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ABSTRACT 

A discussion on the quantum mechanics of one- and many-particle systems on the 
quantum spheres is presented. The role of quantum group symmetry is fully exploited 
and developed. Generalized dynamical systems are introduced and discussed. We present 
the concept of generalized homogeneous spaces, and obtain the analogue of topological 
charges through inequivalent quantizations. The importance and origin of braiding in 
multi-particle systems is explained. r··· . --. '" -y • """, ".-*r ~·~-~·~ ...-t .... , 
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1. Introduction 

The concept of quantum groups has been introduced in physics from two different 
sets of motivations: one coming from integrable models ([9J,[171), and another from non­
commutative geometry ([39J,[27]). In non-commutative geometry it is desired to de6.ne 
properties that have been up to now adscribed to smooth manifolds to more general kinds 
of spaces ([6]). Special interest must then be assigned to generalizations of the concept of 
symmetry that apply to these new non-commutative "manifolds". In particular, since Lie 
groups are themselves manifolds, it is important to look at non-commutative generaliza­
tions of them, and such are the pseudogroups proposed by Woronowicz in [39J. 

From the point of view of physics, such a generalization might prove very important if 
it would provide a new form of regularization in which symmetries of the physical system 
under consideration were to be respected to a greater extent than is currently possible 
with the available methods. This idea of q-regularization (see [231) is not yet fully feasible, 
and toy models are needed where physical systems are deformed in the sense of quan­
tum groups. The integrable models approach has clearly vindicated quantum groups as 
symmetries of physical systems, the most famous example being statistical models such 
as, for instance, the x.xZ chain [32]. Also important is the quantum group symmetry 
underlying Kae-Moody algebras uncovered by Faddeev and colaborators [~J,[3]. A very in­
teresting discussion of quasi-quantum groups as symmetries of quantum theories has been 
presented by Mack and Schomerus in [2OJ. But not so many models are available where 
the non-commutative geometrical aspects come to the fore. 

In a previous paper ([10]), though, we have presented a set of one dimensional sta­
tistical models where the site variables take their values in the algebra of functions over 
a quantum sphere ([34]), thus providing a deformation of the one dimensional 0(3) sigma 
model. 

\Ve here proceed to continue this line of work by introducing a good set of definitions 
for the quantum mechanics of a particle moving on the quantum sphere. This system has 
been considered previously by Podles in [35] from the point of view of differential calculus. 
Our approach is totally different and far more direct, making use of ideas derived from 
C· quantization, and is easily generalizable to other non-commutative "manifolds" related 
to quantum groups. Furthermore, the nontriviality of systems consisting of two or more 
particles moving on the quantum sphere, even for "free" hamiltonians, first proposed in 
[36J, is seen in this context to be a natural consequence of the braiding of the tensor product 
of the algebra of functions on the quantum sphere, necessary if we are to keep within the 
braided category of Uq(su2)-modules ([24]), as was already presented in [10J. 

The main guiding principle of this paper has been to consider the quantum group as a 
physical symmetry of the model to be defined. This naturally leads us to the definition of 
generalized dynamical system, very closely related to that natural in the C·-algebra con­
text, and similar to the one discussed in [13] for actions of Kac algebras on von Neumann 
algebras. The study of the covariant representations of such generalized dynamical systems ~': 
provides us with the "kinematics" of a particle moving on a quantum sphere, through an cf 
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explicit cOnstruction of the Hilbert spaces related to such representations. A completely 
new develop~ent is the appearance of inequivalent quantizations, which, in the classical 
setting, correspond to topological charges. It is thus seen that, although topological in 
origin, phenomena like monopoles have an algebraic treatment that camell over to the de­
formed case. We then proceed to consider the dynamics given by introducing hamiltonians 
that commute with the quantum group symmetry. 

A next step is to consider multipartic1e systems. The construction of the relevant 
Hilbert Space!l follows immediately from having mantained a "quantum group" as the 
symmetry of the system, and we obtain braided Hilbert spaces. It has to be pointed out 
that this is the only place where the quasi triangularity of quantum groups comes into play. 
We present a discussion of the physical significance of this result. 

The organization of this paper is as follows. In order to make it as self-contained as 
possible, section two is a review of the relevant definitions and conventions of Hopf algebra 
theory, including a careful presentation of * structures. We also review the algebras of 
functions on the quantum spheres, and their represent ion theory, and the Hopf algebras 
Uq(SU2) and Funq(su2). In section three there is ~ short discussion of C·-dynamical sys­
tems and quantum mechanics on homogenous spaces, which naturally leads us to consider 
cross product algebras and to introduce the definition of generalized dynamical systems 
and their covariant representations. We propose a general construction for these repre­
sentations. We prove that for compact matrix pseudogroups with faithful Haar measure 
and corresponding coset spaces, the covariant representations induced by irreducible (co­
)representations of the invarlance subgroup are themselves irreducible. Section four ana­
lyzes what the dynamics must be if they are to preserve the Hopf algebra symmetry we 
start with, and extends this result to multiparticle systems, in the case of quasi triangular 
Hopf algebras. In section five we apply the general theory to the case of the quantum 
sphere, starting with the kinematics, going on to the dynamics and then proceeding to 
multiparticle hamiltonians. The connection·with Podleil' laplacians is studied. The paper 
is ended by a short conclusion where a number of remaining questions are posed. We 
concentrate throughout on the algebraic and physical concepts, and obviate some of the 
functional analytical and topological aspects. 
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2. Definitions and Conventions 

2.1. Hopi algebras 

A coalgebra C is a vector space (over 80mefield k), with an additional linear mapping 
A : C - C ®C, called the coproduct, which is coassociative, and a linear map, the counit, 
e: C - k. Coassociativity means that (A ®id) 0 A =(id® A) 0 A. The properties of the 
counit are that (e®id)oA(c) = (id®e)oA(c) = c. We shall in what follows use Sweedler's 
notation for the coproduct: A(c) is, for all c e C, a sum of terms of the form Ci(1) ® c;(2)' 

For compactness of the formulae, both the symbol for sum over i and the subindex i will 
be omitted, thus representing A(c) as c(I) ® C(2). Similarly for consecutive applications of 
the coproduct. 

In this notation, c0a880ciativity reads as follows: 

C(l)(l) ® C(1)(2) ® C(2) =C(l) ® c(

and the counit leads us to 

2)(1) ® c(2)(2) , (1) 

e(C(1»C(2) = E(C(2»C(1) = c. (2) 

Define also a coalgebra map as a map between coalgebras that respects the coalgebra 
structure, i.e., / is a coalgebra map if (f ® f) 0 A =A 0 /. 

A Hopf algebra, H, is an associative algebra (over a field k). with identity (the 
product being denoted by juxtaposition), and a coassociative coalgebra with counit, in a 
manner compatible with the algebra structure, and such that it possess an anti algebra and 
anticoalgebra morphism, S, called the antipode. The compatibility of algebra and coalge­
bra structures correspond to saying that the product and the unit are coalgebra maps, or, 
alternatively, that the coproduct and the counit are algebra maps. These compatibility 
conditions, and the properties of the antipode, are as follows: 

A(hg) =A(h)A(g), A(1) = 1 ® 1, E(hg) =E(h)E(g) , 
(3)S(h(1)h(2) =h(l)S(h(:l» =E(h)1, E(S(g)) =E(g). 

The elements 9 of H such that A(g) =9 ® 9 are called grouplike. Those elements p 
of H such that A(p) =p ® 1 + 1 ® p are called primitive. 

The usual examples of (cocommutative) Hopf algebras are the algebra of functions 
on a group, the group algebra, the universal enveloping Hopf algebra of a group, etc. For 
comprehensive accounts of the theory of Hopf algebras. see [38},[1}. 

The dual Hopf algebra HO of a Hopf algebra H is defined as the subspace of the dual of 
H such that for any element of HO its kernel contains an ideal of H of finite codimension. 
H H is finite dimensional, it is clear that the dual linear space can be endowed with 
the structure of a Hopf algebra in the obvious way: the multiplication in H induces the 
comultiplication in the dual, comultiplication in H leads to multiplication in the dual, etc. 
Similarly for HO in the infinite dimensional case. Denote the duality pairing by (,), and 
let h E H t U, v e HO, etc .. Then we have that (h, uv) = (h(1), U)(h(2), v), and so on. For 
details, see [24) or the references above. H H is a topological Hopf algebra [30), the dual 
can be endowed with topological Hopf algebra structure. 
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A very important element of the dual of a Hopf algebra, if it exists, is the integral. 
An element w of the dual H- is a (right) integral if for all I e H-, wI = (I,I}w. Left 
integrals are analogously defined. If an integral exists, it is unique up to normalization [1]. 

An important class of Hopf algebras is that of quasi triangular Hopf algebras. They 
have the additional property that there exists an element of H ® H, called n, such that 
~(h) = «r 0 ~)(h))n, with (~ ® l)n = n 13n23 and (1 ® ~)n = n13n12, where 
n 12 = n ® 1, and, if we write n = n(l) ® n(2), we have that n13 = n( 1) ® 1 ® n(2), and 
similarly for 'R.211 . 

2.2. --Hopi algebras 

A -~Hopfalgebra, H, is a Hopf algebra over the complex numberS with an additional 
internal operation, denoted -, such that, for h E H and A a complex number (X being 
complex conjugation), 

(Ah)* =Xh -, * 0 • = . 0 r 0 ( * ® *) = . 0 (* ® *) 0 r , 

(*®*)o~=~o*, e(h-)=e(h), *o*=id, (4) 

(S 0 *)2 =id, 

where r is the permutation, r(v®w) = w®v. It is clear that the - and the antipode do not 
in general commute. The dual Hopf algebra of a --Hopf algebra C8l'1 be given a - structure 
by (h-, v) = (h, (S(v»*), and viceversa. For any element I of the dual of a *-Hopf algebra 
H, the adjoint is defined as i e H*, such that (i, h) = (I, h*) for all h e H, and the 
statement above is that, for all u E HO, u= (Su)*. An important object to look at is the 
adjoint wof the (right) integral w, if the latter exists. It can be proved that, if w exists, 
for all I E H*, wI = (I,I)w. The uniqueness of the integral then forces the adjoint of the 
integral to be proportional to the integral. 

2.3. U,(su,) and Fun,(su2) 

The best known example of dually paired algebras is that of U,{su,) and Fun,(su,) 
(see [17][9][39][14] for their introduction and pairing). A good treatment of this pairing 
from the point of view of topology can be found in [301. Here we simply write the algebraic 
definitions, in order to set our conventions, and refer to the literature for a fuller discussion 
on the character of this pairing. 

Fun,(SU2) is defined as the associative algebra over the complex numbers, with iden­

tity, generated by {d:r}i,i=:t:1/2 under the relations (not writing the superindex) 

d++d+_ =qd+_d++, d++d_+ = qd-+4+, 4_d_+ =d_+d+_, 

4_d_- = qd__d+_, d_+d__ = qd__d_+, d__d++ - q-1d_+d+_ =1, (5) 

4+d_- -qd+_d_+ =1. 

Here, and in what follows, q is a real positive constant (this algebra could be defined for q 
any complex number, and, in fact, q being a root of unity is a specially important case, but 
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in order to make it into a·-algebra we have to require reality of q). The comultiplication 

is ~(d:r) = 'EI: d:£' ® dl?, the counit e(d!r) = Di;, and the antipode 

dl/' dl/2) (dl/2 _ -1 dl/2 ) ++ +- -- q +- (6)S ( II' II' = 1/2 II' .d_+ d__ -qd_+ d++ 

This algebra can be given an * structure that makes it into a *-Hopf algebra: 

(dI/2 )* =dl/' (i/2)* = _ d1/2 
++ --, +- q -+, (7) 

(dI/2 )* = _ -Idl/2 (dI/2)* = dl/2-+ q +-, -- ++. 

There are a set of elements {d~jh,j=-l...." such that ~(d~j) = 'EI: d:1: ® dij , for 1= 
1/2,1,3/2, ... These elements are the deformed analogue of the matrix element functions of 
the spin 1representation. They are constructed out of products of generators of Fun,(su2) 
by means of deformed Clebsch-Gordan coefficients. 

The algebra Fun,(su,) is dually paired to U,(SU2), which is defined to be the associa­
tive algebra over the complex numbers, with identity, generated by i+,i- and iz, under 
the relations 
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[iz,i:t:1 = ±i±, [i+,i-] = k - k- (8)q-q-' , 

where Ie = qj., 1e-1 = q-j•. These last elements do not belong to the algebra as we have 
defined it, but this can be solved by setting the definition in a topological framework. The 
other operations that make U,(SU2) into a ·-Hopf algebra are given by 

~{j±)=i±®k-1 +k®i:b ~(j=)=i:;01+10i=, 
S(j±) = _q=fli±, S(j:) = -i;, e(j±) = 0, e(j:;) = 0, 

(j±)* =i=f' U;:)* =iz. 

It is important to notice that U,(su,) is a quasi triangular Hopf algebra (when a suit­
able topological completion has been taken). The representation theory of this algebra 
follows that of U(sl,), the universal enveloping algebra of sl(2. e), which is the complexi­
fication of su" and each of the irreducible representations is labelled by i, the spin, with 
2i an integer. For instance, the spin one representation is, in ket notation, as follows: 

i+lll) = 0 i+II0) = [2)1/2111} i+ll- 1) = [2]1/2110) 

i_Ill) = [2]1/2110) i-I1O} = [2j1/211 ~ 1) i_II-I) = 0 (10) 

izllm) = mllm} 

where the square brackets indicate q-deformed numbers: [x} = (q% _ q-%)/(q _ q-l) 
The duality pairing is given for the generators of these *-Hopf algebras by 

(j+,d:j2) =Di+Dj_, (j-,d;r) =Di_Dj+, 

(11)(jz, d:r) =±Dij, (l,d:r) = e(d;r) =Dij, 

(h, I) = e(h) for all h E U,(SU2). 
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2.4. Hopf algebra. module algebras, module • -algebras 

Let H be a Hopf algebra. Let A be an associative algebra with identity, not necessarily 
commutative. We say that A is a (left) H -module algebra if there exists an action 0 of H 
on A (i.e., an algebra homomorphism from H into End(A», such that 

Ola(a' 6) = ola(l)(a) • 01a(2)(6), 01a(1) = e(h)l, (12) 

for all h E H, £1,6 E A. If A is a locally finite H-module, which means that dim(oH(a» < 
00 for all a E A (dimension over the field), then A will be an HO-comodule [1]. In the 
topological setting of [30], it can be seen that a locally finite continuous module of H will 
be a continuous comodule of the dual topological Hopf algebra. In what follows we shall 
assume that we are always dealing with locally finite H-modules. Let H be now a ·-Hopf 
algebra, and A an ·-algebra with identity. We say that A is a (left) unitary H-module 
• -algebra if it is a (left) H -module algebra, and we further have 

(~h(~»· = Q(SIa).(a·) , (13) 

for all h E H, £lEA. It is easy to check that this definition is consistent. Notice that it 
corresponds to the star structure on A being consistent with the comodule structure ~A 
that sends A to A ® HO, where HO is the dual Hopf algebra to H: 

~A 0 *A =(*A ® *Ho) 0 ~A. (14) 

In fact, the dual Hopf algebra HO to a • -Hopf algebra H, with the star structure 
defined above, and the action 0 of H on HO defined by Oh(V) = (h, V(2»)V(l), is a unitary 
H-module • -algebra. 

An important question is the study of the tensor product of • -algebras, of relevance, 
for instance, in the study of multiparticle systems. In particular, for an unitary H-module 
·-algebra A , with action 0, is it feasible to define a tensor product algebra A ® A such 
that it is also an unitary H-module ·-algebra? Let us just point out here that if H is 
quasitriangular, there exist a natural concept of braiding given by X. Let us now define 
the (braided!) product for A ® A by 

(a ® 6)· (c ® d) = a(01l(2)(C)) ® (01l(l)(6»d, (15) 

for all £1,6, c, dE A, where X, which belongs to H ®H, is written as X = XU) ® X(2) (See 
[22]). 

Then, if X satisfies 
'R. = (r 0 (* ® *»(X), (16) 

the involution *2 =r 0 ( * ® *) and the action 0 ' , given by 

Q~(a ® 6) =QA(I)(a) ® 01a(2)(6), (17) 

make A ® A an unitary H-module ·-algebra. 
For example, the quasi triangular ·-Hopf algebra U,(SU2) satisfies condition (16), and 

thus we have a way of constructing tensor products of unitary U,(su2)-module ·-algebras. 
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2.0. The quantum sphere Af .,. 

In the spirit of non-commutative geometry [6], a non-commutative analogue of the 
sphere will be given by the spectrum of a non-commutative C·-algebra, which is in some 
sense related to the commutative C·-algebra of continuous function on the (normal) sphere. 
This analogue of the sphere has been introduced by Podlei [34]. Our conventions will be 
somewhat different, but conespond to the same algebra. 

To justify the introduction of these algebras, observe first that, since the sphere is a 
compact space, the ring of polynomials over the coordinate functions is dense in the space 
of continuous functions, by the Stone-Weierstrass theorem. So, let us introduce the algebra 
A, which is an associative algebra, with identity, generated by the commuting coordinate 
functions 41+,41_ and 41" under the relation -41+41_ - 41_41+ + 41,41, =..\. ..\ will then 
be the radius squared. The sphere is a homogenous space: the group of rotations acts 
transitively on it. This translates into an action of SU(2) on the algebra A, given by the 
generators transforming under the spin one representation of SU(2), and extended to the 
rest of A as g(t/J.{) =g(t/J).g({) for 9 E SU(2), t/J,e E A. In fact, the sphere is the coset 
space SO(3)/SO(2), and the algebra of functions on the sphere is seen to be isomorphic to 
the subspace of functions on SU(2) invariant under the (right) action of U(I): Fun(S2)~ 
Fun(SU(2»U(l) . 

Now, we have an analogue of the group of rotations, as shown in sections 2.3 and 2.4. 
So we consider the associative but not commutative algebra with identity, generated by 
41+, 41_ and 41" under some (at most) quadratic relations, and such that the generators 
transform undef the action of U,(SU2) with the spin one representation, and the action of 
U,(SU2) on the rest of the algebra is determined by it being a module algebra, i.e., 

h(t/J.{) = h(1)(t/J).h(2)({) for h E U,(SU2) and t/J,e in the algebra. (18) 

(We have omitted writing the action 0 and represent it as above) Then the following 
relations are obtained (uniquely if we also impose that there be a sum of quadratic elements 
that is set to be equal to the unit): 

41+41, = q241,41+ +p4l+, 
41,41_ =q241_4I, +p4l_, 

(19)
41+41_ =41_41+ +(q _ q-l )41:41, +q-l p4l" 

_q-14l+4I_ - q4l_4I+ +41,41, =..\1. 

Here ..\ and p are real constants. An involution compatible with these relations can be 
defined by 

(4I:i:)* = _q:;:14l:;:, 41: =41" 1· =1, (20) 

extending to the whole algebra by (t/J{)* = e-t/J·. With this • -structure, it is a unitary 
U,(su2)-module ·-algebra. We shall call this algebra A f ,,., for given values of q and p, 
and we will refer to it as the quantum sphere algebra, or the algebra of functions over the 
quantum sphere, for these values of q and p. Notice that A",. is a locally finite U,(SU2) 
module, and therefore a comodule oCthe dual Hopf algebra. 
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It is useful to define the element ( = • .r + (71, where (7 = q-l pl(q - q-l), since 

• +( =q2(.+, (._ =q2._( . (21) 

Let us look at finite dimensional representations of this algebra A,.,.. Inspection of equa­
tions (19) suggests that we shall obtain one if we represent .+ by an upper triangular 
matrix with no diagonal entries, ._ by a lower triangular matrix, also with no diago­
nal entries, and • .r by a diagonal matrix. There will then exist a lowest weight vector 
In) such that "'(._ )In) = 0, and orthogonal vectors to this one are obtained by re­
peatedly applying "'(.+) to In). Since.+ is represented by an upper triangular matrix 
with no diagonal entries, there exists a number n such that "'(.+) =o. This n will la­
bel this representation. Let us call a" the eigenvalue of ( corresponding to In). Then 
"'«()"'(.~)In) =q-2ia,,"'(.~)ln). 

Then, the relations (19),the fact that In) is annihilated by ",(._), and the existence 
of a minimum n such that "'(.+) = 0 lead us to the following result: 

q,,-l[2](7 . 
a - ~.......;:.---

,,- q" +q-n' 
(22) 

, _ 2 _ q2 A(qn + q-" )2 
P - p" - [n + l][n - 1] . 

Defining (1m)}m=O.l....,"-l to be the orthonormal basis obtained from In) by repeated 
action of 11'(.+), the n-dimensional representation of A'l,,. (for p = PIt), "'n is given by 

(<t )/ ) _ (q-I A[2](n - m - 1Um + l]qn-2m-2) 1/21 1) 

1I'n + m - [n + l][n _ 1] m + , 


(23)(. )1 ) - _ (qA[2)[n - m](m]qn-2m) 1/2/ -1) 
1I'n - m - [n + l](n _ 1] m, 

",,,«()/m) = q-2ma"lm). 

It can be checked that this is indeed a representation of A",. ,when p is given by equation 
(22). Notice that "'" is a star representation: "'''(''''.) =",,,(,,,,)•. 

In order to find the other possible representations, consider an eigenvector 16) of ""() 
for some representation "', with eigenvalue 6. The nonn of "".+)16) will be 

-I 

11",(.+)16)11' =-[2] (q-26' -q-l[2](76+(72 - A) . (24) 

H A > (7' and 0 < q < 1, this forces the eigenvalues of 11'«() to be of the form q2"a*, for 

n = 0, 1, ..., and a* = q (Ip.(7 ± tV(q - q-I )2(72 + 4A). We see we obtain two infinite 

dimensional irreducible representations, '" *, such that the representatives of the generators 
of A",. act on the basis {In, ±)}".O.I.... as follows: 

",*«()In,±) = q2"a*ln,±), 

",*(.+)In,±) =q-l/'[2]-1/2/P(q,,,-la*)II/'ln -1,±), (25) 

,,,*(._)In,±) =_ql/'[2]1/'IP(q2ft+1a*)/1/2In + 1,±), 
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where we have defined 

P(x) = x2 - (2)(7z + (72 - A . 


For A > (72 we also have one-dimensional representations given by 11',.(() = 0 and 11',.(.+) = 
q-l/2[2]-1/2(A - (72)1/',)" where hi =1. 

H A = (7' we only get one irreducible infinite dimensional representation (since either 
4+ or a_ are equal to zero). H A < (72, the only possibilities of irreducible representations 
are the finite dimensional ones expressed above (always assuming that A> 0). 

A further important fact concerning the quantum sphere is the theorem of PodleS 
([34]) which expresses the fact that for A > (72 the algebra A'l.,. can be decomposed as 
the direct sum of U,(St.C2) modules of dimension 2n + 1, for n = 0,1, .... This theorem 
has been developed by Noumi and Mimachi, who obtain the spherical functions on the 
quantum spheres [31). The study of the representations of the quantum spheres was first 
undertaken and completed by PodleS [34). From his work and that of [29}, it can be seen 
that the norm closure of the adequate (faithful)"representation of the algebra of functions 
on a quantum sphere is a C·-algebra. . 

From the general construction presented in section 2.4, we see that .4.",. ® A'l," with 
braided product and involution .2 = T 0 (* ® *) is an unitary Uq( SU2 )-module • -algebra, 
as was announced in (10). 

The braiding is given in the usual way, 

'iI(a ® 6) = 'R.(2) (b) ® 'R.(1)(a) , (26) 

which, for the generators, corresponds to the Rll matrix of Uq(SU2)' 

3. Quantum Mechanics on Homogeneous Spaces 

3.1. C' -dynamical systems 

The concept of C·-dynamical system is the basis for the general algebraic theory of 
symmetries in quantum systems. It. has special relevance in the process of quantization on 
homogenous spaces [8], but also for time evolution in quantum statistical mechanics, and 
for the study of continuous symmetries ip algebraic quantum field theory [16], [5). 

A C·-dynamical system is defined as the triple (A, G,o), where A is a C·-algebra, 
G is a locally compact group, and 0 a strongly continuous representation of G on A. A 
covariant representation of a C·-dynamical system is a triple (?i, 11', p), where ?i is a 
Hilbert space, '" a non-degenerate representation of the C·-algebra A in ?i, and p is a 
strongly continuous unitary representation of G in ?i, such that for all 9 e G and all 
aeA, 

",(o,(a») =p(g)1I'(a)p(g-1). (27) 

A functional w on the algebra A is called G-invariant if 

w(o,(a» =weal for all 9 e G, a eA. (28) 
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One can use the Gel'fand-Naimark-Segal (ONS) construction to generate in a canonical 
fashion cyclic covariant representations for each G-invariant state, and the cyclic vector 
Ow is invariJUlt under p( G). 

The representation theoy of a- C"-dynamical system (A,G,o) is equivalent to the 
representation theory of the crossed product A ><IoC"(G). 

The relevance of C" -dynamical systems in the context of quantization of particles 
moving on homogeneous spaces lies in equation (27), which corresponds to the Heisenberg 
commutations relations, or, in the classical context, to the Poisson algebra structure on the 
phase space T"Q. Since, if the C"-algebra A is the algebra of functions on a configuration 
space Q which is a homogeneous space for the group G, the momentum observables will be 
given by the differentials of the group action, and thus the canonical commutation relations 
between momenta and coordinate functions will correspond to equation (27). From the 
point ofview of representation theory, equation (27) corresponds to the definition of system 
of imprimitivity introduced by Mackey [21]. 

3.2. Generalized dynamical systems 

Several extensions of the concept of C"-dynamical system are present in the literature. 
One first important instance is that of [121,[131, concentrated on the action of Kae algebras 
on von Neumann algebras. Another point of view, inspired by questions of duality and 
self duality in physics, has been that of Majid in [251,[26]. 

We now introduce our definition of generalized dynamical system: it consists of a 
triplet (A, U, 0), where A is a unital C"-algebra, not necessarily commutative, U a "-Hopf 
algebra, and a a left action of U on A, such that .4. is a locally finite unitary U-module 
"-algebra. Associated with this definition, we have that of a covariant representation of a 
generalized dynamical system, which is a triplet ('H, 11', p), where 'H is a Hilbert space, 11' is a 
nondegenerate representation of the C" -algebra A in 'H, and p is a Hermitian representation 
of U in 'H, and this triple satisfies 

1I'(0,,(a» = P(h(l) )11'( a)p(Sh(2»' (29) 

It must be noted that the elements of U will in general be represented by unbounded 
operators on the Hilbert space. This immediately produces problems of domains and 
selfadjointness. We shall demand that the domain of p(U), 1'(p), be dense in 'H. For 
p to be a representation it is also needed that Range(p(h» C 1'(p) for all h E U. A 
representation p of U will be Hermitian if 

p(h") C p(h)" . (30) 

That is, p(h)" is an extension of p(h*) (the domain of p(h)" contains that of p(h"), and 
they are equal on the lat ter). Equation (29) has to be understood as defined on the domain 
of p(U), or, alternatively, change the equal sign to an inclusion of the right hand side in 
the left hand side. 

We could relax the demand that A be a C"-algebra to it being an involutive algebra, 
and then ask for 11' to be Hermitian and the domain of 11' to be dense in 'H. The assumption 
that it be a C"-algebra is necessary to make contact with non-commutative geometric 
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notions, though. In fact, in what follows we shall mostly ignore the norm of A, and proceed 
in a purely algebraic manner. Similarly with the problems derived from unboundedness. 
The assumption the A be a unital algebra is in principle a restriction to "compact" spaces, 
but it can be lifted without too much difficulty. 

Let us look at the possible physical significance of such a definition. In fact, a little 
familiarity with the notion that the coproduct corresponds to the distribution of a quantum 
observable between two subsystems immediately gives us a clue as to its meaning. H we 
were to evaluate both sides of equation (29) between two vectors, the left hand side would 
entail a transformation of the physical system, whereas the right hand side corresponds to 
an equivalent transformation of the two vectors, leaving the system unchanged. That is to 
say, we are moving from an active to a passive transformation and viceversa. The reason 
for the appearance of the coproduct is now seen to correspond to the sharing out of the 
transformation between the two vectors. It follows from this analysis that we can correctly 
identify equation (29) as the main equation for the implementation of symmetries in a 
quantum system. 

3.3. Cross product algebras 

It is a well known fact that the irreducible covariant representations of a C" dynamical 
system are in one-one correspondence with the irreducible representations of the crossed 
product algebra A >::10 e"(G). But the definition of crossed product algebra is a standard 
construction in Hopf algebra theory [24}. Let A be aU-module algebra, with action o. 
The cross product algebra, A >::10 U is defined to be A ® U as the underlying vector space 
(the tensor product being over the complex numbers, of course), with product given by 

(a ® h)· (b ®g) =aO"(I)(b) ® h(2)9, (31) 

Let us now consider A to be a unitary U-module "-algebra. Then we can give A ><10 U a 
" structure, as follows: 

(a ® h)* =ala- (a") ® h"(2)' (32)
(1) 

With this • structure, A >::10 U is a "·algebra. It is also a U-comodule *-algebra, with 
comodule structure a given by 

a(a ® h) = a ® a(h) =a ® h(!) ® h(2) , (33) 

and the star structure obeys 
a 0 * = (* ® *u) 0 a. (34) 

Both A and U are "-subalgebras of this " algebra, with the obvious inclusion and restriction 
maps. 

It is now clear that, granted suf6.cient conditions on the domains of definition of the 
representing operators, the covariant representations of a generalized dynamical system 
(A, U, 0) will be equivalent to the representations of the crossed product algebra A >::10 U, 
as follows. To each covariant representation of the generalized dynamical system ('H, 11', p), 
assign the hermitian representation 11', of A >::Ia U on the same HUbert space, with domain 
1'(11',) =1>(11') n 1>(p) given by 

. 1I',(a ® h) =1I'(a)p(h) , (35) 
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which can be seen to be a -~algebra morphism, and, conversely, given a hermitian repr~ 
sentation of the crossed product algebra, we obtain a covariant representation of (A, U, a) 
on the same Hilbert space by restricting to the subalgebras A and U and domains 'D(p) = 
'D{1I'p) and 'D(1I') =n.EA'D{1I'p(a ® 1», possibly extending 1I'(A) to a closed self~adjoint ex~ 
tension (feasible if it is a C--algebra). The covariance of such a representation is ensured 
by the algebra structure of the crossed product algebra, and by its star structure. 

3.4. Constnzction of covariant representations 

We start with the archetypical example. Suppose there exists aU-invariant positive 
linear functional, L, on the unitary U-module --algebra A. U -invariance means that, for 
all h e U and all a e A, 

L(ala(a» = E{h)L(a). 

It can be used to define a hermitian form, 

(a, b) = L(a*b)., (36) 

and the standard GNS construction can be applied. The unitarity of the a:ction of U on 
A, and the invariance of the linear functional ensure that 

(a, ala (b») = L(a*.ala(b» = L«ala-(a»-.b) = (ala-(a), b). (37) 

This, together with the positivity of L, makes the ideal X of elements I of .4. such that 
L( i*i) = 0 invariant under the action of U. In this way, the Hilbert space ?to obtained by 
completing the pr~Hilbert space A/X (in fact, A//X, where A/ = {a e .4IL{a*a) < oo}) 
will carry a hermitian representation Po of U given by po(h)(a + X) = ala{a) + X, and a 
hermitian representation 11'0 of A given by 1I'0(b)(a + X) = ba + X. That this is a covariant 
representation can readily be seen: 

1I'0(QIa(a»(b +X) = ala(a).b +X = QIaCt){a).e{h(2»b +X = 

=aIaCl)(a).aIaC2)(l)S(IaC2)C2»(b) + X =ala(I)(a.as(Ia(2»{b» +X = (38) 

= Po(h(1»1I'0(a)po(S(h(2»)(b + X). 

In the case of the quantum sphere this representation corresponds to PodleS' L2(S!:) [341-. 
This idea can be extended as follows. Suppose there exists a unitary U-module -­

algebra B such that A is a - subalgebra of B, and such that there exists aU-invariant 
positive linear functional on it. Then the GNS construction will immediately give us a 
covariant representation of (A, U, a) (Note that the null space corresponding to the linear 
functional is invariant under the action of A and U). Now, A ><10 U is a U-module algebra 
if we define the action "'( 88 

"'(,,(a ® g) = ala(l)(a) ® h(2)gS(h(3»' (39) 

Even more, it is a unitary U-module * algebra, with the previously defined • structure. 
The remaining question is the existence of aU-invariant positive linear functional. But 
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for the interesting cases the Haar measure w of the quantum group is ad-invariant, and 
therefore, if there exists a linear positive U-invariant linear functional L on A, the linear 
functional L on A ><10 U defined by 

L(a ® h) = L(a)w(h) (40) 

is U-invariant. It is obvious that the GNS representation will be a reducible representation 
of A ><10 U (where we use the correspondence between covariant representations and 
represent ions of A ><10 U). For example, the previously defined Hilbert sp~e ?to is 
isomorphic to the invariant subspace obtained from A ® 1. 

3.5. Left regular representation 

Another, possibly more interesting representation, is obtained when we impose on 
the generalized dynamical system (A, U, a) the condition that there exists an *-algebra 
homomorphism from A to the dual Hopf algebra uo, which is also a (right) comodule 
morphism. If this map is also an injection we shall say that A is an algebra of functions 
on a generalized homogeneous space of U (or we shall call A a generalized homogeneous 
space of U). It can readily be seen that the algebras of functions on the quantum spheres 
are algebras of functions on generalized homogeneous spaces of U,,( su,). and the *-algebra 
and comodule homomorphism i from A,." to the dual Hopf algebra UO I which in this case 
is (essentially) the algebra of functions over the quantum group, Fun" ( SU,), is defined on 
the generators by ([34]) 

i('h) = L Cjd} A; , 
(41) 

Cl = qI/2[2]-1/2(.,\ - 0")1 /2, Co = -0'. C-l = _q-I C1 , 

where d}k are the q-analogues of the matrix element functions corresponding to the spin 
one representation (d. [39],[40] and section 2.3). 

Going back to the general case i: A --+ uo, we have already seen that UO is a unitary 
U-module --algebra, and if A is an algebra of functions on a generalized homogeneous 
space of U, there also exists an ~tion f3 of A on UO given by f3a{v) = i(a)v, with the 
product in UO denoted by juxtaposition. 

If we make the further assumption *at there exists an linear functional w on UO that 
is positive and invariant under the action of U .(which iminediately implies the existence of 
an U-invariant linear functional on A, L = w 0 i, and allows us to construct ?to as before), 
we can make use of the GNS construction once more, and the resulting Hilbert space, 
?t£, will carry a covariant representation of A ><10 U, with the representations 11'£ and 
P£ being induced by the respective actions on UO. That this representation satisfies the 
"imprimitivity" equation (29) is due to the crucial fact that i is a comodule and algebra 
morphism, and the hermiticity is due to it being a • morphism. It is clear that UO C V(pt} 
(when we assume that, for all v e uo, w( v), 06). A is represented by bounded operators 
on ?t, the usual operator norm being given by 

""'L(a)" =w{i(a*a». 
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Let us call this representation the left regular representation of A ><10 U, due to the 
obvious analogy to the left regular representations of groups and transfo~ation group C·­
algebras (d. [18][19]). If such a linear functional exists, and U is dense in (UO). (i.e., UO is 
proper), then it must be the integral on UO, and is therefore unique up to normalization. 

It would be desirable to know whether this representation is faithful and to desin­
tegrate it (d. [7]), preferably in an extremal way (i.e~, into irreducible representations). 
Since there exists an invariant linear subspace given by Im(i): i(A) is a right subcomodule 
of UO because·i is a comodule morphism. Therefore, i(A) is invariant under the action of 
U. 	It is also invariant under the action of A, because i is a ·-algebra morphism. 

But if such a positive linear invariant functional exists, it is a right integral for the Hopf 
algebra UO, and the existence of a right integral implies that UO is completely reducible as 
a right comodule of UO [1]. Consider then any subcomodule N of UO in the complement 
to i(A). It will be invariant under the action of U by its being a UO-comodule. As to the 
invariance under the action of i(A), if N is orthogonal to i(A) with respect to the interior 
product in the pre-Hilbert space UO, then it will remain orthogonal under the action of 
i(A). 	 . 

In general the elements of the Hopf algebra U will be represented by unbounded 
operators. This prevents us from being able to assert that the projection onto the closure 
of an invariant subspace is going to commute with the representatives of the algebra; see 
[33]. 

It is therefore not an easy task in general to carry out this decomposition. Let us first 
concentrate in a case we shall call the generalized coset homogeneous spaces. First, observe 
that the Hilbert space 'HL also carries the right regular representation of U, PR, which is 
given by the action a R of U on lIo: a~(v) = (S(h),V(I»)V(2)' The antipode in a ·-Hopf 
algebra is invertible, the inverse being given by $-1 = *0$0*, so the domain of PR, 'D(PR), 
is equal to the domain of PL. Suppose then that there exists a subalgebra of elements of 
U, called V, such that, for all k E V and all a E A, a:(i(a» = e(k)i(a). Then PR(V) 
commutes with 1rL(A) over its domain of definition, 'D(PR(V», as well as commuting with 
PL(U) over their common domain, 'which is obvious since PL(U) and PR(U) commute. The 
operators in PReY) are affiliated tq the von Neumann algebra M which is the commutant 
of the weak bounded commutant of PRey). Diagonalising a maximal abelian subalgebra 
of M then gives us a decomposition of 'HL into invariant subspaces. The extremality of 
this decomposition would have to be ascertained by inspection. 

This is completely analogous to the disintegration of the left regular representation 
for transformation group C·-algebras through a maximal abelian subalgebra of the von 
Neuman algebra generated by the right regular representation of the little group on the 
carrier Hilbert space, although in ~hat case the extremality of the decomposition is guar­
anteed once some technical assumptions are made. The reason for the name of generalized 
coset homogeneous spaces is that if such a subalgebra V does indeed exist, i(A) will be a 
subalgebra of the right V-invariant subalgebra of uo, (UO) v, as will become more apparent 
in the analysis of the left regular representation for the quantum spheres presented in the 
penultimate section of this paper. . 

The argument for the existence of inequivalent quantizations can also be presented 
in a purely algebraic manner if the maximal commutative subalgebra of U, V I such that 
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a~ commutes with PA, is generated by a set of grouplike and selfadjoint elements {Vi}. 
The counit of a grouplike element is the unit in the complex numbers, and its antipode 
is its inverse. Let tPm E UO be a common eigenvector to this commuting subalgebra, 
with eigenvalues Ai: a~(tPm) = AitPm. Ai must be different from 0, since if f/Jm is an 
eigenvector of Vi with such eigenvalue, f/Jm must also be an eigenvector of $(Vi) = viI, 
with eigenvalue ('\i)-I. Then a:(tP:') = (a:(Cld.(f/Jm»· = (Ai)-If/J:'. It is seen that 
f/Jm and f/Jp are orthogonal in the pre-Hilbert interior product if the corresponding sets of 
eigenvalues are different. By continuity, the completion of the subspace U::' of eigenvectors 
tPm with eigenvalues Ai will be orthogonal to the analogous U;, and they are invariant 
under the action of U and A. They are carrier spaces for inequivalent quantizations of the 
motion of a free particle on the generalized coset homogeneous space. 

3.6. Induced Representations 

The standard construction of induced representations is carried 0\"eI' to the case of Hopf 
aJ.gebras very easily, and immediately provides us with covariant representations. Recall 
that the different presentations of the representations induced by a compact subgroup H 
of a locally compact group G are equivalent to that obtained by constructing a Hilbert 
bundle over the manifold of the homogenous space G/ H, with typical fibre the Hilbert 
space ?tx carrying a representation of H, and with points the equivalence classes [x, f/Jxl, 
x E G, f/Jx E ?tx, under the equivalence relations (x, f/Jx) ...., (xh-1 , 1rx(h)f/Jx) for all hE H. 

Accordingly, consider a Hopf algebra U, with Hopf subalgebra V, and let A = (UO) v , 
the invariant subspace under the right action of V. Let N be a V left module. Then 
M = UO€JVN is a left A ><10 U module, with the action Pinduced by the left action fj 
of A ><10 U on UO: P(1I01)([r,n]) = [P(II0l)(r),n] for a E A,h E U,r E UO,n E N, and 
fj(1I01)(r) = i(a)r(l)(h, r(2»)' This is so because UO is a right V module algebra, the right 
and left actions of U on UO commute, and A is the invariant subalgebra under the right 
action of V. This definition of induced representations is a specialization of the standard 
construction for arbitrary algebras. 

The important imprimitivity theorem for locally compact groups suggests that an 
analogous result should hold for induced representations of Hopf algebras. Furthermore, 
the algebraic results concerning strong Morita equivalence of some C··algebras given by 
Rieft'e! ([37]) suggests a possible route. We conjecture that for a proper ·-Hopf algebra U 
with integral and a proper -·Hopfsubalgebra V, the algebras (UO) v ><I U and V are Morita 
equivalent (i.e., there exists an equivalence functor between the respective categories of left 
modules). No proof nor counterexample of this statement is known to the author at the 
time of writing, but see [11]. Some pointers in that direction have already been given in 
the previous subsection. 
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3.7. Compact Matrix Pseudogroups 

In the case of the compact matrix pseudogroups defined by Woronowicz [39), the previ­
ous exposition can be tightened up considerably. Let G be a compact matrix pseudogroup 
generated by (u) with dense subalgebra g, and faithful Haar measure w (We will not distin­
guish notationally the compact matrix pseudogroup (G, u) and the underlying C·-algebra 
G). We use ~,$, e to denote coproduct, coinverse and courut. We first have to translate the 
definition of covariant representation to this context. In order to do that, consider A a right 
G-comodule C· algebra, with coaction 'IiA= 'IiA(a) =E. ao®al E A®G. Then a covariant 
representation of the triple (G,A, 'IiA) will be a triple ('H, 11", 'li1(), where 'H is a Hilbert 
space, 11" is a representation of the C··algebra A on 'H, and 'li1( is a (right co-)representation 
of the compact matrix pseudogroup G, given by 'Ii1( "') = E""'0 ®"'I E 'H ® G, for", E 'H, 
and the following equation is satisfied for all a E A and all '" E 'H (omitting the sum signs 
for ease of notation): 

'li1( 11"(a)",) =11"(ao}VJo ® al "'I • (42) 

This equation corresponds to equation (29) when we move from actions to coact ions, 
and has the same physical significance. It is also equivalent if we only consider rational 
modules in equation (29). It can also be understood as meaning that the coaction is such 
that 11"(a)", transforms with the tensored (co-)representation. 

If there exists a C*·algebra morphism i: A - G, such that it also is a comodule 
morphism (i.e., (i ® 1) 0 'IiA = ~ 0 i», the right regular (co- )representation is immediately 
built as in the general case, with the GNS construction using the faithful Haar measure, 
and providing us with the Hilbert space 'HR. The representation of A is then given by the 
map i, and the (co-)representation of G by ~. It is immediately seen to satisfy equation 
(42). 

Let now H be a sub-(compact matrix pseudogroup) of G, with coproduct, coinverse 
and counit denoted by ~H, $ H, EH , and faithful Haar measure given by the restriction w H = 
WIH. Let iI be the set of equivalence classes of smooth irreducible (co- )representations of 
H. Let m, n ... be used to indicate the elements of iI. By Theorem 4.7 of [39J, 

H = (fj~-~icHm , (43) 

where Hm are the linear spans of the "matrix elements" u~ E g corresponding to a unitary 

representation in the class m E iI. There will exist a C*-algebra epimorphism j: G - H 
such that (j ® j) 0 ~ = ~H 0 j. Let Am be defined by 

Am = {a E g I«j ® 1) 0 ~)(a) C Hm ® G} . (44) 

In particular, Ao denotes the subspace of G invariant under the left coaction of H: 

Ao = {a E g I«j ® l)o~)(a) = 1H ®a}. (40) 

The restriction of the Haar measure to Am is a positive linear functional on Am, and 
although Am are not algebras, the GNS construction can be applied again to obtain a 
Hilbert space 'Hm, which will carry a covariant representation of (G, A, 'IiA), if A = Ao. 
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The (co-)representation map 'li1(1D is given by ~, because the coassociativity of the coprod­
uct guarantees that if a E Am, ~(a) = a( 1) ® a(2), then (a(1» C Am. The representation 
lI"m is given by lI"m(a)"'m = i(a)"'m, which is indeed a representation, since i(a)Am CAm 
because of ~ and j being algebra morphisms, and i an algebra map. The covariance is 
immediate by i being a comodule morphism and ~ an algebra morphism. 

Let us now prove that these Hilbert spaces 'Hm (which are clearly Hilbert subspaces of 
'HR) are orthogonal. For this purpose it is necessary to remember that the Haar measure 
has the property that 

(1 ®w) 0 ~ = (w ® 1) 0 ~ = 1w. (46) 

Correspondingly, (j ®w) 0 ~ = 1HW. Let us apply thiS last object to a*f3, where a E Am 
and fJ E An· 

1Hw(a*f3) =(j ®w)o~(a*fJ) = «1®w)o(j ® l)o~)(a* f3) = j(a(l)f3(1»w(a(2)f3(2» , (47) 

and this last expression will be different from zero only if 1 E HmHn, since (j(a(l)f3(1») C 

HmHn. But the orthogonality of the unitary representations with respect to the Haar 
measure wH implies that that will only happen if m = n. By continuity of the interior 
product defined by the Haar measure w, the orthogonality extends to 'Hm , 'Hn. 

Notice now that EBmEflAm = g, and, therefore, the completion with re$pect to the 
inner product given by the Haar measure, 'HR =EBmEli'Hm. 

We can now prove that every 'Hm carries an irreducible covariant representation of the 
triple (G, A, 'IiA), for A =Ao. That it carries a covariant representation has been proved, 
so only the irreducibility is left. First, suppose that there existed an invariant subspace of 
Am, let us call it B, and its linear complement, also an invariant subspace, will be called 
C. Observe that the epimorphism j sends Am into Hm, since ~(Hm) C Hm ® Hm. The 
image of B under j is then an invariant subspace of Hm. But the representation m is 
irreducible, so it must be that j(B) = Hmo We therefore have that j(C) = O. But the 
faithfulness of the Haar measure and (j ® w) 0 ~ =1HW imply that c = 0 for all c E C; 
therefore, B =Am. From the faithfulness of the Haar measure and the density of Am in 
'Hm, it can be seen that there will be no invariant subspace of 'Hm, as we had set out to 
prove. 
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S.B. Pbysical significance 

The question of the physical significance of a similar construction to the one presented 
above, but only for cocommutative Hopf algebras and homogeneous spaces, has been ad­
dressed by Landsman in a recent series of papers [18],[19], although not making use of 
the Hopf algebra language. It had been found some time ago [8} that the inequivalent 
irreducible covariant representations correspond to inequivalent quantizations of the free 
motion of a particle on a homogeneous space. Landsman adds to that the interpretation 
that they correspond to different topological charges of monopole or Aharonov-Bohm type. 
This goes hand in hand with the question of lifting the action of a group G on a homoge­
nous space GIH to the different principal fiber bundles with base space GIH and typical 
fiber H. Alternatively, with the ideas stemming from geometric quantization that inequiv­
alent quantizations correspond to inequivalent principal fibre bundles, which are tied up 
with the nontrivial topology of the base space, and correspond to topological charges. 

From this we can conclude that Qur construction is uncovering the "topology" of the 
non-commutative space underlying the C·~algebra A. Equivalently, it is pointing towards 
the existence of gauge theories ov~r these non-commutative "manifolds". This is keeping 
in line with the notion that defonning a manifold in a'sensible way will mantain most of 
its interesting properties. It is interesting at this point to refer to [4]. 

It was only to be expected that these inequivalent quantizations were to exist. The 
studies which have been carried out on cyclic homology of quantum groups ([15],[28)), 
which is the noncommutative analogue of De Rham cohomology [6], point out to their 
occurrence. In fact, in the case of quantum groups the main part of cyclic homology is 
carried by the maximal tori [15], which indicates maximality of the decomposition of the 
left regular representation of A »oqo U for the case of quantum groups, when the abelian 
subalgebra we are diagonalising is· the maximal torus T, and A. = (uo)T. 

We must point out, though, that the interpretation of these inequivalent quantizations 
as topological charges is very much connected with the correct introduction of a radial 
coordinate, or a corresponding "expansion" of configuration space, and the selection of the 
adequate Hamiltonian (18]. Neither of these tasks has been addressed here so far. The 
matter of the adequate Hamiltonian is taken up in the next section, but we shall not look 
into the addition of a radial coordinate, which would correspond to an understanding of 
the quantum spheres as embedded in an euclidean 3-dimensional quantum space, of the 
kind introduced by Manin [27J. 
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4. Dynamics and muitiparticie systems 

4.1. Tbe choice of a Hamiltonian 

The principal concept guiding the inception of the quantum sphere itself, and of the 
covariant representations introduced here, has been that ofmantaining the symmetry under 
the Hopf algebra U.(SU2)' Therefore, when looking for Hamiltonians that correspond to 
the free motion of a particle on the non-commutative spaces of which A is the algebra 
of functions, we have to look for operators acting on the Hilbert space that carries the 
particular irreducible covariant representation we are considering, such that they commute 
with the action of U on that Hilbert space. 

For a particular irreducible covariant representation (1T., 11', p) there might exist many 
more objects in the commutant of p(U) in the algebra of operators on 1T. than in the 
representation of the center of U, Z(U), but Z(U) is the natural place to look for objects 
whose representatives might be the adequate Hamiltonian. 

A further way of selecting among the different elements of Z(U) is to identify those 
that go over to the Laplace-Beltrami operator when the deformation is removed, i.n the 
case that A is a deformation of the algebra of functions on a homogeneous space and U is 
a "quantum group". 

If U is a quasi triangular Hopf algebra of quantized universal enveloping algebra type 
and corresponds to the Cartan matrix of a simple compact Lie algebra, the natural element 
to consider is the quadratic Casimir, which does indeed go over to the Laplace-Beltrami 
operator on homogeneous spaces, when the deformation parameter is removed. 

4.2. Multiparticle dynam,jcs 

So far we have only considered the motion of one particle on the non-commutative 
space Spec(A). In order to address the multiparticle dynamics, it will prove worthwhile 
to restrict ourselves to the case that U is a quasitriangular Hopf algebra. We have seen in 
section 2.5 that this allows for the definition of an action of U and an involution in A ® A, 
which, with the algebra structure given by the braiding, make it into a unitary U-module 
• -algebra. The analysis of the previous section then goes through, although substituting 
this algebra A®A for the algebra A. If we look at the zero chage sector, the invariant linear 
functional L has to be substituted for L2, by which is meant that L2(a®b) = L(4)L(0). It 
CBD be seen to be positive, faithful if L is faithful, and U-invariant. The interior product 
in A ® A is braided: 

(4 ® o,c ® d) =L2«a ® ot(c ® d» =L2(0·Q'R(2)(C) ®Q'R(t)(a·)d). (48) 

All this, which is of course adequate for the description of just two particles on non­
commutative space, CBD be extended to multiparticle dynamics, as long as the braiding is 
taken into account. 

It is necessary to introduce the braiding because the symmetry under the Hopf algebra 
must be preserved. This corresponds to being able to decompose total momenta (which 
are the generators of the Hopf algebra U acting on the configuration space algebra) into 
momenta for each one of the particles (i.e. the generators of U acting on each of the A 
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algebras). Consequently, the action of h, an element of U, on a®b, an element of A®A, has 
to be given by a,(a®b) =aAu,(a)®aA(2,(b). Additionally, in order to have "propagation" 
of the particles on the quantum sphere that preserves the Hopf algebra symmetry, it seems 
that the configuration space algebra has to be a U-module algebra. This is because such 
a propagation can be understood as taking place by maps of the form e -+ c ® e -+ e, 
where C is the configuration space algebra, analogously to dilations in Markov processes, 
etc. Then the symmetry has to be preserved under these maps, and the condition that e 
be aU-module algebra is suflicient for it. 

The unitarity, of course, is necessary for physical reasons too, since we want to under­
stand expectation values as probabilities. Putting all these elements together, we look for 
an algebra e such that it is equal to A ® A (for the two-particle case) as a linear space; 
that it is aU-module algebra, and such that the action of U on it is as given above. The 
braided product provides us with exactly those conditions. 

This gives us the "kinematics" of multiparticle systems. We have already discussed the 
introduction of dynamics for a single free particle. H, analogoUsly, we consider the dynamics 
for a system of free particles with no interaction term, we might expect triviality; but, as 
was already pointed out by Podlea [36], the braiding introduces a non trivial "exchange" 
between the particles. It must be pointed, however, that if the one-particle hamiltonian H 
commutes with the action of the symmetry Hopf algebra U, the braiding induces a mere 
twist on H ® 1. H the one particle hamiltonian does not commute with the symmetry Hopf 
algebra, then the braiding will act non-trivially, and even if there is no interaction term 
there will be interaction between particles due to the braiding. But only, we must insist, 
if the one particle hamiltonian is not U-invariant. 

We shall now see how this works in the particular example of the quantum spheres. 

5. Quantum Mechanics on Quantum Spheres 

5.1. Kinematics on Quantum Spberes 

We have already seen that the algebras At.,. are locally finite unitary U,(SU2 )-module 
*-algebras. It is then clear that (A,.,.,Ut(su2),a) is a generalized dynamical system. 
Furthermore, we have also established that Af ." are algebras of functions on generalized 
homogenous spaces of U,(SU2)' Since the work of Woronowicz [39}, it is well known that 
there exists an integral on Funt (SU2 ), the Haar measure of the quantum group. Let us 
first examine the induced positive invariant linear functional on At.,. for the case when 
p belongs to the discrete series, p". The representation 11';' is faithful, and the invariant 
functional turns out to be given by a deformed trace: 

,,-1 ,,-1 
L,,(,,) = q[n) L q-2"'(mI1l',,(")lm). (49) 

",.0 

This linear functional is faithful, and when the GNS construction is applied, we obtain 
an n2 dimensional vector space on which a covariant representation of (At.,., Ut (su2),a) 
for p =p" is defined. The finite dimensionality of the representation makes it perfectly well 
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behaved. The Hamiltonian can be written in (finite) matrix form. This is not so when we 
consider A ?! (12. Then the Hilbert space obtained is L'(At .,.). 

It is more interesting to look at the left regular representation. Consider the case 
A = (12. This corresponds to At.,. = Funt (SU,)U(l). Let us look at the left regular 
representation and its decomposition in irreducible subspaces. The injective *-algebra and 
comodule morphism i : Af ." -+ Funt (SU2 ) reduces to i«h) = -(ld~k' Consequently, let 
us look at elements of Fun,(SU,) such that PR(k)t/J", = q"'t/Jrn, for m an integer. Let Am 
denote the linear space of such elements. It can readily seen that it is invariant under the 
action of Ut(SU2), because PR(U(l» commutes with the left action of U,(SU2)' And it 
is also invariant under the action of At.". Moreover, it is clear that Arn is orthogonal to 
any other A, if m #: 1 (since w(ar(t/J;tP",» =w(t/J;tPrn) = q(rn-l)w(t/JitPrn), and therefore 
w("i""') = 0 if m #: I). So the completion of each A", in the Hilbert space norm gives rise 
to a Hilbert subspace 11(m) which carries a covariant representation 1rCrn), p(m) of A,.,. >cia 

U,(SU2). These (inequivalent) representations correspond to different quantizations of the 
motion of a free particle on the quantum sphere, and can be understood as "monopole 
charges". We have thus uncovered a topological property of the noncommutative object 
we have been calling the quantum sphere. 

The case A > (12 is somewhat more complicated, since the algebra of functions on 
the quantum sphere is no longer an invariant subalgebra of Fun,(SU2 ). Remember that 
there exists a *-algebra an comodule morphism i, \vith coefficients Cj. \Ve can produce 
inequivalent quantizations for this case as well, in the following way: choose two complex 
3-vectors orthogonal to Cj and to each other, called cj and c'j, such that when (12 tends 
to A we have that cj tends to -(lbj,l and c'J tends to -(lbj._l' Let t/J~ = E cjd}k and 
tPZ = E dJd}.. Let A' be the space spanned by the tP~ and by the action of Ut(SU2) 
and At.,. on this span. It can clearly be seen to be orthogonal to i(A), and, by its very 
definition, invariant under the action of At." ><Ia Ut(SU2). Similarly \vith A", ,These 
two invariant subspaces correspond to m = ±2 in, the previous case, and higher charge 
representations can also be built. 'We have then obtained inequivalent quantizations for 
this case that correspond to monopole charges as well. 

5.2. Dynamics on Quantum Spberes 

As has been discussed above, the natural element to consider is the quadratic Casimir 
element of Ut(SU2), et = i-i+ + (q - q-l)-'(qk2 - q - q-l + q-1k-2 ). This object, by 
its own definition, commutes with the elements of Ut (SU2), and is such that will be valued 
UHi +1] for the i-th representation of Ut(SU2). Consequently, we know its action on A,.I'" 
Since it commutes with all the operators in Ut(su,), including itself, and since the algebra 
At.,. has a PBW decomposition, with orthogonal basis given by the polynomials found 
in [311, we have a complete hamiltonian evolution for the charge 0 representation. But 
we also have it in general for any subspace of the left regular representation carrier space, 
since the algebra Fun,(SU2) is generated by the (deformed) matrix element functions of the 
different representations of Uf ( SU2). Thus the question of the spectrum of the Hamiltonian 
is completely settled. Notice in this respect that although two deformed laplacians had 
been proposed in [351, one is a function of the other. 
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6. 	Conclusion 

In this paper we have shown that the idea of inequivalent quantizations can be ex­
tended "to the motion of particles on non-commutative manifolds. TIns can be understood 
as the surfacing of "topological" properties of such non-commutative manifolds. It has 
been proved that non-trivial braiding induces non-trivial interactions between particles if 
the Hamiltonian is not invariant under the quantum group that induces the braiding. 

We have also defined the concept of generalized dynamical system, which extends the 
usual one. Since the idea of quantum group invariance has been the guiding principle 
in this, construction, the generalized dynamical systems we consider cap. be thought of as 
deformations of C·-dynamical systems, with broken symmetry that survives in a special 
(deformed) way. It is hoped that this will allow us to develop further the idea of q­
regularization. 

The particular case we have been looking at as a first non-trivial example has been the 
motion of particles on quantum spheres, and we have proved the existence of monopole-like 
charges in this situation, and how the braiding 'affects multiparticle systems. In order to 
make this monopole-like charges more like "the real thing", the embedding of quantum 
spheres in 3-dimensional quantum space has to be carned out. This is left for future work. 

The relationship between our construction and cyclic homology of quantum spaces 
is also matter of ongoing research. This connection will illuminate how to write down 
systematically "gauge" theories corresponding to quantum groups, thus carrying us closer 
to our goal of q-regularization. 
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