NONLINEAR BETATRON MOTION IN IDEAL BOOSTER LATTICE

S. C. Snowdon

May 28, 1969

PURPOSE

To determine the characteristics of nonlinear betatron motion for an ideal magnetic confining field possessing median plane symmetry. Application is made to the properties of the booster using third order effects in the hamiltonian. Fourth order effects are estimated.

HAMILTONIAN

The hamiltonian in which the generalized momenta, π_x and π_y, are expressed in units of the particle momentum is

$$H = -(1+\frac{x}{\rho}) \sqrt{1-(\pi_x - \frac{eA_x}{p})^2 - (\pi_y - \frac{eA_y}{p})^2 - \frac{e}{p}(1+\frac{x}{\rho})A_z}, \text{ (emu)}$$

(1)

where the curvilinear coordinates (x,y,s) are taken to be the orthogonal set in which s measures the distance along a curve in the median plane, y is normal to the median plane, and x is in the direction of the outward normal to the curve.

POTENTIALS

A scalar potential ϕ such that $\vec{B} = \nabla \phi$ may be written as

$$\phi = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{A_{mn}(s)}{m!n!} x^m y^n,$$

(2)

where, in order to satisfy Laplace's equation,

$$A_{m+2,n} + (3m+1)kA_{m+1,n} + m(3m-1)k^2A_{mn} + m(m-1)A_{m-1,n}$$

$$+ A_{m,n+2} + 3mkA_{m-1,n+2} + 3m(m-1)k^2A_{m-2,n+2}$$

$$+ m(m-1)(m-2)k^3A_{m-3,n+2} - mk'A_{m-1,n} + A_{m,n} + mk'A_{m-1,n} = 0$$

(3)
Here $k = 1/\rho$.

The vector potential is gauge dependent. Choose the gauge for which $xA_x + yA_y = 0$. Then

\begin{equation}
A_x = -\frac{1}{1+kx} \sum \frac{A_{mn}}{m!(n+1)!} x^m y^{n+1} + \frac{1}{1+kx} \sum \frac{C_m}{m!} x^m + \sum \frac{D_{mn}}{(m-1)!n!} x^{m-1} y^n
\end{equation}

\begin{equation}
A_y = \sum \frac{D_{mn}}{m!(n-1)!} x^m y^{n-1}
\end{equation}

\begin{equation}
A_s = \sum \frac{A_{mn}}{(m-1)!(n+1)!} x^{m-1} y^{n+1} - \sum \frac{C_m}{(m-1)!} x^{m-1} + \frac{1}{1+kx} \sum \frac{D_{mn}}{m!n!} x^m y^n,
\end{equation}

where

\begin{align}
A_{02} &= -A_{20} + kA_{10} - A_{00} \\
A_{12} &= -A_{30} - kA_{20} + k^2 A_{10} + k'A_{00} - A_{10} + 2kA_{10} \\
A_{03} &= -A_{21} - kA_{11} - A_{01} \\
C_0 &= C_1 = 0 \\
C_2 &= A_{01} \\
C_3 &= A_{11} - kA_{01} \\
C_4 &= A_{21} - kA_{11} + 3k^2 A_{01} - A_{01} \\
D_{00} &= D_{10} = D_{20} = D_{01} = D_{02} = D_{03} = 0 \\
D_{30} &= -A_{01} \\
D_{40} &= -A_{11} + k'A_{01} + 4kA_{01} \\
D_{11} &= \frac{1}{2} A_{00} \\
D_{21} &= \frac{2}{3} A_{10} - \frac{2}{3} kA_{00} \\
D_{12} &= \frac{1}{3} A_{01}
\end{align}
APPROXIMATE HAMILTONIAN

Expanding the hamiltonian of Eq. (1) in powers of \(\pi_x', \pi_y', x, \) and \(y, \) one finds (dropping the \(-1\))

\[
H = -kx + \frac{1}{2}(1+kx)(\pi_x^2 + \frac{2e}{p_x} + \frac{e^2}{2p_x^2} x^2 + \frac{\pi_y^2}{p_y^2} + \frac{2e}{p_y} \pi_y + \frac{e^2}{2p_y^2} y^2)
- \frac{e}{p}(1+kx)A_x + \ldots \ldots ,
\]

where a suitably restricted number of terms is to be included in the vector potential expansions to give say a third order expansion for the hamiltonian. Thus

\[
(l+kx)A_x = -\frac{1}{2}A_{10}^x y - \left(\frac{1}{2}A_{10}^x + \frac{1}{6}kA_{00}^x\right)xy - \frac{1}{3}A_{01}^x y^2 + \ldots \quad (21)
\]

\[
(l+kx)A_y = \frac{1}{2}A_{00}^y + (\frac{1}{3}A_{10}^y + \frac{1}{6}kA_{00}^y) x^2 + \frac{1}{3}A_{01}^y xy + \ldots \quad (22)
\]

\[
(l+kx)A_s = -A_{01}^y x + A_{10}^y y - \frac{1}{2}(A_{11} + kA_{01}^s) x^2 + \frac{1}{2}(2A_{20} + 2kA_{10} + A_{00}^s) xy
+ \frac{1}{2}A_{11}^y y^2 - \frac{1}{6}(A_{21} + 2kA_{11}^s) x^3 + \frac{1}{2}(A_{30} + 2kA_{20} + \frac{2}{3}A_{11} + \frac{2}{3}k'A_{00}^s)
- \frac{2}{3}kA_{00}^s x^2 y + \frac{1}{2}(A_{21} + 2kA_{01}^s) x^3 y^2 - \frac{1}{3}(A_{30} + kA_{20} - k^2 A_{10}^s)
- k'A_{01}^s + A_{10}^s - 2kA_{00}^s y^3 + \ldots \quad (23)
\]

\[
(l+kx)A_x^2 = \frac{1}{4}A_{00}^x y^2 + A_{10}^x + \left(\frac{1}{2}A_{10}^x - \frac{1}{12}kA_{00}^x\right) xy + \frac{1}{2}A_{10}^x A_{01}^x y^3 + \ldots \quad (24)
\]

\[
(l+kx)A_y^2 = \frac{1}{4}A_{00}^y x^2 + A_{01}^y + \left(\frac{1}{2}A_{10}^y - \frac{1}{12}kA_{00}^y\right) x^3 + \frac{1}{2}A_{10}^y A_{01}^y x^2 y + \ldots \quad (25)
\]

If the hamiltonian is arranged according to orders of the expansion variables

\[
H = H^{(1)} + H^{(2)} + H^{(3)} + \ldots ,
\]

then

\[
H^{(1)} = \frac{e}{p}A_{01}^x x - \frac{e}{p}A_{10}^y y .
\]
\[H(2) = \frac{1}{2} (\pi_x^2 + \pi_y^2) + \frac{1}{2} \frac{\epsilon}{p} A'_{10} (y \pi_x - x \pi_y) \]

\[+ \frac{1}{2} \frac{\epsilon}{p} (A_{11} + kA_{01} + \frac{1}{2} \frac{\epsilon}{p} A'_{10}) x^2 - \frac{1}{2} \frac{\epsilon}{p} (2A_{20} + 2kA_{10} + A'_{00}) xy \]

\[- \frac{1}{2} \frac{\epsilon}{p} (A_{11} + \frac{1}{4} \frac{\epsilon}{p} A'_{10}) y^2. \]

(28)

\[H(3) = \frac{1}{2} kx (\pi_x^2 + \pi_y^2) + \frac{1}{3} \frac{\epsilon}{p} \left[(A'_{10} + \frac{1}{2} kA'_{00}) x + A'_{01} y \right] (y \pi_x - x \pi_y) \]

\[+ \frac{1}{6} \frac{\epsilon}{p} \left[A_{21} + 2kA_{11} + \frac{\epsilon}{p} A'_{10} (A'_{00} - \frac{1}{4} kA'_{00}) \right] x^3 \]

\[- \frac{1}{6} \frac{\epsilon}{p} \left[3A_{30} + 6kA_{20} + 2A''_{01} - 2kA'_{00} - 2kA''_{00} - \frac{\epsilon}{p} A'_{00} A'_{01} \right] x^2 y \]

\[- \frac{1}{6} \frac{\epsilon}{p} \left[3A_{21} + 3kA_{11} + A''_{01} - \frac{\epsilon}{p} A'_{10} (A'_{00} - \frac{1}{4} kA'_{00}) \right] xy^2 \]

\[+ \frac{1}{6} \frac{\epsilon}{p} \left[A_{30} + kA_{20} - k^2 A_{10} + k'A_{00} + A''_{01} - 2kA'_{00} + \frac{\epsilon}{p} A'_{00} A'_{01} \right] y^3. \]

(29)

MEDIAN PLANE SYMMETRY

For the ideal guide field one invokes median plane symmetry. In this case the coefficients in the expansion of the scalar potential \(\phi \) have the property

\[A_{mn}(s) = 0 \quad \text{(even n)}. \]

(30)

Equations (27–29) reduce to

\[H(1) = \left(\frac{\epsilon}{p} A'_{01} - k \right) \times \]

(31)

\[H(2) = \frac{1}{2} (\pi_x^2 + \pi_y^2) + \frac{1}{2} \frac{\epsilon}{p} (A_{11} + kA_{01}) x^2 - \frac{1}{2} \frac{\epsilon}{p} A_{11} y^2 \]

(32)

\[H(3) = \frac{1}{2} kx (\pi_x^2 + \pi_y^2) + \frac{1}{3} \frac{\epsilon}{p} A'_{01} y (y \pi_x - x \pi_y) \]

\[+ \frac{1}{6} \frac{\epsilon}{p} (A_{21} + 2kA_{11}) x^3 \]

\[- \frac{1}{6} \frac{\epsilon}{p} (3A_{21} + 3kA_{11} + A''_{01}) xy^2 \]

(33)
EQUILIBRIUM ORBIT

The reference curve of the curvilinear coordinate system along which distance is measured by the coordinate s is to be chosen such that \(H^{(1)} = 0 \) in Eq. (31). Thus

\[
\frac{\delta \theta_{A1}}{\delta \alpha} = k .
\]

ACTION ANGLE VARIABLES

A contact transformation is made from the variables \((x, x', y, y')\) to \((\phi_x, \rho_x, \phi_y, \rho_y)\) using the generator

\[
F_1(x, \phi_x, y, \phi_y; s) = \frac{x^2}{\beta_x} (\cot \psi_x + \frac{1}{2} \beta_x') + \frac{y^2}{\beta_y} (\cot \psi_y + \frac{1}{2} \beta_y').
\]

The new hamiltonian \(K = H + \frac{\delta F}{\delta s} \) becomes

\[
K(2) = \frac{v_x}{\beta_x} \rho_x + \frac{v_y}{\beta_y} \rho_y ,
\]

\[
K(3) = k \sqrt{2 \beta_x \rho_x \sin \psi_x} \left\{ \frac{\rho_x}{\beta_x} (\cos \psi_x + \frac{\beta_x'}{2} \sin \psi_x)^2 + \frac{\rho_y}{\beta_y} (\cos \psi_y + \frac{\beta_y'}{2} \sin \psi_y)^2 \right\}
\]

\[
+ \frac{1}{3} \frac{e^{A1}}{\beta_x \beta_y \rho_x \rho_y \sin \psi_x} \left\{ \sqrt{\frac{\beta_x' \beta_y' \rho_x \rho_y}{\beta_x}} \sin \psi_x (\cos \psi_x + \frac{\beta_x'}{2} \sin \psi_x) \right.
\]

\[
- \sqrt{\frac{\beta_x' \beta_y' \rho_x \rho_y}{\beta_y}} \sin \psi_y (\cos \psi_y + \frac{\beta_y'}{2} \sin \psi_y) \right\}
\]

\[
+ \frac{1}{6} \frac{e}{\beta} (A_{21} + 2kA_{11}) \beta_x \beta_y \rho_x \rho_y \sin \psi_x \sin \psi_y
\]

\[
- \frac{1}{6} \frac{e}{\beta} (3A_{21} + 3kA_{11} + A_{01}) \beta_x \beta_y \rho_x \rho_y \sin \psi_x \sin \psi_y .
\]

where

\[
\psi_x = \phi_x - \int \left(\frac{v_x}{\beta_x} - \frac{1}{\beta_x} \right) ds ; \quad \psi_y = \phi_y - \int \left(\frac{v_y}{\beta_y} - \frac{1}{\beta_y} \right) ds .
\]

Note that the s-dependence of the hamiltonian, \(K \), is only in the third and higher orders.
Expanding $K(3)$ one has

$$K(3) = k\left(\frac{2}{\beta_x}\right)^{1/2} \rho_x \sin\psi_x \cos^2\psi_x + k\left(\frac{2}{\beta_y}\right)^{1/2} \rho_y \sin\psi_y \cos^2\psi_y$$

$$+ k\left(\frac{2}{\beta_x}\right)^{1/2} \beta_x \rho_x \frac{3}{2} \cos\psi_x \sin^2\psi_x + \frac{1}{3} \frac{e}{p} A_{01}^* \left(\frac{2}{\beta_x}\right)^{1/2} \beta_x \rho_x \frac{1}{2} \rho_y \cdot \sin^2\psi_y$$

$$+ \left[k\left(\frac{2}{\beta_x}\right)^{1/2} \beta_x \rho_x \beta_x \rho_x - \frac{1}{3} \frac{e}{p} A_{01}^* \left(\frac{2}{\beta_x}\right)^{1/2} \rho_x \rho_y \rho_x \rho_y \right] \sin\psi_x \sin^2\psi_y$$

$$+ \left[\frac{1}{4} k\left(\frac{2}{\beta_x}\right)^{1/2} \beta_x \rho_x \beta_x \rho_x - \frac{1}{6} \frac{e}{p} A_{01}^* \left(\frac{2}{\beta_x}\right)^{1/2} \rho_x \rho_y \right] \sin^2\psi_x \sin^2\psi_y$$

$$+ \left[\frac{1}{4} k\left(\frac{2}{\beta_x}\right)^{1/2} \beta_x \rho_x \beta_x \rho_x + \frac{1}{6} \frac{e}{p} A_{01}^* \left(\frac{2}{\beta_x}\right)^{1/2} \rho_x \rho_y \rho_x \rho_y \right] \sin^3\psi_x \sin^2\psi_y$$

After expanding the trigonometric forms in $K(3)$ the resulting expression may be rearranged according to coefficients of the independent trigonometric forms. Thus

Coefficient of $\sin\psi_x$:

$$\left[\frac{1}{4} k\left(\frac{2}{\beta_x}\right)^{1/2} \beta_x \rho_x \beta_x \rho_x + \frac{1}{6} \frac{e}{p} (A_{21}^{\pm 2kA_{11}})^{3/2} \rho_x \rho_y \right] \rho_x^{3/2}$$

$$+ \left[\frac{1}{2} k\left(\frac{2}{\beta_x}\right)^{1/2} \beta_x \rho_x \beta_x \rho_x \right] \cdot (1 + \frac{1}{4} \beta_x \rho_x \beta_x \rho_x) + \frac{1}{12} \frac{e}{p} A_{01}^* \left(\frac{2}{\beta_x}\right)^{1/2} \beta_x \rho_x \beta_x \rho_x - \frac{1}{6} \frac{e}{p} (3A_{21}^{\pm 3kA_{11}})^{1/2} \beta_x \rho_x \rho_y \right] \rho_x^{1/2} \rho_y$$
Coefficient of $\cos \psi_x$:

$$\frac{1}{4} k \left(\frac{2}{\beta_x^y} \right)^{1/2} \beta^y_x \rho_x^{3/2} + \frac{1}{2} \varepsilon \frac{A'}{p} A_{01} \frac{2}{\beta_x^y} \beta^y_x \rho_x^{1/2} \rho_y$$ \hspace{1cm} (41)

Coefficient of $\sin 3\psi_x$:

$$\left[\frac{1}{4} k \left(\frac{2}{\beta_x^y} \right)^{1/2} \left(1 - \frac{1}{4} \beta^y_x \right) + \frac{1}{24} \varepsilon \frac{A_{21} + 2kA_{11}}{p} \left(2 \beta_x^y \right)^{3/2} \right] \rho_x^{3/2} \hspace{1cm} (42)$$

Coefficient of $\cos 3\psi_x$:

$$- \frac{1}{4} k \left(\frac{2}{\beta_x^y} \right)^{1/2} \beta^y_x \rho_x^{3/2} \hspace{1cm} (43)$$

Coefficient of $\sin(2\psi_y + \psi_x)$:

$$\left[\frac{1}{4} k \left(\frac{2}{\beta_y^x} \right)^{1/2} \left(1 - \frac{1}{4} \beta^y_x \right) - \frac{1}{24} \varepsilon \frac{A_{01}'}{p} A'_{01} \left(\beta^y_x \beta^y_x \left(\frac{2}{\beta_x^y} \right)^{1/2} \beta^y_x \left(2 \beta_x^y \right)^{1/2} \right) \right.

\left. + \frac{1}{12} \varepsilon \frac{A_{21} + 3kA_{11} + A_{01}''}{p} \left(2 \beta_x^y \right)^{1/2} \beta^y_x \rho_x^{1/2} \rho_y \right] \hspace{1cm} (44)$$

Coefficient of $\cos(2\psi_y + \psi_x)$:

$$\left[- \frac{1}{4} k \left(\frac{2}{\beta_y^x} \right)^{1/2} \beta^y_x + \frac{1}{12} \varepsilon \frac{A_{01}'}{p} A'_{01} \left(\beta^y_x \beta^y_x \left(\frac{2}{\beta_x^y} \right)^{1/2} \beta^y_x \left(2 \beta_x^y \right)^{1/2} \right) \right.

\left. - \frac{1}{12} \varepsilon \frac{A_{21} + 3kA_{11} + A_{01}''}{p} \left(2 \beta_x^y \right)^{1/2} \beta^y_x \rho_x^{1/2} \rho_y \right] \hspace{1cm} (45)$$

Coefficient of $\sin(2\psi_y - \psi_x)$:

$$\left[- \frac{1}{4} k \left(\frac{2}{\beta_y^x} \right)^{1/2} \left(1 - \frac{1}{4} \beta^y_x \right) + \frac{1}{24} \varepsilon \frac{A_{01}'}{p} A'_{01} \left(\beta^y_x \beta^y_x \left(\frac{2}{\beta_x^y} \right)^{1/2} \beta^y_x \left(2 \beta_x^y \right)^{1/2} \right) \right.

\left. - \frac{1}{12} \varepsilon \frac{A_{21} + 3kA_{11} + A_{01}''}{p} \left(2 \beta_x^y \right)^{1/2} \beta^y_x \rho_x^{1/2} \rho_y \right] \hspace{1cm} (46)$$

Coefficient of $\cos(2\psi_y - \psi_x)$:

$$\left[- \frac{1}{4} k \left(\frac{2}{\beta_y^x} \right)^{1/2} \beta^y_x - \frac{1}{12} \varepsilon \frac{A_{01}'}{p} A'_{01} \left(\beta^y_x \beta^y_x \beta^y_x \left(\frac{2}{\beta_x^y} \right)^{1/2} \beta^y_x + \beta^y_x \beta^y_x \beta^y_x \left(\frac{2}{\beta_x^y} \right)^{1/2} \beta^y_x \rho_x^{1/2} \rho_y \right] \hspace{1cm} (47)$$
FURTHER APPROXIMATIONS

At this stage several cases will be discussed. For each case one seeks a transformation to a rotating coordinate system for which the new hamiltonian becomes stationary\(^5,6,7,8\). Consider first the terms in \(K^{(3)}\) that vary as \(\sin \psi_x\) and \(\cos \psi_x\). A generator

\[F_2(\phi_x, J_x; s) = (\phi_x - mN) \frac{J_x}{R} \]

transforms a hamiltonian containing \(K^{(2)}\) and the restricted to

\[\Phi = \frac{\nu_y}{R} + \left(\frac{\nu_x - mN}{R} \right) J_x + \left[A(s) J_x^{3/2} + B(s) J_x^{1/2} \right] \]

\[\sin \left(\phi_x - \frac{1}{\beta_x} \right) ds \]

\[\cos \left(\phi_x - \frac{1}{\beta_x} \right) ds \]

in the variables \((\nu_x, J_x, \phi_y, J_y; s)\). Since the coefficients \(A, B, \text{ etc.}\) are periodic with a period of the circumference/\(N\), and since \(\int \left(\frac{\nu_x - mN}{R} - \frac{1}{\beta_x} \right) ds\) has zero average value, terms independent of \(s\) will arise from the cross combination of the terms in the Fourier expansion of the coefficients with the Fourier expansion of the phase modulated trigonometric terms. The lowest order stationary terms will arise from setting \(m = 1\). All other terms will oscillate rapidly with respect to \(s\) and may be considered to have zero average. Thus resonance effects are expected for \(\nu_x = N\). Since this condition has been avoided in the booster design, all effects from the terms that vary as \(\sin \psi_x\) and \(\cos \psi_x\) will be small. Hence these terms will be dropped from the hamiltonian.
EFFECT OF TERMS IN $\sin 3\psi_x$ and $\cos 3\psi_x$

In this case let the coefficients be ($\theta=s/R$):

$$A(\theta) = \left[\frac{1}{4} k \left(\frac{2}{\beta_x} \right)^{1/2} \left(1 - \frac{1}{4} \beta_x^2 \right)^2 - \frac{1}{24} \theta \right] (A_{21} + 2kA_{11}) (2\beta_x)^{3/2} R^{3/2} \tag{50}$$

and

$$B(\theta) = -\frac{1}{4} k \left(\frac{2}{\beta_x} \right)^{1/2} \beta_x R^{3/2}. \tag{51}$$

The hamiltonian is now taken to be

$$K' = v_x \rho_x + v_y \rho_y + \left[A(\theta) \sin 3\psi_x + B(\theta) \cos 3\psi_x \right] \rho_x^{3/2}, \tag{52}$$

where ρ_x and ρ_y are measured in units of R.

Transform to a rotating coordinate system $(\gamma_x, J_x; \gamma_y, J_y)$ using the generator

$$F_2(\phi_x, \phi_y, J_x, J_y; \theta) = (\phi_x - \frac{m}{3} N \theta) J_x + \phi_y J_y \tag{53}$$

and consider only the lowest order ($m = 1$).

$$K = (v_x - \frac{N}{3}) J_x + v_y J_y + \left[A(\theta) \sin 3\psi_x + B(\theta) \cos 3\psi_x \right] J_x^{3/2}, \tag{54}$$

where, for convenience

$$\psi_x = \gamma_x + \frac{N}{3} \theta - \int \left(\frac{\nu_y}{R} - \frac{1}{\beta_x} \right) ds. \tag{55}$$

Fourier analyse $A(\theta)$, $B(\theta)$, and $\int (\nu_x - \frac{1}{\beta_x}) ds$ remembering that the average value of the integral is zero. Thus, let

$$A(\theta) = A_0 + A_1 \cos N\theta + A_2 \sin N\theta + \ldots \tag{56}$$

$$B(\theta) = B_0 + B_1 \cos N\theta + B_2 \sin N\theta + \ldots \tag{57}$$
\[\int \left(\frac{\dot{v}_x}{R} - \frac{1}{\beta_x} \right) ds = P_1 \sin \theta + (\text{sine series only by choice of origin}) \]

By retaining only the lowest order terms, the Hamiltonian becomes

\[K = \left(v_x - \frac{N}{3} \right) J_x + v_y J_y + \left[(A_0 + A_1 \cos \theta + A_2 \sin \theta) \sin (3\gamma_x + \theta - 3P_1 \sin \theta) \right. \\
+ \left. (B_0 + B_1 \cos \theta + B_2 \sin \theta) \cos (3\gamma_x + \theta - 3P_1 \sin \theta) \right] J_x^{3/2} \]

Expand out to the two lowest orders in the phase flutter \(P_1 \), cross multiply and retain only the stationary terms. Then, if

\[A^2 = \left[A_0 J_1 (3P_1) + \frac{1}{2} (A_1 - B_2) J_0 (3P_1) + \frac{1}{2} (A_1 + B_2) J_2 (3P_1) \right]^2 \\
+ \left[B_0 J_1 (3P_1) + \frac{1}{2} (A_2 + B_1) J_0 (3P_1) - \frac{1}{2} (A_2 - B_1) J_2 (3P_1) \right]^2 \]

and a corresponding phase \(\alpha \) are constructed where \(J_0, J_1, \) and \(J_2 \) are Bessel functions, the Hamiltonian becomes

\[K = \left(v_x - \frac{N}{3} \right) J_x + v_y J_y - AJ_x^{3/2} \sin (3\gamma_x + \alpha) \]

Since the Hamiltonian does not contain \(\gamma_y \), the conjugate variable \(J_y \) is a constant of the motion. Hence, let

\[W = K - v_y J_y. \] Then

\[W = \left(v_x - \frac{N}{3} \right) J_x - AJ_x^{3/2} \sin (3\gamma_x + \alpha) \]

Since \(v_x \approx 6.75 \) and \(N = 24 \) for the booster, the interest in the above Hamiltonian is not in resonant growth of amplitude but rather in determining the amplitude variation of the betatron frequency.
To this end one further contact transformation is of value. If the hamiltonian can be made to contain only the action variables then the betatron frequencies are readily obtainable. Consider a transformation 6 from (γ_x, J_x) to (γ_x, J_x) using the generator

$$F_2(\gamma_x, J_x) = \gamma_x J_x - t J_x^{3/2} \cos(3\gamma_x + \alpha)$$

Then, if the term in t is considered small one has

$$\gamma_x = \gamma_x + \frac{3}{2} t J_x^{1/2} \cos(3\gamma_x + \alpha) + \ldots$$

$$J_x = J_x + 3t J_x^{3/2} \sin(3\gamma_x + \alpha) + \frac{27}{2} t^2 J_x^2 \cos^2(3\gamma_x + \alpha) + \ldots$$

Let

$$\epsilon_x = \nu_x - \frac{N}{3}$$

and, to eliminate the term in $J_x^{3/2}$, choose

$$t = \frac{A}{3\epsilon_x}.$$

Then

$$W = \epsilon_x J_x - \frac{3A^2}{4\epsilon_x} J_x^2 + \ldots$$

Of course the coefficient of J_x^2 will be changed by the presence of terms of this order in the original hamiltonian. This effect is estimated later. Thus an estimate of the variation of the betatron frequency with amplitude is

$$\Delta \nu_x = \frac{3W}{3J_x} = \epsilon_x - \frac{3A^2}{2\epsilon_x} J_x$$
Note that J_X may be found from the beam emittance

$$E_x = \iint d\pi x d\gamma x = R \iint dJ_x d\gamma x = 2 \pi R J_X .$$ \hfill (70)

EFFECT OF TERMS IN $\sin(2 \psi_x + \psi_y)$ AND $\cos(2 \psi_x + \psi_y)$

As in the previous case let the coefficients be

$$A(\theta) = \left[\frac{1}{4} k \left(2\beta_x \right)^{1/2} \gamma , \gamma - \frac{1}{4} \beta_y ^2 \right] - \frac{1}{24} \frac{e}{p} A_{01} \left(\frac{\gamma}{2} \right) \left(\beta_x \beta_y - \beta_y \beta_x \right)$$

$$+ \frac{1}{12} \frac{e}{p} (3A_{21} + 3kA_{11} + A''_{01}) \left(2\beta_x \right)^{1/2} \beta_y \right] R^{3/2} , \hfill (71)$$

$$B(\theta) = \left[- \frac{1}{4} k \left(2\beta_x \right)^{1/2} \gamma , \gamma + \frac{1}{12} \frac{e}{p} A_{01} \left(\frac{\gamma}{2} \right) \left(\beta_x \beta_y - \beta_y \beta_x \right) \right] R^{3/2} . \hfill (72)$$

The Hamiltonian is now taken to be

$$K' = v_x p_x + v_y p_y + \left[A(\theta) \sin(2 \psi_x + \psi_y) + B(\theta) \cos(2 \psi_x + \psi_y) \right] \rho_x^{1/2} \rho_y , \hfill (73)$$

where again ρ_x and ρ_y have been made dimensionless by measuring in units of R.

Transform to a rotating coordinate system $(\gamma_x, \gamma_y, J_x, J_y)$

using the generator

$$F_2(\phi_x, J_x, \phi_y, J_y ; \theta) = (\phi_x - aN \theta) J_x + (\phi_y - bN \theta) J_y . \hfill (74)$$

Then

$$K = (v_x - aN) J_x + (v_y - bN) J_y + \left[A(\theta) \sin(2 \psi_x + \psi_y) \right]$$

$$+ B(\theta) \cos(2 \psi_x + \psi_y) \right] J_x^{1/2} J_y , \hfill (75)$$

where, for convenience

$$\psi_x = \gamma_x + aN \theta - \left(\frac{v_x}{R} - \frac{1}{\beta_x} \right) ds ; \psi_y = \gamma_y + bN \theta - \left(\frac{v_y}{R} - \frac{1}{\beta_y} \right) ds . \hfill (76)$$
In order to make stationary terms possible in the cross combination of the Fourier analyzed $A(\theta)$ and $B(\theta)$ with the trigonometric terms
\[a + 2b = p \text{ (an integer)} \]
Consider only the lowest order term ($p=1$). As before Fourier analyze

\[A(\theta) = A_0 + A_1 \cos \theta + A_2 \sin \theta + \ldots \]
(78)

\[B(\theta) = B_0 + B_1 \cos \theta + B_2 \sin \theta + \ldots \]
(79)

\[\int \left(\frac{\gamma_x}{R} - \frac{1}{B_x} \right) \, ds = P_1 \sin \theta + \ldots \]
(80)

\[\int \left(\frac{\gamma_y}{R} - \frac{1}{B_y} \right) \, ds = -Q_1 \sin \theta + \ldots \]
(81)

The average value of each integral is zero and, in addition, the lattice is assumed to have the symmetry implied by the series expansion.

By retaining only the lowest order terms, the hamiltonian becomes

\[K = (\gamma_x - aN)J_x + (\gamma_y - bN)J_y \]

\[+ \left\{ (A_0 + A_1 \cos \theta + A_2 \sin \theta) \sin 2\gamma_y + \gamma_x + N\theta - (P_1 - 2Q_1) \sin \theta \right\} \]
(82)

\[+ (B_0 + B_1 \cos \theta + B_2 \sin \theta) \cos 2\gamma_y + \gamma_x + N\theta - (P_1 - 2Q_1) \sin \theta \cdot J_x^{1/2}J_y \]

Expand out to the two lowest orders in the phase flutters P_1 and Q_1, cross multiply and retain only the stationary terms.

Then, if

\[A^2 = A_0 J_1 (P_1 - 2Q_1) + \frac{1}{2} (A_1 - B_2) J_0 (P_1 - 2Q_1) + \frac{1}{2} (A_1 + B_2) J_2 (P_1 - 2Q_1)^2 \]

\[+ B_0 J_1 (P_1 - 2Q_1) + \frac{1}{2} (A_2 - B_1) J_0 (P_1 - 2Q_1) - \frac{1}{2} (A_2 + B_1) J_2 (P_1 - 2Q_1)^2 \]
(83)
and the corresponding phase α are formed, the Hamiltonian becomes

$$K = (v_x - aN) J_x + (v_y - bN) J_y - A J_x^{1/2} J_y \sin(2\gamma_x + \gamma_x + \alpha)$$ \hspace{1cm} (84)

Another constant of the motion may be constructed by noticing that in the variables (ξ, J_x, η, J_y) the generator

$$F_2 (\gamma_x, J_x; \gamma_y, J_y) = (2\gamma_x + \gamma_x) J_x + (2\gamma_y - \gamma_y) J_y$$ \hspace{1cm} (85)

transforms the Hamiltonian to

$$K = (v_x - aN) (J_x + J_y) + 2(v_y - bN) (J_x + J_y) - 2A (J_x - J_y)^{1/2} (J_x + J_y) \sin(\xi + \alpha).$$ \hspace{1cm} (86)

Since this Hamiltonian is independent of η, the corresponding conjugate variable J_y is a constant of the motion. Hence

$$J_y - 2J_x = 4J_y = \text{constant}$$ \hspace{1cm} (87)

Then, remembering that $a + 2b = 1$

$$K = \frac{1}{2} 2v_y - v_x - (2b-a)N - J_y + (2v_y + v_x - N) J_x - 2A (J_x - J_y)^{1/2} (J_x + J_y) \sin(\xi + \alpha).$$ \hspace{1cm} (88)

In order to determine the amplitude variation of the betatron tunes, transform to the variables (ξ, J_x) using the generator

$$F_2 (\xi, J_x) = \xi J_x - (J_x - J_y)^{1/2} (J_x + J_y) \cos(\xi + \alpha)$$ \hspace{1cm} (89)

which is used to eliminate the ξ variable in the transformed Hamiltonian to the order of accuracy being considered. The new Hamiltonian becomes

$$K = \frac{1}{2} 2v_y - v_x - (2b-a)N J_y + c J_x - A^2 (3J_x - J_y) (J_x + J_y) (1 - \cos \left[\frac{2(\xi + \alpha)}{2} \right]),$$ \hspace{1cm} (90)
where
\[\varepsilon = 2v_y + v_x - N, \] (91)

and the parameter \(t \) was chosen so that
\[\varepsilon t = 2A \] (92)

One further transformation would be necessary to remove the term in \(\cos[2(\xi + \alpha)] \). However, since this term is already of higher order its average value is a sufficient approximation. Thus
\[K = \left[2v_y - v_x - (2b-a)N \right] J_\eta + \varepsilon J_\xi - \frac{A^2}{\varepsilon} \left(2J_\xi - J_\eta \right) \left(J_\xi + J_\eta \right) \] (93)

Since only the action variables are contained in the Hamiltonian the betatron tunes are:
\[\Delta v_\xi = \frac{\partial K}{\partial J_\xi} = \varepsilon - 2 \frac{A^2}{\varepsilon} (3J_\xi + J_\eta) = 2\Delta v_y + \Delta v_x \] (94)
\[\Delta v_\eta = \frac{\partial K}{\partial J_\eta} = 2v_y - v_x - (2b-a)N - 2 \frac{A^2}{\varepsilon} (J_\xi - J_\eta) = 2\Delta v_y - \Delta v_x \] (95)

or rewriting such that the original linear tunes are \((v_{xo}, v_{yo}) \) then
\[v_x = v_{xo} - 2 \frac{A^2}{\varepsilon} (J_\xi + J_\eta) \] (96)
\[v_y = v_{yo} - 2 \frac{A^2}{\varepsilon} J_\xi \] (97)

where now
\[\varepsilon = 2v_{yo} + v_{xo} - N \] (98)
Note that a Poincaré invariant yields

\[E_x + E_y = \iint d\pi_x \, dx + \iint d\pi_y \, dy = R \iint dJ_x \, d_\xi + R \iint dJ_y \, d_\eta = 2\pi R (J_x + J_y) \]

and that the previous invariant

\[4J_\eta = J_y - 2J_x = \frac{E_y}{2R} - \frac{E_x}{\pi R} \]

Thus

\[\nu_x = \nu_{x_0} - \frac{A^2}{\pi \epsilon R} (E_x + E_y) \]
\[\nu_y = \nu_{y_0} - \frac{A^2}{\pi \epsilon R} \left(\frac{1}{2} E_x + \frac{5}{4} E_y \right) \]

EFFECT OF TERMS IN \(\sin(2\psi_y - \psi_x) \) AND \(\cos(2\psi_y - \psi_x) \)

The effectiveness of these terms depends on the magnitude of \(\epsilon = 2\nu_y - \nu_x - N \) which for the booster amounts to -16.9. This value is too large to produce much amplitude shift and, therefore, this case will not be considered.

NUMERICAL RESULTS FOR BOOSTER

Numerical input comes from the linear orbit program SYNCH which in turn utilizes the basic booster parameters. This input is tabulated in Tables (1 - 3).

Harmonic analysis of \(\nu_x - R/\beta_x \) and \(\nu_y - R/\beta_y \) was carried out using the betatron functions graphically interpolated to values at regular intervals. The program HANAC then yielded \(P_1 = .2212 \) and \(Q_1 = .2020 \).
Secondly, the values of the coefficients A and B in Equations (50 - 51) and Equations (71 - 72) were obtained at the longitudinal locations indicated in Table 3. To do this the hard edge effects were omitted with the intention of handling them separately. The program COEF evaluated these functions using the input from Tables (1 - 3).

The hard edge effects arose from the terms containing A_{01}', A_{01}''; and from A_{11}', A_{21}' when finite edge angles were employed to yield parallel end faces of the magnets. The terms in A_{01}' have a delta function contribution at the magnet ends. Similarly the term in A_{01}'' has a delta function derivative contribution at the magnet ends. To obtain the hard edge effects due to finite edge angles one replaces A_{11} in Eq. (50) and (71) by

$$A_{11} + A_{11}S - A_{01}'\tan\alpha(N\theta)\frac{N}{N'} \tag{103}$$

where $S\left(\frac{R}{N},N\theta - x\tan\alpha\right)$ is a step function. For A_{21} the replacement is

$$A_{21} + A_{21}S - \frac{2N}{R}A_{11}'\tan\alpha(N\theta) + A_{01}'\frac{N^2}{R^2}\tan^2\alpha''(N\theta). \tag{104}$$

Notice that the longitudinal variable used is $N\theta$ which increases 2π/sector. The edge angle is different for the
F and D magnets because of the different magnetic radii and is of opposite sign on each side of the magnet. The program COEF gives the contributions to the A and B coefficients that are proportional to the δ-function and to the δ'-function.

The program HANAB provides a fourier analysis of the discontinuous functions A and B in which the δ-function and δ'-function contributions have been removed. Since the COEF program provides the strengths of the δ-function and δ'-function contributions at each end of the four magnets in a sector, it is a relatively simple matter to find the harmonic coefficients of the sum of these contributions. In this manner the net harmonic coefficients as defined in Eqs. (56 - 57) and Eqs. (78 - 79) are determined.

Having determined the harmonic coefficients of lowest order, $P_1, Q_1, A_0, A_1, A_2, B_0, B_1, B_2$, the amplitudes A in Eq. (60) and in Eq. (83) may be found. These amplitudes together with the measure of the distance from the resonance ε and the beam emittances give the tune shifts. Table 4 gives the harmonic coefficients as outlined and Table 5 gives the tune shift results. Table 5 presents the third order tune shift due to the proximity of the operating point to the $3\nu_x = 24$ resonance and the $\nu_x + 2\nu_y = 24$ resonance.
NONRESONANT FOURTH ORDER TUNE SHIFT

As is already evident from the third order effects, it would be a rather tedious exercise to evaluate the fourth order effects with the same degree of detail as the third order. The dominant terms in the fourth order hamiltonian are

$$h^{(4)} = \frac{1}{24} \frac{e}{p} A_{31} (x^4 - 6x^2y^2 + y^4).$$ \hspace{1cm} (105)

After the action-angle transformation of Eq. (34), this becomes

$$K^{(4)} = \frac{k^3}{6} (\beta_x^2 \rho_x^2 \sin^4 \psi_x - 6\beta_x \beta_y \rho_x \rho_y \sin^2 \psi_x \sin^2 \psi_y$$

$$+ \beta_y^2 \rho_y^2 \sin^4 \psi_y),$$ \hspace{1cm} (106)

where Eq. (38) gives the expressions for ψ_x and ψ_y.

The fourth order hamiltonian has a nonresonant contribution given principally by the following average

\[K^{(4)} = \frac{1}{16} \left\langle k k_3 \beta x R^2 \right\rangle \text{Av.}_x J^2_x - \frac{1}{4} \left\langle k k_3 \beta x R^2 \right\rangle \text{Av.}_x J_x J_y + \frac{1}{16} \left\langle k k_3 \beta y R^2 \right\rangle \text{Av.}_y J^2_y \]

Letting

\[B = \frac{1}{16} \left\langle k k_3 \beta x R^2 \right\rangle \]

\[C = -\frac{1}{4} \left\langle k k_3 \beta x R^2 \right\rangle \]

\[D = \frac{1}{16} \left\langle k k_3 \beta y R^2 \right\rangle , \]

the nonresonant tune shift becomes

\[\delta \nu_x = 2BJ_x + CJ_y \]

\[\delta \nu_y = CJ_x + 2DJ_y \]

The program COEF evaluates the hamiltonian coefficients in Eq. (106) and the program HANAB produces the azimuthal average. Using

\[E_x = 2\pi RJ_x \quad E_y = 2\pi RJ_y \]

to evaluate \(J_x \) and \(J_y \) from the horizontal and vertical beam
emittances, one may evaluate the tune shifts. Table 6 gives these results. As may be seen the fourth order non-resonant effects are larger than the third order resonant effects transformed to fourth order.
REFERENCES

TABLE 1. GENERAL BOOSTER PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Radius (m)</td>
<td>75.4717</td>
</tr>
<tr>
<td>Number of Sectors</td>
<td>24</td>
</tr>
<tr>
<td>Radial Emittance of Beam (mm·mrad)</td>
<td>50π</td>
</tr>
<tr>
<td>Vertical Emittance of Beam (mm·mrad)</td>
<td>20π</td>
</tr>
<tr>
<td>Radial Betatron Oscillations per Revolution</td>
<td>6.7</td>
</tr>
<tr>
<td>Vertical Betatron Oscillations per Revolution</td>
<td>6.8</td>
</tr>
</tbody>
</table>

TABLE 2. BOOSTER MAGNET PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>F</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Radius (m)</td>
<td>40.8469</td>
<td>48.0341</td>
</tr>
<tr>
<td>Magnet Length (m)</td>
<td>2.8896</td>
<td>2.8896</td>
</tr>
<tr>
<td>Normalized Gradient (m⁻¹)</td>
<td>2.2147</td>
<td>-2.7719</td>
</tr>
<tr>
<td>Normalized Second Gradient (m⁻²)</td>
<td>.6079</td>
<td>-1.2560</td>
</tr>
<tr>
<td>Normalized Third Gradient (m⁻³)</td>
<td>-21.63</td>
<td>6.45</td>
</tr>
<tr>
<td>Magnet Location (radians, 2π/sector)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrance (first magnet)</td>
<td>.1908</td>
<td>1.2687</td>
</tr>
<tr>
<td>Exit (first magnet)</td>
<td>1.1097</td>
<td>2.1876</td>
</tr>
<tr>
<td>Entrance (second magnet)</td>
<td>5.1735</td>
<td>4.0957</td>
</tr>
<tr>
<td>Exit (second magnet)</td>
<td>6.0924</td>
<td>5.0146</td>
</tr>
<tr>
<td>Edge Angles (radians)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrance (first magnet)</td>
<td>.03536</td>
<td>.03007</td>
</tr>
<tr>
<td>Exit (first magnet)</td>
<td>-.03536</td>
<td>-.03007</td>
</tr>
<tr>
<td>Entrance (second magnet)</td>
<td>.03536</td>
<td>.03007</td>
</tr>
<tr>
<td>Exit (second magnet)</td>
<td>-.03536</td>
<td>-.03007</td>
</tr>
</tbody>
</table>
TABLE 3. ORBIT FUNCTIONS FROM SYNCH

Longitudinal Position (radians, 2π/sector)

<table>
<thead>
<tr>
<th></th>
<th>.0000</th>
<th>.0954</th>
<th>.1908</th>
<th>.1908</th>
<th>.4205</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.6502</td>
<td>.8800</td>
<td>1.1097</td>
<td>1.1097</td>
<td>1.1892</td>
</tr>
<tr>
<td></td>
<td>1.2687</td>
<td>1.2687</td>
<td>1.4984</td>
<td>1.7281</td>
<td>1.9579</td>
</tr>
<tr>
<td></td>
<td>2.1876</td>
<td>2.1876</td>
<td>2.6646</td>
<td>3.1416</td>
<td>3.6186</td>
</tr>
<tr>
<td></td>
<td>4.0957</td>
<td>4.0957</td>
<td>4.3253</td>
<td>4.5550</td>
<td>4.7848</td>
</tr>
<tr>
<td></td>
<td>5.0146</td>
<td>5.0146</td>
<td>5.0940</td>
<td>5.1735</td>
<td>5.1735</td>
</tr>
<tr>
<td></td>
<td>5.4032</td>
<td>5.6329</td>
<td>5.8627</td>
<td>6.0924</td>
<td>6.0924</td>
</tr>
<tr>
<td></td>
<td>6.1878</td>
<td>6.2832</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BETAX (m)

<table>
<thead>
<tr>
<th></th>
<th>33.6626</th>
<th>33.6653</th>
<th>33.6733</th>
<th>33.6733</th>
<th>32.8011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17.3038</td>
<td>17.3038</td>
<td>13.2161</td>
<td>10.4388</td>
<td>8.6365</td>
</tr>
<tr>
<td></td>
<td>7.5917</td>
<td>7.5917</td>
<td>6.4890</td>
<td>6.1214</td>
<td>6.4890</td>
</tr>
<tr>
<td></td>
<td>7.5917</td>
<td>7.5917</td>
<td>8.6365</td>
<td>10.4388</td>
<td>13.2161</td>
</tr>
<tr>
<td></td>
<td>17.3038</td>
<td>17.3038</td>
<td>19.0473</td>
<td>20.8814</td>
<td>20.8814</td>
</tr>
<tr>
<td></td>
<td>26.0209</td>
<td>30.1501</td>
<td>32.8011</td>
<td>33.6733</td>
<td>33.6733</td>
</tr>
<tr>
<td></td>
<td>33.6626</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALPHAX

<table>
<thead>
<tr>
<th></th>
<th>.0000</th>
<th>-.0089</th>
<th>-.0178</th>
<th>-.0470</th>
<th>1.2428</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.3918</td>
<td>3.2696</td>
<td>3.7768</td>
<td>3.7588</td>
<td>3.5776</td>
</tr>
<tr>
<td></td>
<td>3.3965</td>
<td>3.3857</td>
<td>2.3291</td>
<td>1.5537</td>
<td>.9660</td>
</tr>
<tr>
<td></td>
<td>.4948</td>
<td>.4901</td>
<td>.2450</td>
<td>.0000</td>
<td>-.2450</td>
</tr>
<tr>
<td></td>
<td>-.4901</td>
<td>-.4948</td>
<td>-.9660</td>
<td>-1.5537</td>
<td>-2.3291</td>
</tr>
<tr>
<td></td>
<td>-3.2696</td>
<td>-2.3918</td>
<td>-1.2428</td>
<td>.0470</td>
<td>.0178</td>
</tr>
<tr>
<td></td>
<td>.0089</td>
<td>.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3. ORBIT FUNCTIONS FROM SYNCH (cont.)

<table>
<thead>
<tr>
<th>BETAY (m)</th>
<th>5.2734</th>
<th>5.2905</th>
<th>5.3417</th>
<th>5.3417</th>
<th>5.7548</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7198</td>
<td>8.3470</td>
<td>10.8223</td>
<td>10.8223</td>
<td>11.8806</td>
<td></td>
</tr>
<tr>
<td>20.4567</td>
<td>20.4567</td>
<td>20.1193</td>
<td>20.0068</td>
<td>20.1193</td>
<td></td>
</tr>
<tr>
<td>12.9992</td>
<td>12.9992</td>
<td>11.8806</td>
<td>10.8223</td>
<td>10.8223</td>
<td></td>
</tr>
<tr>
<td>8.3470</td>
<td>6.7198</td>
<td>5.7548</td>
<td>5.3417</td>
<td>5.3417</td>
<td></td>
</tr>
<tr>
<td>5.2905</td>
<td>5.2734</td>
<td>5.2905</td>
<td>5.3417</td>
<td>5.7548</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALPHAY</th>
<th>.0000</th>
<th>-.0569</th>
<th>-.1338</th>
<th>-.1092</th>
<th>-.4680</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.8804</td>
<td>-1.3933</td>
<td>-2.0655</td>
<td>-2.0561</td>
<td>-2.1768</td>
<td></td>
</tr>
<tr>
<td>-2.2976</td>
<td>-2.2895</td>
<td>-1.9618</td>
<td>-1.4002</td>
<td>-.6716</td>
<td></td>
</tr>
<tr>
<td>.1371</td>
<td>.1500</td>
<td>.0750</td>
<td>.0000</td>
<td>-.0750</td>
<td></td>
</tr>
<tr>
<td>-.1500</td>
<td>-.1371</td>
<td>-.6716</td>
<td>1.4002</td>
<td>1.9618</td>
<td></td>
</tr>
<tr>
<td>2.2895</td>
<td>2.2976</td>
<td>2.1768</td>
<td>2.0561</td>
<td>2.0655</td>
<td></td>
</tr>
<tr>
<td>1.3933</td>
<td>.8804</td>
<td>.4680</td>
<td>.1092</td>
<td>.1138</td>
<td></td>
</tr>
<tr>
<td>.0569</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4. HARMONIC COEFFICIENTS OF A(θ) and B(θ)

<table>
<thead>
<tr>
<th>Resonance</th>
<th>(3νx = 24)</th>
<th>(νx + 2νy = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial Phase Flutter (P1)</td>
<td>.2212</td>
<td>.2212</td>
</tr>
<tr>
<td>Vertical Phase Flutter (Q1)</td>
<td>.2020</td>
<td>.2020</td>
</tr>
<tr>
<td>Average Coefficient (A0)</td>
<td>-47.44</td>
<td>59.25</td>
</tr>
<tr>
<td>Coefficient of cosNθ (A1)</td>
<td>-119.41</td>
<td>-94.18</td>
</tr>
<tr>
<td>Coefficient of sinNθ (A2)</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>Average Coefficient (B0)</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>Coefficient of cosNθ (B1)</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>Coefficient of sinNθ (B2)</td>
<td>4.65</td>
<td>-3.19</td>
</tr>
</tbody>
</table>
TABLE 5. THIRD ORDER RESONANT TUNE SHIFT

<table>
<thead>
<tr>
<th></th>
<th>$(3v_x = 24)$</th>
<th>$(v_x + 2v_y = 24)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude (A)</td>
<td>70.80</td>
<td>50.70</td>
</tr>
<tr>
<td>Distance from Resonance (E)</td>
<td>-1.3</td>
<td>-3.7</td>
</tr>
<tr>
<td>Radial Tune Shift</td>
<td>0.00113</td>
<td>0.00100</td>
</tr>
<tr>
<td>Vertical Tune Shift</td>
<td></td>
<td>0.00071</td>
</tr>
</tbody>
</table>

TABLE 6. FOURTH ORDER NONRESONANT TUNE SHIFT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude (B)</td>
<td>-46139</td>
</tr>
<tr>
<td>Amplitude (C)</td>
<td>33866</td>
</tr>
<tr>
<td>Amplitude (D)</td>
<td>1726</td>
</tr>
<tr>
<td>Radial Tune Shift</td>
<td>-0.0261</td>
</tr>
<tr>
<td>Vertical Tune Shift</td>
<td>0.0117</td>
</tr>
</tbody>
</table>