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Abstract

The Shanghai Institute of Applied Physics (SINAP) is embarking
on its first X-ray free-electron laser (FEL) project. It is a cascading
high-gain harmonic generation FEL. Microwave instabilities driven by
various effects, especially the space-charge force, will degrade the qual-
ity of the electron beam before entering into the undulator. However,
inside the undulator, the occurrence of microbunching becomes an ut-
most important ingredient for the generation of coherent radiation.
In short, controlled and uncontrolled microwave instabilities must be
fully understood in such a project. These are the slides of a series
of eight-hour lectures given at the SINAP in June of 2013, with the
intention of a fully understanding of the microbunching phenomenon.
The sections of wake field and impedance theory are added as an in-
troduction for those who are not familiar with the subject.

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. 
Department of Energy, Office of Science, Office of High Energy Physics.
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Introduction
A particle interacts with the vacuum chamber produces EM fields.

The motion of a particle following is perturbed.

(~E , ~B) seen by
particle

= (~E , ~B) external, from
magnets, rf, etc.

+ (~E , ~B) wake
fields

where

(~E , ~B) wake
fields

{ ∝ beam intensity

� (~E , ~B)external

Perturbation breaks down when potential-well distortion is large.
Then, distortion has to be included into non-perturbative part.

What we need to compute are the EM wake fields at a distance
z behind the source particle.

The computation of the wake fields is nontrivial.

Two approximations lead to a lot of simplification.
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1. Rigid-Bunch Approximation [1]

Motion of beam not affected during traversal through discontinuities.

ssource

z

witness ~v

Source particle at s =βct

Witness particle at s =z + βct

z < 0 for particle following.

This does not imply no syn. motion.

Just require z and βc do not change

after traversing the discontinuity.

Rigidity implies beam at high energies.

2. Impulse Approximation

We do not care about the wake fields ~E , ~B, or the wake force ~F .

We only care about the impulse

∆~p =

∫ ∞

−∞
dt ~F =

∫ ∞

−∞
dt q(~E + ~v × ~B) q is charge of witness particle

We will see how the simplification evolves.
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Panofsky-Wenzel Theorem [2] βct

z

s=z+βct

Maxwell equation for witness particle at (x , y , s, t) with s = z + βct:
and z constant

~∇·~E =
ρ

ε0
Gauss’s law for electric charge

~∇×~B − 1

c2

∂~E

∂t
= µ0βcρŝ Ampere’s law

~∇·~B = 0 Gauss’s law for magnetic charge

~∇×~E +
∂~B

∂t
= 0 Faraday’s & Lenz law

Want to write Maxwell equation for the impulse ∆~p(x , y , z , t).

First compute

with ~F (x , y , z , t) = q(~E +~v× ~B)
~∇·~F =

qρ

ε0γ2
− qβ

c

∂Es

∂t
,

~∇×~F = −q

(
∂

∂t
+ βc

∂

∂s

)
~B.
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The Wake Force Equations

Wake force: ~F (x , y , z , t) = q(~E + ~v × ~B)

Maxwell’s equations: ~∇·~E =
ρ

ε0
, ~∇·~B = 0,

~∇×~E = −∂
~B

∂t
, ~∇×~B =

1

c2

∂~E

∂t
+ µ0βcρŝ

Divergent:

~∇·~F = q
(
~∇·~E + ~∇·~v × ~B

)
=

qρ

ε0
− q~v

(
1

c2

∂~E

∂t
+ µ0βcρŝ

)

=
qρ

ε0γ2
− qβ

c

∂Es

∂t
c =

1√
ε0µ0

Curl:

~∇×~F = q~∇×~E + q~∇×
(
~v×~B

)

= −q
∂~B

∂t
+ q~v

(
~∇·~B

)
− qv

∂~B

∂s
= q

(
∂

∂t
+ v

∂

∂s

)
~B = q

d~B

dt
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~∇×∆~p (x , y , z) =

∫ ∞

−∞
dt
[
~∇×~F (x , y , s, t)

]
s=z+βct

.

↑ ↑
this ~∇ refers this ~∇ refers
to x , y , z to x , y , s

We obtain

~∇×∆~p = −q

∫ ∞

−∞
dt

[(
∂

∂t
+ βc

∂

∂s

)
~B(x , y , s, t)

]

s=z+βct

= −q

∫ ∞

−∞
dt

d~B

dt
= −q~B(x , y , z +βct, t)

∣∣∣
∞

t=−∞
= 0,

Dot product with ŝ =⇒ ŝ ·
(
~∇×∆~p

)
=0 =⇒ ∂∆px

∂y
=
∂∆py

∂x

Cross product with ŝ =⇒ ∂

∂z
∆~p⊥= ~∇⊥∆ps ←− P-W Theorem

P-W theorem gives strong restriction between long. and trans.

But it is very general. Does not depend on any boundary conditions.
Even do not require β = 1.
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∂z
∆~p⊥= ~∇⊥∆ps ←− P-W Theorem

P-W theorem gives strong restriction between long. and trans.

But it is very general. Does not depend on any boundary conditions.
Even do not require β = 1.

K.Y. Ng (Fermilab) Selected Topics in Microwave Instabilities and Linacs June, 2013 7 / 142



~∇×∆~p (x , y , z) =

∫ ∞

−∞
dt
[
~∇×~F (x , y , s, t)

]
s=z+βct

.

↑ ↑
this ~∇ refers this ~∇ refers
to x , y , z to x , y , s

We obtain

~∇×∆~p = −q

∫ ∞

−∞
dt

[(
∂

∂t
+ βc

∂

∂s

)
~B(x , y , s, t)

]

s=z+βct

= −q

∫ ∞

−∞
dt

d~B

dt
= −q~B(x , y , z +βct, t)

∣∣∣
∞

t=−∞
= 0,

Dot product with ŝ =⇒ ŝ ·
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Supplement to Panofsky-Wenzel Theorem

β = 1 =⇒ ~∇⊥ ·∆~p⊥ = 0.

Proof:

~∇·∆~p =

∫ ∞

−∞
dt
[
~∇·~F (x , y , s, t)

]
s=z+ct

= q

∫ ∞

−∞
dt

[
ρ

ε0γ2
− β

c

∂Es

∂t

]

s=z+ct

γ→∞−→ q

∫ ∞

−∞
dt

[
∂Es

∂s

]

s=z+ct

=
∂

∂z
∆ps

Use has been made of

1 Space-charge term
qρ

ε0γ2
omitted because β → 1.

2
∂

∂t
Es(s, t) =

d

dt
Es(s, t)− ds

dt

∂

∂s
Es(s, t).

Maxwell equations now become

~∇×∆~p = 0 and ~∇ ·∆~p =
∂

∂z
∆ps without any source terms.
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Cylindrical Symmetric Vacuum Chamber





∂

∂r
(r∆pθ)=

∂

∂θ
∆pr

∂

∂z
∆pr =

∂

∂r
∆ps

∂

∂z
∆pθ=

1

r

∂

∂θ
∆ps

∂

∂r
(r∆pr )=− ∂

∂θ
∆pθ (β=1)

=⇒





∂

∂r
(r∆p̃θ)=−m∆p̃r

∂

∂z
∆p̃r =

∂

∂r
∆p̃s

∂

∂z
∆p̃θ=−m

r
∆p̃s

∂

∂r
(r∆p̃r )=−m∆p̃θ (β=1)

Cylindrical symmetry =⇒ expansion in terms of cos mθ or sin mθ.

We write ∆ps = ∆p̃s cos mθ, ∆pr = ∆p̃r cos mθ, ∆pθ = ∆p̃θ sin mθ,

where ∆p̃s , ∆p̃r , and ∆p̃θ are θ-independent.

For m =0, ∆p̃r = ∆p̃θ=0, otherwise ∝ 1

r
, singular at r =0, ∴ only ps

For m 6=0,
∂

∂r

[
r
∂

∂r

(
r∆p̃r

)]
= m2∆p̃r =⇒ ∆pr (r , θ, z) ∼ mrm−1 cos mθ
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Definition of Wake Functions

Formal solution can be written as
{

v∆~p⊥ = −qQmWm(z)mrm−1
(
r̂ cos mθ − θ̂ sin mθ

)

v∆ps = −qQmW ′
m(z)rm cos mθ

dimension is
energy

Defn:

{
Wm(z) −→ transverse wake function of azimuthal m

W ′
m(z) −→ longitudinal wake function of azimuthal m

They are functions of z only and dependent on boundary conditions.
They are related because of P-W theorem.

Qm = eam is mth multipole of source particle of charge e.

Wm(z) has dimension V/Coulomb/m2m−1. a is source offset from axis

Recall that solution of ~E and ~B reduces to solution of Wm(z) only.
Simplification comes from P-W theorem or rigid-bunch and
impulse approximations.

negative sign in front is a convention to make W ′
m(z) > 0,

since witness particle loses energy from impulse.
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Some Properties of Wake Functions

z z

W ′
m(z) Wm(z)

Fundamental Theorem of Beam Loading (P. Wilson)

A particle sees half of its wake, or 1
2 W ′

m(0−).

Proof:
A particle of charge q passes a thin lossless cavity, excites cavity.

Energy gained ∆E1 = −fq2W ′
m(0−), i.e., sees fraction f of own wake.

Half cycle later, a 2nd particle of same charge passes the cavity.

Energy gained ∆E2 = −fq2W ′
m(0−) + q2W ′

m(0−).

Field inside cavity is completely cancelled.

∆E1 + ∆E2 = −2fq2W ′
m(0−) + q2W ′

m(0−) = 0 =⇒ f = 1
2 .
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Properties of Wake Functions

W ′
m(z) = 0 for z > 0. (causality)

W ′
m(0−) ≥ 0 (energy conservation)

|W ′
m(−z)| ≤W ′

m(0−).

allowed allowednot

W ′
m(z) W ′

m(z)

Proof:

1st particle of charge q loses energy 1
2 q2W ′(0−).

2nd particle of charge q loses energy 1
2 q2W ′(0−) + q2W ′

0(−z).

Total loss q2W ′(0−) + q2W ′
0(−z) ≥ 0. Or −W ′

0(−z) ≤W ′
0(0−).

2nd particle of charge −q loses energy 1
2 q2W ′(0−)− q2W ′

0(−z).

Total loss q2W ′(0−)− q2W ′
0(−z) ≥ 0. Or W ′

0(−z) ≤W ′
0(0−).
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Properties of Wake Functions (cont.)

W ′
m(−D) = W ′

m(0−) for some
D > 0 =⇒ wake is of period D.

W ′
m(z)

D

Proof:

Energy loss:

1. 1
2 q2

1W ′
0(0−).

z D

−q2q1 > 0 q2 > 0

2. 1
2 q2

2W ′
0(0−) + q1q2W ′

0(−z).

3. 1
2 q2

2W ′
0(0−)− q1q2W ′

0(−z−D)− q2
2W ′

0(−D).

Since total must be ≥ 0 and q1 arbitrary, W ′
0(−z) ≥W ′

0(−z−D).

Change 3 charges to (q1, −q2, q2) to get W ′
0(−z) ≤W ′

0(−z−D).

Area under W ′
m(z) is non-negative.

Consider a dc beam current I .

For a particle of charge q in the beam, energy loss is q

∫
W ′

0(z) I
dz

v
≥ 0.
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Properties of Wake Functions (cont.)
{

v∆~p⊥ = −qQmWm(z)mrm−1
(
r̂ cos mθ − θ̂ sin mθ

)

v∆ps = −qQmW ′
m(z)rm cos mθ

For longitudinal, lowest azimuthal is m = 0 or W ′
0(z).

For transverse, lowest azimuthal is m = 1 or W1(z).

Higher azimuthals can be important for large transverse beam size
compared with pipe radius.
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Coupling Impedances

Beam particles form current.
Component with freq. ω is
I (s, t) = Î e−iω(t−s/v).

z

z

s1

time: t+z/v

time: t

A test particle of charge q crossing a narrow discontinuity at s1 gains
energy from wake left by particles −z in front (z<0).

From v∆ps = −qQmW ′
m(z)rm cos mθ, voltage gained is (m = 0)

V (s1, t) = −
∫ ∞

−∞
[W ′

0(z)]1

[
Î e−iω[(t+z/v)−s1/v ] dz

v

]

= −I (s1, t)

∫ ∞

−∞
[W ′

0(z)]1e−iωz/v
dz

v
≡ −I (s1, t)

[
Z
‖
0 (ω)

]
1

Defn: Z
‖
0 (ω) =

∫ ∞

−∞
W ′

0(z)e−iωz/v
dz

v
(summing over all continuities)

Unlike a current in a circuit, a beam has transverse dimension and
therefore higher multipoles.

When the beam is off-center by amount a, the current mth multipole is
Qm(s, t) = I (s, t)am = Q̂me−iω(t−s/v).
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Higher Azimuthal Impedances

Source particle has transverse density
δ(r − a)

a
δ(θ).

Subject to the mth multipole element Qm

(
si , t +

z

v

) dz

v
passes

location i −z earlier, voltage gained by test particle is

V (si , t) = −
∫

dz

v
Qm(si , t +z/v)[W ′

m(z)]i

∫
rdrdθ rmcos mθ

δ(r−a)δ(θ)

a

= −
∫

dz

v
Q̂me−iω[(t+z/v)−s/v ][W ′

m(z)]ia
m

= −Pm

q
Qm(si , t)

∫ 0

−∞

dz

v
[W ′

m(z)]ie
−iωz/v [Pm = qam]

Identify mth multipole longitudinal impedance across location i as

[
Z‖m(ω)

]
i

= − qV̂

PmQ̂m

=

∫ ∞

−∞

dz

v
[W ′

m(z)]ie
−iωz/v .

Summing up around the vacuum chamber: Z‖m(ω) =
∑

i

[
Z‖m(ω)

]
i
.
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Transverse Impedances

General defn. for long. imp.: Z‖m(ω) =

∫ ∞

−∞

dz

v
W ′

m(z)e−iωz/v .

If we replace W ′
m by Wm, we obtain transverse impedances

Defn. Z⊥m (ω) =
i

β

∫ ∞

−∞

dz

v
Wm(z)e−iωz/v [Wm(z) = 0 when z>0]

Long. and transverse imp. are then related by Z‖m(ω) =
ω

c
Z⊥m (ω),

so that both Re Z
‖
m and Re Z⊥m represent energy loss or gain.

Transverse force, F⊥ ∝ −Wm, must lag Qm by
π

2
in order for

Re Z⊥m to dissipate energy. Hence the factor i .

The factor β is to cancel β in Lorenz force, just a convention.
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Direct Computation of Impedances
Z⊥1 can also be derived directly from the transverse force F⊥1

without going through Z
‖
1 .

When current I (s, t) = Î e−iω(t−s/v) is displaced by a transversely

from axis of symmetry, deflecting force acting on a test particle is

〈F⊥1 (s, t)〉 = −q

L

∫ ∞

−∞
W1(z)aÎ e−iω[(t+z/v)−s/v ] dz

v

= −qaI (s, t)

L

∫ ∞

−∞
W1(z)e−iωz/v

dz

v
=

iβqI (s, t)a

L
Z⊥1 (ω).

〈· · · 〉 implies averaged over all preceding particles.

For transverse: Z⊥1 (ω) = − i

qÎ aβ
〈F̂⊥1 〉.

For longitudinal: Z
‖
0 (ω) = − 1

qÎ
〈F̂ ‖0 〉.

Other than from wake fcns, these are formulas employed to compute

imp. directly from the long. and trans. forces seen by test particle.

K.Y. Ng (Fermilab) Selected Topics in Microwave Instabilities and Linacs June, 2013 18 / 142



Direct Computation of Impedances
Z⊥1 can also be derived directly from the transverse force F⊥1

without going through Z
‖
1 .
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Some Properties of Impedances

1 Z‖m(ω) =
ω

c
Z⊥m (ω) (P-W theorem).

2 Z
‖
m(−ω) =

[
Z
‖
m(ω)

]∗
and Z⊥m (−ω) = −

[
Z⊥m (ω)

]∗ [
Wm(z) is real

]

3 Z
‖
m(ω) and Z⊥m (ω) are analytic, poles only in lower half ω-plane.

Wm(z) = − iβ

2π

∫ ∞

−∞
Z⊥m (ω)e iωz/vdω

W ′
m(z) =

1

2π

∫ ∞

−∞
Z‖m(ω)e iωz/vdω

Causality: Wm(z)=W ′
m(z)=0

when z>0.

Singularities cannot occur

in upper ω-plane.

Re Z‖m(ω) =
1

π
℘

∫ ∞

−∞
dω′
Im Z

‖
m(ω′)

ω′ − ω , Im Z‖m(ω) = − 1

π
℘

∫ ∞

−∞
dω′
Re Z

‖
m(ω′)

ω′ − ω .

4 Re Z
‖
m(ω) ≥ 0 and Re Z⊥m (ω) ≥ 0 when ω > 0, if beam pipe has

same entrance and exit cross section. (no accelerating forces)

5

∫ ∞

0

dω Im Z⊥m (ω) = 0 and
∫ ∞

0

dω
Im Z

‖
m(ω)

ω
= 0.

K.Y. Ng (Fermilab) Selected Topics in Microwave Instabilities and Linacs June, 2013 19 / 142



Some Properties of Impedances

1 Z‖m(ω) =
ω

c
Z⊥m (ω) (P-W theorem).

2 Z
‖
m(−ω) =

[
Z
‖
m(ω)

]∗
and Z⊥m (−ω) = −

[
Z⊥m (ω)

]∗ [
Wm(z) is real

]

3 Z
‖
m(ω) and Z⊥m (ω) are analytic, poles only in lower half ω-plane.

Wm(z) = − iβ

2π

∫ ∞

−∞
Z⊥m (ω)e iωz/vdω

W ′
m(z) =

1

2π

∫ ∞

−∞
Z‖m(ω)e iωz/vdω

Causality: Wm(z)=W ′
m(z)=0

when z>0.

Singularities cannot occur

in upper ω-plane.

Re Z‖m(ω) =
1

π
℘

∫ ∞

−∞
dω′
Im Z

‖
m(ω′)

ω′ − ω , Im Z‖m(ω) = − 1
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General Behavior of Impedances

Sharp resonances from cavities.
Broad-band from bellows,
BPM’s, steps, etc
Large values near ω = 0 from
resistive walls.

−Im Z
‖
0 (ω)

ω
inductive at low freq

and capacitive at high freq.

Z⊥1 (ω) behaves similar to
Z
‖
0 (ω)

ω

Re Z
‖
0 (ω)

ω
and Re Z⊥1 (ω) vanish at ω = 0.

Mathematically because of analyticity.
Physically because of no dc loss.

At ω = 0, there is no Faraday’s law. ~E and ~B are not related.
No image current created and no impedance.
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General Comments
Wm(z)=0, W ′

m(z)=0 when z > 0 because of causality.

It is awkward to deal with negative z . Some like to use z > 0 for

particle following. Then Wm(z)=0, W ′
m(z)=0 when z < 0.

Then instead of

Z‖m(ω) =

∫ ∞

−∞
e−iωz/vW ′

m(z)
dz

v
, Wm(z) = − iβ

2π

∫ ∞

−∞
Z⊥m (ω)e iωz/vdω

we have

Z‖m(ω) =

∫ ∞

−∞
e iωz/vW ′

m(z)
dz

v
, Wm(z) = − iβ

2π

∫ ∞

−∞
Z⊥m (ω)e−iωz/vdω

and W ′
m(z) = −dWm(z)

dz
. ←− note negative sign

All properties of the impedances remain unchanged, including no singularity

in upper half ω-plane.

Some may like to use j instead of i to denote imaginary value.

Most of the time j = −i . Then Z
‖
m and Z⊥m have no singularity

in lower half ω-plane instead.
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Space-Charge Impedances

Sp-ch imp. comes from EM fields

of beam even when beam pipe

is smooth and perfectly conducting.

Want to compute Es due to variation

of linear density λ(s−vt).

Assume small variation of long. dist.

a
Es

v

b

s s + ds

Faraday law:
∮
~E ·−→d` = − ∂

∂t

∫
~B ·d~A.

uniform dist. assumed
↓∮

~E ·−→d` = Esds − eλ(s−vt)

2πε0

[∫ b

a

dr

r
+

∫ a

0

rdr

a2

]
+

{
s → s + ds

}

Geometric factor g0 = 2

[∫ b

a

dr

r
+

∫ a

0

rdr

a2

]
= 1 + 2 ln

b

a
.
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Electric field or left side:
∮
~E ·−→d` = Esds +

eg0

4πε0

∂λ

∂s
ds.

Magnetic field or right side:

− ∂

∂t

∫
~B ·d~A =− ∂

∂t

µ0eλ(s−vt)v

2π

[∫ a

0

rdr

a2
+

∫ b

a

dr

r

]
ds =v 2 eµ0g0

4π

∂λ

∂s
ds.

Long. field seen by particles on-axis: Es = − eg0

4πε0γ2

∂λ

∂s
. c =

1√
ε0µ0

Consider a long. harmonic wave λ1(s; t) ∝ e i(ns/R−Ωt) perturbing

a coasting beam of uniform linear density λ0.

Voltage drop per turn is V = Es2πR =
ineZ0cg0

2γ2
λ1 =

inZ0g0

2γ2β
I1.

The wave constitutes a perturbing current of I1 = eλ1v .

Imp. is
Z
‖
0

n

∣∣∣
sp ch

=
iZ0g0

2γ2β
with g0 =1+2 ln

b

a
.

[
Z0 =

√
µ0

ε0
=

1

ε0c
=µ0c

]
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Comments
Z
‖
0

n

∣∣∣∣
sp ch

= i
Z0g0

2βγ2
is independent of freq., but rolls off when ω &

γc

b
.

Z
‖
0

∣∣∣
sp ch

∝ ω, resembling a neg. inductive imp. rather than a cap. imp.

For a freq.-independent reactive imp.
Z
‖
0

n

∣∣∣∣
sp ch

, corresponding wake is

W ′
0(z) = −δ′(z)

[
iRcβ

Z
‖
0

n

]

reactive

= δ′(z)
Z0cRg0

2γ2
.

Longitudinal reactive impedance results from a longitudinal reactive

force F
‖
0 (s, t) =

ie2v

2π

Z
‖
0

n

∣∣∣∣
reactive

∂λ(s, t)

∂s
.

This force modifies the bunch shape, called potential-well distortion.

Below/above transition, capacitive force lengthens/shortens the bunch.

Below/above transition, inductive/capacitive force can generate

micro-bunching and eventual microwave instabilities.
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Numerical Computation of Wakes and Impedances

There are numerical codes to compute wake potential of discontinuities
in the vacuum chamber.

For a cylindrical symmetric structure, there are the TBCI by T. Weiland
and ABCI by Y. Chin, — they are called 2D codes.
Both m = 0 and m = 1 modes can be computed.

Without cylindrical symmetry, there is MAFIA by T. Weiland, with a
very expensive license fee.

The physical space is divided into grids, and the discontinuity is drawn
along grid lines.

The source cannot be a single particle.
It can be approximated by a narrow bunch, for example, Gaussian
truncated with 5 σ’s.

One need to specify the length of the wakes to be calculated.
If one needs to compute impedances from the wakes by Fourier
transformation, a rather long wake will be required.
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Landau Damping

Wake force excites a number of collective waves in a beam

and displaces it from its equilibrium position.

These waves exchange energy among themselves,

some grow and some are damped.

Spread in oscillation frequency accelerates damping

and decelerates growths.

This is called Landau Damping [7, 8]

K.Y. Ng (Fermilab) Selected Topics in Microwave Instabilities and Linacs June, 2013 32 / 142



Illustration of Landau Damping [9]

Consider transverse oscillation of a particle in an unbunched beam
[(

∂

∂t
+ω0

∂

∂θ

)2

+ ω2
β

]
y(θ, t)=− eI0

γmC0

∫ ∞

−∞
dt ′W1(t ′−t)〈y(θ, t ′)〉,

with 〈y(θ, t)〉=
∫
ρ(ωβ)y(θ, t;ωβ)dωβ ω̄ =

∫
ωβρ(ωβ)dωβ

Go to frequency domain by introducing

ỹn(Ω) =
1

4π2

∫ ∞

−∞
dt

∫
dθ y(θ, t)e−inθ+iΩt snap-shot view

Here, we solve as an initial-value problem. For t < 0, y(θ, t) = 0.

Beam receives a kick at t = 0, or
∂y(θ, 0)

∂t
=
∑

n

ẏn0e inθ.

R.S. =
iecIoZ⊥1 (Ω)

E0T0
〈ỹn〉 ≡ −2ω̄(∆ω)0〈ỹn〉 (∆ω)0 is

{
freq shift w/o
Landau damping

L.S. = (ω2
β−ω̂2)ỹn(Ω) +

1

4π2

∫
dθ

[
∂y

∂t
−i(Ω−2nω0)y

]
e−inθ+iΩt

∣∣∣∣
∞

0

= (ω2
β−ω̂2)ỹn(Ω)− ẏn0

2π
← for Im Ω > 0 only. ω̂ = Ω− nω0
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Soln. for Im Ω>0 (upper Ω-plane): ỹn(Ω)=−2ω̄(∆ω)0

ω2
β − ω̂2

〈ỹn〉+
ẏn0

2π(ω2
β−ω̂2)

Now average over the whole beam by
∫

dωβρ(ωβ)× · · ·
[

1 + 2ω̄(∆ω)0

∫
dωβ

ρ(ωβ)

ω2
β − ω̂2

]
〈ỹn〉 =

ẏn0

2π

∫
dωβ

ρ(ωβ)

ω2
β − ω̂2

↑ H(Ω)

Thus 〈ỹn(Ω)〉 =

ẏn0

2π

∫
dωβ

ρ(ωβ)

ω2
β − ω̂2

H(Ω)
ω̂ = Ω− nω0

The inverse Fourier transform 〈y(θ, t)〉 =
∑

n

∫
dΩ 〈ỹn(Ω)〉e−i(Ωt−nθ)

gives solution in θ-t space.

However, need to know 〈ỹn(Ω)〉 over the whole Ω-plane.

Notice that in above 〈ỹn(Ω)〉 is discontinuous across Im Ω = 0

ω̂= ω̂R±iε −→
∫
ρ(ωβ)dωβ
ωβ−ω̂

=

∫
ρ(ωβ)dωβ
ωβ−ω̂R∓iε

= ℘

∫
dωβ

ρ(ωβ)

ωβ−ω̂R

± iπρ(ω̂R)
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Analytic Continuation

Reason of discontinuity is path of
integration.

Top: Im Ω > 0

We know how the contour goes.

Middle: Im Ω < 0 and 〈ỹn(Ω)〉 not defined.

If same contour is followed, result will be
different.

Discontinuity occurs across Im Ω = 0.

Bottom: If we follow Landau contour C ,

there will not be any discontinuity.
ω̂

ω̂

−ω̂

−ω̂

−ω̂

ω̂

ω̂-plane

C

Contour C is always below pole at ω̂ and above pole at −ω̂.

This is what we mean by analytic continuation.
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〈y(θ, t)〉 =
∑

n

∫

W

dΩ
ẏn0

∫
C

dωβ
ρ(ωβ)

ω2
β−ω̂2

2πH(Ω)
e−iΩt+inθ

where W is path above all singularities so that 〈y(θ, t)〉=0 at t<0.

〈y(θ, t)〉 =
∑

k

Res


∑

n

−i ẏn0

∫
C

dωβ
ρ(ωβ)

ω2
β−ω̂2

H(Ω)




Ω=Ωk

e−iΩk t+inθ,

where Ωk is kth zero of H(Ω).

1 The poles of H(Ω) gives all waves excited

2 A pole with Im Ωk > 0 implies growing

3 A pole with Im Ωk < 0 implies damping

4 ∴ it is essential to solve H(Ω) = 0, which is known as

the dispersion relation.
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Dispersion Relation

H(Ω) = 1 + 2ω̄(∆ω)0

∫

C

dωβ
ρ(ωβ)

ω2
β − ω̂2

= 0 with ω̂ = Ω− nω0

Since ±ω̂ are far apart, can linearize to get

1 + (∆ω)0

∫

C

dωβ
ρ(ωβ)

ωβ − Ω + nω0
= 0

It gives excitation freq. Ω as a fcn. of wave number n,

hence called dispersion relation.

Can also write 1 + (∆ω)0

∫

C

dωβ
ρ(ωβ)

(ωβ − ω̄)− (Ω− nω0 − ω̄)
= 0

When spread in ωβ is small, ωβ−ω̄ → 0, get (∆ω)0 = Ω−nω0−ω̄,

which is just betatron freq. shift in the absence of Landau damping.

Note that this is not a coherent shift.

It is the shift driven by the wake or imp. — called dynamic shift

actually dynamic shift = coherent shift − incoherent shift
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Coherent, Incoherent, and Impedance Forces

Vertical force on a beam particle
d2y

ds2
+
ν2

0y

R2
y =

F (y , ȳ)

γmv 2
.

For small offsets,
d2y

ds2
+
ν2

0y

R2
y =

1

γmv 2

(
∂F

∂y

∣∣∣∣
ȳ=0

y +
∂F

∂ȳ

∣∣∣∣
y=0

ȳ

)
.

For center of mass,
d2ȳ

ds2
+
ν2

0y

R2
ȳ =

1

γmv 2

(
∂F

∂y

∣∣∣∣
ȳ=0

+
∂F

∂ȳ

∣∣∣∣
y=0

)
ȳ .

Thus ∆νy inc ∝
∂F

∂y

∣∣∣∣
ȳ=0

∆νy coh ∝
∂F

∂y

∣∣∣∣
ȳ=0

+
∂F

∂ȳ

∣∣∣∣
y=0

But Z⊥1 ∝
∂F

∂ȳ

∣∣∣∣
y=0

,

∴ Impedance Shift = Coherent Shift− Incoherent Shift.

↑ also called dynamic shift
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ȳ=0

y +
∂F

∂ȳ
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ds2
+
ν2

0y

R2
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ȳ=0

+
∂F

∂ȳ
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ȳ

)
.

For center of mass,
d2ȳ
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∆νy coh: result of all forces acting on center of beam at ȳ .

Z⊥1 : force generated by center motion of beam on individual particle.

Example: a beam between two infinite horizontal conducting planes.

Horizontal translational invariance =⇒ horizontal image force acting

at center of beam vanishes independent of whether beam is oscillating

horizontally or vertically. ∴ ∆νx coh = 0, but Z H
1 6= 0.

Single bunch tune shift measurement at CERN SPS. [5]

0 2 4 6 8 10 0 2 4 6 8 10

Bunch Intensity 1010 Bunch Intensity 1010
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Decoherence vs Landau Damping

Start with a displacement.

Because particles oscillate with slightly different frequencies,

very soon oscillations will not be in phase,

and average displacement decays to zero.

For decoherence, we do not need any force.

This problem is easy to solve.

However, let’s go back to our derivation, and see what happen when the
force is zero.

〈y(θ, t)〉 =
∑

n

∫

W

dΩ
ẏn0

∫
C

dωβ
ρ(ωβ)

ω2
β−ω̂2

2πH(Ω)
e−iΩt+inθ

〈y(θ, t)〉 =
∑

n

ẏn0

2π
e in(θ−ω0t)

∫

C

dωβ

∫

W

d ω̂
ρ(ωβ)

ω2
β − ω̂2

e−iω̂t

We integrate over ω̂ by picking up the residue of two poles.
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For t ≥ 0, 〈y(θ, t)〉 =
∑

n

ẏn0

2π
e in(θ−ω0t)

∫
dωβ

ρ(ωβ)

ωβ
sinωβt

We see that at the impact of a velocity,

the average displacement increases from zero to a maximum,

then decays −→ decoheres.

Want to check result at t = 0. For t ≥ 0,

〈ẏ(θ, t)〉 =
∑

n

ẏn0

2π
e in(θ−ω0t)

∫
dωβρ(ωβ) cosωβt

−
∑

n

inω0ẏn0

2π
e in(θ−ω0t)

∫
dωβ

ρ(ωβ)

ωβ
sinωβt.

Thus 〈ẏ(θ, t)〉 =
∑

n

ẏn0

2π
e inθ = ẏ(θ, 0) as required.

Notice that Landau damping requires a dynamic force.

Here, it is the wake force or impedance.

So decoherence is kinematic, while Landau damping is dynamic.
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A Solvable Example [9]

Consider the Lorentzian distribution ρ(ωβ) =
S 1

2

π

1

(ωβ − ω̂)2 + S 1
2

2

∫

C

ρ(ωβ)dωβ
ω2
β−ω̂2

=
S 1

2

π

∫

C

dωβ
(ωβ−ω̂)(ωβ+ω̂)(ωβ−ω̄+iS 1

2
)(ωβ−ω̄−iS 1

2
)

Can choose closing contour
at top or bottom of ωβ-plane.

Pick up only 2 poles.

The moral of this example is easy
integration.

C
ω̄−iS1

2

−ω̄+iS1
2

ω̂

−ω̂

∫

C

ρ(ωβ)dωβ
ω2
β − ω̄2

= −
ω̂ + iS 1

2

ω̂(ω̂−ω̄+iS 1
2
)(ω̂+ω̄+iS 1

2
)

H(Ω) = 1 + 2ω̄(∆ω)0

∫

C

ρ(ωβ)dωβ
ω2
β−ω̄2

=
ω̂(ω̂−ω̄+iS 1

2
)(ω̂+ω̄+iS 1

2
)− 2ω̄(∆ω)0(ω̂+iS 1

2
)

ω̂(ω̂−ω̄+iS 1
2
)(ω̂+ω̄+iS 1

2
)
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〈y(θ, t)〉 =
∑

n

ẏn0

∫

W

d ω̂

2π

(ω̂+iS 1
2
)e−i(ω̂+nω0)t+inθ

ω̂(ω̂−ω̄+iS 1
2
)(ω̂+ω̄+iS 1

2
)− 2ω̄(∆ω)0(ω̂+iS 1

2
)

Approximation: freq. shift (∆ω)0 and freq. spread S 1
2

are small

|(∆ω)0|
ω̄

� 1 and
S 1

2

ω̄
� 1

denom= ω̂
[
ω̂− ω̄−(∆ω)0 +iS 1

2

][
ω̂+ ω̄+(∆ω)0 +iS 1

2

]
+
[
−2iω̄(∆ω)0S 1

2
+ω̂(∆ω)2

0

]

≈ ω̂
[
ω̂−ω̄−(∆ω)0 +iS 1

2

][
ω̂+ω̄+(∆ω)0 +iS 1

2

]

3 solutions:

Ω =





nω0

nω0 +ω̄+(∆ω)0−iS 1
2

nω0−ω̄−(∆ω)0−iS 1
2

=





nω0

nω0 +ω̄+(∆ω)0R−i(S 1
2
−(∆ω)0I)

nω0−ω̄−(∆ω)0R−i(S 1
2

+(∆ω)0I)

1st soln. consists of higher-harmonic revolution waves

without freq. perturbation and is of not much interest.

2nd and 3rd are the same physically.

We will show their combined result.
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〈y(θ, t)〉 =
∑

n

−i ẏn0

2ω̄
e inθ−i [nω0+ω̄+(∆ω)0R ]te

−[S 1
2
−(∆ω)0I ]t

with (∆ω)0R =
ecI0Im Z⊥1 (Ω)

2ω̄E0T0
, (∆ω)0I =−ecI0Re Z⊥1 (Ω)

2ω̄E0T0
, Ω=nω0 +(∆ω)0

Distr. spread S 1
2

always provides damping, but (∆ω)0I ≷0 grows/damps.

Since Re Z⊥1 (Ω) ≷ 0 for Ω ≷ 0,

damping/growth is related to Ω ≷ 0 or fast/slow waves.

If S 1
2
≷ |(∆ω)0I |, slow waves damp/grow.

This mechanism is called Landau Damping.

Note that even 〈y(θ, t)〉 is damped to zero,

displacements of individual particles are not. ←−important

In practice, any small initial ripples of the beam center will be damped

if S 1
2
> |(∆ω)0I | , so that Re Z⊥1 cannot drive individual displacements.

In other words, Landau damping nips any instability growth in the bud.
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Stability Region Plot [10]

Spread in particle distribution provides Landau damping.

For a given particle distribution ρ(ωβ), wish to know what Z⊥1

will ensure beam stability — the so-called stability contour.

For this, need to solve the dispersion relation

1 + (∆ω)0

∫

C

dωβ
ρ(ωβ)

ωβ − Ω + nω0
= 0 ω̂ = Ω− nω0

We believe the HWHM provides a better description of distribution

than half width or rms width.

Want to express all variables in terms of S 1
2
.

Let u =
ω̂ − ω̄

S 1
2

, v =
ωβ − ω̄

S 1
2

, ρ̂(v) = S 1
2
ρ(ωβ) so that

∫
ρ̂(v)dv = 1

We are interested in the stability contour

or the threshold of instability. So let i Im ω̂ −→ +iε with ε = 0+

The same as letting u −→ u + iε with u real.
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Dispersion relation becomes 1 +
(∆ω)0

S 1
2

∫ ∞

−∞

ρ̂(v)dv

v − u − iε
= 0

or 1 +
(∆ω)0

S 1
2

[
℘

∫ ∞

−∞

ρ̂(v)dv

v − u
+ iπρ̂(u)

]
= 0

1 Given ρ̂(v) and pick a u

2 Solve for
Re(∆ω)0

S 1
2

and
Im(∆ω)0

S 1
2

3 Vary u and trace out the contour.

One point on the contour is easy to
solve. When u = 0, ℘

∫
= 0 −→

Re(∆ω)0

S 1
2

= 0,
Im(∆ω)0

S 1
2

= − 1

πρ̂(0)

This is intercept on vertical axis and
is roughly −1/

√
3 −1.0 −0.5 0.0 0.5 1.0

   Re(∆ω)0/S1/2

−1.0

−0.5

0.0

0.5

1.0

  I
m

(∆
ω

) 0/S
1/

2

(1)Lorentzian
(2)Rectangular
(3)Elliptical

(4)Parabolic

(1)

(2)
(3) (4) (5)

(6)

(5)Cosine−sq.
(6)Gaussian

Simplified stability criterion
∣∣(∆ω)0

∣∣∣ < 1√
3

S 1
2
F⊥

F⊥=1.103, 1, 1.040, 1.068, 1.097, 1.174 for distr’s (2), (3), (4), (5), (6)
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Generalized elliptical distribution

ρ̂(v) =
An

an

(
1− v 2

a2
n

)n

H(an − v)

By choosing various n’s can

reproduce nearly all distributions,

from rectangular to Gaussian.

Can approximate cosine-square
with n = 2.36

Choose An =
Γ
(
n + 3

2

)
√
πγ(n+1)

for normalization.

Choose an =
1√

1−2−1/n

so that v =1 is the HWHM.

Trans. stability form factor

F⊥ =

√
3an
πAn

−2 −1 0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

rectangular
elliptical
parabolic
tri−elliptical
cosine−square
Gaussian

n distribution F⊥
0 rectangular 1.103
1
2 elliptical 1.000
1 parabolic 1.040
3
2 tri-elliptical 1.068
2.36 cosine square 1.097
∞ Gaussian 1.174

K.Y. Ng (Fermilab) Selected Topics in Microwave Instabilities and Linacs June, 2013 47 / 142



Tune Spread Dependence on Momentum Spread
Spread in betatron tune can come from mom. spread: ∆ν = ξδ

However, rev. freq. also has a spread from mom. spread: ∆ω0 = −ηω̄0δ

Recall the dispersion relation 1 + (∆ω)0

∫
ρ(ωβ)dωβ

ωβ − (Ω−nω0)− iε
= 0

ωβ−(Ω−nω0) = (n+ν)ω0−Ω =
[
(n+ν)ω0− (n+ν)ω0

]
−
[
Ω−(n+ν)ω0

]

= ∆
[
(n+ν)ω0

]
−∆Ω

∆ [(n+ν)ω0] = ξδω̄0 − (n + ν)ηω̄0δ =
[
ξ − η(n + ν̄)

]
δω̄0 ≡ ξeffδω̄0

↑ ↑
chromaticity eff. chromaticity

Let v =
δ

δ 1
2

, u =
∆Ω

ξeff ω̄0δ 1
2

Dispersion relation becomes 1 +
(∆ω)0

ξeff ω̄0δ 1
2

∫
ρ̂(v)dv

v − u + jε
ξeff ω̄0δ 1

2
↔S 1

2

Thus the stability contour will be exactly the same as before

and the simplified stability criterion is∣∣∣∣∣
(∆ω)0

ξeff ω̄0δ 1
2

∣∣∣∣∣ <
1√
3

F⊥ or
∣∣Z⊥1

∣∣ < 4πβE0ξeff√
3eI0β⊥

δ 1
2
F⊥
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Transverse Oscillation of a Point Bunch [10]

A bunch will only be affected by its own wake turn-after-turn ago.

ÿ(t) + ω2
βy(t) = − Ne2

γmC0

∞∑

k=1

〈y(t−kT0)〉W1(−kT0)

Solve as initial-value problem in the freq. space by
∫ ∞

0

dt

2π
e iΩt × · · ·

For the upper Ω-plane (Im Ω > 0),

L.S. =
(
−Ω2 + ω2

β

)
ỹ(Ω) +

ẏ0 − iΩy0

2π
with ỹ(Ω) ≡

∫ ∞

−∞

dt

2π
e iΩty(t)

R.S.=− Ne2

γmC0

∫
dt

2π
e iΩt

∑

k

[∫
dωe iω(t−kT0)〈ỹ(ω′)〉

][
−iβ

∫
dω′

2π
Z⊥1 (ω′)e iω′kT0

]

∑

k

e−iωkT0+iω′kTo = 2π
∑

p

δ(ω′T0−ωT0−2πp) =
2π

T0

∑

p

δ(ω′−ω−pω0)

∫
dt e iΩt−iωt = 2πδ(ω − Ω) Next integrate over dω′ and dω

For Im Ω > 0,
(
−Ω2 + ω2

β

)
ỹ(Ω)− ẏ0 − iΩy0

2π
=

iβNe2W
γmC0

〈ỹ(Ω)〉
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For the upper Ω-plane (Im Ω > 0),

(
−Ω2 + ω2

β

)
ỹ(Ω)− ẏ0 − iΩy0

2π
=

iβNe2W
γmC0

〈ỹ(Ω)〉 ≡ −2ω̄(∆ω)0〈ỹ(Ω)〉, where

(∆ω)0 = − iβNe2W
2ω̄γmC0

is freq. shift without Landau damping

and W =
1

T0

∑

p

Z⊥1 (pω0 + Ω)

So problem is the same as that of

transverse oscillation of an unbunched beam.

The dispersion relation is exactly the same.

Only difference is the (∆ω)0.
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Longitudinal Oscillation of an Extremely Short Bunch
Let z be position of a particle ahead of some synchronous particle.
dz

ds
= −ηδ, dδ

ds
=

ω2
s

ηv 2
z − Ne2

β2E0C0

∑

k

W ′
0

[
−kC0−〈z(s−kC0)〉+z(s)

]

Here we use s as indep. variable, because time for a rev. varies

due to syn. oscillation. v is velocity of synchronous particle.

d2z(s)

ds2
+
ω2
s

v 2
z(s) =

ηNe2

β2E0C0

∑

k

W ′
0

[
−kC0−〈z(s−kC0)〉+ z(s)

]

≈ − ηNe2

β2E0C0

∑

k

[
〈z(s−kC0)〉 − z(s)

]
W ′′

0 (−kC0)

↑
pot.-well distortion, neglect here

Solve as initial-value problem in freq. space via
∫ ∞

0

ds

2π
e iΩs/v × · · · .

Im Ω>0→ ω2
s−Ω2

v 2
z̃(Ω)+

z ′0−iΩz0/v

2π
=− iηNe2W

β2E0C 2
0

〈z̃(Ω)〉≡−2ω̄s(∆ω)0

v 2
〈z̃(Ω)〉

where (∆ω)0 =
iηNe2W

2ω̄sβ2E0T 2
0

is freq. shift without Landau damping

and W =
∑

p(pω0 + Ω)Z
‖
0 (pω0 + Ω) −∑p pω0Z

‖
0 (pω0) ← potential well

distortion
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Robinsion Instabilities [16]

When imp. is a narrow resonance centered at ωr near qω0, only 2 syn.
sidebands at qω0 ± ωs contribute.
Without any spread in ωs or Landau damping, growth rate is
1

τ
= Im(∆ω)0 =

ηNe2ωr

2ωsβ2E0T 2
0

[
Re Z

‖
0 (qω0 + ωs)−Re Z

‖
0 (qω0 − ωs)

]

Above transition (η > 0), (a) is anti-damped and (b) is damped.
Need to detune ωr to lower than qω0 for stability.
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It is clear that growth rate will be severe when resonance is very narrow.

Example, η = 0.03, N = 1011, E0 = 1 GeV, ω0 = 9.4× 106 s−1, νs = 0.01,

Rs = 1 MΩ, hω0/2π = 360 MHz, Q = 2000. If rf is detuned to
(hω−ωr )/2π=−10 kHz,

growth time is τ =1.2 ms, which is rather strong.

For stability, detune lower above transition,

detune higher below transition.

Electron rings has rf cavities of relatively higher Q, and larger η;

Robinson stability is an important issue.

Proton rings have rf cavities of relatively lower Q and smaller η;

Robinson instability will be relative mild, even if cavities are

detuned incorrectly in the wrong direction.

For example, people were uncertain about the detuning of every rf cavity
in the Tevatron at some time.

K.Y. Ng (Fermilab) Selected Topics in Microwave Instabilities and Linacs June, 2013 53 / 142



Transverse Robinson Instabilities
Recall that for a point bunch, the soln. of equation of motion is:

For the upper Ω-plane (Im Ω > 0),

(
−Ω2 + ω2

β

)
ỹ(Ω)− ẏ0 − iΩy0

2π
=

iβNe2W
γmC0

〈ỹ(Ω)〉 ≡ −2ω̄(∆ω)0〈ỹ(Ω)〉, where

(∆ω)0 = − iβNe2

2ω̄γmC0T0

∑

p

Z⊥1 (pω0 + Ω)

So in the absence of Landau damping or spread in ωβ,

Im(∆ω)0 is the growth rate.

When the impedance is a narrow resonance near qω0,

only the sidebands (q ± [ν])ω0 contribute.

Again stability is decided by whether the resonance peak ωr is
above or below qω0.

growth rate is
1

τ
= Im(∆ω)0 =

βNe2c2β⊥
2E0C 2

0

[
Re Z⊥1 (pω0−ωβ)−Re Z⊥1 (pω0 +ωβ)

]

↑ ↑
slow wave fast wave
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Longitudinal instabilities an unbunched beam [11]

In the last 3 cases, there is an intrinsic oscillation to start with.

However, for an unbunched beam there is no syn. oscillation to start with

The derivation of dispersion relation and stability criterion will be very
much different.

We start with a beam with uniform linear density λ0 Let us envision a
small perturbation λ1 of harmonic n and collective freq. Ω:

λ(θ, t) = λ0 + λ1e−i(Ωt−nθ).
λ1

λ0
� 1

Rev. freq. will also be perturbed:
ω(θ, t) = ω0 + ω1e−i(Ωt−nθ).

Continuity eq.:
∂λ

∂t
+

∂

∂θ
(λω) = 0 −→ ω1 =

(
Ω

n
− ω0

)
λ1

λ0
.

The current I = λω is also perturbed to

I (θ, t) = I0 + I1e−i(Ωt−nθ) with I1 =
Ωλ1

n
.

{ just linear density λ1 ×
angular velocity Ω/n

∴ λ1 leads to the determination of ω1 and I1.
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I1 interacts Z
‖
0 , changes E by

dE

dt
=−eI1Z

‖
0

T0
, then ω by

dω

dE
=− ηω0

β2E
.

Riding on a particle, one sees only the rev. freq. change

due to energy change, or
dω

dt
=
∂ω

∂t
+
∂ω

∂θ

∂θ

∂t
=

dω

dE

dE

dt
.

Thus
dω

dt
= −i(Ω−nω0)ω1 =

ηeI1Z
‖
0

2πβ2E0
ω2

0, ω1 =

(
Ω

n
−ω0

)
λ1

λ0

Physical meaning:
1 I1 interacts with Z

‖
0 to give V = I1Z

‖
0 , creating n buckets along the ring.

2 Inside a bucket, executes syn. freq.: ω2
s =

iηneI1Z
‖
0

2πβ2E0
ω2

0 . −ηheVRFcosφs
2πβ2E0

3 Voltage and current are 90◦ out of phase, therefore the factor i

4 Particle inside a bucket moves azimuthal angle ∆θ =
π

n
in ∆t =

π

ωs
,

or a perturbed rev. freq. ∆ω ∼ ωs

n
e−iωs t bucket width 2π/n .

5 Thus
dω

dt
= −i

ω2
s

n
.

From above, (Ω−nω0)2 =
inηeI1Z

‖
0

2πβ2E0

λ0

λ1
ω2

0 =
inηeI0Z

‖
0

2πβ2E0
ω2

0.
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n
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π
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in ∆t =

π

ωs
,
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n
e−iωs t bucket width 2π/n .

5 Thus
dω

dt
= −i

ω2
s

n
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From above, (Ω−nω0)2 =
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Finally (∆ω)2
0 ≡ (Ω− nω0)2 =

inηI0Z
‖
0

2πβ2E0
ω2

0.

We identify (∆ω)0 as shift in rev. freq. due to Z
‖
0 in the absence of

Landau damping.

Dispersion relation is slightly different: 1− (∆ω)2
0

∫

C

ρ(ω0)dω0

(Ω− nω0)2
= 0.

Landau damping comes from variation of ω0 inside the unbunched beam.

Let v =
ω0 − ω̄0

S 1
2

, ρ̂(v) = S 1
2
ρ(ω0)

so that
∫
ρ̂(v)dv = 1 and v = 1 is at HWHM.

Further let u =
Ω/n−ω̄0

S 1
2

.

Dispersion relation becomes 1− (∆ω)2
0

n2S 1
2

2

∫

C

ρ̂(v)dv

(v − u)2
= 0.

Integration by parts: 1− (∆ω)2
0

n2S 1
2

2

∫

C

ρ̂′(v)dv

v − u
= 0.
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To obtain the stability contour, let u → u + iε, with u real and ε = 0+.

Then what needs to be solve is 1− (∆ω)2
0

n2S 1
2

2

∫

C

ρ̂′(v)dv

v − u − iε
= 0

Spread in ω0 usually comes from spread in momentum δ,

then S 1
2

= |η|ω̄0δ 1
2
.

Finally obtain 1− 2i sgn(η)

π

(
U + iV

) ∫ ρ̂′(v)dv

v − u − iε
= 0

with U + iV =
eI0

4|η|β2E0δ2
1
2

Z
‖
0 (nω̄0)

n
, v =

δ

δ 1
2

, u =
1

|η|δ 1
2

(
Ω

nω0
− 1

)

1− 2i sgn(η)

π

(
U + iV

) [
℘

∫
ρ̂′(v)dv

v − u
+ iπρ̂′(u)

]
= 0.

One point is easy to solve: ρ̂′(u) = 0 when u = 0

This is intercept on V -axis:

U = 0 and 1 +
2 sgn(η)V

π
℘

∫
ρ̂′(v)dv

v
= 0 (∆ω)2

0 =
inηI0Z

‖
0

2πβ2E0
ω2

0
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Stability Contours [12]

Stability plot for η < 0: most
contours cut V -axis at V =−1.

Simplified stability criterion∣∣∣∣∣
Z
‖
0

n

∣∣∣∣∣ <
4|η|β2E0

eI0
δ2

1
2
F‖

For generalized elliptical model

ρ̂(v)=
An

an

[
1− v 2

a2
n

]n
, F‖=

πa2
n

4n+2

For distributions with long tails,
system is stable below transition
if Z

‖
0 is pure capacitive.

As soon as transition is crossed,
capacitive imp. excites instability
because of small η
— negative-mass instability

−6 −4 −2 0 2 4 6
U=eI0Re(Z0

||
/n)/(4|η|β2

E0δ
2
1/2)

−2.5

0.0

2.5

5.0

7.5

10.0

V
=

−
eI

0I
m

(Z
0|| /n

)/(
4|

η|
2 E

0δ
2 1/

2)

From inside out
(1)Elliptical
(2)Parabolic

(4)Cosine−sq.

(6)Gaussian
(7)Lorentzian

(5)(1−v
2
/a4

2
)
4

(3)Tri−elliptical

n distribution F‖
1
2 elliptical 1.047
1 parabolic 1.047
3
2 tri-elliptical 1.061
2.36 cosine square 1.080
4 (1− v 2/a2

4)4 1.097
∞ Gaussian 1.133
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Comments

For Gaussian distribution, the stability contour can be integrated

in the closed form with F‖ =
π

4 ln 2
= 1.133. Stability criterion can

also be expressed neatly as

∣∣∣∣∣
Z
‖
0

n

∣∣∣∣∣ <
|η|β2E0

eI0
σ2
δ

Although for unbunched beam, criterion can be applied to

long bunches provided that (suggestion by Boussard) [14]

1. The perturbing wavelength λ1 � bunch length

2. Growth time τ � Ts , syn. period

3. Substituting average current I0 by peak local current Ipk.

Microwave instability is not catastrophic.

When instability occurs, bunch will be lengthened and mom. spread

increased so that stability is re-established.
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Since the growth is fast and stability becomes re-established,

it poses difficulty in observing the microwave signals.

If a network analyzer is used to view the bunch spectrum,

high-freq. signals will often not be observed,

because it takes time for the analyzer to process high freq. signals.

Analyzer must be set at a narrow freq. span or zero span,

and observe beam signal as a fcn. of time.

The freq. span is next set to an adjacent narrow freq. interval

and the observation repeated.

K.Y. Ng (Fermilab) Selected Topics in Microwave Instabilities and Linacs June, 2013 61 / 142



Microwave Signal Observation
Pick-up signals after injection in CERN ISR [13]

K.Y. Ng (Fermilab) Selected Topics in Microwave Instabilities and Linacs June, 2013 62 / 142



Determination of Z
‖
0 from Instability [14]

A very thick cable has to be used from beam monitor to network
analyzer, because signal decays over distance.

RF voltage lowered adiabatically =⇒ mom. spread will be reduced
gradually until stability criterion is violated.
Usually, it is hard to know the exact Vrf when it is low enough.

RF voltage turned off abruptly,
beam will be debunched. When
local mom. spread is small enough,
instability occurs.

RF cavity must be mechanically
shorted to avoid beam loading.

It is hard to determine exact time
when stability occurs.

Fig: CERN CPS, signals between
1.5 to 1.8 GHz, 2 ms/division
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Longitudinal Decoherence

Dispersion relation for microwave instability depends on

gradient of energy or frequency distribution,
df0(∆E )

d∆E
or

df0(∆ω0)

d∆ω0

Thus flat distribution −→ no Landau damping.

Is there longitudinal decoherence for a flat beam?

We study the response of an energy impulse to a beam at t = 0. [21]

At t = 0+, f (θ,∆E ; 0+) = f0(∆E − δ̂E cos kθ) = f0(∆E )− df0

d∆E
δ̂E cos kθ

A particle moves according to θ = θ0 + ω0t,

Perturbed distribution at time is f1(θ,∆E ; t) = − df0

d∆E
δ̂E cos(kθ − kω0t).

Perturbed part of current jumps from zero to

I1(θ, t)=
eN

2π

∫
ω0(∆E )f1(θ,∆E ;t) d∆E
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I1(θ, t) =−H(t)
eN δ̂E

2π

∫
df0

d∆E
ω0 cos(kθ−kω0t)d∆E

︸ ︷︷ ︸
↑ Response function

H(t)=

{
1 t>0
0 t<0

So longitudinal decoherence does depends on gradient of distribution.

Next introduce ∆ω0 = ω0 − ω̄0 and g0(∆ω0).

Then f0(∆E )d∆E = g0(∆ω0)d∆ω0

and
df0

d∆E
d∆E =

dg0

d∆E
d∆ω0 = − ηω̄0

β2E0

dg0

d∆ω0
d∆ω0

I1(θ, t) =
eNηω̄2

0 δ̂E

2πβ2E0

∫ ∞

−∞

dg0

d∆ω0

[
cos(kθ − kω̄0t) cos k∆ω0t

+ sin(kθ − kω̄0t) sin k∆ω0t
]
d∆ω0

If g0(∆ω0) is even,

I1(θ, t) =
eNηω̄2

0 δ̂E

2πβ2E0
sin(kθ − kω̄0t)

∫ ∞

−∞

dg0

d∆ω0
sin k∆ω0t d∆ω0.
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Long. decoherence of an energy disturbance of harmonic k = 2 and amplitude

a = δ̂E/σE = 0.4 in a coasting beam. First five plots are at ‘times’ ξ = 0+, 0.31,
0.62, 0.93, and 1.24. Shown in plots are equi-density curves at 0, ±0.5, ±1.0, ±1.5,
and ±2.0σE ’s. Right: Energy distribution recorded at θ = π, initial Gaussian
assumed. Bottom: perturbed current.

K.Y. Ng (Fermilab) Selected Topics in Microwave Instabilities and Linacs June, 2013 66 / 142



About the Plots

f (θ,∆E ; t) = f0

[
∆E − δ̂E cos

(
kθ − kω̄0t +

kηω̄0t

β2E0
∆E

)]

Normalized everything to the rms energy spread σE

f (θ,∆E ; t) = f0

[
ε− a cos(kθ + kξε)

]

where ε =
∆E

σE

, a =
δ̂E

σE

, ξ =
2πnησ̄E

β2E0

Equi-density curve at density x σ’s f0(x) is obtained by

solving for ε(θ) from ε− a cos(kθ + kξε) = x

Initial distribution: f0(x) =
1√
2π

e−x
2/2 ←− Gaussian assumed

Perturbed current: I (θ, ξ) =

∫ ∞

−∞
f0

[
ε− a cos(kθ + kξε)

]
dε
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Transition

For a particle in an accelerator ring, the period is T =
C

v

Relative to the synchronized particle,
∆T

T0
=

∆C

C0
− ∆v

v0

or
∆T

T0
=

(
α− 1

γ2

)
∆p

p0
= η

∆p

p0

Transition is crossed when frequency-slip parameter η = 0.

Above transition, velocity decreases as more energy is put in, as if the
mass is negative.

Space-charge force is repulsive. But above transition, it is attractive.
Particles tend to lump together at the same place.
This is called negative-mass instability.

Negative-mass instability is a type of microwave instability, which will
also result in emittance growth and even possible breakup of the bunch.

Instability occurs only when |η| is small (close to transition).

It is important to know the growth of emittance.
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Negative-Mass Instability

Growth rate without Landau damping at peak current Ip at the

revolution harmonic kc is G (kc , t) = ω0

(
ηekcZI Ip
2πβ2γE0

)1/2

where ZI is Im Z
‖
0

∣∣
spch

=
ZI

kc
=

Z0g

2βγ2

At low freq., geometric factor g → g0 = 1 + 2 ln
b

a
,

where a is beam radius and b is beam pipe radius.

Thus the growth rate increases linearly with harmonic kc .

But at high harmonic, g rolls off at high frequencies roughly like

g =
g0

1 + (kc/kc 1
2
)2

b

a
not too big, kc 1

2
≈ γR

(
1.6

b
+

0.52

a

)

Therefore ZI/kc is almost constant below kc 1
2

and the growth rate is
G (kc , t) ∝ kc .

With Landau damping, Hardt showed that the growth rate becomes
G (kc , t) ∝ kcg 2 with maximum at kcp = kc 1

2
/
√

3.
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Fermilab Old Main Ring

Fermilab Main Ring with a = 5 mm and b = 35 mm:

this corresponds to 77.6 GHz.

But cutoff frequency is ∼ 1.5 GHz.

Typical cycle: Growth of power spectral line is 1.5× 106 times at
77.6 GHz and 1.6 times at 1.5 GHz.

In Wei’s simulation, [22] the bunch was divided into bins with bin width
equal to the cutoff wavelength, so higher frequencies were not included.

Lee and Teng [23] were the first to demonstrate negative-mass
instability by simulating transition crossing in the Fermilab Booster.

They divided the bunch into cutoff wavelengths also.

Lee said that as the bins become smaller, the observed growth is larger.

But because of limited speed of computer in the old days, he could not
reduce bin size by too much.
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Schottky-Noise Model

Hardt [24] assumed that the seeds of the negative-mass growth come
from statistical fluctuations or Schottky noise of the finite number of
particles Nb within the bunch.

The growth across transition is to be derived analytically.

We measure rf phase offset ∆φ from the synchronous particle.

The bunch is supposed to have an expected smooth distribution F (∆φ),
which is normalized to 2∆̂φ, the total bunch length.

In other words,
1

2∆̂φ

∫
F (∆φ)d∆φ = 1.

The bunch is divided into M bins in the rf phase

Number of particles in m th bin is
NbF (∆φm)

M
.

Due to statistical fluctuation, the m th bin contains δNm extra particles.

Define a fluctuation step function: f (∆φ, t) =
δNm

∆N

where ∆N =
Nb

M
is average number of particles in a bin.
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Expand in a Fourier series f (∆φ, t) =
∞∑

kb=−∞
ckb(t)e i2πkb∆φ/(2∆̂φ)

where ckb(t) =
1

2∆̂φ

∫ ∆̂φ

−∆̂φ

f (∆φ, t)e−i2πkb∆φ/(2∆̂φ)d∆φ

In above, kb is bunch mode number, or number of wavelengths can
reside in the bunch.

We are using periodic boundary conditions. Therefore kb can be all
integers, positive and negative.

Relation of kb to harmonic number n or kc is
kb
kc

=
2∆̂φ

2πh
.

E
[
|ckb(0)|2

]
=

1

(2∆̂φ)2

∫ ∆̂φ

−∆̂φ

d∆φ

∫ ∆̂φ

−∆̂φ

d∆φ′E

[
δNmδNn

(∆N)2

]
e i2πkb(∆φ−∆φ′)/(2∆̂φ)

Since E
[
δNmδNn

]
= δmn ∆NF (∆φ),

E
[
|ckb(0)|2

]
=

1

(2∆̂φ)2

∫ ∆̂φ

−∆̂φ

F (∆φ)

∆N

2∆̂φ

M
d∆φ =

1

Nb

independent of mode number kb and the number of bins M,

otherwise model will be meaningless.
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The growth rate of each mode amplitude ckb can be derived from

Vlasov equation, and the evolution is |ckb(t)| ≈ 1√
Nb

exp

∫ t

0

G (kc , t)dt

Hardt’s assertion: no blowup if
∑

kb
|ckb(t0)|2 < 1

where t0 is end of nonadiabatic time or when stability is regained.

Comment 1: Critical condition implies
1

2∆̂φ

∫
|f (∆φ, t0)|2d∆φ = 1

or the average fluctuation in each bin is comparable to the average
number of particles in each bin.

However, below critical condition, there is still emittance blowup.

Comment 2: Perturbation expansion is

F (∆φ) + f (∆φ, t) = F (∆φ) +
∞∑

kb=−∞
ckb(t)e i2πkb∆φ/(2∆̂φ)

The perturbation is justified when
∑

kb
|ckb(t0)|2 < 1.

Remaining problem: compute G (kc , t) in the presence of Landau
damping.
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Dispersion Relation

To obtain growth rate in the presence of Landau damping, we need to
solve the dispersion relation

1 = −
(

∆Ω1

n

)2 ∫
dF (∆ω)/d∆ω

∆Ω/n −∆ω
d∆ω

where the frequency shift without Landau damping is

(
∆Ω1

n

)2

=
ieIlocalηω

2
0

[
Z
‖
0 (Ω)/n

]
spch

2πβ2γErest

What Hardt did:

1. Assume elliptical initial distribution

ψ(∆φ,∆E ) =
3

2π∆̂φ∆̂E

√
1− ∆φ2

∆̂φ
2 −

∆E 2

∆̂E
2

which becomes parabolic in linear distribution.

2. The region of maximum growth is center of bunch.

3. Substitute in dispersion relation, and solve for Im ∆Ω.
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Analytic Solution

Growth per unit x = t/Tc

G (n, x) = Tc Im Ω =
nηN

h

√
Sc | tanφs |βt
πγ̇tTc

1− x

ηNθ√
2ηNθ

x
− 1

Tc is nonadiabatic time
ηN ∝ g(n) is space charge parameter
Sc = πβ̂γ∆̂φ is long bunch emittance
θ is normalized half bunch length
φs is synchronous rf phase

The growth increases from zero at x = 0 to a maximum
and decreases to zero at x = ηNθ.

Integrated growth decrement

Eacc(n) =

∫ η
N
θ

0

G (n, x) dx =
nη2

Nθ

h

(
1− π

4

)√Sc | tanφs |βt
πγ̇tTc
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Recall that the space charge geometric factor g(n) rolls off at high freq.

Eacc(n) ∝ n
(

1 +
n2

n2
1
2

)2

The maximum occurs at n = nmax = n 1
2
/
√

3:

Emax =
3
√

3 n 1
2
η2
N0θ

16h

(
1− π

4

)√Sc | tanφs |βt
πγ̇tTc

Up to now, we have everything derived to compute the growth from
Schottky noise, i.e.,

f (∆φ, t) =
∞∑

kb=−∞
ckb(t)e i2πkb∆φ/(2∆̂φ)

|ckb(t)| ≈ 1√
Nb

exp

∫ t

0

G (kc , t)dt =
1√
Nb

exp Eacc(kb)

In a linac, we can follow this idea to compute the microwave instability
growth with Schottky noise as seeds.
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Final Touch of Transition Growth

Hardt’s blowup assertion:
∞∑

kb=−∞
|ckb(t0)|2 . 1 =⇒

∞∑

kb=−∞
exp
[
2Eacc(kb)

]
. Nb

Because of sharp peak at nmax = n 1
2
/
√

3, can transform
∑

kb
to an

integral and employ method of steepest descend for evaluation.

Final result: Ecrit ≈
1

2

[
ln Nb − ln

(
2kb 1

2

3

√
π

ln Nb

)]

Can introduce a parameter c: [25]

Eacc = cEcrit or

2.45 nmax

( rp
R

)2
(

E
5/2
restβ

7/6
t

h1/3ω
4/3
0 γ

2/3
t

)(
N2

bg 2
0 | tanφs |1/3

S5/2γ̇
7/6
t

)
= cEcrit

Thus c < 1 implies no blowup.
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Numerical Results

Bunch area Half bunch width Nb = 2.2× 1010 Nb = 4.0× 1010

(eV-s) (ns) c Ecrit c Ecrit

0.040 0.439 3.84 10.23 12.70 10.54
0.050 0.490 2.21 10.18 7.31 10.48
0.060 0.537 1.41 10.13 4.65 10.44
0.070 0.580 0.96 10.09 3.18 10.40
0.080 0.620 0.69 10.06 2.28 10.36
0.100 0.693 0.40 10.00 1.31 10.31
0.120 0.760 0.25 9.96 0.84 10.26
0.140 0.820 0.17 9.92 0.57 10.22
0.160 0.877 0.12 9.89 0.41 10.19
0.180 0.930 0.09 9.86 0.31 10.16
0.200 0.981 0.07 9.83 0.24 10.13
0.220 1.028 0.06 9.81 0.19 10.11
0.240 1.074 0.05 9.78 0.15 10.09

Critical parameter c for negative-mass instability for a proton bunch in the
Fermilab Main Ring with Nb = 2.2× 1010 or 4.0× 1010 particles.
The ramp rate across transition is γ̇t = 90.0 s−1.
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Ramp rates across transition:
γ̇t = 90.0 s−1 Main Ring
γ̇t = 161.1 s−1 Main Injector
γ̇t = 406.7 s−1 Booster
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Growths at Cutoff and High Frequencies

At cutoff freq., growth rate small but seeds from beam are large.

At high freq., growth rate huge but seeds from Schottky noise tiny.

So which one gives higher final growth in amplitude or power.

We analyze this problem analytically.

Results are given for the old Fermilab Main Ring.

γ̇t Nb Initial Bunch Emittance Final Power Spectrum of Fluctuation
(s−1) (1010) (eV-s) at ncutoff at nmax sum

90 2.2 0.05 3.70 1.50× 109 4.03× 1010

90 2.2 0.06 2.21 1.08× 102 3.97× 103

90 2.2 0.07 1.67 1.19× 10−2 5.74× 10−1

90 2.2 0.08 1.41 4.86× 10−5 2.93× 10−3

90 2.2 0.09 1.26 1.41× 10−6 1.06× 10−4

120 4.0 0.06 7.44 4.37× 1018 1.00× 1020

120 4.0 0.07 3.80 1.94× 109 5.83× 1010

120 4.0 0.08 2.54 4.40× 103 1.67× 105

120 4.0 0.09 1.95 1.02× 100 4.76× 101

120 4.0 0.10 1.64 3.57× 10−3 2.00× 10−1
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Difficulties in Simulation

For Fermilab Main Ring, half-value space-charge roll-off harmonic n 1
2

corresponds to 134 GHz.

In simulations need bin size 1/(2× 134) = 0.00373 ns.

RF wavelength or bucket width 18.8ns −→ need at least 4096 bins.

Simulation results across transition using ESME. [26]
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-80
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E
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  (
M
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0

512 bins

20K macroparticles 160K macroparticles

Because space charge force ∝ gradient of distribution. To maintain
same accuracy, 3-in-1 rule says that macroparticle number must increase
by 23 when bin width is reduced by a factor of 2. [27]

Thus tracking time will increase by a factor of 24.
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Right Amount of Schottky Noise

In simulation of microwave instability, there is usually ample time for
instability to develop to saturation. Therefore, we do not care so much
about the size of the initial excitation or seed of the growth.

Across transition, however, the bunch is negative-mass unstable only for
a short time until the slip factor η becomes large enough to provide
enough Landau damping.

This time is typically of the order of the nonadiabatic time, about 3 ms
for the Fermilab Main Ring. Therefore right amount of seeds is very
important.

Relative size of Schottky noise ∝ 1√
NM

, where NM is no. of

macroparticles.

But the right amount of Schottky noise is ∼ 1√
Nb

, where Nb ∼ 2× 1010.

Since it is impossible to use so many particles in simulation, most
reported simulations across transition are incorrect.
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Low-Discrepancy Sequence [28]

Since we must use macroparticles of number much less than number of
the microparticles, Schottky noise is very much larger.
But if we populate the macroparticles in more orderly way, Schottky
noise can be reduced.
This way of population is according to a low-discrepancy sequence.
Population of 50 particles randomly (left) and according to Hammersley
sequence (right).

Fluctuation of N particle becomes O(1) instead of O(
√

N).
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Population of 10,000 particles:

random low-discrepancy

Relative noise level:
√

N

N
= 3.2× 10−3 1

N
= 1× 10−5
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Improvement with Hammersley Sequence

With Microparticles With Macroparticles
Hammersley Sequence

average no.
per bin ∆N =

Nb

M
∆NM =

NM

M

fluctuation
function f (∆φn) =

δNn

∆N
f (∆φn) =

δNn

∆NM

Expectation
of errors E (δNnδNm) = δnm∆NF (∆φn) E (δNnδNm) = δnm

E
(
|ckb(0)|2

)
=

1

Nb
E
(
|ckb(0)|2

)
=

1

M(∆NM)2
=

M

N2
M

Nb is no. of microparticles, NM is no. of macroparticles

Thus number of macroparticles required for the same Schottky noise

is NM = (MNb)
1
2

For Fermilab MR, NM ∼ 2.4 to 3.6× 106, instead of Nb = 2.2× 1010
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Two Difficulties

Formerly E
[
f 2(∆φm, 0)

]
= E

[
δN2

m

∆N2

]
=

F (∆φm)

∆N
=

M

Nb
F (∆φm)

Now E [f 2(∆φm, 0)] =
1

∆N2
M

=
M2

N2
M

which is not proportional to F (∆φm).

Difficulty 1: Thus relative fluctuations in bins have changed.

Difficulty 2: Fluctuation of particles may change in time.

Because of space charge, rf bucket will be modified.

Usual way of population is to populate as if no space charge.

Then turn on space charge and let particles fit the rf bucket

after a number of synchrotron oscillations.

But synchrotron tune is amplitude dependent.

Try simulation of 2× 105 particles in 20 bins of equal size.

Assume syn.tune to decrease linearly by 1% from bunch’s center to edge.
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Distribution is projected
onto time or phase axis.

Number of particles in
excess of a smooth
Gaussian is recorded for
each bin

Result: rms fluctuation
starts from 7,
increases rapidly
to 20 after 20 turns,
and 50 after 100 turns.

August 30, 2005 20:42 WSPC/Book Trim Size for 9in x 6in book

742 Instabilities Near and Across Transition

Fig. 16.11 Plot of rms fluc-
tuation of excess particles per
bunch versus number of syn-
chrotron rotations, showing
the rapid loss of Hammers-
ley statistics and restoration
to randomness.

where nZ denotes the revolution harmonic of the impedance. The beam particles

will travel along their elliptical trajectories inside the bucket as synchrotron

oscillations driven by the impedance. If the height of the bucket is less than

the energy spread of the bunch, there will not be any extra energy spread and

the bunch will appear to be stable. On the other hand, if the height of the

bucket is larger than the energy spread of the bunch, the bunch particles will

have to travel outside the original energy boundary of the bunch, giving rise to

an emittance growth as a result of eventual filamentation. In fact, this is just

another way of expressing the Keil–Schnell criterion. [26]

Here, we want to make the conjecture that this self-bunching bucket height

determines the final energy spread of the bunch. Inside this bucket, the angular

synchrotron frequency is given by

ωs =

(
nZηIpkZ

‖
0

2πβ2γErest

) 1
2

ω0. (16.192)

Since the slip factor η is changing rapidly at transition, we substitute, assuming

constant ramping,

η

E0
=

2γ̇t
γ4tErest

t. (16.193)

If we denote by φsyn the angle of synchrotron rotation in the longitudinal phase

space, we have ωs = dφsyn/dt. Integrating Eq. (16.192), we obtain the time to

reach a quarter of a synchrotron oscillation (Δφsyn = π/4) from the moment of

Thus the advantage of a smaller noise level by using a Hammersley
sequence can be lost rapidly when particles are shuffled.

Care must be taken and many tests have to be made when such
population is used.
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Undulator Radiation [29, 30, 31]

Consider a planar undulator
with sinusoidal magnetic field in
y -direction.
Suppose undulator period is λu,
magnetic field is
By (z) = B0 sin kuz

Bx = Bz = 0 with ku =
2π

λu

Figure 3.1: Configuration for undulator radiation.

We change the independent variable from t to z with

dt =
dz

vz
≈ dz

c
, (3.4)

and arrive at

x′′ = − eB0

γmc
sin(kuz). (3.5)

Since γ is a constant in a static magnetic field,

x′ =
eB0

γmcku
cos(kuz) ≡

K

γ
cos(kuz), (3.6)

where
K = eB0/(mcku) = 0.94B0[Tesla]λu[cm] (3.7)

is the well-known dimensionless deflection parameter (undulator parameter).
Integrating again over z, we obtain

x =
K

γku
sin(kuz). (3.8)

Hence, K/γ characterizes the deflection angle in an undulator.

23

Electron motion mγ
d2x

dt2
= e(vyBz − vzBy ) = −eB0c sin kuz

Changing t to z and assume vz ≈ c, x ′′ = − eB0

γmc
sin kuz

Since γ is constant in a static magnetic field,

x ′ =
eB0

γmcku
cos kuz ≡ K

γ
cos kuz , x =

K

γku
sin kuz

where K =
eB0

mcku
= 0.9337B0[Tesla]λu[cm],

K

γ
∼ deflection angle

is the dimensionless deflection parameter or undulator parameter
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Undulator Radiation

Figure 3.2: Illustration of resonant condition in an undulator.

• K � 1 → wiggler (trajectory angle � 1/γ).

• K ∼ 1 → undulator (the whole trajectory remains within 1/γ).

3.2 Spectral-Angular Characteristics

Imagine electrons emit radiation at the beginning of each undulator period.
An observer far away in ψ direction would see a different period λ1(ψ) as
shown in Figure 3.2 Since AA′′ is the distance light travels while the electron
moves along the arc length ÃB,

λ1(ψ)

c
=
ÃB

v
− AA′

c
, (3.9)

where

ÃB =

∫ λu

0

dz
√

1 + (x′)2 ≈
∫ λu

0

dz

(
1 +

x′2

2

)

=

∫ λu

0

dz

[
1 +

K2

2γ2
cos2(kuz)

]
= λu

(
1 +

K2

4γ2

)
, (3.10)

and

AA′ = λu cosψ ≈ λu

(
1 − ψ2

2

)
, (3.11)

Equation (3.9) becomes

λ1(ψ)

c
=
λu
c

[
1 +K2/(4γ2)

β
−
(

1 − ψ2

2

)]

≈λu
c

1 +K2/2 + γ2ψ2

2γ2
. (3.12)

24

Electron moves along arc length ÃB, radiation along straight line AA′.
Their time difference is one radiation wavelength λ1/c.

λ1

c
=

ÃB

v
− AA′

c

with ÃB =

∫ λu

0

dz
√

1 + x ′2 ≈
∫ λu

0

dz

[
1 +

K 2

2γ2
cos2 kuz

]
= λu

(
1 +

K 2

4γ2

)

and AA′ = λu cosψ ≈ λu
(

1− ψ2

2

)

Get
λ1(ψ)

λu
=

1 + K 2/4γ2

β
−
(

1− ψ2

2

)
≈ 1 + K 2/2 + γ2ψ2

2γ2
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Example λu = 5 cm, B0 = 0.35 T, K = 0.934× 0.35× 5 = 1.6

At E = 5 GeV, λ1(0) = 5.7 Å

For one electron, emission at one undulator magnet is in phase with
emission at the next magnet. Thus for N undulator periods, emission
adds up in phase.

Figure 3.3: Temporal and spectral shapes of undulator radiation.

Thus, the radiation wavelength seen by the observer is much shorter. (This is
nothing but the time squeezing effect!) The subscript 1 is for the fundamental
radiation wavelength, and it can be generalized to harmonic emissions. The
fundamental radiation frequency is

ω1(ψ) =
2πc

λ1(ψ)
= cku

2γ2

1 +K2/2 + γ2ψ2
, (3.13)

and the photon energy is h̄ω1(ψ). For example, say λu = 5 cm, B0 = 0.35
Tesla, K = 0.94 × 0.35 × 5 = 1.6, electron energy Ee = 5 GeV, then

λ1(0) =
5 cm × [1 + 1.62/2]

2 × 108
= 5.7 Å. (3.14)

Since an undulator with Nu periods generates a wave train with Nu cycles,
the spectrum of the undulator radiation is peaked around ω1(ψ) at a given
observation angle ψ, with an intrinsic bandwidth

∆ω

ω1
=

∆λ

λ1
∼ 1

Nu
. (3.15)

This is illustrated in Fig. 3.3.
As the observation angle ψ increases from 0, the wavelength is “red”

shifted because

λ1(ψ) − λ1(0)

λ1(0)
=

γ2ψ2

1 +K2/2
=

λu
2λ1(0)

ψ2 > 0. (3.16)

25

However, emission from one electron usually is not in phase from
that of other electrons, unless they are within λ1/2.

Thus of beam is microbunched in wavelength of λ1/2, electrons within
each bunchlet will emit in phase, or emission will be coherent.
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Pendulum Equation

Emission freq depends on γ.
which has a spread in beam.

Thus there is a spread in λ1.

In presence of a laser beam of
wavelength λ1, electrons will
be driven into synchrotron
oscillation in buckets setup by
E field of laser.

This pendulum motion is first
discovered by Colson. [32]
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Electron interacts with E of laser with power gain ~E · ~v .

This has to be a loss in order intensity of laser is increases.

This can be accomplished to offsetting initial energy of electron beam.

In 1
4 of syn. period, beam will point in γ -direction and narrow in

z -direction. Emission mostly coherent and power is peaked.
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3 Types of FEL

1. Mirrors at right position
so that reflected emission
wave is in phase with
undulator.
Good for low freq only,
because there are no high
freq mirrors.

2. There is an input laser
pulse that induces stimulus
emission at undulator, and
microbunches electron
beam.

3. Electron beam is
microbunched by emission
wave — called SASE.

Figure 4.3: Schematic of three FEL operating modes.

35
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Low-Energy Electron Storage Ring at ICEEM

Using the 4 dipoles left behind from the cooler injector (CIS) at ICEEM,

a low energy electron storage ring has been built.

Ring circumference 20 m, energy 50–200 MeV

Dipoles: ρ = 1.273 m, L = 2 m, edge angle 12◦.

Jx < 0 =⇒ horizontal motion unstable.

Jx can be adjusted by two Robinson wigglers.

Dispersion can be changed in main dipoles,

so momentum compaction α is tunable.

want to produce coherent 1 THz X -ray in the ring.

Need micro-bunching of beam to 1 ps or λ ∼ 300 µm.

Use impedance to create controlled microwave-like instability
and microbunching.
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Diffraction Grating [33]

• Beam through cavity-like
structure generates wake.

• Ez of TM0np modes provides
controllable microbunching
for the required frequency.

Z‖(ω) =
gZ0

πbI 2
0

(
kb
βγ

)
D
, D = j

R ′0(kb)

R0(kb)
− 2jk

[
S∑

s=1

1

β2
s b

(
1− e−jβsg

sinβsg

βsg

)

−
∞∑

s=S+1

1

α2
sb

(
1− e−αsg

sinhαsg

αsg

)]

k = ω/c

R0(kb) = J0(kb)Y0(ka)− J0(ka)Y0(kb), with a = b + ∆

βsb =
√

k2b2 − j2
0s and αsb =

√
j2
0s − k2b2,

where j0s is sth zero of J0 and j0S is zero just larger than or equal to kb.
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I0 Factor

I 2
0 ( kb

βγ ) occurs in the denominator.

Image of a point charge on beam pipe has rms length στ =
b√
2βγ

.

The Fourier spectrum of image current is
1

I0
(
kb
βγ

) .

1

I 2
0

(
kb
βγ

) can become very small at high frequency and low energy.

This is the only particle-energy dependent factor in the impedance.

It constitutes a measure of the efficiency at which the beam particle

generates electromagnetic fields and excites a resonance in the cavity.

Energy is low at the Indiana ring.

This limits the highest frequency X -ray generated to . 1 THz
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Illustration of Impedance
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∆/b=1x10

−2

g/b=1x10
−6

For 1 THz, b =4 cm

kb = 838

∆ = 75 µm

∆

b
=1.88×10−3

Center freq of 1st broad-band of 1 cavity is at k∆ ≈ π

2
when

g

b
→ 0.

It is shifted slightly downward as
g

b
increases and

∆

b
decreases.

The center freq. is approx. fc ≈
c

4∆
.
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Quality Factor and Impedance
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b/
∆   ∆/b=0.1

  ∆/b=0.01
  ∆/b=0.001
  ∆/b=0.0001

Rsh=(76.2 Ω)(∆/b)[I0(kb/βγ)]−2

Q=∆/(2g)

Quality factor (Q-value) of resonance generated by the grating structure
depends essentially on ∆/g

Shunt impedance depends essentially on ∆/b.

Impedance becomes

∣∣∣∣
Z‖
n

∣∣∣∣ ≈
300β∆2

2πRb
Ω. [I 2

0 factor not included]
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Microwave Instabilities

With N cavities, diffraction phenomenon takes place by

enhancing some resonances N-fold

and shrinking width N-fold within the envelope of

broadband resonance of a single cavity.

This impedance is used to generate microbunching.

Condition of controlled microwave instability (Keil-Schnell):

eIpkβ
2

∣∣∣∣
Z‖
n

∣∣∣∣ ≥ 2πEσ2
δ |η|Fdist ≈ 1.23× 10−6 γ3|η|

JEρ[m]
eV

Ipk = FBIav is the peak current,

Iav is the average current,

FB = 2πR/
√

2πσz is the bunching factor,

JE ≈ 2 is the longitudinal damping partition number,

σδ =

√
3.83× 10−13γ2

ρJE
is natural momentum spread.
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Application to ICEEM Ring

Consider generation of fcoh = 1 THz radiation.

Minimum electron energy required is γ =
(
4πfcohρ/3c

)1/3 ≥ 26.

Consider 100-Mev electrons (γ = 196).

Get eÎβ2

∣∣∣∣
Z‖
n

∣∣∣∣ ≥ 3.37|η| eV.

If Ipk = 1 kA, requires

∣∣∣∣
Z‖
n

∣∣∣∣ ≥ 3.37× 10−3|η| Ω.

1 THz radiation =⇒ grating depth ∆ ≈ 75 µm

and rev. harmonic n = 6.7× 104.

Structure radius b = 4 cm gives

∣∣∣∣
Z‖
n

∣∣∣∣ = 1.02× 10−8 Ω

−→ N = 10000 gratings required if |η| . 0.003.
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Maximum Slip Factor Required

1010 1011 1012
fcoh (Hz)

10−3

10−2

10−1

100

101

102

|η
| m

ax

300 MeV
100 MeV200 MeV

400 MeV
500 MeV

600 MeV

For each coherent radiation frequency fcoh, plot gives maximum |η|
required for Keil-Schell instability or microbunching.

We use grating depth ∆ = c/(4fcoh),
g = ∆ (groove half width equal depth), grating period d = 4g ,
total length of gratings 1 m, peak current Ipk = 100 A.
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Simulation

ICEEM ring
100 MeV
h = 1

Vrf = 2 kV

−→ head

Bin width 0.04 ps, 80,000 macroparticles used.

Keil-Schnell limit of stability is Ipk = 12.7 A.

However, Ipk = 90 A was used so that microbunching develops fast
before peaks are overlapped.
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Higher-Frequency Coherent Radiation

The grating method sets limit to coherent radiation freq. in ICEEM ring.

There are 2 reasons:

1 Since the ring can reach 200 Mev only,

the
1

I 2
0 (kb/βγ)

factor becomes too small when & 1 THz.

2 The grating depth cannot be made too shallow technically.

To achieve higher frequency coherent radiation, need another method.

The method of inverse Compton scattering can be used.
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Inverse Compton Scattering

Compton scattering is for photon scattered by electron in rest frame.

Now electron in the beam travels at high speed.

Inverse Compton scattering is for a photon collide with the electron
head-on and its direction is reverse,

There is one Lorentz transformation to bring incident photon
to electron rest frame.

There is another Lorentz transformation to boost
the direction-reverse photon back to the lab frame.

Two Lorentz transformations increases photon freq. by the factor ∼ 4γ2.

If we start from a laser beam of freq fL = 3× 1014 Hz (1000 Å),

the back-scattered photon has frequency fs = 4γ2fL = 1.15× 1019 Hz

with γ = 196 or 100-MeV electrons. (λs = 8.70× 10−20 s.)
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Undulator Analog

The electron traveling towards the head-on laser beam sees alternating
horizontal E field and alternating vertical B field.

Both fields steer the electron in an oscillatory path in horizontal plane.

the effect of E and B fields add, because electron and photon are in
opposite directions.

This resembles the electron traversing an undulator, with undulator

wavelength λu ≈
λL

2
.

It can be shown that the undulator concept gives relatively

the same intensity of emitted photon per electron

per unit angular frequency and per unit solid angle,
d2N

dωdΩ
.
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Microbunching

The electron bunch passes through an undulator, it will be
micro-bunched to the forward radiating photon wavelength.

Now the electron bunch passes through the incident laser beam will also
be micro-bunched to the inverse-scattered photon wavelength.

Photons scattered by each micro-bunched slice of the electron bunch
will be coherent.

It takes time for the intensity of scattered photon to grow,

the growth length Lg =
λu

4π
√

3ρ
, and to saturate,

the saturation length Lsat =
λu
ρ

. (ρ is Pierce parameter)

We need to make sure that during this time, the electron micro-bunched
slice will not drift by more than one wavelength of the scattered photon
or λs = 8.70× 10−20 s.

This means that the slip factor of the ring η must be kept very small.
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FEL or Pierce Parameter [34]

The Pierce parameter is an important parameter in FEL.

It is dimensionless and is defined as ρ =

[
reλ

2
uK 2[JJ]2ne

32πγ3

]1/3

re is electron classical radius,

[JJ] = J0(ξ)− J1(ξ), ξ =
K 2

4 + 2K 2
=

1

2 (1 + 2/K 2)
<

1

2
.

ne =
NB√

2πστc
√

2πσx
√

2πσy
=

Ip/e

2πcσxσy
is peak electron density,

Ip is peak current, and σx and σy are rms sizes of electron beam.

1. ρ =
field energy generated

e-beam kinetic energy
, ∴ saturated power ∼ ρ× e-beam power

2. Saturated length Lsat ∼
λu
ρ

.

3. Final saturated energy spread of e-beam ∼ ρ.

4. Transverse size of laser beam σr ∼
√
λ1

4π

λu
4πρ

.
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σx (m) σz (m) σt (s) σs (m) λu (m) q
(coulumb)

N0 (m3) fact Er (eV) γr ǫ

6.32E-05 6.32E-05 1.00E-11 3.00E-03 1.00E-06 1.00E-08 1.66E+21 4.48E-16 2.50E+07 48.92 8.00E-08

1.26E-08 ←area(m2) 3.00E+14 ← Hz 3.91E-06

C (m) T0 (s) f0 (Hz) ρ0 (m) δ0

20 6.67E-08 1.50E+07 1.273 1.898E-05

P I u E B Kw ρ LG Lsat Npath |η|
(W) (W/m2) (J/m3) (V/m) (T) (m) (m)

1.00E+03 7.96E+10 2.65E+02 5.48E+06 1.83E-02 1.71E-06 1.05E-08 4.38E+00 8.76E+01 29213 9.42E-12

3.16E+03 2.52E+11 8.39E+02 9.74E+06 3.25E-02 3.03E-06 3.88E-08 1.18E+00 2.37E+01 7897 3.48E-11

1.00E+04 7.96E+11 2.65E+03 1.73E+07 5.78E-02 5.39E-06 5.69E-08 8.07E-01 1.61E+01 5380 5.11E-11

3.16E+04 2.52E+12 8.39E+03 3.08E+07 1.03E-01 9.59E-06 8.36E-08 5.50E-01 1.10E+01 3666 7.51E-11

1.00E+05 7.96E+12 2.65E+04 5.48E+07 1.83E-01 1.71E-05 1.23E-07 3.75E-01 7.49E+00 2497 1.10E-10

3.16E+05 2.52E+13 8.39E+04 9.74E+07 3.25E-01 3.03E-05 1.80E-07 2.55E-01 5.10E+00 1701 1.62E-10

1.00E+06 7.96E+13 2.65E+05 1.73E+08 5.78E-01 5.39E-05 2.64E-07 1.74E-01 3.48E+00 1159 2.37E-10

3.16E+06 2.52E+14 8.39E+05 3.08E+08 1.03E+00 9.59E-05 3.88E-07 1.18E-01 2.37E+00 790 3.48E-10

1.00E+07 7.96E+14 2.65E+06 5.48E+08 1.83E+00 1.71E-04 5.69E-07 8.07E-02 1.61E+00 538 5.11E-10

3.16E+07 2.52E+15 8.39E+06 9.74E+08 3.25E+00 3.03E-04 8.36E-07 5.50E-02 1.10E+00 367 7.51E-10

1.00E+08 7.96E+15 2.65E+07 1.73E+09 5.78E+00 5.39E-04 1.23E-06 3.75E-02 7.49E-01 250 1.10E-09

3.16E+08 2.52E+16 8.39E+07 3.08E+09 1.03E+01 9.59E-04 1.80E-06 2.55E-02 5.10E-01 170 1.62E-09

1.00E+09 7.96E+16 2.65E+08 5.48E+09 1.83E+01 1.71E-03 2.64E-06 1.74E-02 3.48E-01 116 2.37E-09

3.16E+09 2.52E+17 8.39E+08 9.74E+09 3.25E+01 3.03E-03 3.88E-06 1.18E-02 2.37E-01 79 3.48E-09

1.00E+10 7.96E+17 2.65E+09 1.73E+10 5.78E+01 5.39E-03 5.69E-06 8.07E-03 1.61E-01 54 5.11E-09

3.16E+10 2.52E+18 8.39E+09 3.08E+10 1.03E+02 9.59E-03 8.36E-06 5.50E-03 1.10E-01 37 7.51E-09

1.00E+11 7.96E+18 2.65E+10 5.48E+10 1.83E+02 1.71E-02 1.23E-05 3.75E-03 7.49E-02 25 1.10E-08

3.16E+11 2.52E+19 8.39E+10 9.74E+10 3.25E+02 3.03E-02 1.80E-05 2.55E-03 5.10E-02 17 1.62E-08

1.00E+12 7.96E+19 2.65E+11 1.73E+11 5.78E+02 5.39E-02 2.64E-05 1.74E-03 3.48E-02 12 2.37E-08

3.16E+12 2.52E+20 8.39E+11 3.08E+11 1.03E+03 9.59E-02 3.88E-05 1.18E-03 2.37E-02 8 3.48E-08

1.00E+13 7.96E+20 2.65E+12 5.48E+11 1.83E+03 1.71E-01 5.69E-05 8.07E-04 1.61E-02 5 5.11E-08

3.16E+13 2.52E+21 8.39E+12 9.74E+11 3.25E+03 3.03E-01 8.36E-05 5.50E-04 1.10E-02 4 7.51E-08

1.00E+14 7.96E+21 2.65E+13 1.73E+12 5.78E+03 5.39E-01 1.23E-04 3.75E-04 7.49E-03 2 1.10E-07

1
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Microbunching

It appears that the slip factor has to be controlled to 10−7.

The natural momentum spread is σδ = 1.90× 10−5.

If we expand momentum compaction as

α = α0 + α1δ + α2δ
2 + α3δ

3 + · · ·

We must control α0, α1 and even α2,

using quadrupoles, sextupoles, and octupoles, respectively.

Whether the slip factor can be controlled to such high accuracy

remains to be seen.
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Conclusions

We would like to produce coherent synchrotron radiation at

the 20-m electron storage ring under commission now at ICEEM.

For coherent radiation of frequency up to 1 THz, a cavity-like grating
structure can be used.

The low-energy nature of the ring limits the frequency of such radiation.

For freq, higher than 1 THz, inverse Compton scattering can be used.

However, for the radiation to reach saturation and remain coherent,

the slip factor seen by particles of all momenta in the bunch must be

controlled to |η| . 10−7.

This implies the control of momentum compaction up to O(δ2)

and is extremely difficult.

Whether this method works at ICEEM remains an open question.
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Linac

Main difference from rings is no synchrotron oscillation because

1. Total linac length is not long enough

2. Bunch is placed at crest of rf wave.

Thus there is no head-tail exchange.

Tail particles constantly affected by head particles.

Longitudinal and transverse wake effects will be different

from accelerator rings.
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Longitudinal Effects
Beam particles lose energy constantly because of radiation.

But tail particles lose more because of wake left by head particles.

Example of SLAC linac:
Linac length L = 3 km, cell length L0 = 3.5 cm.
Wake: W ′

0(0) = 7.0 cm−1 per cell
W ′

0(σ`) = 4.5 cm−1 per cell, σ` = 1 mm.

Change from Gaussian units to MKS units:
W ′

0 is in stat volts/stat coulomb
1 stat volt = 300 V, 1 stat coulomb = 1

3 × 109 coulombs.
Thus W ′

0(0) = 7.0× 300× 3× 109 = 6.29× 1012 V/C.

Two particle model: bunch represented by 2 macro-bunches σ` apart, each
carrying charge 1

2 eN with N = 5× 1010.

head particle: ∆Ehead = −1

2

1

2
Ne2W ′

0(0)
L

L0
= −1.08 GeV/electron

tail particle: ∆Etail = −
[

1

2

1

2
Ne2W ′

0(0) +
1

2
Ne2W ′

0(σ`)

]
L

L0

= −1.08− 1.39 = −2.47 GeV/electron
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Compensation

If uncorrected, energy spread of bunch will increase.
Unwanted chromatic effects may result.

Usually bunch is placed at crest of rf wave to receive maximum
acceleration. Can displace it so that head receives less energy than tail.

SLAC linac: Vrf = 600 kV per cell.
For L = 3 km, total rf

Vt = Vrf
L

L0
= 51.4 GV.

ωrf

2π
= 2.8 GHz

RF wave is V = Vt cos
(ωrfz

c
+ φ

)

with φ = 0 implying at crest.

From 2-particle model,
∆E = ∆Etail −∆Ehead = −1.39 GeV. φ

slope= ∆E
σℓ

head

We choose phase offset φ so that V ′=−Vt sinφ
ωrf

c
=

∆E
σ`
−→ φ = 27.4◦.

Actual computation gives ∆E = −0.9 GeV and φ = 17.3◦.

K.Y. Ng (Fermilab) Selected Topics in Microwave Instabilities and Linacs June, 2013 112 / 142



Transverse Effects

Want to address the effect of transverse wake.

In a linac, tail particles are constantly pushed sideway by head wake of
particles.

Deflection of tail accumulates along linac.

When tail particles hit vacuum chamber −→ beam loss.

This is called beam breakup (BBU)
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v ∼ c
Particles in same vertical slice receive same

vertical impulse independent of vertical

position. Can lead to beam breakup.

To avoid BBU, transverse wake must be suppressed.
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Two-Particle Model
A short bunch: represented by 2 macroparticles each of charge 1

2 eN.

v veN/2 eN/2ẑ
ẑ = rms bunch length

d2y1

ds2
+ k2

β1
y1 = 0 L = length of a number of cavities

d2y2

ds2
+ k2

β2
y2 = −e2NbW1(ẑ)

2LE0
y1 L = 2πR for a ring.

kβ1,2
=
νβ1,2

R
∼ 1

β⊥
for a ring.

For linac, νβ1,2 is number of betatron oscillations in length L.

Solution: y1(s) = y10 cos kβ1
s

y2(s)=y10 cos k̄βs cos
∆kβs

2
− y10 sin k̄βs

[
∆kβ

2
+

e2NbW1(ẑ)

4LE0k̄β

][
sin ∆kβs/2

∆kβ/2

]
,

with k̄β = 1
2 (kβ1

+ kβ2 ), ∆kβ = kβ2
− kβ1

As ∆kβ → 0, last term ∝ s

This is a resonance growth.
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y2(s) = y1(s)− s y10 sin kβ1
s

e2NbW1(ẑ)

4E0Lkβ
Thus in a length L0, tail’s oscillation amp grows by Υ1-fold:

Υ1 = −e2NbW1(ẑ)L0

4E0Lkβ

Let us look at the transverse wake. Assuming broadband,

W1(z) = −ω
2
r Z⊥1
Qω̄

e−αz/c sin
ω̄z

c

Z⊥1 is transverse impedance at the resonant frequency ωr

ω̄ =
√
ω2
r − α2

α = ωr/(2Q), Q being the quality factor.

Introduce dimensionless variables

v =
ωrσ`

c
, t =

z

σ`
, and φ = vt cosφ0 =

ω̄z

c

with cosφ0 =

√
1− 1

4Q2
or sinφ0 =

1

2Q

For Q > 1
2

W1

∣∣
min

= −2ωrZ
⊥
1 tanφ0 cosφ0 e−(π2−φ0) tanφ0
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Minimum at W1

∣∣
min

= −2ωrZ
⊥
1 tanφ0 cosφ0 e−(π2−φ0) tanφ0

at φ =
π

2
− φ0 or

αz

c
=
(π

2
− φ0

)
tanφ0.

Plot of dipole wake W1

with ωr = 50 GHz

2-particle model applicable only in linear part of wake, usually for only
short bunches.

Or valid only when φ =
ω̄z

c
� 1 −→ σ` �

1

2

λ

2π
With Q ∼ 1, resonant freq fr = 7.96 GHz (ωr = 50 GHz),
two-particle model works only when the rms bunch length σ` � 3 mm.
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Long Bunches

Although long bunches are for proton or muon rings,

will go over theory because it will be useful later.

For linear density λ(z), transverse motion of a particle is

d2y(z , s)

ds2
+ k2

βy(z , s) = −e2Nb

LE0

∫ z

−∞
dz ′λ(z ′)W1(z − z ′)y(z ′, s).

One solution is by iteration:

equate LS to zero and solve for y(z , s).

substitute soln on RS, and solve again,

iterate until soln is stable.

When amplitude growth factor Υ1 is large, soln gives growth as powers
of Υ1 or even exponential.

Soln very sensitive to
[
βyZ⊥1

]
, ωr , as well as Q.
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Beam-breakup growth for 1000 turns of a muon bunch of intensity
4× 1012 at 50 GeV interacting with a broadband impedance of Q = 1,

Z⊥1 = 0.1 MΩ/m at the angular resonant frequency of ωr = 50 GHz.

Left: rms 13-cm bunch has total growths of 32.50, 7.4, 2.0, 1.09, 1.006,
respectively for 〈βy 〉 = 30, 25, 20, 15, 10 m.

Right: rms 4-cm bunch has total growths of 29713, 3361, 287, 16.2,
respectively for 〈βy 〉 = 25, 20, 15, 10 m.
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Balakin–Novokhatsky–Smirnov Damping (BNS)

Kim, Wurtele, and Sessler suggested to suppress beam breakup by a
small tune spread in the beam, coming either through chromaticity,
amplitude dependency, or beam-beam interaction. [35]

A beam particle will be resonantly driven by only a small number of
particles in front that have the same betatron tune.

This is a form of Balakin–Novokhatsky–Smirnov (BNS) damping
suggested in 1983. [36]

To implement this, add a detuning term ∆νβ i = a[y 2
i + (〈βy 〉y ′i )2] to the

ith particle, as if it is contributed by an octupole or sextupole.

The rms tune spread becomes σνβ = a〈σ2
y + (〈βy 〉σy ′)2〉.

Continue the example of a muon bunch of intensity 4× 1012. Solve for
the growth in 1000 turns, assuming 〈β⊥〉 = 20 m and Z⊥1 = 0.1 MΩ/m.
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Left: growths of rms 13 cm bunch are 1.36, 1.08, 1.02, 1.007 for rms tune
spread of σνβ = 0.0002, 0.0004, 0.0006, 0.0008.

Right: growths of rms 4 cm bunch are 1.58, 1.23, 1.08, 1.03, 1.012 for rms
tune spread of σνβ = 0.002, 0.003, 0.004, 0.005, 0.006.

Notice that for 13-cm bunch, σνβ = 0.0006 damps growth to < 1.08. To
do the same for 4-cm bunch, σνβ = 0.004 is needed.

Thus BNS damping is good for long bunch only.
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Autophasing [37]

Let us look at the result of two-particle model again.

y2(s)=y10 cos k̄βs cos
∆kβs

2
− y10 sin k̄βs

[
∆kβ

2
+

e2NbW1(ẑ)

4LE0k̄β

][
sin ∆kβs/2

∆kβ/2

]
,

If we let the tune difference ∆kβ = −e2NbW1(ẑ)

2LE0k̄β
,

the resonant growth term will be eliminated.

Then y2(s) = y10 cos k̄βs cos
∆kβs

2
This implies we allow a tune difference along the linear bunch density.

Can do better by letting ∆kβ = −e2NbW1(ẑ)

4LE0k̄β
=

Υ1

L0

Then y2(s) = y10

[
cos k̄βs cos

∆kβs

2
− sin k̄βs sin

∆kβs

2

]
= y10 cos kβ1s

exactly same as head particle.

Being in phase all the time, the tail cannot be driven by the head at all.
This is another form of BNS damping known as autophasing.
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Autophasing for Long Bunches

Add ∆kβ to kβ to get

d2y(z , s)

ds2
+
[
kβ + ∆kβ(z)

]2
y(z , s) = −e2Nb

LE0

∫ z

−∞
dz ′λ(z ′)W1(z − z ′)y(z ′, s)

λ(z) is linear bunch density.

In order to have y(z , s) ∼ sin
(
kβs + ϕ0

)
independent of z , one needs

2kβ∆kβ + ∆k2
β(z) = −e2Nb

LE0

∫ z

−∞
dz ′λ(z ′)W1(z − z ′)

For small compensation,
∆kβ(z)

kβ
= − e2NbR

2LE0k2
β

∫ z

−∞
dz ′λ(z ′)W1(z − z ′)

For Gaussian λ(z) and resonant wake, can integrate to close form in
terms of complex error function.

Continue with example of muon bunches.
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For long bunches like muon bunches v = ωrσ`/c = 6.67 and 21.7,
compensation is mostly symmetric and Gaussian.

For short electron bunches, compensation becomes linear. Can
implement thru chromaticity by displacing bunch from crest.

Autophasing is used mostly for short electron bunches in linac.

For long bunches in a ring, need rf quadrupole to be pulsed according to
compensation curve as bunch passing through.

If frequency is high, one needs cavities having dipole oscillations.
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Adiabatic Damping in Linacs
In linacs, beam energy increases rapidly, 2-particle model should read:

1

γ

d

ds

(
γ

dy1

ds

)
+ k2

βy1 = 0

1

γ

d

ds

(
γ

dy2

ds

)
+ k2

βy2 = −e2NbW1(ẑ)

2LγErest
y1

Assume linear acceleration γ(s) = γi (1 + αs), α constant.

First equation becomes
d

du

(
u

dy1

du

)
+

k2
β

α2
uy1 = 0, with u = 1 + αs.

Solution is y1(s) = ŷ J0[kβ(1 + αs)/α] ≈ ŷ√
1 + αs

cos kβs,

since α/kβ � 1 usually.

SLAC linac, Ei = 1 GeV to Ef = 50 GeV, α = 0.0163 m−1,

while the betatron wave number is kβ = 0.06 m−1.

Tail particle:
d

du

(
u

dy2

du

)
+

k2
β

α2
uy2 = −e2NbW1(ẑ)

2LEiα2

ŷ√
u

cos kβs

Try y2 =
D sin kβs
√

u
with D a slowly varying function of u.
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Get y2(s) =
ŷ√

1 + αs

[
cos kβs − e2NbW1(ẑ)

4LEiαkβ
ln(1 + αs) sin kβs

]
.

Since Ef = Ei (1 + αL0), αL0 ≈
Ef

Ei
.

Growth for the whole length L0 is

Υ1 = −e2NbW1(ẑ)L0

4kβEf L
ln

Ef

Ei
.

Compare with former result, there is an extra factor of F =
Ei

Ef
ln

Ef

Ei
.

For SLAC linac, F = 1/12.8 = 0.0782 meaning that

the tail will be deflected by 12.8 less with the acceleration.

This effect is called adiabatic damping.
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Detuned Cavities

We shown before that a spread in betatron tune helps in alleviating bbu.
Such spread can come from a detuned cavity structure.

Dipole wake of a cavity structure is given by

W1(z) = −2
∑

n

Kn sin
2πνnz

c
e−πνv z/(cQn) z > 0

where Kn =
Rnc

Qn
, νn, and Qn are kick factor, resonant frequency, and

quality factor of the nth eigenmode in the structure.

To reduce bbu, it is important to reduce this dipole wake W1(z).

One way to reduce W1(z) is to manufacture the cavity structure

with cell dimension varying gradually

so that each cell has a slightly different resonant frequency.

Effect of the wake due to sharp resonant peak of each individual cell

will not add together and wake of the whole structure will be reduced.

Such a structure is called a detuned cavity structure.
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Short-Range Part of Wake

For short range, can assume all cells do not couple.

Total wake is sum of wake of individual cells.

Cell-to-cell variation is small, can replace sum over cells by an integral.

W1(z) ≈ −2

∫
dν K

dn

dν
sin

2πνz

c
one eigenmode included only

W1(z) defined as dipole wake per cell −→ dn

dν
normalized to unity.

Let ν = ν̄ + x , where ν̄ is average resonant frequency.

W1(z) ≈ −2 Im


e2iπν̄z/c

∫
dx K (ν̄ + x)

dn

dν
(ν̄ + x)e2πixz/c

︸ ︷︷ ︸




↑ ↑
rapidly varying slowly varying

envelope

Slowly varying part or envelope is Fourier transform of K
dn

dν
.
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Two Examples

Uniform frequency distribution with full frequency spread ∆ν:

W1(z) ≈ −2K̄ sin
2πν̄z

c

sin(π∆νz/c)

π∆νz/c
or flat distribution

Gaussian freq distribution with rms width σν :

W1(z) ≈ −2K̄ sin
2πν̄z

c
e−2(πσνz/c)2

Rapid decay as Gaussian and is therefore preferred.

Next Linear Collider (NLC)

N = 206 cells

ν̄ = 15.25 GHz

K̄ = 40 MV/nC/m2

Detuned distribution:

Gaussian ±2.5σν

σν = 2.5% of ν̄.
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Comments on NLC Detuned Wake

The negative signs in the wake expressions are just convention.

The detuned dipole wake actually starts from zero, increases linearly,
reaches a maximum, and rolls off like a Gaussian.

For larger distance, the roll-off stops, because the detuning is

not a true Gaussian, but truncated. So we get
sin x

x
-behavior.

There are the 42-cm and 82-cm bunch-spacing scenarios. The dipole
wake at the 2nd bunch has been suppressed by
more than 2 orders of magnitude.

This detuning method is very useful for long-range bunch-to-bunch bbu,
but not useful for single bunch bbu.

However, for long-range suppression, we cannot trust the above result,
because cell-to-cell interaction has been neglected.
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Circuit Model for DDS

To incorporate interaction
between cells, Bane and
Gluckstern devised an
equivalent circuit to
represents cell structure. [38]

Later Kroll and Jones et al.
improved the model by
introducing two circuits
together with 4 damping
manifolds, corresponding to
4 holes in the cells to carry
away dipole wake. [39]

Equivalent Circuit Analysis Of The SLAC Damped Detuned Structureℵℵ

R.M Jones†‡, K. Ko†, N.M. Kroll†‡, R.H. Miller† & K.A. Thompson†

†Stanford Linear Accelerator Center, M/S 26, P.O Box 4349, Stanford, CA 94309
‡University of California, San Diego, La Jolla, CA 92093-0319.

                                                          
ℵ Supported by DOE grant number DE-FG03-93ER40759‡ and
   DE-AC03-76SF00515†

1.  ABSTRACT AND INTRODUCTION

The Damped Detuned Structures (DDS) currently under
construction to serve as accelerating cavities for the NLC
Test Accelerator (NLCTA) incorporate both damping and
detuning as a means of suppressing the transverse
wakefield.  Detuning is accomplished by systematic
variation of cell parameters so as to produce a spread in
the frequencies of the dipole modes excited by the beam,
and damping is accomplished by coupling the individual
cells to four waveguide-like structures (called damping
manifolds) that run parallel to the cavity and propagate
dipole mode energy to loads coupled to the ends of these
manifolds.  The details of the DDS as well as the rationale
underlying its design are discussed in [1].  It differs from
previously considered designs [2] in that the manifolds
have only one propagating mode in the frequency range
of interest and also in that, like the cells, their parameters
vary along the structure.  The previously reported
equivalent circuit analysis [2] has been elaborated in the
following respects:  (1) The treatment of the manifolds
has been modified so as to take account of the effect of its
coupling to the cells on its propagation characteristics and
also to include the effect of their cell-to-cell variation.  (2)
The manifold-to-cell coupling network has been modified
to take account of the TE10 like character of the manifold
propagating mode.  (3) The chain of resonant circuits
intended to represent the cells has been doubled
(following Bane-Gluckstern [3]) to take account of the
mixed TE-TM character of the dipole modes.

2.  EQUIVALENT CIRCUIT ANALYSIS

The equivalent circuit which we use to represent the
structure is  shown in Fig. 1.  The LC circuits represent
the TE and TM  components of the dipole field of the
individual cells.  Each component is magnetically coupled
to both components of the adjacent cells.  The  electron
beam excitation of the cavity is modeled by the input
currents to  each of the TM cells.  The manifold structure
is modeled by the uppermost  sequence of transmission
line sections each carrying a TE10 waveguide mode and
shunted by an LC circuit at the junction of adjacent
transmission lines.  Coupling of the accelerator cells to
the manifolds is represented by a coupling between the

shunt capacitance of the manifold and the capacitance of
the TE component of the corresponding accelerator cell:

V j I C i C c

v j i c I C c

n n n n n n n

n n n n n n n

= − +

= − +

( / / ) /

( / / ) /

κ ω

κ ω
(1)

where (Cn ,cn) represent the manifold shut capacitance
and TE cell capacitance respectively, (Vn,vn) the
corresponding voltages across them,  and (In , i n ) the
currents through them.  Thus the dimensionless quantity
κ n  provides the manifold-cell coupling.

Cn+1
Cn-1

in

Ln-1 Ln+1Ln

in

VnVn-1 Vn+1

In

Cn
Manifold

TM

TE

In+1In-1

cn-1 cn cn+1

cn-1 cn cn+1

in+1in-1

in+1in-1

Figure 1: Circuit Model of DDS

  The network equations for the circuit in Fig. 1 can be
written in  the form given below (the detailed relations
between the circuit parameters are given elsewhere [4]).

RA a

H f a a G b

H f a a f c

x

x
t

=  Ga

( - / ) +  H  =  GA =  GR

( - / )  +  H =  B /

-1

( )

$ ( )

$ $ ( )

1

1

2

2 2

(2)

Here a, $a , and A are N (N=206) component vectors
proportional to the loop  currents ( in ) in the TE circuits,

the loop currents ($i n ) in the TM circuits, and the shunt
voltages (Vn), in the manifolds respectively.  B is also an
N component vector proportional to the driving currents.
R, H, $H, Hx  and its transpose Hx

t , and G are (N x N)

There are N = 206 TE and TM resonant circuits connected together.

The wake is computed by solving a 618× 618 matrix.
But the matrix is sparse, which makes solution much easier.
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DESIGN OF A 30 GHZ DAMPED DETUNED
ACCELERATING STRUCTURE

M.Dehler†, R.M.Jones‡, N.M.Kroll‡, R.H.Miller‡, I.Wilson† and W.Wuensch†

† PS Division, CERN, Geneva, Switzerland; ‡ Stanford Linear Accelerator Center, California, USA

Abstract

Within the framework of the SLAC/CERN studies of
30 GHz linear colliders, an attempt has been made to
scale as closely as possible the existing X-band NLC
damped detuned accelerating structure to 30 GHz. A
simple scaling was not possible because of mechanical
and RF constraints. The 30 GHz design has 101 cells
and a minimum aperture of 3.4 mm. In order to obtain
acceptably small values for both the single-bunch
transverse wakefield and the long-range multibunch
wakefield a relatively large non-linear variation of the
iris thickness was introduced in addition to the iris
diameter variation. The resulting wakefield has a short-
range value of 1290 V/pC/mm/m and a long range
value below 10 V/pC/mm/m.

1 INTRODUCTION

RF frequencies around 30 GHz are being considered for
both the Compact LInear Collider (CLIC) and the 3-5
TeV e+e- linear collider studies [1,2] to allow operation
with high accelerating gradients (100-200 MV/m). In
order to reach the required luminosities these machines
have to be operated with multiple bunches per rf pulse.
There is therefore a common requirement for a 30 GHz
multibunch accelerating structure. Because of the large
amount of design and experimental verification
(ASSET) work that has been invested by SLAC in their
X-band Damped Detuned Structure (DDS) it was
decided to see to what extent this structure could be
scaled to 30 GHz.
The basic approach was to scale as closely as possible,
the existing SLAC X-band design but taking into
account mechanical and RF constraints specific to
30 GHz. Some design choices have been biased in
favour of the existing CLIC parameters (8x109 particles
per bunch, a bunch spacing of 30 rf cycles (1 ns) and a
loaded accelerating gradient of 100 MV/m) which
require a transverse wakefield reduction to about 1% at
the second bunch and thereafter at least a linearly
decreasing level [3]. Although this structure was
designed essentially around the CLIC parameters, a
parallel aim of the work was to investigate the general
potential of the DDS for use with other 30 GHz linac
parameters.

2 STRUCTURE GEOMETRY

The basic 30 GHz cell/manifold configuration is the
same as that of the X-band DDS (Figure 1). Two cells at
both ends of the structure are not coupled to the
manifold to allow space for the output manifold bends.
All cell and manifold dimensions are approximately
scaled 11 GHz values except the minimum iris thickness
which was limited to 0.5 mm to have sufficient
mechanical stiffness, and the minimum iris diameter
which was limited to 3.4 mm to avoid an excessive short
range transverse wakefield level. The number of cells
for this DDS design has been reduced to 100 cells  from
the 200 of the X-band structure. This was done to
maintain a near optimum RF to beam efficiency for
CLIC multibunch parameters and to restrict the
maximum accelerating gradient to less than about
150 MV/m (corresponding surface field of about
400 MV/m).

Figure: 1 The basic DDS configuration

3 MICROWAVE DESIGN AND ANALYSIS

The basic design approach is to add a light amount of
damping to a detuned structure by coupling the cells to
four parallel waveguide manifolds.  The three stages of
the rf design procedure are (i) analysis of the lowest
dipole mode behaviour using an uncoupled cell model
(all higher dipole modes are assumed to be detuned by
an iris thickness variation) (ii) analysis of the behaviour
of the two lowest dipole bands using a coupled cell two-
band model (iii) spectral function analysis of the
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The short-range part of detuned wake is almost same as earlier
calculation.

The long-range part of detuned wake is suppressed to

less than 1 V/pC/mm/m.

The dots represent the 82 bunches with 84-cm spacing.

The wake was computed in the frequency domain and Fourier
transformed to time domain.
Thus very short-range part may not be accurate.

Parameters used are obtained by fitting to measured freq vs phase
advance dispersion curve.
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Multi-Bunch BBU

DDS suppresses the dipole wake by more than 2 orders of magnitude.
For the 95-bunch 42-cm scenario of NLC, dipole wake per unit length is
only ∼ 0.21 MV/nC/m2.

Want to examine how much emittance growth and bbu will be driven by
detuned wake, and how much energy spread is required for further
suppression.

2-particle model is used by considering each bunch as a maga particles

1st bunch:
d2y1

ds2
+ k2

βy1 = 0

2nd bunch:
d2y2

ds2
+ k2

βy2 = −e2NbW1(ẑ)

LE
y1

where L is cavity length and ẑ is bunch spacing.

Soln: 1st bunch y1(s) = Re ŷe ikβs

2nd bunch y2(s) = Re ŷ Γse ikβs Γ =
ie2NbW1(ẑ)

2kβLE0

Keep only particular solution because it increases with s.
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3rd bunch:
d2y3

ds2
+ k2

βy3 = −e2NbW1(2ẑ)

LE0
y1 −

e2NbW1(ẑ)

LE0
y2

Keeping only the most divergent term, i.e., the last term,

y3(s) = Re ŷ
1

2
Γ2s2e ikβs

Continuing, get ym(s) = Re ŷ
Γm−1sm−1

(m − 1)!
e ikβs

If we employ BNS damping on 2nd bunch, amount of tune spread is
∆kβ
kβ

= −e2NbW1(ẑ)

2k2
βEf

ln
Ef

Ei

where adiabatic damping has been included.

To damp nb bunches, it is reasonable to assume nb times of spread.

Tune spread can come from chromaticity.

For FODO lattice of phase advance µ, natural chromaticity is

ξN = − 2

π
tan

µ

2

If we take ξN = −1, we get required energy spread of 2.7%
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Simulation has been performed by Stupakov, assuming initial bunch
offset of 1 µm. [41]

The vertical emittance of the last or 95th bunch was monitored.

Increase of vertical emittance

of 95th bunch:

curve 1: w/o energy variation

curve 2: 0.8% energy variation

At 0.8% energy variation, vertical emittance of 95th bunch

increases by only 1.2%.

Analytic treatment of multi-bunch bbu has been performed by Bohn,
Delayen, and Ng, with good agreement with simulations. [42, 43, 44]
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