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Abstract 

The solvability of second order differential equations invariant under tinle 

translation and rescaling and third order differential equations invariant under 

time translation and two homogeneity symmetries is studied. We give in both 

cases analytic results for the solution of the equations up to a single quadrature 

instead of the usual two (resp three). 
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1 Introduction 

A differential equation 

E(t,x,i;, ... ,x(n)) =0, (1) 

where x(n) represents dnx/dtn, possesses a Lie symmetry 

(2) 


where T and 7] are en functions, if 

(3) 


where e[n] is the nth extension of e (required to determine the effect of the in­

finitesimal transformation induced by e on derivatives up to the nth) given by [1] 

(4) 

The symmetry (2) is point if T and 7] are functions of t and x [2], generalised 

if they contain derivatives of x with respect to t [3] and nonlocal if they contain 

integrals which cannot be evaluated without a knowledge of x(t) [4]. In this paper 

we confine our attention to point symmetries. 

The existence of a point symmetry enables the order of an equation to be reduced 

by one through the introduction of new variables based on the two invariants of ell] 

which are obtain~d from the solution of the associated Lagrange's system 

dt dx di; 
(5) 

T 7] 7] - XT 

If the reduced equation has a point symmetry, the order may again be reduced and, if 

there are sufficient point symmetries, the solution of the original nth order equation 

becomes the performance of n successive quadratures. A sufficient condition for the 

cOlnplete reduction of a nth order ordinary differential equation is that the equation 

possesses n point symmetries with a solvable Lie algebra [5]. However, as Type 
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II hidden symmetries [6] may arise in the reduction process, the condition is not 

necessary. 

In the modelling of natural phenomena two symmetries, representing invariance 

under time translation and recycling, frequently occur. vVe write the generators as 

a a a 
G I =­ G4 = -qt- + X-. (6)

at at ax 

Since [GI , G4] = -qGI and G I i= p(t, x)G4 , G I and G4 constitute a representation of 

Lie's Type III two-dimensional algebra [2] and a study of second order ordinary dif­

ferential equations possessing these two symmetries is a study of the class of second 

order ordinary differential equations possessing the Type III symmetry. \Ve recall 

that second order ordinary differential equations with the Types II and IV algebras 

have linear canonical representations. This is not the case for second order ordinary 

differential equations with Type III symmetry. They are inherently nonlinear. 

A related ordinary differential equation is the class of third order ordinary dif­

ferential equations possessing the three symmetries associated with the generators 

The symmetry (2) is point if T and 7] are functions of t and x [2], generalised 

if they contain derivatives of x with respect to t [3] and nonlocal if they contain 

integrals which cannot be evaluated without a knowledge of x(t) [4]. In this paper 

\ve confine our attention to point symmetries. 

The existence of a point symmetry enables the order of an equation to be reduced 

by one through the introduction of new variables based on the two invariants of GlI ] 

which are obtained from the solution of the associated Lagrange's system 

dt dx di 
(5)

T 7] 7] - XT 

If the reduced equation has a point symmetry, the order may again be reduced and, if 

there are sufficient point symmetries, the solution of the original nth order equation 

becomes the performance of n successive quadratures. A sufficient condition for the 
<:11::;U 111Lere::;\.,111!:) \.,u uu::;el ve \.,Ud\., d ::;ecuJ.J.u UJ. ueJ. uJ.J.J.eJ. eULlal c;y. uaLJ.VJ.J. tJvuU\.JuU.lJ.J.5 'a.l\.J 

syn11netries GI and G4 is transformed into an equation of type (8) when we use the 
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Riccati transformation 

U)l/q 2)1/q 
x=a - , a= 1+­ (9)( u ( q 

To the symmetry of rescaling is associated G4 with xtl/q as invariant. 

The central purpose of this paper is to push the analytic calculations as far as 

possible in the solutions of these second order ordinary differential equations and 

third order ordinary differential equations. For instance, as was shown in [11], the 

most general form of a second order ordinary differential equation possessing the 

symmetries Gland G4 is 

x
i + X 

2q+1f(~) = 0, (10)~ = x q+1 ' 

Equation (10) has a first integral [[11], Eq. (8)] corresponding to the integration of 

dx + ~d~ = 0 (11 ) 
x (q + 1)~2 + f(~) . 

Two steps still remain for the solution process. Firstly we must explicitly ob tain x 
as function of x using the first integral obtained from (11). Secondly 

' dX 
(12)t= Jdt= Jx(x) 

which solves the problem. Even in the case of function as simple as f(~) = ~ + k, an 

equation extensively studied in [12, 13, 14, 15], these two steps involve nunlerical so­

lution of the algebraic relation connecting x and x and a numerical final quadrature. 

'Ve shall see that for some functions f(~) in (10) the first step can be performed 

analytically. Things are worse with the third order ordinary differential equation 

(8). 'Ve introduce the variable 
xx 

p=­ ( 13) i;2 

which is the second order differential invariant common to GIl G2 and G 3 . \iVritting 

i; = px2 
/ x, computing 'x' and introducing (8) we obtain the first integral (in analogy 

wi th (11)) from the integration of 

dx dp
-+ =0 (14) 
x F (p) + 2p2 - P . 
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According to (13) this first integral contains a second derivative and so can be 

rewritten as a second order ordinary differential equation with the value of the 

integral as a parameter, the solution of which is not obvious. This paper deals with 

two problems. Firstly the solution of (8) pushing the analytical computation as 

far as possible for a certain class of the function F(p) and secondly the solution of 

(10) going first to a third order ordinary differential equation after the use of the 

Riccati transformation as given by (9). The trick is to recognise that the possession 

of G I , G2 and G3 is equivalent to having G I and G4 with arbitrary values of q (in 

the first problem) and to take advantage of the arbitrariness of q. In the second 

problem "Vve shall see that the third order ordinary differential equation obtained 

after the Riccati transformation has the three symmetries G I , G2 and G3 . This 

game of exchange between second order ordinary differential equation and third 

order ordinary differential equation brings quite useful results. 

Third order ordinary differential equations of 

the type (8) 

It was shown [[11], Eq (6)] that a third order ordinary differential equation invariant 

under time translation and a rescaling symmetry can be written as 

(15) 

with 
x x 

(16)~ = xq+l ' T} = X 2q+I ' 

where f is an arbitrary function of its arguments. The connection between the two 

fonns as given by (8) and (15) (ie the relation between f and F) is easy to establish. 

Firstly the argument p as given by (13) is equal to T}/~2 for all q. The identification 

of the two terms in front of f and F gives 

f(~, 7]) = CF (;2) . (17) 
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1\1oreover it was shown [[11], Eq (89)] that by applying the two symmetries G 1 and 

G4 to (15) we obtain 
d77 f(~, 77) + (2q + 1)~77 

(18)
d~ (q + 1)~2 - 77 

We introduce (17) and (18), change the variable ~ with z = ~e and reformulate 

(18) with z and p to obtain separation of variables and the following first integral 

dz = 2(q + 1 - p) dp (19)
z F(p) + 2p2 - P . 

Equation (19) is reminescent of (14) except that now q is at our disposal. An inter­

esting possibility exists for F(p) which are first or second order degree polynomials 

in p. It consists in selecting q = A -1, where A is a root of the denominator of (19), 

le 

F(A) + 2A2 - A = O. (20) 

If we do not select q = A-I, calling B the other root of (20) we obtain a first 

integral J as written 

(21 ) 

where a and b depend upon q and the coefficients of the polynomial F(p) while the 

initial conditions are introduced via J as given by (15). If F(p) is a first degree 

polynomial then a + b = l. Reverting to :r,:i; and i we rewrite (21) in the following 

form 

(22) 

\Ve obtain a SODE similar to the one we could have obtained with (14) but certainly 

not a friendly one. Now we take q as explained above, ie q + 1 = A, where A is the 

root of (20). In that case we can take a = 0 and (22) becomes 

B X
'2 

.. J' f3Qx- -= xx, (23) 
x 

where 
2(b - 1) Q= (2+2q-b)J = Jl/b, (24)

Q' = b ' fJ b' 
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N ow we take x as a new independent variable and 

1 
y = -i;P 

P 

as a new function. We have 

.. dy ( )£-1X=-pyP (25)
dx 

and (23) is now written 

dy (py)~-1 _ B (py)~ = JXf3(py)~. (26)
dx x 

As p is at our disposal, we select it ao that ex = 2 - p. Equation (26) is now written 

as 

dy _ Bp¥... = J x f3. (27)
dx x 

Equation (27) is an inhomogeneous linear Euler type equation the solution of which 

IS 

K xBp + J x f3+1 

(28) 

I 

y = ({3 + 1 - Bp) , 

where initial conditions enter through I( and J. The only numerical cornputation 

left is eventually the time scale with the simple quadrature 

dx I dx (29)t = I dt = T = (py ) ~ , 

where y is given by (28). 

It is interesting to observe a connection between the Painleve analysis and the 

class of equations (15) into which we have introduced (17), viz.(8). \Vhen we apply 

to (8) the usual Painleve analysis, ie we look for the behaviour around the time 

singulari ty, to, with 

(30) 

and on balancing the terms in (15) we find that 

s - 3 = s - 3. (31 ) 

So as one expects for a third order ordinary differential equation with the symmetries 

G l , G2 and G3 , we obtain an arbitrary value for s. We just have here the first part 

of the Painleve analysis. 
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Now the dominant coefficient, Ao, is determined by the following functional 

equation obtained by introducing (30) into (15), where F is given by (17), viz. 

(32) 

A nontrivial solution for Ao requires that the term in crochets be zero. If we select 

s = -1/q and q = p - 1, we obtain 

(33) 

\i\Te have already seen that the right hand member is equal to zero. Consequently 

the coefficient Ao is arbitrary and the power -1/q is a fixed value. This result 

corresponds to the obtaining of the resonance T = 0 in the Painleve analysis. 

Thansformation of a second order ordinary dif­

ferential equat ion into a third order ordinary 

differential equation 

\i\Te consider firstly (10) with q = 1 and the Riccati transformation x = Ctu/u. A 

little calculation gives 

(34) 

where p is given by (13) after we have replaced x by u. Indeed (34) is of type (8) 

with 

F(p) = -3p + 2 + a 2f (p~ - ~1) . (35 ) 

Since the analysis given in the section above shows that F(p) must be a polynOInial 

at most of second degree, we see that f must also be polynomial of degree one or 

two. \i\Te consequently consider 

(36) 
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The general equation with q arbitrary is 

(37) 


The essential parameters obtained by invariance of (37) under homothetic trans­

formations are A and v j J-L 2 
. Without loss of generality we take J-L = 1 and v = k 

(which allows, by taking A = 0, one to have the notation of the much studied case 

f(~) = ~ + k). With the Riccati transformation given by (9) we obtain for u after a 

little algebra 

.,' (A + 1 ) u2 (2A) UU [k(q + 2)2 - 1 + A] u3 
_u + -- - 1 - - - - + - - o· (38) 

q U q u q u2 

\Ve introduce 
1 

Y = -xP (39) 
p 

and take u as new independent variable and y as the new function; we obtain 

U = dy (py)2/P-l (40)
du 

... = d2y ( )3/P-l + (2 _ ) (dy )2 ( , )3/P-2 (41 )U du2 py P du PY . 

Introducing (40) and (41) into (38) vve select p in order to cancel the term in (dyjdu)2 

which appears in the first and second terms on the right hand side of (41). \Ve have 

1 A
p=l+-+­ ( 42) 

q q 

and (38) is now 

2-dy _ 2~ dy + [k(q + 2)2 + A-I] pL = O. (43) 
u2du2 qu du q 

Equation (43) is an Euler type linear equation the solution of which is 

(44) 

where the exponents J-Li (i = 1,2) are the roots of the characteristic equation 

( 2A) q+1+A [ ]J-L2 - 1 + q J-L + q2 k(q + 2)2 - 1 + A = O. ( 45) 

9 




The derivatives u and x are given by 

it = (py)I/P and x = (1 + Dl/q~. ( 46) 

The only numerical computation is that of the time scale with 

t = 

(47) 

The last integration is usually a numerical one, but in the case of A = 0 and k = 

l/(q + 2)2 we have 

(48) 

where Al and A2 are some arbitrary constants and the final quadrature can be 

obtained analytically. This makes contact with an already obtained result for this 

case [[11], Eq (85)]. 

Finally (39) gives the critical value of k, for which we pass from an oscillating 

(periodic) solution to a nonperiodic one. The link is given by the appearance of 

complex roots in (45). This value is 

r. ____1__ (49)
"c - 4(q + 1 + A)' 

in agreenlent with the result k = 1/8 obtained in (49) for A = 0 and q = 1 [13]. \;Ve 

finally state the following result. Third order ordinary differential equations possess­

ing the three symmmetries (associated to G i (i = 1, 2, 3) and second order ordinary 

differential equations possessing the two associated to G I and G4 , where F (for the 

third order ordinary differential equations) and f (for the second order ordinary dif­

ferential equations), are polynomial of degree two or lower can be analytically solved 

up to a final quadrature which provides the time scale. In general a second order 

ordinary differential equation (third order ordinary differential equation) with two 

(three) point symmetries requires two (three) quadratures to obtain the solution. 
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4 Conclusion 

This paper deals with the possibility of exhibiting explicit solutions for second order 

ordinary differential equations and third order ordinary differential equations pos­

sessing the necessary number of symmetries to be formally integrable. Knowledge 

of the associated invariant provides in the best case (second order ordinary differ­

ential equation) an algebraic formula connecting x and x. Two numerical steps are 

needed, the first to solve this equation and the second to compute the time scale. 

A change of initial conditions implies doing again this second step. \"le have shown 

that for functions f and F polynomials of at most second degree, the first step can 

be explicitly written (including the initial conditions) as an integrand with some­

times the possibility to evaluate the final integral. This property can be connected 

to the passing of the Painleve test. 
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