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Abstract

In the test facility of the C-ADS project [1], A 25-MeV proton beam is directed

to hit a target consisting of 1-mm tungsten balls lubricated by 100-Pa helium gas.

To estimate the power loss to the helium gas, an accurate collision cross section is

computed.

1 Introduction

A high energy transport line (HEPT) is designed for the prototype linac of the CADS project.

A 10-mA 25-MeV proton beam from the superconducting linac will pass through this HEBT

to hit the dense granular target, which consists of 1-mm diameter tungsten balls lubricated

by 100-Pa helium gas. It is important to estimate the power losses as a result of the proton-

helium interaction [2]. Since the relevant proton kinetic energy is low, nuclear reaction can

be neglected. In this note, we will derive the elastic scattering cross section between the

incident proton beam and the target helium nuclei according to quantum electrodynamics.

The result will be used to estimate the power loss of the proton beam to the helium gas.

2 Fermion-Boson Electromagnetic Interaction

Here we are using the natural units commonly employed in quantum field theory; i.e., velocity

of light c = 1 and Planck constant divided by 2π � = 1. The Lagrangian density describing

∗Fermi National Accelerator Laboratory, PO Box 500 Batavia, IL 60510, USA.



the free proton field ψ, the free helium field ϕ, and the free photon field Fμν = ∂μAν − ∂νAu

is

L0 = −ψ̄(γμ∂μ +m)ψ −
(
∂μϕ

∗∂μϕ+M2ϕ∗ϕ
)
− 1

4
FμνFμν , (2.1)

where m and M are, respectively, the rest masses of the proton and helium. Here γμ are the

4× 4 Dirac matrices, ψ is a 4× 1 matrix, and ψ̄ = ψ†γ4 is a 1× 4 matrix. The first term of

the Lagrangian density in Eq. (2.1) leads to the free Dirac equation for proton, the second

term leads to the free Klein-Gordon equation for helium, while the third term leads to the

sourceless Maxwell equation. Electromagnetic interactions are introduced by

∂μψ → (∂μ − ieAμ)ψ and ∂μϕ → (∂μ − iqAμ)ϕ, (2.2)

respectively, for proton of charge e and helium of charge q. The interaction Lagrangian

density is therefore

L1 = ieψ̄γμψAu − iq
(
ϕ∗∂μϕ− ∂μϕ

∗ϕ
)
Au, (2.3)

where the term of O(q2), which is of higher order, has been neglected.†

We study here the scattering of a proton by a helium particle. The kinematic is il-

lustrated in Fig. 3.1(a), where the proton has initial 4-momentum‡ pi = (�pi, iEi) and final

4-momentum pf = (�pf , iEf ). The initial and final helium 4-momenta are, respectively,

ki = (�ki, iεi) and kf = (�kf , iεf). We work in the center-of-mass frame. Therefore �pi+�ki = 0,

�pf + �kf = 0. Since the scattering is elastic, the magnitudes of the proton initial and final

3-momenta as well as the magnitudes of the helium initial and final 3-momenta are the

same. We denote them as p = |�pi| = |�pf | = |�ki| = |�kf |. For the energy, we have Ei = Ef ,

and εi = εf . To ease writing, we remove the subscripts wherever possible and denote them

simply by E and ε.

3 Feymann Graph and Feymann Rules [3]

There is only one Feymann graph for the interaction, which is depicted in Fig. 3.1(b), We

list briefly the Feymann rules. Only those relevant for the Feymann graph in Fig. 3.1(b) are

included:

†It is important to point out that the proton charge e (or q) that appears in Eq. (2.2) above is defined

as e =
√
4π�c/α or e =

√
4π/α when � = 1 and c = 1, where α ≈ 1/137 is the fine-structure constant. To

arrive at the SI units, it should be multiplied by
√
4πε0 again.

‡The metric δμν with μ, ν = 1, · · · , 4 is used.
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Figure 3.1: (a) Scattering of a proton by a helium particle in the center-of-mass frame. (b) The

Feymann graph representing the scattering.

1. Incoming and outgoing proton: ui and u†
f .

2. Incoming and outgoing helium:
1√
2εiV

and
1√
2εfV

.

3. Photon propagator:
−iδμν

(kf − ki)2 − iε
with ε positive and infinitesimal.

4. Proton-photon vertex: −eγμ.

5. Helium-photon vertex: iq(ki + kf)ν .

The helium field are expanded in the momentum-space within a finite volume V . The coef-

ficients ak and a†k are normalized and quantized so that they represent the annihilation and

creation operators of the helium particle. What are left, 1/
√
2εi,fV , are the wavefunctions.

The proton field is treated in the same way and ui,f are the wavefunctions and are 4 × 1

matrices. Thus both ui,f are inversely proportional to
√
V .

4 Scattering Matrix

The scattering matrix S represents the number of interactions taken place within the volume

V in the time period T . It can be written as

〈pf , kf |S|pi, ki〉 = (2π)4δ4(pi + ki − pf − kf )Mfi. (4.1)



The interaction matrix M is formulated using the above Feymann rules:

Mfi = ūf(−eγμ)ui
−iδμν

(kf − ki)2 − iε

iq(ki + kf)ν√
4εiV εfV

. (4.2)

Considering that fact that the evaluation is in the center-of-mass frame, (kf − ki)
2 =

4p2 sin2 θc
2
, where p = |�pi| = |�pf | and θc is the scattered angle. The above can be simplified

as

Mfi = −
equ†

fγ4(k̂i + k̂f )ui

8εV p2 sin2 θc
2

, (4.3)

where the abbreviation k̂ = kμγμ has been used. The iε part in the denominator of the

interaction matrix has been omitted, because we are working with a finite scattered angle

θc. We are interested in the absolute value squared of the interaction or S matrix. Here

there is only one Feymann graph; we therefore need not pay too much attention to its sign

or whether the phase at each element of the Feymann graph. Taking the absolute value

squared,

|Mfi|2 =
e2q2R

64ε2V 2p4 sin4 θc
2

, (4.4)

where

R = Tr(k̂i + k̂f )uiūiγ4(k̂
†
i + k̂†

f)γ4uf ūf . (4.5)

Notice that γμγ4 = −γ4γμ for μ = 1, 2, 3. When μ = 4, remembering that k∗
μ = −kμ. we

therefore have γ4k̂
†γ4 = −k̂. As a fermion, the proton has two spin states. Since we are not

interested in the spin states, we should average over the initial proton spin states and sum

over the final proton spin states. We have then

R = −1

2
Tr(k̂i + k̂f)

∑
i

uiūi(k̂i + k̂f )
∑
f

uf ūf

= −1

2
Tr(k̂i + k̂f)

−ip̂i +m

2EiV
(k̂i + k̂f)

−ip̂f +m

2EfV

= − 1

8E2
i V

2
Tr(k̂i + k̂f)(−ip̂i +m)(k̂i + k̂f)(−ip̂f +m), (4.6)

where we have used the fact that,

∑
i

ui(�pi)ūi(�pi) =
−ip̂i +m

2EiV
and

∑
f

uf(�pf )ūf(�pf ) =
−ip̂f +m

2EfV
. (4.7)



The trace in Eq. (4.6) can be easily computing. Setting ks = ki + kf , we have§

R =
1

8E2
i V

2
Tr

[
k̂s(p̂i + im)k̂s(p̂f + im)

]
=

1

8E2V 2
Tr

[
k̂sp̂ik̂sp̂f −m2k̂sk̂s + im(k̂sp̂ik̂s + k̂sk̂sp̂f)

]
=

4

8E2V 2

[
2(ks ·pi)(ks ·pf)− (ks ·ks)(pi ·pf)−m2(ks ·ks)

]
, (4.8)

where (A·B) denotes the dot product of two 4-vectors A and B. We have

(ks ·ks) = −4
(
M2 + p2 sin2 θc

2

)
,

(pi ·pf) +m2 = −2p2 sin2 θc
2
,

(ks ·pi) = (ks, pf) = −2p2 cos2 θc
2
− 2Eε. (4.9)

Then

R =
4

E2V 2

{(
p2 cos2 θc

2
+ Eε

)2 − p2 sin2 θc
2

(
M2 + p2 sin2 θc

2

)}
=

4

E2V 2

{
(p2 + Eε)2 − p2 sin2 θc

2

[
(E + ε)2 −m2

]}
. (4.10)

The absolute value squared of the interaction matrix then becomes

|Mfi|2 =
e2q2

16E2ε2V 4p4 sin4 θc
2

{
(p2 + Eε)2 − p2 sin2 θc

2

[
(E + ε)2 −m2

]}
. (4.11)

We see that R assumes a minimum at back scattering or when θc = π. At this moment

R =
4m2ε2

E2V 2
, (4.12)

which is definitely non-negative, which serves as a partial check of our derivation.

5 Differential Cross-Section

The absolute value squared of the S matrix denotes the total number of interactions or

events in time T and volume V . It is therefore related to the scattering cross-section σ as

∑
�pf�kf

|〈pf , kf |S|pi, ki〉|2 =
σ|Δv|T

V
, (5.1)

§The easily proven formulas, Tr(γμγν) = 4δμν , Tr(γμγνγρ) = 0, and Tr(γμγνγργσ) = 4
(
δμνδρσ + δμσδνρ−

δμρδνσ
)
have been used.



where Δv is the initial relative velocity of the two particles under consideration. For one

incoming particle in the interaction volume, the density is 1/V . Thus the right side of

Eq. (5.1) represents the number of particles in the volume V going into the cross-sectional

area σ in time T . When the summation is over all final states, the result is the total cross-

section. When the summation is only partial, the differential cross-section results. We have

for the total cross-section,

σ =
∑
�pf�kf

(2π)8V

|Δv|T δ4(pi + ki − pf − kf)δ
4(pi + ki − pf − kf)|Mfi|2. (5.2)

There are two 4-dimensional δ-functions and they are exactly the same. The argument of

one of them can be set to zero. Since

1

(2π)4

∫
eipxd4x = δ4(p), (5.3)

we can write (2π)4δ4(0) = V T , the 4-dimensional space-time volume. The cross-section then

becomes

σ =
∑
�pf�kf

(2π)4V 2

|Δv| δ4(pi + ki − pf − kf )|Mfi|2. (5.4)

For finite interaction volume V , the final states are discrete. When V is extended to infinity,

the summation over �pf and �kf becomes integrals. The transformation is

1

V 2

∑
�pf�kf

→
∫

d3pf
(2π)3

d3kf
(2π)3

, (5.5)

and therefore

σ =
2π

|Δv|

∫
d3pfd

3kf
(2π)3

δ4(pi + ki − pf − kf)|V 2Mfi|2. (5.6)

As we can see, the interaction volume V gets cancelled out as it should be. For this reason,

one may leave out V or set it as unity from the very beginning. We can readily integrate over

d3kf using the momentum δ-functions, leaving behind the energy δ-function. Next we write

d3pf = p2fdpfdΩ and try to integrate over dpf using the energy δ-function, where pf = |�pf |
and equals p that we defined before. The total final energy is Et =

√
p2f +m2 +

√
p2f +M2.

Thus
dEt

dpf
=

pf(Ef + εf)

Efεf
, (5.7)

and ∫
d3pfδ(Et − Ei − εi) =

∫
p2fdΩ

dpf
dEt

dEtδ(Et − Ei − εi) =

∫
pεE

ε+ E
dΩ. (5.8)



The relative velocity is

|Δv| = pi
Ei

+
pi
εi

=
p(E + ε)

Eε
. (5.9)

Putting everything together the differential cross-section is

dσ

dΩ
=

e2q2

4π2

(p2 + Eε)2 − p2 sin2 θc
2

[
(E + ε)2 −m2

]
16(E + ε)2p4 sin4 θc

2

. (5.10)

Since we obtain the differential cross-section already, we wish to express it in the SI

units, something that we are familiar with. ¶ At the same time, we generalize the scattering

by letting the charge of the incident particle be eZi and its rest mass by m = Aimp with mp

being the proton rest mass. For the charged target particle, we write q = Zte. We arrive at

dσ

dΩ
=

(
e2ZiZt

4πε0

)2 (p2c2 + Eε)2 − p2c2 sin2 θc
2

[
(E + ε)2 −m2c2

]
4(E + ε)2p4c4 sin4 θc

2

. (5.11)

Introducing the proton classical radius rp = e2/(4πε0mpc
2), the cross-section becomes

dσ

dΩ
=

(
ZiZtrp
Ai

)2 (p2c2 + Eε)2 − p2c2 sin2 θc
2

[
(E + ε)2 −m2c2

]
4(E + ε)2γ2

i β
2
i p

2c2 sin4 θc
2

, (5.12)

where γi and βi are the relativistic parameters of the incident particle (the proton) in the

center-of-mass frame. The first factor has the dimension of area. The second factor is

dimensionless with the familiar sin4 θc
2
in the denominator.

The proton is scattered into the walls of the beam pipe and will be lost if the scattered

angle |θc| > θbc. This critical loss angle θbc will be derived later below. Thus for the loss

cross-section, we need to integrate dΩ over the polar angle from θbc to π and the azimuthal

angle φ from 0 to 2π, or

σloss = 2π

(
ZiZtrp
Ai

)2 ∫ π

θbc

sin θcdθc
(p2c2 + Eε)2 − p2c2 sin2 θc

2

[
(E + ε)2 −m2c2

]
4(E + ε)2γ2

i β
2
i p

2c2 sin4 θc
2

, (5.13)

We will be dealing with the integrals∫ π

θbc

sin θcdθc

sin4 θc
2

=

∫ π

θbc

4d sin θc
2

sin3 θc
2

=
2

tan2 θbc
2

and

∫ π

θbc

sin θcdθc

sin2 θc
2

=

∫ π

θbc

4d sin θc
2

sin θc
2

= −2 ln sin2 θbc
2
.

(5.14)

The final result is

σloss = π

(
ZiZtrp
Ai

)2
{

(p2c2 + Eε)2

(E + ε)2γ2
i β

2
i p

2c2 tan2 θbc
2

+

[
(E + ε)2 −m2c2

]
ln sin2 θbc

2

(E + ε)2γ2
i β

2
i

}
. (5.15)

¶The conversion consists of p → pc, m → mc2, and e2 → 4πe2/(4πε0) = e2/ε0.



6 Comparison with Classical Rutherford Scattering For-

mula

The scattering is studied in two special limits: one with the mass of the target very heavy

or M � m and one in the non-relativistic regime.

6.1 Very Heavy Target

When the mass of the target is very heavy, its energy ε dominates over E and pc. Equa-

tion (5.12) reduces to

dσ

dΩ
=

(
ZiZtrp
Ai

)2 1− β2
i sin

2 θc
2

4γ2
i β

4
i sin

4 θc
2

. (6.1)

Since the target is infinitely heavy, the scattering is equivalent to a scattering by a central

field supplied by the target. Under this condition, the center-of-mass frame is the same as

the lab frame where the target is stationary. Thus the angle θc by which the incident particle

is scattered is the same scattered angle in the lab frame. However, when compared with the

Rutherford scattering cross-section of a relativistic particle by a central field, we find an

extra term β2
i sin

2 θc
2
in the numerator. The presence of the extra term comes from the fact

that the incident particle is a fermion with two spin states. Equation (6.1) is also known as

Mott scattering cross-section [4].

6.2 Non-Relativistic Regime

In the non-relativistic limit, E → mc2, ε → Mc2, γi → 1, γf → 1, p/mc → 0, and p/M → 0.

Our notation exhibits a subscript � for quantities in the lab frame and a subscript c for

quantities in the center-of-mass frame. The subscript c is often dropped as was in earlier

Sec. 1-4.

The scattering differential cross-section of Eq. (5.12) becomes

dσ

dΩ
=

(
ZiZtrp
Ai

)2 m2M2 −m2β2
i sin

2 θc
2

[
(m+M)2 −m2

]
4(m+M)2β4

i m
2 sin4 θc

2

. (6.2)

We wish to express the cross-section in terms of the relative velocity βrelc between the two



particles. From Eq. (5.9), we obtain

βrelc = |Δv| = p(m+M)

mM
=

βic(m+M)

M
=

βicm

μ
, (6.3)

where we have introduced the reduced mass μ for the 2-particle system, which is defined as

μ =
mM

m+M
or

1

μ
=

1

m
+

1

M
. (6.4)

The differential cross-section becomes

dσ

dΩ
=

(
ZiZtrpm

Aiμ

)2 1− β2
rel sin

2 θc
2

[
1− μ2/M2

]
4β4

rel sin
4 θc

2

. (6.5)

Introduce the classical radius of a particle of charge e with reduced mass μ as

rμ =
e2

4πε0μc2
= rp

m

Aiμ
. (6.6)

The differential cross-section can now be written as

dσ

dΩ
=

(ZiZtrμ)
2

4β4
rel sin

4 θc
2

[
1− β2

rel sin
2 θc

2

(
1− μ2

M2

)]
. (6.7)

The first term is the Rutherford Coulomb-scattering differential cross-section of a particle

of mass m by another particle of mass M in the non-relativistic limit with the reduce mass

substituted. The second term comes from the fermion nature of the incident particle. How-

ever, actually this term should have been dropped in the non-relativistic regime because it

is of O
(
β2
rel

)
.

7 Connection with the Lab Frame

The differential cross-section of Eq. (5.12) and the loss cross-section of Eq. (5.15) are derived

in the center-of-mass frame. Since they count the number of interaction events, they are in-

variant when Lorentz transformed in the direction of the incident particles. Thus Eqs. (5.12)

and (5.15) remain unchanged in the lab frame, provided that quantities such as momenta,

energies, and scattered angle in the center-of-mass frame are substituted. In this section, we

are going to derive relation of these quantities as functions of their lab-frame values.



7.1 Lorentz Transformation

We denote the incident proton as particle 1 and the target helium as particle 2. To avoid

confusion, we denote all quantities in the center-of-mass frame by the additional subscript c

and those quantities in the lab frame by the additional subscript �. Thus all the relativistic

parameters in Eqs. (5.12) and (5.15) such as γi and βi should be replaced by γc1i and βc1i.

Notice that another subscript, the particle number, has been added to specify which particle

they describe.

In the lab frame, particle 1 with initial 3-momentum �p�i is head-on towards particle 2

which is at rest. It is scattered by the angle θ� and its 3-momentum becomes �p�f . The helium

particle with �k�i = 0 will recoil to the 3-momentum �k�f . We choose z as the direction �p�i

and the scattering takes place in the x-z plane as shown in Fig. 7.2. First, let us compute

the relativistic parameters �βtr and γtr that boost the lab frame to the center-of-mass frame.

Obviously �βtr is in the negative z-direction and have the value βtr = βc2i, the velocity of

particle 2 or the helium in the center-of-mass frame. Thus the velocity of particle 1 is

transformed from β�1i in the lab frame to βc1i in the center-of-mass frame via

βc1i =
β�1i − βtr

1− βtrβ�1i
. (7.1)

The 4-vector square of the total 4-momentum, which is an invariant in any frame, is, when

θ�

x

z

�k�f

�p�f

�kcf

�pcf

θc

�kci�pci �p�i

(a) (b)

Figure 7.2: (a) Center-of-mass (COM) frame with subscript c and (b) lab frame with sub-

script �. In lab frame, particle 1 (proton) with momentum �p�i is head-on towards particle 2

(helium) which is at rest. Particle 1 is scattered to momentum �p�f at the scattered angle θ�,

while particle 2 recoils with momentum �k�f . In the COM frame, all corresponding momenta

are denoted by subscript c, and the scattered angle becomes θc.



evaluated in the center-of-mass frame,√
−(pci + kci)μ(pci + kci)μ = γc1im+ γc2iM =

γc1imβc1i

βc1i
+ γc2iM

= γc2iM

(
1 +

βc2i

βc1i

)
= γc2iM

(
1 +

βtr

βc1i

)

= γc2iM

(
1 +

βtr(1− ββ�1i)

βc1i − βtr

)
, (7.2)

where for the third equality, use has been made by the fact that γc1imβc1i = γc2iMβc2i in

the center-of-mass frame. We have set c = 1 for the sake of convenience. When evaluated in

the lab frame, we get

−(p�i + k�i)μ(p�i + k�i)μ = (γ�1im+M)2 − (γ�1iβ�1im)2 = m2 +M2 + 2γ�1imM. (7.3)

Equating the two evaluations, the Lorentz boost βtr can be solved as a function of β�1i, the

velocity of the incoming proton in the lab frame.

If we denote the total energy of the system in the center-of-mass frame by the mass M
of a composite particle,

M2= −(p�i+k�i)μ(p�i+k�i)μ= (E�i+M)2−�p 2
�i= (E�1i+M)2−(E2

�1i−m2)= m2+M2+2ME�1i.

(7.4)

Then transforming to the lab frame, this composite particle has the energy γtrM, where

γtr = 1/
√
1− β2

tr is the Lorentz transformation γ. We have then γtrM = E�i + M . We

therefore have the Lorentz transformation

γtr =
E�i +M

M =
E�i +M

m2 +M2 + 2ME�i
. (7.5)

In the lab frame, the composite particle has the 3-momentum γtrMβtr in the z-direction.

This will the the same as �p�i. Thus

�βtr = − �p�i
γtrM

= − �p�i
E�i +M

. (7.6)

The negative sign comes about because �p�i points to the positive z-direction while �βtr points

to the negative z-direction. Thus, from the momentum �p�i and energy E�i of the incident

proton in the lab frame, the Lorentz boost �βtr from the lab frame to the center-of-mass

frame can be computed using Eq. (7.6). The incident velocity of the proton in the center-

of-mass frame βc1i can now be computed using Eq. (7.1). The velocity of the target helium

in the center-of-mass frame is just βc2i = βtr. From these, the energies and momenta in the

center-of-mass frame are therefore known.



7.2 Scattered Angle

Now come to the scattered angle. In the lab frame, when a proton in the particle beam

is kicked transversely by the angle θ� at a location where the betatron function is β�, the

transverse amplitude at another location B is

x = θ�
√

β�βB sinΔφ, (7.7)

where βB is the betatron function at location B and Δφ is the betatron phase advance from

the position of the kick to location B. If location B happens to be at a point where the

transverse aperture is at a minimum radius b, the proton will be lost if

θ�
√
β�βB � b. (7.8)

Averaging over the beam pipe where electromagnetic scattering of the proton by helium

particles will take place, we obtain the maximum angle

θ� =
b√

βBβav

, (7.9)

above which the scattered protons will shoot over the aperture and will be lost. Here βav is

the betatron function averaged over the part of the beam pipe of concern. The next task is

to relate θ� in the lab frame with θc in the center-of-mass frame employed in Eqs. (5.12) and

(5.15).

For the proton in the center-of-mass frame, the Lorentz transformation of the z-component

momentum and energy of the proton (or particle 1) reads

pciz = γtr(p�iz − βtrE�i), Eci = γtr(E�i − βtrp�iz), (7.10)

where we have written out the component directions as subscripts for clarification. The

momentum component of this particle in the z and x directions and the particle energy are,

respectively,

pcfx = pciz sin θc, pcfz = pciz cos θc, pcf0 = pci0 = Eci, (7.11)

where the subscript 0 indicate the 4th component of the 4-vector with i removed. The

transformation back to the lab frame is the same Lorentz transformation but with velocity

−βtr. Hence

p�fx = pcfx = pciz sin θc,

p�fz = γtr(pcfz + βtrpcf0) = γtr(pciz cos θc + βtrEci),

p�f0 = γtr(pcf0 + βtrpcfz) = γtr(Eci + βtrpciz cos θc). (7.12)



The relation between the scattered angles in the two frames is therefore

tan θ� =
p�fx
p�fz

=
sin θc

γtr(cos θc + βtrEci/pciz)
=

sin θc
γtr(cos θc + βtr/βci)

, (7.13)

from which, we can solve

θc = sin−1 γtrβtr tan θ�

βci

√
1 + γ2

tr tan
2 θ�

+ tan−1
(
γtr tan θ�

)
. (7.14)

8 Application to CADS

A high energy transport line (HEBT) is designed for the prototype linac of the CADS

project. A 10-mA 25-MeV proton beam from the superconducting linac will pass through

this HEBT to hit the dense granular target, which consists of 1-mm diameter tungsten balls

lubricated by 100-Pa helium gas. It is important to estimate the power losses as a result of

the proton-helium Coulomb interaction.

For the proton-helium system, the relevant parameters are listed in Table I.

Table I: The relativistic parameters of proton and helium as well as the loss angle in the lab frame

and the center-of-mass frame.

Proton Helium

Mass 1 4

Charge 1 2

β�1,c1 γ�1,c1 β�2,c2 γ�2,c2

Lab frame 0.2264 1.0266 0 1

COM frame 0.1820 1.0170 0.04623 1.00107

Relative 0.2283 −0.2283

Loss angle (mr) θb� = 4.924, θbc = 6.181

The loss cross-section of Eq. (5.15) can be rewritten as

σloss = π

(
ZiZtrp
Ai

)2
{

(γc1β
2
c1 + γc2M/m)2

(γc1+γc2M/m)2γ2
c1β

4
c1 tan

2 θbc
2

+

[
1− 1

(γc1+γc2M/m)2

]
ln sin2 θbc

2

γ2
c1β

2
c2

}
,

(8.1)



which gives σloss = 1.765× 10−27 m2. The second term amounts to only 0.0011% of the first

and is completely unimportant.

A 25-MeV proton in the lab frame can be considered non-relativistic. In such limit,

Eq. (6.7) leads to the loss cross-section

σloss = π
(ZiZtrμ)

2

β4
rel tan

2 θbc
2

, (8.2)

where the rμ = rp(m +M)/M is the classical particle radius corresponding to the reduced

mass. This gives σloss = 1.784 × 10−27 m2, which is about 1% larger than using the non-

reduced formula for the cross-section. In other words, because of the non-relativistic nature

of the problem, the Rutherford scattering cross-section applies. However, one must pay

careful attention that (1) the classical particle radius corresponds to that of the reduced

mass, (2) the factor β4 in the denominator corresponds to the relative velocity in the center-

of-mass frame, and (3) the loss angle corresponds to the angle θbc in the center-of-mass

frame.

The power loss is computed as follows. The density of helium particle in

n =
P

kT
, (8.3)

where P = 100 Pa or 100 newton-m2, T = 300◦ K is the helium temperature, and k =

1.3807× 10−23 joules/K is the Boltzmann constant. The power loss is given by

dPbeam

dx
=

σlossnEI

e
= 16.0 W/m, (8.4)

where e is the proton charge, E = 25 MeV is the kinetic energy of the proton beam, and

I = 10 mA is the beam current.

As the proton energy increases, the relative velocity between the proton and helium

increases and eventually reaching the limit βrel = 2. Keeping the loss angle θ� constant at

4.92 mrad, the loss angle increases in the center-of-mass frame. The result is that the loss

cross-section and power loss decrease rapidly. This is illustrated in Fig. 8.3. Notice that so

far only electromagnetic interaction has been assumed in the scattering. In the wave aspect

of quantum mechanic, a particle with momentum p is equivalent to a wave with wavelength

λ =
h

p
, (8.5)



where h is the Planck constant with �c = 197.3 MeV-fm. When λ � 2 fm, nuclear-force effect

will become important. This will occur when the proton kinetic energy reaches ∼ 310 MeV.

In other words, the illustration in Fig. 8.3 will be correct because nuclear-force effects will

be negligibly small. Hoowever, in Phase II and Phase III of the C-ADS project where the

proton kinetic energy reaches, respectively, 1 GeV and 1.5 GeV, nuclear effects must be

included in the loss analysis.
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Figure 8.3: Top: Loss cross-section for a proton beam with helium particles as a function of

the proton kinetic energy. Only electromagnetic interaction is assumed. The loss angle in

the lab frame is kept at θ� = 4.92 mr. Bottom: The corresponding power loss of the proton

beam as a function of proton kinetic energy. The helium pressure and temperature are kept

at 100 Pa and 300 K◦, while the proton beam current is at 10 mA.




