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VARIATIOi~ OF BOOSTER TUNES WITH MOMENTUM 

S. C. Snowdon 

10/29/69 

A. PURPOSE 

The booster magnet sextupole components were selected 

to remove the momentum variation of betatron frequencies for 

small amplitudes and :nomentum excursion. This note indicates 

the extent to which this condition is fulfilled using the 

measured gradients and a momentum range that spans the availa-

ble aperture. 

B. RADIAL MOTION 

On the median plane the radial motion is expressed 

adequately by 

2 
+ ~(l+~) B 

P P Y 
( 1) 

Let X be a periodic solution of Eq. (1) and expand radial 

motion around this solution, 

x = X + u, 

retaining only terms linear in the betatron amplitude u. 
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Then, after subtracting Eg. (7) from Eg. (6) and retaining 

only terms linear in u, one has 

+ 2 (l+~)b(X~ -
p J 

0, (11) 

where kl has been replaced by k~ to indicate that the meas­

ured gradient is to be used. 

For comparison, when ~p = 0, Eg. (11) becomes 

= 0, (12) 

where kl is now replaced by k lS to indicate that the betatron 

frequencies in this case are obtained from the design para-

meters and were calculated using SYNCH. 
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Assuming that the motion described by Eq. (11) is not 

very different from that described by Eq. (12), one has for 

the change .'.n the radial tune 

~Vx ~ !rrj[(KxM(S)-Kxs(S» ·Sx(s)ds, 

c 

(13 ) 

where KxM and KxS are the coefficients of u in Eqs. (11) 

and (12). 

C. VERTICAL MOTION 

For small betatron amplitudes and median plane symmetry, 

the vertical motion is described adequately by 

But 

e x 2 
- -(1+-) B 

P P x 

+ ••. 

(14) 

(15) 

Using the ampere circuital law and median plane symmetry, 

one has 

(16) 

Setting x ~ X gives 

(17) 

For ~p ~ 0 and kl replaced by k lS ' Eq. (17) becomes 

k lS 
- -P-y ~ o. (18) 

Again, assuming that tlle change from Eq. (18) to Eq. (17) 
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only causes a small tune shift 
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(19) 

where KYM and Kys are the coefficients of y in Eqs. (17) and 

(18) • 

D. HARD EDGE APPROXUlATION 

Although Eqs. (13) and (19) are sufficient as expressed, 

one needs to knOlv the focusing functions KxN , KxS ' KyI'1' Kys 

as a function of position. This is most conveniently done by 

assuming them constant within each magnet and abruptly re-

duced to zero along some curve that represents the effective 

termination of the magnet. Justification for this procedure 

is obtained by appealing to the fact that the reduction in 

field from full value to zero occurs in a distance that is 

small compared with a betatron wavelength. 

A further simplification is introduced. The curve 

representing the effective termination of the magnetic field 

at the entrance to the magnet is a mirror image of the termi-

nation curve at the exit end of the magnet. Analytically 

for one magnet, one has 

where sl and S2 are step functions and 

s = s - f (x) 
1 

(21) 
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is the termination curve at the entrance end, and 
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( 22) 

is the term-,_nation curve at the exi i end. For convenience 

s2 - sl = physical magnet length, (23) 

and also equals magnet length used in SYNCH. Equation (20) 

gives also 

where 8 1 and 8 2 are delta functions corresponding to Sl and 

E. EXPLICIT EXPRESSIONS 

In this perturbation calculation the linear orbit 

functions S (s), S (s), and x (s) are obtained from the x y p . 

SYNCH program. The periodic solution for the off momentum 

closed orbit is given then by 

X (s) = x (s) .t.p 
P P 

For convenience, let l 

KJd>! ~{ (l_t.p) [ X 2 + 2(1+~)b(X~ - I} = (l+p) pklMg (X) p2 p 

K 1 = 2(l+pklS ) xS p 
2 

KYM = _!(l_t.~) (l+~) klMg(X) 
p p p 

KyS 
1 = --k p IS 

2 
LXi"! = !(l~QE) (l+~) b(X) p p p 

L 1 = xS p 

(25) 

(26) 

(27) 

(28) 

(29 ) 

(30) 

( 31) 
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1 ~ X 
2 

LYM = --(1- ) (1+-) b(X) (32 ) 
P P P 

LyS = 1 (33 ) 
p 

fMF = llSF + AFX + B X2 + C~3 + (34) 
F 

fMD = llS + ADX + B X2 + C X3 + (35 ) 
D D D 

fSF = ASFX (36) 

fSD = ASDX. (37 ) 

The coefficients ASF and ASD are determin2d such that 

the effective magnet end shape for the SYNCH run is identical 

with the physical magnet end. The remaining coefficients in 

Eqs. (34) and (35) are to be chosen subsequently. 

In terms of these symbols, the tune shifts for the 

booster lattice whose period is N becomes 

and 

llv
x 

= 2N {lS2F (K -K ) 13 ds 
4n xM xS x 

slF 

+ [(KxMS)entr.(F) + (KxMS)exit(F)]llSF 

+ [(KxMI3 X ) entr. (D) + (KxHB x ) exi t (D) J llSD 

+ 

+ 

(L Sf') + (L Sf' ) xM x 14 entr. (F) xM x M exi t (F) 

(L Sf' ) + (L Sf' ) xM x 11 entr. (D) xM x M exit(D) 

(LXSSxf'S)entr. (F) - (LxsSxf's)exit(F) 

(Lxs l3 x f'S)entr. (D) - (LxsSxfls)exit(D)} (38) 



+ [(KyMSy)entr. (F) + (KyMSy)eXit(F)]llSF 

+ [(KyMSy)entr. (D) + (KyMSy )exit(D)]6SD 

+ 

+ 

(L Sf' ) + (L Sf' ) yM Y H entr. (F) yH Y 11 exit(F) 

(L Sf' ) + (L Sf' ) yH Y 11 entr.(D) yl1 y 11 exiteD) 

(LysSyf'S)entr. (F) - (LySSyf's)exit(F) 

(LysSyf'S)entr. (D) - (LYSSyf's)exit(D} (39) 

Note that slF' s2F' slD' s2D are the effective magnet ends 

on the central orbit as used in SYNCH. Thus, positive 6S F 

and 6SD indicate that the effective magnet ends at the cen­

tral orbit increase the magnet length in the perturbed case. 

F. OPTH1UN END SHAPES 

Equations (38) and (39) show that the tune shifts 6v x 

and 6v away from the corresponding SYNCH tunes are linearly 
y 

related to the coefficients in the power series expansion of 

the effective end shapes as given in Egs. (34) and (35). One 

might consider, therefore, that an optimum end shape could be 

obtained by adjusting 6S F , AF , BF , CF ' etc., and 6SD, AD' BD, 

CD' etc., such that the quantity 
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minimum. (40) 

In this way any design or fabrication difficulties in the 

body of the magnet could be rectified by finding suitable end 

shaping that yields the desired effective end shape. Notice, 

however, that, although this procedure will work, one should 

be careful about interpreting the f::,SF' f::,SD' AF , AD so 

obtained. The difficulty stems from the fact that, in the 

linear theory, additional focusing may be obtained either by 

increasing the magnet length or by changing the edge angle. 

'l'he functions of momentum that mUltiply L1S F or f::,SD are only 

negligibly different from those that multiply AF and AD' If 

they had been identical, the least squares procedure "ould 

have failed. To obtain realistic results, it is preferable 

to remove this difficulty by choosing fixed values for f::,SF 

and f::,SD and minimize Eq. (40) with respect to the remaining 

coefficients. 

G. LEAST SQUARES ANALYSIS 

In Eq. (38) let the quantities not subject to adjust-

ment be designated by DNUX(J) where uniformly incremented 

values of f::,p/p are represented by the index J. Thus 
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'" 2N {I S2F (K -K ) I:l ds 
4n xM xS x 
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(L i:l f' ) - (L i:l f' ) 
xS x S entr. (F) xS x S exit(F) 

(LXSSxf'S)entr. (D) - (LXSi:lxfls)exit(D)} (41) 

By utilizing Eqs. (34) and (35) and defining the array 

O(K) to be 

{o (K)} = fA, Ao' B
F

, Bo' C
F

, Co' 
\ (42 ) 

L F 
... ) 

and the array T(J,K) to be 

T (J, I) = (LxMi:l x ) entr. (F) + (LXMS X) exi t (F) 

T(J,2) = (Lxi'li:l) entr. (0) + ( L
xM i3 x ) exi t (0) 

T(J,3) = 2 (LxMi:lxX) en tr. (F) + 2(LxM i:l x X)exit(F) 

T (J , 4) = 2 (L}tl<lSx X ) entr. (0) + 2 (Lxl-1i:l x
X ) exi t (O) 

1'(J,5} 
2 2 = 3(LxMSx X }entr. (F) + 3( L

xM i:l x X )exit(F} 

T (J ,6) 2 3(L S X2) = 3 (Lxl1Sx X ) entr. (O) + 
xM x exit(o) 

T(J,7) = etc. , (43) 
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Equation (38) becomes 

6v (J) = DNVX(J) + ~ T(J,K)D(K). 
x K 

(44) 

In an analagous manner let the fixed quantities in 

Eq. (39) be designated by DNUY(J). Then 

ONVY (J) 1s20 
+ (K -K s)e ds 

s yM Y Y 
10 

- (L e f' ) - (L e f' ) yS Y s entr(F) yS y S exit(F) 

- (Lyseyf's)entr.(D) - (LYSeyf's)exit(DJ .(45) 

Further, let the array S(J,K) be 

S(J,l) = (LyMey)entr.(F) + (LyMSy)exit(F) 

S(J,2) = (LyMey)entr. (D) + (LyNey)exit(D) 

S(J,3) = 2 (LyNSyX)entr. (F) + 2 (LyNSyX)exit(F) 

~(J,4) = 2 (LyMSyX)entr. (D) 

S(J,5) = 3 (LyMSy X2 )entr. (F) 

S(J,6) = 3(L S X2) 
yM Y entr. (D) 

S(J,7) = etc. 

+ 2(LyMSy X)exit(D) 

+ 3 (LyN Sy X2)exit(F) 

+ 3 (LYMSyX2)exit(D) 

(47) 
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6vy (J) = DNUY(J) + I S(J,K)D(K) (48) 
K 

If Eqs. (44) and (48) are substituted into Eq. (40) 

and the minimization carried out one finds for D(K) 

where 

D(K) = - I C-l(K,L)A(L) 
L 

(49) 

A(L) = I (VI (J)DNUX(J)T(J,L) + W (J)DNUY(J)S(J,L)), (50) x y J 

and 

C(K,L) = I 
J 

(Vi
X 

(J) '1' (J ,K) T (J ,L) + Vly (J) S (J ,K) S (J ,L)) . (51) 

Equation (40) at the minimum becomes 

SUM = I (Vlx {J)DNUX
2

{J) + 
J 

VI (J) DNUy2 (J)) + I A (K) D (K) . 
y K 

(52) 

The operations indicated in Eqs. (40) to (52) have 

been coded in the program TUNA. In order to obtain the in-

2 
verse matrix, MATH-IV by Garbow has been included as a sub-

routine. 

H. NUMERICAL RESULTS FOR BOOSTER 

All numerical results are expressed in the coordinate 

system (x,y,s) where s is distance measured along the equili-

brium orbi~ for p = p , x is measured in the direction o 

radially normal to the equilibrium orbit, and y is the verti-

cal direction. The fractional momentum change 6p/p is con-

verted to eqllilibriuIP orbit position at the entrance to the 
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Ideal design gradients as a function of x were chosen 

previously? and are characterized be a selection of sextupol" 

-2 -2 
moments, k 2 (P) = 0.6079m ,k2 (D) = -1. 256m . Pigure 1 

indicates the variation of the idealized gradients ,vi th x. 

Pigure 2 shows that both the radial and vertical tune varia-

tion with momentum has indeed been reduced to zero. In 

addition, the increment in the gradient lengtc at each end of 

the P and the D magnets is shown. This was obtained by fixing 

b5p = b5D = 0 and using the least squares adjustment to find 

the coefficients Ap ' AD' Bp ' BD, etc. The incremental gra­

dient lengths so obtained correspond to an effective termina-

tion of the magnetic fields characterized principally by 

Ap = -0.0354, AD = -0.0301, the conditions that make the end 

faces parallel. 

The normalized gradients at 8 GeV excitation measured by 

4 h . . 3 R. E. Peters are s own ~n P~gure . These gradients together 

with the effective termination used in the magnet design, 

namely, that the effective entrance and exit planes of the 

magnet are parallel and coincide with the end laminations, 

yield tune variations as shown in Figure 4. Clearly the 

effects of the finite pole width cause fluctuations in the 

gradient that are reflected in the tune variations. 

In order to realize the design effective endings for the 

magnets, end packs were machined by numerically controlled 

contour milling. The surfaces chosen were derived basically 
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from two-dimensional reasoning,S the variation with the 

radial dimension being introduced in such a manner as to 

permit the ilUrface to match the desj 3n body contours smoothl:'. 

The effective termination of the magnetic fields after in-

4 stallation of these end packs was measured by Peters. Figure 

5 shows the variation of the tunes with momentum for this 

case in which measured gradients and measured field termina-

tions are employed. It is clear that the end packs have 

over compensated for the difficulty shown in Figure 4. 

Figure 6 shows the result of asking the question, 

"What is the best shape for the effective field termination?" 

The least squares minimization mode of TUNA was activated 

using the measured values 6S F = 0.007689 m and 6SD = 0.01162 m 

for each of several polynomial degrees from 4 through 9. Only 

the results for an eighth degree fit are shown since all lower 

degrees gave tune variations outside of the band ~O.l. Also 

shown are the incremental gradient lengths that are derived 

from the eighth order effective termination shapes. 

Table 1 presents the power series coefficients that 

express the shape of the effective magnetic field terminations 

according to Eqs. (34) and (35). Three cases are shown for 

each magnet; (1) measured gradients-design terminations, (2) 

measured gradients-measured terminations, (3) measured 

gradients-adjusted terminations. Table 2 presents the nurneri-

cal calculation of the radial tune variation with momentum for 

each of the cases just mentioned and in addition the test case 
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in which the idealized gradient was used together with the 

design termination. Table 3 gives the same information as 

Table 2 except that it relates to tL2 vertical tune. 

In summary, then, the measurements of curves along which 

the interior fields of the magnets effectively terminate show 

that the simplified method of deriving an end pack shape 

needs modification. To date, a method of using the differ-

ence between the meas'.lred terminating curve and the desired 

terminating curve to generate a new iron shape has been 

devised. Its basic limitation stems from the fact that the 

pole width is larger than the aperture width and, hence, it 

is impossible to determine completely the pole shape. This 

problem is being considered further. 
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Table 1. Coefficients for Effective Field Termination 

l;S (m) 

A 

B(m-1 ) 

C (m- 2 ) 

D(m- 3 ) 

E (m -4) 

F (m -5) 

G(m- 6 ) 

H (m- 7 ) 

s -2 

Design 

0.0000 

-0.0354 

*R. E. Peters 

sl = 2.8896m 

F-Magnet 

/1eas. * Adjusted Design 

0.007689 0.007689 0.0000 

-0.08110 -0.03189 -0.0301 

-0.3560 -0.9852 

2.300 -0.1230E+2 

-0.1065E+3 o .1464E+4 

0.7149E+4 

-0.7240E+6 

-0.9612E+6 

0.1132E+9 

D-Magnet 

/1eas. * Adjusted 

0·01162 0.01162 

0.02378 -0.01501 

-0.6844 0.2758 

-1.313 0.1265E+2 

-110.8 -0.9467E+3 

-0.6376E+4 

0.4329E+6 

0.2041E+6 

-0.6190E+8 
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Table 2. Radial Betatron Frequency Variation with 
Momentum 

SYNCH tune = 6.700 

QE. Design Grad. Meas. Grad.* Meas. Grad.* Meas. Grad.* 
p Design Ends. Design Ends. Meas. Ends. * Adjusted Ends 

-0.018 0.000 0.160 0.836 0.003 

-0.016 0.000 -0.297 0.217 -0.020 

-0.014 0.000 -0.199 0.181 0.033 

-0.012 0.000 -0.096 0.172 0.006 

-0.010 0.000 -0.065 0.109 -0.031 

-0.008 0.000 -0.068 0.029 -0.023 

-0.006 0.000 -0.078 -0.045 0.012 

-0.004 0.000 -0.088 -0.106 0.035 

-0.002 0.000 -0.093 -0.156 0.022 

0.00 0.000 -0.085 -0.187 -0.0 l3 

0.002 0.000 -0.056 -0.195 -0.039 

0.004 0.000 -0.010 -0.188 -0.027 

0.006 0.000 0.025 -0.196 0.015 

0.008 0.000 O. 013 -0.259 0.045 

0.010 0.000 -0.051 -0.386 0.024 

0.012 0.000 -0.113 -0.525 -0.037 

0.014 0.000 -0.080 -0.589 -0.048 

0.016 0.000 -0.009 -0.638 0.059 

0.018 0.000 -0.589 -1.367 -0.016 

*R. E. Peters 
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Table 3. Vertical Betatron Frequency Variation with 
Momentum 

SYNCH tune = 6.800 

§..~ Design Grad. Meas. Grad. * Meas. Grad .* Meas. Grad .* 
p Design Ends. Design Ends. Meas. Ends .* Adjusted Ends 

-0.018 0.000 0.048 -0.343 -0.003 

-0.016 0.000 0.138 -0.182 0.011 

-0.014 0.000 0.096 -0.163 -0.008 

-0.012 0.000 0.054 -0.153 -0.005 

-0.010 0.000 0.031 -0.133 0.004 

-0.008 0.000 0.016 -0.110 0.006 

-0.006 0.000 0.005 -0.088 0.000 

-0.004 0.000 -0.003 -0.068 -0.005 

-0.002 0.000 -0.009 -0.047 -0.004 

0.000 0.000 -0.012 -0.027 0.002 

0.002 0.000 -0.019 -0.009 0.006 

0.004 0.000 -0.027 0.006 0.004 

0.006 0.000 -0.035 0.024 -0.004 

0.008 0.000 -0.035 0.053 -0.009 

0.010 0.000 -0.027 0.094 -0.003 

0.012 0.000 -0.025 0.135 0.010 

0.014 0.000 -0.051 0.154 0.010 

0.016 0.000 -0.097 0.160 -0.016 

0.018 0.000 -0.021 0.297 0.005 

*R. E. Peters 
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VARIATION OF BOOSTER TUNES WITH MOMENTUH (ADDENDUM) 

S. C. Snowdon 

January 28, 1970 

Purpose 

Although the results of a previous note with the same 

title as above (FN-192) are correct when the magnet lengths 

are chosen to be identical with the design or comparison 

case (SYNCH), a small correction must be made for the re-

shaping of the closed orbits, if the magnet lengths are 

changed. This correction is included below. 

Closed Orbit Correction 

If L designates the magnet length used in the design 
s 

(SYNCH) of the booster lattice, then for increments 6S to 

this length at each end of the magnet the net bending rela-

tion becomes 

where N is the sector number. From the turns ratio and the 

gap ratio of F to D magnets, one has 

B F(O) 
Y = 

i~D 
1.175958. 

The radii of curvature in the F and D magnets are 

(2) 
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(3) 

'. ·.·.us, for booster parameters, since LSF ~ LsD ~ Ls 

26S 26S 1 
PF ~ 18. 7719211+~+l.175958 (l+~; t 

\. S \ s. I J 

(4 ) 

<i:.d 

( 5) 

W:.ere the raC:ii of curvature are measureci in meters. 

Since 6S
F 

and 6SD were not considered adjustable in the 

l',·:\st squares fitting procedure of FN-192, the formulation 

tr.'lre is correct except that the radii of curvature associa1:ea 

vll t.h all measured quantities (H), for example "xU' should be 

cl .. ,nged to those given by Eqs. (4-5). All radii of curva-

ture associated with the design or comparison quantities 

sU';n as KxS remain unchanged. These modifications have been 

in':orporatea into the TUNA code. 

Results 

Two changes are occasioned by the above corrections 

1. Figure 5 (FN-192) -- 6v
x 

and 6Vy are both lowered 

at all points by approximately 0.05. 

2. Table 1 (FN-192) -- The adjusted coefficients re-

pr<}senting the best end shape become 
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F-i4agnet D-Magnet 

AS(m) 0.007689 0.011621 

A -0.006135 -0.048929 
B (m -1) -1.0087 0.220639 

c(m- 2 ) -12.2669 12.5400 

D(m- 3 ) 1.4638E+3 -9.4746E+2 

E (m- 4 ) 7.1491E+3 -6.3731E+3 

F(m- 5 ) -7.2394E+5 4.3327E+5 

G (m -6) -9.6114E+5 2.0319E+5 

H (m -7) 1.1316E+8 -6.1980E+7 

Further corrections having no effect on results 

a. Equation (29) in FN-192 should have a capital 

S subscript. 

b. Equation (31) in FN-192 should read 

1 
LxS = P 
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