
UCDjII RPA 93-13 

Second Quantization of the Square-Root 


Klein-Gordon Operator, Microscopic 


Causality, Propagators, and Interactions. 


JOHN R. SMITH 

Physics Department) University of California) Davis 

Davis ) CA. 95616 

May 13, 1993 

Submitted to Physical Review D 



ABSTRACT 

The square-root Klein-Gordon operator, Jm 2 - \,72, IS a non-local operator 

with a natural scale inversely proportional to the mass (the Compton wavelength). 

The fact that there is a natural scale in the operator as well as the fact that the 

single particle theory for the Coulomb potential, V(r) = Ze 2 jr, yields a different 

eigenvalue spectrum from either the Dirac Hamiltonian or the Klein-Gordon Hamil

tonian indicates that this operator is truly distinct from either of the other two 

Hamiltonians (all three single-particle Hamiltonians have eigenspectra for the 1s 

states that converge at small atomic numbers, Z ---+ 0, but diverge from each other 

at large Z). We find several possible Hamiltonians associated with Jm 2 - \,72. 

Depending on the specific Hamiltonian, it is possible to satisfy the equations of 

motion with commutators or anticommutators. However, for the scalar case con

sidered, only the Hamiltonian that requires commutation rules has a stable vac

uum. V'Ve investigate microscopic causality for the commutator of the Hamiltonian 

density. Also we find that despite the non-local dependence of the energy den

sity on the field operators, the commutators of the physical observables vanish for 

space-like separations. This result extends the application of Pauli's 1 result to the 

non-local case. Pauli explicitly excluded Jm 2 - \7 2 because this operator acts non

locally in the coordinate space. We investigate the problems with applying minimal 

coupling to the square-root equation and why this method of interactions should 

be abandoned in favor of the Mandelstam representation (Lorentz invariance and 

gauge-invariance). We also compute the propagators for the scattering problem 

and investigate the solutions of the square-root equation in the Aharonov-Bohm 

problem. 
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1. Introduction 

There is much interest in applications of the square-root Klein-Gordon oper

ator, Jm 2 - \72 , to problems in quantum mechanics. The square-root operator 

2 
appears in applications of the Bethe-Salpeter equation to bound states of quarks 

and again in the general problem of binding in very strong fields ? The problem of 

4
the relativistic string (bosonic strings) also involves the square-root operator and 

therefore this problem is especially relevant to modern particle theory in a way 

that is different than the original context. 

Our motivation for studying this operator is that it is the natural extension 

of the classical energy function into quantum mechanics. The impact made by 

the non-local behavior of Jm2 - \72 on causality has been investigated 5 for wave 

packets in ordinary quantum mechanics and has led to a theorem regarding local

ization. We are particularly interested in causality questions that arise from the 

application of the procedure of second quantization. 

Jm

In section 2 we review the physical picture based on de Broglie waves and 

discuss some of the mathematical tools that can be used to define the action of 

2 - \72 on functions. Section 3 develops the second quantization of the equa

tion associated with Jm2 - \72 and examines the commutation relations of the 

observable quantities. In section 4 we investigate the commutation rules for the 

Klein-Gordon Hamiltonian density operator and the expectation value for this com

mutator for states in Fock-space . We see that for an arbitrary state in Fock-space 

the expectation value of the commutator does not vanish at space-like separation. 

In section 5 we consider the requirement of a stable vacuum and normal ordering. 

Section 6 derives the propagators for the 1-, 2-, and 3-dimensional problem in an 

infinite domain for both the time-dependent and stationary scattering problem. 
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Section 7 reviews minimal coupling and the difficulty with using minimal coupling 

in the square-root operator. Section 8 discusses the Mandlestam representation of 

interactions and the advantages of the Mandelstam representation over minimal 

coupling. Section 9 considers the scattering problem for the Aharonov-Bohm effect 

for the square-root equation in the presence of a finite magnetic flux confined to 

the z-axis. Section 10 extends the scalar square-root equation to the zero-mass 

spin-1/2 case. Section 11 briefly considers restricting vm2 - \)'2 to finite domains 

and the implications for the function spaces that vm2 - \)'2 acts upon. Section 12 

presents a summary and conclusions of the implications of vm2 - \)'2 on mlcro

scopic causality, minimal coupling, and interactions. 

2_ Relativistic de Broglie Waves 

Let us consider a scalar wave function describing a relativistic particle prop

agating through space. The form of the wave function for a particle of mass m , 

traveling along the x-direction is given by 

.1. _ Ae-i(wt-k.x)
'1/- , (1) 

where w = Vm2 + k2 is the energy, A is the amplitude, and k is the momentum. 

We note that the phase velocity is given by 

dx w 
Vphase = dt = k > 1, (2) 

and hence the phase velocity is always greater than the velocity of light. For 

freely propagating waves the phase is not observable and only modulations in the 

amplitude are observable. However, we can get modulations only by superimposing 
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waves with different frequencies and this leads us to consider wave packets. It is 

well known that the wave packets formed by such superpositions have amplitudes 

whose centers propagate at the group velocity. This is given by 

dw k 
Vgroup = - = < l. (3)

dk vm2 + k2 

The concept of causality that applies to the above simple example is that the 

significant information propagates with a velocity less than the speed of light. This 

satisfies the idea of classical causality. There has been no attempt to incorporate 

the quantum mechanical effects associated with the uncertainty principle. It is of 

some interest to consider what other types of causali ty constraints are consistent 

with the uncertainty principle of quantum mechanics~ but we will not go into this 

question any further. 

Let us examine the equation of motion that the above wave function satisfies. 

For a pure positive frequency we have 

(4) 

and for a superposition of frequencies the above equation holds for each frequency 

component. We can express the equation of motion for the general wave function 

as 

(5) 

If we set the mass to zero in Eq. (5) and interpret 'IjJ as a vector-valued function, 

then we arrive at a non-local representation of the photon wave equation~ 
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There are several techniques available to define the square-root Klein-Gordon 

operator seen on the Right-Hand-Side (RHS) of Eq. (5). We can use path integrals~ 

semi-groups of operators (functional calculus),
9 

the operator calculus,
10 

and also 

pseudodifferential operators. 
ll 

If one considers eigenfunctions of the modified Helmholtz operator 

(6) 

then it can be shown in the theory of functional analysis that 

(7) 

Hence if one uses a complete set of eigenfunctions one can use the set to define 

the action of .Jm2 - 'V2 on any function by projecting an arbitrary function onto 

the eigenfunctions and summing over all eigenfunctions. Such an approach can 

be illustrated explicitly with Fourier transforms, since the exponential functions 

involved are the prototype eigenfunctions for most operators. Fourier transforms 

are the basis of the theory of pseudodifferential operators. 

From the point of view of relativistic de Broglie waves, the most straightforward 

way to define the square-root is in terms of pseudodifferential operators via the 

Fourier transform . One obtains an integral representation of an operator as follows. 

Consider an operator p(x, D) where Di = -i8/8xi. The action of p(x, D) on a 

function 'IjJ is gi ven in terms of Fourier transforms as 

p(x, D)'IjJ (x) = (2~)n J J eik.xp(x, k)e- ik .y dnk 'IjJ (y) dny, (8) 
Rn Kn 

(Rn refers to n-dimensional Euclidean space and J(n refers to the corresponding 

Fourier transform space). In Eq. (8), p(x, k) is referred to as the symbol of p(x, D). 
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Symbols provide a very useful way to work with operators. We can use a mul

tiplicative calculus 12 instead of an operator calculus (i .e., operator inversion is 

represented by symbol division). Symbols essentially give a representation of the 

operator on phase space. This gives us a kernel function for the integral represen

tation defined by 

K(x,y) = (2~)n Jeik.xp(x,k)e-ik·Ydnk, (9) 

Kn 

and therefore 

p(x,D)'f(x) = JK(x,y)'f(y)dny. (10) 

Rn 

The operator, Jm2 - \72, is a fractional power of the modified Helmholtz op

erator (m2 - \72). H. Weyl13 grasped the significance of using integral kernels to 

represent the square-root operator and considered the relativistic problem. Weyl's 

idea of defining the operator corresponding to a symbol
14 

is very similar to the con

cept of modern pseudodifferential operators. Unfortunately Weyl did not develop 

a complete theory. The square-root operator approach to relativistic quantum me

chanics was subsequently abandoned and new approaches were tried leading to the 

Klein-Gordon equation and the Dirac equation. 

Pseudodifferential operators give us a representation of Jm2 - \72 acting on a 

function 'f as follows 
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(11 ) 

The kernel function in Eq. (11) has a singularity on the diagonal x = y and is a 

smooth function off the diagonal. The singularity on the diagonal is characteristic 

of pseudodifferential operators and is what makes them similar to local differential 

operators. It is called the pseudolocal property.IS In fact if the kernel were a finite 

linear combination of the derivatives of the 8-function then the operator p(x, D) 

would be a a differential operator. In this case we would be considering a purely 

local operator-a polynomial in the derivative operator. 

3. Second Quantization of the Square-Root Klein-Gordon Equation 

In order to proceed with the Quantum Field Theory (QFT), we note that Eq. 

(5) can be derived from the Lagrangian density 

(12) 

Variation with respect to 'lj;* produces Eq. (5). The Lagrangian in Eq. (12) is 

very similar to what one would obtain by second quantization of the Schrodinger 

equation,I6 but it has a non-local Lagrangian density. Variation with respect to 'lj; 
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results in the complex conjugate equation 

(13) 

The canonically conjugate field variable to 'I/; is given by 

(14) 

We can express the Lagrangian density in field-operator language as 

(15 ) 

where we replace '1/;* by 'I/; t to signify the transition from functions to field operators. 

The Hamiltonian density operator associated with the above Lagrangian is given 

by 

(16) 

In the above representation the Hamiltonian density is not symmetrized with 

respect to 'I/; and 'I/; t. It is possible to extend the Hamiltonian of Eq. (16) by 

symmetry considerations. For example one might consider the symmetric or anti-

symmetric combinations 

(17) 

(18) 

In order to investigate the canonical equations of motion we define anticommutators 
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and commutators 

(19) 

where the + sign gives the anticommutator and the - sign gives the commutator. 

From Eq. (19) we can solve for the products of the fields 

~(x)~t(x') = =j=~t(x')1,b(x) + [?j;(x),~t(x')l±, 
(20) 

~t(x')~(x) = =j=~(x)~t(x') ± [?j;(x),~t(x')l±. 

Commutation relations can be imposed at equal time and then extrapolated to ar

bitrary time differences using the time development of the field operators. Consider 

the equal-time commutation relations 

[~(x),~(x')l± = [~t(x),~t(x') l ± = 0, and 
(21 ) 

[~(x),~t(x')l± = 83 (x -x'). 

In Eq. (21) we can opt for either the + sign or the - sign in the commutator 

and then we must check to see if the canonical equations and microscopic causal

ity conditions are consistent with that choice. We will examine the Hamiltonian 

densities of Eq. (16), Eq. (17), and Eq. (18) to see which commutation relations 

are consistent with the canonical equations of motion. Using the first line of Eq. 

(21) the following list of equal-time commutation relations can be obtained 

[~(x),~t(Y)Jm2 - V~~(Y)l = [~(x),~t(Y )1±Jm2 - V~~(Y), 


[~(x)'?f;(Y)Jm2 - V~?f;t(Y)l = =j=?j;(y)Jm2 - V~[~(x),?f;t(Y)l±, • 


(22) 

[?f;t(x),?f;t(Y)Jm2 - V~~(Y)l = -</J1(Y)Jm2 - V~[~(Y),</Jt(x)l±, 

[~t(x),~(Y)Jm2 - v~~t(Y)l = ±[1l;(y),~t(x)1±Jm2 - v~~t(y). 
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The canonical equations of motion have the form 

.a?/;z8t = [?/; , H] , 
(23) 

i a~t = [?/; t , H] , 
where H(t) = J H(y, t) d3 y. We can insert Eq. (16), Eq. (17), or Eq. (18) into 

Eq. (23) and simplify the result by making use of Eq. (22) and the following 

. . 17 
adJOllltness property 

If the canonical equations, Eq. (23), are to be consistent with Eq. (5) and 

Eq. (13), then we obtain restrictions on the commutation relations between the 

field operators?/; and?/; t. If we consider the Hamiltonian density of Eq. (16), then 

using the commutation relations we obtain the result that 

[?/;(x),H] = J[?/;(x),?/;t(Y)]±Jm2 - \l~?/;(y)d3y, 

= J03(x - y)Jm2 - \l~?/;(y) d3y, (25) 

2= J m - \l~?/;(x). 
We also obtain 

[?/;t(x),H] = - J?/;t(Y)Jm2 - \l~[1/J(Y),1/Jt(x)]±d3y, 

(26) = - J?/;t(Y)Jm2 - \l~03(x - y)d3y, 

= -Jm2 - \l~?/;t(x). 

Hence we conclude that the canonical equations of motion associated with the 

Hamiltonian density of Eq. (16) are consistent with Eq. (5) and Eq. (13) indepen

dent of whether anticommutation or commutation relations are used in the second 
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quantization procedure. Let us denote the operator in the second term in Eq. (17) 

or Eq. (18) as HI (i.e., HI == 7j;Jm2 - 'V27j;t) . The commutation relations for HI 
• 

are 

[7j;(x),H I J = =F J7j;(Y)Jm2-'V~[7j;(x),7j;t(Y)1±d3y, 

(27)= =F J7j;(y)Jm2 - 'V~83(x - y) d3y, 

= =FJm2 - 'Vi7j;(x). 

and 

[7j;t(X),HIJ = ± J[7j;(y),7j;t(x)1±Jm2 - \1~7j;t(y)d3y, 

(28)= ± J83(x - y)Jm2 - 'V~7j;t(y) d3y, 

= ±Jm2 - 'Vi7j; t (x). 

In view of the sign dependence in the above equations we see that the Hamiltonian 

density Eq. (17) is consistent with Eq. (5) and Eq. (13) only if commutation 

relations are used in the second quantization. Also we note Eq. (18) is consistent 

with Eq. (5) and Eq. (13) only if anticommutation relations define the second 

quantization. We do not attempt at this point to decide between the different 

Hamiltonians so far considered. We simply note that it is possible to introduce 

Bosonic or Fermionic statistics by symmetrization. Also the Hamiltonian density 

in Eq . (16) is consistent with the basic equations of motion regardless of the type 

of statistics of the field operators. 

Let us explore the most general plane-wave states associated with the above 


canonical equations of motion. We expand the field operator into plane-wave states 
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that contain positive and negative frequencies 

<fJ(x t) = 1 J[a(k) ei(kox-wt) + bt(k) e-i(kox-wt)] d3 ko (29) 
, 12(271-)3

V K3 

Several things should be noted about the field operator in Eq. (29)0 First, 

it is not Hermitian because we are dealing with a complex field as opposed to a 

real field. Second, the normalization is different from that of the field associated 

with the Klein-Gordon equation. Specifically, notice that there is no factor of 

Wk = y'm2 + k 2 multiplying the (27r)3. Similarly we have 

Because Eq. (29) is a superposition of positive and negative frequencies care 

must be taken to construct Hamiltonian densities that are consistent with the 

equations of motion for both the positive and negative frequencies. Consider a 

field operator, X(x, t), related to <fJ(x, t) and given by 

x(x t) = _1=J[a(k) ei(kox-wt) - bt (k) e-i(kox-wt)] d3 k. (31) 
, y'2(27r)3 

K3 

X and <fJ form a doublet 18 of fields given by 

(32) 

The equations of motion are given by 

(33) 
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where 

(34) 

We can think of the above as a two-component formulation of the theory with each 

component being composed of mixtures of positive and negative frequencies. For 

purely positive frequencies the field has the form 

7j;+(x, t) 1 
(35)7j;(x, t) = [ 7j;+(x, t) 

and for purely negative frequency states the field has the form 

(36) 

The above equations of motion can be derived from the Lagrangian 

(37) 

with corre~ponding Hamiltonian given by 

(38) 

The above two-component formulation of the square-root equation theory can be 

reduced to the Klein-Gordon theory in the free-field case by making the following 

transformation on the field operators 

(39) 

• 
With this transformation the Hamiltonian in Eq. (38) becomes 

(40) 

which is clearly equivalent to the standard Klein-Gordon Hamiltonian density after 
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performing the standard integration by parts and ignoring the surface terms at 

infinity 

(41 ) 

Commutation relations between field operators can be related to commutation 

relations between the expansion coefficients a(k),at(k) and b(k),bl(k). We shall 

start with equal-time commutation relations 

[x(x),x(x')]± = [Xt(x),xt(x')]± = 0, 

[¢(x) ,¢(x')]± = [¢t(x) ,¢t(x')]± = 0, 

[X(x),Xt(x')]± = 0, (42) 

[¢(x),¢t(x' )]± = 0, and 

[X(x),¢I(x')]± = [¢(x),Xt(x')]± = 83(x - x'). 

Inserting the expansions for 'lj; (x, t) we obtain 

[a(k),a(k')]± = [at(k),at(k')]± = 0, 

[b(k)'b(k')]± = [bt(k),bl(k')]± = 0, 

[a(k) , b(k')]± = [a(k) , bt (k')]± = 0, 
(43) 

[a t ( k), b( k')1± = [a t ( k) , b t (k') 1± = 0, 

[a(k),at(k')]± = 83(k - k' ), and 

Using the above equal-time anticommutation/commutation rules we can calculate 

the values for arbitrary space-like or time-like separations. For notational purposes 
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let kx = k . x - wt. We obtain 

[x(x),4>t(x')l± = 2(2~)3 j [[a(k) , at(k')l±ei(kx-k'X') 

(44) 

[bt(k),b(k')l±e-i(kx-ex'J] d3 kd3 k' , 

which reduces to 

Except for the relative sign, observe that the second term in the above integral 

is just the complex conjugate of the first term. We examine the first term and 

integrate over the azimuthal and polar angles to obtain 

00 

_1_ (_~~) j e-it.Jm2+k2 cos(kr)dk. (46)
(271")2 r or 

o 

The integral in the above formula 19 can be evaluated to obtain 

= . I<1(mJr2+(it+E)2)

exp-tt.Jm2+k2 cos(kr) dk = lim m(it + E) , ( 47) 
j 0-->0 Jr2 + (it + E)2 


o 

where I<l (x) is a modified Bessel function . 

As one can see , for space-like separations one can take the limit in the above 

formula and derive the result that the RHS is purely imaginary for space-like .. 
separations. This means that the commutator [x( x), 4> t (x')J±, evaluated at space-

like separations, is the sum of a purely imaginary function and minus or plus it 's 

complex conjugate. Consequently the two terms on the RHS of Eq. (45) cancel 
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out entirely for space-like separations using commutation rules whereas the anti-

commutator does not vanish. For time-like separation we can analytically continue 

the result to imaginary arguments. Let us factor out -i and keep in mind that we 

have to take the E -+ 0 limit of 

Kl (-imJ-(it + E)2 - r2) 
im(it + E) . ( 48) 

J-(it + E)2 - r2 

By using the relationship Kv(x) = ~iv+l H~l)(ix), we can write the above result 

as 

(49) 

Now the H~l) are Hankel functions and contain real and Imagmary combina

tions of ordinary Bessel functions and Neumann functions. We have H~l)(x) = 

Jv ( x) + iNv ( x), where the ordinary Bessel function and Neumann function are real 

functions of real arguments in this case (i.e., the only imaginary quantity left is the 

i that multiplies the Neumann function). This allows us to finish the calculation 

of the commutator of the field operators at time-like separations by noticing that 

again the imaginary part of the first term will cancel the imaginary part of the 

second term in the commutator and we are left with 

(50) 

For completeness we consider a broader class of integrals that appear often in 

questions regarding microscopic causality 

(51) 
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When the two exponential functions in the integral have the same sign then the 

integral vanishes outside the lightcone. When there is a relative sign difference 

between the two exponential functions then their respective contributions do not 

cancel outside the lightcone. Therefore, for I;; (x), the even powers of Wk vanish 

when x is space-like and the odd powers do not. For 1;;(x), the odd powers of Wk 

vanish when x is space-like and the even powers do not. 

4. Commutators for the Hamiltonian Density Functions 

As a first consideration we explore the real Klein-Gordon Hamiltonian density 

3H=~J [7f2+(V~)2+m2~2] dx, (52) 

R3 

where ~(x) is the field operator and 7f == V t~ is the canonically conj ugate operator. 

Using the expansion of the field operators for the real Klein-Gordon field we obtain 

where Wk = .Jm2 + k2 and a( k) and at (k) are expansion operators that satisfy the 

following commutation relations 

(a(k),at(k')] = 83(k - k'), • 
(54) 

[a(k),a(k')] = (at(k),at(k')] = o. 

Let us follow Friedrichs in the evaluation of the Hamiltonian density. We have the 
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following relations 20 

Jf(x)vm2 - \]2g(X) d3 x = Jg(X)Vm2 - \]2 f(x) d3 x, 

J(Vm2 - \]2f(x))(Vm2 - \]2f(x))d3X = Jf(x)(m 2 - \]2)f(x)d3x, (55) 

-J f(x )\]2 f(x)) d3 x = J(V f(x))2 d3 x. 

Using the relations in Eq. (55) we can rewrite the Klein-Gordon Hamiltonian 

density operator as 

J[7r2+(V~)2+m2~2] d3 x= 


J[{ Vm2 - \]2~(x, t) - i7r(x, t)}{ Vm2 - \]2~(x, t) + i7r(x, t)} (56) 


+ i[(Vm2 - \]2~)7r - 7rVm2 - \]2~1] d3x. 

The last term on the RHS above has the following form based on the commutation 

relations 

i[(Vm2 - \]2~)7r -7rVm2 - \]2~1 = -Jm2 - \]28
3(x - x), 

(57) 

= -Jm2 - \]28(0). 

Therefore this term is an infinite c-number and can be associated with the so-called 

"zero-point energy." Since it is a c-number we need not concern ourselves with it in 

the calculation of the commutator for the Klein-Gordon Hamiltonian at different 

points. The remaining operator on the RHS of Eq. (56) is finite:
1 

Let us now 

compute the commutator of the Klein-Gordon Hamiltonian at different space-time 

points and explore the meaning of the commutator for different states in Fock

space. We first define some axillary fields that can be used to further reduce the 
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'1 . 22Hami toman 

(58) 

In terms of the operators that define 'I/; (x ) we have 

(59) 


The equal-time commutation relations for the A±(x) operators are 


[A-(x),A+(x')]_ = -83 (x - x'), 


[A+(x),A+(x')]_ = 0, (60) 


The finite operator part of the Klein-Gordon Hamiltonian can be expressed in 

terms of the A ± as follows 

(61) 


We can calculate the commutator 

[H(x), H(x')] = A+(x)vm2 - V~A-(x)A+(x')vm2 - V~,A-(X') 
(62) 

-A+(x')vm2 - V;,A-(x')A+(x)Vm2 - V~A-(x ) . 
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Using the above commutation rules we can expand the RHS of Eq. (62) into 

[1i(x),1i(x')] = 

A+(xh/m2 - V~ [A+(X')A-(X) + [A-(x), A+(x')l-] Jm2 - V;,A-(x') (63) 

-A+(x')Jm2 - V;, [A+(X)A-(X') + [A-(x), A+(x')J-] Jm2 - V~A-(x). 

Because 

(64) 

we have 

We can therefore factor out this c-number from the above product and cancel like 

operator terms by use of the commutation rules. We are left with 

[1i(x),1i(x')] = Jm2 - V~[A-(x) , A+(x')J

(66) 
. [A+(x)Jm2 - V~,A-(x') - A+(x')Jm2 - V~A-(X)]. 

Inserting the expansions for the A±(x) operators we are left with 

[1i(x),1i(x')] = (2!)3 Jm2 - V~[A-(x), A+(x')]_ 

(67). J J Vm2 + k2 [a(k')at(k)ei[kx'-k'x] - a(k')at(k)ei[kx-k'x'l] d3kd3 k'. 

Now we consider the matrix elements of this operator for the diagonal elements of 


Fock-space (i.e., no transitions between initial and final states), Wi = Wf = W. At 
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this point we note that the operator product a(k)at(e) acts diagonally for identical 

initial and final states and is related to the number operator, nk = at(k')a(k), in 

the occupation number representation for the Fock-space by the commutation rules. 

We have 

(68) 


Hence 

m 2 < wi [H(x), H(x')] IW > = (2:)3 V - \7~[A-(x), A+(:r')J

(69) .(i %t) J(1 + nJ.:) [e-ik(X-X') + eik(X-X')] d3 k. 

In the case of the vacuum state, IIlI >= 10 >, Eq. (62) would commute for space

like separation because we would have a time derivative of It(x - x') in Eq. (69) 

(i .e., nk = 0 for the vacuum). However if nk is non-zero then there would be only 

special cases that would have space-like commutativity of the Hamiltonian density 

(e.g. , uniform density nk = 1). Distributions that had only one state, IIlI >= Ik > , 

or thermal distributions 

00 

1 -n{3wnk = = L e (70)
ef3 w k - 1 

k 
' 

n=l 

where ,8 = 1/ kT is the Boltzmann factor for thermal distributions, \vould not have 

the uniformity required to yield commutativity at space-like separation. Hence we 

conclude that the Klein-Gordon Hamiltonian density does not in general commute 

at space-like separation. Integration of the nk term in Eq. (69) for a thermal 
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distribution yields 

ikx ]= f Je-n(JWk [e- ikx + e d3 k. (71 ) 
n=l 

~""' (nJ3 + it)m (J )= ~ J . J{l m r2 + (nJ3 + it)2 + cc. 
n=l r2+(nJ3+zt)2 

Taking the case when t = 0 we see that Eq. (71) does not vanish for r > O. Hence 

this example shows that the commutator of the Klein-Gordon Hamiltonian does 

not vanish in the presence of a thermal distribution at space-like intervals. 

Let us now consider the case of the observables associated with the field op

erators for the Hamiltonians we have explored in section 3. We make the as

sumption that the observables will be in the form of bilinear combinations of the 

field operators and their Hermitian conjugates. For example an observable asso

ciated with the operator Ox of the first type is of the form '!f;t(x)Ox'!f;(x). How

ever, there could be more general forms of observables of the second type such as 

Ox = '!f;t(x)Ox'!f;(x) ± '!f;(x)Ox'!f;t(x). The commutators of the observables can be 

written either in terms of commutators or anticommutators of the field operators. 

The choice depends on what was imposed in the second quantization (i.e., the 

equal-time commutation relations). The commutator of an observable of the first 

type can be written as 

[C\, Ox,] =Ox ['!f;( x), '!f; t(x')]±'!f;t (x )Ox,'!f;(x') 
(72) 

-Ox' ['!f;(x') , '!f; t (x )l±'!f; t (x')Ox'!f;(x). 

For operators 0 that satisfy the following symmetry condition 

(73) 
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we can factor these c-numbers out of the operator products. Because of the anti-

commutation/commutation laws the above reduces in the special case of operators 

that satisfy Eq. (73) to 

We conclude that any local Hermitian operator 0 will have an associated observable 

quantity that will satisfy microscopic causality because the commutators on the 

RHS of Eq. (74) vanish for space-like separations. In the case that 6 is a non-

local operator a weaker statement can still be made in some cases. It should be 

mentioned that one would have a similar situation in ordinary QFT if one were 

to consider observables associated with non-local operators. This problem is not 

apparent in local QFT, because all the observables are assumed to be associated 

with local Hermitian operators. Suppose 0 is the operator Jm2 - V2. Then by 

the adjointness property, Eq. (24), we can consider the region that contributes 

to the double integral of the commutator over all of x and Xl. In the case where 

Ox = Jm 2 - Vi, we have for the first term on the RHS of Eq. (72) 

J~t(x)O:[~(x)~t(x')l±o;~(X')d3xd3x' = 

(75)J~ t (x )O:[~(x), ~ t (xl)l±~~(X')d3xd3x'. 

The arrows indicate the direction in which the operator is acting. Because of the 

form of the commutator function, we see that it is a function of (x - Xl) and 

that the Jm 2 - 'Vi operator acting on x in the commutator produces the same 

effect as - V;, acting on the Xl argument. Hence the two operations ofJm 2 

Jm 2 - V2 combine and give the same result as the modified Helmholtz operator 
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(m 2 - \7 2) which is a local operator. Since the commutators vanish for space-like 

separations, the integrand will also vanish for space-like separations (the modified 

Helmholtz operator will not change this behavior). Therefore, only the time-like 

region (i.e., (x - X')2 > 0) will contribute to the integral. This is also true for 

the second term on the RHS of Eq. (74). Hence we arrive at a weaker form of 

microscopic causality in the case of the observable quantity associated with the non

local operator Jm 2 - \7 2 , namely a case in which the integral of the commutator 

over both x and x' (spacial integrals) can be evaluated using only the time-like 

regIOn. 

Let us also consider an observable of the first type constructed from the Hamil

tonian density associated with the general field operator in Eq. (29) 

(76) 

In order to compute the commutator for the above operator function we define the 

following commutators 

A1(x,x') == [x t (x))m2 - \7ix(x),xt (x'))m2 - \7;/x(x')] , 

A2(X,X') == [x t (x))m2 - \7ix(x)L</JT(x'))m2 - \7;/</J(x')] , 
(77) 

A3(x,x') == [</J t (x))m2 - \7i</J(x),xt (x'h/m2 - \7;/x(x')] ) 

A 4 (x,x') == [</Jt(x)Vm2 - \7~</J(x)'</Jt(x')vm2 - \7;/</J(x')] 

The commutator, [H(x), H(x')] can be written as 

H(x), H(x')] = A1(x,x') + A2(X,X') + A3(X,X') + A4 (x,x'). (78) 

Evaluating these expressions we obtain (assuming commutation rules for the field 
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operators as required by Eq. (45) and microscopic causality) 

A 1(x,x') = I1(x,x') [x t (x)Jm 2 - V';,X(x') + xt (x')Jm 2 - V'~X(X)] , 

A2(x,x') = It(x,x') [x t(x)Jm2 - V';,4>(x') - 4>t(x')Jm2 - V'~X(X)] J 

(79) 

A 3(x,x') = It(x,x') [4>t(x)Jm2 - V';,X(X') - xt (x')Jm2 - V'~4>(X)] , 

A 4(x,x') = I1(x,x') [4>t(x)Jm2 - V';,4>(x') + 4>t(x')Jm2 - V'~4>(X)] . 

Since A 1 (x,x') and A4 (x,x') are both multiplied by I1(x,x'), they both vanish for 

space-like x - x'. The sum of A2(X,X') + A3(X,X') evaluated between Fock states 

I\II > yields 

(80) 

(2:)3 It(x,x') JJm2+k2(1+nk+mk) [eik(X-X')_e-ik(X-X')] d3 k, 

which does not vanish outside the lightcone unless nk and mk are constants. There

fore as with the Klein-Gordon Hamiltonian density the above Hamiltonian density 

does not vanish unless special conditions hold true (i.e., I\II >= 10 >, or nk and mk 

are constants). 
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5. Normal Ordering and Vacuum Stability 

By USIng the adjointness property of vm2 - \72 and also the commutation 

rules, we can derive 

Also 

(81) 

Hence: H+ : has non-zero expectation values when the fields are quantized with 

commutators and: H_ has non-zero expectation values when the field operators 

satisfy anti-commutation rules. However, only: H+ : has a stable vacuum (i.e., 

the vacuum is the minimum energy state). Hence we can rule out: H_ : on the 

physical grounds that it does not possess a stable vacuum and the associated field 

operators violate microscopic causality as seen in Eq. (45). 

6. Propagation 

6.1. TIME-DEPENDENT I-DIMENSIONAL PROPAGATOR 

Consider the equation 

(83) 


The propagator for the above problem satisfies the following equation 

(84) 

Let us define the following operator (understood to act in the appropriate dimen
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sional space for the problem at hand) 

(85) 


We can multiply both sides of the above equation by 

} ~ \.  - ['(3 [)- ~ [)t + J 2 [)2]m - [)x2 (86) 

to obtain 

[ -
[)2 [)2
[)t 2 + [)x 2 - m 

2] ('
G x - x ) = 

21<_8 (x -
I 

x ), (87) 

The operator on the LHS is the Klein-Gordon operator and we can invert the 

operator using contour integration such that positive frequencies propagate forward 

in time and negative frequencies propagate backwards in time, We obtain the 

following propagator for the I-dimensional problem for positive frequencies 

t> xl 
x> t 

(88) 

For negative frequencies we obtain 

~H~1)(mJt2 - x 2) 
t > xlG- ( x - x 

I 

) = - ( 
Z 

)21<- (89)
2 271" [ - iKo(mJx2 - t 2) x> t 
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6.2. STATIONARY I-DIMENSIONAL PROPAGATOR 

In the case of the steady-state scattering problem the time-independent prop

agator is the Fourier-Transform of the time-dependent propagator with respect to 

the time coordinate. It can also be calculated directly as follows 

+co 

J dp 
(90) 

-co 

Performing the contour integration we obtain the following result for outgoing and 

. . 
mcommg waves 

(91 ) 

where 0 and i refer to outgoing and incoming respectively and the ± refers to the 

2sign of the frequency w. Also p is the relativistic momentum, p = Vw 2 - m . 

6.3. TIME-DEPENDENT 2-DIMENSIONAL PROPAGATOR 

In this case we have the same relationship between the propagator for the 

square-root equatlon and the Klein-Gordon propagator as above. The time depen

dent propagator has the form 

It I > Ixl 
(92) 

Ixl> It I 
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For negative frequencies we obtain 

It I > Ixl 
-z 

(93)G_(x - x') = -(-)I<_
2 211" 

-z Ixl > It I 

6.4. STATIONARY 2-DIMENSIONAL PROPAGATOR 

In the 2-dimensional case, we find the Greens' function for the stationary scat

tering problem to be 

G±w(p) = -i(l ± f3)Vm2 + p2H61)(pp), 
(94) 

G±w(p) = i(l ± f3)Vm 2 + p2H62) (pp). 

where o/i refer to outgoing/incoming cylindrical waves respectively, the ± refers 

2to the sign of the frequency w, and p = vw2 - m . 

6 .5 . TIME-DEPENDENT 3-DIMENSIONAL PROPAGATOR 

In the 3-dimensional case we simply note the method used to invert the Klein

Gordon operator and find 

(95) 


where GF(X) is the Feynman propagator for the Klein-Gordon equation. 
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6.6. STATIONARY 3-DIMENSIONAL PROPAGATOR 

The 3-dimensional Green's functions for the stationary scattering problem are 

given by 

(96) 

where o/i refer to outgoing/incoming spherical waves respectively, the ± refers to 

the sign of the frequency w, and p = y'w2 - m 2. 

7. Breakdown of Minimal Coupling 

Let 	h(k) = F[h(x)] represent the Fourier-transform operator 

h(k) = F[h(x)] = 13/2 Je-ikoXh(x) d3x. (97)
(27f ) 

Then 

(98) 

Consider multiplying 'ljJ by a phase that is a function of position. 

'ljJ'(x, t) = exp{ieB(x)}'ljJ(x, t). (99) 

Let f(x) = exp{ ieB(x)} and consider 
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ikJm2 - V2 'IjJ'(X, t) = (2~)3 Je .xj(k) Jei~.x Jm2 + (k + 02~(C t)d3~d3 k. 

(101) 

Jm2-V2'IjJI(x,t) = (27r~3/2 Jeik.Xj(k)Vm2 + (k-i9)'2'IjJ(x,t)d3k. (102) 

The square-root operator therefore picks up a convolution oyer the wave-number 

in the expansion of the function f(x) (i.e., we operate with a shifted square-root 

operator on 'IjJ(x, t) and integrate the shifted operator weighted by j(k). This is 

essentially an eigenvalue expansion of f(x) over the complete set of plane-waves. 

Notice that the gradient of f(x) does not enter directly into the square-root op

eration. Therefore in the case of f(x) = exp{ie8(x)}, we do not expect to see 

the gradient, V8( x), entering the square-root operator. Since this is the essential 

assumption of gauge-invariance for minimal coupling, we don't expect this method 

to hold true in the general case. Hence we look to a generalization of the theory of 

interaction.s which will be applicable in this case. It is true that one could consider 

a change of variables in the arguments of the exponentials of the Fourier transform 

that involve V8(x), however in this case one leaves behind Fourier transforms and 

moves into the realm of Fourier Integral Operators?3 This is a very interesting 

possibility, but involves complicated inversion formulas and we seek to remain in 

the context of Fourier-transforms. 

Many considerations of the square-root equation in the presence of interac

tions involving minimal coupling have been noted in the literature?4 Many articles 

are critical of the square-root equation because Lorentz invariance is lost in the 

presence of external fields assuming that minimal coupling is the correct way to 

introduce interactions. As we have shown above, there is no reason to expect 

minimal coupling to be the correct method of introducing interactions since local 
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gauge transformations of the field operators are not consistent with pulling the gra

dients of () inside the square-root. Rather than abandon the square-root equation 

as being seriously flawed, we rather abandon minimal coupling and seek a more 

general representation of interactions that reduces to minimal coupling for local 

Hamiltonians. Such a representation was used in the Aharonov-Bohm effect 25 and 

developed extensively by S. Mandelstam:
6 

This representation of interactions can 

be traced back to earlier work by H. Weyl27 and the introduction of imaginary 

. bl h 28non-mtegra e p ases. 

8. Interacting Fields in the Mandelstam Representation 

The Mandelstam representation of gauge-independent (but path-dependent) 

fields is given by 

x 

'!jJ'(x, t) = exp{ie JAIJ. dxIJ.}'!jJ(x, t) . (103) 
xp 

The above product of operators is gauge-invariant by construction. We can use 

this in the free-field Lagrangian to obtain the interacting case 

(104) 

with corresponding equations of motion given by 

(105) 

Sucher 10 has proven the Lorentz-invariance of the free-field square-root equation 

and has also shown that if one assumes minimal coupling to introduce interactions 
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that Lorentz-invariance is lost. However the above equation of motion is a prod

uct of the free-field square-root operator and a Lorentz-covariant path-dependent 

operator times the free field and the product then would transform under Lorentz 

transformations 5 (I\.) as 

5(1\.)](+5-1(1\.)5(1\.) exp{ie J
I 

Att dxtt}5-1(1\.)5(1\.)~(x , t)5- 1(1\.) , (106) 

Ip 

where ](± = i/3ft =r= -lm2 - \72 . Sucher has shown 10 that 

The operator h can be computed from commutators of the infinitesimal Lorentz 

generators and the square-root equation and use of the Campbell-Baker-Hausdorff 

formula to extend the result to finite Lorentz transformations. 

We extend Sucher's proof of Lorentz covariance to the operator ](± which 

involves the matrix /3 . Consider the infinitesimal generators of the Lorentz

transformation M ttv = xtt [)~V - Xv [)~". For the case of a infinitesimal boost along 

the xl-axis we have to consider commutators N lO , where 

(108) 

We make use of Fourier transformations in representing the -lm2 - \72 operator 

acting on a function . We derive 

[N "/3 a1 [ i a a "/3 a1 "/3 a (109)iO,2 -a = -x -a - t-a",2 -a = Z -a",t t Xl t Xl 
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(110) 


In order to evaluate the commutator [Xi, Jm 2 - \72], we let the commutator act 

on a function 1/; and use integration-by-parts to obtain 

[xi, Jm2 - \72]1/; =xi Jm2 - \721/;

(111) 
_1_ Jeik ,(x-Y)Jm2 + k2[yi1/;(y)] d3k d3y.
(211-)3 

We can write the integral above as 

The second term cancels the first term in the commutator [xi, Jm 2 - \72] and by 

integration by parts we obtain 

(113) 

Using the definition of ]{+ we obtain finally as a generalization of Sucher's trans

formation for the two-component case 

No = if3~ - i~~[m2 - \72]-1 
I OXI ot OXl ' 

(114) 

= -if3~[Jm2 - \72r 1 I<+.ox l 

The point is that the square-root equation, I<+, reappears to the right in 

Eq. (114) and would also appear to the right in the finite transformation by use 

of the Campbell-Baker-Hausdorff formula and induction:
o 

This proves Lorentz 
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covariance in the free-field case. The interacting case in the Mandelstam repre

sentation is a product of operators. Notice that each term in the interacting case 

above transforms in a Lorentz-covariant manner. By inserting the unitary opera

tors that correspond to Lorentz transformations (similarity transformations on the 

operators) we see that each term in the product transforms by a similari ty trans

formation and the product transforms in a Lorentz-covariant manner. Therefore 

the Mandelstam approach of introducing interactions does not suffer from loss of 

Lorentz covariance. Hence we have a reasonable candidate theory that includes 

interactions and possesses the usual symmetries. 

The detailed expression involving the kernel for Vm2 - \72 looks like 

if 

J m 2 - \72'ljJ' = (2:)3 Jeik.(i-if) J m 2 + k2 exp( ie JAJl dx Jl ) 'ljJ(y) d3k d3 y, 

(115 ) 

where the path of integration in the line integral is in the hyperplane t-constant 

and along the straight line connecting x and if. 

9. The Aharonov-Bohm effect in the presence of Jm2 - \7 2 

In the case of the Aharonov-Bohm effect one deals with a vector potential of 

ethe form Ap = 0, and Ae = 2:P' where ¢ is the flux integral (the magnetic field 

has a finite flux integral but is confined to the z-axis). In this case we can perform 

the above line integral and obtain a multi-valued function. The initial plane wave 

at infinity impinges on the flux region and it is easy to verify that the above 

equation of motion is satisfied for the incoming wave (incident along the x-axis 

from the right) with the solution 'ljJ = e-ie¢>e e-i(WkHkx), where Wk = Vm2 + k2 for 

the relativistic incoming wave. This solution has only positive energy components 
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and therefore we consider solutions of lift - Jm2 - \7 2]'l,b' = O. We can look 

for an eigenfunction expansion for the interacting case and use the property that 

Jm - \721>.. (x) = v0.1>.. (x) for eigenfunctions of the modified Helmholtz operator. 

But this is exactly the set of solutions for the general scattering problem in the 

paper of Aharonov and Bohm 

00 

(116) 
m=-oo 

where p is the radial coordinate of the two-dimensional scattering problem and B 

is the polar angle. We keep only the terms in the expansion that are regular at the 

origin. We are then lead by the same arguments as in the original Aharonov- Bohm 

paper to the result that the scattering amplitude for the asymptotic scattered 

cylindrical wave in the relativistic case is given 29 by 

sin(7re¢) e- iB / 2 
(117)

J27rik cos(Bj2)' 

The cylindrical scattering cross section #1 is therefore 

sin2 (7re¢) 1 
(118)

27rk cos2(Bj2), 

2where k = .Jw~ -m . 

#1 	The cross section in Eq. (22) of Ref. 25 needs to be divided by k, the momentum of the 
incoming particles , in order to have the correct units for a cy lindrical cross section. 
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10. Extensions to Higher Spin 

We could imagine that higher spin particles would have Hamiltonians that 

could be constructed by Pauli's method of modifying p via 

p ~ ii .P= -iii· \7) (119) 

where ii is a spin representation (e.g.) for spin-1/2 () represents the Pauli matrices 

and could be extended to higher spins by the appropriate representation of S U (2)). 

The square of the operator in Eq. (119) is the product of the 2-by-2 identity matrix 

times the Laplacian. This is a perfect square 

(120) 


Therefore the operator formula B = A2 implies that B is a perfect square and also 

implies A = .JB as an operator. We have then that 

J-(ii. \7)2 = ±iii· \7. (121) 

Hence the zero-mass limit of the spin-1/2 square-root operator is a local operator 

because the argument inside the square-root is a perfect square. This is not the 

case for the scalar equation. Hence we arrive at the zero-mass limit in the spin-1/2 

case 

'f381jJ .- '0.1,
Z at = ±w· v <p. (122) 
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11. Extenstions to Finite Domains 

If one restricts the space offunctions that the operator Jm2 - '\72 acts upon to 

have specific boundary conditions (i.e., periodic boundary conditions, fixed bound

ary conditions), then it is possible to define the square-root operator on these 

functions in terms of integral transforms (i.e., finite Fourier-transforms) . If care 

were taken regarding the even-ness or odd-ness of functions, then finite-sine or 

finite-cosine transformations could be used as well to descretize Jm2 - '\72 for fi

nite domains. Consider the particle in a 1-dimensional box problem. The standing 

waves have the form 

n7rX 

1/Jn = A sin L' (123) 

It is reasonable to define the action of the square-root operator in this case to be 

(124) 

The functions 1/Jn form a basis in the space of functions for the 1-dimensional box 

problem and can be used to extend the definition of Jm2 - '\72 to the complete 

set of functions in this space. 

12, Conclusions 

We have constructed the commutator of the field operators associated with 

the classical energy operator -Jm2 - '\72 , This commutator vanishes for space-like 

separations. The commutator of the quantum field observables associated with 

local Hermitian operators also enjoys this same property. For the energy den

sity operator, 1/J t -Jm 2 - '\7 2 1/J, a weaker condition can be formulated in which only 
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the time-like region contributes to the integral of the commutator over x and Xl . 

Extensions of 'IjJ t -Jm2 - \12'IjJ were presented in this paper that require commuta

tion relations or anticommutation relations. Therefore, the QFT associated with 

Hamiltonians constructed from the -Jm2 - \12 operator provide a consistent frame

work to construct a quantized theory of the conventional spin-O particles with Bose 

statistics. This is an extension of Pauli's 1 result to the non-local spin-O case which 

was excluded from the considerations of his paper on spin and statistics (See Ref. 

1, page 720. The reason that Pauli did not consider -Jm2 - \12 was precisely be

cause this operator acts at finite distances in the coordinate space). Vie see that 

regardless of the fact that Vm2 - \12 is non-local, the QFT associated with it and 

the related Hamiltonian densities H+ contain operators that satisfy microscopic 

causality for the associated observable quantities. Hence microscopic causality can 

be hidden in non-local operators. Also, we present a method of introducing inter

actions that preserves Lorentz invariance and gauge invariance and indicate why 

minimal coupling must be abandoned for the square-root equation. 
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