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Contributors: D. Z. Besson30, D. Bettoni23, A. Böhrer55, S. Boogert37, C.-H. Chang9,29, P. Cooper17,
P. Crochet13, S. Datta4, C. Davies19, A. Deandrea39, R. Faustov53, T. Ferguson8, R. Galik14,
F. A. Harris21, O. Iouchtchenko11 , O. Kaczmarek4, F. Karsch4, M. Kienzle18, V. V. Kiselev54,
S. R. Klein33, P. Kroll64, A. Kronfeld17, Y.-P. Kuang61, V. Laporta3, J. Lee32, A. Leibovich49,
J. P. Ma29, P. Mackenzie17, L. Maiani50, M. L. Mangano11, A. Meyer17, X. H. Mo22,
C. Morningstar8 , A. Nairz11, J. Napolitano51 , S. Olsen21, A. Penin31, P. Petreczky52, F. Piccinini47,
A. Pineda2, A. D. Polosa3,10, L. Ramello48, R. Rapp57, J. -M. Richard12, V. Riquer11, S. Ricciardi38,
E. Robutti25, O. Schneider34, E. Scomparin60, J. Simone17, T. Skwarnicki56 G. Stancari17,23,
I. W. Stewart41, Yu. Sumino59, T. Teubner35, J. Tseng46, R. Vogt15,33, P. Wang22, B. Yabsley63,
C. Z. Yuan22, F. Zantow4, Z. G. Zhao40, A. Zieminski27

1 HEP Division, Argonne National Laboratory, Argonne, Illinois, USA
2 Universitat de Barcelona, Barcelona, Catalonia, Spain
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ABSTRACT

This report is the result of the collaboration and research effort of the Quarkonium Working Group over
the last three years. It provides a comprehensive overview of the state of the art in heavy-quarkonium
theory and experiment, covering quarkonium spectroscopy,decay, and production; the determination of
QCD parameters from quarkonium observables; quarkonia in media; and the effects on quarkonia of
physics beyond the Standard Model. An introduction to common theoretical and experimental tools is
included. Future opportunities for research in quarkoniumphysics are also discussed.
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FOREWORD

As the community of high-energy physicists impatiently awaits the startup of the LHC and the opening of
the new energy frontier, it is very welcome news that so much challenging and exciting data are constantly
being produced in the field of quarkonium physics. The proliferation of puzzling measurements has led
over the past several years to new challenges for the theorists, requiring the introduction of new ideas,
and providing new probes for the understanding of QCD at its deeper levels.

Ten years ago, reports by the CDF Collaboration signalled the end of an era in quarkonium physics,
but at the same time opened new windows on this field, which contributed so much to the development
of QCD. The observation of the top quark with a mass of about 175 GeV closed all hopes of including
toponium in the family of clean and useful quarkonium states. In parallel, the observation of an excess in
charmonium production by orders of magnitude over what was predicted in the then available theoretical
models gave birth to the modern theoretical understanding of charmonium production. Since then, in
addition to successful explanations, a large set of puzzleskept being generated by data obtained at the
Tevatron, at HERA, and in low-energye+e− colliders: the apparent violation of universality emerging
when comparing data from the hadron and theep colliders, the poor agreement (at the limit of inconsis-
tency!) between the predictions for the polarization of theJ/ψ produced in hadronic collisions and the
actual data, the excess of double charmonium production first observed by Belle. The solution to these
puzzles still remains to be found, as new data keep pouring in.

But the surprises and advances have not been limited to the complex issue of the production mech-
anisms. The spectroscopy of quarkonium has also received challenging inputs from the observation
of new narrow states, whose understanding requires an addeddose of sophistication in the theory, to-
gether perhaps with the need for inclusion of more exotic patterns of bound states (hybrids, molecules,
tetraquarks). Progress in lattice calculations and effective field theories has turned quarkonium physics
into a powerful tool to measure the mass of the heavy quarks and the strength of the QCD coupling,
providing accuracies comparable to or better than those allowed by any other technique. The properties
of production and absorption of quarkonium in a nuclear medium are beginning to provide quantitative
inputs for the study of QCD at high density and temperature, giving a unique experimental test bed for
analytical and lattice studies.

The interplay of solid theoretical work and of accurate and versatile experimental techniques has
brought quarkonium physics to a renaissance, with a flourishing of activity second only to the golden age
which followed the discovery of charmonium almost 30 years ago. The appearance of this CERN Report,
which documents the state of the art through the contributions of the leaders in the field, represents
therefore a timely and much needed publication. The inclusion of both the theoretical and experimental
perspectives leads to a precious resource for the active researcher, as well as for the young newcomers to
the field.

I am happy to praise the organizers of the Quarkonium WorkingGroup, the conveners and all the
participants, who have worked so hard over the past couple ofyears to produce this Report, which will
provide an essential guide to this ever-exciting area of research for years to come.

Michelangelo Mangano
CERN PH Department

vi



PREFACE

On the eve of the startup of the LHC and the search for new physics beyond the Standard Model at energy
scales of several TeV, there is still a sector of the StandardModel that evades our control: the sector of
strongly interacting particles, i.e. quarks and gluons. Webelieve we have the field theory that describes
strong interaction, QCD, but we are not yet able to extract from it in a controlled way a great part of the
hadron properties. These same hadron properties obviouslyplay a relevant role in many searches for new
physics and new phenomena, CP violation being a strong case in hand. At the LHC hadron processes
will again take the stage. It is, therefore, relevant to get hold of the strong sector of the Standard Model.
For several reasons heavy quarkonium offers a unique opportunity in this direction. Quarkonium systems
may be crucially important to improve our understanding of QCD. They probe all the energy regimes of
QCD, from the hard region, where an expansion in the couplingconstant is possible, to the low-energy
region, where nonperturbative effects dominate. Heavy-quark–antiquark bound states are thus an ideal,
and to some extent, unique laboratory where our understanding of nonperturbative QCD and its interplay
with perturbative QCD may be tested in a controlled framework.

Moreover, in the last few years a wealth of new experimental results have become available. The
diversity, quantity and accuracy of the data currently being collected is impressive and includes:

– data on quarkonium formation from BES at BEPC, E835 at Fermilab, KEDR (upgraded) at VEPP-
4M, and CLEO III at CESR;

– clean samples of charmonia produced in B-decays, in photon–photon fusion and in initial-state
radiation from the B-meson factory experiments BaBar at SLAC and Belle at KEK, including the
unexpected observation of associated(cc)(cc) production;

– heavy quarkonia production from gluon–gluon fusion inpp̄ annihilations at 2 TeV from the CDF
and D0 experiments at Fermilab, including the first observation of Bc candidates;

– charmonia production in photon–gluon fusion from the ZEUSand H1 experiments at DESY;

– charmonia production in heavy-ion collisions from the PHENIX and STAR experiments at RHIC,
and the NA60 experiment at CERN.

These experiments may operate as heavy quarkonium factories, producing quarkonium states in
large amounts. If properly analysed and interpreted, the data can lead to surprising results and major
progress in our understanding of QCD. This is exemplified by the very recent discovery of a new un-
expected narrow charmonium state, temporarily labelledX(3872), which was announced by the Belle
Collaboration at the Lepton–Photon Conference 2003 and confirmed within a month by the CDF Col-
laboration at Fermilab, during the 2nd QWG Workshop.

In the near future, even larger data samples are expected from the CLEO-c and BES III upgraded
experiments, while the B factories, the Fermilab Tevatron,and the DESY experiments will continue to
supply valuable data for several years. New facilities willbecome operational (LHC at CERN, Panda at
GSI, much-higher-luminosity B factories at KEK and SLAC, a Linear Collider, etc.) offering fantastic
challenges and opportunities, which we must start facing today. Considerable efforts are also being
made to study deconfined quark matter, at SPS, RHIC and LHC energies, for which heavy quarkonium
is among the most crucial probes. The complexity of these studies requires a close communication and
the exchange of ideas between experts in quarkonium physicsand heavy-ion collisions.

Effective field theories, such as Nonrelativistic QCD (NRQCD), provide new tools and definite
predictions concerning, for instance, heavy-quarkonium production and decays. New effective field
theories for heavy quarkonium, as potential NRQCD (pNRQCD)and velocity NRQCD (vNRQCD),
have recently been developed and are producing a wealth of new results. The lattice implementation
of such effective theories has been partially carried out and many more results with drastically reduced
systematic uncertainties are expected in the near future. The progress in the understanding of non-
relativistic effective field theories makes it possible to go beyond phenomenological models and, for
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the first time, face the possibility of providing a unified description of all aspects of heavy-quarkonium
physics. This allows us to use quarkonium as a benchmark for our understanding of QCD, for the precise
determination of relevant Standard Model parameters (e.g., heavy quark masses,αs), and for new physics
searches.

It is crucial, now, to ensure an efficient communication between experimentalists and theorists,
within the broad quarkonium physics community. This has been the main motivation for the creation of
an international research collaboration, the Quarkonium Working Group, which constitutes the support
platform of this CERN Report (see alsohttp://www.qwg.to.infn.it)

The aim of the QWG is essentially twofold. First, to guarantee an intense and efficient exchange
of results and ideas between experimentalists and theorists, now that many new measurements are be-
coming available. Second, to overcome the dispersal of the research in this field and jointly study the
different approaches and techniques, by establishing new collaborations and improving existing ones.
The concrete goals are:

– to achieve a better understanding of the dynamics of the strong interaction and of strongly coupled
theories, using quarkonium systems;

– to gain detailed knowledge of the physics of confinement/deconfinement;

– to improve the determination of the fundamental parameters of the Standard Model and constrain
the allowed parameter space for new physics;

– to identify missing experimental information required toimprove our understanding of QCD, and
to identify theoretical calculations needed for the interpretation of current and future experiments;

– to make this information available to people working in related fields.

This CERN Report presents the state of the art in heavy-quarkonium physics at the end of 2004
and is a first step to achieving the goals of the QWG. The Reportincludes experimental and theoretical
results by different approaches and different communities(high-energy, perturbative, lattice, nuclear,
etc.) in a common language. The progress in the field and the impact of such progress on other areas
are presented, open problems and outstanding puzzles are discussed, and the future opportunities of this
field are outlined.

Given the richness of the physics involved in the project, the research goals have been pursued by
specifying seven main topics organized by theoretical and experimental topic conveners:

– Quarkonium spectroscopy [Conveners: G. Bali, N. Brambilla, J. Soto (TH); R. Mussa (EXP)];

– Quarkonium decays [Conveners: E. Eichten, A. Vairo (TH); C. Patrignani (EXP)];

– Quarkonium production [Conveners: G. Bodwin, E. Braaten,M. Krämer (TH); A. B. Meyer,
V. Papadimitriou (EXP)];

– Precision determination of Standard Model parameters [Conveners: A. Hoang, M. Jamin (TH);
S. Eidelman (EXP)];

– Quarkonium in media [Conveners: D. Kharzeev, M. P. Lombardo, H. Satz (TH); C. Lourenço,
M. Rosati (EXP)];

– Beyond the Standard Model [Convener: M. A. Sanchis-Lozano(TH)];

– Future opportunities [Conveners: S. Godfrey, M. A. Sanchis-Lozano (TH)].

The Quarkonium Working Group was initiated in 2002 by Nora Brambilla, Roberto Mussa and
Antonio Vairo, who were, shortly afterwards, joined by Armin Böhrer and Michael Krämer as the QWG
conveners team. Most of the topic conveners listed above belong to the initial group of people who
supported the QWG and contributed to its research programme. The CERN TH Division and CERN,
and especially Michelangelo Mangano, have played an important role in the history of the QWG, by
hosting the first QWG meeting and by supporting the enterprise of compiling the CERN Report.

The QWG has organized three international meetings, which were held at CERN (2002), Fermilab
(2003) and IHEP Beijing (2004). Approximately 250 theoretical and experimental physicists participated
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in the meetings. The organizers, participants, and supporting institutions are listed below. The third
meeting was preceded by the first QWG graduate school organized at the ITP Beijing with about 100
participating graduate students.

We would like to express here our sincerest thanks to all those who have contributed to this en-
terprise and made this document possible, in particular thetopic conveners and the organizers and par-
ticipants of the three QWG meetings. We also gratefully acknowledge the support from the institutions
that hosted the QWG meetings. Finally, we would like to express our deepest thanks to Armin Böhrer
who was of key relevance at the start of the QWG by producing and hosting in Siegen the first QWG
Web page, designing the QWG logo, participating in the organization of the first two QWG workshops,
and supporting in all ways the development of the QWG. We alsothank E. Berger, D. Kharzeev and
A. Zieminski for having been topical conveners of a topical section later absorbed by other ones.

As of September 2004, Vaia Papadimitriou joined the QWG conveners team. As of December
2004, Aldo Deandrea and Xiaoyan Shen agreed to join the topical conveners team.

The Quarkonium Working Group has very quickly coalesced into an active, international commu-
nity of physicists working and collaborating on quarkoniumphysics, QCD, and the related impact on
the Standard Model and physics beyond the Standard Model. Given the continuous flux of data and the
order-of-magnitude(s) improvement in the statistical analysis coming and expected to come from present
and future accelerator experiments, this promises to remain a very rich research area for several years to
come. To fully benefit from it, we believe it is important thatthe community of physicists working in
the field maintains a common area of discussion, transcending individual experimental and theoretical
collaborations. It is our hope that this CERN Report will provide a basis for such future developments.

The QWG Conveners
Nora Brambilla, Michael Krämer, Roberto Mussa, Antonio Vairo
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Chapter 1

COMMON THEORETICAL TOOLS

Authors:G. Bali, N. Brambilla, J. Soto, A.Vairo

1 QCD1

Quantum Chromodynamics (QCD) [1] is the sector of the Standard Model (SM) which is relevant for
the strong interactions. It is obtained from the full SM by setting the weak and electromagnetic coupling
constants to zero and freezing the scalar doublet to its vacuum expectation value. What remains is a
Yang–Mills (YM) theory with local gauge groupSU(3) (colour) vectorially coupled to six Dirac fields
(quarks) of different masses (flavours). The vector fields inthe YM Lagrangian (gluons) live in the
adjoint representation and transform like connections under the local gauge group whereas the quark
fields live in the fundamental representation and transformcovariantly. The QCD Lagrangian reads

LQCD = −1

4
F aµνF

a µν +
∑

{q}
q̄ (iγµDµ −mq) q , (1.1)

where{q} = u, d, s, c, b, t, F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , Dµ = ∂µ − iT aAaµ. fabc are the

SU(3) structure constants andT a form a basis of the fundamental representation of theSU(3) algebra.
When coupled to electromagnetism, gluons behave as neutralparticles whereasu, c andt quarks have
charges+2/3 andd, s andb quarks have charges−1/3.

The main properties of QCD follow:

– It is Poincaré, parity, time reversal and (hence) charge conjugation invariant. It is in addition
invariant underU(1)6 which implies individual flavour conservation.

– Being a non-Abelian gauge theory, the physical spectrum consists of colour singlet states only.
The simplest of these states have the quantum numbers of quark–antiquark pairs (mesons) or of
three quarks (baryons), although other possibilities are not excluded.

– The QCD effective coupling constantαs(q) decreases as the momentum transfer scaleq increases
(asymptotic freedom) [2,3]. This allows to make perturbative calculations inαs at high energies.

– At low energies it develops an intrinsic scale (mass gap), usually referred asΛQCD, which provides
the main contribution to the masses of most hadrons. At scales q ∼ ΛQCD, αs(q) ∼ 1 and pertur-
bation theory cannot be used. Investigations must be carried out using nonperturbative techniques,
the best established of which is lattice QCD.
Quarks are conventionally divided into lightmq ≪ ΛQCD, q = u, d, s and heavymQ ≫ ΛQCD,
Q = c, b, t

mu = 1.5 ÷ 4.0MeV , md = 4 ÷ 8MeV , ms = 80 ÷ 130MeV ,

(1.2)

mc = 1.15 ÷ 1.35GeV , mb = 4.1 ÷ 4.4GeV , mt = 174.3 ± 5.1GeV .

These areMS masses at scale2 GeV,mc andmb for the light quarks, charm and bottom respec-
tively. All values are taken from [4]. The extraction of the values of the heavy quark masses will
be discussed in Chapter 6.

1Author: J. Soto
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– If light quark masses are neglected, theU(1)3 flavour conservation symmetry of the QCD La-
grangian in this sector is enlarged to aU(3) ⊗ U(3) group. The axialU(1) subgroup is explicitly
broken by quantum effects (axial anomaly). The vectorU(1) subgroup provides light flavour con-
servation. The remainingSU(3) ⊗ SU(3) subgroup, known as chiral symmetry group, turns out
to be spontaneously broken down to the diagonalSU(3) (flavour symmetry). This produces eight
Goldstone bosons, which, upon taking into account the explicit breaking of the symmetry due to
the non-zero quark masses, acquire masses that are much smaller thanΛQCD.

– Hadrons containing heavy quarks have masses of the order ofmQ rather than of the orderΛQCD.
They enjoy particular kinematical features that allow for specific theoretical treatments. The study
of hadrons containing two heavy quarks is the aim of this report.

2 EFFECTIVE FIELD THEORIES 2

From the point of view of QCD the description of hadrons containing two heavy quarks is a rather chal-
lenging problem, which adds to the complications of the bound state in field theory those coming from
a nonperturbative low-energy dynamics. A proper relativistic treatment of the bound state based on the
Bethe–Salpeter equation [5] has proved difficult. Perturbative calculations have turned out unpractical at
higher order and the method has been abandoned in recent QED calculations. Moreover, the entangle-
ment of all energy modes in a fully relativistic treatment ismore an obstacle than an advantage for the
factorization of physical quantities into high-energy perturbative and low energy nonperturbative con-
tributions. Partial semirelativistic reductions and models have been often adopted to overcome these
difficulties at the price to introduce uncontrolled approximations and lose contact with QCD. The fully
relativistic dynamics can, in principle, be treated without approximations in lattice gauge theories. This
is in perspective the best founded and most promising approach. As we will detail in the following, it is
not without difficulties at the present for heavy quarkonium.

A nonrelativistic treatment of the heavy quarkonium dynamics, which is suggested by the large
mass of the heavy quarks, has clear advantages. The velocityof the quarks in the bound state provides a
small parameter in which the dynamical scales may be hierarchically ordered and the QCD amplitudes
systematically expanded. Factorization formulas become easier to achieve. A priori we do not know
if a nonrelativistic description will work well enough for all heavy quarkonium systems in nature. For
instance, the charm quark may not be heavy enough. The fact that most of the theoretical predictions
presented in the report are based on such a nonrelativistic assumption and the success of most of them
may be seen as a support to the assumption.

On the example of positronium in QED, a nonrelativistic bound state is characterized by at least
three scales: the scale of the massm (called hard), the scale of the momentum transferp ∼ mv (soft) and
the scale of the kinetic energy of the quark and antiquark in the centre-of-mass frameE ∼ p2/m ∼ mv2

(ultrasoft). The scalesmv andmv2 are dynamically generated,v is the heavy-quark velocity in the
centre-of-mass frame. In a nonrelativistic system:v ≪ 1, and the above scales are hierarchically ordered:
m ≫ mv ≫ mv2. In perturbation theoryv ∼ αs. Feynman diagrams will get contributions from
all momentum regions associated with the scales. Since these momentum regions depend onαs each
Feynman diagram contributes to a given observable with a series inαs and a non trivial counting. For
energy scales close toΛQCD perturbation theory breaks down and one has to rely on nonperturbative
methods. The wide span of energy scales involved makes also alattice calculation in full QCD extremely
challenging since one needs a space–time grid that is large compared to the largest length of the problem,
1/mv2, and a lattice spacing that is small compared to the smallestone,1/m. To simulate, for instance,
a bb̄ state wherem/mv2 ∼ 10, one needs lattices as large as1004, which are beyond present computing
capabilities [6] (see also the next sections of the chapter).

We may, however, also take advantage of the existence of a hierarchy of scales by substituting QCD
with simpler but equivalent Effective Field Theories (EFTs). EFTs have become increasingly popular

2Authors: N. Brambilla, A. Vairo
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in particle physics during the last decades. They provide a realization of Wilson renormalization group
ideas and fully exploit the properties of local quantum fieldtheories. An EFT is a quantum field theory
with the following properties: a) it contains the relevant degrees of freedom to describe phenomena that
occur in certain limited range of energies and momenta and b)it contains an intrinsic energy scaleΛ
that sets the limit of applicability of the EFT. The Lagrangian of an EFT is organized in operators of
increasing dimension, hence, an EFT is in general non-renormalizable in the usual sense. In spite of
this, it can be made finite to any finite order in1/Λ by renormalizing (matching) the constants (matching
coefficients) in front of the operators in the Lagrangian until that order. This means that one needs more
renormalization conditions when the order in1/Λ is increased. However, even if the only way of fixing
the constants would be by means of experimental data, this would reduce but not spoil the predictive
power of the EFT. If the data are abundant, the constants can be fit once for ever and used later on to
make predictions on new experiments.

The prototype of EFT for heavy quarks is the Heavy Quark Effective Theory (HQET), which
is the EFT of QCD suitable to describe systems with only one heavy quark [7]. These systems are
characterized by two energy scales:m andΛQCD. HQET is obtained by integrating out the scalem
and built as a systematic expansion in powers ofΛQCD/m. As discussed above, bound states made
of two heavy quarks are characterized by more scales. Integrating out only the scalem, which for
heavy quarks can be done perturbatively, leads to an EFT, Nonrelativistic QCD (NRQCD) [6, 8, 9], that
still contains the lower scales as dynamical degrees of freedom. Disentangling the remaining scales is
relevant both technically, since it enables perturbative calculations otherwise quite complicate, and more
fundamentally, since it allows to factorize nonperturbative contributions into the expectation values or
matrix elements of few operators. These may be eventually evaluated on the lattice, extracted from the
data or calculated in QCD vacuum models. In the last few years, the problem of systematically treating
these remaining dynamical scales in an effective theory framework has been addressed by several groups
and has now reached a solid level of understanding (a list of references to the original literature can be
found in [10–12]). In one approach an additional effective theory (pNRQCD) very close to a quantum-
mechanical description of the bound system, containing only the heavy quarkonium field and ultrasoft
degrees of freedom, is matched to NRQCD [13–15]. An alternative approach, formulated only for the
weak coupling casemv2 ≫ ΛQCD, does not involve matching from NRQCD, but instead matches a
different effective theory (vNRQCD) to full QCD directly atthe hard scale [16–18].

In the next section we will give a brief general introductionto NRQCD, since this is the framework
for many applications reviewed in this report. More specificpresentations of NRQCD can be found in
Chapter 3, Section 2.2, Chapter 4, Section 3.1 and Chapter 5,Section 1.1. NRQCD on the lattice will be
presented mainly in the following Section 3.2.3 and in Chapter 3, Section 2.1. In Chapter 4, Section 4.2
a short presentation of SCET, an EFT suited to describe collinear fields interacting with soft degrees of
freedom, in combination with NRQCD may be found.

2.1 Nonrelativistic QCD

NRQCD is obtained by integrating out modes of energy and momentumm from QCD Green functions
describing heavy quark–antiquark pairs. It is characterized by an ultraviolet (UV) cut-offνNR = {νp, νs}
that satisfiesE, p,ΛQCD ≪ νNR ≪ m; νp is the UV cut-off of the relative three-momentum of the heavy
quark and antiquark;νs is the UV cut-off of the energy of the heavy quark and antiquark, and of the four-
momenta of the gluons and light quarks. NRQCD is, therefore,designated to describe the dynamics of
heavy quark–antiquark pairs (not necessarily of the same flavour) at energy scales in the centre-of-mass
frame much smaller than their masses. At these energies quark–antiquark pairs cannot be created so it is
enough to use Pauli spinors for both the heavy quark and the heavy antiquark degrees of freedom. Other
degrees of freedom of the theory are gluons and light quarks of four momentum smaller thanνs.

The high-energy modes that have been integrated out have a relevant effect on the low-energy
physics. This effect is not lost, but encoded into the matching coefficientsc and new local interactions of
the NRQCD Lagrangian. In principle, there are infinite such terms to be included, in practice only few of
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them are needed. Each operator can be counted inv. The velocityv andαs (in the matching coefficients)
are the two small expansion parameters of NRQCD. If we aim at an accuracy of order(αks v

n) we have
to keep in the Lagrangian only terms and matching coefficients that contribute up to that order to the
physical observable under study. The couplingsm, g, c are determined by the requirement that NRQCD
reproduces the results of QCD up to order(αks v

n).

If the quark and antiquark have the same flavour, they can annihilate into hard gluons. In NRQCD
their effect is encoded in the imaginary parts of the four-fermion matching coefficients (denoted byf
in the following). Their role in the description of heavy quarkonium annihilations in NRQCD will be
discussed in Chapter 4.

In general, at each matching step the non-analytic behaviour in the scale that is integrated out
becomes explicit in the matching coefficients. Since in thiscase we are integrating out the mass, it be-
comes an explicit parameter in the expansion in powers of1/m in the Lagrangian, while the dependence
in ln(m/ν) is encoded into the matching coefficients.

Up to field redefinitions the NRQCD Lagrangian for one heavy flavour of massm andnf massless
quarks atO(1/m2), but including the kinetic energy termD4/(8m3), reads [8,9,19–21]:

LNRQCD = Lg + Ll + Lψ + Lχ + Lψχ, (1.3)

Lg = −1

4
FµνaF aµν + cg1

1

4m2
gfabcF

a
µνF

µ b
αF

να c, (1.4)

Ll =

nf∑

i=1

q̄ii /Dqi + cll1
g2

8m2

nf∑

i,j=1

q̄iT
aγµqi q̄jT

aγµqj + cll2
g2

8m2

nf∑

i,j=1

q̄iT
aγµγ5qi q̄jT

aγµγ5qj

+cll3
g2

8m2

nf∑

i,j=1

q̄iγ
µqi q̄jγµqj + cll4

g2

8m2

nf∑

i,j=1

q̄iγ
µγ5qi q̄jγµγ5qj, (1.5)

Lψ = ψ†
{
iD0 + c2

D2

2m
+ c4

D4

8m3
+ cF g

σ ·B
2m

+cD g
D ·E − E ·D

8m2
+ icS g

σ · (D× E − E× D)

8m2

}
ψ

+chl1

g2

8m2

nf∑

i=1

ψ†T aψ q̄iγ0T
aqi + chl2

g2

8m2

nf∑

i=1

ψ†γµγ5T
aψ q̄iγµγ5T

aqi

+chl3

g2

8m2

nf∑

i=1

ψ†ψ q̄iγ0qi + chl4

g2

8m2

nf∑

i=1

ψ†γµγ5ψ q̄iγµγ5qi, (1.6)

Lχ = c.c. ofLψ, (1.7)

Lψχ =
f1(

1S0)

m2
O1(

1S0) +
f1(

3S1)

m2
O1(

3S1) +
f8(

1S0)

m2
O8(

1S0) +
f8(

3S1)

m2
O8(

3S1), (1.8)

O1(
1S0) = ψ†χχ†ψ, O1(

3S1) = ψ†σχχ†σψ,

O8(
1S0) = ψ†Taχχ†Taψ, O8(

3S1) = ψ†Taσχχ†Taσψ,

whereψ is the Pauli spinor that annihilates the quark,χ is the Pauli spinor that creates the antiquark,
iD0 = i∂0 − gAa0 T

a, iD = i∇ + gAa T a, Ei = F i0 a T a, Bi = −ǫijkF jk a T a/2 and c.c. stands for
charge conjugate. The allowed operators in the Lagrangian are constrained by the symmetries of QCD.
However, due to the particular kinematical region we are focusing, Lorentz invariance is not linearly
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realized in the heavy quark sector. In practice, Lorentz invariance is realized through the existence of
relations between the matching coefficients, e.g.,c2 = c4 = 1, cS = 2cF − 1 [19,22–26].

The matching coefficients may be calculated in perturbationtheory. For the heavy quark (anti-
quark) bilinear sector as well as for the purely gluonic sector up toO(1/m2) the matching coefficients
have been obtained at one loop in [19]. The complete LL running of these coefficients in the basis of
operators (1.4)–(1.6) has been calculated in [20, 21]3. For cF a NLL evaluation can be found in [28].
In the four heavy fermion sector the matching coefficientsf of the1/m2 operators have been obtained
at one loop in [29]. As discussed above, in this sector the matching coefficients have a non-zero imag-
inary part. Due to their relevance in heavy quarkonium decayprocesses, the calculation of corrections
of higher order inαs has a long history [9, 30–36]. We summarize it in Section 3.1.1 of Chapter 4. An
updated list of imaginary parts of four fermion matching coefficients may be found in [37].

Since several scales remain dynamical in NRQCD, it is not possible to give a homogeneous power
counting for each operator without extra assumptions, i.e., the power counting inv is not unambiguous.
To obtain a better defined power counting one should go to EFTsof lower energy. It should be noticed
that the importance of a given operator for a practical calculation does not depend only on its size, but
also on the leading power ofαs of the corresponding matching coefficient.

Finally, since modes of energym have been removed from the Lagrangian, NRQCD lattice simu-
lations may use lattices that are coarser by about a factor1/v4 (∼ 100 in thebb̄ case) than those needed
by full QCD [6]. We will come back to this in Section 3.2.3.

2.2 Lower energy EFTs

Effective field theories suited to describe the low energy modes of the heavy quarkonium dynamics that
will be used in this report are pNRQCD and vNRQCD. Here we willnot give details on these EFTs since
specific introductions to pNRQCD can be found in Chapter 3, Section 2.2.1 and Chapter 4, Section 3.1.3,
and to vNRQCD in Chapter 6, Section 5. For detailed recent reviews on effective field theories for heavy
quarkonium we refer the reader to [10] and [11], which are mainly devoted to pNRQCD and vNRQCD
respectively.

What we want to point out here is that in all these EFTs objectslike potentials show up. For short
range (or weakly coupled) quarkonia the potentials may be built order by order in perturbation theory.
At higher order the pure potential picture breaks down and the interaction of the heavy quark fields
with the low-energy gluons has to be taken into account (see the pNRQCD Lagrangian of Chapter 3,
Eq. (3.9) and the vNRQCD Lagrangian of Chapter 6, Eqs. (6.20)and (6.21)). For long range (or strongly
coupled) quarkonia the potentials are nonperturbative objects that may be expressed in terms of gluon
fields expectation values. Noteworthy, the pNRQCD Lagrangian in the strong coupling regime reduces
exactly, under some circumstances, to the simple case of a heavy quarkonium field interacting with a
potential (see Chapter 3, Eq.(3.11)).

The potential picture that emerges from these EFTs is quite different from the one of traditional
potential models and superior. Not only the potential is derived from QCD, but higher-order corrections
can be systematically included without being plagued by divergences orad hoccut-offs; these are ab-
sorbed in the renormalization procedure of the EFT. Nevertheless, traditional potential models, which so
much have contributed to the early understanding of the heavy quarkonium properties, may be still useful
and will often appear in the report. First, a potential modelcan be seen, in absence of competitive lattice
data, as a specificansatzon the form of the low-energy QCD dynamics encoded in the potential defined
by an EFT. Second, potential models still provide the only available tool to describe physical systems for
which a suitable EFT has not been built yet. This is, for instance, the case of systems coupled to open
flavour channels.

3After correcting a few misprints in the anomalous dimensionmatrix [27], the results of [21] agree with those of Ref. [20].
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3 LATTICE INTRODUCTION 4

Low energy nonperturbative QCD can either be modelled or simulated on the Lattice. Lattice gauge
theory methods are particularly powerful in heavy quark physics when combined with effective field
theories (EFTs). Lattice QCD input significantly increasesthe predictive power of EFTs as more and
more low energy parameters can be calculated reliably directly from QCD and less fits to experimental
data are required for this purpose. Past lattice QCD resultswere often obtained within the quenched
approximation (neglecting sea quarks) or with unrealistically heavy up and down quarks andnf = 2,
rather thannf = 2 + 1. At present these limitations are gradually being removed.

We shall only describe general aspects of lattice gauge theory simulations. Recent reviews of
different aspects of Lattice QCD can for instance be found inRefs. [38–48]. Several books [49–54] on
the subject have been written and the summary talks of the yearly proceedings of lattice conferences (see
Ref. [55] for the most recent ones) provide an overview of thefield. Ref. [56] contains collections of
early papers.

Obviously there are infinitely many gauge invariant ways to discretize the continuum QCD action.
We will summarise and define the actions most commonly used and address limitations of the method,
before we discuss extrapolations and sources of systematicerrors.

3.1 General aspects

Lattice simulations rely on stochastic (Monte Carlo) methods. Hence all results inevitably carry statistical
errors which however are no problem of principle as they can be made arbitrarily small on (arbitrarily)
big computers or by means of algorithmic and methodologicalimprovements. In order to carry out path
integral quantisation in a mathematically sound ways, the discretisation of space–time appears necessary.
This also enables us to map continuous problems onto a finite computer. Discretisation, i.e., for instance
replacing derivatives∂tφ(t) by [φ(t+ a)− φ(t− a)]/(2a) with “lattice spacing”a and, in this example,
lattice “errors” ofO(a2), inevitably carries the smell ofinexactness. We stress however that the very
nature of QCD itself requires us to introduce an ultra-violet regulator and, as we shall see below, lattice
discretisation is one possible choice. Continuum results are then obtained by removing the regulator,
a→ 0.

Observables are calculated (“measured”) taking their expectation values in the path integral ap-
proach: this amounts to calculating averages over all possible “configurations” of gauge fields on the
lattice, weighted with the respective exponent of the action. In simulations with sea quarks, producing
these configurations is costly and the ILDG [57] (International Lattice Data Grid) is due to be set up,
with the aim of standardising formats of organising and labelling such lattice data, in a way that allows
for easy distributed storage, retrieval and sharing of suchdeposits among different lattice groups.

The typical observables aren-point Green functions. In order to determine a hadronic rest mass
one has to construct an operator with the respective quantumnumbers: spinJ , parity P , charge con-
jugationC, isospin, flavour content etc. This is then projected onto zero momentum and the 2-point
Green function calculated, creating the particle at time0 and destroying it at timet. For larget this
will then decay exponentially,∝ exp(−mt), with m being the ground state mass within the channel in
question. There exist numerous “wave functions” with the right quantum numbers, some with better and
some with inferior overlap to the physical ground state. It is a refined art to identify spatial “smearing”
or “fuzzing” functions that maximise this overlap and allowto extract the mass at moderatet-values,
where the signal still dominates over the statistical noise. The multi-exponentialt-dependence of Green
functions complicates the identification of excited states, i.e., sub-leading or sub-sub-leading exponents.
By working with very precise data, realising a variational multi-state basis of test wave functions [58],
and employing sophisticated fitting techniques [59,60], ithas however in some cases become possible to
calculate moderately low lying radial excitations.

4Author: G. Bali
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Lattice QCD is formulated in Euclidean space time: in the continuum, this amounts to replacing
Lorentz boosts andO(3) rotational symmetry byO(4) rotations. The reason for this is that a real (and
bounded) action is required to allow for a probabilistic interpretation of the path integral measure and
computer simulation. As an analytical continuation to Minkowski space time of a finite number of finite-
precision data points is impossible, the predictive power is confined to quantities that have a Euclidean
space time interpretation such as masses and matrix elements.

Lattice discretisation unavoidably breaks rotationalO(4) invariance, on the scale of the lattice
spacinga. As the continuum limita → 0 is approached, any fixed physical correlation lengthξ will
become much larger than the lattice spacing. Provided the interaction ranges that appear within the
action are localised in space time, all physics will become independent of the underlying discretisation
and a universal continuum limit will be reached, in whichO(4) invariance is restored. Asymptotic
freedom implies that such a continuum limit is approached asthe lattice coupling constant,g → 0.

ReplacingO(4) invariance by its hypercubic subgroup means that in particular higher spin states
are hard to identify. For instanceJ = 4 cannot easily be distinguished fromJ = 0 on a hypercubic
lattice. At finite lattice spacinga, only discrete translations in space and imaginary time arepossible.
This results in the maximum modulus of Euclidean four-momentum components ofπ/a, providing the
required ultraviolet regularisation. Although an infrared cut-off is not necessary in principle, on a finite
computer only a finite number of lattice points can be realised. Typically toroidal boundary conditions
are taken in all directions for the gauge fields while fermions, being Grassmann-valued fields, are an-
tiperiodic in time. This results in quantisation of momentum components in steps of2π/(La) whereL
denotes the number of lattice points along the dimension in question: not all momenta can be realised and
this leads to kinematic constraints when it comes to calculating decay matrix elements or to extracting a
particle mass from a dispersion relation.

The temporal extentaLτ of the lattice can also be interpreted as an inverse temperature (see e.g.,
Ref. [61]) and in this case QCD matter at high temperature canbe simulated. There are some subtleties
related to this approach. For instance the limit of infinite Euclidean time cannot be taken anymore.
Details of thermal field theory are discussed in Chapter 7.

While the lattice regulator inevitably violates Poincaréinvariance it preserves gauge invariance
and most global symmetries of QCD. The exception was chiral symmetry which, one had to hope, would
become restored in the continuum limit. However, within thepast 10 years, formulations of chiral lattice
fermions [62,63] have evolved that implement an exact lattice chiral symmetry, which in the continuum
limit corresponds to the continuum chiral symmetry. These are known as overlap fermions or domain
wall fermions (which in some sense are a special case of the former) and in some literature (somewhat
inaccurately) as Ginsparg–Wilson fermions since the lattice-Dirac operator used obeys the so-called
Ginsparg–Wilson relation [64]. We shall refer to these implementations as chiral fermions.

At presently available light quark masses chiral fermions are typically two orders of magnitude
more expensive to simulate than traditional formulations.As the quark mass is decreased chiral fermions
become more competitive. Obvious advantages of chiral formulations are the applicability of chiral
perturbation theory also at finite lattice spacing and a morecontinuum-like mixing between many lattice
operators. With respect to quarkonia in which both valence quarks are heavy these new developments
are at present of limited significance as light quark mass effects are usually sub-leading.

Lattice QCD is afirst principlesapproach. No parameters apart from those that are inherent to
QCD, i.e., strong coupling constant at a certain scale and quark masses, have to be introduced. In order
to fix thesenf + 1 parametersnf + 1 low energy quantities are matched to their experimental values.
In simulations of quarkonia the lattice spacinga(β,mi), that corresponds to given values of the inverse
lattice strong coupling,β = 6/g2 and lattice quark massesmi, is frequently obtained by matching to
spin-averaged experimental level splittings. In simulations with un-realistic sea quark content one might
hope that this increases the reliability of other predictions as the systematics are partly correlated. With
realistic sea quark content the predictive power with respect to quarkonium physics can be enhanced by
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using independent input such as the experimental proton massmp or the pion decay constant,fπ, instead.
A scale that cannot directly be accessed by experiment but which owes its popularity to the accuracy and
ease with which it can be calculated is the Sommer scaler0 [65], implicitly defined through,

r2
dV (r)

dr

∣∣∣∣
r=r0

= 1.65 , (1.9)

whereV (r) denotes the static quark–antiquark potential and the numerical value on the right hand side
is adjusted such that fits of the bottomonium spectrum to phenomenological or lattice potentials yield
r0 ≈ 0.5 fm. r0 is also well-defined in the theory with sea quarks and its model dependence is much
smaller than that of the string tension. Within the quenchedapproximation scale uncertainties cannot be
avoided anyway and hence such model dependence is admissible. In simulations with sea quarks this
is different butr0 still provides a convenient reference scale, that can be used to relate different lattice
results with each other.

3.2 Actions and finitea effects

We shall discuss the gauge and heavy quark actions that are usually employed. In simulations with sea
quarks, in addition a light quark action needs to be specified.

Results from lattice simulations are inevitably obtained at a finite lattice spacinga. Ideally, they
are then extrapolated to the physically relevant (and universal) continuum limita → 0. Within the
quenched approximation, such extrapolations have become the standard while in simulations with light
sea quarks a sufficient variation of the lattice spacing is often still prohibitively expensive in terms of
computer time. The leading ordera behaviour depends on the choice of the discretisation.

One can follow Symanzik [66] and use a continuum effective field theory to show that the cutoff
effects have the forman(ln Λa)m, whereΛ denotes a low energy scale of the order of a few hundred
MeV andm ≥ 0. The leading power is usually (see below)n = 1 or 2 and within this leading term,
m = 0. By changing the discretisation, the leading terms can be reduced or eliminated. This strategy is
called “improvement”, and it is used to hasten the approach to the continuum limit.

In a classical mechanical system improvement is straightforward. However, even in this case there
exists a break-even point at which further improvement becomes computationally more expensive than
the equivalent reduction of the lattice spacing, due to the exploding number of terms and interaction
range. Typically this point is reached aroundn ≈ 5. In a quantum field theory the situation is more
complex. In QCD the (Wilson) coefficients of improvement terms obtain quantum corrections which can
be obtained perturbatively as a power series in the strong coupling constantg2, in a suitable scheme.
Following an effective field theory philosophy, such calculations can be done and the size of next order
corrections estimated. However, at sufficiently smalla anyc1g2n(a)a + c2a

2 expression will be domi-
nated by the first term that, in this example, is proportionalto a. To eliminate such terms the coefficient
has to be determined nonperturbatively. Otherwise little is gained in a continuum limit extrapolation,
other than a reduction of the slope of the leading order term.At a given finitea value there is however
still some gain from improvement as the results will be more continuum-like. Examples for a systematic
nonperturbative improvement programme exist [67].

In the lattice literature often the word “scaling” is meant to imply that an effective continuum
limit is reached: within the “scaling region” mass ratios appear to be independent ofa, within statistical
errors. If a is reduced even further, eventually one will encounter “asymptotic scaling”, i.e., lattice
massesa(g)m will depend on the couplingg2 in the way expected from the perturbative two-loopβ
function. It is quite clear by now that “asymptotic scaling”in terms of the bare lattice coupling might
never be achieved on large lattices. However, asymptotic scaling has been verified for a particular choice
of the coupling, as a function of the linear extent of tiny lattices, see e.g., Ref. [68].
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3.2.1 Gauge actions

In lattice simulations,SU(3) group elementsUx,µ are typically represented as complex3 × 3 matrices
that live on directed links connecting a lattice sitexwith the neighbouring sitex+aµ̂. Traces of products
of such “link variables” or “links” along closed paths (Wilson loops) are gauge invariant. The simplest
non-trivial such example is a1× 1 square, an elementary “plaquette”. The lattice action should preserve
gauge invariance which means that it can be expressed as a sumover such loops. Fermion fieldsψx and
ψ̄x are living on the lattice sites and a quark can be “transported” from sitex+ aµ̂ to sitex by means of
a left multiplication withUx,µ: the combinationψ̄xUx,µψx+aµ̂ is gauge invariant.

The simplest gauge action is the so-called Wilson action [69], which is proportional to the trace of
the sum over all elementary plaquettes:

SW = −β
∑

x,µ>ν

Re trΠx,µ,ν, (1.10)

wherex runs over all lattice sites andΠx,µν = Ux,µUx+aµ̂,νU
†
x+aν̂,µU

†
x,ν. Up to an irrelevant constant

the Wilson action agrees with the Euclidean continuum action toO(a2):

SYM =

∫
d4x

1

4g2

8∑

a=1

F aµν(x)F
a
µν(x) = SW + const.+ O(a2) , (1.11)

where we identifyβ = 6/g2. Asymptotic freedom tells us thata→ 0 asβ → ∞. In simulations without
sea quarks it has been established thatβ = 6 corresponds to a lattice spacinga ≈ 0.1 fm ≈ (2 GeV)−1.
With sea quarks (using the same gluonic action) the same lattice spacing will be obtained at a somewhat
smallerβ-value as the running ofa(g) with the couplingg will be somewhat slower. As mentioned above,
perturbation theory in terms of the lattice couplingg2 is not yet reliable aroundg2 ≈ 1, to describe the
running ofa(g2) (asymptotic scaling).

TheO(a2) artifacts within Eq. (1.11) can be replaced byO(a4) lattice corrections, by adding two
paths consisting of six links, for instance a1 × 2 rectangle and a “chair”. The result is known as the
Symanzik–Weisz action [70] and the coefficients of the individual terms have been calculated to one
loop [O(g2)] accuracy [71]. At tree level, only the coefficient of the rectangle assumes a non-trivial
value. One (somewhat arbitrary) choice in the space of actions is the Iwasaki-action [72], again the
sum of plaquette and rectangle, but with the relative weightfixed to a constant, originally motivated by
demanding invariance of physical mass ratios under numerical renormalisation group transformations,
within a certainβ window. In addition to simulations with these gauge actions[73–75], there have
also been simulations employing a combination of the plaquette in the fundamental and in its adjoint
representation [74] as well as simulations on anisotropic lattices, using an anisotropic Wilson action [76–
78] or anisotropic variants of actions including Symanzik–Weisz style terms [79].

The main motivation for adding such extra terms to the actionis to achieve a more continuum-like
behaviour already at finite lattice spacing. It also turns out that simulations with chiral fermions benefit
from such a choice which implies a “smoother” gauge field background.

In order to achieve fullO(a2) improvement the coefficients of the extra terms would have tobe
determined nonperturbatively, for instance by imposing continuum relations: in the pure gauge theory
example above one could impose rotational invariance of thestatic quark potential at two distances, e.g.,
V (3, 0, 0) = V (2, 2, 1), V (5, 0, 0) = V (3, 4, 0) to fix the two coefficients, or use dispersion relations
of glueballs or torelons. This is laboursome and in general the fermions will not be nonperturbatively
improved beyondO(a2) anyway. So in practice, only approximate improvement has been implemented,
either by using the perturbative coefficients at a given order or by employing a so-called “tadpole” im-
provement prescription.

The latter is motivated by two observations. The first one is that short-distance lattice quantities
differ considerably from their continuum counterparts, even at lattice spacings at which one would, based
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on theMS scheme continuum experience, assume perturbation theory to be valid. For instance around
a−1 = 2 GeV the numerical value for the plaquette with Wilson actionreads� = 1

3〈tr Π〉 ≈ 0.6 while
atg = 0 this should obviously be normalised toone. This is closely related to the breaking of continuum
rotational symmetry on the scale of a lattice spacinga. Parisi [80] hypothesized that such ultra-violet
effects could largely be factored out and put into commutingpre-factors. This mean-field improvement
amounts to dividing links that appear within lattice operators by constant factors, e.g.,u0 = �

1/4. An
independent observation is that lattice perturbation theory, whose convergence behaviour in terms of the
lattice couplingg2 is well known to be quite bad, differs from continuum perturbation theory largely
by a class of lattice-specific tadpole diagrams which are numerically large. By normalising everything
with respect to other “measured” observables likeu0 these contributions cancel at one loop order and
one might hope that tadpole dominance and cancellation approximately generalises to higher orders as
well [81].

Finally, there is the idea of (classically) “perfect” actions [82]. If one found an action that lies right
on top of a renormalisation group trajectory then, independent of the lattice spacinga, one would obtain
continuum results. Such actions can be identified by demanding independence of physical results under
a change of the underlying scale. An action that contains a finite set of couplings is suggested and these
are then optimised with respect to such constraints. In practice, one can of course at best construct an
action that is close to such a trajectory in which case decreasing the lattice spacing still helps to reduce
deviations of the nearly perfect action from a real renormalisation group trajectory which one attempts
to approximate. An example of such an (approximately) perfect action and its construction can be found
in Ref. [83].

3.2.2 Light quark actions

The Dirac action is bi-linear in the quark fields. In the language of perturbation theory this amounts to
the non-existence of vertices containing an odd number of quark fields. This means that the quark part
of a lattice calculation can to some extent be separated fromthe gauge field evaluation: the gluon fields
contain all information of the QCD vacuum, including sea quark loops, provided these are unquenched
(see below). Hadronicn-point functions can be obtained from contractions of colour fields,Γ-matrices
and quark-propagators, calculated on this gluonic background.

We denote a discretisation of the continuum Euclidean Diracoperator[Dµγµ + mi] asMi[U ].
Each quark flavouri now contributes a factor,

Sfi = (ψ̄,Mi[U ]ψ), (1.12)

to the action, where the scalar product(·, ·) is over allV = L3lτ sites of Euclidean space time, colour
and Dirac-spinor index. Note thatMi depends on the gauge fieldsU . Components ofM−1

i correspond
to quark propagators. Often it is sufficient to calculate propagators that originate from only one source
point. In this case only one space–time row of the otherwise12V × 12V matrix M−1

i needs to be
calculated. As the non-diagonal contributions to the Diracoperator all originate from a first order co-
variant derivative,Mi will be a sparse matrix with non-vanishing elements only in the vicinity of the
(space time) diagonal. This tremendously helps to reduce the computational task. Quark propagators can
be contracted into hadronic Green functions, expectation values (over gauge configurations) of which
will decay with the mass in question in the limit of large Euclidean times.

One complication arises from the fermions as these are represented by anti-commuting Grassmann
numbers. Realising these directly on a computer implies a factorial (with the number of lattice points)
complexity [84] but fortunately they can be integrated out analytically as,

∫
[dψ][dψ̄]e(ψ̄,Mi[U ]ψ) = detMi[U ] =

∫
[dφ][dφ+]e(φ

+,M−1
i [U ]φ), (1.13)
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whereφ andφ+ are auxiliary Boson (pseudo-fermion) fields. The price one pays is that calculating
detMi[U ] (or M−1

i ) involves effective interactions over several lattice sites. This renders simulations
containing sea quark effects two to three orders of magnitude more expensive than using the quenched
(or valence quark) approximation,detMi[U ] = const..

As one would expect ratios of light hadron masses from lattice simulations of quenched QCD have
been found to be inconsistent with the observed spectrum [85]. However, the differences are typically
smaller than 10 %, suggesting that the quenched approximation has some predictive power if cautiously
consumed. Apart from the obvious shortcomings like a stableΥ(4S), the consequences of violating
unitarity at light quark mass can become dramatic in some channels [86]. Roughly speaking as the
axial anomaly does not exist in quenched QCD theη′ will be a surplus light Goldstone Boson or, more
precisely, a ghost particle. The impact of this can be investigated in quenched chiral perturbation theory.

Ultimately, one needs to include sea quarks and there are three classes of light quark actions:
staggered, Wilson-type, and chiral.

After trivially rescaling the quark fields,ψx → a−3/2ψx, ψ̄ → a−3/2ψ̄x, to allow for a representa-
tion as dimensionless numbers, a naı̈ve discretisation of the Dirac action would read,

SN =
∑

x

{
maψ̄xψx +

1

2

∑

µ

γµψ̄x

[
Ux,µψx+aµ̂ − U †

x−aµ̂,µψx−aµ̂
]}

. (1.14)

This action corresponds to the continuum action, up toO(a2) terms, however, it turns out that it corre-
sponds to 16 mass-degenerate species of Dirac fermions in the continuum limit, rather than to one: the
famous fermion-doubling problem [89, 90]. In the lattice literature these species are now often called
tastes, instead of flavours, to emphasize that they are unphysical.

It has been noted however that by means of a unitary transformation, the naı̈ve action can be diag-
onalised in spinor-space, into four identical non-interacting terms, each corresponding to four continuum
tastes. The result is the so-called Kogut–Susskind (KS) action [91], in which 16 spin-taste components
are distributed within a24 hypercube, a construction that is known in the continuum as Kähler fermions.
The advantage is that one taste of KS fermions corresponds tonf = 4 continuum tastes rather than
nf = 16. Another nice feature is that even at finite lattice spacing one of the 15 (n2

f − 1) pions will
become exactly massless asm → 0. The price that one pays is strong spin-taste mixing at finitelattice
spacing and large coefficients accompanying the leadingO(a2) lattice artifacts. KS-type fermions are
referred to as “staggered” and there are improved versions of them, most notably the Naik action [92],
the AsqTad [93] (a squared tadpole improved) action and HYP actions [94, 95] (in which parallel trans-
porters are smeared “iteratively” within hypercubes). Thelatter two choices notably reduce the tastes
mixing interactions.

In order to bring downnf = 4 to nf = 1, as required to achievenf = 2 + 1, sometimes the
determinant within Eq. (1.13) is replaced by its fourth positive root [96,97]. It can be shown that within
perturbation theory this indeed corresponds to replacing thenf -factors accompanying sea quark loops
by nf/4. However, some caution is in place. The operator

√
M is non-local [98] and if its non-locality

altered
√

detM = det
√
M , universality could be lost in the continuum limit. One might argue that

A is not the only operator with the propertydetA =
√

detM but also in the Schwinger model there
exist some discouraging results for the behaviour of the topological winding number at small quark
masses [99]. Moreover, the valence quark action automatically differs from the one used for the sea
quarks as each taste of sea quarks will correspond to 4 tastesof valence quarks [100].

Nonetheless, large scale simulations with this action are pursued at present as the computational
costs of going to light sea quark masses appear much smaller than with other actions. Moreover, as long
as the sea quark masses are not too small, this approximationto QCD is not completely wrong and in
fact likely to be more realistic than quenched QCD. Indeed, in quarkonium physics where light quark
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mass effects are sub-leading, first results appear very encouraging [97]. There also exist first theoretical
attempts of constructing a local representation of thenF < 4 staggered action [101,102].

Another “solution” to the fermion doubling problem are Wilson fermions [90]: the lattice ana-
logue of the term,−1

2aDµDµ, is added to theM of Eq. (1.14). This increases the masses of the 15
doublers by amounts that are proportional toa−1, removing the unwanted modes. Like in the case of
staggered fermions the chiral symmetry that QCD classically enjoys atm = 0 is explicitly broken at any
finite lattice spacinga. In addition, one encounters additive mass renormalisation and a rather awkward
eigenvalue spectrum of the lattice Dirac operator as well asO(a) lattice terms. The latter can be re-
moved by adding yet another counterterm toM : ∝ −icswσµνFµν . The resulting action is known as the
Sheikholeslami–Wohlert (SW) or clover action [103]. Thecsw coefficient is known to one loop [O(g2)]
in perturbation theory [103,104] but has also been determined nonperturbatively in quenched QCD with
Wilson gauge action [67], innf = 2 QCD with Wilson [105] andnf = 3 QCD with Iwasaki gauge
actions [106]. Another variant is the FLIC (fat link irrelevant clover) action [107]. Finally, there exists
twisted mass QCD [108], in which an imaginary mass term is introduced into the Wilson action. Un-
fortunately, in this case there will be mixing between parity partners within Green functions, something
that one also encounters in staggered formulations. However, the changed eigenvalue spectrum ofM
renders smaller quark masses accessible. Moreover, in the case of a purely imaginary renormalized mass
parameter,O(a) improvement holds.

Finally, formulations of chiral lattice fermions exist. These are automaticallyO(a) improved
and do not suffer from the fermion doubling problem. Realisations of these fall into three categories:
overlap fermions, based on the Neuberger action [62], domain wall fermions, which live on a five-
dimensional lattice and become chiral as the size of the fifthdimension is sent to infinity [63] and perfect
actions [82, 87, 88]. As always there is no free lunch and at presently accessible sea quark masses
these formulations are around two orders of magnitude more expensive than the “traditional” quark
actions, described above. For this reason, these formulations have not yet been applied to quarkonia
(although one quenched study with “chiral” charm quarks exists [109]) but in the future as algorithmic
and hardware development will reduce costs, gauge configurations with chiral sea quarks will become
increasingly available, in particular also because at lighter quark masses chiral fermions will become
more competitive.

3.2.3 Heavy quark actions

To a very good approximation bottom quarks can be neglected from the sea as their presence will only
affect the theory at very short distances. This is also true for charm quarks but, depending on the phe-
nomenology one is interested in, to a somewhat lesser extent. In principle nothing speaks against em-
ploying the same quark actions as above to the heavy quark sector as well. With a naive treatment of
cutoff effects, lattice corrections∝ (ma)n arise. This suggests that to make contact with the continuum
limit, the conditionm < a−1 has to apply: asm becomes large the lattice spacing has to be made finer
and finer, the number of lattice points larger and larger and computational costs will explode, if not for
charm then certainly for bottom.

One possible way out would be to introduce an anisotropy,ξ = aσ/aτ with a temporal lattice
spacingaτ ≪ m−1 while the spatial lattice spacing can be kept coarser. An obvious application of
anisotropic actions is finite temperature physics [110] butan anisotropy has also been employed suc-
cessfully in investigations of pure gauge theories [79, 111] as well as in charmonium physics [76, 78].
Obviously, the anisotropy of the gauge action has to be matched to that of the light quark and heavy quark
actions, in order to obtain a sensible continuum limit. Thismatching certainly becomes very expensive
when sea quarks are included and even more so in the presence of improvement terms.

Another starting point are effective field theories, in particular NRQCD which relies on a power
counting in terms of the relative heavy quark velocity,v. In addition, EFTs automatically provide the
framework for factorisation of physical processes into nonperturbative low energy QCD and perturba-
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tive high energy QCD contributions. The fermionic part of the O(v4) Euclidean continuum NRQCD
Lagrange density with quark fieldsψ and antiquark fieldsχ reads [6,8],

L = −ψ† [D4 +H]ψ − χ†[D4 −H†]χ+ Lψχ, (1.15)

with

H = m+ δm − c2
D2

2m
− cF

gσ · B
2m

− c4
(D2)2

8m3
(1.16)

− icD
g(D ·E − E · D)

8m2
+ cS

gσ · (D × E − E ×D)

8m2
+ · · · ,

where the matching coefficientsci(m/µ, g2) = 1 + O(g2), δm = O(g2) are functions of the matching
scaleµ and couplingg2. In the continuumc2 = c4 = 1, however, this is in general different on the
lattice, where rotational invariance is broken and toO(v4) an additional term∝ a2

∑
iD

4
i /m appears.

There are many obvious ways of discretising the above equation on the lattice and often the published
expressions involve “tadpole” improvement factorsu0 = 1 + O(g2). On a lattice with infinite temporal
extent it is possible to use a discretisation of the above Hamiltonian within the kernel of a time-symmetric
evolution equation [112] such that fields at timet+a can be computed entirely from fields at timet (and
vice versa). This turns the computation of propagators particularly economical. In reality, computations
are performed on a finite torus but as long as propagators falloff sufficiently fast in Euclidean time, the
resulting error of this approximation will be small.

In addition there are the four-fermion interaction termsLψχ which (in the case of flavour singlet
quarkonia) are accompanied by factors∝ αs and have to be considered atO(v4). In principle it is known
how to do this in lattice simulations [112]. For theBc system, where annihilation is not possible, there
will be further suppression of these terms by an additional factorαs. Finally, due to integrating out heavy
quark loops, two new purely gluonic operators are encountered [19, 29], accompanied by factors1/m2.
This “unquenching” of the heavy quark can in principle easily be implemented in lattice simulations
too. However, this is obviously an effect, less important than achieving a realistic light flavour sea quark
content.

Starting from a latticized NRQCD action there are in principle different ways to calculate quark
propagators. Usually the full fermionic matrix that appears within a lattice discretisation of Eq. (1.16) is
inverted, as described above, exploiting a Hamiltonian evolution equation. As an alternative one could
also analytically expand the Green functions of interest inpowers of1/m and calculate the resulting
coefficients individually. It is worthwhile to mention thatin the continuum the expression “HQET” refers
to heavy-light systems and “NRQCD” to quarkonia. In the lattice literature however, NRQCD is used for
both, heavy-heavy and heavy-light system, indicating thatthe propagator is obtained as the inverse of the
lattice NRQCD quark matrix. The term HQET implies an expansion of heavy quark propagators about
the static limit. As these are somewhat smeared out in space,NRQCD propagators can be determined
more accurately than HQET ones, however, with the inventionof new “fat” static quark actions [94] that
reduceδm within Eq. (1.16) above this has recently changed.

Them/µ dependence of the matching coefficientsci has been calculated in theMS scheme to
various orders in perturbation theory but so far no result onthema dependence exists in lattice schemes.
This seems to be changing, however [113]. Such corrections are important as in the Coulomb-limit, in
which NRQCD power counting rules are formulated,αs = O(v). The differenceδm between kinetic
and rest mass can be determined nonperturbatively from theΥ dispersion relation.

The Fermilab method [114] constitutes a hybrid between heavy quark and light quark methods. It
is based on an expansion in terms of the lattice spacing, starting from the Wilson quark action that encom-
passes the correct heavy quark symmetry. Forma ≪ 1 this is equivalent to the Symanzik-improvement
programme, the lowest order correction resembling the SW/clover term. However, atma > 1 the result
is interpreted in terms of the heavy quark terms that one obtains from a1/m expansion. Evidently, the
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light-quark clover term has the same structure as theσ · B fine structure interaction, in particular on
anisotropic lattices, where the difference can be attributed to the matching coefficients.

An extension of the Fermilab method is an effective field theory framework for describing dis-
cretization effects [115]. This theory lumps all discretization effects into short-distance coefficients of
the NRQCD/HQET effective Lagrangian. Compared to the continuum HQET or NRQCD, the coef-
ficients now depend on both short distances,m−1

Q and a. This theory is also a natural extension of
Symanzik’s theory of cutoff effects into the regimemQa 6≪ 1 [116]. The theory of heavy-quark cutoff
effects is not limited to the Fermilab method and can be used to compare the relative size of cutoff effects
in various ways of discretising the heavy-quark action [117].

Finally, it is possible to solve NRQCD on the lattice by computing static propagators with field
strength insertions, in the spirit of the1/m HQET expansion. This can either be done on the level of
quarkonium Green functions (an approach that so far has never been attempted) or within the frame-
work of static potentials and relativistic corrections derived from NRQCD [15,118]. When constructing
Green functions one has to keep the power counting in mind as well as the fact that the lowest order
NRQCD Lagrangian goes beyond the static limit as the kineticterm is required. It is also possible to
put pNRQCD [14] onto the lattice. In the limitΛ < mv2 quarkonia are represented as colour singlet
or colour octet states, propagating in the QCD vacuum [119].This condition is only met for would-
be toponium and to some extent for the lowest lying bottomonium states. However, this approach is
conceptionally interesting and reduces the number of relevant decay matrix elements.

3.3 Extrapolations

In lattice simulations there are in general three kinds of effects: finite volume effects, lattice artifacts and
errors due to wrong light quark masses. Within NRQCD there are additional error sources due to the
truncation of the effective field theory at a fixed order in thevelocity v and determination of matching
coefficients to a given accuracy inαs. In addition to these controlled errors there are error sources that
are not controlled by a small parameter like quenching or theuse of ill-defined light quark actions. The
statistical analysis of lattice data is not trivial but we shall not discuss the possible errors, caveats and
pitfalls here as this would be too technical.

Due to the confinement phenomenon and screening of colour, finite size effects are usually quite
benign and — once the lattice is sufficiently large — fall off at least like1/(La)3. Because of this it
is often sufficient to repeat simulations on 2-3 different volumes to check if finite size effects can be
resolved within statistical errors, rather than to attemptproper infinite volume extrapolations. Obviously,
higher lying states and charmonia are spatially more extended than lower lying states and bottomonia.
In simulations with sea quarks the lattice size has to be large, compared to the pion mass. For instance
the conditionLa > 4/mπ yieldsLa > 5.7 fm at physical pion mass. There are no large-volume lattice
results as yet obtained at such light quark masses. To disentangle possible finite volume from other
systematic effects, sequences of lattice simulations at different lattice spacings are often obtained at a
volume that is fixed in physical units.

The powern of the dominant finite lattice spacing effectO(an) is in general known and can
be fitted to lattice data if sufficient leverage ina is provided. In the context of “improvement” (to a
given order of perturbation theory orad hoc) sometimes the coefficient of the leading order term is
small since it is suppressed by powers ofg2 such that the sub-leading term has to be accounted for as
well. Within the context of effective field theories one cannot extrapolate to the continuum limit as the
lattice spacing provides the cut-off scale but one can checkindependence of the results with respect
to variations ofa. Once thema dependences of the short range matching coefficients are determined,
the scaling should improve. A notable exception is the Fermilab action which has a continuum limit.
However, the functional form in the cross-over region betweenma > 1 andma < 1 is not as simple as
an(ln a)m.
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As computer power is limited, lattice sea quark masses are typically not much smaller than the
strange quark mass but with the so-called AsqTad “nf = 2 + 1” action valuesm ≈ 0.2ms have been
reported [97]. Lattice results have to be chirally extrapolated to the physical limit. Chiral corrections
to quarkonium mass splittings are to leading order proportional tom2

π [120]. While within present-day
lattice calculations of light hadronic quantities as well as ofB andD physics, such finite mass effects
are frequently the dominant source of systematic error, in the case of quarkonia, the dependence appears
to be much milder, due to the absence of a light valence quark content.

If effective field theories are realised or simulations are only available at very few lattice spacings
cut-off effects can be estimated by power counting rules and/or by varying the action(s). In the absence
of fully unquenched results, some experience can be gained by comparing to experiment, on the likely
effect of implementing a wrong number of sea quarks but this error source is not controllable fromfirst
principles.A real ab initio study must go beyond the valence quark approximation.
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Chapter 2

COMMON EXPERIMENTAL TOOLS

Convener:R. Mussa

Authors:A. Böhrer, S. Eidelman, T. Ferguson, R. Galik, F. A. Harris,M. Kienzle, A. B. Meyer, A. Meyer,
X. H. Mo, V. Papadimitriou, E. Robutti, G. Stancari, P. Wang,B. Yabsley, C. Z. Yuan

1 OVERVIEW1

This chapter aims to provide an overview of the experimentalfacilities which are contributing to pro-
vide the wealth of data on heavy quarkonia during the currentdecade. The experiments can be sorted
in 7 broad classes, according to the accelerator which is being used. The world laboratory on heavy
quarkonium can count on dedicated experiments working in the most important HEP facilities, such as:

– Threeτ -charm factories, described in Section 2:BES, which provided record samples ofJ/ψ’s
andψ ′’s in the last years, and will run a new intensive program at these energies from 2006 on
(BES III), CLEO , which after 25 years of running atΥ(nS) energies is presently involved in a
3 years program (CLEO-c) across open charm threshold, but also KEDR which, exploiting the
polarimeter in the VEPP-4 collider, has recently provided high precision measurements ofJ/ψ
andψ ′ masses;

– Three B-factories: after CLEO,BaBar andBelle, described in Section 3, have proved to have a
large physics potential also as charmonium factories, through a rich variety of reactions (B decays
to charmonium,γγ , ISR, doublecc̄), and can easily be exploited to study bottomonium physics;

– Onep̄p charmonium factory: the Antiproton Accumulator of the Tevatron, at Fermilab, was ex-
ploited by theE835 experiment, described in Section 4, to scan all known narrowcharmonium
states in formation frompp̄ annihilation.

In these last years, clean record samples of all the narrow vector resonances have been accumu-
lated. Table 2.1 shows the record samples of charmonia produced (or formed) in:

– one B-factory (via B decays,γγ, radiative return) with 250fb−1 (such quantity is continuously
increasing at present);

– the highest statistics runs recently done by theτ -charm factory BES (58 MJψ’s and 14 Mψ(2S))

– the data samples formed in thepp̄ charmonium experiment E835

In 2003, CLEO III accumulated the largest data samples ofΥ(1, 2, 3S) states: 29 M, 9 M, 6 M
respectively. If the production ofΥ states may now stop for a while, the available samples on charmo-
nium are expected to boost in the future years, not only as a result of the steady growth in data from
B-factories, but mainly from the dedicated efforts of the CLEO-c project, which aims to take 1 billion
J/ψ’s in 2006, and the BES III upgrade, from 2007 on. Anotherpp̄ charmonium factory is going to start
data taking at GSI in the next decade.

1Author: R. Mussa
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Table 2.1: This table summarizes the numbers of charmonium states produced or formed , not necessarily detected,
in the B-factories,τ -charm factories and inpp̄.

Particle ψ(2S) ηc(2S) χc2 χc1 χc0 J/ψ ηc(1s)

B decays 0.8M 0.4M 0.3M 0.9M 0.75M 2.5M 0.75M
γγ – 1.6M 1M – 1.2M – 8.0 M
ISR 4M – – – – 9M –
ψ(2S) decays 14M ? 0.9M 1.2M 1.2M 8.1M 39K
J/ψ decays – – – – – 58M 0.14 M
pp̄ 2.8M ? 1M 1M 1.2M 0.8M 7M

Beside the dedicated experiments, many other facilities provide not just valuable information on
the mechanisms of heavy quarkonium production, but have nonetheless a high chance to discover new
states:

– A Z-factory: the four LEP experiments, described in Section 5, studied heavy quarkonium produc-
tion in γγ fusion.

– 2 Hadron Colliders, described in Section 6: Tevatron, where CDF and D0 can investigate the
production mechanisms of prompt heavy quarkonium at high energy and RHIC, where Star and
Phenix can search in heavy quarkonium suppression the signature of deconfined quark–gluon
plasma.

– 1 ep Collider: HERA, described in Section 7, where the experimentsH1 andZEUS can study
charmonium photoproduction, andHERA-B studies charmonium production in pA interactions.

The list of available sources of new data is far from complete: other Fixed Target Experiments,
such as NA50, NA60, study charmonium production in pN, NN interactions.

At the end of the chapter, a set of appendices give details on some of the experimental techniques
which are widely employed in this field, for the determination of narrow resonance parameters such as
masses, widths and branching ratios. These appendices aim to focus on some of systematic limits that
the present generation of high statistics experiments is likely to reach, and give insights on the future
challenges in this field:

– Appendix 8.1 explains the physical principle of resonant depolarization, which provides the abso-
lute energy calibration of the narrow vector states of charmonium and bottomonium.

– Results from alle+e−scanning experiments crucially depend on the subtraction of radiative cor-
rections on the initial state: a detailed and comprehensivereview of the analytical expression
which connects the experimental excitation curve to physical quantities such as partial widths and
branching ratios is given in Appendix 8.2.

– Scanning techniques usingpp̄ annihilations are less affected by radiative corrections;the physical
limits of the stochastic cooling on antiproton beams are reviewed in Appendix 8.3.

– Appendix 8.4 reviews the available software tools to calculate the luminosity inγγ fusion exper-
iments, an issue which may become relevant as we hope to measure γγ widths with accuracies
better than 10% with the current high statistics samples from B-factories.

– Recent evidences both ine+e− andpp̄ formation experiments have shown that the interference
between continuum and resonant amplitudes can be observed in the charmonium system and may
soon lead to a better understanding of some experimental puzzles, and therefore to a substantial
reduction on systematic errors on branching fractions. This issue is addressed in Appendix 8.5.
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2 τ -CHARM FACTORIES

2.1 BES2

BES is a conventional solenoidal magnet detector that is described in detail in Ref. [1]; BES II is the
upgraded version of the BES detector, which is described in Ref. [2] and shown in Fig. 2.1. In BES II,
a 12-layer vertex chamber (VC) surrounding the 1.2 mm thick beryllium beam pipe provides trigger and
track coordinate information. A forty-layer main drift chamber (MDC), located radially outside the VC,
provides trajectory and energy loss (dE/dx) information for charged tracks over85% of the total solid
angle. The momentum resolution isσp/p = 0.017

√
1 + p2 (p in GeV/c), and thedE/dx resolution

for hadron tracks is∼ 8%. An array of 48 scintillation counters surrounding the MDC measures the
time-of-flight (TOF) of charged tracks with a resolution of∼ 200 ps for hadrons. Radially outside the
TOF system is a 12 radiation length, lead–gas barrel shower counter (BSC), operating in self-quenching
streamer mode. This measures the energies of electrons and photons over∼ 80% of the total solid
angle with an energy resolution ofσE/E = 22%/

√
E (E in GeV). Surrounding the BSC is a solenoidal

magnet that provides a 0.4 Tesla magnetic field over the tracking volume of the detector. Outside of the
solenoidal coil is an iron flux return that is instrumented with three double layers of counters that identify
muons of momentum greater than 0.5 GeV/c. The BES II parameters are summarized in Table 2.2, and
a summary of the BES data sets is given in Table 2.3.

End view of the BES detector

Main
Drift Chamber

Barr
el S

hower Counter

Vertex
Chamber

TOF Counters

Solenoid Coil

Magnet Yoke

Muon Counters

Fig. 2.1: End view of BES (BES II) detector.

2.2 The CLEO detector3

2.2.1 The CLEO III and CLEO-c detectors

In the twenty-five year history of the CLEO Collaboration there had been a succession of detector up-
grades that led from CLEO I to CLEO I.5 to CLEO II [3] to CLEO II.V. In preparation for its last running

2Author: F. A. Harris
3Author: R. Galik
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Table 2.2: Summary of BES II detector parameters.

Detector Major parameter BES II
VC σxy(µm) 100

σxy(µm) 190–220
MDC ∆p/p (%) 1.7

√
1 + p2

σdE/dx (%) 8.4
TOF σT (ps) 200

Latten (m) 3.5 – 5.5
BSC ∆E/

√
E (%) 22%

σz(cm) 2.3
µ counter σz(cm) 5.5

DAQ dead time (ms) 8

Table 2.3: Summary of BES data sets.

Detector Physics ECM (GeV) Sample
J/ψ 3.097 7.8 × 106

BES I mτ 3.55 scan 5 pb−1

Ds,D 4.03 22.3 pb−1

ψ(2S) 3.686 3.8 × 106

R–scan 2–5 scan 6 + 85 points
BES II ψ(2S)-scan ∼ 3.686 24 points

J/ψ 3.097 58 × 106

ψ(3770) para. ψ(3770) scan
ψ(2S) 3.686 14×106

ψ(3770) ∼3.770 ∼ 27 pb−1

continuum 3.65 6.4 pb−1

at theΥ(4S)4 there was a large scale modification, primarily aimed at bringing the hadron identification
capabilities up to the same high level as the tracking and electromagnetic calorimetry. This configura-
tion, described below, was called CLEO III. All of thebb resonance data (Υ(1S),Υ(2S),Υ(3S)) and the
Υ(5S) running of 2002–3 were taken with this CLEO III configuration. A conference proceeding on the
commissioning and initial performance evaluation of CLEO III has been published [4].

The transition to running in thecc region called for rethinking the optimization of various com-
ponents, particularly tracking, in that the magnetic field would be lowered from 1.5 T to 1.0T to accom-
modate CESR having to handle the solenoid compensation of such “soft” beams. A thorough study was
completed and available as a Laboratory preprint [5], oftenreferred to as the “CLEO-c Yellow Book”.
The modifications are described below and the cut-away view of the detector is shown in Fig. 2.2

2.2.2 CLEO III

As noted above the thrust of the upgrade to CLEO III was to greatly enhance hadronic particle iden-
tification without sacrificing the excellent charged particle tracking and electromagnetic calorimetry of

4The last suchBB running was in June 2001.

24



COMMON EXPERIMENTAL TOOLS

Solenoid Coil Barrel 
Calorimeter

Drift 
Chamber

Inner Drift Chamber /
Beampipe

Endcap
Calorimeter

Iron
Polepiece

Barrel Muon
Chambers

Magnet
Iron

Rare Earth
Quadrupole

SC  
Quadrupoles

SC Quadrupole
Pylon

2230104-002

CLEO-c

Ring Imaging Cherenkov
Detector

Fig. 2.2: CLEO-c.

CLEO II [3]. CLEO chose to accomplish this with aring-imaging Cherenkov (RICH) detector which
has an active region of 81% of4π, matching that of the barrel calorimeter. Details of the construction
and performance have been published [6]; a summary follows.

The RICH construction has LiF radiators of thickness 1cm followed by a nitrogen-filled expansion
volume of 16 cm. The Cherenkov photons then pass through a CaF2 window into the photo-sensitive
gas, for which a mixture of triethylamine (TEA) and methane (CH4) is used. Readout is done on the
250,000 cathode pads that sense the avalanche of electrons liberated in the TEA–CH4 and accelerated to
anode wires. To minimize effects of total internal reflection the LiF radiators in the central region, i.e.,
nearest the interaction region (IR), have a sawtooth pattern cut on their outer surface.

From Bhabha scattering calibrations, the single photon angular resolution ranges from 13 (nearest
the IR) to 19 mrad (furtherest from the IR). The number ofdetectedphotons averages 12 in the central,
sawtooth region and 11 in the outer, flat radiator regions. This leads to a Cherenkov angle determina-
tion of resolution better than 5 mrad, except at the very outer edges along the beam direction, in good
agreement with simulations of the device.

As always, the performance is a trade-off between fake-rate(mis-ID) and efficiency. Charged
kaons and pions in the decay of aD meson in the chainD∗→Dπ→(Kπ)π can be identified using
kinematics. Such a sample shows that belowp = 2GeV/c even 90% efficiency for kaon identification
has less than a 2% fake-rate for pions. Atp = 2.6GeV/c, the kinematic limit forB decay, 80% efficiency
still has only a fake-rate of 8%. These identification capabilities are enhanced by using dE/dx in the drift
chamber (described next). The ultimate efficiency/fake performance is very specific to the decay channel
of interest.

The RICH takes up some 15 cm in radius more than the previous scintillator system from CLEO II.
This meant a newdrift chamber was to be built that would have the same momentum resolution as that
of CLEO II but with reduced radius, spanning 12–82 cm from thebeam line. Again, a detailed document
has been published [7], of which a summary follows.
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Accomplishing this meant minimizing mass (use of a helium based gas, namely 60%He–40%C3H8;
thin inner support cylinder, 0.12% radiation lengths; aluminum field wires with gold-plating), carefully
monitoring hole and wire positions, and paying close attention to field wire geometry. The innermost
16 layers are axial while the outer 31 layers are stereo with sequential superlayers (of four layers each)
alternating in the sign of the stereo angle. Both the axial and stereo sections participate in the CLEO III
trigger. The end plates consist of a highly tapered assemblyfor the axial layers (allowing full tracking
coverage over 93% of the solid angle) and a slightly conical outer section that minimizes end plate mass
(greatly improving the energy resolution of the end cap CsI electromagnetic calorimeter). The outer
cylinder is instrumented with cathode strips for additional z measurements.

Spatial resolution within the cells is parametrized by two Gaussians with the narrower constrained
to have 80% of the fitted area. Averaged over the full cell thisnarrow component is 88µm with the
middle of the cell being as good as 65µm. Some figures of merit from 5 GeV/c Bhabha tracks are a
momentum resolution of 55 MeV/c , a z resolution of 1.2 mm from the cathodes and of 1.5 mm from
the stereo anodes, and dE/dx resolution of 5.0%, which meansK/π separation to 700 MeV/c of hadron
momentum. All measures of performance are beyond the designspecifications.

To provide extremely accurate track position measurementsin both the azimuthal andz coordi-
nates, CLEO had installed a three layer, double sidedsilicon vertex detector [8] which was the dis-
tinguishing feature of CLEO II.V. For CLEO III this was upgraded to a four layer device [9] with the
smallest radius being 2.5 cm. While thez readout sides performed well throughout the lifetime of
CLEO III the r − φ side quickly showed declining efficiency, in unusual patterns, that has never been
explained. This led us to rethink this innermost tracker with the advent of CESR-c (see below).

The other hardware components of CLEO III were the same as forCLEO II. The∼8000 CsI
crystals of theelectromagnetic calorimeterstill perform very well; the endcap regions were re-stacked
to allow for better focusing quadrupoles and greatly benefited from the reduced material in the drift
chamber endplate. Themuon systemwas unchanged as was thesuperconducting solenoidwith the
exception of some reshaping of the endcap pole pieces. The magnetic field for all theΥ region running
was 1.5 T. Thetrigger and data acquisition systems were totally revamped for CLEO III, allowing
CLEO to be extremely efficient and redundant for even low multiplicity events and have minimal dead
time up to read out rates of 1 kHz.

2.2.3 CLEO-c

Very few changes were needed in preparing for the transitionto CLEO-c data collection in thecc region.
Both the average multiplicity and average momenta of charged tracks are lower, so particle identification
via the RICH and dE/dx becomes even better than at CLEO III energies. The lowered magnetic field
strength of 1.0T means recalibration of the drift chamber, but actually improves the ability to trigger on
and find low momentum tracks. The muon chambers become less useful for identifying leptons from
the interaction region in that such muons range out in the iron; however, the chambers are still a useful
veto of cosmic rays. The CsI calorimeter routinely identifies showers down to 70 MeV, so it needed
no modification, other than changing the thresholds in its trigger hardware to accommodate lowered
energies of Bhabha scattering events.

The premature aging of the CLEO III silicon meant that we had to either replace it or substitute
a small wire chamber. The CLEO-c program does not have the stringent vertexing requirements of
CLEO III (theD mesons are at rest in CLEO-c!). Further, track reconstruction is optimized by having
fewer scattering surfaces. After detailed studies of mass reconstruction and other figures of merit, it was
decided to build a six-layer stereo chamber with similar design as the main drift chamber. In this case
theouterskin is very thin (∼ 0.1% of a radiation length), so that this small chamber and the larger one
look as much as possible like a single volume of gas. The stereo wires (strung at 10–15 degrees) are
needed to getz information for low-momentum tracks that do not reach beyond the axial layers of the
main chamber.
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This new wire chamber has been installed, calibrated, commissioned and fully integrated into
CLEO hardware and software; it is highly efficient and has a very low noise occupancy. The first CLEO-
c data uses this new device in its track fitting algorithms, although work continues in areas such as
calibration and alignment to optimize its contributions totracking.

2.3 KEDR5

The KEDR detector described in detail elsewhere [67] is shown in Fig. 2.3.

1
3
2
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8

7

9

5

4

10

Fig. 2.3: Layout of the KEDR detector: 1 – beam pipe, 2 – vertexdetector, 3 – drift chamber, 4 – TOF scintillation
counters, 5 – LKr barrel calorimeter, 6 – superconducting coil, 7 – muon tubes, 8 – magnet yoke, 9 – CsI endcap
calorimeter, 10 – Aerogel Cherenkov counters

It consists of the vertex detector, the drift chamber, the time-of-flight system of scintillation coun-
ters, the particle identification system based on the aerogel Cherenkov counters, the calorimeter (the
liquid krypton in the barrel part and the CsI crystals in the end caps) and the muon tube system inside
and outside of the magnet yoke. In this experiment the magnetic field was off and the liquid krypton
calorimeter as well as aerogel counters were out of operation.

The detection efficiency, determined by the visible peak height and the table value of the leptonic
width, is about 0.25 for theJ/ψ (∼ 20 · 103 events) and about 0.28 for theψ′ (∼ 6 · 103 events).

Luminosity was measured by events of Bhabha scattering detected in the end-cap CsI calorimeter.

5Author: S. Eidelman
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3 B-FACTORIES

3.1 BaBar6

BaBar is a general-purpose detector, located at the only interaction point of the electron and positron
beams of the PEP-II asymmetric collider at the Stanford Linear Accelerator Center. Although its design
has been optimized for the study of time-dependentCP asymmetries in the decay of neutralB mesons,
it is well suited for the study of a broad range of physics channels of interest, taking profit from the large
samples of data made available by the high luminosity.

Fig. 2.4: BaBar detector longitudinal section.

The PEP-IIB-factory operates at an energy of 10.58 GeV, equal to the massof theΥ(4S) meson;
the colliding electron and positron beams have an energy of 9and 3.1 GeV, respectively, corresponding
to a Lorentz boost of the centre of mass ofβ = 0.55. The maximum instantaneous luminosity now
exceeds9 × 1033 cm−2s−1, well above the design value of3 × 1033 cm−2s−1. The peak cross-section
for formation of theΥ(4S) (which then decays exclusively toB+B− orB0B

0
) is about 1 nb; at the same

energy, the total cross-section fore+e− → qq (q = u, d, s, c) is about 3 nb: in particular,σ(e+e− →
cc̄) ≈ 1.3 nb. Of particular interest for the study of charmonium states are also events where the effective
e+e− energy is lowered by the initial emission of a photon (Initial State Radiation, or ISR), andγγ fusion
processes, where the two photons are radiated by the colliding beams: both of them occur at substantial
rates in the energy range of the charmonium spectrum.

A longitudinal section and an end view of the BaBar detector are shown in Fig. 2.4 and Fig. 2.5.

6Author: E. Robutti
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respectively. The structure is that typical of full-coverage detectors at collider machines, except for a
slight asymmetry inz, with a larger acceptance in the positive direction of the electron beam (“forward”),
which reflects the asymmetry in the beam energies.

Fig. 2.5: BaBar detector end view.

The inner part of the apparatus is surrounded by a superconducting solenoid providing the 1.5 T
magnetic field used for the measurement of particle charges and momenta. It includes the tracking,
particle identification and electromagnetic calorimetry systems.

The tracking system is composed of aSilicon Vertex Tracker(SVT) and aDrift CHamber(DCH).
The SVT is a five-layer, double-sided silicon strip detector, which is used for precision measurements
of the primary and secondary decay vertices, as well as a stand-alone tracking device for particles with
low transverse momentum (50 − 120 MeV/c). The DCH is a 40-layer cylindrical drift chamber with a
helium–isobutane mixture as the sensitive gas, and is the primary device used for the measurement of
particle momenta; it is also used for the reconstruction of secondary vertices outside the outer radius
of the SVT. Both detectors provide redundantdE/dx samplings for particle identification of charged
hadrons with momenta below∼ 700 MeV/c.

The tracking reconstruction efficiency exceeds 95% for tracks with transverse momentum above
200 MeV/c. The resolution for the track impact parameters is about 25 and 40µm in the transverse
plane and along the detector axis, respectively. The momentum resolution is well described by the linear
relation:σpt/pt ≃ 0.45% + 0.13% · pt(GeV/c). ThedE/dx resolution at1 GeV/c is about 7.5%.

Separation of pions and kaons at momenta above500 MeV/c is provided by the DIRC (Detector of
Internally Reflected Cherenkov light). This is a novel kind of ring-imaging Cherenkov detector, in which
Cherenkov light is produced in bars of fused silica and transported by total internal reflection, preserving
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Table 2.4: Overview of the coverage, segmentation, and performance of the BaBar detector systems. The notation
(C), (F), and (B) refers to the central barrel, forward and backward components of the system, respectively. The
detector coverage in the laboratory frame is specified in terms of the polar anglesθ1 (forward) andθ2 (backward).
Performance numbers are quoted for1 GeV/c

2 particles, except where noted.

System θ1 No. ADC TDC No. Segmentation Performance
(θ2) Channels (bits) (ns) Layers

SVT 20.1◦ 150K 4 – 5 50–100µm r − φ σd0 = 55 µm
(–29.8◦) 100–200µm z σz0 = 65 µm

DCH 17.2◦ 7,104 8 2 40 6–8 mm σφ = 1 mrad
(–27.4◦) drift distance σtanλ = 0.001

σpT /pT = 0.47%
σ(dE/dx) = 7.5%

DIRC 25.5◦ 10,752 – 0.5 35× 17 mm2 σθC = 2.5mrad
(–38.6◦) (r∆φ× ∆r) per track

144 bars
EMC(C) 27.1◦ 2 × 5760 17–18 – 47× 47 mm2 σE/E = 3.0%

(–39.2◦) 5760 cystals σφ = 3.9 mrad
EMC(F) 15.8◦ 2 × 820 820 crystals σθ = 3.9 mrad

(27.1◦)
IFR(C) 47◦ 22K+2K 1 0.5 19+2 20–38 mm 90%µ± eff.

(–57◦) 6–8%π± mis-id
IFR(F) 20◦ 14.5K 18 28–38 mm (loose selection,

(47◦) 1.5–3.0 GeV/c2)
IFR(B) –57◦ 14.5K 18 28–38 mm

(–26◦)

the angle of emission, to a water tank viewed by an array of photomultipliers tubes. The pion–kaon
separation obtained after association of signals to the tracks ranges from about10σ at1 GeV/c to about
3σ at4 GeV/c.

TheElectroMagnetic Calorimeter(EMC) is a finely segmented array of CsI(Tl) crystals with pro-
jective geometry. Its energy resolution is well described by the relationσE/E ≃ 2.3% ·E(GeV)−1/4 ⊕
1.9%; the angular resolution ranges from about 12 mrad at low energies to about 3 mrad at high energies;
the width of the reconstructedπ0 mass peak is about7 MeV/c2.

Outside the superconducting coil is the detector for muons and neutral hadrons, calledInstru-
mented Flux Return(IFR): the iron return yoke of the magnet is segmented into layers of increasing
thickness from the inside to the outside, interspersed withResistive Plate Chambers as the active ele-
ments. Muons are identified by criteria exploiting the deepest penetration of their tracks into the iron:
a typical efficiency for a selector was about 90% in the momentum range1.5 < p < 3 GeV/c with a
pion fake rate for pions of about 6–8%. The RPC have suffered aloss of efficiency since the beginning
of operation, causing a small degradation in the performance of muon selectors. In the barrel section of
the IFR, they will be substituted by Limited Streamer Tubes,starting from Summer 2004.

Table 2.4 summarizes parameters and performances of the different subsystems composing the
BaBar detector.

The trigger system includes a first hardware level, L1, collecting information from the DCH, EMC
and IFR, and a software level, L3, selecting events for different classes of processes of physics interest.
Output rates are currently around 3 kHz for L1 and 120 Hz for L3. The combined efficiency exceeds
99.9% forBB events, and is about 99%, 96% and 92% forcc̄, uds andττ events.
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3.2 Belle7

The purpose of the Belle experiment is to study time-dependent CP asymmetries in the decay ofB-
mesons, such asB0→J/ψK0

S , π+π−, andφK0
S . The experiment is therefore designed to provide

boostedB0B0 pairs, allowing decay-time differences to be measured as differences inB-meson de-
cay position; vertex resolution of order50µm, to measure those decay positions; and high-acceptance
tracking and electromagnetic calorimetry, to measure the decay products. Efficient electron and muon
identification are required to reconstruct theJ/ψ, and kaon/pion separation is required to distinguish
kaons (e.g., forB-meson flavour tagging) and pions (e.g., for separation ofB0→π+π− from K+π−

decays). Detection ofK0
L mesons is also desirable, to allow measurement ofB0→J/ψ K0

L andφK0
L

modes as a complement toJ/ψ K0
S andφK0

S .

Fig. 2.6: Layout of the KEKB interaction region.

Belle is therefore suited to a wide range of other physics analyses, particularly in thee+e−→cc̄
continuum, and in the production and decay of charmonium states. The experiment has an active pro-
gramme of study in both of these fields.

The detector is located at the interaction point of the KEKBe+e− collider [10] at K.E.K. in
Tsukuba, Japan. KEKB consists of an injection linear accelerator and two storage rings 3 km in cir-
cumference, with asymmetric energies: 8 GeV for electrons and 3.5 GeV for positrons. Thee+e−

centre-of-mass system has an energy at theΥ(4S) resonance and a Lorentz boost ofβγ = 0.425. The
interaction region is shown in Fig. 2.6: the lower-energy positron beam is aligned with the axis of the
Belle detector, and the higher-energy electron beam crosses it at an angle of 22 mrad. This arrangement
allows a dense fill pattern without parasitic collisions, and also eliminates the need for separation bend
magnets. KEKB’s luminosity is the world’s highest, exceeding the1034 cm−2s−1 design value: with the
introduction of continuous beam injection, a record luminosity of 13.9 × 1033 cm−2s−1 was achieved in
June 2004; further improvements are foreseen with the introduction of crab cavities.

The Belle detector [11], shown in side view in Fig. 2.7, is built into a 1.5 Tesla superconducting
solenoid magnet of 1.7 metre radius. (Compensating solenoids and final-focus quadrupole magnets can
also be seen on the beamline, inside the main solenoid volume.) The design is that of a classic barrel
spectrometer, but with an asymmetry along the beam axis to provide roughly uniform acceptance in the
e+e− centre-of-mass.

7Author: B. Yabsley
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Fig. 2.7: Side view of the Belle detector.

Precision tracking and vertex measurements are provided bya central drift chamber (CDC) and
a silicon vertex detector (SVD). The CDC is a small-cell cylindrical drift chamber with 50 layers of
anode wires including 18 layers of stereo wires. A low-Z gas mixture (He (50%) andC2H6 (50%)) is
used to minimize multiple Coulomb scattering, ensuring good momentum resolution for low momentum
particles. The tracking acceptance is17◦ < θ < 150◦, where the laboratory polar angleθ is measured
with respect to the (negative of the) positron beam axis. TheSVD consists of double-sided silicon strip
detectors arranged in a barrel, covering 86% of the solid angle. Three layers at radii of 3.0, 4.5 and
6.0 cm surround the beam-pipe, a double-wall beryllium cylinder of 2.3 cm radius and 1 mm thickness.
The strip pitches are42µm in the thez (beam-axis) coordinate and25µm for the azimuthal coordinate
rφ; in each view, a pair of neighbouring strips is ganged together for readout. The impact parameter
resolution for reconstructed tracks is measured as a function of the track momentump (measured in
GeV/c) to beσxy = [19⊕ 50/(pβ sin3/2 θ)]µm andσz = [36⊕ 42/(pβ sin5/2 θ)]µm. The momentum
resolution of the combined tracking system isσpt/pt = (0.30/β ⊕ 0.19pt)%, wherept is the transverse
momentum inGeV/c.

The subdetectors used in kaon/pion separation are shown in Fig. 2.8: the CDC, a barrel arrange-
ment of time-of-flight counters (TOF), and an array of aerogel Cherenkov counters (ACC). The CDC
measures energy loss for charged particles with a resolution of σ(dE/dx) = 6.9% for minimum-ionizing
pions. The TOF consists of 128 plastic scintillators viewedon both ends by fine-mesh photo-multipliers
that operate stably in the 1.5 T magnetic field. Their time resolution is 95 ps (rms) for minimum-
ionizing particles, providing three standard deviation (3σ) K±/π± separation below 1.0 GeV/c, and 2σ
up to 1.5 GeV/c. The ACC consists of 1188 aerogel blocks with refractive indices between 1.01 and 1.03
(see Fig. 2.8) depending on the polar angle. Fine-mesh photo-multipliers detect the Cherenkov light: the
effective number of photoelectrons is∼ 6 for β = 1 particles. Information from the three subdetectors
is combined into likelihoodsLK , Lπ etc. for various particle identification hypotheses, and likelihood
ratios such asRK/π = LK/(LK +Lπ) are used as discriminators. A typical selection withRK/π > 0.6
retains about 90% of the charged kaons with a charged pion misidentification rate of about 6%.
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Fig. 2.8: Half-section of the inner region of the Belle detector, showing the layout of the subdetectors used in
kaon/pion separation.

Photons and other neutrals are reconstructed in a CsI(Tl) calorimeter consisting of 8736 crystal
blocks in a projective geometry, 16.1 radiation lengths deep, covering the same angular region as the
CDC. The energy resolution is 1.8% for photons above 3 GeV. Electron identification is based on a
combination ofdE/dx measurements in the CDC, the response of the ACC, the position and shape of
the electromagnetic shower, and the ratio of the cluster energy to the particle momentum. The electron
identification efficiency is determined from two-photone+e− → e+e−e+e− processes to be more than
90% forp > 1.0GeV/c. The hadron misidentification probability, determined using tagged pions from
inclusiveK0

S → π+π− decays, is below0.5%.

Outside the solenoid, the flux return is instrumented to provide aK0
L and muon detector (KLM).

The active volume consists of 14 layers of iron absorber (4.7cm thick) alternating with resistive plate
counters (RPCs), covering polar angles20◦ < θ < 155◦. The overall muon identification efficiency,
determined by using a two-photon processe+e− → e+e−µ+µ− and simulated muons embedded in
BB candidate events, is greater than 90% for tracks withp > 1GeV/c detected in the CDC. The
corresponding pion misidentification probability, determined usingK0

S → π+π− decays, is less than
2%.

The Belle trigger and event selection are essentially open for hadronic events, with over 99%
efficiency forBB and somewhat less fore+e−→cc̄ and light-quark continuum processes. Analysis
of such events is performed using a common hadronic event skim; special provision is made to re-
tain events with aJ/ψ or ψ(2S) candidate but otherwise low multiplicity. Tau-pair and two-photon
(e+e−→e+e−γγ→e+e−X) events are studied using dedicated triggers and data skims.

154 fb−1 of data were taken in the configuration described above. An upgrade in summer 2003
replaced the SVD and the innermost drift-chamber layers with a four-layer silicon detector covering the
same range in polar angle as the CDC. The beam-pipe radius wasreduced to 1.5 cm and the inner SVD
layer to 2.0 cm, placing the first reconstructed hit of each track closer to the interaction point. Position
resolution is similar to that of the original SVD, with strippitches of75µm (z) and50µm (rφ); every
strip is read out. A further124 fb−1 has been collected in this configuration through the middle of June
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2004. Possible future upgrades to the particle identification system, and further upgrades to the vertexing,
are currently under study.

4 p̄p CHARM FACTORIES 8

4.1 E835

The E835 experiment was located in the Fermilab Antiproton Accumulator, where a stochastically cooled
(∆p/p ∼ 10−4) beam intersects an internal jet target of molecular hydrogen. Thep̄ beam was injected
in the Accumulator with an energy of 8.9 GeV and decelerated to the 3.7–6.4 GeV energy range, to
form the charmonium states. Stochastic cooling allowed to reduce RMS spreads on

√
s to less than

250 keV. The E835 experiment was the continuation of the E760experiment, that took data in years
1990–91, at a typical instantaneous luminosityL ∼ 0.5 · 1031. The E760/E835 detector, described in
detail in [12], was a non-magnetic cylindrical spectrometer with full azimuthal coverage and polar angle
acceptance from 2 to 70 degrees in the lab frame. It consistedof a lead-glass EM calorimeter divided into
a barrel and a forward section. The inner part of the barrel was instrumented with a multicell threshold
Čerenkov counter, triggering hodoscopes and charged tracking chambers. The plastic scintillator ho-
doscopes and thěCerenkov were used for triggering: pulse heights from thesedevices allow to identify
electrons/positrons and to distinguish them singly from electron–positron pairs due toγ conversions and
to π0 Dalitz decays.

The E835 detector was a major upgrade of the E760 detector:

– The variable target density allowed to keep a constant instantaneous luminosity (L ∼ 2 · 1031)
throughout each stack.

– In order to withstand the∼3 MHz interaction rate, all detector channels were instrumented with
multi-hit TDCs.

– The inner tracking detector, a proportional multiwire drift chamber, was replaced by an increased
number of straw tubes and scintillating fibers, which were used for measuring the polar angleθ
and providing trigger information based on this coordinate.

The calorimeter had an energy resolutionσE/E = 0.014 + 0.06/
√
E(GeV) and an angular

resolution (r.m.s.) of 11 mrad inφ and 6 mrad inθ. The angular resolution of the inner tracking system
was 11 mrad inφ, whereas inθ it varies from 3 mrad at small angles to 11 mrad at large angles, dominated
by size of the interaction region, and by multiple scattering at lower momenta.

Table 2.5: Integrated luminositiesLdt (in pb−1) taken by E760, E835-I, E835-II

State Decay Channels E760 E835-I E835-II
ηc γγ 2.76 17.7 –
J/ψ e+e− 0.63 1.69 –
χc0 J/ψγ, γγ, 2π0, 2η – 2.57 32.8
χc1 J/ψγ 1.03 7.26 6.3
hc(1P ) search J/ψπ0, ηcγ 15.9 46.9 50.5
χc2 J/ψγ, γγ 1.16 12.4 1.1
ηc(2S) search γγ 6.36 35.0 –
ψ ′ e+e−, χcJγ, J/ψπ0,

J/ψπ+π−, J/ψπ0π0, J/ψη 1.47 11.8 15.0
above J/ψ+X – 2.6 7.5

8Author: R. Mussa
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Fig. 2.9: The E835 detector in year 2000.

Table 2.5 summarizes the data taken by the two experiments, subdivided in energy regions. The
hc search region extends from 3523 to 3529 MeV/c2, i.e., 6 MeV/c2 around the centre of gravity of P
states (located at 3525.3). Theηc(2S) was searched between 3575 and 3660 MeV/c2. Experiment E835
took data in 1996–7 (phase I) and 2000 (phase II). During the long shutdown between the two runs,
substantial changes in the Antiproton Source allowed to smoothly scan theχc0 region but prevented to
take new data down toJ/ψ andηc energies.

5 EXPERIMENTS AT LEP 9

At four of the eight straight sections of the LEPe+e−-collider at CERN [13] four collaborations have
installed their detectors: ALEPH [14], DELPHI [15], L3 [16], and OPAL [17]. The design of the detec-
tors is guided by the physics of interest. The detectors consist of several subdetectors each dedicated to
special aspects of the final state under investigation.

The main physics goal at LEP is the test of the Standard Model.The mass and width of theZ
boson are being measured to a high precision. The couplings of the leptons and quarks toγ/Z are in-
vestigated. Special emphasis is put on the study ofτ -decays. Theτ -polarization gives a good insight
into the couplings. The high production probability of the heavy flavours, charm and bottom, allows
for investigations of effects, such as branching ratios, hadron masses, time dependent mixing etc. Indi-
rect information on the top mass is extracted and the influence from the Higgs mass is studied. Direct
Higgs-search is one of the most important topics in the new physics area. Supersymmetric particles, if
they exist in the accessible range, should not be able to escape detection. The strong interaction, with
confinement and asymptotic freedom still not understood, isto be investigated. The perturbative part
(e.g.,αs-determination) and the non-perturbative part, fragmentation and particle production, guided the
design of the detectors as well.

9Authors: A. Böhrer, M. Kienzle
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In addition, the general features of the detectors have to keep the systematic uncertainties for their
measurements very small to profit from the excellent energy calibration of LEP and to efficiently use the
high event statistics.

All LEP detectors have therefore in common, a good hermiticity as well as a good efficiency. The
total (hadronic) energy has to be measured as completely as possible. The total absorption guarantees
that all particles except neutrinos are seen. Muons also deposit only a small fraction of their energy, but
are detected in special muon chambers and by their characteristic signature in the hadron calorimeter.
Care for efficient detection and identification of leptons istaken. In general particle identification is
provided. Good two-track resolution is possible inside jets of hadrons; energy loss measurements on
more than hundred samplings, high granularity of the calorimeters are needed. High precision tracking
and vertexing of secondary vertices guaranties good detection and momentum resolution for charged
particles, even in the case when they do not come from the primary interaction point.

The trigger system ensures that all events of interest are seen with low background. The triggers
of the four LEP detectors have a high redundancy. For example, hadronic events are found when the en-
ergy exceeds a few GeV in the electromagnetic calorimeter (total energy trigger), or two tracks are seen
together with energy deposition in the hadron calorimeter,which exceeds the energy expected for a min-
imum ionizing particle (µ-trigger). The efficiency for hadronic events is≥ 99.99% with an uncertainty
of 0.01%.

These requirements lead to four LEP detector designs with a similar general outline, while the
detectors differ in their details (see Table 2.6, [18]). Thedetectors show a cylindrical symmetry around
the beam pipe. In the forward direction, calorimeters are installed for the measurement of the luminosity
with high precision. The main body has closest to the beam pipe a vertex detector mounted, with pre-
cision measurements of the hits from tracks crossing; a general tracking system, which may consist of
separate tracking devices; an electromagnetic calorimeter for measuring electrons and photons; a coil of
a magnet in order to bend charged particles for the momentum measurement in the tracking devices; a
hadron calorimeter for hadronic showers absorbing strong interacting particle, but passed by muons; the
latter are detected in the muon chambers, surrounding the experiments.

In the following all four detectors will be described. The ALEPH detector will be presented
in some detail. For the other three detectors, special aspects relevant for the subject of this paper are
discussed.

5.1 ALEPH detector

The ALEPH detector (Fig. 2.10) [14] shows the typical cylindrical symmetry around the beam pipe. The
interaction point of the electron and positron beams is at the centre of the detector. The tracking chambers
and the electromagnetic calorimeter are immersed in a solenoidal magnetic field of1.5T produced by
the superconducting coil (with a length of6.4m and a diameter of5.3m). Outside the coil the hadron
calorimeter is used as return yoke.

The beam pipe inside ALEPH, with a length of5.5m extends between the two ‘low-β’ quadrupo-
les, which focuses the electron and positron beams onto the interaction point. The tube is made of1.5mm
thick aluminium, with an inner diameter of106mm. The central part (760mm length), however, is made
of beryllium,1.1mm thick.

Closest to the interaction point, the silicon vertex detector (VDET) is installed. It consists of
two concentric rings with average radius6.5 cm and11.3 cm. The inner layers has 9 silicon wafers in
azimuth, the outer layer has 15 wafers; both layers are four wafers (5.12 × 5.12 × 0.03 cm3) long in
z-direction. The arrangement in azimuth is such that the wafers overlap by5%. This allows an internal
relative alignment with tracks passing through adjacent wafers. The point resolution in ther − φ and
r − z view is12µm. The hit association of VDET hits to tracks extrapolated from the TPC is found by
Monte Carlo to be98% for tracks in hadronic events with two vertex hits in the acceptance of the vertex
detector:|cos θ| < 0.85.
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Table 2.6: Characteristics of the four LEP experiments [14]– [18].

ALEPH DELPHI L3 OPAL
B-field 1.5T 1.2T 0.5T 0.435T
Si VTX 2 layers 3 layers 2 layers 2 layers

Rφz Rφz Rφz Rφz
r=0.1m 12µ, 12µ 9µ, 7.6µ 5µ, 13µ

inner tr. 8pts,150µ,5cm 24pts,100µ TEC+z.chb 159pts
r=0.3m drift ch. jet ch.Rφ 135µ,6cm
main tr. TPC, 1atm TPC, 1atm 37 pts, 30 to 70µ JET 4 atm
detector
dE/dx 4.6% 5.5% BGO e.m. cal 3.5%

4% at 200 MeV
r=1.1m RICH,1cmC6F14 HCAL 60 U plates

gas C5F12 55%/
√
E

r=1.8 ECAL 21.5X0 OD 5pts,150µ filter 1λ,5pts z chb 6x300µ
18%/

√
E,3sp HPC 18X0 support pipe coil 1.7X0

r=2.2 coil 1.6X0 33%/
√
E,9sp muon chb lead glass 20X0

coil 2X0 3sets 5%/
√
E

r=2.9 HCAL 1.2mFe HCAL 1.2mFe lever arm2.7m HCAL 1mFe
muon chb muon chb muon chb
2 layers 2 layers 4 layers

r=5.7 lever arm 0.5m lever arm .3/.6m coil lever arm .7m

Lumi. calorimeter calorimeter wire ch. calorimeter
forward tungsten/silicon lead/scint. BGO+prop. tube ch.

24–58mrad 29–185mrad 25–70mrad 58–120mrad

Fig. 2.10: ALEPH detector [14].
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Around the vertex detector the inner tracking chamber (ITC)is built with the same polar geomet-
rical acceptance as the vertex detector. This conventionalcylindrical drift chamber is filled with80%
argon and20% carbon dioxide with ethanol. The chamber provides eight measurements inr − φ in
a radial range between16 cm and26 cm, with the wires stretched inz-direction and arranged in eight
concentric layers of hexagonal drift cells. Inr − φ the position of hits is measured to150µm; in z the
position is obtained by the measurements of the difference of the arrival time of the pulses at both ends
of the2m long wires. The precision reached is5 cm. However, only ther − φ measurements are used
for the tracking; the information ofz can be used for track association with the tracks reconstructed in
the TPC. An important aspect of the ITC is that it is the only tracker used for the trigger.

The time projection chamber (TPC) serves as the main tracking chamber in ALEPH. In a volume
extending in radius from0.3m to 1.8m, with a length of4.4m up to 21 space points are measured. The
ionization charge is recorded in proportional wire chambers at both ends of the drift volume, reading out
cathode pads arranged in 21 concentric circles; up to 338dE/dx samples are used for particle identifi-
cation. Thez coordinate of the hits in the TPC is calculated from the drifttime of the electrons collected.
For this, the magnet field, electric field both pointing in horizontal direction (and their distortions), and
the drift velocity must be known perfectly. These quantities are determined from a measured magnetic
field map, by laser calibration and study of reconstructed tracks and their vertices. The resolution is
found inr − φ as173µm and inz as740µm.

In hadronic events,98.6% of the tracks are reconstructed, when they cross at least four out of 21
pad rows,|cos θ| < 0.966. The momentum resolution has been determined with di-muon events. The
transverse momentum resolutionσ(1/pt) is 1.2× 10−3 (pt in GeV/c) for the TPC alone; including ITC
an VDET the resolution isσ(pt)/pt = 0.0006 · pt ⊕ 0.005 (pt in GeV/c); ⊕ implies that the two errors
are added in quadrature.

The TPC is surrounded by the electromagnetic calorimeter (ECAL), which consists of a barrel
part and two endcaps, in order to measure electromagnetic energy in an angular range|cos θ| < 0.98.
With its fine segmentation in projective towers of approximately 3 cm by 3 cm, i.e., 0.9◦ by 0.9◦, the
angular resolution isσθ,φ = 2.5/

√
E+ 0.25 (E in GeV; σθ,φ in mrad). The towers are read out in three

segments in depth called storeys of 4, 9, and 9 radiation lengths. This lead-proportional tube chamber
has an energy resolution for electromagnetic showers ofσE/E = 0.18/

√
E + 0.009 (E in GeV).

The outer shell used as return yoke, is the hadron calorimeter (HCAL). It is made from iron plates
of 5 cm thickness, interleaved with 22 layers of plastic streamer tubes and one layer of tubes in front.
The towers are arranged in projective direction to the primary vertex with a solid angle of3.7◦ by 3.7◦,
corresponding to4 × 4 of the electromagnetic calorimeter towers. Both the cathode pads defining the
towers (pads of different tubes forming one tower are connected galvanically within one storey) and
wires in the1 cm wide tubes are read out. The latter are used for muon identification and as a trigger.
The energy resolution can be parameterizedσE/E = 0.85/

√
E (E in GeV). In addition, two double

layers of streamer tubes are installed around the hadron calorimeter outside the magnetic field and serve
as muon detectors.

5.2 DELPHI detector

The layout of the DELPHI detector [15] is shown in Fig. 2.11. The subdetectors are arranged in a cylinder
symmetrical arrangement with only the hadron calorimeter and the muon chambers being outside the
superconducting coil. The vertex detector closest to the beam pipe is made of silicon wafers. It provides
measurements in three layers with information in bothz- andr − φ-direction. The single hit resolution
is found to be9µm and7.6µm. The vertex detector is surrounded by the inner detector (ID) of a jet-
chamber geometry with five multi wire proportional chambers(MWPC) layers. The main tracking device
is a Time Projection Chamber (TPC) measuring up to 16 space points per track. Together with the outer
detector (OD) with 5 layers of drift tubes the four tracking chambers provide a momentum resolution of
σ(p)/p = 0.0006 · p (p in GeV/c).
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Fig. 2.11: DELPHI detector [15].

A specialty of the DELPHI detector is the Ring Imaging Cherenkov detector (RICH) enclosed by
the outer detector. The particle identification in the RICH complements the identification withdE/dx in
the TPC. The DELPHI collaboration has chosen to use a gas and aliquid RICH (C5F12 and C6F14), hav-
ing two different refractive indices. While thedE/dx measurement is most powerful in the momentum
range below1GeV/c, the liquid radiator allows for particle identification from 0.7GeV/c to 8GeV/c
and the gaseous radiator from2.5GeV/c to 25GeV/c, with angular resolution between1.2mrad and
5.2mrad.

The high density projection chamber (HPC) consists of layers of TPCs, which are separated by
lead wires. These wires separate the drift cells and providethe drift field, but also serve as converter
material for the electromagnetically interacting particles. The energy deposits on the pads are monitored
with π0’s, where one decay photon converted in the materialin front of the HPC and the momentum is
precisely measured: with theπ0 mass as a constraint, the energy resolution is measured toσ(E)/E =
0.33/

√
E ⊕ 0.043 (E in GeV).

Outside the magnet coil a layer of scintillators is installed, mainly for trigger purposes. The hadron
calorimeter (HCAL) made from iron interleaved with limitedstreamer tubes, serves as return yoke and
muon filter, as well. Muon identification is supported by additional muon chambers. The resolution of
the HCAL isσ(E)/E = 1.12/

√
E ⊕ 0.21 (E in GeV).
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5.3 L3 detector

The subdetectors in the detector of the L3 collaboration (Fig. 2.12) [16] are mounted inside a support
tube with a diameter of4.45m with the exception of the muon detection system. The muon chambers are
only surrounded by a very large low field air magnet (0.5T). The coil has an inner diameter of11.9m.
The size of the magnet allows a long lever arm for the muon momentum measurement. This requires a
high precision alignment and monitoring of these chambers.

Fig. 2.12: L3 detector [16].

The tracking system consists of a silicon vertex detector and a central track detector. The latter is
a Time Expansion Chamber (TEC) providing 37 points on standard wires for ther − φ measurement;
in addition 14 wires resolving left-right ambiguities. Thez coordinate is measured on 11 wires by
charge division. The surrounding two cylindrical proportional chambers are designed to provide a good
z measurement. With a total lever arm of0.32m the momentum resolution isσ(pt)/p

2
t = 0.0206 ±

0.0006 (pt in GeV/c).

Muons ine+e− → µ+µ− are measured with the high precision ofσ(p)/p ≈ 2.5%, with the long
lever arm to the muon chambers. Apart from the muon detection, special emphasis was put on a high
precision measurement for electromagnetic showers. They are measured in a crystal calorimeter read
out by photomultipliers. The crystals of bismuth germaniumoxide (BGO) have a shape of a truncated
pyramid,24 cm long and of2× 2 cm2 at the inner and3× 3 cm2 at the outer end. The energy resolution
varies from5% at100MeV to 1.4% at high energy.

A layer of scintillation counters is used for time-of-flightmeasurement. Besides its trigger task,
it efficiently rejects cosmic shower events. A uranium calorimeter with proportional wire chambers
measures hadronic showers and absorbs most particles except muons. Around this calorimeter a muon
filter is mounted, made of brass plates interleaved with five layers of proportional tubes.
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5.4 OPAL detector

The OPAL detector (Fig. 2.13) [17] comprises a tracking system inside a solenoidal magnet of0.435T,
which consists of a vertex detector a jet-chamber and az-chamber. The new vertex detector of OPAL
with two concentric layers of silicon wafers is placed at radii of 6.1 cm and 7.5 cm. The single hit
resolution inr − φ is 5µm, in z 13µm. The main tracking with the jet-chamber provides up to 159
space points (σrφ = 135µm, σz = 6cm) per track. It allows good particle identification with the energy
ionization lossdE/dx. Thez-direction of tracks is substantially improved with information from the
z-chambers, which are made of modules of drift chambers with 6staggered anodes strung inφ-direction.
The momentum resolution is measured toσp/p2 = 0.0022GeV−1 .

Fig. 2.13: OPAL detector [17].

A time-of-flight system, consisting of scintillation counters, allows particle identification in the
momentum range from0.6GeV/c to 2.5GeV/c. It is used for triggering and for cosmic shower rejec-
tion.

Electromagnetic showers are measured with an assembly of lead glass blocks, with10 × 10 cm2

and37 cm in depth, read out with photomultipliers. The energy resolution is aboutσ(E)/E = 0.05/
√
E

(E in GeV), when combined with a presampler mounted in front of the calorimeter. Hadrons are mea-
sured with nine chambers, limited streamer tubes, interleaved with eight layers of iron plates, where
the hadrons may shower. Muons are detected in addition in four layers of drift chambers, the muon
chambers.
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6 EXPERIMENTS AT HADRON COLLIDERS

6.1 CDF in Run II 10

The CDF Run II detector [19], in operation since 2001, is an azimuthally and forward-backward symmet-
ric apparatus designed to studypp̄ collisions at the Tevatron. It is a general purpose solenoidal detector
which combines precision charged particle tracking with fast projective calorimetry and fine grained
muon detection. Tracking systems are contained in a superconducting solenoid, 1.5 m in radius and
4.8 m in length, which generates a 1.4 T magnetic field parallel to the beam axis. Calorimetry and muon
systems are all outside the solenoid. The main features of the detector systems are summarized below.

The tracking system consists of a silicon microstrip system[20] and of an open-cell wire drift
chamber [21] that surrounds the silicon. The silicon microstrip detector consists of seven layers (eight
layers for1.0 < |η| < 2.0) in a barrel geometry that extends from a radius ofr = 1.5 cm from the beam
line to r = 28 cm. The layer closest to the beam pipe is a radiation-hard, single sided detector called
Layer 00 which employs LHC designs for sensors supporting high-bias voltages. This enables signal-
to-noise performance even after extreme radiation doses. The remaining seven layers are radiation-hard,
double sided detectors. The first five layers after Layer 00 comprise the SVXII system and the two outer
layers comprise the ISL system. This entire system allows track reconstruction in three dimensions. The
impact parameter resolution of the combination of SVXII andISL is 40µm including a 30µm contri-
bution from the beamline. Thez0 resolution of the SVXII and ISL is 70µm. The 3.1 m long cylindrical
drift chamber (COT) covers the radial range from 40 to 137 cm and provides 96 measurement layers,
organized into alternating axial and±2◦ stereo superlayers. The COT provides coverage for|η| ≤1.
The hit position resolution is approximately 140µm and the momentum resolutionσ(pT )/p2

T =0.0015
(GeV/c)−1. The COT provides in additiondE/dx information for the tracks.

A Time-of-Flight (TOF) detector [22], based on plastic scintillators and fine-mesh photomultipli-
ers is installed in a few centimeters clearance just outsidethe COT. The TOF resolution is≈ 100 ps and
it provides at least two standard deviation separation betweenK± andπ± for momentap < 1.6 GeV/c.

Segmented electromagnetic and hadronic sampling calorimeters surround the tracking system and
measure the energy flow of interacting particles in the pseudo-rapidity range|η| < 3.64. The central
calorimeters (and the endwall hadronic calorimeter) coverthe pseudorapidity range|η| < 1.1(1.3). The
central electromagnetic calorimeter [23] (CEM) uses lead sheets interspersed with polystyrene scintilla-
tor as the active medium and employs phototube readout. Its energy resolution is13.5%/

√
ET⊕2%. The

central hadronic calorimeter [24] (CHA) uses steel absorber interspersed with acrylic scintillator as the
active medium. Its energy resolution is75%/

√
ET⊕3%. The plug calorimeters cover the pseudorapidity

region 1.1< |η| < 3.64. They are sampling scintillator calorimeters which are read out with plastic fibers
and phototubes. The energy resolution of the plug electromagnetic calorimeter [25] is16%/

√
E ⊕ 1%.

The energy resolution of the plug hadronic calorimeter is74%/
√
E ⊕ 4%.

The muon system resides beyond the calorimetry. Four layersof planar drift chambers (CMU)
detect muons withpT > 1.4 GeV/c which penetrate the five absorption lengths of calorimeter steel. An
additional four layers of planar drift chambers (CMP) instrument 0.6 m of steel outside the magnet return
yoke and detect muons withpT > 2.0 GeV/c. The CMU and CMP chambers each provide coverage in
the pseudo-rapidity range|η| < 0.6. The Intermediate MUon detectors (IMU) are covering the region
1.0< |η| <1.5.

The beam luminosity is determined by using gas Cherenkov counters located in the3.7 < |η| <
4.7 region which measure the average number of inelasticpp̄ collisions per bunch crossing [26].

The trigger and data acquisition systems are designed to accommodate the high rates and large
data volume of Run II. Based on preliminary information fromtracking, calorimetry, and muon systems,
the output of the first level of the trigger is used to limit therate for accepted events to≈ 18 kHz at

10Author: V. Papadimitriou
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the luminosity range of 3–7 1031 cm−2s−1. At the next trigger stage, with more refined information
and additional tracking information from the silicon detector, the rate is reduced further to≈ 300 Hz.
The third and final level of the trigger, with access to the complete event information, uses software
algorithms and a computing farm, and reduces the output rateto≈ 75 Hz, which is written to permanent
storage.

The CDF Run I and Run 0 detector, which operated in the time period 1987–1996, is described
elsewhere [27]. Major differences for Run II include: the replacement of the central tracking system; the
replacement of a gas sampling calorimeter in the plug-forward region with a scintillating tile calorimeter;
preshower detectors; extension of the muon coverage, a TOF detector and upgrades of trigger, readout
electronics, and data acquisition systems.

6.2 DO detector in Run II11

The DO Run II detector, in operation since 2001, is made of thefollowing main elements. The central
tracking system consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both lo-
cated within a 2 T superconducting solenoidal magnet [28]. The SMT has≈ 800, 000 individual strips,
with typical pitch of50−80 µm, and a design optimized for tracking and vertexing capability at |η| < 3.
The system has a six-barrel longitudinal structure, each with a set of four layers arranged axially around
the beam pipe, and interspersed with 16 radial disks. The CFThas eight thin coaxial barrels, each sup-
porting two doublets of overlapping scintillating fibers of0.835 mm diameter, one doublet being parallel
to the collision axis, and the other alternating by±3◦ relative to the axis. Light signals are transferred
via clear light fibers to solid-state photon counters (VLPC)that have≈ 80% quantum efficiency.

Central and forward preshower detectors located just outside of the superconducting coil (in front
of the calorimetry) are constructed of several layers of extruded triangular scintillator strips that are
read out using wavelength-shifting fibers and VLPCs. The next layer of detection involves three liquid-
argon/uranium calorimeters: a central section (CC) covering |η| up to≈ 1, and two end calorimeters
(EC) extending coverage to|η| ≈ 4, all housed in separate cryostats [29]. In addition to the preshower
detectors, scintillators between the CC and EC cryostats provide sampling of developing showers at
1.1 < |η| < 1.4.

The muon system resides beyond the calorimetry, and consists of a layer of tracking detectors
and scintillation trigger counters before 1.8 T toroids, followed by two more similar layers after the
toroids. Tracking at|η| < 1 relies on 10 cm wide drift tubes [29], while 1 cm mini drift tubes are used at
1 < |η| < 2.

Luminosity is measured using plastic scintillator arrays located in front of the EC cryostats, cov-
ering2.7 < |η| < 4.4. A forward-proton detector, situated in the Tevatron tunnel on either side of the
interaction region, consists of a total of 18 Roman pots usedfor measuring high-momentum charged-
particle trajectories close to the incident beam directions.

The trigger and data acquisition systems are designed to accommodate the large luminosity of Run
II. Based on preliminary information from tracking, calorimetry, and muon systems, the output of the
first level of the trigger is used to limit the rate for accepted events to≈ 1.5 kHz. At the next trigger
stage, with more refined information, the rate is reduced further to≈ 800 Hz. The third and final level
of the trigger, with access to the complete event information, uses software algorithms and a computing
farm, and reduces the output rate to≈ 50 Hz, which is written to permanent storage.

The DO Run I detector is described elsewhere [29]. Major differences for Run II include: the
replacement of the central tracking system, optimized for the absence of a central magnetic field, by a
magnetic tracking system; preshower detectors; and upgrades of trigger, readout electronics, and data
acquisition systems.

11Author: Arnd Meyer
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7 EXPERIMENTS AT HERA 12

The electron positron storage ring HERA (Fig. 2.14) at the DESY laboratory in Hamburg collides
27.5 GeV electrons or positrons with 920 GeV protons13. The storage ring has a circumference of6.4 km
and consists of two separate accelerators with a maximum of 180 colliding bunches each, providing a
bunch crossing rate of 10 MHz. Four experiments are situatedat HERA. The two collider experiments
H1 and ZEUS have been in operation since 1992. In 1995 the HERMES experiment started data taking
using the polarized electron beam on a fixed polarized gas target [30]. The HERA-B proton proton fixed
target experiment was operated between 1998 and 2003. HERA-B makes use of the proton beam halo
using a wire target and is described in Section 7.3.

Fig. 2.14: The HERA collider with the four experiments H1, ZEUS, HERMES and HERA-B on the left and its
pre-accelerators on the right.

The H1 and ZEUS detectors are typical multi-purpose collider experiments. A schematic view
of the ZEUS detector is shown in Fig. 2.15. The physics programs comprise the full spectrum of QCD
studies, measurements of the proton structure functions and exclusive hadronic final states, as well as
electroweak physics and searches for new physics phenomena[31]. With anep centre-of-mass energy
of 320 GeV the HERA collider experiments H1 and ZEUS are closeto the present energy frontier for
accelerator based experiments. Only the Tevatron experiments CDF and D0 (described in section 6)
have access to higher centre-of-mass energies. Events in deep inelasticep scattering have been measured
down to values ofx as low as∼ 10−6 and up to values ofQ2 of 30, 000 GeV2. In QCD, measure-
ments of exclusive final states comprise jet physics, heavy flavour production, processes in hard and soft
diffraction and hadron spectroscopy.

In the years between 1992 and 2000 the collider experiments H1 and ZEUS collected an integrated
luminosity of 100 pb−1 each. The bulk data were taken in the years 1996 through 2000.In the years
2001/2 a major luminosity upgrade was put in place. The interaction points were equipped with new
focusing magnets which allow for substantially increased specific luminosities. Since 2003/4 the HERA
collider is running and an integrated luminosity of 700 pb−1 is expected to be produced for each of the
two experiments [32].

The designs of the H1 and ZEUS detectors were chosen to be somewhat complementary, with
emphasis on the reconstruction of the scattered electron inthe case of H1 and on the precise calori-
metric measurement of the hadronic final states in the case ofZEUS. Both experiments are capable of

12Author: Andreas B. Meyer
13Until 1998 the proton energy was 820 GeV.
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Fig. 2.15: Schematic view of the ZEUS Detector.

the triggering and reconstruction of charmonium and bottomonium events down to very low transverse
momentapt,ψ ∼ 0. A candidate charmonium event is displayed in figure 2.16. Inthe following the ex-
periments are described in detail, emphasizing those components that are most relevant for the triggering
and reconstruction of quarkonium events with two decay leptons in the final state.

7.1 H1

The design of the 2800 ton H1 detector [33], schematically shown in Fig. 2.16, emphasizes charged
particle tracking in the central region as well as high calorimetric resolution for electromagnetic energy
depositions.

The primary components of the H1 tracking system are two coaxial cylindrical jet-type drift cham-
bers (CJC) covering the polar angle region between 15◦ and 165◦. The two chambers consist of 30 (60)
drift cells respectively with 24 (32) sense wires strung parallel to the beam axis. The sense wires are read
out at both ends, and thez-coordinate is measured by charge division with a resolution of σz = 22mm.
The spatial resolution of the CJC in therϕ plane isσrϕ = 170µm. The momentum resolution in
the coordinate transverse to the 1.2 Tesla solenoidal field of σ(pT )/pT = 0.01 pT [GeV] ⊕ 0.015. The
magnetic field is produced by a 5 m long superconducting solenoid of 5.8 m in diameter which encloses
the calorimeter. Two further inner drift chambers and two multiwire proportional chambers (MWPC),
serve to measure the longitudinal track coordinates and to provide trigger information. The Forward
Tracking Detectors cover a polar angular range between5◦ and30◦. The system consists of three super-
modules composed of three planar drift chambers, a multiwire proportional chamber, a transition radiator
and a radial drift chamber. The MWPCs serve for trigger purposes and complement the polar angular
coverage of the central proportional chambers.

The H1 main calorimeter employs a fine-grain liquid argon (LAr) sandwich structure in the bar-
rel and forward (proton-beam) region (with angular range from 4◦ to 155◦ in polar angle). In the
backward region (with angular range from 155◦ to 177.5◦) a lead/scintillating-fiber calorimeter [34]
provides an excellent energy resolution ofσ(E)/E = 0.07/

√
E[GeV] ⊕ 0.01, and a time resolution

better than 1 ns. The electromagnetic section of the liquid argon calorimeter uses lead plates as ab-
sorber material. In the hadronic section (which provide a depth of 4 to 6 nuclear interaction lengths)
steel plates are used. Both sections are segmented transversely in cells of4 × 4 cm2 in cross-section
and are further segmented in longitudinal shower direction. In total there are 31,000 electromagnetic and
14,000 hadronic readout channels. The electromagnetic LArcalorimeter achieves an energy resolution of
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Fig. 2.16: Display of a charmonium event candidate in the H1 Detector.

σ(E)/E = 0.12/
√
E[GeV] ⊕ 0.01. The high degree of segmentation allows for a distinction between

hadronic and electromagnetic energy depositions in the offline reconstruction, resulting in a hadronic
energy resolution ofσ(E)/E = 0.55/

√
E[GeV] ⊕ 0.01.

Muons are identified as minimum ionizing particles in both the calorimeters and in the magnetic
field iron return yoke surrounding the magnetic coil. The iron system is instrumented with 16 layers
of limited-streamer tubes of 1 cm2 cell size. Altogether the muon system consists of 100k channels.
Up to five out of 16 layers are used for triggering. In order to provide a two-dimensional measurement
five of the 16 layers are equipped in addition with strip electrodes glued perpendicular to the sense wire
direction.

The H1 trigger and readout system consists of four levels of hardware and software filtering. The
triggering of charmonium event candidates relies on track pattern recognition in the central jet chambers
and timing information in the MWPC. For the detection of the scattered electron calorimeter triggers are
used. For the muon decay channel coincidences of hits in the same sector of the instrumented iron (in
different layers) are required at the first trigger level.

7.2 ZEUS

The ZEUS detector [35, 36] makes use of a 700 ton compensatinguranium sampling calorimeter, with
equal sampling fractions for electromagnetic and hadronicshower components. The calorimeter is made
up of layers of 2.6 mm SCSN-38 scintillator and 3.3 mm stainless-steel-clad depleted-uranium plates.
One layer corresponds to 1.0 radiation length (X0) and0.04 interaction lengths. This choice of layer
thicknesses results in a sampling fraction of4% for electromagnetic and hadronic shower components,
and hence compensation, and7% for minimum-ionizing particles. The compensation resultsin a very
good hadronic energy resolution ofσ(E)/E = 0.35/

√
E[GeV] ⊕ 0.02. The resolution for electro-

magnetic showers isσ(E)/E = 0.18/
√
E[GeV] ⊕ 0.01.
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The ZEUS solenoidal coil of diameter 1.9 m and length 2.6 m provides a 1.43 T magnetic field
for the charged-particle tracking volume. The tracking system consists of a central wire chamber cov-
ering the polar angular region from 15◦ to 164◦ , a forward planar tracking detector from 8◦ to 28◦ and
a second planar tracking chamber in the backward direction,covering the region from 158◦ to 170◦.
The momentum resolution attained isσ(pT )/pT = 0.005 pT ⊕ 0.015 and a track is extrapolated to the
calorimeter face with a transverse resolution of about 3 mm.Ionization measurements from the central
tracking chamber also serve to identify electron–positronpairs fromJ/ψ decays.

The muon system is constructed of limited streamer tubes inside and outside of the magnetic
return yoke, covering the region in polar angle from 10◦ to 171◦. Hits in the inner chambers provide
muon triggers forJ/ψ decays.

The ZEUS trigger algorithm is primarily calorimeter-based, exploiting the excellent time resolu-
tion of the calorimeter, while that of H1 emphasizes tracking algorithms for reconstruction of the inter-
action vertex. The shaping, sampling, and pipelining algorithm of the readout developed for the ZEUS
calorimeter and used in modified form for the silicon and presampler systems permits the reconstruction
of shower times with respect to the bunch crossings with a resolution of better than 1 ns, providing es-
sential rejection against upstream beam–gas interactions, as well as allowing 5µs for the calculations
of the calorimeter trigger processor. For the triggering ofthe charmonium production channels a muon
track candidate in the central drift chamber with one or morehits in the muon chambers can be validated
by energy in the calorimeter above a threshold of 460 MeV.

7.3 HERA-B

The fixed target experiment HERA-B is located at the HERA storage ring at DESY (see Section 7), The
data taking took place in the years between 2000 and 2003. At HERA-B, wire targets are inserted into
the halo of the 920 GeV HERA proton beam to spawn inelasticpA collisions in which charmonium and
other heavy flavour states are produced. ThepN (N = p, n) centre-of-mass energy is

√
s = 41.6 GeV.

A side view of the HERA-B spectrometer is shown in Fig. 2.17. Adetailed description of the apparatus
is given in Ref. [37–39].

The wire target [40] consists of two wire stations, each containing four target wires of different
materials. A servo system automatically steers the target wires during the data taking in order to maintain
a constant interaction rate. The spectrometer has a geometrical coverage from 15 mrad to 220 mrad in
the horizontal plane and from 15 mrad to 160 mrad in the vertical plane. The instrumentation emphasises
vertexing, tracking and particle identification. The silicon vertex detector system [41] is realized by a
system of 20 Roman pots containing seven planar stations (four stereo views) of double-sided silicon
micro-strip detectors which are operated in a vacuum vesselat 10 to 15 mm distance from the proton
beam. An additional station is mounted immediately behind the 3 mm thick Aluminium window of the
vacuum vessel. The tracker is divided into a fine grained inner tracker using micro-strip gas chambers
with gas electron multipliers and a large area outer trackerconsisting of honeycomb drift cells with wire
pitches between 5 mm near and 10 mm [42–44]. Particle identification is performed by a Ring Imaging
Cherenkov hodoscope [45, 46], an electromagnetic calorimeter [47] and a muon detector [48, 49]. The
calorimeter is divided into three radial parts with decreasing granularities. The muon system consists
of four tracking stations. It is built from gas-pixel chambers in the radially innermost region and from
proportional tube chambers, some with segmented cathodes (pads), everywhere else.

The detector components used for charmonium analyses include the tracking and vertex detectors,
the calorimeter and the muon system. A complex trigger and read-out chain [50] allows for a reduction
of an initial interaction rate of several MHz to a final outputrate of order 100 Hz. A dedicatedJ/ψ-
trigger is based on the selection ofµ+µ− ande+e− pairs and subsequent reconstruction of invariant
masses.
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Fig. 2.17: Side view of the HERA-B Spectrometer.

8 APPENDICES

8.1 Resonant depolarization for absolute mass measurements14

Electrons and positrons in storage rings can become polarized due to emission of synchrotron radiation
according to the Sokolov–Ternov effect [54]. The spins of the polarized electrons precess around the
vertical guiding magnetic field with the precession frequency Ω, which in the plane orbit approximation
is directly related to the particle energyE and the beam revolution frequencyω:

Ω/ω = 1 + γ · µ′/µ0 = 1 + ν , (2.1)

whereγ = E/me,me is the electron mass,µ′ andµ0 are the anomalous and normal parts of the electron
magnetic moment. Theν is a spin tune, which represents the spin precession frequency in the coordinate
basis related to the particle velocity vector.

The precession frequency can be determined using theresonant depolarization. To this end one
needs a polarized beam in the storage ring which is affected by the external electromagnetic field with
the frequencyΩD given by the relation

Ω ± ΩD = ω · n (2.2)

with any integern (for VEPP-4M in theJ/ψ(1S) regionn = 3).

The precession frequency is measured at the moment of the polarization destruction detected by
thepolarimeter, while thedepolarizerfrequency is being scanned. The process of forced depolarization
is relatively slow compared to the period of the synchrotronoscillations of the particle energy. This
allows to determine the average spin tune〈ν〉 and corresponding average energy of the particles〈E〉
with higher accuracy than the beam energy spreadσE.

Formula (2.1) gives the value ofγ averaged over the beam revolution time. Thus, for a symmetric
machine, it corresponds to the energy in the interaction point.

The method described has been developed in Novosibirsk and first applied to theφ meson mass
measurement at the VEPP-2M storage ring [55]. Later it was successfully used to measure masses of

14Author: S. Eidelman
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theψ- [51] andΥ-meson family [56–58], see also Ref. [59], in which the values of the masses were
rescaled to take into account the change of the electron massvalue. The relative mass accuracy achieved
in these experiments was1 · 10−5 for theΥ-family and3 · 10−5 for theψ-family. The resonant depolar-
ization experiments on bottomonium masses were also performed with the CUSB detector at CESR [60]
(Υ(1S)) and with the ARGUS detector at DORIS [61] (Υ(2S)). The accuracy of theJ/ψ(1S) meson
mass measurement was improved in the Fermilabpp̄-experiment E760 [62] to1.2 ·10−5 using theψ(2S)
mass value from Ref. [51]. The resonant depolarization method was also successfully applied to the high
precision measurement of the Z-boson mass at LEP [63]. The comprehensive review of this technique
and its application to particle mass measurements can be found in [64].

8.2 e+e− scanning, radiative corrections15

8.2.1 Introduction

The measurement of the mass and total width of1−− resonances bye+e− colliding experiments is done
by scanning the resonance curve and fitting the data with the theoretical cross-section as a function of
these parameters. Thee+e− partial width is also determined from this fitting, i.e.,Γee is measured as the
coupling of the resonance to the incominge+e−, instead of decaying process; while most other decay
modes are measured as branching ratios by dividing the number of the observed events decaying into this
mode by the total number of resonance events. Such fitting requires precise calculation of initial state
radiative corrections. This is done by the structure function approach [69–71]. It yields the accuracy of
0.1%. In this scheme, the radiatively corrected cross-section is expressed as

σ(s) =

∫ 1−sm/s

0
dx σ̃(s(1 − x))F (x, s), (2.3)

where
√
s is the C.M. energy of the colliding beam,

√
sm is the cut-off of the invariant mass in the event

selection, and

σ̃(s) =
σB(s)

|1 − Π(s)|2 . (2.4)

with σB(s) the Born order cross-section andΠ(s) the vacuum polarization. In Eq. (2.3)

F (x, s) = βxβ−1δV +S + δH , (2.5)

with

β =
2α

π

(
ln

s

m2
e

− 1

)
, (2.6)

δV +S = 1 +
3

4
β +

α

π

(
π2

3
− 1

2

)
+ β2

(
9

32
− π2

12

)
, (2.7)

δH = −β
(
1 − x

2

)

+
1

8
β2

[
4(2 − x) ln

1

x
− 1 + 3(1 − x)2

x
ln(1 − x) − 6 + x

]
. (2.8)

Here the conversion of bremsstrahlung photons to reale+e− pairs is included in the cross-section which
is the usual experimental situation. Thus there is cancellation between the contributions of virtual and
reale+e− pairs in the leading term [71].

15Author: P. Wang
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Since this note discusses resonances, likeψ′ andψ′′. so σB(s) is expressed by Breit–Wigner
formula. For narrow resonances, likeJ/ψ andψ′, it is

σB(s) =
12πΓ0

eeΓf
(s−M2)2 + Γ2M2

, (2.9)

whereM andΓ are the mass and total width of the resonance;Γ0
ee andΓf are the partial widths to the

e+e− mode and to the final state respectively. Usually to measureM , Γ andΓee, f is inclusive hadrons.
HereΓ0

ee describes the coupling strength of the resonance toe+e− through a virtual photon. For example,
in potential model,Γ0

ee is related to the wave function at the originψ(0) in the way

Γ0
ee =

4α2Q2
q|ψ(0)|2
M2

(2.10)

whereQq is the charge carried by the quark in the quarkonium andα is the QED fine structure constant.
Since the decay of a quarkonium1−− state toe+e− pair is through a virtual photon, there is always
vacuum polarization associated with this process. So the experimentally measurede+e− partial width,
denoted explicitly asΓexpee , is related toΓ0

ee by the expression

Γexpee =
Γ0
ee

|1 − Π(M2)|2 . (2.11)

Particle Data Group adopts the convention of Ref [73] thatΓee meansΓexpee . The radiatively corrected
resonance cross-section is

σres(s) =

∫ 1

0
dx F (x, s)

12πΓexpee Γf
(s −M2)2 + Γ2M2

. (2.12)

For resonances, as long as
√
s−√

sm ≫ Γ, the integral of Eq. (2.12) is insensitive to
√
sm, because the

Breit-Wigner formula behaves like aδ function. One can put the upper limit of integral to1.

8.2.2 Analytical expression

For the practical purpose of fitting, the expression of radiative corrected resonance cross-section in
Eq. (2.12) is integrated analytically [74]. To get the best accuracy, one rewritesF (x, s) in Eq. (2.5)
in terms of a series expansion:

F (x, s) = βxβ−1

[
1 +

3

4
β +

α

π

(
π2

3
− 1

2

)
+ β2

(
9

32
− π2

12

)]

+xβ
(
−β − β2

4

)
+ xβ+1

(
β

2
− 3

8
β2

)
+O(xβ+2β2)

= βxβ−1δV +S + δH ,

(2.13)

with

δH = xβ
(
−β − β2

4

)
+ xβ+1

(
β

2
− 3

8
β2

)
. (2.14)

Notice that here the omitted terms start fromxβ+2β2, while the three terms which are kept all have
β term in their coefficients. Equation (2.13) differs from Eq.(2.5) in theδH term. Their equivalence can
be verified if one writesxβ = 1 + β lnx, xβ+1 = x+ βx lnx andln(1 − x) = −x− x2/2 + . . ..
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With F (x, s) in the form of Eq.( 2.13), the radiatively corrected resonance cross-section of Eq. (2.12)
can be expressed as

σres(s) =
12πΓeeΓf

s2
{δV +S [aβ−2Φ(cos θ, β)

+β(
1

β − 2
+

2(s −M2)

(β − 3)s
+

3(s−M2)2 −M2Γ2

(β − 4)s2
)]

−β(1 +
β

4
)[

1

1 + β
aβ−1Φ(cos θ, β + 1)

+
1

β − 1
+

2(s−M2)

(β − 2)s
+

3(s −M2)2 −M2Γ2

(β − 3)s2
]

+(
β

2
− 3

8
β2)[

1

2
ln

1 + 2a cos θ + a2

a2

− cot θ(arctan
1 + a cos θ

a sin θ
− π

2
+ θ)]},

(2.15)

with

Φ(cos θ, ν) ≡ πν sin[(1 − ν)θ]

sin θ sinπν
; (2.16)

a2 =

(
1 − M2

s

)2

+
M2Γ2

s2
; (2.17)

cos θ =
1

a

(
M2

s
− 1

)
. (2.18)

8.2.3 Narrow resonances

Below the open charm or bottom threshold, the resonances arenarrow with widths from tens to hundreds
KeV, while the beam energy resolution ofe+e− colliders is of the order of MeV. If the resonance width
is comparable or smaller than the beam energy resolution, the observed resonance cross-section is the
cross-section by Eq. (2.15) folded with the beam energy resolution functionG(W,W ′). Also in the
observed cross-section, there is always a continuum part from direct virtual photon annihilation which is
usually treated as1/s dependence. So the experimentally observed cross-sectionis

σobs(W ) =
R

s
+

∫ ∞

0
G(W,W ′)σres(W

′)dW ′. (2.19)

In the above,R is a fitting parameter andG(W,W ′) is usually taken as a Gaussian function:

G(W,W ′) =
1√
2π∆

exp

[
−(W −W ′)2

2∆2

]
, (2.20)

with ∆ the standard deviation of the Gaussian distribution.

In the fitting of the experimental data with the theoretical curve,M , Γ, Γee,R and∆ are obtained.

8.2.4 µ+µ− final state

Usually theµ+µ− curve is also fitted, to extractΓµµ. The fitting of inclusive hadron can be combined
with theµ+µ− curve to obtainM , Γ, Γee, Γµµ, R and∆. Here unlike for an inclusive hadronic final
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state, the continuumµ+µ− cross-section is calculated by QED [79], and the interference between virtual
photon and the resonance must be included. The cross-section of e+e− → µ+µ− at Born order is

σB(s) =
4πα2

3s
[1 + 2ReB(s) + |B(s)|2] (2.21)

where

B(s) =
3sΓee/Mα

(s−M2) + iMΓ
. (2.22)

With radiative correction, it can be expressed as

σµ+µ−(s) =
1

|1 − Π(s)|2
{

4πα2

3s

[
1 +

β

2

(
2 ln xf − ln(1 − xf ) +

3

2
− xf

)
+
α

π

(
π2

3
− 1

2

)]

+C1δ
V +S

[
aβ−2Φ(cos θ, β) + β

(
xβ−2
f

β − 2
+
xβ−3
f

β − 3
R2 +

xβ−4
f

β − 4
R3

)]

+

[
−βδV +SC2 +

(
−β − β2

4

)
C1

][
aβ−1

1 + β
Φ(cos θ, β + 1) +

xβ−1
f

β − 1
+
xβ−2
f

β − 2
R2 +

xβ−3
f

β − 3
R3

]

+

[(
β +

β2

4

)
C2 +

(
β

2
− 3

8
β2

)
C1

][
1

2
ln
x2
f + 2axf cos θ + a2

a2

− cot θ

(
tan−1 xf + a cos θ

a sin θ
− π

2
+ θ

)]}
(2.23)

where

C1 = [8πα

√
Γ0
eΓ

0
µ

M
(s−M2) + 12π(

Γ0
eΓ

0
µ

M2
)s]/s2,

C2 = [8πα

√
Γ0
eΓ

0
µ

M
+ 12π(

Γ0
eΓ

0
µ

M2
)]/s,

R2 =
2(s −M2)

s
= −2a cos θ (2.24)

R3 = a2(4 cos2 θ − 1)

xf = 1 − sm
s
.

Φ(cos θ, ν), a andθ are defined previously in Eq. (2.16),(2.17) and (2.18). Hereunlike the resonance
term, the continuum term depends on the invariant mass cut

√
sm in theµ+µ− event selection. AlsoΓµµ

is defined similar toΓee, in the way

Γµµ ≡ Γexpµµ =
Γ0
µµ

|1 − Π(M2
res)|2

. (2.25)

Forµ pair final state, unlike the inclusive hadrons, the vacuum polarization cannot be absorbed into the
definition ofΓee in all terms, so it must be calculated explicitly. The leptonic part ofΠ(s) is well known.
(For example, in Ref [77], although there the definition ofΠ(s) has a minus sign relative to the more
common convention used here.) The hadronic part was first calculated in Ref [78], and a more recent
treatment is found in Ref [80].

For narrow resonances, theµ pair cross-section also need to be folded with the beam energy
resolution function.
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8.2.5 Very narrow resonances

For the narrow resonances withΓ ≪ ∆, (e.g.,Γ is an order of magnitude smaller than∆), then Eq. (2.19)
is insensitive toΓ, the fitting becomes impractical. In such case, the area method [72,75] can be used to
extract

(Area)0 =
6π2ΓeeΓf
M2Γ

, (2.26)

together withM , R and∆ from the fitting. Here the final statef is inclusive hadrons. This method
requires additional information on the leptonic branchingratioB(l+l−), which is obtained from counting
theµ pair events on top of the resonance. With the assumption thatB(e+e−) = B(µ+µ−) andΓhad =
Γ(1 − 2B(l+l−))(If the resonance is above theτ production threshold,Γhad = Γ(1 − 3B(l+l−)). A
phase space correction is needed forψ(2S), for it is close to theτ threshold.),Γ andΓee can be solved
from (Area)0 andB(l+l−).

Both of the original papers on the area method in Ref. [72] and[75] mistreated radiative correction.
This was pointed out later on by Ref [73]. For the convenienceof the readers, here the complete formulae
of area method are presented.

The experimentally observed cross-section is

σobs(W ) =
R

s
+ (Area)0δ

V+SGr(W −M), (2.27)

whereδV +S is defined in Eq. (2.7), and the radiatively corrected Gaussian function

Gr(w) =

(
2∆

W

)β 1

∆
F (

w

∆
, β). (2.28)

The functionF (z, β) is approximated [75] as

F (z, β) ≈ Γ(1 + β)√
2π

e−z
2/2


0.31 − 0.73z√

1 +
(

z
1+1.37β

)2
+ z2




−β/2

+θ(z)βzβ
(

z2.18

1 + z3.18

)

×





1 +
(1 − β)(2 − β)/2[(

z − 46
z2+21

)2
+ 2.44 + 1.5β

]




, (2.29)

whereΓ(1 + β) is the Gamma function andθ(z) is the step function. Notice that to derive Eq. (2.27),
δH term in Eq. (2.5) is neglected, and the Breit–Wigner is approximated as aδ function compared with
∆. These limit the accuracy of the results.

For large positive or negativez, there are asymptotic expansions ofF (z, β) [75], which are useful
to calculate the resonance cross-sections away from the peak, e.g., radiative tails.

8.2.6 Resonance near threshold

ψ(3770) andΥ(4S) are near the threshold ofDD̄ or BB̄ production. They decay predominately into
DD̄ or BB̄. The line shape is cut off at the threshold. In the radiative correction expressed by the
integral of Eq. (2.3), the cut off

√
sm = 2mP , withmP the mass of the pseudoscalar meson (D0 orB±)
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produced at the threshold. (If the resonance is well above the threshold, i.e.,
√
s−2mP ≫ Γ, the integral

is not sensitive to the upper limit.) The line shape of the resonances is

σres(s) =
R

s
+

∫ 1−4M2
P /s

0
dx F (x, s)

12πΓexpee Γf
(s −M2)2 + Γ2M2

. (2.30)

In the above, the first term is the continuum cross-section due to direct virtual photon annihilation. This
term could be greater than the resonance itself. For example, for ψ(3770), the continuum cross-section
is 13nb; while the radiatively corrected resonance cross-section is about 8nb.

8.2.7 The energy dependent width

Above the open charm or bottom threshold, the resonances arewide, usually over 10MeV. For such
wide resonances, the energy dependence of its width need to be considered. Such dependence cannot be
derived from first principle, and the formula is model dependent. For example, in the MARK III scan of
ψ(3770), it is in the form:

Γ(E) ∝ p3
D0

1 + (rpD0)2
+

p3
D±

1 + (rpD±)2
(2.31)

and the width listed by PDG is defined as

Γψ′′ = Γ(E = Mψ′′) (2.32)

In the above,pD0 andpD± are the momentum ofD0 andD± produced.r is a free parameter. Usually
the fitting is not sensitive tor. So in Eq. (2.30),

Γ(E) =

Γψ′′

(
p3
D0

1+(rpD0)2
+

p3
D±

1+(rpD±)2

)

(p0)3
D0

1+(rp0
D0)2

+
(p0)3

D±
1+(rp0

D±)2

(2.33)

where

pD0 =
1

2

√
E2 − 4m2

D0 ; (2.34)

pD± =
1

2

√
E2 − 4m2

D± ; (2.35)

p0
D0 =

1

2

√
M2 − 4m2

D0 ; (2.36)

and

p0
D± =

1

2

√
M2 − 4m2

D± (2.37)

The width ofΥ(4S) and the states above are expressed similarly.

The Breit–Wigner with the energy dependent width cannot be integrated analytically withF (x, s).
In the fitting, the cross-section is numerically integrated. On the other hand, for these wide resonances,
usually the finite beam energy spread can be neglected.

8.2.8 The shift and scale down of the maximum height

With the radiative correction, the maximum height of the resonance is shifted from the mass of the
resonanceM to [76]

M + ∆
√
smax (2.38)

where

∆
√
smax ≈ βπ

8
Γ (2.39)
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and the maximum height of the resonant peak is reduced by a factor [76]

ρ ≈
(

Γ

M

)β
δV +S ; (2.40)

whereβ andδV +S are defined in Eq. (2.6) and (2.7). For the narrow resonances,the shift of the maximum
height due to radiative correction is small, due to the narrow widths. On the other hand, the finite beam
resolution also shifts the maximum height of the observed resonance shape. It is roughly at the order
of one-tenth of∆. This needs to be taken into account in the precision measurements of the branching
ratios.

8.3 p̄p scanning techniques and limits16

8.3.1 Introduction

The p̄p formation technique, where the antiproton beam annihilates with a hydrogen target, has been
thoroughly exploited to scan all known charmonium states, overcoming the limitations of thee+e−,
which can actually form only vector states. A successful program was carried out at CERN’s ISR by
R704 [82, 83] and at the Fermilab Antiproton Source by E760 [84–86] and E835 [87–90]. All detectors
used so far were non-magnetic. Experiment PANDA at the future GSI facility also includes a program
of charmonium studies [91] and will be the first provided witha magnetic field.

Many aspects of antiproton beam conditioning for charmonium studies are discussed in Ref. [92].
The antiproton beam energy is scanned across the resonance in steps appropriate for the width of the
resonance under study. The observed cross-section is givenby σobs(W =

√
s) = σcont+

∫∞
0 G(W,W ′)

σBW (W ′) dW ′. The mass, width and peak cross-sectionσBW (MR) are determined by the number of
observed events, after deconvoluting the beam energy spectrumG(W,W ′) and subtracting the continuum
cross-sectionσcont from the observed cross-sectionσobs(W =

√
s) = σcont +

∫∞
0 G(W,W ′) σBW (W ′)

dW ′. They are not directly influenced by the detector resolution.

For instance, Fig. 2.18 shows a 16-point scan of theψ ′ resonance. The bottom plot shows the
normalized beam energy distributions as the beam was decelerated. The top plot indicates the mea-
sured cross-sections (red circles) compared with the best predictions (green triangles) from a maximum-
likelihood fit to the convolution of the beam distributions (bottom plot) with a Breit–Wigner resonance
curve (solid line).

An important role is played by the beam energy distribution.This function can be measured from
the Schottky revolution frequency spectrum, the bunching radiofrequency, the orbit length of particles
in the rf bucket and the slip factor of the machine [86, 93]. The only quantity that needs external input
is the orbit length. It needs to be calibrated with the scan ofa narrow resonance whose mass is well
known. Typically, theψ ′ is chosen, because the absolute value of its mass is measuredwith extreme
accuracy (25 keV) by the resonant depolarization method ine+e− [94, 95], described in Section (8.1).
Using theψ ′ for calibration, the other masses are determined with an uncertainty≤ 200 keV. The main
contribution to the uncertainty comes from the orbit length: its value is obtained by comparison of the
reference orbit with the beam-position monitor readings during the scan of the resonance under study.

8.3.2 Signal extraction in hadronic annihilations

The rate of charmonium formation formed depends on the coupling between the initial state and the reso-
nance. Ine+e− annihilation, the couplings ofe+e− to bothJ/ψ andΥ(1S) are of the order of10−2. The
branching fractions̄pp→cc̄ are of the order of10−4–10−3 for charmonium, but probably much smaller
for bottomonium:≈ 10−7 is the theoretical prediction [96], and< 5 × 10−4 is the experimental upper
limit for p̄p→Υ(1S) [97]. The relatively low intensity of antiproton beams is partially compensated by

16Author: G. Stancari
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Fig. 2.18: (colour) Resonance scan at theψ(2S).

the availability of jet targets; typical luminosities were2 × 1031 cm−2s−1 for E835; at GSI, an increase
of a factor 10 is expected.

Formation cross-sections for charmonium states inpp̄ annihilations range between 10 and 103 nb,
but only a small fraction can be detected. In antiproton–proton annihilations, the limiting factor is the
large total cross-section (70 mb). This implies that a cleancharmonium signal (pb–nb) can be extracted
only by identifying its inclusive or exclusive electromagnetic decays to a high-invariant-masse+e− or
γγ pair, such as̄pp→χc→J/ψ +X→e+e− +X.

Hadronic channels such asπ0π0 andηη have recently been investigated. Using data taken in 2000,
E835 has provided the first evidence [98] of a charmonium signal exploiting the interference between
resonance and continuum at theχc0 energy.

8.3.3 Limits on energy and width resolution

A small beam energy spread is desirable because it reduces the uncertainty on the mass by sharpening
the resonance peak. However, efforts to make the beam much narrower than the resonance are obvi-
ously not necessary. For antiproton beams, the minimum attainable momentum spread is determined
by longitudinal stability (Keil–Schnell criterion [99]) rather than stochastic cooling power. Typically,
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with a beam currentI = 50 mA, one can achieve a momentum spreadσp/p = 10−4, which translates
to σ√s = 0.2 MeV in the centre-of-momentum frame. As the beam intensity increases, the minimum

attainable momentum spread increases as
√
I. In e+e− machines there is no need for stochastic cooling,

but the energy spread is dominated by initial state radiation: σ√s = 1 MeV at theJ/ψ, σ√s = 4 MeV
at theΥ(1S).

8.4 Luminosity of photon photon scattering17

The cross-section for aγγ process is related to the cross-section at thee+e− level, which is measured in
the laboratory, by the formula

dσ(e+e− → e+e−X) = σ(γ1γ2 → X)
d2n1

dz1dP 2
1

d2n2

dz2dP 2
2

dz1dz2dP
2
1 dP

2
2 (2.41)

wherezi is the scaled photon energy in the laboratory frame andP 2
i is the photon mass. This is the

equivalent photon approximation (EPA) [100] where the longitudinal polarization component as well as
the mass of the incoming photons are neglected inσ(γγ → X). TheP 2

i integration can be carried out
to give the photon ”density” in thee± (the photon flux)

fγ/e(z, Pmin, Pmax) =

∫ P 2
max

P 2
min

d2n

dzdP 2
dP 2 =

=
α

2π

[
1 + (1 − z)2

z
ln
P 2
max

P 2
min

− 2m2
ez

(
1

P 2
min

− 1

P 2
max

)]
. (2.42)

For untagged experiments (the scatterede± are undetected )Pmin is the kinematic limit:

P 2
min =

m2
ez

2

1 − z
(2.43)

andPmax ≃ Ebeam.

For resonance production, Eq.(2.41) simplifies since one ofthezi integrations can be performed
with the constraintz1z2 = τ = M2/se+e− whereM is the resonance mass. It is then customary to
define luminosity functions:

dL
dM

=
2τ

M

∫
dz1dz2fγ/e(z1)fγ/e(z2)δ(z1z2 − τ) (2.44)

so that

dσ(e+e− → e+e−X) =

∫
M

dL
dM

σ(γγ → X). (2.45)

This luminosity curve makes it easy to determine the counting rate for resonance production knowing
the width of the resonance in theγγ channel.

The most accurate Monte Carlo computation of two-photon production ine+e− collisions is the
program GALUGA [101] widely used to extract the luminosity function and the photon structure func-
tion in various kinematical regions.

17Author: M. Kienzle
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8.5 Interference with continuum in e+e− experiments18

8.5.1 Introduction

It is well known that thee+e− experiments have lots of advantages in the study of the charmonium
physics: large cross-section, small background, and well-determined initial state (both four-momentum
and quantum numbers). However, there is an inevitable amplitude — the continuum amplitude

e+e− → γ∗ → hadrons

accompanied with the production of the resonances. This amplitude does not go through the resonance,
but in general it can produce the same final hadronic states ascharmonia do. This amplitude has been
overlooked in many previous studies.

8.5.2 Experimentally observed cross-section

We know thatJ/ψ andψ(3686) (shortened asψ′) decay into light hadrons through three-gluon and one-
photon annihilation of which the amplitudes are denoted bya3g andaγ respectively. This is also true for
ψ(3770) (shortened asψ′′) in its OZI suppressed decay into light hadrons. In general,for the resonance
R (R = J/ψ, ψ′ or ψ′′), the cross-section at the Born order is expressed as

σB(s) =
4πsα2

3
|a3g + aγ |2 , (2.46)

where
√
s is the C.M. energy,α is the fine structure constant. If theJ/ψ, ψ′ or ψ′′ is produced ine+e−

collision, the process
e+e− → γ∗ → hadrons (2.47)

could produce the same final hadronic states as charmonium decays do [102]. We denote its amplitude
by ac, then the cross-section becomes

σ′B(s) =
4πsα2

3
|a3g + aγ + ac|2 . (2.48)

So what truly contribute to the experimentally measured cross-section are three classes of Feynman
diagrams, i.e., the three-gluon decays, the one-photon decays, and the one-photon continuum process, as
illustrated in Fig. 2.19. To analyze the experimental results, we must take into account three amplitudes
and two relative phases.

g g g

e+

e−

c
c
_ hadron

γ*(c c
_
)

e+

e−

c
c
_ hadron

e+

e−

hadron

γ*(e+e−)

Fig. 2.19: The Feynman diagrams ofe+e− → light hadrons at charmonium resonance. From left to right are of
three-gluon annihilation, of one-photon annihilation andof one-photon continuum.

For an exclusive mode,ac can be expressed by

ac(s) =
F(s)

s
eiφ

′
, (2.49)

18Authors: C.Z. Yuan, P. Wang, X. H. Mo
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Table 2.7: Estimated amplitudes atJ/ψ, ψ′ andψ′′ peaks

√
s mJ/ψ mψ′ mψ′′

|a3g(m
2
R)|2 ∝ 70%σ

J/ψ
B 19%σψ

′

B ∼ 1%σψ
′′

B

|aγ(m2
R)|2 ∝ 13%σ

J/ψ
B 1.6%σψ

′

B 2.5 × 10−5σψ
′′

B

|ac(m2
R)|2 ∝ 20 nb 14 nb 14 nb

whereφ′ is the phase relative toa3g; F(s) depends on the individual mode, and for simplicity, the phase
space factor is incorporated into|F(s)|2. The one-photon annihilation amplitude can be written as

aγ(s) =
3ΓeeF(s)/(α

√
s)

s−m2
R + imRΓt

eiφ , (2.50)

wheremR andΓt are the mass and the total width ofR, Γee is the partial width toe+e−, φ is the phase
relative toa3g. The strong decay amplitudea3g is defined byC ≡ |a3g/aγ |, which is the relative strength
to aγ , so

a3g(s) = C · 3ΓeeF(s)/(α
√
s)

s−m2
R + imRΓt

. (2.51)

For resonances,C can be taken as a constant.

In principle,a3g, aγ andac depend on individual exclusive mode both in absolute valuesand in
relative strength. In this note, for illustrative purpose,following assumptions are used for an exclusive
hadronic mode:F(s) is replaced by

√
R(s), whereR(s) is the ratio of the inclusive hadronic cross-

section to theµ+µ− cross-section measured at nearby energy [103]; in Eq. (2.51),

C =

√
B(R → ggg → hadrons)

B(R → γ∗ → hadrons)
. (2.52)

HereB(R → γ∗ → hadrons) = Bµ+µ−R(s), whereBµ+µ− is theµ+µ− branching ratio; while
B(R → ggg → hadrons) is calculated as following: we first estimate the branching ratio ofB(R →
γgg) +B(R → ggg) by subtracting the lepton pairs,γ∗ → hadrons, and the modes with charmonium
production from the total branching ratio (100%). Then using pQCD result [104]B(R → γgg)/B(R →
ggg) ≈ 6% we obtainB(R → ggg → hadrons). Table 2.7 lists all the estimations used as inputs in the
calculations, whereσRB is the total resonance cross-section of Born order ats = m2

R obtained from

σR0 (s) =
12πΓeeΓt

(s−m2
R)2 +m2

RΓ2
t

. (2.53)

The cross-section bye+e− collision incorporating radiative correction on the Born order is ex-
pressed by [105]

σr.c.(s) =

xm∫

0

dxF (x, s)
σ0(s(1 − x))

|1 − Π(s(1 − x))|2 , (2.54)

whereσ0 is σB or σ′B by Eq. (2.46) or (2.48),F (x, s) has been calculated in Ref. [105] andΠ(s) is the
vacuum polarization factor [106]; the upper limit of the integrationxm = 1 − sm/s where

√
sm is the

experimentally required minimum invariant mass of the finalstatef after losing energy to multi-photon
emission. In this note, we assume that

√
sm equals to90% of the resonance mass, i.e.,xm = 0.2.
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For narrow resonances likeJ/ψ andψ′, one should consider the energy spread function ofe+e−

colliders:

G(
√
s,
√
s′) =

1√
2π∆

e−
(
√
s−

√
s′)2

2∆2 , (2.55)

where∆ describes the C.M. energy spread of the accelerator,
√
s and

√
s′ are the nominal and actual C.

M. energy respectively. Then the experimentally measured cross-section

σexp(s) =

∞∫

0

σr.c.(s
′)G(

√
s,
√
s′)d

√
s′ . (2.56)

The radiative correction reduces the maximum cross-sections of J/ψ, ψ′ andψ′′ by 52%, 49%
and29% respectively. The energy spread further reduces the cross-sections ofJ/ψ andψ′ by an order of
magnitude. The radiative correction and energy spread alsoshift the maximum height of the resonance
peak to above the resonance mass. Takeψ′ as an example, from Eq. (2.53),σψ

′

B = 7887 nb atψ′

mass; substituteσ0(s) in Eq. (2.54) byσR0 (s) in Eq. (2.53),σr.c. reaches the maximum of4046 nb at√
s = mψ′ + 9 keV; with the energy spread∆ = 1.3 MeV at BES/BEPC, combining Eqs. (2.53−2.56),

σexp reaches the maximum of640 nb at
√
s = mψ′ + 0.14 MeV. Similarly, atJ/ψ, with BES/BEPC

energy spread∆ = 1.0 MeV, the maximum ofσexp is 2988 nb. At CESRc [5], the maximum ofσexp at
J/ψ is 1270 nb (∆= 2.5 MeV), and atψ′, it is 250 nb (∆= 3.6 MeV). In this note, we calculateσexp at
the energies which yield the maximum inclusive hadronic cross-sections.

To measure an exclusive mode ine+e− experiment, the contribution of the continuum part should
be subtracted from the experimentally measuredσ′exp to get the physical quantityσexp, whereσexp
andσ′exp indicate the experimental cross-sections calculated fromEqs.(2.54−2.56) with the substitution
of σB andσ′B from Eqs. (2.46) and (2.48) respectively forσ0 in Eq. (2.54). Up to now, most of the
measurements did not include this contribution andσ′exp = σexp is assumed at least atJ/ψ andψ′. As
a consequence, the theoretical analyses are based on pure contribution from the resonance; on the other
hand, the experiments actually measure quantities with thecontribution of the continuum amplitude
included.

We display the effect from the continuum amplitude and corresponding phase forJ/ψ, ψ′ andψ′′

respectively. To do this, we calculate the ratio

k(s) ≡
σ′exp(s) − σexp(s)

σ′exp(s)
(2.57)

as a function ofφ andφ′, as shown in Fig. 2.20a forψ′ at
√
s = mψ′+0.14 MeV for ∆ = 1.3 MeV. It can

be seen that for certain values of the two phases,k deviates from 0, or equivalently the ratioσ′exp/σexp
deviates from 1, which demonstrates that the continuum amplitude is non-negligible. By assuming there
is no extra phase betweenaγ andac (i.e., setφ = φ′), we also work out thek values for different ratios
of |a3g| to |aγ |, as shown in Fig. 2.20b: line 3 corresponds to the numbers listed in Table 2.7, line 1 is for
pure electromagnetic decay channels, and others are chosento cover the other possibilities of the ratio
|a3g| to |aγ |.

8.5.3 Dependence on experimental conditions

Here we emphasize the dependence of the observed cross-section in e+e− collision on the experimental
conditions. The most crucial ones are the accelerator energy spread and the beam energy setting for the
narrow resonances likeJ/ψ andψ′.

Figure 2.21 depicts the expected cross-sections of inclusive hadrons andµ+µ− pairs atψ′ in an
experimental setting under BEPC/BES condition. Two arrowsin the figure denote the different positions
of the maximum heights of the cross-sections. The height is reduced and the position of the peak is

60



COMMON EXPERIMENTAL TOOLS

0
50

100
150

200
250

300
350

0
50

100
150

200
250

300
350

0

0.1

0.2

0.3

0.4

φ/ (degree)
φ(degree)

ψ(2S)

k

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

3

5

2

4

1

φ(degree)

k

Fig. 2.20: Left:k as a function ofφ andφ′ for ψ′, with input from Table 2.7. Right:k as a function ofφ (φ = φ′)
for different ratios of|a3g| to |aγ |: line 1 to 5 fora3g = 0, |a3g| = |aγ |, |a3g| = 3.4|aγ|, |a3g| = 5|aγ | and
|a3g| = 10|aγ|, respectively.

shifted due to the radiative correction and the energy spread of the collider. However, the energy smear
hardly affects the continuum part of the cross-section. Theµ+µ− channel is further affected by the
interference between resonance and continuum amplitude. As a consequence, the relative contribution
of the resonance and the continuum varies as the energy changes. In actual experiments, data are naturally
taken at the energy which yields the maximum inclusive hadronic cross-section. This energy does not
coincide with the maximum cross-section of each exclusive mode. So it is important to know the beam
spread and beam energy precisely, which are needed in the delicate task to subtract the contribution from
ac.

It is worth noting that in principle ifac is not considered correctly, different experiments will give
different results for the same quantity, like the exclusivebranching ratio of the resonance, due to the
dependence on beam energy spread and beam energy setting. The results will also be different for dif-
ferent kinds of experiments, such as production ofJ/ψ andψ′ in pp̄ annihilation, or inB meson decays.
This is especially important since the beam spreads of different accelerators are much different [107] and
charmonium results are expected fromB-factories.

8.5.4 Implications to charmonium physics

With the non-resonance virtual photon amplitude taking into account in the analysis of the data from
e+e− experiments, some important conclusions in the charmoniumphysics could be changed. In this
section, we discuss theψ′, ψ′′ andJ/ψ decays.

In the pure electromagnetic decays ofψ′, like π+π− orωπ0, depending on the energy resolution of
thee+e− collider, a large fraction (e.g., about 60% for∆ = 1.3 MeV) of the observed cross-section is due
to non-resonance continuum contribution. With the subtraction of this contribution, the electromagnetic
form factors (e.g.,π+π− andωπ0) are changed substantially [108].

It has been known from experimental data that in two-bodyJ/ψ decays, the relative phase between
the strong amplitudea3g and electromagnetic (EM) amplitudeaγ is orthogonal for the decay modes
1+0− (90◦) [109], 1−0− ((106 ± 10)◦) [107, 110, 111],0−0− ((89.6 ± 9.9)◦) [107, 111, 112],1−1−

((138 ± 37)◦) [107] andNN ((89 ± 15)◦) [111, 113]. It was argued that this large phase follows
from the orthogonality of three-gluon and one-photon virtual processes [114]. But at first glance, the
ψ′ → 1−0− data does not seem to support the extension of such orthogonality to ψ′ decays. Here
very small branching fractions are reported forρπ andK∗+K− modes (atO(10−5) ) while much larger
branching fraction forK∗0K0 mode (atO(10−4)) [115,116]. Since the amplitudes of these three decay
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Fig. 2.21: Cross-sections in the vicinity ofψ′ for inclusive hadrons (a) andµ+µ− (b) final states. The solid line
with arrow indicates the peak position and the dashed line with arrow the position of the other peak. In (b), dashed
line for QED continuum (σC ), dotted line for resonance (σR), dash dotted line for interference(σI), and solid line
for total cross-section(σTot).

modes are expressed as [117]
Aρπ = a3g + aγ ,

AK∗+K− = a3g + ǫ+ aγ ,
A
K∗0K0 = a3g + ǫ− 2aγ ,

(2.58)

with ǫ a SU(3) breaking parameter, it suggests cancellation betweena3g andaγ in Aρπ andAK∗+K− .
This means the phase betweena3g andaγ is around180◦. But since the available data are frome+e−

experiments, the amplitudeac must be included. To explain the data, Eq. (2.58) should be replaced by:

Aρπ = a3g + aγ + ac,
AK∗+K− = a3g + ǫ+ aγ + ac,
A
K∗0K0 = a3g + ǫ− 2(aγ + ac),

(2.59)

Instead of cancellation betweena3g and aγ in Aρπ andAK∗+K−, the observed cross-sections could
be due to the destructive interference betweena3g andac for these two modes. On the other hand, the
interference between these two amplitudes is constructiveforK∗0K0. Such interference pattern happens
if the phase betweena3g andaγ is −90◦, because on top of the resonance, the phase betweenaγ andac
is −90◦. This means that the orthogonality betweena3g andaγ observed inJ/ψ decays holds true in
ψ′ → 1−0− decays, and it has a negative sign [118]. Similarly, with theamplitudeac included, from
the measuredψ′ → π+π−, K+K− andK0

SK
0
L [119], we know that inψ′ → 0−0− decays, the phase

betweena3g andaγ is either(−82 ± 29)◦ or (121 ± 27)◦ [120].

In the OZI suppressedψ′′ decays, MARK III set an upper limit ofρπ production cross-section
by e+e− collision at this resonance to be less than 6.3 pb [121]. On the other hand, CLEO measured
e+e− → ρπ cross-section at 3.67 GeV to be(8.3+1.7

−1.4 ± 1.2) pb. Scaled down to 3.770 GeV according
to 1/s2, we expect the non-resonance cross-section ofe+e− → γ∗ → ρπ to be(7.5 ± 1.8) pb, which
is already greater than the upper limit at theψ′′ peak. We reach the conclusions [122]: (i) there must
be destructive interference between theψ′′ resonance and the non-resonance virtual photon amplitudes,
i.e., the phase between the strong and EM amplitude is around−90◦; (ii) the B(ψ′′ → ρπ) is roughly
at (6 ∼ 7) × 10−4. This branching fraction coincides with the prediction by2S − 1D mixing scenario
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which was proposed by Rosner to explain the smallρπ branching fraction inψ′ decays [123]. (In the
original work of Ref. [123], this branching fraction is4.1 × 10−4. But with the new measurement of
J/ψ → ρπ by BES [124], it becomes larger.) So with the amplitudeac being taken into account, we
find that this scenario is supported by experimental data. One important prediction of this scenario is
that theψ′′ could have a large charmless decay branching fraction (morethan 10%) [125]. In the search
of the exclusive charmless decays, the interference effectis important, although there are some modes
which do not couple with virtual photon, likeK0

SK
0
L which is purely fromψ′′ decays and is clean in

such search [126].

In this way, the correct treatment of the amplitudeac enables us to reach two important conclusions
in charmonium physics: (i) the orthogonality betweena3g andaγ can be extended fromJ/ψ decays toψ′

and OZI suppressedψ′′ decays and the sign of the phase must be negative; (ii)B(ψ′′ → ρπ) is consistent
with the2S − 1D mixing scenario which is proposed to solve theρπ puzzle inJ/ψ andψ′ decays.

As for J/ψ, the interference between the amplitudeac and the resonance is at the order of a few
percent at most. It is smaller than the statistical and systematic uncertainties of current measurements.
Nevertheless, for future high precision experiments such as CLEO-c [5] and BES III [127], when the
accuracy reaches a few per mille or even smaller level, it should be taken into account.

8.5.5 Summary and perspective

In summary, the continuum amplitudeac, by itself or through interference with the resonance, could
contribute significantly to the observed cross-sections ine+e− experiments on charmonium physics. Its
treatment depends sensitively on the experimental details, which has not been fully addressed in both
e+e− experiments and theoretical analyses. In principle, any experimental measurement should subtract
the contribution of the continuum amplitude to get the physical quantity related to the resonance. Unfor-
tunately, up to now, most of the experiments just neglect this contribution and the measured quantities
are assumed to be purely from resonance decays for almost allthe channels studied, or just subtract the
continuum contribution incoherently without consideringthe interference effect, at least atJ/ψ andψ′.
This potentially leaves a huge gap between theory and experiments: the quantities which the experiments
provide are not exactly what the theory wants to understand.

The effect of the continuum amplitude in the physics analyses are extensively examined in a series
of papers published recently [108, 118, 120, 122, 128, 129]:it modifies the measurements of theπ+π−

andωπ0 form factors atψ′ significantly; it changes the fitting of the relative phase between the strong
and electromagnetic decay amplitudes ofψ′, it sheds light on the understanding of the “ρπ puzzle”, and
it decreases the observedρπ cross-section near theψ′′ resonance peak to a much smaller level than the
expectation from either pure continuum contribution or estimation of theψ′′ non-DD decays. The recent
largeJ/ψ andψ′ samples [130] make these studies important due to the improved statistical precision.

The effect of this continuum amplitude will become more significant in the coming high luminosity
experiments, such as CLEOc [5] and BES III [127], in this energy region. To achieve high precision to
match the high statistics, the cross-section of each mode inthe vicinity of the resonance should be
measured. This implies an energy scan near the resonance peak at a few energy points with considerably
large statistics to allow a reasonable subtraction of the continuum contribution via a fit to the line shape
of the resonance.

The above argument also applies to the bottomonium states inthe study of their exclusive hadronic
decays, where the maximum cross-sections of the resonancesare even smaller than those of the charmo-
nium states.
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1 THEORY INTRODUCTION 1

Most theorists agree that QCD alone should describe the spectroscopy of heavy quarkonium. Never-
theless, there are important difficulties to do so in practise. One can roughly distinguish between two
approaches: the phenomenological and the theoretical one.

The phenomenological approach attempts to model what are believed to be the features of QCD
relevant to heavy quarkonium with the aim to produce concrete results which can be directly confirmed or
falsified by experiment and may guide experimental searches. The theoretical approach tries to describe
heavy quarkonium with QCD based calculations and/or approximations.

The basic tools of the phenomenological approach are potential models, both non-relativistic and
relativistic. The use of non-relativistic potential models is justified by the fact that the bottom and, to a
lesser extent, the charm masses are large in comparison toΛQCD, the typical hadronic scale. Hence a
quantum mechanical description of the system based on two heavy quarks interacting through a suitable
potential appears reasonable. The potential is usually chosen in a way that at short distances coincides
with the weak coupling QCD one-gluon exchange Coulomb potential and in the long range it incorpo-
rates confinement, for instance, by including a linearly rising potential. Since relativistic effects appear
to be sizable for some states, mostly in charmonium, models incorporating some relativistic kinematics
are also being used. Different models of quark confinement may result in different classes of relativistic
corrections. For states close to and beyond the two heavy-light meson threshold, the potential models
have to be complemented with these extra degrees of freedom in order to account for possible mixing
effects. Hybrid states which are expected from QCD should also be incorporated by hand. The phe-
nomenological approaches will be described in Section 3.

The theoretical approach aims at obtaining the spectrum of heavy quarkonium from QCD. This
is in principle more complicated than obtaining masses of light mesonic states since an additional large
scalem, the mass of the heavy quark, enters the calculation. If we assume thatm is much larger than
any other scale in the system, in particularΛQCD, the heavy quark and antiquark are expected to move
slowly about each other at a relative velocityv ≪ 1. The system becomes non-relativistic and hence
splittings between states with the same quantum numbers areexpected to be of size∼ mv2 whereas
hyperfine splittings are of order∼ mv4, if one proceeds by analogy to QED bound states (wherev ∼ α).
If v2 ∼ 0.1, as expected in ground state bottomonium, a direct (lattice) QCD calculation requires a
precision significantly better than 10 % to detect spin-averaged masses and of more than1 % to resolve
fine structure splittings. Moreover, all these scales have to be resolved on one and the same lattice,
necessitating many lattice points. This is to be compared with light quarkonium where the splittings
are a leading order effect. Consequently, calculating the heavy quarkonium spectrum from lattice QCD

1Author: J. Soto
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requires a tremendous computational effort, which in some cases can be somewhat ameliorated with the
introduction of anisotropic lattices, as discussed in Section 2.1.

Alternatively, it may be advisable to exploit the fact thatm is large andv small before attempting
the computation. This is most efficiently done using non relativistic effective field theories. The effective
theory which takes into account thatm is much larger than the remaining scales in the system is NRQCD
[1–3]. Sincem ≫ ΛQCD, NRQCD can be made equivalent to QCD at any desired order in1/m and
αs(m) ≪ 1 by enforcing suitable matrix elements to be equal at that order in both theories. One may then
attempt a lattice calculation from NRQCD. What one gains nowis that the spin independent splittings
are a leading order effect rather than av2 one and the hyperfine splittings av2 correction (rather thanv4).
See Section 2.2.1 for a detailed discussion of these calculations.

NRQCD, however, does not fully exploit the fact thatv is small. In particular, gluons of energy
∼ mv, the typical relative three-momentum of the heavy quarks, are still explicit degrees of freedom
in NRQCD whereas they can never be produced at energies∼ mv2. For lower lying states the scale
mv corresponds both to the typical momentum transferk (inverse size of the system) and to the typical
relative three-momentump. It is then convenient to introduce a further effective theory where degrees
of freedom of energy∼ k are integrated out. This EFT is called pNRQCD [4, 5], see Section 2.3. The
degrees of freedom of pNRQCD depend on the interplay of the scalesk, E ∼ mv2 andΛQCD. The
weak and strong coupling regimes are discussed respectively in Section 2.3.1 and 2.3.2. A related EFT
for the weak coupling regime, called vNRQCD [6], will be discussed in Chapter 6 (Standard Model).
Sum rules are also discussed in the same chapter in relation to the calculation of the lowest energy levels
in the spectrum.

The distribution of the theory contributions is as follows.We begin with the theoretical approach
and use the EFT philosophy as an organizing principle. We shall arrange the contributions according
to the number of hypothesis that are done in order to obtain them from QCD. Hence, we shall start by
contributions which rely on QCD only. Next we will discuss contributions which may be embraced by
NRQCD, and finally contributions which may be embraced by pNRQCD. We would like to emphasize
that, if the relevant hypothesis are fulfilled, (i) NRQCD andpNRQCD are equivalent to QCD, and (ii)
each of these EFTs allows to factorize a relevant scale, which further simplifies calculations. All the
states can in principle be studied from QCD, the main tool being lattice techniques. In practise, how-
ever, a number of limitations exists, which are described inSection 2.1. Except for very high excitations
(particularly in charmonium) for which relativistic effects become important, these states can also be
studied from NRQCD, the main tool being again lattice techniques, see Section 2.2. States below and
not too close to open flavour threshold can also be studied using pNRQCD. A few of these, including
theΥ(1S) andηb(1S), can be studied by means of analytical weak coupling techniques (Section 2.3.1).
The remaining ones can be studied using pNRQCD in the strong coupling regime (Section 2.3.2), which
needs as an input nonperturbative potentials to be calculated on the lattice. We continue next with the
phenomenological approach, which mainly consist of a description of potential models (Section 3.1)
and of approaches to open flavour thresholds (Section 3.3). The former provide good phenomenologi-
cal descriptions for the states below open flavour thresholdwhereas the latter are important for a good
description of excitations close or above the open flavour threshold, in particular of the recently discov-
eredX(3872) charmonium state. An effort has been made to link potential models to the theoretical
approach. Double (and triple) heavy baryons are also discussed both in the theoretical (Sections 2.2.3,
2.3.4) and phenomenological approach (Section 3.4.2).
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2 THEORETICAL APPROACH

2.1 Direct lattice QCD calculation2

2.1.1 Methods

(For an introduction to general QCD lattice methods cf. Chapter 1.) When simulating quarks with a mass
m on a lattice with lattice spacinga, one will inevitably encounterma [or (ma)2] corrections, which are
of order one, unlessm ≪ a−1. The Fermilab group [7] have argued in favour of a re-interpretation of
the clover action, suggesting that physical results can be obtained even for masses as large asma ≈ 1,
see also Section 2.2.1 below. However, still one would either want to extrapolate such results to the
continuum limit or at least put them into the context of an effective field theory with two large scales,
in this casem anda−1. If interpreted as an EFT, higher order terms have to be addedand the matching
coefficients to QCD have to be determined to sufficiently highorder in perturbation theory, to reduce and
estimate remaining systematic uncertainties.

In the quenched approximation, the conditionma≪ 1 can be realized for charm quarks; however,
at present bottom quarks are still somewhat at the borderline of what is possible. One approach to tackle
this problem is to introduce an anisotropy, with a temporal lattice spacingaτ smaller than the spatial
lattice spacingaσ = ξaτ , with parameterξ > 1. The spatial lattice extentLσaσ has to be large enough
to accommodate the quarkonium state (whose size is of orderr ≃ (mv)−1). With a sufficiently large
aσ this is possible, keeping the number of pointsLσ limited, while the temporal lattice spacing can be
chosen to be smaller than the quarkonium mass in question,aτ < M−1, at relative ease. This means
that anisotropic simulations are naively cheaper by a factor ξ3, compared to the isotropic analogue with
a lattice spacinga = aτ .

While at tree level the lattice spacing errors are indeed ofO[(maτ )
n], one loop corrections mean

that there will still beO[αs(maσ)
n] terms present: only to the extent to whichαsξ

n is small, the leading
order lattice effects can be regarded asO[(maτ )

n]. Furthermore, the anisotropy parameterξ has to be
determined consistently for the quark and gluon contributions to the QCD action. Within the quenched
approximation this problem factorizes: one can first “measure” the gauge anisotropy by determining the
decay of purely gluonic spatial and temporal correlation functions. Subsequently, one can adjust the
Fermionic anisotropy accordingly. This fine-tuning does not come for free, in particular if the number of
adjustable parameters is larger than two. Consequently, noconsistent nonperturbativeO(a) improvement
programme has been carried through so far, for non-trivial anisotropies. While there might be a net gain
from using anisotropy techniques in the quenched approximation, the parameter tuning becomes much
more delicate and costly once light sea quarks are included.In this case the numerical matching of the
anisotropy for light Fermions cannot be disentangled from the gluonic one anymore.

2.1.2 Results with relativistic heavy quarks

We will first review results on the quenched bottomonium spectrum, before discussing charmonia in the
quenched approximation, on anisotropic as well as on isotropic lattices and with sea quarks.

Only one bottomonium study with relativistic action has been performed so far [8], employing
lattices with anisotropiesξ = 4 andξ = 5, in the quenched approximation. In this case, the inverse
lattice spacing,a−1

τ was varied from 4.5 GeV up to about 10.5 GeV. The lattice extents were typically
of sizeLσaσ ≈ 1 fm, however, they were not kept constant when varyingaτ such that finite size effects
are hard to disentangle. The spatial lattice sizes are also dangerously close to the inverse confinement–
deconfinement phase transition temperature (cf. Chapter 7). After using the11P1 − 13S1 splitting
(identifying the11P1 mass with the spin averaged experimental13P states) to set the lattice spacing and
the13S1 to adjust theb quark mass, qualitative agreement with the spin-averaged experimental spectrum
is observed.

2Author: G. Bali
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Table 3.1: Charmonium results in the quenched approximation [9–12], where the scale is such thatr−1
0 =

394 MeV. The purely statistical errors do not reflect the uncertainty in r0, or due to quenching. All values are
in units of MeV. Glueball masses [13–15] are included for comparison. The last three lines refer to spin-exotic
(non-quark model) quantum numbers.

JPC state CP–PACS Columbia QCD-TARO experiment glueballs
0−+ ηc 3013 (1) 3014 (4) 3010 (4) 2980(1) 2500(40)

η′c 3739(46) 3707(20) 3654(10) 3500(60)
1−− J/ψ 3085 (1) 3084 (4) 3087 (4) 3097

ψ(2S) 3777(40) 3780(43) 3686 3700(50)
1+− hc 3474(10) 3474(20) 3528(25) m(13P )=3525 2830(30)

h′c 4053(95) 3886(92) —
0++ χc0 3408 3413(10) 3474(15) 3415(1) 1720(30)

χ′
c0 4008(122) 4080(75) — 2540(120)

1++ χc1 3472 (9) 3462(15) 3524(16) 3511
χ′
c1 4067(105) 4010(70) —

2++ χc2 3503(24) 3488(11) 3556 2300(25)
χ′
c2 4030(180) —

2−+ 11D2 3763(22) — 2975(30)
— 3740(40)

2−− 13D2 3704(33) X(3872) ??? 3780(40)
3−− 13D3 3822(25) — 3960(90)
3+− 11F3 4224(74) — 3410(40)
3++ 13F3 4222(140) — 3540(40)
0+− H0 4714(260) — 4560(70)
1−+ H1 4366(64) —
2+− H2 4845(220) — 3980(50)

For the13S1−11S1 splitting, where one might hope finite size effects to largely cancel, the authors
obtain the continuum extrapolated value of59 ± 20 MeV. To leading order in pQCD, this splitting is
expected to be proportional to the wave function density at the origin, multiplied byαs(µ). Adjusting
the lattice spacing from spin-averaged splittings amountsto matching the quenched lattice coupling to
the phenomenological one at a low energy scale≪ µ. In the quenched approximationαs(µ) approaches
zero faster asµ is increased and henceαs(µ) will be underestimated: the quoted fine structure splitting
represents a lower limit on the phenomenological one. Indeed, the analogous result for the charmonium
case underestimates the known experimental number by a factor 1.25–1.5, when setting the scale in a
similar way [9,10].

Both, the Columbia group [11, 12] as well as the CP–PACS Collaboration [9] have studied the
charmonium spectrum on anisotropic lattices. The same anisotropic clover quark action was used as for
the bottomonium study discussed above, where the leading order lattice artefacts are expected to be of
O(αsaτ ) andO(a2

τ ). The CP–PACS Collaboration studied the anisotropy,ξ = 3, on a set of four inverse
lattice spacingsa−1

σ , ranging from about 1 up to 2.8 GeV, on spatial volumes(1.6 fm)3. The Columbia
group simulated four lattice spacings ranging from about 0.8 up to 2 GeV at anisotropyξ = 2. They
were able to vary their volume from 1.5 up to 3.3 fm and found finite volume effects to be below their
statistical resolution.

We display the respective continuum-limit extrapolated results in Table 3.1. We also include
results from the QCD–TARO collaboration [10], withξ = 1. The quark mass is set such that the spin
averaged1S state corresponds to 3067.6 MeV. (Note that the present phenomenological value is slightly
higher than this.) For comparison we convert the Columbia results into units ofr−1

0 = 394 MeV. This
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Fig. 3.1: The quenched charmonium spectrum (CP–PACS [9], Columbia [11, 12]), glueballs [13–15] and spin-
exoticcc̄-glue hybrids [12], overlayed with the experimental spectrum.

scale is implicitly defined through the static potential [16], dV (r)/dr|r=r0 = 1.65. It cannot directly be
obtained in experiment. However,r0/a is easily and very precisely calculable in lattice simulations. In
the quenched approximation we have to assume a scale error onspin averaged splittings of at least 10 %,
on top of the errors displayed in the Table. We also include glueball masses [13–15] into the table. The
last three lines incorporate spin-exoticJPC assignments (cc̄g hybrid mesons).

The anisotropic results are also displayed in Fig. 3.1, borrowed from Ref. [17], where we plot the
newX(3872) state atJPC = 2−−, however, this assignment is somewhat arbitrary. As can be seen,
where overlap exists, the results from the three collaborations employing three different anisotropies
are consistent with each other. All S- and P-wave fine structure splittings are underestimated, which is
expected in the quenched approximation. The Columbia group[12] reported that the state created by
theJ = 1 D-wave operator rapidly converged towards the mass of the vector S-wave ground state. The
same was observed in the case of the2++ F-wave with respect to theχc2 ground state: this indicates that
the charm quark mass is too light forL to be a good quantum number.

That the charm mass is not particularly heavy, in comparisonto typical scales of gluonic excita-
tions, can also be seen from the overlap between the glueballand charmonium spectra. Once sea quarks
are switched on, these glueballs will become unstable. However, the presence of a background of such
excitations might very well affect spectrum and decays in some channels. For instance the dominant
decay of a vector charmonium is into gluons, and it is quite conceivable that such a channel should also
couple to would-be glueballs.

When performing the Wick contractions of propagators of flavour singlet states like charmonia,
two contributions arise: a connected one, with quark and antiquark propagating alongside each other, and
a disconnected (OZI suppressed) one, with annihilation andcreation diagrams ofcc̄. In all charmonium
simulations that have been performed so far, with two notable exceptions [18, 19], the disconnected
diagram has been neglected. It is well known that OZI processes play a role within the light pseudoscalar
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and scalar sectors. This has also been extensively studied on the lattice [20,21]. In the case of charmonia,
in particular for S and D waves, substantial corrections dueto mixing with intermediate gluonic states are
a possibility, even within the quenched approximation. Forstates that are close to threshold, in addition
mixing with two-meson states will occur, once sea quarks areincluded.

Charmonia have also been studied on isotropic lattices, within the quenched approximation [10,
18, 19, 22, 23], and with sea quarks [24]. The QCD–TARO collaboration [10] worked at tiny lattice
spacings, ranging from about 2 GeV down to 5 GeV. The results are consistent with those obtained by
the Columbia group [12] and by CP–PACS [9], but the use of anO(a) improved action allowed for a
very well controlled continuum limit extrapolation. The quenched value, within the OZI approximation
and usingr−1

0 = 394 MeV to set the scale, is 77(2)(6) MeV, with all remaining systematic errors quoted.
This value would increase by 15 % if the scale was set from the13P − 1S, still short of the experimental
117 MeV.

In an exploratory study, in which for the first time the diagram that contains disconnected quark
loops has been included, McNeile and Michael [18] find evidence that while the position of the ground
state vector state appears to be largely unaffected, the pseudoscalar mass is reduced by an amount of the
order of 20 MeV with respect to the non-flavour singlet reference value. One explanation might be the
background of glueballs, c.f. Fig. 3.1. A more recent study by QCD–TARO [19] confirms that the vector
state remains largely unaffected. They rule out an increaseof the pseudoscalar mass, however, a decrease
by an amount of up to 20 MeV would not contradict their data.

First studies [24] utilizing the AsqTad staggered light quark action and approximating2 + 1
flavours of sea quarks by taking roots of the Fermionic determinant have been performed. The light
quark mass was varied down to aboutms/6. TheO(αsa) clover action, in the Fermilab heavy quark
interpretation [7] was used. Extrapolating to physical seaquark mass, a hyperfine structure splitting of
97(2) MeV is obtained, see also Section 2.2.1 below. This is an increase of almost 40 %, over their
quenched reference value. At least the latter would have been somewhat smaller if normalized with re-
spect tor0 rather than to theΥ′ − Υ splitting. However, OZI diagrams have been neglected and neither
is the lattice spacing dependence resolved as yet. Clearly,a precision study of the charmonium spectrum
requires not only sea quarks but also flavour singlet diagrams to be included.

2.2 NRQCD

NRQCD takes advantage that the masses of the charm and bottomquarks are much larger thanΛQCD

in order to build an EFT which is equivalent to QCD at any desired order in1/m andαs(m). Starting
from NRQCD two approaches may be followed for spectrum computations: direct lattice calculations
(Section 2.2.1) or further integration of the soft scale (the scale of the momentum transfer) to arrive
at an EFT in which only the ultrasoft degrees of freedom remain dynamical, pNRQCD (Section 2.3).
An introduction to NRQCD is given in Chapter 1, see also Refs.[25–27] for some introduction to the
nonrelativistic EFT formulation. An introduction to lattice methods (quenched and unquenched) has
been given in Chapter 1.

2.2.1 Lattice NRQCD calculations with light sea quarks3

The use of non-relativistic effective field theories permits the computer to handle only scales appropriate
to the physics of the non-relativistic bound states withouthaving to spend a lot of computer power on the
large scale associated with the heavy quark mass which is irrelevant to the bound state dynamics. This
makes the calculations more tractable so that many more hadron correlators can be calculated for better
statistical precision. We will focus our discussion on the most recent calculations obtained within this
approach, which include light sea quarks.

3Authors: C. Davies, A. Kronfeld, P. Mackenzie, J. Simone
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On the lattice, heavy quark effects and discretisation effects are intertwined. One can treat them
together by introducing an effective Lagrangian [28,45]

L = − ψ†
[
δm +D4 −

D2

2m
− clat4

8m3

(
D2
)2 − wlat

1 a2

6m

∑

i

D4
i −

clatD
8m2

(D · gE − gE ·D)

− clatS
8m2

iσ · (D × gE + gE ×D) − clatF
2m
σ · gB

]
ψ + · · · , (3.1)

similar to the standard (continuum) NRQCD Lagrangian, but note that the derivative operators are ‘im-
proved’ on the lattice to remove leading errors arising fromthe lattice spacing. See also the Section 3.2.3
“Heavy Quark Actions” in Chapter 1. We have omitted the termψ†mψ.

Compared to the NRQCD description of continuum QCD, an unimportant difference is the Eu-
clidean metric (D4 instead of−iD0). Also, unlike in dimensional regularization, in lattice regularization
the mass shiftδm will in general be non-zero. However, this cancels from massdifferences and decay
amplitudes. Moreover, it can be determined nonperturbatively from theΥ dispersion relation. Obvi-
ously, terms accompanied bywi are lattice specific. The essential difference is that the matching scale is
provided by the lattice spacing: the short-distance coefficientsclati , wlat

i andδm depend onam and on
the details of the chosen discretisation. The matching ofclati andwlat

i is carried out to some accuracy in
αs. From Eq. (3.1) one sees that the most important matching condition is to identify the kinetic massm
with the heavy quark mass in the lattice scheme, and then tunethe higher-dimension interactions.

One area of lattice QCD which has remained problematic is thehandling of light quarks on the
lattice. This is now being addressed successfully and is critical to obtaining precision results of use
to experiment. In particular the problem is how to include the dynamical (sea)u/d/s quark pairs that
appear as a result of energy fluctuations in the vacuum. We canoften safely ignorec/b/t quarks in
the vacuum because they are so heavy, but we know that light quark pairs have significant effects, for
example in screening the running of the gauge coupling and ingenerating Zweig-allowed decay modes
for unstable mesons.

Many calculations in the past have used the “quenched approximation,” attempting to compensate
sea quark effects byad hocshifts in the bare coupling and (valence) quark masses. The results then suffer
from errors as large as 10–30%. The error of the quenched approximation is not really quantifiable and
this is reflected by a lack of internal consistency when different kinds of hadrons are used to fix the bare
parameters. This ambiguity plagues the lattice QCD literature.

The MILC Collaboration recently have produced ensembles ofgluon field configurations which
include 2 degenerate light sea quarks (u, d) and a heavier one (s) [30]. They rely on fast supercomputers
and a new discretisation of the quark action: the improved staggered formalism [31]. At quark masses
small enough for reliable chiral extrapolations, staggered Fermions appear much faster than any other
formulation of lattice Fermions. However, each flavour of staggered quarks is included in the sea by
taking the fourth root of the staggered determinant and there are still theoretical issues to be resolved
about this. Taking theu andd masses the same makes the lattice calculation much faster and leads
to negligible errors in isospin-averaged quantities. The seas quark mass is chosen to be approximately
correct based on earlier studies (in fact the subsequent analysis shows that it was slightly high and further
ensembles are now being made with a lower value). The seau andd quarks take a range of masses down
as low as a sixth of the (real)ms. Ensembles are available at two different values of the lattice spacing,
0.12 fm and 0.09 fm, and the spatial lattice volume is(2.5 fm)3, reasonably large. Analysis of hadronic
quantities on these ensembles has been done by the MILC and HPQCD collaborations [29].

There are 5 bare parameters of QCD relevant to this analysis:αs, mu/d, ms, mc andmb. Chang-
ing the bareαs changes the lattice spacing. It is important to fix these parameters with the masses of
“gold-plated” hadrons, i.e., hadrons which are well below their strong decay thresholds. Such hadrons
are well-defined experimentally and theoretically and should be accurately calculable in lattice QCD.
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Fig. 3.2: Lattice QCD results divided by experiment for a range of “gold-plated” quantities which cover the full
range of hadronic physics [29]. The unquenched calculations on the right show agreement with experiment across
the board, whereas the quenched approximation on the left yields systematic errors ofO(10%).

Using them to fix parameters will then not introduce unnecessary additional systematic errors into lattice
results for other quantities. This has not always been done in past lattice calculations, particularly in the
quenched approximation. It becomes an important issue whenlattice QCD is to be used as a precision
calculational tool. We use the radial excitation energy in theΥ system (i.e., the mass splitting between
theΥ′ and theΥ) to fix the lattice spacing. This is a good quantity to use because it is very insensitive
to all quark masses, including theb quark mass (experimental values for this splitting are verysimilar
for charmonium and bottomonium) and so it can be determined without a complicated iterative tuning
process.mπ, mK , mDs andmΥ are used to fix the quark masses. Thus, quarkonium turns out tobe a
central part in this study.

Once the Lagrangian parameters are set, we can focus on the calculation of other gold-plated
masses and decay constants. If QCD is correct and lattice QCDis to work it must reproduce the experi-
mental results for these quantities precisely. Figure 3.2 shows that this indeed works for the unquenched
calculations withu, d ands quarks in the vacuum. A range of gold-plated hadrons are chosen which
range from decay constants for light hadrons through heavy-light masses to heavy quarkonium. This
tests QCD in different regimes in which the sources of systematic error are very different and stresses
the point that QCD predicts a huge range of physics with a small set of parameters.

Refs. [24, 32–34] give more details on the quantities shown in Fig. 3.2. Here we concentrate on
the spectrum of bottomonium and charmonium states, using, respectively, lattice NRQCD [35] and the
Fermilab method for heavy quarks [7]. We include a brief discussion of theBc mass, including the status
of an ongoing unquenched calculation using the MILC ensembles.

Υ results with NRQCD

Figure 3.3(a) shows the radial and orbital splittings [33] in thebb̄ (Υ) system for the quenched approx-
imation (nf = 0) and with the dynamical MILC configurations with 3 flavoursof sea quarks. We use
the standard lattice NRQCD effective theory for the valenceb quarks [35], which takes advantage of the
non-relativistic nature of the bound states. The lattice NRQCD action used here is accurate throughv4

wherev is the velocity of theb quark in its bound state. It also includes corrections to remove discreti-
sation errors atO(p2a2v2) ∼ O(v4), but does not includeO(αsv

4) corrections to the coefficientsci and
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Fig. 3.3: Radial and orbital splittings in theΥ system from lattice QCD, using theΥ′−Υ splitting and theΥ mass
to fix the lattice spacing and theb-quark mass [33]. (a) Comparison of the quenched approximation (open circles)
and QCD withu, d ands sea quarks (filled) circles. Note that the 1S and 2S levels areused to fix theb quark mass
and lattice spacing respectively so are not predictions. (b) Dependence of the splittings as a function of the of the
bare seau/d quark mass.

wi in Eq. (3.1), which are subleading. This means that spin-independent splittings, such as radial and
orbital excitations, are simulated through next-to-leading-order in the velocity expansion and should be
accurate to around 1%. Thus, these splittings provide a veryaccurate test not only of lattice QCD, but
also of the effective-field theory framework. At present, the fine structure in the spectrum is only correct
through leading-order [which isO(v4) in this case] and more work must be done to bring this to the same
level and allow tests against, for example, the splittings between the differentχb states [33]. This is in
progress. Systematic uncertainties due to such truncations have for instance been estimated in Ref. [36],
based on lattice potentials.

The Υ system is a good one for looking at the effects of sea quarks because we expect it to be
relatively insensitive to sea quark masses. The momentum transfer inside anΥ is larger than any of
theu, d or s masses and so we expect the radial and orbital splittings to simply count the number of sea
quarks once they are reasonably light. Figure 3.3(b) shows this to be true — the splittings are independent
of the seau/d quark mass in the region we are working in. Chiral extrapolation in theu/d quark mass is
immaterial in this case. Therefore, the left-most lattice points in Fig. 3.3(b) are the ones used in Figs. 3.2
and 3.3(a).

ψ results with the Fermilab method

Figure 3.4 shows the spectrum of charmonium states below theDD threshold [24]. In this plot the lattice
spacing was fixed from theΥ′−Υ splitting (as above), and thec quark mass was tuned to get theDs mass
correct. Therefore, these results are obtained directly from QCD without adjusting any free parameters.
For Fig. 3.4(a), the zero of energy has been moved to the spin-averaged mass̄mψ = 1

4mηc + 3
4mJ/ψ.

These results are obtained using the Fermilab method [7] forthe charmed quark. In this method
one starts with Wilson Fermions, but the discretisation effects are controlled and understood using non-
relativistic field theories, as in Eq. (3.1). The non-relativistic interpretation also has implications for how
the action is improved. In the notation of Eq. (3.1) the chromomagnetic interaction is adjusted so that
clatF is correct at tree level. However, at higher order, there areO[(mca)

2] ∼ 10% andO(αs) errors and
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(a) (b)

Fig. 3.4: Radial and orbital splittings in the charmonium system from lattice QCD with 3 light sea quarks, fixing
the lattice spacing from theΥ′−Υ splitting (as above), and thec quark mass from theDs mass [24]. (a) Spectrum;
(b) dependence on the sea quark mass.

some sign of these is seen in the mismatch with experiment of the hyperfine splitting in Fig. 3.4(a). In
the past such discrepancies were masked by quenching errors, whereas now they can be resolved. Note
that OZI violating contributions [18, 19] are also neglected currently. They are expected to be small but
a decrease of up to 20 MeV inmηc is not ruled out.

The Fermilab action can be systematically improved, and thetheoretical work needed is in progress.
The most important new features are a one-loop calculation of the chromomagnetic coupling [37], and a
systematic enumeration of all operators needed for improvement throughv6 [38].

Bc ground state

In 1998 the lowest-lying bound state ofb̄c quarkonium was observed in semi-leptonic decays [39], yield-
ing a mass ofmBc = 6.4 ± 0.4 GeV. A more precise measurement with hadronic decays is expected to
come soon from Run II of the Tevatron, cf. Section 9. For lattice QCD, theBc is a ‘gold-plated’ hadron
and we have the opportunity to predict its mass ahead of experiment. Here we report on a preliminary
lattice calculation, building on the progress detailed above. In previous quenched calculations accurate
result could not be provided, due to the inconsistency of this approach described above.

The method used in the present study was developed in a quenched calculation [40], and follows
almost immediately from Eq. (3.1). As long as one may use the effective Lagrangian to describe the
charmed and bottom quarks on the lattice, the meson mass satisfies [28],

M1Bc = mb̄ +mc +BBc , (3.2)

whereBBc is the binding energy of theBc meson. The accuracy of the binding energy depends on how
well the coefficientsclati have been adjusted. The scheme- and scale-dependent quark masses cancel
from the relation [40],

M1Bc − 1
2

[
M1ψ +M1Υ

]
= BBc − 1

2 [Bψ +BΥ] . (3.3)

Note that within potential models flavour independence implies that this combination is small and posi-
tive [41,42]. One can now predict theBc mass by adding back the experimental1

2 [Mψ +MΥ]. A variant
of this technique is to use theDs andBs masses instead of (half the) quarkonium masses.

An unquenched lattice calculation has recently been carried out [43, 44], using the MILC ensem-
bles discussed above. Analyses at two light sea quark massesand two values of the lattice spacing show
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a consistent picture, as expected. Using the quarkonium baseline, Allisonet al. find [43]

MBc = 6304 ± 4 ± 11+18
− 0 MeV, (3.4)

where the uncertainties are, respectively, from statistics (after chiral extrapolation), tuning of the heavy-
quark masses, and heavy-quark discretization effects. Thelast is estimated from the mismatch of opera-
tors of orderv4 in the effective Lagrangian and are dominated by the relativistic correction(D2)2. The
estimate is guided by potential models (and is the only change from earlier conference reports [44]). The
overall errors are so small because the lattice calculationhas been set up to focus on the binding-energy
difference, and raw uncertainties of several percent have been leveraged to the sub-percent level for the
mass itself.

This result can be checked with the heavy-light baseline,MBc = MDs +MBs + [BBc − (BDs +
BBs)], with somewhat larger uncertainties. Allisonet al. find [43]

MBc = 6243 ± 30 ± 11+37
− 0 MeV. (3.5)

The systematic uncertainties are larger with the heavy-light baseline because there is less cancellation
between theBc quarkonium and the heavy-lightDs andBs.

The dominant uncertainties can be reduced by choosing more highly-improved actions in lattice
gauge theory, or by reducing the lattice spacing, as discussed in Ref. [43].

2.2.2 Heavy hybrids on the lattice4

QCD suggests the existence of mesonic states in which the valence quark-antiquark pair is bound by an
excitedgluon field. A natural starting point in the quest to understand such states is the heavy quark
sector. The vastly different characteristics of the slow massive heavy quarks and the fast massless glu-
ons suggest that such systems may be amenable to a Born–Oppenheimer treatment, similar to diatomic
molecules. The slowly moving heavy quarks correspond to thenuclei in diatomic molecules, whereas
the fast gluon and light-quark fields correspond to the electrons. At leading order, the gluons and light
quarks provide adiabatic potentialsVQQ̄(r), wherer is the quark–antiquark separation, and the behav-
ior of the heavy quarks is described by solving the Schrödinger equation separately for eachVQQ̄(r).
The Born–Oppenheimer approximation provides a clear and unambiguous picture of conventional and
hybrid mesons: conventional mesons arise from the lowest-lying adiabatic potential, whereas hybrid
mesons arise from the excited-state potentials.

The first step in a Born–Oppenheimer treatment of heavy quarkmesons is determining the gluonic
termsVQQ̄(r). Since familiar Feynman diagram techniques fail and the Schwinger–Dyson equations
are intractable, the path integrals needed to determineVQQ̄(r) are estimated using Markov-chain Monte
Carlo methods (Lattice QCD simulations). The spectrum of gluonic excitations in the presence of a static
quark–antiquark pair has been accurately determined in lattice simulations [46, 47] which make use of
anisotropic lattices, improved actions, and large sets of operators with correlation matrix techniques.
These gluonicVQQ̄(r) levels may be classified by the magnitudeΛ of the projection of the total angular
momentumJg of the gluon field onto the molecular axis, and byη = ±1, the symmetry under charge
conjugation combined with spatial inversion about the midpoint between the quark and the antiquark.
States withΛ = 0, 1, 2, . . . are denoted byΣ,Π,∆, . . . , respectively. States which are even (odd) under
the above-mentionedCP operation are denoted by the subscriptsg (u). An additional± superscript for
theΣ states refers to even or odd symmetry under a reflection in a plane containing the molecular axis.

In the leading Born–Oppenheimer approximation, one replaces the covariant LaplacianD2 by an
ordinary Laplacian∇2. The error that one makes is equivalent to1/MQ and1/M2

Q corrections [48]
to VQQ̄ that go beyond the LBO and are suppressed by a factorv2, using perturbative NRQCD power

4Author: C. Morningstar
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Fig. 3.5: (Left) The spectrum of conventional and hybrid heavy-quark mesons in the leading Born–Oppenheimer
approximation and neglecting light quarks (from Ref. [46]). ConventionalS andP states are shown, as well as
hybrids based on theΠu andΣ−

u adiabatic surfaces. Solid lines indicate spin-averaged experimental measurements.
(Right) Simulation results from Ref. [46] for two conventional and four hybrid bottomonium level splittings (in
terms ofr−1

0 = 450 MeV and with respect to the1S state) against the lattice spacingas. Predictions from the
leading Born–Oppenheimer calculation, shown as horizontal lines, reproduce all of the simulation results to within
10 %, strongly supporting the validity of a Born–Oppenheimer picture for such systems at leading order. Results
from Ref. [49] using an NRQCD action with higher-order relativistic corrections are shown as hollow boxes and
hollow upright triangles.

counting rules. The spin interactions of the heavy quarks are also neglected, and one solves the radial
Schrödinger equation:

− 1

2µ

d2u(r)

dr2
+

{
〈L2

QQ̄
〉

2µr2
+ VQQ̄(r)

}
u(r) = E u(r), (3.6)

whereu(r) is the radial wavefunction of the quark–antiquark pair andµ denotes the reduced mass. The
expectation value in the centrifugal term is given in the adiabatic approximation by

〈L2
QQ̄〉 = L(L+ 1) − 2Λ2 + 〈J2

g 〉, (3.7)

where〈J2
g 〉 = 0 for theΣ+

g level and〈J2
g 〉 = 2 for theΠu andΣ−

u levels.

The leading-order Born–Oppenheimer spectrum of conventional b̄b and hybridb̄gb states (in the
absence of light quarks) obtained from the above procedure is shown in Fig. 3.5. Below theBB thresh-
old, the Born–Oppenheimer results agree well with the spin-averaged experimental measurements of
bottomonium states (any small discrepancies essentially disappear once light quark loops are included).
Above the threshold, agreement with experiment is lost, suggesting significant corrections either from
mixing and other higher-order effects or (more likely) fromlight sea quark effects.

The validity of the Born–Oppenheimer picture relies on the smallness of mixing between states
based on differentVQQ̄(r). In addition, relativistic (including spin) corrections and radiation of colour
neutral objects such as glueballs and mesons are neglected.In Ref. [46] the LBO level splittings have
been compared with those determined from meson simulationsusing a non-relativistic (NRQCD) heavy-
quark action. The NRQCD action included only a covariant temporal derivative and the leading covariant
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kinetic energy operator; quark spin andD4 terms were neglected. Differences between the two results
originate from both differentO(1/MQ) terms [48] and from the automatic inclusion of mixing effects
between different adiabatic surfaces within the NRQCD simulations. Naively one might expect the
former effect to be ofO(v2) ≈ 10 %. The level splittings (in terms of the hadronic scaler0 and with
respect to the1S state) of the conventional2S and 1P states and four hybrid states were compared
(see Fig. 3.5) and indeed found to agree within10%, strongly supporting the validity of the leading
Born–Oppenheimer picture, at least in the absence of light sea quarks and spin-effects.

A very recent study [50] has demonstrated that theΥ ground state carries little admixture from
hybrids, supporting the LBO, at least in the sector that is governed by the ground state potential. Using
lowest-order lattice NRQCD to create heavy-quark propagators, a basis of unperturbed S-wave and|1H〉
hybrid states was formed. ThecFσ ·B/2MQ spin interaction was then applied at an intermediate time
slice to compute the mixings between such states due to this interaction in the quenched approximation.
Diagonalizing the resulting two-state Hamiltonian then yielded the admixtures of hybrid configuration
in theΥ andηb. For a reasonable range ofcF values, the following results were obtained:〈1H|Υ〉 ≈
0.076−0.11 and〈1H|ηb〉 ≈ 0.13−0.19. Hence, hybrid mixings due to quark spin effects in bottomonium
are very small. Even in charmonium, the mixings were found not to be large:〈1H|J/Ψ〉 ≈ 0.18 − 0.25
and〈1H|ηc〉 ≈ 0.29 − 0.4. Investigations of the mixing of hybrid states with radiallyexcited standard
quarkonium states which are energetically closer and spatially more extended are certainly an exciting
avenue of future research.

In the absence of light quark loops, one obtains a very dense spectrum of mesonic states since the
VQQ̄(r) potentials increase indefinitely withr. However, the inclusion of light quark loops changes the
VQQ̄(r) potentials. First, there are slight corrections at smallr, and these corrections remove the small
discrepancies of the leading Born–Oppenheimer predictions with experiment below theBB threshold
seen in Fig. 3.5. For larger, the inclusion of light quark loops drastically changes thebehavior of the
VQQ̄(r) potentials: instead of increasing indefinitely, these potentials eventually level off at a separa-
tion above 1 fm when the static quark–antiquark pair, joinedby gluonic flux, can undergo fission into
(Qq̄)(Q̄q), whereq is a light quark andQ is a heavy quark. Clearly, such potentials cannot support
the populous set of states shown in Fig. 3.5; the formation ofbound states and resonances substantially
extending over 1 fm in diameter seems unlikely. A complete open-channel calculation taking the effects
of including the light quarks correctly into account has notyet been done, but unquenched lattice simu-
lations [51] show that theΣ+

g andΠu potentials change very little for separations below 1 fm when sea
quarks are included. This makes it conceivable that a handful of low-lying states whose wavefunctions
do not extend appreciably beyond 1 fm in diameter may exist aswell-defined resonances in nature.

In addition to such direct threshold effects there is the possibility of transitions between different
adiabatic surfaces, mediated by radiation of pions and other light mesons or pairs of light mesons. A first
lattice study of such effects has been performed by McNeile and Collaborators [52].

A recent quenched calculation [8] of bottomonium hybrids using a relativistic heavy-quark action
on anisotropic lattices confirms the predictions of the Born–Oppenheimer approximation, but admit-
tedly, the uncertainties in the simulation results are large. These calculations used a Symanzik-improved
anisotropic gauge action and an improved Fermion clover action. Quenched results on Charmonium
hybrids obtained by employing a relativistic quark actions[12] can be found in Fig. 3.1 and Table 3.1
in Section 2.1. The dominant decay channel for the lightest (1−+) hybrid would be into aD and aD

∗∗

should it be heavier than the respective threshold, and radiation of a light pseudoscalar or scalar state if
lighter.

A determination of the spectrum properly taking into account effects from light quarks is still
needed. Taking the Born–Oppenheimer approximation beyondleading order is also a project for future
work. Monte Carlo computations of relevant matrix elementsinvolving the gauge field can not only
facilitate the evaluation of higher-order terms in the Born–Oppenheimer expansion, but also provide
valuable information on the production and decays of these novel states.
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2.2.3 QQq baryons on the lattice5

While recent lattice results from several groups on three quark static potentials exist [53–57], no such
potentials have been calculated for the situation containing two static sources at distancer, accompanied
by a light quark, as yet. However, two groups have directly studied the situation forQ = c, within the
quenched approximation, one employing the so-called D234 improved Wilson type action [58] as well
as NRQCD [59] on anisotropic lattices and the UKQCD Collaboration employing the relativistic clover
charm quark action [60].

In the NRQCD study [59] two lattice spacings,a ≈ 0.15 fm, 0.22 fm and four light quark masses
have been realized andbbq, ccq as well asbqq andcqq baryons studied. No finite volume checks were per-
formed and radiative corrections to the NRQCD matching coefficients ignored. In the UKQCD study [60]
only one lattice spacinga ≈ 0.08 fm and one volume,La ≈ 2 fm were realized. The light quark masses
scattered around the strange quark mass and both, singly anddoubly charmed baryons were studied. All
studies yield consistent results. The values quoted by UKQCD are [60],

Ξcc = 3549(13)(19)(92) MeV , Ωcc = 3663(12)(17)(95) MeV

Ξ∗
cc = 3641(18)(08)(95) MeV , Ω∗

cc = 3734(14)(08)(97) MeV. (3.8)

The first errors are statistical, the second encapsulate uncertainties in the chiral extrapolations and fit
ranges. The third error represents the uncontrolled systematics: finitea effects, finite volume effects and
quenching, estimated by comparing the latticeΛc mass to the experimental result.

2.3 pNRQCD6

From the various dynamical scales that play a role in the heavy quarkonium systems, namelym, mv,
mv2 and ΛQCD, only the hard scalem has been factorized in NRQCD and becomes explicit in its
Lagrangian. Only the fact thatm ≫ mv,mv2,ΛQCD is exploited but no use is made of the scale
separation,mv ≫ mv2. A higher degree of simplification is achieved by building another effective
theory, where degrees of freedom of order∼ mv are integrated out as well, i.e., an EFT where only the
ultrasoft degrees of freedom (with energies∼ mv2) remain dynamical. In this way a big simplification is
obtained and analytic calculations of the spectrum become feasible, at least in some dynamical regimes,
at variance with NRQCD where the spectrum can only be obtained in a model independent way by
Lattice calculation. pNRQCD [4, 5] takes advantadge of the fact that for many non-relativistic systems
the scale associated to the size of the systemk ∼ mv is much larger than the binding energyE ∼ mv2.
Therefore it is possible to integrate out the scale of the momentum transferk in a way such that pNRQCD
is equivalent to NRQCD at any desired order inE/k, k/m andαs(µ). Two dynamical situations may
occur here: (1)k is much larger thanΛQCD, (2) k is of the order ofΛQCD. In the first case the matching
from NRQCD to pNRQCD may be performed in perturbation theory, expanding in terms ofαs. In the
second situation, the matching has to be nonperturbative, i.e., no expansion inαs is allowed. We will
refer to these two limits as the weak and strong coupling regimes. Recalling thatk ∼ r−1 ∼ mv, these
two situations correspond to systems with inverse typical radius smaller or bigger thanΛQCD, or systems
respectively dominated by the short range or long range (with respect to the confinement radius) physics.
We will consider these two situations in the following two subsections.

2.3.1 Weak coupling regime7

Whenk ≫ E >∼ ΛQCD, we are in the perturbative matching regime (v ∼ αs(mαs)). The scale
r ∼ 1/(mv) is integrated out and the pNRQCD Lagrangian consists of a singlet and an octet wave func-
tion field interacting with respective potentials and coupled to ultrasoft gluons. The effective degrees

5Author: G. Bali
6Authors: N. Brambilla, J. Soto
7Authors: N. Brambilla, J. Soto
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of freedom are:QQ̄ states (decomposed into a singlet and an octet wave functionunder colour trans-
formations) with energy of order of the next relevant scale,ΛQCD,mv

2 and momentump of ordermv,
plus ultrasoft gluonsAµ(R, t) with energy and momentum of orderΛQCD,mv

2. All the gluon fields are
multipole expanded (i.e., expanded inr). The Lagrangian is then an expansion in the small quantities
p/m, 1/(rm) andO(ΛQCD,mv

2) × r.

The pNRQCD Lagrangian is given at the next to leading order (NLO) in the multipole expansion
by [5] (in the centre-of-mass system):

LpNRQCD = Tr

{
S†


i∂0 −

p2

m
− Vs(r) −

∑

n≥1

V
(n)
s

mn


 S + O†


iD0 −

p2

m
− Vo(r) −

∑

n≥1

V
(n)
o

mn


O

}

+gVA(r)Tr
{
O†r ·E S + S†r ·EO

}
+ g

VB(r)

2
Tr
{
O†r ·EO + O†Or · E

}
− 1

4
F aµνF

µνa. (3.9)

The V (n)
s,o , VA, VB are potentials, which play the role of matching coefficientsand contain the non-

analytical dependence inr, to be calculated in the matching between NRQCD and pNRQCD. Poincaré
invariance imposes relations among these matching coefficients [61]. To leading order in the multipole
expansion, the singlet sector of the Lagrangian gives rise to equations of motion of the Schrödinger
type. The other terms in Eq. (3.9) contain (apart from the Yang–Mills Lagrangian) retardation (or non-
potential) effects that start at the NLO in the multipole expansion. At this order the non-potential effects
come from the singlet-octet and octet-octet interactions mediated by an ultrasoft chromoelectric field.

Recalling thatr ∼ 1/(mv) and that the operators count like the next relevant scale,O(mv2,
ΛQCD), to the power of the dimension, it follows that each term in the pNRQCD Lagrangian has a
definite power counting. As a consequence of this power counting the interaction of quarks with ultrasoft
gluons is suppressed in the Lagrangian by a factorv ( by gv if mv2 ≫ ΛQCD) with respect to the LO.

The various potentials in Eq. (3.9) have been calculated at different orders in the perturbative
matching.Vs is known to two loops [O(α3

s )] [62, 63] as well as the leading log of the three loop contri-

bution [64]. Vo is known to two loops (see York Schröder, private communications in Ref. [65]).V (1)
s

is known to two loops [67] andV (2)
s to one loop [68].VA andVB are known at tree level [5] (and are

independent ofr) and have no logs at one loop [70].

Note that the static limit of pNRQCD (m→ ∞) results in a nontrivial theory (unlike in pNRQED),
since both singlet and octet fields remain dynamical and interact through ultrasoft gluons. The static
energy of two infinitely heavy sourcesVQCD(r), which will be discussed below, can be obtained for
small r. In fact, the coefficient of the infrared logarithmic contribution toVQCD(r) first pointed out in
Ref. [71] was calculated using the static pNRQCD Lagrangian[64].

Given the Lagrangian in Eq. (3.9) it is possible to calculatethe quarkonium energy levels. Contri-
butions to the spectrum originate both in quantum mechanical perturbation theory and in the dynamics
of ultrasoft gluons. The latter contributions contain nonperturbative effects and this will be discussed in
the corresponding section below.

The static QCD potential8

For decades, the static QCD potentialVQCD(r), formally defined from an expectation value of the Wilson
loop, has been widely studied for the purpose of elucidatingthe nature of the interaction between heavy
quark and antiquark. The potential at short distances can becomputed by perturbative QCD, whereas
its long distance shape can be computed by lattice simulations. (See Sections 2.3.2 and 2.3.3 for lattice
computations.)

8Author: Yu. Sumino
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Computations ofVQCD(r) in perturbative QCD have a long history. The 1-loop and 2-loop cor-
rections were computed in Refs. [72–74] and [62, 63, 75–78],respectively. The logarithmic correc-
tion at 3-loops originating from the ultrasoft scale was first pointed out in Ref. [71] and computed in
Refs. [64, 79]. A renormalization-group (RG) improvement of VQCD(r) at next-to-next-to-leading log
(NNLL) was performed in Ref. [70].9

Since the discovery [83–85] of the cancellation ofO(ΛQCD) renormalons betweenVQCD(r) and
twice the quark pole mass10, the convergence of the perturbative series improved drastically and much
more accurate perturbative predictions of the potential shape became available. This feature indicates the
validity of the renormalon dominance picture for the QCD potential and pole mass. According to this
picture, a perturbative uncertainty ofVQCD(r), after cancelling theO(ΛQCD) renormalon, is estimated
to beO(Λ3

QCDr
2) at r ≪ Λ−1

QCD [87].

An OPE ofVQCD(r) was developed within the pNRQCD framework [5]. In this framework,
residual renormalons, starting fromO(Λ3

QCDr
2), are absorbed into the matrix element of a non-local

operator (non-local gluon condensate). Then, in the multipole expansion atr ≪ Λ−1
QCD, the leading

nonperturbative contribution to the potential becomesO(Λ3
QCDr

2) [5].

Several studies [78,88–91] showed that perturbative predictions forVQCD(r) agree well with phe-
nomenological potentials (determined from heavy quarkonium spectroscopy) and lattice calculations of
VQCD(r), once theO(ΛQCD) renormalon is accounted for. Ref. [92] showed that also a Borel resumma-
tion of the perturbative series yields a potential shape in agreement with lattice results if theO(ΛQCD)
renormalon is properly treated. In fact the agreement holdswithin the expectedO(Λ3

QCDr
2) uncer-

tainty.11 These observations further support the validity of renormalon dominance and of the OPE for
VQCD(r).

Qualitatively, the perturbative QCD potential becomes steeper than the Coulomb potential asr
increases (once theO(ΛQCD) renormalon is cancelled). This feature can be understood, within pertur-
bative QCD, as an effect of therunningof the strong coupling constant [88,89,93].

Using a scale-fixing prescription based on the renormalon dominance picture, it was shown ana-
lytically [94] that the perturbative QCD potential approaches a “Coulomb+linear” form at large orders,
up to anO(Λ3

QCDr
2) uncertainty. The “Coulomb+linear” potential can be computed systematically as

more terms of perturbative series are included via RG; up to NNLL, it shows a convergence towards
lattice results.

Heavy quarkonium spectra12

In recent years, perturbative computations of the heavy quarkonium spectrum (an expansion inαs and
lnαs) have enjoyed a significant development. A full computationof the spectrum up toO(α4

sm) was
performed in Refs. [98, 99]. The spectra up to the same order for the system with unequal heavy quark
masses and with non-zero quark mass in internal loops were computed, respectively, in Refs. [95, 97]
and [77, 95]. Perturbative computations at higher orders were made possible by the advent of effective
field theories such as pNRQCD [4, 5] or vNRQCD [6] and by the threshold expansion technique [100].
TheO(α5

sm lnαs) term originating from the ultrasoft scale was computed in Refs. [64, 69, 79]. Ref.
[101, 102] resummed theα4

sm(αs lnαs)
n terms. The full Hamiltonian at the next-to-next-to-next-to-

leading order was computed in Ref. [68]. Except for the 3-loop non-logarithmic term of the perturbative
QCD potential,13 the energy levels of the1S states were computed up toO(α5

sm) from this Hamiltonian
[103]. The fine splittings have been calculated at NLO orderO(α5

sm) in [104].

9There are estimates of higher-order corrections to the perturbative QCD potential in various methods [80–82].
10For similar work inside HQET see [86].
11This is true only in the range ofr where the respective perturbative predictions are stable.All perturbative predictions

become uncontrolled beyond certain distances, typically aroundr ∼ Λ−1
QCD.

12Author: Yu. Sumino
13Estimates of the 3-loop correction to the QCD potential havebeen given in various methods [80–82].
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In the meantime, the discovery of the renormalon cancellation in the quarkonium spectrum [83–85]
led to a drastic improvement of the convergence of the perturbative expansion of the energy levels.
(See Chapter 6 for precise determinations of the heavy quarkmasses, as important applications.) In
Refs. [93, 95] the whole structure of the bottomonium spectrum up toO(α4

sm) was predicted taking
into account the cancellation of theO(ΛQCD) renormalons, and a good agreement with the experimental
data was found for the gross structure of the spectrum. (Onlythe states below the threshold for strong
decays were considered.) The consistency of the perturbative predictions with the experimental data
seems to indicate that, for bottomonium, the momentum scaleof the system is larger thanΛQCD, i.e.,
mv ≫ ΛQCD, up to some of then = 3 states. This is, however, in apparent conflict with the fact
that the leading nonperturbative effects scale as a power≥ 4 of the principal quantum number (see
Nonperturbative effectsbelow) and, hence, are expected to be very important for any excited state.

Subsequently, in Refs. [96, 106] a specific formalism based on perturbative QCD was developed:
using the static QCD potential computed in Ref. [78] and taking into account the cancellation of the
O(ΛQCD) renormalons, the Schrödinger equation was solved numerically to determine the zeroth-order
quarkonium wave function; all the corrections up toO(α5

sm) for the fine and hyperfine splittings have
been included. Good agreements were found between the computed and the observed fine and hyper-
fine splittings of the bottomonium and charmonium spectra, in addition to the gross structure of the
bottomonium spectrum14.

In Table 3.2 particularly impressing is the result for the perturbative calculation of theBc mass,
that, with finite charm mass effects included, is equal to6307 ± 17GeV and is in complete agreement,
inside errors and with small errors, with lattice NRQCD unquenched result given in Eq. (4).

These analyses have shown that the perturbative predictions of the spectra agree with the corre-
sponding experimental data within the estimated perturbative uncertainties, and that the size of nonper-
turbative contributions is compatible with the size of perturbative uncertainties.

Although uncertainties of the perturbative predictions for the individual energy levels grow rapidly
for higher excited states, level spacings among them have smaller uncertainties, since the errors of the
individual levels are correlated. In particular, uncertainties of the fine and hyperfine splittings are sup-
pressed due to further cancellation of renormalons. These features enabled sensible comparisons of the
level structures including the excited states.

In predicting the spectrum, pNRQCD is a useful tool not only for fully perturbative computa-
tions but also for factorizing short-distance contributions into matching coefficients (perturbatively com-
putable) and nonperturbative contributions into matrix elements of operators [5, 48]. This will be dis-
cussed inNonperturbative effectsbelow.

The Renormalization group in heavy quarkonium spectroscopy 15

In recent years, there has been a growing interest to performrenormalization group analysis in heavy
quarkonium [6, 70, 101, 102, 107, 108, 110–117]. In many cases this interest has been driven by the
lack of convergence and strong scale dependence one finds in the fixed (NNLO) analysis performed for
sum rules andt–t̄ production near threshold (see Chapter 6). This problem hasturned out to be highly
non-trivial. We will focus here on computations related with spectroscopy.

The heavy quarkonium spectrum is known with NNLL accuracy [101, 102]. These expressions
have not yet been used for phenomenological analysis of single heavy quarkonium states either in bot-
tomonium and charmonium systems. It would be very interesting to see their effects on the spectra.

The hyperfine splitting of the heavy quarkonium spectrum is known with LL [113,114] and NLL
accuracy for the bottomonium and charmonium spectrum [107]and also for theBc spectrum [108]. For

14For technical reasons a linear extrapolation of the potential atr > 4.5 GeV−1 was introduced in Ref. [96]. This artefact
was eliminated in Ref. [106], in which it was also shown that effects caused by the linear extrapolation of the potential were
minor.

15Author: A. Pineda

85



CHAPTER 3

Table 3.2: Predicted masses ofbb̄, cc̄ andbc̄ states in perturbative QCD-based, renormalon-subtractedcompu-
tations. BSV01 (and BV00) is the full perturbative computation up toO(α4

sm) without non-zero charm-mass
corrections; BSV02 is the full perturbative computation upto O(α4

sm) including non-zero charm-mass correc-
tions; RS03 is based on a specific scheme and specific reorganization of perturbative series, incorporates full
corrections up toO(α4

sm) in the individual levels and full corrections up toO(α5
sm) in the fine splittings, in-

cludes non-zero charm-mass corrections. Errors shown in brackets represent
√
δ2αs

+ δ2h.o. (BSV01,BV00) and
√
δ2αs

+ δ2h.o. + δ2mc
(BSV02), respectively, whereδαs

originates from the error ofαs(MZ), δh.o. is the error due
to higher-order corrections, andδmc

is the error in the finite charm mass corrections. The errors do not include non-
perturbative contributions estimates. Numbers without errors are those without explicit or reliable error estimates
in the corresponding works.

State expt BSV01 [93] BSV02 [95] RS03 [96] BV00 [97]

bb̄ states

13S1 9460 9460 9460 9460

13P2 9913 9916(59) 10012(89) 9956

13P1 9893 9904(67) 10004(86) 9938

13P0 9860 9905(56) 9995(83) 9915

23S2 10023 9966(68) 10084(102) 10032

23P2 10269 10578(258) 10270

23P1 10255 10564(247) 10260

23P0 10232 10268 10548(239) 10246

33S1 10355 10327(208) 10645(298) 10315

cc̄ states

13S1 3097 3097

11S0 2980(2) 3056

bc̄ states

11S0 6400(400) 6324(22) 6307(17) 6326 (29)
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Table 3.3: Predicted fine and hyperfine splittings (in MeV) ofbb̄ and cc̄ states in perturbative QCD-based,
renormalon-subtracted computations.3Pcog denotes the centre of gravity of the triplet P-wave states. PT88
extracts the matrix elements ofO(1/m2) operators from the experimental values for the fine splittings, instead
of computing them from perturbative QCD. BSV01 is the full perturbative computation up toO(α4

sm) without
non-zero charm-mass corrections. BSV02 is the full perturbative computation up toO(α4

sm) including non-zero
charm-mass corrections; RS03 and RS04 are based on specific schemes and specific reorganization of perturbative
series, incorporate full corrections up toO(α5

sm) in the splittings, and include non-zero charm-mass corrections.
KPPSS03 and PPSS04 are the full NNLL computation [up to orderα5

sm× (αs lnαs)
n)] without non-zero charm-

mass corrections. Errors are shown in brackets when explicit and reliable estimates are given in the respective
works. The errors do not include nonperturbative contributions estimates except in KPPSS03 and PPSS04 where
they were roughly estimated using the multipole expansion.

Level splitting expt PT88 [105] BSV01 [93] BSV02 [95] RS03[96] RS04[106] KPPSS03[107] PPSS04[108]

bb̄ states

13P2 – 13P1 20 12 8 18(10)

13P1 – 13P0 33 −1 9 23(10)

23P2 – 23P1 13 16 11(10)

23P1 – 23P0 23 14 14(10)

13S1 – 11S0 44(11) 39(11)+9
−8

23S1 – 21S0 21(8)

33S1 – 31S0 12(9)

13Pcog – 11P1 −0.5 −0.4(0.2)

23Pcog – 21P1 −0.4 −0.2(0.1)

cc̄ states

13P2 – 13P1 46 43(24)

13P1 – 13P0 95 56(34)

13S1 – 11S0 118(1) 88(26) 104

23S1 – 21S0 32(10) 38(36)

13Pcog – 11P1 −0.9 −1.4 −0.8(0.8)

bc̄ states

13S1 – 11S0 65(24)+19
−16
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those observables a phenomenological analysis has been performed. The predictions can be found in
Table 3.3. The general trend is that the introduction of these effects improves the agreement with exper-
iment (when experimental data are available). In particular, the resummation of logarithms brings the
perturbative prediction of the hyperfine splitting of charmonium significantly closer to the experimental
figure if compared with a NLO computation. It is then possibleto give predictions for the hyperfine
splitting of the ground state of bottomonium, and in particular for theηb(1S) mass, as well as for the
hyperfine splitting of theBc ground state. In these computations a threshold mass was used (equivalent
to the pole mass at this order). In any case, it should also be mentioned that the use of theMS mass may
give a NLO value for the charmonium hyperfine splitting in agreement with experiment [109].

As a final remark, for the bottomonium, charmonium andBc spectrum, one should be careful,
since the ultrasoft scale may run up to very low scales. On theother hand the general dependence on the
renormalization scale appears to be the same no matter whether we talk of toponium, bottomonium or
charmonium. This may point to the fact that the same physics holds for all of them.

Nonperturbative effects16

Given the Lagrangian in Eq. (3.9) it is possible to calculatethe full quarkonium energy levels at order
mα5

s [68, 69, 79]. At this order the energyEn of the leveln receives contributions both from standard
quantum mechanics perturbation theory and from the singlet-octet interaction (retardation effect) through
ultrasoft gluons. The latter reads

δEn|us = −i g
2

3Nc

∫ ∞

0
dt 〈n|reit(E

(0)
n −ho)r|n〉 〈E(t)E(0)〉(µ). (3.10)

beingE(0)
n andho the binding energy and the octet Hamiltonian respectively,at leading order. When we

assume that the chromoelectric fields have a typical scale∼ ΛQCD, the expression (3.10) allows to dis-
cuss the nature of the leading nonperturbative contributions. Thus the integral in (3.10) is a convolution
of two objects: the exponential with a typical scalemv2 and the chromoelectric correlator with a typical
scaleΛQCD. Depending on the relative size of the two scales three different situations occur:

– if mv2 ≫ ΛQCD, the correlator reduces to the local gluon condensate and one recovers the result
of Refs. [119, 120], which is proportional to the sixth powerof the principal quantum number.
The NLO nonperturbative contribution has been evaluated inRef. [122]. Note, however, that
in this case the dominant contribution to the nonlocal chromoelectric correlator corresponds to
fluctuations of ordermv2, which can be calculated perturbatively [69,79].

– if mv2 ≪ ΛQCD, the exponential can be expanded and one obtains a quadraticshort range nonper-
turbative potential [5, 123]. This potential absorbs the residual renormalons contained in the fully
perturbative computations [5]. For a Coulombic system, itsexpectation value grows as the fourth
power of the principal quantum number.

– if mv2 ∼ ΛQCD, no expansion can be performed and the nonlocal condensate has to be kept. Its
expectation value grows as the fourth power of the principalquantum number [69].

Hence, both nonperturbative potentials and (non-potential) local condensates are obtained from pNRQCD
in the weak coupling regime for different kinematical limits, see also [124].

2.3.2 Strong coupling regime17

Whenk >∼ ΛQCD ≫ E, the pNRQCD Lagrangian consist of a singlet wave function field interacting
with a potential and with pseudo-Goldstone bosons [5]. The dynamics of the singlet fieldS is described
by the following Lagrangian (here, we do not specialize to the centre-of-mass system) [48,125]

LpNRQCD = Tr

{
S†
(
i∂0 −

p2
1

2m1
− p2

2

2m2
− V (x1,x2,p1,p2)

)
S

}
(3.11)

16Authors: N. Brambilla, J. Soto
17Authors: N. Brambilla, J. Soto
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The dynamics of the pseudo-Goldstone boson is given by the Chiral Lagrangian [126]. The coupling of
pseudo-Goldston bosons with the singlet field has not been worked out yet. If we ignore this coupling,
we recover in Eq. (3.11) the structure of non-relativistic potential models [48,125]. If we assume thatV
is analytical in1/m, the structure of the potential up to order1/m2 is

V (x1,x2,p1,p2) = V (0)(r) +
V (1,0)(r)

m1
+
V (0,1)(r)

m2
+
V (2,0)

m2
1

+
V (0,2)

m2
2

+
V (1,1)

m1m2
, (3.12)

V (2,0) =
1

2

{
p2

1, V
(2,0)
p2 (r)

}
+
V

(2,0)
L2 (r)

r2
L2

1 + V (2,0)
r (r) + V

(2,0)
LS (r)L1 · S1, (3.13)

V (0,2) =
1

2

{
p2

2, V
(0,2)
p2 (r)

}
+
V

(0,2)
L2 (r)

r2
L2

2 + V (0,2)
r (r) − V

(0,2)
LS (r)L2 · S2, (3.14)

V (1,1) = −1

2

{
p1 · p2, V

(1,1)
p2 (r)

}
−
V

(1,1)
L2 (r)

2r2
(L1 · L2 + L2 · L1) + V (1,1)

r (r)

+V
(1,1)
L1S2

(r)L1 · S2 − V
(1,1)
L2S1

(r)L2 · S1 + V
(1,1)
S2 (r)S1 · S2 + V

(1,1)
S12

(r)S12(r̂), (3.15)

wherer = |r|, r = x1−x2, Lj ≡ r×pj andS12(r̂) ≡ 12r̂·S1 r̂·S2−4S1 ·S2. The requisite of Poincaré
invariance imposes well defined relations among the spin-dependent and velocity dependent potentials
above [127–129]. If one further assumes that the matching toNRQCD can be done in the1/m expansion,
the explicit form of the potentials can be obtained in terms of Wilson loop operators [48, 128–133]. We
display here some of them for illustration (for the form of all the potentials see [48]). For the static
potential we have

V (0)(r)= lim
T→∞

i

T
ln〈W 〉, (3.16)

for the potential at order1/m

V (1,0)
s (r) = lim

T→∞
− g2

4T

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′|t− t′|〈〈E(t) · E(t′)〉〉c. (3.17)

At the order1/m2 we display a potential contributing to the spin-dependent (precisely the spin–
orbit) relativistic corrections

V
(2,0)
LS (r) =

c
(1)
F

2r2
ir · lim

T→∞
1

T

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′′ (t− t′′) 〈〈gB(x1, t

′′) × gE(x1, t)〉〉

+
c
(1)
S

2r2
r · (∇rV

(0)), (3.18)

and a potential contributing to the spin-independent velocity dependent relativistic corrections

V
(2,0)
p2 (r) =

i

4
r̂ir̂j lim

T→∞
1

T

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′′ (t− t′′)2 〈〈gEi(x1, t

′′) gEj(x1, t)〉〉c. (3.19)

The angular brackets〈. . . 〉 stand for the average value over the Yang–Mills action,W for the rectangular
static Wilson loop of extensionr×T (the time runs from−T/2 to T/2, the space coordinate fromx1 to
x2):

W ≡ Pexp

{
−ig

∮

r×T
dzµAµ(z)

}
, dzµAµ ≡ dz0A0 − dz ·A, (3.20)

and〈〈. . . 〉〉 ≡ 〈. . .W 〉/〈W 〉; P is the path-ordering operator. Moreover, we define the connected Wilson
loop withO1(t1),O2(t2) andO3(t3) operator insertions by:

〈〈O1(t1)O2(t2)〉〉c = 〈〈O1(t1)O2(t2)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)〉〉. (3.21)
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The operatorsEi = F0i andBi = ǫijkF jk/2 (Fµν = ∂µAν−∂νAµ+ig[Aµ, Aν ]) are the chromoelectric
and chromomagnetic field respectively.

Notice that the final result for the potentials (static and relativistic corrections) appears factorized
in a part containing the high energy dynamics (and calculable in perturbation theory) which is inherited
from the NRQCD matching coefficients (thecj , dj , cf. Section 2.1 on NRQCD in Chapter 1), and a part
containing the low energy dynamics given in terms of Wilson loops and chromo-electric and chromo-
magnetic insertions in the Wilson loop [48]. The inclusion of NRQCD matching coefficients solved the
inconsistency between perturbative one-loop calculations and the Wilson loop approach which arose in
the past [132,134]. The low energy contributions can be calculated on the lattice [135,136] or estimated
in QCD vacuum models [134,137].

Almost all the potentials given in Eq. (3.15) were evaluatedon the lattice in Refs. [135, 136], but
this is not so for the potentials of order1/m, V (1,0), V (0,1). It would be very interesting to have such an
evaluation (the perturbative one exist at two loops [67]) since, phenomenologically, they have not been
considered up to now. In general, it would be very interesting to have updated and more precise lattice
calculations of all the potentials. We recall that these lattice calculations have also a definite impact on
the study of the properties of the QCD vacuum in presence of heavy sources. So far the lattice data
for the spin-dependent and spin-independent potentials are consistent with a flux-tube picture, while it
is only for the spin-dependent terms that the so called scalar confinement is consistent with the lattice
data [48,134,138].

It has recently been shown [139] that the assumption thatV is analytic in1/m is not correct. New
non-analytic terms arise due to the three-momentum scale

√
mΛQCD. These terms can be incorporated

into local potentials (δ3(r) and derivatives of it) and scale as half-integer powers of1/m. Moreover, it
is possible to factorize these effects in a model independent way and compute them within a systematic
expansion in some small parameters. In any case, the corrections to the spectrum coming from these
non-analytical terms are subleading with respect to the terms given in Eq. (3.12).

We emphasize that, in this regime, non-relativistic potential models, as the ones discussed in
Section 3 are demonstrated to be EFTs of QCD, provided that the potentials used there are compatible
with the ones extracted from QCD (and the interaction with pseudo-Goldstone bosons neglected). It
is a matter of debate, however, which states in bottomonium and charmonium should be considered as
belonging to this regime. On one hand the mass should be sufficiently lower than the heavy-light meson
pair threshold to justify the omission of higher Fock state effects. On the other hand if the states are too
low in mass then the perturbative matching regime of Section2.3.1 will apply and the problem can be
further simplified.

Since the potentials are defined in an effective field theory framework they are not plagued by the
inconsistency typically emerging in higher order calculations in potential models. It is well known that at
second order in quantum mechanical perturbation theory thespin dependent terms result in a contribution
which is as large as the leading order one. This is due to the fact that the resulting expression becomes ill-
defined. Regulating it requires to introduce a cut-off (or dimensional regularization). A large cut-off gives
rise to a linear and to a logarithmic divergence. These divergences can be renormalized by redefining the
coupling constant of a delta potential [140]. This is a mere reflection of the fact that when one matches
QCD to NRQCD, one expands the energy and three momentum. Thisinduces infrared divergences in
the matching coefficients. For quarkonium this happens in the calculation of a matching coefficient of
a four Fermion operator at two loops. If one uses a consistentregularization scheme both for the QCD-
NRQCD matching calculation and the quantum mechanical calculation in pNRQCD, the divergences
exactly cancel and, at the end of the day, a totally consistent scale independent result is obtained (for a
QED example see Refs. [141, 142]). Notice that an EFT framework is crucial to understand this second
order calculation and to render the result meaningful.
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Fig. 3.6: The singlet static energy (quenched and unquenched data) from Ref. [51], see also [143]

2.3.3 The QCD static spectrum and mechanism of confinement18

The spectrum of gluons in the presence of a static quark–antiquark pair has been extensively studied with
high precision using lattice simulations. Such studies involve the calculation of large sets of Wilson loops
with a variety of different spatial paths. Projections ontostates of definite symmetries are done, and the
resulting energies are related to the static quark–antiquark potential and the static hybrids potentials. With
accurate results, such calculations provide an ideal testing ground for models of the QCD confinement
mechanism.

The singlet static energy
The singlet static energy is the singlet static potentialV

(0)
s .

In the plot3.6, we report simulation results both with and without light quark–antiquark pair cre-
ation. Such pair creation only slightly modifies the energies for separations below 1 fm, but dramatically
affects the results around 1.2 fm, at a distance which is too large with respect to the typical heavy quarko-
nium radius to be relevant for heavy quarkonium spectroscopy. At finite temperature, the so-called string
breaking occurs at a smaller distance (cf. corresponding Section in Chapter 7,Media).

One can study possible nonperturbative effects in the static potential at short distances. As it has
already been mentioned in the ”static QCD potential” subsection, the proper treatment of the renormalon
effects has made possible the agreement of perturbation theory with lattice simulations (and potential
models) [78,88–92]. Here we would like to quantify this agreement assigning errors to this comparison.
In particular, we would like to discern whether a linear potential with the usual slope could be added to
perturbation theory. In order to do so we follow here the analysis of Ref. [90, 144], where the potential
is computed within perturbation theory in the Renormalon Subtracted scheme defined in Ref. [81]. The
comparison with lattice simulations [145] in Fig. 3.7 showsthat nonperturbative effects should be small
and compatible with zero, since perturbation theory is ableto explain lattice data within errors. The
systematic and statistical errors of the lattice points arevery small (smaller than the size of the points).
Therefore, the main sources of uncertainty of our (perturbative) evaluation come from the uncertainty in
the value ofΛMS (±0.48 r−1

0 ) obtained from the lattice [146] and from the uncertainty inhigher orders
in perturbation theory. We show our results in Fig. 3.7. The inner band reflects the uncertainty inΛMS

whereas the outer band is meant to estimate the uncertainty due to higher orders in perturbation theory.
We estimate the error due to perturbation theory by the difference between the NNLO and NNNLO
evaluation. The usual confining potential,δV = σr, goes with a slopeσ = 0.21GeV2. In lattice units

18Authors: N. Brambilla, C. Morningstar, A. Pineda
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errors inΛMS and perturbative. For further details see the main text.

we take:σ = 1.35 r−2
0 . The introduction of a linear potential at short distances with such slope is not

consistent with lattice simulations. This is even so after the errors considered in Fig. 3.7 have been
included.

At larger distances,r ≫ ΛQCD, V (0)
s grows linearly, with the string tensionσ = 0.21GeV2. Such

a linear growth of the energy is often taken as evidence that the gluon field forms a flux tube whose
dynamics can be described by an effective string theory. However, it should be pointed out that a linearly
growing potential does not necessarily imply string formation; for example, the spherical bag model also
predicts a linearly rising potential for moderater. It has been shown [147] that the formation of a string-
like flux tube implies a characteristic and universal− π

12r correction to the ground-state energy, deriving
from the zero-point energy of the transverse string vibration. Recent high precision simulations [148]
(cf. also [149]) show that the coefficient of the1/r correction differs from−π/12 by 12%. The authors
of Ref. [148] introduce anad hocend-effect term with a fit parameterb to the effective string action to
explain this significant difference. However, in a more recent paper [150], these authors show that an
open-closed string duality relation requiresb = 0. Furthermore, a simple resonance model was used in
Refs. [151,152] to show that the Casimir energy expected from a string description could be reproduced
in a model in which string formation was not a good description, concluding that no firm theoretical
foundation for discovering string formation from high precision ground state properties below the 1 fm
scale currently exists.

Excitations of the static energy

The spectrum of gluons in the presence of a static quark–antiquark pair provides valuable clues
about the nonperturbative dynamics of QCD. Adopting the viewpoint that the nature of the confining
gluon field is best revealed in its excitation spectrum, in Ref. [47], recent advances in lattice simulation
technology, including anisotropic lattices, improved gauge actions, and large sets of creation opera-
tors,were employed to investigate the static energies of gluonic excitations between static quarks (hybrid
static energies).

In NRQCD (as in QCD) the gluonic excitations between static quarks have the same symmetries
of a diatomic molecule plus charge conjugation. In the centre-of-mass system these correspond to the
symmetry groupD∞h (substituting the parity generator by CP). The mass eigenstates are classified in
terms of the angular momentum along the quark–antiquark axes (|Lz| = 0, 1, 2, . . . which traditionally
are labelled asΣ,Π,∆, . . . ), CP (even,g, or odd,u), and the reflection properties with respect to a plane
passing through the quark–antiquark axes (even,+, or odd,−). Only theΣ states are not degenerate
with respect to the reflection symmetry, see also Section 2.2.2. In Fig. 3.8 we display lattice results of
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Fig. 3.8: The spectrum of gluonic excitations in the presence of a static quark–antiquark pair separated by a
distanceR in 4-dimensionalSU(3) gauge theory (from Ref. [47]). Results are from one simulation for lattice
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an effective string theory description. A dramatic level rearrangement is observed in the crossover region between
0.5 − 2.0 fm. The dashed line marks a lower bound for the onset of mixingeffects with glueball states.

the hybrid static energiesVH obtained from Wilson loops with operators of the appropriate symmetry
inserted at the end points.

D∞h is a subgroup of the rotational symmetry groupO(3) times charge conjugation. In the short-
range limit,r ≪ ΛQCD, the hybrid energies approach so-called gluelump levels that can be classified
according to the usualO(3) JPC . The corresponding operators can be explicitly constructed using
pNRQCD in the static limit [5]. In the case of pure gluodynamics, the spectrum then consists of static
energies which depend onr . The energy units are provided by the only other scale in the problem,ΛQCD.
The gluelumps operators are of the typeTr{OH}, whereO = OaT a corresponds to a quark–antiquark
state in the adjoint representation (the octet) andH = HaT a is a gluonic operator. By matching the QCD
static hybrid operators into pNRQCD, we get the static energies (also called hybrids static potentials)VH
of the gluelumps. At leading order in the multipole expansion, they read [5]

VH(r) = Vo(r) +
1

THg
, (3.22)

beingTHg the correlation time of the corresponding gluelump correlator 〈Ha(t)φ(t, 0)adj
ab H

b(0)〉non−pert.

≃ h e−it/T
H
g . The lattice data confirm that (in the region in which decay into glueball channels is not

yet possible) all theVH behave likeV (0)
o = αs

6r for r→0 cf. Fig. 3.8 and Ref. [65]. The constantTHg
depends on the gluelump operatorH, its inverse corresponds to the mass of the gluelumpH. Note that
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THg are scheme and scale dependent. pNRQCD, in whichr is integrated out, predicts the short-range
degeneracies,

Σ+ ′
g ∼ Πg ; Σ−

g ∼ Π′
g ∼ ∆g ; Σ−

u ∼ Πu ; Σ+
u ∼ Π′

u ∼ ∆u . (3.23)

This is confirmed by the lattice data, cf. Fig. 3.8. Similar observations have also been previously made
in the lattice theory in Ref. [153]. It is interesting to notice that the hierarchy of the states, as displayed
in Fig. 3.8, is reflected in the dimensionality of the operators of pNRQCD [5,65].

By using onlyE andB fields and keeping only the lowest-dimensional representation we may
identify the operatorH for the short-range hybrids calledΣ+ ′

g (andΠg) with r · E (and r × E) and
the operatorH for the short-range hybrids calledΣ−

u (andΠu) with r · B (and r × B). Hence, the
corresponding static energies for smallr are

V
Σ+ ′
g ,Πg

(r) = Vo(r) +
1

TEg
, VΣ−

u ,Πu
(r) = Vo(r) +

1

TBg
.

The lattice results of Ref. [47] show that, in the short range,V
Σ+ ′
g ,Πg

(r)>VΣ−
u ,Πu

(r). This supports the

sum-rule prediction [154] that the pseudovector hybrid lies lower than the vector one, i.e.,TEg < TBg
and the lattice evaluations of Refs. [65, 153]. In this way, in the short-distance limit, we can relate
the behavior of the energies for the gluonic excitations between static quarks with the large time be-
havior of gluonic correlators. We can extract results for gauge invariant two-point gluon field strength
correlators (which are also the relevant nonperturbative objects in the stochastic vacuum model [137])
〈0|F aµν(t)φ(t, 0)adj

ab F
b
µν(0)|0〉, φ being the adjoint string. One can parameterize these correlators in terms

of two scalar functions:〈0|Ea(t)φ(t, 0)adj
ab Eb(0)|0〉 and 〈0|Ba(t)φ(t, 0)adj

ab Bb(0)|0〉 with correlations
lengths:TE = 1/ΛE andTB = 1/ΛB , respectively. Note that while differences between gluelump
massesΛH are universal the absolute normalization is scheme- and scale-dependent [65].

The matching of pNRQCD to (nf = 0) QCD has been performed in the static limit toO(α3
s )

in the lattice scheme and the (scheme- and scale-dependent)gluelump massesΛH = 1/THg have been
determined both, in the continuum limit from short distanceenergy levels and at finite lattice spacing
from the gluelump spectrum [65]. Perfect agreement betweenthese two determinations was found. It
would be highly desirable to have lattice determinations ateven shorter distances to further increase the
precision of such determinations, however, such calculations are rather challenging due to the need to
properly treat lower-lying glueball scattering states.

The behaviour of the hybrid static energies for larger provides further valuable information on
the mechanism of confinement. The linearly rising ground-state energy isnot conclusive evidence of
string formation [138]. Computations of the gluon action density surrounding a static quark–antiquark
pair in SU(2) gauge theory also hint at flux tube formation [155]. Complementary information come
from the study of the static energies of the gluonic excitations between static quarks. A treatment of the
gluon field in terms of the collective degrees of freedom associated with the position of the long flux
might then be sufficient for reproducing the long-wavelength physics. If true, one then hopes that the
oscillating flux can be well described in terms of an effective string theory [66]. In such a case, the lowest-
lying excitations are expected to be the Goldstone modes associated with the spontaneously broken
transverse translational symmetry. These modes are a universal feature of any low-energy description of
the effective QCD string and have energy separations above the ground state given by multiples ofπ/R.
A well-defined pattern of degeneracies and level orderings among the different symmetry channels form
a very distinctive signature of the onset of the Goldstone modes for the effective QCD string.

The spectrum of more than a dozen levels shown in Fig. 3.8 provides strong evidence that the gluon
field can be well approximated by an effective string theory for large separationsR. For separations above
2 fm, the levels agreewithout exceptionwith the ordering and degeneracies expected from an effective
string theory. The gaps agree well withNπ/R, but a fine structure remains, offering the possibility
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to obtain details of the effective QCD string action in future higher precision simulations. For small
R < 2 fm, the level orderings and degeneracies are not consistentwith the expectations from an effective
string description, and the gaps differ appreciably fromNπ/R with N = 1, 2, 3, . . . . Such deviations,
as large as50% or more, cannot be considered mere corrections, making the applicability of an effective
string description problematical. Between 0.5 to 2 fm, a dramatic level rearrangement occurs.

Non-universal details of the underlying string description for large separations, such as higher or-
der interactions and their couplings, are encoded in the finestructure of the spectrum at large separations.
It is hoped that near future simulations will have sufficientprecision to be able to differentiate between
such corrections. In the meantime, the excitation spectrumin other space–time dimensions and other
gauge theories, such asSU(2) andZ(2), are being explored [149,156].

2.3.4 pNRQCD for QQQ and QQq baryons19

In the case of a bound state formed by three heavy quarks, still a hierarchy of physical scales similar to
the quarkonium case exists. Consequently, starting from a NRQCD description for each heavy quark, it is
possible to integrate out the scale of the momentum transfer≃ mv and write the pNRQCD Lagrangian
for heavy baryons [157, 158]. Similarly to before two different dynamical situations may occur: the
momentum transfer is much larger thanΛQCD, or it is of orderΛQCD. In the first case the matching is
perturbative and the Lagrangian is similar to Eq. (3.9) withmore degrees of freedom for the quark part:
two octets, one singlet and one decuplet (as it comes from thecolour decomposition of3×3×3) [157]. In
the second case the matching is nonperturbative and the Lagrangian is similar to Eq.(3.11) with only the
three quark singlet as degree of freedom. The (matching) potentials are nonperturbative objects and their
precise expression in terms of static Wilson loop and (chromo)electric and (chromo)magnetic insertions
in static Wilson loops can be calculated [157]. Experimental data for baryons composed by three quarks
are not existing at the moment, however lattice calculationof the three quark potential exist [53–55].

Baryons made by two heavy quarks and a light quarkQQq combine the slow motion of the heavy
quark with the fast motion of the light quark. Thus a treatment combining in two steps an effective
field theory for theQQ interaction and an effective field theory for theQQ degrees of freedom with
the light quark is the most appropriate one. The interest of these states is also related to the fact that
the SELEX experiment recently announced the discovery of four doubly charmed baryon states. This
will be discussed in more detail in Section 3.4.2. The non relativistic motion of the two heavy quarks
is similar to quarkonium while the light quark is moving relativistically around the slowly movingQQ.
Since theQQ is in a colour antitriplet state, in the heavy quark limit thesystem is similar to āQq system.
However, the situation is much more interesting because if one constructs first the EFT for the two heavy
quarks more degrees of freedom enter and depending on the dynamical situation of the physical system,
these degrees of freedom may or may not have a role. In particular if we work under the condition that
the momentum transfer between the two heavy quarks is smaller thanΛQCD, then we can construct a
pNRQCD Lagrangian of the type Eq. (3.9) with a triplet and a sextet asQQ degrees of freedom [157].
Such degrees of freedom, would also be relevant for the studyof double charmonia production [159].

2.4 Thresholds effects (EFT)20

For states for whichk ∼ E ∼ ΛQCD, namely close or beyond threshold, one has to stay at the NRQCD
level. It is still an open question whether one can build a suitable EFT to study mixing and threshold
effects.

For a confining potential (e.g., harmonic oscillator), however, the typical momentum transferk de-
creases with the principal quantum number whereas both the typical relative three-momentump and the
binding energies increase. For some principal quantum numbern, the binding energy will become com-

19Author: N. Brambilla
20Authors: N. Brambilla, J. Soto
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parable to the momentum transfer and hencek ≥ E will not hold anymore. For these states pNRQCD is
not a good effective theory anymore (it may still remain a successful model). This is expected to happen
for states close to or higher than the heavy-light meson pairthreshold. There is no EFT beyond NRQCD
available for this regime at the moment. Notice also that forsomen the typical three momentum will
become comparable tom and hence relativistic effects will not be small and NRQCD will not be a good
EFT anymore. This is expected to happen for states much higher than the heavy-light meson pair thresh-
old. Relativistic quark models like the ones discussed in Section 3 are probably unavoidable for this
situation although it is not known at the moment how to link them to QCD.

3 PHENOMENOLOGICAL APPROACH 21

From the discovery of charmonium states [160–162], QCD motivated potential models have played
an important role in understanding quarkonium spectroscopy [163–166]. The initial models describ-
ing charmonium spectroscopy, using a QCD motivated Coulombplus linear confining potential with
colour magnetic spin dependent interactions, have held up quite well. This approach also provides a
useful framework for refining our understanding of QCD and guidance towards progress in quarkonium
physics. The discovery of theΥ family of meson [167] was quickly recognized as abb̄ bound state whose
spectroscopy was well described by the potential model picture used to describe the charmonium system.

In this section we give an overview of potential models of quarkonium spectroscopy [168]. Most
models [169–180] have common ingredients. Almost all such models are based on some variant of the
Coulomb plus linear potential confining potential expectedfrom QCD. Quark potential models typically
include one-gluon exchange and most models also include therunning constant of QCD,αs(Q

2). Finally,
relativistic effects are often included at some level [169–183]. At the minimum, all models we consider
include the spin-dependent effects that one would expect from one-gluon-exchange, analogous to the
Breit–Fermi interaction in QED, plus a relativistic spin–orbit Thomas precession term expected of an
object with spin (the quark or antiquark) moving in a centralpotential. Potential models have been
reasonably successful in describing most known mesons. Although cracks have recently appeared [187,
188] these point to the need for including physics effects that have hitherto been neglected such as
coupled channel effects [188].

In the next section we will give a brief introduction to quarkpotential models and attempt to
describe the differences between models. The subject is roughly thirty years old and a large literature on
the subject exists. It is impossible to cover all variants and we will almost totally neglect the considerable
work that brought us to where we are today. We apologise to allthose whose work we do not properly
cite and hope they understand. In the next sections we compare the predictions of some models with
experiment for thecc̄, bb̄ andcb̄ mesons and point out variations in predictions and how they arise from
the underlying model.

3.1 Potential models22

Quarkonium potential models typically take the form of a Schrödinger like equation:

[T + V ]Ψ = EΨ (3.24)

whereT represents the kinetic energy term andV the potential energy term. We lump into these
approaches the Bethe–Salpeter equation (e.g., Ref. [182, 184]) and quasi-potential approaches (e.g.,
Ref. [173]).

21Author: S. Godfrey
22Author: S. Godfrey
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Different approaches have been used for the kinetic energy term ranging from the non-relativistic
Schrödinger equation to relativistic kinetic energy [171,179,189]

T =
√
p2 +m2

Q +
√
p2 +m2

Q̄
(3.25)

in the spinless Salpeter equation.

3.1.1 The potential

The quark–antiquark potential is typically motivated by the properties expected from QCD [48,128–134]
and while there are differences, most recent potentials show strong similarities. It is worth pointing out
that in the early days of quarkonium spectroscopy this was not obvious and much effort was expended
in fitting different functional forms of the potential to theobserved quarkonium masses. In the end, the
shape of the potentials converged to a form that one might expect from the asymptotic limits of QCD
and which has been qualitatively verified by Lattice QCD calculations [135] of the expression of the
potentials obtained in the Wilson loop [128–134] and in the EFT [48] approach. This is a great success
of quarkonium phenomenology.

To derive the quarkonium potential we start with QCD where the gluons couple to quarks and
to each other. The quark–gluon interaction is similar to theelectron–photon interaction in quantum
electrodynamics with the Born term for theqq or qq̄ interaction at short distance being the familiar1/r
form. In contrast with QED the gluon self-coupling results in a slow decrease of the effective coupling
strength at short distance. In terms of the Fourier conjugate momentum the lowest order QCD corrections
to αs = g2

s/4π can be parametrized as

αs(Q
2) =

12π

(33 − 2nf ) ln(Q2/Λ2)
(3.26)

wherenf is the number of Fermion flavours with mass belowQ, andΛ ∼ ΛQCD is the characteristic
scale of QCD measured to be∼ 200 MeV. At short distances one-gluon-exchange leads to the Coulomb
like potential

V (r) = −4

3

αs(r)

r
(3.27)

for a qq̄ pair bound in a colour singlet where the factor of4/3 arises from the SU(3) colour factors. At
short distances one-gluon-exchange becomes weaker than a simple Coulomb interaction.

At momentum scales smaller thanΛQCD which corresponds to a distance of roughly 1 fm,αs

blows up and one-gluon-exchange is no longer a good representation of theqq̄ potential. The qualitative
picture is that the chromoelectric lines of force bunch together into aflux tubewhich leads to a distance-
independent force or a potential

V (r) = σr. (3.28)

This has been validated by Lattice QCD calculations. Phenomenologically, every recent model which
we will consider has foundσ ∼ 0.18 GeV2.

Numerous variations of the resulting Coulomb plus linear potential exist in the literature. Some of
the better known ones are the Cornell potential [170], Richardson’s potential [190], and the Buchmüller
Tye potential [191]. Overall, the spin-independent features of quarkonium spectroscopy are well de-
scribed by the potentials just described.

Let us also mention that heavy quark mass corrections to the (static) central (spin and velocity
independent) potential exist, although they have not yet been taken into account in potential models
applications so far. They correspond toV (1,0)

r , V (2,0)
r andV (1,1)

r in Section 2.3.2. Their expressions in
perturbation theory are known [48, 68]. Part ofV

(2,0)
r andV (1,1)

r was included in the phenomenological
application to the spectrum in Refs. [128,129,135,185].
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3.1.2 Spin-dependent potentials

Spin dependent multiplet splittings are an important test of the details of quarkonium models. In partic-
ular, the nature of spin dependent potentials are decided bythe Lorentz nature of the confining poten-
tials [129, 131, 138, 186]. While there is general consensusthat the short distance one-gluon-exchange
piece is Lorentz vector and the linear confining piece is Lorentz scalar this is by no means universal
and other possibilities are vigorously advocated. Gromes described how to obtain the spin-dependent
potentials given the Lorentz structure of the interaction [129] and one can also use the prescription given
in Berestetskij, Lifschitz and Pitaevskij [192]. Simply put, one can obtain the form of the spin dependent
interaction by Fourier transforming the on-shellqq̄ scattering amplitude:

M = [ū(p′f )Γu(p
′
i)] V (Q2) [ū(pf )Γu(pi)] (3.29)

where theΓ matrices give the Lorentz structure of the interaction andV (Q2) is the Fourier transform of
the spin-independent potential. For example, for a Lorentz-vector interactionΓ = γµ and for a Lorentz-
scalar interactionΓ = I. In principle other forms are possible with each giving riseto characteristic
spin-dependent interactions. These can be found by expanding the scattering amplitude to order(v/c)2

which corresponds to an expansion in inverse powers of quarkmasses. In the early years of quarko-
nium phenomenology they were all tried and it was found that the Lorentz-vector one-gluon-exchange
plus Lorentz scalar linear confining potential gave the bestagreement with experiment23. Note that the
form of the full QCD potential at order1/m2 [48, 128, 130–133] has now been obtained in the EFT
(cf. Section 2.3.2), and while the spin-dependent nonperturbative potential may correspond to a scalar
interaction in the language used above, the velocity-dependent potentials do not fit such a picture. The
effective kernel is thus not a simple scalar, precisely the dependence both on the momentum and on the
Lorentz structure is more involved than a pure convolution (i.e., only depending on the momentum trans-
fer) scalar structure [48, 134, 138, 186]. However, the spindependency is well approximated by a scalar
interaction for phenomenological applications. The QCD spin-dependent potentials are explicitly given
in Section 2.3.2. A complete calculation of the spin structure of the spectrum using the full expression
given in Section 2.3.2 does not yet exist.

To lowest order in(v/c)2 the Lorentz-vector one-gluon-exchange gives rise to termsfamiliar from
one-photon exchange in atomic physics. The colour contact interaction, which in the language of Sec-
tion 2.3.2 corresponds to takingV (1,1)

S2 (r) at leading order in perturbation theory,

Hcont
qq̄ =

32π

9

αs(r)

mqmq̄
Sq · Sq̄ δ3(r) (3.30)

gives rise to, for example theJ/ψ − ηc splitting. The colour tensor interaction, which in the language of

Section 2.3.2 corresponds to takingV (1,1)
S12

(r) at leading order in perturbation theory,

Hten
qq̄ =

4

3

αs(r)

mqmq̄

1

r3

[
3Sq · r Sq̄ · r

r2
− Sq · Sq̄

]
(3.31)

contributes to splitting ofL 6= 0 spin triplet multiplets like theχcJ andχbJ multiplets. The final spin
dependent term is the spin orbit interaction which has two contributions. The first piece arises from the
colour-magnetic one-gluon-exchange while the second piece is the Thomas precession term which is a
relativistic effect for an object with spin moving in a central potential

Hs.o.
qq̄ = H

s.o.(cm)
qq̄ +H

s.o.(tp)
qq̄ . (3.32)

The colour magnetic piece arising from one-gluon exchange is given by:

H
s.o.(cm)
qq̄ =

4

3

αs(r)

r3

(
Sq

mqmq̄
+

Sq̄
mqmq̄

+
Sq
m2
q

+
Sq̄
m2
q̄

)
· L (3.33)

23Although other forms are still advocated. See Ebertet al. [173,193].
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and the Thomas precession term is given by

H
s.o.(tp)
qq̄ = − 1

2r

∂Hconf
qq̄

∂r

(
Sq
m2
q

+
Sq̄
m2
q̄

)
· L (3.34)

which includes a contribution from both the short distance1/r piece and the linear Lorentz-scalar con-

fining potential. In the language of Section 2.3.2, both terms in (3.32) are obtained by takingV (1,1)
LS at

leading order in perturbation theory and using the Gromes relation forV (2,0)
LS . In these formulaeαs(r) is

the running coupling constant of QCD.

For mesons consisting of quarks with different flavours suchas theBc meson, charge conjugation
is no longer a good quantum number so states with different total spins but with the same total angular
momentum, like the3P1 −1 P1 and3D2 −1 D2 pairs (i. e.J = L for L ≥ 1) can mix via the spin–orbit
interaction or some other mechanism. Equations (3.33) and (3.34) can be rewritten to explicitly give the
antisymmetric spin–orbit mixing term:

H−
s.o. = +

1

4

(
4

3

αs

r3
− k

r

)(
1

m2
Q

− 1

m2
Q̄

)
S− · L (3.35)

whereS− = SQ − SQ̄. Consequently, the physical the physicalJ = L (J ≥ 1) states are linear
combinations of3LJ and1LJ states which we describe by the following mixing:

L′ = 1LJ cos θnL + 3LJ sin θnL

L = −1LJ sin θnL + 3LJ cos θnL (3.36)

whereL designates the relative angular momentum of theQQ̄ pair and the subscript is the total angular
momentum of theQQ̄ which is equal toL. Our notation implicitly impliesL − S coupling between
the quark spins and the relative angular momentum. In the limit in which only one quark mass is heavy,
mQ→∞, and the other one is light the states can be described by the total angular momentum of the
light quark which is subsequently coupled to the spin of the heavy quark. This limit gives rise to two
doublets, one withj = 1/2 and the otherj = 3/2 and corresponds to two physically independent mixing
anglesθ = − tan−1(

√
2) ≃ −54.7◦ andθ = tan−1(1/

√
2) ≃ 35.3◦ [194, 195]. Some authors prefer

to use thej − j basis [196] but we will follow theL − S eigenstates convention implied in the spin–
orbit terms given above and include theLS mixing as a perturbation. It is straightforward to transform
between theL− S basis and thej − j basis. We note that radiative transitions are particularlysensitive
to the3LL −1 LL mixing angle with the predictions from the different modelsgiving radically different
results. We also note that the definition of the mixing anglesare fraught with ambiguities. For example,
charge conjugatingcb̄ into bc̄ flips the sign of the angle and the phase convention depends onthe order
of couplingL, SQ andSQ̄ [195].

3.1.3 Relativistic corrections

The Hamiltonian with the spin-dependent terms as written above is actually inconsistent as it stands as
the terms more singular thanr−2 are illegal operators in the Schrödinger equation. This isresolved
by returning to the full scattering amplitude which has the effect of smearing the coordinater out over
distances of the order of the inverse quark mass and the strengths of the various potentials become de-
pendent on the momentum of the interacting quarks. The smearing of the potentials has the consequence
of taming the singularities. Alternatively, if one regardsthis Hamiltonian in the spirit of effective field
theories, these singular operators are subleading in any reasonable power counting, and hence they must
be treated as a perturbation. They may need regularization (smearing) at higher orders of perturbation
theory, which introduces a scale dependence. This scale dependence cancels against the one of higher
order NRQCD matching coefficients, see Section 2.3.2,
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From this starting point different authors [169–180] diverge in how they incorporate further rel-
ativistic corrections. For example, Godfrey and Isgur (GI)[171] use the full relativistic scattering am-
plitude as the starting point but do not take it literally andinstead parameterize the various relativistic
effects. The relativistic smearing is described by a quark form factor and momentum dependent cor-
rections are parametrized in a form that is in keeping with the generalities, if not the details, of theqq̄
scattering amplitude. The reasoning is that the scatteringamplitudes are for free Dirac Fermions while
quarks inside a hadron are strongly interacting and will have off-mass-shell behavior. In addition, in
field theory the Schrödinger equation arises in theqq̄ sector of Fock space by integrating over more
complex components of Fock space such as|qq̄g〉. This integration will introduce additional momentum
dependence in theqq̄ potential not reflected in eq. (3.29). There are other deficiencies that arise from
taking eq. (3.29) literally. Thus, GI use the full scattering amplitude as a framework on which to build a
semiquantitative model of relativistic effects. While they acknowledge that this procedure is not entirely
satisfactory they argue that it enables them to successfully describe all mesons, from the lightest to the
heaviest, in a unified framework.

In contrast, the more recent work by Ebert, Faustov and Galkin performs an expansion in powers of
velocity, including all relativistic corrections of orderv2/c2, including retardation effects and one-loop
radiative corrections [173, 193]. Ebertet al use a quasipotential approach in which the quasipotential
operator of the quark–antiquark interaction is constructed with the help of the off-mass-shell scattering
amplitude. The expression they derived to describe the spin-independent and spin-dependent corrections
are rather lengthy and we refer the reader to their papers [173, 193, 197]. They found that relativistic
effects are important, particularly in radiative transitions (which are outside the scope of this section).

While the GI calculation [171] assumed a short distance Lorentz-vector interaction and a Lorentz-
scalar confining potential Ebertet al [173, 193] employ a mixture of long-range vector and scalar linear
confining potentials. The effective long-range vector vertex includes an anomalous chromomagnetic
moment of the quark,κ. The fitted value forκ results in the vanishing of the long-range magnetic
contribution to the potential so that the long range confining potential is effectively Lorentz scalar.

In both cases taking the non-relativistic limit recovers eqns. (3.30–3.34). Despite differences in
the details of the various approaches most recent calculations are in fairly good agreement.

3.1.4 Charm mass corrections to the bottomonium mass spectrum24

For the calculation of the bottomonium mass spectrum it is necessary to take into account additional
corrections due to the non-zero mass of the charm quark [75, 95, 198, 199]. The one-loop correction to
the one-gluon exchange part of the staticQQ̄ potential in QCD due to the finitec quark mass is given
by [75,200]

∆Vmc(r) = −4

9

α2
s (µ)

πr
[ln(

√
a0mcr) + γE + E1(

√
a0mcr)] , E1(x) =

∫ ∞

x
e−t

dt

t
(3.37)

whereγE ∼= 0.5772 is the Euler constant anda0
∼= 5.2. Averaging of∆Vmc(r) over solutions of the

relativistic wave equation with the Cornell and Coulomb potentials yields the bottomonium mass shifts
presented in Table 3.4.

The Table 3.4 shows that for a fixed value ofαs the averaging with and without confining potential
substantially differ especially for the excited states. For growingn = nr + L+ 1 the values of〈∆Vmc〉
slowly decrease for Cornell potential whereas for the Coulomb potential with a fixed value ofαs they
fall rapidly. The bottomonium mass spectrum with the account of the finite charm mass corrections was
obtained in Refs. [95,173]

24Author: R. Faustov
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Table 3.4: Charm mass corrections to the bottomonium masses(in MeV).

State 1S 1P 2S 1D 2P 3S

〈∆Vmc〉αs=0.22
Cornell [200] −12 −9.3 −8.7 −7.6 −7.5 −7.2

〈∆Vmc〉αs=0.22
Coul −9.5 −4.2 −3.8 −2.3 −2.2 −2.1

〈∆Vmc〉αs=0.3
Coul −20.7 −9.7 −8.8 −5.5 −5.2 −4.9

〈∆Vmc〉Coul [95] −14.3 −22.1 −21.9 −49 −40.5
αs(µ) 0.277 0.437 0.452 0.733 0.698

3.1.5 Coupled-channel effects

An important ingredient that has not received the attentionit deserves but which has been brought to the
forefront by some spectacular recent failures of quark models are coupled channel effects. As the mass of
a quarkonium state approaches the threshold for decay to pairs of flavoured mesons, contributions from
virtual loops of the flavoured meson channels are expected tomake important contributions to masses
and other meson properties [169, 170, 201]. These coupled channel effects are expected to shift masses
from naive quark model predictions and to alter decay and production properties due to higher order
Fock-space components present in the wavefunctions. Thesemay account for the discrepancies between
quark model predictions and those of the recently discovered andX(3872) properties [187,188]. There
has been very little work on this important subject since theoriginal Cornell model [169, 170] and it is
an important topic that needs to be addressed [188]. For the charmonium example the present situation
is discussed in Section 3.3.

3.2 Comparison of models with experiment25

3.2.1 Bottomonium

We start with thebb̄ system as it has the most states observed of any of the heavy quarkonium systems
(see Table 3.5). This is due to the fact that threshold for theZweig allowed decay toBB lies above the
3S state. TheJPC = 1−− n3S1 states are copiously produced ine+e− annihilation and can decay via
E1 transitions to the13PJ and23PJ multiplets. The masses of theχb states provide valuable tests of the
spin-dependence of the various models. In particular, the splittings of the3PJ masses are determined by
the spin–orbit and tensor terms which are sensitive to the presence of vector and scalar interactions. The
Lorentz vector one-gluon-exchange plus Lorentz scalar linear confinement gives a good description of
the data (as long as no velocity dependent corrections are included [185,202].

A test of potential models is their ability to predict as yet unseen properties correctly. Most poten-
tial models predict that the lowest D-wave centre of gravityis around 10.16 GeV. Although details of the
multiplet splittings differ most models predict that the splittings are smaller than in the P-wave states.
Thus, the observation of these states represents an important test of potential models.

Recently the CLEO collaboration has observed the first D-wave bb̄ state in the cascadeΥ(3S)→
χ′
bγ→3DJγγ→χbγγγ→Υ(1S)γγγγ [203]. Due to expected transition probabilities (essentially reli-

able Clebsch factors) it is believed that the observed stateis theJ = 2, 13D2 state. This is an important
observation as it is able to distinguish among the various models [204]. Unfortunately this programme
at CLEO is completed and it is not clear when there will be another opportunity to search for more of the
missing states.

So far no spin singletbb̄ state has been observed. The mass splittings between the singlet and
triplet states is a key test of the applicability of perturbative quantum chromodynamics to thebb̄ system
and is a useful check of lattice QCD results. Theηb (n1S0) states can be produced via M1 radiative

25Authors:S. Godfrey
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Table 3.5: Predicted and observed masses ofbb̄ states.

State expt GI85 FU91 EQ94 GJ96 EFG03 ZVR95
[171] [175] [196] [179] [173] [180]

13S1 9460 9465 9459 9464 9460 9460 9460
11S0 9402 9413 9377 9408 9400 9410
13P2 9913 9897 9911 9886 9914 9913 9890
13P1 9893 9876 9893 9864 9893 9892 9870
13P0 9860 9847 9865 9834 9862 9863 9850
11P1 9882 9900 9873 9901 9901 9880
23S1 10023 10003 10015 10007 10016 10023 10020
21S0 9976 9992 9963 9991 9993 10000
13D3 10155 10172 10130 10162 10150
13D2 10162 10147 10166 10126 10158 10150
13D1 10138 10158 10120 10153 10140
11D2 10148 10167 10127 10158 10150
23P2 10269 10261 10269 10242 10270 10268 10280
23P1 10255 10246 10256 10224 10254 10255 10260
23P0 10232 10226 10234 10199 10229 10234 10240
21P1 10250 10261 10231 10259 10261 10270
33S1 10355 10354 10356 10339 10358 10355 10390
31S0 10336 10338 10298 10338 10328 10370

transitions from theΥ (n3S1) states, either unhindered or hindered, and via E1 radiative transitions from
the n1P1 states [205]. In the latter case, the decay chain would beΥ(3S)→hb(

1P1)ππ followed by
hb→ηbγ. The decay chainΥ(3S)→hb + π0→ηb + π0 + γ is also possible [206]. We note that there
does not appear to be a consensus in the literature on the relative importance of the twoΥ→hb hadronic
transitions. The decay chains proceeding via an intermediatehb would also be a means of observing the
hb state. A recent run by CLEO did not lead to reports of the observation of theηb state although the
limits straddles the range of predictions. There is also thepossibility that theηb can be observed by the
Tevatron and LHC experiments.

3.2.2 Charmonium

The discovery of theJ/ψ andψ′ states revolutionized our understanding of hadron spectrocopy by
demonstrating that they could be well described by potential models with the qualitative features ex-
pected from QCD (see Table 3.6).

The spin triplet3S1 states are produced copiously ine+e− annihilation and the3PJ states are
produced viaE1 radiative transitions. Theχ0 (3P0), χ1 (3P1) andχ2 (3P2) cc̄ states were first discov-
ered in radiative decays from the23S1 level (theψ(3685)). Theχ states themselves undergo radiative
transitions to theJ/ψ with measured partial widths in reasonable agreement with theoretical predictions
once relativistic effects are taken into account.

The singlet states have been far more elusive. The11S0 state has been known for some time,
seen in magnetic dipole (M1) transitions from both theJ/ψ andψ′. In contrast, a strong claim for
observation of the21S0 state has only occurred recently, first with its observationin the decayB→Kη′c,
η′c→KsK

+π− by the Belle Collaboration [207] and its subsequent observation by Belle in the mass
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spectrum recoiling againstJ/ψ in e+e− annihilation [208] and by CLEO [209] and Babar [210] inγγ
collisions. While the mass measurement by Belle was higher than expected by most quark potential
models, the current world average [245] is in reasonable agreement with theory.

One place the models disagree is in the mass of the11P1 state relative to the13PJ cog [206].
However, the1P1 state has yet to be confirmed. The13Pcog − 11P1 splitting is dependent on the Lorentz
structure of the interquark potentials and relativistic corrections so that thehc mass measurement is an
important test of perturbative QCD and more phenomenological quark potential models which have a
large variation of predictions. The decay chainψ′→hc + π0→ηc + π0 + γ has been discussed as a
possible mode of discovery of thehc [206]. Optimistically, one might hope that the current CLEOrun
will see evidence for thehc in this cascade.

The charmonium D-wave states are predicted to lie aboveDD threshold. Theψ(3770) is associ-
ated with the13D1 state. It’s leptonic width is larger than expected for a pureD state which is probably
due to mixing with the23S1 state induced by tensor mixing or coupled channel effects. The13D3, 13D2,
and11D2 are predicted to lie close in mass to theψ(3770). A JP = 2− state cannot decay to two0−

particles so the13D2 and1D2 cannot decay toDD and are expected to lie below theD∗D threshold.
They are therefore expected to be narrow with prominent transitions to lowercc̄ states. While there is
no such conservation law for the13D3 state, recent calculations indicate that it should also be relatively
narrow,O(MeV), due to the angular momentum barrier [187,188]. It is therefore possible that allcc̄ D-
wave states will be observed. Acc̄ state has recently been observed inB decay, theX(3872) [211]. It’s
mass is higher than expected by quark models which has led to considerable speculation about whether
it is a conventionalcc̄ state or aDD̄∗ molecule [212]. A number of tests have been proposed to sort this
out [187, 188] and experimental analysis is in progress. Observation of theηc2 andψ(2,3) states would
constrain spin-dependent interactions and provide insights into the importance of coupled channel effects
in the charm threshold region.

Table 3.6: Predicted and observed masses ofcc̄ states (in MeV).

State Expt GI85 EQ94 FU91 GJ96 EFG03 ZVR95
[171] [196] [175] [179] [173] [180]

13S1 3096.87 ± 0.04 3098 3097 3104 3097 3096 3100
11S0 2979.8 ± 1.8 2975 2980 2987 2979 2979 3000
13P2 3556.18 ± 0.13 3550 3507 3557 3557 3556 3540
13P1 3510.51 ± 0.12 3510 3486 3513 3511 3510 3500
13P0 3415.0 ± 0.8 3445 3436 3404 3415 3424 3440
11P1 3517 3493 3529 3526 3526 3510
23S1 3685.96 ± 0.09 3676 3686 3670 3686 3686 3730
21S0 3654 ± 10 3623 3608 3584 3618 3588 3670
13D3 3849 3884 3815 3830
13D2 3838 3871 3813 3820
13D1 3769.9 ± 2.5 3819 3840 3798 3800
11D2 3837 3872 3811 3820
23P2 3979 3972 4020
23P1 3953 3929 3990
23P0 3916 3854 3940
21P1 3956 3945 3990
33S1 4100 4088 4180
31S0 4064 3991 4130
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Fig. 3.9:Bc spectrum.

3.2.3 Bc mesons

TheBc mesons provide a unique window into heavy quark dynamics. Although they are intermediate to
the charmonium and bottomonium systems the properties ofBc mesons are a special case in quarkonium
spectroscopy as they are the only quarkonia consisting of heavy quarks with different flavours. Because
they carry flavour they cannot annihilate into gluons so are more stable and excitedBc states lying below
BD (andBD∗ or B∗D) threshold can only undergo radiative or hadronic transitions to the ground
state pseudoscalar which then decays weakly. This results in a rich spectroscopy of narrow radial and
orbital excitations (Fig. 3.9 and Table 3.7) [171, 173, 174,176, 179, 180, 182, 196, 213–216]. which are
more stable than their charmonium and bottomonium analogues. The hadronic transitions emitting two
charged pions should offer a good opportunity to reconstruct the excitedBc state.

The discovery of theBc meson by the Collider Detector at Fermilab (CDF) Collaboration [217]
in pp̄ collisions at

√
s = 1.8 TeV has demonstrated the possibility of the experimental study of this

system and has stimulated considerable interest inBc spectroscopy. Calculations ofBc cross-sections
at hadron colliders predict that large samples ofBc states should be produced at the Tevatron and at the
LHC opening up this new spectroscopy. It should therefore bepossible to start exploringcb̄ spectroscopy
at the Tevatron, producing1P and2S states and possibly even the D-wave states in sufficient numbers
to be observed. At the LHC, with its higher luminosity, the D-wavecb̄ states should be produced in a
sizable number so that the LHC should allow the study of the spectroscopy and decay ofBc mesons.

3.3 Coupling to open-charm channels26

3.3.1 Theoretical models

Near the threshold for open heavy flavour pair production, there are significant nonperturbative contri-
butions from light quark pairs to the masses, wavefunctionsand decay properties of physicalQQ̄ states.
QCD sum rules [218, 219] have been used to obtain some results[220–222] and lattice QCD calcula-
tions extended into the flavour-threshold region [223] should eventually give a firm basis for predictions.

26Authors: E. Eichten
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Table 3.7: PredictedBc masses and spin–orbit mixing angles (in MeV).

State GI85 EFG03 FU99 GKLT94 EQ94 GJ96 ZVR95 Lattice
[171] [173] [176] [174] [196] [179] [180]

13S1 6338 6332 6341 6317 6337 6308 6340 6321 ± 30
11S0 6271 6270 6286 6253 6264 6247 62606280 ± 30 ± 190

13P2 6768 6762 6772 6743 6747 6773 6760 6783 ± 30
1P ′

1 6750 6749 6760 6729 6730 6757 6740 6765 ± 30
1P1 6741 6734 6737 6717 6736 6738 6730 6743 ± 30
13P0 6706 6699 6701 6683 6700 6689 6680 6727 ± 30
θ1P 22.4◦ 20.4◦ 28.5◦ 17.1◦ ∼ 2◦ 25.6◦ 33.4 ± 1.5◦

23S1 6887 6881 6914 6902 6899 6886 6900 6990 ± 80
21S0 6855 6835 6882 6867 6856 6853 6850 6960 ± 80

23P2 7164 7156 7134 7153 7160
2P ′

1 7150 7145 7124 7135 7150
2P1 7145 7126 7113 7142 7140
23P0 7122 7091 7088 7108 7100
θ2P 18.9◦ 23.0◦ 21.8◦ 17◦

33S1 7272 7235 7280 7280
31S0 7250 7193 7244 7240
13D3 7045 7081 7032 7007 7005 7040
1D′

2 7036 7079 7028 7016 7012 7030
1D2 7041 7077 7028 7001 7009 7020
13D1 7028 7072 7019 7008 7012 7010
θ1D 44.5◦ -35.9◦ 34.4◦

13F4 7271 7250
1F ′

3 7266 7250
1F3 7276 7240
13F2 7269 7240
θ1F 41.4◦

However, at present a more phenomenological approach is required to provide a detailed description of
these effects.

The effects of light quark pairs near open heavy flavour threshold can be described by coupling
the potential modelQQ̄ states to nearby physical multibody states. In this threshold picture, the strong
interactions are broken into sectors defined by the number ofvalence quarks. This separation is remi-
niscent of the Tamm–Dancoff approximation [224]. The dynamics of theQQ̄ states (with no valence
light quarks,q) is described by the interactionH0. Nonrelativistic potential models are normally used to
determine the properties of the resulting bound states in this sector. In this framework excitations of the
gluonic degrees of freedom would also be contained the spectrum ofH0.

The two meson sectorQq̄ + qQ̄ are described by the HamiltonianH2. In the simplest picture,H2

is assumed to be described the low-lying spectrum of two freeheavy-light mesons. The physical situation
is more complex. At large separation between two mesons the interactions are dominatedt-channel pion
exchanges. For states very near threshold such as the X(3872) charmonium state such pion exchange in
attractive channels might have significant effects on properties of the physical states [225]. At somewhat
shorter distances, more complicated interactions exist and new bound states might arise, e.g., molecular
states [226,227].
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Our command of quantum chromodynamics is inadequate to derive a realistic description of the
interactions,HI , that communicate between theQQ̄ andQq̄+qQ̄ sectors. Two simple phenomenological
models have been used to describe this coupling: the Cornellcoupled-channel model (CCC) and the
vacuum quark pair creation model (QPC).

The Cornell coupled-channel model for light quark pair creation [169] generalizes the CornellQQ̄
model [170] without introducing new parameters, writing the interaction Hamiltonian as

HI =
3

8

∑

a

∫
: ρa(r)V (r − r′)ρa(r

′) : d3r d3r′ , (3.38)

whereV is the quarkonium potential andρa(r) =
1

2
ψ†(r)λaψ(r) is the colour current density, with

ψ the quark field operator andλa the octet of SU(3) matrices. To generate the relevant interactions,
ψ is expanded in creation and annihilation operators (for up,down, strange and heavy quarks), but
transitions from two mesons to three mesons and all transitions that violate the Zweig rule are omitted.
It is a good approximation to neglect all effects of the Coulomb piece of the potential in Eq. (3.38).
It was shown that this simple model coupling charmonium to charmed-meson decay channels gives a
qualitative understanding of the structures observed above threshold while maintaining the successes of
the single-channelcc̄ analysis below threshold [170].

The characteristic of the CCC model is the use of the time component of a long-range vector
interaction between the heavy quarks colour densities rather than the Lorentz scalar confining interaction.

The vacuum quark pair creation model (QPC). This model was developed by Le Yaouancet.
al. [228–230] based on an earlier idea of Micu [231] that the light quark pair is produced from the
vacuum with vacuum quantum numbersJPC = 0++. The model is also referred to as the3P0 model.
The form of the interaction Hamiltonian is

HI = γ

∫
ψ̄ψ(r)d3r (3.39)

The constantγ is a free parameter of the model. This model has been applied to the light meson states
[232,233]. It was first applied above charm threshold by the Orsay group [234].

The main theoretical weakness of the QPC model is its failureto reproduce the vanishing of the
pair production amplitudes for a staticQQ̄ source at zero spatial separation. The flux tube breaking
model [235,236] somewhat addresses this weakness. It has the same basic interaction as the QPC model
(Eq. 3.39) but the integration is only over a region near a ”string” between theQ andQ̄ positions. This
region is defined by a upper bound on the shortest distance between the pair creation point and the string.
Detailed applications of QPC models to the quarkonium systems are presently under investigation [237].

There have been attempts to compare the various models for quark pair creation [185, 238, 239].
At present the most studied system is the open charm threshold region and we will focus on that system
below. However, the same threshold effects are present in the bb̄ states nearBB threshold andcb̄ states
nearDB threshold. A detailed comparison of the scaling behaviour between different heavy quark
systems would provide valuable insight into the correct form for the coupling to light-quark pairs.

3.3.2 Mass shifts

The massω of the quarkonium stateψ in the presence of coupling to decay channels is given by:

[H0 + H2 + HI ]ψ = ωψ. (3.40)

Above thresholdω has both a real (mass) and imaginary part (width).

The basic coupled-channel interactionHI (Eq. (3.38) or Eq. (3.39)) appearing in Eq. (3.40) is
independent of the heavy quarks spin, but the hyperfine splittings ofD andD∗, Ds andD∗

s , induce
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Table 3.8: Charmonium spectrum, including the influence of open-charm channels. All masses are in MeV. The
penultimate column holds an estimate of the spin splitting due to tensor and spin–orbit forces in a single-channel
potential model. The last column gives the spin splitting induced by communication with open-charm states, for
an initially unsplit multiplet. From [188].

State Mass Centroid
Splitting

(Potential)
Splitting
(Induced)

11S0

13S1

2 979.9
3 096.9

3 067.6
−90.5
+30.2

+2.8
−0.9

13P0

13P1

11P1

13P2

3 415.3
3 510.5
3 525.3
3 556.2

3 525.3

−114.9
−11.6
+1.5
+31.9

+5.9
−2.0
+0.5
−0.3

21S0

23S1

3 637.7
3 686.0

3 673.9
−50.4
+16.8

+15.7
−5.2

13D1

13D2

11D2

13D3

3 769.9
3 830.6
3 838.0
3 868.3

(3 815)

−40
0
0

+20

−39.9
−2.7
+4.2
+19.0

23P0

23P1

21P1

23P2

3 931.9
4 007.5
3 968.0
3 966.5

3 968

−90
−8
0

+25

+10
+28.4
−11.9
−33.1

spin-dependent forces that affect the charmonium states. These spin-dependent forces give rise to S–D
mixing that contributes to theψ(3770) electronic width, for example, and are a source of additional spin
splitting.

The masses resulting from a full coupled channel analysis [188] in the CCC model are shown in
the second column of Table 3.8. The parameters of the potential model sector,H0, must be readjusted to
fit the physical masses,ω, to the observed experimental values. To compute the induced splittings, the
bare centroid of the spin-triplet states is adjusted so thatthe physical centroid, after inclusion of coupled-
channel effects, matches the value in the middle column of Table 3.8. The centroid for the 1D masses
is determined by pegging the observed mass of the 13D1 ψ(3770). For the 2P levels, the bare centroid
is adjusted so that the 21P1 level lies at the centroid of a potential-model calculation. The assumed spin
splittings in the single-channel potential model are shownin the penultimate column and the induced
coupled channel spin splittings for initially unsplit multiplets are presented in the rightmost column of
Table 3.8. The shifts induced in the low-lying 1S and 1P levels are small. For the other known states in
the 2S and 1D families, coupled-channel effects are noticeable and interesting.

In a simple potential picture, theηc(2S) level lies below theψ(2S) by the hyperfine splitting given
by

M(ψ(2S)) −M(ηc(2S)) =
|ψ(2S)(0)|2
|ψ(0)|2 [M(ψ) −M(ηc)] . (3.41)

Using the observed 1S hyperfine splitting,M(ψ) −M(ηc) = 117 MeV, one would findM(ψ(2S)) −
M(ηc(2S)) = 67 MeV, which is larger than the observed48.3 ± 4.4 MeV, as is typical for potential-
model calculations.
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One important result of coupling the open-charm threshold is that theψ ′ receives a downward
shift of the nearbyDD, that theη′c does not get, as this state does not couple toDD. This is implicitly
present in the early Cornell papers [170], but the shift of spin singlets states was not explicitly calculated.
The effect was first mentioned by Martin and Richard [240, 241], who calculated the size of the effect.
Recent papers using the CCC model interaction [188,242] have confirmed this behaviour. In fact, the 2S
induced shifts in Table 3.8 drawψ′ andη′c closer by20.9 MeV, substantially improving the agreement
between theory and experiment. This suggests that theψ′–η′c splitting reflects the influence of virtual
decay channels.

If the observedX(3872) is a charmonium state, it is most naturally interpreted as the 13D2 or 13D3

level [187, 188]; if not, both these states remain to be observed and the dynamics ofH2 is significantly
richer. As shown in Table 3.8, the coupling to open-charm channels increases the 13D2–13D1 splitting
by about20 MeV, but does not fully account for the observed102 MeV separation betweenX(3872)
andψ(3770). However the position of the3−− 13D3 level turns out to be very close to3872 MeV.

3.3.3 Mixing and physical state properties

The physical states are not pure potential-model eigenstates but include components with two virtual
(real above threshold) open flavour meson states. Separating the physical state (ψ) intoQQ̄ (ψ0) and two
meson components (ψ2), the resulting separationH by sector leads to an effective Hamiltonian for the
ψ0 sector given by: [

H0 + H†
I

1

ω −H2 + iǫ
HI

]
ψ0 = ωψ0 (3.42)

Table 3.9: Charmonium content of states near flavour threshold. The wave functionψ takes account of mixing
induced through open charm–anticharm channels. Unmixed potential-model eigenstates are denoted by|n2s+1LJ〉.
The coefficient of the dominant eigenstate is chosen real andpositive. The 1S, 1P, 2S, and 13D1 states are evaluated
at their physical masses. The remaining 1D states are considered at the masses in Table 3.8.Zcc represents the
(cc̄) probability fraction of each state.

State Major Components Zcc̄
ψ(11S0) 0.986|11S0〉 − 0.042|21S0〉 − 0.008|31S0〉 0.974
ψ(13S1) 0.983|13S1〉 − 0.050|23S1〉 − 0.009|33S1〉 0.968

ψ(13P0) 0.919|13P0〉 − 0.067|23P0〉 − 0.014|33P0〉 0.850
ψ(13P1) 0.914|13P1〉 − 0.075|23P1〉 − 0.015|33P1〉 0.841
ψ(11P1) 0.918|11P1〉 − 0.077|21P1〉 − 0.015|31P1〉 0.845
ψ(13P2) 0.920|13P2〉 − 0.080|23P2〉 − 0.015|33P2〉 − 0.002|13F2〉 0.854

ψ(21S0) 0.087|11S0〉 + 0.883|21S0〉 − 0.060|31S0〉 − 0.016|41S0〉 0.791
ψ(23S1) 0.103|13S1〉 + 0.838|23S1〉 − 0.085|33S1〉 − 0.017|43S1〉 0.723

+0.040|13D1〉 − 0.008|23D1〉
ψ(13D1) 0.694|13D1〉 + 0.097 e0.935iπ |23D1〉 + 0.008 e−0.668iπ |33D1〉 0.520

+0.013 e0.742iπ |13S1〉 + 0.168 e0.805iπ |23S1〉 + 0.014 e0.866iπ |33S1〉
+0.012 e−0.229iπ |43S1〉

ψ(13D2) 0.754|13D2〉 − 0.084|23D2〉 − 0.011|33D2〉 0.576
ψ(11D2) 0.770|11D2〉 − 0.083|21D2〉 − 0.012|31D2〉 0.600
ψ(13D3) 0.812|13D3〉 + 0.086 e0.990iπ |23D3〉 + 0.013 e−0.969iπ |33D3〉 0.667

+0.007 e0.980iπ |43D3〉 + 0.016 e0.848iπ |13G3〉

Solving Eq. (3.42) in theQQ̄ sector determines the mixing between the potential model states and
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coupling to decay channels. This approach has been described in detail [170] for the CCC model with
HI (Eq. 3.38). An effective Hamiltonian approach has also beenconsidered in the QPC model [201].

The results for the low-lyingcc̄ states is shown in Table 3.9 for the CCC model. The overall
probability for the physical state to be in thecc̄ sector, denotedZcc̄, decreases as open charm threshold is
approached. For states above threshold the mixing coefficients become complex. These mixing effects
contribute to observed S–D mixing as well as modifying radiative transition rates [243, 244]. A more
detailed discussion of these effects appear in the Decay section.

3.3.4 Zweig-allowed strong decays

Once the mass of a resonance is given, the coupled-channel formalism yields reasonable predictions
for the other resonance properties. Eichten, Lane and Quigg[188] have estimated the strong decay
rates within the CCC model for all the charmonium levels thatpopulate the threshold region between
2MD and2MD∗ . For 13D1 stateψ′′(3770), which lies some40Mev above charm threshold, they obtain
Γ(ψ′′(3770) → DD) = 20.1 MeV, to be compared with the PDG’s fitted value of23.6 ± 2.7 MeV
[245]. The natural-parity 13D3 state can decay intoDD, but its F-wave decay is suppressed by the
centrifugal barrier factor. The partial width is only0.77 MeV at a mass of3868 MeV and the 13D3 may
be discovered as a narrowDD resonance up to a mass of about4000 MeV.

Barnes and Godfrey [187] have estimated the decays of several of the charmonium states into
open charm, using the3P0 model. Their estimates of open-charm partial decay widths into DD are
42.8 MeV for the 13D1 state and3.6 MeV for a 13D3 state at a mass of3868 MeV. They did not carry
out a coupled-channel analysis which makes a direct comparison of models more difficult. Detailed
comparisons (e.g., Ackleh, Barnes and Swanson [238]) between various light quark pair creation models
are highly desirable.

Estimates for decay widths of the1−− charmonium states above open-charm threshold in the
3P0 model have recently been reported by Barnes [237]. The comparison with experimentally extracted
values is shown in Table 3.10. Along with the current PDG values for the total widths ofcc̄ resonances,
a reanalysis by Seth [246] of the existing experimental datais also shown in Table 3.10.

The resonance decay widths are determined from fitting measurements of∆R in e+e− annihila-
tion to a model for each resonance including radiative corrections. This whole procedure is complicated
by its dependence on the resonance shape, i.e., the expectednon Breit–Wigner nature of the partial widths
for radially excited resonances. It may be more useful for theorists to produce a model of∆R for direct
comparison with data. Greater resolving power between models is possible if the contribution from each
individual open heavy flavour final state is separately reported.

For the CCC model, the structure of∆R(bb̄) in the threshold region was studied in the original
Cornell group works [169, 170] and later extended to the∆R(bb̄) in the threshold region [247]. The
structure of∆R(cc̄) and ∆R(bb̄) has also been studied in QPC models [248]. There are also some
attempts to compare the different models [249,250].

Experiments can also search for additional narrow charmonium states in neutral combinations of
charmed mesons and anticharmed mesons. The most likely candidates correspond to the13D3, 23P2, and
13F4 levels [188, 242, 251]. These detailed analyses of thecc̄ system can be extended to thebb̄ system,
where it may be possible to see discrete threshold-region states in direct hadronic production.

3.4 QQq states and molecules27

3.4.1 Doubly charmed baryons

The earliest studies onQQq baryons were based on the flavour group SU(4)F, as an extension of SU(3))F.
After the discovery of hidden and naked charm, some classic papers were written on hadrons with charm,
including a section on(ccq) states [252,253].

27Author: J. M. Richard
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Table 3.10: Open-charm strong decay modes of the1−− states. Experimental widths from the PDG [245] and a
recent analysis of Seth [246]. The theoretical widths usingthe QPC model [237] and the CCC model [188] are
shown. For theψ(4159) some S wave plus P wave charmed meson two body channels are also open.

State Mode ΓEXP (MeV) ΓTHEORY (MeV)
PDG Seth QPC Model CCC model

ψ(3770) (3D1) DD 42.8 20.1
total 23.6 ± 2.7 42.8 20.1

ψ(4040) (3 3S1) DD 0.1
DD∗ 33.
DsDs 8.
D∗D∗ 33.
total 52 ± 10 88 ± 5 74.

ψ(4159) (2 3D1) DD 16.
DD∗ 0.4
D∗D∗ 35.
DsDs 8.
total 78 ± 20 107 ± 8 73.

ψ(4415) (4 3S1) DD 0.4
DD∗ 2.3
D∗D∗ 16.
DsDs 1.3
DsD∗

s 2.6
D∗
sD

∗
s 0.7

total 43 ± 15 119 ± 15

Now, our ideas on flavour symmetry have evolved. The conventional SU(n)F approach, with
elegant mass formulae, is replaced byflavour independence. The potential between two quarks is gen-
erated by their colour, and flavour enters only in recoil corrections through the quark mass, mainly for
describing the fine and hyperfine structure.

Flavour independence was the main guide line of the detailedstudies of(QQq) baryons made in
the 80’s and later [254, 255, 258–263]: the dynamics tuned for mesons, light baryons and single-charm
baryons was tentatively extrapolated to the(QQq) sector. More papers came after the recent findings at
SELEX (cf. the experimental part of this chapter), for instance Ref. [264], where a link is made with
double-charm exotics, to be discussed shortly.

To study confinement,(QQq) baryons are perhaps the most interesting of ordinary hadrons, as
they combine two extreme regimes in a single bag:

1. the slow relative motion of two heavy quarks, as in charmonium,

2. the fast motion of a light quark. Remember that the electron moves faster in hydrogen than in
positronium. Similarly, a light quark is likely more relativistic in heavy-light hadrons than in light
mesons.
In the(QQq) wave function, the averageQQ separation is smaller than theQq one. This leads to

envisage approximations. One of them consists of replacingthe full three-body calculation by a two-step
procedure where one first calculates theQQ mass, by solving a two-body problem, and then estimates
theQQ − q mass by solving another two-body problem. The second step israther safe. The finite-
size corrections are small. For instance, they cancel out exactly for the harmonic oscillator. As for the
first step, one should be aware that theQQ potential iseffective, since it contains both the directQQ
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interaction and a contribution from the light quark. For instance, in the harmonic oscillator model, 1/3 of
theQQ interaction comes from the light quark, and neglecting thisterm results into an underestimation
of energies and spacings by a factor

√
3/2. Another limitation to the quark–diquark picture, is that the

diquark is not frozen. The first excitations ofQQq occur inside the diquark. So one should recalculate
the properties of the diquark for each level.

Another way to take advantage of the large mass ratioM/m is to use the Born–Oppenheimer
approximation, as done, e.g., by Fleck and Richard [254]. For a givenQQ separationr12, the two-centre
problem is solved for the light quark, with proper reduced mass. The ground-state energyE0(r12),
supplemented by the directQQ interaction, provides the adiabatic potentialVQQ. Solving the 2-body
problem with this potential gives the first levels. The adiabatic potential built out of the second “elec-
tronic” energyE1(r12) leads to a second series of levels. This is very similar to thespectroscopy of H+2
in atomic physics.

Within explicit potential models, the Born–Oppenheimer approximation can be checked against an
accurate solution of the 3-body problem, using for instancea systematic hyperspherical expansion. The
approximation is excellent for(bbq) and(ccq), with q = u, d or s, or even for(ssu) or (ssd) [254,265].

In Ref. [254], (ccq) masses were estimated from a specific variant of the bag model, already
used for charmed mesons. The results turn out to be rather sensitive to details such as centre-of-mass
corrections, value of the bag constant, etc. Other bag-model calculations have been performed [266].

Potential models, on the other hand, tend to give very stableresults, when the parameters are
varied while maintaining a reasonable fit of lighter hadrons. One typically obtains:

– a ground-state near or slightly above3.6 GeV for the(ccu) or (ccd) ground state,

– a hyperfine splitting of about80 MeV between the spin 3/2 and spin 1/2 states,

– the first orbital excitation about300 MeV above the ground-state,

– the first(ccs) state near3.7 GeV

Note that models tuned to(cqq) or lighter baryons might underestimate the short-rangeQQ at-
traction. If models are adjusted to(cc̄) spectroscopy, there is an ambiguity on how to translate it tocc.
The usual recipe stating that

VQQ =
1

2
VQQ̄ , (3.43)

implies pairwise forces mediated by colour-octet exchanges. Small, non-confining, colour-singlet ex-
changes, as well as three-body forces might complicate the issue.

Most existing calculations are of rather exploratory nature, since made when double charm was
considered as science fiction, or far future. Meanwhile, theart of QCD has made significant progress.
One could retain from simple potential models that the Born–Oppenheimer approximation provides an
adequate framework. The effectiveQQ potential could be estimated from relativistic models or from
lattice calculations, similar to those of theQQ̄ potential or the effectiveQQ potential in exotic(QQq̄q̄)
mesons, to be discussed shortly. It is hoped that the new experimental results will stimulate such calcu-
lations.

The literature already contains approaches somewhat more ambitious than simple bag or non-
relativistic potential models: relativistic models [267], QCD sum rules [258], string picture [261], etc.
The lattice QCD approach is presented in Section 2.2.3 and the EFT one is presented in Section 2.4

The appearance of theD∗
s,J state not very far above the ground stateDs of meson with flavour

content(cs̄) has stimulated several studies on the dynamics of light quarks in a static colour field. In
Ref. [268], it is suggested that the same phenomenon will occur for double-charm baryons. On this
respect the doubling of states in the preliminary data by SELEX is of particular interest.
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3.4.2 Exotic mesons with double charm

The physics of multiquarks, though it benefits from a dramatic revival since the tentative discovery of a
light pentaquark, remains penalized by the confusion aboutbaryonium states in the late 70’s and early
80’s. This is actually a difficult field, where speculations about confinement mechanisms should be
combined with delicate few-body calculations.

TheH dibaryon [269], and the heavy pentaquarkP proposed independently by Lipkin [270] and
the Grenoble group [271], owe their tentative stability to chromomagnetic forces, schematically [253]

Hcm = −C
∑

i<j

σi · σj λ̃i · λ̃j
mimj

δ(3)(rij) , (3.44)

or its bag model analogue [272], that describes the observedhyperfine splittings such as∆−N or J/Ψ−
ηc. The astute observation by Jaffe [269] is that this operatorprovides a binding(ssuudd) − 2(sud) ∼
−150MeV to theH = (ssuudd) dibaryon with spin and isospinJ = I = 0. This estimate, however,
relies on SU(3)F flavour symmetry and〈δ(3)(rij)〉 being independent of(i, j) pair and borrowed from
the wave function of ordinary baryons. Relaxing these hypotheses, and introducing kinetic energy and
spin-independent forces in the 6-body Hamiltonian, and a realistic estimate of short-range correlations,
usually spoils the stability ofH [273–275]. The existence ofH is nowadays controversial. It has been
searched in many experiments, without success so far. For instance, the doubly-strange hypernucleus

Λ
6
ΛHe is not observed to decay intoH + α [276].

If the calculation made for theH is repeated in the limit wherem(Q)→∞, the same binding
(Q̄qqqq)− (Q̄q)− (qqq) ∼ −150MeV is obtained for the pentaquark(Q̄qqqq), qqqq being in a SU(3)F
triplet [270, 271]. All corrections, again, tend to weaken this binding [275, 277] so it is not completely
sure that the actual pentaquark is stable. See, also, [278].

After the tentative discovery of a light pentaquark state atabout 1.53 GeV, with flavour content
(uudds̄), and possible partners with strangenessS = −2, many authors have revisited the possibility of
stable or metastable pentaquarks with heavy antiflavour. See, for instance Refs. [279–284]. In the light
pentaquark, the binding is achieved by the chiral dynamics of light quarks. A forerunner in this field
was Stancu [285], who proposed positive-parity pentaquarks with a heavy antiquark in a simple potential
model where the chromomagnetic interaction is replaced by ashort-range spin-flavour interaction which
looks like the exchange of Goldstone bosons between quarks.

In short, there are still many open issues for theH dibaryon, the pentaquarks, as well as for
possible light scalar mesons made out of two quarks and two antiquarks. This is, however, more of the
domain of light-quark spectroscopy.

More than twenty years ago, another mechanism for multiquark binding was proposed. It was
pointed out that current confining potentials applied to a(QQq̄q̄) system put its mass below the disso-
ciation threshold into(Qq̄) + (Qq̄), provided the mass ratiom(Q)/m(q) is large enough [286]. This
chromoelectricbinding was studied by several authors, in the context of flavour-independent poten-
tials [264, 287–295] [296, 297] (see, also, [298, 299]), with a remarkable convergence towards the same
conclusion. This somewhat contrasts with the confusion in other sectors of multiquark spectroscopy.

Let us consider, indeed, the limit of a purely flavour-independent potentialV for (QQq̄q̄). The
situation becomes similar to that of exotic four-body molecules(M+,M+,m−,m−), all of them using
the very same Coulomb potential whenM andm are varied. The hydrogen molecule withM ≫ m
is much more stable than the positronium molecule Ps2 with M = m. If one decomposes the 4-body
Hamiltonian as

H4 =

[
M−1 +m−1

4

(
p2

1 + p2
2 + p2

3 + p2
4

)
+ V

]
+
M−1 −m−1

4

(
p2

1 + p2
2 − p2

3 − p2
4

)
, (3.45)

the first term, even under charge conjugation, corresponds to a rescaled equal-mass system withthe same
thresholdasH4. The second term, which breaks charge conjugation, improves the energy ofH4 (one
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can applies the variational principle toH4 using the symmetric ground state of the first term as a trial
wave function). In the molecular case, the second term changes the marginally bound Ps2 (or rescaled
copy) into the deeply bound H2. In quark models, an unbound(qqq̄q̄) becomes a stable(QQq̄q̄).

The effectiveQQ potential has been estimated by Rosina et al. [294] in the framework of empir-
ical potential models, and by Mihaly et al. [296] and Michaelet al. (UKQCD) [297], who used lattice
simulations of QCD. The question is obviously: is thec quark heavy enough to make(ccq̄q̄) bound when
q = u or d? At this point, the answer is usually negative, most authorsstating thatb is required to bind
(QQq̄q̄) below its(Qq̄) + (Qq̄) threshold.

There is, however, another mechanism: pion-exchange or, more generally, nuclear-like forces
between hadrons containing light quarks or antiquarks. This effect was studied by several authors, in
particular Törnqvist [300, 301], Manohar and Wise [302], and Ericson and Karl [303]. In particular a
D andD∗ can exchange a pion, this inducing an attractive potential.It is weaker than in the nucleon–
nucleon case, but what matters for a potentialgV (r) to bind, is the productgm of the strengthg and
reduced massm. It is found that(DD∗) is close to be bound, while binding is better established for
(BB∗). The result depends on how sharply the long-range potentialis empirically regularised at short
distances.

A lattice calculation such as those of Refs. [296,297] contains in principle all effects. In practice,
the pion is unphysically heavy such that long-range forces are perhaps not entirely included. Explicit
quark models such as [294] make specific assumptions about interquark forces, but do not account for
pion exchange. In our opinion, a proper combination of long-and short-range forces should lead to bind
(DD∗), since each component is almost sufficient by itself. This ispresently under active study.

There is a further possibility to build exotic, multicharmed systems. If the interaction between
two charmed mesons is slightly too weak to lead to a bound state (this is presumably the case for(DD),
since pion exchange does not contribute here), it is likely that the very same meson–meson interaction
binds three or more mesons. This is known as the phenomenon of“Boromean” binding.

For instance, in atomic physics, neither two3He atoms nor a3He atom and a4He atom can
form a binary molecule, even at vanishing temperature, but it is found that3He3He4He is bound [304].
Similarly, in nuclear physics, the isotope6He is stable against evaporating two neutrons, or any other
dissociation process, while5He is unstable. In a 3-body picture, this means that(α, n, n) is stable, while
neither(α, n) nor (n, n) have a stable bound state. In short, binding three constituents is easier than two.

3.5 Quarkonium hybrids28

The existence of gluonic excitations in the hadron spectrumis one of the most important unanswered
questions in hadron physics. Hybrid mesons form one such class which consists of aqq̄ with an excited
gluonic degree of freedom. Their spectroscopy are discussed extensively in this Chapter. Recent ob-
servations of charmonium states in exclusiveB-meson decays [207,305–309] suggest that charmonium
hybrid mesons (ψg) [310] with mass∼4 GeV may be produced inB-decay viacc̄ colour octet oper-
ators [311, 312]. Some of these states are likely to be narrowwith clean signatures toJ/ψπ+π− and
J/ψγ final states. The unambiguous discovery of such a state wouldherald an important breakthrough
in hadronic physics, and indeed, in our understanding of Quantum Chromodynamics, the theory of the
strong interactions. In this section we give a brief overview of charmonium hybrid properties and and
suggest search strategies for charmonium hybrids at existing B-factories [313].

3.5.1 Spectroscopy

Lattice gauge theory and hadron models predict a rich spectroscopy of charmonium hybrid mesons [12,
23, 235, 310, 314–319]. For example, the flux tube model predicts 8 low lying hybrid states in the 4 to

28Author: S. Godfrey
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4.2 GeV mass region withJPC = 0±∓, 1±∓, 2±∓, and1±±. Of these states the0+−, 1−+, and2+−

have exotic quantum numbers; quantum numbers not consistent with the constituent quark model. The
flux-tube model predictsM(ψg) ≃ 4− 4.2 GeV [314,315]; lattice QCD predictions for theJPC = 1−+

state range from 4.04 GeV to 4.4 GeV [23, 317] with a recent quenched lattice QCD calculation [12]
findingM(1−+) = 4.428 ± 0.041 GeV. These results have the1−+ lying in the vicinity of theD∗∗D
threshold of 4.287 GeV. There is the tantalising possibility that the1−+ could lie belowD∗∗D threshold
and therefore be relatively narrow.

3.5.2 Decays

There are three important decay modes for charmonium hybrids: (i) the Zweig allowed fall-apart mode
ψg→D(∗,∗∗)D̄(∗,∗∗) [320–322]; (ii) the cascade to conventionalcc̄ states, of the typeψg→(cc̄)(gg)→(cc̄)
+(light hadrons) andψg→(cc̄)+γ [323]; (iii) decays to light hadrons via intermediate gluons,ψg→(ng)
→ light hadrons, analogous toJ/ψ→light hadrons andηc→light hadrons. Each mode plays a unique
role.ψg hybrids with exoticJPC quantum numbers offer the most unambiguous signal since they do not
mix with conventional quarkonia.

3.5.2.1 (i) Decays toD(∗)D(∗): In addition toJPC selection rules (for example,2−+ and 2−−

decay toDD̄ are forbidden by parity and the exotic hybridψg(0+−) decays toD(∗)D(∗) final states are
forbidden byP and/orC conservation) a general feature of most models of hybrid meson decay is that
decays to two mesons with the same spatial wave function are suppressed [324]. The dominant coupling
of charmonium hybrids is to excited states, in particularD(∗)(L = 0) + D∗∗(L = 1) states for which
the threshold is∼ 4.3 GeV. This is at the kinematic limit for most mass predictionsso that decays into
the preferredD(∗)D∗∗ states are expected to be significantly suppressed if not outright kinematically
forbidden. A refined version of the Isgur Kokoski Paton flux model [320] predicts partial widths of 0.3–
1.5 MeV depending on theJPC of the hybrid [322]. These widths are quite narrow for charmonia of
such high mass. If the hybrid masses are aboveD∗∗ threshold then the total widths increase to 4–40 MeV
for 4.4 GeV charmonium hybrids which are still relatively narrow for hadron states of such high mass.
The challenge is to identify decay modes that can be reconstructed by experiment.

3.5.2.2 (ii) Decays to(cc̄) + (light hadrons): The ψg→(cc̄) + (light hadrons) mode offers the
cleanest signature forψg observation if its branching ratio is large enough. In addition, a small total
width also offers the possibility that the radiative branching ratios intoJ/ψ, ηc, χcJ , andhc could be
significant and offer a clean signal for the detection of these states.

For masses belowDD∗∗ threshold the cascade decaysψg→(ψ, ηc, . . .) + (gg) and annihilation
decaysψg(C = +)→(gg)→light hadrons will dominate. If the masses of exoticJPC states are above
DD∗∗ threshold their widths are also expected to be relatively narrow for states of such high mass, in
which case cascades to conventionalcc̄ states transitions of the typeψg→(ψ, ψ′)+(light hadrons) should
have significant branching ratios [323] making them important signals to look for inψg searches. In the
Kuang–Yan formalism [325] the matrix elements for hadronictransitions between conventional quarko-
nia are related to hybrid-conventional quarkonium hadronic transitions. A not unreasonable assumption
is that the partial widths for the decaysψg(1−+)→ηc+(ππ, η, η′) andψg(0+−, 2+−)→J/ψ+(ππ, η, η′)
will be similar in magnitude to(cc̄)→ππJ/ψ and(cc̄)→ηJ/ψ, of O(10 − 100) keV.

Estimates of radiative transitions involving hybrids withlight quarks [326,327] found that theE1
transitions between hybrid and conventional states to be comparable in magnitude to transitions between
conventional mesons. While neither calculation can be applied directly tocc̄ one might take this to
suggest that the partial widths forψg(1−+)→γ + (J/ψ, hc) andψg(0+−, 2+−)→γ + (ηc, χcJ) are the
same order of magnitude as transitions between conventional charmonium states. However, a recent
flux-tube model calculations by Close and Dudek [327] found that the∆S = 0 E1 transitions to hybrids
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only occur for charged particles, and hence would vanish forcc̄. The∆S = 1 M1 transitions can occur,
but are non-leading and less well defined. Estimates [327] for their widths areO(1 − 100) keV. Clearly,
given our general lack of understanding of radiative transitions involving hybrids, the measurement of
these transitions,ψg→(cc̄)γ, has important implications for model builders.

3.5.2.3 (iii) Decays to light hadrons: Decays of the typeψg→light hadrons offer the interesting pos-
sibility of producing light exotic mesons. Estimates of annihilation widths to light hadrons will be order
of magnitude guesses at best due to uncertainties in wavefunction effects and QCD corrections. We esti-
mate the annihilation widthsΓ[ψg(C = −)→ light hadrons] andΓ[cc̄(C = +)→ light hadrons] by com-
paring them toΓ(ψ′→ light hadrons) andΓ(η′c→ light hadrons). The light hadron production rate from
ψg(C = −) decays is suppressed by one power ofαs with respect toψg(C = +) decays. This very naive
assumption givesΓ[ψg(C = −)→ light hadrons] ∼ O(100) keV andΓ[cc̄(C = +)→ light hadrons] ∼
O(10) MeV [328]. These widths could be smaller because theqq̄ pair in hybrids is expected to be sep-
arated by a distance of order1/ΛQCD resulting in a smaller annihilation rate than the S-waveψ′ andη′c
states.

3.5.3 Hybrid production

Recent developments in both theory and experiment lead us toexpect that charmonium hybrids will be
produced inB decays. The partial widths forB→cc̄+X, with cc̄ representing specific final states such as
J/ψ,ψ′,χc0,χc1,χc2, 3D2, 1D2 etc., have been calculated in the NRQCD formalism [3,329–333] which
factorizes the decay mechanism into short (hard) and nonperturbative (soft) contributions. The hard
contributions are fairly well understood but the soft contributions, included as colour singlet and colour
octet matrix elements, have model dependent uncertainties. Insofar as hybridcc̄ wavefunctions have a
non-trivial colour representation they can be produced viaa colour octet intermediate state. Chiladzeet
al. [312] estimated the branching ratioB[B→ψg(0

+−) + X] ∼ 10−3 for M ∼ 4 GeV (though recent
quenched lattice calculations suggestM(0+−) = 4.70 ± 0.17 GeV, and hence will be inaccessible).
Closeet al. [311] estimate a similar branching ratio to1−+ and argued that ifMg < 4.7 GeV, the total
branching ratio toψg for all JPC could beB[ψg(all JPC) + X] ∼ O(1%). Thus, using two different
approaches for estimatingB[B→ψg +X] both Chiladzeet al. [312] and Closeet al. [311] obtain similar
results. Both calculations estimateB’s of O(0.1−1%) which are comparable to theB’s for conventional
cc̄ states.

3.5.4 Experimental signatures

The decays discussed above lead to a number of possible signals: ψg→D(∗)D(∗,∗∗), ψg(0+−, 2+−) →
J/ψ + (π+π−, η, η′), ψg(1−+)→ηc + (π+π−, η, η′), ψg→(cc̄)γ, andψg→light hadrons. Of the possi-
ble decay modes,ψg→J/ψπ+π−, ψg→J/ψη, andψg→(cc̄)γ give distinctive and easily reconstructed
signals. In the former case, the subsequent decay,J/ψ→e+e− andµ+µ− offers a clean tag for the
event so that searches for peaks in the invariant mass distributionsM(e+e−π−π+) − M(e+e−) is a
promising search strategy for hybrids. Both the0+− and2+− should decay via theψg→J/ψππ cas-
cade. For theψg lying belowDD∗∗ threshold combining estimates ofB(B→ψg + X) ≃ 10−3 and
B[ψg(2

+−)→J/ψπ+π−] ≃ 0.2 with the PDG value ofB(ψ→ℓ+ℓ−) = 11.81% and the Babar detection
efficiency we estimate that for 100 fb−1 of integrated luminosity each experiment should observe roughly
50 events. If the2+− lies above theDD∗∗ threshold theB for 2+−→J/ψππ decreases significantly to
2.6 × 10−2 lowering the expected number to about 6 events. Similarly, for the0+− hybrid we estimate
roughly 1200 events if it lies below threshold but only 5 events once theDD∗∗ decay modes open up.

The 1−+ state is expected to be the lightest exoticcc̄ hybrid [12, 23] and therefore the most
likely to lie belowDD∗∗ threshold. However, in this case the cascade goes toηcππ, a more difficult
final state to reconstruct. Estimates of the relevant partial widths areB(B→ψg + X) ≃ 10−3 and
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B(ψg(1
−+→ηcπ

+π−) ≃ 9 × 10−3. The Babar collaboration studied the decayB→ηcK by observing
the ηc in KKπ andKKKK final states. Combining the PDG values for theB’s to these final states
with the Babar detection efficiencies of roughly 15% and 11% respectively we estimate that for 100 fb−1

each experiment should observe roughly 10 events. If the1−+ lies above theDD∗∗ threshold, theB for
1−+→ππηc decreases to3 × 10−3 lowering the expected number to about 3 events.

The radiative transition,ψg(1−+)→γJ/ψ, also has a distinct signal if it has a significant branching
ratio. The conservative value ofΓ(ψg(1

−+)→γJ/ψ) ≃ 1 keV, yields a rather smallB for this transition.
On the other hand, a monochramatic photon offers a clean tag with a high efficiency. One could look
for peaks inM(µ+µ−γ) − M(µ+µ−). Babar observedχc1 andχc2 this way [307] obtaining≃ 394
χc1’s and≃ 1100 χc2’s with a 20.3 fb−1 data sample and an efficiency of about 20 % for theJ/ψγ final
state [307]. So although the rate may be too small to observe,given the potential payoff, it is probably
worth the effort to perform this search.

Experiments might also look for charmonium hybrids in invariant mass distributions of light
hadrons. For example, Belle observed theχc0 by looking at the invariant mass distributions from the
decaysχc0→π+π− andχc0→K+K− [306]. They found efficiencies of 21% forχc0→π+π− and 12.9%
for χc0→K+K−, obtaining∼ 16 events in the former case and∼ 9 in the latter.

The decay to charmed mesons also needs to be studied. Becausethere are more particles in the final
state it will be more difficult to reconstruct the charmoniumhybrid. On the other hand, with sufficient
statistics these channels will be important for measuring theψg quantum numbers and distinguishing
their properties from conventionalcc̄ states.

3.5.5 Summary and future opportunities

The fundamental problem with all the estimates given above is that they are based on models that have
not been tested against experiment. Observing a charmoniumhybrid and measuring its properties is
necessary to test these calculations. It may be that the models are correct but it is also possible that they
have totally missed the mark.

Establishing the existence of mesons with explicit gluonicdegrees of freedom is one of the most
important challenges in strong interaction physics. As demonstrated by the discovery of theηc(2S) in
B decay,B decays offer a promising approach to discovering charmonium hybrid mesons. We have
focused on how to search for these states inB-decay. Other possibilities are1−− hybrids produced in
e+e− annihilation. These would likely mix with conventional vector quarkonium states so that it would
be very difficult to distinguish them from conventional states. And recently the Belle collaboration
observed theη′c in double charm production ine+e− collisions. Part of the GSI upgrade is to study and
search for charmonium states inpp̄ annihilation. It is quite possible that hybrids can be studied once the
PANDA project comes to fruition. While there is no question that the estimates for the various partial
widths are crude, the essential point is that these states are expected to be relatively narrow and that
distinctive final states are likely to have observable branching ratios. Given how much we can learn by
finding these states we strongly advocate that some effort bedevoted to their searches. In the long term,
with the various facilities mentioned above, we should be able to open up and study an exciting new
spectroscopy.

4 INTRODUCTION TO EXPERIMENTAL SPECTROSCOPY 29

The experimental spectroscopy review is made of four Sections on charmonia and bottomonia, followed
by a Section onBc, and one on theccq systems. The paragraphs follow a hyerarchical structure, based
on the precision reached in the knowledge of the parameters of these states. Therefore we start from the
vector states (ψ’s andΥ’s), which were first discovered, have the narrowest widths,and are easiest to
produce and detect. At present, with the resonant depolarization technique, it is possible to know these

29Author: R. Mussa
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masses with absolute precision between 10 and 100 keV, and these states are widely used as calibration
tools for HEP detectors.

Section 6 scans through triplet P-wave states (known asχc’s andχb’s), which were discovered
from radiative transitions of upper vector excitations.χc’s could not be precisely studied before the 90’s,
when direct access to the formation of these states inp̄p annihilations allowed to reach 100–200 keV
precisions on their masses, and≈ 10% resolution of their total widths. The first two Sections allow to
realize that the S and P wave states of both ortho-charmoniumand -bottomonium constitute a very solid,
well established system of resonant states. These narrow resonances can be detected with very small or
negligible experimental background and have reached the mature stage, from a barely spectroscopical
point of view.

In contrast, all S=0 states are a very active field of researchfor spectroscopy. The best known
among those,ηc(1S) (described in Section 7.1) despite being produced with a wide variety of techniques,
has still an uncertainty above 1 MeV on the measured mass, anda rapid progress is expected to happen
in the next few years. Same can be said of the recently re-discoveredηc(2S), described in Section 7.1
which greatly benefits from the advent of the new generation of B-factories. The hyperfine splitting on
charmonium S states is then approaching maturity. On the other side, the large amount of data taken by
CLEO atΥ(1, 2, 3S) energies did not yield so far to the discovery ofηb states. A comprehensive review
of these searches, also performed at LEP experiments and CDF, is then given in Section 7.2. The elusive
singlet P state of charmonium, namedhc, has been extensively searched by thepp̄ experiments, resulting
in inconclusive evidences; its saga is described in Section7.3. With the advent of B-factories, its search
has regained interest.

Being right across the first open charm threshold, charmonium D-wave multiplets still lack a
complete understanding, while the first evidence of bottomonium D state comes from the recent CLEO III
run atΥ(3S), described in Section 6.3. The phenomenology of all the other vector orbital excitations is
still quite unclear as the different thresholds open up: R scans between 3.7 and 4.7 GeV are reviewed
in Section 8.1. Further studies on these states have regained priority after the discovery of the narrow
state X(3872), seen by Belle, and confirmed by BaBar, CDF and D0. An overview on the experimental
evidences of this resonance, as well as the current experimental attempts to clarify its nature and its
quantum numbers, is given separately in Section 8.2. Despite its most likely interpretation as one of the
two above mentioned D states, other possible assignments ofthis resonance, extensively described in the
theory chapter, span from orbital excitations of P wave states to molecular charmonia, opening a wide
number of possible searches in this energy region.

Another field of research which can bloom in the next years, mostly thanks to large samples of
B states taken at the Tevatron as well as HERA-B, is the study of the Bc. Despite the weak decay
of its ground state may accomunate this object to the heavy light mesons, the mass of its two compo-
nents suggests that the spectrum of its excited states can bequite similar to the one of charmonium and
bottomonium. The experimental evidence of the ground stateof such system and the searches for its
excitations are described in Section 9.

The last Section is devoted to another class of bound states which share a set of similarities with
the heavy quarkonia. The evidence of the doubly charmed baryons claimed by Fermilab experiment
E781 is still rather weak and is described in Section 10; further searches, possibly by the B-factories, are
needed before speculating on their phenomenology.

5 HIGH PRECISION MEASUREMENTS OF VECTOR STATE MASSES AND WIDTH S

5.1 Charmonia30

The first precise measurement of theJ/ψ(1S) andψ(2S) meson masses [334] set the mass scale in
the range around 3 GeV which provided a base for the accurate determination of the charmonium state

30Author:S. Eidelman
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Fig. 3.10: The variation of the coincidence rate ratio for the polarized and unpolarized beams.

location. The method of resonant depolarization, described in Appendix 8.1 of Chapter 2, has been
developed in Novosibirsk and first applied to theφ meson mass measurement at the VEPP-2M storage
ring [339]. Later it was successfully used to measure massesof theψ- [334] andΥ-meson family [340,
342, 343], see also Ref. [344], in which the values of the masses were rescaled to take into account
the change of the electron mass value. The accuracy of theJ/ψ(1S) meson mass measurement was
later improved in the Fermilabpp̄-experiment E760 [347] to1.2 · 10−5 using theψ(2S) mass value
from Ref. [334]. The new high precision measurement [337] oftheJ/ψ andψ′ meson masses has been
performed at the collider VEPP-4M using the KEDR detector [352]. The polarimeter unit was installed in
the technical straight section of VEPP-4M and consisted of the polarimeter — two scintillation counters
detecting electron pairs of the intrabeam scattering whoserate is spin-dependent (Touschek effect [350])
and the TEM wave-based depolarizer [351]. The characteristic jump in the relative rate of scattered
electrons at the moment of resonant depolarization is3 ÷ 3.5% with the statistical error of 0.3–0.4% for
the beam polarization degree higher than50%. Typical behavior of the rate ratio is shown in Fig. 3.10.

The characteristic uncertainty of the beam energy calibration due to the depolarization procedure
is 1.5 keV.

The first part of the experiment consisted of three scans of the J/ψ(1S) region (the integrated
luminosity≈ 40 nb−1, the beam energy spreadσE ≈ 0.6 MeV) and three scans of theψ(2S) region
(the integrated luminosity≈ 76 nb−1, σE ≈ 0.9 MeV). Then the betatron and synchrotron dumping
decrements of VEPP-4M were rearranged to reduce the energy spread down to 0.45 MeV and the fourth
scan ofJ/ψ(1S) was performed (the integrated luminosity is≈ 10 nb−1). The goal of this was the
verification of systematic errors connected with the collider operating mode and the beam energy spread.
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The beam polarization time in the VEPP-4M ring is about 100 hours at theJ/ψ(1S)-energy. For
the energy calibration runs, the beam spent the time sufficient for the polarization in the booster ring
VEPP-3 (2.5 hours atJ/ψ(1S) and about 1 hour atψ(2S) ) and was injected to VEPP-4M without
essential loss of the polarization degree.

During the scan the data were acquired at seven energies around the resonance peak. Before data
acquisition, the beam energy calibration was made at point 1to fix the current energy scale. At points 2–6
the calibrations before and after data taking were performed with the opposite direction of the depolarizer
frequency scan. The point 7 requires no energy calibration.

On completion of the scan the VEPP-4M magnetization cycle was performed and the whole proce-
dure was repeated. The energy dependence of the resonance cross-section was fitted taking into account
the interference with continuum and radiative corrections. The results obtained can be presented in the
form

MJ/ψ(1S) −MPDG
J/ψ(1S) = 47 ± 10 ± 7 keV,

Mψ(2S) − MPDG
ψ(2S) = 151 ± 25 ± 9 keV,

demonstrating the agreement with the world average values taking into account their uncertainties of
±40 keV and±90 keV, respectively [245]. The following mass values have been obtained:

MJ/ψ(1S) = 3096.917 ± 0.010 ± 0.007 MeV,

Mψ(2S) = 3686.111 ± 0.025 ± 0.009 MeV.

The relative measurement accuracy reached4 · 10−6 for the J/ψ(1S), 7 · 10−6 for theψ(2S) and is
approximately 3 times better than that of the previous precise experiments in [334] and [347].

The new result for the mass difference is

Mψ(2S) −MJ/ψ(1S) = 589.194 ± 0.027 ± 0.011 MeV.

Substantial improvement in the beam energy accuracy obtained by the presented experiment sets
a new standard of the mass scale in the charmonium range.

5.2 Bottomonia31

Development of the resonant depolarization method suggested and first realized in Novosibirsk [339,353]
also allowed high precision measurements of the resonance masses in theΥ family. The MD-1 group
in Novosibirsk carried out three independent measurementsof the Υ(1S) mass [340, 342, 343, 354].
The Υ(1S) mass was also measured by the CUSB collaboration in Cornell [345]. Their result was
by 0.63 ± 0.17 MeV or 3.8σ lower than that of MD-1. The reasons of this discrepancy are not clear,
however, when the MD-1 group performed a fit of the CUSB results using the Novosibirsk procedure (in
particular, it included a new method or calculating radiative corrections according to [355] instead of the
older approach of Ref. [356]), the difference between the two results decreased to0.32 ± 0.17 MeV or
1.9σ only.

The mass of theΥ(2S) meson was measured by the MD-1 group in Novosibirsk [342, 354] and
two groups in DESY — ARGUS and Crystal Ball [346]. Both groupsin DESY obtained the mass value
consistent with that in Novosibirsk, the average being0.5 ± 0.8 MeV lower than that of MD-1.

The mass of theΥ(3S) meson was measured by the MD-1 group only [342, 354]. As in thecase
of theΥ(2S) meson, a systematic error of the measurement was less than 0.2 MeV, much smaller than
the statistical one.

31Author: S. Eidelman
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Finally, in 2000 all the results on the mass of theψ [334,357] andΥ [340,342,343,354,354] family
resonances were updated [344] to take into account a more precise value of the electron mass [358,359]
(for theψ family an additional correction has been made to take into account the new way of calculating
radiative corrections [355]). In Table 3.11 we summarize the information on these experiments present-
ing for each detector the number of energy points and the energy range studied, the integrated luminosity
and the final value of the mass. The results after the update mentioned above are shown in parentheses.

Table 3.11: Mass Measurements in theΥ Meson Family

Resonance Collider N of Points Detector
∫

Ldt, Mass, MeV√
s, MeV Reference pb−1

Υ(1S) VEPP-4 43 MD-1 [343] 2.0 9460.59 ± 0.09 ± 0.05
9420–9490 ( [344]) (9460.51 ± 0.09 ± 0.05)

CESR 13 CUSB [345] 0.285 9459.97 ± 0.11 ± 0.07
9446–9472

Υ(2S) VEPP-4 37 MD-1 [354] 0.6 10023.6 ± 0.5
9980–10075 ( [344]) (10023.5 ± 0.5)

DORIS 13 ARGUS [346] 2.0 10023.43 ± 0.45
9960–10040 Cr. Ball [346] 2.0 10022.8 ± 0.5

Average [346] 10023.1 ± 0.4 ± 0.5

Υ(3S) VEPP-4 35 MD-1 [354] 1.25 10355.3 ± 0.5
10310–10410 ( [344]) (10355.2 ± 0.5)

6 SPIN AVERAGED AND FINE SPLITTINGS

6.1 Charmonium P states: COG and fine splittings32

The most precise determinations of mass and width come from the study of charmonium spectroscopy
by direct formation of̄cc states in̄pp annihilation at the Fermilab Antiproton Source (experiments E760
and E835). The E760 collaboration measured the resonance parameters of theχc1 andχc2 [360].

For both E760 and E835-I, the transition energy of the Antiproton Accumulator was close enough
to theχc0 mass to prevent stable running with large stacks in this energy region. Nevertheless, a few
stacks were decelerated to theχc0 region at the end of Run I, yielding an unexpectedly high rateof J/ψγ
events. The Accumulator underwent a major upgrade between 1997 and 2000, shifting the transition
energy [362] and allowing a smooth running at theχc0, with substantial increase in statistics [361], and
a better control of systematics.

A new measurement of theχc1 parameters was made in year 2000, with roughly 15 times more
statistics than the predecessor experiment E760. Theχc2 parameters were also remeasured with statistics
comparable to those of experiment E760. This report includes the new results, in publication, not yet
included in the PDG.

The effect of scanning a narrow resonance with a beam of comparable width is show in Fig. 3.11,
where the excitation curve for one scan at theχc1 is compared with the deconvoluted Breit Wigner shape
and the measured beam energy profiles for each point.

In mass and width measurements, the systematic error comes from uncertainties on auxiliary vari-
ables measured concurrently to data taking (changes in beamorbit length, efficiency and luminosity at
each energy point), as well as the absolute calibration of the beam energy. The absolute calibration of the
beam energy is deduced from the absolute calibration of the orbit length, done usingψ(2S) scans, and

32Authors: R. Mussa, G. Stancari

120



SPECTROSCOPY

Fig. 3.11: Measured cross-section at each data point, excitation curve (full line) and deconvoluted resonance
curve (dotted line) for one scan at theχc1 ; plotted in the lower part of the figure are the beam energy profiles
corresponding to each data point

assuming 3686.000 for the mass of this state. The more precise determination recently done at VEPP-
4, documented in the previous section, implies a systematicshift (up) of 70, 83, 89 keV of theχc0,1,2
measurements respectively. The systematic error onχc masses fromψ(2S) mass determination reduces
then to 16,19,20 keV respectively, and is now negligible if compared to the other sources, which are
uncorrelated when we merge different scans. The impact of radiative corrections to account for proton
bremsstrahlung is still well below other systematic errors; it was estimated using the expression:

σradBW (β, s) = β

∫ √
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2
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dk
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= 6.7 × 10−3(χc0), 7.0 × 10−3(χc1), 7.2 × 10−3(χc2).

Systematic shifts on masses are∆m(χc0,1,2) = −0.06,−0.01,−0.02MeV/c2; the shifts on total
widths are∆Γ/Γ ≈ −1% for all χc states.

E835 could also measure theχc0 excitation curve in thepp̄→π0π0 channel, exploting the ampli-
fication due to interference with continuum. The measurement is compatible with result obtained inψγ
and of course has correlated systematic errors.

A measurement of mass [365] and width [366] with accuracy almost comparable to the one ob-
tained inpp̄ annihilations was made by BES on theχc0, exploiting the sample of 3.8Mψ ′ decays to
various decay channels. There are not yet mass and width measurements ofχc states from the 14Mψ ′

sample. Table 3.12 summarizes the most accurate results on masses and widths at present. Statistical
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Table 3.12: Parameters ofχc states from E760, E835, and BES

R Expt. Mass(MeV/c2) Γ(MeV) Ref.

χc0

BES 3414.1±0.6±0.8 14.3±2.0±3.0 [365]

E835 3415.4±0.4±0.2 9.9±1.0±0.1 [361]

E835 3414.7±0.7±0.2 8.6±1.7±0.1 [363]

PDG 2004 3415.19±0.34 10.1±0.8 [245]

χc1

E760 3510.61±0.10±0.02 0.88±0.11±0.08 [360]

PDG 2004 3510.59±0.10 0.91±0.13 [245]

E835 3510.725±0.065±0.018 0.88±0.06±0.09 [364]

χc2

E760 3556.24±0.07±0.12 1.98±0.17±0.07 [360]

PDG 2004 3556.26±0.11 2.11±0.16 [245]

E835 3556.10±0.09±0.17 1.93±0.19±0.09 [364]

errors onχc1,2 masses are obtained from gaussian sums of errors from event statistics and errors from
orbit length measurements; the latter are dominant, therefore future improvements will require to push
fractional errors on orbit lengths below10−6. In the case ofχc0 there is still room for improvement:
ten times more statistics at theχc0 in app̄ annihilation experiment could take errors on masses down to
200 keV, and on widths down to 3%. To reach a comparable level on narrowχb states is very challenging,
and will require new ideas.

It is finally possible to present the results on P states by calculating the spin independent (MCOG),
spin–orbit (hLS) and tensor (hT ) terms of thecc̄ Hamiltonian. All values are summarized in Table 3.13.

Table 3.13: Fine splittings betweenχc states

cc̄(n = 1)

MCOG (in MeV)
∆M21 = M(χc2) −M(χc1) (in MeV) 45.6±0.2
∆M10 = M(χc1) −M(χc0) (in MeV) 95.3±0.4
ρ(χ) = ∆M21/∆M10 0.470±0.003
hT (in MeV) 10.06±0.06
hLS (in MeV) 34.80±0.09

6.2 Bottomonium P states: COG and Fine splittings33

After discovery of theΥ(1S), Υ(2S) andΥ(3S) resonances at the fixed targetpN experiment at Fermi-
lab in 1997 [367] the first two were observed a year later at thee+e− storage ring DORIS at DESY [368].
Since DORIS energy reach was stretched well beyond its design, theΥ(3S) could not be reached. The

33Author: T. Skwarnicki
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limited statistics and limited photon detection capabilities of the detectors prevented observation of the
χbJ(1P ) states via E1 photon transitions fromΥ(2S) at that time. Energy range of anothere+e− storage
ring, CESR at Cornell University, was extended high enough to reach theΥ(3S) in 1982. The CUSB de-
tector at CESR had sufficient photon detection resolution inNaI(Tl)/Lead-glass calorimeter to discover
the threeχbJ(2P ) states in inclusive photon spectrum inΥ(3S) decays [369]. TheJ = 1 andJ = 2
states were also observed in two-photon cascade,Υ(3S) → γχbJ(2P ), χbJ(2P )→γΥ(nS) (n = 1, 2),
followed byΥ(nS)→l+l−, wherel+l− stands fore+e− orµ+µ− [370]. The latter “exclusive” approach
eliminates all photon backgrounds fromπ0s copiously produced in hadronic decays ofbb̄ states, but re-
sults in low signal statistics. In fact, theJ = 0 is very difficult to observe this way since it has larger
gluonic annihilation width, which suppresses branching ratios for radiative transitions. A year later the
CUSB experiment produced similar evidence forχbJ(1P ) states in theΥ(2S) data [371]. TheJ = 2 and
J = 1 states were also observed by the CLEO experiment in inclusive photon spectrum, with photons
reconstructed in the tracking system after conversion toe+e− pairs at the beam-pipe [372].

Meanwhile DORIS accumulated more data at theΥ(2S) resonance with two new detectors: mag-
netic spectrometer ARGUS, and NaI(Tl)-calorimeter Crystal Ball, which previously explored photon
spectroscopy in charmonium at SPEAR. The Crystal Ball confirmed the CUSB results on theχbJ(1P )
states [373], though theJ = 0 photon line was observed at a different energy, soon confirmed by AR-
GUS via photon conversion technique [374]. Analysis of angular correlation inγγl+l− by Crystal Ball
established spin assignment to the observedχb2(1P ) andχb1(1P ) states [375]. Next round of improve-
ments in experimental results came about a decade later fromthe CESR upgraded to higher luminosity
and upgraded CUSB and CLEO experiments. The CUSB-II detector was equipped with compact BGO
calorimeter. The CLEO II collaboration built large CsI(Tl)calorimeter which was put inside the super-
conductive magnet. Both experiments improved the results onχbJ(2P ) states, with the increasedΥ(3S)
data size [376].

A few years later the CLEO II experiments took a shortΥ(2S) run. Even though the number
of Υ(2S) resonance decays was not much larger than in the previous measurements, the results on
χbJ(1P ) states were substantially improved [377] thanks to much larger photon detection efficiency of
well-segmented CLEO II calorimeter.

CESR continued to improve its luminosity via the storage ring upgrades. Its running time was
exclusively devoted toB-meson physics with data taken at theΥ(4S) resonance. The CLEO tracking
and particle identification systems were replaced, while the CsI(Tl) calorimeter was preserved. After the
B physics program at CESR had ended, the CLEO III detector accumulated large samples at the narrow
Υ(nS) resonances. Number of collectedΥ(2S) andΥ(3S) resonant decays was increased by an order
of magnitude. Analysis of inclusive photon spectra has beenrecently completed [378]. Photon lines
due toΥ(2S)→γχbJ(1P ) andΥ(3S)→γχbJ(2P ) observed in inclusive photon spectrum are shown
in Fig. 3.12 and Fig. 3.13 respectively. Determination of energies of these photon lines is limited by
the systematic error in calibration of the calorimeter. Thelatter was improved in CLEO III by analysis
of the ψ(2S) photon spectrum obtained with the same detector [379]. Since the photon energies in
ψ(2S)→γχcJ(1P ) transitions are precisely know from the scans of the resonant cross-sections ine+e−

(ψ(2S)) or p̄p (χcJ ) collisions, theψ(2S) photon lines were turned into the calibration points.

Comparisons of the photon energies forΥ(2S)→γχbJ(1P ) andΥ(3S)→γχbJ(2P ) determined
in various experiments, together with the world average values, are shown in Fig. 3.14 and Fig. 3.15
respectively. The masses of theχbJ(1P ) (χbJ(2P )) states can be calculated from these photon energies
and the masses ofΥ(2S) (Υ(3S)). The errors on the latter are significant, thus the errors onthe masses
of theχbJ(nP ) states are strongly correlated between different values ofJ . These need to be properly
taken into account when calculating the centre-of-gravitymass and fine-splitting parameters. The results
are tabulated in Table 3.14.
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Fig. 3.14: Measurements of the photon energies inΥ(2S)→γχbJ(1P ). The vertical bars indicate the world aver-
age value (solid) and its error (dashed). These are also listed on top. The thick horizontal bars to the right of the
name of the experiment give the relative weight of each experiment into the average value. Photon energy mea-
surements from analyses of exclusiveγγl+l− events are indicated with an “(e)” after the date of the publication.
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Fig. 3.15: Measurements of the photon energies inΥ(3S)→γχbJ(2P ). The vertical bars indicate the world aver-
age value (solid) and its error (dashed). These are also listed on top. The thick horizontal bars to the right of the
name of the experiment give the relative weight of each experiment into the average value. Photon energy mea-
surements from analyses of exclusiveγγl+l− events are indicated with an “(e)” after the date of the publication.
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Table 3.14: Masses and fine splittings for theχb(nP ) states obtained from the world average values. The values of
ρ given in brackets come from the CLEO III measurements [378] and have smaller errors than the world average
values since cancellations in the systematic errors of photon energies for differentJ values are properly considered.

bb̄(n = 1)

M(χb2) 9912.2±0.4 (in MeV)
M(χb1) 9892.8±0.4 (in MeV)
M(χb0) 9859.5±0.5 (in MeV)
MCOG 9899.9±0.4 (in MeV)
∆M21 = M(χb2) −M(χb1) (in MeV) 19.4±0.4
∆M10 = M(χb1) −M(χb0) (in MeV) 33.3±0.5
ρ(χ) = ∆M21/∆M10 0.584±0.016 (0.574±0.012)
hT (in MeV) 3.27±0.08
hLS (in MeV) 13.64±0.14

bb̄(n = 2)

M(χb2) 10268.7±0.5 (in MeV)
M(χb1) 10255.4±0.5 (in MeV)
M(χb0) 10232.6±0.6 (in MeV)
MCOG 10260.3±0.5 (in MeV)
∆M21 = M(χb2) −M(χb1) (in MeV) 13.3±0.3
∆M10 = M(χb1) −M(χb0) (in MeV) 22.8±0.4
ρ(χ) = ∆M21/∆M10 0.583±0.020 (0.584±0.014)
hT (in MeV) 2.25±0.07
hLS (in MeV) 9.35±0.12

6.3 Bottomonium D states34

The lowest radial excitations of the D states in charmonium have masses above the theDD̄ meson
threshold. The lightest member of the spin-triplet is a vector state. It is identified with theψ(3770) state,
which is a thirdcc̄ resonance observed in thee+e− cross-section. Unlike theJ/ψ(1S) and theψ(2S)
resonances, theψ(3770) is broad because it decays toDD̄ meson pairs. Since, the coupling of theD
state toe+e− is expected to be small, its largee+e− cross-section is attributed to a significant mixing
between the2S and1D JPC = 1−− states. Whether the narrowX(3872) state is one of the other
members of the1D family is a subject of intense disputes. TheJ=2 states (the spin triplet and the spin
singlet) are narrow below theDD̄∗ threshold, since they can’t decay toDD̄. TheJ =3 state can decay
to DD̄ but, perhaps, its width is sufficiently suppressed by the angular momentum barrier [187]. In all
scenarios, masses of all1D states must be strongly affected by the proximity of open-flavour thresholds
via coupled channel effects.

In contrast, the1D states of bottomonium are well below the open-flavour threshold, thus their
masses are easier to predict theoretically. Unfortunately, the mixing of the2S and1D JPC = 1−− states
is expected to be small for bottomonium. Not surprisingly, theJ =1 1D bb̄ state has not been observed
in e+e− collisions. The spin-triplet states are accessible from the Υ(3S) resonance by two subsequent
E1 photon transitions via intermediateχbJ(2P ) states. Energies of photons in theχbJ(2P )→γΥ(1D)
transitions fall in the same range as the dominantΥ(3S)→γχbJ (2P ) photon lines. Therefore, they
cannot be resolved in the inclusive photon spectrum. Two-photon coincidence is of not much help, since
the photon background fromπ0 decays is very large inΥ(3S) decays. Nevertheless, theΥ(1D) states
have been discovered by CLEO III in theΥ(3S) decays [380]. The photon backgrounds are removed

34Author:T. Skwarnicki
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Fig. 3.16: Distributions of the measuredΥ(1D) mass in the CLEO III data [380] using (a) the recoil mass against
the two lowest energy photons, (b) the fit implementing theχbJ′(2P ), χbJ (1P ), Υ(1S) mass constraints. The
results of fits for a singleΥ(1D) state are superimposed. The mass-constraint method produces satellite peaks
because of ambiguities inJ ′ andJ values.

by using the “exclusive” approach (see the previous section), in which the three additional decays are
required,Υ(1D)→γχbJ (1P ), χbJ(1P )→γΥ(1S), Υ(1S)→l+l−. Since the product branching ratio
for these five subsequent decays is rather small [204, 381], the large CLEO III sample of theΥ(3S)
resonances was essential for this measurement. After suppression of theΥ(3S)→π0π0Υ(1S) and 4-
photon cascades via theχbJ(2P ), Υ(2S), χbJ(1P ) states 381D candidates are observed in the CLEO III
data. The mass of the1D state is estimated by two different techniques, as shown in Fig. 3.16. In both
cases, the mass distribution appears to be dominated by production of just one state. The theoretical
and experimental clues point to theJ = 2 assignment. The mass of theΥ2(1D) state is measured by
CLEO III to be: (10161.1 ± 0.6 ± 1.6) MeV.

Masses of the other bottomonium1D states remain unknown. However, the fine structure of the
1D spin-triplet is predicted to be small. All potential model calculations predict theΥ2(1D) mass to be
between0.5 and1.0 MeV lower than the centre-of-gravity (c.o.g.) mass for thistriplet [204]. Adding this
theoretical input, CLEO obtains(10162± 2) MeV for the c.o.g. mass, where they assigned an additional
uncertainty of 1 MeV to the correction for the13D2−c.o.g. mass difference.

The CLEO III also looked forΥ(1D)→π+π−Υ(1S) andΥ(1D)→ηΥ(1S) transitions. No evi-
dence for such decays was found and upper limited were set [380]. The upper limit onΥ(1D) → π+ π−

Υ(1S) rules out rather large width for this transition predicted by the Kuang–Yan model [325,382].
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Fig. 3.17: Invariant mass distributions forK0
SK

±π∓(left) andpp̄(right) events from BES

7 HYPERFINE SPLITTINGS

7.1 ηc(1, 2S): comparison of all measurements35

Despite the large variety of available data on theηc(1S), the precise determination of its mass and
width is still an open problem. It is likely that unexpected systematic errors be present in some of these
measurements. It is worth to compare the subsets of measurements of masses and widths of theηc done
with the same reaction, before comparing the large variety of techniques which allowed to measure this
state, each one with its own dominant systematic error. The two states share most of the decay channels,
therefore the same analysis is usually applied to extract their signal.

7.1.1 ηc(1S) inJ/ψ andψ ′ decays

Theηc parameters have been extracted from the radiative transitions ofJ/ψ andψ ′ by a large number
of experiments: while Crystal Ball (and more recently CLEO-c) studied the inclusive photon spectrum,
Mark II and III, DM2, BES studied the invariant mass distributions of decay products in reactions with
2 or 4 charged tracks and 0 to 2 neutral pions. The samples taken in the 80’s and early 90’s were re-
cently overwhelmed by the 58 M BES sample. Table 3.15 summarizes the mass and width measurements
done in the past 20 years. Theηc peak is observed in the invariant mass of the following decaymodes:
K0
SK

±π∓, π+π−π+π−, π+π−K+K−, K+K−K+K−, pp̄. Figure 3.17 shows two of these distribu-
tions.

Table 3.15: The world largest samples ofJ/ψ andψ ′ used for the determination of theηc mass and width.

Expt. MarkIII DM2 BES I BES II

year 1986 1991 2000 2003

Mass(MeV/c2) 2980.2±1.6 2974.4±1.9 2976.3±2.3±1.2 2977.5±1.0±1.2

Width(MeV) 10.1+33.0
−8.2 – 11.0±8.1±4.1 17.0±3.7±7.4

Sample 2.7MJ/ψ 8.6MJ/ψ 3.8Mψ ′ +7.8MJ/ψ 58MJ/ψ

35Authors: R. Galik, R. Mussa, S. Ricciardi
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Fig. 3.18: Cross-section (black dots) observed by E760 (left) and E835(right) for the reactionpp̄→γγ in the region
with cosθCM <0.25(E760), 0.2(E835). The blank squares show the expectedfeed-down fromπ0π0, π0γ.

A cut on the kinematic fit to the exclusive hypothesis (referred asJ/ψ veto) is applied, to reject
direct J/ψ decays to the same channels, or feed-down from other decay channels, such as(ω, φ)ππ,
ωK+K−, γK0

SK
0
S . The systematic errors on mass determination come mostly from the mass scale

calibration (0.8MeV/c2, calculated by comparingK0
S , φ and evenχc masses with PDG values) and from

theJ/ψ veto. TheJ/ψ veto is also the dominant source of systematics on the total width determination:
5.6 out of 7.4MeV/c2.

7.1.2 ηc(1S) inpp̄ annihilations

The ηc was investigated inpp̄ annihilation only in theγγ channel, which is affected by a substantial
feeddown from the continuum reactionsπ0π0 andπ0γ: both reactions are sharply forward-backward
peaked. The number of ’signal’ events is 12 in R704, 45 in E760and 190 in E835, which respectively
took 0.7,3.6,17.7 pb−1 of data in theηc mass region. It is worth to stress the fact that an increasingamount
of integrated luminosity was taken away from the peak , in order to better understand the size and nature
of the non resonant background. The experiment E835 can discriminate aπ0 from a single photon with
96.8% efficiency: this reduces the feed-down to 0.1%σπ0π0+ 3.2%σπ0γ at

√
s = 2984 MeV/c2.

The very small sample taken by R704 in the resonant region ends up with a remarkably small
result on theηc width: all this is based on theansatzto have a small background. Such hypothesis was
strongly disconfirmed by E760, therefore the R704 result is affected by a very large hidden systematic
error. The statement is even stronger, if we take into account that the R704 fiducial region was extended
up tocos(θcm,π0) = 0.35, where the feeddown dominates, and the detector did not havefull azimuthal
coverage (thus introducing an even larger feeddown).

E835 precisely measured theπ0γ and π0π0 cross-section: the feeddown from these reactions
can account for most of the background. E835 could not exclude the existence of a residual tinyγγ
continuum, which can in principle interfere with the resonant reaction, but is not large enough to shift
the mass peak beyond the statistical error. Figure 3.18, on the right, shows both signal and feed-down
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cross-section observed in E835. A power law dependence on energy was assumed for the background,
in the fits. The choice of background parametrization and of the fiducial region for the signal are the
dominant sources of systematic error, which amounts to 1MeV/c2 on the mass and 2 MeV on the width.
A comparative summary ofpp̄ measurements onηc(1S) parameters can be found in Table 3.16.

Table 3.16: Comparison of E760 and E835 results.

Expt. E760 E835
Ldt (pb−1) 3.6 17.7
m(ηc)( MeV/c2) 2988.3±3.3 2984.1±2.1±1.0
Γ(ηc) ( MeV/c2) 23.9+12.6

−7.1 20.4+7.7
−6.7 ± 2.0

E760 and E835 also searched for theηc(2S) state in the energy range3575MeV/c2 <
√
s <

3660MeV/c2, putting a 90% CL upper limit at≃ 0.4 eV onB(ηc(2S)→pp̄) × Γ(ηc(2S)→γγ).

7.1.3 ηc(1,2S) in B decays

In the last years, the B-factories have exploited the B mesondecays to charmonium as a new powerful tool
for the measurement of theηc mass [393], as well as for the discovery ofηc(2S) and the measurement
of its mass. Exclusive decays of both B0 and B+ mesons were detected with theηc reconstructed in
theK0

SK
∓π±, K+K−π0, K∗0K∓π±, p̄p decay channels. Exploiting common decay modes, it was

possible to measure the mass difference betweenJ/ψ andηc, Fig. 3.19 (left) shows the invariant mass
distribution of decay products fromB → K + X in the 2.75–3.2 GeV/c2 region: J/ψ andηc peaks
are clearly visible. Fitting the distribution with a Breit–Wigner convoluted with a MonteCarlo generated
resolution function, it was possible to extract a value of 2979.6±2.3±1.6 MeV/c2 for the mass , and a
total width of 29±8±6 MeV (from a sample of 182±25 events, out of 31.3 MBB̄ pairs). The systematic
errors include the effect of varying the bin size as well as the shape of background, and the difference
between data and MC generated detector resolutions.

TheK0
SK

∓π± final state is an ideal place to look for theηc(2S), a state which was awaiting
confirmation since its first and only observation by Crystal Ball in the inclusive photon spectrum from
ψ ′ decays. In 2002, the Belle collaboration reported the evidence ofηc(2S) production via the exclusive
processesB+→K+ηc(2S) andB0→K0

Sηc(2S). Given the suppression of theψ ′→KSK
±π∓ decay,

contamination from the processB→Kψ ′ is estimated to be negligible. The first evidence [207] of the
ηc(2S) came from a sample of 44.8MBB̄ pairs, using the exclusive channelB→K(K0

SK
−π+). A

likelihood function based on the angle between the B candidate and thee+e− axis, and on the transverse
momenta of the other tracks with the respect to the B candidate thrust axis, was used to suppress any
background from continuum processes. Given a good B candidate, the feeddown fromB→D(Ds) +X
was reduced by cutting at|MKπ−MD| > 10MeV/c2 and|MKSK+−MDs | > 10MeV/c2; the feeddown
from B→K∗ + X was reduced by cutting at|MKπ − MK∗| > 50MeV/c2, as theηc(nS)→KK∗

component is expected to be suppressed by the angular momentum barrier. The mass for theηc(2S) was
measured to be 3654±6±8 MeV/c2, with systematic error coming mostly from the choice of binning. A
90%C.L. upper limit on the width at 55 MeV was given.

7.1.4 ηc(1S) inγγ fusion

The e+e− collider detectors collecting data in theΥ(4S) region (CLEO, BaBar, BELLE) have good
“reach” to produceC = +1 charmonium states through two-photon fusion. These are states such as
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Fig. 3.19: On the left: distribution of reconstructed B decays to ηc(1S) and J/ψ, in the common final state
K0
SK

∓π±, from refs. [393]. On the right: Belle observed theηc(2S) both in B decays (top, from ref. [207]) and
in doublecc̄ (bottom, from ref. [394]).

the ηc andχc which are not produced directly in thee+e− annihilation process. Suchγγ interactions
strongly peak at lowq2 so that the scattered lepton are not detected (“untagged” events) and the photons
are approximately real. For instance, in CLEO the active detector elements go to within22◦ of the beam
axis, or|cosθ|<0.93; this means that untagged events all have photons withQ2 less than roughly 1 GeV2,
and usuallymuchless.36 Both CLEO and BaBar have thus recently studied the reactions:

γγ→(ηc/η
′
c)→K0

SK
±π∓ .

The ηc is known to be coupled to two photons (B(ηc→γγ) ∼ 5 · 10−4). An estimate of the two-
photon production rate ofηc(2S)suggests that also the radial excitation could be identifiedin the current
e+e− B-factory [395]. The regions of the detector acceptance occupied by suchγγ fusion reactions
and the competing initial state radiation (ISR for short, also called “radiative return”) processes are quite
dissimilar for a symmetric collider experiment such as CLEOand the asymmetricB-factories. Given this
and the differing sources of systematic uncertainties, theBaBar and CLEO results are rather independent.

The CLEO analysis used≈ 14 fb−1 and≈ 13 fb−1 of data taken with the CLEO II and CLEO III
detectors, respectively, mostly near theΥ(4S) resonance. The particle identification systems and tracking
chambers in these two configurations are quite different, sothese can be considered truly independent
experiments. The preliminary results were first shown at theApril 2003 APS meeting and submitted
[387] to the EPS meeting of that summer; final results have recently been submitted for publication
[388]. The BaBar collaboration has both preliminary [210] and final results [389], based on a sample
of data corresponding to an integrated luminosity of about90 fb−1. In the CLEO analysis, these events
are characterized by lots of missing energy and momentum, but very little transverse momentum (pT )
of the hadronic system and very little excess energy in the detectors. The selection criteria included that
pT < 0.6GeV/c, that there were no additional charged tracks, and that the unassociated energy in the
electromagnetic calorimeter was less than 200 MeV (300 MeV)for CLEO II (CLEO III). The CLEO
mass spectra are shown in Fig. 3.20(a,b) , clearly indicating evidence for both theηc andη′c. Fits to

36The one publishedtaggedCLEO analysis started atQ2 = 1.5GeV2.
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these spectra (polynomial backgrounds, Breit–Wigner lineshapes, double-Gaussian detector resolution
functions) yielded the results shown in Table 3.18.

In the BaBar analysis, events are selected by requiring fourcharged particles with total transverse
momentumpT < 0.5GeV/c and total energy in the laboratory frameEtot < 9 GeV, in order to suppress
e+e−→qq̄ events. One track is required to be identified as a kaon and pairs of oppositely charged tracks
are used to reconstructK0

S→π+π− decays. TheK0
SK

+π− vertex is fitted, with theK0
Smass constrained

to the world average value.

Figure 3.20 (c) shows the resultingK0
SK

+π− invariant mass spectrum. The presence of a peak at
theJ/ψ mass is due to ISR events, where a photon is emitted in the initial state, and a backward-going
J/ψ is produced, its decay products falling into the detector acceptance because of the Lorentz boost
of the centre of mass. A fit to this distribution with a sum of a smooth background shape, a Gaussian
function for theJ/ψ peak and the convolution of a non-relativistic Breit–Wigner shape with a Gaussian
resolution function for theηc peak, gives:m(J/ψ)−m(ηc) = (114.4± 1.1) MeV/c2,m(J/ψ) = (3093.6
± 0.8) MeV/c2, Γ(ηc) = (34.3± 2.3 MeV/c2), σ(J/ψ) = (7.6± 0.8) MeV/c2. The numbers ofηc and
J/ψ events are respectively 2547± 90 and 358± 33.

The results from B-factories can be compared in Table 3.19.

For CLEO, the three major sources of systematic uncertaintyin the masses of these singlets are
(i) comparisons of masses of theK0

S (in π+π−), theD0 (in K0
Sπ

+π−), and theD+ (in K+π+π−)
between CLEO data and the Particle Data Group compilations,(ii) dependences on fitting shapes used
for background and for signal, and (iii) the observed shiftsbetween mass values used as input to the
Monte Carlo simulations and the mass values reconstructed.In obtaining the widths of these mesons, the
dominant source of possible bias is the shape assumed for thebackground.

In BaBar, theηc mass resolutionσ(ηc) is constrained by the closeJ/ψ peak; the small difference
(0.8 MeV/c2) observed betweenσ(J/ψ) andσ(ηc) in the simulation is taken into account in the fit to
data. The simulation is also used to check for possible bias in the fitted masses. Theηc andJ/ψmass
peaks are shifted by the same amount (1.1MeV/c2) in the simulation, therefore the bias does not affect
the mass difference. The systematic error on the mass accounts for an uncertainty onm(J/ψ) −m(ηc)
due to the background subtraction, and for an uncertainty associated to the different angular distribu-
tions of theJ/ψand theηc . The systematic error on the width is dominated by the uncertainty in the
background-subtraction and in the mass resolution.

7.1.5 Overview on all results

Table 3.20 and Figs. 3.21 and 3.22 summarize the results of anattempt to fit the mass of theηc(1S) by
using (a) all measurements quoted in this review, (b) only measurements published in the last 5 years,
and results from (c)ψ(1, 2S) decays, (d)pp̄ annihilation, (e) B-factories. The onlyrationale for dataset
(b) is to exclude samples that were superseded by new data taken by the same experiment. A scale factor
S was applied on theσ’s whenever the confidence level of theχ2 obtained from the fits was below 10%.
The results are then compared with the values found in PDG 2004. The B-factories have been arbitrarily
grouped together, despite they use different techniques.

Despite the substantial improvement in statistics, and thenew ways to explore theηc(nS) states
which came from the B-factories, a discrepancy between results obtained by different techniques re-
mains. The increase in statistics has been surely beneficialin understanding systematic effects. Nonethe-
less , crosschecks between all different measurement techniques will be even more vital in the future,
when statistic errors will be further reduced. Hopefully both asymmetric B-factories will be able to do
internal crosschecks of the results fromγγ fusion and from B-decays. CLEO-c will be able to crosscheck
theγγ measurement by CLEO III with one fromψ(1, 2S) decays.

133



CHAPTER 3

CLEO II Data

CLEO III Data

70

60

50

40

30

20

10

0
70
60
50
40
30
20
10

0
2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

N
u

m
b

e
r 

o
f 

E
ve

n
ts

 /
 8

 M
e

V

M(KSK  ) (GeV)

1601203-016

Mass (KS K π) (GeV/c2)

ev
en

ts
/5

 M
eV

0

50

100

150

200

2.5 2.75 3 3.25 3.5

M(K S K π) (GeV/c2)

ev
en

ts
/1

0 
M

eV
/c2

0

20

40

60

3.2 3.4 3.6 3.8 4

Fig. 3.20: Invariant mass distributions forK0
SK

±π∓ events from (a) CLEO II, (b) CLEO III; from BaBarin the
(c) ηc (andJ/ψ) region and (d)ηc(2S)region. The results from the fit are superimposed.

ηc(1S) Mass=2980.0+/-1.2

2960 2970 2980 2990 3000
M(MeV/c2)S=  1.8 CL=9.0E-04

MARK3(86)
DM2(91)
E760(95)
BES1(00)
E835(03)
BES2(03)
BELLE(03)
CLEO3(04)
BABAR(04)

ηc(1S) Total Width=  28.1+/-3.0

-20 0 20 40 60
Γ(MeV)S=  1.6 CL=9.9E-03

MARK3(86)
E760(95)
BES1(00)
E835(03)
BES2(03)
BELLE(03)
BABAR(04)
CLEO3(04)

Fig. 3.21: Mass and width fits forηc(1S)
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Fig. 3.22: Mass and width fits forηc(2S)

134



SPECTROSCOPY

Table 3.17: Various theoretical estimates for the mass splitting ∆m = m(Υ) −m(ηb).

∆m [MeV/c2] Ref

lattice NRQCD 19 – 100 [53,406–410]
lattice potential 60 – 110 [411]
pQCD 36 – 55 [93,412]
1/m expansion 34 – 114 [413]
potential model 57 – 141 [414] [415–418]

Table 3.18: Summary of the results forηc andη′c for both CLEO II and CLEO III data sets. The errors shown are
statistical only.

CLEO II CLEO III

ηc η′c ηc η′c

Yield (events) 282±30 28+13
−10 310±29 33+14

−11

Mass (MeV) 2984.2±2.0 3642.4±4.4 2980.0±1.7 3643.4±4.3

Width (MeV) 24.7±5.1 3.9±18.0 24.8±4.5 8.4±17.1

significance 15.1σ 4.4σ 17.0σ 4.8σ

R(η′c/ηc) 0.17±0.07 0.19±0.08

Table 3.19: Comparison of CLEO, BaBar and Belle results.

Expt. CLEO BaBar Belle
Ldt(fb−1) 13+14 90 29.1 [393], 31.3 [207]
m(ηc)( MeV/c2) 2981.8±1.3±1.5 2982.5±1.1±0.9 2979.6±2.3±1.6 [393]
Γ(ηc) (MeV) 24.8±3.4±3.5 34.3±2.3±0.9 29±8±6 [393]
m(ηc(2S))( MeV/c2) 3642.9±3.1±1.5 3630.8±3.4±1.0 3654±6±8 [207]
Γ(ηc(2S)) (MeV) <31 (90%CL) 17.0±8.3±2.5 <55 (90%CL) [207]

Table 3.20: Fits of allηc mass measurements

Dataset Mass(MeV/c2) S C.L.
(a) ALL 2980.0±1.2 1.82 0.09%
(b) ALL after 1999 2980.4±1.2 1.44 6.6%
(c)ψ(1, 2S) decays 2977.5±0.9 1(1.38) 13%
(d) pp̄ 2984.5±1.6 1(1.05) 33%
(e) B-factories 2981.9±1.1 1(0.65) 65%
PDG 2004 2979.6±1.2 1.7 0.1%
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7.2 ηb(nS) andhb(nP): searches37

Over twenty-five years after the discovery of theΥ(1S), no pseudoscalarbb states have been conclusively
uncovered. In recent years, the search has been conducted atCLEO, LEP, and CDF, using both inclusive
and exclusive methods.

The inclusive CLEO search [399] identifies distinctive single photons with its high-resolution CsI
electromagnetic calorimeter. These photons are signatures of Υ radiative decays, in this caseΥ(3S) →
ηbγ, Υ(2S) → ηbγ, Υ(3S) → η′bγ, andΥ(3S) → hbπ

0 or hbπ+π− followed byhb → ηbγ. Godfrey
and Rosner have pointed out that these hindered M1 transitions could have observable branching ratios,
in spite of their small associated matrix elements, becauseof their large phase space [204].

No evidence of a signal for any of the above modes has been seenin the total2.4 fb−1 of data
taken at theΥ(2S) andΥ(3S) resonances between 2001 and 2002, corresponding to roughlysix million
decays of each resonance. Figure 3.23 shows the resulting 90% C.L. upper limits on the branching
fractions. Several of the theoretical predictions shown can be ruled out.

It has been shown that with the full data samples of LEP 2, theηb(1S) might be detected in two-
photon events [404,405]. Theηb is fully reconstructed with four, six, or eight charged decay products and
possibly aπ0. In the expected mass range, for which estimates are listed in Table 3.17, the corresponding
invariant mass distribution is rapidly decreasing, and thebackground fromτ pairs can be kept small.

Table 3.21 summarizes the results for ALEPH, L3, and DELPHI.The search by ALEPH [419] in
an800 MeV/c2 window turned up one candidate, shown in Fig. 3.24, with an excellent mass resolution
of 30 MeV/c2 at a mass of9.30 ± 0.03 GeV/c2. The signal expectation is about 1.6 events over one
background event.

Table 3.21: 95% C.L. upper limits on theηb two-photon partial width times branching ratio into various hadronic
states from searches at LEP.

Expt final state Γγγ × B (keV) Ref

ALEPH 4 charged < 0.048 [419]
6 charged < 0.132 [419]

L3 K+K−π0 < 2.83 [420]
4 charged < 0.21 [420]
4 chargedπ0 < 0.50 [420]
6 charged < 0.33 [420]
6 chargedπ0 < 5.50 [420]
π+π−η′ < 3.00 [420]

DELPHI 4 charged < 0.093 [421]
6 charged < 0.270 [421]
8 charged < 0.780 [421]

L3 has reported an analysis, considered close to final, in sixdecay modes [420]. Six candidates
are found, compatible with an expected background of 2.5 events. The mass measurement is dominated
by the detector resolution of about300 MeV/c2.

Recently, DELPHI has also reported preliminary results [421]. A total of seven candidates are
found in a search window of400 MeV/c2. The expected background level is 5.5 events, and the mass
resolution roughly120 MeV/c2.

37Authors: A. Böhrer, T. Ferguson, J. Tseng

136



SPECTROSCOPY

Υ(3S)→γ ηb(1S)

880 900 920 940 960 980 1000
Eγ (MeV)

0

1

2

3

B
ra

nc
hi

ng
 R

at
io

 in
 u

ni
ts

 o
f 1

0-3

Godfrey-Isgur,85 A

Godfrey-Isgur,85 B

Zambetakis,Byers,83

Lahde,Nyfalt,Riska,99 A
Lahde,Nyfalt,Riska,99 B

Ebert,Faustov,Galkin,03

90% CL UL CLEO-III

Preliminary

Υ(2S)→γ ηb(1S)

550 575 600 625 650
Eγ (MeV)

0.0

0.4

0.8

1.2

1.6

B
ra

nc
hi

ng
 R

at
io

 in
 u

ni
ts

 o
f 1

0-3

Grotch,Owen,Sebastian,84 A

Grotch,Owen,Sebastian,84 B

Godfrey-Isgur,85 A

Godfrey-Isgur,85 B

Zambetakis,Byers,83

Lahde,Nyfalt,Riska,99 A/B

Ebert,Faustov,Galkin,03

90% CL UL CLEO-III

Zhang,Sebastian,Grotch,91 A

Preliminary

Υ(3S)→γ ηb(2S)

330 340 350 360 370 380 390
Eγ (MeV)

0

1

2

3

B
ra

nc
hi

ng
 R

at
io

 in
 u

ni
ts

 o
f 1

0-3

From the top dashed line:

Zambetakis,Byers,83

Godfrey-Isgur,85A

Godfrey-Isgur,85B

Ebert,Faustov,Galkin,03

Lahde,Nyfalt,Riska B,99

Lahde,Nyfalt,Riska A,99

90% CL UL CLEOIIIPreliminary

Υ(3S)→hbX→ηbγ

450 470 490 510 530
Eγ (MeV)

0

2.5

5

7.5

10

B
ra

nc
hi

ng
 R

at
io

 in
 u

ni
ts

 o
f 1

0-3

CLEO-III 90% CL UL

V86 hbπ
0

KY81 hbππ

KY81 hbππPreliminary

Fig. 3.23: CLEO 90% C.L. upper limits onB(Υ(3S) → ηbγ) (top left),B(Υ(2S) → ηbγ) (top right),B(Υ(3S) →
η′bγ) (bottom left), andB(Υ(3S) → hbπ

0, hbπ
+π−) × B(hb → ηbγ) (bottom right) as a function of the photon

energyEγ , along with various theoretical predictions [206,400–403].

137



C
H

A
P

T
E

R
3

M
ade on 2-M

ar-2001 09:59:55 by boehrer w
ith D

A
LI_E

2.
F

ilenam
e: D

C
055136_002499_010302_0959.P

S
            centre−of−mass energy = 205 GeV

30−06−2000           17:37 
run = 55136   event = 2499  

ALEPH

YX   
0|−30cm               30cm|X 

0
|−

3
0

cm
  

  
  

 
 
 
 
 
 
 
 
 
3
0
c
m
|

Y
 

 type   P   dP  phi theta  D0   Z0        
      .573 .00  23   72  −.00 .6280       
      5.15 .02 160   38  .027 .6159       
      1.13 .00 172   68  .042 .6237       
      .354 .00 333   65  −5.0 11.35       
      3.34 .01 336   66  .006 .6110       
      .898 .01 349   35  2.97 −4.13       

1.5 Gev EC
2.0 Gev HC

RZ
0|−600cm             600cm|Z    

0
|−

6
0

0
cm

  
  

  
 
 
 
 
 
 
 
6
0
0
c
m
|

ρ  
 
 
 

π+

π+

π−

π+

K−

π−

Ks

K

πππ

π
π

π

−−

−
−

+

+

++

F
ig

.3
.2

4
:η
b →

K
0S
K

−
π

+
π

+
π
−

can
d

id
ate

atA
L

E
P

H
,w

ith
a

reco
n

stru
cted

m
ass

o
f

9
.3

0±
0
.0

3
G

eV
/
c
2.

138



SPECTROSCOPY

Fig. 3.25: The 4-muon invariant mass distribution fromJ/ψJ/ψ events in CDF Run 1 data. The search window,
the upper side of which is the world-averagedΥ(1S) mass [245], is marked by arrows.

CDF has searched for the exclusive decayηb → J/ψJ/ψ, where bothJ/ψ’s decay to muon pairs,
in the full 1992–96 “Run 1” data sample of about100 pb−1 [422]. The mass spectrum is shown in
Fig. 3.25; in this region, the mass resolution is about10 MeV/c2. A small cluster of seven events can
be seen, where 1.8 events are expected from background. The statistical significance of the cluster is
estimated to be2.2σ. A simple fit to the mass distribution gives9445 ± 6(stat) MeV/c2 as the mass of
the cluster, where the error is only statistical. The mass difference relative toΥ(1S) is well to the low
side of the theoretical expectation. If this cluster is due to ηb decay, then the product of its production
cross-section and decay branching fractions is near the upper end of expectations [423].

The existence of theηb is a solid prediction of the quark model, and its mass one of the most
tractable to calculate. Both its existence and mass remain,for the present time, open questions. Some
data at completed experiments remain to be published, however, while Run 2 is well underway at the
Fermilab Tevatron.

7.3 hc: searches38

The search of the singlet state of P wave charmonium (dubbedhc(1P )) poses a unique experimental
challenge for a variety of reasons:

– it cannot be resonantly produced ine+e−annihilation;

– it cannot be reached via E1 radiative transitions fromψ ′; C-parity conservation forbids the transi-
tion from a1−− to a1+− state.

– its production inψ ′ hadronic decays tohc(1P )π0 is isospin violating and has a small phase space
available (ifMhc(1P ) = MCOG, pπ0 = 86 MeV/c; the two Doppler broadened photons will have
and energy between 30 and 100 MeV in theψ ′ rest frame. Ine+e−machines, the sensitivity on
slow pions is not just affected by the physical backgrounds from otherψ ′ decays, but also by the
large combinatorial background with low energy uncorrelated photons from the beam.

– its production in B decays via the intermediate stateηc(2S), which can decay radiatively (E1) to
hc(1P ), is suppressed by the large hadronic width of theηc(2S).

– its detection in theJ/ψπ0 decay mode, fromψ ′ and B decays, as well as in hadroproduction, is
shadowed by the more copious decayχc1,2→γJ/ψ, with an extra photon accidentally matching

38Authors: R. Mussa, D. Besson
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Fig. 3.26: Cross-section (black dots) observed by E760(left) for the reactionpp̄→J/ψπ0 in the COG region; E835
could not confirm this evidence and observed the hint on the right in theγηc→3γ channel.

theπ0 mass; this is also the most likely explanation of the signal seen inJ/ψπ0 by experiment
E705, in 300 GeV/cπ± and proton interactions on a lithium target [426].

– its formation inpp̄ annihilationmaybe suppressed by helicity selection rule, but the same rule
would forbidχc0 andηc formation , against the experimental evidence.

– its production in exclusive B decaysmaybe suppressed asB(B→χc0K); if such selection mech-
anism does not apply, a search ofhc(1P ) via its E1 decay toηc may soon give positive results.

Such elusive state was extensively searched for in formation from pp̄ annihilations: searching for a
resonance which has a width expected to be between theψ andχc1 but with an expectedB to detectable
EM decay channels of interests which is 100 to 1000 times weaker than the radiative decay ofχc1, i.e.,
expected cross-sections between 1 and 10 picobarns. Experiment R704 at CERN [424] observed the
signal:

Γ(hc(1P )→pp̄) × B(hc(1P )→J/ψ +X) × B(J/ψ→e+e−) = 0.14+0.15
−0.06 eV

at a nominal mass of 3525.4±0.8±0.5 , which should be shifted down 0.8MeV/c2after comparing the
χc measurements done by the two experiments.

Experiment E760 at Fermilab [425] observed the signal:

Γ(hc(1P )→pp̄) × B(hc(1P )→J/ψ + π0) × B(J/ψ→e+e−) = 0.010 ± 0.003 eV

at a nominal mass of 3526.2± 0.15, and did not see events in the channelsJ/ψπ+π−, J/ψπ0π0 E760
also determined a level of continuum for the inclusive reaction which was consistent with the one ob-
served by R704.

In channels with such low statistics, a large amount of integrated luminosity taken to precisely
quantify the background level is crucial. Such an issue was taken very seriously in E760, and even
more in E835. To complicate the experimental situation, thesignal observed by E760 is expected to be
comparable to theJ/ψπ0 continuum, as predicted in reference [427], from soft pion radiation. It is hard
to predict how interference between the resonant and continuum amplitude can distort the lineshape.
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E835 took 6 times more data with respect to E760, to confirm theobservation ofhc(1P ) and
possibly measure the width as well as its decay ratios to other channels:the probably dominant decay
mode toηcγ was studied, relying upon the rareηc decays toγγ. The first data set, 50 pb−1 taken in
1996, proved lately to be affected by an anomaly in the beam positioning system, which prevented to
determine the absolute energy calibration of the machine better than 200 KeV. A second data taking
period in year 2000 allowed to accumulate a comparable sample of data, but with 150 KeV resolution on
the CM energy determination.

The E835 experiment, despite the 6 times larger statistics,could not confirm theJ/ψπ0 evidence
observed by E760. On the other side, a hint of a signal is observed in the3γ channel [428] Very tight cuts
were applied in order to reject hadronic backgrounds from reactions with two neutral mesons in the final
state. In the3γ Dalitz plot, invariant masses of all pairs were requested tobe above 1 GeV/c2, to reject
backgrounds fromπ0, η, η′, ω. As the recoil photon angular distribution is expected to behave assin θ2

CM

on the resonance, a cut atcos θCM < 0.5 was imposed. This allowed to suppress most of the two meson
background, which is prevalently forward-backward peaked. 13 events out of 29 pb−1 are observed in
a δM = 0.5MeV/c2 wide bin between 3.5257 and 3.5262MeV/c2, while 3 events are observed in
the remaining data between theχc1 and theχc2 (87 pb−1). The statistical significance of the excess is
between 1 and 3×10−3, with different hypotheses on the resonance width. If the excess is not a statistical
fluctuation, assuming a total width of 0.5 MeV, it is possibleto measureΓ(hc→pp̄)B(hc→ηcγ) = 10.4±
3.7 ± 3.4 eV, where the systematic error comes from the statistical error on B(ηc→γγ)), at a mass
M(hc) = 3525.8 ± 0.2 ± 0.2MeV/c2. The CLEO Collaboration has preliminary evidence [429] for
the spin singlethc (11P1) in looking at∼ 3 × 106 decays of theψ′(3686). This state is seen in two
independent analyses, both of which use the decay chainψ′→π0hc followed byhc→γηc: one analysis
is inclusive and the other uses six dominantexclusive decays of theηc.

The inclusive analysis shows an enhancement at over3σ significance at a mass of3524.4 ±
0.7stat MeV. The systematic uncertainty is∼ 1 MeV. The left plot in Fig. 3.27 shows the fit of the
data to the resolution function from Monte Carlo simulationand an “ARGUS” background shape.

Shown in the right panel of that figure is the exclusive analysis, with a statistical significance of
∼ 5σ. The figure shows the data with, again, a fit to an ARGUS background and detector resolution
function. Also shown are the events from the sideband of the invariant mass spectrum of theηc recon-
struction and the spectrum from aψ′ Monte Carlo simulation that does not include thehc decay chain.
Further checks on backgrounds peaking in the signal region are under way. The mass from the exclusive
analysis is3524.4 ± 0.9stat Mev, with systematic studies ongoing. All of these CLEO results on thehc
are considered preliminary. As a final remark, we can commentthat the 20 years old search for this state
is not over yet, and its evidence is still weak. It is therefore necessary to (a) consolidate the evidence
for such a state from either B orψ(2S) decays , (b) to measure its mass at better than 1–2 MeV, (c) to
prove its coupling topp̄, before planning to precisely measure its mass, total widthand partial widths in
formation frompp̄ annihilations.

8 STATES CLOSE TO OPEN FLAVOUR THRESHOLDS

8.1 R values between 3.7 and 5 GeV39

TheR value to be discussed in this section is one of the most fundamental quantities in particle physics
that is defined as,

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(3.46)

R value is expected to be constant so long as the centre-of-mass (c.m.) energyEcm does not
overlap with resonances or the threshold of production of a new quark flavour. A thorough review of R

39Author: Z. Zhao
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theπ0 in the inclusive analysis that only uses that pion and the photon in theE1 decayhc→γηc. To the right is
the same variable for theexclusive analysis in which six of the dominantηc decay modes are used. In both cases
the fits are to an ARGUS background and a resolution function from Monte Carlo studies. The exclusive plot also
shows data events from theηc sideband region and Monte Carlo simulation events of otherψ′ decays.

measurements on the full energy range can be found in Chapter6, while this subsection focuses on its
complex structure in the energy region between 3.7 GeV and 5 GeV.

The most striking feature of theR values below 5 GeV is the complex structure in the energy
region between 3.7 GeV and 4.5 GeV. Besides the resonance ofψ(3770), broad resonance like structures
peaking at around 4.04, 4.1 and 4.41 GeV have not been well understood in terms of their components
and decay channels. These resonances near the charm threshold were observed more than 20 years ago
[439–445,447]. Table 3.22 lists the resonance parameters reported by these experiments.

8.1.1 PLUTO measurement between 3.1 and 4.8 GeV

The PLUTO Collaboration measuredR values with the magnetic detector PLUTO at thee+e− storage
ring DORIS between 3.1 and 4.8 GeV c.m. energy. A superconducting coil procedures a 2T magnetic
field parallel to the beam axis. Inside coil there are 14 cylindrical proportional wire chambers and two
lead converter, a 2 mm converter at radius 37.5 cm and a 9 mm converter at radius 59.4 cm. Two or
more charged tracks are triggered and selected as hadronic event candidates. The background from
beam–gas interaction and cosmic ray events is subtracted using the distribution of reconstructed event
vertices alone the beam direction. Monte Carlo events are generated according to isotropic phase space
to determine the detection efficiency for the hadronic events. An external luminosity monitor system is
employed to observe the beam luminosity. The uncertainty ofthe luminosity measurement is about±5%.
The systematic error inR values is estimated to be about 12%. PLUTO results agree withthose of the
SLAC–LBL group within systematic errors, but is about 10–15% lower than those of SLAC–LBL on the
narrowJ/ψ resonance and higher energies. However, the agreement on the energy dependence and the
structure of theR values is quite good. The accuracy of PLUTO’s measurement islimited by systematic
error, which amount to almost one unit inR in the broad resonance region. The resonance parameters of
the broad resonances cannot be determined with such a limited accuracy and energy points.

8.1.2 DASP measurement between 3.6 and 5.2 GeV

DASP Collaboration measuredR values at c.m. energy between 3.6 and 5.2 GeV with a non magnetic
inner detector of the double arm spectrometer DASP, which has similar trigger and detection efficiencies
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Table 3.22: Resonance parameters measured for the broad structures between 3.7 and 4.5 GeV

Resonance Experiment Mass(MeV) Γtot(MeV) Γee(eV)
MARK I 3772 ± 6 28 ± 8 345 ± 85

ψ(3770) DELCO 3770 ± 6 24 ± 5 180 ± 60
MARK II 3764 ± 5 24 ± 5 276 ± 50

BES( [456]) 3772.7 ± 1.6 24.4 ± 4.3 190 ± 25

ψ(4040) DASP 4040 ± 10 52 ± 10 750 ± 150
BES( [456]) 4050.4 ± 4.3 98.5 ± 12.8 1030 ± 110
BES( [246]) 4040 ± 1 89 ± 6 911 ± 130
CB( [246]) 4037 ± 2 85 ± 10 880 ± 110

ψ(4160) DASP 4159 ± 20 78 ± 20 770 ± 230
BES( [456]) 4166.5 ± 6.1 55.9 ± 12.3 370 ± 81
BES( [246]) 4155 ± 5 107 ± 16 840 ± 130
CB( [246]) 4151 ± 4 107 ± 10 830 ± 80

ψ(4415) DASP 4417 ± 10 66 ± 15 490 ± 130
MARK I 4414 ± 7 33 ± 10 440 ± 140

BES( [456]) 4429.4 ± 8.5 86.0 ± 20.9 390 ± 74
BES( [246]) 4429 ± 9 118 ± 35 640 ± 230
CB( [246]) 4425 ± 6 119 ± 16 720 ± 110

for photon and charged particles. The inner detector of DASPis mounted between the two magnet
arms of DASP. It is azimuthally divided into eight sectors, six of which consist of scintillation counters,
proportional chambers, lead scintillator sandwiches and tube chambers, and the remaining two facing the
magnet aperture, have only scintillation counter and proportional chambers. Tracks are recorded over
solid angle of 62% for photon and 76% of4π for charged particles. DASP collected a total integrated
luminosity of 7500nb−1, which was determined by small angle Bhabha scattering measured by four
identical hodoscopes with an uncertainty of 5%. The additional normalization uncertainty is estimated to
be 15%. The uncertainties of the detection efficiencies for the hadronic events is about 12%. Three peaks
centred around 4.04, 4.16 and 4.42 are observed. The data areinsufficient to resolve structures between
3.7 and 4.5 GeV. By making a simplifying assumption that the cross-section can be described by an
incoherent sum of Breit–Wigner resonances and a non resonant background, DASP reported resonance
parameters as listed in Table 3.22.

8.1.3 SLAC–LBL measurement between 2.6 and 7.8 GeV

SLAC–LBL group did aR scan with MARK I at SPEAR which operated at c.m. energy between 2.6
and 7.8 GeV with peak luminosity between1029 and1031 cm−2 sec−1. MARK I was a general purpose
collider detector of the first generation. Its solenoidal magnet provide a near uniform magnetic field
of 3891 ± 1 G over a volume 3.6 m long and 3.3 m in diameter. A pipe counter consisting of four
hemicylindrical plastic counters surrounding the vacuum pipe were used to reduce the trigger rate of
cosmic ray. Two sets of proportional wire chambers on the outside of the pipe counters had spacial
resolution of 700µm. Four modules of concertric cylindrical wire spark chambers were the main tracking
elements of the detector, which gave a spacial resolution inthe azimuthal direction of 340µm, 1.0 and
0.5 cm for the20 and40 stereo gaps, respectively. Outside the spark chamber was anarray of 48 plastic
scintillation counters with a width of 20 cm each. The time-of-flight for this system was about 480 psec.
An array of 24 shower counters made of five layers, each consisting of 0.64 cm of pilot F scintillator and
0.64 cm of lead. The energy resolution measured with Bhabha events was∆E/E = 35%/

√
E. The
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muon-identification spark chamber, the end-cap spark chamber, and the photon-detection capabilities
of the shower counters were not used in this analysis. TheR values and the corresponding resonance
parameters in the energy region between 3.4 and 5.5 GeV is plotted together with those from PLUTO
and DASP in Fig. 3.28 (right).

MARK I studied exclusive decay channels on the resonance at 4040 MeV and reported [446]
PsPs : PsV : V V = 0.05 ± 0.03 : 1 : 32 ± 12, wherePs representsD meson and V stands forD∗

meson. These early results stimulated a variety of theoretical interpretations.

8.1.4 BES measurement between 2 to 5 GeV

BES Collaboration has done aR scan with updated Beijing Spectrometer (BES II) at Beijing Electron–
Positron Collider(BEPC).

The trigger efficiencies, measured by comparing the responses to different trigger requirements
in R scan data and special runs taken at theJ/ψ resonance, are determined to be 99.96%, 99.33% and
99.76% for Bhabha, dimuon and hadronic events, respectively.

BES’s measurement first selects charged tracks, then hadronic events with charged tracks equal
and greater than two. The number of hadronic events and the beam-associated background level are
determined by fitting the distribution of event vertices along the beam direction with a Gaussian for real
hadronic events and a polynomial of degree two for the background.

The subtraction of the beam-associated backgrounds is cross checked by applying the same hadronic
event selection criteria to separated-beam data.

A new Monte Carlo event generator called LUARLW is developedtogether with LUND group for
the determination of detection efficiencies of the hadronicevents [450]. LUARLW removes the extreme-
high-energy approximations used in JETSET’s string fragmentation algorithm. The final states simulated
in LUARLW are exclusive in contrast to JETSET, where they areinclusive. In addition, LUARLW uses
fewer free parameters in the fragmentation function than JETSET. Above 3.77 GeV, the production of
charmed mesons is included in the generator according to theEichten Model [451,452].

Different schemes for the radiative corrections were compared [355, 453–455]. Below charm
threshold the four different schemes agree with each other to within 1%. Above charm threshold, where
resonances are important, the agreement is within 1 to 3%. The formalism of Ref. [455] is used in
our calculation, and differences between it and the schemesdescribed in Ref. [355] are included in
the systematic errors. In the calculation of the radiative correction above charm threshold, where the
resonances are broad and where the total width of the resonance is related to the energy, we take the
interference between resonances into account. The integrated luminosity is determined to a precision
of 2–3% from the number of large-angle Bhabha events selectedusing only the BSC energy deposition.
Figure 3.28 (right) shows the BESR scan results between 3.6 and 4.6 GeV.

Previously, BES Collaboration measured cross-section forcharm meson production, using 22.3
pb−1 of e+e− data collected with BES I at

√
S=4.03 and 15 pb−1 at 4.14 GeV [460]. The charmed

mesons used in this measurement areD0 andD+, of which the number of signal events are selected
by fitting the inclusiveK−π+ andK−π + π+ invariant mass distribution with Gaussian as signal plus
a third order of polynomial background. Taking into accountthe detection efficiency, the correction of
initial state radiation, and quote the corresponding braching ratio from PDG1998, BES reported their
results as shown in Table 3.23, together with that predictedby the coupled channel model.

8.1.5 Remarks and prospects

DASP data agree with those of PLUTO resonabl well in shape butexceed their cross-sections by about
half a unit in R above 4 GeV. In magnitude DASP’s data are in closer agreement with those of SLAC–
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Fig. 3.28:R Values between 3.7 and 5 GeV from PLUTO, DASP and MARKI (left), and BES (right) experiments.

Table 3.23: Comparison of tree level cross-section measurement of BES with predictions of the coupled channel
model. experimentalDs cross-section is taken from early work.

√
s=4.03 GeV Experiment Coupled channel model
σD0+σD̄0 19.9±0.6±2.3 nb 18.2 nb
σD++σD− 6.5±0.2±0.8 nb 6.0 nb
σD+

s
+σD−

s
0.81±0.16±0.27 nb 11.6 nb

σcharm 13.6±0.3±1.5 nb 12.9 nb√
s=4.14 GeV Experiment Coupled channel model
σD0 + σD̄0 9.3±2.1±1.1 nb 15.1 nb
σD+ + σD− 1.9±0.9±0.2 nb 4.5 nb
σD+

s
+ σD−

s
1.64± 0.39± 0.42 nb 1.85 nb

σcharm 6.4±1.2±0.7 nb 10.7 nb

LBL but show some difference in the finer details of the energydependence. For example, SLAC–LBL
data didn’t resolve the structure at 4.16 GeV. The total width measured by SLAC–LBL is smaller than
that of DASP measurement. Despite of these discrepances, the difference observed among the three
experiments are within the systmatic errors quoted.
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Fig. 3.29: Refit the R data of CB and BES II.

BES’sR scan is done with a newer generation detector ande+e− collider as compared with the
previous measurements, and has about 80 points in the energyregion from 3.7 to 5 GeV. Because of this
fine scan in this energy region that contributes most to the precision evaluation ofαQED(MZ).

BES also fitted resonances as a Breit–Wigner shape with different continue background and takes
into account the energy-dependence of resonance width and the coherence of the resonance [457]. BES’s
preliminary results are consistent with those of previous measurements for the peak positions at 3.77,
4.04, 4.16 and 4.42 GeV, and show largerΓtot of the resonances at 4.04 and 4.42 GeV and smallerΓee
of the resonaces at 3.77 and 4.16 GeV.

Fitting BES’sR data between 3.7 and 4.6 GeV (75 data points) with Breit–Wigner resonances and
none resonant background based on perturbative QCD [456], one obtain resonance parameters as listed
in Table 3.22. The results from this fit has similar conclusion as the one from BES’s, except thatΓtot is
no longer larger than the other measurements of the resonance at 4.42 GeV.

Recently, Kamal K. Seth refitted resonance parameters of thehigher vector states of charmonium
with existingR data [246]. Three Breit–Wigner resonances plus backgroundthat is parametrized with a
linear function. He shows that the Crystal Ball (CB) and BES measurements are in excellent agreement.
The analysis of the CB and BES data leads to consistent resonance parameters for the three vector reso-
nances above theDD̄ threshold. The masses of the three resonances determined byhim in general agree
with PDG, but have much smaller errors. However, the total widths of these three resonances determined
by this work are about 67%, 37% and 179% larger than those adopted by PDG. The corresponding elec-
tron widths determined by this work are 23%, 8% and 51% largerwith about a factor of 2 less errors.
Figure 3.29 shows the fits to CB and BES data.

A factor of 2 to 3 reduction in uncertainty in the energy region of 3–5 GeV significantly improved
the experimental situation, providing an opportunity to directly test QCD sum role where the notion of
quark–hadron duality (QHD) plays a dominant role [456], andevaluate charm quark mass via experi-
mental data to a precision below 10%. However, BES’s data is still not enough, in terms of both statistics
and systematic error restriction, to provide a clear picture of the broad resonance structures. To fully
understand the complicated structures at the energies between 3.7 and 4.5 GeV, one needs to:

– perform theR scan with smaller energy steps and higher statistic in the entire energy region to a
precision around 2–3%.

– collect data at the peak positions with high enough statistics to study the exclusive decay channels
of the resonances.
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Fig. 3.30: From the Belle discovery paper [211]: projections of the data (points with error bars) and the results of
an unbinned maximum likelihood fit (solid curve) for theX(3872)→π+π−J/ψ signal region. The variables (a)
beam-constrained massMbc =

√
E2

beam − p2
B, (b) invariant massMπ+π−J/ψ, and (c) energy difference∆E =

EB − Ebeam, are those used in the fit;EB andpB are the energy and momentum of theB±→K±π+π−J/ψ

candidate, andEbeam the energy of eithere± beam, in thee+e− centre-of-mass system.

These could be the important physics topics for CLEO-c at CESR-c and BES III at BEPC II [458, 459].
Both CLEO-c and BES III may have the ability to clarify the ambiguity that has been bothering physicists
for over 20 years.

8.2 X(3872): discovery and interpretations40

TheX(3872) is a narrow state decaying intoπ+π−J/ψ, with a massMX ∼ 3872MeV. Given the
observed final state and the observed mass, in the charmoniumregion, it is natural to assume that the
X(3872) is itself a charmonium state. It has however proved difficultto identify theX(3872) with any
of the expected narrowcc̄ mesons, leading to suggestions that it may be a more exotic particle. In this
section, we briefly review the discovery and known properties of theX(3872), and the difficulties they
create for its interpretation.

8.2.1 Discovery, confirmation, and properties

TheX(3872) was discovered by the Belle collaboration in a study ofB±→K±π+π−J/ψ decays [211].
In addition to the well-knownψ′, a second peak was seen in theM(π+π−J/ψ) distribution; the results
of an unbinned maximum likelihood fit to theX(3872) signal region inM , and two other variables which
peak in the case ofB±→K±π+π−J/ψ decay, are shown in Fig. 3.30. A yield of35.7 ± 6.8 events was
observed, with high significance (10.3σ), and the width of the mass peak was found to be consistent with
the detector resolution. As the measured mass is well above theDD open charm threshold, the narrow
width implies that decays toDD are forbidden; Belle [461] reportsΓ(X(3872) → DD)/Γ(X(3872)
→π+π−J/ψ) < 7 (90% CL), to be compared with a corresponding value> 160 for theψ(3770) [462].
Comparing decays via theX(3872) to those via theψ′, Belle finds a considerable production rate inB
decays, with product branching ratio

B(B+→K+X(3872)) × B(X(3872)→π+π−J/ψ)

B(B+→K+ψ′) × B(ψ′→π+π−J/ψ)
= 0.063 ± 0.012 (stat) ± 0.007 (syst). (3.47)

The observation has been confirmed in inclusivepp collisions by CDF [463] and D0 [464], as shown in
Fig. 3.31, and in exclusiveB meson decays by BaBar [465], shown in Fig. 3.32. The observedmasses

40Author: B. Yabsley
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Fig. 3.31: Confirmation of theX(3872) in inclusivepp collisions by CDF [463] (left) and D0 [464] (right). In
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theX(3872) region and (right) the mass distribution for theJ/ψ→µ+µ− candidates used in the analysis.

are consistent, with a weighted average value

MX = (3871.9 ± 0.5)MeV (3.48)

across the four experiments [211,463–465]. Each of CDF, D0,and BaBar likewise find a width consistent
with the detector resolution; the only limit is that inferred by Belle [211],

ΓX < 2.3MeV (90% CL). (3.49)

Belle finds aM(π+π−) distribution concentrated at the kinematic boundary [211], coinciding
with theρ mass (Fig. 3.33). This is confirmed by CDF [463], who find little signal withM(π+π−) <
500MeV; BaBar report that their statistics are too small to allow a clear conclusion, but do not exclude
a concentration at the boundary [465].

8.2.2 Decay modes and interpretation of theX(3872)

The Belle collaboration has performed searches for variousdecay modes [211, 466] and an angular
distribution study [466], to compareX(3872) properties with those of predicted, but so far unseen,
charmonium states. They restrict their attention to stateswith

1. expected masses [401] within 200 MeV ofMX ≃ 3872MeV;

2. unnatural quantum numbersJP = 0−, 1+, 2−, . . . since decays toDD are not seen; and

3. spin angular momentumJ < 3, since the state is seen in exclusiveB→KX(3872) production with
a significant rate, making highJ unlikely (cf.B+→K+χc2, still not observed, andB+→K+χc0
andK+χc1 with branching fractions(6 ∼ 7) × 10−4).

The13D3 state,ψ3, is also studied following suggestions [187,188] that the rate forψ3→DD, suppressed
by anL = 3 angular momentum barrier, may be low.

The search therefore includes theC = −1 statesψ2, h
′
c, andψ3, and theC = +1 statesηc2, χ′

c1,
and η′′c . The observation of decays toπ+π−J/ψ favorsC = −1, for which this mode is isospin-
conserving; this would implyΓ(X→π0π0J/ψ) ≃ 1

2Γ(X→π+π−J/ψ). On the other hand, the observed

148



SPECTROSCOPY

X(3872)

E
ve

nt
s/

 5
 M

eV
/c2

(a)

hc
(b) (c)

mJ/ψππ(GeV/c2)

(d)

1

10

10 2

3.5 3.75 4 4.25 4.5 4.75

0

5

10

15

3.4 3.5
0

100

200

3.6 3.7 3.8
0

10

20

30

3.85 3.9

Fig. 3.32: Confirmation of theX(3872) in B±→K±π+π−J/ψ decay from BaBar [465]. Distributions of the
π+π−J/ψ invariant mass are shown forB candidates in (a) theB-signal region, together with expanded views
of the (b)hc, (c) ψ(2S), and (d)X(3872) mass regions. In (c) and (d), the results of an unbinned maximum
likelihood fit to the data are superimposed as a solid curve.

0.40 0.50 0.60 0.70 0.80
0

2.5

5

E
ve

nt
s/

0.
00

8 
G

eV

0.31 0.41 0.51 0.61

M(π+π-) (GeV)

0

12.5

25

E
ve

nt
s/

0.
00

6 
G

eV

Fig. 3.33: From [211]:M(π+π−) distribution for events in the (a)M(π+π−J/ψ) = 3872 MeV signal region and
(b) theψ′ region in Belle data. The shaded histograms are sideband data normalized to the signal-box area. Note
the different horizontal scales.

149



CHAPTER 3

 (GeV)bcM
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

E
ve

n
ts

 / 
( 

0.
00

5 
G

eV
 )

0

2

4

6

8

10

c)

 (GeV))c1χγM(
3.78 3.8 3.82 3.84 3.86 3.88 3.9 3.92 3.94 3.96

E
ve

n
ts

 / 
( 

0.
01

 G
eV

 )

0

2

4

6

8

10

12

d)

 (GeV)
bc

M
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

E
ve

n
ts

 / 
( 

0.
00

5 
G

eV
 )

0

2

4

6

8

10

 (GeV)chic1 gammaM
3.78 3.8 3.82 3.84 3.86 3.88 3.9 3.92 3.94 3.96

E
ve

n
ts

 / 
( 

0.
01

 G
eV

 )

0

1

2

3

4

5

6

7

8

Fig. 3.34: (Upper plots) Signal band projections for the beam-constrained (B-candidate) massMbc, and charmo-
nium candidate massMγχc1

, in the Belle search for decaysB+→K+X(3872),X→γχc1 [211]; the results of an
unbinned maximum likelihood fit are superimposed. The signal yield, 3.7 ± 3.7 ± 2.2, is consistent with zero.
(Lower plots) Similar distributions in the search for decays toγχc2 [466]; the fitted yield is2.9± 3.0± 1.5 events.

concentration of events atM(π+π−) ≈ mρ suggests that the decay may proceed viaX(3872)→ρJ/ψ,
an isospin-violating process; this requiresC = +1 and forbids the decay toπ0π0J/ψ. A study of the
π0π0J/ψ final state is therefore important.

8.2.3 Searches for radiative decays

If the X(3872) is identified with the13D2 (ψ2) state, the decay toγχc1 is an allowed E1 transition
with a large partial width, calculated to beΓ(X→γχc1) ≃ 210 keV in potential models, taking coupled
channel effects into account [187,188]. Similarly, the partial width for 13D3 (ψ3)→γχc2 is calculated to
be∼ 300 keV. This is to be compared to the partial width forψ2,3→π+π−J/ψ, expected to be equal to
theψ(3770) partial width for both states. Ref. [466] conservatively assumesΓ(ψ(3770)→π+π−J/ψ) <
130 keV, leading to predictionsΓ(X→γχcJ)/Γ(X→π+π−J/ψ) > 1.6 for ψ2→γχc1 and> 2.3 for
ψ3→γχc2 respectively. Belle has performed searches forX(3872) decays to these final states (see
Fig. 3.34), setting upper limits on the branching ratios (at90% CL) of0.89 for γχc1 [211], and1.1 for
γχc2 [466], below these expectations. Other considerations disfavor these states. If theX is theψ2, its
separation from theψ(3770), ∆M = 102MeV, is larger than present theory can accomodate [188]. The
ψ3 mass is expected to be similar. ProductionB+→K+ψ3 is also expected to be suppressed relative
to otherK+(cc̄) decays, due to the high spinJ = 3, whereas the data implies a comparable rate if
X(3872) = ψ3 [466].

Another radiative decay search, forX(3872)→γJ/ψ, tests theX(3872) = 23P1 (χ′
c1) assign-

ment [466]. The partial widthΓ(χ′
c1→γJ/ψ), for Mχ′

c1
= 3872MeV, is expected to be 11 KeV in

the potential model [187], possibly reduced by coupled channel effects [188]. To estimate the partial
width for the isospin-violating processχ′

c1→π+π−J/ψ, we take the isospin-violating hadronic charmo-
nium transitionψ′→π0J/ψ, with Γ ≃ 0.3 keV: the ratioΓ(X→γJ/ψ)/Γ(X→π+π−J/ψ) should then
beO(10). The Belle search places an upper limit of0.40 (90% CL) on this ratio, inconsistent with
the expected value. Theχ′

c1 mass is predicted [187, 188] to be3930 ∼ 3990MeV or greater, likewise
inconsistent with theX(3872).
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Fig. 3.35: From [466]:| cos2 θJ/ψ| distribution forX(3872)→π+π−J/ψ events in the data (points with error
bars), and assumingJPC = 1+− in the Monte Carlo (histogram); background events, determined using sidebands,
are included in the Monte Carlo.

8.2.4 Studies of angular distributions

TheX(3872) will be produced polarized in the reactionB±→K±X(3872) for any spinJX > 0, as both
the initial stateB and the accompanyingK mesons are spin zero. Angular distributions of the final state
particles can therefore distinguish between different quantum number assignmentsJPC for theX(3872).
If the X is theh′c, with JPC = 1+−, decays should be distributed as(1 − cos2 θJ/ψ)d cos θJ/ψ [467],
whereθJ/ψ is the angle between theJ/ψ and the negative of theK momentum vectors in theX(3872)
rest frame. In the Belle study [466], the data tend to peak near cos θJ/ψ = 1, where the1+− expectation
is zero; both the data and expectation are shown in Fig. 3.35.The poor fit to the data (χ2/dof = 75/9)
rules out any1+− assignment for theX(3872), including theh′c; this state in any case has an expected
mass well above 3872 MeV. Further angular studies of other modes are foreseen.

8.2.5 Other searches

If X(3872) = 11D2 (ηc2), the isospin conserving transitionηc2→π+π−ηc should be much more com-
mon thanηc2→π+π−J/ψ, which is isospin violating; the branching fractionB(X→π+π−J/ψ) would
be O(1%) or less, implying a largeB→KX(3872) rate. This seems unlikely but can be tested by
searching for theX(3872)→π+π−ηc decay.

Similar considerations apply ifX(3872) = η′′c : the branching fraction toπ+π−J/ψ should be
small, although in this case (with theη′′c below open charm threshold) the dominant decay would be into
two gluons, less convenient for a search. Assuming that sucha state would have a similar width to the
ηc (17 ± 3MeV) [245], which also predominantly decay via two gluons, it isalready disfavored by the
2.3MeV upper limit on theX(3872) width. GivenMψ(3S) = (4040 ± 10)MeV, Mη′′c = 3872MeV
also implies a largeψ(3S)− η′′c mass splitting,∼ 168MeV, contrary to the expectation that the splitting
will decrease with increasing radial quantum number (cf.Mψ′ −Mη′c = 48MeV [391] andMψ−Mηc =
117MeV) [245].

8.2.6 Summary

The status of the six candidates considered by Belle [466] issummarized in Table 3.24: some are already
excluded by the data, and none is a natural candidate. Significant further information is expected once
searches for other decays become available; the search forX(3872)→π0π0J/ψ is particularly important.
Already however the lack of a natural charmonium candidate that fits the data suggests two possibilities:
(1) that the theory used to predict charmonium properties isflawed, or (2) that theX(3872) is not a
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Table 3.24: From [466]: Some properties of candidate charmonium states for theX(3872), and a summary of the
comparison with data. Mass predictions are taken from [401], and width predictions computed from [187], using
a 3872 MeV mass value; the predicted width for theη′′c is taken to be the same as theηc width. Masses and widths
are shown in MeV.

state alias JPC Mpred Γpred comment

13D2 ψ2 2−− 3838 0.7 Mass wrong;Γγχc1
too small

21P1 h′c 1+− 3953 1.6 Ruled out by| cos θJ/ψ| distribution

13D3 ψ3 3−− 3849 4.8 M, Γ wrong;Γγχc2
too small;J too high

11D2 ηc2 2−+ 3837 0.9 B(π+π−J/ψ) expected to be very small

23P1 χ′
c1 1++ 3956 1.7 ΓγJ/ψ too small

31S0 η′′c 0−+ 4060 ∼ 20 Mass and width are wrong

conventional(cc̄) state. As theX(3872) mass is very close to theMD0 +MD∗0 threshold, aDD
∗

bound
state is a natural candidate [212,467–472].

9 THE OBSERVATION OF THE Bc MESON AT CDF AND D041

The CDF Collaboration has observed the ground state of the bottom-charm mesonB±
c via the decay

modeB±
c → J/ψl±ν and measured its mass, lifetime and production cross-section [39, 473]. The

measurement was done at the Tevatron, in Run I, at
√

(s) = 1.8 TeV. Figure 3.36a shows the mass
spectra for the combinedJ/ψe andJ/ψµ candidate samples, the combined backgrounds, and the fitted
contribution from theB±

c → J/ψl±ν decay. The fitted number ofBc events is 20.4+6.2
−5.5, out of which

12.0+3.8
−3.2 come for the electron sample and 8.4+2.7

−2.4 from the muon sample.A fit to the same distribution
with background alone was rejected at the level of 4.8 standard deviations. TheB±

c mass was measured
to be equal to 6.40±0.39(stat.)±0.13(syst.) GeV/c2.

A measure of the time between production and decay of aB±
c meson is

ct∗ ≡ M(J/ψl) · Lxy(J/ψl)
|pT (J/ψl)| (3.50)

whereLxy is the distance between the beam centroid and the decay pointof theB±
c candidate in the trans-

verse plane and projected along theJ/ψl direction, andpT (J/ψl) is the tri-lepton transverse momentum.
Figure 3.36b shows thect∗ distribution for the data, the signal and the background distributions. The
mean proper decay lengthcτ and hence the lifetimeτ of theB±

c meson was obtained from the above dis-
tribution. It was determined thatcτ = 137+53

−49(stat.)±9(syst.) µm orτ = 0.46+0.18
−0.16(stat.)±0.03(syst.)

ps.

Recently [474] the D0 collaboration has reported the observation of aBc signal in the decay
modeB±

c → J/ψµ±ν, from a sample of 210 pb−1 of data taken during Run II, at
√
s = 1.96 TeV.

The dimuon coming fromJ/ψ was required to be within 0.25 from theJ/ψ mass, and a third muon
track was required to come from the same vertex. The analysisyielded 95±12±11 events, at a mass
M(B±

c ) = 5.95+0.14
−0.13(stat.)±0.34(syst.) GeV/c2. The lifetime was calculated to beτ(B±

c ) = 0.448+0.123
−0.096

(stat.)±0.121(syst.) ps. Fitted mass and lifetime are found to be uncorrelated. Figure 3.37(left) shows
the invariant mass and pseudo-proper time distributions ofthe events. The analysis accounts for the
possible contribution fromBc→ψ(2S)µ±ν on the inclusive sample. As shown in Fig. 3.37(right), it
is estimated that about 15 events are due to this component, and the systematic errors are obtained by

41Author: V. Papadimitriou
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Fig. 3.36: On the left, (a) the histogram of theJ/ψl mass that compares the signal and background contributions
determined in the likelihood fit to the combined data forJ/ψe andJ/ψµ. The mass bins, indicated by tick marks
at the top, vary in width. The totalB±

c contribution is 20.4+6.2
−5.5 events. The inset shows the behavior of the

log-likelihood function−2Ln(L) vs the number ofBc mesons. On the right, (b) the distribution inct∗ for the
combinedJ/ψe andJ/ψµ data along with the fitted curve and contributions to it from signal and background.
The inset shows the log-likelihood function vscτ for theBc meson.

varying this contribution from 0 to 30 events. In the near future, the mass uncertainty can be improved
to better than 5(50) MeV/c2 by CDF(D0) by using hadronic exclusive decay channels.

10 EVIDENCE FOR DOUBLY CHARMED BARYONS AT SELEX 42

The addition of the charmed quark to the (uds) triplet extends the flavour symmetry of the baryon octet
and decuplet from SU(3) to SU(4). There is strong experimental evidence for all the predicted baryon
states which contain zero or one valence charmed quark [245]. We review here the first experimental
evidence for one of the six predicted baryon states which contain two valence charmed quarks, the
doubly charmed baryons. There have been many predictions ofthe masses and other properties of these
states [475–478]. The properties of doubly charmed baryonsprovide a new window into the structure of
baryonic matter.

10.1 The SELEX experiment

The SELEX experiment uses the Fermilab 600GeV/c charged hyperon beam to produce charm parti-
cles in a set of thin foil targets of Cu or diamond. The three-stage magnetic spectrometer is shown else-
where [479,481]. The most important features are: (a) the high-precision, highly redundant, silicon ver-
tex detector that provides an average proper time resolution of 20fs for single-charm particle decays, (b)
a 10 m long Ring-Imaging Cherenkov (RICH) detector that separatesπ from K up to 165GeV/c [480],
and (c) a high-resolution tracking system that has momentumresolution ofσP /P < 1% for a 200GeV/c
reconstructedΛ+

c .

The experiment selected charm candidate events using an online secondary vertex algorithm which
required full track reconstruction for measured fast tracks. An event was written to tape if all the fast

42Author:P. Cooper
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Fig. 3.37: TheJ/ψµ invariant mass (top left) and pseudo-proper time distributions (bottom left) of the
Bc→J/ψµX candidates (points with error bars) from D0. The signal MonteCarlo events, generated with a mass
of 5.95 GeV/c2, as well as the most likely background sources are shown as solid histograms. The right plot shows
theJ/ψπ+π− invariant mass ofJ/ψπ+π−µX events that have M(J/ψπ+π−µ) between 4 and 6 GeV/c2. The
background (solid histogram) is estimated from events outside this mass range.

tracks in the event were inconsistent with having come from asingle primary vertex. This filter passed
1/8 of all interaction triggers and had about50% efficiency for otherwise accepted charm decays. The
experiment recorded data from15.2 × 109 inelastic interactions and wrote1 × 109 events to tape using
both positive and negative beams.67% of events were induced byΣ−, 13% by π−, and18% by protons.

10.2 Search strategy

A Cabibbo-allowed decay of a doubly charmed baryon must havea net positive charge and contain a
charmed quark, a strange quark and a baryon. We chose to search for decay modes likeΞ+

cc → Λ+
c K

−π+

with an intermediateK−π+secondary vertex between the primary vertex and theΛ+
c vertex and

Ξ+
cc → pD+K− with an intermediatepK− secondary vertex between the primary vertex and theD+ .

Events were analyzed for evidence of a secondary vertex composed of an opposite-signed pair
between the primary and the single charm decay point. We usedall tracks not assigned to the single
charm candidate in the search. The new secondary vertex had to have an acceptable fitχ2 and a separation
of at least 1σ from the new primary. These cuts were developed and fixed in previous searches for short-
lived single-charm baryon states. We have applied them herewithout change. As a background check
we also kept wrong-sign combinations in which the mass assignments are reversed.

10.3 Ξ+
cc

→ Λ+
c
K−π+ Search results and significance

The signal and wrong-sign backgrounds are shown in Fig. 3.38. There is a obvious peak at a mass
of 3519± 2MeV/c2. The number of events in the signal region shown is22 events. We estimate the
number of expected background events in the signal region from the sidebands as6.1 ± 0.5 events.
This determination has a (Gaussian) statistical uncertainty, solely from counting statistics. The single-
bin significance of this signal is the excess in the signal region divided by the total uncertainty in the
background estimate:15.9/

√
6.1 + 0.52 = 6.3σ. The Poisson probability of observing at least this

excess, including the Gaussian uncertainty in the background, is1.0 × 10−6. The overall probability of
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total events in 2.5MeV/c2 bins. The fit is a Gaussian plus linear background.

observing an excess at least as large as the one we see anywhere in the search interval is1.1×10−4. This
result is published in reference [481].

10.4 Ξ+
cc

→ pD+K− search

After the discovery and publication of theΞ+
cc → Λ+

c K
−π+ signal we sought to confirm the discovery

in another decay mode which was likely to have a significant branching ratio. Obvious choices were
Ξ+
c π

+π− and Ξ+
cc → pD+K− . Since the SELEXD+ signal is large and well studied we began with it.

A similar analysis technique [482] resulted in the signal and wrong-sign background shown in
Fig. 3.39. In this new decay mode we observe an excess of5.4 events over an expected background
of 1.6 ± 0.35 events. The Poisson probability that a background fluctuation can produce the apparent
signal is less than1.5 × 10−5. The observed mass of this state is 3518± 3 MeV/c2, consistent with
the published result. Averaging the two results gives a massof 3518.7± 1.7MeV/c2. The observation
of this new weak decay mode confirms the previous suggestion that this state is a double charm baryon.
The relative branching ratioΓ(Ξ+

cc → pD+K− )/Γ(Ξ+
cc → Λ+

c K
−π+ ) = 0.078± 0.045.

The lifetime of this state in both decay modes is very short; less than 33fs at 90% confidence.
The properties of these two signals are consistent with eachother. SELEX reports an independent con-
firmation of the double charm baryonΞ+

cc, previously seen in theΞ+
cc → Λ+

c K
−π+ decay mode, via the

observation of its decayΞ+
cc → pD+K−.

155



CHAPTER 3

0

0.5

1

1.5

2

2.5

3

3.5

4

3.46 3.48 3.5 3.52 3.54 3.56 3.58

(a)  p D+ K-

peak mass:

3516 MeV

4-bin Poisson Prob

< 2.3 x 10-4

L/σ > 1.0

M(p D+ K-)

E
ve

n
ts

/2
.5

 M
eV

/c
2

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

3.46 3.48 3.5 3.52 3.54 3.56 3.58

(b)  wrong sign:  p D- K-

L/σ > 1.0

M(p D- K-)

S
ca

le
d

 E
ve

n
ts

/2
.5

 M
eV

/c
2

Fig. 3.39: (a)Ξ+
cc → pD+K− mass distribution for right-sign mass combinations. (b) Wrong-sign events with a
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10.5 Conclusions

TheΞ+
cc(ccd) doubly charmed baryon has now been observed by SELEX in two decay modes at a mass of

3518.7± 1.7MeV/c2with a lifetime less than 33fs at 90% confidence. Analysis continues with SELEX
data to searchfor additional decays modes for this state andto search for the two other doubly-charmed
baryons ground states expected:Ξ++

cc (ccu) andΩ+
cc(ccs).

11 SUMMARY AND OUTLOOK 43

It took few years , after the discovery of theJ/ψ, to sketch the spectroscopical pattern of the narrow
ortocharmonium and ortobottomonium states: the experimental determination of such energy levels is
extremely good, all states are know with precisions better than 1 MeV. On the other side, the experimental
history of spin singlet states has started to clear up only inthe recent years, but open puzzles remain:

– the total width of theηc(1S) (the ground state of charmonium) is as large as the one of theψ(3770),
which can decay to open charm:

– after 16 years, the realηc(2S) has been observed, disconfirming an evidence by Crystal Ballthat
misled theory calculations on hyperfine splittings for morethan a decade.

– two compatible evidences of thehc state have been found in the last year, and may bring to an
end the saga of the spin singlet P state; a concrete strategy to consolidate this observation is now
needed.

– none of the 5 spin singlet states in the bottomonium system has been found yet; given the absence
of scheduled running time on narrowΥ states in the near future, it is necessary to elaborate smarter
search strategies to spot these states at asymmetric B-factories or hadron colliders .

The quest to complete the experimental spectra is now extending to the higher excitations:

– the search for narrow D-states resulted in the discovery oftheΥ(1D) states in CLEO III, and to
the observation of the intriguing X(3872) meson by Belle; while the bottomonium state falls well
in the expected pattern, there is a wide variety of speculations on the nature of the X(3872).

43Authors: G. Bali, N. Brambilla, R. Mussa, J. Soto
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– the need to achieve a deeper understanding of the region just above open charm threshold, together
with the improvement of the experimental tools, will allow to disentangle each single contribution
to the R ratio, hopefully clarifying the puzzles opened by the pioneering studies of Mark II.

As we have seen in this chapter the application of EFTs of QCD to heavy quarkonium has considerably
increased our understanding of these systems from a fundamental point of view. NRQCD has allowed,
on the one hand, for efficient lattice calculations of the masses of the bottomonium and charmonium
states below open heavy flavour threshold. On the other hand,it has paved the way to pNRQCD, which
provides, in the strong coupling regime, a rigorous link from QCD to potential models for states below
open heavy flavour threshold. In the weak coupling regime, pNRQCD has allowed to carry out higher-
order calculations and to implement renormalization groupresummations and renormalon subtractions
in a systematic way. This regime appears to be applicable at least for theΥ(1S) andηb(1S). Interest-
ingly, as discussed in Section 2.3.1 (Tables 3.2 and 3.3) even some excited states can be reproduced in
perturbation theory (inside the errors of the perturbativeseries).

The most challenging theoretical problem at present is the description of states above open heavy
flavour threshold. The recent discovery ofX(3872) has made clear that potential models suffer from
large systematic uncertainties in this region and that the inclusion of, at least, heavy-light meson degrees
of freedom is necessary. Although NRQCD holds in this region, extracting information from it on the
lattice is not simple, since besides heavy quarkonium, heavy-light meson pairs and hybrid states pop-
ulate it. It would be important to develop theoretical toolsin order to bring current phenomenological
approaches into QCD based ones.

In order to stimulate progress in heavy quarkonium spectroscopy, we shall try to pose a number
of questions, and try to provide what we believe to be reasonable answers to them, from the theory and
experimental point of view.

• Q. What does theory need from experiment?

A1(TH:) Discovery and good mass measurements of the missing states below open heavy flavour
threshold.

A1(EXP:) Concerning triplet S and P states of neutral heavy quarkonia, experimental measure-
ments are mature and ahead of theory. Concerning the singletS and P states, charmonia are under very
active investigation at present, and probably will be nailed down to less than .5 MeV/c2 in the near future,
with an active cooperation amid experimental groups. In bottomonium, the situation looks less promis-
ing: only Tevatron experiments have currently some chance to detect the missing (narrow?) states, while
CLEO III searches turned out no plausible candidates, and showed that more luminosity is needed at
Υ(1, 2, 3S), but none of the active B-factories is planning to shift out of Υ(4S).

The experimental study of the spectrum of the charged heavy quarkonium, theBc, has not started
yet. The ground state has been seen by CDF and confirmed by D0, but via its semileptonic decay,
which yield still very wide uncertainties on the mass (0.4 GeV/c2). The experimental search for an
exclusive, non leptonic mode is under way and will allow to know this state with accuracies better than
5 MeV/c2 in the near future. Beyond this, most experimental efforts will be focused on finding the
dominant decay modes of the ground state. The search for theB∗

c , which decays dominantly toBc via
M1 radiation of a soft photon , will be extremely challengingfor current Tevatron experiments, due to
the high combinatorial background and to the low efficiency on low energy photons. Same can be said
for the P states , which are expected to decay toB

(∗)
c via dipion emission. It is hard to predict whether

the hadronic B-factories, BTEV and LHCB, will be able to contribute to these spectroscopical studies.
The issue should be discussed in Chapter 9.

A2(TH:) Thorough analysis of the region above open heavy flavour threshold in search for quarko-
nium states, hybrid states, molecules and other exotica.
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A2(EXP:) The BES II R scan and the surprises from the asymmetric B-factories (X(3872) and
doublecc̄ production) have ignited new experimental and theoreticalinterest in this physics region. The
CLEO-c running atψ(3770) and aboveDsD̄s threshold has a very large physics potential for heavy
quarkonium studies. At the same time, B factories can benefitfrom a large variety of techniques to
identify new charmonium states: (a) inclusive ones , such asJ/ψ andψ ′ recoil in doublecc̄, or K recoil in
tagged B decays; (b) exclusive ones , such asB→(ψ, ηc)XK

(∗) (for narrower states),B→D(∗)D̄(∗)K(∗)

(for wider states).

Some discovery potential is to be expected also from hadron colliders, where the large, very clean
samples of D mesons can be used as starting point to search forpeaks inDD̄ invariant mass combina-
tions.

• Q. What does experiments need from theory?

A1(EXP:) In spectroscopy, two are the crucial issues in the search of missing states: (a) a good
understanding of the production/formation mechanisms; (b) a comprehensive set of decay channels, with
solid predictions on the partial widths. The two issues are related between each other, and to the hot topics
of the next chapter.

There is NOT an infinite number of ways to produce charmonium,less for bottomonium, much less
for Bc: these couplings deserve a higher level of understanding, both theoretically and experimentally.
This is much more important, when we do want to understand whether we can get some deeper insight
from the non observation of a missing state. It must be noticed that most production mechanisms are not
fully understood, and/or lead to wrong predictions.

A limited set of processes, then, deserve deeper theoretical understanding:

– M1 hindered radiative transitions: relativistic corrections are dominant in these processes that are
the main gateways toηb’s.

– isospin violating hadronic transitions: it is now very important to establish a physical relation
betweenψ(2S)→hcπ

0 andhc→J/ψπ0. This can help clarifying the consistency between the two
(still weak) evidences.

– factorization in B decays: exclusive B decays to K+cc̄ were expected to yield0−+, 1−−, 1++

charmonia, and, in smaller quantities,0++, 2++. The prediction holds for the second, butχc0’s
are produced as copiously asχc1’s . The understanding of the effective selection rules can help to
set limits on thehc production, and to find the possible quantum numbers of the X(3872) meson.

– coupling to exclusivepp̄: helicity selection rule in perturbative QCD forbids the formation ofηc,
χc0, hc from pp̄ annihilations; no suppression is observed in the first two cases, and the third is
under active investigation. It is auspicable that recent developments in NRQCD can help to explain
thepp̄ coupling and make testable predictions on the coupling toηc(2S) and X(3872).

– the doublecc̄ selection rules are not yet clear: so far only scalars and pseudoscalars were ob-
served recoiling against theJ/ψ . This process has already allowed an indipendent confirmation
of theηc(2S) observation. By understanding the dynamics, one can converge more rapidly on the
determination of the quantum numbers of any bump that shows up in theJ/ψ recoil spectrum.

Within theory one may ask the following questions:

• Q. What does the phenomenological approach need from the theoretical one?

A ∗ That the theory clearly points out the most relevant feautures that should be implemented in
phenomenological models.

• Q. What does the theoretical approach need from the phenomenological one?

A ∗ To point out shortcomings in models which are relevant to experimental observations.
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Within the theoretical approach:

• Q. What does EFTs need from lattice?

∗ Calculation of the correlators which parameterize nonperturbative effects in the weak coupling

regime of pNRQCD.

∗ Calculation of the various potentials which enter pNRQCD inthe strong coupling regime.

• Q. What does lattice need from EFT?

∗ Calculation of the NRQCD matching coefficients in lattice regularizations.

∗ Chiral extrapolations.

Let us next describe the future development which are desirable within each particular approach.

From the side of the EFT the priority “to-do” list is:
– Develop a suitable EFT for the region above open heavy flavour threshold.

– Include the effects of virtual pions. Pions should be included in the strong coupling regime of
pNRQCD as ultrasoft degrees of freedom and their effect on the spectrum should be investigated.

– A systematic investigation of the structure of the renormalon subtractions in NRQCD matching
coefficients and in the perturbative potentials.

For what concerns lattice calculations the priority practical lattice ”to-do list” is:

– Further investigations of sea quark effects, in particular on charmonia and also in bottomonia,
including charm mass effects.

– Calculation of threshold effects in charmonia and bottomonia, first using lattice potentials, then a
multichannel analysis in lattice NRQCD/QCD.

– Further investigations of OZI suppressed contributions,in particular in the PS charm-sector.

– Mixing of charmonia and would-be glueballs.

– Doubly charmed baryons.

– QQq potentials.

From the side of phenomenological models the wish list includes:
– The major deficiency of these models is that they only include theqq̄ components of the Fock space

expansion and totally neglect higher Fock space componentswhich can be included as coupled
channel effects. These are expected to be most prominent forstates close to threshold.

From the side of experiments we need:
– to clarify the nature of the X(3872) state, fully exploiting the four running experiments that see

this state.

– to strengthen thehc evidence , by asking for an active collaboration between experiments , in order
to intensify the checks which certify the compatibility between the two recent evidences.

– to support further cross checks on the systematic errors onthe masses of pseudoscalar charmonia:
both BaBar and Belle should already have a large sample ofγγ→ηc(1, 2S), to measure with high
precision both states.

– to search for doubly charmed baryons in asymmetric B-factories, as well as at the Tevatron.

– to measure, at CLEO-c, the coupling of theψ(3770) and theΥ(1, 2, 3S) states topp̄, to quantify
the perspectives to study charmonium at open charm threshold and bottomonium with antiproton
beams.

– to support furtherηb searches at the Tevatron, and to strengthen the physics casefor further running
at narrow bottomonium energies.
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1 INTRODUCTION 1

The study of decay observables has witnessed in the last years a remarkable progress. New experimental
measurements, mainly coming from Belle, BES, CLEO and E835 have improved existing data on inclu-
sive (Section 3 and 4), electromagnetic (Section 3) and several exclusive (Section 5) decay channels as
well as on several electromagnetic (Section 6) and hadronic(Section 7) transition amplitudes. In some
cases the new data have not only led to a reduction of the uncertainties but also to significant shifts in the
central values. Also the error analysis of several correlated measurements has evolved and improved our
determination of quarkonium branching fractions (Section2). New data have also led to the discovery of
new states. These have been mainly discussed in Chapter 3.

From a theoretical point of view several heavy quarkonium decay observables may be studied
nowadays in the framework of effective field theories of QCD.These have been introduced in Chapters 1
and 3. In some cases, like inclusive and electromagnetic decay widths, factorization of high and low en-
ergy contributions has been achieved rigorously. In some others, where more degrees of freedom, apart
from the heavy-quarkonium state, are entangled and the problem becomes quite complicated, models are
still used to some extent and factorization formulas, if there are, are on a less solid ground. There is
room there for new theoretical developments. High energy contributions can be calculated in perturba-
tion theory. Low energy matrix elements, which may include,among others, heavy quarkonium wave
functions, colour-octet matrix elements, correlators, overlap integrals in radiative transitions, multipole
gluon emission factors, can be determined either by suitable fitting of the data or on the lattice or by
means of potential models. They typically set the precisionof the theoretical determinations.

In each of the following sections we will have a first part where the theoretical framework is
reviewed and the basic formalism set up and a second part thatsummarizes the phenomenological appli-
cations and presents the experimental status. In the last section of the chapter, Section 8, we will discuss
decay modes of theBc. There are no data available yet (apart from the lifetime), but Bc will be copi-
ously produced at future hadron colliders. This system, differently from bottomonium and charmonium,
decays only weakly. Therefore, it opens in quarkonium physics a window to some of the electroweak
parameters of the Standard Model.

The outline of the chapter is the following. We will start in Section 2 by making some general
remarks on the determination of quarkonium branching ratios from experiments. In Section 3 we will
discuss inclusive and electromagnetic decay widths, in Section 4 Υ inclusive radiative decays, in Sec-
tion 5 exclusive decays, in Section 6 radiative and in Section 7 hadronic transitions. Finally, Section 8
will be devoted to the decays of theBc.

1Author: A. Vairo
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2 BRANCHING RATIO MEASUREMENTS 2

The measurement of branching ratios (or partial widths)B is deceptively simple: the total number of
events observed in a given final stateNobs

QQ̄→f
is proportional to the total number of events produced

Nprod
QQ̄

for that particular resonance:

Nobs
QQ̄→f = eff ×Nprod

QQ̄
× B(QQ̄→f), (4.1)

Nprod
QQ̄

in turn needs to be measured by counting some specific events.In most cases, depending on the

process under study and the analysis strategy,Nprod
QQ̄

is calculated from the number of events observed in

a given “reference” final stateNobs
QQ̄→Ref

:

Nprod
QQ̄

=
Nobs
QQ̄→Ref

eff ′ BRef
.

The reported value ofB(QQ̄→f) will therefore useBRef as reported by some previous experiment:

B(QQ̄→f) =
Nobs
QQ̄→f

Nobs
QQ̄→Ref

eff ′

eff
BRef . (4.2)

As discussed in [1], there are a number of potentially dangerous consequences in this procedure.
First of all different experiments might use the same reference mode, so their values ofB are not in-
dependent. Even worse, theB(QQ̄→f) reported in Eq. (4.2) will also be (hiddenly) correlated to the
normalizationRef ′ chosen by the previous experiment(s) whereBRef had been measured, and ultimately
may depend on some other branching ratioB′

Ref′ . Such hidden correlations are hard to identify and can
have pernicious consequences on the evaluation ofB′ based on independent measurements from different
experiments.

For precision determination of branching ratios or partialwidths, it is important to know the nor-
malization used in each measurement and to quote explicitlythe quantity that is indeed directly measured
by each experiment

B(QQ̄→f)

BRef
=

Nobs
QQ̄→f

Nobs
QQ̄→Ref

eff ′

eff
, (4.3)

i.e., the ratio or product of branching ratios (even of different particles), which is most directly related to
the event yield. Many experiments could also provide measurements of ratios of branching ratios

RB(f/f ′) =
B(QQ̄→f)

B(QQ̄→f ′)
, (4.4)

which do not depend on the normalization, and where usually also a number of other systematics cancel.

With the increased statistical precision that is to be expected in the next few years, it will become
increasingly important for an appropriate branching ratioand partial width evaluation that individual
measurements are reported according to Eq. (4.3) and whenever possible also as in Eq. (4.4). In order
to perform the best estimate based on a set of measurements from different experiments, it might also
become important to take into account the systematic errorsthat are common to all measurements per-
formed by the same experiment. An appropriate choice of a setof independent measurements of (4.3)
and (4.4) from each experiment is likely the best option for aglobal fit to quarkonium branching ra-
tios. A comparison ofRB(f/f ′) that could be directly measured by virtually all experiments, could also

2Author: C. Patrignani
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help understand possible systematic effects, which are going to be the limiting factor on branching ratio
determinations.

Here, we briefly outline the experimental techniques and analysis strategies adopted to determine
these branching ratios with emphasis on the corresponding possible normalization choices, as a necessary
ingredient to understand possible mutual dependencies andconstraints.

2.1 Branching ratios measured ine+e− formation experiments

e+e− formation experiments are undoubtedly the most important tool to investigate charmonium and
bottomonium branching ratios by a variety of techniques. Inthese experiments then3S1 quarkonium
states can be directly formed and theB(n3S1→f) are determined either normalizing to a specific decay

mode, i.e., providing a direct measurement of
B(n3S1→f)

B(n3S1→Norm)
, or measuring the number ofn3S1 by

performing a scan of the resonance.

The usual choice for the normalization channel is the inclusive hadronic decay mode, which is
close to 100% for all resonances, i.e., it provides to a good approximation an absolute normalization.
However, it requires subtraction of the non resonant hadronic cross-section whose yield (at the given
running condition) must be calculated taking into account the interference with the resonance. When
the total number of events is determined by a scan of the resonance (which also provides measurements
of Γtot, Bℓℓ andBhadr), there is in principle a possible correlation of the branching ratio to the values
for these quantities that is likely small if the scan has manypoints, but should not be overlooked. As
stressed in Chapter 2, Section 8.5, interference with the continuum for any specific final state might
introduce sizeable corrections. A measurement of the ratioRB(f/Norm) across the formation energy of
the resonance is needed to understand the interference and its impact on branching ratios.

All other states are studied in hadronic or radiative decays, and the number of events produced for
each state must be determined using the appropriaten3S1 branching ratio:

Nprod
n′3PJ

= Nprod
n3S1

× B(n3S1→γ n′3PJ ), (4.5)

Nprod
n′1S0

= Nprod
n3S1

× B(n3S1→γ n′1S0). (4.6)

Thus, for3PJ and1S0 states these experiments can only directly measure the ratiosRB(f/f ′) and the
following combinations of branching ratios:

B(n3S1→γ n′3PJ)
B(n3S1→Norm)

B(n3PJ→f), (4.7)

B(n3S1→γ n′1S0)

B(n3S1→Norm)
B(n′1S0→f). (4.8)

On the other hand, since theB(ψ(2S)→J/ψπ+π−) is reasonably large, and the events can be
easily selected by just reconstructing theπ+π− recoiling against theJ/ψ, absolute measurements of
J/ψ branching ratios have been obtained based on “tagged”J/ψ samples:

B(J/ψ→f) =
effπ+π−X

effπ+π− f

Nobs(ψ′→(π+π−)recoilf)

Nobs(ψ′→(π+π−)recoilX)
. (4.9)

From the experimental point of view this is a particularly clean measurement, since the efficiency ratio
can be determined with high precision. With the increased CLEO III samples, it would be interesting to
fully exploit the possibility of using “tagged”Υ(2S) andΥ(3S) samples to perform absoluteΥ(1S) and
Υ(2S) branching ratios determinations.

Radiative decay branching ratios (e.g., direct1−−→γ X and1−−→γ X→γγX ′) have also been
directly measured.
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In all cases, photon candidates that are likely to originatefrom π0 are not considered (π0 veto),
and the efficiency correction relies on Monte Carlo, and ultimately on the event generator used to model
the particle multiplicities, and the angular and momentum distributions.

Despite efforts to tune JETSET [2] fragmentation parameters to reproduce specific classes of inclu-
sive events (e.g., hadronic events in the continuum [3] below DD̄ threshold orJ/ψ, ψ(2S) decays [4]),
there are simply not enough experimentally measuredχc, χb, ηc, ηb decays to light hadrons (l.h.) to
compare these models with. That could eventually become a limiting systematic to these measurements.

2.2 Branching ratios and partial widths measured inpp̄ formation experiments

In these experiments [5] a scan of the resonance allows direct measurements of mass, total width and
B(pp̄)Bf for all charmonium resonances.3 For resonances whose natural width is comparable or smaller
than the beam width (O(700MeV) for E760 and E835), the productB(pp̄)Bf is highly correlated to
the total width, and the quantityΓ(pp̄)Bf is more precisely determined. By detecting the resonance
formation in more than one final state, the ratio of branchingratiosRB(f/f ′) can be determined inde-
pendently from the total width andB(pp̄), in general with small systematic errors since the final state
is fully reconstructed, and the angular distribution only depends on a limited number of decay and for-
mation amplitudes. Interference effects with the continuum could affect the measurement ofB(pp̄)Bf

andRB(f/f ′), but as ine+e− experiments, their relevance could be estimated by a measurement of
RB(f/f ′) across the formation energy of the resonance. Unfortunately, only a few highly characteristic
final states of charmonium (e+e−, J/ψX, γγ) can be detected by these experiments, because of the
large hadronic non-resonant cross-section.

Recently, a pioneering study ofpp̄→π0π0 [6] and ηη differential cross-sections at theχc0 for-
mation energy has shown that also selected exclusive two-body hadronic decays can be successfully
measured. The interference with the continuum could be successfully exploited by the next generation
of pp̄ annihilation experiments to extend the knowledge ofχc andηc branching ratios to baryons or light
hadrons.

2.3 Branching ratios and partial widths measured in two-photon reactions

The number of events observed for a specific final state is proportional toΓγγBf×Lγγ , where the effective
two-photon luminosity functionLγγ (see Chapter 2, Section 8.4) is calculated by all experiments using
the same formalism (even if not all using the same generator). The only directly measurable quantity is

ΓγγBf , (4.10)

or (if more than one final state is detected)RB(f/f ′). The theoretical uncertainties inLγγ are largely
common to all experiments and that should be taken into account for future high statistics measurements.
It might be worth mentioning here that the values reported inthe past by different experiments for the
Γγγ , derived from their measurement of (4.10), are not independent and they are not always easily
comparable since some of them are obtained by a weighted average of many decay modes, which are
individually poorly known.

2.4 Branching ratios and partial widths measured by radiative return (ISR)

Because of initial state radiation (ISR, also referred to ashard photon emission or radiative return),
e+e− colliders are effectively at the same time (asymmetric) colliders for all

√
s energies below nominal

collision energy. The effective luminosity (and thereforeevent yields) can be sizeable [7] and can be
determined quite accurately by countingµµγ events, for which precise expressions (and event generators

3Thepp̄ branching ratios of bottomonium states are likely 3 orders of magnitudes smaller than for charmonium, and only
when a measurement will be available, it will be possible to judge on the feasibility of such experiments.
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based on them) are commonly available. The major advantage of this technique is thate+e−→X can
be measured simultaneously and under uniform detector conditions over a broad range of

√
s. And they

“come for free” at any of thee+e− factories, which are expected to collect large data samples.

The main interest is the measurement ofR, but for any exclusive final state those experiments
could obtain a direct measurement ofΓe+e−Bf for any resonance whose mass is lower than the collision
energy, and, again by detecting more than one final state,RB(f/f ′). To date only BES [8] and BaBar [9]
have used this technique to measureΓ(ψ′→e+e−)B(ψ′→J/ψππ) andΓ(J/ψ→e+e−)B(J/ψ→µ+µ−)
respectively. Measurements ofΓe+e−Bl+l− would provide important constraints on both the total width
andΓe+e− for all 1−− states, providing at the same time an important cross check for possible systematic
errors.

2.5 Branching ratios measured inB decays

AsymmetricB factories focused originally on exclusiveB decays to final states involving acc̄ as the
cleanest modes to study CP violation.

With the impressive amount of data collected so far (more than 500 fb−1 as of summer 2004 adding
Belle and BaBar) andB(B→cc̄X) of order 10−3, both experiments are collecting larger and larger
samples of exclusiveB decays to charmonia, and they are obviously interested in reconstructing them
into as many different final states as possible. The same is true for D0 and CDF, since the preliminary
reconstruction of highly characteristic exclusive charmonium (and bottomonium) final states is needed
for other analyses.

For charmonium the quantity directly measured by these experiments is

B(B→cc̄X) × B(cc̄→f), (4.11)

and again from the number of fully reconstructed events intodifferent final states these experiments can
directly measureRB(f/f ′) for a variety of final states and for virtually all quarkoniumstates. Even
if the precision might not always compete with other techniques, the wide range of possibleRB(f/f ′)
measurements, with likely different sources of systematicerrors, would certainly be important in evalu-
ating quarkonium branching ratios, in particular for thosestates (χQ andηQ) whose branching ratios are
largely unknown.

2.6 Indirect determinations as a tool to investigate systematic effects

The possibilities offered by the mutual constraints posed by measurements of different products or ratios
of branching ratios have so far been only partially exploited.

The first advantage is that branching ratios measured by different techniques have different sources
of systematic errors, and the comparison can provide insight on how to nail them down. The current best
estimate forB(χc2→γJ/ψ) [10] is largely determined by measurements ofΓ(χc2→pp̄)B(χc2→γJ/ψ),
Γ(χc2→γγ)B(χc2→γJ/ψ) andB(χc2→γγ)/B(χc2→γJ/ψ), to the point that these measurements in-
directly constrain the estimate ofB(ψ′→γχc2) to a value significantly lower than the world average
of direct measurements, since the productB(ψ′→γχc2)B(χc2→γJ/ψ) has been measured with high
precision.4

The other advantage is that measurements of different product and ratios of branching ratios pose
constraints on their values: forχc0 at present the partial widthsΓγγ andΓγJ/ψ are known to≈10% [10],
even if none of the many measurements more or less directly related to these quantities (Γ, ΓγγB4π,
Γγγ/ΓγJ/ψ, ΓγJ/ψBpp̄, B(ψ′→γχc0), B(ψ′→γχc0)Bpp̄, B(ψ′→γχc0)BγJ/ψ and others) is individually
known much better than that.

4New more precise measurements ofB(ψ′→γχc2) might in turn provide constraints forB(ψ′→γχc2)B(χc2→γJ/ψ)
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The proposed next generation ofpp̄ experiments with extended PID ability could provide invalu-
able information by measuringpp̄→pp̄ differential cross-section at theηc (and possibly at theχc0). This
would provide a direct measurement ofB(cc̄→pp̄), indirectly constraining the radiativeJ/ψ (andψ′)
M1 transitions from the well measuredB(J/ψ→γηc→γpp̄). Since at present the≈30% uncertainty in
B(J/ψ→γηc) is the major source of uncertainty in allηc branching ratios, this will also directly affect
all ηc branching ratios.

With the increased statistics available atB factories it might soon become possible to deter-
mine at least some of theB(B→cc̄ l.h.) branching ratios without explicitly reconstructing the char-
monium. In this case, simultaneous measurements of the sameB decay mode in exclusive final states
B(B→cc̄ l.h.)B(cc̄→f) would allowB factories to directly measureB(cc̄→f) from Eq. (4.11). Con-
sidering that the photon inψ(2S)→γηc(2S) is very soft and that this inclusive radiative transition will
likely be difficult to measure for both CLEO-c and BES III, this might well be the best way of determin-
ing theηc(2S) branching ratios, and indirectly determining the partial width for the M1ψ(2S)→γηc(2S)
transition itself.

3 ELECTROMAGNETIC AND INCLUSIVE DECAYS INTO LIGHT PARTICLES 5

3.1 Theoretical framework

The main dynamical mechanism of heavy-quarkonium decay into light particles is quark–antiquark anni-
hilation. Since this happens at a scale2m (m is the heavy quark mass), which is perturbative, the heavy
quarks annihilate into the minimal number of gluons allowedby colour conservation and charge con-
jugation. The gluons subsequently create light quark–antiquark pairs that form the final state hadrons:
QQ̄→ng∗→m(qq). Values ofn are given for various quarkonia in Table 4.1; for comparisonthe min-
imal number of photons into which aQQ̄ pair can annihilate is also listed. Experimentally this fact is
reflected by the narrow width of the heavy quarkonia decays into hadronic channels in a mass region
where strong decays typically have widths of hundreds of MeV. As an example let us consider theJ/ψ
decay into light hadrons. Following [11], this process is regarded as the decay into three real gluons. The
calculation of this width leads to the result

Γ(J/ψ→l.h.) =
10

81

π2 − 9

πe2c

α3
s

α2
em

Γ(J/ψ→e+e−) = 205 keV
( αs

0.3

)3
. (4.12)

Although this value is somewhat larger than the experimental one it explains the narrowness of the
hadronic decays of the quarkonia. Corrections like relativistic, αs or colour-octet ones, may lead to a
better agreement with experiment. A systematic way to include these corrections is provided by nonrel-
ativistic effective field theories of QCD.

In an effective field theory language6, at scales lower thanm heavy-quarkonium annihilation is
resolved as a contact interaction. This is described at the Lagrangian level by four-fermion operators
whose matching coefficients develop an imaginary part. Consequently, the annihilation width of a heavy
quarkonium state|H〉 into light particles may be written as

Γ(H → light particles) = 2 Im 〈H|Lψχ|H〉, (4.13)

whereLψχ is given by Eq. (1.8) of Chapter 1 up to four-fermion operators of dimension 6. The low-
energy dynamics is encoded in the matrix elements of the four-fermion operators evaluated on the heavy-
quarkonium state. If one assumes that only heavy-quarkonium states with quark-antiquark in a colour-
singlet configuration can exist, then only colour-singlet four-fermion operators contribute and the matrix
elements reduce to heavy-quarkonium wave functions (or derivatives of them) calculated at the origin.

5Authors: T. Ferguson, C. Patrignani, A. Vairo
6We refer to Chapter 1 for a basic introduction to effective field theories and NRQCD.
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Table 4.1: Quantum numbers of quarkonium states and the minimal number of virtual gluons and photons into
which they can annihilate. The subscriptd refers to a gluonic colour-singlet state that is totally symmetric under
permutations of the gluons.

2S+1LJ IG(JPC ) gluons photons

ηc, ηb 1S0 0+(0−+) 2g 2γ

J/ψ, Υ(1S) 3S1 0−(1−−) (3g)d γ

hc, hb 1P1 0−(1+−) (3g)d 3γ

χc0, χb0 3P0 0+(0++) 2g 2γ

χc1, χb1 3P1 0+(1++) 2g 2γ

χc2, χb2 3P2 0+(2++) 2g 2γ

This assumption is known as the “colour-singlet model”. Explicit calculations show that at higher order
the colour-singlet matching coefficients develop infrareddivergences (for P waves this happens at NLO
[12]). In the colour-singlet model, these do not cancel in the expression of the decay widths. It has
been the first success of NRQCD [13,14] to show that the Fock space of a heavy-quarkonium state may
contain a small component of quark–antiquark in a colour-octet configuration, bound with some gluonic
degrees of freedom (the component is small because operators coupling transverse gluons with quarks
are suppressed by powers ofv ≪ 1, v being the heavy-quark velocity in the centre-of-mass frame),
that due to this component, matrix elements of colour-octetfour-fermion operators contribute and that
exactly these contributions absorb the infrared divergences of the colour-singlet matching coefficients in
the decay widths, giving rise to finite results [14, 15]. NRQCD is now the standard framework to study
heavy-quarkonium inclusive decays.

The NRQCD factorization formulas are obtained by separating contributions coming from de-
grees of freedom of energym from those coming from degrees of freedom of lower energy. Inthe case
of heavy-quarkonium decay widths, they have been rigorously proved [14]. High-energy contributions
are encoded into the imaginary parts of the four-fermion matching coefficients,f, g1,8,ee,γγ,...(2S+1LJ)
and are ordered in powers ofαs (coefficients labeled withee, γγ, ... refer to pure electromagnetic decays
into e+e−, γγ, ...). Low-energy contributions are encoded into the matrix elements of the four-fermion
operators on the heavy-quarkonium states|H〉 (〈. . . 〉H ≡ 〈H| . . . |H〉). These are, in general, nonper-
turbative objects, which can scale as powers ofΛQCD, mv, mv2, ... (i.e., of the low-energy dynamical
scales of NRQCD). Therefore, matrix elements of higher dimensionality are suppressed by powers of
v or ΛQCD/m. Including up to four-fermion operators of dimension 8, theNRQCD factorization for-
mulas for inclusive decay widths of heavy quarkonia into light hadrons, which follow from Eq. (4.13),
read [14,15]:

Γ(VQ(nS) → l.h.) =
2

m2

(
Im f1(

3S1) 〈O1(
3S1)〉VQ(nS)

+Im f8(
3S1) 〈O8(

3S1)〉VQ(nS) + Im f8(
1S0) 〈O8(

1S0)〉VQ(nS)

+Im g1(
3S1)

〈P1(
3S1)〉VQ(nS)

m2
+ Im f8(

3P0)
〈O8(

3P0)〉VQ(nS)

m2

+Im f8(
3P1)

〈O8(
3P1)〉VQ(nS)

m2
+ Im f8(

3P2)
〈O8(

3P2)〉VQ(nS)

m2

)
, (4.14)
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Γ(PQ(nS) → l.h.) =
2

m2

(
Im f1(

1S0) 〈O1(
1S0)〉PQ(nS)

+Im f8(
1S0) 〈O8(

1S0)〉PQ(nS) + Im f8(
3S1) 〈O8(

3S1)〉PQ(nS)

+Im g1(
1S0)

〈P1(
1S0)〉PQ(nS)

m2
+ Im f8(

1P1)
〈O8(

1P1)〉PQ(nS)

m2

)
, (4.15)

Γ(χQ(nJS) → l.h.) =
2

m2

(
Im f1(

2S+1PJ)
〈O1(

2S+1PJ)〉χQ(nJS)

m2

+Im f8(
2S+1SS) 〈O8(

1S0)〉χQ(nJS)

)
. (4.16)

At the same order the electromagnetic decay widths are givenby:

Γ(VQ(nS) → e+e−) =
2

m2

(
Im fee(

3S1) 〈OEM(3S1)〉VQ(nS)

+Im gee(
3S1)

〈PEM(3S1)〉VQ(nS)

m2

)
, (4.17)

Γ(PQ(nS) → γγ) =
2

m2

(
Im fγγ(

1S0) 〈OEM(1S0)〉PQ(nS)

+Im gγγ(
1S0)

〈PEM(1S0)〉PQ(nS)

m2

)
, (4.18)

Γ(χQ(nJ1) → γγ) = 2 Im fγγ(
3PJ)

〈OEM(3PJ)〉χQ(nJ1)

m4
, J = 0, 2 . (4.19)

The symbolsVQ andPQ indicate respectively the vector and pseudoscalar S-wave heavy quarkonium
and the symbolχQ the generic P-wave quarkonium (the statesχQ(n10) andχQ(nJ1) are usually called
hQ((n− 1)P ) andχQJ((n − 1)P ), respectively).

The operatorsO,P1,8,EM(2S+1LJ) are the dimension6 and8 four-fermion operators of the NR-
QCD Lagrangian. They are classified by their transformationproperties under colour as singlets (1)
and octets (8), and under spin (S), orbital (L) and total angular momentum (J). The operators with the
subscript EM are the colour-singlet operators projected onthe QCD vacuum. The explicit expressions of
the operators can be found in [14] (or listed in Appendix A of [16]). The dimension 6 operators are also
given in Eq. (1.8) of Chapter 1.

In general different power countings are possible at the level of NRQCD, due to the fact that
different scales (mv, ΛQCD, mv2,

√
mΛQCD, ...) are still dynamically entangled [17, 18]. Likely

different power countings will apply to different physicalsystems. Therefore, the relative importance
of the different matrix elements that appear in Eqs. (4.14)–(4.19) may change in going from lower to
higher quarkonium states and from bottomonium to charmonium. Whatever the power counting is, the
pseudoscalar and vector state decay widths are dominated bythe colour-singlet matrix elements, which
contribute at ordermv3. The hadronic P-state decay widths have two contributions (the colour-singlet
and colour-octet matrix elements), which contribute at thesame ordermv5, if we assume that a fraction
v of the P-state wave function projects onto the colour-octetoperator.

Since NRQCD is an expansion in two small parameters (αs andv), progress comes typically from
(1) improving the perturbative series of the matching coefficients either by fixed order calculations or by
resumming large contributions (large logs or large contributions associated to renormalon singularities);
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(2) improving the knowledge of the NRQCD matrix elements either by direct evaluation, which may be
obtained by fitting the experimental data, by lattice calculations, and by models, or by exploiting the
hierarchy of scales still entangled in NRQCD and constructing EFTs of lower energy.

3.1.1 The perturbative expansion

The imaginary parts of the four-fermion matching coefficients have been calculated over the last twenty
years to different levels of precision. Up to orderα3

s the imaginary parts off8(
1S0), f1(

3P1), and
f8(

3PJ) can be found in [19], the imaginary parts off8(
3S1), f8(

1P1) in [20] and the imaginary part of
f1(

1S0) in [19,21]. Two different determinations off1(
3P0) andf1(

3P2) exist at NLO in [19] and [22].
The imaginary part off1(

3S1) has been calculated (numerically) up to orderα4
s in [23]. The imaginary

part ofg1(3S1) at orderα3
s can be found in [24], the imaginary part ofg1(1S0) at orderα2

s in [14]. Where
the electromagnetic coefficients are concerned, the imaginary part offee(3S1) has been calculated up to
orderα2α2

s in [25, 26], the imaginary parts offγγ(1S0) andfγγ(3P0,2) up to orderα2αs can be found
in [19, 27] andgee(3S1) andgγγ(1S0) up to orderα2 in [14]. A complete list of the above matching
coefficients at our present level of knowledge can be found inAppendix A of [28]. The LL running
for the imaginary parts of the matching coefficients of the four-fermion NRQCD operators of dimension
6 and 8 have been obtained in [16] and can be read there in Appendix C. The tree-level matching of
dimension 9 and 10 S-wave operators can be found in [29]. The tree-level matching of dimension 9 and
10 electromagnetic P-wave operators can be found in [30].

The convergence of the perturbative series of the four-fermion matching coefficients is often poor.
While the large two-loop contribution ofIm fee(

3S1) seems to be related, at least in the bottomonium
case, to the factorization scale and, therefore, may be put presumably under control via renormalization
group improvement techniques [26,31], large corrections appearing in other S-wave decay channels have
been ascribed to renormalon-type contributions [32]. There is no such study so far for P-wave decays.

3.1.2 The relativistic expansion

The NRQCD matrix elements may be fitted to the experimental decay data [33–35] or calculated on
the lattice [36, 37]. The matrix elements of colour-singletoperators can be linked at leading order to
the Schrödinger wave functions at the origin [14]7 and, hence, may be evaluated by means of potential
models [38] or potentials calculated on the lattice [39]. In[34] by fitting to the charmonium P-wave
decay data it was obtained that〈O1(

1P1)〉hc(1P ) ≈ 8.1 × 10−2 GeV5 and 〈O8(
1S0)〉hc(1P ) ≈ 5.3 ×

10−3 GeV3 in theMS scheme and at the factorization scale of 1.5 Gev. In the quenched lattice simulation
of [37] it was obtained that〈O1(

1S0)〉ηc(1S) ≈ 0.33 GeV3, 〈O1(
1P1)〉hc(1P ) ≈ 8.0 × 10−2 GeV5 and

〈O8(
1S0)〉hc(1P ) ≈ 4.7 × 10−3 GeV3 in the MS scheme and at the factorization scale of 1.3 Gev. In

the lattice simulation of [36] and in the three light-quark flavours extrapolation limit it was obtained that
〈O1(

1S0)〉ηb(1S) ≈ 4.1 GeV3, 〈O1(
1P1)〉hb(1P ) ≈ 3.3 GeV5 and〈O8(

1S0)〉hb(1P ) ≈ 5.9 × 10−3 GeV3

in theMS scheme and at the factorization scale of 4.3 GeV.

It has been discussed in [30] and [29], that higher-order operators, not included in the formulas
(4.14)–(4.19), even if parametrically suppressed, may turn out to give sizable contributions to the de-
cay widths. This may be the case, in particular, for charmonium, wherev2 ∼ 0.3, so that relativistic
corrections are large, and for P-wave decays where the aboveformulas provide, indeed, only the leading-
order contribution in the velocity expansion. In fact it waspointed out in [30] (see also [40]) that if no
special cancellations among the matrix elements occur, then the orderv2 relativistic corrections to the
electromagnetic decaysχc0→γγ andχc2→γγ may be as large as the leading terms.

In [24, 34] it was also noted that the numerical relevance of higher-order matrix elements may be
enhanced by their multiplying matching coefficients. This is, indeed, the case for the decay width of
S-wave vector states, where the matching coefficients multiplying the colour-octet matrix elements (with

7This statement acquires a precise meaning only in the context of pNRQCD, see Section 3.1.3.
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the only exception ofImf8(
3P1)) are enhanced byαs with respect to the coefficientImf1(

3S1) of the
leading colour-singlet matrix element.

In the bottomonium system, 14 S- and P-wave states lie below the open flavour threshold (Υ(nS)
andηb(nS) with n = 1, 2, 3; hb(nP ) andχbJ(nP ) with n = 1, 2 andJ = 0, 1, 2) and in the charmonium
system 8 (ψ(nS) andηc(nS) with n = 1, 2; hc(1P ) andχcJ(1P ) with J = 0, 1, 2). For these states
Eqs. (4.14)–(4.19) describe the decay widths into light hadrons and into photons ore+e− in terms of 46
NRQCD matrix elements (40 for the S-wave decays and6 for the P-wave decays), assuming the most
conservative power counting. More matrix elements are needed if higher-order operators are included.

3.1.3 pNRQCD

The number of nonperturbative parameters may be reduced by integrating out from NRQCD degrees of
freedom with energy lower thanm, since each degree of freedom that is integrated out leads toa new
factorization. Eventually, one ends up with pNRQCD [41,42], where only degrees of freedom of energy
mv2 are left dynamical. In the context of pNRQCD, the NRQCD four-fermion matrix elements can
be written either as convolutions of Coulomb amplitudes with non-local correlators (in the dynamical
situationmv2 >∼ ΛQCD) or as products of wave functions at the origin by non-local correlators (in the
dynamical situationmv2 ≪ ΛQCD).

The first situation may be the relevant one at least for the bottomonium ground state [42–44].
In the limiting casemv2 ≫ ΛQCD, the correlators reduce to local condensates and explicit formulas
have been worked out in [45, 46]. Concerning the perturbative calculation of the electromagnetic decay
widths, the NLL renormalization group improved expressioncan be found in [47] and has been used
in a phenomenological analysis in [48]. The perturbative wave functions at the origin at NNLO order
can be found in [49]. Recently, a full NNLL analysis has been carried out in [31]; the authors predict
Γ(ηb→γγ)/Γ(Υ(1S)→e+e−) = 0.502 ± 0.068 ± 0.014, where the first error is an estimate of the
theoretical uncertainty and the second reflects the uncertainty in αs. We also mention that there exists a
determination ofΓ(Υ(2S) → e+e−) / Γ(Υ(1S)→e+e−) in lattice NRQCD with 2+1 flavours of dynam-
ical quarks [50]. The calculated ratio is still far from the experimental result, although the unqueching
has considerably reduced the discrepancy.

The last situation is expected to be the relevant one for mostof the existing excited heavy-
quarkonium states (with the possible exception of the lowest bottomonium states) and has been studied
in [16, 51, 52]. However, a general consensus on the above assignments of heavy-quarkonium states to
dynamical regions has not been reached yet (see also Chapter3).

At leading order in thev and ΛQCD/m expansion, the colour-singlet matrix elements can be
expressed in terms of the wave functions at the origin only [14,16]:

〈O1(
3S1)〉VQ(nS) = 〈O1(

1S0)〉PQ(nS) = 〈OEM(3S1)〉VQ(nS)

= 〈OEM(1S0)〉PQ(nS) = CA
|R(0)

n0 (0)|2
2π

, (4.20)

〈O1(
2S+1PJ )〉χQ(nJS) = 〈OEM(2S+1PJ)〉χQ(nJS) =

3

2

CA
π

|R(0) ′
n1 (0)|2, (4.21)

whereR(0)
nℓ is the zeroth-order radial part of the heavy-quarkonium wave function, obtained from the

pNRQCD Hamiltonian [18,53] andCA = Nc = 3.

In the situationmv2 ≪ ΛQCD there are no dynamical gluons at energies of ordermv2. Under the
conditions that: (a) all higher gluonic excitations between the two heavy quarks develop a mass gap of
orderΛQCD, (b) threshold effects are small, and (c) contributions coming from virtual pairs of quark–
antiquark with three-momentum of order

√
mΛQCD are subleading,8 the NRQCD colour-octet matrix

8Condition (b) may be problematic for theψ(2S), whose mass is very close to theDD̄ production threshold.
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elements relevant for Eqs. (4.14)–(4.19) can be written at leading order in thev andΛQCD/m expansion
as [16,51]:

〈O8(
3S1)〉VQ(nS) = 〈O8(

1S0)〉PQ(nS) = CA
|R(0)

n0 (0)|2
2π

(
−2(CA/2 − CF )E(2)

3

3m2

)
, (4.22)

〈O8(
1S0)〉VQ(nS) =

〈O8(
3S1)〉PQ(nS)

3
= CA

|R(0)
n0 (0)|2
2π

(
−(CA/2 −CF )c2FB1

3m2

)
, (4.23)

〈O8(
3PJ)〉VQ(nS)

2J + 1
=

〈O8(
1P1)〉PQ(nS)

9
= CA

|R(0)
n0 (0)|2
2π

(
−(CA/2 − CF )E1

9

)
, (4.24)

〈O8(
1S0)〉χQ(nJS) =

TF
3

|R(0) ′
n1 (0)|2
πm2

E3, (4.25)

wherecF stands for the chromomagnetic matching coefficient, which is known at NLL [54],CF =
(N2

c − 1)/(2Nc) = 4/3 andTF = 1/2. Therefore, at the considered order, the colour-octet matrix ele-
ments factorize into the product of the heavy-quarkonium wave function with some chromoelectric and
chromomagnetic correlator (Wilson lines connecting the fields are not explicitly shown, but understood):

En =
1

Nc

∫ ∞

0
dt tn〈Tr(gE(t) · gE(0))〉, Bn =

1

Nc

∫ ∞

0
dt tn〈Tr(gB(t) · gB(0))〉, (4.26)

E(2)
3 =

1

4Nc

∫ ∞

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)

3

{
〈Tr({gE(t1)·, gE(t2)} {gE(t3)·, gE(0)})〉c

− 4

Nc
〈Tr(gE(t1) · gE(t2))Tr(gE(t3) · gE(0))〉c

}
, (4.27)

where

〈Tr (gE(t1) · gE(t2) gE(t3) · gE(0))〉c = 〈Tr (gE(t1) · gE(t2) gE(t3) · gE(0))〉

− 1

Nc
〈Tr(gE(t1) · gE(t2))〉〈Tr(gE(t3) · gE(0))〉. (4.28)

These correlators are universal in the sense that they do notdepend on the heavy-quarkonium state and,
hence, may be calculated once and for all, either by means of lattice simulations [55], or specific models
of the QCD vacuum [56], or extracted from some set of experimental data [51].

Finally, at leading order the matrix elements of theP1 operators can be written as:

〈P1(
3S1)〉VQ(nS) = 〈P1(

1S0)〉PQ(nS) = 〈PEM(3S1)〉VQ(nS)

= 〈PEM(1S0)〉PQ(nS) = CA
|R(0)

n0 (0)|2
2π

(
mE

(0)
n0 − E1

)
, (4.29)

whereE(0)
n0 ≃ M − 2m ∼ mv2 is the leading-order binding energy. Equation (4.29) reduces to the

formula obtained in [24] if the heavy-quarkonium state satisfies also the conditionmv ≫ ΛQCD.

The leading corrections to the above formulas come from quark–antiquark pairs of three momen-
tum of order

√
mΛQCD. The existence of this degree of freedom in the heavy-quarkonium system has

been pointed out in [52], where the leading correction to Eq.(4.20) has been calculated.

The pNRQCD factorization formulas reduce, when applicable, the number of nonperturbative
parameters needed to describe heavy-quarkonium decay widths [16]. In particular, using charmonium
data to extractE3, in Ref. [51] it was foundE3(1GeV) = 5.3+3.5

−2.2, where the errors account for the
experimental uncertainties only. This value has been used to predict P-wave bottomonium inclusive
decay widths in [51,57]. We will come back to this in Section 3.2.4.
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3.2 Experimental status

This section is a snapshot of the current status of various experimental results on the electromagnetic and
inclusive hadronic decays of heavy-quarkonium states. Theresults come from the CLEO experiment at
CESR, the BES experiment at BEPC and E835 at Fermilab.

3.2.1 Υ widths

Crucial parameters for any heavy-quarkonium state are its total width and its hadronic and three leptonic
partial widths. For the threeΥ bound states, since their total widths,Γtot, are much less than the energy
spread of the CESR machine (≈ 4 MeV) where they are studied, the procedure is to scan over each
resonance measuring the hadronic andµ+µ− rates. Then we use:

∫
σhad dEcm ∝

(
Γee Γhad

Γtot

)
and Bµµ =

Γµµ
Γtot

. (4.30)

Assuming lepton universality, we have:Γtot = Γhad + 3 Γℓℓ. This allows us to solve for the total
width and the partial widths into electrons and hadrons:

Γee =
(ΓeeΓhad/Γtot)

1 − 3 Bµµ
, Γtot =

Γee
Bµµ

, Γhad = Γtot(1 − 3Bµµ) . (4.31)

Once the total width is known, the partial width intoτ+τ− can then be determined from its respective
branching ratio. The current experimental status from the 2004 PDG [10] is shown in Table 4.2.

Table 4.2: Present PDG values [10] for the parameters of theΥ states.

Resonance Γtot (keV)(% error) Γee (keV)(% error) Bµµ(%)(% error) Bττ (%)(% error)

Υ(1S) 53.0± 1.5 (2.8%) 1.314± 0.029 (2.2%) 2.48± 0.06 (2.4%) 2.67± 0.15 (5.6%)

Υ(2S) 43± 6 (14%) 0.576± 0.024 (4.2%) 1.31± 0.21 (16%) 1.7± 1.6 (94%)

Υ(3S) 26.3± 3.4 (13%) − 1.81± 0.17 (9.4%) −

The PDG does not use the 1984 CLEO measurement ofΓee(3S) = 0.42 ± 0.05 keV because
new radiative corrections have now been accepted which werenot used in that analysis, thus invalidating
the measurement. From the large percentage errors on many ofthe quantities in the table, it is obvious
that there is much room for improvement. To this end, the CLEOIII detector devoted a large amount of
running at each of the threeΥ resonances, as shown in Table 4.3.

Table 4.3: Summary of the CLEO III running at the threeΥ bound states.

Resonance
∫

L dt (fb−1) Number of Decays (M) Factor Increase Over CLEO!II

Υ(1S) 1.2 29 15

Υ(2S) 0.9 6.0 12

Υ(3S) 1.5 6.5 14

All the results from this running have not yet been finalized,but new measurements of the muonic
branching ratios for the 3 boundΥ states have been published [58]. These new measurements areshown
in Table 4.4, along with the corresponding new values for thetotal widths. The newΥ(2S) andΥ(3S)
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Table 4.4: New CLEO measurements [58] of the muonic branching ratios for the 3Υ states, along with their
statistical and systematic errors and the corresponding new values for the total widths.

Resonance Bµµ(%)(% error) Γtot (keV)(% error)

Υ(1S) 2.49± 0.02± 0.07 (2.8%) 52.8± 1.8 (3.4%)

Υ(2S) 2.03± 0.03± 0.08 (4.0%) 29.0± 1.6 (5.5%)

Υ(3S) 2.39± 0.07± 0.10 (5.1%) 20.3± 2.1 (10.3%)

muonic branching ratio measurements are substantially higher than previous results, giving correspond-
ingly smaller total widths for these resonances.

From the number of detected hadronic and leptonic events anda knowledge of the CLEO detector
performance, estimates of the final statistical and systematic errors for the other resonance parameters
can be made. These are shown in Table 4.5. Thus, once the analyses are complete, there will be a
tremendous improvement in our knowledge of the basic parameters of theΥ bound-state resonances.

Table 4.5: Expected fractional errors for various quantities from the eventual CLEO III measurements.

Parameter Statistical Error Systematic Error Total Error

ΓeeΓhad/Γtot 1% 2.5% 3%

Γee 2% 2% 3%

Bττ 2% 3% 4%

Γtot 2% 3% 4%

3.2.2 J/ψ andψ(2S) widths

In the last two years the knowledge of bothJ/ψ andψ(2S) parameters has improved. In 2002, the
BES collaboration reported results [59] from a new scan of the ψ(2S) resonance, corresponding to an
integrated luminosity of 1.15 pb−1 and 114kψ(2S) hadronic decays. In 2004 BaBar has presented the
first measurement ofΓeeBµµ [9] from ISR production ofJ/ψ in 88.4 fb−1 taken at theΥ(4S) resonance.
Table4.6 lists the values of the widths and leptonic branching ratios forJ/ψ andψ(2S) from PDG [10].

Table 4.6: Present PDG values [10] for the parameters of theJ/ψ andψ(2S) states.

ResonanceΓtot (keV)(% error) Γee (keV)(% error) Bµµ(%)(% error) Bττ (%)(% error)

J/ψ 91.0± 3.2 (3.5%) 5.40± 0.15±0.07 (3.1%) 5.88± 0.10 (1.7%) —

ψ(2S) 281± 17 (6%) 2.12± 0.12 (9%) 0.73± 0.08 (11%) 0.28± 0.07 (25%)

3.2.3 Two-photon partial widths measurements

Experimental determinations of two-photon partial widthsof quarkonia depend on measurements of
products and ratios of branching ratios performed by more than one experiment, and the best estimate
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is obtained from a global fit to directly measured quantitiesas it is done by the PDG [10]. When more
measurements are available, subsets of measurements may allow a direct extraction of the value forΓγγ ,
in general with a larger error than a global fit. But this can beuseful both as a cross check for the global
fit and to identify which measurements could yield improvements.

The simplest case is theχc2, where direct measurements of three independent quantities allows
one to extractΓγγ andΓJ/ψγ :

Γ = 2.00 ± 0.18MeV, (4.32)

ΓγγBJ/ψγ = 121 ± 13 eV , (4.33)

and
Bγγ
BJ/ψγ

= (1.02 ± 0.15) · 10−3, (4.34)

where experimental values are world averages [10] except inEq. (4.34) where we averaged the E835
result with the ratio ofBpp̄Bγγ andBpp̄BJ/ψγ measured by E760 [61, 62]. The product of Eq. (4.32),
Eq. (4.33), and Eq. (4.34), yieldsΓγγ = 0.50±0.05 keV, while taking Eq. (4.33) multiplied by Eq. (4.32)
and divided by Eq. (4.34), we would obtainΓJ/ψγ = 490 ± 50 keV, orBJ/ψγ = 0.244 ± 0.024. The
global fit to all measurements [10] (including all other measurements related toBJ/ψγ) improves on
ΓJ/ψγ = 430± 40 keV andBJ/ψγ = 0.202± 0.017, but has almost no effect onΓγγ = 0.52± 0.05 keV,
indicating that the measurements considered above are the only ones relevant toΓγγ .

The case forχc0 is similar to that of theχc2, even if apparently more complicated. The world
average of total width measurements is [10]

Γ = 10.2 ± 0.9MeV. (4.35)

There is a measurement of
ΓγγB2π+2π− = 75 ± 13 ± 8 eV [63], (4.36)

and measurements (from a single experiment) ofBpp̄Bγγ [64] andBpp̄Bπ0π0 [6], from which we can
calculate (assuming isospin symmetry) the ratio

Bγγ
Bππ

= 0.043 ± 0.011 . (4.37)

Even ifBππ andB2π+2π− are not directly measured, their ratio can be determined from quantities mea-
sured by a single experiment (in this case BES [65–67]):

Bππ
B2π+2π−

= 0.47 ± 0.10 . (4.38)

This means that we can extractΓγγ = 3.9 ± 0.8 keV from the product of the four quantities in Eqs.
(4.35), (4.36), (4.37), and (4.38). Notice that including MARK II measurements in the evaluation of
Eq. (4.38) would giveΓγγ = 3.1 ± 0.8. The global fit (which does not include the new measurement of
Bpp̄Bγγ [64]) yields a significantly more precise valueΓγγ = 2.6 ± 0.5 keV, indicating that in this case
there are other measurements that are relevant, such asB(ψ(2S)→γχc0→3γ).

The case forηc(1S) andηc(2S) is different. To date these states have been observed in two-photon
reactions with direct measurement of

ηc(1S) : ΓγγBKK̄π = 0.48 ± 0.06 keV , (4.39)

ηc(2S) : ΓγγBKK̄π = 73 ± 23 eV [68] . (4.40)

Theηc(1S) has also been observed inp̄p annihilations with direct measurement of

BγγBpp̄ = (0.26 ± 0.05) × 10−6. (4.41)
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In this case there are no measurements of the ratio of branching ratios between theγγ and any other
decay mode, so it is necessary to use the values ofBKK̄π or Bpp̄ that (forηc(1S) only) are determined
by

BX =
B(J/ψ→γηc→γ X)

B(J/ψ→γηc)
, (4.42)

with precision limited by the≈ 30% uncertainty inB(J/ψ→γηc) that is to date a common systematic to
all two-photon partial widths ofηc(1S). Since no measurement is yet available for theηc(2S) branching
ratio toKK̄π, its Γγγ cannot be determined.

The most obvious strategy to increase the precision onΓγγ is to improve the measurements for
quantities used in its determination. But based on the case of χc2 discussed above, a major improvement
could be obtained by measuring the pair of quantitiesΓγγBX andBγγ/BX for more than one final state
X. B factories can reasonably measure to< 10% precisionΓγγBX for more than one final state. It is
also reasonable that total widths will be more precisely measured inpp̄ experiments, thus the question is
whether it is possible to measure to better than10% the ratiosBγγ/BX . How well can BES and CLEO
measureψ(2S) or J/ψ to 3γ? How well canp̄p→γγ be measured and what are the channels that could
be measured in these experiments simultaneously top̄p→γγ? With a magnetic detector,pp̄→φφ is the
obvious choice, but interference with two-body non-resonant reactions may offer other opportunities
(e.g.,pp̄→pp̄). The goal of< 5% precision on two-photon widths is not unreasonable.

3.2.4 χb widths

Since theχb(2PJ ) states are not produced directly ine+e− annihilations, their hadronic widths cannot
be measured using the same technique as for theS states. However, we can use the fact that the partial
width for their photonic E1 transitions to theΥ(2S) state are proportional to a common matrix element
squared times a phase space factor ofE3

γ (see Secs. 6.1.3 and 6.2.2,Eγ = k). Thus, from measuring the
individual photon energies and branching ratios for the decaysχb(2PJ ) → Υ(2S) + γ, along with the
branching ratios forχb(2PJ ) → Υ(1S) + γ, we can measure the ratio of theχb(2PJ ) hadronic partial
widths,Γ(had). We first use:

B(2S) =
Γ(2S)

Γ(1S) + Γ(2S) + Γ(had)
, (4.43)

whereB(2S) = B(χb(2PJ ) → Υ(2S) + γ) and B(1S) = B(χb(2PJ ) → Υ(1S) + γ) are the
two E1 branching ratios, andΓ(2S) and Γ(1S) are the corresponding partial widths. Then, since
Γ(2S)/Γ(1S) = B(2S)/B(1S), we can solve for the hadronic partial width, obtaining:

Γ(had) = Γ(2S)

[
1 − B(1S)

B(2S)
− 1

]
. (4.44)

Making the assumption mentioned above that the partial widths for E1 transitions of differentJ states
to the sameΥ state should be proportional to a common matrix element squared timesE3

γ , we obtain an
expression for the ratio of hadronic partial widths for two differentχb(2PJ ) states. For example, forJ =
0 andJ = 2, we get:

Γhad(2P0)

Γhad(2P2)
=

(
Eγ(2P0 → 2S + γ)

Eγ(2P2 → 2S + γ)

)3



1−B(1S)0
B(2S)0

− 1

1−B(1S)2
B(2S)2

− 1


 , (4.45)

whereB(2S)0 = B(χb(2P0) → Υ(2S)+γ), etc. Using this technique and the E1 branching ratios given
in Section 6.2.2, CLEO III finds the ratio of theJ = 0 to theJ = 2 hadronic widths to be:

Γhad(2P0)

Γhad(2P2)
= 6.1 ± 2.8. (4.46)
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For theJ = 1 andJ = 2 states, CLEO III measures:

Γhad(2P1)

Γhad(2P2)
= 0.25 ± 0.09. (4.47)

Since theJ = 1 state cannot annihilate into two massless gluons, to firstorder its hadronic width is
expected to be suppressed by one order ofαs compared to theJ = 2 state. The measurement confirms
this suppression.

As discussed in Section 3.1, at leading order in the heavy-quark velocity expansion, the above
ratios depend on a colour-octet matrix element. One can consider the combination

Γhad(2P0) − Γhad(2P1)

Γhad(2P2) − Γhad(2P1)
, (4.48)

which is completely determined by perturbative QCD [15]. Using (4.46) and (4.47), this ratio is measured
by CLEO III to be:

Γhad(2P0) − Γhad(2P1)

Γhad(2P2) − Γhad(2P1)
= 7.8 ± 3.8. (4.49)

LO QCD predicts 15/4 = 3.75 for this ratio, and NLO QCD about 7,which is quite consistent with
(4.49). However, the combination (4.48) distinguishes between bottomonium and charmonium only at
NNLO, while the ratios (4.46) and (4.47) do so at NLO. A directdetermination of these ratios has been
done in the framework of pNRQCD, as discussed in Section 3.1.3, using the factorization formula (4.25)
and fixing the nonperturbative constant to the value found from charmonium data. The result at NLO is
Γhad(2P0)/Γhad(2P2) ≃ 4.0, consistent with (4.46), andΓhad(2P1)/Γhad(2P2) ≃ 0.50, which is
somewhat larger than (4.47) [51,57].

CLEO cannot resolve the individual photon lines for the similar decays from theΥ(3S) to the
χb(1PJ ) states (see Sec. 6.2.2). However, we can use the quite oldχb(1PJ ) → Υ(1S) + γ branching
ratios from the PDG [10] forJ = 1 and 2 (theJ = 0 branching ratio is very small, given the large
hadronic width of that state). In this case, the ratio of the hadronic widths for the two states can be found
from:

Γhad(1P1)

Γhad(1P2)
=

(
Eγ(1P1 → 1S + γ)

Eγ(1P2 → 1S + γ)

)3
(

1
B(1S)1

− 1

1
B(1S)2

− 1

)
. (4.50)

This leads to the result:
Γhad(1P1)

Γhad(1P2)
= 0.46 ± 0.20, (4.51)

showing again the suppression of theJ = 1 state’s hadronic width compared to theJ = 2, albeit with
larger errors in this case.

3.2.5 χc widths

Theχc states are also not directly produced ine+e− annihilations. However, in this case an extremely
powerful alternative method has been used to measure their masses and total widths. In an experimental
technique first pioneered by experiment R704 at CERN, and continued by experiments E760 and E835
at the Fermilab Antiproton Accumulator, a stochastically cooledp beam collides with a hydrogen gas
jet target. In the subsequentpp annihilations, allJPC states can be formed via 2 or 3 gluons. Thus,
the P-wave charmonium states are directly accessible. By scanning the proton beam energy over each
resonance, the mass and total width of eachP state can be measured with extremely high accuracy.

As mentioned in Section 3.2.3, these experiments have also measured products or ratios of branch-
ing ratios that help constrain the radiative andγγ widths of those states. Table 4.7 shows the current best
estimates of theχc widths, using data from PDG [10]. E835 is finalizing the analysis of the scans of the
χc1 andχc2 resonances [69], with an anticipated precision of≈ 7% onχc1 andχc2 total widths.
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Table 4.7: Widths ofχc states from PDG [10].

Resonance Γtot (MeV)(% error) Γ(γJ/ψ) (keV)(% error) Γ(γγ)(%)(% error)

χc0 10.1± 0.8 (8%) 119± 16 (13%) 2.6± 0.5 (19%)

χc1 0.91± 0.13 (14%) 290± 50 (17%) —

χc2 2.11± 0.16 (8%) 430± 40 (9%) 0.52±0.05 (10%)

In order to show the impact of the new measurements of theχc widths, in Table 4.8 we compare
the PDG 2000 [70] with the PDG 2004 [10] determinations of different ratios of hadronic and electro-
magnetic widths (similar ratios have been considered in theprevious section for theχb case). There have
been sizable shifts in some central values and considerablereductions in the errors. In particular, the
error on the ratio of the electromagneticχc0 andχc2 widths has been reduced by about a factor 10, while
in all other ratios the errors have been reduced by a factor 2 or 3. The considered ratios of hadronic
and electromagnetic widths do not depend at leading order inthe velocity expansion (see Eqs. (4.16)
and (4.19)) on any nonperturbative parameter. Therefore, they can be calculated in perturbation theory.
The last two columns of Table 4.8 show the result of a leading and next-to-leading order calculation
respectively. Despite the fact that the convergence is not always very good and that, therefore, the NLO
calculation should be taken with some care (see also Section3.1.1), all data now clearly prefer (and are
consistent with) NLO results.

3.2.6 Υ(1S)→ γ + X andΥ(1S)→ X

There has been much theoretical interest lately in trying topredict the direct photon energy distribution
for Υ(1S)→ γ + X inclusive decays [71]. See the following section. The last reported measurement
was from the CLEO II experiment in 1997 [72], based on 1.4 million Υ(1S) decays. Besides the photon
energy spectrum, they measured the ratio:

Γ(γgg)

Γ(ggg)
= (2.75 ± 0.04 ± 0.15) % , (4.52)

which allowed a fairly accurate determination ofΛMS andαs. Given the small statistical errors in these
measurements, it is doubtful that the CLEO III experiment will repeat them using their 29 millionΥ(1S)
decays. Rather, the emphasis will be on detailed studies of exclusiveγ + X decays of theΥ(1S), espe-
cially the search for possible glueball candidates.

For measurements of the inclusive production of various hadronic particle types from theΥ(1S),
one must go back to a 1985 paper by the CLEO I experiment [73], based on only 50kΥ(1S) decays.
They measured the average multiplicities and momentum distributions ofπ, K, ρ, K∗, φ, p, Λ andΞ
in Υ(1S) decays and compared them to those from the nearby continuum. The only addition to these
results was a 2003 CLEO II measurement [74] of the inclusiveη′ production from theΥ(1S), based on
1.9 million decays and motivated by the large observedB → η′ +X branching ratio.

4 INCLUSIVE RADIATIVE DECAYS 9

The radiative inclusive decay of heavy quarkonium has been investigated for about a quarter century.
Here we will studyΥ→Xγ decays in particular. The direct radiative decay is calculated by using the
operator product expansion, where the operators are the same nonperturbative matrix elements that ap-
pear in the inclusive decay to hadrons (see Section 3.1). Thus we obtain an expansion in the velocity,v,

9Author: A. Leibovich

191



CHAPTER 4

Table 4.8: Comparison of ratios ofχcJ partial widths. The experimental values PDG 2004 are obtained from
the world averages of [10], with the assumptionΓ(χc0→l.h.) ≈ Γ(χc0) = 10.1 ± 0.8 MeV, Γ(χc1→l.h.) ≈
Γ(χc1) [1 − B(χc1→γJ/ψ)] =0.62±0.10 MeV,Γ(χc2→l.h.) ≈ Γ(χc2) [1 − B(χc2→γJ/ψ)] =1.68±0.15 MeV.
Similarly the experimental values PDG 2000 have been obtained from [70]. The chosen ratios do not depend at
leading order in the velocity expansion on octet or singlet matrix elements. The LO and NLO columns refer to a
leading and next-to-leading order calculation done at the renormalization scale2mc with the following choice of
parameters:mc = 1.5 Gev andαs(2mc) = 0.245.

Ratio PDG 2004 PDG 2000 LO NLO

Γ(χc0→γγ)

Γ(χc2→γγ)
5.1±1.1 13±10 3.75 ≈ 5.43

Γ(χc2→l.h.) − Γ(χc1→l.h.)

Γ(χc0→γγ)
410±100 270±200 ≈ 347 ≈ 383

Γ(χc0→l.h.) − Γ(χc1→l.h.)

Γ(χc0→γγ)
3600±700 3500±2500 ≈ 1300 ≈ 2781

Γ(χc0→l.h.) − Γ(χc2→l.h.)

Γ(χc2→l.h.) − Γ(χc1→l.h.)
7.9±1.5 12.1±3.2 2.75 ≈ 6.63

Γ(χc0→l.h.) − Γ(χc1→l.h.)

Γ(χc2→l.h.) − Γ(χc1→l.h.)
8.9±1.1 13.1±3.3 3.75 ≈ 7.63

of the heavy quarks. The rate is written as

1

Γ0

dΓdir

dz
=
∑

n

Cn(M,z)〈Υ|On|Υ〉, (4.53)

whereM = 2mb, z = 2Eγ/M , theCn(z,M) are short distance Wilson coefficients, calculable in
perturbation theory, and the NRQCD matrix elements scale with a certain power inv. The lowest order
contribution is the colour-singlet3S1 operator, where the quark–antiquark pair annihilate into aphoton
and two gluons. Therefore, in thev→0 limit, we obtain the colour-singlet model calculation of Ref. [75].
At higher order in the velocity expansion, there are direct contributions from the colour-octet matrix
elements [76]. The decay through a colour-octet matrix element can occur at one lower order inαs, with
thebb̄ decaying to a photon and a single gluon.

However, this calculation is only valid in the intermediaterange of photon energies (0.3 <∼ z <∼
0.7). For low photon energies,z <∼ 0.3, the major photon production mechanism is fragmentation [76,
77]. At large photon energies,z >∼ 0.7, the perturbative [76] and nonperturbative expansions [78] both
break down.
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4.1 Photon fragmentation

The inclusive photon spectrum can be written as a sum of a direct and a fragmentation contribution [77],

dΓ

dz
=
dΓdir

dz
+
dΓfrag

dz
, (4.54)

where in the direct term the photon is produced in the hard scattering, and in the fragmentation term the
photon fragments from a parton produced in the initial hard scattering. The fragmentation contribution
has been well studied in Ref. [76].

Catani and Hautmann pointed out the importance of fragmentation for the photon spectrum in
quarkonium decays [77]. The fragmentation rate can be written as

dΓfrag

dz
=

∑

a=q,q̄,g

∫ 1

z

dx

x

dΓa
dx

Daγ

( z
x
,M
)
, (4.55)

where the rate to produce partona, dΓa/dx, is convoluted with the probability that the parton fragments
to a photon,Daγ , with energy fractionz/x. The rate to produce partona can again be expanded in
powers ofv [76], with the leading term being the colour-singlet rate for anΥ to decay to three gluons,

dΓfrag
LO

dz
=

∫ 1

z

dx

x

dΓggg
dx

Dgγ

( z
x
,M
)
. (4.56)

At higher orders inv, there are three colour-octet fragmentation contributions, where the photon can
fragment off either a quark or a gluon.

The partonic rates must be convoluted with the fragmentation functions,Daγ(z,M). TheM -
dependence of the fragmentation functions can be predictedusing perturbative QCD via Altarelli–Parisi
evolution equations. However, the solution depends on nonperturbative fragmentation function at some
input scaleΛ, which must be measured from experiment. This has been done by the ALEPH collabora-
tion for theDqγ fragmentation function [79], but theDgγ fragmentation function is unknown, so at this
point it must be modeled.

4.2 Resumming the largez contribution

The colour-octet contributions to the rate are the first subleading terms in the operator product expansion.
Diagrammatically, these contributions occur for the quark–antiquark pair annihilating into a photon back-
to-back with a gluon. Thus the1S0 and 3P0 colour-octet contributions begin as a delta function of
(1 − z) [76]. If we look at the integrated rate near the endpoint, thecolour-octet contributions are as
important as the “leading” colour-singlet piece, in the region 1− v2 <∼ z ≤ 1. Perturbative corrections to
the colour-octet contributions have large kinematic logarithms, which destroy the perturbative expansion.
Theαs correction to the leading colour-singlet rate was calculated numerically in Ref. [80]. It leads to
small corrections over most of phase space; however, in the endpoint region the corrections are of order
the leading contribution. Thus both higher orders inv and inαs are not suppressed in the endpoint region.
Both the nonperturbative and perturbative series break down.

This breakdown at largez is due to NRQCD not including collinear degrees of freedom. In the
endpoint region, the outgoing gluons are moving back-to-back to the photon, with large energy and small
invariant mass (i.e., a collinear jet). The correct effective field theory is a combination of NRQCD for
the heavy degrees of freedom and the soft-collinear effective theory (SCET) [81,82] for the light degrees
of freedom.

SCET is an effective field theory describing collinear fieldsinteracting with soft degrees of free-
dom. It is thus the appropriate effective field theory to use when there are energetic particles moving with
small invariant mass, such asΥ→Xγ in the endpoint region. We therefore use NRQCD to describe the
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+ crossed diagram

=

Fig. 4.1: Matching QCD onto NRQCD and SCET. The double lines represents theΥ, while the spring with the
line through it represent a collinear gluon.

Fig. 4.2: The leading OPE: tree level matching of the time ordered product in the collinear-soft theory to a nonlocal
operator in the soft theory.

quarkonium, and SCET to describe the jet of collinear particles. The invariant mass of the jet of particles
is p2 ∼ M2

Υ(1 − z), which is small asz→1. In SCET there are three mass scales: the hard scale, which
for this process isµh ∼ MΥ, the collinear scale, which isµc ∼ MΥ

√
1 − z, and the ultrasoft scale,

µu ∼MΥ(1− z). These scales are widely separated in the endpoint region. SCET allows us to separate
the physics coming from the disparate scales.

To calculate, the QCD process is matched onto operators in SCET and NRQCD. For example, the
matching for the colour-octet channel is pictured in Fig. 4.1. Then to resum the kinematic logarithms, we
use the renormalization group equations in SCET, by evolving from µh to µu. So we first renormalize
the operators in SCET, and calculate the anomalous dimensions in the usual way. Then by running the
SCET operators to the ultrasoft scale, the logarithms of1 − z are summed.

The colour-singlet process does not run below the collinearscale. This is because the ultrasoft
gluons cannot couple to the colour-singlet jet or the incoming colour-singlet quarkonium. This fact
was first pointed out by Hautmann [83]. However, there are still logarithms that are generated between
the hard and collinear scales [71, 84]. For the colour-octetprocesses [85], at the collinear scaleµc we
integrate out collinear modes. Since there are collinear particles in the final state, we first perform an
OPE for the inclusiveΥ radiative decay rate in the endpoint region, and match onto the large energy
effective theory [86]. The result is a nonlocal OPE in which the two currents are separated along a light-
like direction. Diagrammatically this is illustrated in Fig. 4.2. This is run to the ultrasoft scale, at which
point we are left with a nonperturbative shape function, which describes the movement of the heavy
quark–antiquark pair within the meson. This function is precisely what was shown to occur in Ref. [78].
Unfortunately, this nonperturbative function is unknown,and must be modeled.

Before we proceed we need the NRQCD matrix elements. We can extract the colour-singlet matrix
elements from theΥ leptonic width. The colour-octet matrix elements are more difficult to determine.
NRQCD predicts that the colour-octet matrix elements scaleasv4 compared to the singlet matrix ele-
ments. In Ref. [19] it was argued that an extra factor of1/2Nc should be included. By looking at the
shape of the resummed colour-octet rates, it appears that these channels would give a contribution an
order of magnitude too large compared with the data in the endpoint region if they were even as small as
v4/2Nc times the colour-singlet, as shown in Fig. 4.3, so we will setthem to zero. This eliminates two
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Fig. 4.3: The differential decay spectra in the region0.5 < z. The dashed curves are the fully resummed colour-
octet result convoluted with a model for the shape function for two choices of the colour-octet matrix elements.
The larger curves have the colour-octet matrix elements suppressed byv4/10, while the lower curves havev4/100.
In addition we have interpolated the fully resummed result with the next-to-leading order result in the region away
from the endpoint. The dotted curves are the next-to-leading result convoluted with the structure function for two
choices of the matrix elements. The solid curve is the tree-level colour-singlet contribution.

of the three possible colour-octet matrix elements, leaving the3S1. It also eliminates the dependence
at this order on the unknown shape functions and the largest dependence on the unknown fragmenta-
tion function,Dgγ . We set the colour-octet3S1 matrix element to bev4 suppressed compared to the
colour-singlet matrix element extracted from the leptonicwidth, where we usev2 = 0.08. This colour
colour-octet matrix element does not give a large contribution in the largez region, but is important at
low z, due to the fragmentation functionDqγ .

The CLEO collaboration measured the number of photons in inclusiveΥ(1S) radiative decays [72].
The data does not remove the efficiency or energy resolution and is the number of photons in the fiducial
region,| cos θ| < 0.7. In order to compare our theoretical prediction to the data,we integrate over the
barrel region and convolute with the efficiency that was modeled in the CLEO paper. We do not do a
bin-to-bin smearing of our prediction.

In Fig. 4.4 we compare the prediction to the data. The error bars on the data are statistical only.
The dashed line is the direct tree-level plus fragmentationresult, while the solid curve includes the re-
summation of the kinematic logarithms. For these two curveswe use theαs extracted from these data,
αs(MΥ) = 0.163, which corresponds toαs(MZ) = 0.110 [72]. The shape of the resummed result is
much closer to the data than the tree-level curve, though it is not a perfect fit. We also show the resummed
plus fragmentation result, using the PDG value ofαs(MZ), including theoretical uncertainties, denoted
by the shaded region. To obtain the darker band, we first varied the choice ofmb between4.7 GeV <
mb < 4.9 GeV and the value ofαs within the errors given in the PDG,αs(MZ) = 0.1172(20) [87]. We
also varied the collinear scale,µc fromM

√
(1 − z)/2 < µc < M

√
2(1 − z). Finally, the lighter band

also includes the variation, within the errors, of the parameters for the quark to photon fragmentation
function extracted by ALEPH [79]. The lowz prediction is dominated by the quark to photon fragmen-
tation coming from the colour-octet3S1 channel. We did not assign any error to the colour-octet3S1

matrix elements. Since it is unknown, there is a very large uncertainty in the lower part of the prediction
that we decided not to show. Recently, colour-octet1S0 and3P0 contributions, calculated in the weak-
coupling regime, have been included in the analysis [88]. They appear to improve the agreement with
the data in the end-point region. Also recently operator mixing between the gluon jet, considered here,
and the quark–antiquark jet has been considered in [89].
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Fig. 4.4: The inclusive photon spectrum, compared with data[72]. The theory predictions are described in the text.
The plot is from Ref. [71].

5 EXCLUSIVE DECAYS 10

Exclusive charmonium decays have been investigated withinQCD by many authors, e.g., [90–93]. As
already argued at the beginning of Section 3.1 the dominant dynamical mechanism iscc̄ annihilation into
the minimal number of gluons allowed by symmetries and subsequent creation of light quark–antiquark
pairs forming the final state hadrons.

In hard exclusive reactions higher Fock-state contributions are usually suppressed by inverse pow-
ers of the hard scale,Q, appearing in the process (Q ∼ mc for exclusive charmonium decays), as
compared to the valence Fock-state contributions. Hence, higher Fock-state contributions are expected
to be negligible in most cases. It has turned out, however, that higher Fock states of the charmonium
play an important role in understanding the production (seeChapter 5) and the inclusive decays of char-
monium (see Section 3.1). As shown in [14] the long-distancematrix elements can there be organized
into a hierarchy according to their scaling withv, the typical velocity of thec quark in the charmonium.
The velocity expansion can also be applied to exclusive charmonium decays [94]. The Fock expansions
of the charmonium states start (in the power counting of [14]) as

|J/ψ〉 = |cc̄1(3S1)〉︸ ︷︷ ︸+ |cc̄8(3PJ) g〉︸ ︷︷ ︸+ |cc̄8(3S1) gg〉︸ ︷︷ ︸+ . . . ,

O(1) O(v) O(v2)

| ηc 〉 = |cc̄1(1S0)〉︸ ︷︷ ︸+ |cc̄8(1P1) g〉︸ ︷︷ ︸+ |cc̄8(1S0) gg〉︸ ︷︷ ︸+ . . . ,

O(1) O(v) O(v2)

| χcJ〉 = |cc̄1(3PJ)〉︸ ︷︷ ︸+ |cc̄8(3S1) g〉︸ ︷︷ ︸+ . . . , (4.57)

O(1) O(v)

where the subscripts at thecc̄ pair specify whether it is in a colour-singlet (1) or colour-octet (8) state;
O(1), O(v) andO(v2) are the orders to which the corresponding Fock states contribute, once evaluated

10Author: P. Kroll (with contributions from C. Patrignani)
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in a matrix element. The amplitude for a two-body decay of a charmonium state satisfies a factorization
formula, which separates the scalemc from the lower momentum scales. The decay amplitude is then
expressed as a convolution of a partonic subprocess amplitude that involves the scalemc, the charmonium
wave function for the initial state that involves scales of ordermc v and lower, and a factor that takes into
account the light hadron wave functions for the final state. This factor involves only the scaleΛQCD. In
the formal limit ofmc→∞ the dominant terms in the factorization formula involve theminimal number
of partons in the hard scattering, which is given by the valence quarks of the hadrons participating in
the considered process. Terms involving additional partons in the initial state are suppressed by powers
of v while terms involving additional partons in the final state are suppressed by powers ofΛQCD/mc.
Moreover, in this limit of an asymptotically large charm quark mass, the valence quarks of a light hadron
move collinear with it, their transverse quark momenta can be neglected. In this situation the soft parton–
hadron transition is described by a leading-twist distribution amplitude,Φ(x, µF ), for finding valence
quarks in the hadron, each carrying some fractionxi of the hadron’s momentum and for which the quark
helicities sum up to the hadronic one. The distribution amplitudes, which represent light-cone wave
functions integrated over transverse momenta up to a factorization scaleµF of ordermc [91, 92], are
the only nonperturbative input required in the calculationof decay amplitudes along these lines. The
convolution formula in such a leading-twist calculation ofa charmonium decay into a pair of hadrons
h1, h2 reads

M =

∫
[dx]N [dy]N [d3k]N ′ Φ1(x, µF )Φ2(y, µF )TH(x, y,mc, µF )Ψc(k) , (4.58)

wherex(y) represents the set of independent momentum fractions for anN -particle Fock state of a light
hadron andΨc is the charmonium wave function for anN ′-particle Fock state.k denotes the set of
momenta of the particles in that Fock state. Soft and hard physics is separated at the factorization scale
µF .

The relative strength of various contributions to specific decay processes can be easily estimated.
Typical lowest-order Feynman graphs are shown in Fig. 4.5. AP-wavecc̄ pair requires a power of the
c-quark’s relative momentumk (k ∼ mcv) from the hard scattering amplitude, which is to be combined
with a k from the P-wave charmonium spin wave function in ak2. In contrast tok itself, a term pro-
portional tok2 does not lead to a vanishing contribution after thek integration. Since, for dimensional
reasons,k is to be replaced byk/mc the subprocess amplitude involving a P-wavecc̄ pair, is of orderv.
Combining this fact with the Fock-state expansion (4.57), one finds for the amplitude ofχcJ decays into,
say, a pairs of pseudoscalar mesons (P ) the behaviour

M(χcJ→PP ) = a1 α
2
sv + a8 α

2
s

(
v
√
αs

)
+ O(v2) , (4.59)

where theai are process-typical constants. For the reactionJ/ψ→BB (B stands for baryon), on the
other hand, one has

M(J/ψ→BB) = ã1 α
3
s + ã8 α

3
sv
(
v
√
αs

)
+ b̃8 α

3
s v

2αs + O(v3) . (4.60)

Or, for theηc decaying for instance into a scalar (S) and a pseudoscalar meson

M(ηc→SP ) = â1 α
2
s + â8 α

2
sv
(
v
√
αs

)
+ b̂8 α

2
s (v

√
αs)

2 + O(v3) . (4.61)

Thus, one sees that in the case of theχcJ the colour-octet contributions∝ a8 are not suppressed by
powers of eitherv or 1/mc as compared to the contributions from the valence Fock states [94]. For char-
monium decays

√
αs is large and does not suppress the colour-octet contribution considerably. Hence,

the colour-octet contribution, i.e., the next higher Fock state of the charmonium state, has to be included
for a consistent analysis of P-wave charmonium decays. The situation is different forJ/ψ decays into
baryon–antibaryon pairs orηc→SP : higher Fock state contributions first start atO(v2). Moreover, there
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Fig. 4.5: Typical lowest-order Feynman graphs forJ/ψ decays into a baryon-antibaryon pair (left) andχcJ decays
into a pair of pseudoscalar mesons (right). The wavy lines represent gluons.

is no obvious enhancement of the corresponding subprocess amplitudes, they appear with at least the
same power ofαs as the valence Fock state contributions. Thus, despite of the fact thatmc is not very
large andv not small (v2 ≃ 0.3), it seems reasonable to expect small higher Fock-state contributions to
the baryonic decays of theJ/ψ.

The leading-twist formation of the light hadrons in the finalstate has implications for their helicity
configurations. As a consequence of the vector nature of QCD (and QED) time-like virtual gluons (or
photons) create light, (almost) massless quarks and antiquarks in opposite helicity states, see Fig. 4.6.
To leading-twist accuracy such partons form the valence quarks of the light hadrons and transfer their
helicities to them (see Fig. 4.6). Hence, the total hadronichelicity is zero

λ1 + λ2 = 0 . (4.62)

The conservation of hadronic helicities is a dynamical consequence of QCD (and QED) which holds
to leading-twist order. The violation of helicity conservation in a decay process signals the presence
of higher-twist, higher Fock state and/or soft, non-factorizable contributions. Such processes (e.g.,
J/ψ→ρπ, ηc→ρρ) have indeed been observed experimentally with often sizeable branching ratios. For
the two-meson channels involving pseudoscalar (P ) and vector mesons (V ) they are characterized by

(−1)Jc Pc 6= (−1)J1+J2 P1P2 , (4.63)

whereJi andPi are the spin and parity of the mesoni. The amplitudes for processes of this kind are
proportional to the Levi-Civita tensor,ε, which is to be contracted in all possible ways with the available
Lorentz vectors, namely the two independent light hadron momenta,p1 andp2, and the polarization
vectors (or tensors) of the light vector mesons and the charmonium state. As an example let us consider
the processJ/ψ→V P , for which the amplitude reads

MλV ,λJ/ψ(J/ψ→V P ) =
A

M2
J/ψ

ε(p1, p2, ǫ
∗(λV ), ǫ(λJ/ψ)) , (4.64)

whereA is a constant. Now, in the rest frame of the decaying meson, the polarization vector of a helicity
zero vector meson can be expressed by a linear combination ofthe two final state momenta. The num-
ber of independent Lorentz vectors is, therefore, insufficient to contract the Levi-Civita tensor with the
consequence of a vanishing amplitude for processes involving longitudinally polarized vector mesons.
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Fig. 4.6: Helicity configurations in the creation of a lightqq pair (left) and for a leading-twist parton–proton
transition (right).

Thus, hadronic helicity conservation (4.62) is violated inJ/ψ→V P decays. By the same argument lon-
gitudinally polarized vector mesons are forbidden in the decayηc→V V . Since angular momentum con-
servation requires the same helicity for both vector mesons, hadronic helicity is not conserved in the case
of transversally polarized vector mesons, too. With similar arguments the processesχc1, hc→V V and
χc2→V P are also forbidden to leading twist order. We note that hadronic helicity conservation does also
not hold inηc andχc0 decays into baryon–antibaryon pairs where, in the charmonium rest frame, angular
momentum conservation requiresλB = λB. A systematic investigation of higher-twist contributions to
these processes is still lacking despite some attempts of estimating them, for a review see [95]. Recent
progress in classifying higher-twist distribution amplitudes and understanding their properties [96, 97]
now permits such analyses. The most important question to beanswered is whether or not factorization
holds for these decays to higher-twist order. It goes without saying that besides higher-twist effects, the
leading-twist forbidden channels might be under control ofother dynamical mechanisms such as higher
Fock state contributions or soft power corrections. In Section 5.1 a variety of such mechanisms will be
discussed.

Next, let us considerG-parity and isospin.G-parity or isospin-violating decays are not strictly
forbidden since they can proceed through electromagneticcc̄ annihilation and may receive contribu-
tions from the isospin-violating part of QCD. The latter contributions, being related to theu − d quark
mass difference, seem to be small [92].G-parity or isospin-violating decays ofC-even charmonia (e.g.,
ηc, χc1, χc2→PV for non-strange final state mesons) have not been observed experimentally as yet [10].
Proceeding on the assumption that these decays are dominantly mediated bycc̄→2γ∗→PV , this is un-
derstandable. They are suppressed by a factor(αem/αs)

4 as compared to theG-parity and isospin al-
lowed decays of theC-even charmonia and their decay widths are therefore extremely small. Channels
involving strange mesons (e.g.,KK∗), are also expected to be strongly suppressed by virtue ofU -spin
invariance. ForJ/ψ decays the situation is different. ManyG-parity violating (e.g.,π+π−) or isospin-
violating (e.g.,ωπ0) decays have been observed, the experimental branching ratios being of the order of
10−4–10−3 [10]. As compared toG-parity and isospin allowedJ/ψ decays they are typically suppressed
by factors of about10−2–10−1 in accord with what is expected for an electromagnetic decaymechanism,
see Fig. 4.7. An overview over the allowed and forbidden charmonium decays into pseudoscalar and vec-
tor mesons is given in Table 4.9.
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Fig. 4.7: Electromagneticψ(nS) decays into pairs of hadrons. The shaded blob indicates a time-like electromag-
netic transition form factor.
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Table 4.9: Charmonium decays intoPP ,PV andV V meson pairs. The symbols0, ǫ,
√

denote channels forbidden
by angular momentum and parity conservation, forbidden to leading-twist accuracy, and allowed, respectively. The
brackets indicate that these channels violate eitherG-parity or isospin invariance for non-strange mesons.

PP PV V V

ηc 0 (
√

) ǫ

J/ψ (
√

) ǫ (
√

)

hc 0
√

ǫ

χc0
√

0
√

χc1 0 (
√

) ǫ

χc2
√

(ǫ)
√

All what we have discussed so far holds for exclusive bottomonium decays as well. The situation
is even better in this case. Due to the larger mass of theb quark, corrections to the leading-twist QCD
results for bottomonium decays are probably reasonably small. Thus, the data on branching ratios can
be expected to exhibit the pattern of leading-twist predictions. Exclusive quarkonium decays constitute
an interesting laboratory for investigating corrections to the leading-twist lowest-order approach from
various sources such as power and higher-twist correctionsas well as higher Fock-state contributions. A
systematic study of such is still lacking.

5.1 Decays ofJ/ψ andψ(2S) into two mesons11

The most dramatic unsolved problem in quarkonium physics isprobably theρ–π puzzle. In analyzing
the 2-body decays of theJ/ψ andψ(2S) into two light hadronsh1 andh2, it is convenient to consider
the following quantity:

κ[h1h2] =
B(ψ(2S)→h1h2)

B(J/ψ→h1h2)

B(J/ψ→e+e−)

B(ψ(2S)→e+e−)

̺[J/ψh1h2]

̺[ψ(2S)h1h2]
, (4.65)

where
̺[Hh1h2] =

√
1 − 2(M2

h1
+M2

h2
)/M2

H + (M2
h1

−M2
h2

)2/M4
H . (4.66)

is a phase space factor that depends on the masses of the hadronsH, h1, andh2. As will be explained
shortly, very simple theoretical considerations lead to the expectation that this quantity should be close
to 1 for all light hadronsh1 andh2:

κ[h1h2] = 1. (4.67)

This prediction was once referred to as the 12% rule because the experimental value of the ratio of the
electronic branching fractions of theψ(2S) andJ/ψ was at one time near 12%. That experimental value
is now 15 ± 2%. The last factor in (4.65) is a phase space factor that is close to 1 for hadrons whose
masses are much smaller than that of theJ/ψ. Thus the prediction (4.67) implies that the ratio of the
branching fractions of theψ(2S) andJ/ψ into h1h2 should be near 15%. All the baryon–antibaryon
decay modes that have been measured are compatible with the prediction (4.67), see Sec. 5.2. Some
two-meson decay modes are compatible with this prediction,but there are others for which it is badly
violated. The most severe violation that has been observed is in theρπ decay mode. The first hint of
this problem was seen by the Mark II collaboration in 1983 [98]. The decayJ/ψ→ρπ, with a branching
fraction of about 1.3%, is the largest 2-body hadronic decaymode of theJ/ψ. In contrast, the partial

11Author: E. Braaten
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width for ψ(2S)→ρπ is so small that this decay was not observed until very recently by the CLEO and
BES collaborations [99,100]. The branching fraction is measured to be0.46±0.09, and the ratio defined
in (4.65) isκ[ρπ] = 0.028 ± 0.006. The dramatic discrepancy between this result and the prediction in
Eq. (4.67) is theρ− π puzzle.

We proceed to explain the assumptions underlying the prediction (4.67). Because there is a
nonzero amplitude for theJ/ψ to be a purecc̄ state, the matrix element for its decay into two light
hadronsh1 andh2 can be expressed in the form

M(J/ψ→h1h2) =

∫
d3p

(2π)3
ψJ/ψ(p)A(c(p)c̄(−p)→h1h2), (4.68)

whereψJ/ψ(p) is the momentum-space wave function for the purecc̄ component of theJ/ψ. This can
be regarded as an exact formula that defines the amplitudeA(cc̄→h1h2). It relies on the fact that wave
functions satisfy integral equations, so even if there are other components of theJ/ψ wave function
besidescc̄, the iteration of the integral equation will eventually produce a purecc̄ state. The annihilation
of thecc̄ pair produces an intermediate state consisting of partons with momenta of ordermc, which is
much larger than either the momentum scalep ∼ mcv for thecc̄ wave function of theJ/ψ or the scale
ΛQCD associated with the wave functions of the light hadronsh1 andh2. If the factored expression in
(4.68) also corresponds to a separation of small momenta associated with the wave function ofJ/ψ from
small momenta associated with the wave functions ofh1 andh2, then the amplitudeA in (4.68) should
be insensitive to the value ofp. It can be approximated by its value atp = 0 up to corrections suppressed
by powers ofv andΛQCD/mc:

A(c(p)c̄(−p)→h1h2) ≈ A(c(0)c̄(0)→h1h2). (4.69)

With this approximation, the matrix element (4.68) reducesto

M(J/ψ→h1h2) ≈ ψJ/ψ(r = 0)A(c(0)c̄(0)→h1h2), (4.70)

whereψJ/ψ(r) is the coordinate-space wave function for the purecc̄ component ofJ/ψ. The decay rate
then has the factored form

Γ(J/ψ→h1h2) ≈
∣∣ψJ/ψ(r = 0)

∣∣2 |A(c(0)c̄(0)→h1h2)|2
̺[J/ψh1h2]

16πMJ/ψ
. (4.71)

The corresponding expression for the decayψ(2S)→h1h2 differs only in the mass and the wave function
factor. These factored expressions apply equally well to decays intoe+e−. Taking the ratio of decay rates
in (4.65), we obtain the predictionκ[h1h2] = 1 for any light hadronsh1 andh2. Any significant deviation
of κ[h1h2] from 1 indicates a breakdown of the approximation (4.69).

An important reference point for the prediction (4.67) is provided by the (leading twist) asymptotic
predictions of perturbative QCD [91, 92]. These predictions are most easily described using a ratioR
defined by

RJ/ψ[h1h2] =
Γ(J/ψ→h1h2)

Γ(J/ψ→e+e−)
. (4.72)

The asymptotic predictions for this ratio depend on the helicitiesλ1 andλ2 of the two hadronsh1 andh2.
If the hadrons are mesons and the decay proceeds via the annihilation processcc̄→ggg, the prediction
for the scaling behavior of the ratio is

RJ/ψ[h1(λ1)h2(λ2)] ∼
α6
s(mc)

α2
em

(
ΛQCD

mc

)4+2|λ1+λ2|
. (4.73)

If the decay proceeds via the annihilation processcc̄→γ∗, the prefactorα6
s/α

2
em is replaced byα2

s . The
scaling behavior (4.73) illustrates one of the basic qualitative features of the asymptotic QCD predic-
tions: light hadron helicity conservation. The dominant decay modes are predicted to satisfy the helicity
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selection rule (4.62). In the case of the decayJ/ψ→ρπ, the helicity of the pion isλπ = 0 and the helicity
of theρ is constrained by Lorentz invariance to beλρ = ±1. Thus this decay necessarily violates the
helicity selection rule, and its rate is predicted to be suppressed byΛ2

QCD/m
2
c relative to modes that are

compatible with the helicity selection rule. Butρπ is observed to be the largest 2-body decay mode of
theJ/ψ. This appears to be a clear violation of the asymptotic PQCD predictions. An understanding of
theρ–π puzzle may have important implications for the relevance ofasymptotic PQCD to charmonium
decays.

The dramatic failure of the prediction (4.67) in some channels indicates a breakdown of the ap-
proximation (4.69) for either theJ/ψ decay or theψ(2S) decay or both. The contribution to the am-
plitudeA from the annihilation ofcc̄ into 3 hard gluons or a virtual photon should be insensitive to the
relative momentump of thecc̄ pair. The failure of the prediction (4.67) indicates that atleast one other
dynamical mechanism must be involved. The sensitivity of the amplitude top could arise from a fluc-
tuation of the charmonium state into some component of the wave function other thancc̄. In a hadronic
basis, this fluctuation can be expressed in terms of mixing ofthe charmonium state with other hadrons.
In a parton basis, it can be expressed in terms ofcc̄ annihilation from a higher Fock state that includes
soft gluons.

Many explanations for theρπ puzzle have been proposed. The small upper bound onκ[ρπ] can
be explained either by an enhancement of the rate forJ/ψ→ρπ or by a suppression of the rate for
ψ(2S)→ρπ. The enhancement ofJ/ψ→ρπ relative toψ(2S)→ρπ could occur through mixing ofJ/ψ
with another narrow state that has a much larger branching fraction intoρπ. One such possibility is

1. mixing ofJ/ψ with a narrow glueball [101,102].

Direct searches have failed to reveal any evidence for such aglueball. The suppression ofψ(2S)→ρπ
relative toJ/ψ→ρπ could be explained if the decay is dominated by a particular component of the wave
function that is suppressed forψ(2S) relative toJ/ψ. The possibilities include

2. suppression of thecc̄ wave function at the origin for a component ofψ(2S) in which thecc̄ is in a
colour-octet3S1 state [103],

3. suppression of theωφ component ofψ(2S) [104].

The suppression ofψ(2S)→ρπ relative toJ/ψ→ρπ could be explained if the amplitude is dominated
by two components of the wave function that nearly cancel in the case ofψ(2S) but not forJ/ψ. The
possibilities include

4. cancellation betweencc̄ andDD̄ components ofψ(2S) [105],

5. cancellation betweencc̄ and glueball components ofψ(2S) [105],

6. cancellation between S-wavecc̄ and D-wavecc̄ components ofψ(2S) [106].

This last proposal leads to the very simple and unambiguous prediction that the D-wave charmonium
stateψ(3770) should have a branching fraction intoρπ of about4 × 10−4 [106]. A recently proposed
explanation for theρ–π puzzle is a

7. cancellation between the amplitudes for the resonant processe+e−→ψ(2S)→ρπ and the direct
processe+e−→ρπ. See Sec. 2.8.5.

This proposal predicts that the observed suppression ofψ(2S)→ρπ relative toJ/ψ→ρπ is specific to
e+e− annihilation and should not occur for other charmonium production processes, such asB-meson
decay.

It is reasonable to expect that a definitive solution to theρ–π puzzle should also explain the de-
viations ofκ[h1h2] from the prediction 1 for other hadronsh1 andh2. The existing measurements of
the branching fractions into two mesons forJ/ψ andψ(2S) are shown in Table 4.10. While many of
the values ofκ[h1h2] are compatible with 1, there are modes other thanρπ for which κ is significantly
smaller than 1, such asρa2, and and there are modes for whichκ is significantly greater than 1, such as
K0
SK

0
L.
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Table 4.10: Comparison ofJ/ψ andψ′ branching ratios to VP, PP, PA, VS, VV and VT mesons. Unless specified
data are from PDG [10]. Where specified we have included in theaverages recent data onψ(2S) decays from
BES [100, 107–109] and CLEO [99], the latter derived from reported ratios of branching ratios using values in
PDG [10].

Decay modeh1h2 B(J/ψ→h1h2) B(ψ′→h1h2) κ[h1h2]

(×104) (×104) (Eq. 4.65)

̺π 127 ± 9 0.46 ± 0.09 [99] [100] 0.028 ± 0.006

ωπ0 4.2 ± 0.6 0.22 ± 0.09 [99] [109] 0.40 ± 0.17

̺η 1.93 ± 0.23 0.23 ± 0.12 [99] [109] 0.9 ± 0.5

ωη 15.8 ± 1.6 < 0.11 [108] < 0.06

φη 6.5 ± 0.7 0.35 ± 0.11 [99] [108] 0.40 ± 0.13

̺η′(958) 1.05 ± 0.18 0.190.16
−0.11 ± 0.03 [109] 2.5 ± 0.9

ωη′(958) 1.67 ± 0.25 < 0.81 [108] < 4.3

φη′(958) 3.3 ± 0.4 0.33 ± 0.13 ± 0.07 [108] 0.71 ± 0.33

K∗(892)∓K± 50 ± 4 0.26 ± 0.11 [99] [107] 0.039 ± 0.017

K̄∗(892)0K0+c.c. 42 ± 4 1.55 ± 0.25 [99] [107] 0.28 ± 0.05

π+π− 1.47 ± 0.23 0.8 ± 0.5 4.3 ± 2.7

K+K− 2.37 ± 0.31 1.0 ± 0.7 3.2 ± 2.3

K0
SK

0
L 1.46 ± 0.26 0.52 ± 0.07 2.7 ± 0.6

π±b1(1235)∓ 30 ± 5 3.9 ± 1.6 (incl. [99]) 1.0 ± 0.4

π0b1(1235)
0 23 ± 6 4.0+0.9

−0.8 ± 0.6 [99] 1.3 ± 0.5

K±K1(1270)
∓ < 30 10.0 ± 2.8 > 1.7

K±K1(1400)
∓ 38 ± 14 < 3.1 < 0.8

ωf0(980)→ωππ 1.1 ± 0.4

φf0(980)→φππ 2.5 ± 0.7 0.60 ± 0.22 1.7 ± 0.8

ωf0(1710)→ωKK̄ 4.8 ± 1.1

φf0(1710)→φKK̄ 3.6 ± 0.6

ωf1(1420) 6.8 ± 2.4

φf1(1285) 2.6 ± 0.5

ωf2(1270) 43 ± 6 2.1 ± 0.6 [111] 0.34 ± 0.11

̺a2(1320) 109 ± 22 2.6 ± 0.9 [111] 0.17 ± 0.07

K∗(892)0K̄∗
2 (1430)0 + c.c. 67 ± 26 1.9 ± 0.5 [111] 0.19 ± 0.09

φf ′2(1525) 12.3 ± 2.1 0.44 ± 0.16 [111] 0.22 ± 0.09

203



CHAPTER 4

One clue to the mechanism is howκ[h1h2] depends on theJPC quantum numbers for hadrons
h1h2 with the same flavour quantum numbers asρπ. As can be seen in Table 4.10, there also seems to be
suppression in the vector-tensor (VT) channelρa2, but there seems to be no significant suppression in the
axial vector-pseudoscalar (AP) channelb1π or in the pseudoscalar-pseudoscalar (PP) channelπ+π−. The
absence of any suppression in the channelπ+π− is to be expected, because it proceeds predominantly
throughcc̄ annihilation into a single photon, and therefore the approximation (4.70) should hold.

Another clue to the suppression mechanism is the pattern ofκ[h1h2] for different radial excitations
of mesons with the sameJPC quantum numbers. An example is the AP decay modesK±K∓

1 for differ-
entK1 resonances. The modeK±K1(1400)

∓ has been observed inJ/ψ decays but not inψ(2S) decays.
The modeK±K1(1270)

∓ has been observed inψ(2S) decays but not inJ/ψ decays. The lower bound
on κ for K±K1(1270)

∓ is significantly greater than the upper bound onκ for K±K1(1400)
∓. This

demonstrates that whetherκ is suppressed or enhanced relative to the prediction (4.67)is not determined
solely by theJPC quantum numbers of the mesons.

The suppression pattern in a given channel as a function of the flavour quantum numbers should
also provide important clues to the suppression mechanism.The channel for which the most measure-
ments are available is the VP channel. The decay amplitude for J /ψ→V P can be resolved into 3 terms
with distinct flavour structures:

– a flavour-connected amplitudeg with quark structure(qiq̄j)(qj q̄i),

– a flavour-disconnected amplitudeh with quark structure(qiq̄i)(qj q̄j),

– an electromagnetic amplitudee with quark structureQik(qiq̄j)(qj q̄k) whereQ is the light quark
charge matrix.

For example, the amplitude forJ /ψ→ρπ is proportional tog + e. A quantitative analysis should also
take into account SU(3) symmetry breaking from the strange quark mass and UA(1) symmetry breaking
from the triangle anomaly. In the case ofJ/ψ, there are enough precise measurements of VP decays to
completely determine the flavour decomposition of the amplitude [112, 113]. The conclusion is that|e|
and|h| are comparable in magnitude and about an order of magnitude smaller than|g|.

The analogous flavour decomposition forψ(2S)→V P expresses the decay amplitudes as a linear
combination of amplitudesg′, h′, ande′ with distinct flavour structures. The same reasoning that led to
the predictionκ[h1h2] = 0 implies that these amplitudesg′, h′ ande′ should differ from the correspond-
ing amplitudesg1, h1 ande for J/ψ by the factor

(
Mψ(2S)Γ(ψ(2S)→e+e−)

MJ/ψΓ(J/ψ→e+e−)

)1/2

≈ 0.70. (4.74)

However, the measurementκ[ρπ] ≈ 0.028 implies |g′ + e′| ≈ 0.12|g + e|. Since|g| ≫ |e|, this requires
|g′| to be suppressed relative to0.70|g|. A mechanism for such a suppression was proposed in Ref. [103].
If g′ was so strongly suppressed that it was small compared to|e′|, it would make the rate forψ(2S)→ρπ
comparable to electromagnetic processes such asψ(2S)→ωπ0. The stronger suppression ofψ(2S)→ρπ
that is observed requires thatg′ ande′ be comparable in magnitude and to have phases such that thereis
a further cancellation in the sumg′ + e′.

The CLEO collaboration has recently presented the first evidence for two-body decays of the
Υ(1S) [114]. They observed signals with a statistical significance of greater than5σ for decays into
φf ′2(1525) andK̄K1(1400). The decay ofΥ(1S) into K̄K1(1270) is observed to be suppressed relative
to K̄K1(1400), which is the same pattern observed inJ/ψ decays. The CLEO collaboration also set
upper limits on other decay modes, the strongest of which isB(Υ(1S)→ρπ) < 4 × 10−6.

5.2 Decays ofJ/ψ andψ(2S) into baryon–antibaryon

As we already discussed these decays seem to be dominated by hard physics where the charm and
anticharm quark annihilate into gluons at short distances.In a leading-order calculation of decay widths
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for theBB channels contributions from higher charmonium Fock statescan be neglected since they only
produceO(v2) corrections, see Eq. (4.60); contributions from higher baryon Fock states are suppressed
by powers of1/mc. For consistency, the masses of theJ/ψ andψ(2S) are to be replaced by2mc (except
in phase space factors) since the energy for the binding of acc̄ pair in a charmonium state is anO(v2)
effect. The only soft physics information on the charmoniumstate needed in a calculation to lowest order
in v is its decay constant. The corresponding electronic decay widths

Γ(J/ψ→e+e−) =
4π

3

e2c α
2
em f

2
J/ψ

MJ/ψ
, (4.75)

provide their values:fJ/ψ = 409MeV, fψ(2S) = 282MeV. The other soft physics information required
is the leading-twist baryon distribution amplitude. As canbe shown [115] the proton is described by
one independent distribution amplitude,Φ p

123(x), to leading-twist accuracy. The set of subscripts1, 2, 3
refers to the quark configurationu+ u− d+ of a proton with positive helicity. The distribution amplitudes
for other valence quark configurations in the proton are obtained by permutations of the subscripts. Since
flavour SU(3) is a good symmetry, only mildly broken by quark mass effects, it is reasonable to assume
that the other members of the lowest-lying baryon octet are also described by only one independent
distribution amplitude, which, up to flavour symmetry breaking effects, is the same as the proton one.

To start with and for orientation, we present the leading-twist result for the width of the decays of
transversely polarizedJ/ψs, as for instance are produced ine+e− annihilations, into proton–antiproton
pairs. The width, evaluated from the asymptotic form of the baryon wave functionΦB

AS = 120x1 x2 x3,
reads

Γ(J/ψ→pp̄) =
56 210

35
π5 αs(mc)

6 ̺[J/ψ pp̄]

MJ/ψ

(
fJ/ψ f

2
p

mc
4

)2

I2
AS , (4.76)

where

IAS = 6

∫
[dx]3 [dy]3

x1y3

[x1(1 − y1) + (1 − x1)y1][x3(1 − y3) + (1 − x3)y3]
. (4.77)

The normalization parameterfp represents the proton’s light-cone wave function for zero spatial separa-
tion of the quarks. Strictly speaking, it is defined by [116]

fp(µF )

8
√
nc!

Φ p
123(x, µF ) =

∫ µF

[d2k⊥]3Ψ
p
123(x, k⊥) , (4.78)

with ∫
[dx]3Φ

p
123(x, µF ) = 1 . (4.79)

Both the distribution amplitude andfp are subject to evolution [116]. A typical value forfp is ≃ 6 ×
10−3 GeV2 [92,117]. Evaluating the branching ratio from (4.76), (4.77), one obtains

B(J/ψ→pp̄) = 1.5 × 10−3
( αs

0.4

)3
(

1.5GeV

mc

)7 ( fp

6 × 10−3 GeV2

)4

, (4.80)

which is in quite good agreement with experiment, see Table 4.11. The predictions for the branching ratio
are more robust than that from theJ/ψ→pp̄ decay widths since the totalJ/ψ width is dominated by the
decays into light hadrons. Hence, according to (4.12) and (4.75), the branching ratios approximately
scale as1/m7

c andα3
s .

In previous calculations [92,118] of theJ/ψ→pp̄ decay width, distribution amplitudes have been
employed that are strongly concentrated in the end-point regions where one of the momentum fractions
is small. The use of such distribution amplitudes has been heavily criticized [119]. Due to their prop-
erties the bulk of the amplitude for the subprocesscc̄→3g∗→3(qq) is accumulated in the soft end-point
regions where the use of perturbative QCD is inconsistent. Moreover, such distribution amplitudes lead
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to extremely strong contributions to the decay amplitude and require compensation by small values of
αs, typically in the range of0.2–0.3. Such values are unrealistically small with regard to the characteris-
tic scales available in charmonium decays. For an average gluon virtuality of about1GeV2 one would
expectαs to be rather0.4.

Recent theoretical [97,120] and phenomenological [117] studies provide evidence that the proton
distribution amplitude is close to the asymptotic form for baryons: the end-point concentrated forms seem
to be obsolete. In a recent analysis of theJ/ψ andψ(2S) decays into baryon–antibaryon pairs [121] use
is made of the phenomenological proton distribution amplitude proposed in [117]

Φ p
123(x, µ0) = ΦB

AS

1

2
(1 + 3x1) , (4.81)

which is valid at the factorization scaleµ0 = 1GeV. This distribution amplitude goes along with the
normalization parameterfp(µ0) = 6.64 × 10−3 GeV2. In [121] the distribution amplitude (4.81) has
been suitably generalized to the cases of hyperons and decuplet baryons by allowing for flavour symme-
try breaking due to the effect of the strange quark mass. Instead of the collinear approximation as used
in [92, 118] or in (4.76), the modified perturbative approach[122] is applied in [121]. In this approach
quark transverse momenta are retained and Sudakov suppressions, comprising those gluonic radiative
corrections not included in the evolution of the distribution amplitude, are taken into account. The ad-
vantage of the modified perturbative approach is the strong suppression of the soft end-point regions
where perturbative QCD cannot be applied. If distribution amplitudes close to the asymptotic form are
employed the difference between a calculation on the basis of the collinear approximation and one within
the modified perturbative approach is, however, not substantial given that theJ/ψ→BB amplitude is
anyhow not very sensitive to the end-point regions. This is in marked contrast to the case of the proton’s
electromagnetic form factor [123]. On the other hand, a disadvantage of the modified perturbative ap-
proach is that the full baryon light-cone wave function is needed and not just the distribution amplitude.
In [121] the transverse momentum dependence of the baryon wave functions has been parameterized by
a simple Gaussian

∝ exp
[
−a2

B

∑
k2
⊥i/xi

]
, (4.82)

where a value of0.75GeV−1 has been adopted for the transverse size parameteraB . For the decuplet
baryons a somewhat larger value has been used (0.85GeV−1). Calculating the subprocess amplitude
from the Feynman graphs shown in Fig. 4.5 and working out the convolution of subprocess amplitude
and baryon wave functions, one obtains the widthsΓ3g for theJ/ψ decays intoBB pairs mediated by
the hard annihilation processcc̄→3g∗→3(qq). The results are listed and compared to experimental data
in Table 4.11. In addition to the three-gluon contribution there is also an isospin symmtetry violating
electromagnetic one generated by the subprocesscc̄→γ∗→3(qq̄), see Fig. 4.7. According to [121] this
contribution is probably small, of the order of a few percentonly. An important ingredient in this estimate
of the size of the electromagnetic contribution is the agreement of the experimental widths forJ/ψ
decays intonn̄ andpp̄ within the errors [10]. The contributions from thecc̄→g∗g∗γ∗→3(qq̄) to the
baryon–antibaryon channels amount to less than1% of the three-gluon contribution and can be neglected.

The widths for the corresponding decays of theψ(2S) are easily obtained within the perturbative
approach by rescaling theJ/ψ ones by the ratio of the electronicψ(2S) andJ/ψ decay widths, the15%
rule, i.e., Eq. (4.65) withκ[BB] = 1, holds strictly in the approach put forward in [121]. The results
obtained that way are also quoted in Table 4.11. Good agreement between theory and experiment [10] is
observed. Predictions of the absolute value of a decay widthare subject to many uncertainties, see (4.76)
while ratios of any twoBB decay widths are robust since most of the uncertainties cancel to a large
extent. It is to be emphasized that theψ(2S) andJ/ψ decay widths do not scale as(MJ/ψ/Mψ(2S))

8 ≃
1/4 as suggested in [91] since the subprocess amplitude in a calculation to lowest order in the charm
quark velocity (see (4.60)) has to be calculated with2mc and not with the bound state mass.
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Table 4.11: Results forJ/ψ andψ(2S) branching ratios forBB channels in units of10−3 and10−4, respectively.
The three-gluon contributions, taken from [121], are evaluated frommc = 1.5 Gev, and the one-loopαs with
ΛQCD = 210 MeV. Unless specified data are taken from Ref. [10]. For theJ/ψ→pp̄ we have included the
recent BES measurement [124] in the average. The theoretical branching ratios are evaluated usingΓ(J/ψ) =

91.0 ± 3.2 keV [10].

channel pp Σ0Σ0 ΛΛ Ξ−Ξ+ ∆++∆−− Σ∗−Σ∗+

B3g(J/ψ) 1.91 1.24 1.29 0.69 0.72 0.45

Bexp [10] 2.16 ± 0.08 1.27 ± 0.17 1.30 ± 0.12 0.90 ± 0.20 1.10 ± 0.29 1.03 ± 0.13

B3g(ψ(2S)) 2.50 1.79 1.79 1.11 1.07 0.80

Bexp [10] 2.07 ± 0.31 1.2 ± 0.6 1.81 ± 0.34 0.94 ± 0.31 1.28 ± 0.35 1.10 ± 0.40

Bottomonium decays intoBB pairs can be calculated along the same lines. The hard scale is
now provided by theb-quark mass. Hence, relativistic and higher-twist corrections are expected to be
smaller than in the charmonium case. But, as it turns out, thepredicted decay widths for the baryonic
channels are very small. Approximately, i.e., ignoring thefact that thek⊥-dependent suppression of
the three-gluon contribution is perhaps a bit different in the two cases, one finds the following rescaling
formula

Γ(Υ→BB) =
̺[ΥBB]

̺[J/ψBB]

Γ(Υ→e+e−)

Γ(J/ψ→e+e−)

×
(
ec
eb

)2 (αs(mb)

αs(mc)

)6 (mb

mc

)8

Γ(J/ψ→BB) . (4.83)

Usingmb = 4.5GeV one obtains, for instance, a value of0.02 eV for theΥ→pp̄ decay width, which
value corresponds to a branching ratio of0.3 × 10−7 well below the present experimental upper bound
[10].

It goes without saying that the hard contributions,Γ3g, to theJ/ψ andψ(2S) decays intoBB pairs
respect the helicity sum rule (4.62), i.e., the amplitude for the production of baryon and antibaryon in
equal helicities states vanishes. Measurements of the angular distribution ine+e−→J/ψ, ψ(2S)→B8B8

dΓ

d cos ϑ
∝ 1 + αB8 cos2 ϑ , (4.84)

whereB8 is any member of the lowest-lying baryon octet andϑ the c.m.s. production angle, allow for a
test of this prediction. In the formal limit of an infinitely heavy charm quarkαB8 = 1 as a consequence
of hadronic helicity conservation [91]. The available data[124–128], listed in Table 4.12, tell us that
only a fraction of about10% of the total number ofB8B8 pairs are produced with the same helicity of
baryon and antibaryon. This observation is in fair agreement with hadronic helicity conservation. The
production ofB8B8 pairs with equal helicities has been modeled as a constituent quark [129,130] and/or
hadron mass effect [131], both the effects are part of theO(v2) and higher-twist/power corrections. Also
electromagnetic effects inαB have been investigated. For results we refer to Table 4.12.

5.3 Hadronic two-body decays of theηc

Such decays of theηc have been observed in experiment only for theBB andV V channels, upper bounds
exist for a few others likea0(980)π. Decays intoPP andPV have not been observed, they are either
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Table 4.12: Experimental and theoretical results for the parameterαB8
in J/ψ, ψ(2S)→B8B8 as defined in

Eq. (4.84). Experimental values obtained averaging data from BES [124], DM2 [125], MARK II [126], E760 [127]
and E835 [128].

αB8(J/ψ) pp ΛΛ Σ0Σ0

Predicted: [131] 0.46 0.32 0.31

[129] (no e.m. corr) 0.69 0.51 0.43

[129] (incl. e.m. corr) 0.70

Experiment:J/ψ 0.66 ± 0.05 0.65 ± 0.19 0.26 ± 0.30

ψ(2S) 0.68 ± 0.14

strictly forbidden or strongly suppressed, see Table 4.9. As noted at the beginning of this section theBB
andV V channels are forbidden to leading-twist accuracy since hadronic helicity conservation (4.62) is
in conflict with angular momentum conservation for these processes. In contrast to the expectation from
the leading-twist approximation the measured branching ratios are rather large (10−3–10−2). We repeat,
it is worthwhile to explore the role of higher-twist baryon and vector meson wave functions in the decays
of theηc [96,97].

In [104] a mixing approach for the explanation of theseηc decays has been advocated. As is well-
known theUA(1) anomaly leads to mixing among the pseudoscalar mesonsη − η′ − ηc [132,133]. This
mixing can adequately be treated in the quark-flavour mixingscheme [134] where one starts from the
quark-flavour basis and assumes that the basis states and their decay constants follow the same pattern of
mixing with common mixing angles. This assumption is supported by an analysis of theγ−η andγ−η′
transition form factors at large momentum transfer [135]. The quark-flavour basis states are defined by
the flavour content of their valence Fock states

ηq→ (uū+ dd̄)/
√

2 , ηs→ ss̄ , ηc0 → cc̄ . (4.85)

The admixture of the light quarks to theηc, which we need here in this work, is controlled by a mixing
angleθc [134]

|ηc〉 = |ηc0〉 − θc√
1 + y2/2

[
|ηq〉 +

y√
2
|ηs〉

]
. (4.86)

The ratio of the basis decay constantsfq andfs is denoted byy

y = fq/fs . (4.87)

According to [134], its value amounts to 0.81 whileθc = −1◦ ± 0.1◦. The light-quark admixture
to the ηc (4.86) is somewhat smaller than estimates given in [132] butslightly larger than quoted in
[136]. In combination with the strong vertexqq→V V this small light-quark component of theηc suffices
to account for theV V decays. In the spirit of this dynamical mechanism (see Fig. 4.8) the invariant
amplitude,A, for theηc→V V decays can be parameterized as

A(ηc→V V ) = Cmix
V V σV V Fmix(s = M2

ηc) . (4.88)

It is related to the decay width by

Γ(ηc→V V ) =
1

32πSV V

̺[ηcV V ]3

Mηc

|A(ηc→V V )|2 . (4.89)

208



DECAY

Table 4.13: Mixing factors as well as experimental and theoretical ratios of decay widths forηc→V 0V 0. The ratios
are quoted with respect to theρ0ρ0 channel (Cmix

ρ0ρ0 = 1). Experimental ratios are calculated taking into account
the common systematics.

V V Cmix
V V Rth Rexp

ωω 1 0.63 < 0.37 [137]

< 0.75 [138]

K∗0K
∗0

(1 + y2)/2 0.61 0.47 ± 0.09 [138]

0.55 ± 0.27 [137]

φφ y2 0.13 0.93 ± 0.33 [137]

0.35 ± 0.10 [138]

0.30 ± 0.10 [139]

0.21 ± 0.14 [140]

The statistical factor for the decay into a pair of identicalparticles is denoted bySV V . The mixing factor
Cmix
V V embodies the mixing of theηc with the basis statesηq andηs (4.86). These factors are quoted in

Table 4.13. Flavour symmetry breaking effects in the transitionsη i→V V (i = q, s) are absorbed in the
factorσV V . As a simple model for it one may take the square of the vector meson’s decay constants as a
representative of SU(3) violations in these transitions (fρ = 216MeV, fω = 195MeV, fφ = 237MeV,
fK∗ = 214MeV). In order to have a dimensionless quantity,f2

V is scaled by the squared vector meson
mass

σV V =

(
fV
MV

)2

. (4.90)

Ratios of decay widths are free of the unknown transition form factorFmix. With respect to theρ0ρ0

channel one finds for the other uncharged vector mesons channels

Γ(ηc→V 0V 0)

Γ(ηc→ρ0ρ0)
=

2

SV 0V 0

(
Cmix
V 0V 0

)2
(
σV 0V 0

σρ0ρ0

)2 (̺[ηcV 0V 0]

̺[ηcρ0ρ0]

)3

. (4.91)

The theoretical and experimental results on the ratios are listed in Table 4.13. Reasonable agreement be-
tween theory and experiment can be seen although the errors are large. Assuming a monopole behaviour
for the transition form factorFmix and fitting its strength to theρρ data, one obtains a value that is in
accord with the concept of mixing. q

�q
h1
h2

Fig. 4.8: The mixing mechanism for charmonium decays into light hadrons.

The mixing approach can also be applied to theηc decays into baryon–antibaryon pairs. It seems
that at least thepp̄ channel for which the decay width has been measured, is also controlled by the mixing
mechanism [104].
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5.4 The decays of theχcJ and the role of the colour-octet contribution

The colour-singlet contribution toχcJ decays into pairs of pseudoscalar or vector mesons is well-known,
it has been calculated several times [90,92,95]. The convolution of wave functions and hard subprocess
amplitudes, which are to be calculated from Feynman graphs as shown in Fig. 4.5, leads to a decay width
for theπ+π− channel as (J = 0, 2)

Γ(χcJ→π+π−) = 2
π2

35

̺[χcJ ππ]

MχcJ

f4
π

m7
c

|R ′
χcJ

(0)|2 α4
s (mc)

×
∣∣aJ + bJ B

π
2 (mc) + cJ B

π
2 (mc)

2
∣∣2 , (4.92)

where the parametersaJ , bJ and cJ are analytically calculable real numbers in the leading-twist ap-
proximation; they represent the convolution of distribution amplitudes an subprocess amplitude. The
parametera0, for instance, reads

a0 = 27π2/2 − 36 . (4.93)

The representation (4.92) also holds in the modified perturbative approach but the parameters are then
complex valued. The constantBπ

2 (µ0) is the first coefficient of the expansion of the leading-twistpion

distribution amplitude upon Gegenbauer polynomialsC
3/2
n [116]

Φπ = ΦM
AS


 1 +

∑

n=2,4,···
Bπ
n(µF )C3/2

n (2x− 1)


 , (4.94)

whereΦM
AS is the asymptotic form of a meson distribution amplitude

ΦM
AS = 6x(1 − x) , (4.95)

and

Bn(µF ) =

(
ln(µ2

F/Λ
2
QCD)

ln(µ2
0/Λ

2
QCD)

)γn
Bn(µ0) . (4.96)

In Eq. (4.92) terms of order higher than 2 in the expansion areneglected and the factorization scale
dependence of the Gegenbauer coefficientB2 is controlled byγ2 = −50/81. As the starting scale of
the evolution,µ0, a value of1GeV is taken. Finally,fπ (= 132MeV) is the pion decay constant and
R ′
χcJ (0) (= 0.22GeV5/2 [33,141]) denotes the derivative of the nonrelativistic radial cc̄ wave functions

at the origin (in coordinate space). As usual a normalization factorfπ/(2
√

6) is pulled out from the
distribution amplitude.

The distribution amplitude of the pion is fairly well-knownby now from analyses of theπ0 −
γ transition form factor. It is close to the asymptotic form ofa meson distribution amplitude [142].
Deviations from that form are difficult to estimate since they strongly depend on details of the analysis
such as whether or not NLO, higher-twist corrections or tranverse degrees of freedom are taken into
account [142, 143]. But in any case the Gegenbauer coefficient Bπ

2 seems to be small in magnitude.
Combining the results from different analyses of theπ0 − γ transition form factor, one may conclude
that|Bπ

2 | <∼ 0.1 atµ0 = 1GeV. Taking firstBπ
2 = 0 in (4.92), one evaluates from (4.92) the branching

ratio

B(χc0(2)→π+π−) ≃ 0.31 (0.10) × 10−3
( αs

0.4

)2
(

1.5GeV

mc

)3

. (4.97)

The majority of the widths of theχc0 andχc2 come from decays into light hadrons. The contribution
coming from the decay of a colour-singletcc̄ into real gluons is given by [33]

Γ(χcJ→l.h.) ∝ |R′
χcJ (0)|

2 α2
s

mc
4
. (4.98)
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Therefore, the branching ratios approximately scale as given in (4.97) and not as in (4.92). Thecc̄ wave
functionR′

χcJ
(0) almost cancel in the ratio. Otherwise its well-known scaling properties [144] would

have to be taken into account as well.

The variation of the branching ratio with the Gegenbauer coefficient Bπ
2 is displayed in Fig. 4.9.

One can conclude that, stretching all parameters (Bπ
2 , αs,mc) to the extreme, the predictions forB(χc0(2)

→ π+π−) from the colour-singlet contribution to leading-twist accuracy stay a factor 3–6 below the data.
Results of similar magnitude are found within the modified perturbative approach.

�0:15 �0:10 �0:05 0:00 0:05 0:1000:2
0:40:6
0:8

B2(�0)
10�3 �B(
� 
0!�+
�� )

Fig. 4.9: Dependence of the leading-twist colour-singlet contribution to theχc0→π+π− branching ratio on the
expansion parameterBπ2 of the pion distribution amplitude at the scaleµ0 = 1 GeV. The evolution ofBπ2 is
evaluated fromΛQCD = 200 MeV.

Thus, there is obviously room for the colour-octet contributions (see (4.59)), i.e., from the sub-
processcc̄g→2(qq). A first attempt to include the colour-octet contribution has been undertaken in [94].
This calculation, performed within the modified perturbative approach [122], is based on a very rough
model for the colour-octetχcJ wave function, the new ingredient of this calculation. Despite this the au-
thors of Ref. [94] were able to show that the combined colour-singlet and -octet contributions are likely
large enough to account for the data [10, 66], see Table 4.14.The calculation of theχcJ→π+π− decay
width can be generalized to other pseudoscalar meson channels with results of similar quality as for the
ππ channels. For theη′η′ channel an additional two-gluon Fock component of theη′ is to be taken into
account whose leading-twist distribution amplitude has recently been extracted from a NLO analysis of
theη − γ andη′ − γ transition form factor [145,146]. For theηη channel the two-gluon contribution is
probably negligible.

The colour-singlet contribution to the decaysχcJ→pp̄ (J = 1, 2) has been investigated by many
authors [92, 95, 118, 150]. Employing the proton distribution amplitude (4.81) or a similar one, one
again finds results that are clearly below experiment, whichagain signals the lack of the colour-octet
contributions. An analysis of theχc1(2) decays into the octet and decuplet baryons along the same lines
as for the pseudoscalar meson channels [94] has been carriedthrough by Wong [147]. The branching
ratios have been evaluated from the baryon wave functions (4.81), (4.82) and the same colour-octetχcJ
wave function as in [94]. Some of the results obtained in [147] are shown and compared to experiment in
Table 4.14. As can be seen from the table the results for thepp̄ channels are in excellent agreement with
experiment while the branching ratios forΛΛ channels are much smaller than experiment [148] although
the errors are large. A peculiar fact has to be noted: the experimentalΛΛ branching ratios are larger than
the proton–antiproton ones although there is agreement within two standard deviations.
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Table 4.14: Comparison of theoretical and experimental branching ratios for variousχcJ decays into pairs of light
hadrons. The theoretical values have been computed within the modified perturbative approach, colour-singlet
and -octet contributions are taken into account (Bπ2 = Bη2 = BK1 = 0, BK2 = −0.1, baryon wave functions
(4.81), (4.82)). The branching ratios are quoted in units of10−3 for the mesonic channels and10−5 for the
baryonic ones. Data taken from [10]. The values listed forpp̄ branching rates do not include the most recent values(
27.4+4.2

−4.0 ± 4.5
)
· 10−5,

(
5.7+1.7

−1.5 ± 0.9
)
· 10−5 and

(
6.9+2.5

−2.2 ± 1.1
)
· 10−5 measured by BES [149] forχc0,

χc1 andχc2 respectively.

process theory experiment

B(χc0→π+ π− ) 3.0 [94] 4.9 ± 0.6

B(χc2→π+ π− ) 1.8 [94] 1.77 ± 0.27

B(χc0→K+K−) 2.4 [94] 6.0 ± 0.9

B(χc2→K+K−) 1.4 [94] 0.94 ± 0.21

B(χc0→ η η ) 2.0 [94] 2.1 ± 1.1

B(χc2→ η η ) 1.3 [94] < 1.5

B(χc0→ p p̄ ) − 22.4 ± 2.7

B(χc1→ p p̄ ) 6.4 [147] 7.2 ± 1.3

B(χc2→ p p̄ ) 7.7 [147] 6.8 ± 0.7

B(χc0→ΛΛ ) − 47 ± 16

B(χc1→ΛΛ ) 3.8 [147] 26 ± 12

B(χc2→ΛΛ ) 3.5 [147] 34 ± 17

The present analyses of theχcJ decays suffer from the rough treatment of the colour-octet charmo-
nium wave function. As we mentioned before a reanalysis of the decays into thePP andBB channels
as well as an extension to theV V ones is required. Our knowledge of the colour-octet wave func-
tion has been improved recently due to the intense analyses of inclusive processes involving charmonia,
e.g., [151]. This new information may be used to ameliorate the analysis of theχcJ→PP,BB decays
and, perhaps, to reach a satisfactory quantitative understanding of these processes. We finally want to
remark that the colour-octet contribution does not only play an important role in theχcJ decays intoPP
andBB pairs but potentially also in their two-photon decays [30,33,152] (see also Section 3).

The leading-twist forbiddenχc0→BB decays have sizeable experimental branching ratios, see
Table 4.14. There is no reliable theoretical interpretation of these decays as yet. The only proposition
[153] is the use of a diquark model, a variant of the leading-twist approach in which baryons are viewed
as being composed of quarks and quasi-elementary diquarks.With vector diquarks as constituents one
may overcome the helicity sum rule (4.62). The diquark modelin its present form, however, contends
with difficulties. Large momentum transfer data on the Pauliform factor of the proton as well as a
helicity correlation parameter for Compton scattering offprotons are in severe conflict with predictions
from the diquark model.

5.5 Radiative decays of charmonia into light hadrons

First let us consider the processJ/ψ→γπ0. The apparently leading contribution to it is generated by the
subprocesscc̄→γ g∗g∗→γqq̄, which, in principle, leads to a decay width of orderα4

s . However, due to
the pion’s flavour content∝ uū − dd̄ this contribution exactly cancels to zero in the limit of massless
quarks. A VDM contributionJ/ψ→ρπ followed by aρ − γ conversion [95] seems to dominate this
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process. Indeed, an estimate of the VDM contribution leads to a branching ratio of3.3 × 10−5, which
compares favorably with the experimental result of(3.9 ± 1.3) × 10−5 [10]. Analogue estimates of the
γη andγη′ branching ratios lead to similar values, about1 × 10−5, which fall short of the experimental
results by two orders of magnitude. The solution of this discrepancy is a gluonic contribution, which
occurs as a consequence of the UA(1) anomaly; it formally presents a power correction. According to
Novikov et al. [154], the photon is emitted by thec quark with a subsequent annihilation of thecc̄ pair
into lighter quarks through the effect of the anomaly. The creation of the corresponding light quarks is
controlled by the gluonic matrix element〈0|αsGG̃ |η(′)〉 whereG is the gluon field strength tensor and
G̃ its dual. Photon emission from the light quarks is negligible as can be seen from the smallness of the
γπ width. This mechanism leads to the following width for the radiativeJ/ψ decay intoη(′) [154]

Γ(J/ψ→γη(′)) =
25

5238
πe2cα

3
em ̺[J/ψγη

(′)]

(
MJ/ψ

mc
2

)4 |〈 0 |αs
4π GG̃ | η(′) 〉|2

Γ(J/ψ→e+e−)
. (4.99)

In the quark-flavour mixing scheme the gluonic matrix element for theη is given by [155]

〈 0 |αs

4π
GG̃| η 〉 = − sin θ8

√
2 + y2 fq a

2 . (4.100)

For theη′ matrix elementsin θ8 is to be replaced bycos θ8. The angleθ8 controls the mixing of the octet
decay constants. In [134] the various mixing parameters have been determined; their values amount to:

θ8 = −21.2◦ ; fq = 1.07fπ ; a2 = 0.265GeV2 ; φ = 39.3◦ . (4.101)

The latter angle is the mixing angle in the quark-flavour basis. The parametery has been defined in
Eq. (4.87). Evaluating the decay width or rather the branching ratio from these parameter values, one
obtains

B(J/ψ→γη) = 3.7 × 10−4

(
1.5GeV

mc

)7

. (4.102)

The comparison with the experimental value of(8.6±0.8) ·10−4 [10] reveals that the order of magnitude
is correctly predicted. As happens frequently in exclusivecharmonium decays the charm-quark mass
appears to a high power in the theoretical estimates of branching ratios with the consequence of large
uncertainties in the predicted values. With regard to the fact that the totalJ/ψ decay width is dominated
by the decays into light hadrons (4.12), the power ofmc in (4.102) is approximately seven. The mass of
theJ/ψ appears in (4.99) through a pole saturation of a QCD sum rule [154]; it should not be replaced
by 2mc.

While the calculation of the individual decay widths is not easy, ratios of theη andη′ widths can
be reliably predicted fromη − η′ mixing. Using the quark-flavour mixing scheme again, one finds from
(4.99) and (4.100) the following ratios for radiativeJ/ψ decays [134]

B(J/ψ→γη′)
B(J/ψ→γη)

= cot2 θ8

(
̺[J/ψγη′]
̺[J/ψγη]

)3

. (4.103)

The extension to theηc is also possible. With (4.86) one obtains

B(J/ψ→γη′)
B(J/ψ→γηc)

= θ2
c cos2 θ8

(
̺[J/ψγη′]
̺[J/ψγηc]

)3

. (4.104)

This approach leads to the following numerical results:

B(J/ψ→γη′)
B(J/ψ→γη)

= 5.39 , Exp : 5.0 ± 0.6 [10] ,

B(J/ψ→γη′)
B(J/ψ→γηc)

= 0.48 , Exp : 0.33 ± 0.1 [10] . (4.105)
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Due to the large uncertainties in the angleθc the prediction for the second ratio has an error of about
20%.

It is tempting to extend the anomaly dominance to the case of the radiativeΥ decays. One obtains

B(Υ→γη′)
B(Υ→γη)

= 6.51 ,
B(Υ→γη′)
B(Υ→γηc)

= 3.5 × 10−4 . (4.106)

Comparison with experiment is not yet possible, only upper bounds exist for the individual branching
ratios. Doubts have, however, been raised by Ma [156] on the validity of this approach for theΥ de-
cays. Generalizing the result for theJ/ψ case (4.99) appropriately, one finds a too large branching ratio,
namely≃ 8.3 × 10−5, as compared to the experimental upper limit of≤ 1.6 × 10−5 [10]. The estimate
advocated for by Ma, is based on the assumption of scale independence of the gluonic matrix element.
With regard to the well separated scalesmc andmb this assumption is suspicious. Nonetheless, the in-
vestigation of theΥ→γη(′) decays is to be addressed further. Of interest would also be an investigation
of the radiativehc decays into pseudoscalar mesons. It is likely that these decays are under control of
the same dynamical mechanism as the correspondingJ/ψ decays. Results analogue to (4.103), (4.104)
would then hold. Instead of the decays into pseudoscalar mesons one may also explore radiative quarko-
nium decays into scalar mesons. As is well-known scalar mesons may have sizeable glue–glue Fock
components [157], they may even be glueballs although they likely have sizeable admixtures of light
quarks [158, 159]. It would be interesting to unravel the dynamics mediating these decays. For first
attempts see for instance [159,160].

The decaysJ/ψ→ρη(′) can be treated analogously to the radiative decays. Since inthese processes
G-parity is not conserved, they proceed throughcc̄→γ∗. On account of the flavour content of theρ
meson, theγ∗→ρη(′) transition only probes theηq component of theη(′) if OZI-suppressed contributions
are neglected. Hence,

B(J/ψ→ρη′)
B(J/ψ→ρη)

= tan2 φ

(
̺[J/ψρη′]
̺[J/ψρη]

)3

, (4.107)

theρ−ηq form factor cancels in the ratio. Equation (4.107) leads to0.52 for the ratio of the decay widths
while the experimental value is0.54 ± 0.21 [10].

Finally, we want to mention the radiativeJ/ψ decay into a proton–antiproton pair. Recently, an
enhancement near2Mp in the invariant mass spectrum ofpp̄ pairs has been observed whileJ/ψ→π0pp̄
behaves regular near thepp̄ threshold [161]. The combination of both the results hints at a peculiar be-
haviour of thepp̄ pair in an isospin-zero state. The enhancement observed inJ/ψ→γpp̄ parallels similar
anomalies near thepp̄ threshold. They have been reported by Belle [162] for the decaysB+→K+pp̄ and
B

0→D0pp̄. An anomalous threshold behaviour is also seen in the proton’s time-like form factor [163],
in the charged pion spectrum from̄pd→π−π0p andπ+π−n reactions [164] and in the real part of the
elastic proton–antiproton forward amplitude [165].

Frequently these anomalies have been associated with narrow pp̄ bound states. Indeed, an analysis
of the BES provides evidence for an S-wave bound state with a mass of1859+3

−10 (stat)+5
−25 (syst) MeV

and a total width less than30 MeV [161]. A P-wave bound state instead of an S-wave one cannot be
excluded from the BES data. This BES result is very close to findings from an analysis of̄pd reactions
[166] (a bound state mass of1870MeV and a width of10MeV) and from a proton–antiproton forward
dispersion relation [167] (mass:1852MeV, width: 35MeV). In the CERN WA56 experiment [168],
on the other hand, a narrow peak (mass2.02GeV) has been observed in thepp̄ invariant mass spectrum
of the reactionπ−p→pfπ

−[pp̄] wherepf is a fast forward going proton. Puzzling is, however, the fact
that this peak is not seen inJ/ψ→γpp̄ [161] while there is no indication of a threshold enhancement
in the WA56 measurement. Several authors [169] have pointedout that the dynamics of the low-energy
pp̄ system such as pion exchange or the physics inherent in the effective range expansion, provides an
important contribution to the threshold enhancement. An appealing mechanism has been suggested by
Rosner [170]. He assumes that the partonic subprocess in theprocessJ/ψ→γpp̄ is cc̄→γgg followed
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by a nonperturbativegg→(pp̄)S transition where the subscript indicates app̄ pair in a resonant S-state.
Rosner further assumes that the correspondingB decays, for instanceB+→K+pp̄, receives a substantial
contribution associated with the subprocessb̄→s̄gg and the same nonperturbativegg→(pp̄)S transition
as forJ/ψ→γpp̄. Producing anη′ through this mechanism instead of the proton–antiproton pair leads
to similar contributions except that now a different gluonic matrix element occurs, see (4.99). In ratios
of these processes most details cancel and, according to Rosner, one arrives at

B(B+→K+(pp̄)S)|gg
B(B+→K+η′)|gg

=
̺[B+K+(pp̄)S ]

̺[B+K+η′]

(
̺[J/ψγη′]

̺[J/ψγ(pp̄)S ]

)3 B(J/ψ→γ(pp̄)S)

B(J/ψ→γη′)
. (4.108)

The gg subscript at theB-meson matrix elements is meant as a hint that there might be other non-
negligible contributions to theB decays than those from the subprocessb̄→s̄gg. This mechanism relates
the threshold enhancement inB+→K+pp̄ to that inJ/ψ→γpp̄. Using the experimental information
on the latter process, Rosner found that this mechanism provides a substantial fraction of the first one.
It is to be stressed that the ratio ofB+(0) decays intoK+(0)η′ andK+(0)η are not in conflict with this
interpretation.

6 ELECTROMAGNETIC TRANSITIONS 12

For quarkonium states,Q1Q̄2, above the ground state but below threshold for strong decayinto a pair
of heavy flavoured mesons, electromagnetic transitions areoften significant decay modes. In fact, the
first charmonium states not directly produced ine+e− collisions, theχJc states, were discovered in pho-
tonic transitions of theψ′ resonance. Even today, such transitions continue to be usedto observe new
quarkonium states [171].

6.1 Theoretical framework

6.1.1 Effective Lagrangian

The theory of electromagnetic transitions between these quarkonium states is straightforward. Much
of the terminology and techniques are familiar from the study of EM transitions in atomic and nuclear
systems. The photon fieldAµ

em couples to charged quarks through the electromagnetic current:

jµ ≡
∑

i=u,d,s

jiµ +
∑

i=c,b,t

jiµ . (4.109)

The heavy valence quarks (c, b, t) can be described by the usual effective action:

LNRQCD = ψ†
{
iD0 +

D2

2m
+ cF g

σ ·B
2m

+ cD g
[D·,E]

8m2
+ icS g

σ · [D×,E]

8m2
+ . . .

}
ψ , (4.110)

where theE andB fields are the chromoelectric and chromomagnetic fields. Corrections to the leading
NR behaviour are determined by the expansion in the quark andantiquark velocities. For photon mo-
mentum small compared to the heavy quark masses, the form of the EM interaction (in Coulomb gauge)
is determined in the same way as the NRQCD action itself [13,14,42,172], the leading order terms are:

j · Aem = eQψ
†
{
{D·,Aem}

2m
+ (1 + κQ)

σ · Bem

2m
+ . . .

}
ψ . (4.111)

The first term of Eq. (4.111) produces electric and the secondmagnetic transitions. The coefficient
κQ is a possible anomalous magnetic moment for the heavy quark.It is a perturbative quantity at the level

12Author: E. Eichten
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of NRQCD, but may get nonperturbative contributions in going to lower energy effective field theories,
once the scaleΛQCD has been integrated out. Since we may assume that potential models are an attempt
to mimic such theories, we will interpret in this last way thequantityκQ that appears there and will be
used in the following.

For quarkonium systems, light quarks (u, d, s) only contribute to internal quark loops, described
perturbatively at short distance and as virtual pairs of heavy flavour mesons at large distance. In the
SU(3) limit the total contribution from light quarks vanishes since its EM current has no SU(3) singlet
part. Hence, to leading order in SU(3) breaking these contributions can be ignored. We return to these
corrections in Sec. 6.5.

6.1.2 Transition amplitudes

Within aQ̄2Q1 quarkonium system, the electromagnetic transition amplitude is determined by the matrix
element of the EM current,〈f |jµem|i〉, between an initial quarkonium state,i, and a final statef . Including
the emission of a photon of momentumk and polarizationǫγ , the general form of the transition amplitude
is the sum of two terms

M(i→ f) = [M(1)(i→ f) + M(2)(i→ f)] · ǫγ(k), (4.112)

where in the termM(1) the photon is emitted off the quarkQ1 with massm1 and chargee1,

M(1)(i→ f) =
e1

2m1

∫
d3x〈i|Q†

1(x)(D, exp (ix · k) + (1 + κQ1)σ × k exp (ix · k))Q1(x)|f〉,
(4.113)

and in the corresponding termM(2) the photon is emitted off the antiquark̄Q2 with massm2 and charge
−e2.

Electromagnetic transition amplitudes can be computed from first principles in Lattice QCD [173].
Preliminary studies [174] have even included electromagnetic interactions directly into Lattice QCD
simulations. However, these transitions for quarkonium systems have not yet been computed. Various
relations between transitions also arise from QCD sum rules[175].

Although other calculational models, e.g., using the MIT bag model [176], have been explored,
only potential model approaches provide the detailed predictions for the strength of individual transition
amplitudes needed to compare with experiments. The remainder of this section will focus on the issues
within potential model approaches.

Within nonrelativistic (NR) potential models, a quarkonium state is characterized by a radial quan-
tum number,n, orbital angular momentum,l, total spin,s, and total angular momentum,J . In the NR
limit the spin dependence decouples from the spatial dependence. The spatial wave function for a NR
state,ψ(x), can be expressed in terms of a radial wave function,unl(r) and an orbital angular momentum
dependence by:

ψ(x) = Ylm(θ, φ)
unl(r)

r
. (4.114)

The spatial dependence of EM transition amplitudes reducesto expectation values of various functions of
quark position and momentum between the initial and final state wave functions. Expanding Eq. (4.113)
in powers of photon momentum generates the electric and magnetic multipole moments. This is also
an expansion in powers of velocity. The leading order transition amplitudes are electric dipole (E1) or
magnetic dipole (M1).

6.1.3 Electric transitions

Electric transitions do not change quark spin. The lowest NRorder transition is the electric dipole (E1)
transition. These transitions have∆l = ±1 and∆s = 0. To compute the E1 transition amplitudes
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exp (ix · k) can be replaced by1 in electric transition term in Eq. (4.113). Separating out the overall
centre of mass motion of the system, the quark momentum operator, iD/mQ, can be replaced by the
commutator,[h,x], of the bound state Hamiltonian,h, with the quark position operator,x. Finally, the
Hamiltonian acting on the initial or final state is simply themass of that state. To leading NR order,
this is equal to the momentum of the final photonk = (M2

i −M2
f )/(2Mi). The E1 radiative transition

amplitude between initial state (n2s+1
J ), i, and final state (n′2s

′+1
J ′), f , is [177]:

Me(i→ f)µ = δs,s′(−1)s+J+J ′+1+M ′
k
√

(2J + 1)(2J ′ + 1)(2l + 1)(2l′ + 1)
(

J ′ 1 J
−M ′ µ M

)(
l′ 1 l
0 0 0

){
l sa J
J ′ 1 l′

}
〈eQ〉 Eif , (4.115)

where〈eQ〉 = (e1m2 − e2m1)/(m1 +m2) and the overlap integralEif is

Eif =

∫ ∞

0
dr unℓ(r)run′ℓ′(r). (4.116)

If the full photon momentum dependence in Eq. (4.113) is retained (even through this is formally a higher
order relativistic corrections); the overlap integralE for m1 = m2 ande1 = −e2 = eQ is given by

Eif =
3

k

∫ ∞

0
dr unℓ(r)un′ℓ′(r)

[
kr

2
j0

(
kr

2

)
− j1

(
kr

2

)]
+ O(k/m). (4.117)

The spin averaged decay rate is given by

Γ(i
E1−→ f + γ) =

4αe2Q
3

(2J ′ + 1)SE
ifk

3|Eif |2, (4.118)

where the statistical factorSE
if = SE

fi is

SE
if = max (ℓ, ℓ′)

{
J 1 J ′

ℓ′ s ℓ

}2

. (4.119)

6.1.4 Magnetic transitions

Magnetic transitions flip the quark spin. The M1 transitionshave∆l = 0 and the amplitude is given by:

Mm(i→ f)µ = δℓ,ℓ′(−1)l+J
′+J+l+µ+M ′

3
√

(2J + 1)(2J ′ + 1)(2s + 1)(2s′ + 1)
∑

ν,σ

kσ

(
1 1 1
−µ σ ν

)(
J ′ J 1

−M ′ M ν

){
s l J
J ′ 1 s′

}{
1 1/2 1/2

1/2 s s′

}

[
e1
m1

+ (−1)s+s
′ e2
m2

]
Mif , (4.120)

where for equal mass quarks the overlap integralM is given by

Mif = (1 + κQ)

∫ ∞

0
dr unℓ(r)u

′
n′ℓ(r) j0

(
kr

2

)
+ O(k/m) . (4.121)

The spin-flip radiative transition rate between an initial state (n2s+1ℓJ ), i, and a final state (n′2s
ℓ+1SJ ′),

f , is:

Γ(i
M1−→ f + γ) =

4αe2Q
3m2

Q

(2J ′ + 1)k3SM
if |Mif |2, (4.122)

where the statistical factorSM
if = SM

fi is

SM
if = 6(2s + 1)(2s′ + 1)

{
J 1 J ′

s′ ℓ s

}2{
1 1

2
1
2

1
2 s′ s

}2

. (4.123)

For l = 0 transitions,SM
if = 1.
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6.1.5 Relativistic corrections

The leading relativistic corrections for electric transitions have been considered by a number of authors
[178–186]. A general form was derived by Grotch, Owen and Sebastian [184]. For example, for the
equal mass quark–antiquarkc̄c andb̄b systems the E1 transition amplitude is〈f |X0 + X1|i〉,

X0 = eQr,

X1 = −i keQ
2mQ

(
1

10

(
{r2,p} − 1

2
[r, [r·,p]]

)
− κQ

2
(r × S)

)
, (4.124)

whereκQ is the quark anomalous magnetic moment andp is the relative momentum. The decay rate
then has the general form:

ΓE1 = ΓE1
NR(1 +R1 +R2 +R3), (4.125)

whereR1 are corrections due to the modification of the nonrelativistic wave functions,R2 originates
from the relativistic modification of the transition operator andR3 are the finite size corrections (arising
from the plane wave expansion for the emitted photon). For the13PJ → 13S1 E1 transition:

R1 = 2EJ1 + (EJ1 )2,

R2 =
kκQ
2mQ

[
J(J + 1)

2
− 2

]
, (4.126)

R3 = − 1

10
(Mi −Mf )

2E2 +
k

8mQ
E3,

where

E1 =

∫ ∞

0
dr r

[
u

(0)
10 (r)u

(1)J
11 (r) + u

(1)
10 (r)u

(0)
11 (r)

]

Eif
,

E2 =

∫ ∞

0
dr r3 u

(0)
10 (r)u

(0)
11 (r)

Eif
, (4.127)

E3 =

∫ ∞

0
dr r

[
u

(0)
10 (r)

(
2r

d

dr
u

(0)
11 (r) − u

(0)
11 (r)

)
−
(

2r
d

dr
u

(0)
10 (r) − u

(0)
10 (r)

)
u

(0)
11 (r)

]

Eif
,

andu(1)(r) is the first order relativistic correction to the NR (reduced) radial wave function,u(0)(r).

The corrections for M1 transitions are more complicated anddepend explicitly on the structure of
the nonrelativistic potential. Assuming that the potential can be decomposed into three termsV (r) =
Vp(r) + (1 − η)Vv(r) + ηVs(r), i.e., a perturbative partVp(r) and a (nonperturbative) confining part,
which is a linear combination of a Lorentz vectorVv(r) and a scalarVs(r) term, the expression|Mif |2
in Eq. (4.121) is replaced by [183]|I1 + I2 + I3 + I4|2, where forS wave transitions in̄QQ systems:

I1 =

∫ ∞

0
dr u

(0)
n′0(r)u

(0)
n0 (r)

[
(1 + κQ)j0

(
kr

2

)
+
k(1 + 2κQ)

4mQ

]
,

I2 =

∫ ∞

0
dr u

(0)
n′0(r)u

(0)
n0 (r)

[
−(1 + κQ)

p2

2m2
Q

− p2

3m2
Q

]
, (4.128)

I3 =

∫ ∞

0
dr u

(0)
n′0(r)u

(0)
n0 (r)

[
κQr

6mQ

∂(Vp + (1 − η)Vv)

∂r

]
,

I4 =

∫ ∞

0
dr u

(0)
n′0(r)u

(0)
n0 (r)

[
−ηVs
mQ

j0

(
kr

2

)]
.
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Fig. 4.10: E1 transitions in the narrow spin tripletb̄b states. For each S–P transition indicated there are three
individual transitions (one for eachPJ state); while for transitions involving any other pair of orbital angular
momenta (P–D, D–F, F–G, ...) there are six individual transitions (∆J = 0,±1).

Further details of these relativistic corrections can beenfound at the original papers of Feinberg and
Sucher [178–180], Zambetakis and Byers [182] and Grotch andSebastian [183,184]. General treatments
of relativistic corrections for all quarkonium states can be found in recent works [185,186].

6.2 E1 transitions

Since the discovery of theJ/ψ andψ′ resonances in November 1974, E1 transitions have played an
important theoretical and experimental role in quarkoniumphysics. Initial theoretical papers on charmo-
nium [187,188] predicted the1P states in thēcc system and suggested that the triplet1P states could be
observed through the E1 transitions from theψ′ resonance. In fact, explicit calculations of the2S → 1P
and1P → 1S E1 transition amplitudesEif by the Cornell group [187] agree within 25% with present
experimental values [189].

Today there is a wealth of theoretical predictions and experimental data on E1 transitions. Many
E1 transitions have been observed in thec̄c, b̄b and more are expected. For example, Fig. 4.10 shows
the E1 transitions from narrow spin triplet states in theb̄b system. Transitions occur between two states
differing in L by one and J by zero or one; thus for theb̄b system there are a total of 99 E1 transitions, 30
of which are theoretically accessible ine+e− collisions from theΥ(2S) andΥ(3S) resonances.

6.2.1 Model predictions

The theoretical models used to calculate the E1 transitionscan be classified by the following two consid-
erations: (1) What nonrelativistic potential was used? and(2) Which relativistic corrections (as shown
in Eq. (4.125)) were included in the calculations?

An early choice for the potential was the Cornell model [177,187, 190–192]. Here the exchange
interaction was the time component of a vector with a Coulombshort range part−K/r plus a linear
r/a2 long range confining part. The Coulomb part was modified to agree with perturbative QCD at short
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Table 4.15: E1 transition rates for low-lyinḡcc states. The measured masses are used for observed states. The
mass values used for the3D2, 1D2 and3D3 states are suggested by the coupled channel calculations ofRef. [207].
The E1 rates are shown for the (NR) model described in the text. The variation of results forEif with inclusion
of relativistic corrections is shown for two models of Ref. [186] with scalar confinement (RA) and a mixture of
vector and scalar confining terms (RB).

Transition k SE
if Γ(i→ f)(NR) Eif (NR) Eif (RA) Eif (RB)

i
E1−→ f ( MeV) ( keV) ( GeV−1) ( GeV−1) ( GeV−1)

13P0(3.415) 13S1(3.097) 304 1
9 120 1.724 2.121 1.720

13P1(3.511) 13S1(3.097) 389 1
9 241 1.684 1.896 1.767

11P1(3.526) 11S0(2.979) 504 1
3 482 1.615 1.742 1.742

13P2(3.556) 13S1(3.097) 430 1
9 315 1.661 1.596 1.689

23S1(3.686) 13P0(3.415) 261 1
9 47.0 −2.350 −2.296 −1.775

21S0(3.638) 11P1(3.526) 110 1
3 35.1 −2.469 −2.126 −2.126

23S1(3.686) 13P1(3.511) 171 1
9 42.8 −2.432 −2.305 −1.782

23S1(3.686) 13P2(3.556) 127 1
9 30.1 −2.460 −2.362 −1.901

13D1(3.770) 13P0(3.415) 338 2
9 299 2.841 2.718 2.802

13D1(3.770) 13P1(3.511) 250 1
18 99.0 2.957 2.799 2.969

13D1(3.770) 13P2(3.556) 208 1
450 3.88 3.002 3.016 3.348

13D2(3.831) 13P1(3.511) 307 1
10 313 2.886 2.593 2.593

13D2(3.831) 13P2(3.556) 265 1
50 69.5 2.940 2.781 2.991

11D2(3.838) 11P1(3.526) 299 2
15 389 2.896 2.610 2.610

13D3(3.872) 13P2(3.556) 303 2
25 402 2.892 2.508 2.402

distance by Buchmüller and Tye [141,193]. Other simple forms for the potential, logarithmic [144,194]
and power law [195,196], were also proposed.

In the NRQCD limit the quark–antiquark interaction is spin independent, but including relativistic
corrections introduces dependencies on the Lorentz structure of the potential. Of particular importance
is the vector versus scalar nature of the long-range confining interaction. Many modern theoretical
calculations assume a long range scalar confining potential[197] or a linear combination of the form
ηVS(r) + (1 − η)VV (r) [181, 186, 198]. Moxhay and Rosner [199] assumed an additional long range
tensor force.

The second consideration is the extent of the inclusion of the relativistic corrections. Some cal-
culations are essentially nonrelativistic. These calculations often include some finite size effects (R3 of
Eq. (4.125)) by retaining the form forEif given in Eq. (4.117) [177, 187, 190–192, 200]. Other mod-
els also include relativistic corrections to the wave functions (R1 of Eq. (4.125)) either perturbatively
or nonperturbatively. The relativistic quark model of Godfrey and Isgur [201] is an example in this
class. Gupta, Radford and Repko computed the relativistic corrections using only the gluon exchange
interactions of QCD perturbation theory [202–204]. Many models include the full relativistic correc-
tions [181,184,185,199,205,206].

Differences in theoretical assumptions and experimental input for the various potential model cal-
culations of E1 transitions make it difficult to draw sharp conclusions from the level of agreement of
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Table 4.16: E1 transition rates for low-lying spin tripletb̄b states.

Transition k SE
if Γ(i→ f)(NR) Eif (NR) Eif (RA) Eif (RB)

i
E1−→ f ( MeV) ( keV) ( GeV−1) ( GeV−1) ( GeV−1)

13P0(9.860) 13S1(9.460) 392 1
9 22.2 1.013 1.205 1.178

13P1(9.893) 13S1(9.460) 423 1
9 27.8 1.010 1.175 1.163

13P2(9.913) 13S1(9.460) 442 1
9 31.6 1.007 1.124 1.137

23S1(10.023) 13P2(9.913) 110 1
9 2.04 −1.597 −1.800 −1.778

23S1(10.023) 13P1(9.893) 130 1
9 2.00 −1.595 −1.781 −1.759

23S1(10.023) 13P0(9.860) 162 1
9 1.29 −1.590 −1.803 −1.781

13D1(10.151) 13P2(9.913) 236 1
450 0.564 1.896 2.104 2.104

13D1(10.151) 13P1(9.893) 255 1
18 10.7 1.890 2.050 2.050

13D1(10.151) 13P0(9.860) 287 2
9 20.1 1.880 2.106 2.106

13D2(10.157) 13P2(9.913) 241 1
50 5.46 1.894 2.048 2.048

13D2(10.157) 13P1(9.893) 261 1
10 20.5 1.888 1.999 1.999

13D3(10.160) 13P2(9.913) 244 2
25 22.6 1.893 1.979 1.979

23P0(10.232) 13D1(10.151) 81 2
9 1.13 −1.723 −1.740 −1.740

23P0(10.232) 23S1(10.023) 207 1
9 9.17 1.697 1.872 1.855

23P0(10.232) 13S1(9.460) 743 1
9 10.9 0.272 0.214 0.239

23P1(10.255) 13D2(10.157) 98 1
10 1.49 −1.720 −1.751 −1.751

23P1(10.255) 13D1(10.151) 104 1
18 0.593 −1.718 −1.721 −1.721

23P1(10.255) 23S1(10.023) 229 1
9 12.4 1.688 1.837 1.831

23P1(10.255) 13S1(9.460) 764 1
9 12.0 0.274 0.228 0.216

23P2(10.268) 13D3(10.160) 108 2
25 2.25 −1.717 −1.763 −1.763

23P2(10.268) 13D2(10.157) 111 1
50 0.434 −1.717 −1.737 −1.737

23P2(10.268) 13D1(10.151) 117 1
450 0.034 −1.715 −1.766 −1.766

23P2(10.268) 23S1(10.023) 242 1
9 14.5 1.682 1.792 1.797

23P2(10.268) 13S1(9.460) 776 1
9 12.7 0.274 0.207 0.218

33S1(10.355) 23P2(10.268) 86 1
9 2.40 −2.493 −2.663 −2.644

33S1(10.355) 23P1(10.255) 100 1
9 2.20 −2.489 −2.607 −2.586

33S1(10.355) 23P0(10.232) 122 1
9 1.35 −2.479 −2.608 −2.582

33S1(10.355) 13P2(9.913) 433 1
9 0.015 0.016 0.063 0.045

33S1(10.355) 13P1(9.893) 452 1
9 0.008 0.011 0.063 0.045

33S1(10.355) 13P0(9.860) 483 1
9 0.001 0.004 0.063 0.045
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Table 4.17: E1 transition rates for low-lying spin singletb̄b states.

Transition k SE
if Γ(i→ f)(NR) Eif (NR) Eif (RA) Eif (RB)

i
E1−→ f ( MeV) ( keV) ( GeV−1) ( GeV−1) ( GeV−1)

11P1(9.900) 11S0(9.400) 487 1
3 41.8 1.001 1.149 1.149

21S0(9.990) 11P1(9.900) 90 1
3 1.99 −1.600 −1.743 −1.743

11D2(10.157) 11P1(9.900) 254 2
15 25.3 1.891 2.002 2.002

21P1(10.260) 21S0(9.990) 266 1
3 19.0 1.671 1.817 1.817

21P1(10.260) 11D2(10.157) 102 2
15 2.29 −1.719 −1.782 −1.782

31S0(10.328) 21P1(10.260) 68 1
3 2.10 −2.498 −2.571 −2.571

31S0(10.328) 11P1(9.900) 419 1
3 0.007 0.010 0.064 0.064

a particular model and experimental data. However, it is known that there is usually very little model
variation in the NR predictions (lowest order) if the modelsare fit to the same states [200]. The only ex-
ceptions are transitions where the overlap integralEif exhibits large dynamical cancellations. Therefore,
to compare the variations in results due to the inclusion of relativistic corrections from a common base,
three models for E1 radiative transitions are presented, which are fit with the same input masses. First a
reference Cornell model [191] (NR), with parameters (a andK) adjusted to fit the COG positions of the
1S, 1P and 2S states in each of thec̄c andb̄b systems [208]. Here E1 transitions are computed withEif
given in Eq. (4.117), i.e., with only finite size relativistic corrections included. Second, a recent model
by Ebert, Faustov and Galkin [186] with full relativistic corrections in two cases: (RA)η = 1 (scalar
confinement) and (RB)η = −1 (a fitted mixture of scalar and vector confinement).

The results forEif are shown for thēcc narrow states in Table 4.15. The size of the relativistic
corrections toEif shown in Table 4.15 vary as much as±25%. This variation is perfectly consistent with
naive expectations forv2/c2 corrections. McClary and Byers [181] first emphasized that because of the
node in the radial wave function of the2S state the overlapE2S,1P is particularly sensitive to relativistic
corrections in thēcc system. The significant leptonic width for theΨ(3770) resonance implies that there
is a sizeable S-D mixing between the23S1 and13D1 states. This mixing arises both from the usual
relativistic correction terms and coupling to strong decaychannels and will affect theΨ(3686) → 13PJ
andΨ(3770) → 13PJ E1 transitions rates (See Section 6.2.3). For the1D states there may be additional
large effects on rates associated with this coupling to nearby strong decay channels. (See Section 6.5.)

Results for narrow̄bb states accessible from theΥ(3S) orΥ(2S) resonances are shown for spin-
triplets in Table 4.16 and for the spin-singlets in Table 4.17. The typical size of the relativistic corrections
for Eif are approximately half as large as in the correspondingc̄c transition. This is again as expected,
since〈v2/c2〉 is smaller in thēbb system. There is a notable exception for the overlapE3S,1P. In the
NR limit this overlap is less than 5% of any other S–P overlap.This dynamical accident makes these
transition rates very sensitive to the details of wave functions and relativistic corrections, which arenot
well under control theoretically.

Finally, for completeness, radiative transitions involving b̄b states not accessible from the3S states
are shown in Table 4.18. Only the NR rates are shown. One observes large dynamical cancellations for
the overlapE3P,1D and to a lesser extent in the overlapsE3P,1S, E2D,1P andE3P,2S.
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Table 4.18: E1 transition rates for the remaining spin triplet b̄b states. For each(n′ andℓ′) only the final state
J ′ with the largest rate is shown. The transition rates for spin-singletb̄b states differ from the corresponding spin
triplet rates by the ratio of statistical factorsSE(s = 0)/SE(s = 1): 3, 2/3, 9/8 and 16/15 for S–P, P–D, D–F and
F–G transitions respectively.

Transition k SE
if Eif Γ(i→ f)

i
E1−→ f ( MeV) ( GeV−1) ( keV)

13F2(10.370) 13D1(10.151) 217 3
25 2.681 28.5

13F3(10.370) 13D2(10.157) 211 8
105 2.684 27.8

13F4(10.370) 13D3(10.160) 208 3
49 2.686 30.0

23D1(10.441) 13F2(10.370) 71 3
25 −1.904 0.833

23D1(10.441) 23P0(10.232) 207 2
9 2.487 13.1

23D1(10.441) 13P0(9.860) 565 2
9 0.288 3.60

23D2(10.446) 13F3(10.370) 76 8
105 −1.903 0.907

23D3(10.450) 13F4(10.370) 80 3
49 −1.902 1.09

23D3(10.450) 23P2(10.268) 180 2
25 2.506 15.8

23D3(10.450) 13P2(9.913) 524 2
25 0.278 4.80

33P0(10.498) 23D1(10.441) 57 2
9 −2.584 0.884

33P0(10.498) 33S1(10.355) 142 1
9 2.308 5.47

33P0(10.498) 13D1(10.151) 341 2
9 −0.047 0.063

33P0(10.498) 23S1(10.023) 464 1
9 0.351 4.44

33P0(10.498) 13S1(9.460) 986 1
9 0.137 6.46

33P1(10.516) 23D2(10.446) 70 1
10 −2.579 1.22

33P1(10.516) 33S1(10.355) 160 1
9 2.295 7.71

33P1(10.516) 13D2(10.157) 353 1
10 −0.050 0.060

33P1(10.516) 23S1(10.023) 481 1
9 0.355 5.06

33P1(10.516) 13S1(9.460) 1003 1
9 0.137 6.86

13G3(10.520) 13F2(10.498) 22 4
49 3.812 0.068

13G4(10.520) 13F3(10.498) 22 5
84 3.812 0.069

13G5(10.520) 13F4(10.498) 22 4
81 3.812 0.074

33P2(10.529) 23D3(10.450) 79 2
25 −2.576 1.96

33P2(10.529) 33S1(10.355) 172 1
9 2.284 9.63

33P2(10.529) 13D3(10.160) 363 2
25 −0.053 0.082

33P2(10.529) 23S1(10.023) 494 1
9 0.358 5.54

33P2(10.529) 13S1(9.460) 1014 1
9 0.138 7.16

23F2(10.530) 23D1(10.441) 89 3
25 3.337 3.02

23F3(10.530) 23D2(10.446) 84 8
105 3.340 2.69

23F4(10.530) 23D3(10.450) 80 3
49 3.342 2.62

23F2(10.530) 13G3(10.520) 10 4
49 −2.262 0.003

23F3(10.530) 13G4(10.520) 10 5
84 −2.262 0.003

23F4(10.530) 13G5(10.520) 10 4
81 −2.262 0.003
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6.2.2 Comparison with experiment:S andP states13

There is now extensive data on electromagnetic transitionsamong heavy quarkonium states. Figure 4.11
shows the inclusive photon spectra from thec̄c and b̄b 23S1 decays measured with the CLEO detector
[209]. This section provides a snapshot of the current status of various S–P transitions. New data come
mainly from the CLEO experiment at CESR.

In the NR limit the overlapEnS,n′PJ
= |〈n′PJ |r|nS〉| is independent ofJ . Experimentally, it is

useful to define averages overJ by

EnS,n′P(avg) =

√
B(nS→γn′PJ) Γtot(nS)

D
∑

J(2J + 1)Eγ(nS→n′PJ )3
(4.129)

EnP,n′S(avg) =

√
B(nPJ→γn′S) Γtot(nPJ)

D
∑

J Eγ(nPJ→n′S)3

whereD = 4/3α eb
2SE

3PJ ,3S1
. These quantities reduce to the usual overlaps in the NR limit. In order to

see the relativistic corrections (which vary withJ) it is also useful to define ratios,EnS,n′PJ
/EnS,n′P(avg).

Given the total width of the initial state these overlaps canbe determined directly from experimental
branching ratios. The experimental results for thec̄c and b̄b states are shown in Table 4.19. These
results are extracted from the world average results forB(χc(1PJ )→γJ/ψ) andB(ψ(2S)→γχc(1PJ )).
Also shown are recent results from CLEO-c forB(ψ(2S)→γχc(1PJ )) transitions [210]. Results for
B(Υ(3S)→γχb(2PJ )) andB(Υ(2S)→γχb(1PJ ) are taken from Ref. [10]. The E1 transitions show
clear evidence ofJ dependence and, hence, relativisitic corrections inS state transitions. The largest
relativistic effects are in the23S1 to 13PJ c̄c transitions.

With their largeΥ(3S) data sample and excellent CsI electromagnetic calorimeter, the CLEO III
experiment has been able to measure the E1 photon transitions from theΥ(3S) to theχb(2PJ ) states, and
the subsequent photon decays of those states to theΥ(2S) andΥ(1S). They identify exclusiveγγℓ+ℓ−

events, which are consistent with photon transitions through theχb(2PJ ) states to theΥ(2S) orΥ(1S),
followed by the leptonic decay of theΥ. This provides a very clean signal with little background.
Tables 4.20 and 4.21 give a summary of their preliminary results [211] on the product branching ratios,
along with comparisons with the previous CLEO II [212] and CUSB [213] measurements. Then, by using
the world average values for theΥ(3S)→ χb(2PJ ) + γ andΥ leptonic branching ratios, theχb(2PJ ) →
Υ + γ branching ratios can be obtained.

For the similar transitions through theχb(1PJ ) states:Υ(3S)→ γχb(1PJ ),χb(1PJ ) → γΥ(1S), the
photon lines for the different J states cannot be resolved, due to the finite crystal energy resolution. The
J = 0 branching ratio is expected to be small, given the large hadronic width of this state. So CLEO III
gives a combined product branching ratio, summed over the J =1 and J = 2 states. The results are shown
in Table 4.22.

We can extract the|E1P,3S| matrix element from the photon transitions via theχb(1P ) states:

E1P,3S(avg) =

√
B(3S→γ1P, 1P→γ1S) Γtot(3S)

D
∑

J(2J + 1)Eγ(1PJ→1S)3B(1PJ→γ1S)
. (4.130)

This formula assumes that the matrix element is spin independent. TakingB(3S→γ1P, 1P→γ1S) from
Table 4.22 and the world average values for the other quantities from PDG04 [10], we obtain:

E1P,3S(avg) = (0.050 ± 0.006)GeV−1 .

The error here includes the statistical and systematic uncertainties on all quantities added in quadrature.
The averaging is only overJ = 1 andJ = 2.

13Authors: E. Eichten, T. Ferguson
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Fig. 4.11: Inclusive photon spectrum from23S1 decays in thēcc (top) and̄bb (bottom) systems measured with the
CLEO detector. The data correspond to about 1.5Mψ(2S) and 9MΥ(2S) decays. From Skwarnicki [209].
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Table 4.19: Measured E1 overlap integrals for S–P transitions. Transition rates use branching ratios and total
widths from PDG04 world averages [10] except for second set of values for thēcc transition23S1 → 13PJ , which
uses branching ratios from recent results of CLEO-c [210].

Transition |Eavg| EJ/Eavg

i
E1−→ f ( GeV−1) J = 0 J = 1 J = 2

c̄c

13PJ 13S1 1.87 ± 0.07 0.92 ± 0.05 0.99 ± 0.06 1.04 ± 0.03

23S1 13PJ 1.78 ± 0.07 0.94 ± 0.04 1.01 ± 0.05 1.07 ± 0.05

1.94 ± 0.07 0.90 ± 0.02 0.97 ± 0.03 1.19 ± 0.04

b̄b

33S1 23PJ 2.75 ± 0.21 0.92 ± 0.06 1.06 ± 0.05 1.02 ± 0.06

23S1 13PJ 1.94 ± 0.18 0.92 ± 0.06 1.09 ± 0.05 0.98 ± 0.06

Table 4.20: CLEO III preliminary results [211] forΥ(3S)→ γ χb(2PJ ) → γγ Υ(2S)→ γγℓ+ℓ−, along with
comparisons with CLEO II [212] and CUSB [213].

Parameter (units) Ref. J = 2 J = 1 J = 0
B(γγℓ+ℓ−) (10−4) [211] 2.73 ± 0.15 ± 0.24 5.84 ± 0.17 ± 0.41 0.17 ± 0.06 ± 0.02

[212] 2.49 ± 0.47 ± 0.31 5.11 ± 0.60 ± 0.63 < 0.60
[213] 2.74 ± 0.33 ± 0.18 3.30 ± 0.33 ± 0.19 0.40 ± 0.17 ± 0.03

B(Υ(3S)→ γγΥ(2S)) (%) [211] 2.20 ± 0.12 ± 0.31 4.69 ± 0.14 ± 0.62 0.14 ± 0.05 ± 0.02

B(χb(2PJ ) → γΥ(2S)) (%) [211] 19.3 ± 1.1 ± 3.1 41.5 ± 1.2 ± 5.9 2.59 ± 0.92 ± 0.51

Table 4.21: CLEO III preliminary results [211] forΥ(3S)→ γ χb(2PJ ) → γγ Υ(1S)→ γγℓ+ℓ−, along with
comparisons with CLEO II [212] and CUSB [213].

Parameter (units) Ref. J = 2 J = 1 J = 0
B(γγℓ+ℓ−) (10−4) [211] 1.93 ± 0.12 ± 0.17 3.19 ± 0.13 ± 0.18 < 0.16

[212] 2.51 ± 0.47 ± 0.32 3.24 ± 0.56 ± 0.41 < 0.32
[213] 1.98 ± 0.28 ± 0.12 2.34 ± 0.28 ± 0.14 0.13 ± 0.10 ± 0.03

B(Υ(3S)→ γγΥ(1S)) (%) [211] 0.79 ± 0.05 ± 0.07 1.31 ± 0.05 ± 0.08 < 0.08

B(χb(2PJ ) → γΥ(1S)) (%) [211] 7.0 ± 0.4 ± 0.8 11.6 ± 0.4 ± 0.9 < 1.44

Table 4.22: CLEO III preliminary results [211] forΥ(3S)→ γ χb(1PJ ) → γγ Υ(1S)→ γγℓ+ℓ−, along with
comparisons with the CUSB experiment [213]. The values are summed over the J = 1 and J = 2 transitions.

Parameter Ref. J = 1 and 2 Combined
B(γγℓ+ℓ−) (10−4) [211] 0.520 ± 0.054 ± 0.052

B(Υ(3S)→ γγΥ(1S)) (%) [211] 0.241 ± 0.022 ± 0.021
[213] 0.12 ± 0.04 ± 0.01
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Table 4.23: Comparison of average E1 matrix elements and their ratios predicted by different potential models with
measurements from̄bb data. “NR” denotes nonrelativistic calculations and “rel”refers to models with relativistic
corrections. The first set of model entries are the referencemodels considered here. The second set is a selection
of other models taken from Ref. [211].

|E3S,2P| |E2S,1P| |E3S,1P| |E2P,1S|
|E2P,2S|

GeV−1 GeV−1 GeV−1

DATA 2.7 ± 0.2 1.9 ± 0.2 0.050 ± 0.006 0.096 ± 0.005
World Average CLEO III [211]

Model NR rel NR rel NR rel NR rel
NR 2.5 1.6 0.014 0.16
RA 2.6 1.8 0.063 0.12
RB 2.6 1.8 0.045 0.12
Kwong, Rosner [200] 2.7 1.6 0.023 0.13
Fulcher [214] 2.6 1.6 0.023 0.13
Büchmuller et al. [141,193] 2.7 1.6 0.010 0.12
Moxhay, Rosner [199] 2.7 2.7 1.6 1.6 0.024 0.044 0.13 0.15
Gupta et al. [204] 2.6 1.6 0.040 0.11
Gupta et al. [202,203] 2.6 1.6 0.010 0.12
Fulcher [215] 2.6 1.6 0.018 0.11
Danghighian et al. [206] 2.8 2.5 1.7 1.3 0.024 0.037 0.13 0.10
McClary, Byers [181] 2.6 2.5 1.7 1.6 0.15 0.13
Eichten et al. [191] 2.6 1.7 0.110 0.15
Grotch et al. [184] 2.7 2.5 1.7 1.5 0.011 0.061 0.13 0.19

Results for the values ofE(avg) in the b̄b P system are compared to various potential model
predictions in Table 4.23. We also include results forE3S,2P andE2S,1P from Table 4.19 extracted from
the world average results forB(Υ(3S)→γχb(2PJ )) andB(Υ(2S)→γχb(1PJ ) [10]. While most of the
potential models have no trouble reproducing the large matrix elements,E3S,2P, E2S,1P, which show also
little model dependence, only a few models predictE3S,1P in agreement with measurements. Clearly, the
latter transition is highly sensitive to the underlying description of b̄b states as discussed above.

The branching ratios given in the Tables 4.20–4.22 can also be used to measure the ratios of various
E1 matrix elements, which can then be compared to different potential model predictions. First, the ratio
of the matrix elements for the decay of the sameχb(2PJ ) state to differentΥ states can be found using:

E2PJ,1S

E2PJ,2S
=

√
B(3S → γ2PJ , 2PJ → γ1S)

B(3S → γ2PJ , 2PJ → γ2S)

(
Eγ(2PJ → 2S)

Eγ(2PJ → 1S)

)3

(4.131)

With this method, the following values are obtained:

E2P2,1S

E2P2,2S
= 0.105 ± 0.004 ± 0.006,

E2P1,1S

E2P1,2S
= 0.087 ± 0.002 ± 0.005, (4.132)

E2P2,1S

E2P2,2S
/
E2P1,1S

E2P1,2S
= 1.21 ± 0.06,

E2P1,2,1S

E2P1,2,2S
= 0.096 ± 0.002 ± 0.005. (4.133)

To compare to potential model predictions, the last number above is an average over the J = 1 and
J = 2 values. In the nonrelativistic limit, the E1 matrix elements should not depend on J. Since the values
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for the J = 1 and J = 2 matrix elements differ by 3.5 standard deviations, there appears to be evidence
for relativistic effects in thēbb system in both theS andP states transitions. Again these results are
compared to various potential model predictions in Table 4.23. Predictions for the ratio|E2P,1S|/|E2P,2S|
are very model dependent, but somewhat higher than the experimental values.

Overall, the comparison of the measured matrix elements andthe predictions of various potential
models shows that the recent theoretical calculations thatincorporate relativistic effects are better at
reproducing the data [209,211].

6.2.3 D states

In thec̄c system, the13D1 and13D3 states are aboveDD̄ threshold and have open flavour strong decays.
TheJ = 2 states13D2 and11D2 are below (or at) theD∗D̄ + DD̄∗ threshold and are expected to be
narrow. In all cases, the coupling to real and virtual strongdecay channels is likely to significantly
alter the potential model radiative transition rates shownin Table 4.15. (We will discuss this further in
Section 6.5 below.) One effect of these couplings is that theψ(3770) state will not be a pure13D1 state
but will have a sizeable mixing component with the23S1 state:

ψ(3770) = cos(φ)|13D1〉 + sin(φ)|23S1〉 . (4.134)

Using the measured leptonic width of theψ(3770) and resolving a two-fold ambiguity in favor of the
value of the mixing angle favored by Cornell coupled channelcalculations [191], Rosner finds [106]
φ = (12 ± 2)◦. Employing the NR results of Table 4.15, the ratios of E1 transitions to variousχc states
are:

Γ(ψ(3770) → γχc1)

Γ(ψ(3770) → γχc0)
= 1.32

(
−

√
3

2 + tan(φ)√
3 + tan(φ)

)2

,

Γ(ψ(3770) → γχc2)

Γ(ψ(3770) → γχc0)
= 1.30

( √
3

10 + tan(φ)√
3 + tan(φ)

)2

. (4.135)

Measuring these branching ratios is experimentally challenging. [The only existing data is contained in
an unpublished Ph. D. thesis based on MARK III data [216].] CLEO-c may be able to determine some
of these branching ratios in the near future.

In the b̄b system CLEO III [171] has presented evidence for the production of Υ(1D) states
in the four-photon cascade (see Fig. 4.10),Υ(3S)→γχb(2P ), χb(2P )→γΥ(1D), Υ(1D)→γχb(1P ),
χb(1P )→γΥ(1S), followed by theΥ(1S) annihilation intoe+e− or µ+µ−.

In addition to the four-photon cascade via theΥ(1D) states, they observe events with the four-
photon cascade via theΥ(2S) state: Υ(3S) → γχb(2P ), χb(2P ) → γΥ(2S), Υ(2S) → γχb(1P ),
χb(1P ) → γΥ(1S), Υ(1S)→l+l− The product branching ratio for this entire decay sequence (including
Υ(1S)→l+l−) is predicted to be3.84 · 10−5 [217], thus comparable to the predictedΥ(1D) production
rate. In the four-photon cascade via theΥ(1D) the second highest energy photon is due to the third
transition, while in these cascades the second highest energy photon is due to the second photon transition
(see Fig. 4.10). This allows the discrimination of theΥ(1D) signal from theΥ(2S) background events.

CLEO III [171] finds their data are dominated by the production of oneΥ(1D) state consistent
with theJ = 2 assignment and a mass(10161.1±0.6±1.6) MeV, which is consistent with the predictions
from potential models and lattice QCD calculations.

The signal product branching ratio obtained isB(γγγγl+l−)Υ(1D) = (2.5 ± 0.5 ± 0.5) · 10−5.
The first error is statistical, while the second one is systematic. The significance of the signal is 10.2
standard deviations. This branching ratio is consistent with the theoretically estimated rates. Godfrey
and Rosner [217], summing overΥ(1D1,2,3) contributions, obtained3.76 × 10−5; while the predicted
rate [200,217] for theΥ(1D2) state alone is2.6 × 10−5.
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Forming the ratio ofΥ(1D) to Υ(2S) four-photon cascades would allow the measurement in a
fairly model independent way of the estimate of the total width of theΥ(1D) state, if the individual
Υ(2PJ ) andΥ(1PJ ′) transitions could be resolved.

6.3 M1 transitions

For M1 transitions, the leading order NRQCD prediction for the overlapMif is independent of the
potential model. The spin independence and orthogonality of states guarantee that the spatial overlap
matrix is one for states within the same multiplet and zero for allowed transitions between multiplets,
which have different radial quantum numbers.

Including relativistic corrections, e.g., finite size corrections, will spoil these exact results and
induce a small overlap between states with different radialquantum numbers. Suchn 6= n′ transitions
are denoted hindered.

6.3.1 Model predictions

Within the (NR) model used for the E1 transitions (i.e., a nonrelativistic treatment except for finite size
corrections andκQ = 0) the M1 transition rates and overlap matrix elementsM for c̄c and b̄b S states
are shown in Table 4.24.

Numerous papers have considered these M1 transitions including full relativistic corrections [182,
184–186, 201, 217, 218]. There are several sources of uncertainty that contribute making M1 transitions
particularly complicated to calculate. In addition to the usual issues associated with the form of the
long range potential there is the unknown value for the anomalous magnetic moment for the quark (κQ).
Furthermore, the results depend explicitly on the quark masses and on other details of the potential (see
Eqs. 4.128). For the models (RA) and (RB) used for the E1 transitions, κQ = −1. The theoretical
uncertainty in the value ofκQ will eventually be reduced by lattice calculations in quarkonium systems.

6.3.2 Comparison with experiment

M1 transitions have only been observed in thec̄c system. The allowed transitions in thec̄c system below
threshold are shown in Fig. 4.12. The transitions within the1P system are tiny (≈ 1 eV). Only the
J/ψ → ηc andψ ′ → ηc are observed experimentally [10]. For theb̄b system CLEO [219] sees no
evidence for the hindered M1 transitionΥ(3S) → ηb(1S). The90% cl upper bound on the branching
ratio varies from4 − 6 × 10−4 depending on the mass splitting. For the expected splitting≈ 910 MeV
the bound is5.3 × 10−4 [219]. This rules out a number of older models [182, 201]. A comparison
of the experimental results with a variety of more modern models is shown in Table 4.25. For each
model the assumptions for the mixture of scalar and vector confinement and the value ofκQ is exhibited
explicitly. For the model of Lahde [185] the results are alsoshown without including the exchange term
(NEX). This (NEX) piece neglects the time ordering of photonemission and potential interaction, which
vanishes in the NR limit. Generally models with a scalar confining interaction and/or a sizable negative
anomalous quark magnetic moment are favored.

6.4 Higher order corrections

6.4.1 Higher multipole contributions

In lowest order, only the E1 amplitude contributes toχc states radiative transitions. In higher order in
v2/c2 a M2 amplitude contributes forJ = 1, 2 and an E3 amplitudes is also possible for theJ = 2
state. To orderv2/c2 these M2 and E3 corrections to the dominant E1 term can contribute to angular
distributions but cannot contribute to total decay rates. This comes from the orthogonality of terms in
the multipole expansion.
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Table 4.24: M1 transition rates for S-wave quarkonium states using the NR model described in text. Finite size
corrections are included in the calculation ofM (see Eq. (4.121)) andκQ = 0.

Transition k Γ(i→ f)(NR) Mif (NR)

i
M1−→ f ( MeV) (eV )

c̄c

13S1(3.097) 11S0(2.979) 115 1, 960 0.998

23S1(3.686) 21S0(3.638) 48 140 0.999

21S0(3.638) 13S1(3.097) 501 538 0.033

23S1(3.686) 11S0(2.979) 639 926 0.053

b̄b

13S1(9.460) 11S0(9.400) 60 8.953 1.000

21S0(9.990) 13S1(9.460) 516 2.832 0.013

23S1(10.023) 21S0(9.990) 33 1.509 1.000

23S1(10.023) 11S0(9.400) 604 2.809 0.018

31S0(10.328) 23S1(10.023) 300 0.620 0.014

31S0(10.328) 13S1(9.460) 831 3.757 0.007

33S1(10.355) 31S0(10.328) 27 0.826 1.000

33S1(10.355) 21S0(9.990) 359 0.707 0.019

33S1(10.355) 11S0(9.400) 911 2.435 0.009

Table 4.25: Comparison of M1 transition overlaps with experiment for various models. The transition overlap
I ≡ M(13S1)

2mQ
Mif is from nS spin triplet to the n’S spin singletS states in thēcc andb̄b systems. The experimental

upper bounds are90% cl.

Type TransitionIn,n′

Model parameters (n, n′) [c̄c] (n, n′) [b̄b]

η κQ (1, 1) (2, 1) (1, 1) (2, 1) (3, 1) (3, 2)

Cornell [191] NR 0 0.84 0.028 0.92 0.017 0.007 0.018

GOS84 [184] 0 0 0.86 0.075 0.88 0.058 – –

0 −1 0.58 0.054 0.081 0.007 – –

1 0 0.65 0.127 0.91 0.048 – –

1 −1 0.39 0.029 0.049 0.021 – –

EFG02 [186] 0 0 0.84 0.036 0.91 0.018 0.013 0.016

1 0 1.06 0.027 1.08 0.011 0.009 0.007

−1 −1 0.62 0.045 0.75 0.025 0.026 0.017

Lahde02 [185] NEX 0 0.87 0.011 0.92 0.020 0.009 0.016

1 0 0.67 0.049 0.88 0.032 0.014 0.037

EXP 0.66 ± 0.10 0.042 ± 0.004 < 0.045 < 0.020 < 0.080

Ref [10] [10] [210] [209] [219] [209]
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Fig. 4.12: Allowed M1 transitions in the narrow̄cc. The1P transition rates are unobservably small (≈ 1eV ).

It was originally suggested by Karl, Meshkov and Rosner [220] that these corrections can be
studied by measuring the angular correlations between the two photons in the transitionψ ′ → χc+γ →
J/ψ + 2γ. These effects can also be studied forχc states directly produced in hadron collisions,B
decays or̄pp annihilation by measuring the combined angular distributions of the photon and thel+l−

pair produced in the subsequentJ/ψ decay. The details of these correlations have been calculated by
Sebastian, Grotch and Ridener [221].

For the photon transition from aχcJ state there areJ + 1 normalized helicity amplitudes,Aν .
Defining |a| =

√
E12 +M22 + E32, a1 = E1/|a|, a2 = M2/|a| and a3 = E3/|a| the relation

between helicity and multipole amplitudes is:

Aν =
∑

ℓ

aℓ

(
2ℓ+ 1

2J + 1

) 1
2

〈ℓ, 1; 1, ν − 1|J, ν〉 . (4.136)

Allowing for an anomalous magnetic momentκc and mixing between the2S and1D states the
theoretical predictions for

ψ ′ → χcJ + γ and χcJ → J/ψ + γ

are shown in Table 4.26 along with a comparison with present experimental results. The S–D mixing
parameter isE2S,1PX = − tanφ E1D,1P whereφ is defined in Eq. (4.134). In the notation of Eq. (4.127)

the other model dependent parameter is defined byE1D,1PY =

∫
dr r

(
r
du

(0)
12

dr
− u

(0)
12

)
u

(0)
11 .

As can be seen from Table 4.26 a nonzero E3 amplitude in theψ ′ → χc2 + γ decay is evidence
for S–D mixing in theψ ′. Also note that the M2 term is sensitive to a possible anomalous magnetic
moment,κc, for the charm quark. The recent BES results [223] for the M2 and E3 contributions do
not differ significantly from zero. Additional high statistics studies of these angular distributions will
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be necessary to determine the size of S–D mixing and shed light on the magnitude of the charm quark
magnetic moment.

6.5 Coupling to virtual decay channels

When light quark loops are included in the description of quarkonium systems, the physical quarkonium
states are not pure potential-model eigenstates and the effects of coupling to real and virtual heavy-light
meson pairs must be included. Our command of quantum chromodynamics is inadequate to derive a re-
alistic description of the interactions that communicate between thēQQ andQ̄q+ q̄Q sectors. However,
the physical picture is that wave functions corresponding to physical states are now linear combina-
tions of potential-model̄QQ eigenstates plus admixtures of open heavy-flavour-meson pairs. The open
heavy-flavour pieces have the spatial structure of bound states of heavy-flavour mesons: they are virtual
contributions for states below threshold (see Section 3.3 in Chapter 3 for more details).

Far below heavy flavour threshold, the nonrelativistic potential model is a good approximation
to the dynamics of thēQQ system. For excited states above the first few levels, the coupling of Q̄Q
to heavy-flavour-meson pairs modifies wave functions, masses, and transition rates. In particular, this
modifies electromagnetic transition rates considered in the previous subsections. In addition to these
contributions, which involved photon coupling to a heavy (anti)quark, the contributions of light quark
currents can no longer be neglected. The mass differences among theQ̄u, Q̄d andQ̄s mesons, induce
large SU(3) symmetry breaking effects. This destroys the cancellation among the light quark EM current
contributions.

To compute the E1 radiative transition rates, we must take into account both the standard(Q̄Q)
→ (Q̄Q)γ transitions and the transitions between (virtual) decay channels in the initial and final states.
This second set of transitions contains light quark contributions for states near threshold. Recently,
the effects of configuration mixing on radiative decay ratesin the c̄c system were reexamined [207]
within the Cornell coupled-channel formalism. A full outline of the calculational procedure appears in
Refs. [177,191]. (In particular, see Section IV.B of Ref. [191].)

Expectations for E1 transition rates among spin-triplet levels are shown in Table 4.27. Both the
rates calculated between single-channel potential-modeleigenstates (in italics) and the rates that result
from the Cornell coupled-channel model are shown, to indicate the influence of the open-charm channels.

The 13D1 transition rates at the mass ofψ(3770) and at the predicted 13D1 centroid,3815 MeV,
are shown. For theψ(3770), with its total width of about24 MeV, the13D1(3770)→χc0 γ(338) transi-
tion might someday be observable with a branching fraction of 1%. For the 13D2 and 13D3 levels, the
radiative decay rates were calculated at the predicted 13D1 centroid,3815 MeV, at the mass calculated
for the states (3831 MeV and3868 MeV, respectively), and at the mass ofX(3872). The model repro-
duces the trends of transitions to and from theχc states in broad outline. For these low-lying states, the
mixing through open-charm channels results in a mild reduction of the rates.

This study was done in the Cornell coupled channel model. It would be useful to do a similarly
detailed study of these effects in other models.

6.6 Bc states

Quarkonium systems with unequal quark and antiquark masses, i.e.,Bc mesons, are theoretical inter-
esting, but are not easily accessible ine+e− collisions. They can be produced in significant numbers
in hadron collisions (see Chapter 5, Section 8). CDF has reported the discovery of the ground stateBc
meson via its semileptonic weak decay [224]. Theoretical calculations for E1 and M1 radiative transi-
tions have been presented by a number of authors [186, 192, 225, 226] even though the whole excitation
spectrum remains to be observed experimentally.
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Table 4.26: M2 and E3 multipole amplitudes for radiative transitions involvingχc states. The values of X and Y
are model dependent and are defined in the text. NoteX = 0 if no S–D mixing.

χcJ → J/ψ + γ

J theory [221] E835 [222] PDG04 [10]

2 a2 ≈ −
√

5
3

k
4mc

(1 + κc) −0.093+0.039
−0.041 ± 0.006 −0.13 ± 0.05

2 a3 ≈ 0 0.020+0.055
−0.044 ± 0.009 0.011+0.041

−0.033

1 a2 ≈ − k
4mc

(1 + κc) 0.002 ± 0.032 ± 0.004 −0.002+0.008
−0.017

ψ ′ → χcJ + γ

J theory [221] BES [223]

2 a2 ≈ −
√

3
2
√

10
k
mc

[(1 + κc)(1 +
√

2
5 X) − i15X]/[1 − 1

5
√

2
X] −0.051+0.054

−0.036

2 a3 ≈ −12
√

2
175

k
mc
X[1 + 3

8Y ]/[1 − 1
5
√

2
X] −0.027+0.043

−0.029

1 a2 ≈ − k
4mc

[(1 + κc)(1 + 2
√

2
5 X) + i 3

10X]/[1 + 1√
2
X]

Table 4.27: Calculated and observed rates for E1 radiative transitions among charmonium levels from Ref. [207].
Values in italics result if the influence of open-charm channels is not included. Measured rates are shown for
comparison. Experimental values are calculated from worldaverages [10], except forB(ψ′→γ3PJ) whose values
are taken from the recent CLEO-c measurement [210].

Transition kγ width kγ width kγ width

( MeV) (keV) ( MeV) (keV) ( MeV) (keV)

P state

S state χc2 χc1 χc0

J/ψ 429 300→287 390 228→216 303 113→107

[exp] 430 ± 40 290 ± 50 119 ± 16

ψ′ 129 23→23 172 33→32 261 36→38

[exp] 25.9 ± 2.1 25.5 ± 2.2 26.2 ± 2.6

P state

D state χc2 χc1 χc0

13D1(3770) 208 3 .2→3.9 251 183→59 338 254→225

13D1(3815) 250 5 .5→6.8 293 128→120 379 344→371

13D2(3815) 251 50→40 293 230→191

13D2(3831) 266 59→45 308 264→212

13D2(3872) 303 85→45 344 362→207

13D3(3815) 251 199→179

13D3(3868) 303 329→286

13D3(3872) 304 341→299
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7 HADRONIC TRANSITIONS 14

7.1 Theoretical approaches

Hadronic transitions (HTs)
Φi→Φf + h (4.137)

are important decay modes of heavy quarkonia [Φi, Φf andh stand for the initial-, final-state quarkonia
and the emitted light hadron(s)]. For instance, the branching ratio ofψ′→J/ψ+ π+ π is approximately
50%. In thecc̄ andbb̄ systems, the typical mass differenceMΦi −MΦf is around a few hundred MeV, so
that the typical momentum ofh is low. In the single-channel picture, the light hadron(s)h are converted
from the gluons emitted by the heavy quarkQ or antiquarkQ̄ in the transition. The typical momentum
of the emitted gluons is too low for perturbative QCD to be reliable. Certain nonperturbative approaches
are thus needed for studying HTs. In the following, we brieflyreview two feasible approaches: namely,
theQCD multipole expansion(QCDME) and theChiral Lagrangian for Heavy Mesons.

A. QCD Multipole expansion

HeavyQQ̄ bound states can be calculated by solving the Schrödinger equation with a given poten-
tial model. Forcc̄ andbb̄ quarkonia, the typical radius isa =

√
〈r2〉 ∼ O(10−1) fm. With such a small

radius, the idea of QCDME can be applied to the soft gluon emissions in HTs. QCDME is an expansion
in powers of x · ∇ operating on the gluon field, wherex is the separation betweenQ andQ̄ in the
quarkonium. For a gluon with a typical momentumk ∼ few hundred MeV, the expansion parameter
is actually ak ∼ O(10−1), ensuring convergence15. Note that the convergence of QCDME does not
depend on the value of the QCD coupling constant.

QCDME has been studied by many authors [227–231]. The gauge invariant formulation is given in
Ref. [230]. Letψ(x) andAaµ(x) be the quark and gluon fields. Following Refs. [230,231], we introduce

Ψ(x, t) ≡ U−1(x, t)ψ(x),
λa
2
Aa′µ (x, t) ≡ U−1(x, t)

λa
2
Aaµ(x)U(x, t) − i

gs
U−1(x, t)∂µU(x, t),

(4.138)
with

U(x, t) = P exp

[
igs

∫
x

X

λa
2
Aa(x′, t) · dx′

]
, (4.139)

in whichP is the path-ordering operation, the path is along the straight-line connecting the two ends, and
X ≡ (x1 + x2)/2 is the c.o.m. coordinate ofQ andQ̄. It is shown in Ref. [230] that, in the Lagrangian,
Ψ(x, t) serves as thedressed(constituent) quark field. Now we make the multipole expansion [230]

Aa′0 (x, t) = Aa′0 (X, t) − (x−X) ·Ea(fX, t) + · · · , Aa′(X, t) = −1

2
(x−X) ×Ba(X, t) + · · · ,

(4.140)
whereEa andBa are colour-electric and colour-magnetic fields, respectively. The Hamiltonian is then
[230]

Heff
QCD = H

(0)
QCD +H

(1)
QCD, (4.141)

with H(0)
QCD the sum of the kinetic and potential energies of the heavy quarks, and

H
(1)
QCD = H1 +H2, H1 ≡ QaA

a
0(X, t), H2 ≡ −da ·Ea(X, t)−ma ·Ba(X, t)+ · · · , (4.142)

in which Qa, da, andma are the colour charge, colour-electric dipole moment, and colour-magnetic
dipole moment of theQQ̄ system, respectively. Equation (4.141) is regarded as an effective Hamiltonian

14Authors: D. Z. Besson, A. Deandrea, F. A. Harris, Y.-P. Kuang, S. L. Olsen
15We know from classical electrodynamics that the coefficientof the(ak)l term in the multipole expansion contains a factor

1

(2l + 1)!!
. Hence the expansion actually works better than what might be expected by simply estimating the size of(ak)l.
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[230]. Considering that the heavy quark may have an anomalous magnetic moment, we takegE and
gM to denote the effective coupling constants for the electricand magnetic multipole gluon emissions
(MGE), respectively.

We shall takeH(0)
QCD as the zeroth order Hamiltonian, and takeH(1)

QCD as a perturbation. This is

different from the ordinary perturbation theory sinceH(0)
QCD is not a free field Hamiltonian. The general

formula for theS matrix element in this expansion has been given in Ref. [231], which is

〈f |S|i〉 = −i2πδ(Ef + ωf − Ei)

〈
f

∣∣∣∣H2
1

Ei −H
(0)
QCD + i∂0 −H1

· · · 1

Ei −H
(0)
QCD + i∂0 −H1

H2

∣∣∣∣i
〉
,

(4.143)
whereωf is the energy of the emitted gluons. Explicit evaluations oftheS matrix elements in various
cases will be presented in Section 7.2.

B. Chiral Lagrangian for heavy mesons

In the effective Lagrangian approach one can construct a heavy meson multiplet field analogous
to the one introduced for heavy-light mesons. Symmetry-breaking terms can be easily added to the for-
malism as we shall see in the following. As in the single heavyquark case, an effective Lagrangian
describing the low-momentum interactions of heavy quarkonia with light mesons can be written down.
The heavy quarkonium multiplets are described by a simple trace formalism [232]. ParityP and charge
conjugationC, which determine selection rules for electromagnetic and hadronic transitions are exactly
conserved quantum numbers for quarkonium, together withJ . If spin-dependent interactions are ne-
glected, it is natural to describe the spin singletm 1lJ and the spin tripletm 3lJ by means of a single
multiplet J(m, l). For the casel = 0, when the triplets = 1 collapses into a single state with total
angular momentumJ = 1, this is readily realized:

J =
(1 + v/ )

2
[Hµγ

µ − ηγ5]
(1 − v/ )

2
. (4.144)

Here vµ denotes the four velocity associated to the multipletJ ; Hµ andη are the spin 1 and spin 0
components respectively; the radial quantum number has been omitted. The expressions for the general
waveJµ1...µl can be found in Appendix C of Ref. [233].

For illustrative purpouses let us start by considering radiative transitions, whose analysis can be
easily carried out in terms of the multiplet field introducedabove. The Lagrangian for radiative decays
is:

L =
∑

m,n

δ(m,n)〈J(m) Jµ(n)〉vνFµν + h.c., (4.145)

where a sum over velocities is understood,Fµν is the electromagnetic tensor, the indicesm andn
represent the radial quantum numbers,J(m) stands for the multiplet with radial numberm andδ(m,n)
is a dimensional parameter (the inverse of a mass), to be fixedfrom experimental data and which also
depends on the heavy flavour. The Lagrangian (4.145) conserves parity and charge conjugation and is
invariant under the spin transformation. It reproduces theelectric dipole selection rules∆ℓ = ±1 and
∆s = 0. It is straightforward to obtain the corresponding radiative widths:

Γ(3PJ→ 3S1γ) =
δ2

3π
k3MS1

MPJ

, (4.146)

Γ(3S1→ 3PJγ) =
(2J + 1)

9π
δ2k3MS1

MPJ

, (4.147)

Γ(1P1→ 1S0γ) =
δ2

3π
k3MS

MP
, (4.148)
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wherek is the photon momentum. Once the radial numbersn andm have been fixed, the Lagrangian
(4.145) describes four no spin-flip transitions with a single parameter; this allows three independent pre-
dictions. The previous decay widths can be compared with those of the electric transitions of Sec. 6.1.3
and in particular with formula (4.118). The ratio of the masses in the previous widths should be put to one
in the nonrelativistic limit and the free parameterδ of the effective Lagrangian encodes the information
of the overlap integral of equation (4.116).

The effective heavy-meson description of quarkonium does not seem to present special advan-
tages to describe heavy quarkonium annihilation. In the following we shall concentrate on quarkonium
hadronic transitions.

The heavy quark spin symmetry leads to general relations forthe differential decay rates in
hadronic transitions among quarkonium states that essentially reproduce the results of a QCD double
multipole expansion for gluonic emission. Further use of chiral symmetry leads to differential pion decay
distributions valid in the soft regime [234,235]. At the lowest order in the chiral expansion for the emit-
ted pseudoscalars we find a selection rule allowing only for even (odd) number of emitted pseudoscalars
for transitions between quarkonium states of orbital angular momenta different by even (odd) units. Such
a rule can be violated by higher chiral terms, by chiral breaking, and by terms breaking the heavy quark
spin symmetry. Specialization to a number of hadronic transitions reproduces (by elementary tensor con-
struction) the known results from the expansion in gluon multipoles, giving a simple explanation for the
vanishing of certain coefficients, which would otherwise beallowed in the chiral expansion. In certain
cases, such as for instance3P0→ 3P2ππ, 3P1→ 3P2ππ, or D–S transitions via2π, the final angular and
mass distributions are uniquely predicted from heavy quarkspin and the lowest-order chiral expansion.

An important class of hadronic transitions between heavy-quarkonium states is provided by the
decays with emission of two pions, for example:

ψ′ → J/ψ ππ . (4.149)

To describe these processes one can use the chiral symmetry for the pions and the heavy-quark spin
symmetry for the heavy states. The first of these is expected to hold when the pions have small energies.
We notice that the velocity superselection rule applies atq2 = q2max, when the energy transfer to the pion
is maximal. Therefore, we expect these approximations to bevalid in the whole energy range only if
q2max is small.

Nonetheless a number of interesting properties of these transitions can be derived on the basis
of the heavy quark symmetry alone. Therefore, before deriving the pion couplings by means of chiral
symmetry, we discuss the implications of the heavy quark spin symmetry in hadronic transitions.

As an example, we consider transitions of the type3S1→ 3S1 + h and 1S0→ 1S0 + h, whereh
can be light hadrons, photons, etc. By imposing the heavy quark spin symmetry, one is led to describe
these processes by an interaction Lagrangian:

LSS′ = 〈J ′J̄〉ΠSS′ + h.c. , (4.150)

where the dependence upon the pion field is contained in the as-yet-unspecified operatorΠSS′ . It
is immediate to derive fromLSS′ the averaged modulus square matrix elements for the transitions
3S1→3S1 + h and 1S0→1S0 + h with an arbitrary fixed number of pions in the light final stateh.
We obtain:

|M(3S1→3S1 + h)|2av. = |M(1S0→1S0 + h)|2av. = 4MSMS′ |ΠSS′,h|2, (4.151)

whereMS andM ′
S are the average masses of the two S-wave multiplets;ΠSS′,h is the appropriate tensor

for the emission of the light particlesh, to be calculated from the operatorΠSS′ . By denoting withdΓ
the generic differential decay rate, we have:

dΓ(3S1→3S1 + h) = dΓ(1S0→1S0 + h) . (4.152)
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This is the prototype of a series of relations, which can be derived for hadronic transitions as a
consequence of the spin independence of the interaction terms. In all the known cases they coincide with
those calculated in the context of a QCD double multipole expansion. We note, however, that we do not
even need to specify the nature of the operatorΠ, which may depend on light fields different from the
pseudoscalar mesons (e.g., the photon, or a light hadron, etc), provided that the interaction term we are
building is invariant under parity, charge conjugation, and the other symmetries relevant to the transition
considered.

A useful symmetry that can be used in processes involving light quarks is the chiral symmetry. It is
possible to build up an effective Lagrangian, which allows to study transitions among quarkonium states
with emissions of soft light pseudoscalars, considered as the Goldstone bosons of the spontaneously
broken chiral symmetry.

The light mesons are described as pseudo-Goldstone bosons,included in the matrixΣ = ξ2,
where we use the standard notation of chiral perturbation theory. Frequently occurring quantities are the
functions ofξ and its derivativesAµ andVµ given by:

Vµ =
1

2

(
ξ†∂µξ + ξ∂µξ

†
)

and Aµ =
1

2

(
ξ†∂µξ − ξ∂µξ

†
)
. (4.153)

The octet of vector resonances (ρ, etc.) can be introduced as the gauge multiplet associated with the
hidden group SU(3)H (see Ref. [236]), designated asρµ in the following.

By imposing the heavy quark spin symmetry, parity and chargeconjugation invariance, and by as-
suming that the pseudoscalar meson coupling are described by the lowest order (at most two derivatives)
chiral invariant operators, we can establish the followingselection rules for hadronic transitions:

even number of emitted pseudoscalars ↔ ∆l = 0, 2, 4, ...

odd number of emitted pseudoscalars ↔ ∆l = 1, 3, 5, ... (4.154)

In fact the spin independent operator describing∆l = 0, 2, 4, ... transitions has charge conjugation
C = +1. On the other hand, the lowest order, chiral invariant termswith positive charge conjugation
are:

〈AµAν〉, 〈(Vµ − ρµ)(Vν − ρν)〉, (4.155)

whose expansion contains an even number of pseudoscalar mesons. Spin independence of the interaction,
on the other hand, requires that the∆l = 1, 3, 5, ... transitions are described byC = −1 operators. At
the lowest order we can form just one chiral invariant term withC = −1:

〈Aµ(Vν − ρν)〉, (4.156)

whose expansion contains an odd number(≥ 3)of pseudoscalar mesons.

This selection rule is violated at higher orders of the chiral expansion or by allowing for terms that
explicitly break the heavy quark or the chiral symmetries.

To further characterize the hadronic transitions respecting chiral symmetry, we consider below
explicit expressions for the most general operatorsΠll′ . For simplicity, we limit ourselves to those
contributing to two or three pion emissions:

ΠSS′ = ASS′〈AρAρ〉 +BSS′〈(v · A)2〉,
Πµ
PS = DPS ǫ

µνρσvν〈Aρ(Vσ − ρσ)〉,
Πµν
PP ′ = APP ′〈AρAρ〉gµν +BPP ′〈(v · A)2〉gµν + CPP ′〈AµAν〉,

Πµν
DS = CDS〈AµAν〉. (4.157)

The constantsAll′ , Bll′ , Cll′ andDll′ are arbitrary parameters of dimension(mass)−1, to be fixed
from experiment. One can easily derive amplitudes, decay rates and distributions for the correspond-
ing hadronic transitions.
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For instance, the amplitude for the decay (4.149) is given by:

M(3S1→3S1 + ππ) =
4i
√
MSMS′

f2
π

ǫ′ · ǫ∗ (ASS′p1 · p2 +BSS′v · p1v · p2) (4.158)

whereǫ andǫ′ are the polarisation vectors of quarkonium states;p1, p2 are the momenta of the two pions.
It is well known that the use of chiral symmetry arguments leads to a general amplitude for the process
in question, which contains a third independent term given by:

CSS′
4i
√
MSMS′

f2
π

(
ǫ′ · p1ǫ

∗ · p2 + ǫ′ · p2ǫ
∗ · p1

)
. (4.159)

In the nonrelativistic limit in QCDME, Yan [230] findsCSS′ = 0. It is interesting to note that, within
the present formalism, this result is an immediate consequence of the chiral and heavy quark spin sym-
metries. However, these symmetries are not exact and corrections to the symmetry limit are expected.

In the chiral Lagrangian (CL) approach, theπ0 − η − η′ mixings can be derived, which should
be taken into account in predicting single pseudoscalar meson transitions of heavy quarkonia (cf. Sec-
tion 7.2). Let us define

m̂ ≡




mu 0 0
0 md 0
0 0 ms


 . (4.160)

The Lagrangian that gives mass to the pseudoscalar octet (massless in the chiral limit) and causesπ0 − η
mixing is

Lm = λ0〈m̂(Σ + Σ†)〉, (4.161)

and that giving rise to the mixing ofη′ with π0 andη is

Lηη′ =
ifπ
4
λ̃〈m̂(Σ − Σ†)〉η′, (4.162)

whereλ̂ is a parameter with the dimension of a mass. At first order in the mixing angles the physical
states̃π0, η̃, andη̃′ determined from the above Lagrangians are:

π̃0 = π0 + ǫη + ǫ′η′, η̃ = η − ǫπ0 + θη′, η̃′ = η′ − θη − ǫ′π0, (4.163)

in which the mixing angles are

ǫ =
(md −mu)

√
3

4(ms −
mu +md

2
)
, ǫ′ =

λ̃(md −mu)√
2(m2

η′ −m2
π0)

, θ =

√
2

3

λ̃

(
ms −

mu +md

2

)

m2
η′ −m2

η

. (4.164)

7.2 Predictions for hadronic transitions in the single-channel approach

In this section, we give the predictions for HTs in the single-channel approach. In this approach, the
amplitude of HT is diagrammatically shown in Fig. 4.13 in which there are two complicated vertices:
namely, the MGE vertex of the heavy quarks and the vertex of hadronization (H) describing the conver-
sion of the emitted gluons into light hadrons. In the following, we shall treat them separately.

Let us first consider the HT processesn3
iS1→n3

fS1 + π + π. To lowest order, these are double
electric-dipole transitions (E1E1). The transition amplitude can be obtained from theS matrix element
(4.143). After some algebra, we obtain [230,231,237]

ME1E1 = i
g2
E

6

∑

KLK′L′

〈Φfh|x ·E|KL〉
〈
KL

∣∣∣∣
1

Ei −H
(0)
QCD − iD0

∣∣∣∣K
′L′
〉
〈K ′L′|x ·E|Φi〉, (4.165)
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Fig. 4.13: Diagram for a typical hadronic transition in the single-channel QCDME approach.

where(D0)bc ≡ δbc∂0−gsfabcAa0, and|KL〉 is the intermediate state with principal quantum numberK
and orbital angular momentumL. According to the angular momentum selection rule,L = L′ = 1. The
intermediate states in the HT are the states after the emission of the first gluon and before the emission
of the second gluon (cf. Fig. 4.13), i.e., they are states with a gluon and a colour-octetQQ̄. These are the
so-called hybrid states. It is difficult to calculate these states from the first principles of QCD. So we shall
take a reasonable model for it. The model shouldreasonably reflect the main properties of the hybrid
statesand shouldcontain as few free parameters as possiblein order not to affect the predictive power
of the theory. The quark confining string (QCS) model [238] satisfies these requirements16 Explicit
calculations with the QCS are given in Ref. [237]; the transition amplitude (4.165) then becomes

ME1E1 = i
g2
E

6

∑

KL

〈Φf |xk|KL〉〈KL|xl|Φi〉
Ei − EKL

〈ππ|EakEal |0〉, (4.166)

We see that, in this approach, the transition amplitude contains two factors: namely, the heavy quark
MGE factor (the summation) and the H factor〈ππ|EakEal |0〉. The first factor can be calculated for a given
potential model. Let us now consider the second factor. Its scale is the light hadron mass scale, which is
very low (highly nonperturbative), and there is, therefore, no currently reliable way of calculating it from
the first principles of QCD. Thus we take a phenomenological approach based on PCAC and the soft
pion technique in Ref. [240]. From the standard tensor reduction, this H factor can be written as [237]

g2
E

6
〈πα(q1)πβ(q2)|EakEal |0〉 =

δαβ√
(2ω1)(2ω2)

[
C1δklq

µ
1 q2µ + C2

(
q1kq2l + q1lq2k −

2

3
δklq1 · q2

)]
,

(4.167)
whereC1 andC2 are two unknown constants. For a givenππ invariant massMππ, theC1 term is
isotropic (S-wave), while theC2 term is angular dependent (D-wave). In the nonrelativisticsingle-
channel (NRSC) approach, orbital angular momentum conservation leads to the conclusion that the MGE
factor is proportional toδkl. Thus only theC1 term contributes to the S-state to S-state transitions17. In
this case, then3

iS1→n3
fS1 + π + π transition rate can be expressed as [237]

Γ(n3
iS1→n3

fS1 π π) = |C1|2G|f111
2010|2, (4.168)

whereG is a phase-space factor given in Ref. [237] and

f
LPiPf
nilinf lf

≡
∑

K

∫
Rf (r)r

PfR∗
KL(r)r2dr

∫
R∗
KL(r′)r′PiRi(r′)r′2dr′

Mi − EKL
, (4.169)

16Another possible model satisfying the requirements is the MIT bag model for the hybrid states, which can also lead to
reasonable predictions [239].

17This is consistent with the CL approach in the nonrelativistic limit (v = 0) [cf. (4.158)].
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Table 4.28: The values of|C1|2 and the predictedππ transition rates (in keV) determined for theΥ system using
the Cornell model and the BGT model. The corresponding updated experimental values of the transition rates [10]
are also listed for comparison.ππ stands for the sum over all theπ+π− andπ0π0 channels.

Cornell BGT Expt.
|C1|2 83.4 × 10−6 67.8 × 10−6

Γ(Υ′→Υππ) (keV) 8.6 7.8 12.0 ± 1.8
Γ(Υ′′→Υππ) (keV) 0.44 1.2 1.72 ± 0.35
Γ(Υ′′→Υ′ππ) (keV) 0.78 0.53 1.26 ± 0.40

withRi,Rf , andRKL the radial wave functions of the initial, final, and intermediate states, respectively.

There is only one overall unknown constantC1 left in this transition amplitude, which can be
determined by taking the well-measured HT rateΓ(ψ′→J/ψππ). The updated experimental values
are [10]

Γtot(ψ
′) = 281± 17 keV, B(ψ′→J/ψπ+π−) = (31.7± 1.1)%, B(ψ′→J/ψπ0π0) = (18.8± 1.2)%.

(4.170)

Given these, we can then predict all the S-state to S-stateππ transitions rates in theΥ system.
Let us take the Cornell [177,191] and the Buchmüller–Grunberg–Tye (BGT) [141,193] potential models
as examples to show the extracted|C1| values and the predicted rates in theΥ system. The results are
listed in Table 4.2818 in which the experimental errors are dominated by the uncertainty of the total
width. We see that the BGT model predicted ratiosΓ(Υ′′→Υππ)/Γ(Υ′→Υππ) ≈ 1.2/7.8 = 0.15 and
Γ(Υ′′→Υ′ππ)/Γ(Υ′→Υππ) ≈ 0.53/7.8 = 0.07 are close to the corresponding experimental values
1.72/12.0=0.14 and 1.26/12.0=0.11. However, the predicted absolute partial widths are smaller than
the experimental values by roughly a factor of 50–75%. Moreover, when theMππ distributions are
considered, the situation will be more complicated. We shall deal with these issues in Section 7.3.

Note that the phase space factorG in Υ′′→Υππ is much larger than that inΥ′→Υππ, G(Υ′′→
Υππ)/ G(Υ′→Υππ) = 33 [237]. One may naively expect thatΓ(Υ′′→Υππ) > Γ(Υ′→Υππ). How-
ever, we see from Table 4.28 that the measuredΓ(Υ′′→Υππ)/Γ(Υ′→Υππ) ≈ 0.14. The reason why
the predicted ratio is close to the experimental value is that the contributions from various intermediate
states to the overlap integrals in the summation inf111

3010 [cf. (4.169)]drastically canceleach other due to
the fact that theΥ′′ wave function contains two nodes. This ischaracteristicof such intermediate state
models (QCS or bag model).

The decaysn3
iS1→n3

fS1 + η are dominated by E1M2 transitions. We can predict the ratios
R′ ≡ Γ(Υ′→Υη)/Γ(ψ′→J/ψη) andR′′ ≡ Γ(Υ′′→Υη)/Γ(ψ′→J/ψη):

R′ =

(∣∣∣∣
f111
2010(bb̄)

mb

∣∣∣∣
2

|q(bb̄)|3
)

(∣∣∣∣
f111
2010(cc̄)

mc

∣∣∣∣
2

|q(cc̄)|3
) , R′′ =

(∣∣∣∣
f111
3010(bb̄)

mb

∣∣∣∣
2

|q(bb̄)|3
)

(∣∣∣∣
f111
2010(cc̄)

mc

∣∣∣∣
2

|q(cc̄)|3
) , (4.171)

whereq is the momentum ofη. The BGT model predictsR′ = 0.0025, R′′ = 0.0013. Recently BES
has obtained an accurate measurement ofΓ(ψ′→J/ψη) andΓ(ψ′→J/ψ π0) [241] (see Section 7.6A).
With the new BES data and the bounds onΓ(Υ′→Υη) andΓ(Υ′′→Υη) [10], the experimental bounds
areR′|exp < 0.0098, R′′|exp < 0.0065 [241]. The predictions are consistent with these bounds.

18The updated results listed in Table reftab:c1ht are roughlylarger than those in Ref. [237] by a factor of 1.3 since the updated
input dataΓ(ψ′→J/ψππ) is larger than the old experimental value used in Ref. [237] by the same factor of 1.3.
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An interesting prediction in the CL approach is the prediction for the ratio

R =
Γ(ψ′→J/ψ π0)

Γ(ψ′→J/ψ η)
, (4.172)

which provides a measure of the light-quark mass ratior = (md −mu)/(ms − (mu + md)/2). This
belongs to the class of hadronic transitions, which violateheavy quark spin symmetry (HQSS) [235]. For
heavy mesons, there are only two types of operators that break HQSS. In the parent’s rest frame, the most
general spin symmetry breaking term is of the forma ·σ, whereσ are the Pauli matrices. In an arbitrary
frame one observes that anyΓ-matrix sandwiched between two projectors(1 + v/ )/2, or (1 − v/ )/2 can
be expressed in terms ofσµν sandwiched between the same projectors:

1 + v/
2

1
1 + v/

2
=

1 + v/
2

,
1 + v/

2
γ5

1 + v/
2

= 0,
1 + v/

2
γµ

1 + v/
2

= vµ
1 + v/

2
,

1 + v/
2

γµγ5
1 + v/

2
=

1

2
ǫµναβv

ν 1 + v/
2

σαβ
1 + v/

2
,
1 + v/

2
γ5σµν

1 + v/
2

= − i

2
ǫµναβ

1 + v/
2

σαβ
1 + v/

2
;

there are analogous relations with(1 + v/ )/2→(1 − v/ )/2. We use hereǫ0123 = +1. Let us define

σ(±)
µν =

1 ± v/
2

σµν
1 ± v/

2
. (4.173)

In the parent’s rest frame,σ(±)
µν reduce to Pauli matrices. From the previous identities it follows that

the most general spin symmetry breaking terms are of the formGµν1 σ
(+)
µν , or Gµν2 σ

(−)
µν , with Gµνi two

arbitrary antisymmetric tensors. One expects that any insertion of the operatorσ(±)
µν gives a suppression

factor1/mQ.

Using partial conservation of axial-vector current, Ioffeand Shifman [242] give the prediction

R =
27

16

[
pπ
pη

]3 [ md −mu

ms − (mu +md)/2

]2

. (4.174)

The new BES experiment (see Section 7.6A) [241] provides a new precision value ofR. With the
conventional values of the current quark masses, the prediction of (4.174) is smaller than the BES value
by about a factor of 3 [241]. So (4.174) should be regarded as an order of magnitude estimate.

The calculation ofR in the CL approach is straightforward. The most general spinbreaking
Lagrangian for the processesψ′→J/ψπ0, η is

L = iǫµνρλ
[
〈J ′σµν J̄〉 − 〈J̄σµνJ ′〉

]
vρ ∂λ

[
iA

4
〈m̂(Σ − Σ†)〉 +Bη′

]
+ h.c. . (4.175)

The couplingsA andB have dimension(mass)−1; theB term contributes to the ratio (4.172) via the
mixing π0 − η′ andη − η′. There are no terms with the insertion of twoσ terms; the two P and C
conserving candidatesǫµνρλ

[
〈J ′σµτ J̄σ ν

τ 〉 + 〈J̄σµτJ ′σ ν
τ 〉
]
vρ∂λ〈m̂(Σ−Σ†)〉 andǫµνρλ

[
〈J ′σµν J̄σρλ〉

+ 〈J̄σµνJ ′σρλ〉
]
〈m̂(Σ − Σ†)〉 both vanish.

Using the Lagrangian (4.175) and taking into account the mixings (4.163) and (4.164), we can
calculate the ratio (4.172)

R =
27

16

[
pπ
pη

]3 [ md −mu

ms − (mu +md)/2

]2




1 +
2B

3A

λ̂fπ
m2
η′ −m2

π0

1 +
B

A

λ̂fπ
m2
η′ −m2

η




2

. (4.176)

241



CHAPTER 4

If we neglect theπ0 − η′ andη− η′ mixings, (4.176) reduces to the simple result (4.174). So far B/A in
(4.176) is not determined yet. Taking theη − η′ mixing angleθP ≈ −20◦ [10] and using the new BES
data onR [241], one can determineB/A from (4.176):B/A = −1.42 ± 0.12 or −3.11 ± 0.15 [241].

Theππ transitions between P-wave quarkonia,23PJi→13PJf + π + π, have been studied in Ref.
[237]. The obtained transition ratesΓ(23PJi→13PJfππ) are of the order of10−1–10−2 keV [237]. The
relations between differentΓ(23PJi→13PJfππ) reflect the symmetry in the E1E1 multipole expansion
[230], so that experimental tests of these relations are of special interest.

In the CL approach, the single pseudoscalar meson transitions between heavy quarkonia states
such as

3PJ ′→ 3PJπ
0 and 3PJη (4.177)

are chiral-breaking but spin conserving [235], which are important for transitions forbidden in the SU(3)
× SU(3) symmetry limit.

To first order in the chiral breaking mass matrix we consider the quantities:

〈m̂(Σ + Σ†)〉 and 〈m̂(Σ − Σ†)〉. (4.178)

The first quantity is parity even, while the second is parity odd; both haveC = +1.

The only term spin-conserving and of leading order in the current quark masses contributing to
the transition (4.177) is

〈JµJ̄ν〉vρǫµνρσ∂σ
[
α
ifπ
4

〈m̂(Σ − Σ†)〉 + βfπη
′
]
, (4.179)

whereα andβ are coupling constants of dimensions(mass)−2. The direct coupling toη′ contributes
through the mixing (4.163). The spin symmetry of the heavy sector gives relations among the modulus
square matrix elements of the transitions between the two P-wave states. In particular we find that

|M|2(3P0→3P0π) = |M|2(3P2→3P0π) = 0, (4.180)

and that all non-vanishing matrix elements can be expressedin terms of3P0→3P1π:

|M|2(3P1→3P1π) =
1

4
|M|2(3P0→3P1π), |M|2(3P1→3P2π) =

5

12
|M|2(3P0→3P1π),

|M|2(3P2→3P2π) =
3

4
|M|2(3P0→3P1π), |M|2(1P1→1P1π) = |M|2(3P0→3P1π), (4.181)

whereπ stays forπ0 or η. The relations (4.181) can be generalized for any spin-conserving transition
betweenl = 1 multiplets, leading to the same results as the QCD double multipole expansion [230].
Predictions for widths can be easily obtained from (4.179).

Now we consider theππ transitions of D-wave quarkonia. Theoretical studies of HTs of D-wave
quarkonia have been carried out by several authors in different approaches leading to quite different pre-
dictions [237,243–248]. We briefly review the approach in Refs. [247,248], and compare the predictions
with recent experimental results.

Since theψ(3770) (or ψ′′) lies above theDD̄ threshold, it is believed that it decays mainly into
DD̄ [10]. Experimental observations show that the directly measurede+e−→ψ(3770) cross-section and
the e+e−→ψ(3770)→DD̄ cross-section are different [249], suggesting considerable non-DD̄ decay
modes ofψ(3770). ψ(3770)→J/ψ ππ is one possibility.

If ψ(3770) is regarded as a pure1D state, the predicted leptonic width will be smaller than the
experimental value by an order of magnitude. Theψ(3770) is often regarded as a mixture of the1D and
2S states [247, 248, 250]:ψ′ = |2S〉 cos θ + |1D〉 sin θ, ψ(3770) = −|2S〉 sin θ + |1D〉 cos θ. θ can
be determined by fitting the ratio of the leptonic widths ofψ′ andψ(3770). The determination ofθ in
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the Cornell potential model [177, 191] and the improved QCD motivated potential model by Chen and
Kuang (CK) [251] (which leads to more successful phenomenological results) are:θ = −10◦ (Cornell)
and θ = −12◦ (CK).

The rate of this E1E1 transition is [247]

Γ(ψ(3770)→J/ψππ) = |C1|2
[

sin2 θ G(ψ′) |f111
2010(ψ

′)|2 +
4

15

∣∣∣∣
C2

C1

∣∣∣∣
2

cos2 θ H(ψ′′) |f111
1210(ψ

′′)|2
]
.

(4.182)
Since there is no available data to determineC2, we take an approximation to estimateC2. In Ref. [237],
it is assumed that〈ππ|EakEal |0〉 ∝ 〈gg|EakEal |0〉, i.e., that the factor describing the conversion of the two
gluons intoππ is approximately independent of the pion momenta in the HTs under consideration. In
this approximation, we obtain [237]

C2 ≈ 3C1. (4.183)

So it is possible thatC2/C1 ∼ O(1).

Table 4.29: The predicted transition rateΓ(ψ(3770)→J/ψ π+π−) (in keV) in the Cornell model and the CK
model with the updated input data (4.170). The corresponding branching ratios are listed in the brackets using the
total width ofψ(3770) given in Ref. [10].

Γ(ψ(3770)→J/ψπ+π−) (keV)
Cornell CK

C2 ≈ 3C1 139 [(0.59 ± 0.07)%] 147 [(0.62 ± 0.07)%]
C2 ≈ C1 26 [(0.11 ± 0.01)%] 32 [(0.14 ± 0.02)%]

For comparison, we list the predicted rateΓ(ψ(3770)→J/ψ π+π−) with C2/C1 = 3 andC2/C1

= 1 in Table 4.29.19 Note that S–D mixing only affects a few percent of the rate, sothat the rate is
essentiallyΓ(ψ(2D)→J/ψ π+π−).

Recently, BES has measured the rateΓ(ψ(3770)→J/ψ + π+ + π−) based on 27.7 pb−1 data of
ψ(3770). The result isΓ(ψ(3770)→J/ψ + π+ + π−) = 80 ± 32 ± 21 keV [252] (see Eq. (4.191) in
Section 7.6C). Equation (4.182) is in agreement with the central value of the BES result withC2/C1 ≈ 2.
Considering the large error in the BES experiment,C2/C1 can still be in the range0.8 ≤ C2/C1 ≤ 2.8.
We expect more precise future measurements to give a better determination ofC2/C1.

For the Υ system, the state mixings are much smaller [253]. Neglecting such mixings, the
predicted rate ofΥ(13D1)→Υππ in the Cornell model withC2/C1 = 3 was Γ(Υ(13D1)→Υππ)
≈ 24 keV [237]. Taking the central valueC2/C1 ≈ 2 determined from BES data, the prediction
is Γ(Υ(13D1)→Υππ) ≈ 11 keV. Considering the above range ofC2/C1, we predict 1.8 keV≤
Γ(Υ(13D1) → Υππ) ≤ 21 keV.

HTs are useful processes to investigate thehc [or ψ(11P1)] andhb [or Υ(11P1)] states.hc and
hb are of special interest since the difference between the mass of the11P1 state and the centre-of-
gravity of the13PJ states gives useful information about the spin-dependent interactions betweenQ
and Q̄. The possibilities to detecthc and hb at e+e− colliders, in 3S1→π0 1P1, 1P1→ππ 3S1, and
1P1→π0 3S1 transitions have been studied in Refs. [229, 237, 248, 255, 256]; hc could also be detected
at theB factories [257], depending on the value for theB→hcK branching ratio. So far, thehb has
not been experimentally found, while thehc has probably been observed, based on recent preliminary
results presented by CLEO [258] and E835 [259]. CLEO has observed significant excess of events in
ψ(2S)→π0hc→π0γηc, in both exclusive and inclusiveηc decays. E835 has a significant excess of events

19The values listed in Table 4.29 are larger than those given inRefs. [247,248] since the updated input data values are larger.
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in p̄p→hc→ηcγ→3γ. The mass of the CLEO and E835 candidates are compatible, andvery close to the
centre-of-gravity. For more details we refer to Chapter 3.

7.3 Nonrelativistic coupled-channel approach to hadronictransitions

Since a heavy quarkoniumΦ lying above the threshold can decay into a pair of heavy flavour mesons
DD̄ [D stands forD mesons (forcc̄) andB mesons (forbb̄)], there must existΦ–D–D̄ couplings as
shown in Fig. 4.14.

��
D
�D

Q Q
�Q �Q

�qq
Fig. 4.14: Coupling of the heavy quarkoniumΦ to its decay channelDD̄.

A complete theory should include not only the part describing Φ, but also the part corresponding
to theDD̄ sector as well. Such a theory is the so-called coupled-channel (CC) theory.

It is hard to study theΦ–D–D̄ vertex from the first principles of QCD, since it is the vertexof
three bound states. There are various models describing CC effects; the two well-accepted models are
the Cornell CC model (CCCM) [177,191,260] and the unitary quark model (UQM) [253]. TheΦ–D–D̄
vertex in the UQM is taken to be the3P0 quark-pair-creation (QPC) mechanism [261]. The parameters
in the UQM are carefully adjusted so that the model gives a better fit to thecc̄ andbb̄ spectra, leptonic
widths, etc. It is shown that the QPC model gives acceptable results even for OZI-allowed productions
of light mesons [261,262], which is relevant in the calculation of the HT amplitudes in the CC theory.

The formulation of the theory of HTs in the framework of the UQM was given in Ref. [263]. The
Feynman diagrams forn3

iS1→n3
fS1ππ are shown in Fig. 4.15. We see that there are more channels

of ππ transitions in this theory than in the single-channel theory. Figures 4.15(a)–4.15(d) are based on
the QCDME mechanism; we designate this the MGE part. Figures4.15(e) and 4.15(f) are based on a
new ππ transition mechanism via QPC; we designate this the QPC part. Figure 4.15(a) is similar to
Fig. 4.13 but with state mixings, so the single-channel amplitude mentioned in Section 7.2 is only a part
of Fig. 4.15(a).

Table 4.30: Γ(Υ′→Υππ), Γ(Υ′′→Υππ), andΓ(Υ′′→Υ′ππ) predicted in CC theory, withcosϑ = −1 and
−0.676, together with the updated experimental values [10].ππ stands for the sum over all theπ+π− andπ0π0

channels.

Theory Expt.
cosϑ = −1 cos ϑ = −0.676

Γ(Υ′→Υππ) (keV) 14 13 12.0 ± 1.8
Γ(Υ′′→Υππ) (keV) 1.1 1.0 1.72 ± 0.35
Γ(Υ′′→Υ′ππ) (keV) 0.1 0.3 1.26 ± 0.40

Since state mixings and the QPC vertices are all different inthe cc̄ and thebb̄ systems, the pre-
dictions for theΥ HT rates by taking the input (4.170) will be different from those in the single-channel
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Fig. 4.15: Diagrams for hadronic transitions in the CC approach. Quoted from Ref. [263].

theory. Such predictions were studied in Ref. [263]. Note that for a given QPC model, the QPC part
is fixed, while the MGE part still contains an unknown parameter C1 after taking the approximation
C2 ≈ 3C1. Since there is interference between the MGE and the QPC parts, the phase ofC1 is impor-
tant; explicitly,C1 = |C1| eiϑ. The data of the HT rate andMππ distribution inψ′→J/ψ ππ can be taken
as inputs to determineC1 andϑ [263]. Considering the error bars in theMππ distribution,ϑ is restricted
in the range−1 ≤ cos ϑ ≤ −0.676 [263]. The predicted transition rates in theΥ system are listed in
Table 4.30 together with the experimental results for comparison. We see that the obtainedΓ(Υ′→Υππ)
is in good agreement with the experiment, and the results ofΓ(Υ′′→Υππ) andΓ(Υ′′→Υ′ππ) are in
agreement with the experiment at the level of2σ and2.4σ, respectively.

Next we look at the predictedMππ distributions. It is pointed out in Ref. [265] that there is atiny
difference between the measuredMππ distributions inψ′→J/ψππ andΥ′→Υππ. In the single-channel
theory, the formulas for these twoMππ distributions are the same. In the CC theory, onceC1 andϑ are
determined, theMππ distribution ofΥ′→Υππ is uniquely determined. It is shown in Ref. [263] that the
prediction fits the experiment [265] very well

However, the situation of theMππ distributions ofΥ′′→Υπ+π− andΥ′′→Υ′π+π− are more com-
plicated. Comparison of the CC predictions with the CLEO experiment will be shown in Section 7.5E.
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7.4 Application of the QCD multipole expansion to radiativedecays of theJ/ψ

In the above sections, QCDME is applied to various HTs in which Φi and Φf are composed of the
same heavy quarks. In this case, the dressed (constituent) quark fieldΨ(x, t) needs not actually to be
quantized. Now we generalize QCDME theory to processes including changes of heavy quark flavour
and heavy quark pair annihilation or creation, for which thequantization ofΨ(x, t) is needed. This has
been studied in Ref. [231] with the electroweak interactions included as well.

(a) (b) (
)J= J= J= � �

� �
 � �


Fig. 4.16: Feynman diagrams for the radiative decay processJ/ψ→γ + η.

An example of application of such a theory isJ/ψ→γη (see Section 5.5 for a discussion in the
framework of Ref. [154]). This process has been studied in the framework of perturbative QCD and
the nonrelativistic quark model in Ref. [264], but the predicted rate is significantly smaller than the
experimental value. Theη momentum in this process isqη = 1.5 Gev. If η is converted from two
emitted gluons from the heavy quark, the typical gluon momentum is thenk ∼ qη/2 ∼ 750 MeV. At
this momentum scale perturbative QCD does not work well but QCDME works [231]. The Feynman
diagrams for this process in the QCDME approach are shown in Fig. 4.16, in which the intermediate
states marked between two vertical dotted lines are all treated as bound states. In this sense this approach
is nonperturbative.

Since this process is dominated by E1M2 transition; the transition rate depends on the pseudoscalar
nonet mixing angleθP . Taking the valueθP ≈ −20◦ determined from theη→γγ andη′→γγ rates [10],
we obtain [231]

Γ(J/ψ→γη) = 0.041

(
αM
αE

)
keV, B(J/ψ→γη) = (4.7 ± 0.2) × 10−4

(
αM
αE

)
. (4.184)

With the reasonable valueαM/αE = 1.8, the predicted branching ratio can agree with the experimental
valueBexp(J/ψ→γη) = (8.6 ± 0.8) × 10−4 [10]. To avoid the uncertainties fromαM/αE andθP , we
take the ratio ofΓ(J/ψ→γη) to another E1M2 transition rateΓ(ψ′→J/ψη). The theoretical prediction
is [231]

Rη ≡
Γ(J/ψ→γη)

Γ(ψ′→J/ψη)
= 0.012. (4.185)

In Rη, uncertainties in the H factors cancel, soRη offers a direct test of the MGE mechanism. (4.185) is
in agreement with the experimental valueRη|exp = 0.009 ± 0.003 [10] at the1σ level.

This approach can also be applied toJ/ψ→γη′. With θP ≈ −20◦, we obtain

Rη′ ≡
Γ(J/ψ→γη′)
Γ(ψ′→J/ψη)

=

∣∣∣∣
q(J/ψ→γη′)
q(J/ψ→γη))

∣∣∣∣
3∣∣∣∣
m2
η′(

√
2 cos θP + sin θP )

m2
η(cos θP −

√
2 sin θP )

∣∣∣∣
2

Rη = 0.044. (4.186)

This is also in agreement with the experimental valueRη′ |exp = 0.044 ± 0.010 [10].

We would like to mention that this approach is not suitable for Υ→γη since the typical gluon
momentum in this process isk ∼ qη/2 ∼ 2.4 Gev, appropriate for perturbative QCD, but not for
QCDME.
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Fig. 4.17: Allowed photon, dipion, and omega transitions allowed within thebb̄ system.

7.5 Hadronic transition experiments in thebb̄ system

A. Experimental analysis of hadronic transitions — bottomonium

We see from Eq. (4.166) that, in the framework of QCDME, the transition amplitude contains
an MGE factor and a H factor. Selection rules, as well as the limited phase space, restrict the possible
transitions. A summary of the rich spectroscopy afforded bybottomonia is shown in Fig. 4.17

The principal experimental observables here are the partial widths for the transitions between bot-
tomonia and the Dalitz plot variables: theππ andΥπ invariant mass spectra, and the angular distributions
between final-state particles. To measure the transitionΥ′′→Υππ, for example, in electron–positron
annihilation data (whereΥ′′ is produced at rest, and polarized along the beam axis), one can use the
constraint that theΥ energy can be inferred directly from the measurement of the pion four-momenta to
calculate the mass recoiling against the dipion system. As with theγγ cascades, one differentiates the
“exclusive” case in which theΥ decays to a clean, background-free topology, such asµ+µ− or e+e−,
from the “inclusive” case in which all events are accepted, and one calculates the mass recoiling against
all oppositely-signed dipion pairs. In the former case, one, therefore, selects events consistent with the
cascade:Υ′′→Υππ, Υ→l+l−, allowing one to isolate a very clean sample, but at the expense of lower
overall efficiency owing to the small (∼ 2%) dileptonic BR’s of the final stateΥ’s.

B. Branching ratios and partial widths

The CLEO II mass spectra recoiling against charged dipions,for data taken at theΥ′ [266], are
shown in Figs. 4.18 and 4.19, and illustrate the trade-off between the higher statistical power of the
inclusive data sample vs. the better signal-to-noise of theexclusive data sample.20

Branching ratios are calculated based directly on the number of events found in each peak. Predic-
tions for the partial widths in the nonrelativistic single-channel and coupled-channel theories are shown
in Tables 4.28 and 4.30. In addition to CLEO, the tabulated branching ratios forΥ′→Υππ also in-
clude measurements made by the ARGUS [265], CLEO I [267], CUSB-I [268], and Crystal Ball [269]
collaborations. The CLEO II collaboration are also able to derive estimates for the transition rates for
Υ′′→Υ′ + X by performing a hand scan of the events it reconstructs inΥ′′→Υ′ + X, Υ′→Υπ+π−,
Υ→l+l−, and using the unitarity constraint that the sum of the dipion transitions plus the radiative tran-

20Because of the poor signal-to-noise ratio, theΥ′′→Υπ0π0 transitions cannot be studied inclusively.
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most energetic charged tracks be consistent withe+e− or µ+µ−.

sitions must saturate the overallΥ′′→Υ′ +X decay rate to determine X. These values have been com-
piled along with the direct observation of theΥ′′→Υ′π0π0 andΥ′′→Υ′π+π− transitions. According to
isospin symmetry, theπ+π− transition rate is expected to be twice that of theπ0π0 transition, modulo
the ratios of available phase space (π0π0/π+π−) (1.36 forΥ′′→Υ′π0π0 and 1.02 forΥ′′→Υπ0π0). The
measurements to date are generally consistent with this expectation, with the exception ofΥ′′→Υ′π+π−.
Curiously, despite an inability to match the dipion mass distributions for theΥ′′→Υππ transitions (Secs.
7.2 and 7.3), the QCDME approach gives a better match for thispartial width than forΥ′′→Υ′ππ.

C. Angular distributions

In the nonrelativistic limit, orbital angular momentum andspin are separately conserved. The spin
of a bottomonium resonance produced ate+e− colliders lies along the beam axis. InΥ(nS)→Υπ+π−,
the orbital angular momentum between the pions, or the orbital angular momentum between the dipion
system andΥ is a useful observable in addition to the polarization ofΥ. Predictions for the populations
of the allowed angular momentum states have been made for both theψ system as well as theΥ system
[240,270]. All measurements to date (e.g., by verifying in exclusive events that the angular distribution of
the leptons relative to the beam axis followsdN/d(cosθ) ∼ 1+cos2θ) from ARGUS, CLEO, and CUSB
give strong evidence that the daughterΥ is indeed polarized along the beam axis in the dipion transitions,
and are consistent with an S-wave decay. The other allowed amplitude is a possible D-wave contribution
in the dipion system [cf. Eq. (4.167)]. Convincing evidencefor a large D-wave component of the
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dipion system has not yet been presented, although it has received some theoretical attention [271–273],
and suggestions for non-S-wave anisotropy are found in boththeΥ′′→Υπ+π− [266] andΥ′→Υπ+π−

data [265, 274], both of which show∼ 2σ indications of a D-wave contribution at the few percent
level [266]. Mapping out the ratio of D-wave to S-wave amplitudes as a function of dipion mass in
the Υ′′ system is a project requiring substantially more statistics than have been accumulated to date;
expectations are that a D-wave amplitude would be more observable at low values of invariant mass,
corresponding to higher energy release in theΥ′′ decay. Such an analysis is currently underway at
CLEO and should mature within the next year.

D. Single pion transitions

For dipion transitions Yan [230], collaborating with Kuang[237], and their work later extended by
Zhou and Kuang [263], estimated the magnitude of the second piece of the product matrix element, the
hadronization term of the transition amplitude. An immediate consequence of the multipole approach
is the expected suppression of the caseX = η relative toX = ππ. The former system has the wrong
quantum numbers for twoE1 gluons, and proceeds in lowest order as eitherE1 ·M2 or M1 ·M1 in
QCDME. Since the mass dependence of the chromomagnetic transitions goes asm−4 (m = quark mass),
QCDME, therefore predicts that the ratio forB(Υ′→Υη)/B(Υ′→Υππ) should be substantially smaller
than the ratioB(ψ′→ψη)/B(ψ′→ψππ). By contrast, if the ratio ofπ+π− to η transitions were governed
by phase space alone, theη transition would be about 15% of theπ+π− transition forΥ′→Υ. The most
recent CLEO analysis yielded an upper limit:B(Υ′→Υη) < 0.0028, in qualitative agreement with the
rule given above.

The isospin-violating decayψ(2S)→π0ψ(1S) and the M1 transitionψ(2S)→ηψ(1S) have been
observed in the charmonium sector; searches for the corresponding transitions in the bottomonium sector
have resulted only in the upper limit:Υ′→Υπ0 <0.11%. The typically poorer energy resolution in
neutral particle measurements, coupled with small predicted branching fractions, makes observation of
such decays difficult.

E. Dipion mass spectra

The dipion mass spectra are calculated directly from the pion four-momenta. As stated before, the
invariant mass spectra are expected to peak at high mass values. This is, in fact, what is observed for
the transitionΥ′→Υπ+π−, as shown in Fig. 4.20, and entirely consistent with an exhaustive study of
this process by the ARGUS collaboration [265]. Also shown inFig. 4.20 are theπ0π0 mass spectra for
Υ′′→Υπ0π0 andΥ′′→Υ′π0π0.

The current data show peaking at high mass for theΥ′′→Υ′π+π− andΥ′→Υππ transitions, con-
sistent with the expectation for S→S transitions (and also consistent with charmonium results). This is
the process for which the multipole expansion model, owing to the smallness of the expansion parameter,
claims to have the greatest predictive power. However, theπ0π0 andπ+π− invariant mass distributions
in theΥ′′→Υπ+π− transition show a “double bump” structure that disagrees with the gluon field multi-
pole expansion model as well as with the expectation that thematrix element for a transition with these
quantum numbers should approach zero at threshold. This is perhaps an indication that the average value
of Q2 is too large to make predictions reliably using the multipole model. It may also be an indication
that a low-mass 0++ scalar (e.g., theσ) may be contributing to the intermediate state.

There have been various attempts to explain the double-peaked shape. Ref. [272,275,276] assumed
the existence of a four-quark stateΥ1, which enhances the low-Mππ region. So far such a resonance is
not found experimentally. Ref. [277] assumed a large QPC part in the Υ′′→Υππ amplitude whose
interference with the MGE part may form a double-peaked shape. However, the systematic calculation
shown in Section 7.3 does not support this assumption. Recently, another attempt considering certain
models for aσ meson resonance around 500 MeV in the final stateππ interactions [278,279] have been
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the indicated cuts on dilepton mass [266].

proposed. By adjusting the free parameters in the models, the CLEO data on theMππ distributions can
be fitted. However, the model need to be tested in other processes. Therefore, the HTΥ′′→Υππ is still
an interesting process needing further investigation.

F. Three-pion transitions

With their largeΥ′′ data sample in hand, the CLEO collaboration is able to probe beyond the
now-familiar dipion transitions. Of particular interest areω-mediated transitions, which have been long-
suggested as a possible path to theηb, via: Υ′′→ηbω. In QCDME, by colour conservation, this must
correspond to three E1 gluon emissions. Although direct decaysΥ′′→ηbω were not found, CLEO has
observed significant production ofΥ via Υ′′→χ′

b(2P )γ, χ′
b(2P )→Υω, as shown in Figs. 4.21 and 4.22.

What is actually observed are two recoil mass peaks, corresponding to decays from theχ′
b(2P)

(J=2) and (J=1) states. In fact, large partial widths for such decays had been predicted (albeit indirectly)
in the original QCDME formulation of Gottfried. As pointed out by Voloshin, since theω is spin 1, the
matrix element should be largely independent of the spin of the parent 2P, consistent with observation.
The measured branching fractions (B(χ′

b(J = 2)→Υω) = (1.0±0.3±0.1)% andB(χ′
b(J = 1)→Υω) =

(1.6 ± 0.3 ± 0.24)% are unexpectedly large, given the limited phase space for these decays.

G. Hadronic transitions from theΥ(4S)

Observation of hadronic transitions from theΥ(4S), interesting on its own merits, would provide
essential information on theΥ(4S) wave function. Since theΥ(4S) resonance is above the threshold for
BB̄ production, measurement of the dipion transitions, with partial widths a factor10−4 smaller than
the dominant strong decays to open bottom, require data samples of order108 Υ(4S) events. The BaBar
and Belle experiments now have accumulated samples of 100MΥ(4S) events and may produce the first
signals for such dipion transitions soon. CLEO have produced the most recent results on these transitions,
resulting only in upper limits:Υ(4S)→Υ′ππ < 0.039%; Υ(4S)→Υππ < 0.012%. Interest in such
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decays has recently been promoted by the BES claim of the corresponding decay in the charmonium
sector:ψ(3770)→Jψπ+π−.

H. Unanswered questions

Aside from a first-principles explanation of the dipion massspectrum in theΥ′′→Υπ+π− spec-
trum (such a three-body decay does not, unfortunately, easily lend itself to lattice gauge techniques),
much experimental work remains. Among the dipion transitions one would like to observe are theη
transitions between theS states, or one of the two dipion transitions involving the singlet 11P1 state:
the isospin-violating decayΥ′′→hb(1

1P1)π
0, or Υ′′→hbπ

+π− 21, as well as the dipion transitions be-
tween theχb states:χ′

b → χbππ. Owing to the larger total widths of theχ′
b (J=2 and J=0) states

relative to the J=1 state, the first observation of this decaymight be expected in the transition between
the J=1 states. Transitions at higher order in QCDME, e.g.,Υ′′→ηbω (E1E1M1 transition), and also
HT to theηb, which is accessible through two routes, each of which involves a radiative and a hadronic
transition: eitherΥ′′→hb(1

1P1)ππ; followed byhb(11P1)→ηbγ, or Υ′′→χ′
bγ; χ′

b → ηbπ
+π−, would

both help complete our picture of heavy quark spectroscopy (see Chapter 3). Also extremely interesting
would be the observation of HTs from the recently discoveredtriplet D-bottomonia states (Υ(13DJ)),
e.g.,Υ(13D2)→Υπ+π−, or Υ(13D2)→Υ(1S)η. Currently, only an upper limit exists for the product
branching fraction:Υ′′→χ′

b,J=2γ, χ′
b,J=2→13D, 13D→Υππ of 1.1 × 10−4 for the J=2 D-state, and

21For thisS → P transition, Kuang & Yan predict a dipion mass distribution that peaks atlow values of invariant mass.
This is understood by the following argument: such a transition 1− → 0+1+ can only proceed in P wave, which suppresses
the high mass region.
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2.7 × 10−4, including all the D-states. A 90% c.l. upper limit is also set for the same decay chain, but
with anη rather than dipion transition, of2.3 × 10−4.

7.6 Hadronic transition experiments in thecc̄ system

Hadron transitions in the charmonium system where there is experimental information includeπ+π− →
J/ψ π0, π+π− → J/ψ η, andπ+π− → J/ψ ππ. Recently evidence has been presented onψ(3770) →
J/ψ π+π− decays, and very recently, Belle announced the discovery oftheX(3872) [280], which is
detected viaX(3872) → J/ψ π+π−, making it another means to study hadronic transitions. Here
recent experimental results onπ+π− → J/ψ π0, π+π− → J/ψ η, π+π− → J/ψ ππ andψ(3770) →
J/ψ π+π− will be summarized. We will shortly mention theX(3872) → J/ψ π+π− transition, which
has been discussed in detail in Chapter 3, Section 8.2.

A. π+π− → J/ψ π0, π+π− → J/ψ π0 π0 andπ+π− → J/ψ η

Experimental results for the processesψ ′ → J/ψ π0 andJ/ψ η are few and were mainly taken in
the 1970s and 80s [281–285]. Recently, however, BES, using asample of(14.0 ± 0.6) × 106 ψ ′ events
collected with the BES II detector [286], studiedψ ′ decaying intoJ/ψ(π0, η), with π0 andη decaying
to two photons, andJ/ψ to lepton pairs [241]. Events with two charged tracks identified as an electron
pair or muon pair and two or three photon candidates are selected. A five constraint (5C) kinematic fit
to the hypothesisψ ′ → γγl+l− with the invariant mass of the lepton pair constrained toJ/ψ mass is
performed, and the fit probability is required to be greater than 0.01.

To remove the huge background fromψ ′ → γχc1,c2 under theψ ′ → J/ψ π0 signal, the invariant
mass of the highest energy gamma and theJ/ψ, Mγh,J/ψ is required to be less than 3.49 or greater than
3.58 Gev/c2. Figure 4.23 shows, after this requirement, the distribution of invariant mass,Mγγ , where the
smooth background is due toψ(2S) → γχc1,2 andJ/ψ π0π0. A Breit Wigner with a double Gaussian
mass resolution function to describe theπ0 resonance plus a third-order background polynomial is fitted
to the data.

In theψ ′ → J/ψ η channel, the main backgrounds are fromψ ′ → J/ψ π0π0 andγχc1,c2. By
requiringMγh,J/ψ < 3.49 Gev/c2, most background fromψ ′ → γχc1,c2 is removed. The resultant plot
shown in Fig. 4.24 shows a clearη signal superimposed on background, mainly fromψ ′ → π0π0J/ψ.
A fit is made using a Breit–Wigner resonance convoluted with amass resolution function for theη
signal plus a polynomial background, where the width of theη is fixed to its Particle Data Group (PDG)
value [10] and the background function is determined fromψ ′ → J/ψ π0π0 Monte Carlo simulated
events that satisfy the same criteria as the data.

Table 4.31: Recent BES results onψ ′ → J/ψ π0 andψ ′ → J/ψ η.

Channel J/ψ π0 J/ψ η

Final state γγe+e− γγµ+µ− γγe+e− γγµ+µ−

Number of events 123 ± 18 155 ± 20 2465 ± 101 3290 ± 148
Efficiency (%) 11.21 13.34 26.94 34.07
Sys. error (%) 9.68 8.77 8.54 8.40

Correction factor 0.962 0.974 0.962 0.974
BR (%) 0.139 ± 0.020 ± 0.013 0.147 ± 0.019 ± 0.013 2.91 ± 0.12 ± 0.21 3.06 ± 0.14 ± 0.25

Combine BR (%) 0.143 ± 0.014 ± 0.013 2.98 ± 0.09 ± 0.23
PDG (%) [10] 0.096 ± 0.021 3.16 ± 0.22

Using the fitting results and the efficiencies and correctionfactors for each channel, the branching
fractions listed in Table 4.31 are determined. The BESB(ψ ′ → J/ψ π0) measurement has improved
precision by more than a factor of two compared with other experiments, and theψ ′ → J/ψ η branching
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Fig. 4.24: Two-photon invariant mass distribution for candidateψ ′ → ηJ/ψ events for (a)γγe+e− and (b)
γγµ+µ−.

fraction is the most accurate single measurement. The BESB(ψ ′ → J/ψ π0) agrees better with the
Mark II result [284] than with the Crystal Ball result [285].For the comparison of the BES result with
related theoretical predictions, see Section 7.2.

In another recent BES analysis [287], based on a sample of approximately4 × 106 π+π− events
obtained with the BES I detector [288], a different technique is used for measuring branching fractions
for the inclusive decayπ+π− → J/ψ anything, and the exclusive processes for the cases whereX = η
andX = ππ. Inclusiveµ+µ− pairs are reconstructed, and the number ofπ+π− → J/ψX events
is determined from theJ/ψ → µ+µ− peak in theµ+µ− invariant mass distribution. The exclusive
branching fractions are determined from fits to the distribution of masses recoiling from theJ/ψ with
Monte Carlo determined distributions for each individual channel.

Selected events are required to have more than one and less than six charged tracks and must have
two identified muon tracks with zero net charge. The two muon tracks must satisfy a one constraint
kinematic fit to theJ/ψ mass. Shown in Fig. 4.25 is the dimuon invariant mass distribution,mµµ, for
these events. A clear peak at theJ/ψ mass is evident above background.

The mass recoiling against theJ/ψ candidates,mX is determined from energy and momentum
conservation. In order to distinguishψ(2S) → J/ψπ+π− andψ(2S) → J/ψπ0π0 events, separate
mX histograms are made for events with no additional charged tracks and those with additional charged
tracks. To reduce background and improve the quality of the track momentum measurements, events
used for this part of the analysis are required to have a kinematic fit χ2 < 7. ThemX histograms for
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Fig. 4.25: Distribution of dimuon invariant mass,mµµ, for events that pass theJ/ψ → µ+µ− kinematic fit.
Dots with error bars are data. Also shown is the fit (solid histogram) to the distribution with signal (long dashed
histogram) and background (short dashed histogram) shapes.

events with and without additional charged tracks, selected according to the above requirements, are
shown in Figs. 4.26 and 4.27.

To determine the number of exclusive decays and separateψ(2S) → J/ψπ0π0 andψ(2S) →
J/ψπ+π− events,mX histograms for events with and without additional charged tracks, shown in
Figs. 4.26 and 4.27, are fit simultaneously. Contributions from theψ(2S) → γχc0, χc0 → γJ/ψ are
expected to be very small [10] and are not included in the fit. The influence ofπ+π− → J/ψπ0 is
also small, indeed there is no indication of such a componentin Fig. 4.26, and this channel is also not
included. ThemX distributions forψ(2S) → γχc1, χc1 → γJ/ψ, ψ(2S) → γχc2, χc2 → γJ/ψ , and
the background are broad and rather similar in shape, as can be seen in Fig. 4.26. Since these are difficult
to distinguish, theχc2 toχc1 ratio is constrained using calculated efficiencies and the PDG world average
branching fractions for the two processes.

To avoid a number of systematic errors, the channels of interest are normalized to the observed
number ofJ/ψπ+π− events; ratios of the studied branching fractions to that for B(π+π− → J/ψπ+π−)
are reported. The advantage of normalizing in this way is that many of the muon selection systematic
errors largely cancel, as well as the systematic error due totheχ2 requirement.

Table 4.32: Final branching ratios and branching fractions. PDG04-exp results are single measurements or aver-
ages of measurements, while PDG04-fit are results of their global fit to many experimental measurements. For the
value marked with an asterisk, the PDG gives the reciprocal.The BES results in the second half of the table are
calculated using the PDG value ofBππ = B(π+π− → J/ψπ+π−) = (31.7 ± 1.1)%.

Case This result PDG04-exp PDG04-fit
B(J/ψ anything)/Bππ 1.867 ± 0.026 ± 0.055 2.016 ± 0.150 [289] 1.821 ± 0.036∗

B(J/ψπ0π0)/Bππ 0.570 ± 0.009 ± 0.026 – 0.59 ± 0.05
B(J/ψη)/Bππ 0.098 ± 0.005 ± 0.010 0.091 ± 0.021 [284] 0.100 ± 0.008

B(J/ψ anything) (%) 59.2 ± 0.8 ± 2.7 55 ± 7 57.6 ± 2.0
B(J/ψπ0π0) (%) 18.1 ± 0.3 ± 1.0 – 18.8 ± 1.2
B(J/ψη) (%) 3.11 ± 0.17 ± 0.31 2.9 ± 0.5 3.16 ± 0.22

The final branching fraction ratios and branching fractionsare shown in Table 4.32, along with
the PDG results, including their experimental averages andglobal fit results. For the ratio ofB(ψ(2S)
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Fig. 4.26: Fit of themX distribution events with no additional
charged tracks. Shown are the data (points with error bars),
the component histograms, and the final fit. For the compo-
nents, the large, long-dash histogram isψ(2S) → J/ψππ,
the narrow, dash–dot histogram isψ(2S) → J/ψη, the broad,
short-dashed histogram isπ+π− → γχc1, χc1 → γJ/ψ,
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γJ/ψ, and the lowest cross-hatched histogram is the com-
bined e+e− → γµ+µ− and e+e− → ψ(2S), ψ(2S) →
(γ)µ+µ− background. The final fit is the solid histogram.
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Fig. 4.27: Fit of the mX distribution for
events with any number of additional charged
tracks. Shown are the data (points with error
bars), the component histograms, and the final
fit (solid histogram). The dashed histogram is
ψ(2S) → J/ψπ+π−, and the hatched histogram
is ψ(2S) → J/ψη. There is very little evidence
for ψ(2S) → γχc1/2, χc1/2 → γJ/ψ. This dis-
tribution is composed predominantly ofψ(2S) →
J/ψπ+π−.

→ J/ψπ0π0) to B(ψ(2S) → J/ψπ+π−), the PDG does not use the previous experimental results and
gives no average value. For the other branching fraction ratios, only one measurement exists for each, and
Table 4.32 lists the single measurements quoted by the PDG. The results forB(J/ψ anything)/B(ψ(2S)
→ J/ψπ+π−) andB(J/ψη)/B(ψ(2S) → J/ψπ+π−) have smaller errors than the previous results.

To determine the branching fractions, the ratios are multiplied by the PDG value forB(ψ(2S) →
J/ψπ+π−) = (31.7±1.1)%. The agreement for both the ratios of branching fractions and the calculated
branching fractions using the PDG result forB(π+π− → J/ψπ+π−) with the PDG fit results is good,
and the determination ofB(J/ψη) agrees well with the determination fromψ(2S) → γγJ/ψ decays
above.

B. π+π− → J/ψ π+π−

The processπ+π− → J/ψ π+π−, is the largest decay mode of theψ(2S) [10]. Early investigation
of this decay by Mark I [290] found that theπ+π− mass distribution was strongly peaked towards higher
mass values, in contrast to what was expected from phase space. Further, angular distributions strongly
favored S-wave production ofJ/ψ ππ, as well as an S-wave decay of the dipion system. The challenge of
describing the mass spectrum attracted considerable theoretical interest [227,229,230,237,240,256,291].

Theπ+π− → J/ψ ππ decay was studied by BES [292], using 22,800 almost background free
exclusiveψ(2S) → π+π−J/ψ, J/ψ → l+l− events, wherel signifies eithere or µ, from a data sample
of 3.8 × 106 ψ(2S) decays.
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The angular distributions were fit using the general decay amplitude analysis of Cahn [270]. The
decay can be described in terms of partial wave amplitudes,Ml,L,S, wherel is theππ angular momentum,
L is J/ψ X (X → π+π−) angular momentum,S is the channel spin (S = s + l), ands is the spin of the
J/ψ. Parity conservation and charge conjugation invariance require bothL andl to be even. The partial
waves can be truncated after a few terms. Considering onlyM001,M201, andM021 [293]:

dΓ

dΩJ/ψ
∝ [|M001|2 + |M201|2 +

1

4
|M021|2(5 − 3 cos2 θ∗J/ψ) +

1√
2
ℜ{M021M

∗
001}(3 cos2 θ∗J/ψ − 1)],

(4.187)
dΓ

dΩπ
∝ [|M001|2 +

1

4
|M201|2(5− 3 cos2 θ∗π) + |M021|2 +

1√
2
ℜ{M201M

∗
001}(3 cos2 θ∗π − 1)], (4.188)

dΓ

dΩµ
∝ [|M001|2(1 + cos2 θ∗µ) +

1

10
(|M201|2 + |M021|2)(13 + cos2 θ∗µ)], (4.189)

whereθ∗J/ψ is the polar angle of theJ/ψ relative to the beam direction in the lab,θ∗π is the angle between

the momenta ofJ/ψ andπ+ in the rest frame of theππ system, andθ∗µ is the angle between the beam
direction andµ+ in the rest frame of theJ/ψ. ThedΩ’s are measured in their respective rest frames, and
theMl,L,S are functions ofmππ.

There are three complex numbers to be obtained. According toCahn, if theψ(2S) and J/ψ
are regarded as inert, thenMl,L,S = eiδ

0
l (mππ)|Ml,L,S|, whereδ0l (mππ) is the isoscalar phase shift for

quantum numberl. The phase angles are functions ofmππ. Interpolating the S-wave, isoscalar phase
shift data found in Ref. [272,294], BES tookδ00 to be≈ 45◦ andδ02 ≈ 0. Using these values as input, BES
obtained the combined fit to Eqs. (4.187)–(4.189), shown in Fig. 4.28. The fit yields a nonzero result for
|M201|, indicating that the dipion system contains some D-wave, which is shown by the non-flat angular
distribution forcos θ∗π seen in Fig. 4.28. On the other hand|M021|/|M001|, which measures the amount
of D-wave of theJ/ψ–X system relative to the S-wave, is consistent with zero, which is indicated by
the flat angular distribution forcos θ∗X shown in Fig. 4.28

Observation of a small D-wave contribution is interesting theoretically since, as we have seen in
Eqs. (4.180) and (4.168), there is only S-wave contributionin the NRSC approach, i.e.,the existence
of a small D-wave contribution implies that the present NRSCtheory should be improved to contain
systematic relativistic and coupled-channel contributions.

Themππ invariant mass spectrum has been fit with the Novikov–Shifman model and other models,
as shown in Fig. 4.29. As can be seen, they give nearly identical fits.

Mannel and Urech have constructed an effective Lagrangian using chiral symmetry arguments to
describe the decay of heavy excited S-wave spin-1 quarkonium into a lower S-wave spin-1 state [295].
Using total rates, as well as the invariant mass spectrum from Mark II via ARGUS [265], the parameters
of this theory have been obtained. More recently, M. L. Yanet al. [296] have pointed out that this model
allows D-wave contributions. BES fit the jointcos θ∗π–mππ distribution using the amplitude of Mannel
and Urech. The results are given in Ref. [292], along with theresults from Ref. [295] which are based
on ARGUS–Mark II [265].

C. ψ(3770) → J/ψ π+π−

BES has reported evidence forψ(3770) → J/ψ π+π− based on27.7 pb−1 of data taken in the
centre-of-mass (c.m.) energy region around 3.773 Gev usingthe BES II detector [252].

To search for the decay ofψ(3770) → J/ψ π+π−, J/ψ → e+e− or µ+µ−, µ+µ−π+π− and
e+e−π+π− candidate events are selected. They are required to have four charged tracks with zero total
charge. Each track is required to have a good helix fit, to be consistent with originating from the primary
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Fig. 4.28: Angular distributions of(a) cos θ∗µ, (b) cos θ∗X , and (c) cos θ∗π. The fit shown uses the partial wave
analysis description of Cahn [293].

event vertex, and to satisfy| cos θ| < 0.85, whereθ is the polar angle. Pions and leptons must satisfy
particle identification requirements.

In order to reduce background and improve momentum resolution, events are subjected to four-
constraint kinematic fits to either thee+e− → µ+µ−π+π− or thee+e− → e+e−π+π− hypothesis.
Events with a confidence level greater than 1% are accepted. Figure 4.30(a) shows the dilepton masses
determined from the fitted lepton momenta of the accepted events. There are clearly two peaks. The
lower mass peak is mostly due toψ(3770) → J/ψ π+π−, while the higher one is produced via radiative
return to the peak of theψ(2S).

A maximum likelihood fit to the mass distribution in Fig. 4.30(a), using a Gaussian function to
describe the peak near theJ/ψ mass, two Gaussian functions to represent the second peak from radiative
return to theψ(2S) peak, and a polynomial to represent the broad background, yields a signal of17.8 ±
4.8 events with a significance of6.2 σ .

Backgrounds from QED radiative processes withγ conversion, two-photon backgrounds, such
ase+e− → e+e−µ+µ− (where the slow muons are misidentified as pions) ande+e− → e+e−π+π−,
ande+e− → τ+τ−, are negligibly small, as areJ/ψ π+π− events produced in the continuum process,
e+e− → l+l−π+π−. However, there is a contribution fromψ(2S) → J/ψ π+π− that can pass the
event selection criteria and yield fitted dilepton masses around 3.097 Gev. This is the main background
to ψ(3770) → J/ψ π+π−, as shown in Fig. 4.30(b). Here the histogram shows the dilepton mass
distribution forψ(2S) → J/ψ π+π− from a Monte Carlo simulation. The higher peak is due to the
radiative return to theψ(2S) peak, and the lower peak is from the tail of theψ(2S). The points with error
bars show the total contribution fromψ(2S) andψ(3770) production and decay. From the simulation,
it is estimated that6.0 ± 0.5 ± 0.6 out of 17.8 ± 4.8 events in the peak near 3.1 Gev in Fig. 4.30(a) are
due toψ(2S) → J/ψ π+π−, where the first error is statistical and the second one is thesystematic error
arising from the uncertainty in theψ(2S) resonance parameters.
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Fig. 4.29: Fits to themππ distribution fromπ+π− →
π+π− J/ψ. The points are the data corrected for effi-
ciency, and the curves are the fit results. The smooth curve
is the Novikov–Shifman model. The other models, which
are described in Ref. [292], give similar results.

Fig. 4.30: Distributions of dilepton masses for (a)
data and (b) Monte Carlo sample for events pass-
ing the selection forψ(3770) → π+π−J/ψ. The
hatched histogram in (a) is forJ/ψ → µ+µ−, while
the open one is forJ/ψ → e+e−. The histogram in
(b) is forψ(2S) → J/ψπ+π−, while the points with
error bars are the sum ofψ(3770) → J/ψπ+π− and
ψ(2S) → J/ψπ+π−. (c) Distribution of mass re-
coiling against theπ+π− system calculated using
measured momenta for events that pass the kine-
matic fit requirement, where the hatched histogram
is for J/ψ → µ+µ− and the open one is forJ/ψ →
e+e−.

With the calculated cross-sections forψ(3770) production at each energy point around 3.773 Gev
and the corresponding luminosities, the total number ofψ(3770) events in the data sample is determined
to beNprod

ψ(3770)
= (1.85 ± 0.37) × 105, where the error is mainly due to the uncertainty in the observed

cross-section forψ(3770) production. The detection efficiency for the decay channel is determined to be
ǫψ(3770)→J/ψ π+π−,J/ψ→l+l− = 0.160 ± 0.002, where the error is statistical. Using these numbers and
the known branching fractions forJ/ψ → e+e− andµ+µ− [10], the branching fraction for the non-DD̄
decayψ(3770) → J/ψ π+π− is measured to be

B(ψ(3770) → J/ψ π+π−) = (0.34 ± 0.14 ± 0.08)%, (4.190)

where the first error is statistical and the second systematic. UsingΓtot from the PDG [10], this branching
fraction corresponds to a partial width of

Γ(ψ(3770) → J/ψ π+π−) = (80 ± 32 ± 21) keV. (4.191)

The dominant systematic uncertainty is due to the uncertainty in the total number ofψ(3770) produced
(±24% ). Other systematic uncertainties are due to the efficiency (±10%), the background shape (±6%),
andψ(2S) → J/ψ π+π− background subtraction (±7%).
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CLEOc has analyzed a sample ofψ(3770) decays (4.5 × 104) [209]. Although the sample is
smaller, they have a larger detection efficiency (37%). Theyfind two events in the signal region, con-
sistent with the estimated background, and set a preliminary upper limitB(ψ(3770) → J/ψ π+π−) <
0.26% (90% CL). The result does not confirm the BES result, but is notinconsistent with it either. CLEOc
is now analyzing a sample of about 50 pb−1, and the situation should be better understood when this is
completed. See Section 7.2 for the comparison of the BES result with the related theoretical prediction.

D. X(3872) → J/ψ π+π−

The Belle group has recently reported the observation of theX(3872), a charmonium-like par-
ticle with mass3872.0 ± 0.8 MeV that decays toJ/ψ π+π− [280]. For a review on the charmonium
assignments (and their problems) for theX(3872) we refer to Chapter 3, Section 8.2, and [297].

Theπ+π− invariant mass distribution for this process, shown in Fig.3.33(a) in Chapter 3, has a
stronger concentration at high mass values than QCDME [230]expectations for D-wave to S-wave tran-
sitions, and is also more pronounced than that seen in the S-wave to S-waveψ ′ → J/ψ π+π− process,
which is shown in Fig. 3.33(b). This concentration at highπ+π− masses inX(3872) → J/ψ π+π− has
been experimentally confirmed by the CDF experiment [298].

8 DECAYS OF THE Bc
22

Besides new spectroscopy, production and decay observables, the investigation of the long-lived heavy
quarkoniumBc, the pseudoscalar ground state of theb̄c system, provides the possibility to get model-
independent information on some electroweak parameters, like the CKM matrix elements, in the heavy
quark sector [299, 300]. The first experimental observationof theBc meson by the CDF collabora-
tion [224, 301] confirmed the theoretical predictions (and postdictions) on its mass, production rate and
lifetime [186,192,225,226,302–309]. Tevatron [310] and LHC [311] will provide in the near future new
data with increased statistics, opening the field to full experimental investigation and systematic test of
the theory.

Decays of theBc meson were considered in the pioneering paper by Bjorken of 1986 [312]. A lot
of work has been done after that in order to understand long-lived doubly heavy hadrons.23 Surprisingly,
the Bjorken’s estimates of total widths and various branching fractions are close to what is evaluated now
in a more rigorous way. TheBc properties determined by the strong interactions can be investigated in
the framework of effective field theories for heavy quarkonia, i.e., NRQCD [14,314], potential NRQCD
[41, 42] or vNRQCD [315] (see also Chapters 1, 3 and 6). In contrast to the Wilson coefficients, the
hadronic matrix elements of operators composed by the effective fields of the nonrelativistic heavy quarks
cannot be evaluated in a perturbative manner. So, one has to use nonperturbative methods such as QCD
sum rules (SR) [316], operator product expansion (OPE) for inclusive estimates and potential models
(PM).

The measuredBc lifetime is equal to

τ [Bc] = 0.46+0.18
−0.16 ± 0.03 ps, (4.192)

which is close to the value expected by Bjorken. TheBc decays were, at first, calculated in PM [317–
326]. We do not distinguish here among relativistic and nonrelativistic PM, light-front, Bethe–Salpeter or
quasi-potential approaches, calculations with or withoutconfined quark-propagators and so on, because
(1) relativistic corrections to the initial and final state heavy quarkonium form factors are suppressed by
powers of the heavy quark velocity (at least, by a factor 10);(2) light mesons in the final states are usually
factorized, and corrections to the factorization are small; (3) heavy-light mesons in the final states are

22Author: V. V. Kiselev
23Reviews on the physics ofBc meson and doubly heavy baryons can be found in Refs. [186,192,225,226,302] and [313],

respectively. For the doubly heavy baryons see also Chapter3.
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quite accurately described by potential models adjusted tothe decays of such mesons. As a consequence
the different models agree on most of the decay channels.

The results of PM for theBc lifetime agree with each others after having been adjusted on the
semileptonic decays of theB mesons. The OPE evaluations of inclusive decays give lifetime and widths
[305] in agreement with PM, if one sums up the dominant exclusive modes. On the other hand, SR of
QCD gave at first semileptonicBc widths, which were one order of magnitude smaller than thoseof PM
and OPE [327]. The reason was identified in the missing Coulomb resummation [306–308, 319]. At
present, all mentioned approaches give close results for the lifetime and decay modes of theBc if similar
sets of parameters are used. Nevertheless, various questions remain open:

– What is the appropriate normalization point of the non-leptonic weak Lagrangian in theBc decays?

– What are the values of the masses for thec andb quarks that have to be used (see in this respect
Chapter 6)?

– What are the implications of the NRQCD symmetries for theBc form factors?

– How consistent is our understanding of hadronic matrix elements characterizing theBc decays
with the data from other heavy hadrons?

In the following of this section we shortly review theBc decays by summarizing the theoretical
predictions in the different frameworks and discussing howdirect experimental measurements can help
to answer the above questions.

8.1 Bc lifetime and inclusive decay rates

TheBc decay processes can be divided into three classes [305]:

1) theb̄-quark decay with the spectatorc quark,

2) thec-quark decay with the spectatorb̄ quark and

3) the annihilation channelB+
c → l+νl(cs̄, us̄), wherel = e, µ, τ .

In the b̄→c̄cs̄ decays one separates also the Pauli interference with thec quark from the initial state. In
accordance with the given classification, the total width isthe sum over the partial widths

Γ(Bc → X) = Γ(b→ X) + Γ(c→ X) + Γ(ann.)+ Γ(PI). (4.193)

We will see that the dominant contribution to theBc lifetime is expected to be given by the charmed
quark decays (≈ 70%), theb-quark decays and the weak annihilation are expected to add about 20% and
10%, respectively, while the Pauli interference term givesa valuable contribution in thēb→cc̄s decays at
the level of−1.5%, which we have included in theb-quark decay fraction. The above percentages were
obtained in [309]. Somewhat different figures may be obtained in different approaches, e.g., C. H. Chang
et al. obtain in [305] about70% for the fraction ofc-quark decays, about22% for the fraction ofb-quark
decays without Pauli interference, about17% for the fraction of weak annihilation and about−9% for
the fraction of the Pauli interference.

The annihilation width,Γ(ann.), can be reliably estimated in the framework of inclusive ap-
proaches. Let us consider, for instance, the effective weakinteraction Hamiltonian in the quark transition
b→cūd:

Heff =
GF

2
√

2
VcbV

∗
ud{C+(µ)O+ + C−(µ)O−}, (4.194)

with
O± = ūiγν(1 − γ5)di b̄jγ

ν(1 − γ5)cj ± ūiγν(1 − γ5)dj b̄iγ
ν(1 − γ5)cj , (4.195)

wherei, j are colour indices. The factorsC±(µ) account for the corrections induced by hard gluons to
the corresponding four-fermion operators. A review on the evaluation ofC±(µ) can be found in [328].
The normalization condition is given byC±(mb) = 1. A natural choice forµ in decays with given
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Fig. 4.31: TheBc lifetime calculated in QCD sum rules versus the scale of the hadronic weak Lagrangian in
the decay of the charm quark. The wide shaded region, taken from Ref. [308], shows the uncertainty of the
semi-inclusive estimates, the dark shaded region is the preferable choice as given by the lifetimes of charmed
mesons. The dots represent the values in the OPE approach by M. Beneke and G. Buchalla (left point) and
A. Onishchenko (right point) taken from Refs. [305]. The narrow shaded region represents the result of [309]
obtained by summing up the exclusive channels with a variation of the hadronic scale in the decays of theb̄ in the
range of1 < µb < 5 Gev. The arrow points to the preferable prescription ofµ = 0.85 Gev as discussed in [308].

initial and final hadronic states should correspond to the scale at which the hadronic matrix elements are
evaluated. We also define

a1(µ) =
1

2Nc

[
C+(µ)(Nc + 1) + C−(µ)(Nc − 1)

]
,

a2(µ) =
1

2Nc

[
C+(µ)(Nc + 1) − C−(µ)(Nc − 1)

]
.

(4.196)

Then, we obtain

Γ(ann.)=
∑

i=τ,c

G2
F

8π
|Vbc|2f2

BcMm2
i (1 −m2

i /m
2
Bc)

2 · Ci , (4.197)

wherefBc ≈ 400 MeV (see below),Cτ = 1 for theτ+ντ -channel,Cc = 3|Vcs|2a2
1 for thecs̄-channel,

and the gluon corrections for the annihilation into hadronsgo in the factora1 = 1.22± 0.04 (see [328]).
This estimate of the quark contribution does not depend on a hadronization model, since a large energy
release, of the order of the meson mass, takes place. Moreover, one can see that the contributions from
light leptons and quarks can be neglected.

As for the non-annihilation decays, in the approach of the OPE for the quark currents of weak
decays [305], one takes into accountαs corrections to the free quark decays and uses the quark–hadron
duality for the final states. Then one considers the matrix element for the transition operator over the
meson state. The latter allows one also to take into account the effects caused by the motion and virtuality
of the decaying quark inside the meson because of the interaction with the spectator. In this way the
b̄→c̄cs̄ decay mode turns out to be suppressed almost completely due to the Pauli interference with the
charm quark from the initial state. Besides, thec-quark decays with the spectatorb̄ quark are essentially
suppressed in comparison with the free quark decays becauseof the large binding energy in the initial
state.
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Table 4.33: Summary of theoretical predictions in various approaches for the branching ratios of theBc decay
modes calculated in the framework of the inclusive OPE approach (see M. Beneke and G. Buchalla in [305]), by
summing up the exclusive modes in potential models (for instance, in the model of [318, 319] used in [308]) and
according to the semi-inclusive estimates in the sum rules of QCD and NRQCD [307–309].

Bc decay mode OPE, % PM, % SR, %
b̄→c̄l+νl 3.9 ± 1.0 3.7 ± 0.9 2.9 ± 0.3
b̄→c̄ud̄ 16.2 ± 4.1 16.7 ± 4.2 13.1 ± 1.3∑
b̄→c̄ 25.0 ± 6.2 25.0 ± 6.2 19.6 ± 1.9

c→sl+νl 8.5 ± 2.1 10.1 ± 2.5 9.0 ± 0.9
c→sud̄ 47.3 ± 11.8 45.4 ± 11.4 54.0 ± 5.4∑
c→s 64.3 ± 16.1 65.6 ± 16.4 72.0 ± 7.2

B+
c →τ+ντ 2.9 ± 0.7 2.0 ± 0.5 1.8 ± 0.2

B+
c →cs̄ 7.2 ± 1.8 7.2 ± 1.8 6.6 ± 0.7

In an exclusive approach it is necessary to sum up widths of different decay modes calculated in
potential models. Considering the semileptonic decays dueto theb̄→c̄l+νl andc→sl+νl transitions, one
finds that the hadronic final states are practically saturated by the lightest1S state in the(c̄c) system,
i.e., ηc andJ/ψ and the1S states in the(b̄s) system, i.e.,Bs andB∗

s . Further, thēb→c̄ud̄ channel, for
example, can be calculated through the decay width ofb̄→c̄l+νl, taking into account colour factors and
hard gluon corrections to the four-quark interaction. It can be also obtained as a sum over the widths of
decays to(ud̄) bound states.

The results of the calculation of theBc total width in the inclusive OPE and exclusive PM ap-
proaches give values that are consistent with each other, ifone takes into account the most significant
uncertainty, which is related to the choice of the quark masses (especially of the charm quark):

τ [B+
c ]OPE, PM = 0.55 ± 0.15 ps. (4.198)

So, for instance, M. Beneke and G. Buchalla using OPE [305] give the estimate0.4–0.7 ps (see Fig. 4.31),
which slightly corrects a result by I. Bigi [305]:0.4 ps. As for the potential approach, despite huge
differences in details of exclusive estimates, models usually give a lifetime close to0.4–0.6 ps, although
the estimates strongly depend on the choice of the charm quark mass. We refer to the pioneering paper
by M. Lusignoli and M. Masetti [317]. The obtained value agrees with the measured one (4.192). In
Table 4.33 the reader may find summarized several theoretical results for inclusive decay channels.

The OPE estimates of inclusive decay rates agree with recentsemi-inclusive calculations in the
sum rules of QCD and NRQCD [307,308], where one assumes the saturation of hadronic final states by
the ground levels in thecc̄ andb̄s systems as well as the factorization that allows to relate the semileptonic
and hadronic decay modes. The Coulomb resummation plays an essential role in theBc decays and
removes the disagreement between the estimates in sum rulesand OPE. In contrast to OPE, where the
basic uncertainty is given by the heavy quark masses, these parameters are fixed by the two-point sum
rules for bottomonia and charmonia, so that the accuracy of SR calculations for the total width of theBc
is determined by the choice of the scaleµ for the hadronic weak Lagrangian in decays of charmed quarks.
We show this dependence in Fig. 4.31, wheremc/2 < µ < mc. The dark shaded region corresponds to
the scales preferred by the data on the charmed meson lifetimes. Choosing the scale in thec→s decays
of Bc to be equal toµ2

Bc
≈ (0.85 GeV)2, puttinga1(µBc) = 1.20 and neglecting the contributions of a

nonzeroa2 in the charmed quark decays, in the framework of semi-inclusive sum rule calculations one
obtains [308]

τ [Bc] SR = 0.48 ± 0.05 ps, (4.199)
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which agrees with the direct sum of exclusive channels presented in the next sections. In Fig. 4.31 we
also show the exclusive estimate of the lifetime from Ref. [309].

8.2 Exclusive decays

Typical values for the exclusive decay branching ratios of theBc, as obtained in QCD SR [308,309], are
shown in Table 4.34 at given values of the factorsa1,2 and lifetime. The uncertainty of such predictions
is about 15%, and the numbers essentially agree with most of the potential models within the theoretical
uncertainties of the QCD SR estimates. In square bracket we show the marginal deviations from the
central values obtained in some potential models.

In addition to the decay channels with aJ/ψ well detectable through its leptonic mode, one could
expect significant information on the dynamics ofBc decays coming from channels with a single heavy
mesons, if the experimental efficiency is good enough to extract a signal from the cascade decays. Since
decays to excited charmonia in the final state (like P waves) [331, 332], radiative leptonic modes [333]
and some rare decays [334] are out of reach for the experimental facilities of the nearest future, we do
not display them in Table 4.34.

In [309] theb̄ decay to the doubly charmed states is predicted to give

B(B+
c →c̄c cs̄) ≈ 1.39%. (4.200)

Comparing the width with the estimate from the spectator decay [305],

Γ(B+
c →c̄c cs̄)

∣∣
SR ≈ 20 · 10−15 GeV, (4.201)

Γ(B+
c →c̄c cs̄)

∣∣
spect.

≈ 90 × 10−15 GeV, (4.202)

we see that they differ by a factor of about1/4.5. The SR result is in agreement with an estimate in
OPE by M. Beneke and G. Buchalla of [305], though the uncertainty is quite large (≈ 60%) due to the
mentioned uncertainty in the renormalization point as wellas in the charm quark mass.

At present we can say that an accurate direct measurement of theBc lifetime can provide in-
formation on the masses of thec and b quarks and the normalization point of the non-leptonic weak
Lagrangian in theBc decays (thea1 anda2 factors). The experimental study of semileptonic decays and
the extraction of ratios of form factors can test the spin symmetry of NRQCD and HQET and decrease the
uncertainties in the corresponding theoretical evaluation of the quark parameters as well as the hadronic
matrix elements. The measurement of branching fractions for semileptonic and non-leptonic modes and
their ratios can give information on the values of the factorization parameters, which depend again on
the normalization of the non-leptonic weak Lagrangian. Thecharm quark counting in theBc decays is
related to the overall contribution ofb quark decays as well as to the suppression ofb̄→cc̄s̄ transitions
because of the destructive interference, whose value depends on the nonperturbative parameters (roughly
said, the leptonic constant) and on the non-leptonic weak Lagrangian.

8.2.1 Semileptonic decays

The semileptonic decay rates estimated in the QCD sum rules for 3-point correlators [335] are underesti-
mated in [327], because large Coulomb-like corrections were not taken into account. The recent analysis
of SR in [306–308] decreased the uncertainty, so that the estimates agree with the calculations in the
potential models.

(A) Coulomb resummation

For the heavy quarkonium̄bc, where the relative quark velocity is small, Coulomb-likeαs/v cor-
rections are important and have to be resummed. It is well known that taking into account these correc-
tions in two-point sum rules numerically enhances the Born value of the spectral density by a factor two
or three [316].
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Table 4.34: QCD SR predictions [308, 309] for the branching ratios of exclusiveB+
c decays with the choice of

factors:ac1 = 1.20 andac2 = −0.317 in the non-leptonic decays of thec quark, andab1 = 1.14 andab2 = −0.20

in the non-leptonic decays of thēb quark. The lifetime of theBc is takenτ [Bc] ≈ 0.45 ps. The uncertainty of the
widths is estimated to be about 15%. The numbers in square brackets show the marginal values obtained in some
potential models [325,326,329,330]. The maximal difference is of one order of magnitude.

Mode BR, %
B+
c → ηce

+ν 0.75 [0.5]
B+
c → ηcτ

+ν 0.23 [0.2]
B+
c → η′ce

+ν 0.020 [0.05]
B+
c → η′cτ

+ν 0.0016 [–]
B+
c → J/ψe+ν 1.9 [1]

B+
c → J/ψτ+ν 0.48 [0.35]

B+
c → ψ′e+ν 0.094 [0.2]

B+
c → ψ′τ+ν 0.008 [–]

B+
c → D0e+ν 0.004 [0.02]

B+
c → D0τ+ν 0.002 [0.08]

B+
c → D∗0e+ν 0.018 [0.004]

B+
c → D∗0τ+ν 0.008 [0.016]

B+
c → B0

se
+ν 4.03 [1]

B+
c → B∗0

s e
+ν 5.06 [1.2]

B+
c → B0e+ν 0.34 [0.08]

B+
c → B∗0e+ν 0.58 [0.15]

B+
c → ηcπ

+ 0.20 [0.12]
B+
c → ηcρ

+ 0.42 [0.3]
B+
c → J/ψπ+ 0.13 [0.08]

B+
c → J/ψρ+ 0.40 [0.2]

B+
c → ηcK

+ 0.013 [0.008]
B+
c → ηcK

∗+ 0.020 [0.018]
B+
c → J/ψK+ 0.011 [0.007]

Bc → J/ψK∗+ 0.022 [0.016]
B+
c → D+D

0 0.0053 [0.0018]
B+
c → D+D

∗0 0.0075 [0.002]
B+
c → D∗+D

0 0.0049 [0.0009]
B+
c → D∗+D

∗0 0.033 [0.003]
B+
c → D+

s D
0 0.00048 [0.0001]

B+
c → D+

s D
∗0 0.00071 [0.00012]

B+
c → D∗+

s D
0 0.00045 [0.00005]

B+
c → D∗+

s D
∗0 0.0026 [0.0002]

B+
c → ηcD

+
s 0.28 [0.07]

Mode BR, %
B+
c → ηcD

∗+
s 0.27 [0.07]

B+
c → J/ψD+

s 0.17 [0.05]
B+
c → J/ψD∗+

s 0.67 [0.5]
B+
c → ηcD

+ 0.015 [0.04]
B+
c → ηcD

∗+ 0.010 [0.002]
B+
c → J/ψD+ 0.009 [0.002]

B+
c → J/ψD∗+ 0.028 [0.014]

B+
c → B0

sπ
+ 16.4 [1.6]

B+
c → B0

sρ
+ 7.2 [2.4]

B+
c → B∗0

s π
+ 6.5 [1.3]

B+
c → B∗0

s ρ
+ 20.2 [11]

B+
c → B0

sK
+ 1.06 [0.2]

B+
c → B∗0

s K
+ 0.37 [0.13]

B+
c → B0

sK
∗+ –

B+
c → B∗0

s K
∗+ –

B+
c → B0π+ 1.06 [0.1]

B+
c → B0ρ+ 0.96 [0.2]

B+
c → B∗0π+ 0.95 [0.08]

B+
c → B∗0ρ+ 2.57 [0.6]

B+
c → B0K+ 0.07 [0.01]

B+
c → B0K∗+ 0.015 [0.012]]

B+
c → B∗0K+ 0.055 [0.006]

B+
c → B∗0K∗+ 0.058 [0.04]

B+
c → B+K0 1.98 [0.18]

B+
c → B+K∗0 0.43 [0.09]

B+
c → B∗+K0 1.60 [0.06]

B+
c → B∗+K∗0 1.67 [0.6]

B+
c → B+π0 0.037 [0.004]

B+
c → B+ρ0 0.034 [0.01]

B+
c → B∗+π0 0.033 [0.003]

B+
c → B∗+ρ0 0.09 [0.03]

B+
c → τ+ντ 1.6

B+
c → cs̄ 4.9
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(B) Primary modes

In practice, the most important information comes from theψ mode, since this charmonium is
clearly detected in experiments [224, 301]. In addition to the investigation of various form factors and
their dependence on the momentum transfer squared, the measurement of the decay toψ′, could answer
the question of the reliability of QCD predictions for the decays to excited states. At present, finite energy
sum rules predict the width of theB+

c →ψ′l+ν decay in reasonable agreement with potential models if
one takes into account an uncertainty of about 50%.

(C) Relations between the form factors

In the limit of infinitely heavy quark masses, the NRQCD and HQET Lagrangians possess spin
symmetry. The most familiar implication of such symmetry isthe common Isgur–Wise function deter-
mining the form factors in the semileptonic decays of singleheavy hadrons. In contrast to weak decays
with a light spectator quark, theBc decays toψ, ηc andB(∗)

s involve the heavy spectator, so that the
spin symmetry works only at recoil momenta close to zero, where the spectator enters the heavy hadron
in the final state with no hard gluon rescattering. Hence, we expect relations between the form factors
in the vicinity of zero recoil. The normalization of the formfactor is not fixed, as it is in decays of
hadrons with a single heavy quark, since the heavy quarkoniawave functions are flavour dependent. In
practice, the ratios of form factors, which are fixed at zero recoil, are expected to exhibit a dependence on
the momentum transfer squared, which is not significant in actual numerical estimates in the restricted
region of the physical phase space. The SR estimates of the form factors show a good agreement with
the expectations, whereas the deviations can be traced backto the difference in theq2 evolution of the
form factors from the zero recoil point. This can be neglected within the accuracy of the SR method for
the transitions ofBc→c̄c, as shown in [307]. The1/mQ deviations from the symmetry relations in the

decays ofB+
c →B

(∗)
s e+ν are about 10–15%, as found in the QCD sum rules considered in [308]. Form

factors for specific decay channels have been considered also in [322,331].

The combinations of relations derived in [307, 308] reproduce the only equality in [336], which
was found for each mode in the strict limit ofv1 = v2 also considered by Sanchis–Lozano in [337].

8.2.2 Leptonic decays

The dominant leptonic decay of theBc is given by theτντ mode (see Table 4.33). However, it has a
low experimental efficiency of detection because of the hadronic background in theτ decays. Recently,
in Refs. [333] the enhancement of muon and electron channelsin the radiative modes has been studied.
The additional photon removes the helicity suppression forthe leptonic decay of pseudoscalar particles,
leading to an increase of the muonic mode by about a factor two.

(A) Leptonic constant ofBc
In NRQCD the calculation of the leptonic constant for the heavy quarkonium with two-loop accu-

racy requires the two-loop matching of the NRQCD currents with the currents in full QCD,

JQCD
ν = Q̄1γ5γνQ2, J NRQCD

ν = −χ†ψ vν , JQCD
ν = K(µhard;µfact) J NRQCD

ν (µfact),

where the scaleµhard gives the normalization point for the matching of NRQCD withfull QCD, while
µfact denotes the normalization point for the calculations in perturbation theory in NRQCD.

For the pseudoscalar heavy quarkonium composed of heavy quarks with different flavours, the
Wilson coefficientK has been calculated with two-loop accuracy in Refs. [338] and [339]. In NRQCD
the currentJ NRQCD

ν has nonzero anomalous dimension, so that we find

〈0|J NRQCD
ν (µ)|Q̄Q〉 = A(µ) vνf

NRQCD

Q̄Q
MQ̄Q, (4.203)

where, in terms of nonrelativistic quarks, the leptonic constant for the heavy quarkonium is given by the
well-known relation with the wave function at the origin.
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Fig. 4.32: The leptonic constant of theBc is presented versus the soft scale of normalization. The shaded re-
gion restricted by curves corresponds to the change of the hard scale fromµhard = 3 Gev (the dashed curve) to
µhard = 2 Gev (the solid curve) with the initial condition for the evolution of the normalization factorA(µfact),
A(1.2 GeV) = 1 andA(1 GeV) = 1 respectively, in the nonrelativistic current matrix element. The horizontal
band is the region expected from the QCD sum rules [306,327,340] and scaling relations for the leptonic constants
of heavy quarkonia [341]. In the overlap region, the leptonic constant ofBc depends weakly on the parameters.

Following the method described in [342,343], one can estimate the wave function of thēbc quarko-
nium using the static potential given in [342]. Details of the calculations can be found in [344]. The result
of the calculation of theBc leptonic constant is shown in Fig. 4.32. The final result of the two-loop cal-
culation is

fBc = 395 ± 15 MeV, (4.204)

which is close to an early estimate by S. Capstick and S. Godfrey in [304].

The result onfBc is in agreement with the scaling relation derived from the quasi-local QCD sum
rules [341], which use the regularity in the heavy quarkonium mass spectra, i.e., the fact that the splitting
between the quarkonium levels after averaging over the spins of the heavy quarks depends weakly on the
quark flavours. So, the scaling law for S-wave quarkonia has the form

f2
n

Mn

(
Mn

M1

)2 (m1 +m2

4µ12

)2

=
c

n
, (4.205)

wheren is the radial quantum number,m1,2 the masses of the heavy quarks composing the quarkonium,
µ12 the reduced mass andc a dimensional constant independent on both the quark flavours andn. The
accuracy depends on the heavy quark masses, and is discussedin detail in [341]. The parameterc can be
extracted from the known leptonic constants ofψ andΥ.

8.2.3 Non-leptonic modes

With respect to the inclusive non-leptonic widths, which can be estimated in the framework of quark–
hadron duality (see Table 4.33), the calculation of exclusive modes usually involves factorization [86,
345], which, as expected, can be quite accurate for theBc, since the quark–gluon sea is suppressed in the
heavy quarkonium. Thus, the important parameters are the factorsa1 anda2 in the non-leptonic weak
Lagrangian, which depend on the normalization point.

The agreement of QCD SR estimates for the non-leptonic decays of the charm quark in theBc with
the values predicted by potential models is rather good for the direct transitions with no permutation of
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colour lines, i.e., processes involving the factora1 in the non-leptonic amplitude. In contrast, the sum rule
predictions are significantly enhanced in comparison with the values calculated in potential models for
transitions with colour permutation, i.e., for processes involving the factora2 (see Table 4.34). Further,
for transitions̄b→cc̄s where the interference is significantly involved the size ofthe interference is about
35–50% of the width evaluated by neglecting interference terms. These estimates are in agreement with
the potential models of Refs. [322,325].

At large recoils as inB+
c →ψπ+(ρ+), the spectator picture of transition can be broken by hard

gluon exchanges [346]. The spin effects in such decays were studied in [332]. Typically recoil effects
are taken into account to some extent in any relativistic approach like [322].

For the widths of non-leptonicc-quark decays the sum rule estimates are typically greater than
those of potential models24. In this respect we note that the QCD SR calculations are consistent with
the inclusive ones. Summing up the calculated exclusive widths, the total width of theBc meson is
shown in Fig. 4.31, which points to a good agreement of the exclusive calculations with those of OPE
and semi-inclusive estimates.

Another interesting point is the possibility to extract thefactorization parametersa1 anda2 in the
c-quark decays by measuring the ratios of widths

Γ(B+
c →B(∗)+K̄(∗)0)

Γ(B+
c →B(∗)0K(∗)+)

=

∣∣∣∣
Vcs
V 2
cd

∣∣∣∣
2 a2

2

a2
1

, (4.206)

where one should take identical sets of pseudoscalar and vector states in both decays. This procedure
can give a test for the factorization approach itself.

The suppressed decays caused by the flavour changing neutralcurrents were studied in [334].

(A) CP violation inBc decays

CP violation inBc decays can be investigated in the same way as inB decays. The expected CP
asymmetry ofA(B±

c →J/ψD±) is about4×10−3, when the corresponding branching ratio is suppressed
as10−4 [299]. Therefore, the direct study of CP violation inBc decays is practically difficult because of
the low relative yield ofBc with respect to ordinaryB mesons:σ(Bc)/σ(B) ∼ 10−3.

As mentioned at the beginning, theBc meson is expected to be copiously produced in future
colliders. In such circumstances a possible challenge is whether one could get an opportunity to extract
some information about the CKM unitarity triangle from theBc in a model independent way. Indeed,
there is such an opportunity for the angleγ using the strategy of the reference triangles [352] in the decays
of doubly heavy hadrons. This strategy for the study of CP violation inBc decays was originally proposed
by M. Masetti [299], independently investigated by R. Fleischer and D. Wyler [299] and extended to
the case of doubly heavy baryons in [353]. Other possibilities include the lepton tagging ofBs in the
B±
c →B

(∗)
s l±ν decays for the study of mixing and CP violation in theBs sector [354], and a possible

transverse polarization of theτ lepton inBc→τ ν̄τγ [347].

The triangle strategy is based on the direct determination of absolute values for the set of four
decays, at least: the decays of the hadron into the taggedD0 meson, the tagged̄D0 meson, the tagged
CP-even state ofD0, and the decay of the anti-hadron into the tagged CP-even state ofD0. To illustrate
the point, let us consider the decays

B+
c →D0D+

s and B+
c →D̄0D+

s .

The corresponding diagrams with the decay ofb̄-quark are shown in Figs. 4.33 and 4.34.

The exclusive modes do not have penguin terms at the leading order in the Fermi constantGF
that we consider here. However, the diagram with the weak annihilation of two constituents, i.e., the

24See also the recent discussions on theBc decays in [329,330,347–351].
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Fig. 4.33: The diagrams of̄b-quark decay contributing to the weak transitionB+
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Fig. 4.34: The diagrams of̄b-quark decay contributing to the weak transitionB+
c →D̄0D+

s .

charmed quark and beauty antiquark in theB+
c meson, can contribute at the next order inαs as shown

in Fig. 4.34 for the given final state. Nevertheless, we see that such diagrams have the same weak-
interaction structure as at tree level. The magnitude of theαs corrections to the absolute values of the
corresponding decay widths is discussed in [300]. We expectthe sides of the reference-triangles to be of
the same order of magnitude, which makes the method an attractive way to extract the angleγ.

The predictions of QCD sum rules for the exclusive decays ofBc are summarized in Table 4.35
at fixed values ofa1,2 and lifetime. For the sake of completeness and comparison weshow the estimates
for the channels with the neutralD meson and chargedD+ as well as for the vector states in addition to
the pseudoscalar ones.

First, we see that the similar decay modes without the strange quark in the final state can also
be used, in principle, for the extraction ofγ, however, these channels are more problematic since the
sides of the reference-triangles significantly differ fromeach other25, so that the measurements have to
be extremely accurate to get useful information on the angle, which means that one has to accumulate a
huge statistics for the dominant mode.

Second, the decay modes with the vector neutralD meson in the final state are useless for the
purpose of the CKM measurement under the discussed approach. However, the modes with the vector
chargedD∗ andD∗

s mesons can be important for the extraction ofγ. For instance, one could consider
the modesD∗+→D0π+ andD0→K−π+. The neutral charmed meson should be carefully treated in
order to avoid misidentification with the primary one. Otherwise, one could use the mode with the
neutral pion,D∗+→D+π0, whose detection in an experimental facility could be problematic. The same
considerations apply to the vector mesonD∗+

s , whose radiative electromagnetic decay is also problematic
for the detection, since the photon could be easily lost. On the other hand, the loss of the photon does
not disturb the analysis in the case of fully reconstructedD+

s andB+
c .

In the BTeV [310] and LHCb [311] experiments one expects theBc production at the level of sev-
eral billion events. Therefore, one expects104–105 decays ofBc in the gold-plated modes under interest.

25The ratio of widths is basically determined by|VcbVuda2|
2/|VubVcda1|

2 ∼ 110, if we ignore the interference effects.
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Table 4.35: QCD SR predictions [300] for the branching ratios of exclusiveB+
c decays with the choice of factors:

ab1 = 1.14 andab2 = −0.20 in the non-leptonic decays ofb̄ quark. The lifetime of theBc is takenτ [Bc] ≈ 0.45 ps.
For comparison we show in square brackets minimal values estimated in the potential models of [299].

Mode BR, 10−6

B+
c → D+D

0 53 [18]
B+
c → D+D ∗0 75 [20]

B+
c → D∗+D

0 49 [9]
B+
c → D∗+D

∗0 330 [30]
B+
c → D+

s D
0 4.8 [1]

B+
c → D+

s D
∗0 7.1 [1.2]

B+
c → D∗+

s D 0 4.5 [0.5]
B+
c → D∗+

s D ∗0 26 [2]

Mode BR, 10−6

B+
c → D+D 0 0.32 [0.1]

B+
c → D+D ∗0 0.28 [0.07]

B+
c → D∗+D 0 0.40 [0.4]

B+
c → D∗+D ∗0 1.59 [0.4]

B+
c → D+

s D
0 6.6 [1.7]

B+
c → D+

s D
∗0 6.3 [1.3]

B+
c → D∗+

s D 0 8.5 [8.1]
B+
c → D∗+

s D ∗0 40.4 [6.2]

The experimental challenge is the efficiency of detection. One usually gets a 10% efficiency for the ob-
servation of distinct secondary vertices outstanding fromthe primary vertex of beam interaction. Next,
one has to take into account the branching ratios ofDs andD0 mesons. This efficiency crucially depends
on whether one can detect the neutral kaons and pions or not. So, for theDs meson the corresponding
branching ratios grow from 4% (no neutralK andπ) to 25%. The same interval for the neutralD0 is
from 11% to 31%. The detection of neutral kaon is necessary for the measurement of decay modes into
the CP-odd stateD2 of the neutralD0 meson, however, one can omit this cross-check channel from the
analysis in dealing with the CP-even stateD1. The corresponding intervals of branching ratios reachable
by the experiments are from 0.5% to 1.3% for the CP-even stateand from 1.5% to 3.8% for the CP-odd
state ofD0. A pessimistic estimate for the product of branching ratiosis about2 × 10−4, which results
in 2–20 reconstructed events.
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1 FORMALISM FOR INCLUSIVE QUARKONIUM PRODUCTION

1.1 NRQCD factorization method

In both heavy-quarkonium annihilation decays and hard-scattering production, large energy–momentum
scales appear. The heavy-quark massm is much larger thanΛQCD, and, in the case of production, the
transverse momentumpT can be much larger thanΛQCD as well. This implies that the associated values
of the QCD running coupling constant are much less than one. (αs(mc) ≈ 0.25 andαs(mb) ≈ 0.18.)
Therefore, one might hope that it would be possible to calculate the rates for heavy quarkonium decay and
production accurately in perturbation theory. However, there are clearly low-momentum, nonperturbative
effects associated with the dynamics of the quarkonium bound state that invalidate the direct application
of perturbation theory.

In order to make use of perturbative methods, one must first separate the short-distance/high-
momentum, perturbative effects from the long-distance/low-momentum, nonperturbative effects — a pro-
cess which is known as “factorization.” One convenient way to carry out this separation is through the
use of the effective field theory Nonrelativistic QCD (NRQCD) [1–3]. NRQCD reproduces full QCD
accurately at momentum scales of ordermv and smaller, wherev is the typical heavy-quark velocity in
the bound state in the CM frame. (v2 ≈ 0.3 for charmonium, andv2 ≈ 0.1 for bottomonium.) Virtual
processes involving momentum scales of orderm and larger can affect the lower-momentum processes,
and their effects are taken into account through the short-distance coefficients of the operators that appear
in the NRQCD action.

BecauseQQ̄ production occurs at momentum scales of orderm or larger, it manifests itself in
NRQCD through contact interactions. As a result, the inclusive cross-section for the direct production of
the quarkoniumH at large transverse momentum (pT of orderm or larger) in hadron orep colliders or
at large momentum in the CM frame (p∗ of orderm or larger) ine+e− colliders can be written as a sum
of products of NRQCD matrix elements and short-distance coefficients:

σ[H] =
∑

n

σn(Λ)〈OH
n (Λ)〉. (5.1)

Here,Λ is the ultraviolet cutoff of the effective theory, theσn are short-distance coefficients, and the
〈OH

n 〉 are vacuum-expectation values of four-fermion operators in NRQCD. There is a formula analo-
gous to Eq. (5.1) for inclusive quarkonium annihilation rates, except that the vacuum-to-vacuum matrix
elements are replaced by quarkonium-to-quarkonium matrixelements [3].

The short-distance coefficientsσn(Λ) in (5.1) are essentially the process-dependent partonic cross-
sections to make aQQ̄ pair, convolved with parton distributions if there are hadrons in the initial state.
TheQQ̄ pair can be produced in a colour-singlet state or in a colour-octet state. Its spin state can be
singlet or triplet, and it also can have orbital angular momentum. The short-distance coefficients are
determined by matching the square of the production amplitude in NRQCD to full QCD. Because the
scale of theQQ̄ production is of orderm or greater, this matching can be carried out in perturbation
theory.
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The four-fermion operators in Eq. (5.1) create aQQ̄ pair in the NRQCD vacuum, project it onto
a state that in the asymptotic future consists of a heavy quarkonium plus anything, and then annihilate
theQQ̄ pair. The vacuum matrix element of such an operator is the probability for aQQ̄ pair to form
a quarkonium plus anything. These matrix elements are somewhat analogous to parton fragmentation
functions. They contain all of the nonperturbative physicsassociated with evolution of theQQ̄ pair into
a quarkonium state. An important property of the matrix elements, which greatly increases the predictive
power of NRQCD, is the fact that they are universal, i.e., process independent.

The colour-singlet and colour-octet four-fermion operators that appear in Eq. (5.1) correspond to
the evolution into a colour-singlet quarkonium of aQQ̄ pair created at short distance in a colour-singlet
state or a colour-octet state, respectively. In the case of decay, the colour-octet matrix elements have
the interpretation of the probability to find the quarkoniumin a Fock state consisting of aQQ̄ pair plus
some number of gluons. It is a common misconception that colour-octet production proceeds through
the production of a higher Fock state of the quarkonium. However, in the leading colour-octet production
mechanisms, the gluons that neutralize the colour are not present at the time of the creation of the colour-
octetQQ̄ pair, but are emitted during the subsequent hadronization process. The production of the
quarkonium through a higher Fock state requires the production of gluons that are nearly collinear to the
QQ̄ pair, and it is suppressed by additional powers ofv.

NRQCD power-counting rules allow one to organize the sum over operators in Eq. (5.1) as an
expansion in powers ofv. Through a given order inv, only a finite set of matrix elements contributes.
Furthermore, there are simplifying relations between matrix elements, such as the heavy-quark spin
symmetry and the vacuum-saturation approximation, that reduce the number of independent matrix ele-
ments [3]. Some examples of relations between colour-singlet matrix elements that follow from heavy-
quark spin symmetry are

〈OJ/ψ
1 (3S1)〉 = 3 〈Oηc

1 (1S0)〉, (5.2)

〈OχcJ
1 (3PJ)〉 = 1

3 (2J + 1)〈Ohc
1 (1P1)〉. (5.3)

These relations hold up to corrections of orderv2. The prefactors on the right side of Eqs. (5.2)–(5.3)
are just ratios of the numbers of spin states. Since the operators in Eqs. (5.2) and (5.3) have the same
angular momentum quantum numbers as theQQ̄ pair in the dominant Fock state of the quarkonium,
the vacuum-saturation approximation can be used to expressthe matrix elements in terms of the squares
of wave functions or their derivatives at the origin, up to corrections of orderv4. heavy-quark spin
symmetry also gives relations between colour-octet matrixelements, such as

〈OJ/ψ
8 (3S1)〉 = 3 〈Oηc

8 (1S0)〉, (5.4)

〈OJ/ψ
8 (1S0)〉 = 〈Oηc

8 (3S1)〉, (5.5)

〈OJ/ψ
8 (3PJ)〉 = 1

3 (2J + 1)〈Oηc
8 (1P1)〉, (5.6)

〈OχcJ
8 (3S1)〉 = 1

3 (2J + 1)〈Ohc
8 (1S0)〉. (5.7)

These relations hold up to corrections of orderv2. The prefactors on the right side of Eqs. (5.4)–(5.7) are
again just ratios of the numbers of spin states. The vacuum-saturation approximation is not applicable to
colour-octet matrix elements.

The relative importance of the terms in the factorization formula in Eq. (5.1) is determined not
only by the sizes of the matrix elements but also by the sizes of the coefficientsσn in Eq. (5.1). The size
of the coefficient depends on its order inαs, colour factors, and dimensionless kinematic factors, such as
m2/p2

T .

The NRQCD factorization approach is sometimes erroneouslycalled the “colour-octet model,”
because colour-octet terms are expected to dominate in somesituations, such asJ/ψ production at large
pT in hadron colliders. However, there are also situations in which colour-singlet terms are expected

284



PRODUCTION

to dominate, such asJ/ψ production in continuume+e− annihilation at theB factories. Moreover,
NRQCD factorization is not a model, but a rigorous consequence of QCD in the limitΛQCD/m → 0.

A specific truncation of the NRQCD expansion in Eq. (5.1) could be called a model, although,
unlike most models, it is in principle systematically improvable. In truncating at a given order inv, one
can reduce the number of independent matrix elements by making use of approximate relations, such
as Eqs. (5.2)–(5.3) and Eqs. (5.4)–(5.7). The simplest truncation of the NRQCD expansion in Eq. (5.1)
that is both phenomenologically viable and corresponds to aconsistent truncation inv includes four
independent NRQCD matrix elements for each S-wave multiplet (one colour-singlet and three colour-
octet) and two independent NRQCD matrix elements for each P-wave multiplet (one colour-singlet and
one colour-octet). We will refer to this truncation as the standard truncation inv. For the S-wave
charmonium multiplet consisting ofJ/ψ andηc, one can take the four independent matrix elements to

be〈OJ/ψ
1 (3S1)〉, 〈OJ/ψ

8 (1S0)〉, 〈OJ/ψ
8 (3S1)〉, and〈OJ/ψ

8 (3P0)〉. Their relative orders inv arev0, v3, v4,
andv4, respectively. It is convenient to define the linear combination

MH
k = 〈OH

8 (1S0)〉 +
k

m2
c

〈OH
8 (3P0)〉 , (5.8)

because many observables are sensitive only to the linear combination of these two colour-octet matrix
elements corresponding to a specific value ofk. These four independent matrix elements can be used to
calculate the cross-sections for theηc and each of the 3 spin states of theJ/ψ. Thus, this truncation of
NRQCD gives unambiguous predictions for the polarization of the J/ψ. For the P-wave charmonium
multiplet consisting ofχc0, χc1, χc2, andhc, we can take the two independent matrix elements to be
〈Oχc0

1 (3P0)〉 and〈Oχc0
8 (3S1)〉. Their orders inv relative to〈OJ/ψ

1 (3S1)〉 are bothv2. These two inde-
pendent matrix elements can be used to calculate the cross-sections for each of the 12 spin states in the
P-wave multiplet. Thus, this truncation of NRQCD gives unambiguous predictions for the polarizations
of theχc1, χc2, andhc.

The NRQCDdecay matrixelements can be calculated in lattice simulations [4–8] or determined
from phenomenology. However, it is not yet known how to formulate the calculation of production matrix
elements in lattice simulations, and, so, the production matrix elements must be obtained phenomeno-
logically. In general, the production matrix elements are different from the decay matrix elements. The
exceptions are the colour-singlet production matrix elements in which theQQ̄ pair has the same quan-
tum numbers as the quarkonium state, such as those in Eqs. (5.2) and (5.3). They can be related to
the corresponding decay matrix elements through the vacuum-saturation approximation, up to correc-
tions of relative orderv4 [3]. Phenomenological determinations of the production matrix elements for
charmonium states are given in Section 2.1.

The proof of the factorization formula in Eq. (5.1) relies both on NRQCD and on the all-orders
perturbative machinery for proving hard-scattering factorization. A detailed proof does not yet exist,
but work is in progress [9]. At a large transverse momentum (pT of orderm or larger), corrections to
hard-scattering factorization are thought to be of order(mv)2/p2

T (notm2/p2
T ) in the unpolarized case

and of ordermv/pT (notm/pT ) in the polarized case. At a small transverse momentum,pT of order
mv or smaller, the presence of soft gluons in the quarkonium binding process makes the application of
the standard factorization techniques problematic. It is not known if there is a factorization formula for
dσ/dp2

T at smallpT or for dσ/dp2
T integrated overpT .

In practical calculations of the rates of quarkonium decay and production, a number of signifi-
cant uncertainties arise. In many instances, the series inαs andv in the factorization formula in Eq. (5.1)
converge slowly, and the uncertainties from their truncation are large — sometimes100% or larger. In ad-
dition, the matrix elements are often poorly determined, either from phenomenology or lattice measure-
ments, and the important linear combinations of matrix elements vary from process to process, making
tests of universality difficult. There are also large uncertainties in the heavy-quark masses (approximately
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8% formc and approximately 2.4% formb) that can be very significant for quarkonium rates that are
proportional to a large power of the mass.

Many of the largest uncertainties in the theoretical predictions, as well as some of the experimental
uncertainties, cancel in the ratios of cross-sections. Examples in charmonium production are the ratio
Rψ of the inclusive cross-sections forψ(2S) andJ/ψ production and the ratioRχc of the inclusive
cross-sections forχc1 andχc2 production. These ratios are defined by

Rψ =
σ[ψ(2S)]

σ[J/ψ]
, (5.9)

Rχc =
σ[χc1]

σ[χc2]
. (5.10)

Other useful ratios are the fractionsFH of J/ψ’s that come from decays of higher quarkonium statesH.
The fractions that come from decays ofψ(2S) and fromχc(1P ) are defined by

Fψ(2S) = Br[ψ(2S)→J/ψ +X]
σ[ψ(2S)]

σ[J/ψ]
, (5.11)

Fχc =

2∑

J=0

Br[χcJ(1P )→J/ψ +X]
σ[χcJ(1P )]

σ[J/ψ]
. (5.12)

TheJ = 0 term in (5.12) is usually negligible, because the branchingfraction Br[χc0→J/ψX] is so
small. The fraction ofJ/ψ’s that are produced directly can be denoted byFJ/ψ.

Another set of observables in which many of the uncertainties cancel out consists of polarization
variables, which can be defined as ratios of cross-sections for the production of different spin states of
the same quarkonium. The angular distribution of the decay products of the quarkonium depends on the
spin state of the quarkonium. The polarization of a1−− state, such as theJ/ψ, can be measured from the
angular distribution of its decays into lepton pairs. Letθ be the angle in theJ/ψ rest frame between the
positive lepton momentum and the chosen polarization axis.The most convenient choice of polarization
axis depends on the process. The differential cross-section has the form

dσ

d(cos θ)
∝ 1 + α cos2 θ, (5.13)

which defines a polarization variableα whose range is−1 ≤ α ≤ +1. We can define longitudinally and
transversely polarizedJ/ψ’s to be ones whose spin components along the polarization axis are 0 and
±1, respectively. The polarization variableα can then be expressed as(1 − 3ξ)/(1 + ξ), whereξ is the
fraction of theJ/ψ’s that are longitudinally polarized. The valueα = 1 corresponds toJ/ψ with 100%
transverse polarization, whileα = −1 corresponds toJ/ψ with 100% longitudinal polarization.

One short-coming of the NRQCD factorization approach is that, at leading order inv, some of the
kinematics of production are treated inaccurately. Specifically, the mass of the light hadronic state that
forms during the evolution of theQQ̄ pair into the quarkonium state is neglected, and no distinction is
made between2m and the quarkonium mass. While the corrections to these approximations are formally
of higher order inv, they can be important numerically in the cases of rapidly varying quarkonium-
production distributions, such aspT distributions at the Tevatron andz distributions at theB factories and
HERA near the kinematic limitz = 1. These effects can be taken into account through the resummation
of certain operator matrix elements of higher order inv [10]. The resummation results in universal
nonperturbative shape functions that give the probabilitydistributions for aQQ̄ pair with a given set of
quantum numbers to evolve into a quarkonium with a given fraction of the pair’s momentum. The shape
functions could, in principle, be extracted from the data for one process and applied to another process.
Effects from resummation of logarithms of1− z and model shape functions have been calculated for the
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processe+e−→J/ψ +X [11]. For shape functions that satisfy the velocity-scaling rules, these effects
are comparable in size. It may be possible to use this resummed theoretical prediction to extract the
dominant shape function from the Belle and BaBar data fore+e−→J/ψ + X and then use it to make
predictions forJ/ψ photoproduction nearz = 1 [12].

1.2 Colour-singlet model

The colour-singlet model (CSM) was first proposed shortly after the discovery of theJ/ψ. The initial
applications were toηc andχc production through two-gluon fusion [13–16]. Somewhat later, the CSM
was applied to the production ofJ/ψ andηc in B-meson decays [17–19] and to the production ofJ/ψ
plus a gluon [20–25] through two-gluon fusion and photon–gluon fusion. The CSM was taken seriously
until around 1995, when experiments at the Tevatron showed that it under-predicts the cross-section for
prompt charmonium production inpp̄ collisions by more than an order of magnitude. An extensive
review of the colour-singlet model can be found in Ref. [26].

The colour-singlet model can be obtained from the NRQCD factorization formula in Eq. (5.1) by
dropping all of the colour-octet terms and all but one of the colour-singlet terms. The term that is retained
is the one in which the quantum numbers of theQQ̄ pair are the same as those of the quarkonium. The
CSM production matrix elements are related to the corresponding decay matrix elements by the vacuum-
saturation approximation, and, so, they can be determined from annihilation decay rates. Thus, the CSM
gives absolutely normalized predictions for production cross-sections. The heavy-quark spin symmetry
relates the CSM matrix elements of the4(2L + 1) states within an orbital-angular-momentum multiplet
with quantum numberL. Thus, the CSM also gives nontrivial predictions for polarization.

In the case of an S-wave state, the CSM term in Eq. (5.1) is the one whose matrix element is of
leading order inv. However, owing to kinematic factors or factors ofαs in the short-distance coefficients,
the CSM term may not be dominant. In the case of a P-wave state or a state of higher orbital angular
momentum, the CSM term is only one of the terms whose matrix element is of leading order inv. For
these states, the CSM leads to infrared divergences that cancel only when one includes colour-octet terms
whose matrix elements are also of leading order inv. Thus, the CSM is theoretically inconsistent for
quarkonium states with nonzero orbital angular momentum.

1.3 Colour-evaporation model

The colour evaporation model (CEM) was first proposed in 1977[27–30] and has enjoyed considerable
phenomenological success. In the CEM, the cross-section for a quarkonium stateH is some fractionFH
of the cross-section for producingQQ̄ pairs with invariant mass below theMM̄ threshold, whereM is
the lowest mass meson containing the heavy quarkQ. (The CEM parameterFH should not be confused
with the fraction ofJ/ψ’s that come from decay ofH.) This cross-section has an upper limit on theQQ̄
pair mass but no constraints on the colour or spin of the final state. TheQQ̄ pair is assumed to neutralize
its colour by interaction with the collision-induced colour field, that is, by “colour evaporation.” The
Q and theQ̄ either combine with light quarks to produce heavy-flavouredhadrons or bind with each
other to form quarkonium. If theQQ̄ invariant mass is less than the heavy-meson threshold2mM ,
then the additional energy that is needed to produce heavy-flavoured hadrons can be obtained from the
nonperturbative colour field. Thus, the sum of the fractionsFH over all quarkonium statesH can be less
than unity. The fractionsFH are assumed to be universal so that, once they are determinedby data, they
can be used to predict the cross-sections in other processesand in other kinematic regions.

In the CEM at leading order inαs, the production cross-section for the quarkonium stateH in
collisions of the light hadronshA andhB is

σ
(LO)
CEM[hAhB→H +X] =

FH
∑

i,j

∫ 4m2
M

4m2

dŝ

∫
dx1dx2 f

hA
i (x1, µ) fhBj (x2, µ) σ̂ij(ŝ) δ(ŝ − x1x2s) , (5.14)
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whereij = qq̄ or gg, ŝ is the square of the partonic centre-of-mass energy, andσ̂ij(ŝ) is theij → QQ̄
subprocess cross-section. The leading-order calculationcannot describe the quarkoniumpT distribution,
since thepT of theQQ̄ pair is zero at LO. At NLO inαs, the subprocessesij → kQQ̄, wherei, j, andk
are light quarks, antiquarks, and gluons, produceQQ̄ pairs with nonzeropT . Complete NLO calculations
of quarkonium production in hadronic collisions using the CEM have been carried out in Refs. [31, 32],
using the exclusiveQQ̄ production code of Ref. [33] to obtain theQQ̄ pair distributions. The resulting
values of the parametersFH are given in Section 3.3. There are also calculations in the CEM beyond LO
that use only a subset of the NLO diagrams [34] and calculations that describe the soft colour interaction
within the framework of a Monte Carlo event generator [35]. Calculations beyond LO in the CEM have
also been carried out forγp, γγ and neutrino–nucleon collisions and forZ0 decays [36–40]. Apparently,
the colour-evaporation model has not been applied to quarkonium production ine+e− annihilation.

The most basic prediction of the CEM is that the ratio of the cross-sections for any two quarkonium
states should be constant, independent of the process and the kinematic region. Some variations in these
ratios have been observed. For example, the ratio of the cross-sections forχc andJ/ψ are rather different
in photoproduction and hadroproduction. Such variations present a serious challenge to the status of the
CEM as a quantitative phenomenological model for quarkonium production.

In some papers on the Colour Evaporation Model [34], the collision-induced colour field that neu-
tralizes the colour of theQQ̄ pair is also assumed to randomize its spin. This leads to the prediction that
the quarkonium production rate is independent of the quarkonium spin. This prediction is contradicted by
measurements of nonzero polarization of theJ/ψ, theψ(2S), and theΥ(nS) in several experiments. The
assumption of the randomization of theQQ̄ spin also implies simple spin-counting ratios for the cross-
sections for the direct production of quarkonium states in the same orbital-angular-momentum multiplet.
For example, the CEM with spin randomization predicts that the direct-production cross-sections for
charmonium satisfyσdir[ηc] : σdir[J/ψ] = 1 : 3 andσdir[χc0] : σdir[χc1] : σdir[χc2] = 1 : 3 : 5. The in-
clusive cross-sections need not satisfy these spin-counting relations if there is significant feeddown from
decay of higher quarkonium states, as is the case forJ/ψ. Deviations from the predicted spin-counting
ratio for χc1 to χc2 have been observed. One might conclude that the CEM is ruled out by the obser-
vations of nonzero polarization and of deviations from the spin-counting relations. On the other hand,
the assumption of the randomization of theQQ̄ spin is really independent of the assumption of colour
evaporation. Some proponents of the CEM omit the assumptionof spin randomization. Alternatively,
since the CEM is just a model, one can simply declare it to apply only to spin-averaged cross-sections.
In the remainder of this chapter, when we mention the predictions of the CEM for the relative production
rates of quarkonium states that differ only in their spin or total-angular-momentum quantum numbers,
we are referring to the version of the CEM that includes the assumption of spin randomization.

There is a simple correspondence between the CEM and the NRQCD factorization approach. The
CEM amounts to the assumption that an NRQCD production matrix element〈OH

n (Λ)〉 is proportional
to the expectation value of the operator that is obtained by replacing the projector onto the hadronic
stateH with a projector onto the set ofQQ̄ states with invariant mass less than2mM . In addition to an
integral over theQQ̄ phase space, the projector contains sums over theQQ̄ spins and colours. The only
dependence on the quarkoniumH is through a common factorFH in the proportionality constant for
each NRQCD matrix element. Since, in this picture, the probability of forming a specific quarkonium
stateH is independent of the colour and spin state of theQQ̄ pair, NRQCD matrix elements that differ
only by colour and spin quantum numbers are equal up to simplegroup theory factors. This picture also
implies a hierarchy of NRQCD matrix elements according to their orbital-angular-momentum quantum
numberL. In the integration over theQQ̄ phase space of an NRQCD operator with orbital-angular-
momentum quantum numberL, the leading term scales ask2L+1, wherek is theQ or Q̄ momentum in
theQQ̄ rest frame. The differencesmax − 4m2 is proportional tok2. Hence, there is an orbital-angular-
momentum suppression factor[(smax − 4m2)/4m2]L ∼ v2L in the matrix elements.1 That is, the CEM

1From the perspective of NRQCD, the upper limitsmax = 4m2
M on theQQ̄ invariant mass that traditionally has been used

in the CEM is quite arbitrary. Any choice that satisfiessmax − 4m2
Q ∼ 4m2

Qv
2 leads to the same velocity-scaling rules.
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implies that S-wave NRQCD matrix elements dominate and thatthose with orbital-angular-momentum
quantum numberL ≥ 1 are suppressed asv2L. One way to test the assumptions of the CEM is to extract
the NRQCD matrix elements from data and compare them with thepredictions of the CEM.

The qualifier NLO in “the CEM at NLO” is somewhat misleading. As is described in Section 1.4,
the NLO cross-section forQQ̄ production that is used in computing the CEM predictions is accurate
through orderα3

s, which is next-to-leading order at zeropT , but leading order at nonzeropT . This is the
same accuracy inαs as the existing predictions in the NRQCD factorization approach. The NLOQQ̄
pT distribution is singular atpT = 0, but integrable. The existing NLO calculations in the CEM obtain
a smoothpT distribution at smallpT by using a smearing prescription to mimic the effects of multiple
gluon emission. The smearing has a significant effect on the shape of thepT distribution, except at very
largepT .

1.4 Multiple gluon emission

Multiple gluon emission can be very important for transverse momentum distributions, distributions
near kinematic limits, and in situations in which production near threshold is important. For example,
a fixed-order perturbative calculation typically gives a transverse momentum distributiondσ/dp2

T for
quarkonium that includes terms proportional toδ(p2

T ) and1/p2
T that are singular aspT → 0. (However,

the distribution has a well-behaved integral overpT .) This singular distribution becomes a smooth one
when the effects of multiple gluon emission are taken into account to all orders in perturbation theory.
Several methods, which we now describe, have been developedto take into account some of these effects.

Resummationmethods sum, to all orders inαs, certain logarithmically enhanced terms that are
associated with soft- and collinear-gluon emission. The resummations can be carried out at various levels
of precision in the logarithmic enhancements, that is, in leading logarithmic (LL) order, in next-to-leading
logarithmic (NLL) order, etc. Resummation can, in principle, be extended to arbitrarily high precision in
the logarithmic enhancements. However, in practice, it is seldom carried out beyond LL or NLL accuracy.
Generally, logarithms ofp2

T/M
2 have the largest effect onpT distributions [42], although logarithms of

the available partonic energy above threshold (threshold logarithms) and logarithms ofs/p2
T (small-x

logarithms) can also be important for particular processesand kinematic regions2. Because arbitrarily
soft or collinear gluon emissions are resummed, the resummed expressions depend on nonperturbative
functions. This dependence lessens as the mass and transverse momentum scales of the process increase,
and it may be insignificant at large masses and/or transversemomenta. Some practical disadvantages
of the resummation method are that it has to be reformulated,to some extent, for every process and
that it usually does not yield results that are fully differential in all of the kinematic variables. Since
resummation calculations retain only soft and collinear logarithmically enhanced terms, they generally do
not describe accurately processes in which hard gluons are emitted at large angles — so called “Mercedes
events.” This situation can be remedied to some extent by combining resummation with exact next-to-
leading order (NLO) calculations, which retain all contributions associated with gluon emission at NLO,
not just logarithmically enhanced contributions [44].

Parton-shower Monte Carlosshare with resummation methods the approach of modeling multiple
gluon emission by retaining certain logarithmically enhanced terms in the cross-section. The Monte Car-
los take into account a finite, but arbitrarily large, numberof gluon emissions. The original implementa-
tions of shower Monte Carlo methods, such as ISAJET [45,46],generally treat only the leading collinear
logarithmic enhancements correctly, while more recent implementations, such as PYTHIA [47, 48] and
HERWIG [49,50] treat both the leading collinear and soft logarithmic enhancements correctly. Generally,
the showering processes are cut off so that they do not becomeso soft or collinear as to be nonpertur-
bative in nature. The showering may then be supplemented with nonperturbative models that describe
the hadronization of the partons. A practical advantage of the shower Monte Carlo approach is that it is

2For a general discussion of resummation techniques for logarithms ofp2
T /M

2 and threshold logarithms, see Ref. [43].
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generally applied easily to any Born-level production process. Furthermore, it produces results that are
differential in all of the kinematic variables that are associated with the final-state particles. Hence, it
lends itself to the application of experimental cuts. As is the case with resummation methods, the shower
Monte Carlo approach does not yield an accurate modeling of processes in which hard gluons are emitted
at large angles. A partial remedy for this problem is to use shower Monte Carlos in conjunction with
exact NLO calculations, rather than LO calculations. Recently, important progress has been made in this
direction [51–56]. In contrast with resummation methods, some shower Monte Carlos do not take into
account virtual gluon emission. Such shower Monte Carlos donot yield reliable estimates of the total
cross-section.

ThekT -factorizationmethod is an attempt to take into account initial-state radiation through par-
ton distributions that depend the parton’s transverse momentumkT , as well as on the parton’s longitu-
dinal momentum fractionx. It generally gives answers that are very different from those of collinear
factorization. ThekT -dependent parton distributions are not very well known phenomenologically, and
there are possibly unresolved theoretical issues, such as the universality of thekT -dependent parton
distributions.

ThekT -smearingmethod is a phenomenological model for multiple initial-state radiation. As in
thekT -factorization method, thekT smearing method makes use ofkT -dependent parton distributions.
It is assumed that the distribution factors into thex-dependent PDF’s that are defined by collinear fac-
torization and a Gaussian distribution in the transverse momentumkT . The width〈k2

T 〉 of the Gaussian
can be treated as a process-dependent phenomenological parameter. One advantage of this model is that
it is easy to implement. On the other hand, while this model may capture some of the crude features of
soft- and collinear-gluon emission, it is probably incorrect in detail: resummation methods and shower
Monte Carlos yield transverse-momentum distributions that have longer tails than those of a Gaussian
distribution. The impact of a parton shower on the quarkonium transverse momentum distribution is, in
general, larger than for the GaussiankT smearing, and it extends out to larger values ofpT .

1.5 Production in nuclear matter

The existing factorization “theorems” for quarkonium production in hadronic collisions are for cold
hadronic matter. These theorems predict that nuclear matter is “transparent” forJ/ψ production at large
pT . That is, at largepT , all of the nuclear effects are contained in the nuclear parton distributions.
The corrections to this transparency are of order(mv)2/p2

T for unpolarized cross-sections and of order
mv/pT for polarized cross-sections.

The effects of transverse-momentum kicks from multiple elastic collisions between active partons
and spectators in the nucleons are among those effects that are suppressed by(mv)2/p2

T . Nevertheless,
these multiple-scattering effects can be important because the production cross-section falls steeply with
pT and because the number of scatterings grows linearly with the length of the path through the nuclear
matter. Such elastic interactions can be expressed in termsof eikonal interactions [57] or higher-twist
matrix elements [58].

Inelastic scattering of the quarkonium by the nuclear matter is also an effect of higher order in
(mv)2/p2

T . However, it can become dominant when the amount of nuclear matter that is traversed by the
quarkonium is sufficiently large. Factorization breaks down when the lengthL of the quarkonium path
in the nucleus satisfies

L >∼
Min(zQ, zQ̄)P 2

onium

MA(ktot
T )2

, (5.15)

whereMA is the mass of the nucleus,z is the parton longitudinal momentum fraction,Ponium is the mo-
mentum of the quarkonium in the parton CM frame, andktot

T is the accumulated transverse-momentum
“kick” from passage through the nuclear matter. This condition for the break-down of factorization is
similar to “target-length condition” in Drell–Yan production [59,60]. Such a breakdown of factorization
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is observed in the Cronin effect at lowpT and in Drell–Yan production at lowQ2, where the cross-section
is proportional to the nucleon number raised to a power less than unity.

It is possible that multiple-scattering effects may be larger for colour-octet production than for
colour-singlet production. In the case of colour-octet production, the pre-quarkoniumQQ̄ system carries
a nonzero colour charge and, therefore, has a larger amplitude to exchange soft gluons with spectator
partons.

At present, there is no complete, rigorous theory to accountfor all of the effects of multiple
scattering, and we must resort to “QCD-inspired” models. A reasonable requirement for models is
that they be constructed so that they are compatible with thefactorization result in the large-pT limit.
Many models treat interactions of the pre-quarkonium with the nucleus as on-shell scattering (Glauber
scattering). This assumption should be examined carefully, as on-shell scattering is known, from the
factorization proofs, not to be a valid approximation in leading order in(mv)2/p2

T .

2 QUARKONIUM PRODUCTION AT THE TEVATRON

Charmonium and bottomonium are produced copiously in high energy hadron colliders. The present and
future hadron colliders include

– the Tevatron, app̄ collider operating at Fermilab with centre-of-mass energyof 1.8 TeV in Run I
and 1.96 TeV in Run II,

– RHIC, a heavy-ion orpp collider operating at Brookhaven with centre-of-mass energy of up to
200 GeV per nucleon–nucleon collision,

– the LHC at CERN, app collider under construction at CERN with centre-of-mass energy of
17 TeV.

In this section, we focus on the Tevatron, because it has produced the most extensive and precise data
on quarkonium production. The photoproduction of quarkonium at high-energypp̄, pp, and heavy ion
colliders is discussed in Chapter 7 of this report.

2.1 Charmonium cross-sections

In high energy collisions, charmonium is produced both through direct production mechanisms and
through decays of other hadrons. In the case of charmonium production throughB-hadron decays,
the charmonium is produced at a secondary vertex, and a vertex detector can be used to identify this
contribution to the measured production rate. We refer to the inclusive cross-section for production of a
charmonium state with the contribution fromB decays removed as thepromptcross-section. The prompt
cross-section includes both the direct production of the charmonium and its production through decays
of higher charmonium states.

In Run I of the Tevatron, the CDF collaboration measured the prompt cross-sections for the pro-
duction of several charmonium states inpp̄ collisions at a centre-of-mass energy of 1.8 TeV [61,62]. The
CDF data for production of directJ/ψ, promptψ(2S), and promptJ/ψ from decay ofχc are shown in
Fig. 5.1. In the CDF analysis, promptJ/ψ’s that do not come from decays ofψ(2S) orχc were assumed
to be produced directly.

At non-vanishing transverse momentum, the leading parton processes for producing charmonium
(ij → cc̄ + k, wherei, j, andk are light quarks, antiquarks, and gluons) occur at orderα3

s. The
colour-singlet-model (CSM) predictions are shown as dotted lines in Fig. 5.1. In the top two panels of
Fig. 5.1, the more steeply falling dotted lines are the predictions of the CSM at leading order inαs.
The other dotted lines in the top two panels of Fig. 5.1 are contributions of higher order inαs involving
gluon fragmentation. As can be seen in the top panel of Fig. 5.1, the gluon-fragmentation contribution
renders the shape of the CSM prediction for directJ/ψ production roughly compatible with the CDF
data. However, the normalization is too small by more than anorder of magnitude. There is a similar
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Fig. 5.1: Differential cross-sections for the production of direct J/ψ (top), promptψ(2S) (middle), and prompt
J/ψ from decay ofχc (bottom) at the Tevatron as a function ofpT . The data points are CDF measurements from
Run I [61, 62]. The dotted curves are the CSM contributions. The solid curves are the NRQCD factorization fits,
and the other curves are individual colour-octet contributions to the fits. From Ref. [64].
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Table 5.1: NRQCD production matrix elements for charmoniumstates obtained from the transverse momentum
distributions at the Tevatron [64]. The errors quoted are statistical only.

H 〈OH
1 〉 〈OH

8 (3S1)〉 MH
3.5

J/ψ 1.16 GeV3 (1.19 ± 0.14) × 10−2 GeV3 (4.54 ± 1.11) × 10−2 GeV3

ψ(2S) 0.76 GeV3 (0.50 ± 0.06) × 10−2 GeV3 (1.89 ± 0.46) × 10−2 GeV3

χc0 0.11 GeV5 (0.31 ± 0.04) × 10−2 GeV3

discrepancy in the normalization for promptψ(2S) production, as can be seen in the middle panel of
Fig. 5.1. In the case of production of promptJ/ψ from decay ofχc, which is shown in the bottom panel
of Fig. 5.1, the discrepancy is less dramatic, but the cross-section is still under-predicted by the CSM. The
large discrepancies between the measurements and the CSM predictions for the production cross-section
for S-wave charmonium states rules out the CSM as a credible model for quarkonium production.

According to the NRQCD factorization approach, the charmonium production cross-section con-
tains not only the CSM terms, which are absolutely normalized, but also colour-octet terms, whose
normalizations are determined by colour-octet matrix elements. In the case ofJ/ψ andψ(2S) produc-
tion, the most important colour-octet matrix elements are〈OH

8 (3S1)〉, 〈OH
8 (3P0)〉, and〈OH

8 (1S0)〉. At
largepT , theJ/ψ andψ(2S) cross-sections are dominated by gluon fragmentation into colour-octet3S1

charm pairs [65], which falls asdσ̂/dp2
T ∼ 1/p4

T . The colour-octet1S0 and3PJ channels are significant
in the regionpT ∼< 10 GeV, but fall asdσ̂/dp2

T ∼ 1/p6
T and become negligible at largept. Because the

1S
(8)
0 and3P

(8)
J short-distance cross-sections have a similarpt dependence, the transverse momentum

distribution is sensitive only to the linear combinationMH
k defined in (5.8), withk ≈ 3. As can be seen

in the top panel of Fig. 5.1, a good fit to the normalization andshape of the directJ/ψ cross-section

can be obtained by adjusting〈OJ/ψ
8 (3S1)〉 andMJ/ψ

3.5 . As is shown in the middle panel of Fig. 5.1,
a similarly good fit to the promptψ(2S) cross-section can be obtained by adjusting the corresponding
parameters forψ(2S). In the case of production of theχcJ states, the most important colour-octet ma-
trix element is〈OH

8 (3S1)〉. As can be seen in the bottom panel of Fig. 5.1, the fit to the cross-section
for production of promptJ/ψ from decay ofχc can be improved by adjusting〈Oχc0

8 (3S1)〉. Table 5.1
shows the values of the quarkonium matrix elements that are obtained in the fit of Ref. [64, 66]. The
colour-singlet matrix elements are taken from the potential-model calculation of Refs. [67, 68]. The
colour-octet matrix elements have been extracted from the CDF data [61, 62]. The CTEQ5L parton dis-
tribution functions [69] were used, with renormalization and factorization scalesµ = (p2

T + 4m2
c)

1/2

andmc = 1.5 GeV. The Altarelli–Parisi evolution has been included for the〈Oχc0
8 (3S1)〉 fragmentation

contribution. See Ref. [66] for further details. The extraction of the various colour-octet matrix elements
relies on the differences in theirpT dependences. Smaller experimental error bars could help toresolve
the differentpT dependences with greater precision.

The normalization and the shape of the prompt charmonium cross-section at the Tevatron can also
be described reasonably well by the colour-evaporation model (CEM). The CEM parameters can be fixed
by fitting to the data frompN collisions and by using the measured branching fractions for charmonium
decays. The predictions of the CEM at next-to-leading orderin αs (NLO) can be calculated using the
NLO parameter sets that are described in Section 3.3. The normalization of the predicted cross-section
for promptJ/ψ production is in reasonable agreement with the CDF data fromRun I. The shape can be
brought into good agreement by addingkT smearing, with〈k2

T 〉 = 2.5 GeV2. In Fig. 5.2, the resulting
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Fig. 5.2: Differential cross-sections for production of directJ/ψ (top left), promptJ/ψ from decays ofψ(2S) (top
right), and promptJ/ψ from decays ofχc (bottom) at the Tevatron as a function ofpT . The data points are the
CDF measurements [61,62]. The dotted and solid curves are the CEM predictions at NLO with〈k2

T 〉 = 2.5 GeV2,
using the first and fourth charmonium parameter sets in Table5.8.

CEM predictions are compared with the CDF charmonium data for production of directJ/ψ, prompt
J/ψ from decay ofψ(2S), and promptJ/ψ from decay ofχc. The predictions are all in good agreement
with the CDF data.

In the case of the S-wave production matrix elements, the NRQCD velocity-scaling rules predict
that

〈O8〉
〈O1〉

∼ v4

2Nc
, (5.16)

where this estimate includes colour factors that are associated with the expectation values of the NRQCD
operators, as advocated by Petrelliet al. [70]. As can be seen from Table 5.1, the extracted colour-octet
matrix elements are roughly compatible with this estimate [v4/(2Nc) ≈ 0.015]. However, a much more
stringent test of the theory is to check the universality of the extracted matrix elements in other processes.
In the case of the P-wave production matrix elements, the velocity scaling rules yield the estimate

〈O8〉
〈O1〉/m2

c

∼ v0

2Nc
. (5.17)

The P-wave colour-octet matrix element in Table 5.1 is somewhat smaller than this estimate would sug-
gest. That is also the case for the matrix elements that appear in P-wave quarkonium decays, which have
been determined phenomenologically [71] and in lattice calculations [4–8].
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In Table 5.2, we show matrix elements forJ/ψ production that have been obtained from various
other fits to the transverse momentum distribution. We see that there is a large uncertainty that arises
from the dependence of the matrix elements on the factorization and renormalization scales, as well as a
large dependence on the choice of parton distributions. Theextracted values of the colour-octet matrix
elements (especiallyMk) are very sensitive to the small-pT behavior of the cross-section and this, in turn,
leads to a sensitivity to the behavior of the gluon distribution at smallx. Furthermore, the effects of mul-
tiple gluon emission are important, and their omission in the fixed-order perturbative calculations leads to
overestimates of the sizes of the matrix elements. In Table 5.2, one can see the results of various attempts
to estimate the effects of multiple gluon emission. Sanchis–Lozano (S) and Kniehl and Kramer (KK)
made use of parton-shower Monte Carlos, while Petrelli (P) and Sridhar, Martin, and Stirling (SMS)
employed models containing GaussiankT smearing. In addition, Sanchis–Lozano included a resumma-
tion of logarithms ofp2

T /m
2. Hägler, Kirschner, Schäfer, Szymanowski, and Teryaev (HKSST) used the

kT -factorization formalism to resum large logarithms in the limit s≫ 4m2
c . (See also the calculations by

Yuan and Chao [87,88].) Similar large dependences on the choices of factorization and renormalization
scales, parton distributions, and multiple gluon emissioncan be seen in the matrix elements that have
been extracted from theψ(2S) andχc transverse momentum distributions. See Ref. [64] for details.

Effects of corrections of higher order inαs are a further uncertainty in the fits to the data in
Table 5.2. Such corrections are known to be large in the case of charmonium decays. In the case of char-
monium production, a new channel for colour-singlet production, involving t-channel gluon exchange,
first appears in orderαs and could yield a large correction. Maltoni and Petrelli [83] have found that
real-gluon corrections to colour-singlet3S1 production give a large contribution. Next-to-leading order
(NLO) corrections inαs for χc0 andχc2 production have been calculated [70], as have NLO corrections
for the fragmentation process [89–91]. Large corrections from the resummation of logarithms ofp2

T /m
2

in the fragmentation of partons into quarkonium have also been calculated [80,92–94].

Similar theoretical uncertainties arise in the extractionof the NRQCD production matrix elements
for theψ(2S) andχc states. The statistical uncertainties are larger forψ(2S) andχc production than for
J/ψ production. We refer the reader to Ref. [64] for some examples of the NRQCD matrix elements that
have been extracted for these states.

The CDF collaboration has measured the fraction of promptJ/ψ’s that come from decays of
ψ(2S) andχc(1P ) states and the fractions that are produced directly [62]. The CDF measurements were
made forJ/ψ’s with transverse momentumpT > 4 GeV and pseudo-rapidity|η| < 0.6. The fractions,
which are defined in Eqs. (5.11) and (5.12), are given in Table5.3. The fraction ofJ/ψ’s that are directly
produced is approximately constant over the range 5 GeV< pT < 15 GeV. The fraction from decays of
ψ(2S) increases from(7± 2)% atpT = 5 GeV to(15± 5)% atpT = 15 GeV. The fraction from decays
of χc(1P ) seems to decrease slowly over this range ofpT . Such variations withpT are counter to the
predictions of the colour-evaporation model.

The CDF collaboration has also measured the ratio of the prompt χc1 andχc2 cross-sections at the
Tevatron [95]. The measured value of the ratioRχc defined in Eq. (5.10) is

Rχc = 1.04 ± 0.29(stat.) ± 0.12(sys.). (5.18)

The χc2 andχc1 were observed through their radiative decays into aJ/ψ and a photon, which were
required to have transverse momenta exceeding 4 GeV and 1 GeV, respectively. The colour-evaporation
model predicts that this ratio should be close to the spin-counting ratio3/5, since the feeddown from the
ψ(2S) is small. The NRQCD factorization fit to the promptχc cross-section in the regionpT > 5 GeV
implies a ratio of0.9 ± 0.2 [96]. The CDF result slightly favors the NRQCD factorization prediction.

Charmonium production data from Tevatron Run II have recently become available. Using a
39.7 pb−1 data sample from Run II, the CDF Collaboration has measured the inclusive cross-section for
J/ψ production and subsequent decay intoµ+µ− [97]. The inclusive cross-section includes both prompt
J/ψ’s andJ/ψ’s from decays ofb-hadrons. The inclusive differential cross-section as a function ofpT
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Table 5.2:J/ψ production matrix elements in units of10−2 GeV3 [64]. The first error bar is statistical; the second
error bar (where present) is obtained by varying the factorization and renormalization scales.

Reference PDF 〈OJ/ψ
8 (3S1)〉 M

J/ψ
k k

LO collinear factorization

CL [73] MRS(D0) [74] 0.66 ± 0.21 6.6 ± 1.5 3

CTEQ4L [75] 1.06 ± 0.14+1.05
−0.59 4.38 ± 1.15+1.52

−0.74

BK [66] GRV-LO(94) [76] 1.12 ± 0.14+0.99
−0.56 3.90 ± 1.14+1.46

−1.07 3.5

MRS(R2) [77] 1.40 ± 0.22+1.35
−0.79 10.9 ± 2.07+2.79

−1.26

MRST-LO(98) [79] 0.44 ± 0.07 8.7 ± 0.9
BKL [78]

CTEQ5L [69] 0.39 ± 0.07 6.6 ± 0.7
3.4

Parton shower radiation

CTEQ2L [81] 0.96 ± 0.15 1.32 ± 0.21

S [80] MRS(D0) [74] 0.68 ± 0.16 1.32 ± 0.21 3

GRV-HO(94) [76] 0.92 ± 0.11 0.45 ± 0.09

KK [82] CTEQ4M [75] 0.27 ± 0.05 0.57 ± 0.18 3.5

kT -smearing

〈kT 〉[GeV]

1 1.5 ± 0.22 8.6 ± 2.1
P [83] CTEQ4M [75]

1.5 1.7 ± 0.19 4.5 ± 1.5
3.5

0.7 1.35 ± 0.30 8.46 ± 1.41
SMS [84] MRS(D′

−) [74]
1 1.5 ± 0.29 7.05 ± 1.17

3

kT -factorization

HKSST1 [85] KMS [86] ≈ 0.04 ± 0.01 ≈ 6.5 ± 0.5 5

Table 5.3: The fractionsFH of promptJ/ψ mesons that are produced by the decay of higher charmonium states
H and the fractionFJ/ψ that are produced directly.

H FH (in %)
J/ψ 64 ± 6
ψ(2S) 7 ± 2 to 15 ± 5
χc(1P ) 29.7 ± 1.7(stat.) ± 5.7(sys.)
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Fig. 5.3: Differential inclusive cross-section forpp̄ → J/ψX (left). Differential cross-section distribution ofJ/ψ
events fromb-hadron decay (right). Both cross-sections are plotted as afunction of the transverse momentumpT
of theJ/ψ and are integrated over the rapidity range|y(J/ψ)| < 0.6.

for rapidity |y| < 0.6 has been obtained down to zero transverse momentum and is shown in the left
panel of Fig. 5.3. The total integrated cross-section for inclusiveJ/ψ production inpp̄ interactions at√
s = 1.96 TeV is measured to be

σ[pp̄→ J/ψX, |y(J/ψ)| < 0.6] = 4.08 ± 0.02(stat) ± 0.36(syst) µb. (5.19)

These new measurements await comparison with updated theoretical calculations in the lowpT region.

Using a sample of 4.7 pb−1 of Run II data, the D0 collaboration has verified that theJ/ψ cross-
section is independent of the rapidity of theJ/ψ for a rapidity range 0< |y| < 2. This analysis has been
performed forpT (J/ψ) > 5 GeV andpT (J/ψ) > 8 GeV [98]. The CDF and D0 collaborations have
performed studies of forward differentialJ/ψ production cross-sections in the pseudo-rapidity regions
2.1 < |η(J/ψ)| < 2.6 and 2.5≤ |η(J/ψ)| ≤ 3.7, respectively, using their Run I data [99,100].

Using 39.7 pb−1 of the Run II data, the CDF Collaboration has also measured the differential
cross-section as a function ofpT and the cross-section integrated overpT for the production ofb-hadrons
that decay in the channelHb → J/ψX [97]. The differential cross-section multiplied by the branching
fraction forJ/ψ→µ+µ− is shown in the right panel of Fig. 5.3. A recent QCD prediction that is based on
a fixed order (FO) calculation plus a resummation of next-to-leading order logs (NLL) [101] is overlaid.
The cross-section integrated overpT was found to be

σ[pp̄→ HbX, pT (J/ψ) > 1.25 GeV, |y(J/ψ)| < 0.6] = 28.4 ± 0.4(stat)+4.0
−3.8(syst) µb. (5.20)

This measurement can be used to extract the total inclusiveb-hadron cross-section.

2.2 Bottomonium cross-sections

Using Run I data, the CDF Collaboration has reported inclusive production cross-sections for theΥ(1S),
Υ(2S) andΥ(3S) states in the region 0< pT < 20 GeV [102]. The rates of inclusive production of
theΥ(1S), Υ(2S) andΥ(3S) states forpT > 4 GeV were found to be higher than the rates predicted
by CSM calculations by a factor of about five. Inclusion of colour-octet production mechanisms within

297



CHAPTER 5

10
-3

10
-2

10
-1

0 5 10 15 20

BR(ϒ→µ+µ-) dσ(pp
_
→ϒ(1S)+X)/dpT (nb/GeV)

√s =1.8 TeV; |η| < 0.4

pT (GeV)

total
colour-octet 1S0 + 3PJ

colour-octet 3S1

LO colour-singlet

Fig. 5.4: InclusiveΥ(1S) cross-section at the Tevatron as a function ofpT . The data points are the CDF measure-
ments [61]. The solid curve is the NRQCD factorization fit, and the other curves are individual contributions to the
NRQCD factorization fit. From Ref. [64,104].

the NRQCD framework can account for the observed cross-sections forpT > 8 GeV [72, 73, 104, 105],
as is shown forΥ(1S) production in Fig. 5.4. An accurate description of theΥ cross-section in the low-
pT region requires NLO corrections and a resummation of multiple gluon radiation. A fit to the CDF
data using a parton shower Monte Carlo to model the effects ofmultiple gluon emission has given much
smaller values of the colour-octet matrix elements that arecompatible with zero [106].

The normalization and the shape of the bottomonium cross-sections at the Tevatron can also be
described reasonably well by the colour-evaporation model(CEM). The CEM predictions are compared
with the CDF data forΥ(1S), Υ(2S), andΥ(3S) in Fig. 5.5. Most of the relevant parameters can
be fixed completely by fitting data frompN collisions and by using measured branching fractions for
bottomonium decays. The predictions of the CEM at NLO that are shown in Fig. 5.5 have been calculated
using the NLO parameter sets that are described in Section 3.3. The predicted cross-sections forΥ(1S)
andΥ(3S) production are a little below the data; the normalizations can be improved by multiplying the
cross-sections by a K-factor of 1.4. The shapes have been brought into good agreement with the data
by includingkT smearing, with〈k2

T 〉 = 3.0 GeV2. This value of〈k2
T 〉 is a little larger than the value

〈k2
T 〉 = 2.5 GeV2 that gives the best fit to the charmonium cross-sections.

A recent calculation of the production cross-sections for the Υ(1S), Υ(2S), andΥ(3S) at the
Tevatron combines a resummation of logarithms ofM2

Υ/p
2
T with a calculation at leading order inαs in

what is, in essence, the colour-evaporation model [41]. Theresummation of the effects of multiple gluon
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Fig. 5.5: Differential cross-sections forΥ(1S) (top left),Υ(2S) (top right), andΥ(3S) (bottom) at the Tevatron
as a function ofpT . The data points are the CDF measurements [102]. The solid curves are the CEM predictions
at NLO with 〈k2

T 〉 = 3.0 GeV2, using the first bottomonium parameter set in Tables 5.8. Thedashed curves are
multiplied by aK-factor of 1.4.

emission in the CEM has some simplifications that do not occurin the NRQCD factorization approach.
The results of the calculation of Ref. [41] are shown, along with CDF data, in Fig. 5.6. The resummation
of logarithms ofM2

Υ/p
2
T allows the calculation to reproduce the shape of the data at small pT . The

normalizations have been adjusted to obtain the best fit to the data. the best fit to the data.

The CDF Collaboration has also reported the fractions ofΥ(1S) mesons, forpT > 8 GeV, that
come from decays ofχb(1P ), χb(2P ), χb(3P ), Υ(2S), andΥ(3S) and the fraction that originate from
direct production [103]. The fractions from decays ofΥ(nS) and forχb(nP ) are defined by

FΥ(nS) = Br[Υ(nS)→Υ(1S) +X]
σ[Υ(nS)]

σ[Υ(1S)]
, (5.21)

Fχb(nP ) =

3∑

J=0

Br[χbJ(nP )→Υ(1S) +X]
σ[χbJ (nP )]

σ[Υ(1S)]
. (5.22)

The fraction ofΥ(1S)’s that are produced directly can be denoted byFΥ(1S). The fractions are given in
Table 5.4.

2.3 Polarization

The polarization of the quarkonium contains important information about the production mechanism.
The polarization variableα for a 1−− state, such asJ/ψ, ψ(2S), or Υ(1S), is defined by Eq. (5.13),
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Fig. 5.6: Calculated differential cross-sections times leptonic branching fractionsB, evaluated aty = 0, as func-
tions of transverse momentum for hadronic production of (a)Υ(1S), (b) Υ(2S), and (c)Υ(3S) [41], along with
CDF data [102, 107] at

√
S = 1.8 TeV. The solid lines show the result of the full calculation.The 1995 CDF

cross-sections are multiplied a factor0.88.

Table 5.4: The fractionsFH of Υ(1S) mesons that are produced by the decay of a higher bottomoniumstateH
and the fractionFΥ(1S) that are produced directly.

H FH (in %)
Υ(1S) 50.9 ± 8.2(stat.) ± 9.0(sys.)
Υ(2S) 10.7+7.7

−4.8

Υ(3S) 0.8+0.6
−0.4

χb(1P ) 27.1 ± 6.9(stat.) ± 4.4(sys.)
χb(2P ) 10.5 ± 4.4(stat.) ± 1.4(sys.)
χb(3P ) < 6

where the angleθ is measured with respect to some polarization axis. At a hadron collider, a convenient
choice of the polarization axis is the direction of the boostvector from the quarkonium rest frame to the
centre-of-momentum frame of the colliding hadrons.

The NRQCD factorization approach gives a simple predictionfor the polarization variableα at
very large transverse momentum. The production of a quarkonium with pT that is much larger than the
quarkonium mass is dominated by gluon fragmentation — a process in which the quarkonium is formed
in the hadronization of a gluon that is created with even larger transverse momentum. The NRQCD
factorization approach predicts that the dominant gluon-fragmentation process is gluon fragmentation
into aQQ̄ pair in a colour-octet3S1 state. The fragmentation probability for this process is oforder
αs, while the fragmentation probabilities for all other processes are of orderα2

s or higher. The NRQCD
matrix element for this fragmentation process is〈OH

8 (3S1)〉. At largepT , the fragmenting gluon is nearly
on its mass shell, and, so, is transversely polarized. Furthermore, the velocity-scaling rules predict that
the colour-octetQQ̄ state retains the transverse polarization as it evolves into an S-wave quarkonium
state [108], up to corrections of relative orderv2. Radiative corrections and colour-singlet production
dilute the quarkonium polarization somewhat [66, 89]. In the case ofJ/ψ production, feeddown from
higher quarkonium states is also important [78]. Feeddown from χc states is about 30% of theJ/ψ
sample and dilutes the polarization. Feeddown from theψ(2S) is about 10% of theJ/ψ sample and
is largely transversely polarized. Despite these various diluting effects, a substantial polarization is
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Fig. 5.7: Polarization variableα for promptJ/ψ (left) and for promptψ(2S) (right) at the Tevatron as a function
of pT . The data points are the CDF measurements from Run I [103]. Inthe left panel (promptJ/ψ), the band is
the NRQCD factorization prediction of Ref. [78], and the other curves are the values ofα for individual compo-
nents of the promptJ/ψ signal. In the right panel (promptψ(2S)), the bands are various NRQCD factorization
predictions [66,78,109].

expected at largepT , and its detection would be a “smoking gun” for the presence of the colour-octet
production mechanism. In contrast, the colour-evaporation model predicts zero quarkonium polarization.

The CDF measurement of theJ/ψ polarization as a function ofpT [103] is shown in the left
panel of Fig. 5.7, along with the NRQCD factorization prediction [78]. The observedJ/ψ polarization
is in agreement with the prediction, except for the highestpT bin. However, the prediction of increasing
polarization with increasingpT is not in evidence. The CDF data [103] and the NRQCD factorization
prediction [66, 78, 109] forψ(2S) polarization are shown in the right panel of Fig. 5.7. The theoretical
analysis ofψ(2S) polarization is simpler than for theJ/ψ, since feeddown does not play a rôle. However,
the experimental statistics are not as good for theψ(2S) as forJ/ψ. Again, the expectation of increasing
polarization with increasingpT is not confirmed.

Because the polarization depends on ratios of matrix elements, some of the theoretical uncertain-
ties are reduced compared with those in the production cross-section. The polarization is probably not
strongly affected by multiple gluon emission orK-factors. Uncertainties from contributions of higher-
order inαs could conceivably change the rates for the various spin states by a factor of two. Therefore, it
is important to carry out the NLO calculation, but that calculation is very difficult technically and is com-
puting intensive. order-v2 corrections to parton fragmentation to quarkonium can be quite large. Bodwin
and Lee [110] have found that thev2 corrections to gluon fragmentation toJ/ψ are about+70% for
the colour-singlet channel and−50% for the colour-octet channel. The colour-singlet correction shiftsα
down by about 10% at the largestpT . Since the colour-octet matrix element is fit to Tevatron data, thev2

correction merely changes the size of the matrix element andhas no immediate effect on the theoretical
prediction. An additional theoretical uncertainty comes from the presence of order-v2 spin-flip processes
in the evolution of theQQ̄ pair into the quarkonium. It could turn out that spin-flip contributions are
large, either because their velocity-scaling power laws happen to have large coefficients or because, as
has been suggested in Refs. [111–115], the velocity scalingrules themselves need to be modified. Then
spin-flip contributions could significantly dilute theJ/ψ polarization. Nevertheless, it is is difficult to
see how there could not be substantial polarization inJ/ψ orψ(2S) production forpT > 4mc.3

3It has been argued that re-scattering interactions betweenthe intermediate charm-quark pair and a co-moving colour field
could yield unpolarized quarkonium [116,117]. The theoretical analysis of these effects, however, relies on several simplifying
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Fig. 5.8: Polarization variableα for inclusiveΥ(1S) production at the Tevatron as a function ofpT . The data
points are the CDF measurements from Run I [102]. The theoretical band represents the NRQCD factorization
prediction [118].

The CDF data forΥ polarization is shown in Fig. 5.8, along with the NRQCD factorization predic-
tion. Averaging over a range ofpT , the CDF Collaboration findsα = −0.06 ± 0.20 for 1 GeV< pT <
20 GeV [119, 120], which is consistent with the NRQCD factorization prediction [118]. In compari-
son with the prediction forJ/ψ polarization, the prediction forΥ polarization has smallerv-expansion
uncertainties. However, in the case ofΥ production, the fragmentation mechanism does not dominate
until relatively large values ofpT are reached, and, hence, the transverse polarization is predicted to be
small forpT below about 10 GeV. Unfortunately, the current Tevatron data sets run out of statistics in the
high-pT region.

2.4 Prospects for the Tevatron Run II

Run II at the Tevatron will provide a substantial increase inluminosity and will allow the collider exper-
iments to determine theJ/ψ, ψ(2S) andχc cross-sections more precisely and at larger values ofpt. An
accurate measurement of theJ/ψ andψ(2S) polarization at large transverse momentum will be the most

assumptions, and further work is needed to establish the existence of re-scattering corrections in charmonium hadroproduction
at largepT .
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crucial test of NRQCD factorization. In addition, improveddata on theJ/ψ andψ(2S) cross-sections
will help to reduce some of the ambiguities in extracting thecolour-octet matrix elements.

With increased statistics it might be possible to access other charmonium states such as theηc(nS)
or thehc(nP ). heavy-quark spin symmetry provides approximate relations between the nonperturbative
matrix elements that describe spin-singlet and spin-triplet states. The matrix elements forηc(nS) are
related to those forψ(nS), while the leading matrix elements forhc(nP ) can be obtained from those for
χc(nP ). [See Eqs. (5.2–5.7).] Within NRQCD, the rates forη(nS) andh(nP ) production can thus be
predicted unambiguously in terms of the nonperturbative matrix elements that describe theJ/ψ, ψ(2S)
andχc production cross-sections. A comparison of the various charmonium production rates would
therefore provide a stringent test of NRQCD factorization and the heavy-quark spin symmetry. The cross-
sections for producing theηc and thehc at Run II of the Tevatron are large [121,122], but the acceptances
and efficiencies for observing the decay modes on which one can trigger are, in general, small, and
detailed experimental studies are needed to quantify the prospects. Other charmonium processes that
have been studied in the literature include the production of D-wave states [123],J/ψ production in
association with photons [124,125], and double gluon fragmentation toJ/ψ pairs [126].

The larger statistics expected at Run II of the Tevatron willalso allow the collider experiments to
improve the measurements of the bottomonium cross-sections. As yet undiscovered states, such as the
ηb(1S), could be detected, for example, in the decayηb→J/ψ + J/ψ [105] or in the decayηb→D∗ +
D(∗) [127], and the associated production ofΥ and electroweak bosons might be accessible [128]. If
sufficient statistics can be accumulated, the onset of transverseΥ(nS) polarization may be visible at
pT,Υ >∼ 15 GeV.

3 QUARKONIUM PRODUCTION IN FIXED -TARGET EXPERIMENTS

3.1 Cross-sections

Several collaborations have made predictions for fixed-target quarkonium production within the NRQCD
factorization formalism [129–131]. The predictions of Ref. [129] for J/ψ andψ(2S) production inpN
collisions are shown, along with the experimental data, in the left panels of Figs. 5.9 and 5.10. The
calculation is at leading-order inαs and uses the standard truncation inv that is described in Section 1.1.
The data are from the compilation in Ref. [26], with additional results from Refs. [132–134]. In the case
of pN production ofJ/ψ, the data clearly require a colour-octet contribution, in addition to a colour-
singlet contribution. In the case ofψ(2S) production, it is less clear that a colour-octet contribution is
essential. One should keep in mind that the colour-singlet contribution is quite uncertain, owing to un-
certainties in the values ofmc and the renormalization scale [111]. One can reduce these uncertainties by
considering the ratio of the cross-sections for direct and inclusiveJ/ψ production, which is predicted to
be approximately 0.6 in the NRQCD factorization approach and approximately 0.2 in the colour-singlet
model [111]. Clearly, experiment favors the NRQCD factorization prediction. However, the prediction
for the ratio depends on our knowledge of feed-down fromχc states, and, as we shall see, NRQCD fac-
torization predictions forχc production in fixed-target experiments are not in good agreement with the
data.

In fixed-target production ofJ/ψ andψ(2S) at leading order inαs (LO), the relevant production
matrix elements are〈OH

8 (3S1)〉, 〈OH
8 (1S0)〉, and〈OH

8 (3P0)〉, but the cross-section is sensitive only to
the linear combinationMH

k defined in (5.8) withk ≈ 7. The fits of the LO predictions forJ/ψ andψ(2S)

production inpN collisions [129] yieldMJ/ψ
7 = 3.0×10−2 GeV3 andMψ(2S)

7 = 5.2×10−3 GeV3. The
corrections at next-to-leading order inαs (NLO) give a largeK-factor in the colour-octet contributions
[70]. A fit to the data using the NLO result for the colour-octet contributions givesMJ/ψ

6.4 = 1.8 ×
10−2 GeV3 andMψ(2S)

6.4 = 2.6 × 10−3 GeV3 [71]. The NLO value ofMJ/ψ
6.4 is about a factor2 smaller

than the LO value ofMJ/ψ
7 . Note that the NLO fit uses CTEQ4M [75] parton distributions,while the LO

fit uses the CTEQ3L [140] parton distributions. The LO resultfor MJ/ψ is somewhat smaller than the
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Fig. 5.9: Forward cross-section (xF > 0) for J/ψ production inpN collisions (left) andπN collisions (right).
The curves are the CSM predictions for directJ/ψ (dashed lines), the NRQCD factorization predictions for direct
J/ψ with MJ/ψ

7 = 3.0 × 10−2 GeV3 (dotted lines), and the inclusive cross-sections forJ/ψ including radiative
feed-down fromχcJ andψ(2S) (solid lines). From Ref. [129].

LO result from the Tevatron, and the NLO result forMJ/ψ is somewhat larger than the parton-shower
result from the Tevatron. However, given the large uncertainties in these quantities, the agreement is
reasonable. It should also be remembered that the Tevatron cross-sections are sensitive toMH

k with
k ≈ 3 rather thank ≈ 7, and, so, comparisons are somewhat uncertain. Attempts to constrain this
uncertainty are hampered by the fact that theMS matrix elements need not be positive. One can also
question whether hard-scattering factorization holds forthe total cross-section, which is dominated by
small pT -contributions. Furthermore, kinematic corrections fromthe difference between2m and the
quarkonium mass may be large.

The predictions of Ref. [129] forJ/ψ andψ(2S) production inπN collisions are shown, along
with the experimental data, in the right panels of Figs. 5.9 and 5.10. The calculation is at leading-order
in αs and uses the standard truncation inv that is described in Section 1.1. Again, the data are from
the compilation in Ref. [26], with additional results from Refs. [132–134]. In the NRQCD predictions
in Figs. 5.9 and 5.10, the values ofM7 that are used are the ones that were obtained from the fits to the
pN production data. TheπN production data clearly show an excess over these predictions that cannot
be accounted for by the colour-octet contributions. This discrepancy has been discussed extensively in
Ref. [26], and it may reflect our lack of knowledge of the gluondistribution in the pion or the presence
of different higher-twist effects in the proton and the pion. Such higher-twist effects are not accounted
for in the standard NRQCD factorization formulas, which arebased on leading-twist hard-scattering
factorization.

Some of the largest uncertainties in the predictions cancelout if we consider ratios of cross-
sections. The uncertainties in the NRQCD factorization predictions can still be very large. They arise
from uncertainties in the colour-octet matrix elements, uncalculated corrections of higher order inv and
αs, and uncertainties from the choices of renormalization andfactorization scales. In addition, one can
question whether hard-scattering factorization holds forthe cross-section integrated overpT .

Theψ(2S) to J/ψ ratioRψ is defined in Eq. (5.11). The experimental results forRψ from fixed-
target experiments are compiled in Table 5.5. The result from experiment E673 is obtained by dividing
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Fig. 5.10: Forward cross-section (xF > 0) for ψ(2S) production inpN collisions (left) andπN collisions (right).
The curves are the CSM predictions (dotted lines) and the NRQCD factorization predictions withMψ(2S)

7 =

5.2 × 10−3 GeV3 (solid lines). From Ref. [129].

the observed fraction ofJ/ψ’s from decays ofψ(2S) by the branching fraction forψ(2S)→J/ψX
given by the Particle Data Group [135]. The result from experiment E771 is obtained by dividing the
observed ratio of the products of the cross-sections and thebranching fractions intoµ+µ− by the ratio
of the branching fractions intoµ+µ− given by the Particle Data Group [135]. The NRQCD factorization
approach gives the valuesRψ = 0.16 for both pN collisions andπ−N collisions [129]. The colour-
singlet model givesRψ = 0.14 for pN collisions andRψ = 0.16 for π−N collisions [129]. In the
colour-evaporation model, this ratio is simply an input. Thus the ratioRψ is not able to discriminate
between any of these approaches.

The fractionFχc of J/ψ’s that come fromχc decays is defined in Eq. (5.12). The experimental
results forFχc from fixed-target experiments are compiled in Table 5.6. TheNRQCD factorization
approach gives the valuesFχc = 0.27 for pN collisions andFχc = 0.28 for π−N collisions [129]. The
colour-singlet model givesFχc = 0.68 for pN collisions andFχc = 0.66 for π−N collisions [129]. In
the colour-evaporation model, this ratio is simply an input. Clearly, the experimental results favor the
NRQCD factorization approach over the colour-singlet model. The most precise results frompN fixed
target experiments are compatible with the Tevatron resultin Table 5.3. The most precise results from
πN fixed target experiments are somewhat larger.

The χc1 to χc2 ratio Rχc is defined in Eq. (5.10). There are substantial variations among the
NRQCD factorization predictions forRχc in fixed-target experiments. Beneke and Rothstein [129] give
the valuesRχc = 0.07 for pN collisions andRχc = 0.05 for π−N collisions. Their calculation is carried
out at leading order inαs and uses the standard truncation inv that is described in Section 1.1. Beneke
and Rothstein [129] suggest that corrections to hard-scattering factorization may be large. Beneke [111]
gives the estimateRχc ≈ 0.3 for bothpN andπN collisions. This estimate is based on the assumption
that the3P2 and3P0 colour-octet matrix elements dominate theχc1 production. It is consistent with the
estimate in Ref. [136], once that estimate is modified to takeinto account the dominant colour-singlet
channel inχc2 production [111]. Maltoni [71] gives central values ofRχc for pN collisions that range
from Rχc = 0.04 to Rχc = 0.1 as the beam energy ranges from 200 GeV to 800 GeV. Maltoni’s
calculation takes into account matrix elements at leading order inv, but contains corrections of next-to-
leading order inαs. His calculation displays a very large dependence on the renormalization scale. In
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Table 5.5: Experimental results for the ratioRψ of the inclusive cross-sections forψ(2S) andJ/ψ production.

Experiment beam/target
√
s/GeV Rψ

E537 [132] p̄W 15.3 0.185 ± 0.0925

E705 [141] pLi 23.7 0.14 ± 0.02 ± 0.004 ± 0.02

E705 [141] p̄Li 23.7 0.25 ± 0.22 ± 0.007 ± 0.04

E771 [134] pSi 38.8 0.14 ± 0.02

HERA-B [142] p(C, W) 41.5 0.13 ± 0.02

E537 [132] π−W 15.3 0.2405 ± 0.0650

E673 [144] πBe 20.6 0.20 ± 0.09

E705 [141] π+Li 23.7 0.14 ± 0.02 ± 0.004 ± 0.02

E705 [141] π−Li 23.7 0.12 ± 0.03 ± 0.03 ± 0.02

E672/706 [146] π−Be 31.1 0.15 ± 0.03 ± 0.02

summary, the existing predictions forRχ based on NRQCD factorization are in the range 0.04–0.3 for
bothpN andπN collisions. The colour-singlet model predicts thatRχc ≈ 0.05–0.07 for bothpN and
πN collisions [111,129]. The colour-evaporation model predicts thatRχc ≃ 3/5 [34,147].

The experimental results forRχc are compiled in Table 5.6. As can be seen, the data are somewhat
inconsistent with each other. The results from the most precise experiments are significantly smaller
than the Tevatron result in Eq. (5.18). There seems to be a trend toward larger values ofRχc in πN
experiments than inpN experiments. Such a dependence on the beam type is contrary to the predictions
of the colour-evaporation model. It also would not be expected in the NRQCD factorization approach,
unless there is an unusual enhancement in theqq̄ production channel [111]. Both thepN and πN
data yield results that are significantly larger than the predictions of the colour-singlet model. ThepN
experiments seem to favor the NRQCD factorization predictions, while theπN experiments seem to
favor the colour-evaporation prediction. However, in light of the large theoretical and experimental
uncertainties, no firm conclusions can be drawn.

3.2 Polarization

The polarization variableα for J/ψ production is defined by the angular distribution in Eq. (5.13). In
fixed-target experiments, the most convenient choice of thepolarization axis is the direction of the boost
vector from theJ/ψ rest frame to the lab frame. Experimental results forα are shown in Table 5.7.
The prediction of the NRQCD factorization approach is0.31 < α < 0.63 [129]. Both the theoretical
prediction and the data include feeddown fromχc states. The prediction is largely independent of the
target and beam types. It was made specifically for the beam energy 117 GeV. However, the energy
dependence of the prediction is quite mild, and the prediction would be expected to hold with little error
even at a beam energy of 800 GeV. The colour-singlet model predicts a substantial transverse polarization
[151]. The colour-evaporation model predicts thatα = 0 for all processes. There are also specific
predictions for the HERA-B experiment in which the region ofsmallpT is excluded. The predictions for
the rangepT = 1.5–4 GeV areα = 0–0.1 in the NRQCD factorization approach andα = 0.2–0.4 in the
colour-singlet model [152]. Experimental results for the polarization variableα in J/ψ production are
shown in Table 5.7. The data from the conventional fixed-target experiments are consistent withα = 0
and favor the prediction of the colour-evaporation model over the predictions of NRQCD factorization
or the colour-singlet model [129]. At the smaller values ofpT , one can question whether resummation
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Table 5.6: Experimental results for the fraction ofJ/ψ’s from χc decay,Fχc
, and theχc1 to χc2 ratio,Rχc

. In
view of the experimental uncertainties, no attempt has beenmade to rescale older measurements to account for the
latestχc branching fractions. Modified version of a table from Ref. [111].

Experiment beam/target
√
s/GeV Fχc Rχc

E673 [137] pBe 19.4/21.7 0.47 ± 0.23 0.24 ± 0.28

E705 [138] pLi 23.7 — 0.08+0.25
−0.15

E705 [141] pLi 23.7 0.30 ± 0.04 —

E771 [139] pSi 38.8 — 0.53 ± 0.20 ± 0.07

HERA-B [142] p(C, W) 41.5 0.32 ± 0.06 ± 0.04 —

WA11 [143] πBe 18.6 0.305 ± 0.050 0.68 ± 0.28

E673 [137] πBe 18.9 0.31 ± 0.10 0.96 ± 0.64

E673 [144] πBe 20.6 0.37 ± 0.09 0.9 ± 0.4

E705 [138] πLi 23.7 — 0.52+0.57
−0.27

E705 [141] π+Li 23.7 0.40 ± 0.04 —

E705 [141] π−Li 23.7 0.37 ± 0.03 —

E672/706 [145] π−Be 31.1 0.443 ± 0.041 ± 0.035 0.57 ± 0.18 ± 0.06

of the perturbation series is needed and whether hard-scattering factorization would be expected to hold.
The HERA-B data are also consistent withα = 0 and favor the predictions of the NRQCD factorization
approach and the colour-evaporation model over the prediction of the colour-singlet model.

There is also a measurement of the polarization ofψ(2S) in a fixed-target experiment. The E615
experiment measuredα for ψ(2S) mesons produced inπN collisions at 253 GeV [153]. The data
yield −0.12 < α < 0.16, while the prediction of the NRQCD factorization approach is 0.15 < α <
0.44 [129].

The E866/NuSea experiment has studied the production of dimuons in the collision of 800 GeV
protons with copper [154]. The experiment used the angular distributions of dimuons in the mass range
8.1–15.0 GeV to measure the polarization variableα for Drell–Yan pairs, forΥ(1S) mesons, and for
a mixture ofΥ(2S) and Υ(3S) mesons. The data cover the kinematic ranges 0.0< xF < 0.6 and
pT < 4.0 GeV. The results for the polarization variableα as a function ofpT andxF are shown in
Fig. 5.11. TheΥ(1S) data show almost no polarization at smallxF andpT , but show nonzero transverse
polarization at either largepT or largexF . A fit at theΥ(1S) mass for a polarization that is independent
of xF andpT givesα =0.07± 0.04. This observation is substantially smaller than a prediction that is
based on the NRQCD factorization approach, which givesα in the range 0.28–0.31 [155,156]. However,
it also disagrees with the prediction of the colour-evaporation model that the polarization should be
zero [34]. The most remarkable result from this experiment is that theΥ(2S) andΥ(3S) were found to
be strongly transversely polarized, with the polarizationvariableα close to its maximal valueα = +1
for all xF andpT , as in the case of Drell–Yan pairs. This result provides strong motivation for measuring
the polarizations of theΥ(2S) andΥ(3S) at the Tevatron to see if these states are also produced with
substantial polarizations inpp̄ collisions.

It has been proposed thatχ2 production in hadron collisions at zeropT may serve as a tool to
measure the polarized gluon structure function of the proton [157]. This proposal relies on the assump-
tion thatχ2 production at zeropT is dominated by gluon fusion, and it requires that at least one of the
colliding hadrons be polarized, as is the case, for example,in the RHIC polarized program.
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Table 5.7: Experimental results for the polarization variableα in J/ψ production. Modified version of a table from
Ref. [142].

Experiment beam/target Beam Energy/GeV α

E537 [132] (π, p)(Be, Cu, W) 125 0.024–0.032

E672/706 [148] pBe 530 0.01 ± 0.15

E672/706 [148] pBe 800 −0.11 ± 0.15

E771 [149] pSi 800 −0.09 ± 0.12

E866 [150] pCu 800 0.069 ± 0.08

HERA-B [142] p(C, W) 920 (−0.5, +0.1) ± 0.1

Table 5.8: Inclusive CEM parametersFJ/ψ andFΥ(1S) from Ref. [158] for various choices of PDF’s, quark masses
(in GeV), and scales.

PDF mc µ/mcT FJ/ψ PDF mb µ/mbT FΥ(1S)

MRST HO 1.2 2 0.0144 MRST HO 4.75 1 0.0276
MRST HO 1.4 1 0.0248 MRST HO 4.5 2 0.0201
CTEQ 5M 1.2 2 0.0155 MRST HO 5.0 0.5 0.0508
GRV 98 HO 1.3 1 0.0229 GRV 98 HO 4.75 1 0.0225

Table 5.9: Ratios of the direct CEM parametersF dir
H to the inclusive CEM parameterFJ/ψ in the case of charmo-

nium states and to the inclusive CEM parameterFΥ(1S) in the case of bottomonium states. From Ref. [159].

H J/ψ ψ(2S) χc1 χc2
F dir
H /FJ/ψ 0.62 0.14 0.60 0.99

H Υ(1S) Υ(2S) Υ(3S) χb(1P ) χb(2P )

F dir
H /FΥ(1S) 0.52 0.33 0.20 1.08 0.84

3.3 Colour-evaporation-model parameters

Data frompp andpA collisions have been used to extract the parametersFH of the colour-evaporation
model. (The CEM parameterFH should not be confused with the fraction ofJ/ψ’s that come from
decay ofH.) The results of these extractions are given in Tables 5.8 and 5.9. The numerical values of
the CEM parametersFH that are obtained by fitting data depend on the choices of the parton densities
(PDF’s), the heavy quark massmQ, the renormalization/factorization scaleµ, and the order inαs of the
calculation. The CEM parameters have been calculated usingseveral sets of parton densities [69,79,160],
quark masses, and scales [161,162] that reproduce the measuredQQ̄ cross-section. In these calculations,
the scaleµ was set to a constant timesmQT = (m2

Q + p2
T )1/2, wherepT is the sum of the transverse

momenta of theQ and theQ̄.

We first describe the extraction of the CEM parametersFH for charmonium states. The inclusive
cross-section forJ/ψ production has been measured inpp andpA collisions up to

√
s = 63 GeV. The

data are of two types: the forward cross-section,σ(xF > 0), and the cross-section at zero rapidity,
dσ/dy|y=0. These cross-sections include the feeddown from decays ofχcJ andψ(2S). The parameters
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Fig. 5.11: Polarization ofΥ mesons and Drell–Yan pairs as a function ofpT andxF in p–Cu collisions in the E866
experiment. From Ref. [154].

FJ/ψ that were obtained by fitting the inclusiveJ/ψ cross-sections measured inpp andpA collisions are
given in Table 5.8 for four sets of PDF’s and parameters. The ratio of the parameterF dir

H for the direct
production of a charmonium stateH to the parameterFJ/ψ for the inclusive production ofJ/ψ can be
determined from the measured ratios of the inclusive cross-sections forH andJ/ψ using the known
branching fractions for the feeddown decays. These ratios are given in Table 5.9 for various charmonium
states.

A similar procedure can be used to determine the CEM parameters FH for bottomonium states.
In most data onpp andpA collisions below

√
s = 100 GeV, only the sum of theΥ(1S), Υ(2S), and

Υ(3S) cross-sections weighted by their branching fractions to decay into lepton pairs is reported. A fit
to the lepton-pair cross-section in theΥ region at zero rapidity therefore gives a linear combination of
the inclusive parametersFΥ(nS) weighted by the branching fractionsB[Υ(nS)→ℓ+ℓ−]. The inclusive
parametersFΥ(1S) given in Table 5.8 were extracted by using the known branching fractions and the
measured ratios of the inclusive cross-sections forΥ(nS) in pp̄ collisions at the Tevatron [163]. The
ratios of the parametersF dir

H for the direct production of a bottomonium stateH to the parameterFΥ(1S)

for the inclusive production ofΥ(1S) that were obtained in Ref. [164] have been updated in Ref. [159]
by using recent CDF data onχb production and are given in Table 5.9.
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Fig. 5.12: ForwardJ/ψ production cross-section (left) and weighted average of the Υ(nS) production cross-
sections at zero rapidity (right) as a function of the centre-of-mass energy

√
s. TheJ/ψ data are frompp exper-

iments and frompA experiments with light targetsA ≤ 12. It has been assumed that the cross-sections scale as
A0.9. The low-energyΥ data are frompp andpA experiments. It has been assumed that the cross-sections are
linear inA. The high-energyΥ data are frompp̄ experiments. The curves are the cross-sections calculatedto NLO
in the CEM using the four charmonium parameter sets and the four bottomonium parameter sets in Table 5.8.

The forward cross-section forJ/ψ and the weighted cross-section at zero rapidity forΥ(nS) are
shown as a function of the centre-of-mass energy in Fig. 5.12. The energy dependence of both cross-
sections is well reproduced by the CEM at NLO. All of the CEM parameter sets give good fits to the data
for

√
s ≤ 63 GeV, but their predictions forΥ(nS) differ by up to a factor of two when extrapolated to

2 TeV. The extrapolation of the forwardJ/ψ cross-section to 2 TeV cannot be compared with data from
Run I of the Tevatron because the lepton-pT cut excludes a measurement of the cross-section forJ/ψ in
the regionpT < 5 GeV that dominates the integrated cross-section.

4 QUARKONIUM PRODUCTION AT HERA

4.1 Inelastic photoproduction of charmonium

At the ep collider HERA, the inelastic charmonium production process is dominantly virtual-photon-
gluon fusion: a photon emitted from the incoming electron orpositron interacts with a gluon from
the proton to produce acc̄ pair that subsequently forms a charmonium state. In photoproduction, the
photon virtualityQ2 is small and the photon is quasi-real. In this case, the photon can either couple to
the c quark directly (“direct” processes, Fig. 5.13a or b) or it can interact via its hadronic component
(“resolved” processes, Fig. 5.13c). Many models have been suggested to describe inelastic charmonium
production in the framework of perturbative QCD, such as thecolour-singlet model (CSM) [21–24]
described in Section 1.2, the colour-evaporation model [28,36] described in Section 1.3, and soft colour
interactions [35].
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Fig. 5.13: Generic Feynman diagrams for inelasticJ/ψ production. a,b) direct-photon processes; c) resolved-
photon process. In diagrams a) and c), thecc̄ pair leading to the formation of theJ/ψ can be in a colour-singlet
or a colour-octet state while in b) it can only be in a colour-octet state. Additional soft gluons emitted during the
hadronization process are not shown.

ForJ/ψ andψ(2S) photoproduction, the CSM calculations are available to next-to-leading order
[165, 166]. These are performed using standard hard-scattering factorization in which the gluon density
depends only on the momentum fractionx. Alternatively, using the CSM, inelasticJ/ψ production
can be modeled in thekT -factorization approach (see Section 1.4) using an unintegrated (kT -dependent)
gluon density in the proton.

Theoretical calculations based on the NRQCD factorizationapproach [1–3] are available in lead-
ing order. ForJ/ψ andψ(2S) photoproduction at HERA, these have been performed by Cacciari and
Krämer [167], Beneke, Krämer, and Vänttinen [168], Amundson, Fleming, and Maksymyk [169], Ko,
Lee, and Song [170], Godbole, Roy, and Sridhar [171], and Kniehl and G. Kramer [172, 173]. The
theoretical calculations use the standard truncation inv, in which the independent NRQCD matrix el-
ements are〈OJ/ψ

1 (3S1)〉, 〈OJ/ψ
8 (1S0)〉, 〈OJ/ψ

8 (3S1)〉, and〈OJ/ψ
8 (3P0)〉. The relative strength of the

colour-octet contributions depends crucially on the size of the corresponding NRQCD matrix elements.
Unfortunately the values of the matrix elements〈OJ/ψ

8 (1S0)〉 and〈OJ/ψ
8 (3P0)〉, which are most impor-

tant inJ/ψ andψ(2S) photoproduction at HERA, still show large uncertainties. (See Section 2.1 and
Ref. [64].)

The theoretical predictions are sensitive to a number of input parameters, e.g., the parton distri-
butions, the values ofαs, and the charm-quark massmc, as well as the choice of the renormalization
and factorization scales. In the NRQCD factorization approach, the values of the colour-octet NRQCD
matrix elements are additional parameters. The comparisonwith the data in the NRQCD approach also
suffers from the uncertainties associated with LO calculations. Next-to-leading-order corrections might
change the results substantially. Although the NLO terms have not been calculated in the NRQCD ap-
proach, effects that are similar to those in the CSM may be expected, in which the NLO terms lead to an
increase in the cross-section of typically a factor two, with a strongpT,ψ dependence.

Figure 5.14 shows the measurements of the promptJ/ψ cross-section by the H1 collaboration
[174] and the ZEUS collaboration [175], compared with the theoretical predictions given in Ref. [64].
The variablez denotes the fraction of the photon energy that is transferred to theJ/ψ and is defined as

z =
(E − pz)J/ψ

(E − pz)hadrons
, (5.23)

whereE andpz in the numerator are the energy andz-component of the momentum of theJ/ψ and
E andpz in the denominator are the sums of the energies andz-components of the momenta of all the
hadrons in the final state.
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TheJ/ψ data points shown in Fig. 5.14 are not corrected for feeddownprocesses, such as diffrac-
tive and inelastic production ofψ(2S) mesons (≈ 15%), the production ofb hadrons with subsequent
decays toJ/ψ mesons, or feeddown from the production ofχc states. The latter two contributions are
estimated to contribute between 5% at mediumz and 30% at the lowest values ofz. The open band in
Fig. 5.14 represents the sum of the colour-singlet and colour-octet contributions, calculated in leading
order in QCD perturbation theory. The uncertainty is due to the uncertainty in the colour-octet NRQCD
matrix elements. The NRQCD prediction deviates from the data nearz = 1, owing to the large colour-
octet contribution in that region. The shaded band shows thecalculation of the colour-singlet contribution
to next-to-leading order inαs [165, 166]. The NLO corrections increase the colour-singlet contribution
by about a factor of two, so that it accounts for the data quitewell without the inclusion of a colour-octet
contribution.

Uncertainties inmc could lower the colour-singlet contribution by about a factor of two, leaving
more room for colour-octet contributions. In the experimental data, the cutpT,ψ > 1 GeV is employed.
One can question whether hard-scattering factorization isvalid at such small values ofpT,ψ. However,
the data differential inpT,ψ are compatible with colour-singlet production alone at largepT,ψ (Fig. 5.15).

The next-to-leading-order QCD corrections are crucial in describing the shape of the transverse-
momentum distribution of theJ/ψ. The NLO colour-singlet cross-section includes processessuch as
γ + g→(cc̄) + gg, which are dominated byt-channel gluon exchange and scale asα3

sm
2
c/p

6
T,ψ. At

pT,ψ ∼> mc their contribution is enhanced with respect to the leading-order cross-section, which scales
as∼ α2

sm
4
c/p

8
T,ψ. The comparison with the experimental data in Fig. 5.15 confirms the importance of

the higher-order corrections.

At large z, the emission of soft gluons in the conversion of thecc̄ pairs toJ/ψ mesons is sup-
pressed, owing to phase-space limitations. Furthermore, the velocity expansion of the NRQCD factoriza-
tion approach is expected to break down [10]. These effects are not taken into account in the theoretical
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calculation that is shown in Fig. 5.14. In Ref. [12], a resummation of the nonrelativistic expansion was
carried out, leading to a decrease of the predicted cross-section at highz. The resummation involves
a parameterΛ that describes the energy in thecc̄ rest frame that is lost by thecc̄ system in its conver-
sion into theJ/ψ meson. In Fig. 5.16, the measured cross-sectionsdσ/dz for pT,ψ > 2 GeV and for
pT,ψ > 3 GeV are compared with the results of these resummed calculations. The calculated curves have
been roughly normalized to the data points at lowz. The resummed calculation forΛ = 500 MeV gives
an acceptable description of the data atpT,ψ> 3 GeV, while the agreement between data and calculation
is still poor forpT,ψ> 2 GeV or for lowerΛ values.

Effects from resummation of logarithms of1 − z and model shape functions have also been cal-
culated for the processe+e−→J/ψ + X [11]. It may be possible to use this resummed theoretical
prediction to extract the dominant shape function from the Belle and BaBar data fore+e−→J/ψ + X
and then use it to make predictions forJ/ψ photoproduction nearz = 1.

Measurements of theJ/ψ production cross-section at largez are available from H1 [204] and
from ZEUS [175]. In this region, the contribution from diffractively producedJ/ψ mesons is expected
to be large, as is discussed below in Section 4.3.

The ZEUS Collaboration has also measured theψ′ to J/ψ cross-section ratio [175] in the range
0.55 < z < 0.9 and50 < W < 180 GeV. It is found to be consistent with being independent of the
kinematic variablesz, pt,ψ andW , as is expected if the underlying production mechanisms fortheJ/ψ
and theψ′ are the same. An average valueσ(ψ′)/σ(J/ψ) = 0.33 ± 0.10(stat.)+0.01

−0.02(syst.) is found
which compares well with the prediction from the leading-order colour-singlet model [165].

ThekT -factorization approach (see Section 1.4) has recently been applied successfully to the de-
scription of a variety of processes [176–178]. In this approach, theJ/ψ production process is factorized
into akT -dependent gluon density and a matrix element for off-shellpartons. A leading-order calculation
within this approach is implemented in the Monte Carlo generator CASCADE [176, 177]. Figure 5.17
shows a comparison of the data with the predictions from thekT -factorization approach. Good agree-
ment is observed between data and predictions forz <∼ 0.8. At high z values, the CASCADE calculation
underestimates the cross-section. This may be due to missing higher-order effects, or missing relativistic
corrections, which are not available for the off-shell matrix element. It could also indicate a possible
missing colour-octet contribution. The CASCADE predictions for the thep2

T,ψ dependence of the cross-
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section (Fig. 5.17c) fit the data considerably better than the collinear LO calculations. This improved
fit is due to the transverse momentum of the gluons from the proton, which contributes to the trans-
verse momentum of theJ/ψ meson. Note, however, that the NLO colour-singlet calculation in collinear
factorization [166] also describes thep2

T,ψ distribution.

The polarization of theJ/ψ meson is expected to differ in the various theoretical approaches dis-
cussed here and could in principle be used to distinguish between them, independently of normalization
uncertainties. The general decay angular distribution canbe parametrized as

dΓ(J/ψ→l+l−)

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ+

ν

2
sin2 θ cos 2φ, (5.24)

whereθ andφ refer to the polar and azimuthal angle of thel+ three-momentum with respect to a co-
ordinate system that is defined in theJ/ψ rest frame. (See, for example, Ref. [168] for details.) The
parametersλ, µ, ν can be calculated within NRQCD or the CSM as a function of the kinematic vari-
ables, such asz andpT,ψ.

In Fig. 5.18, the data are shown, together with the results from two LO calculations: the NRQCD
prediction, including colour-octet and colour-singlet contributions [168], and the colour-singlet contri-
bution alone. A calculation that uses akT -factorization approach and off-shell gluons is also avail-
able [179]. In contrast to the predictions shown in the Fig. 5.18, in whichλ is zero or positive, the
prediction of thekT -factorization approach is thatλ should become increasingly negative toward larger
values ofpt,J/ψ, reachingλ ∼ −0.5 at pT,ψ = 6 GeV. However, at present, the errors in the data pre-
clude any firm conclusions. In this range ofpT,ψ none of the calculations predicts a decrease inλ with
increasingz. In order to distinguish between full NRQCD and the colour-singlet contribution alone,
measurements at largerpT,ψ are required. The measured values ofν, for which no prediction is available
from thekT -factorization approach, favor the full NRQCD prediction.

4.2 Inelastic electroproduction of charmonium

As in photoproduction, inelastic leptoproduction ofJ/ψ mesons at HERA (e+p → e+J/ψ+X) is dom-
inated by virtual-photon-gluon fusion (γ∗g → cc̄). In leptoproduction, or deep inelasticep-scattering
(DIS), the exchanged photon has a nonzero virtualityQ2 = −q2, whereq is the four-momentum of the
virtual photon. For events with a photon virtuality ofQ2 >∼ 1 GeV2, the electron scattering angle is large
enough for the electron to be detected in the central detectors.

The analysis of leptoproduction at finiteQ2 has experimental and theoretical advantages in com-
parison with the analysis of photoproduction. At highQ2, theoretical uncertainties in the models decrease
and resolved-photon processes are expected to be negligible. Furthermore, the background from diffrac-
tive production of charmonia is expected to decrease fasterwith Q2 than the inelastic process, and the
distinct signature of the scattered lepton makes the inelastic process easier to detect.

A first comparison between data and NRQCD calculations was presented in Ref. [180]. The
NRQCD calculations in Ref. [180] were performed by taking into account only “2 → 1” diagrams (see
the top left diagram of Fig.5.19) [181], and disagreement between data and theory was observed both
in the absolute values of the cross-sections and in their shapes as functions of the variables that were
studied.

More recently, the cross-section forJ/ψ production in deep-inelasticep scattering at HERA was
calculated in the NRQCD factorization approach at leading order inαs by Kniehl and Zwirner [182],
taking into account diagrams of the type “2 → 2”, as are shown in the top right and bottom diagrams
of Fig. 5.19. The calculation made use of the matrix elementsof Ref. [78] and MRST98LO [79] and
CTEQ5L [69] parton distributions.

In Fig. 5.20, the results of this calculation are plotted as afunction ofQ2 andp2
T,ψ, along with

the H1 data [183]. The NRQCD results that are shown in Fig. 5.20 include the contributions from the
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Fig. 5.18: Polarization parametersλ (left panels) andν (right panels) in the target rest frame as functions ofz

(top panels) andpT,ψ (bottom panels). The error bars on the data points correspond to the total experimental error.
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Fig. 5.21: Differential cross-sectionsdσ/dQ2 (left) anddσ/dz (right) and theory predictions. The data from
ZEUS [184] are compared with the NRQCD calculation [182] (CO+CS, dark band), the colour-singlet contribution
(CS, light band), and with the prediction LZ(kt,CS) from thekT -factorization approach within the CSM [185]. The
solid lines delimit the uncertainties, and the dashed line show the central values. The CSM prediction LZ (CS) in
the collinear-factorization approach, as given by the authors of Ref. [185], is also shown (dotted line).

colour-octet channels3S1, 3PJ=0,1,2, 1S0, as well as from the colour-singlet channel3S1. The contribution
of the colour-singlet channel is also shown separately. Thevalues of the NRQCD matrix elements were
determined from the distribution of transverse momenta ofJ/ψ mesons produced inpp̄ collisions [78].4

The bands include theoretical uncertainties, which originate from the uncertainty in the charm-quark
massmc = 1.5 ± 0.1 GeV, the variation of renormalization and factorization scales by factors 1/2 and
2, and the uncertainties in the NRQCD matrix elements, all ofwhich result mainly in normalization
uncertainties that do not affect the shapes of the distributions.

Figure 5.21 shows the differential electroproduction cross-sections forJ/ψ mesons as functions
of Q2 and z, as measured by the ZEUS collaboration [184]. The ZEUS data,which are consistent
with the H1 results shown in Fig. 5.20, are compared with predictions in the framework of NRQCD
(CS+CO) [182] and also with predictions in thekT -factorization approach in which only the colour-
singlet contribution (CS) is included [185]. As in Fig. 5.20, the uncertainties in the NRQCD calculations
are indicated in Fig. 5.21 as shaded bands. For the prediction within the kT -factorization approach
(LZ(kt,CS)), only one of the sources of uncertainty is presented, namely the uncertainty in the pomeron
intercept∆, which controls the normalization of the unintegrated gluon density.

In Fig. 5.22, the normalization uncertainties of the theory, which are dominant, are removed by
normalizing the differential cross-sections measured by H1 [183] and the theory predictions to the inte-
grated cross-sections in the measured range for each distribution. The comparisons in Figs. 5.20–5.22
indicate that the colour-singlet contribution follows theshape of the data from H1 and ZEUS quite well.
In general, the CSM predictions are below the H1 and ZEUS data, but are consistent with the data, given
the uncertainties, both in shape and normalization. However, the differential cross-sections as a function
of the transverse momentum squared of theJ/ψ are too steep compared to the data (lower left plot in

4 The extracted values for the NRQCD matrix elements depend onthe parton distributions. For the set MRST98LO [79], the
values are〈OJ/ψ

1 (3S1)〉 = 1.3±0.1 GeV3, 〈OJ/ψ
8 (3S1)〉 = (4.4±0.7)×10−3 GeV3 andMJ/ψ

3.4 = (8.7±0.9)×10−2 GeV3,
whereMJ/ψ

3.4 is the linear combination of two NRQCD matrix elements that is defined in Eq. (5.8).
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Fig. 5.23: Diagram for diffractive charmonium production via exchange of two gluons in a colour-singlet state.

Fig. 5.20). A similar observation was made for photoproduction (Section 4.1, Fig. 5.15), in which the LO
CSM calculation is too steep and the NLO CSM calculation is found to describe the data well. Thez dis-
tribution (Figs. 5.21 and 5.22) is very poorly described by the full calculation that includes colour-octet
contributions, while the colour-singlet contribution alone reproduces the shape of the data rather well.
The failure of the colour-octet calculations could be due tothe fact that resummations of soft-gluons are
not included here. It is worth noting that the calculation ofKniehl and Zwirner disagrees with a number
of previous results [186–190], which themselves are not fully consistent.

4.3 Diffractive vector meson production

At HERA, the dominant production channel for quarkonia withquantum numbers of real photons (i.e.,
JPC = 1−−) is through diffractive processes. In perturbative QCD, the diffractive production of vector
mesons can be modeled in the proton rest frame by a process in which the photon fluctuates into aqq̄
pair at a long distance from the proton target. Theqq̄ subsequently interacts with the proton via a colour-
singlet exchange, i.e., in lowest order QCD via the exchangeof a pair of gluons with opposite colour (see
Fig. 5.23) [191–197]. At small|t|, wheret is the momentum-transfer-squared at the proton vertex, the
elastic process in which the proton stays intact dominates.Toward larger values of|t|, the dissociation
of the proton into a small-invariant-mass state becomes dominant. Measurements of diffractive vector-
meson production cross-sections and helicity structure from the H1 [180,198–205] and ZEUS [206–211,
213, 214] collaborations are available forρ0, ω, φ, J/ψ, ψ′, andΥ production, spanning the ranges of
0 ≃ Q2 < 100 GeV2, 0 ≃ |t| < 20 GeV2, and20 < Wγp < 290 GeV. (Wγp is theγp centre-of-mass
energy.) In Fig. 5.24, the elastic photoproduction cross-sections are shown. Perturbative calculations in
QCD are available for the kinematic regions in which at leastone of the energy scalesµ2 (i.e.,Q2, M2

V

or |t|) is large and the strong-coupling constantαs(µ
2) is small [215–221].

In the presence of such a ‘hard’ scale, QCD predicts a steep rise of the cross-section withWγp.
At smallQ2, |t| and meson massesMV , vector-meson production is known to show a non-perturbative
“soft” behavior that is described, for example, by Regge-type models [222–226]. Toward larger values
of |t|, in the leading logarithmic approximation, diffractiveJ/ψ production can be described by the
effective exchange of a gluonic ladder. At sufficiently low values of Bjorkenx (i.e., large values of
Wγp), the gluon ladder is expected to include contributions from BFKL evolution [227–231], as well as
from DGLAP evolution [232].

Experimentally, diffractive events are generally distinguishable from inelastic events, since, aside
from meson-decay products, only a few final-state particlesare produced in the central rapidity range
in proton dissociation and no particles are produced in the central rapidity range in elastic diffraction.
The elasticity variablez defined in Eq. (5.23) is often used to demark the boundary between the elastic
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Fig. 5.24: Total cross-section and cross-sections for production of various vector mesons inγp collisions as a
function ofWγp, as measured at HERA and in fixed-target experiments.
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and inelastic regions, with a typical demarcation forJ/ψ production beingz > 0.95 for the diffractive
region andz < 0.95 for the inelastic region. However, at largez, there is actually no clear distinction
between inelasticJ/ψ production and diffractiveJ/ψ production in which the proton dissociates into a
final state with large invariant mass, owing to the fact that the two processes can produce the same final-
state particles. In the region of largez, both inelastic and diffractive processes are expected to contribute
to the cross-section. In calculations that are based on the NRQCD factorization approach, the cross-
section increases toward largez, owing to large contributions from colour-octetcc̄ pairs, as is explained
in Section 4.1. These contributions are, however, substantially reduced when one takes into account
multiple soft gluon emission, e.g., in resummation calculations [12]. At the same time, calculations
in perturbative QCD that assume a diffractive colour-singlet exchange are capable of describing the
production cross-sections at largez [204, 211, 212]. A unified description in QCD of the largez region,
taking into account both inelastic and diffractive contributions, has yet to be developed.

4.4 Prospects for the upgraded HERA collider

With the HERA luminosity upgrade, a wealth of new quarkoniumdata will become available. The ex-
isting J/ψ andψ(2S) measurements can be improved and extended into new kinematic regions, and
other quarkonium final states may become accessible. The future analyses of quarkonium production at
HERA offer unique possibilities to test the theoretical framework of NRQCD factorization. It should
be noted here that calculations to next-to-leading order, which are not yet available in the framework of
NRQCD factorization, could be an essential ingredient in a full quantitative understanding of charmo-
nium production at HERA, and also at other experiments, suchas those at the Tevatron. Some of the
most interesting reactions will be discussed briefly below.See Refs. [64,233] for more details.

The measurement of inelasticχc photoproductionis a particularly powerful way to discriminate
between NRQCD and the colour-evaporation model. The assumption of a single, universal long-distance
factor in the colour-evaporation model implies a universalσ[χc]/σ[J/ψ] ratio. A largeχc cross-section
is predicted for photon–proton collisions. The ratio ofχc production toJ/ψ production is expected to
be similar to that at hadron colliders, for whichσ[χc]/σ[J/ψ] ≈ 0.5 [62]. In NRQCD, on the other
hand, theσ[χc]/σ[J/ψ] ratio is process-dependent and strongly suppressed in photoproduction. Up to
corrections ofO(αs, v

2) one finds that [64]

σ[γp→χcJ X]

σ[γp→J/ψX]
≈ 15

8
(2J + 1)

〈Oχc0
8 (3S1)〉

〈OJ/ψ
1 (3S1)〉

≈ (2J + 1) 0.005, (5.25)

where the last approximation makes use of the NRQCD matrix elements that are listed in Table 5.1.
A search forχc production at HERA that results in a cross-section measurement or an upper limit on
the cross-section would probe directly the colour-octet matrix element〈OχJ

8 (3S1)〉 and would test the
assumption of a single, universal long-distance factor that is implicit in the colour-evaporation model.

The inclusion of colour-octet processes is crucial in describing the photoproduction of thespin-
singlet statesηc(1S), ηc(2S), andhc(1P ). With regard to the P-wave statehc, the colour-octet contribu-
tion is required to cancel the infrared divergence that is present in the colour-singlet cross-section [234].
The production of theηc, on the other hand, is dominated by colour-octet processes,since the colour-
singlet cross-section vanishes at leading-order, owing tocharge-conjugation invariance [235, 236], as is
the case forχc photoproduction. The cross-sections forηc(1S), ηc(2S), andhc(1P ) photoproduction
are sizable [234,235], but it is not obvious that these particles can be detected experimentally, even with
high-statistics data.

The energy spectrum ofJ/ψ’s produced in association with a photonvia the processγp→J/ψ +
γ X is a distinctive probe of colour-octet processes [233, 237–239]. In the colour-singlet channel and
at leading-order inαs, J/ψ + γ can be produced only through resolved-photon interactions. The cor-
responding energy distribution is therefore peaked at low values ofz. The intermediate-z and large-z
regions of the energy spectrum are expected to be dominated by the colour-octet processγg→cc̄8(

3S1) γ.
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Fig. 5.25: Differential ratedΓ/dz for inclusive decay ofZ0 into J/ψ. The data is from the ALEPH collaboration
[240]. The dashed line is the sum of the tree-level colour-singlet and colour-octet terms. The solid line is an
interpolation between resummed calculations in the small-z and large-z regions. From Ref. [244].

Observation of a substantial fraction ofJ/ψ + γ events atz ∼> 0.5 would provide clear evidence for the
presence of colour-octet processes in quarkonium photoproduction. Experimentally, this measurement is
very difficult due to the large background from photons fromπ0 decays which are produced in the final
state.

With the significant increase in statistics at the upgraded HERA collider, it might be possible
to study inelastic photoproduction of bottomonium statesfor the first time. The large value of theb-
quark mass makes the perturbative QCD predictions more reliable than for charm production, and the
application of NRQCD should be on safer ground for the bottomonium system, in whichv2 ≈ 0.1.
However, the production rates forΥ states are suppressed compared with those forJ/ψ by more than
two orders of magnitude at HERA — a consequence of the smallerb-quark electric charge and the phase-
space reduction that follows from the largerb-quark mass.

5 QUARKONIUM PRODUCTION AT LEP

5.1 J/ψ production

The LEP collider was used to studye+e− collisions at theZ0 resonance. Charmonium was produced
at LEP through direct production inZ0 decay, through the decays ofb hadrons fromZ0 decay, and
throughγγ collisions. The contributions from the decays ofb hadrons can be separated from those from
direct production by using a vertex detector. Charmonium that is produced directly will be referred to as
“prompt.”

In Z0 decay, the dominant mechanism for charmonium production isthe decay of theZ0 into
bb̄, followed by the fragmentation of theb or b̄ into a heavy hadron and the subsequent decay of the
heavy hadron into charmonium. The inclusive branching fraction of theZ0 into a charmonium stateH
is to a good approximation the product of the branching fraction for Z0→bb̄, a weighted average of the
inclusive branching fractions ofb hadrons intoH, and a factor of two to account for theb and thēb:

Br[Z0→HX] ≈ 2 Br[Z0→bb̄]
∑

B

Db→B Br[B→HX]. (5.26)
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Fig. 5.26: Differential cross-section for the processγγ → J/ψ +X as a function ofp2
T . The data points are

from the DELPHI Collaboration [245, 246]. The upper set of curves is the NRQCD factorization predictions, and
the lower set of curves is the colour-singlet model prediction. The solid and dashed curves correspond to the
MRST98LO [79] and CTEQ5L [69] parton distributions, respectively. The arrows indicate the relative contribu-
tions atpT = 0 from parton processesij→cc̄, which were ignored in the analysis. Hereij = γγ, gg, or qq̄. From
Ref. [251].

The branching fraction for theb hadronB to decay into a state that includesH is weighted by the
probabilityDb→B for a 45 GeVb quark to fragment intoB. The inclusive branching fractions forZ0

decay into several charmonium states have been measured. Since these measurements have more to do
with b-hadron decay thanZ0 decay, they are presented in Section 7.

The ALEPH, DELPHI, L3, and OPAL collaborations at LEP have measured the inclusive branch-
ing fraction ofZ0 into promptJ/ψ [240–243]. In the NRQCD factorization approach, there are two
mechanisms that dominate directJ/ψ production. The first isZ0 decay intocc̄, followed by the frag-
mentation of thec or c̄ into J/ψ via the colour-singlet channelcc̄1(3S1). The second isZ0 decay into
qḡg, followed by the fragmentation of the gluon intoJ/ψ via the colour-octet channelcc̄8(3S1). Boyd,
Leibovich, and Rothstein [244] have used the results from the four LEP collaborations to extract the
colour-octet matrix element:〈OJ/ψ

8 (3S1)〉 = (1.9 ± 0.5stat ± 1.0theory) × 10−2 GeV3. This is about
a factor of two larger than the Tevatron value and has smallertheory errors, but feeddown fromχc and
ψ(2S) states was not taken into account in the theoretical analysis. Boyd, Leibovich, and Rothstein [244]
also carried out a resummation of the logarithms ofM2

Z/M
2
ψ andz2, wherez = 2Ecc̄/mZ . Their result

for the resummedz distribution for promptJ/ψ production is compared with data from the ALEPH
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collaboration [240] in Fig. 5.25. Their analysis predicts an enhancement in the production rate near
z = 0.15. The uncertainties in the data are too large to make a definitive statement about the presence or
absence of this feature.

The inclusive cross-section forγγ → J/ψ +X at LEP has been measured by the DELPHI Collab-
oration [245,246]. The cross-section at nonzeropT has been computed at leading order inαs. The com-
putation includes the direct-photon processγγ→(cc̄) + g, which is of orderα2αs, the single-resolved-
photon processiγ→(cc̄)+i, which is of orderαα2

s, and the double-resolved-photon processij→(cc̄)+k,
which is of orderα3

s [247–251]. (Here,ij = gg, gq, gq̄, or qq̄.) Note that all processes contribute for-
mally at the same order in perturbation theory since the leading behavior of the parton distributions in the
photon is∝ α/αs. The contribution to theγγ → J/ψ +X cross-section at LEP that is by far dominant
numerically is that from single-resolved processes, i.e.,photon–gluon fusion.

The results of the LO computation [251] are shown in Fig. 5.26. The computation uses the
NRQCD matrix elements of Ref. [78]. Theoretical uncertainties were estimated by varying the renor-
malization and factorization scales by a factor two and by incorporating the effects of uncertainties in
the values of the colour-octet matrix elements. As can be seen from Fig. 5.26, the comparison with
the DELPHI data [245, 246] clearly favors the NRQCD factorization approach over the colour-singlet
model. However, the comparison of Fig. 5.26 is based on a leading-order calculation. It is known from
the related process ofJ/ψ photoproduction at HERA, which is also dominated by photon–gluon fusion,
that the LO colour-singlet cross-section fails to describetheJ/ψ data at nonzeropT . Inclusion of the
NLO correction, however, brings the colour-singlet prediction in line with experiment. Similarly large
NLO corrections can be expected forγγ → J/ψ +X production at LEP, and a complete NLO analy-
sis is needed before firm conclusions on the importance of colour-octet contributions can be drawn. A
first step in this direction has been taken recently in Ref. [252], where the NLO corrections to the direct
processγγ→(cc̄) + g have been calculated.

5.2 Υ(1S) production

The OPAL collaboration has measured the inclusive branching fraction for the decay ofZ0 into Υ(1S)
[253]. The NRQCD factorization prediction forBr[Z0 → Υ(1S) + X] is 5.9 × 10−5 [254]. The
colour-singlet-model prediction is1.7 × 10−5 [254–259]. The experimental result from OPAL [253] is
[1.0±0.4(stat.)±0.1(sys.)±0.2(prod. mech.)]×10−4. This is compatible with the NRQCD factorization
prediction, but not with the colour-singlet-model prediction.

6 CHARMONIUM PRODUCTION IN e+e− ANNIHILATIONS AT 10.6 GEV

TheB factories have proved to be a rich source of data on charmonium production ine+e− annihila-
tion. TheB factories operate near the peak of theΥ(4S) in order to maximize the production rate forB
mesons, but about 75% of the events are continuume+e− annihilation events. The enormous data sam-
ples that have been accumulated compensate for the relatively small cross-sections fore+e− annihilation
into states that include charmonium.

6.1 J/ψ production

The Belle and BaBar Collaborations have measured the inclusive cross-sectionσ[e+e− → J/ψX]. The
Belle Collaboration obtains2.52 ± 0.21 ± 0.21 pb [260], while the BaBar Collaboration obtains1.47 ±
0.10± 0.13 pb [261]. The leading-order parton process in the colour-singlet model ise+e−→(cc̄) + gg,
which is of orderα2α2

s. The leading colour-octet contributions in the NRQCD factorization approach
come frome+e− annihilation into(cc̄)+g, which is orderα2αs, and into(cc̄)+ qq̄ and(cc̄)+gg, which
are orderα2α2

s. The prediction for the cross-sectionσ[e+e− → J/ψX] in the colour-singlet model is
0.45−0.81 pb [262–265], while the NRQCD factorization prediction is1.1−1.6 pb [263–265]. There is
a3σ discrepancy between the experiments, but the NRQCD factorization prediction seems to be favored.
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Fig. 5.27:J/ψ production rate ine+e− annihilation at10.6 GeV as a function ofp∗ = pψ, theJ/ψ momentum
in the CM frame. The vertical axis is the number ofJ/ψ events per 0.5 GeV/c. The data points are from (a) the
Belle Collaboration [260] and (b) the BaBar Collaboration [261]. The upper lines are the sum of the leading-order
colour-singlet contribution and the colour-octet contribution, which includes a resummation of logarithms of1− z

and a phenomenological shape function. The lower lines are the leading-order colour-singlet contribution alone.
From Ref. [11].

The discrepancies between the two experiments in this and other measurements may be due partly to
differences in cuts that were used to suppress contributions from processes in which the charmonium
is not produced by annihilation ofe+ ande− with a centre-of-mass energy of 10.6 GeV. These include
radiative-return processes, in which thee+ ore− loses a substantial fraction of its momentum by radiating
a collinear photon before the collision, virtual photon radiation, in which thee+ or e− radiates a virtual
photon that becomes aJ/ψ orψ(2S), and two-photon collisions, which produceηc, χc0, andχc2.

The momentum distribution of theJ/ψ provides information about the production mechanism.
The momentum of theJ/ψ in the CM frame can be characterized in terms of its magnitudep∗ and its
angleθ∗ with respect to the beam direction. The Belle [260] and BaBar[261] measurements for the
differential cross-section forJ/ψ production as a function ofp∗ are shown in Fig. 5.27. The colour-
singlet prediction, which is shown in the lower curves in Fig. 5.27, is far too small to describe the data.
The measurements from Belle and BaBar do not show any enhancement at the maximum value ofp∗, as
might be expected from the colour-octet processe+e−→(cc̄)+g that is of leading order inαs. However,
there are two effects that are expected to modify the leading-order result. The first effect is that the
v expansion of NRQCD breaks down near the kinematic maximum value of p∗. Resummation of the
expansion is required [10, 12], and it leads to a nonperturbative shape function [10], which smears out
the peak in the leading-order result. A second effect near the maximum value ofp∗ is that there are large
logarithms of1− z, wherez = Ecc̄/E

max
cc̄ , that must also be resummed. The effect of that resummation

is again to smear out the peak in the leading-order result. A resummation of logarithms of1− z has been
combined with a phenomenological shape function in Ref. [11]. The results of this calculation are shown
in the upper curves in Fig. 5.27. The shape function has been chosen to fit the Belle and BaBar data. The
normalization of the shape function is fixed by the colour-octet NRQCD matrix elements, which were
taken to be〈OJ/ψ

8 (1S0)〉 = 〈OJ/ψ
8 (3P0)〉 = 6.6 × 10−2 GeV. These values of the colour-octet matrix

elements are consistent with data from photoproduction andhadroproduction [129,169]. As can be seen,
the resummations of thev expansion and the logarithms of1 − z produce reasonable fits to the data.
The resummation prediction is not expected to be valid at small values ofp∗. It should also be kept in
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mind that hard-scattering factorization may not hold unless p∗ ≫ ΛQCD. While the comparison of the
resummed theory with experiment indicates that it is plausible that the NRQCD factorization approach
can describe the experimental data, the theoretical results rely heavily on the phenomenological shape
function, whose shape is tuned to fit the data. The resummed theory will receive a much more stringent
test when a phenomenological shape function that has been extracted from thee+e− data is used to
predict theJ/ψ production cross-section in some other process, for example, photoproduction at HERA.

Table 5.10: Angular asymmetry variableA and polarization variableα for various ranges of the CM momentump∗

of theJ/ψ in e+e−→J/ψX at
√
s = 10.6 GeV, as measured by the Belle [260] and BaBar [261] Collaborations.

Belle BaBar

Range ofp∗ (GeV) A α Range ofp∗ (GeV) A α

2.0 < p∗ < 2.6 0.82+0.95
−0.63 −0.62+0.30

−0.24 p∗ < 3.5 0.05 ± 0.22 −0.46 ± 0.21

2.6 < p∗ < 3.4 1.44+0.42
−0.38 −0.34+0.18

−0.16

3.4 < p∗ < 5.0 1.08+0.44
−0.33 −0.32+0.20

−0.18 3.5 < p∗ 1.5 ± 0.6 −0.80 ± 0.09

The other variable that characterizes the momentum of theJ/ψ is its angleθ∗ with respect to the
beam direction in the CM frame. The angular distributiondσ/d(cos θ∗) is proportional to1 +A cos2 θ∗,
which defines an angular asymmetry variableA. The Belle [260] and BaBar [261] Collaborations have
measuredA in several bins ofp∗. Their results are shown in Table 5.10. The NRQCD factorization
approach predicts thatA ≈ 0 at smallp∗ and0.6 < A < 1.0 at largep∗ [266] . The colour-singlet model
predicts thatA ≈ 0 at smallpT andA ≈ −0.8 at largep∗ [266]. The Belle and BaBar results favor the
NRQCD factorization prediction, but the uncertainties arelarge.

The polarization of theJ/ψ provides further information about the production mechanism. The
polarization variableα for J/ψ production is defined by the angular distribution in Eq. (5.13). In e+e−

annihilation, the most convenient choice for the polarization axis is the boost vector from the quarkonium
rest frame to thee+e− centre-of-momentum frame. The Belle and BaBar Collaborations have measured
the polarization variableα in several bins ofp∗. Their results are shown in Table 5.10. The polarization
of J/ψ’s from e+e− annihilation at theB factories has not yet been calculated within the NRQCD
factorization approach. In contrast to the production ofJ/ψ’s with largepT at the Tevatron, where the
dominance of gluon fragmentation into colour-octet3S1 cc̄ states implies a large transverse polarization,
production ofJ/ψ’s at theB factories occurs at values ofp∗ for which there are no simple qualitative
expectations for the polarization. A comparison between theory and experiment must await an actual
calculation of theJ/ψ polarization, including the effects of feeddown from higher charmonium states.
It may be necessary to include in such a calculation resummations of thev expansion and logarithms of
1 − z in order to make precise quantitative statements. However,the effects of these resummations is
mainly to re-distribute theJ/ψ’s that are produced via the colour-octet mechanism over a range inp∗

without affecting the total number of suchJ/ψ’s.

A surprising result from the Belle Collaboration is that most of the J/ψ’s that are produced in
e+e− annihilation at10.6 GeV are accompanied by charmed hadrons. The presence of a charmed hadron
indicates the creation of a secondcc̄ pair in addition to the pair that forms theJ/ψ. A convenient measure
of the probability for creating the secondcc̄ pair is the ratio

Rdouble =
σ[e+e−→J/ψ +Xcc̄]

σ[e+e−→J/ψ +X]
. (5.27)

The Belle Collaboration finds thatRdouble = 0.82 ± 0.15 ± 0.14 with Rdouble > 0.48 at the 90%
confidence level [267]. The NRQCD factorization approach leads to the predictionRdouble ≈ 0.1 [262,
263,268], which disagrees with the Belle result by almost anorder of magnitude. The discrepancy seems
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Fig. 5.28: Distribution of masses recoiling against the reconstructedJ/ψ in inclusivee+e− → J/ψX events at
Belle [271]. The solid line is the best fit, including contributions from theηc, χc0(1P ), andηc(2S). The dotted
line is a fit in which additional contributions from theJ/ψ, χc1(1P ), χc2(1P ), andψ(2S) have been set at their
largest possible values within the 90%-confidence-level limits.

to arise primarily from the cross-section in the numerator of (5.27). The Belle result for this cross-section
is about 0.6–1.1 pb [269], while the prediction is about 0.10–0.15 pb [262, 263, 268, 270]. At leading
order inαs, which isα2

s, the process ofe+e− annihilation intoJ/ψ+Xcc̄ proceeds through(cc̄)+cc̄. The
contributions to this cross-section in which theJ/ψ is formed from a colour-octetcc̄ pair are suppressed
by a factorv4 ≈ 0.1, and they have been found to yield only about 7% of the total cross-section [270].
Corrections of orderα3

s and higher are also not expected to be particularly large. Thus, the source of the
discrepancy between the Belle result forRdouble and theory remains a mystery.

There is also a large discrepancy between theory and experiment in an exclusive double-cc̄ cross-
section. For the double-charmonium processe+e−→J/ψ + ηc, the Belle Collaboration measures the
product of the cross-section and the branching fraction forthe ηc to decay into at least two charged
tracks to be25.6 ± 2.8 ± 3.4 fb [271]. In contrast, leading-order calculations predicta cross-section of
2.31 ± 1.09 fb [272–274]. There are some uncertainties from uncalculated corrections of higher-order
in αs andv and from NRQCD matrix elements. However, because this is an exclusive process, only
colour-singlet matrix elements enter, and these are fairlywell determined from the decaysJ/ψ→e+e−

andηc→γγ.

Since the Belle mass resolution is 110 MeV but theJ/ψ–ηc mass difference is only 120 MeV, it
has been suggested that some of theJ/ψ+ ηc data sample may consist ofJ/ψ+ J/ψ events [275,276].
The stateJ/ψ+J/ψ has charge-parityC = +1, and consequently, is produced in a two-photon process,
whose rate is suppressed by a factor(α/αs)

2 relative to the rate forJ/ψ + ηc. However, as was pointed
out in Refs. [275, 276], the two-photon process contains photon-fragmentation contributions that are
enhanced by factors(Ebeam/2mc)

4 from photon propagators andlog[8(Ebeam/2mc)
4] from a would-be

collinear divergence. As a result, the predicted cross-section σ[e+e−→J/ψ + J/ψ] = 8.70 ± 2.94 fb is
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larger than the predicted cross-sectionσ[e+e−→J/ψ + ηc] = 2.31 ± 1.09 fb [275,276]. Corrections of
higher order inαs andv are likely to reduce the prediction for theJ/ψ + J/ψ cross-section by about a
factor of three [276, 277]. These predictions spurred a re-analysis of the Belle data [278]. The invariant
mass distribution ofX in e+e−→J/ψ + X is shown in Fig. 5.28. No significantJ/ψ + J/ψ signal
was observed. The upper limit on the cross-section times thebranching fraction into at least two charged
tracks [271] isσ[e+e−→J/ψ+J/ψ] < 9.1 fb, which is consistent with the prediction of Refs. [275,276].

6.2 Prospects at BaBar and Belle

The BaBar and Belle detectors are accumulating ever larger data samples of charmonium that is produced
directly in e+e− annihilation. The simplicity of the initial state makes thetheoretical analysis of this
process particularly clean. These two factors make charmonium production in continuume+e− annihi-
lation a particularly attractive process in which to compare theoretical predictions with experiment. The
experimental results that have already emerged from these detectors provide further motivation for un-
derstanding this process. There are significant discrepancies between previous measurements by BaBar
and Belle. There are also surprising results from Belle on double cc̄ production that differ dramatically
from theoretical expectations. The resolution of these problems will inevitably lead to progress in our
understanding of charmonium production.

The surprising double-cc̄ results from Belle include an inclusive measurement, the ratio Rdouble

defined in Eq. (5.27), and exclusive double-charmonium cross-sections, such asσ[e+e−→J/ψ + ηc].
The discrepancies between theory and experiment in these measurements are among the largest in the
standard model. Theory and experiment differ by about an order of magnitude — a discrepancy which is
larger than any known QCDK-factor. It is important to recognize that these discrepancies are problems
not just for NRQCD factorization, but for perturbative QCD in general. It is difficult to imagine how any
perturbative calculation ofRdouble could give a value as large as 80%. With regard to the cross-section
for e+e−→J/ψ + ηc, the perturbative QCD formalism for exclusive processes [274] gives a result that
reduces to that of NRQCD factorization [272, 273] in the nonrelativistic limit and is well-approximated
by it if one uses realistic light-cone wave functions forJ/ψ andηc.5 Clearly, it is very important to
have independent checks of the Belle inclusive and exclusive double-cc̄ results. If the Belle results
are confirmed, then we would be forced to entertain some unorthodox possibilities: the inapplicability of
perturbative QCD to double-cc̄ production, new charmonium production mechanisms within the standard
model, or perhaps even physics beyond the standard model.

The larger data samples that are now available should allow much more accurate measurements
of the inclusive processe+e−→J/ψX, including the momentum distribution of theJ/ψ and its polar-
ization. The measurements of theJ/ψ momentum distribution may allow the determination of all the
relevant NRQCD matrix elements. A comparison with the NRQCDmatrix elements measured at the
Tevatron would then provide a test of their universality. Once the NRQCD matrix elements are deter-
mined, they can be used to predict the polarization of theJ/ψ as a function of its momentum, which
would provide a stringent test of the NRQCD predictions for spin. Instead of imposing cuts to suppress
contributions from radiative return, virtual photon radiation, and two-photon collisions, it might be bet-
ter to choose cuts in order to maximize the precision of the measurements, without any regard to the
production mechanism. The contributions from other mechanisms could instead be taken into account in
the theoretical analyses.

The large data samples of BaBar and Belle should also allow measurements of the inclusive pro-
duction of other charmonium states, such as theψ(2S) and theχc(1P ). Such measurements could be
used to determine the NRQCD matrix elements for these charmonium states. They are also important
because they provide constraints on the contributions to inclusiveJ/ψ production from decays of higher
charmonium states.

5The Belle result can be accommodated by using asymptotic light-cone wave functions that are appropriate for light hadrons
[279], but there is no justification for using such wave functions for charmonium.
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There are some straightforward improvements that could be made in the theoretical predictions for
inclusive charmonium production ine+e− annihilation. For example, there are only a few components
missing from a complete calculation of all contributions through second order inαs. In the contribution
from the colour-octet3S1 channel, the virtual corrections at orderα2

s have not been calculated. There are
also colour-octet contributions toe+e−→cc̄cc̄ at orderα2

s that have not been calculated. The theoretical
predictions for inclusive charmonium production could also be improved by treating more systematically
the contributions from the feeddown from decays of higher charmonium states and from other mecha-
nisms, such as radiative return, virtual photon radiation,and two-photon collisions.

7 CHARMONIUM PRODUCTION IN B-MESON DECAYS

B-meson decays are an excellent laboratory for studying charmonium production becauseB mesons
decay into charmonium with branching fractions greater than a percent. At aB factory operating near
the peak of theΥ(4S) resonance, about 25% of the events consist of aB+B− pair or aB0B̄0 pair.
The large sample ofB mesons accumulated by the CLEO experiment allowed the measurements of
many exclusive and inclusive branching fractions into finalstates that include charmonium. The Belle
and BaBar experiments are accumulating even larger samplesof B mesons, providing a new source of
precise data on charmonium production inB decays.

The inclusive branching fractions ofB mesons into charmonium states can be measured most
accurately for the mixture ofB+,B0, and their antiparticles that are produced in the decay of theΥ(4S)
resonance [280, 281]. Those that have been measured are listed in Table 5.11. The fraction ofJ/ψ’s
that come from decay ofχc’s, which is defined in Eq. (5.12), isFχc = (11 ± 2)%. This is significantly
smaller than the value that is measured at the Tevatron, which is given in Table 5.3. Theχc1 toχc2 ratio,
which is defined in Eq. (5.10), isRχc = 5.1 ± 3.0. Although the error bar is large, this ratio seems to be
substantially larger than the value that is measured at the Tevatron, which is given in Eq. (5.18), and the
values measured in fixed-target experiments, which are given in Table 5.6. Such differences inRχc and
Fχc are contrary to the predictions of the colour-evaporation model.

Inclusive branching fractions into charmonium states havealso been measured at LEP for the
mixtures ofB+,B0,B0

s , b baryons, and their antiparticles that are produced inZ0 decay [241,282,283].
This mixture ofb hadrons can be interpreted as the one that arises from the fragmentation of ab quark
that is produced with a momentum of 45 GeV. The branching fractions that have been measured are listed
in Table 5.11. The branching fraction intoχc1(1P ) seems to be significantly larger than for the mixture
from Υ(4S) decay. The difference could be due to the contribution fromb baryons. It is often assumed
that the mixture ofb hadrons that is produced at high-energy hadron colliders, such as the Tevatron, is
similar to that produced inZ0 decay. This assumption could be tested by measuring ratios of inclusive
cross-sections for charmonium states that come from the decays ofb hadrons at the Tevatron.

Table 5.11: Inclusive branching fractions (in units of10−3) for mixtures ofb hadrons to decay into charmonium
states.

mixture J/ψ ψ(2S) χc1(1P ) χc2(1P )

from Υ(4S) decay 11.5 ± 0.6 3.5 ± 0.5 3.6 ± 0.5 0.7 ± 0.4

from Z0 decay 11.6 ± 1.0 4.8 ± 2.4 11.5 ± 4.0

The observed inclusive branching fractions ofB mesons intoJ/ψ andψ(2S) are larger than the
predictions of the colour-singlet model by about a factor ofthree. Ko, Lee, and Song applied the NRQCD
factorization approach to the production ofJ/ψ andψ(2S) in B decays [284]. The colour-octet3S1

term in the production rate is suppressed by a factor ofv4 that comes from the NRQCD matrix element.
However, the production rate also involves Wilson coefficients that arise from evolving the effective weak
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Hamiltonian from the scaleMW to the scalemb. The Wilson coefficient for the colour-octet3S1 term is
significantly larger than that for the colour-singlet term,although the smallness of the colour-singlet term
may be the result of an accidental cancellation that occurs in the leading-order treatment of the evolution
of the coefficients. Moreover, the colour-singlet contribution is decreased by the relativistic correction of
orderv2. The inclusion of the colour-octet3S1 term allows one to explain the factor of three discrepancy
between the data and the colour-singlet-model prediction.

The observed branching fraction for decays ofB directly intoJ/ψ, which excludes the feeddown
from decays ofψ(2S) andχc, is much larger than the prediction of the colour-evaporation model. The
CEM prediction for the direct branching fraction is0.24 − 0.66 [285], where the range comes from
the uncertainty in the CEM parameters. The CLEO collaboration has made a precise measurement of
the direct branching fraction ofB into J/ψ [286]: Brdir[B→J/ψ + X] = (0.813 ± 0.041)%. The
CEM prediction is significantly smaller than the data. As we have already mentioned, the data can be
accommodated within the NRQCD factorization approach by including colour-octet terms.

Beneke, Maltoni, and Rothstein [287] have calculated the inclusive decay rates ofB mesons into
J/ψ andψ(2S) to next-to-leading order inαs. They used their results to extract NRQCD matrix elements
from the data. Their results for the linear combinations of NRQCD matrix elements defined in Eq. (5.8)
areMJ/ψ

3.1 = (1.5+0.8
−1.1) × 10−2 GeV3 andMψ(2S)

3.1 = (0.5 ± 0.5) × 10−2 GeV3. The uncertainties arise
from experiment and from imprecise of knowledge of the matrix elements〈OH

8 (3S1)〉 and〈OH
1 (3S1)〉.

Ma, taking into account initial-state hadronic corrections, has extracted slightly different linear combi-
nations of matrix elements [288]:MJ/ψ

3.4 = 2.4 × 10−2 GeV3 andMψ(2S)
3.4 = 1.0 × 10−2 GeV3. In both

extractions, the colour-octet matrix elements are considerably smaller than those from the Tevatron fits,
but the uncertainties are large.

The effects of colour-octet terms on the polarization ofJ/ψ in B decays were considered by
Fleming, Hernandez, Maksymyk, and Nadeau [289] and by Ko, Lee, and Song [285]. The polarization
variableα for J/ψ production is defined by the angular distribution in Eq. (5.13). InB meson decays,
the most convenient choice of the polarization axis is the direction of the boost vector from theJ/ψ rest
frame to the rest frame of theB meson. The colour-evaporation model predicts no polarization. The
predictions of NRQCD factorization and of the colour-singlet model depend on the mass of theb quark.
Formb = 4.7 ± 0.3 GeV, the prediction of NRQCD factorization isα = −0.33 ± 0.08 [289] and the
prediction of the colour-singlet model isα = −0.40 ± 0.07 [289]. The uncertainties that arise from
mb have been added in quadrature with other uncertainties. We note that the uncertainty inmb that was
used in this calculation is considerably larger than the uncertainty of 2.4% that is given in Chapter 6.
Measurements of the polarization by the CLEO Collaborationhave given the resultsα = −0.30 ± 0.08
for J/ψ andα = −0.45 ± 0.30 for ψ(2S) [286]. The result forJ/ψ strongly disfavors the colour-
evaporation model and is consistent with the predictions ofthe NRQCD factorization approach and the
colour-singlet model.

Bodwin, Braaten, Yuan, and Lepage have applied the NRQCD factorization approach to the pro-
duction of the P-wave charmonium statesχcJ in B decays [290]. For P-wave quarkonium production,
there is a colour-octet NRQCD matrix element that is of the same order inv as the leading colour-singlet
matrix element. Therefore, the factorization formula mustinclude both the colour-singlet P-wave and
the colour-octet S-wave contributions. The short-distance coefficient in the colour-singlet3PJ term for
χcJ production vanishes at leading order inαs for J = 0, 2 [18, 291]. The colour-octet3S1 term for
χcJ production is proportional to the number of spin states2J + 1. Thus, the relative importance of the
colour-singlet and colour-octet terms can vary dramatically among the threeχcJ states. The prediction
of the colour-singlet model at leading order inαs that the direct production rate ofχc2 should vanish can
be tested. The feeddown fromψ(2S) decay contributes(0.24± 0.04)× 10−3 to the inclusive branching
fraction intoχc2 given in Table 5.11. The remainder(0.5 ± 0.4) × 10−3 is consistent with zero, and
hence it is compatible with the prediction of the colour-singlet model, but it is also compatible with a
small colour-octet contribution.
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8 Bc PRODUCTION

TheBc andB∗
c are the ground state and the first excited state of theb̄c quarkonium system. Their total

angular momentum and parity quantum numbers areJP = 0− and1+, and their dominant Fock states
have the angular momentum quantum numbers1S0 and3S1, respectively. In the following discussion,
we will refer to general̄bc quarkonium states asBc mesons and use the termsBc andB∗

c specifically for
the ground state and the first excited state.

In contrast to charmonium and bottomonium states, which have “hidden flavour,”Bc mesons con-
tain two explicit flavours. As a consequence, theBc decays only through the weak interactions, and the
B∗
c decays through an electromagnetic transition into theBc with almost100% probability. The higher-

massBc mesons below theBD threshold decay through hadronic and electromagnetic transitions into
lower-massBc mesons with almost100% probability. They cascade down through theb̄c spectrum, even-
tually producing aBc or aB∗

c . Another consequence of the explicit flavours is that the most important
production mechanisms forBc mesons are completely different from those for hidden-flavour quarkonia.
In the production ofBc mesons by strong or electromagnetic interactions, two additional heavy quarks
c̄ andb are always produced. The production cross-sections forBc mesons are suppressed compared
with the production cross-sections for hidden-flavour quarkonia because the leading-order diagrams are
of higher order in the coupling constants and also because the phase-space is suppressed, owing to the
presence of the additional heavy quarks.

The small cross-sections for producingBc mesons make the prospects for observing theBc at
e+e− andep colliders rather bleak. A possible exception to this assessment exists for the case of produc-
tion at ane+e− collider with energy at theZ0 peak, for which the production rate of theBc is predicted to
be marginal for observation [292]. TheBc was not discovered at LEP, despite careful searches [293–295].
It was finally discovered at the Tevatron by the CDF collaboration in 1998 [296, 297]. We restrict our
attention in the remainder of this subsection to the production ofBc mesons at hadron colliders.

The production ofBc mesons was studied before the discovery of theBc [292,298–302,307–309].
If one assumes that all nonperturbative effects in the production of theBc in hadron–hadron collisions
can be absorbed into the hadrons’ parton distribution functions (PDF’s), then the inclusive production
cross-section can be written in the factorized form

dσ[hAhB → Bc +X] =
∑

ij

∫
dx1dx2 f

hA
i (x1, µ)fhBj (x2, µ) dσ̂[ij → Bc +X] . (5.28)

The NRQCD factorization formula for the parton–parton cross-section is

dσ̂[ij → Bc +X] =
∑

n

dσ̂[ij → (b̄c)n +X] 〈OBc
n 〉 , (5.29)

where the sum is over 4-fermion operators that create and annihilate b̄c. At the leading order inαs, which
is α4

s, the parton–parton process isij→(b̄c) + bc̄, whereij = gg (gluon fusion) orqq̄ (quark–antiquark
annihilation). SincemBc > mb > mc ≫ ΛQCD, the leading-order parton–parton process involves
only hard propagators, even at smallpT . Nevertheless, because of soft-gluon interactions, for example
between theBc and the recoilingb andc̄ quarks, it is not clear that hard-scattering factorizationholds at
smallpT .

According to the velocity-scaling rules of NRQCD, the matrix element forBc production that is
of leading order inv is 〈OBc

1 (1S0)〉. The vacuum-saturation approximation can be used to show that it
is proportional toF 2

Bc
, whereFBc is the decay constant of theBc, up to corrections of orderv4. The

leading matrix element forB∗
c production is〈OB∗

c
1 (3S1)〉. The vacuum-saturation approximation and

heavy-quark spin symmetry can be used to show that this matrix element is also proportional toF 2
Bc

,
up to corrections of orderv3. The leading colour-octet matrix elements are suppressed as v3 or v4. The
colour-octet terms in (5.29) are probably not as important forBc mesons as they are for hidden-flavour

332



PRODUCTION

quarkonia. In the case ofJ/ψ production, the short-distance coefficients of the colour-octet matrix el-
ements are enhanced relative to those for the colour-singlet matrix element by an inverse power of the
QCD-couplingαs, by factors ofpT /mc at largepT , by factors ofmc/pT at smallpT , and by colour fac-
tors. The only one of these enhancement factors that may apply to theBc is the colour factor. Because
there are many Feynman diagrams that contribute to the parton processij→(b̄c) + bc̄ at orderα4

s, the
colour correlations implied by individual Feynman diagrams tend to average out. We therefore expect
a b̄c pair to be created in a colour-octet state roughly eight times as often as in a colour-singlet state.
We will assume that, in spite of the enhancement from this colour factor, the colour-octet contributions
to the production cross-sections forBc andB∗

c are small compared with the leading colour-singlet con-
tributions. This assumption is equivalent to using the colour-singlet model to calculate the production
rate.

Two approaches have been used to compute the cross-sectionsforBc mesons: the complete order-
α4
s approach [299–302, 307, 308] and the fragmentation approach [298, 310]. In the complete order-α4

s

approach, the parton cross-section in Eq. (5.29) is computed at leading order inαs, where the only
subprocesses areij→(b̄c) + bc̄:

dσ̂[ij → Bc +X] = dσ̂[ij → b̄c1(
1S0) + bc̄] 〈OBc

1 (1S0)〉 . (5.30)

The fragmentation approach is based on the fact that, for asymptotically largepT ≫ MBc , the cross-
section (5.29) can be further factored into a cross-sectionfor producingb̄ and a fragmentation function
Db̄→Bc(z, µ) that gives the probability for thēb to fragment into aBc carrying a fractionz of the b̄
momentum:

dσ̂[ij → Bc +X] ≈
∫
dz dσ̂[ij → b̄+ b] Db̄→Bc(z, µ) . (5.31)

If both factors are calculated only at leading order inαs, this is just an approximation to the complete
order-α4

s cross-section in Eq. (5.29). One advantage of the fragmentation approach is that the expressions
for theb̄ production cross-sectiondσ̂ and the fragmentation functionDb̄→Bc in Eq. (5.31) can be written
down in a few lines. ForpT ≫ mBc , the fragmentation approach has another advantage in that the
Altarelli–Parisi evolution equations can be used to sum theleading logarithms ofpT /mc to all orders.
Unfortunately, as was pointed out in Ref. [300–302], the fragmentation cross-section does not become
an accurate approximation to the complete order-α4

s cross-section until surprisingly large values ofpT .
For example, if the parton centre-of-mass energy is

√
ŝ = 200 GeV, the fragmentation cross-section is a

good approximation only forpT ≥ 40 GeV. We will therefore not consider the fragmentation approach
further.

The authors of Ref. [311] recently developed a Monte Carlo event generator for hadronicBc
andB∗

c production, using the complete order-α4
s approach and taking advantage of helicity amplitude

techniques [312]. The generator is a Fortran package, and itis implemented in PYTHIA [313], which
allows one to generate complete events. The complete order-α4

s cross-section includes contributions
from gluon–gluon fusion and quark–antiquark annihilation. At the Tevatron, the gluon–gluon fusion
mechanism is dominant over quark–antiquark annihilation,except in certain kinematics regions [299,
314]. At the LHC, the gluon–gluon fusion mechanism is alwaysdominant. All the results below are
obtained from the gluon–gluon fusion mechanism only.

The inputs that are required to calculate the complete order-α4
s cross-sections are the masses

mb,mc, andmBc , the decay constantFBc , the PDF’s, the QCD coupling constantαs, and the factoriza-
tion scaleQ. The massesmb andmc are known with uncertainties of about 2.4% and 8%, respectively. In
the NRQCD factorization approach, one setsmBc = mc+mb andmB∗

c
= mc+mb in the short-distance

coefficients. Contributions from operators of higher orderin v then account for the binding energy in
mBc andmB∗

c
. This procedure is also required in order to preserve gauge invariance if one makes use

of on-shell spin-projection operators for theBc andB∗
c states [20,315]. Since an experimental measure-

ment of the decay constantFBc is not available, one has to use a value that is obtained from potential
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Table 5.12: The cross-sections (in nb) for direct production of Bc andB∗
c at the Tevatron and at the LHC for

various values of the charm-quark massmc. The gluon distribution function is CTEQ5L, the running ofαs is
leading order, the scale isµ2 = ŝ/4, and the other parameters areFBc

= 480 MeV, andmb = 4.9 GeV.

Tevatron (
√
s = 2 TeV) LHC (

√
s = 14 TeV)

mc (GeV) 1.4 1.5 1.6 1.7 1.8 1.4 1.5 1.6 1.7 1.8

σ[Bc] (nb) 3.87 3.12 2.56 2.12 1.76 61.0 49.8 41.4 34.7 28.9
σ[B∗

c ] (nb) 9.53 7.39 5.92 4.77 3.87 153. 121. 97.5 80.0 66.2

models [316–319] or from lattice gauge theory [320]. The uncertainty in the factorF 2
Bc

is about 6%.
Since the order-α4

s cross-section is at leading order in perturbation theory, the running ofαs can be taken
at leading order, and LO versions of the PDF’s can be used.

The running coupling constant and the PDF’s depend on the renormalization/factorization scale
µ, and, so, a prescription for the scaleµ is also required. There is no general rule for choosing the
scale in an LO calculation, especially in the case of a2→3 subprocess, such asij→Bc + bc̄. The
factorization formula (5.31) for asymptotically largepT suggests that an appropriate choice for the scales
in the fragmentation contribution to the cross-section might be to setµ = mbT ≡ (m2

b + p2
T )1/2 in the

PDF’s andα4
s = α2

s(mbT )α2
s(mc) in the parton cross-section. However, the fragmentation term does not

dominate until very largepT , and there are important contributions to the cross-section that have nothing
to do with fragmentation [300–302]. For example, there are contributions that involve the splitting of
one of the colliding gluons into acc̄ pair, followed by the creation of abb̄ pair in the hard scattering of
thec from the other gluon and then by the recombination of theb̄ andc into aBc. The sensitivity to the
choice ofµ could be decreased by carrying out a complete calculation ofthe production cross-section
for theBc at next-to-leading order inαs, but this is, at present, prohibitively difficult. In the absence of
such a calculation, we can use the variation in the complete order-α4

s cross-section for several reasonable
choices for the scale as an estimate of the uncertainty that arises from the choice of scale.

The hadronic production cross-section forBc mesons depends strongly on the collision energy.
In Table 5.12, we give the direct cross-sections forBc andB∗

c production at the Tevatron and the LHC
for several values of the charm quark massmc and for typical values for the other parameters. The
cross-section forBc production at the LHC is larger than at the Tevatron by a factor of about 16. The
cross-sections forB∗

c production are larger than those forBc production by a factor of about 2.4. The
cross-sections are fairly sensitive to the charm-quark mass, varying by more than a factor of two asmc

is varied from 1.4 to 1.8 GeV. In Fig. 5.29, we show the differential cross-sections forBc production
as a function of theBc transverse momentumpT andBc rapidity y at the Tevatron and the LHC, using
four different prescriptions for the scaleµ. At central rapidity, the variations among the four choicesof
scale is about a factor of three at the Tevatron and a factor oftwo at the LHC. The differential cross-
sections decrease more slowly withpT and |y| at the LHC than at the Tevatron. The total uncertainty
from combining all of the uncertainties in the direct cross-section forBc production is less than an order
of magnitude. The uncertainty in the ratio of the direct-production cross-sections for theB∗

c and theBc
is much smaller because many of the uncertainties cancel in the ratio.

The results presented above are for the direct production oftheBc and theB∗
c . Experiments

at the Tevatron and the LHC will measure the inclusive cross-sections, including the feeddown from
all of the higher states of thēbc system. Thēbc system has a rich spectrum of excited states below
theBD threshold. They include an additional S-wave multiplet, one or two P-wave multiplets, and a
D-wave multiplet. After being produced, these excitedBc mesons all cascade eventually down to the
ground stateBc. Since theB∗

c decays into theBc with a probability of almost 100%, the feeddown from
directly-producedB∗

c ’s increases the cross-section for theBc by about a factor of 3.4. The complete
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Fig. 5.29: The differential cross-sections for the direct production of theBc as a function of its transverse mo-
mentumpT and its rapidityy at the Tevatron (

√
s = 2 TeV) and at the LHC (

√
s = 14 TeV) for four choices

of the scale:µ2 = ŝ/4 (solid line),µ2 = p2
T + m2

Bc
(dotted line),µ2 = ŝ (dashed line), andµ2 = p2

Tb + m2
b

(dash–dot line). The gluon distribution is CTEQ5L, the running of αs is leading order, and the other parameters
areFBc

= 480 MeV,mc = 1.5 GeV, andmb = 4.9 GeV.

order-α4
s cross-sections forBc andB∗

c production can be applied equally well to the2S multiplet. The
direct-production cross-sections for these states are smaller than those for the1S states by the ratio of
the squares of the wave functions at the origin, which is about 0.6. Thus, the inclusive cross-section
for Bc production, including the effect of feeddown from the direct production of all of the S-waveBc
states, is larger than the cross-section for directBc production, which is given in Table 5.12 and shown
in Fig. 5.29, by a factor of about 5.4.

The production ofBc in pp̄ collisons at
√
s = 1.8 TeV has been measured at the Tevatron by the

CDF collaboration [296,297]. CDF has measured the ratio

R[J/ψlν] =
σ[Bc]Br[B+

c → J/ψl+ν]

σ[B+]Br[B+ → J/ψK+]
(5.32)

for B+
c andB+ with transverse momentapT > 6.0 GeV and with rapidities|y| < 1.0. Their result is

R[J/ψlν] = 0.132+0.041
−0.037(stat.) ± 0.031(syst.)+0.032

−0.020(lifetime). This result is consistent with results
from previous searches [293–295]. Figure 5.30 compares theCDF measurements ofR[J/ψlν] and the
Bc lifetime with theoretical predictions from Refs. [303,304] for two different values of the semileptonic
width Γs.l. = Γ[Bc → J/ψlν]. The theoretical predictions use the values|Vcb| = 0.041 ± 0.005 [305],
σ[B+

c ]/σ[b̄] = 1.3 × 10−3 [306], σ[B+]/σ[b̄] = 0.378 ± 0.022 [305], andBr[B+ → J/ψK+] =
(1.01 ± 0.14) × 10−3 [305]. The predictions and the measurement are consistent within experimental
and theoretical uncertainties.

Quantitative predictions for the contribution to the inclusiveBc production cross-section from the
feeddown from P-wave states would require complete knowledge of the order-α4

s cross-sections for the
production of P-wave states. It is theoretically inconsistent to use the colour-singlet model to calculate
these cross-sections for the P-wave states. There are colour-octet terms in the P-wave production cross-
sections that are of the same order in bothv andαs as the colour-singlet terms, and they must be included.
The colour-singlet production matrix elements for the P-wave states can be estimated from potential
models or determined from lattice gauge theory. The colour-octet production matrix elements for the
P-wave states can perhaps be estimated by interpolating between the corresponding matrix elements for
charmonium and bottomonium states.
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Fig. 5.30: The ratioR[J/ψlν], which is defined in Eq. (5.32), versus theBc lifetime. The point, surrounded by
a one-standard-deviation contour, shows the values ofR[J/ψlν] and theBc lifetime that were measured by CDF
[296, 297]. The shaded region represents the theoretical predictions and their uncertainty bands from Refs. [303,
304] for two different values of the semileptonic widthΓs.l. = Γ[Bc → J/ψlν].

In summary, the order-α4
s colour-singlet production cross-section for S-waveb̄c mesons can be

used to predict theBc production cross-section, including feeddown from excited S-wave states. The
uncertainty in the normalization of that prediction is lessthan an order of magnitude. If the inclusive
cross-section forBc production that is measured at the Tevatron or the LHC is muchlarger than that
prediction, it could indicate that there is a large contribution from the feeddown from P-wave or higher-
orbital-angular-momentum states. It could also indicate that the colour-octet contributions to the direct
production of theBc and theB∗

c are important.

9 SUMMARY AND OUTLOOK

NRQCD factorization, together with hard-scattering factorization, provides a systematic formalism for
computing inclusive quarkonium production rates in QCD. Nonperturbative effects associated with the
binding of aQQ̄ pair into a quarkonium are factored into NRQCD matrix elements that scale in a definite
manner with the typical relative velocityv of the heavy quark in the quarkonium. The NRQCD matrix
elements are predicted to be universal, i.e., independent of the process that creates theQQ̄ pair. The
NRQCD factorization formula for inclusive cross-sectionsis believed to hold whenpT ≫ ΛQCD, where
pT is the transverse momentum of the quarkonium with respect tothe colliding particles. It is well-
motivated by the effective field theory NRQCD and by factorization theorems that have been proven
for simpler hard-scattering processes. Explicit proofs offactorization for quarkonium production would
be welcome, because they would help quantify the sizes of corrections to the factorization formula. It
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is important to bear in mind that conventional proofs of hard-scattering factorization fail at smallpT .
Consequently, NRQCD factorization formulas, even those that include soft-gluon resummation, may be
unreliable in this region. It also follows that the NRQCD factorization approach may not be applicable
to total cross-sections if they are dominated by contributions at smallpT .

The NRQCD factorization approach incorporates elements ofboth the colour-singlet model and
the colour-evaporation model. It includes the colour-singlet model terms, for which the NRQCD matrix
elements can be determined from annihilation decays. It also includes colour-octet production mecha-
nisms, as in the colour-evaporation model. The NRQCD factorization approach extends these models
into a systematically improvable framework. The colour-singlet model is emphatically ruled out by the
observation of promptJ/ψ andψ(2S) production at the Tevatron at rates that are more than an order of
magnitude larger than the colour-singlet-model predictions. The colour-evaporation model is ruled out
by the observations of nonzero polarization ofJ/ψ’s in B meson decays and ine+e− annihilation at
10.6 GeV and by the observation of nonzero polarization ofΥ(2S)’s andΥ(3S)’s in fixed-target exper-
iments. It is also ruled out by the fact that different valuesof the fraction ofJ/ψ’s that come fromχc
decays are measured at the Tevatron and inB-meson decays. Despite having been ruled out, the colour-
singlet model and the colour-evaporation model can still play useful roles as “straw men” with which
to compare the predictions of NRQCD factorization. The colour-evaporation model has not yet been
ruled out, for example, as a description of differential cross-sections at the Tevatron and in fixed-target
experiments.

The NRQCD factorization approach provides a general phenomenological framework that cannot
be ruled out easily. The factorization formula involves infinitely many NRQCD matrix elements, most
of which are adjustable parameters. It is only the truncation in v that reduces those parameters to a finite
set. The standard truncation has four independent NRQCD matrix elements for each S-wave multiplet
and two independent NRQCD matrix elements for each P-wave multiplet. NRQCD factorization with
the standard truncation inv remains a phenomenologically viable description of inclusive quarkonium
production. As one tests NRQCD factorization at higher levels of precision, the standard truncation must
ultimately fail. The NRQCD factorization approach itself may remain viable if one truncates at a higher
order inv, but only at the cost of introducing many new adjustable parameters.

In the effort to make the predictions of the NRQCD factorization approach more quantitative, the
most urgent need is to extend all calculations to next-to-leading order (NLO) inαs. For hadron collisions
at smallpT (pT ≪ m), the leading-order parton process isij→QQ̄. NLO calculations of that process
are already available, but a resummation of multiple gluon emissions is required in order to tame large
logarithms ofm2/p2

T and to turn the singularpT distribution into a smooth distribution. For very large
pT (pT ≫ m), the production of quarkonium is dominated by gluon fragmentation. The leading-order
fragmentation process isg→QQ̄8(

3S1), and the NLO calculation of the gluon fragmentation function
into QQ̄ is available. What is still lacking is the NLO calculation atintermediatepT , for which the
leading-order parton process isij→QQ̄ + k. By taking into account the NLO corrections inαs, one
should significantly decrease some of the uncertainties in the NRQCD factorization predictions.

One problematic source of uncertainties in the NRQCD factorization predictions is relativistic
corrections. The first relativistic corrections of orderv2 in the channel that corresponds to the colour-
singlet model have been calculated for many processes. In many cases, they have large coefficients that
cast doubt on the validity of the expansion in powers ofv for charmonium, and even for bottomonium.
The success of lattice NRQCD in describing bottomonium spectroscopy ensures the applicability of the
velocity expansion for this system in some form. It is possible that some reorganization or resumma-
tion of the velocity expansion might be necessary in order tomake precise quantitative calculations of
charmonium production.

The best individual experiments for determining the NRQCD production matrix elements for both
charmonium and bottomonium are probably those at the Tevatron, because of the large range ofpT that
is accessible. It will be important to take advantage of the measurements down to smallpT that were
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achieved at the CDF detector for bottomonium in Run I and for charmonium in Run II. This will require
taking into account the effects of multiple gluon emission in the theoretical analysis. Measurements of
charmonium production in other experiments are also important because they provide tests of the uni-
versality of the production matrix elements. These experiments include those that measure charmonium
production inep collisions at HERA, ine+e− annihilation at theB factories, and inB meson decays at
theB factories. One can use these experiments to extract values of the NRQCD matrix elements or, as
has typically been the practice to date, one can use the matrix elements that have been extracted from the
Tevatron data to make predictions for charmonium production in other experiments.

The ratios of the production cross-sections for different quarkonium states may also provide im-
portant tests of NRQCD factorization. (Here, particularly, one must keep in mind thecaveatsabout the
applicability of the NRQCD factorization approach to totalcross-sections.) The uncertainties in the pre-
dictions for ratios of cross-sections are much smaller thanthose in the individual cross-sections because
many of the uncertainties cancel in the ratio. The variations of the ratios from process to process and as
functions of kinematic variables provide important information about the production mechanisms. The
ratios of production rates of spin-triplet S-wave states, such as theψ(2S) to J/ψ ratio, do not seem
to vary much. However, a significant variation has been observed in a ratio of the production rates of
P-wave and S-wave states, namely the fraction ofJ/ψ’s that come from decays ofχc’s. A substantial
variation has also been observed in a ratio of production rates of P-wave states, namely theχc1 to χc2
ratio. More precise measurements of these and other ratios would be valuable. Of particular importance
would be measurements of ratios of production rates of spin-singlet and spin-triplet quarkonium states,
such as theηc to J/ψ ratio. The absence of clean signatures for spin-singlet quarkonium states makes
such measurements difficult.

The polarization of quarkonium is another important test ofNRQCD factorization. The standard
truncation inv leads to unambiguous predictions for the ratios of production rates of different spin states,
without introducing any new parameters. The predictions are most easily tested for the quarkonium states
with JPC = 1−−, but they can also be tested for other states. It is extremelyimportant to test the simple
qualitative predictions that in hadron collisions the1−− states should become transversely polarized at
sufficiently largepT . More careful quantitative estimates of the polarization of theJ/ψ, theψ(2S), and
theΥ(nS) as functions ofpT at the Tevatron and the LHC would be useful. More precise measurements
of the polarization of theJ/ψ and theψ(2S) in other production processes, such asep collisions,e+e−

annihilations, andB decay, would also be valuable.

The most puzzling experimental results in quarkonium production in recent years have been the
double-cc̄ results frome+e− annihilation at theB factories. The measurements by the Belle collaboration
of the fraction ofJ/ψ’s that are accompanied by charmed hadrons and of the exclusive cross-section for
J/ψ+ηc production are both much larger than expected. No satisfactory theoretical explanation of these
results has emerged. It would be worthwhile to measure the fraction ofJ/ψ’s accompanied by charm
hadrons in other processes, such aspp̄ annihilation at the Tevatron andep collisions at HERA, to see if
there are any surprises.

The outlook for progress in understanding quarkonium production is very bright. The NRQCD
factorization approach provides a general framework for describing inclusive quarkonium production.
Current experiments will provide severe tests of NRQCD factorization with the standard truncation of
the velocity expansion. These tests will either provide a firm foundation for predictions of quarkonium
production in future experiments or lead us to new insights into the physics of quarkonium production.
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1 INTRODUCTION

The accurate knowledge of the parameters of the Standard Model (SM) is an important requirement in
the indirect search for new physics based on observables that can be predicted with small theoretical
uncertainties and that are measurable experimentally withhigh precision. Among the parameters of
QCD, for example, the precise knowledge of the top quark massplays a crucial role in the relation of the
electroweak precision observablesMZ ,MW and the weak mixing angle, which is sensitive to the vacuum
structure and to non-SM virtual particles. On the other hand, for the analysis of inclusive B-decay rates
the bottom and charm quark masses are needed as an input.

Heavy quarkonium systems provide an ideal instrument to extract the heavy quark masses and to
get constraints on the strong coupling using perturbative as well as non-perturbative methods. The pertur-
bative methods rely on the fact that the heavy quark masses are larger than the hadronization scaleΛQCD

and that non-perturbative effects affecting the dynamics can be suppressed. Based on the concept of ef-
fective theories, on new techniques to compute higher orderperturbative corrections and on an improved
understanding of the higher order behaviour of perturbation theory, a number of powerful methods were
developed in recent years that led to an improved understanding of the perturbative structure of heavy
quarkonium systems and to more realistic estimates of the uncertainties. For the determination of the
masses of the bottom and the charm quarks sum rules based on moments of the hadronic cross-section in
e+e−-annihilation are the most reliable tool. While theoretically one needs to predict the moments with
high precision, dedicated experiments are needed to provide measurements of the hadronic cross-section
with small uncertainties. A different method to determine the masses of the bottom and charm quarks
employs the masses of the low lying bottomonium and charmonium resonances with the assumption that
the perturbative contributions dominate.

An alternative method relies on lattice simulations of heavy quarkonium systems where theoret-
ical predictions are made non-perturbatively. Here the main issues are the control of lattice artifacts,
unquenching and the proper extrapolation to physical quarkmasses, and the matching to the continuum
theory. Continuous improvements on this approach have beenobserved in recent years.

A heavy quarkonium system that can be studied at a futuree+e− Linear Collider is the top–antitop
threshold at a centre-of-mass energy of approximately twice the top quark mass. Although the top quark
lifetime in the SM is predicted to be too small to allow the production of separated resonances, the top–
antitop system is governed by bound-state-type non-relativistic dynamics. Moreover, the large top quark
width provides a very effective protection against the influence of non-perturbative effects making the
non-relativistic top–antitop systems almost entirely perturbative for predictions of inclusive quantities. A
number of precise measurements of top quark properties can be carried out at the top–antitop threshold.
Among them the measurement of the top quark mass with an uncertainty at the level of 100 MeV is the
most prominent one, exceeding the capabilities of hadron colliders by an order of magnitude.
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In this chapter an overview is given on the current status of precision determinations of QCD
parameters from quarkonium systems. In Section 2 experimental aspects of measurements of the total
cross-sectionσ(e+e−→hadrons) in the charmonium and bottomonium energy regions are reviewed.
These measurements are the basis for charm and bottom quark mass extractions using QCD sum rules. In
Section 3 the theoretical aspects of charm and bottom mass determinations from QCD sum rules and from
the quarkonium ground state masses are reviewed. The emphasis is placed on perturbative methods, but
also the status of lattice simulations is summarised. Section 4 contains a brief review of determinations of
the strong coupling from quarkonium properties using perturbative methods as well as lattice simulations
of the quarkonium spectrum. Some conceptual aspects of Nonrelativistic QCD and, in particular, the
issue of summing logarithms of the velocity in the theoretical description of the quarkonium dynamics
in the framework of vNRQCD (“velocity NRQCD”) are summarised in Section 5. Finally, in Section 6
the experimental and theoretical aspects of top quark pair production close to threshold at a future Linear
Collider are reviewed. In particular, the prospects of measurements of the top quark mass, its width and
its couplings to the Higgs boson and to gluons are discussed.

2 R-M EASUREMENTS IN HEAVY QUARKONIUM REGIONS

The so-calledR-ratio is the total cross-section of producing hadrons ine+e− collisions corrected for
initial state radiation and normalised to the lowest order QED cross-section of the reactione+e−→µ+µ−,

R(s) =
σ(e+e−→hadrons)(s)

σ(0)(e+e−→µ+µ−)(s)
, (6.1)

where
√
s is the c.m. energy. Measurements ofR or of the cross-section for hadrons containing a specific

quark flavour such as charm or bottom can be used for a variety of fundamental tests of perturbative QCD
using the assumption of duality and the operator product expansion (OPE) [1, 2]. For example, using
QCD sum rules, which deal with moments of the hadronic cross-section, one can extract values for the
quark masses, and for the quark and gluon condensates that parametrise non-perturbative effects in the
OPE [1,2]. Through dispersion relationsR measurements give an important input to the calculations of
the hadronic corrections to various fundamental quantities that are influenced by the photonic vacuum
polarisation at low energies: the anomalous magnetic moment of the muon [3], the running fine structure
constantα(s) [4], hyperfine splitting in muonium [5] etc. From the size of higher order QCD corrections
it is also possible to get constraints on the strong couplingαs [6]. Depending on the problem, different
energy ranges are of importance.

In the c.m. energy range between 3 and 5 GeV, measurements ofR were carried out by many ex-
perimental groups studying various states just above the charmonium threshold: PLUTO [7], DASP [8],
MARK I [9, 10], Crystal Ball [11] and BES [12, 13]. In general,these measurements are consistent. Of
all the analyses the results by BES are the most precise. In the first measurementR was measured at 6
energy points from 2.6 to 5.0 GeV with a systematic uncertainty between 5.9% and 8.4% [12] while in
the second one the energy range from 2 to 5 GeV was scanned at 85energy points with an average sys-
tematic uncertainty of about 7% [13]. Despite the rather detailed information onR collected by BES, no
data on the cross-sections of exclusive channels or on the parameters of broad charmonia in this energy
range are available yet from this experiment. As a result, the resonance properties ofψ(4040), ψ(4160)
andψ(4415) are still determined by the older DASP [8] and MARK I [9] measurements. A compari-
son of these experiments is presented in Table 6.1 whereas Fig. 6.1 shows the energy dependence ofR
between 3.6 and 5 GeV measured by PLUTO, Crystal Ball and BES.

A controversial situation exists between 5 and 7 GeV whereR values measured by MARK I [10]
are substantially higher than both those of Crystal Ball [14] and the prediction of perturbative QCD, see
Fig. 6.2. The result of Crystal Ball is in fair agreement withthe QCD prediction. Two groups, LENA [15]
and MD-1 [16, 17], performed measurements in the broad energy range from 7.4 to 9.4 GeV and 7.2 to
10.34 GeV, respectively. Information on these experimentsis summarised in Table 6.2.
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Table 6.1:R Measurement at charmonium threshold

Group PLUTO [7] DASP [8] MARK I [10] Cr. Ball [11] BES [12,13]

Solid angle,Ω/4π 0.86 0.6 0.65 0.93 0.80

Energy
√
s, GeV 3.1 – 4.8 3.1 – 5.2 2.6 – 5.0 3.87 – 4.50 3.0 – 5.0∫

Ldt, nb−1 ∼ 3000 7500 ∼ 1500 ∼ 2000 ∼ 2500

Events ∼ 20000 ∼ 40000 ∼ 7000 ∼ 22000 ∼ 35000

Av. efficiency, % 70 – 80 35 – 40 30 – 60 85 70 – 80

Syst. error, % 12 15 10 – 20 10 7

Table 6.2:R Measurements from 5 to 10 GeV

Group MARK I [10] Crystal Ball [14] LENA [15] MD-1 [17]

Solid angle,Ω/4π 0.65 0.93 0.75 0.7

Energy
√
s, GeV 5.0 – 7.8 5.0 – 7.4 7.4 – 9.4 7.80 – 10.45∫

Ldt, nb−1 ∼ 3300 ∼ 1500 1140 16000

Events ∼ 20000 ∼ 11000 4050 48000

Av. efficiency, % 60 85 82 – 90 50

Syst. error, % 10 10 7 3.9

Various groups have measured the value ofR in the narrow energy range in the vicinity of the
Υ-family resonances [18–25]. The highest systematic accuracy of 1.9% was reached by CLEO [25].
We summarise the obtained values ofR in Table 6.3. No energy dependence is observed within the
experimental accuracy, which is not surprising taking intoaccount that most of the measurements were
made below the open beauty threshold.

In Fig. 6.2, we present the results ofRMeasurements below 10 GeV [4]. Only statistical errors are
shown. The relative uncertainty assigned by the authors of Ref. [4] to their parameterisation, displayed
as the solid line, is shown as a band and given with the numbersat the bottom.

The hadronic cross-section above theBB̄ threshold (a centre-of-mass energy range from 10.60
to 11.25 GeV) was measured by the CUSB [26] and the CLEO [27] collaborations with an integrated
luminosity of 123 pb−1 and 70 pb−1, respectively. This energy range is of substantial interest since in
quarkonium potential models two excited states are expected there [28]. Moreover the coupled-channel
models also predict a rich structure inR due to the turn-on of various exclusive states [29]. Both groups
observe similar structures and provide compatible parameters for the two highest states at 10.865 GeV
and 11.019 GeV, tentatively referred to asΥ(5S) andΥ(6S). However, the values of these parameters
are obtained under different assumptions, thus, their formal averaging presently applied by the PDG [30]
hardly makes sense, as noted in Ref. [31]. There is also a visible step between the continuum points
below theΥ(4S) and the average level above it. In Fig. 6.3(a) we show the results for the visibleR ratio,
Rvis, in this energy range obtained by CUSB [26]. Their results with an additional thrust cut to suppress
the continuum are shown in Fig. 6.3(b).

It is important to note that for various applications, e.g.,for extracting quark masses from spectral
moments, it is necessary to know the component ofR coming from a specific quark flavour, particularly
in the threshold energy range. Experimentally, this is a rather complicated problem. One of the theory-
driven possibilities can be illustrated by a method used in arecent charm mass determination [32]. For
the energy range from 3.73 to 4.8 GeV the authors employ the data for the totalR obtained by the
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