national accelerator laboratory

FN-192-A 0300

VARIATION OF BOOSTER TUNES WITH MOMENTUM (ADDENDUM)

S. C. Snowdon January 28, 1970

Purpose

Although the results of a previous note with the same title as above (FN-192) are correct when the magnet lengths are chosen to be identical with the design or comparison case (SYNCH), a small correction must be made for the reshaping of the closed orbits, if the magnet lengths are changed. This correction is included below.

Closed Orbit Correction

If L designates the magnet length used in the design (SYNCH) of the booster lattice, then for increments ΔS to this length at each end of the magnet the net bending relation becomes

$$2NB_{yF}(0)(L_{s}+2\Delta S_{F}) + 2NB_{yD}(0)(L_{s}+2\Delta S_{D}) = 2\pi \langle BR \rangle$$
, (1)

where N is the sector number. From the turns ratio and the gap ratio of F to D magnets, one has

$$\frac{B_{YF}(0)}{B_{YD}(0)} = \frac{N_F}{N_D} \cdot \frac{G_D}{G_F} = \frac{48}{56} \times \frac{2.25}{1.64} = 1.175958.$$
(2)

The radii of curvature in the F and D magnets are

$$\rho_{\mathbf{F}} = \frac{\langle \mathbf{B} \mathbf{R} \rangle}{\mathbf{B}_{\mathbf{V} \mathbf{F}}(\mathbf{0})} \quad ; \quad \rho_{\mathbf{D}} = \frac{\langle \mathbf{B} \mathbf{R} \rangle}{\mathbf{B}_{\mathbf{V} \mathbf{D}}(\mathbf{0})} \quad . \tag{3}$$

Thus, for booster parameters, since $L_{sF} = L_{sD} = L_s$

$$\rho_{\rm F} = 18.77192 \left\{ \frac{2\Delta S}{L_{\rm S}} + 1.175958 \left(\frac{2\Delta S}{L_{\rm S}} \right) \right\} , \qquad (4)$$

à.,d

$$\rho_{\rm D} = 22.07492 \left\{ 1 + \frac{2\Delta S}{L_{\rm s}} + 1.175958 \left\{ 1 + \frac{2\Delta S}{L_{\rm s}} \right\} , \qquad (5)$$

Where the radii of curvature are measured in meters.

Since ΔS_F and ΔS_D were not considered adjustable in the least squares fitting procedure of FN-192, the formulation there is correct except that the radii of curvature associated with all measured quantities (M), for example $\kappa_{\rm XM}$, should be changed to those given by Eqs. (4-5). All radii of curvature associated with the design or comparison quantities such as $\kappa_{\rm XS}$ remain unchanged. These modifications have been incorporated into the TUNA code.

Results

Two changes are occasioned by the above corrections

1. Figure 5 (FN-192) -- Δv_x and Δv_y are both lowered at all points by approximately 0.05.

2. Table 1 (FN-192) -- The adjusted coefficients representing the best end shape become

FN-192-A 0300

	F-Magnet	D-Magnet
∆S(m)	0.007689	0.011621
А	-0.006135	-0.048929
B(m ⁻¹)	-1.0087	0.220639
C (m ⁻²)	-12.2669	12.5400
$D(m^{-3})$	1.4638E+3	-9.4746E+2
E (m ⁻⁴)	7.1491E+3	-6.3731E+3
$F(m^{-5})$	-7.2394E+5	4.3327E+5
G(m ⁻⁶)	-9.6114E+5	2.0319E+5
H(m ⁻⁷)	1.1316E+8	-6.1980E+7

3. Further corrections having no effect on results

- Equation (29) in FN-192 should have a capital
 S subscript.
- b. Equation (31) in FN-192 should read $L_{\rm xS} = \frac{1}{\rho} \ . \label{eq:ks}$