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1. Preliminaries 

The last few years have yielded remarkable discoveries in physics. In particle physics it appears 

that a fundamental scalar field exists [1], [2]. The Higgs boson is measured to have a mass of 

about 126 GeV and to have spin zero and positive parity. The Higgs field is the first fundamental 

scalar to be discovered in physics. 

The Cosmic Microwave Background, CMB, is known to have a uniform temperature to parts per 

10
5
 but has [3], [4] well measured fluctuations which are thought to evolve gravitationally to 

provide the seeds of the current structure of the Universe. In addition, the Universe appears to 

contain, at present, and unknown “dark energy” [5] which is presently the majority energy 

density of the Universe, larger than either matter or radiation. This may, indeed, be a 

fundamental scalar field like the Higgs. 

“Big Bang” (BB) cosmology is a very successful “standard model” in cosmology [6]. However, 

it cannot explain the uniformity of the CMB because the CMB consists of many regions not 

causally connected in the context of the BB model. In addition, the Universe appears to be 

spatially flat [7]. However in BB cosmology the present spatial curvature is not stable so that the 

initial conditions for BB cosmology would need to be fantastically fine-tuned in order to 

successfully predict the presently small value of the observed curvature. 

These issues for BB cosmology have led to the hypothesis of “inflation” which postulates an 

unknown scalar field, not presumably the Higgs field or the dark energy, which causes an 

exponential expansion of the Universe at very early times [8], [9]. This attractive hypothesis can 

account for the problems in BB cosmology of flatness and causal CMB connectivity. In addition, 

the quantum fluctuations of this postulated field provide a natural explanation of the CMB 

fluctuations which are the seeds of the structure of galaxies.  

Researchers are now searching for gravitational waves imprinted on the CMB [10], [11]. These 

would be a “smoking gun” for inflation since metrical fluctuations, both scalar and tensor, are 

also produced in inflationary models. Thus, the time appears to be appropriate for a very basic 
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and simple exposition of the inflationary model written from a particle physics perspective. Only 

the simplest scalar model will be explored because it is easy to understand and contains all the 

basic elements of the inflationary model [12].   

 

2. Units and Constants 

The units used in this note are GeV, m, and sec. There is only one coupling constant which has 

dimensions which is the gravitational constant of Newton, GN. That constant is subsumed by 

using the Planck mass to set mass scales.  Since inflation deals with very early times, the Planck 

mass, Mp, is a natural scale. Related scales are the Planck length, Lpl and the Planck time tpl. 
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Natural units, 21, 1/N pc G M   , are used so that, in principle, all quantities could be 

expressed in energy units.  

Several numerical quantities used in this note appear in Table 1. Present quantities are indicated 

by an o subscript. The present CMB has cooled off during the expansion and now has a 

temperature of 2.7 degrees absolute and a number density of about 410 photons/cm
3
. The age of 

the Universe is about 13.7 billion years. The present critical density, the density such that the 

current spatial curvature is zero or “flat” is presently 5.3 GeV/m
3
. The present Universe is 73% 

dark energy [5], 24% dark matter [13] and with a small fraction of the total by weight due to 

radiation. The present Universe is “flat” in that the sum of the ratios of energy density to critical 

density, Ω=ρ/ρc, fractional sum is one to good accuracy which means the Universe has a total 

energy density equal to the critical density. 

Table 1: Present Values of Selected Cosmological Quantities [14]  

Quantity Present Value 

To – CMB Temperature (
o
K) 2.725 

Ho = 1/to – Hubble Time (1/sec) 1/ (4.1 x 10
17

 ),    (1/13.7 Gyr) 

c/Ho – Hubble distance (m) 1.3 x 10
26

 

ρc – critical density (GeV/m
3
) 5.3  

Ωm – matter fraction (dark matter dominant) 0.24 

Ωr – radiation fraction 4.6 x 10
-5

 

Ωv – dark energy or vacuum fraction 0.73 
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3. Big Bang Cosmology 

Assume that the Universe is homogeneous and isotropic [6] which is as simple an assumption as 

is possible. The space-time metric is then of the Robertson-Walker form. Assume that the 

Universe is spatially flat from the beginning, in agreement with observation so that the curvature 

parameter in the metric, k is zero. Spatial coordinates are commoving, participating in the 

expansion of the Universe and at fixed locations. The physical scale is set by the parameter a(t) 

which modifies the spatial part of the interval of special relativity. The metric with comoving 

spatial coordinates , ,r   is; 

                                               2 2 2 2 2 2( ) ( )( )ds cdt a t dr r d         .                                        (2) 

The dynamics of the scale factor a(t) is set by the energy content of the Universe as derived from 

the Einstein field equations. The energy content defines the metric; 

                                                      2 2 2( / ) (8 / 3 )pH a a M          .                                      (3)           

H is the Hubble “constant” or parameter and the dot over a(t) denotes a time derivative with 

respect to t. The density ρ refers to all energy densities; matter, radiation and dark energy or 

vacuum energy. 

The energy density has a time dependence determined by the equation of state obeyed by the 

particular type of energy. The basic relationship has to do with the change of energy within a 

physical volume V which is a comoving volume times a
3
. That change, d(ρa

3
) is due to the 

pressure, p,  doing work, -pdV. The result is dρ+3(da/a)(ρ+p). The time dependence of the 

energy density in an expanding space is therefore; 

                                                               3 ( ) 0H p           .                                           (4)              

The two terms define the behavior of the fluid in a dynamic Universe. The H term provides the 

friction, where the density term tracks the reduction in density due to the volume increase during 

expansion while the pressure term tracks the reduction in energy due to the work done by 

pressure during expansion. For matter domination, p is henceforth assumed to be zero, while for 

radiation p = ρ/3.  

In the case of temperature, or energy, the scaling as the inverse of a(t) is obvious since the fluid 

cools upon expansion. Similarly, the physical wavelength scales as a(t) since waves are red 

shifted by the expansion.  

The equation for da/dt can be solved easily in the case where matter or radiation dominates. For 

matter domination, the density scales with inverse volume or as the inverse cube of the scale a, 

while for radiation it scales as temperature to the fourth power (Stefan-Boltzmann law) or as the 

inverse fourth power of a. Note the scaling for matter holds only for pressure-less matter since
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( )d V pdV   where p is the pressure and the volume goes as a
3
. Pressure-less matter is at rest 

with respect to the comoving coordinates. Solving Eq.3 for a in the case of matter domination, 

the scale a goes as the 2/3 power of t while the energy density goes as the inverse square of t. In 

the case of radiation dominance a(t) goes as the square root of t while the density again goes as 

the inverse square of the time t.  

These two equations, Eq.3 and Eq.4, can be combined by first differentiating the Hubble 

expression and then substituting for the time derivative of ρ. The result is the acceleration 

equation; 

                                                   
2/ 4 / (3 )( 3 )pa a M p       .                                (5)                            

Clearly, both for matter and for radiation, the acceleration is negative and an expanding Universe 

dominated by the energy density of matter or radiation will decelerate. The acceleration in a 

matter dominated phase goes as -1/a
2
 while in a radiation dominated phase it goes as -1/a

3
. In 

either case the deceleration is large when a(t) is small and then slows as the scale grows.  

In the case of dark matter or “vacuum energy” the energy density, ρv, of this “cosmological 

term” is constant with respect to a(t) since the density is proportional to the space-time metric 

itself and tracks the changes in scale. Specifically the pressure is negative and equal in 

magnitude to the density so that the time dependence of the density is zero, Eq.4.  Therefore, H is 

a constant, Eq.3, and the scale grows exponentially in time. The acceleration in this case is 

positive in distinction to the situation with both matter and radiation.  
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Because the scale a(t) grows exponentially in the case of vacuum energy domination the 

coordinate distance, dr , travelled by light decreases during this period of acceleration. The 

physical distances, however, grows exponentially. 

 In a static Universe, at time to a distance cto is visible. The Hubble law is that the recession 

velocity, v, is proportional to physical distance L, v = HL. The Hubble distance, LH = c/H occurs 

when the recession velocity is c – a horizon since objects at larger L are unobservable. This 

distance expands faster than the galaxies so that more of the Universe is included inside the 

horizon and is therefore visible. This behavior is true for a Universe composed of matter and 

radiation. In a decelerating Universe, with a scaling of a(t) as t
n
, the Hubble distance at present 

where the recession velocity is c at the time of light emission is c/Ho =  cto/n.  

Since the Universe decelerates c/H increases and the Hubble distance expands faster than the 

Universe, overtaking the receding galaxies. In general the Hubble horizon distance is at LH= c/H 
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which has a velocity cd(1/H)/dt = vH = c/n. For radiation dominated behavior, vH = 2c. In an 

inflationary period H is approximately constant, so that all objects were observable at some time 

in the past.  

A particle horizon is different in that some events cannot ever be observed if they are outside the 

causal light cone. Photons travel on null geodesics, ds
2 

= 0 in the Robertson-Walker metric. In 

that case, cdt = a(t)dr and a photon emitted at time t = 0 and absorbed at a time t has a 

“conformal time” τ which is defined to be; 

                                                             
0

/ ( )
t

c dt a t              .                                             (7) 

This definition of conformal time accounts for the expansion of the Universe during the travel 

time of the photon and restores the ‘light cones” familiar from the Minkowski flat space of 

special relativity. Light starting from χ = 0 at τ = 0 arrives at χ = τ. Any more distant point is 

outside the light cone and is never visible. 

                                              2 2 2 20 ( )[ ],ds a t d dr r                                                  (8)                                                                                               

Clearly, conformal times slow down as the Universe expands. The maximum comoving distance, 

dr, that light can go in time dt is just dτ. This is the commoving particle horizon while the 

physical horizon is a(t)dτ. The particle horizon occurs at τ = 0, χ = τo, = LP/ao. The particle 

horizon has a physical length LP = nLH/(1-n) in a power law Universe. The relationships of 

conformal and coordinate time for the three types of energy density are shown in Table 2.  

The expected power law behaviors of the three types of energy density are shown in Table 2 for 

energy density, scale factor, conformal time, Hubble parameter and comoving Hubble parameter 

which scales with t as does τ.  

 

Table 2:  Time Dependence of Selected Cosmological Quantities. 

 ρ(a) a(t) τ a(τ) H 1/Ha 

Matter 1/a
3
 t

2/3
 t

1/3
 τ 

2
 (2/3)/t t

1/3
 

Radiation 1/a
4
 t

1/2
 t

1/2
 τ  (1/2)/t t

1/2
 

Vacuum 

Energy 

constant e
Ht

 -e
-Ht

 -1/Hτ constant e
-Ht

 

 

4. Radiation and Matter Dominated Times 

Assuming the dominance of matter over radiation at the present time (Table 1), the scaling of a(t) 

with time t can be used to project backward in time. The radiation term will become more 

important and will, at some past time, become dominant.  
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Numerical results are obtained by assuming the present time, to, is 13.43 billion years since the 

Big Bang. The present energy densities are as defined in Table 1. Assuming matter domination, 

the inverse matter density goes as t squared while the radiation density rises as t to the 8/3 power. 

The two densities then become equal at an earlier time. At that time, teq, the energy density is 

1.907 x 10
11

 GeV/m
3
and the temperature of the radiation, scaling inversely as a(t) is 14200 

degrees Kelvin. That temperature corresponds to an energy of 1.18 eV. The time teq is 1.1 x 10
12

 

sec or 35600 years. It is assumed that the “dark matter” which now predominates over ordinary 

matter has the same time dependence for a(t) as ordinary matter. 

Before teq radiation is the dominant form of energy in the Universe. One can distinguish 

between teq and the decoupling or recombination time when the plasma of photons and 

electrons, which is opaque, becomes a system of hydrogen atoms and photons, transparent to 

light. The light from this epoch is the CMB or the surface of last photon scattering.   

The time can be scaled to earlier periods reliably since the atomic and nuclear physics which is 

in play is well understood. Going to 0.01 sec, the energy density increases to 2.42 x 10
39

 

GeV/m
3
and the radiation temperature is 1.51 x 10

11
 degrees Kelvin or 12 MeV. This energy 

scale remains in the domain of nuclear physics and should be reliable. 

The energy density of matter and radiation from 0.01 sec to the present is shown in Fig. 1. All 

Figures in this note were made by MATLAB scripts which are available upon request to the 

author. The two densities cross at teq assuming a simple scaling in the matter and radiation 

dominated regimes. Also shown are representative densities of water, the sun and a white dwarf. 

The dark energy density given in Table 1 is assumed to be a cosmological term and therefore 

constant in time. 

The energy of the radiation component of the Universe is shown in Fig. 2. It goes as the inverse 

of the scale a(t), but the time dependence of a(t) depends on whether the Universe is radiation or 

matter dominated. From Table 2, the energy goes as the inverse square root of t. Two 

representative scales are also shown; atomic scale is the ionization energy of hydrogen while the 

nuclear scale is set by the binding energy of the deuteron. The Universe is invisible to 

electromagnetic probes for times less than about 10
10

 sec because the plasma of electrons and 

photons is opaque. This makes the CMB the earliest object of study barring the possible future 

ability to detect gravitational waves or primordial neutrinos.  

 

5. The Flatness and Causality Issues for BB Cosmology 

There are two major issues for Big Bang (BB) cosmology [15]. One is called the flatness 

problem. If the Universe is not spatially flat, there is a modified radial term dr
2
/(1-kr

2
) in the 

Robertson-Walker metric, Eq.2. The current value of the flatness parameter [14]r is that the 

Universe is within a few percent of the critical energy density which divides positive and 
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negative curvature. The problem is that if curvature is now near to flatness, then in the past it 

must have been incredibly fine-tuned to be almost exactly one. Eq.3 defines the critical value of 

ρ because k equal to zero was assumed there. The value is defined in terms of the present value 

of the Hubble parameter H and the Planck mass, Eq.9. 

 

Figure 1: Time dependence of the energy density for matter, radiation and dark energy. The 

radiation and matter densities are equal at a time teq = 1.2 x 10
12

 sec. Horizontal densities of dark 

energy, water, the sun and a white dwarf are shown to set the scales. 

 

Figure 2: Time dependence of the energy (Temperature) of the radiation. The horizontal scales 

for atomic and nuclear physics are shown to set the scales. 
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As seen from Table 2, Ha decreases as t increases so that the curvature parameter, |Ω-1|, is driven 

away from one at late times. Indeed, Ha for matter domination goes as the inverse 1/3 power of t 

while for radiation domination it goes as the inverse square root of t. Therefore a flat space is 

unstable and fine tuning seems difficult to avoid as an initial condition on the Universe.  Note 

that, from Table2, vacuum energy behaves oppositely, driving the flatness parameter to zero. 

The curvature issue can be explored by making an exact numerical integration of the differential 

equation for a(t). Using the present energy densities for matter, radiation and vacuum energy as 

given in Table 1, the equation to solve follows from Eq.3 and the behavior of a(t) shown in Table 

2, and  is; 

                                                              
2 2

( ) /

1/ /

oa t a

d b f



   



  
            .                    (10) 

The constant is,   
2(8 / 3) p m cd M    = 1.18 x 10

-18
 /sec. The other terms are b equal the ratio 

or radiation to matter density at present and f the ratio of vacuum to matter density at present. 

The result of this numerical integration appears in Fig. 3.  

 

Figure 3: Time dependence of the scale factor a(t) from 1 sec to the present and a bit later. All 

sources of energy density are treated simultaneously. 
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The plot shows a(t) in the general case where all three sources of energy density are treated 

simultaneously. The present time and teq are shown explicitly as vertical lines. Note that at 

future times the vacuum energy begins to drive an exponential expansion. This is illustrative, but 

is assumed to be unrelated to inflation at very early times. 

The flatness parameter is defined by the behavior of (Ha)
2
 as seen in Eq. 9. Since vacuum energy 

has H
2
 proportional to the vacuum energy density, H is a constant and, solving for a, the scale 

factor is exponentially increasing, as seen in Table 2. Therefore a vacuum energy density would 

drive the 1/(Ha)
2
 rapidly to zero. This behavior is seen in Fig. 4 at future times. In the past, the 

curvature, |Ω-1|, increased by a factor roughly 10
15

 from a time of one second to the present.  The 

expected linear dependence of the flatness parameter on t, Table 2, is seen in Fig.4 for early 

times, dominated by radiation with a softer  t
2/3

 behavior for later, matter dominated times. 

 

Figure 4: Evolution of the curvature parameter from a time of 1 sec to the present and near 

future. Note that vacuum energy drives down the curvature which grows rapidly in the matter or 

radiation dominated epochs. 

 

The causality issue in BB cosmology has to do with the observed uniformity of the CMB 

radiation. A rough order of magnitude estimate is as follows. Consider the CMB and extrapolate 

back to time teq when the scale was about 10
-4

 times the present scale (Fig. 3). The distance cto 

at present, Table 1, corresponds to 1.3 x 10
22

 m at CMB time, roughly teq. However light has 
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only gone, since the t = 0 Big Bang, about a distance of cteq or 3.3 x 10
20

 m. Hence, there is no 

way that the CMB volume can be causally connected which is needed to easily explain its’ 

temperature uniformity. That conclusion, of course, assumes that no new physics intervenes 

going back from teq to time zero or the “Big Bang”.  

The conformal time from one second to the present is shown in Fig. 5. Note that, as defined here, 

conformal time is dimensionless. This time dependence was derived using the numerical results 

of Fig. 3 and ignoring small contributions. The expected behavior that conformal time goes as 

the square root of t at early times, Table 2, is observed.  Numerically, the conformal time from 

one sec to teq is about 0.02, while from teq to to it is about 3.7.  

 

Figure 5: The evolution of conformal time from t = 1 sec to the present time as derived from the 

numerical results of integrating Eq. 3 with all three sources of energy, matter, radiation and 

vacuum. 

The maximum conformal time occurs now and is about 3.6. The initial conformal time is here 

defined to be zero. Light travels on straight lines inclined by 45 degrees (the light cones), Eq.8,  

in the (τ, χ) plane. Causally connected events occur within the past light cones as in the case of 

special relativity. The cone for the present is shown in Fig. 6. Also indicated is the conformal 

time at teq, scaled by 10 or a CMB conformal time about 100 times less than the present time 

(Fig. 5). Clearly, events spanning the CMB range of χ extrapolated to  zero conformal time 

cannot be causally connected since the CMB conformal time light cones do not reach the (0,0) 

origin. 
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Figure 6: Light ray conformal time from the present time back to the CMB. The CMB conformal 

time is scaled up by a factor 10 in order to make the CMB past light cones visible. They cannot 

communicate with the (0,0) origin or with each other except very locally. 

 

6. Inflation and Scalar Fields 

Inflation aims to solve the BB cosmology problems by postulating a rapid expansion of the scale 

factor at very early times, thus invalidating the simple extrapolation to time zero assumed so far 

in BB cosmology.  New physics intervenes at very early times. In the approximation of a 

cosmological constant, ρv, or vacuum energy term Λ, H is a constant, / 3H   .  The related 

energy density is a constant since it is the negative of the pressure (Eq. 4). The scale factor, 

Table 2, is exponential with argument Ht. Therefore, the curvature is driven to extremely low 

values so that even with the subsequent growth, Fig. 4, the presently observed flatness can easily 

be accommodated. The causal issues for the CMB are resolved because the early epoch of 

inflation has conformal time, ( / ) Htc H e   , which is large and negative and allows sufficient 

time to have all segments of the CMB in causal contact at very early times. 

The physical mechanism for the existence of an approximately constant value of H  posits a 

scalar field which has a potential energy which is sensibly constant (called “slow roll”) for a 

sufficient period of time to solve the flatness and causal problems which were mentioned above. 
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The field, φ, is uniform in space, but decreases with time [16].  The dimension of the field is 

mass as can be inferred from noting that it appears as a potential term,  m
2
φ

2
/2, in the Lagrange 

density from which the space and time integral  leads to a dimensionless action. Since this term 

is an energy density, it has the dimension of mass to the fourth power. The field mass is taken to 

be m. The field energy density and pressure are;  2 2/ 2 ( ), / 2 ( )V p V          where 

V(φ) is the potential energy of the scalar field. The density has a kinetic term which is a special 

case of the Klein-Gordon equation term  * 

     for a spatially uniform field.  Allowing for a 

pressure source term, Eq. 5, the acceleration of a(t) is positive if the potential term dominates.  

The Hubble parameter, density time derivative, and scale factor acceleration are special cases of 

Eqs.3, 4 and 5; 
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                                                (11) 

If the potential dominates and varies slowly with time, H is quasi-constant and the acceleration is 

positive, in contrast to acceleration for matter and radiation. Using Eq. 11, the equation of 

motion for the field is; 

                                                3 / 0H dV d                                                          (12) 

The field acts like a simple harmonic oscillator (SHO), with H again supplying the damping 

effect. The length of time for inflation depends on the shape of the potential. Parameters are 

defined which characterize the first and second derivative of the scalar potential. Neglecting  in 

the expression for H and the second time derivative in the harmonic equation is called the slow 

roll approximation, 2 2~ (8 / 3 ) ( ), 3 ~ /pH M V H dV d     . The two dimensionless parameters 

specifying the shape of the potential are; 
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             .                                    (13) 

In order to solve the BB flatness and causality issues a sufficient expansion of a(t) is needed. It is 

characterized by the number of “e-folds”, N.  Using Eq.11 in the slow roll approximation, 

2~ 3 / ( / )Hdt H d dV d   ; 
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              .               (14) 
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The number of “e-folds” depends on how fast the field is fractionally decreasing. 

7. Simplest Scalar Field 

The simplest field has a quadratic potential energy similar to a harmonic oscillator, 
2 2( ) / 2V m  . The slow roll parameters for this potential depend on the square of the field, 

2(1/ 4 )( / )pM     . Small values of the field lead to more rapid changes in the field near 

the end of the inflationary period when the field has largely fallen off. Using Eq.11 in the slow 

roll approximation the time dependence of the field can easily be solved for; 

                                                            
/ 12

( / 12 )

p

i p

mM

mM t

 
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 

 
            .                       (15) 

The subscripts i and f refer to the start and end of the inflationary period. Neglecting the final 

field, the number of e folds is, Eq.14 22 ( / )i pN M  . The Hubble parameter depends linearly 

on the field while the scale parameter depends exponentially on the time integral of the field; 

                                                       
4 /3( / )

4 / 3( / )

( )
p

p

m M dt

i

H m M

a t a e
 

 



          .                             (16) 

There must be a sufficiently large value of N to solve the BB problems of flatness and CMB 

causality which means the initial value of the field must be large enough. 

 

8. Inflationary Numerology 

At present, fundamental particle physics is understood up to about the one TeV scale. Scaling 

from teq of about 10
12

 sec, with 1.2 eV energy, using Table 2 for the behavior of a(t)  in a 

radiation dominated regime, the scaling in energy to one TeV decreases a(t) by about a factor of 

10
12

 or the time decreases by a factor of 10
24

 going down to about 10
-12

  sec.  

The postulated physics of inflation operates a at vastly increased scale of energy and a vastly 

shorter time period, quite beyond what is now understood. The Planck scale for masses, Eq.1, is 

invoked and time scales are in the range 10
-36

 to 10
-40

 sec. Between this time range and the 

understood time range much new physics could exist, such as superstrings, supersymmetry, and 

grand unification over the range 10
-36

 to 10
-12

 sec. In this note a radiation or relativistic 

dominated regime is assumed to cover the physics beyond current knowledge. In spite of this 

uncertainty, it is very important to explore the inflationary paradigm and see where it leads. 
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Numerical estimates for inflation are made in the simplest possible scalar model. Inflation ends 

when the slow roll approximation breaks down, when ε is one or / 1/ 4f pM  = 0.28. A 

sufficiently large value of N is needed to solve the BB issues, N ~ 60, which sets the scale, 

Eq.14, for the initial field, / / 2i pM N  = 3.1. The value of the H parameter as a function 

of time depends on the scalar mass, m, since it defines the time dependence of the field, Eq.15, 

and thus the scale factor a(t), Eq. 16. A value of m/Mp of 10
-6

 is chosen. That choice leads to a 

slope of the field of 2.96 x 10
36 

sec
-1

 and a time when inflation is active of about φf/slope =  1.05 

x 10
-36

 sec. The evolution in the inflationary regime is therefore tracked from 10
-40

 to 10
-36

 sec. 

Other choices of the range of time can be made for other choices of m.  

The resulting Hubble parameter is shown in Fig. 7. It decreases linearly with the rolling field, Eq. 

16.  

 

Figure 7: Behavior of the Hubble parameter as a function of time in the simple slow roll 

scenario.  

The values of a(t) as a function of time are shown in Fig. 8. The exponential increase appears as 

expected. The value of a(0) is set rather arbitrarily to be scaled from the Planck length using the 

Planck time, Eq.1, scaled to the initial time of inflation, 10
-40

 sec, or 3 x 10
-32

 m.  The increase in 

a(t) by a factor of 10
26 

over the inflationary period supplies 59.9 e folds  by design. However, this 

choice is somewhat arbitrary. The size of N is largely controlled by the choice of the initial field 

magnitude. 
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Figure 8: Time dependence of the scale factor a(t) during the inflationary period, where a(0) is 

here taken to be 1. 

The values of a(t) and H(t) allow a calculation of the curvature as a function of time, Eq.9. The 

result is shown in Fig. 9 for the previously defined parameters. During the inflationary period the 

increase of a(t) by a factor 10
26

  and the approximate constancy of H means that the curvature is 

decreased by a factor about 10
52

 . After the scalar field has “decayed” into Standard Model (SM) 

particles, a radiation dominated curvature was assumed where (1/Ha)
2
  scales as t (Table 2) since 

a decelerating Universe always has the curvature increasing with time. In contrast, for the BB 

cosmology the flatness, |Ω-1| would have to be less than 10
-64

  at the Planck time.   The actual 

value for the curvature depends on the square of the initially assumed value of a(t) , which was 

chosen rather arbitrarily as mentioned above.  

The Hubble length, LH = c/H, defines the radius of the causal event horizon. Processes separated 

by physical distances greater than that length are not causally connected. In a static Universe, the 

length is ct. Because of decelerated expansion, the power law behavior of a(t) leads to a Hubble 

length of ct/n for a(t) ~ t
n
. In a period of inflation, the Hubble length is approximately constant 

(Table 2) as is LH.  In the simple inflationary model the Hubble length can be displayed as a 

function of t. as observed in Fig. 10 where an abrupt transition from inflation to radiation 

dominance is assumed.  
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Figure 9: Time dependence of the spatial curvature during inflationary and an assumed radiation 

dominated period. Inflation resets the initial unknown value of the curvature to be a value about 

10
52

 times smaller at the end of inflation. After that a linear increase with t is assumed until teq. 

 

During inflation a physical scale, in this case a(t), (solid blue in Fig. 10), grows rapidly and is 

larger than the Hubble length, c/H (dashed red) which is roughly constant. After inflation the 

Hubble length grows as ct/n or 2ct in a radiation dominated regime where n is ½. During the time 

that any physical scale is greater than the Hubble length that scale is outside of causal influence.  

As seen in Fig. 10 at a later time a scale, exemplified here by a(t), becomes less than the Hubble 

length and then can become causally active again. The Hubble length, has a delayed increase 

with time which occurs only after inflation. In the hot BB phase a(t), scaling as the square root of 

t, is overtaken by the horizon, LH, which scales as t. 

With the resetting of clocks to time zero before inflation, the conformal time during inflation 

covers about 80 units followed by  the radiation dominated era.  The time development of the 

conformal time during inflation  is shown in Fig. 11.The range of τ of about 80  leaves sufficient 

time for the CMB regions to be causally connected before the time of inflation.  In BB 

cosmology, Fig.5, the conformal time without the intervention of inflation is small during 

radiation domination and then grows by about 3.6 units during matter domination..  
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 One should be careful to distinguish the events separated by conformal distances χ greater than 

τ. They could never have been in communications but if the event separation is greater than 

c/(aH), the conformal Hubble length, or horizon these events cannot communicate now but are 

not precluded from having communicated in the past. Compared to Fig.6 with a different time 

origin chosen, τ would there be negative with a value about -80. 

 

Figure 10: Time dependence of the physical scale factor a(t) and the Hubble length, c/H (m) for 

an inflationary period followed by a period of radiation dominance.  

The conformal Hubble horizon, c/(aH),  which is dimensionless, decreases dramatically during 

inflation , since H is roughly constant and a(t) is growing exponentially.  The time dependence of 

the quantity c/aH appears in Fig. 12.  As c/aH decreases, a commoving scale will exit the horizon 

and then re-enter it later during the hot BB phase.   

Before leaving this section, the arbitrary nature of the plots should be mentioned. As stated 

above, the initial time for inflation and the time span of inflation are chosen, in concert with the 

scalar mass to give sixty e-folds. These choices are arbitrary and are meant to be illustrative only. 

For example, changing only the initial value of the scalar field to 3.5 times the Planck mass 

rather than 3.1 times, the scale factor increases by 10
33

 rather than 10
26

 and the number of e-folds 

increases to seventy-five. The curvature value is then driven down by a factor 10
65

  rather than 

10
52

and at a teq the value only recovers to 10
-30 

compared to the roughly full recovery seen in 
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Fig.9
.
. Clearly, there is a sufficient range of the parameters of the inflationary model to be chosen 

so as to satisfy all the constraints imposed by the data as explored so far.  

 

 

Figure 11:  Conformal time (dimensionless) as a function of coordinate time during inflation.  

There is a sufficient range in conformal time to allow causal communication at very early times. 

 

Figure 12: Time dependence of the comoving event horizon c/aH during inflation (blue solid) 

and radiation dominated epochs (red dash-dot) when it scales as the square root of t. The solid 

green horizontal line indicates the constant behavior of an arbitrary commoving scale. 
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For example, with an initial value of 3.1 for the scalar field with respect to the Planck mass, after 

inflation, extrapolation to teq and then extrapolation to the present time to yields a present scale 

ao of  roughly 10
22 

m, less than the value ao appearing in Table 1. However a small change of φi 

to 3.5 scales to a present ao value of10
29

 m. Clearly the plots appearing in this note are only 

illustrative, not definitive. In particular, after inflation ends an abrupt transition to a radiation 

dominated Universe is assumed. Since the fundamental physics of this early period, 10
-36

 to 10
-12

 

sec, is not understood, this is, at best, a simplifying assumption. 

  

9. Inflation and CMB Fluctuations 

The inflationary hypothesis solves some outstanding issues in BB cosmology, but at the cost of 

introducing a scalar field unknown to particle physics. However, it also makes additional testable 

predictions which are a critical advantage. Specifically it predicts a power magnitude and  a 

spectrum of the temperature fluctuations in the CMB which are nearly independent of the scale 

of those fluctuations. 

During inflation there are irreducible zero point quantum fluctuations of the field. Although 

inflation is smoothing out all quantities such as the spatial curvature, quantum fluctuations are 

intrinsic. There are also metrical fluctuations due to the strong gravity waves during. The subject 

is complex [17], and simple order of magnitude arguments are made here in the interest of a 

short exposition of structure formation.  

The commoving Hubble horizon, c/Ha, decreases rapidly during inflation, Fig. 12. A scale 

(coordinate), wavelength λ or wave number k, which is initially less than c/aH and can be 

casually active, provides the uniformity and small quantum fluctuations ultimately seen in the 

CMB. The physical wavelength, aλ, is red-shifted while the coordinate wavelength λ is 

comoving and constant.  During inflation the physical scale goes outside the Hubble horizon, 

c/H, and falls out of causal contact, Fig.10. Therefore when the coordinate wavelength is less 

than 1/aH or coordinate wave number k, 2 / k  , is greater than aH casual connection is lost, 

Fig.12. After inflation, aH increases and the wave number crosses the commoving Hubble 

horizon and becomes accessible again. However, due to inflation, these wavelengths are of 

classical, not quantum size and can serve as seeds to macroscopic structure formation. The 

spectrum is defined in natural units, k/(Ha) in what follows.  Quantum mechanics plus inflation 

naturally leads to observable density perturbations in the CMB which can be confronted with 

data. 

The quantum fluctuations are formed on sub-horizon scales prior to exiting the horizon.  The 

fluctuations are created on a time scale or wavelength scale of 1/H. The scalar field fluctuations 

are then; 

                                                                        ( / 2 )H    .                                      (17) 
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The factor is here kept explicitly to highlight the quantum nature of the fluctuation. The field 

fluctuations cause a local spread in the time of the end of inflation, /t    .  A fluctuation in 

density occurs due to the fluctuation in the time of the end of inflation, which means the end of 

inflation varies locally in space. Density fluctuations, δH , are created at the end of inflation, 

~ / ~ / ~H t t H t     . The dimensionless fractional density fluctuation depends on the 

square of the scalar field fluctuation and is; 

                                           
2 2/ 2 2 ( ) /H H               .                                   (18) 

Initially, when H is large and the time derivative of the field is small the fluctuation, is almost 

constant and applies to a large range of wavelengths. Therefore, the inflationary model predicts 

an almost flat spectrum of fluctuations in commoving wavelength and wave vector. 

For a scalar field, Eq.11, Eq.12, 2 2(8 / 3 ) ( ), 3 /pH M V H dV d      in the slow roll 

approximation. A small local value of dV/dφ means a longer time delay or a larger density in 

that region and a larger δH. Substituting into Eq.18 for H; 

                              3/2 3512 / 75[ / ( / )]H pV M dV d                   .                                (19) 

The fluctuations depend on the shape of the potential. In the simplest case of a harmonic scalar 

field, adopted previously, Eq. 15 and Eq. 16 give the fluctuations; 

                                           264 / 75[( / )( / ) ]H p i pm M M                 .                      (20) 

The dimensionless fractional density fluctuation depends on the square of the initial value of the 

field and also upon the scalar field mass, m,  because that sets the scale for the time rate of 

decrease of the field, Eq.15.  

It is well beyond the scope of this note to find the metrical fluctuations due to gravity waves. 

Suffice it to say that there is a dimensionless fractional amplitude, AG , for such fluctuations [17],
1/2 232 / 75[ / ]G pA V M  which can easily be evaluated in the simplest scalar model. The ratio of 

AG to δH is the dimensionless slow roll parameter ε, 
G HA   . Alternatively; 

                                              16 / 75[( / )( / )]G p i pA m M M                     .                        (21) 

This amplitude also depends on both the initial value of the scalar field and on the mass of the 

scalar. The initial value of the field is relevant because of the initial steep drop in the comoving 

horizon c/aH, Fig. 12, which causes different scales to exit the horizon at almost the same time.  

The small spread in the time when different scales exit the horizon is another prediction of the 

inflationary model. Scales which can now be observed crossed the comoving horizon very near 

to the start of inflation. In principle the fluctuation is evaluated when a physical wave length λa 
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exits the horizon c/H at λ=c/(aH) or k = aH. The approximation used here is that the spread in 

times when of the horizon is initially crossed is small.  

The power of the scalar density fluctuations, Ps , follows from Eq.13 for the slow roll parameters 

and from Eq.19 for the fractional density fluctuation 
H . Stated without proof; 

                                             12 2 2~ (4 / )[( / 2 ) ( / ) ]sn

H s p iP M H k aH    
                        (22) 

The scales, (k/aH) are assumed not to be fully scale independent but to have a spectral index ns-1 

slightly different from zero. In the case of the simplest scalar field the fluctuation power 

becomes, with  21/ 4 ( / )i p iM    which explicitly labels the parameter ε  to be evaluated at 

the start of inflation; 

                                 12 4~ (16 / 3)[( / ) ( / ) ( / ) ]sn

s p i pP m M M k aH                                  (23) 

Using Eq. 20 it is seen that the power is, in fact, directly related to the square of the density 

fluctuation, 12(75 /12) ( / ) sn

s HP k aH 
 .  Alternatively, the magnitude of the power goes as the 

square of (m/Mp) and as the fourth power of (φi/Mp). 

Using the value 3.1 for the initial scalar field scaled to the Planck mass, Eq. 20 predicts that δH   

is 15.7 times the scalar mass scaled to the Planck mass and, Eq.21 shows that AG is 1.01 times 

that ratio. The temperature fluctuations occur because photons lose energy climbing out of the 

gravitational potential of higher density regions. The CMB fractional temperature fluctuations 

[14] are about a part in 10
5
 which implies that δH  is about 2 x 10

-5
 or that, using Eq.20, m/Mp is 

about 6.4 x 10
-7

 . This value is near to that found in the slow roll time dependence for the field, 

Eq.15, of 10
-6

. This is a useful consistency check for the specific model.  The mass, m, could also 

be related to the scale where the three SM coupling constants intersect, the scale [14] of a Grand 

Unified Theory (GUT). 

There are three distinct predictions of the inflationary paradigm; the magnitude of the 

fluctuations, the spectral index of the scalar fluctuations , and the ratio of the magnitudes of the 

tensor to scalar fluctuations. As for the spectral index, deviations from scale invariance arise 

from time spreads for exiting the horizon early in the inflationary period. In turn, they therefore 

also depend on the shapes of the potential that drives the inflation. The first few terms in the 

Taylor expansion for the shape are contained in the slow roll parameters, ε and η.  Stated without 

proof; 

                                        2 2 2 21 / 8 [ 3( / ) ( / )]s pn M dV d d V d                                   (24) 

Ignoring metrical fluctuations for the moment, ns - 1 = -6εi + 2ηi using the slow roll definitions, 

Eq.13.  Using the φi/Mp value of 3.1 the slow roll parameters are both 0.0083 which means a 
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predicted spectral index of  0.967. This is close to the experimental CMB result of  0.96 [14] 

which has an error of about 0.01. The inflationary prediction is in good agreement with the data.  

The power spectrum of the CMB [14] is shown in Fig.13. It is striking that there are strong 

structures in the CMB spectrum. They can exist if the Fourier components of the spectrum all 

coherently exit the horizon at almost the same time. As mentioned above this is also a prediction 

of the inflationary paradigm.  A mode with a physical wavelength is inside the horizon at the 

start of inflation, then exits the horizon and is stretched in length with a constant fractional 

amplitude. When the mode re-enters the horizon it begins to evolve. The recombination which 

creates the visible CMB is approximately instantaneous which preserves the relative phases of 

the Fourier components. 

 

Figure 13: Power spectrum of the CMB temperature fluctuations. Structure in the spectrum 

indicates a phase coherence in the Fourier components, k/(Ha) , of the fluctuations. 

 

There is another prediction made by inflation models for tensor perturbations due to gravity 

waves which has not yet been tested. The spectral index is predicted to be 2G in   . Quantum 

perturbations make only scalar perturbations while gravitational waves make both scalar and 

tensor perturbations. The dimensionless power in the scalar case, Ps, ignoring Fourier factors of 

(k/aH), is H
2
/πMp

2
εi , Eq. 22, while the tensor power, Pt, is, stated without proof to be 

proportional to the square of the amplitude AG and  is equal to 16(H/Mp)
2
/π. The ratio of tensor to 

scalar power is predicted to be, r = Pt/Ps = 16εi or 0.13 in the simplest model.  
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The CMB is predicted to be polarized due to Thompson scattering of the electrons and photons. 

The polarization magnitude is related to the temperature fluctuations. Specifically, there are so-

called “B modes” which are rotational modes of the polarization which cannot be excited by 

scalar fluctuations. Therefore, detection of a B mode [10], [11] polarization of the CMB 

fluctuations would be a strong indication for inflation.  The present experimental situation is not 

clear [10], [11]. 

Current limits on the scalar spectral index and on tensor to scalar power ratio are shown [12] in 

Fig.14. The simplest model prediction is, in fact, rather close to the present limits and more data 

will arrive very soon. Tensor fluctuation magnitudes are now only limits since definitive tensor 

detection is not in hand. It is an exciting time for the inflationary paradigm. The simple scalar 

results of ns = 0.967 and r = 0.13 with N = 60 are close to the large black dot in Fig.14 obtained 

by more sophisticated calculations. Other, more complex models give a range of possible values 

in the (ns,r) plane. 

 

 

Figure 14: Constraints on ns and r from the 2014 WMAP data set. Also shown are inflationary 

models. The simplest scalar model is consistent with, but near to, the present limits. 

 

10. Reheating 

The inflationary paradigm is so far successful and provides testable predictions for the future. 

However some obvious questions remain. Where is the scalar field now? How, in detail, did the 
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period from the end of inflation, at the Planck mass scale, evolve to a regime, the TeV scale a 

factor ~ 10
16

 lower in mass where the physics is presently understood. 

Recall that the scalar field, after the end of the rundown of the potential, acts like a SHO, Eq.12.  

The remaining potential decays and l becomes radiation and the Universe is thermalized. The 

equation of motion allowing for the addition of a decay width Γ to Eq.12 is; 

                                                            2(3 ) 0H m                  .                         (25) 

Dimensional argument concludes that the decay width, Γ, is proportional to the scalar mass, m, 

and some coupling constant, α, if the decays of the field are first order two body decays. The 

decay daughters, x, are assumed to be SM objects with masses much less than the scalar mass 

[14]. 

                                                            ( ) ~xx m                                                  (26) 

Since the Hubble parameter scales as H ~ 1/t in a radiation dominated phase the fraction of the 

contribution of produced particles to the total energy density is large when 3H decreases at large 

times and becomes comparable to Γ or 2 2 2~ (3 ) (72 / 3 )pH M  , Eq. 3. Using the Stefan-

Boltzmann law, with  a number of degrees of freedom , g* ~ 100 appropriate to the SM, leads to 

a thermalized re-heating temperature TR. Note that if all the x particles indicated in Eq.26 are SM 

then they are all relativistic since the scalar mass m is so much larger than their  masse. The T
4
 

behavior holds in this case; 

                                    2 2 4

*~ ( ) / 24 / 30re heat p RM g T                                            (27) 

The grand unified results [14], assuming that supersymmetry (SUSY) intervenes at masses of 

about one TeV, are that the unified coupling constant is about 1/24 and the three SM forces come 

together at about 10
16 

GeV. Solving Eq.27 for the reheating temperature, 

50.14 9 10R p pT M x M   .  Extrapolating from teq ~ 10
12

 sec and Teq~ 1 eV, and scaling for 

radiation domination to 10
-36

 sec (factor 10
24

) T rises to ~ 10
15

 GeV or ~ 10
-4

 Mp. This result is 

uncertain because the reheating decay mechanism is poorly understood. Obviously, there is much 

poorly understood physics between accelerator based data and the inflationary paradigm but the 

order of magnitude “guesstimates” are encouraging. The inflationary simplest model yields 

m/Mp values of about 10
-6

. The extrapolation to the reheating temperature is within two orders of 

magnitude of this result and the GUT scale is within three. Clearly a more complex model of 

reheating is called for [18]. 

The scalar field responsible for inflation has a value near the Planck mass. The Higgs mass is 

125 GeV, or a factor 10
17

 smaller and has a comparable magnitude for its’ vacuum expectation 

value.  The other possible scalar field is dark energy with a vacuum expectation value of 0.8 

meV, a factor 10
14 

less than the Higgs field. The connection between these scalar fields, if there 
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is one, is unknown. However, it is now known that fundamental scalar fields exist, so the 

questions of possible connections and the understanding of the early times for now inaccessible 

to accelerators will likely remain of great importance to both cosmologists and particle 

physicists.  
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