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The Muon g-2 experiment at Fermi National Accelerator Laboratory aims to mea-

sure the anomalous magnetic moment aµ of the muon to an unprecedented precision

of 0.14 ppm, obtaining a near four-fold increase in precision over the previous ex-

periment at Brookhaven National Laboratory (BNL). The value of aµ from BNL

differs from the Standard Model prediction by 3.4 standard deviations, suggesting a

tantalizing hint of new physics and so motivating a new measurement.

The Fermilab experiment follows the measurement principle from the BNL ex-

periment. A beam of positive muons is stored in the ring, where a combination

of magnetic and electric fields helps to focus the beam. The combination of these

fields and the stored beam properties directly impact the final extraction of of aµ.

The muon anomaly relies on the measurement of the spin precession frequency ωa

about the momentum of the muon. Due to a muon beam momentum spread of ap-

proximately 0.1%, ωa must be corrected for the effect of a radial electric field. The

correction is estimated by means of a modified Fourier analysis of the so-called fast

rotation signal. We explore the application of this analysis to the case of a beam

with longitudinal spread and to the case of late-time beam detection. We also con-

sider the numerical extension of the method, and apply it to data from the recent

commissioning run.
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I. INTRODUCTION

In the presence of an external magnetic field, fermions gain a magnetic dipole moment

~µ = g
Q

2m
~s (1)

where Q, g and ~s are the fermion’s electric charge, gyromagnetic ratio, and intrinsic spin

vector respectively. One of the great successes of quantum theory was the match between

the theoretical and experimental values of g for the electron. Experiments done by the

likes of Stern and Gerlach revealed that ge = 2; this value was later confirmed by Dirac’s

relativistic theory of the electron. Given the success of Dirac’s theory in predicting ge, it

was anticipated that the g-factor of the proton would be 2 as well. However, later findings

revealed that the g-factor of the proton was ∼ 5.5, and that the neutron, a particle with no

electric charge, also had a high g-factor1.

With the discovery of different g-factors, it became convenient to express them through

their deviations from the Dirac value of g = 2: g = 2(1 + a), where the first piece is the

Dirac moment and the second piece, a, is the deviation. Theoretically, the deviations were

found to be the result of radiative corrections to the Dirac moment. For the muon, aµ

results from all the particles that couple to the muon, so a precise determination of the

muon anomaly can serve as a gateway to the discovery of new physics. Additionally, the

fact that aµ can be found to a high degree of precision from theory and experiment makes it

of particular usefulness for such ventures1. The current predicted and experimental values

of aµ are determined to a precision of 0.5 ppm. However, there is a discrepancy of ∼ 3.4σ

between these two values. To explain this discrepancy, Standard Model extensions such as

extra dimensions, supersymmetry, and dark matter candidates have been proposed. But due

to the fact that the BNL experiment was statistics limited, the discrepancy is possibly just

a statistical fluctuation2. The discrepancy must be resolved, thus justifying a new Muon g-2

experiment.

The Fermilab E989 Muon g-2 experiment aims to measure aµ to a precision of 0.14 ppm,

a near four-fold increase over the previous measurement, and so hopes to provide an answer

to the questions outlined above. The experiment relies on the storage of muons inside a

weak focusing ring, with a continuous C-shape dipole magnet occupying its entirety (44.7

m circumference). The dipole generates a vertical and highly homogenous 1.45 T magnetic

field to provide radial focusing for muon storage. The field intensity corresponds to storing
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muons with a design momentum of 3.094 GeV/c onto the design orbit (7.112 m radius),

on which the muons undergo a cyclotron motion with a revolution frequency of 149.1 ns.

Vertical focusing is provided by four electrostatic quadrupoles (ESQs) located around the

ring.

FIG. 1. Precession of a muon’s spin about its momentum on the design orbit3

.

The final extraction of aµ is performed via the measurement of the intensity of the

magnetic field in term of the Larmor precession frequency of a free proton

~ωp = 2µp| ~B| (2)

and the precession frequency ωa of the muon’s spin about its momentum. ωa is obtained

by subtracting the cyclotron frequency ωC from the total spin precession frequency of the

muon2 ωS:

ωa = ωS − ωC (3)

We see a schematic representation of the muon spin precession in Figure 1. In the presence

of the electric field, ωa is given by2

~ωa = −Q
m

[
aµ ~B −

(
aµ −

1

γ2 − 1

) ~β × ~E

c

]
(4)

The term proportional to ~β × ~E in Eq. (4) corresponds to the electric field contribution to

ωa. One can see that if aµ = 1
γ2−1 the contribution disappears. This is the approach followed

by the previous CERN and BNL E821 experiments. The magic momentum of 3.094 GeV/c

allows the electric field contribution to vanish in first order. The correction for the electric

field contribution to ωa is obtained from the muon revolution frequency distribution which is
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the result of a modified Fourier analysis of the so-called fast rotation signal (FRS). The FRS

describes the beam intensity as seen by a detector at a fixed location in the ring assuming

stable particles. The technique was created for E8214, but we independently re-derive its

following key aspects: the analysis for when the beam features a longitudinal spread, and

the analysis if beam detection occurs at late times. We also consider the numerical extension

of the method, and apply it to data from the recent commissioning run.

II. BACKGROUND

A. Mathematical Background

Definition 1 (Fourier’s transform and inverse transform) Given a function f , its

Fourier transform is

f̂(x) =
1√
2π

∫ ∞
−∞

f(t)eixtdt

and its inverse Fourier transform is

f̃(x) =
1√
2π

∫ ∞
−∞

f(t)e−ixtdt

If f is absolutely integrable, then the Fourier transforms of f always exist. It is easy to check

that f =
˜̂
f = ˆ̃f .

Theorem 1 (Fourier’s Integral5) For any piecewise continuous, piecewise differentiable,

and absolutely integrable function f , the following equality holds:

f(x) =
1

π

∫ ∞
0

dω

∫ ∞
−∞

f(t) cosω(t− x)dt

If f is even, Fourier’s integral simplifies to

f(x) =
2

π

∫ ∞
0

cosωxdω

∫ ∞
0

f(t) cosωtdt

Suppose f is a piecewise continuous, piecewise differentiable, and absolutely integrable func-

tion on [0,∞). If we extend f to an even function defined on the whole real line, then the

formula above is valid for the extension. In particular, it is also valid for x ≥ 0.

Theorem 2 (Convolution Theorem) The convolution of two functions f and g is de-

fined to be

(f ∗ g)(t) =
1√
2π

∫ ∞
−∞

f(τ)g(t− τ)dτ
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The convolution theorem states that

f̂ ∗ g = f̂ ĝ and f̃ ∗ g = f̃ g̃

Definition 2 (Discrete Fourier Transform) Given a function f acting on set sample

of points {x0, x1, ..., xN−1}, the discrete Fourier transform (DFT) of f is a set of points

{s0, s1, ..., sN−1} given by

sm =
N−1∑
n=0

fne
2πimn/N

where fn = f(xn). The DFT is the discrete analog of the Fourier transform.

B. Physical Background

Given a beam with a momentum spread ρ(∆) and no longitudinal spread or transverse

emittance, the FRS of the beam at a detector with azimuthal position θ and no azimuthal

width is given by

S0(t) =
∞∑
n=0

ρ
(

t
(n+θ/2π)T

− 1
)

(n+ θ/2π)T

where n is the turn number and T the cyclotron period of a particle on the design orbit. The

muon beam is expected to have a narrow spread in revolution frequencies, (ω−ω0)/ω ∼ 10−3

where ω0 is the design orbit frequency, due to the aperture size of the storage region. As a

result the beam will spread negligibly in the longitudinal direction during the first turn. We

thus have that

θ

2π
=
t0
T

where t0 is the time the center of mass of the beam first passes the detector. We may thus

rewrite the FRS above as

S0(t) =
∞∑
n=0

ρ
(

t
nT+t0

− 1
)

nT + t0
(5)

We see an example of an FRS in Figure 2.
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FIG. 2. FRS for a beam with a Gaussian momentum distribution with a spread of 0.112% and no

longitudinal spread or transverse emittance, as seen by a detector at a point halfway around the

storage ring. The beam is observed to debunch with the increasing width of consecutive peaks.

S0(t) is time reversal symmetric about t0; therefore its Fourier transform is given by

Ŝ0(ω) =

√
2

π

∫ ∞
t0

S0(t) cosω(t− t0)dt (6)

where infinite time represents a time after the beam has fully decohered. We may obtain

S0(t) from Ŝ0(ω) through the Fourier transform

S0(t) =

√
2

π

∫ ∞
0

Ŝ0(ω) cosω(t− t0)dω (7)

Figure 3 features a comparison of the first harmonic of Ŝ0(ω) to the actual revolution

frequency distribution of the muons for the FRS of Figure 2. We see they match exactly.
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FIG. 3. Comparison of the first harmonic of the Fourier transform of the FRS from Figure 2 to

the actual muon revolution frequency distribution
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It makes sense to extract the frequency distribution of the muons from the FRS because

the signal arises from the periodic detector hits of the muons. The periods of these hits

depend on the revolution frequencies that the muons have, so the Fourier transform of the

FRS reflects the relative amounts of these frequencies among the muons. The Fourier trans-

form will feature peaks centered at integer multiples of the design frequency ω0. However,

the muons are restricted to the vacuum chamber. The frequencies corresponding to the

exterior of the chamber are an artifact of the Fourier transform. Hence the first harmonic

corresponds to the actual revolution frequency distribution of the muons.

III. ANALYSIS FOR A BEAM WITH LONGITUDINAL SPREAD

A. The Case of Symmetric Longitudinal Spread

Assuming that there is no initial correlation between muon revolution frequencies and

longitudinal phases, there will exist a longitudinal offset distribution ξ(t′) which must be

taken into account when performing the Fourier analysis. The FRS for a beam with a

longitudinal spread is given by

S(t) =

∫
ξ(t′)S0(t− t′)dt′ =

√
2π(ξ ∗ S0)(t) (8)

An example of such a FRS is given in Figure 4.
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FIG. 4. FRS for a beam with Gaussian momentum distribution of spread 0.112% and with a

Gaussian longitudinal distribution with σt = 25 ns, as seen by a detector at a point halfway

around the storage ring.
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Ideally, the application of the convolution theorem would yield

Ŝ(ω) =
√

2πξ̂(ω)Ŝ0(ω) (9)

However, neither S0(t) nor ξ(t) will be available to work with directly in the experiment,

leaving only S(t) to get Ŝ(ω).

We express S0(t− t′) through Fourier’s integral:

S0(t− t′) =
2

π

∫ ∞
0

cosω(t− t0 − t′)dω
∫ ∞
t0

S0(t̄) cosω(t̄− t0)dt̄ =

√
2

π

∫ ∞
0

Ŝ0(ω) cosω(t− t0 − t′)dω

Substituting this expression into the convolution integral, we get

S(t) =
√

2π(ξ∗S0)(t) =

∫ ∞
−∞

ξ(t)S0(t−t′)dt′ =
√

2

π

∫ ∞
0

Ŝ0(ω)dω

∫ ∞
−∞

ξ(t′) cosω(t−t0−t′)dt′ =√
2

π

∫ ∞
0

Ŝ0(ω)〈cosω(t− t0 − t′)〉dω =√
2

π

∫ ∞
0

Ŝ0(ω)〈cosω(t− t0) cosωt′ + sinω(t− t0) sinωt′〉dω =√
2

π

(∫ ∞
0

Ŝ0(ω)〈cosωt′〉 cosω(t− t0)dω +

∫ ∞
0

Ŝ0(ω)〈sinωt′〉 sinω(t− t0)dω
)

where 〈 〉 denotes averaging with respect to ξ(t).

If ξ(t′) is even, 〈sinωt′〉 = 0, leaving

S(t) =

√
2

π

∫ ∞
0

Ŝ0(ω)〈cosωt′〉 cosω(t− t0)dω (10)

suggesting that Ŝ(ω) = Ŝ0(ω)〈cosωt′〉. We can see that this is true by referring back to (9):

ξ̂(ω) =
1√
2π

∫ ∞
−∞

ξ(t′)eiωt
′
dt′ =

1√
2π

∫ ∞
−∞

ξ(t′) cosωt′dt′ =
〈cosωt′〉√

2π

and therefore

Ŝ(ω) =
√

2πξ̂(ω)Ŝ0(ω) = Ŝ0(ω)〈cosωt′〉 (11)

Thus (10) implies that

Ŝ(ω) =

√
2

π

∫ ∞
t0

S(t) cosω(t− t0)dt (12)
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In Figure 5 we see the first harmonics of the Fourier transforms of an FRS with longitu-

dinal spread from Formulas (9) and (12) compared to the actual frequency distribution. We

see that they match.

OutsideVacuum
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Fourier Transform from Formula 9

Fourier Transform from Formula 12

Frequency Distribution

FIG. 5. Comparison of the first harmonics of the Fourier transforms to the frequency distribution

for an FRS with Gaussian momentum distribution of spread 0.05% and a Gaussian longitudinal

spread with σt = 10 ns, as seen by a detector at a point halfway around the storage ring. t0 = 74.563

ns.

B. Asymmetric Longitudinal Bunch Distribution

If ξ(t′) is not symmetric, then Ŝ(ω) features an imaginary component. Directly applying

the convolution theorem yields Ŝ(ω) = Ŝ0(ω)〈cosωt′〉 + iŜ0(ω)〈sinωt′〉 which results in an

imaginary radial electric field correction.

To motivate a solution to this problem, we examine a specific example of an asymmetric

longitudinal distribution. Suppose ξ is even about some point µ 6= 0 (also the center of

mass of the distribution), that is ξ(x + µ) = ξ(µ − x). Let t0 be the time that the center

of mass of the beam first arrives at a given detector if µ were to equal 0. Then the actual

arrival time of the center of mass of the bunch at the detector is t′0 = t0 + µ. The way that

the beam appears to have evolved is the same as if it had a symmetric bunch profile and a

detector at azimuthal position θ = 2πt′0/T was used (see Figure 6). Define ξ′(t) = ξ(t + µ)

and S ′0(t) = S0(t− µ). Then the physical situation described by the triple (S ′0, ξ
′, t′0) is the
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same as that described by (S0, ξ, t0). In fact we may see that they yield the same FRS S(t):

√
2πξ′(t)∗S ′0(t) =

∫ ∞
−∞

ξ′(τ)S ′0(t−τ )dτ =

∫ ∞
−∞

ξ(τ+µ)S0(t−τ−µ)dτ =

∫ ∞
−∞

ξ(τ ′)S0(t−τ ′)dτ ′ =

√
2πξ(t) ∗ S0(t) = S(t)

where we used the change of variables τ ′ = τ + µ. But if we use (S ′0, ξ
′, t′0) for the Fourier

analysis, the imaginary term in Ŝ(ω) vanishes, since we’re now dealing with a familiar

situation: a symmetric longitudinal distribution. Therefore

Ŝ(ω) =

√
2

π

∫ ∞
t′0

S(t) cosω(t− t′0)dt

What was done mathematically is the following. A function

f(x) =

∫ ξ+−x

ξ−−x
ξ(t+ x) sinωtdt ≈

∫ ξ+−x

ξ−−x
ξ(t+ x) sinω0tdt

was defined. The approximation is made because we are concerned with extracting the first

harmonic of the Fourier transform, where the frequency distribution is narrow and centered

around ω0. (ξ−, ξ+) is the domain of ξ(t), and a point µ such that f(µ) = 0 is then found.

This effectively amounts to finding a new origin about which 〈sinωt′〉 = 0, so that there is no

imaginary component to the frequency distribution computed from the Fourier transform.

50 100 150
ns

0.5

1.0

1.5

S(t)
Fast Rotation Signal

Detector at 180°, bunch centered at 37.2815 ns

Detector at 270°, bunch centered at 0 ns

FIG. 6. Both beams have Gaussian momentum distribution with a spread of 0.112% and Gaussian

longitudinal spread with σt = 25 ns. The detector halfway around the ring is witnessing a beam

with an offset Gaussian bunch, while the second is detecting one centered at the origin.

When ξ(t) is an arbitrary asymmetric distribution, there is generally no unique symmetry

point which makes it obvious how to redefine t0. However, we can redefine t0 to be t′0 = t0+x0
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where x0 is a root of f(x). Once t′0 is found, it is used instead of t0 in the Fourier integrals.

In Figures 7 and 8 we see an example of a FRS with asymmetric bunch profile and the first

harmonic of its Fourier transform compared to the actual revolution frequency distribution.
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FIG. 7. FRS for a beam with asymmetric longitudinal bunch profile seen by a detector halfway

around the ring.
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FIG. 8. Comparison of the first harmonic of the Fourier transform of the FRS from Figure 7 to

the actual muon revolution frequency distribution. The Fourier analysis used t0 = 65.086 ns.

IV. ANALYSIS FOR LATE DETECTION OF THE BEAM

If the detector detects the muons at a time ts > t0, a fast rotation signal S1(t) which

vanishes on (t0, ts) and equals the full fast rotation signal S(t) on (ts,∞) is observed. Taking

the Fourier transform of S1(t), results in the frequency spectrum
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Ŝ1(ω) =

√
2

π

∫ ∞
ts

S1(t) cosω(t− t0)dt (13)

This is not the complete frequency spectrum as the following component is missing:

∆(ω) =

√
2

π

∫ ts

t0

S(t) cosω(t− t0)dt (14)

The problem is to obtain an approximation for ∆(ω) using only S1(t).

We first obtain an expression for ∆(ω) using Ŝ(ω):

∆(ω) =

√
2

π

∫ ts

t0

S(t) cosω(t− t0)dt =
2

π

∫ ts

t0

∫ ∞
0

Ŝ(ω′) cosω′(t− t0) cosω(t− t0)dω′dt

Switching the order of integration to integrate with respect to t first, yields

∆(ω) =
1

π

∫ ∞
0

Ŝ(ω′)

(
sin(ω − ω′)(ts − t0)

ω − ω′
+

sin(ω + ω′)(ts − t0)
ω + ω′

)
dω′

The vacuum chamber is given by the interval (ω−1 , ω
+
1 ), with the first harmonic lying in that

interval. The n-th harmonic then belongs to the interval (ω−n , ω
+
n ) = (ω−1 + (n− 1)ω0, ω

+
1 +

(n− 1)ω0) where ω0 is the magic frequency. Ŝ(ω) is non-zero only on the intervals (ω−n , ω
+
n ),

so the above integral may be rewritten as

∞∑
n=1

1

π

∫ ω+
n

ω−n

Ŝ(ω′)

(
sin(ω − ω′)(ts − t0)

ω − ω′
+

sin(ω + ω′)(ts − t0)
ω + ω′

)
dω′

As such, the second term in the parentheses is neglected, as it is negligibly small:

∆(ω) =
∞∑
n=1

1

π

∫ ω+
n

ω−n

Ŝ(ω′)
sin(ω − ω′)(ts − t0)

ω − ω′
dω′

The Fourier transform has associated with it an uncertainty principle6, namely that

∆ω∆t ∼ 2π. The uncertainty principle implies that if ts− t0 is sufficiently small, the spread

of Ŝ1(ω) within (ω−n , ω
+
n ) will change negligibly relative to that of Ŝ(ω) for all n. This means

that the frequency content of Ŝ1(ω) is approximately the same as that of Ŝ(ω). This is

evident from Figure 9.
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FIG. 9. Frequency spectra using different start times ts for the FRS of Figure 2, as well the

corresponding ∆(f) functions. The spread of Ŝ1(ω) is unchanged relative to Ŝ(ω).

With ts > t0, Ŝ1(ω) features frequencies outside the vacuum chamber boundaries due

to aliasing effects. However, these are non-physical as no muons can actually be outside

the chamber. Due to the uncertainty principle, the spread of Ŝ1(ω) in (ω−n , ω
+
n ) remained

approximately the same as that of Ŝ(ω). And since the only physical frequencies lie within

that interval, we approximate ∆(ω) by writing

∆(ω) ≈
∞∑
n=1

1

π

∫ ω+
n

ω−n

Ŝ1(ω
′)

sin(ω − ω′)(ts − t0)
ω − ω′

dω′

The Fourier transform of a function measures the relative amounts of sines and cosines of

all frequencies in that function. Therefore, the absolute amplitude of the Fourier transform

is irrelevant; a way of seeing this is considering the following. Say f̂(ω) is the Fourier

transform of a signal f(t). Let’s vertically shift the Fourier transform: f̂ → f̂ + c. The

inverse Fourier transform of this will be f(t) + cδ(t), where δ(t) is the Dirac delta function.

However, δ(t) carries no real physical meaning in this scenario, leaving only the spread of

the Fourier transform as carrying significance.

The argument for using this approximation relies on the fact that Ŝ1(ω) has a spread

comparable to Ŝ(ω). So when ∆ is computed from Ŝ1(ω), we find that it has spread com-

parable to the actual ∆. Their absolute amplitudes will differ, but their spreads will be

comparable, making this approximation a valid one.
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FIG. 10. The actual and approximated ∆(f) functions for the beam of Figure 2 for ts = 700µs. The

actual and approximated ∆(f ) have spreads of 0.0100987 MHz and 0.0100985 MHz respectively.

In Figure 10 we see a comparison of the approximated (computed numerically) ∆(ω) and

the actual ∆(ω). Their spreads are similar, meaning that the approximation is valid.

V. THE NUMERICAL EXTENSION OF THE ANALYSIS

Simulation and commissioning data are discrete, so the Fourier analysis requires the use

of DFTs rather than Fourier transforms. A characteristic of FRS signals obtained from

commissioning data is the activation of detectors prior to beam injection, resulting in a

period of time with no signal. Analytically, we know that the Fourier transform of the FRS

is given by equation (12), suggesting that it is incorrect to take the DFT starting from time

bins before t0. To understand the properties and correct application of the DFT to the

given situation, we created a Toy Model that modeled an emittanceless muon beam with

momentum and longitudinal spread hitting a plane-like detector in the ring. For a detector

located halfway around the ring, t0 = 74.563 ns for a beam with symmetric longitudinal

spread. If the signal is sampled starting at a time t < t0 we observe a distorted spectrum.

If the signal is sampled starting with a time bin centered at t0, the correct spectrum is

observed. This fact is demonstrated in Figure 11.
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FIG. 11. DFTs of the FRS from Figure 2. The DFT on the right uses t0 = 50 ns and the one the

left uses t0 = 74.563 ns.

The DFT was accomplished by passing C++ code to the ROOT data analysis frame-

work, which uses the built-in FFTW3 C library to perform the DFT using the fast Fourier

transform (FFT) algorithm.

VI. SIMULATION VS. COMMISSIONING DATA

FIG. 12. Left, sketch of the storage ring with locations of the scintillating-fiber beam monitors

marked2. Right, sketches of the scintillating-fiber beam monitors1.

The storage ring features two sets of scintillating-fiber beam monitors located 180◦ and

270◦ from the injection point (see Figure 12). The monitors measure the beam profile as a

function of time, and are able to operate for several tens of microseconds before the beam
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is degraded1. To extract the revolution frequency distribution, we used the intensity signal

from commissioning run 1835 obtained from fiber beam monitor 2, which measures the

beam profile in the radial direction and is located 180◦ from the injection point. Due to

the delivery ring being shut off, the fill featured the presence of muons, pions, and protons,

with the latter being the predominant constituent. Additionally, the lack of Recycler RF

cavities prevented the preservation of the intended ”W-shape” bunch profile. Furthermore,

the intensity signal is not the FRS exactly. Factors like particle decays and particle losses

must be factored out from the signal obtained from the beam monitors. Since protons were

present in much greater quantities than other particles, no particle decays were factored out.

Other effects were not removed due to the need for more studies of their impacts or due to

their negligible influence. Due to these imperfections, we expected to extract at most a clear

peak centered near the design frequency for protons. Figure 13 features the signal obtained

from the commissioning data.
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FIG. 13. FRS from the commissioning data. Injection occurs at ∼ 32µs, with t0 = 32392.5 ns.

The noise between 46 − 47µs is due to a change in ESQ voltage. The baseline undershoot is due

to a detector effect. The decrease in amplitude soon after injection is due to the particle losses.

The commissioning data were compared to simulations accomplished using the BMAD

subroutine library for relativistic charged-particle dynamics simulations. The simulation

matched the commissioning run 1835 as closely as possible, but was unable to model the
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baseline undershoot or the lack of delivery ring and Recycler RF cavities. Due to the

predominance of protons in the fill, the simulated beam featured only protons. We see in

Figures 14 and 15 the signal obtained from simulation.
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FIG. 14. FRS from the BMAD simulation.
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FIG. 15. FRS from the BMAD simulation zoomed in to show the ”W-shape” longitudinal bunch

structure. t0 = 92.5 ns.
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FIG. 16. DFT of FRS from the BMAD simulation. Left, DFT of the FRS from the commissioning

run. The peak centers are set apart by 757 kHz.

In Figure 16 we see a comparison of the DFT from simulation data to that from the

commissioning data. We see clear peaks for both with a difference of 757 kHz between

them. The peaks are close to the design frequency of the protons (6.42 MHz).

The proximity of the first harmonics of the DFTs suggest that the developed analysis

is correct. However, work remains in understanding what effects various backgrounds, like

particle losses, have on the fast rotation signal. In addition, the actual experiment will draw

the FRS from calorimeter station data rather than scintillating-fiber beam monitors. The

azimuthal width of the stations and their reliance on decay positrons rather than stored

muons forces some modifications of the developed analysis.
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