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ABSTRACT 

Flux matrices for /) ZO, and W- particles in ep scattering are calculated 
using polarization decomposition. These matrices are useful for estimating cross 
sections especially when the interaction matrix element is only partially known 
(there is no need to deal with polarization decomposition when the interaction ma­
trix element is known exactly). These matrices contain complete Q2 dependence 
and the transverse photon flux reduces to the Weizsacker-Williams Approximation 
(WWA) at low-Q2 and also at large-y and hence the WWA is valid when the scat­
tered electron is co-linear with the beam electron. Kinematical effects are important 
especially if the outgoing lepton can be scattered at arbitrary angles . Lepton beam 
.polarization effects are also included. 

1. Kinematics and Polarization Vectors 
Consider a vector boson (i.e., a /, ZO, or W-) emitted from a charged lepton 

as shown in Figure 1. Let P l be the incoming lepton four-momentum and let P2 

r 

Figure 1: Definition of Kinematic Variables. 

be the outgoing four-momentum of the scattered lepton. The four-vector of the 
emitted vector boson is q = Pl - P'2 which is absorbed by a proton, P3, assumed to be 
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traveling in the +z direction. We take the incoming lepton PI to be traveling in the 
-z direction and consider it to be ultra-relativistic (i.e., ml «EI ). The direction 
of P2 is given by the angles 0 and </J with respect to the initial electron direction 
(scattering angles). These basic definitions provide us with 

(EI, 0, 0, -EI)' (1) 


(E2, E2 sin 0 cos </J, E2 sin 0 sin </J, -E2 cos 0), (2) 


(E3, 0, 0, (3E3) , (3) 


q (EI - E 2, -E2 sin 0 cos </J, -E2 sin 0 sin </J, E2 cos 0 - EI). (4) 


The usual invariants used to describe the ep interaction are Q2 = _q2, X = Q2/2p3 . q, 

and Y = (q. P3 )/(PI . P3 ). These can be approximated as 

1 _ E2 (1 + cos 0)
Y ~ , (5)

EI 2 
Q2 E2 (1- cosO) 

~ (6)
4Ei EI 2 

Q2 
x ~ (7)

sy 

The coordinates of the vector q in terms of these variables are given by 

Q2 
qo (8)EI(Y - 4Ei)' 

ql -~Qcos</J, (9) 

q2 -~Qsin</J, (10) 
Q2 

q3 -EI(Y+ 4E2)· (11) 
I 

We define a parameter T, to measure the difference between the initial and final 
lepton energy 

Q2 
2T=Y- - (12)- 4Ei· 

We have the following simple relations between the above kinematical quantities 

Q2 
and (13)- q3 = qo + 2EI' 

(14) 

We choose the laboratory frame to determine the following polarization vec­
tors 

(0, -sin </J, cos q;, 0), (15) 

(0, (EI - E2 cos 0) cos </J, (EI - E2 cos 0) sin </J, -E2 sin 0)/ Jq6 + Q2 , (16) 

(I~, qoeq )/..;Q2, (17) 

q/vIQ2 1· (18) 
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where eq = q/ltil. In general one has the following Reduction of Unity: 

(19) 

where 7]1 = 1, 7]2 = 1, 7]3 = -1, 7]4 = 1. Identity (19) can be written in the case of 
spacelike four-vector q as 

(20) 

For notational convenience we denote the contraction of two Lorentz four-vectors a 

and b (dot product) as 
(21) 

2. Polarized Lepton Beams 

Consider a positive energy fermion whose momentum four-vector is denoted 
by p and spin A. The corresponding spinor is u.>.(p). In the fermion rest frame the 
spin four-vector is given by s = (0,8), with s being a unit vector in the direction 
of the spin quantization. We have p . s = 0 in the rest frame in particular and by 
Lorentz invariance this dot product vanishes in all frames. The ultra-relativistic 
spinor product can be represented as 

(22) 

where A IS the helicity (right-handed beams have A = 1, left-handed beams have 
A= -1). 

3. Definition of Cross Section and Fluxes 

Consider the matrix-element for the lepton-proton interaction. Imagine PI 

to be the source of the exchanged vector boson. Let us consider the ep reaction 
given by PI + P3 -> P2 + f proceeding via vector boson exchange (PI = P2 + q). Also 
consider the sub-reactions: a) i =1 for I exchange, b) i =2 for ZO exchange, c) and 
i = 3 for w- exchange. Consider first I and ZO exchange given by q + P3 -> f. The 
cross section for the ep reaction has the general form 

4 3
dG' = (27r)4c5 (Pl - P2 + P3 - r) 1M 12 d P2 df (23) 

ep 4J(PI . P3)2 _ mim~ ep (27r)32E2 . 

For the above possible intermediate states, i, j = 1,2,3, the form of the cross section 
for interactions at the proton vertex can be represented as 

du.' = (27r)4c5 
4

(q + P3 - f) IM·MJIdf (24) 
'J 4J(q . P3)2 + Q2m~ 'J ' 

where we allow for interference between different intermediate channels. 
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The final-state phase space factor at the proton vertex is represented by df, 
where 

(25) 

Forming ratios from the above definitions we have (using units where e2 = 411"CI') 

(26) 

The final interaction cross section at the proton vertex is defined as 

dc/'op = (211")484(q + P3 - f) IMoMt(P df (27) 
'J 4J(q . P3)2 + Q2m~ • J ' 

and the propagator factors are 

1 
(28)Q2' 

1 
(29)

2sinOw cos Ow [Q2 + (Mz - ifz/2)2]' 

1 
(30)

2y'2 sin OW [Q2 + (Mw - ifw /2)2]' 

The v1p are a set of matrix-valued functions with components over the polarization 
states >.p of the exchanged vector boson. Each combination of ij refers to the 
possible exchanged vector bosons in the intermediate state and the interference 
effects between exchanged particles. We will derive expressions for the V matrices 
below. Since y's is so much larger than the mass of the proton, (m3), we make the 
following approximation (valid for most of the phase space) 

(q . P3)2 + Q2m~ 
(31)

(Pl' P3)2 - mim~ ~ 

The flux expressions are the polarization dependent factors multiplying d(J"~p. 
Therefore, we define the polarization flux factors as 

d3rij _ (4 ) [Fo(Q2) Ft(Q2)Vij ] d
3

P2 
(32)t.-).,p- 1I"CI'Y, j ).,P (211")32E ' 2 

If the matrix elements are azimuthally symmetric, then integration over the az­
imuthal angle of P2 yields 

d2rij 
t.-).,p _ ( CI') [0 2 t 2 ij ]dydQ2 - 411" y F.(Q) Fj (Q )V).,p . (33) 

4. Definition of Amplitudes for Electroweak Flux Matrices 

We now use Standard Model Feynman rules to write down the matrix element 
for the ep reaction in terms of the coupling of the lepton to the intermediate state 
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i = 1 for I, and i = 2 for Zo. The matrix element for positive energy leptons 
interacting via neutral currents becomes 

Mep = (34) 

+ 
1 [-(P)Il( ) (P)] -gllv+QIlQv/Ml v 

e 2 . 8 8 u 2 I gv - gAI5 U 1 [2 (M 'r /2)2] M2 .sm w cos w Q - z - l Z 
(35) 

Using the Reduction of Unity we obtain 

-Mop = eF1(Q2) L [u(P2hIlU(Pt)l{~>'1}>. [(~Mn 
>'=1,2,3 

(36) 

+ eF2(Q2)L [u(P2hll(gV 
>'=1,2,3 

- 9AI5)u(P1)l{~>'1}>.[{~M21 (37) 

(38) 

There is clearly a separation of factors into vector boson emission terms and 
vector boson interaction terms in the above formula. We can take as a definition of 
the polarization amplitudes for i the expression 

(39) 

The above formula can then be decomposed into 

-Mep = eF1(Q2) L [u(P2hIlU(P1)l{~>'1}>. M: ( 40) 
>'=1,2,3 

+ eF2(Q2) L [u(P2hll[gV - gAI5lu(Pt)l{~>'7J>.Mi ( 41) 
>'=1,2 ,3 

+ eF2(Q2)gA 2;1 [u(P2h5(P1)][1 + Q2/MllM~. ( 42) 

Using the ultra-relativistic spin-projection operator above we can take into 
account lepton beam polarization defined as 

fp = fR -fL, ( 43) 

where the fractions of the lepton beam that are right- and left-handed are given by 
fR and fL (i.e., fR + fL = 1). 

Projecting out the polarization dependences we express this above amplitude 
as a sum over the terms A~ and A~ 

2 4 

- Mop = eLL Fi(Q2)A; M/ , ( 44) 
i=1 >.=1 

where 
A = 1,2 , 3 (45) 
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At = 0, (46) 

A~ = [U(P2)_yll[gV - gAlslu(Pt}lf~>'7J>., A = 1,2,3 (47) 

4 2m1 - 2 2]A2 = gA Q[u(P2hsu(P1)][1 + Q /Mz . (48) 

Let us compute the parts that form the square of the overall matrix element. 
We sum over the final lepton spins and use the fact that the initial electron beam has 
an overall polarization fp (i.e., we average the initial lepton spins with a weighted 
sum given by 

< A;Aj >= L [fRA; Aj + hAtAn . (49) 
,,=1,2 

We define the following useful tensors in the polarization space (A, p = 1,2,3) 

U>'P = 2 [(P1f*>')(P2f P) + (P1f P)(P2f*>') - ~2 (f*>'(P)] 7J>.7Jp, (50) 

v>'P = -2mr«(*>'(P)7J>.7Jp, and (51) 

w>'P = 2 [(<>1',13 v P1<>(~>' p2,13f~17J>.7Jp, (52) 

For A,p = 1, 2,3 we have 
(53) 

(54) 

In the above expressions the terms in the Levi-Civita tensor are expressible 
as determinants of the four-by-four matrix formed by taking the vectors contracted 
with the tensor as column or row elements. 

The terms involving A~ in the above amplitude are due to the axial coupling 
of the weak current to the fermions. There is a non-zero projection of the axial part 
onto q. These terms are proportional to the mass of the lepton and when squared or 
contracted with the other amplitudes, give rise to terms proportional to the square 
of the lepton mass and we will ignore all such contributions. Hence we will ignore 
the fourth component in all the polarization matrices derived below, because they 
are small compared to the longitudinal and transverse contributions. 

The square of the matrix element can be summed over final lepton spins and 
represented as (ignoring the f4 component) 

2 3 
2 

I Mepl2 = e L L A;AJP F;(Q2)F}(Q2)M/M}p, (56) 
i,j=l >',p=1 

The flux density matrices are defined as 

D~P = A>' Atp (57)'J - , J ' 
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5. Polarization Decomposition of Electroweak Fluxes 

As an aide in evaluating the density matrices in the laboratory frame we 
define some of the dot products that will enter into the calculation 

P1 0(1 =0; PI 0(2 =_El~p; PI (4 = -Q/20 

(58) 
P2 0 (1 = 0; P2 0 (2 = ._El~F; P2 ' (4 = Q/2, 

where 

(59) 

Let IABCDI stand for the determinant of the 4-by-4 matrix that is formed 
by taking the four-vectors A, B, C, and D as columns. Including the effects of beam 
polarization as well as axial currents requires that we compute in addition to the 
above dot products also the following determinants: 

1 0 1 0 

0 -sin¢ sin Bcos ¢ (E1 - E2 cos B) cos¢1 2 E1E2 
IP1( P2( I = ~ 

0 cos¢ sin Bsin ¢ (E1 - E2 cos B) sin ¢ 

-1 0 - cos B -E2 sinB 

I 1 31 E1E2
P1( P2( = Qltil 

E1 E2 sin ¢ cos ¢ 
1P1(2 P2(31 = 

Q(qZ + Q2) 

1 

0 

0 

-1 

1 

0 

0 

-1 

0 1 q6 + Q2 

-sin¢ sin Bcos¢ (E1 - E2)q1 

cos¢ sin Bsin ¢ (El - E2)q2 

0 - cos B (El - E2)q3 

0 


E1 - E2 cosB 


(E1 - E2cosB) 


1 


sin B 


sin B 


-E2 sin B - cosB 

q6 + Q2 


-(E1 - E 2 ) sin B 


-(E1 - E2) sin B 


(E1 - E2)q3 


(60) 

(61) 

(62) 

Notice that the 2nd and 3rd rows of the last determinant are linearly dependent. 
Therefore, 

Q2(1 - 7) 

2)72 + ~' 
(63) 

Q2~ 

2)72 + -Eft' 
(64) 

o. (65) 
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Using the above quantities, calculated in the lab frame, we now evaluate the ma­
trices U, v, and W for values of A, p = 1,2,3 and ignore the contribution from the f4 

polarization since it depends on the square of the electron mass and is not multiplied 
by comparatively large factors. We summarize the results: 

o 
2 Q~l-y+r +w (1 _ T)°y'I""=y ) , (66) 

1 

(1- r)vr=Y l-y 

(67)
VA' = 2m; (: : ~). 

o (1 - r) 
v'l-Y ).

-(1- r) o o . (68) 

-Vf-=y o o 
As can be seen the elements of VAP are proportional to the square of the electron 
mass and will be ignored. 

We obtain the following density matrices with rows and columns denoting 
A, p = 1,2,3 respectively. The density matrix for pure photon exchange, vl~, is given 
by 

"'7""\11 - AAAtp - UAP _ if WAP
L'Ap - 1 1 - p. (69) 

The above matrices together with the other factors in the definition of the flux 
matrices, Eqs. (32) and (33), give the final result for emission of photons from 
Spin-lj2 fermions. In the unpolarized case fp = 0 and the density matrix, Vl~, has 
the property that all the longitudinal components and off-diagonal elements vanish 
for backwards scattering y = 1. Re-writing the contributions from the two transverse 
diagonal elements we have 

(70) 

+ [d2£22_d2£1l] [/T22 ;/Tll
]. (71) 

The last term represents the interference between the two polarization states and 
the transverse flux is the term multiplying the average over the two transverse cross 
sections: d2£T = d2£1l + d2£22. 

Then 


2 T a dy dQ2 2(1 - y) + (y - ~~y + ~ 
de - ___ [ 1 1] (72)- 27r Q2 Y (_ Q2)2 0 2 •
Y W 

1 
+p

1 

In the limit Q2 -+ 0, this reduces to the usual WWA 
2 

d2eT = ~ dydQ [1 + (1- y)2]. (73)27r yQ2 
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Also note that in the case of backward scattered electrons the transverse flux and 
WWA also agree since y -+ 1 for backwards scattered electrons and the formulas are 
in agreement. This means that the WWA is a reasonable approximation when the 
initial and final electrons are co-linear, regardless if they are parallel (Q2 -+ 0) or 
anti-parallel (y -+ 1). Defining the longitudinal flux as d2£L = d2£33 we obtain 

d2£L_~dydQ2 (l-y) (74) 
- 7f Q2 Y(y _ ;§;)2 + ~ , 

I 1 

with the low-Q2 limit of 

(75) 

Continuing again for the other contributions we obtain for I and ZO interfer­
ence 

(76) 

(77) 

and for pure ZO exchange 

V~; = [g~ + g~ - jpgVgA]U>'P + i[2gvgA - jp(g~ + g~)]W>'p. (78) 

To conclude, the matrix v~~ which describes the analogous matrix for the 
electron-neutrino-W- vertex is 

(79) 

Notice that the density matrix for W- production vanishes in the limit of a purely 
right-handed electron beam UP -+ 1). 

6. 	Comparisons with Weizsacker-Williams Approximation at HERA 
Energy 

The essence of the WWA lies in ignoring the Q2 dependent terms with respect 
to y. This limiting procedure can be expressed as 

Q2
lim 4T2 + _? -+ y2. 	 (80)

Q2«4E~y 4Ei 

The result of this approximation is that 

[2(1 _ y) + (y _ ~)2 + ~] 
-+ !-[1_+.....:.(_1_--.::..:.Y)-=.2] (81)Y 0 2 ? 0 2

(y- ~)~+ P 	 y 
1 1 

Proceeding as with the transverse photon flux given above, we obtain the 
transverse flux for virtual ZO and W- emission from polarized electron beams 

d2£I2 ()' [g~ + g~ - jpgVgA] Q2 2(1- y) + (y - ~)2 + ~ 
dydQ2 = 27f 4sin2Bwcos2Bw (Q2+M~)2+(rzMz)2Y[ (y_~)2+'~ 1], (82) 

4E, E, 
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and 

The limiting cases with respect to the above approximation are 

Q [g~ + g~ - IpgVgA] Q2 [1 + (1 - y)2] 
(84)

271" 4sin2Bwcos2Bw (Q2+M~)2+(rzMz)2 y 

and 	
d2C§3 Q [1-lp] Q2 [1+(I-y)2] 
dydQ2 - 271"4sin20w (Q2+M~)2+(rwMz)2 y 

(85) 

For a comparison we look at ,,(, ZO and W- emission from the lepton beam 
determined by the flux only (the proton vertex enters with a factor of unity). As 
an example we compute the integrated flux for invariant masses of the final state 
(r) above 20 GeV at HERA energies. We obtain 1.31 : 1 : 0.94 for the ratios of 
the integrals of the fluxes for WWA:Transverse:Longitudinal contributions for the 
photon. At Ip = 0 we obtain 3.6 : 1 : 0.0065 for the ratios of the same integrated 
fluxes for ZO emission and 3.57 : 1 : 0.0073 for the ratios of the integrated fluxes 
for W- emission. As seen in Figure 2, the discrepancy between the WWA and 

10 3 

10 2lO'~
'~, '~~=';"h:.:'-.:::.::=:::::.::::::=:=m''''_'''h_::-=~ 

I 

~~2_ , " ! ""!),,,! .~h.':-;~~~~. 
o 0.5 , 1.5 2 2.5 J 

Photon Fluxes 

:~l.~<""'CC"c::~~:==~.~1 

,0~",I",I""" •.J. 

o 0.5 1.5 2 2.5 

ZO FIUXe3 

w- fluxes 

Figure 2: Electron Scattering Angle in Radians . Solid-WWA Flux, Dashed-Transverse Flux, 
Dotted-Longitudinal Flux. 

the transverse flux reaches a maximum around '} radians and goes away at 0 and 71" 

radians for the scattered electron. Figure 3 shows the PT spectrum for the exchanged 

10 



particle. There is a large discrepancy for larger PT values that must be taken into 
account in all Monte Carlo programs that use flux approximations. Setting PT = 0 in 
a Monte Carlo program does not correctly describe the break in the PT distribution 
of the produced final state, because it ignores contributions to PT from the emission 
process of the exchanged vector boson. It is also incorrect to approximate the 
PT distribution by the WWA over the complete phase space. In order to get the 
details of the PT distribution put in correctly, attention to the exact flux formulas 
is essential. 

, I ! , I , 

a 50 lOa 150 200 250 300 

Photon Pt 

10 	 """" " , 
-2 	 :~Ik:~"""""~"""""~"'''--' 

10 .r--'" "'~"" J , 
I ! , , I , 1 

o 	 50 lOa 150 200 250 300 

ZO PI 

,~.E:§, .. 
I I , , I , .1 

o 	 50 100 150 200 250 300 

W-Pt 

Figure 3: PT in GeV je at HERA (yS ~ 300 GeVjc2 ). Solid-WWA Flux, Dashed-Transverse Flux, 
Dotted-Longitudinal Flux. 

7. Conclusions 
Whenever the initial and scattered electrons are co-linear, (i.e., low-Q2 or 

large-y), then the WWA works fine. The emission of photons involves a massless 
propagator which biases the events to low-Q2 values and hence one typically sees 
small effects regarding integrals over Q2 or electron scattering angle 6. However, in 
the case of zO or W- exchange, the scattered electron angle is biased towards larger 
angles and the discrepancy between WWA and the transverse flux is especially large. 
Therefore one should always check the relative sizes of y and {b in the region of 

1 

application of the 	WWA. 
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