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1 Introduction 

The earliest numerical nlethods introduced to solve the Vlasov-Poisson systenl were 
polynonlial expansions [1]. In these nlethods, the position dependence is usually 
expanded in Fourier modes and the velocity dependence is treated either through 
Fourier modes [2, 3,4, 5, 6] or Hermite polynonlials [7, 8, 9, 10, 11]. Then splitting 
schelnes appeared. In those schemes the initial Vlasov equation is splitted in two 
partial derivative equations, one in x, t the other in v, t. These equations lllUSt be 
solved alternatively [1]. A simple way to solve the split ted equations is to use Fourier 
transform both for x and v subspaces [12, 13] . The tendency of the distribution 
function f(x, v, t) to develop steep gradients in phase space ("the filanlentation") 
inhibits the numerical solution to Vlasov-Poisson systelll [13]. In order to ward of 
this problenl Klimas has introduced a smoothed Fourier-Fourier method [14] . This 
nlethod consists in convolving the original distribution function with a Gaussian 
distribution function, and, next, in solving the new system with a transfonned 
splitting algorithnl. Unfortunately, a second-order term appears in the new equation. 
In this work, we study how this terlll affects the numerical equation. III particular we 
prove that instability occurs in the linear version of the \!}asov equation obtained by 
considering only free non-interacting particles. Vie prove also that the use of Fourier­
Fourier transfornl is a fundamental requirelnent to solve this new equation. vVe point 
out an inlportant property, which is not cOlnpletely clarified in [14], concerning the 
filtered distribution function in the transforllled space. The paper is organized as 
follows. In the second section we define the Inathelnatical l1l0del, in Section :3 we 
prove the instability of the Sl1l00thed equation. Section 4 is devoted to the need of 
using Fourier-Fourier transforll1s to obtain a stable splitting schenle. Our conclusions 
are exposed in Section 5. 

2 The Mathen1.atical Model 

The evolution of a one-dinlensional electron plasma in a periodic box can be de­
scribed by the nornlalized Vlasov-Poisson systenl. 

of af af 
at + v ax + E( x, t) av = 0, (1) 

aE fox = f(;c, v, t)dv 1, ~ f f f(x, v, t)dxdv = 1, (2) 

where f(x, v, t) denotes the electron distribution function, E(x, t) the electric field 
and L is the length of the periodic spatial box. In this units t is norll1alized to the 
inverse of plasnla frequency W P' v to thernlal velocity Vth and x to Debye length AD. 
The idea to use a splitting algorithm in tillle to integrate the Vlasov equation (1) 
was introduced first in [2]. As it is difficult to distinguish between the lllathematical 
filaillentation and the ntunerica.l noise, the ll1ethod of filtering was introduced in 
[14]. Its philosophy consists in a convolution of the distribution function f by a 
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Gaussian filter in the variable v to obtain the smoothed function j, 

j(x,v,t) = J F(v - u)f(x,u,t)du, 	 (3) 

where 
1 _~( v 

F(v) = e 2 Vo (4)
V2iivo 

and Vo is a constant paralneter giving the width of the Gaussian filter in therll1al 
velocity units. The function j solves 

(5) 

8E =J-f(x, v, t)dv - 1. 	 (6) 

In (5) and (6), we have E = E. The aim of the present paper is to COll1pare the 
stability properties of the solutions to equations (1) and (5). The conclusion we got 
is that the solutions to (5) can be obtained only by the use of Fourier Transforn1s, 
arid so are very sensitive to perturbations. Consequently we have to be extren1ely 
careful when using such a n1ethod for nun1erical computation, in the general case of 
initial conditions. 8 
Since the filamentation process is associated to th~ free strealning term vaf;, it is 

sufficient to consider the free strean1ing problen1, dropping in (5) the tenn E(x< t)U. 
Thus let us consider the equation 

8g 8g 2 82g
-+v-=-v --,
8t 8x °8x8v (7)

1g( x, v, 0) = go (x, v). 

In order to describe the equation (7), let us define the Fourier-Transfonn 9 of g 
by 

L 2

9(1'n, v, t) 	 1 r r e-i(m {x+vv)g(x, v, t)dxdv, (8)
L }x=o }veJR 

Introducing 	(8) in (7), we obtain 

8g 8g 2 Nat - kom Bv = vokomvg, 	 (9) 

where ko is the fundamental wave number ko = 2; . 

Now let us study the Cauchy problem, which consists in solving equation (9) with 
ini tial condition 
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9(711, V, 0) = 90(m, v). (10) 

The solution of the system (9)-(10) is given by 

(11 ) 

Then, in order to obtain a solution to (7), we need to find a function 9 such 
that its Fourier transform is 9 defined in (11). If 90(111, v) is an arbitrary func­
tion, we observe that aSYl11ptotically, if v and m have the same sign then the ternl 
eU5mkovtettl5m2k~t2 in (11) tends exponentially to infinity, and therefore there is no 
function having 9 as Fourier-Transform. Consequently there is no solution to (7). 
On the contrary, let the initial distribution function go takes the fornl 

go (x , v) = fo (x, v) * F (v) ( 12) 

then 
(13) 

Hence, we get fronl (11) 

(14) 

or equi valentely 

- - 1 2 2
f(m, v, t) = fo(rn, v + nl,kot) = 9(1n, v, t)e2' tlov , ( 15) 

w~lich is the solution to the Vlasov equation. By these formulas we see that the fact 
that go has the form (12) is crucial, and, as we shall see in section 3, we have to 
keep this property for all times in approximate numerical schemes. 

Stability 

It l11ight be interesting to investigate the stability of (7). For that purpose, we 
conlpare the exact solution of (7), which can be written as 

g(t) S(t)g(O), (16) 

with S(t) the resolution operator, which can be expressed by (11), and an approxi­
Inate solution hn conlputed by 

(17) 

'with A(~t) an approximate resolution operator, and ho = g(O). At a fixed tilne 
T n~t, we assume that there is a slight difference between hn and 9 as 

hn g(T) + 8g. (IS) 
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Then, in the next step, since the operator S is linear, the difference between hn+l 

and 9 takes the following form 

hn+l - g(t) = (A(L~t) - S(llt))hn + S(llt)8g. (19) 

For this difference to be small, we need both ter111S in the right-hand side of 
(19) to be small. The first one depends on the way A approaches S, but for the 
second one, as we discussed before, 8g needs to be small with respect to e-v5v2 /2. 

Therefore, a necessary condition for the approximate method to be stable is that 
the operator A( Ilt) preserves the exponential decrease at infinity of the Fourier­
Transform. Generally, this property is very difficult to obtain unless A( Ilt) is defined 
itself by Fourier-Transfor11l. Moreover, it might be lost when taking into account 
the acceleration terlTI due to the electric field. 

Need to use Fourier-Fourier transform 

In the following, we show that the solution to equation (5) can be obtained only by 

the use of Fourier transform (without the term E~~). It will be proved that the 

direct solution to equation (7) leads to the solution of an unstable heat equation. 
Equation (7) is a second order linear partial differential equation. It can be solved 
by Fourier-Fourier transfornl, but let us try a splitting 11lethod as follow 

8g 8g
-0 +v­o = 0,t x 

(20) 

og 2 02g
-8 +vo-8 8 =0.t x v 

(21) 

The systenl so obtained represents a linear transport equation (20) and a second­
order parabolic equation in a non canonical fonTI. 

The solution of the transport equation (20) is given by 

g(x, v. t) = g(:r - vt, v, 0). (22) 

In order to solve equation (21) we introduce the change of variables 

(23) 

Introducing this last relation into equation (21), gives 

(24) 
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\lVe have obtained a canonical linear partial differential equation, which can be solved 
a prio1'i by a splitting method as follows 

8g 282 g 
- -VO ­ 28t aYl 

0, (25) 

8g 2 a2gat + Vo 8xi O. (26) 

The difference between the last equations reside in their stability. It is well known 
that the first type of equation is stable but the last one, called the retrograde tenlper­
ature equation is unstable. Consequently a solution to equation (7) by the splitting 
method (20)-(21) is unstable. 

Now we Remark that the stability of partial differential equations depends Inainly 
on their highest-order terms. Therefore, since we have seen above that equation (21) 
is unstable, the solution to equation (7) is Inerely unstable also. Hence we nlust not 

8g 8 2g
separate the ternlS v- and v5-a ,and \ve Il1USt be very careful in the treatnlent

8x ax v 
of these two terms. As shown in Sections 2-3, this can be achieved only by the 
use of Fourier-Fourier transfornl. In this case the filtering of the initial distl'ibu­
tion function becoines a sinlple nlultiplication which consists to damp high wave 
lengths as we have seen in section 2. That operation hides but does not renl0ve the 
filanlentation. 

Conclusion 

The nunlerical integration of the Vlasov equation has been studied intensely during 
the recent years, since a knowledge of its non-linear evolution is indispensable in 
the understanding of plaSlllas. A Inajor problenl encountered in these studies is the 
phase space filaillentation of the distribution function. The filtering 111ethod intro­
duced by Klimas is renlinescent of the Fokker-Planck term introduced in [7. 8] in 
the Fourier-Hernlite 111ethod. But the conlparison is fallacious. The finite l1unlber of 
Henl1ite polyno111ials introduced a bouncing of the infornlation and triggers instabil ­
ity. The Fokker-Planck ter111 damps the high order Hernlite coefficients supressing 
the instability but at the price of a Inodification of the physics of the probiein. The 
111ethod of K:limas see111S to reinove filanlentation. But, it is inlportant to point 
out that filanlentation is a physical property, and that the splitting nlethod does 
not trigger any nUlllerical instability. V.ie have proved that the only way to aCCOln­
plish snl00thing and keep stability is by Fourier-Fourier transfom, as outlined by 
Klinlas hinlself. But, in this case, the velocity wavenulnbers are simply multiplied 
by e-t v6v2 

• Their slnallness at the border is just an artefact and tends to hide the 
reality of the approximation. 

The only advantage of the Klilllas Inethod is to erase parasites fronl figures, 
allowing a better understanding of the phase structures. 
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