selection of MicroBooNE’s Wire-Cell reconstruction [17]. Furthermore, as we will

show in section IIID, the data and predictions are consistent within quoted uncertainties.

Additional data/MC comparisons and a more detailed comparison to the Wire-Cell CC νµ

selection are presented in section IIID as well.
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Table V: Inclusive CC νµ Selection Cuts

Cut Notes

LArMatch-identified neutrino candidate vertex found inside

the fiducial volume

Added in cut set 1 (in-

cluded in all cut sets)

3D space points of prongs attached to neutrino candidate

do not all overlap with Wire-Cell-tagged cosmics

Added in cut set 2 (in-

cluded in final set as well)

At least one track attached to the candidate neutrino vertex

was identified by LArPID as a muon

Added in final cut set

(a) (b)

Figure 27: (a): Data/MC reconstructed neutrino energy comparison of events selected by
the full CC νµ cut set with 4.4·1019 POT of MicroBooNE run1 data. (b): MC-predicted
CC νµ efficiency vs. true neutrino energy after adding each CC νµ cut, along with a ratio
of the full cet set and cut set 2 efficiency curves. Cut sets are defined in table V.

C. Systematic uncertainty estimates

Modeling uncertainties that contribute to our systematic errors come from four main

sources: modeling of the neutrino flux, modeling of the MicroBooNE detector, modeling

of neutrino-argon cross sections, and modeling of hadron-argon cross sections. To account

for detector systematics, we modify a variety of detector parameters, re-simulate a neutrino

sample for each variation, and analyze their impact on our predictions. This is discussed

in more detail in section III C 1. While these detector variations can change observables

in any event, variations in the parameters associated with the other sources of systematic

uncertainty simply alter the rate at which different events occur. These flux and cross section

uncertainties can therefore be studied by re-weighting individual events without the need to

re-simulate new neutrino samples. This method and our flux and cross section systematics
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(a) (b)

Figure 28: Fractional uncertainties in each reconstructed neutrino energy bin for the
inclusive (a) CC νe selection and (b) CC νµ selection. Statistical uncertainties on the
cosmic background + neutrino predictions; systematic uncertainties from our modeling of
the detector, flux, neutrino-argon cross sections, and hadron-argon interactions; and the
total combined uncertainty is shown. The use of a flat detector systematic uncertainty in
the CC νµ selection above 1.4 GeV is discussed in section III C 1.

are discussed in more detail in section III C 2.

The results of those studies is summarized in figure 28, which shows uncertainties in our

predicted event counts in each reconstructed neutrino energy bin used in the inclusive CC νe

and CC νµ selections. Our total uncertainty in each bin is shown, along with contributions

from the four sources of systematic uncertainty discussed above and statistical errors from

our finite cosmic background and simulated neutrino samples.

1. Detector Systematic Uncertainties

To account for uncertainties in detector modeling, we vary parameters associated with the

light yield (LY), light attenuation, and Rayleigh scattering length; “wiremod” modifications

to the amplitudes and widths of wire waveforms as a function of x position, (y,z) position,

and angles θxx and θyz of particle trajectories; a variation in electron-ion recombination

parameters (“recomb2”); and an alternative electric field inside the TPC from the space

charge effect (SCE). See e.g. [14] for additional information on these variations.

For each variation, we re-simulate the same sample of Monte Carlo neutrino events and

calculate a covariance matrix for each kinematic observable to quantify the bin-by-bin shift

in event counts: F k
ij = (Nk

i − NCV
i )(Nk

j − NCV
j )/(NCV

i NCV
j ), where F k is the fractional
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covariance matrix for the kth variation, Nk
i is the number of events in bin i of the simulation

with variation k, and NCV
i is the number of events in bin i for the central value simulation

with default detector parameters. Overall 1σ detector-related fractional uncertainties in

each bin are then given by σi/Ni =
√∑

k F
k
ii .

The computational expense associated with re-simulating neutrino events for each vari-

ation presents a significant challenge in quantifying these detector systematics. The O(105)

event samples used in this analysis provided inadequate statistics to provide a robust esti-

mate of detector uncertainties in certain regions. For each variation, two simulations were

combined to predict event counts: one νµ dominated sample in which neutrinos are simulated

in the same proportion estimated to occur in the beam, and one involving only the intrinsic

CC νe component. While the intrinsic νe simulation provided adequate statistics for CC νe

predictions, roughly just 10 raw neutral current and νµ background events (there are small

variations between the different simulated samples) from the former beam simulation passed

our CC νe selection. Statistical variations from this background prediction therefore caused

large artificial fluctuations in our estimated detector systematic uncertainties. In the CC νµ

selection, statistics are also very low in the high energy tails of the reconstructed neutrino

energy and muon momentum distributions (see figure 29), again causing large fluctuations

in estimated systematics in those regions.

(a) (b)

Figure 29: Monte Carlo statistical errors on events passing the CC νµ selection for the
central value simulation used to estimate detector systematics, binned in reconstructed
neutrino energy (a) and muon momentum (b).

We will address these statistical shortcomings prior to publishing these results by re-

processing one-order-of-magnitude larger samples for these detector variations. As a tem-
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porary solution, we place a lower bound on our detector systematics with the following

corrections. For the CC νµ selection, we combine events above 1.4 GeV in reconstructed

neutrino energy and above 1.2 GeV/c in reconstructed muon momentum into a single bin for

those respective distributions. When calculating our total uncertainty in bins above those

thresholds (as in figure 28b), we use the flat high energy/momentum detector systematics

obtained with this approach. For the CC νe selection, we assume that the kinematic de-

pendence of Nk
i − NCV

i , the central value vs. detector variation excess in each bin of all

kinematic distributions, is the same for the NC and νµ backgrounds that pass the selection

as it is for the CC νe signal events that pass the selection. With this assumption, we estimate

the predicted signal + background event counts by scaling the CC νe signal distributions by

(Ns + Nb)/Ns, where Ns and Nb are the total number of signal and background events that

pass the selection, respectively.

Our total detector systematic uncertainties in each reconstructed neutrino energy bin of

the inclusive CC νe and CC νµ selections with and without the low-statistics corrections

discussed above is shown in figure 30. The uncertainties without the corrections provide a

lower bound for our estimated detector-related modeling errors, while the larger, statistical-

fluctuation-driven uncertainties without the corrections provide an upper bound. To avoid

inflating our detector systematics as a result of low-statistics fluctuations and provide a

more strict test on data / Monte Carlo consistency in our selection results (discussed in

section IIID), we use the lower-bound detector uncertainties with the statistical corrections

discussed above. The full fractional covariance matrix (binned in reconstructed neutrino

energy) for all detector variations with these low-statistics corrections is shown in figure 31.

2. Flux, Cross Section, and Hadron Re-Interaction Uncertainties

To calculate systematic uncertainties arising from flux, neutrino cross section, and hadron

re-interaction predictions we employ the same method outlined in [14]. Flux uncertainties

arise from three main sources: the properties of the magnetic focusing horn, hadron produc-

tion in the target, and secondary hadron interactions. Neutrino cross-section uncertainties

arise from a large number of parameters associated with each neutrino interaction mode

and final state interactions that affect all modes. The hadron re-interaction uncertainty

calculations consider variations in parameters associated with hadron-argon cross sections
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(a) (b)

Figure 30: Total detector variation uncertainties in each reconstructed neutrino energy bin
of the inclusive (a) CC νe and (b) CC νµ selections. Results are shown with and without
the low-statistics corrections discussed in the text.

(a) (b)

Figure 31: Fractional covariance matrices binned in reconstructed neutrino energy from all
detector variations for the inclusive (a) CC νe and (b) CC νµ selections.

for protons and charged pions. These uncertainties are accounted for by re-weighting events

with each systematic parameter variation and comparing the modified reconstructed spectra

with the nominal simulation. Additional details on the variations considered are provided

in [14].

Given the reconstructed spectra with bin counts Ni for each set of varied parameters, a

covariance matrix M can be constructed where the variance in bin counts (resulting from

the parameter variations) is provided in the diagonal entries and the covariance between the

counts in each pair of bins in the off-diagonal entries. The fractional covariance matrices

Fij = Mij/(NiNj) including all flux, cross section, and hadron re-interaction variations for
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Figure 32: Fractional covariance matrices binned in reconstructed neutrino energy from all
flux, cross section, and hadron re-interaction variations for the inclusive (a) CC νe and (b)
CC νµ selections.

the reconstructed neutrino energy spectra in the inclusive CC νe and CC νµ selections are

shown in figure 32.

As shown in figure 28, cross section uncertainties provide the largest contribution to our

model-based systematics. Flux uncertainties are substantial as well; they are roughly half

the size of cross section uncertainties at lower energies and larger at higher energies. Hadron

re-interaction systematics contribute very little to our overall uncertainty.

D. Results

The performance of the inclusive CC νe and CC νµ selections demonstrate the effec-

tiveness of this new CNN-based reconstruction. Our predicted selection efficiencies and

purities outperform PRD 105:112005 [17], the highest-efficiency result previously published

by MicroBooNE. This comparison is shown in table VI.

For the inclusive CC νe selection, our deep-learning based reconstruction provides signif-

icantly higher predicted purities (91% compared to 82%) and efficiencies (57% compared to

46%). This amounts to a predicted 24% increase in the number of CC νe events selected

with significantly lower background. As shown in figure 33a, an improvement in efficiency is

achieved across all true neutrino energies (except in the lowest 100-200 MeV bin, in which

there is no statistically significant difference). For the inclusive CC νµ selection, we achieve

the same overall efficiency as PRD 105:112005 but with a reduced background (purity of
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96% compared to 92% from PRD 105:112005). However, as shown in figure 33b, the two

analyses provide different efficiencies at different neutrino energies, with our reconstruction

yielding a higher efficiency below 1 GeV and the analysis of PRD 105:112005 providing a

higher efficiency above 1.5 GeV.

DL Reco PRD 105:112005

CC νe Selection Efficiency 57% 46%

CC νe Selection Purity 91% 82%

CC νµ Selection Efficiency 68% 68%

CC νµ Selection Purity 96% 92%

Table VI: Inclusive CC νe and CC νµ selection results for our deep-learning-based
reconstruction and PRD 105:112005 [17].

(a) (b)

Figure 33: The predicted CC νe (a) and CC νµ (b) selection efficiency of our
reconstruction and selection (DL Gen2) and that of PRD 105:112005 (Wire-Cell) [17] as a
function of true neutrino energy.

In sections IIIA and III B, we showed predicted (using MC neutrino simulations plus

data cosmic-ray background) and MicroBooNE open data distributions of reconstructed

neutrino energy for selected inclusive CC νe and CC νµ events. Figures 34 and 35 show

the same data/MC comparisons for reconstructed primary lepton momentum and cos(θl)

(where θl is the angle between the primary lepton and the beam). Also included are the

reconstructed neutrino energy distributions, along with predicted purity and efficiency as

a function of reconstructed neutrino energies. For both selections, purities are high for all
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(a) (b)

(c) (d)

Figure 34: Predicted and MicroBooNE open data distributions of events passing the CC νe
selection in (a) reconstructed neutrino energy, (c) reconstructed electron momentum, and
(d) reconstructed cos(θe), where θe is the angle between the reconstructed electron shower
and the beam. (b): The predicted efficiency (from MC) and purity (from MC and off-beam
cosmic background data) of the CC νe selection as a function of reconstructed neutrino
energy.

energies, whereas efficiency drops more dramatically, as expected, at low energies where it

is more difficult to separate signal from background.

To assess the consistency between the predictions made for these distributions with our

deep-learning based reconstruction framework and observations from the MicroBooNE open

data set, we employ a χ2 goodness-of-fit test using the combined Neyman-Pearson (CNP)

χ2 test statistic [36] with the covariance matrix formalism:

χ2 = (M − µ)T · V −1
full · (M − µ) (6)

where M and µ are vectors of the observed and predicted event counts in each bin and Vfull
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(a) (b)

(c) (d)

Figure 35: Predicted and MicroBooNE open data distributions of events passing the CC νµ
selection in (a) reconstructed neutrino energy, (c) reconstructed muon momentum, and (d)
reconstructed cos(θµ), where θµ is the angle between the reconstructed muon track and the
beam. (b): The predicted efficiency (from MC) and purity (from MC and off-beam cosmic
background data) of the CC νµ selection as a function of reconstructed neutrino energy.

is the full covariance matrix in the CNP method:

Vfull = V stat
CNP + V stat

pred + V sys
flux + V sys

xsec + V sys
det (7)

This covariance matrix is constructed from the flux and neutrino-argon and hadron-argon

cross section covariance matrices (V sys
flux and V sys

xsec) discussed in section III C 2, the detector

systematics covariance matrix (V sys
det ) from section III C 1, a diagonal matrix containing the

variance in each bin from uncertainties arising from the finite statistics used to make predic-

tions (V stat
pred), and a diagonal matrix containing the CNP terms: (V stat

CNP)ii = 3/(1/Mi+2/µi).

As discussed in section III C 1, we altered the binning used to calculate V sys
det (and therefore
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changed its dimensions) for the reconstructed neutrino energy and muon momentum dis-

tributions of the CC νµ selection by combining high energy/momentum bins. Here, when

constructing V sys
det in Eq. 7 for those distributions, we estimate the covariance between in-

dividual bins in the overflow region and bin i as the covariance between the overflow bin

and bin i. This maintains the approach of section III C 1 to (temporarily, pending process-

ing of higher statistics detector variation samples) address low statistics with lower-bound

estimates that provide a stricter test for data/MC consistency tests.

By comparing the χ2 from Eq. 6 with the distribution of a χ2 with N degrees of freedom

(where N is the number of bins), we can calculate a p-value for our observations (the prob-

ability of seeing the observed or a more extreme fluctuation) and assess data / Monte Carlo

consistency. However, the Gaussian assumptions used in the covariance matrix formalism

followed here break down at low statistics, where much of the Gaussian probability distri-

butions fall into the un-physical region of negative bin counts. While this is not an issue for

the CC νµ selection where predicted bin counts are sufficiently high across all bins of each

distribution, in the CC νe selection, predicted bin counts are almost all below 10 and fall

below 1 in the tails. To make the CC νe statistics closer to the Gaussian assumption, we

combine all bins with a predicted event count below 2 for these goodness-of-fit tests. The re-

binned CC νe distributions and the full covariance matrices (equation 7) for all distributions

in both selections can be found in appendix A.

The χ2 and associated p-values calculated with this method for the reconstructed neutrino

energy, lepton momentum, and lepton cos(θ) distributions for both selections is shown in

table VII. All p-values are high: close to or above 90% for most tests and no lower than

24.4%. This indicates that the open data observations are consistent with our predictions

and is evidence, for the kinematic variables considered, of a lack of any concerning data /

Monte Carlo domain shift introduced by our deep-learning based reconstruction algorithms.

CC νe
Selection,
Eν Binning

CC νe
Selection,
pe− Binning

CC νe
Selection,

cos(θ) Binning

CC νµ
Selection,
Eν Binning

CC νµ
Selection,
pµ Binning

CC νµ
Selection,

cos(θ) Binning

χ2/DOF 3.80/9 3.06/8 5.18/6 25.08/21 11.91/21 9.73/16

p value 0.924 0.931 0.521 0.244 0.942 0.880

Table VII: Goodness of fit test results: χ2 / degrees of freedom and associated p values for
the reconstructed neutrino energy, lepton momentum, and lepton cos(θ) distributions in
the inclusive CC νe and CC νµ selections.
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E. Results of Data and MC comparison using Open Data Sample

To further test our predicted inclusive CC νe selection results and comparison to PRD

105:112005 [17], we manually hand scanned all MicroBooNE run1 open data events selected

by our analysis and that of PRD 105:112005, classifying each as either CC νe or background.

This open data set contains 4.4·1019 POT of run 1 data.

In the analysis of PRD 105:112005, 40 events were selected, of which (according to our

hand scans) 37 or 38 were true CC νe interactions. In our analysis, 44 events were selected,

of which 42 or 43 were true CC νe interactions (there is some uncertainty in the hand scan

classifications). These results, along with comparisons to predictions made in the previous

section, are summarized in table VIII.

DL Reco Data
Hand Scan
Estimate

DL Reco MC
Prediction

PRD 105:112005

Data Hand
Scan Estimate

PRD 105:112005

MC Prediction

Total Events 44 48.3 40 41.2

Signal Count 42 - 43 44.0 37 - 38 33.8

Background Count 1 - 2 4.3 2 - 3 7.3

Purity 95% - 98% 91% 93% - 95% 82%

Table VIII: Hand scan results of inclusive CC νe events selected from the open data sample
by our deep-learning-based reconstruction and PRD 105:112005 [17].

These results are generally consistent with our expectations, given the large statistical

uncertainties with these small numbers of events. With 4 - 6 more probable signal events

selected by our framework, these results support our prediction of an increase (compared

to PRD 105:112005) in inclusive CC νe selection efficiency. Additionally, while the total

number of selected probable signal events was higher by 4 - 6, there were 11 probable signal

events selected by our framework that were not present in the analysis of PRD 105:112005

and 6 probable signal events found in PRD 105:112005 that did not appear in our selection.

This indicates that combining the events selected by our framework and PRD 105:112005

(which utilizes the Wire-Cell reconstruction [17–19]) could yield an even more substantial

improvement in efficiency, a promising avenue for future work.

The three hand-scan-classified CC νe events lowest in reconstructed neutrino energy are

shown in figures 36 - 38.
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Figure 36: Wire plane images of a probable CC νe event selected by our analysis from the
MicroBooNE open data set.

Figure 37: Wire plane images of a probable CC νe event selected by our analysis from the
MicroBooNE open data set.

IV. DISCUSSION

A new reconstruction workflow has been developed that utilizes three convolutional neural

networks to perform pattern recognition relatively early in the reconstruction workflow. This

leverages the powerful ability of CNNs to recognize features in low-level data, specifically,

the image-like data produced by the LArTPC wire planes. The many outputs and the ability

to partition the spacepoints into topological classes greatly simplified the reconstruction of

3D spacepoints. Though this is also in part due to the energy range of interactions for
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Figure 38: Wire plane images of a probable CC νe event selected by our analysis from the
MicroBooNE open data set.

MicroBooNE. With median energies below 1 GeV, the final state particles emerging from

neutrino interactions often do not overlap. Final state particles more often than not emerge

from the vertex at well-separated angles – which adds to the advantage working in 3D space

has for clustering. However, we believe the utility of feature recognition by 2D CNNs are on

display given the modest complexity of the non-DL algorithms implemented in this work.

Furthermore, the particular use of the LArPID CNN mitigates the impact of mistakes made

in the 3D reconstruction. This comes from the use of information about both the particle

under consideration and the entire image of the interaction. We believe one lesson that

should carry over to analyses being built for future LArTPCs like SBND and DUNE, is that

access to the 2D image information will have much utility.

The quality of the reconstruction and the utility of the CNN outputs were tested through

the exercise of selecting inclusive charged-current νµ and νe interactions. We looked for

potentially large, show-stopping domain shift effects by testing the selection on the Micro-

BooNE open dataset. The cuts employed are deceptively simple in that they are flat cuts on

particle ID scores or on the numbers of certain particles. They are deceptively simple, be-

cause in other MicroBooNE selections BDTs, using a collection of kinematic observables and

spatial patterns, was often required to reach the best efficiency and/or purity. However, the

CNNS used in this work, we conjecture, likely utilizes the same kinematic correlations ex-

tracted directly from the 2D images and contributes to the improvement in νe-CC efficiency

across a large range of true neutrino energies.
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Interestingly, this improvement in the νe-CC selection constrasts with the roughly equal

performance between this work and the inclusive νµ-CC selection of PRD 105:112005 [17]

utilizing the Wire-Cell reconstruction. In the CC νe selection, we leverage the LArPID

scores to further reduce backgrounds by vetoing events with an identified muon or cutting

events with sufficient evidence that the primary shower either derived from charged pions

or is a photon. For the inclusive CCνµ event selection, there was not a set of single particles

associated strongly with potential background interactions. Instead, improvement in the

signal acceptance or rejection of background will likely need to come through the use of

correlations between particle kinematics or tuning of cuts in different regions of kinematic

phase space. We leave explorations to improve the selections using the reconstructed particle

kinematics to future work. For now, our conjecture is that the inclusive CCνµ selection is

primarily defined by the upstream Wire-Cell cosmic tagging algorithms. The fact that our

efficiency and purity are similar possibly reflects a similar ability to identify the muon within

the in-time charge cluster.

Further conjecture is based in part on the last two cuts applied in the νe-CC selection.

These cuts can be interpreted as examples of how CNNs utilize fine image details to great

effect. The last two cuts both target the separation of primary electrons from secondary

electrons coming from the decay of a low-energy muon or charged pion. In these cases, the

information to complete the tasks is located in small regions of the image: the beginning of

showers and around the vertex. The utilization of this information is what we hypothesize

to be the source of the efficiency and purity gains. For example, there can be difficult edges

cases when estimating dE/dx for particle ID. One such case are the potential presence of

additional particles near the vertex. These particles can be of a low enough energy such

that they are missed by the reconstruction, but high enough in energy to impact estimates

like the dE/dx for identified trajectories. Specific scenarios include a short co-linear proton

or a localized region of high energy deposition from a Brem photon emitted early in the

trunk of the shower. Both can push a dE/dx estimate to mis-identify an electron shower

as photon. We conjecture that the LArPID network is able to learn a set of image features

that can detect these edge cases and influence the electron PID. Demonstrating this is one

area for future study. But one piece of circumstantial evidence is the lack of dependence

on the energy scale of the neutrino interaction. In this hypothesis, the occurrence of such

scenarios are broadly distributed across the range of neutrino energies. The possible lack of
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comparable scenarios for identifying muons would then explain why improvements are not

observed for the νµ selection.

Inspecting the distributions of the LArPID score for the νe selection in figure 26, the most

similar distribution to the CCnumu events that remain are the NCnumu events. Cosmic

interactions also peak in a similar region. As discussed above, the electron confidence score

was developed to ID interactions with evidence that the candidate electron shower is actually

a secondary electron from a decay muon or charged pion. For NC events with true neutrino

energies near the peak of 800 MeV, the final state momentum for the charged pions is

likely small. Alternatively, a charged pion with an early decay in flight leads to what

is now easily misinterpretable as an event with a primary muon in the final state. But

in addition to such visual evidence, the LArPID CNN likely has learned to use particle

kinematics better separate CC νe events from the various backgrounds. Such kinematic

information is also the kind of information that would be effectively exploited by a BDT-

based selection – as was used in the 2022 inclusive search of PRD 105:112005 [17]. At the

high-level observable distributions studied, we do not find evidence that the CNN-based

reconstruction and selection are more sensitive to argon-interaction modeling uncertainties

when compared to past analyses. But future work will focus on how to dig deeper into this

potential bias.

However, as with all machine learning methods, we must vet the CNNs presumed ability

to correlate latent physical quantities or scenarios to distributions over possible images.

The goal of this work is to report on the completed workflow, and provide evidence of its

competitiveness to past analyses. But more work is ongoing to evaluate the robustness of

this analysis centered on CNNs. The model learning to recognize the features discussed

above derives from training on our simulation data. This data is produced using models

of the MicroBooNE detector and physics like the ionization produced by charged particles.

Though not perfect, one might hypothesize that the level of detector mis-modeling here is

at a manageable level. This is supported by the level of change in the number of selected

events. Even with the higher bound estimates, which we believe are likely due to low MC

statistics, the uncertainties from detector-related effects are similar to the analysis of PRD

105:112005 [17]. Future work can also be done to directly address certain aspects of this

type of domain shift such as adversarial training.

While the gains in the νe might come from what has been discussed, the context im-

74



ages also allow the use of correlations between particle frequency and particle kinematics.

The underlying correlations in the training data, in this case, come from neutrino-argon

interaction modeling, which has uncertainties larger relative to the physics discussed before.

Future work will aim at understanding the degradation of performance of the LArPID net-

work when confronted with images that contain particles with kinematic correlations some

distance outside of the support of the training data. This means that wildly out-of-domain

examples could simply be ignored by the models. Developments in anomaly detection are

one of several directions to research how to improve model robustness or detect issues re-

lated to exotic final states or unusual particle kinematics. There is also the area of domain

adaption which aims to find ways to improve robustness.

CNN models, such as the LArMatch keypoint model, will also be impacted by the use

of training images simulating a LArTPC at the surface. In such a detector, there will be a

high rate of cosmic interactions in each image. For MicroBooNE, this was approximately

10-15 interactions. Generally, our cosmic simulations left more interactions per image than

was seen in the data. Mismodeling cosmic interaction rates are important for several back-

grounds, in particular to interactions with low-energy showers. Such backgrounds include

stopping muons entering near the cathode and leaving a short track and Michel electron,

entering photons, and those produced from hadronic interactions, e.g. from the decay of

neutral pions. As a potential impact, the neutrino vertex finder scores in this context could

be sensitive to the relative rate of neutrino-induced and cosmogenic single-shower events.

Another topic of discussion is what the potential impact this work might have in the

future for both DL and non-DL reconstruction in LArTPCs. For one, the LArPID strategy

of using contextual information around a defined cluster is readily adaptable to existing

MicroBooNE Pandora and Wire-Cell analyses. One might speculate that the differences in

what amounts to the LArPID image pre-processing step for the particle cluster image will

have a limited impact on the LArPID behavior. Future work includes plans to investigate

LArPID integration into these existing workflows.

Many of the hand-engineered algorithms in this work are very simple in their core ap-

proaches, but might require heuristics to tune their behaviors and/or handle edge cases.

This leads to several parameters per algorithm and an overall large number of parameters

affecting the behavior of the reconstruction. Such parameters for each algorithm were tuned

during development on a relatively small MC sample size, O(100) events, in order to iter-
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ate and tune these parameters on a day-length time-scale. In contrast, for the DL-based

reconstruction framework in Ref. [11] (referred to as “mlreco3d”), these algorithms have

ML-based counterparts which one might expect to perform better just due to the simple

fact that the algorithms are learned by optimizing them over the entire available training

data. The mlreco3d framework centers around a 3D voxel representation of the LArTPC

data, similar to the use of spacepoints in this work. In particular, the task of forming

subclusters and then collecting them into particle candidates is addressed through the use

of graph neural networks (GNNs). GNNs are likely much more accurate than our shower

reconstruction, which is merely a simple cone-based aggregator. Indeed, the purity versus

completion plots for the electron clusters are the least accurate for our workflow. Similarly,

in mlreco3d associations of particle candidates to potential neutrino interactions are also

done with graphs. Furthermore, mlreco3d’s determination of keypoints and voxel-wise par-

ticle labels make use of the 3D structure in a more direct way than in LArMatch, which

relies only on 2D image features correlated across the wire planes.

In contrast to the 3D spacepoint algorithms, the CNN components in our work would

be the component that would best integrate with a fully ML framework such as mlreco3d.

Indeed, the LArMatch real/ghost classifier was developed to provide a CNN-based pre-

processing step leading into the mlreco3d pipeline. One direction is to investigate if im-

provements could be made by injecting the spacepoint feature vectors into key parts of the

mlreco3d framework. Because the pipeline fully leaves behind the 2D low-level data, one

might believe that LArMatch’s image feature vector can be used to preserve useful details

otherwise lost when moving the representation of the data from 2D images into 3D voxels.

Furthermore, one would also expect that individual particle clustering will not be perfect.

And, therefore, a LArPID-like stage will be useful in similar ways to the reconstruction and

selection described in this work.

V. CONCLUSIONS

This work represents a milestone in the development of ML tools for LArTPC analysis.

We demonstrate – for the first time on real LArTPC data – a deep-learning based generic

neutrino interaction reconstruction framework that is competitive with the current state-

of-the-art: The inclusive CC νe and CC νµ selections obtained with the outputs of our
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reconstruction compare favorably to the highest-efficiency results previously published by

MicroBooNE [17], with reduced backgrounds and a predicted 24% increase in the number

of selected CC νe events. Hand scans of selected CC νe events from a small MicroBooNE

open data set are consistent with these predictions. These results demonstrate the power

of CNNs to leverage the full set of information provided in LArTPC wire-plane images

at multiple stages of the framework: in low-level reconstruction of vertices and 3D space

points (LArMatch), tagging pixels as track or shower like to aid in downstream clustering

algorithms (SSNet), and analyzing reconstructed 3D prongs with the aid of full wire-plane

images to fold in-context information that may have been lost by inaccuracies in upstream

algorithms (LArPID).

A possible downside of our approach stems from the black-box nature of these deep

networks and their potential to introduce biases from the use of supervised learning on sim-

ulated data. While a more thorough investigation of network-based systematic uncertainties

and model interpretation studies will be the subject of future work, we have demonstrated

that simulated MC distributions of high-level reconstructed kinematic variables for selected

charged-current neutrino interactions are consistent with data. This provides evidence of

the robustness of our framework and a lack of highly significant data/MC domain shifts

introduced by the use of CNNs trained on simulated data.

These results show promise for the deep-learning based reconstruction tools developed

here to improve the sensitivity of LArTPC physics analyses. Future studies will employ this

reconstruction framework in cross-section measurements and new physics searches. In the

near term, individual tools within the framework could be quickly integrated into alternative

reconstruction packages. The LArPID network, for example, could easily be run over 3D

tracks and showers reconstructed by Wire-Cell or other frameworks. As the use of such tools

in high energy physics analyses proliferates, this work contributes towards understanding the

power and robustness of computer vision techniques when applied to LArTPC neutrino data.

It also points towards the improvements these methods can make on the physics that will

come out of future LArTPC experiments, specifically from the short-baseline experiments

over the next few years.
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Appendix A: Additional distributions for data vs expectation comparisons

In this appendix, we show the re-binned kinematic variable distributions for the CC νe

selection (figure 39) and the full covariance matrices (figure 40) used for the χ2 goodness of

fit tests discussed in section IIID.

(a)

(b) (c)

Figure 39: Predicted and MicroBooNE open data distributions, with the binning used in
the χ2 goodness of fit tests of section IIID, of events passing the CC νe selection binned in
(a) reconstructed neutrino energy, (b) reconstructed electron momentum, and (c)
reconstructed cos(θe), where θe is the angle between the reconstructed electron shower and
the beam.
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(a) (b)

(c) (d)

(e) (f)

Figure 40: The full fractional covariance matrices used in the χ2 goodness of fit tests from
section IIID.
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