national accelerator laboratory g‘;;§85

b

TRANSFORMATIONS USEFUL IN LINEAR BETATRON THEORY
S. C. Snowdon

May 8, 1969

PURPOSE

To find a contact transformation in two degrees of
freedom that effects the Cdurant—Snyder transformation
simultaneously for both degrees of freedom. Subseguently,
to find a contact transformation that transforms to action-
angle variables in two degrees of freedom.
EQUATIONS OF MOTION

Betatron motion in the linear approximation with median

plane symmetry is uncoupled and given by:
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CONTACT TRANSFORMATION

Equations (1) and ({2) may be derived from the hamiltonian
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where (px, qx) and (py, qy) are canonically conjugate variables
for each degree of freedom.

To execute the first transformation, choose a linear trans-

formation represented by the following generator



F, (P, g, B+ g i )

b4 X

: (4)

where (Px, Qx) and (Py, Qy) are the new canonical momenta
and coordinates. Also BX and By are the periodic functions
of s introduced by Courant and Snyderl which possess the

properties:
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Equation (4} results in the cocordinate transformation
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and the new hamiltonian becomes
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To see that the customary equations of motion result,

one finds from Eg. (11)
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Then, if one introduces:
£ =L S %ﬁ , =i S %E (14)
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as is done by Courant and Snyderl, one has
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ACTION-ANGLE VARIABLES
Finally, one may remove the s-dependence of the hamiltonian

in Eg. (11) by transforming to the action-angle variables

(px, ¢x' py, ¢y). Consider first only one degree cf freedom.
Take the generator of the form

F(Q,¢:8) =3 0% £(4,8). (17)
Then

P = Qf,

o= Lo, (1)

and the new hamiltonian is
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Since the desire is to have W independent of s, choose

f(¢,s) such that

2
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The characteristics of Eg. {20) are sclutions of

ds _d¢ _ _ _df

B = CB oe2

which gives

¢-Cs = C, ; cot™t

ds
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A general scolution of Eg. (20) is then

£(9,s) = Cot |g(¢-Cs) + éggg )

where g is an arbitrary function. Any definite choice of g

(20)

(21)

(22)

(23)

selects a particular canonical set (p,¢) that is suitable as

an action-angle pair. To see that this is true, let (pl,¢l)

be the pair generated by Fl of Egs. (17) and (22). Transform

to the pair (p,,¢,) using the generator
2772 :

F2(92:¢1r5) = pzics + g(¢l_C5) -
Then
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and the new hamiltonian

U=2Cpyg'+ p2£? - Cgﬂ = Cp,y
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But, from Egs. (17) and (22}
Ro. .
P =-\j———.l Cos (g + J@% (28)
2o
0 =V/—-% sin (g +§d—§) , (29)
g .
which, using Egs. (25) and (26) becomes
P = y2p, Cos (¢,- Cs +&Sg§\ (30)
2 2 B/
- . _ ds
Q = ¢2p2 Sin (¢2 Cs + 5 B) . (31)
Thus there is no loss of generality in choosing
g = ¢ - Cs (32)

in Egq. (22).

The relation of the constant C to the tune v may be found
by noticing that, since the hamiltonian is

W=2Cp , (33)
d¢/ds = C or 2mv = CX circumference. If the circumference is

written as 27mR where R is the average radius

Thus
=

W o= R P - (35)

With two degrees of freedom the corresponding generator
becomes

_ 1,2 1,2

Fl(QX:¢x:er¢y:S)— 5 Q. Cot ¢X + 35 QY Cot wy, (36)

where
v

Ve = 95~ "% s +\S—§ ’ (37)
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Yy ds
= -_ +\S-—-—_
by =0, - %S 2 (38)
This generator results in the transformation
P, = V2p, Cos 4 _ , (39)
Qx = VZDX Sin wx ’ (40)
P = 2 C 4
= Si . 4
Qy f2py in wy (42)
and the new hamiltonian becomes
vV v
= =X L
W 7 Py + R py . (43)

In summary the hamiltonian representing linear betatron
motion with median plane symmetry has been successively trans-

formed with the generators F2 and Fl to yield the hamiltonian

in BEq. (43} which is independent of s. The overall transformation

of the momenta and coordinates is

/20, B

_ X .
px = \/EE_ (Cos wx + = Sin wx) 5 (44)
d, = VZBXDX Sin Yy s (45)
]
[2p g
—q _x _I 3
Py = gy (COS b, * % sin wy) , (46)
qy = ¢2Bypy Sin wy . (47)

The hamiltonian W, being independent of s is an invariant.
This invariant expressed in terms of the original canonical

momenta and coordinates is
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1
y = qy, Eg. (48) is seen to have the form

given by Courant and Snyderl. In fact, as pointed out by

T
Since P, = 9, and p

Courantz, the transfeormation from H to W which gives rise to
the momenta and coordinate transformation of Egs. 144) to (47)
may be accomplished by a single generator.
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